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Abstract. A forecasting algorithm for big data time series is presented
in this work. A nearest neighbours-based strategy is adopted as the main
core of the algorithm. A detailed explanation on how to adapt and imple-
ment the algorithm to handle big data is provided. Although some parts
remain iterative, and consequently requires an enhanced implementation,
execution times are considered as satisfactory. The performance of the
proposed approach has been tested on real-world data related to elec-
tricity consumption from a public Spanish university, by using a Spark
cluster.
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1 Introduction

Recent technological advances have led to a rapid and huge data storage. In fact,
90 % of existing data in the world have been generated in the last decade. In this
context, the improvement of the current data mining techniques is necessary to
process, manage and discover knowledge from this big volume of information. The
modern term big data [10] is used to refer to this evolution. Sensor networks, typ-
ically associated with smart cities, are one of the main sources of big data genera-
tion and can be found in diverse areas such as energy, traffic or the environment.

The popular MapReduce paradigm [4] has been recently proposed by Google
for big data parallel processing. This paradigm has been widely used by Apache
Hadoop [15], which is an open source software implemented in Java and based
on a distributed storage system called Hadoop Distributed File System (HDFS).
However, the limitations of the MapReduce paradigm to develop iterative algo-
rithms have promoted that other proposals emerge, such as Apache Spark [6].
Apache Spark is also an open source software project that allows the multi-
pass computations, provides high-level operators, uses diverse languages (Java,
Python, R) in addition to its own language called Scala, and finally, offers the
machine learning library MLIib [5].
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In this work, an efficient forecasting algorithm for big data is introduced. The
proposed method is based on the well-known nearest neighbours techniques [3]
in machine learning. This choice is due to the good results reported when applied
to datasets of small or moderate size. The algorithm has been developed in the
framework Apache Spark under the Scala programming language. The algorithm
has been tested on real-world big datasets, namely energy consumption, collected
from a sensor network located in several buildings of a public university.

The rest of the paper is structured as follows. Section2 describes a review
of the existing literature related to the nearest neighbours algorithms for time
series forecasting and to the different approaches of the nearest neighbours for big
data published in recent years. In Sect. 3 the proposed method based on nearest
neighbours to forecast big data time series is presented. Section4 presents the
experimental results corresponding to the prediction of the energy consumption
coming from a sensor network of building facilities. Section5 closes the paper
giving some final conclusions.

2 Related Work

Predicting the future has fascinated human beings since its early existence. Accu-
rate predictions are essential in economical activities as remarkable forecasting
errors in certain areas may incur large economic losses. Therefore, many of these
efforts can be noticed in everyday events such as energy management, natural
disasters, telecommunications, pollution, and so forth.

The methods for time series forecasting can be roughly classified as follows:
classical Box and Jenkins-based methods such as ARMA, ARIMA, ARCH or
GARCH [1] and data mining techniques (the reader is referred to [9] for a tax-
onomy of these techniques applied to energy time series forecasting). Namely,
data mining techniques based on the k nearest neighbours (kNN) have been suc-
cessfully applied, providing competitive results [7,8,14]. However, these methods
cannot be applied when big time series have to be predicted due to the high com-
putational cost of the kNN.

Consequently, several MapReduce-based approaches to address the kNN algo-
rithm in big data scenarios have been recently proposed. The authors in [17]
study parallel kNN joins in a MapReduce programming model that involves
both the join and the NN search to produce the k nearest neighbours of each
point in a new dataset from an original dataset. In particular, both exact (H-
BRJ) and approximate (H-zkNNJ) algorithms are proposed to perform efficient
parallel kNN joins on big data. In [11], an algorithm is proposed to address the
problem of the fast nearest neighbour approximate search of binary features in
high dimensional spaces using the message passing interface (MPI) specification.
A MapReduce-based framework focused on several instance reduction methods
is proposed in [13] to reduce the computational cost and storage requirements
of the kNN classification algorithm.

In the context of this work, the KNN query is usually required in a wide range
of sensor network applications. In fact, authors in [16] propose a MapReduce-
based algorithm to generalize the spatio-textual kNN join in large-scale data.
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This algorithm aims at searching text-similar and k-nearest sensors to a query
set containing more than one query point.

Furthermore, other distributed architectures such as GPU have been used
to address parallel versions of the kNN algorithm [2], also allowing a fast and
scalable meta-feature generation for highly dimensional and sparse datasets.

Alternatively, the MLIlib does not include any Spark implementation of the
kNN algorithm, in spite of providing several traditional algorithms such as k-
means, decision tree, among others. Thus, several parallel implementations of
the kNN algorithm have been proposed in the literature. For instance, the work
presented in [12] provides a Spark implementation in Java of the kNN and the
SVM-Pegasos algorithms to compare the scalability of this parallelization tech-
nology with the MPI/OpenMP on a Beowulf cluster architecture. This kNN
Spark implementation maps the Euclidean distance from each training sample
to a test sample.

3 Methodology

This section describes the methodology proposed in order to forecast big data
time series. In particular, Sect.3.1 introduces the methodology itself and in
Sect. 3.2 how it is implemented to be used in Spark.

3.1 Time Series Forecasting Based on Nearest Neighbours

This section describes the technique applied to time series forecasting based on
the kNN algorithm.

Given the electricity consumption recorded in the past, up to c¢;, the problem
consists in predicting the h consecutive measures for electricity consumption
(note that h is the prediction horizon).

Let C; € R" be a vector composed of the h values to be predicted:

C; = [Ci+17 Cit2yenny Ci+h] (1)

Then, the associated vector CC; € R" is defined by gathering the consump-
tion contained in a window composed of w consecutive samples, from values of
the vector C; backwards, as follows:

CCi = [Cimw+1 Cimwt2s - -+ Ci1,Ci] (2)

For any couple of vectors, CC; and CC}, a distance can be defined as:

dist(z,j) = ||CC; — CCy|| (3)

where ||| represents a suitable vector norm (the Euclidean norm has been used
in this work).
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The weighted nearest neighbours (WNN) method first identifies the k nearest
neighbours of vector C'C;, where k is a number to be determined and neighbour-
hood in this context is measured according to (3) as afore mentioned. This leads
to the neighbour set, NS:

NS = {set of k indexes, q1,...,qx, such that CCy, closest to vector C’C’,;}
(4)
in which ¢; and g refer to the first and k-th neighbours respectively, in order of
distance.
According to the WNN methodology, the h electricity consumptions are pre-
dicted by linearly combining the consumptions of the k£ vectors succeeding those
in NS, that is,

Ci= ;i Cq, b
Z] 19 z—: ©)

where the weighting factors a; are obtained from,

1
%= (dist(CC,,, CCh))2

(6)

Obviously, a; when j = k (furthest neighbour) is lesser than «; when j =1
(nearest neighbour). Note also that, although the w consumptions contained in
CC; are used to determine the nearest neighbours, only the h consumptions of
the vectors Uy, are relevant in determining Cj.
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Fig. 1. Illustration of the WNN approach.

In order to find candidate neighbours, ¢;, a window of w samples is simply
slid along the entire dataset.
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Figure 1 illustrates the basic idea behind the WNN algorithm, with k£ = 2
and w = 4. Values ¢;11 and ¢;42 (h = 2) are the target prediction. As
w = 4, values [¢;—3,¢i—2,¢i—1,¢;] are chosen as window. Later, minimal dis-
tances calculated according to Eq. (3) are searched for in the historical data.
Sequences of values s = [¢;—j_5,...,¢i—j—2] and s3 = [¢;_p—5,...,Ci—k_2] are
identified as the two nearest neighbours. In particular, ss is closer to w than
s1, and would therefore be denoted as g2 and g1, respectively. Finally, the fore-
cast is performed by considering the h next samples to s; and ss, according to
Egs. (5) and (6).

3.2 Algorithm Implementation for Apache Spark

The algorithm described in Sect. 3.1 has been implemented for Apache Spark,
making the most of the RDD variables of Spark, in order to use it in a distributed
way. This strategy makes the analysis of the datasets more efficient and faster.
Therefore, every RDD created is split in blocks of the same size across the nodes
that integrate the cluster, as it is shown in Fig. 2.

For a proper execution of the algorithm, several variables have to be defined
from the beginning. These are:

1. The initial time series to be analysed.

2. The size of the window w whose values are taken as a pattern to look for the
nearest neighbours.

The number of values h that needs to be predicted.

4. The number of nearest neighbours k£ that are going to be selected.

@

Since overwriting RDD variables cannot be done in Spark, a new RDD is
created in each step of the algorithm. Hence, every time this section refers to a
new transaction it means that a new RDD is being created.

Firstly, the data is loaded in Spark, split into different fields and finally just
the energy consumption is selected, as shown in Fig. 3(a). An extra field with a
numeric index is also added in this transaction. So the initial dataset in Spark is
a RDD with just two fields, identification number with the position of the value
of the time series, and the consumption itself (see Fig.3(b)). Remark that, as

CLUSTER

Executorl

rdd_1
Executor2

rdd_2

Executor3
rdd_3

dataSetFile RDD: dataSet

EHEHENE

Fig. 2. Creation of a RDD variable in Spark and how it is managed in a cluster.
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before mentioned, this data is split automatically across the nodes of the cluster.
In a second transaction, the previous dataset is separated in two subsets, test set
(TES) and training set (TRS), as Fig. 3(c) shows. TRS will be used to train the
algorithm, whereas TES will be used to predict results and to check the accuracy
of the prediction, comparing each predicted value to the actual one.

RDD: dataSet

:
Energy
consumption values RS e
(a) Data selection. (b) Including an id. (¢) TRS and TES.

Fig. 3. Data preprocessing.

The next transaction only uses TRS for training purposes. Therefore, the
w previous values to the h values to be predicted are selected as the pattern
in this iteration, as depicted in Fig.4(a). Now, the main goal is to store every
possible subset of w values that can be formed of which their h future values
are known. To achieve this, the windows w has to be shifted h values from the
end of the time series, and from there, the w subsequent values are selected.
Next iteration will repeat the same process as is illustrated in Fig. 4(b). For the
following transaction, the TRS is divided in subsets of h values, as shown in
Fig. 4(c). Thanks to map transformations that Spark provides to its RDD, this
is done in one instruction all over the RDD located in the cluster. The key in this
transaction is to group values just in one action without doing several iterations
like it would have been done in other languages (Java 8’s Stream is, perhaps, the
sole exception). In this case, the RDD from the previous transaction is grouped
by the rule id/h. As a result, the new RDD will contain a numeric id of the
subsets following by their corresponding h values. This can be seen in Fig. 4(d),
where idGrouping is the numeric id of each subset and h; represents each subset
of h values of the time series. In particular,

h; = [Ci.h+1, Ci-h+2 -5 C(iJrl)-h] (7)

For instance, in the figure, hq is formed by the h values whose index id divided
by h is 0, that is, [c1, ¢z, ..., cp]-

As the formation of each subset of w values depends on the h; previous
subsets, a new RDD will be created with these subsets focusing on the RDD
from the transaction before. So in this transaction, a dataset is also formed with
the subsets of w values as well as the numeric id that matches with the RDD
that contains the subsets h;. This is represented in Fig. 5(a), where idGrouping
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Fig. 4. kNN in Spark, phase 1.

is the numeric id of the subset and w; represents each subset of w previous values
to the h values of the subset h;.

w; = [Ci-hf(wfl)a ey Cih—1, Ciuh) (8)

Due to the size of the windows w is usually greater than h, it can be observed
that w; cannot be defined when it does not exist w consecutive values previous
to the values of h;. For the same reason, it would be necessary not to look at
just the values of the subset h;_1, but in the w/h subsets before to build the
subset w;. This can be seen in Fig. 5(b), where the values for the ws, for instance,
are going to be formed by the values of the w/h previous h;, in this case, hg
and hj.

In the next transformation, both RDDs need to be joined. Again, and thanks
to the fact that both datasets share the same numeric id, Spark allows to do so
by a simple action, obtaining a new RDD with the grouping id, the w values of
the time series and the h values that follows it. This transaction can be seen in
Fig. 5(c).

At this time the pattern w is compared to each w;, obtaining the new field
distance, which is calculated by the Euclidean distance and added to the previous
RDD with just one action over Spark. Thus, the new dataset will contain the
numeric id ¢«dGrouping, the w;, the h; and the distance d; between the w pattern
and w;. This is shown in Fig. 6(a).

The next step of the algorithm sorts the previous RDD according to the
distance, which Spark does rapidly just indicating the field for which the whole
RDD is going to be sorted.
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Fig. 5. kNN in Spark, phase 2.

After that, just the k nearest neighbours will be chosen. This is explained in
Fig. 6(b), where k is the number of nearest neighbours to be selected.

The next transaction will calculate the prediction, applying the formulas (5)
and (6). In Spark, before the value is predicted, it is necessary to do intermediate
calculations. First, each value of each h; is divided by the square distance. This
is done in Spark with a new map transformation, adding a new field with the
values of h;/(d;)?. And finally, each of these fields needs to be summed, which
in Spark is done with a reduce action over the field obtaining a number. This is
illustrated in detail in Fig. 6(c), where the new columns z; represents the division
of the j-th value of each h; between its square distance (d;)?, sum represents
the sum of each column and reduce; is the name of the variable that gather
that number. So first column z; will be the division of each c¢;.41 of each h;
between the distance (d;)?, then it will be summed and saved in the variable
reducey. Then, it is just necessary to divide each sum of each field with the sum
of the inverse of the square distance (reduceDist variable), obtaining the h values
predicted as shown in Fig. 6(d).

Once all the predictions for the ki values are made, the process begins again to
obtain the following h forecasts, but this time updating the TRS, as shown in
Fig.7(a), where TRS old represents the initial TRS; and TRS new the new
one including the previous TRS and the h real values previously predicted. The
algorithm will then stop when the total predictions have the same size as the
TES. This can be seen in Fig. 7(b). The final step lies in comparing the prediction
with the real values in TES applying the formula of the mean relative error,
defined in Eq. (9), as shown in Fig. 7(c).
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Fig. 6. kNN in Spark, phase 3.
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Fig. 7. kNN in Spark, phase 4.

4 Results

This section presents the results obtained from the application of the proposed
methodology to electricity consumption big data time series. Hence, Sect. 4.1
describes the used datasets. The experimental setup carried out is detailed in
Sect. 4.2. Finally, the results are discussed in Sect. 4.3.

4.1 Datasets Description

The datasets used are related to the electrical energy consumption in two build-
ings located at a public university for years 2011, 2012 and 2013. The consump-
tion is measured every fifteen minutes during this period. This makes a total
of 35040 instances for years 2011 and 2013, and 35136 for the year 2012. TES
consists of the the last three months of 2013 for both datasets.

Note that there were several missing values (< 3%). In particular, some
values are equal to 0. However, subsequent time stamps store the accumulated
consumption for such instances. Therefore, the cleaning process consisted in
searching for such 0 values and assuming that consumption had been constant
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during these periods of time. That is, the stored value after zeros is divided by
the number of consecutive registered zeros and assigned to each one.

4.2 Design of Experiments

The proposed algorithm requires several variables to be executed. Since this is
a preliminary study, an exhaustive analysis of best values has not been carried
out and the following considerations have been taken into account:

1. The size of the window (w) has been set to 96, which represents all the values
for a whole day.

2. As for the forecast horizon (h), it was firstly set to h = 48 (12h) and secondly
to h =96 (24h).

3. The number of nearest neighbours (k) varies from one to five.

The algorithm has been executed using each dataset described in Sect. 4.1
varying the aforementioned parameter settings (w, h and k). In short, each
dataset has been executed 10 times.

To evaluate the runtime costs of the algorithm, each complete experimen-
tation for each dataset has been executed using two processors, summing 20
executions in total.

The experimentation has been launched on a cluster, which consists of 2
Intel Xeon E7-4820 processors at 2 GHz, 18 MB cache, 8 cores per processor and
64 GB of main memory working under Linux Ubuntu. The cluster works with
Apache Spark 1.4.1 and Hadoop 2.3.

Finally, in order to assess the performance of the algorithm, the well-known
mean relative error (MRE) measure has been selected. Its formula is:

N
1 |U red — vactual‘
MRE = — pred acuael 9
N ;:1 (9)

Vactual

where vp,eq stands for the predicted values and vgcytqr for the actual consumption
values.

4.3 Electricity Consumption Big Data Time Series Forecasting

This section shows the results of applying the methodology proposed in Sect. 3.1
to the datasets described in Sect. 4.1 over the cluster described in Sect. 4.2. The
algorithm has been tested on the last three months in the year 2013, for both
buildings, resulting in 8832 forecasted instances.

Table 1 summarizes the results obtained for the first building. Analogously,
Table 2 shows the results obtained for the second building. Note that the col-
umn Duration collects execution times in minutes. The values for the rightmost
columns show the MRE associated with each k.

It can be noticed that to facilitate future comparative analysis, only two
processors have been used. Additionally, horizons of prediction has been set to
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Table 1. Electricity consumption forecasting for the first building.

w |h |Duration k=1 k=2 k=3 (k=4 k=5
96 | 48 | 143.99 0.3184 | 0.2902 | 0.3025 | 0.3132 | 0.3090
96|96 | 53.00 0.4653 | 0.4243 | 0.4530 | 0.4773 | 0.4708

Table 2. Electricity consumption forecasting for the second building.

w |h |Duration k=1 k=2 k=3 |k=4 (k=5
96 | 48 | 143.79 0.3052 | 0.2749 | 0.2870 | 0.2912 | 0.3030
96 |96 | 53.13 0.4807 | 0.4159 | 0.4407 | 0.4452 | 0.4686

48 (12h) and 96 samples (24 h), thus representing usual short-term forecasting
horizons in electricity consumptions.

It can be seen in both tables that the execution time varies along with the
size of the h, up to 66 %. This is because the higher the value of h is, the lesser
number of distances has to be computed. It can also be noticed that small values
of k£ do not make significant difference to the accuracy of the predictions. In fact
it just changes from one & to another by 5 %. Farthest studies need to be carried
out to select the optimal k.

It must be admitted that the execution time is expected to be improved in
future versions. This is partly due to the fact that the calculation of every w;
is the only part of the algorithm which is not made in a parallelized way, but
in an iterative way. Since previous h; must be checked to compute w;, in some
cases, two subsets w; and w; may have values from the same h;. This means
that for every w;, all the previous h;’s need to be individually checked, and just
the ones after it are discarded. In short, a formula that creates every w; from
the original time series following a MapReduce schema have not been found so
far. Obviously, future research will address this issue.

5 Conclusions

An algorithm to forecast big data time series has been proposed. In particu-
lar, the algorithm is based on the weighted nearest neighbours paradigm. This
work describes how to design it in Spark. It also provides results for real-world
time series, e.g. electricity consumption for several buildings at a public univer-
sity. The implementation has been launched on a 2-processor cluster generating
satisfactory results in terms of both MRE and execution time. Future work is
directed in integrating the code in the Spark MLIib as well as in reducing its
computational cost.
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