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Abstract. In classification tasks, feature selection has become an
important research area. In general, the performance of a classifier is
intrinsically affected by existence of irrelevant and redundant features.
In order to find an optimal subset of features, Markov blanket discovery
can be used to identify such subset. The Approximate Markov blanket
(AMb) is a standard approach to induce Markov blankets from data.
However, this approach considers only pairwise comparisons of features.
In this paper, we introduce a multivariate approach to the AMb defini-
tion, called Approximate Multivariate Markov blanket (AMMb), which
takes into account interactions among different features of a given subset.
In order to test the AMMb, we consider a backward strategy similar to
the Fast Correlation Based Filter (FCBF), which incorporates our pro-
posal. The resulting algorithm, named as FCBFntc, is compared against
the FCBF, Best First (BF) and Sequential Forward Selection (SFS) and
tested on both synthetic and real-world datasets. Results show that the
inclusion of interactions among features in a subset may yield smaller
subsets of features without degrading the classification task.

1 Introduction

In classification problems, the course of dimensionality refers to the negative
effect on the performance of a classifier when applying on a dataset with too
many features. This is due to various reasons, e.g., the search space to explore
has a too high dimensionality and that many features may be irrelevant or even
redundant, introducing in this way noise in the dataset. In this context, we say
that a feature is irrelevant if it does not provide any information on the class, and
it is, therefore, not needed for the classification. The problem is how to identify
a feature as irrelevant. Different approaches, e.g., [1,2,5,8] have addressed this
problem, by considering the relevance of a feature on its contribution to the
meaning of the class concept. In this context, feature relevance has arisen as a
measure of the amount of relevant information that a feature may contain about
the class in classification tasks.
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It follows that, in many cases, a preprocessing phase aimed at the selec-
tion of non-redundant and relevant features becomes necessary. Moreover,
such a dimensionality reduction would be beneficial also for datasets of lower
dimensionality.

Different strategies have been proposed for addressing the above mentioned
problems. There are two main approaches used in feature selection: the wrapper
and the filter approach [7]. In the wrapper approach, a classifier is used in order
to estimate the quality of the selected features. The main advantage of such
approach is that the feature selection phase benefits from the direct feedback
provided by the classifier. However, the main drawback is that such methods
are computationally expensive. Moreover, there is the risk of overfitting. On
the other hand, strategies based on the filter approach estimate the quality of
the selected features by using some estimations based on the properties of the
data, without using any classifiers to this aim. Thus, filter approaches are less
computationally expensive than wrapper approaches, and can deal with high-
dimension datasets. This fact represents a clear advantage. However, the ausence
of a classifier can imply in lower classification results.

The Fast Correlation Based Filter (FCBF) [16] approach has shown excellent
performance when applied to high dimensional datasets, being able to select a
set of non-redundant and informative features. In particular, this method relies
on the concept of Approximate Markov blanket (AMb), proposed in [8] in order
to detect redundancy and on the Symmetrical Uncertainty (SU) in order for
detecting dependencies among features.

Even if the FCBF has achieved good results, it presents an important limita-
tion: it only considers interaction that can take place between pairs of features,
but does not consider interactions among different features. In this work we
propose a feature selection strategy that aims at solving this limitation.

Our approach is based on the AMb, and it aims at modifying it in order to
consider possible interactions that can exist among different features, and not
only interactions among pairs of features. To this aim, we propose to redefine the
AMb and use the SU and a normalized version of the total correlation [12,15]
(NTC) as cost functions. Then, we use this definition in a variant of the FCBF
algorithm denoted as FCBFntc. Results obtained on synthetic and real datasets
confirm the effectiveness and potential of the proposed strategy.

The rest of the paper is organized as follows. In Sect. 2 we provide the base-
ments the theoretic foundations of our proposal and a description of FCBFntc.
The data used in this work are introduced in Sect. 3. Then, Sect. 4 provides an
experimental validation of our proposal. In Sect. 5 we present the main conclu-
sions dentifying possible future developments.

2 Theoretical Foundations

In this paper, we will use the following notation. X denotes the n dimensional
set of features, while xi ∈ X is used for representing its elements. E stands
for the set of samples, and a single sample is represented by the pair (xi, yi)
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where yi ∈ Y is a known class label of xi. The classification mapping F is
denoted as:

F : X → Y. (1)

Feature selection can be formulated as the problem of finding a subset of fea-
tures S ⊂ X that minimizes a given cost function J(X ,Y), with respect to the
expression (1), i.e.:

min
xi∈X , yi∈Y

J(xi, yi) (2)

subject to F (xi) = yi. (3)

Typically, feature selection algorithms aim at finding a set of features that min-
imize the cost function J(X ,Y).

Several works [1,2,5,8] have made an effort for classifying the features accord-
ing to the contribution to the meaning of the class concept. In this context,
feature relevance has arisen as a measure of the amount of relevant information
that a feature may contain about the class in classification tasks.

In this context, a feature is considered irrelevant if it contains no information
about the class and therefore it is not necessary at all for the predictive task.
Removing this type of features may improve the predictive model as well as
the speed of the learning algorithm. In contrast relevant features are those that
embodies information about the class concept. However, for minimizing the error
rate it may not be necessary to select all relevant features; as a subset with the
most predictive power may be sufficient. Furthermore, such subset of features
may not be unique due to redundancy.

In order to identify redundant features, Holler and Sahami [8] proposed to
use the concept of feature Markov blanket.

Definition 1 (Markov blanket). Given a feature xi, Mi ⊂ X (xi /∈ Mi) is
said to be a Markov blanket for xi iff

P (X − Mi − {xi},Y |xi,Mi) = P (X − Mi − {xi},Y|Mi). (4)

According to this definition, a set of features Mi is a Markov blanket for a
feature xi if xi is conditionally independent of X −Mi−{xi}. If so, then xi is also
conditionally independent of Y. Such condition is stronger than the conditional
independence between xi and Y given Mi. It requires that Mi subsume not only
the information that xi has about Y but also about all of the other features.
Therefore, given a subset S ⊆ X , a feature xi ∈ S can be removed from S if we
find a Markov blanket Mi for xi within S. In this case we can say that xi is a
redundant feature of S and so removing it from the subset will not affect the
predictive power of the classification model.

2.1 Bivariate Approach for Feature Redundancy

Redundancy is generally defined in terms of feature correlation and it is widely
accepted that two features are redundant if their values are correlated. How-
ever, linear correlations may not be sufficient to detect non-linear dependencies
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between features. In this work we use a non-linear correlation measure based
on entropy. By considering each feature as a random variable, the uncertainty
about the values of a random variable (r.v.) X is measured by its entropy H(X),
where H(X) is defined as:

H(X) := −
∑

i

P (xi) log2(P (xi)), ∀i = 1, . . . , n. (5)

Given another random variable Y , the conditional entropy H(X|Y ) measures
the uncertainty about the value of X given the value of Y and is defined as:

H(X|Y ) := −
∑

j

P (yj)
∑

i

P (xi|yj) log2(P (xi|yj)), (6)

where P (yj) is the prior probability of the value yj of Y , and P (xi|yj) is the
posterior probability of a given value xi of variable X given the value of Y .
Information Gain [13] of a given variable X with respect to variable Y (IG(Y;X))
measures the reduction in uncertainty about the value of X given the value of
Y and is defined as:

IG(X|Y ) := H(X) − H(X|Y ). (7)

Therefore IG can be used as correlation measure. For instance, given the random
variables X, Y and Z, X is considered to be more correlated to Y than Z, if
IG(Y |X) > IG(Z|X). IG is a symmetrical measure; which is a desired property
for a correlation measure. However it is biased in favor of r.v. with more values.
Such values have to be normalized to ensure the values are comparable with each
other. In order to do so, IG can be normalized using the corresponding entropies.
To this aim, the Symmetrical Uncertainty (SU) measure can be used:

SU(X,Y ) := 2
[

IG(X|Y )
H(X) + H(Y )

]
. (8)

SU is preferred to IG since it compensates for IG’s bias and restricts its values to
the range [0, 1]. A value of 1 indicates that X and Y are completely correlated,
while a value of 0 indicates that X and Y are independent. Therefore, SU can
be used as a correlation measure between features.

Based on the SU correlation measure, authors of [16] introduced the Approx-
imate Markov blanket concept to analyze the feature redundancy:

Definition 2 (Approximate Markov blanket (AMb)). Given two features
Xi and Xj (i �= j) so that SU(Xj ,Y) ≥ SU(Xi,Y), and given a class label
set Y then Xj forms an approximate Markov blanket for Xi iff SU(Xi,Xj) ≥
SU(Xi,Y).

Based on the definitions above, the authors proposed the fast correlation
based filter - FCBF - algorithm, whose pseudocode is the following:
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Algorithm 1. FCBF
Input: S(X1, X2, . . . , XN , Y) // a training data set

δ // a predefined threshold
Output: Sbest // a selected subset

1 begin
2 for i ← 1 to N do
3 calculate SU(Xi, Y) for Xi;
4 if SU(Xi, C) > δ then
5 append Xi to S′

list;
6 end if

7 end for

8 order S′
list in descending SU(Xi, Y) value;

9 Xj ← getFirstElement(S′
list);

10 repeat
11 Xi ← getNextElement(S′

list, Xj);
12 if Xi �= NULL then
13 repeat
14 if SU(Xi, Xj) ≥ SU(Xi, Y) then
15 remove Xi from S′

list;
16 end if

17 Xi ← getNextElement(S′
list, Xi);

18 until Xi = NULL;

19 end if

20 Xj ← getNextElement(S′
list, Xj);

21 until Xj = NULL;

22 Sbest = S′
list;

23 end

As it can be seen, the algorithm starts by ordering the features according to
their symmetrical uncertainty with respect to the class. In this step, a feature
is considered relevant if it exceeds a predefined threshold. Let X1 be the first
feature from S′

list. Then the algorithm verifies if X1 is a AMb of Xi(i > 1). If
it is, then Xi is removed from the set of relevant features. The above process is
repeated until there are no features in S′

list.

2.2 Multivariate Approach

In order to assess the dependency among features from a subset, the con-
cept of total correlation [12,15] provides an effective way to compute it. Given
X1, . . . , Xn, denoted as X1:n, the total correlation is defined as follows:

C(X1:n) :=
n∑

i=1

H(Xi) − H(X1:n) (9)

with H(X1:n) the mulivariate joint entropy. It can be noted that for n = 2, the
total correlation is equivalent to the bivariate mutual information.

In order to restrict the values of C(X1:n) to the range [0, 1], as in the case
of SU, we have to normalize. The Normalized Total Correlation (NTC) can be
defined as:

NTC(X1:n) :=
C(X1:n) − Cmin

Cmax − Cmin
(10)

The maximum total correlation occurs when one of the variables determines
all of the other variables and is given by Eq. 11, while the minimum is given by
Eq. 12.
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Cmax :=
n∑

i=1

H(Xi) − max
Xi

H(Xi) (11)

Cmin := {0;
n∑

i=1

H(Xi) − log2 m} (12)

With m the sample size. If the sample is large enough, Cmin = 0. However,
the number of samples necessary increase exponentially with the number of
features. In general samples are not so large and, therefore, Cmin �= 0. The
lower values total correlation can obtain in these cases is given by C(X1:n) =∑n

i=1 H(Xi) − log2 m. However, This expression can be negative if m is large
enough. Threfore, we have to select between 0 and the minimum possible value,
Now we can use this measure to define the Approximate Multivariate Markov
blanket (AMMb) as follows:

Definition 3 (Approximate Multivariate Markov blanket (AMMb)).
Given a feature Xi and a subset Sj (Xi /∈ Sj), and given a class label Y then Sj

forms an approximate Markov blanket for Xi iff NTC(Xi,Y) ≤ NTC(Xi, Sj).

We can use the AMMb in the FCBF algorithm. The pseudocode of the result-
ing algorithm, denoted as FCBFntc, is presented in Algorithm 2 and differs, from
the original strategy in the us of NTC instead of SU and in the following. Let
X1 be the first feature from S′

list. Then the algorithm verifies if X1 is a AMMb

Algorithm 2. FCBFntc

Input: S(X1, X2, . . . , XN , Y) // a training data set
δ // a predefined threshold

Output: Sbest // a selected subset
1 begin
2 for i ← 1 to N do
3 calculate NTC(Xi, Y) for Xi;
4 if NTC(Xi, C) > δ then
5 append Xi to S′

list;
6 end if

7 end for

8 order S′
list in descending SU(Xi, Y) value;

9 Xj ← getFirstElement(S′
list);

10 S ← Xj ;
11 repeat
12 Xi ← getNextElement(S′

list, Xj);
13 if Xi �= NULL then
14 repeat
15 if NTC(Xi, S) ≥ NTC(Xi, Y) then
16 remove Xi from S′

list;
17 end if

18 Xi ← getNextElement(S′
list, Xi);

19 until Xi = NULL;

20 end if

21 Xj ← getNextElement(S′
list, Xj);

22 S ← Xj ;

23 until Xj = NULL;

24 Sbest = S′
list;

25 end
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of Xi(i > 1). If it is, then Xi is removed from the set of relevant features. In the
second iteration, let X3 be the next feature from the S′

list. Then, the algorithm
verifies if {X1,X3} is a AMMb of Xi(i > 3) and this process is repeated until
there are no features in S′

list.

3 Data

This section describes the datasets used in this work for assessing the goodness
of our proposal. First, we analyze the AMb approach using synthetic data. This
kind of data provides a controlled environment scenario for analyzing potencial
strengths and limitations of the proposal. In a second step, we tested the proposal
on real datasets taken from the UCI repository [11]. The characteristics of the
datasets are explained below.

3.1 Synthetic Datasets

We use the LED synthetic data, which consist of 7 boolean features and 10
concepts, the set of decimal digits. LED displays contain 7 light-emitting diodes
and so all the 7 features are relevant. We add irrelevant features for testing if
the proposal is able to find the relevant ones. We also add noise in order to
further test our approach. Given a percentage of noise Pn a feature will have a
a probability equal to Pn of being inverted. We generate several versions of this
dataset as specified in Table 1.

Table 1. Summary of synthetic datasets.

dataset #samples #irr. features noise (%)

LED 1000 {0, 50, 100} {0, 10, 20}

3.2 UCI Datasets

Table 2 summarises the characteristics of the chosen datasets. The first two
columns correspond to the name of the datasets as it appears in the UCI reposi-
tory and the identifier (id) used in forthcoming tables. The following two columns
show the total number of instances and the number of features. Finally, the last
column presents the number of labels.

4 Experiments and Results

This section describes the experiments performed for testing our proposal. In
particular, the objectives of the experimentation are:
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Table 2. Characteristics of the datasets.

Dataset id #inst. #feat. #labels

Balance scale bsc 625 4 3

Nursery nur 12960 8 5

Pima diabetes pdi 768 8 2

Page blocks pbl 5473 10 5

Wine win 178 13 3

Ionosphere ion 351 34 2

Spambase spa 4601 57 2

Sonar son 208 60 2

– to evaluate the proposed multivariate AMb approach and compare it with
the original proposal.

– to test the performance of FCBFntc compared to state of the art algorithms
from the feature selection problem.

As already stated, in the first experiment, we use synthetic datasets and
analyze the number of relevant features identified, as well as the total num-
ber of features selected. Since we want to compare the proposed measure with
the orginal one, we compare the FCBFntc with the FCBF. In the second set of
experiments, we considered real world datasets. Classification error, the number
of features selected and the robustness of the solutions found are used for assess-
ing the performances of the different strategies tested. 10 fold cross-validation is
used in order to assess model quality. In this case we compare the proposal with
FCBF, Best First (BF) and Sequential Forward Selection (SFS).

Robustness or stability [6,9,10] of feature subset selection strategies mea-
sures the sensitivity to variations of a feature selection algorithm. We quantify
the robustness with the Jaccard index [14], which is defined as the size of the
intersection divided by the size of the union of the sets. Let A and B be subsets
of features such that A,B ⊆ X . The Jaccard index for such subsets IJ(A,B) is
defined as:

IJ(A,B) =
|A ∩ B|
|A ∪ B| . (13)

Given a set of solutions S = {S1, . . . , Sm}, the approach for estimating the
stability, Σ(S), among this set of solutions consists of averaging the pairwise
IJ(·, ·) (Σ) similarities

Σ(S) =
2

m(m − 1)

m−1∑

i=1

m∑

j=i+1

IJ(Si, Sj).

Higher values correspond to more stable subsets.
For computing the classification error, we use the Naive Bayes classifier due

to its popularity and good results achieved. We compare our proposal against
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the Sequential Forward Selection (SFS) and the Best First (BF) due to their well
performance in general. All experiments have been developed using Weka [4], and
the source code is available upon request.

Finally, we applied statistical tests to support the conclusions. Following the
guidelines proposed by Demšar [3], we apply the Wilcoxon signed-ranks test,
which is a non-parametric alternative to the paired t-test.

4.1 Synthetic Datasets

Table 3 shows the results obtained by FCBFntc and FCBF on synthetic datasets.
The first column refers to the number of features. Then, the percentage of noise
followed by the number of features selected by each algorithm. As we can see,
both algorithms find the 7 relevant features except for FCBF that fails on the first
dataset. However, FCBF adds irrelevant features when increasing the complexity
of the dataset, both the dimensionality and the noise.

Table 3. Summary of the results achieved by FCBFntc and FCBF on synthetic
datasets.

#feats. noise (%) FCBFntc FCBF

7 0 7 6

10 7 7

20 7 7

50 0 7 22

10 7 23

20 7 24

100 0 7 30

10 7 31

20 7 32

4.2 UCI Datasets

Table 4 presents the accuracy achieved by each feature selection algorithm. The
first column refers to the id of the dataset. Then, for each algorithm, the mean
accuracy achieved on each dataset is reported, together with its respective stan-
dard deviation.

In general, all algorithms show similar results except on the nur, spa and son
datasets. On nur, FCBFntc and FCBF outperform BF and SFS. On spa, BF and
SFS achieve better result while on son, FCBF is the best algorithm. However, on
average, all algorithms achieve very close values. Moreover, differences are not
statistical significant.

The size of the solutions found is presented in Table 5. As it can be noticed,
the FCBFntc is the algorithm the achieves, on average, the higher reduction.
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Table 4. Mean accuracy values with their respective standard deviation obtained by
NB classifier after applying algorithms FCBFntc, FCBF, BF and SFS.

id Accuracy

FCBFntc FCBF BF SFS

bsc 90.56 ± 1.75 90.56 ± 1.75 90.56 ± 1.75 90.56 ± 1.75

nur 89.90 ± 0.73 90.31 ± 0.50 70.97 ± 1.02 70.97 ± 1.02

pdi 76.17 ± 4.54 77.21 ± 4.18 76.04 ± 4.64 76.04 ± 4.64

hpbl 94.13 ± 0.87 93.20 ± 1.26 94.52 ± 0.52 94.52 ± 0.52

win 97.19 ± 3.96 97.75 ± 3.92 96.67 ± 4.68 96.67 ± 4.68

io 88.61 ± 6.85 89.17 ± 5.00 89.17 ± 6.29 89.17 ± 6.29

spa 79.09 ± 1.58 77.00 ± 1.06 86.70 ± 1.22 86.70 ± 1.22

son 65.76 ± 14.78 70.62 ± 7.54 67.24 ± 8.66 67.24 ± 8.66

mean 85.18 85.73 83.98 83.98

P-val 0.553 0.673 0.673

Only the differences between FCBFntc and FCBF were found significant with a
confidence level of α = 0.95.

Finally, the robustness is shown in Table 6. As with the accuracy, all algo-
rithms show similar results. Although on average BF and SFS are more stable,
these differences are not statistically significant.

Table 5. Dimensionality reduction achieved, with their respective standard deviation,
achieved by algorithms FCBFntc, FCBF, BF and SFS.

id #features

FCBFntc FCBF BF SFS

bsc 4.0 ± 0.00 4.0 ± 0.00 4.0 ± 0.00 4.0 ± 0.00

nur 7.0 ± 0.00 8.0 ± 0.00 1.0 ± 0.00 1.0 ± 0.00

pdi 3.0 ± 0.00 3.8 ± 0.42 3.2 ± 0.42 3.2 ± 0.42

pbl 4.0 ± 0.00 3.7 ± 0.48 6.0 ± 0.00 6.0 ± 0.00

win 4.3 ± 0.67 9.6 ± 0.52 8.2 ± 0.63 7.8 ± 0.92

ion 4.1 ± 0.57 5.3 ± 0.67 12.6 ± 2.27 12.6 ± 2.27

spa 5.0 ± 0.00 15.2 ± 0.92 10.0 ± 0.00 10.0 ± 0.00

son 5.0 ± 0.00 9.6 ± 0.7 17.7 ± 1.42 17.7 ± 1.42

mean 4.55 7.4 7.84 7.79

P-val 0.035 0.151 0.151



124 R. Arias-Michel et al.

Table 6. Robustness achieved by the algorithms FCBFntc, FCBF, BF and SFS.

id Accuracy

FCBFntc FCBF BF SFS

bsc 1.00 1.00 1.00 1.00

nur 1.00 1.00 1.00 1.00

pdi 1.00 0.91 0.91 0.91

pbl 0.92 0.60 1.00 1.00

win 0.79 0.93 0.89 0.82

ion 0.66 0.60 0.58 0.58

spa 1.00 0.91 1.00 1.00

son 0.42 0.57 0.81 0.81

mean 0.85 0.82 0.90 0.89

P-val 0.834 0.590 1.00

5 Conclusions and Future Works

In this work we address the feature selection problem by extending the concept
of approximate Markov blanket in order to consider the interaction among sub-
sets of features. We have extended the symmetrical uncertainty measure to the
multivariate case by using the total correlation measure.

Results show that the multivariate measure overcomes the limitation of the
bivariate onedetecting interactionsnotobservableby thebivariate case.Asa conse-
cuence, FCBFntc can find smaller subsets of features with similar predictive power
to the bivariate case. Moreover, the robustness of the solution is also similar.

When compared to other popular strategies, our proposal is also competitive
as it achieves a similar accuracy and robustness while reducing, on average, the
size of the solutions.

As future work, we will study the performance on high dimensional datasets
from several domains and study the theoretical properties of the multivariate SU.
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