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Abstract. Metaheuristics are promising tools to use when addressing
optimisation problems. On the other hand, most of them are hand-
tuned through a long and exhaustive process. In fact, this task requires
advanced knowledge about the algorithm used and the problem treated.
This constraint restricts their use only to pure abstract scientific research
and by expert users. In such a context, their further application by non-
experts in real-life fields will be impossible. A promising solution to this
issue is the inclusion of adaptation within the search process of these algo-
rithms. On the basis of this idea, this paper demonstrates that simple
adaptation strategies can lead to more flexible algorithms for real-world
fields, also more efficient when compared to the hand-tuned ones and
finally more usable by non-expert users. Seven variants of the Genetic
Algorithm (GA) based on different adaptation strategies are proposed.
As benchmark problem, an NP-complete real-world optimisation prob-
lem in advanced cellular networks, the mobility management task. It is
used to assess the efficiency of the proposed variants. The latter were
compared against the state-of-the-art algorithm: the Differential Evolu-
tion algorithm (DE), and showed promising results.
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1 Introduction

Due to the limitations of the exhaustive-based search methods, metaheuristics
appear as a promising tool to use when tackling optimisation problems. The
Genetic Algorithm (GA) is one of the first-proposed Evolutionary Algorithms
(EAs) [10], and also one of the most studied ones.

The main motivation behind the use of metaheuristics is ultimately solving
real-world problems, which often requires a problem-specific algorithm design.
The complex customisation of algorithms to a specific problem either needs a
specialist or limits the field of application to scientific research. Indeed, most
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of the scientific works propose powerful algorithms without further considera-
tion for their industrial application. Furthermore, there is a growing demand for
optimisation software usable by non-specialists within an industrial development
environment. A promising way to do this is to supply the industry with intelli-
gent algorithms containing a mechanism that modifies the parameters without
external control [1]. Many schemes of adaptation exist in the literature, but all
can be regrouped in three categories [1]: deterministic, adaptive and self-adaptive
algorithms. In this paper we are intrested in the first class.

Customer tracking and mobility management are key factors in communica-
tion networks in general and especially in cellular networks (2G, EDGE, GPRS,
3G, 3G+, LTE, 4G). In fact, any dysfunction of this task may alter the ser-
vice quality of the network itself causing call drops and other issues. Regarding
the actual high standards of the mobile phone industry, these kinds of failure
are unacceptable for the telephony operators and the users as well. Thus, the
mobility management is one of the most challenging optimisation issues in cellu-
lar networks. It has been formulated as a binary optimisation problem and was
proven to be NP-complete [8].

This paper investigates/proves whether simple strategies of adaptation can
lead to more flexible, efficient and usable algorithms. Seven deterministically-
adaptive variants of the genetic algorithm are proposed based on several adap-
tation strategies with different complexities and behaviour. The performances
of the proposed variants is assessed by solving the mobility management prob-
lem. The state-of-the-art algorithm Differential Evolution (DE) is taken as an
efficient competitor.

The remainder of the paper is structured as follows. In Sect. 2, basic concepts
related to the GA, adaptation within EAs and finally the mobility management
problem are presented. In Sect. 3, the proposed variants of the genetic algorithm
are introduced. Section 4 is dedicated to the experimental results and their dis-
cussion. Finally, we conclude the paper in Sect. 5.

2 Basic Concepts

In this section, we introduce basic concepts of the genetic algorithm, adaptation
within evolutionary algorithms and finally the mobility management task.

2.1 The Genetic Algorithm

The genetic algorithm was first proposed by Holland [10]. It was born from the
attempt to mimic the natural process of reproduction and evolution. Thus, the
idea of the GA is to evolve a set of individuals toward a fitter state by applying
a series of selection, variation, evaluation and replacement phases.

The GA starts by initializing a population of N individuals
−→
X of size L,

where each individual
−→
X i=1...N = {X(i,1), X(i,2), . . . , X(i,L)}. The latter are

evaluated using the fitness function of the problem being addressed. Then, the
best individual

−→
X∗ is extracted.
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After, at each iteration of the algorithm, firstly we select M individual par-
ents

−→
P according to a given strategy. Secondly, the selected parents

−→
P i=1...M

are perturbed using variation operators such as the mutation and crossover in
order to produce (N - M ) new offspring

−→
O . The crossover consists of exchanging

parts of the individual parents at some chosen points. The amount of informa-
tion exchanged and the number of crossover operations performed are ruled by
both the type of crossover used and the crossover probability Pc ∈ [0,1]. After,
the mutation operator randomly mutates the values of genes in each produced
offspring

−→
O i=1...(N−M). The number of mutation operations is determined by a

mutation probability Pm ∈ [0,1]. Thirdly, the produced offspring are evaluated
using the objective function of the problem being tackled.

Finally, having the old population of parents and the newly-produced off-
spring, a replacement phase is performed in order to determine what will be the
composition of the population for the next iteration. However, the GA mechanics
are left as a black box due to the existence of several types of selection, crossover,
mutation and replacement.

2.2 Adaptation Within Evolutionary Algorithms

Adaptation within EAs reflects the attempt to mimic processes of natural evo-
lution. State-of-the-art EA implementations often require a deep algorithmic
knowledge from the user in order to choose appropriate parameters values for
solving a specific optimisation problem. Even for an expert, the parameters con-
figuration for an optimal performance is hard to find. The idea of automatic
adaptation is to evolve these parameters values according to a given scheme. A
classification of these schemes can be made according on how they are performed.
Many classifications exist, but we opt for the taxonomy proposed in [1].

Parameter Tuning: Is the scheme used whenever the parameters have con-
stant values throughout the run of the EA (i.e. there is no adaptation). Conse-
quently, an external agent or a manual mechanism is needed to tune the desired
parameters and to choose the most appropriate values.

Dynamic: It appears whenever there is some mechanism that modifies a para-
meter without any external control. The class of EA that uses this scheme can
be further subdivided into other specific subschemes.

– Deterministic: This scheme takes place if the value of a parameter is tuned
constantly by some deterministic rule. This rule modifies the strategy para-
meter deterministically without using any feedback from the EA. This scheme
is the one we are intrested in our work.

– Adaptive: This scheme takes place if there is some form of feedback got from
the EA that is used to set the direction or/and magnitude of the change to
the strategy parameters.

– Self-adaptive: In this scheme the parameters are encoded with the variables
and can evolve as well as the solution itself.
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2.3 Studied Adaptation Strategies

Many parameters could be adapted such as Pc, the selection pressure, the pop-
ulation size, ... etc. But in our work the one that will undergo the adaptation is
the mutation probability Pm. This is very simple but it could be very powerful
at the same time. Adaptation in general is about three issues: When to adapt
(i.e. period)? In which direction (i.e. increase or decrease)? How much (i.e. the
amplitude of change)? Our scientific methodology consists of using strategies that
deal with these issues in different manners and with an increasing level of complex-
ity and with different directions of evolution in order to represent a wide range
of mathematical adaptation behaviour. We firstly opt for the use of a canonical
monotone adaptation: linearly-decreasing and linearly-increasing. Then, we use a
more complex adaptation strategy (i.e. non-monotone) called oscillatory. In this
perspective, we opt for the sinusoidal wave with a decreasing and increasing ampli-
tude [6]. Finally, we use several specialized state-of-the-art strategies whose the
efficiency is well-established. Thus, we opt for the ones studied in [4,7,9].

This is done in order to answer some questions such as: does adaptation allow
producing better algorithms than the hand-tuned ones? Does designing more
efficient algorithms imply using more complex adaptation schemes? Ultimately,
is the adaptation a real solution for conceiving better algorithms?

It is worth to mention that within the next sections the variable N corre-
sponds to the size of the population, L refers to the length of the individual,
Maxit refers to the maximum number of iterations and finally t represents the
actual iteration.

The Linear Adaptation Strategy: This strategy is based on adding
(i.e. when increasing) or subtracting (i.e. when decreasing) at each iteration
“t” of the algorithm a constant “step” from the previous Pm value at iteration
(t – 1 ). The step size used is computed using Formula (1).

Step =
UB − LB

Maxit
(1)

Pm(t + 1) = Pm(t) ± Step (2)

Fig. 1. Linear adaptation strategies: (a) decreasing and (b) increasing
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Variables UB and LB are the upper and lower bounds of the interval where
the Pm value is supposed to evolve. Figure 1(a) and (b) show the resulting evo-
lution of Pm value when using the linearly-decreasing and linearly-increasing
adaptation strategies, respectively.

The Oscillatory Adaptation Strategy: This strategy is based on the for-
mula defining a sinusoidal wave with a decreasing or an increasing amplitude.
Formula (3) defines the sinusoidal wave with an increasing amplitude, whereas
Formula (4) highlights the new terms that differentiate the sinusoidal wave with
an increasing from the one with a decreasing amplitude.

Pm(t) = Pm0 ∗
(
sin(2π ∗ freq ∗ t) ∗ t

Maxit
+ 1

)
(3)

Maxit − t

Maxit
(4)

The variable “freq” is a parameter that controls the frequency of the wave
and Pm0 is the value from where the evolution starts. Figure 2(a) and (b) show
the resulting evolution of the Pm value when using the oscillatory-decreasing
and oscillatory-increasing adaptation strategies, respectively.

Fig. 2. Oscillatory adaptation strategies: decreasing and increasing amplitude

State-of-the-art Adaptation Strategies. These strategies were proposed in
[4,7,9]. In the following, each one of them is introduced.

– Bäck Strategy: It was proposed by Bäck et al. [4]. It is defined by
Formula (5).

Pm(t) =
(

2 +
L − 2

Maxit − 1
∗ t

)−1

(5)

– Forgaty Strategy: It was proposed by Fogarty [7]. It is defined by
Formula (6).

Pm(t) =
1

240
+ 0.113752t (6)
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– Hesser Strategy: It was proposed by Hesser and Männer in [9]. It is defined
by Formula (7), where C1, C2 and C3 are constants.

Pm(t) =

√
C1

C2

exp(−C3t/2)
N

√
L

(7)

2.4 Mobility Management in Cellular Networks

In order to assess the efficiency of our proposed approaches, we could go for an
academic problem as much of the literature does. But instead, we wanted to
improve the interest of our study by considering a real-problem such as mobility
management.

Tracking mobile users is a key factor and a sensitive issue in cellular phone
networks (2G, EDGE, GPRS, 3G, 3G+, LTE, 4G) [11] and other wired or wire-
less networks (vehicular, sensor, etc.). The optimisation of this task implies the
optimisation of two sub-tasks which are: the paging and the location-update.
Two main schemes of mobility management exist; the paging scheme and the
location area-update-based scheme. The latter includes two main types; dynamic
and static. The reporting cell scheme is one of the most practical static-location-
update-based schemes [11]. In this last one, one seek to find the optimal network
configuration that determines the reporting and non-reporting cells.

The reporting cell scheme was first proposed by Hac and Zhou in [8]. They
assessed that it is NP-complete. Then, it has been modelled in [12] as a binary
optimisation problem, where the objective function to optimize is defined by
Formula (8).

Minimize: Lc = β ∗
∑
iεRC

NLu(i) +
Tc∑
i=0

NP (i) ∗ V(i) (8)

Here NLu(i) is the location-update cost associated to the ith cell and RC is
the set of reporting cells in the network. Np(i) is the paging cost associated to
the ith cell and Tc is the number of cells in the network. V (i) is the vinicity
factor associated to the ith cell. The vinicity factor depends on the type of the
cell itself. If it is a reporting cell, the vinicity factor can be calculated as the
number of non-reporting cells from where one can reach the reporting cell. If the
cell is a non-reporting cell, the vinicity factor can be calculated as the maximum
vinicity factor of the reporting cells from where one can reach the non-reporting
cell. The parameter β is a ratio to balance the objective function. In fact, the
cost of location-update is considered to be 10 times much higher than the cost
of paging. Thus, usually in the literature β is set to 10. Figure 3 illustrates a
potential solution of the reporting cell problem for a network with eight cells,
where the 1st, 4th and the 8th cells are reporting cells, while the 2nd 3rd, 5th,
6th and the 7th are non-reporting cells.
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Fig. 3. Solution instance for the mobility management problem

3 The Proposed Approach

In this paper, seven deterministically-adaptive variants of the genetic algorithm
are proposed. The proposed variants are enhanced generational elitist genetic
algorithms. In this section, a detailed description of the main operators and
phases of the proposed approaches is given. Please note that the term L used
in the next sections refers to the length of the chromosome. In the case of the
mobility management problem, L corresponds to the size of the network.

3.1 Initialisation

At this step, a first population of N chromosomes is generated randomly by
assigning to each gene of each chromosome either the value 1 or 0. A random
number “rand” is generated from a standard uniform distribution. If rand � 0.5
then the gene will have the value 1, otherwise it will have the value 0.

3.2 Selection

In this step, (N/2) couples are formed from the N chromosomes existing in
the population. A binary tournament selection is used to select the parents
and create the couples that will constitutes the mating pool that will undergo
the reproduction phase. To create a couple, the best of two randomly-chosen
parents is mated with a second individual selected from two other randomly-
chosen parents. The process is repeated (N/2) times.

3.3 Reproduction

In this step, the (N/2) couples of parents will undergo a series of genetic operators
(i.e. crossover and mutation) to produce N new offspring.

Crossover: A two-point crossover is performed. This mechanism is ruled by a
probability of crossover Pc ∈ [0,1]. In our case Pc is set to 1. For each couple of
parents, a random number “rand” is generated from a standard uniform distrib-
ution. If rand � Pc, the crossover is performed on the current couple, otherwise
the parents are copied and considered as new offspring.

When applying the two-point crossover, two splitting-points are chosen ran-
domly from the interval [1, L]. Then, the parents are swapped at these points.
The zones delimited by the head, the first switch point, the second switch point
and the tail of the two parents are exchanged.
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Mutation: After the crossover operator, mutation is applied on the produced
offspring. This operator is ruled by a mutation probability Pm ∈ [0,1]. But in
our case it is set to (1/L). The mutation consists in a bit-flip. For each gene of
each one of the produced offspring, a random number “rand” is generated from
a standard uniform distribution. If rand � Pm, the mutation is performed on the
current gene. The gene is then flipped to the other state, otherwise it is kept as
it is. In this work the value of Pm is driven using different adaptation strategies
explained in Sect. 2.3.

3.4 Evaluation and Replacement

In this step, the produced offspring are evaluated using Formula (8). A genera-
tional elitist strategy (μ,λ) is used to extract the N best individuals (i.e. from
the union of both produced offspring λ at generation (t) and the parents μ at
generation (t–1 )) that will constitute the new population of individuals at gener-
ation (t+1 ). The latter will undergo the next generation of genetical operators.
Detailed pseudo-code of the proposed approaches is available in the hyperlink1.

On the basis of the strategy of adaptation used for the mutation probability
Pm, we propose in this work seven new adaptive variants of the genetic algorithm.
The first two proposed variants are based on a linear adaptation. The LD-GA
(for Linearly-Decreasing adaptation strategy based Genetic Algorithm) that uses
a linearly-decreasing strategy. The second variant called LI-GA (for Linearly-
Increasing adaptation strategy based Genetic Algorithm) that is based on a
linear increasing strategy.

The two next variants are based on the oscillatory adaptation. The OD-
GA (for Oscillatory-Decreasing adaptation strategy based Genetic Algorithm)
which is based on a sinusoidal strategy with a decreasing amplitude. The OI-GA
(for Oscillatory-Increasing adaptation strategy based Genetic Algorithm) that
is based on a sinusoidal strategy with an increasing amplitude.

The three last adaptation strategies are the state-of-the-art ones. Firstly,
the B-GA (for Bäck adaptation strategy based Genetic Algorithm) which is
based on the strategy proposed by Bäck et al. [4]. Secondly, the F-GA (for
Forgaty adaptation strategy based Genetic Algorithm) which is based on the
strategy proposed by Forgaty in [7]. Finally, the H-GA (for Hesser adaptation
strategy based Genetic Algorithm) which is based on the strategy proposed by
Hesser et al. [9].

4 Experimental Results and Analysis

All our tests are carried out using an Intel I3 core with 2 GB Ram and a Linux
OS. The implementation is done using Matlab 7.12.0 (R2011a). Experiments
are run using a cluster of 16 physical machines. Parallel processing of fitness
evaluations is performed. The latter are equally split over 4 cores.

1 Appendix: http://tinyurl.com/Appendix-Hyperlink.

http://tinyurl.com/Appendix-Hyperlink
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The scalability of the proposed variants is assessed using different-sized
instances of the reporting cell problem. Twelve instances of 4×4, 6×6, 8×8 and
10×10 cells are used. The instances were generated on the basis of realistic pat-
terns. The instances are provided by the University of Malaga, Spain. They have
been previously used in [2,3,5] and are available in2.

On the basis of state-of-the-art works that already studied the GA behaviour
and parameters [1], for the LI-GA, LD-GA, OI-GA and OD-GA, the Lower
Bound (LB) is set to (1/L), where L is the chromosome length (in our case
the size of the network). The Upper Bound (UB) is set to 0.3. For the OI-GA
and OD-GA, the frequency freq is set to 0.7 and Pm0 is set to the middle of the
interval [(1/L), 0.3] after a parameter tuning experiment. Finally, for the variant
H-GA, the constant C1, C2 and C3 are set to 0.4, 0.6 and 0.9, respectively.

The proposed variants are compared to one of the state-of-the-art metaheuris-
tic used to solve the mobility management task in cellular networks, which is
the Differential Evolution algorithm (DE) [2,3].

For consistency and fair comparison with the DE, we use the same experimen-
tal parameters used in [2,3]. Thus, experiments are performed until reaching the
termination criterion of 175000 fitness evaluations (including the evaluation of
the initial population). We use 175 individuals, 1000 iterations and all the algo-
rithms are repeated for 30 runs. Several results are reported such as: the best,
the worst fitness, the mean and standard deviation of the fitnesses over 30 exe-
cutions. We also report #hits; which represents how many times the proposed
variants were able to reach the results obtained by the differential evolution
algorithm. The variable #evals; represents the mean of the number of fitness
evaluations needed to the proposed variants to obtain the same best results as
the ones obtained by the differential evolution algorithm. The variable Time is
the average time needed to the proposed approach to reach the same results
reached by the differential evolution and it is expressed in seconds.

It is worth to mention that metrics #hits, #evals and Time are recorded
every time the proposed variants achieve the same/better results obtained by
the DE. The comparison is based on the best solution reported through 30
executions. Statistical analysis tests are also performed such as the one-sample
Kolmogorov-Smirnov test, the Brown-Forsythe test, the Kruskal-Wallis one-way
analysis of variance test and a multiple comparison test is used to determine
which is the best “self* plan”. All tests are performed using a level signifcance
equal to 5 %. Detailed-numerical results of the above-mentioned tests are avail-
able in the hyperlink3.

4.1 Numerical Results

Table 1 shows the numerical results obtained when using the proposed variants
of the genetic algorithm to tackle networks of size 4×4, 6×6, 8×8 and 10×10
cells, respectively. It is worth to mention that the symbol “-” is used whenever
the proposed variants achieve results worst than the ones obtained by the DE.
2 Benchmark Instances: http://oplink.lcc.uma.es/problems/mmp.html.
3 Appendix: http://tinyurl.com/Appendix-Hyperlink.

http://oplink.lcc.uma.es/problems/mmp.html
http://tinyurl.com/Appendix-Hyperlink
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4.2 Discussion and Interpretation

On the basis of the metric “Mean” of Table 1, one can note that all the variants
except the B-GA achieve the same results for networks 1, 2 and 3 of size 4×4
cells. Considering now networks of size 6×6 cells, the OI-GA variant is the best
one, whereas for network 2, the OI-GA, OD-GA and F-GA are the best ones.
For network 3, the OI-GA and OD-GA are the best variants. For networks of
size 8×8 cells, the F-GA is the best one, while for networks 2 and 3, the OI-GA
is the best one. Finally, for networks of size 10×10 cells, the OI-GA is assessed
to be the best variant for networks 1, 2 and 3. Also, on the basis of the metric
“Mean” of Table 1, the B-GA is assessed to be the worst variant in all networks,
whereas the OI-GA is assessed to be the best one for all networks.

When considering the metric “#evals” of the best variants found in each one
of the problem instances, one can observe that F-GA is the best variant when
tackling network 1 of size 4×4 cells, whereas for network 2 it is the LD-GA the
best one and finally for network 3, the LI-GA is assessed to be the best one.
Let us consider now networks of size 6×6 cells, the H-GA is assessed to be the
best variant for networks 1, 2 and 3. When tackling networks of size 8×8 cells,
the OD-GA is found to be the best variant for networks 2 and 3. Finally, when
tackling instance 3 of size 10×10 cells, the F-GA is found to be the best variant.

Taking again the same metric, the worst variant assessed for networks 1 and
3 of size 4×4 cells is the OD-GA, while for network 2 it is H-GA. When tackling
networks of size 6×6 cells, OI-GA is assessed to be the worst variant. Finally, the
LD-GA is found to be the worst variant for network 2 of size 8×8 cells, whereas
for network 3 it is OI-GA the worst one.

Considering now the metric “#hits” of Table 1, all the variants except the
B-GA achieve the same results for networks of size 4×4 cells. Let us take now
networks of size 6×6 cells, the OI-GA is assessed to be the best variant for
network 1, while for network 2 it is OI-GA, OD-GA and F-GA the best ones.
For network 3, both OI-GA and OD-GA are the best variants. When tackling
networks of size 8×8 cells, the OI-GA is found to be the best variant for networks
2 and 3. Finally, for network 3 of size 10×10 cells, the F-GA is found to be the
best variant. Also, on the basis of the metric “#hits” of Table 1, the B-GA is
found to be the worst variant in all problem instances, whereas the OI-GA is
assessed to the best one.

With regards to results of Table 1, the proposed variants are able to achieve
results as good as those obtained by the differential evolution algorithm in 8 out
of 12 instances. On the other hand, the proposed variants were outperformed by
the DE in 3 out of 12 networks: network 1 of size 8×8 cells and networks 1 and 2
of size 10×10 cells. Finally, the proposed variant F-GA was able to outperform
the differential evolution algorithm in network 3 of size 10×10 cells. This fact
is even more interesting since we are proposing adaptive variants of a simple
algorithm that is able to outperform a more complex and specialized one.

Statistical results of the Kruskal-Wallis and also the Post-Hoc tests4 support
the numerical results obtained in Table 1. The null-hypothesis is rejected for each
4 Appendix: http://tinyurl.com/Appendix-Hyperlink.

http://tinyurl.com/Appendix-Hyperlink
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one of the instances which confirms that a difference exists in the distribution
of the proposed variants. Also, statistical ranking of the Post-Hoc confirm the
promising efficiency of the proposed variants.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
·105

4

4.5

·105

LI-GA

LD-GA

OI-GA

OD-GA

B-GA

F-GA

H-GA

Fig. 4. Fitness evolution for network 3 of size 10×10 cells

Figure 4 shows the fitness evolution when using the deterministically-adaptive
variants of the genetic algorithm for tackling network 3 of size 10×10 cells.
One can see that the F-GA has the quickest converegnce rate and B-GA has
the slowest one, while the remaining variants OI-GA, OD-GA, LI-GA, LD-GA
and H-GA have a moderate convergence rate when comparing with the F-GA
and B-GA. However, no clear link can be seen between the type of adaptation
strategy (i.e. linear and oscillatory) or the direction of evolution (i.e. increasing
and decreasing) and the produced convergence rate.

5 Conclusions

In this paper, a deterministically-adaptive genetic algorithm based on seven
adaptation strategies was presented. The proposed variants were assessed for
solving the mobility management problem in advanced cellular networks. The
state-of-the-art algorithm differential evolution was taken as a comparison basis.

The experiments showed that the proposed approach based on the sinusoidal
adaptation is the best one. They also showed that the use of adaptation within
EAs can lead to more efficient algorithms when comparing to the hand-tuned
ones. They demonstrated also that designing more efficient adaptive algorithms
does not imply using more complex adaptation schemes. As perspective, we
intend to study more complex and unexplored strategies of adaptation in order
to solve efficiently the mobility management in advanced cellular networks.
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