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Abstract. Entity matching is the problem of identifying which enti-
ties in a data source refer to the same real-world entity in the others.
Identifying entities across heterogeneous data sources is paramount to
entity profiling, product recommendation, etc. The matching process is
not only overwhelmingly expensive for large data sources since it involves
all tuples from two or more data sources, but also need to handle hetero-
geneous entity attributes. In this paper, we design an unsupervised app-
roach, called EMAN, to match entities across two or more heterogeneous
data sources. The algorithm utilizes the locality sensitive hashing schema
to reduce the candidate tuples and speed up the matching process. To
handle the heterogeneous entity attributes, we employ the exponential
family to model the similarities between the different attributes. EMAN
is highly accurate and efficient even without any ground-truth tuples.
We illustrate the performance of EMAN on re-identifying entities from
the same data source, as well as matching entities across three real data
sources. Our experimental results manifest that our proposed approach
outperforms the comparable baseline.

Keywords: Entity matching · Exponential family · Locality sensitive
hashing

1 Introduction

Entity matching is the problem of identifying which entities in a data source link
to the same entities in the other data sources. It is a well known and paramount
problem that arises in many research fields, including data cleaning and integra-
tion, information retrieval and machine learning. There are many applications
which can benefit from the entity matching task. In the first place, users in a
social network may be the same individuals in the other platforms, but each
user profile and user behavior may be slightly different, e.g., containing differ-
ent abbreviations, and missing some information. We can improve the product
recommendations after determining the more complete user behaviors. There is
one more point, we should touch on that two websites of second-hand housing
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may share many house information. After we derive the matched entities across
the different websites, we can insight into the more complete house information.
Therefore, we have studied the problem of matching entities across two or more
heterogeneous data sources in this paper.

However, the entity matching is often a challenging task due to following
reasons: (1) it is extremely expensive for the large data sets since the process
considers all the tuples as candidates; (2) the process is arduous to compare
many heterogeneous attributes for tuple of entities from different data sources;
(3) there may be some missing attributes for an entity in some Web applications.

In this paper, we provide an approach, called EMAN, to match entities across
two or more heterogeneous data sources. We formulate entity matching task as an
unsupervised learning problem. Our proposed approach can result in promising
accuracy without ground-truth which are usually arduous and costly to collect
in Web applications. For the provided approach, we would like to address the
three challenges highlighted earlier. It utilizes the exponential family to combine
heterogeneous entity attributes, handle missing data in the unsupervised frame-
work, employ locality sensitive hashing (LSH) to speed up the computation. In
summary, our major contributions are as follow.

– We propose an unsupervised method to match entities across two or more
heterogeneous data sources. The approach is a unified one which integrates
the heterogeneous entity attributes, and employs the distributions from the
exponential family to model the similarities of different attributes.

– We employ the locality sensitive hashing (LSH) to block entities. With LSH,
EMAN can perform very efficiently but still maintain the promising matching
results.

– We illustrate the performance of our algorithm against a comparable base-
line on three real data sources. Empirical study results manifest that EMAN
outperforms baseline in matching entities across two or more data sources.

The rest of paper is organized as follows. We shortly discuss the related
work in Sect. 2. We formally define the problem and describe the overview of
our algorithm in Sect. 3. We present the entity matching method in Sect. 4 and
report our empirical study in Sect. 5. Finally, we conclude this paper in Sect. 6.

2 Related Work

Entity matching aims at detecting several entities which describe the same
entity from given datasets. The study of entity matching problem has become
a hot topic in recent years, and some earlier studies can go back to 1950s [1].
However, entity matching is also a wide research problem studied in multiple
research communities. In the traditional database community, the problem is
described as data matching [2], data deduplication [3], instance identification [4],
Merge/Purge [5] and record linkage [6]; In the information retrieval community,
the same problem is described as entity resolution [7–11]. The object linkage,



Entity Matching Across Multiple Heterogeneous Data Sources 135

object identification [12], and duplicate detection [13–15] are also commonly
referred to the same task.

In general, the existing studies of entity matching can be mainly divided
into two categories: classification-based and rule-based [17]. For classification-
based approaches, they assign labels to a pair after learning the patterns from
the training data. Mikhail and Raymond train a classifier by SVM with high
accuracy [18]. Dong [19] implements the entity matching algorithm with three
crucial features among records based on machine learning technique. The algo-
rithm improves the accuracy of entity matching by merging the attribute values
to enrich record information gradually. However, it is not easy to find the exact
matched pairs for learning a classifier.

For rule-based approaches, they are deterministic linkage approach [20,21]
and judge whether a record pair is matched or not based on rules. Jiannan
Wang trains to obtain the most appropriate set of rules on the premise of given
rules which is difficult to obtain [17]. Moreover, if the given rules are not suffi-
cient, the deviation of classification results is large and the classification result
may not be acceptable. Whang [9] proposed an entity resolution method with
evolving rules based on relationship between dynamic semantics and resolution
rules to solve the problem of interaction among results. Whang [7] indicates the
entity resolution is not an one-time process but incremental process changing
constantly. Wang et al. first proposes how similar is similar problem in entity
matching, and they address the rule-based method to identify the most appro-
priate similarity functions and thresholds to find entities effectively [17]. Rastogi
et al. focus on the scale generic entity matching problem which is implemented
with a parallel framework on Hadoop [22]. Lee et al. also attempt to address the
scalability problem of entity matching [23]. In that work, they exploit a material-
ization structure inspired by top-k query processing and develop a scalable entity
matching algorithm for evolving rules. However, the rules for linking entities are
arduous to learn from data sets.

Fellegi-Sunter’s approach is also a rule-based method, and solves the record
linkage problem via using an unsupervised and probabilistic linkage app-
roach [16,24]. It works well only when the linkage problem is simple and exact
one-to-one matching of username and other user attributes. Sadinle et al. extend
Fellegi-Sunter’s model to present a probabilistic method for linking multiple data
files [25]. Currently, many recent applications generate many data associated
with poor quality, including heterogeneous in attributes, error, incomplete and
missing values, etc. However, existing entity matching approaches cannot inte-
grate heterogeneous entity attributes and handle missing values. Gao et al. also
extend Fellegi-Sunter’s approach to link users across different social networks.
Their approach can handle heterogeneous user attributes and missing values in
user profiles [26]. In addition, Fellegi-Sunter’s approach can only link records
from two data sources. For linking more than two data sources, the false pos-
itive tuples may be large if we link them pair-to-pair by using Fellegi-Sunter’s
approach. These are the focuses of this work.
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3 Entity Matching Approach

In this section, before we overview our proposed approach, we describe a formal
definition of the entity matching problem.

3.1 The Problem Definition

We assume that there are N data sources (N > 1). Let Ei, 1 ≤ i ≤ N , be the
set of entities from the i−th source and αi(eij) represent the observed features
of eij ∈ Ei, i.e., αi(eij) represents the observed feature vector of eij from source
Ei. Let αi(Ei) be the set of attribute feature vectors of entities from source Ei.
The set of all candidates tuples T can be represented as

∏k
i=1 αi(Ei). The entity

matching problem is to determine the matched tuples M and unmatched tuples
U in T , i.e.,

M = {(α1(e1j1), . . . , αN (eNjN
))|e1j1 = . . . = eNjN

, eiji
∈ Ei}, (1)

U = {(α1(e1j1), . . . , αN (eNjN
))|∃N1, N2, eN1jN1

�= eN2jN2
, eiji

∈ Ei}. (2)

When (α1(e1j1), α2(e2j2), . . . , αN (eNjN
)) ∈ M means that entities eiji

,
1 ≤ i ≤ N , are the same, while (α1(e1j1), α2(e2j2), . . . , αN (eNjN

)) ∈ U means
that at least an entity eiji

is different from the others. Suppose that each
entity can at most match an entity from Ei, M can therefore have at most
min(|E1|, |E2|, · · · , |EN |) matched entity tuples. We may ideally want T = M∪U
but T is usually an extremely large set in real. We therefore consider a smaller
T that includes M utilizing some blocking techniques.

3.2 Overview of EMAN

Our proposed entity matching approach consists of four components as following.

Step 1: Candidate tuple generation. The major computational cost is sig-
nificantly impacted by generating candidate tuples. Blocking methods, such
as n-gram indexing and sorted neighborhood, may be the feasible techniques
to reduce the number of candidate tuples [27]. However, the number of candi-
date tuples with N sources of n entities containing in b blocks is O( nN

bN−1 ). The
efficiency and accuracy are significantly impacted by the number of blocks.
We therefore utilize the LSH (Locality Sensitive Hashing) schema to speed
up the candidate tuple generation since the number of blocks can be arbi-
trary large (Based on n-gram model, entities can be blocked by utilizing LSH
when some string attributes, such as name, address etc., can be represented
as a binary vector after shingling).

Step 2: Entity vectorization and similarity computations. We determine
a similarity function sj to evaluate the similarity between the j−th feature
of two entities from a candidate tuple. For tuple

ti = (α1(e1i1), α2(e2i2), · · · , αN (eNiN
)),
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we can compute a similarity vector for m attributes of any two entities of
tuple ti using similarity functions {sj}m

j=1. There are
(
N
2

)
similarity vectors

between different entity pairs. We take the minimum value of each entry
over

(
N
2

)
similarity vectors to model the similarity of tuple ti, denoted as a

m-dimensional vector γi. An entity may have multiple attributes. Some of
them are individual demographic attributes, e.g., name, location, date, URL
and etc. These can be of different data types (e.g., numeric, text, string,
categorical, etc.). These attributes can be represented in set and distribution
types. Our proposed approach models the similarities between entities to
accommodate heterogeneous features using different probability distributions
in exponential family.

Step 3: Parameter learning. Given each similarity vector γi, EMAN mod-
els the similarity values of tuples using two different probability distribu-
tion functions, one for matched tuples and another for unmatched ones. The
parameter learning step is to infer parameters of the two distributions. More
details will be covered in Sect. 4.

Step 4: Tuple scoring and label assignment. For a tuple ti ∈ T , its score
can be computed by log P (ti∈M |γi,Θ̂)

P (ti∈U |γi,Θ̂)
(for ease of computation). Tuple ti is

more likely to be matched tuple if its score is greater than 0, and otherwise
unmatched tuple. Given a threshold, the matched scores of entity tuples are
used to judge if they belong to the matched or unmatched tuple sets, i.e., M
or U. A tuple is judged as matched tuple if its matched score is larger than
the threshold, and otherwise unmatched tuple.

Unlike the earlier Fellegi-Sunter’s method, EMAN considers both discrete and
continuous similarities as a wider range of probability distributions from the
exponential family to model the similarity values of matched and unmatched
entity tuples (in Step 1). This is an important extension to handle the heteroge-
nous attribute types, including string, numeric, set, distribution, etc., these exist
in the entity matching task.

3.3 EMAN Algorithm

We now present the full EMAN algorithm in Algorithm1. In this algorithm,
PM maintains the set of matched entity tuples. At Lines 2–4, the algorithm
employs LSH to block entities from N data sources. At Lines 5–9, it generates
all the candidate tuples. A candidate tuple consists of N entities from N data
sources, where all entities in a tuple are from the same bucket. In this step,
it also computes the similarity vector. At Lines 10–13, it infers the parameters
by utilizing the EM-algorithm. Finally, from Lines 14 to 17, it judges whether a
tuple belongs to the matched or unmatched one based on the computed matching
scores at Line 15.
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Algorithm 1. EMAN: Entity matching algorithm
Input: N data sources Ei;
Output: Matched Entities(PM);
1: T ← ∅; j ← 0;

//step 1: Candidate tuple generation
2: for i = 1, · · · , N do
3: employ LSH to block entities from the i−th source;
4: end for

//step 2: Entity vectorization and similarity computation
5: for each bucket in the LSH do
6: generate ti = (α1(e1i1), α2(e2i2), · · · , αN (eNiN ));
7: compute the minimum similarity vector γi between entity pairs of ti;
8: T ← T∪ candidate tuples from the bucket;
9: end for

//step 3: Parameter Learning
10: while parameter set Θ has not converged do
11: E-Step; //handle missing data;
12: M-Step; //estimate parameters by maximizing the log-likelihood;
13: end while

//step 4: Tuple scoring and label assignment
14: for ti ∈ T do

15: wi ← log P (ti∈M|γi,Θ̂)

P (ti∈U|γi,Θ̂)
;

16: according to the score of ti, keep PM to the top-K candidate entities with
the largest scores;

17: end for
18: return PM

4 Parameters Inference and Prediction

We employ a generative model to solve the problem defined in previous section.
Given the similarity vectors of all candidate tuples, EMAN learns the para-
meters of similarity distributions for matched and unmatched tuples based on
exponential family distributions. In terms of these learned parameters of simi-
larity distributions, EMAN infers whether candidate tuple ti ∈ T is matched or
unmatched by estimating probabilities P (ti ∈ M |γi, Θ) and P (ti ∈ U |γi, Θ).

4.1 Likelihood

Assume that P (ti ∈ M |Θ) = p, i.e., P (ti ∈ U |Θ) = 1−p. Employing Bayes’ rule
to P (ti ∈ M |γi, Θ), we can obtain:

P (ti ∈ M |γi, Θ) =
p × P (γi|ti ∈ M,Θ)

P (γi|Θ)
(3)

P (γi|Θ) = p × P (γi|ti ∈ M,Θ) + (1 − p) × P (γi|ti ∈ U,Θ) (4)

Please note that we do not know the label of a candidate tuple ti. To represent
the joint probability of the observed data, we define a latent variable li for
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candidate tuple ti. Its value is 1 if tuple ti is a matched tuple, and otherwise 0.
And, we defined ci = (li, γi) as the complete data vector for T . The probability
of observation cj under parameter Θ can be defined as:

P (ci|Θ) = [P (γi, ti ∈ M |Θ)]li [P (γi, ti ∈ U |Θ)](1−li)

= [p × P (γi|ti ∈ M,Θ)]li [(1 − p) × P (γi|ti ∈ U,Θ)](1−li)
(5)

Let Li = (li, 1 − li) and thus we obtain the log-likelihood for sample
X = {ci : i = 1, 2, · · · , |T |} as:

L(Θ|X) =
|T |∑

i=1

Li[logP (γi|ti ∈ M,Θ), logP (γi|ti ∈ U,Θ)]
′

+
|T |∑

i=1

Li[logp, log(1 − p)]
′
.

(6)

4.2 Exponential Family

As mentioned above, most of the probability distributions can be represented
by exponential family which is a convenient and widely used family of distrib-
utions. Distributions in the exponential family appeal to the machine learning
community as some good properties of MLE which is a function of the sufficient
statistic and the best unbiased estimator, etc. [22].

In probability and statistics, an exponential family is a set of probability dis-
tributions and represented by an exponential form which is chosen for mathemat-
ical convenience [23]. In other word, an exponential family is a set of probability
distributions whose PDF and PMF can be expressed in the form as follows:

f(x; θ) = h(x) exp
(
θ

′
S(x) − z(θ)

)
(7)

where θ (may be a vector) is the natural parameter of a distribution. S(x) is
a sufficient statistic. Generally, S(x) = x. So when the parameter z, h, S are
fixed, we will define an exponential family with parameter θ. The exponential
family contains as special cases most of the standard discrete and continuous
distributions that we use for practical modelling, such as Bernoulli, Multinomial,
Poisson, Gamma, Dirichlet, etc.

One of our task is to calculate probabilities P (ti ∈ M |γi, Θ) and P (ti ∈
U |γi, Θ). In Eq. 6, we know that the critical step is to calculate P (γi|ti ∈ M,Θ)
and P (γi|ti ∈ U,Θ). So we estimate P (γi|ti ∈ M,Θ) and P (γi|ti ∈ U,Θ) and
assume that γi is drawn from a distribution of exponential family, and use the
simplifying assumption that the entries of vector γi are conditional independent
with respect to the state of indicator Li such as:

P (γj
i |ti ∈ M,Θ) ∼ f1,j(γ

j
i ; θ1,j), for j = 1, · · · ,m

P (γj
i |ti ∈ U,Θ) ∼ f0,j(γ

j
i ; θ0,j), for j = 1, · · · ,m

(8)
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where f·,j(·; ·) is the PDF or PMF from the exponential family in Eq. 7.
Next, the log-likelihood in Eq. 6 can be replaced with:

L(Θ|X) ∝
|T |∑

i=1

Li[

m∑

j=1

θ
′
1,jS1,j(γ

j
i ),

m∑

j=1

θ
′
0,jS0,j(γ

j
i )]

′

−
|T |∑

i=1

Li[
m∑

j=1

z1,j(θ1,j),
m∑

j=1

z0,j(θ0,j)]
′
+

|T |∑

i=1

Li[log p, log (1 − p)]
′
.

(9)

4.3 Maximum Likelihood Estimator

Since Li is a latent vector in Eq. 9, so we estimate the parameter Θ =
{p, θ1,j , θ0,j , for j = 1, · · · ,m} with maximum likelihood estimation using EM
algorithm. The EM algorithm begins with initial estimator of unknown para-
meter Θ and repeat iterative calculation of the expectation(E) and maximiza-
tion(M) steps until the convergence.

E-step. The objective in E-step is to calculate the conditional expectation of
latent variables and estimate the missing data with observed data. Given γi and
Θ(k−1) in the k-th iteration, the conditional distribution of li is li|γi, Θ

(k−1) ∼
B(1, p

(k)
i ) with

p
(k)
i = P (li = 1|γi, Θ

(k−1)) (10)

Then p
(k)
i will be represented with Eq. 11 as:

p
(k)
i = P (li = 1|γi, Θ

(k−1)) =
P (ti ∈ M,γi|Θ(k−1))

P (γi|Θ(k−1))

=
p(k−1) · ∏m

j=1 f1,j(·; ·)
p(k−1) · ∏m

j=1 f1,j(·; ·) + (1 − p(k−1)) · ∏m
j=1 f0,j(·; ·)

(11)

By substituting p
(k)
i for li, we obtain the expectation function.

M-step. In M-step, we maximize the likelihood after E-step. When we estimate
the values of l

(k)
i = p

(k)
i in E-step, we take derivatives of the log-likelihood to

parameters p, θ1,j , and θ0,j as follows:

∂L(Θ|X)
∂p

=
|T |∑

i=1

(
l
(k)
i

p
− 1 − l

(k)
i

1 − p
) (12)

∂L(Θ|X)
∂θ1,j

=
|T |∑

i=1

l
(k)
i (S1,j(γ

j
i ) − ∂z1,j(θ1,j)

∂θ1,j
) (13)

∂L(Θ|X)
∂θ0,j

=
|T |∑

i=1

(1 − l
(k)
i )(S0,i(γ

j
i ) − ∂z0,j(θ0,j)

∂θ0,j
) (14)
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Table 1. The MLEs of parameters for both matched and unmatched groups

Distribution MLE

Matched group Unmatched group

Bernoulli p
(k)
1,i =

∑|T |
j=1 l

(k)
j γ

j
i

∑|T |
j=1 l

(k)
j

p
(k)
0,i =

∑|T |
j=1(1−l

(k)
j )γ

j
i

∑|T |
j=1(1−l

(k)
j )

Multinomial p
(k)
1,i =

∑|T |
j=1 l

(k)
j I

γ
j
i
=h

∑|T |
j=1 l

(k)
j

p
(k)
0,i =

∑|T |
j=1(1−l

(k)
j )I

γ
j
i
=h

∑|T |
j=1(1−l

(k)
j )

Gaussian μ
(k)
1,i =

∑|T |
j=1 l

(k)
j γj

∑|T |
j=1 l

(k)
j

μ
(k)
0,i =

∑|T |
j=1(1−l

(k)
j )γj

∑|T |
j=1(1−l

(k)
j )

(σ
(k)
1,i )2 =

∑|T |
j=1 l

(k)
j (γj−μ

(k)
1,i )

2

∑|T |
j=1 l

(k)
j

(σ
(k)
0,i )2 =

∑|T |
j=1(1−l

(k)
j )(γj−μ

(k)
1,i )

2

∑|T |
j=1(1−l

(k)
j )

Exponential λ
(k)
1,i =

∑|T |
j=1 l

(k)
j

∑|T |
j=1 l

(k)
j γ

j
i

λ
(k)
0,i =

∑|T |
j=1(1−l

(k)
j )

∑|T |
j=1(1−l

(k)
j )γ

j
i

By calculating, we can infer ∂z·,j(θ·,j)
∂θ·,j

= Eθ·,j (S·,j(γj))2 where · can be 1
or 0 and obtain the MLEs of parameters as shown in Table 1. Due to the page
limitation, we omit the proofs and computations.

While the distributions of all similarity values were assigned, we can estimate
the parameter in the M-step of the k-th iteration. The probability p can be

estimated as p(k) =
∑|T |

i=1 l
(k)
i

|T | .

4.4 Missing Data

As a result of presence of missing data, we denote the sample X as (Xo,Xm),
where Xo represents the observed data and Xm represents the missing data. Let
Θ(0) be the initial value for parameter. The E-step of EM algorithm computes
Q(Θ;Θ(k−1)) = E(L(Θ|X)|Xo, Θ

(k−1)) during k-iteration. Due to the missing
data, S1,i(γ

j
i ) and S0,i(γ

j
i ) in Eq. 9 are missing. So Q(Θ;Θ(k−1)) can be calcu-

lated by E(S1,j(γ
j
i )|Θ(k−1)) and E(S0,j(γ

j
i )|Θ(k−1)) for S1,j(γ

j
i ) and S0,j(γ

j
i ) in

Eqs. 13 and 14 respectively.

4.5 Matching Score Computation

Once parameters Θ are estimated, EMAN determines whether candidate tuple
ti belongs to matched or unmatched one by computing its matching score. To
speed up the computation of matching scores for exponential family, we define
the match score function as:

Wi = log(
P (ti∈M |γi, Θ̂)
P (ti∈U |γi, Θ̂)

) ∝
m∑

j=1

wj
i (15)

where

wj
i = (Θ

′
1,jS1,j(γ

j
i ) − z1,j(Θ1,j)) − (Θ

′
0,jS0,j(γ

j
i ) − z0,j(Θ0,j)) (16)
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Table 2. Descriptive statistics of datasets

Data source # entities # features

NetEaseHousea 2776 36

AnJuKeb 581 34

PingAnFangc 630 15
ahttp://house.163.com/.
bhttp://shanghai.anjuke.com/.
chttp://www.pinganfang.com/.

where P (ti ∈ M |γi, Θ̂) > P (ti ∈ U |γi, Θ̂) when Wi > 0. Alternatively, we can
assign ti to the matched tuple set if Wi > W0 where W0 > 0 is a threshold.

5 Empirical Evaluation

We conduct two experiments to compare the proposed EMAN with the base-
line method using three real data sources. First, we manifest the performance
of the self-matching problem in which there is a clearly ground truth one-one
matching between entities from the identical data source. Secondly, we study the
performance of matching three real heterogeneous data sources.

5.1 Experimental Setup

Datasets. We crawled three datasets from the famous estate websites in China
for our experiments. The descriptive statistics about the datasets are shown
in Table 2. However, the schemes of three data sources are different from each
other. We only find 10 useful attributes as shown in the first column of Table 3.
In our experiment, we model the similarities of property fees and price with
Gaussian distribution, purpose(shop or dwelling) with Bernoulli distribution,
and remaining similarities with Exponential distribution as shown in the last
column of Table 3.

Comparative Method and Evaluation Measures. We find an unsupervised
approach, called Felliegi-Sunter (shorted in FS), to be the comparative baseline.
Fellegi-Sunter’s approach therefore evaluates all attributes by using binary sim-
ilarity, i.e., the similarity is 1 if two attributes are the same, and otherwise 0.
Currently, many data sources are low in quality. The FS approach is too simple
to obtain reasonable performance. In our implementation for FS, we therefore
set the similarity value to be 1 if the value of similarity of attributes is larger
than a tuned threshold, and otherwise 0.

As the mentioned above, we evaluate our method using Precision@K, and
Recall@K. Precision@K is the fraction of the matched tuples in the top-K
result that are correctly matched. Recall@K is the fraction of ground truth
matched entities that appear among the top-K results. To evaluate the scalability
of our proposed approach, we also measure the elapsed time in second and the
number of candidate tuples.

http://house.163.com/
http://shanghai.anjuke.com/
http://www.pinganfang.com/
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Table 3. The setup of experiment and parameter estimation for matched and
unmatched groups

Feature Matched Unmatched Similarity Distribution

name λm = 8.36 λu = 33423.12 LCS Exponential

address λm = 5.27 λu = 31127.66 Jaccard Exponential

developer λm = 23.82 λu = 27.58 Jaccard Exponential

construction time λm = 3.92 λu = 4.24 Jaccard Exponential

PMC λm = 2.31 λu = 2.38 Jaccard Exponential

property fees μm = 0.43 μu = 0.42 Euclidean distance Gaussian

σm = 0.05 σu = 0.04

building type λm = 2.76 λu = 2.87 Jaccard Exponential

launch date λm = 2.11 λu = 2.20 Jaccard Exponential

price μm = 0.45 μu = 0.43 Euclidean distance Gaussian

σm = 0.02 σu = 0.02

purpose Probm = 0.23 Probu = 0.12 1,0 for matched or not Bernoulli

5.2 Self-matching Evaluation

Firstly, we perform our method in self-matching task which is designed such that
we know the complete ground truth matched entities, i.e., we match the entities
from three replicas of the identical data source. We create two new data sources
which are injected some noise into the given data source. For each replica, we
randomly inject some noises into string attributes. For each character, it has the
same probability to be inserted, deleted or replaced. Take PingAnFang as an
example, PingAnFang1(ψ) is the first replica of PingAnFang, where ψ denotes
the probability of each character being changed. In our experiment, the value of
ψ varies from 10% to 50%.

Figure 1(a) and (b) manifest the accuracy of EMAN on PingAnFang by
varying ψ from 10 to 50%. We observe that the accuracy of EMAN is promised.
If 10 % noise is injected into the data, almost 90 % matched entities can be found
by EMAN. Even 50 % noise is injected into the data, the precision in the top-
200 is almost 100 %. Figure 1(c) and (d) illustrate that EMAN outperforms the
baseline significantly for self-matching on PingAnFang. The result indicates
that exponential family is helpful to integrate heterogeneous entity attributes.

5.3 Matching Heterogeneous Data Sources

Scalability of EMAN. In this experiment, we address whether LSH is helpful
to speed up EMAN. For entity matching on heterogeneous data sources, we only
change the size of NetEaseHouse from 500 to 2,500. In Fig. 2(a) (EMAN L is
an approach that EMAN employs LSH to block entities), we can find that only
less than 1 % candidate tuples are remained after using LSH to block entities. In
Fig. 2(b), EMAN associated with LSH detects entities within 2,000 s when the
size of data source is almost 2,000. However, the elapsed time of EMAN without
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(a) Precision (b) Recall

(c) Precision with 50% noise (d) Recall with 50% noise

Fig. 1. Accuracy of EMAN and FS

LSH is more than 12 h. In summary, LSH is helpful to reduce the number of
candidate tuples and speed up the computation of EMAN.

Manually Judgement. We now turn to match three heterogeneous data
sources, namely complete NetEaseHouse, AnJuKe and PingAnFang. Since
the maximum size of matched tuples is less than the minimal number of
|NetEaseHouse|, |AnJuKe| and |PingAnFang|, we manually annotated the
top-250 matched entities labelled by EMAN and FS. Three entities are judged
to be matched tuple when (1) the similar entity name; (2) the similar values in
some attributes, such as address, region and developer. The remaining entity
triples are assigned the undetermined label. As shown in Fig. 3(a) and (b), we
find that the accuracy for the top-250 result of EMAN is more than 70 %, but it
is about 60 % for FS. This illustrates that both EMAN and FS are quite good
in returning the correctly matched entities for different top-K ranked tuples.
EMAN also returns fewer undetermined tuples than FS.

(a) The number of candidate tuples (b) Elapsed time(Sec.)

Fig. 2. Efficiency of EMAN
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(a) Accuracy for EMAN (b) Accuracy for FS

Fig. 3. Accuracy for entity matching

For this experiment, we list all parameters learned from our approach. An
attribute is more important to match entities if the difference of parameters
between matched and unmatched groups is larger. As shown in Table 3, we can
also observe that name and address are two most important attributes to match
entities for this task.

6 Conclusion

In this paper, we have studied the problem of entity matching across two or more
heterogeneous data sources. It is a challenging task due to the overwhelming
expensive, heterogeneous attributes for each entity, and incomplete and missing
data. We propose an unsupervised method to deal with the mentioned chal-
lenges. We have illustrated our proposed method on three real data sources.
Experimental results indicate that EMAN not only outperforms the comparable
baseline but also obtains the promising performance.

In our future work, we plan to extend our work to handle some ground-truth
tuples with semi-supervised approach, and deploy a distributed algorithm to
support more efficient computation.
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