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Abstract. We focus on the problem of mining probabilistic maximal
frequent itemsets. In this paper, we define the probabilistic maximal fre-
quent itemset, which provides a better view on how to obtain the prun-
ing strategies. In terms of the concept, a tree-based index PMFIT is
constructed to record the probabilistic frequent itemsets. Then, a depth-
first algorithm PMFIM is proposed to bottom-up generate the results,
in which the support and expected support are used to estimate the
range of probabilistic support, which can infer the frequency of an item-
set with much less runtime and memory usage; in addition, the superset
pruning is employed to further reduce the mining cost. Theoretical analy-
sis and experimental studies demonstrate that our proposed algorithm
spends less computing time and memory, and significantly outperforms
the TODIS-MAX [20] state-of-the-art algorithm.

Keywords: Uncertain database - Probabilistic frequent itemset - Data
mining + Probabilistic Maximal Frequent Itemset

1 Introduction

Frequent itemset mining is one of the traditional and important fields in data
mining, which discovers itemsets whose occurrences are larger than a specified
threshold. Many efficient algorithms and methods have been developed in the
recent years [1]. In such methods, a very important assumption is, however, the
mined transactions are exact no matter they are static or increasingly updated.

When new applications are developed and new requirements are met, uncer-
tainty exists often. As an example, Table1 shows an animal monitor system,
which use the cameras to distinguish 3 pandas with names “PanPan”, “Tuan-
Tuan”, and “YuanYuan” among other animals, as well observe their appear-
ances. Nevertheless, the digital image recognition method is not accurate enough
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Table 1. An uncertain database example

ID | Panpan | Tuantuan | Yuanyuan
1 |06 0.4 1
2 0.5 0.8

to recognize each panda. Thus, each panda will annotated by a probability to
present the existence [2], and we call it the attribute-uncertainty. This new fea-
ture brings us new challenges, which cannot be well addressed by the traditional
frequent itemset mining methods. The existing uncertain data mining meth-
ods can be categorized into two types. One is to achieve the expected frequent
itemsets [6-17], another is to obtain the probabilistic frequent itemsets [18-30].

1.1 Motivation

When mining frequent itemsets over exact databases, it has been presented the
frequent itemsets are redundant. Many itemset compression methods have been
proposed, such as maximal itemset [3], closed itemset [4] and non-derivable item-
set [5]. If the users do not care the support of an itemset, but only want to know
whether it is frequent, the maximal frequent itemset is the best choice since
it is the most efficient method to represent the frequent itemsets. Similarly, if
we want to discover frequent itemsets over uncertain databases, to obtain the
maximal frequent itemsets can not only make the mining results easier to use,
but also reduce the computing cost and memory size. Therefore, in this paper,
we investigate how to efficiently discover the maximal frequent itemsets over an
attribute-uncertainty model based uncertain database.

1.2 Challenges and Contributions

To address our proposed problem, an intuitive consideration is to enumerate
all the probabilistic frequent itemsets and then to filter the maximal frequent
itemsets. This method was proposed in [20] named pApriori, which introduced
the divide-and-conquer method to mine the vertical databases, and used a one-
bound estimating method to evaluate the frequency of itemsets. Then, a new
method TODIS-MAX|[20] was proposed for further improvement. Besides all
the techniques used in pApriori, TODIS-MAX also presented its own optimiza-
tions. It used a top-down method, which generated the itemsets from supersets
to subsets, and thus can efficiently used the pruning strategy when generating
the infrequent itemsets. Also, it proposed a method to compute the probabil-
ity density function of the subsets from the supersets, which can further reduce
the computing cost. To our best knowledge, TODIS-MAX is the most efficient
algorithm to achieve the maximal frequent itemsets from uncertain databases.
However, there are still some problems for addressing: (1) the top-down
method may meet a bottleneck when the count of probabilistic frequent 1-items
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increases, which will result in an exponentially increase of the probabilistic infre-
quent itemsets, and this is hard to handle even though the time complexity can
be reduced to O(n). (2) The value to decide the probabilistic infrequent itemsets
is not tight enough, which makes itemsets in multi-levels have to be recomputed.
(3) If an itemset is frequent, the computing cost is still high since the time com-
plexity is O(nlog?n) in the worst case. Accordingly, new problems are posed:
How to reduce the most of exponentially increased itemsets? How to further
decrease the computing cost of the frequent itemsets? And how to efficiently
achieve the maximal frequent itemsets?

In this paper, we address these problems and make the following contribu-
tions.

1. We focus on the problem of probabilistic maximal frequent itemset mining
over uncertain databases, and define the probabilistic maximal frequent item-
set, which is in line to the traditional definition over exact database, and
supplies us a better pruning method.

2. We introduce a compact data structure PMFIT to maintain the information
of probabilistic frequent itemsets, which in a bottom-up manner, can effi-
ciently organize the mining results for the itemset search. Then the PMFIM
algorithm is proposed to depth-first discover the probabilistic maximal fre-
quent itemsets. In this algorithm, we propose a probabilistic support estima-
tion method, which can compute the upper bound and the lower bound of
the probabilistic support with a much low cost. The method when together
used with PMFIT, yields a significantly better performance. Plus, we use the
super pruning strategy to further reduce the mining cost.

3. We compare our algorithm with the TODIS-MAX [20] on 2 synthetic datasets
and 3 real-life datasets. Our experimental results show that our algorithm is
much more effective and efficient.

The rest of this paper is organized as follows. In Sect. 2 we present the prelim-
inaries and then define the problem. Section 3 introduces the data structures, and
illustrates our algorithm in detail. Section 4 evaluates the performance with the-
oretical analysis and experimental results. Finally, Sect.5 concludes this paper.

2 Preliminaries and Problem Definition

2.1 Preliminaries

Given a set of distinct items I" = {i1, 42, - , i, } where |I'| = n denotes the size of
I', asubset X C I'is called an itemset; suppose each item z;(0 < ¢ < |X|) in X is
associated with an occurrence probability p(x;), we call X an uncertain itemset,
which is denoted as X = {x1,p(x1);x2, p(22);--- ;2x),p(7|x|)}, and the prob-
ability of X is p(X) = II[X]p(x;). We call the list {p(z1),p(2), - ,p(zx|)}
the probability density function. An uncertain transaction UT is an uncertain
itemset with an ID. An uncertain database UD is a collection of uncertain trans-
actions UTs(0 < s < |[UD]). Given an uncertain itemset X, the count it occurs
in an uncertain database is called the support, denoted A(X).
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Two definitions of the frequent itemset for uncertain data have been
proposed. One is based on the the expected support, another is based on the
probabilistic support.

Definition 1. (Ezpected Frequent Itemset [6]) Given an uncertain database UD,
an itemset X is an \-expected frequent itemset if its expected support A¥(X) is not
smaller than minimum support X. Here AP (X) =3 ey p{p(X)|X C UT}.

Definition 2. (Probabilistic Frequent Itemset [26]) Given the minimum sup-
port A, the minimum probabilistic confidence T and an uncertain database UD,
an itemset X is a probabilistic frequent itemset if the probabilistic support
AP(X) > X AP(X) is the mazimal support of itemset X with probabilistic
confidence 7, i.e., AL(X) = Maxz{i|Pax)>; > 7}

2.2 Problem Definition

Definition 3. (Probabilistic Mazimal Frequent Itemset) Given the minimum
support X\, the minimum probabilistic confidence 7 and an uncertain database
UD, an itemset X is a probabilistic maximal frequent itemset if it is a prob-
abilistic frequent itemset and is not covered by the other probabilistic frequent
itemsets.

From Definition 3, one can easily see that the support information of an prob-
abilistic frequent itemset Y C X can be estimated from the probabilistic max-
imal frequent itemset X without having to read from the database anymore.In
other words, for a probabilistic maximal frequent itemset X, any itemset Y that
Y C X satisfy the following statement: The probability of Y’s support no smaller
than A is larger than 7.

Problem Statement: Based on the previous definition, we present our
addressed problem as follows. Given an uncertain database UD, the minimum
support A, the minimum probabilistic confidence 7, we are required to explore
all probabilistic maximal frequent itemsets from UD.

3 Probabilistic Maximal Frequent Itemset Mining
Method

3.1 Data Structures

Probabilistic Mining Frequent Itemset Tree. To accelerate the search-
ing and pruning speed, we design a simple but effective index named
PMFIT (Probabilistic Maximal Frequent Itemset Tree), in which each node
nx denotes an itemset X; nx is a 6-tuple < item, sup, esup, psup,lb,ub >, in
which item denotes the last item of the current itemset X, sup is the support,
esup is the expected support, and psup is the probabilistic support. Ib and ub
separately represent the lower bound and upper bound of probabilistic support.
Except the root node, each node has a pointer to its parent node. PMFIT can be
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Fig. 1. Probabilistic maximal frequent itemset tree(PMFIT) for A = 3, 7 = 0.1

constructed by our proposed algorithm in Sect. 3.5. Figure 1 is the PMFIT from
the 6 transactions. For an example, n4 denotes itemset {A} with the support
3, the expected support 1.9, and the probabilistic support 3. As can be seen, 13
nodes are probabilistic frequent itemsets, only 3 nodes are probabilistic maximal
frequent itemsets.

Probabilistic Maximal Frequent Itemset Collection. Since the final
results do not have to maintain the probabilities of each item, we employed
a traditional bitmap based collection to store the probabilistic maximal frequent
itemsets, which can help us perform the superset pruning, so that a better per-
formance can be achieved.

3.2 Probabilistic Support Computing

Since the probabilistic density function of itemset X in two transactions 77 and
T5 can be computed with the convolution between the probabilistic density func-
tion in 77 and the probabilistic density function in 75, the divide-and-conquer
method proposed in [20] is also employed in our paper. That is, the uncertain
database will be split into two parts to separately compute the probabilistic
density function, and this operation will be recursively conducted until the sub-
database has only one transaction. The convolution can be computed with a
Fast Fourier Transformer, which, given the size of the uncertain database n, will
efficiently reduce the time complexity from O(n?) to O(nlog?(n)).

3.3 Items Reordering

Bayardo stated that ordering items with increasing support can reduce the search
space [3]; together with other pruning strategies, it can further reduce the cost
of the support computing. In this paper, we employ the similar heuristic rule
with a little differences. That is, the items will be ordered by their expected
supports rather their supports. This is due to the instinctive observation that



154 H. Li and N. Zhang

two itemsets occurring in the same transactions may have different probability
and thus have various expected supports. As a simple example in Fig. 1, itemset
{B} and itemset {C'} occur in four transactions, which means their supports are
both 4, nevertheless, the expected supports are 2.8 and 2.6 separately. As a result,
we believe using expected support to sort the items will make the algorithm more
efficient. Note that even though probabilistic support is the best to be used in
sorting the items, we did not use it. This is due to the fact that computing
the probabilistic support is much more time-consumed, which, in comparison
to computing the expected support, may has a worse performance when the
minimum support is low. Choosing the expected support to sort the items are
verified effective in our experiments; we find both methods achieve almost the
same search space, but computing the expected support is much more efficient.

3.4 Pruning Strategies

We propose pruning strategies to improve the performance. A tight bounds are
supplied to infer the range of probabilistic support, or even can ignore the com-
puting of probabilistic support; in addition, a superset pruning method inspired
by the traditional mining algorithm is employed.

The Bounds of Probabilistic Support. When mining the probabilistic max-
imal frequent itemsets over an n-transactions uncertain database, the probabilis-
tic support is not important for the users, so we try to find a method to estimate
the frequency of an itemset rather directly compute the probabilistic support.

Theorem 1. For an itemset X in uncertain database UD, given the minimum
probabilistic confidence T, we can get the lower bound and upper bound of the
probabilistic support AL (X), denoted Ib(AF (X)) and ub(AL (X)) as follows.

(AP (X)) = AF(X) — \/=24P(X)in(1 — T)
Wb(AP (X)) = 24T X) tnr +/in7 S AE R (1)

Proof. For the itemset X, we use ¢ to denote the expected support AF(X),
also, we use ¢ to denote the probabilistic support A (X), which, according to
Definition 2, satisfies the following equations.

(2)

Prxy>t > 7o Pax)y>t-1> 7
Pyxyst41 ST Pyxyse <7
(1) If we set t = (14 &)e, ie., £ = L — 1, where £ > 0, that is, ¢ > &, then

25
based on the Chernoff Bound, Py(x)>: = Pa(x)>(1+6)e < €7§T5; based on the
2

_ e _(t=9)? .
first inequality of Eq.2, we can get 7 < e” 2¥¢ = e~ "#+¢ ; that is to say, when

t> 6,2s—ln7——\/én27'—8sln'r <t< 2E—ln7'+\/én2'r—8sln'r. Since 25—ln7——\/én27'—86ln7' <
€, we can obtain the following inequality.
2¢ — Int 4+ VIn?1 — 8clnt .
t< if t>e (3)

2
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(2) Ifwesett=(1—-¢&)e, e, & =1— ﬁ, where £’ > 0, that is, t < g, then based
5/25

on the Chernoff Bound, Pyx)>: = Pa(x)>(1—¢)e > 1 — e~ 2 ; based on the
12 _
second inequality of Eq.2, we can get 7> 1 — e~ 2", i.e., —/ —w <¢<

\/@, then when t < e, e —/—2eln(l —7) <t < e+ /—2eln(l —7).

Since € < € + /—2¢ln(1 — 7), we can get the following inequality.

t>e—+/—2ln(l—r1) if t<e (4)

From Eqgs. 3 and 4, we can conclude that no matter ¢ is larger or smaller than
the e, it is definitely within the range of (¢ — —2¢eln(l —7),

— \/ 2 . .
Ze—inTt é" T—8elnT) - Consequently, we can determine the lower bound is

. 24F (X)—tnr /77 —SAP (X)lnT
AB(X) — \/—2AF(X)in(1 — 7), and the upper bound is 24— X)=In7+ é 2ro8AR(X)inT g

Theorem 1 provides us two pruning strategies. For an itemset X, if the upper
bound 2e—InT+VIn%1—8elnt
2

is not larger than the minimum support A, then X is a

probabilistic infrequent itemset. Also, if the lower bound e —+/—2eln(1 — 7) > A,
then X is definitely a probabilistic frequent itemset. We can see that for an
uncertain database with size n, if the minimum support A is not within this
range, we can successfully hit the target.

Ezample 1. Using the uncertain dataset in Fig.1 as the example. If we set the
minimum support A = 1 and the minimum probabilistic confidence 7 = 0.1, then
for itemset {A}, the lower bound is 1.3, which is larger than 1, then itemset {A}
is a frequent itemset. Further, if we set the minimum support A = 5 and the
minimum probabilistic confidence 7 = 0.1, then for itemset {AB}, the upper
bound is 4.7, which is smaller than 5, and thus itemset {AB} is an infrequent
itemset.

Superset Pruning. According to our definition, an itemset being probabilistic
maximal frequent must satisfy two conditions. (1) the probabilistic support is
not smaller than the minimum support; (2) it is not covered by any other proba-
bilistic frequent itemsets. Both computing are needed, then the computing with
lower computing cost should be conducted firstly. As the above mentioned, com-
puting the probabilistic support requires O(nlog?(n)) time complexity, which
can be improved to O(n) with our method. However, to scan the existing prob-
abilistic maximal frequent itemsets, assuming whose size is m, requires at most
O(m) time complexity. Based on the definition of probabilistic maximal frequent
itemset, m is much smaller than n. Consequently, for a new generated itemset, we
will first decide whether it is cover by a super itemset, then, if not, compute the
bounds or the probabilistic support. This strategy can be extended for further
pruning. That is, for a probabilistic maximal frequent itemset X = {x12- - x, },
if they are the last n items in the sorted items list, then items x5, - ,z, can
be pruned directly for further computing. We can see from Fig. 1, since {CDE}
is an itemset in which the items are the last three ones in the sorted items list,
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then {D}, {E} will be removed, and the computing for all their descendants can
be pruned.

3.5 Algorithm Description

In this section, we propose a depth-first algorithm named PMFIM (Probabilistic
Maximal Frequent Itemset Mining) to build the bottom-up organized tree, that
is, the subsets will be computed first, and then the supersets will be generated
if their subsets are all frequent. We discover the itemsets with this manner since
the probabilistic frequent itemset also has the apriori property. The algorithm
can be conducted in five steps. Algorithm 1 shows the pseudo code of Step 3-5.

Step 1: We get all the distinct items and sort them in an incremental order
according to their expected supports before we build the PMFIT; during the
process, the items with the support or the upper bound lower than the minimum
support will be initially pruned.

Step 2: The PMFIT is initialed with only one root node, which represent the
null itemset.

Step 3: For a parent node, we begin to generate the child node, and compute
the related information to decide whether it is frequent. First, if the child node
is covered by one of the maximal frequent itemsets, it is not a maximal but a
frequent itemset; specially, if all the items in it are the last ones in the sorted
items list, we can determine that all the right nodes are not the final results, and
the loop will be ended immediately. Second, after computing the support, the
expected support and the support bounds, if the upper bound is not larger than
the minimum support, then it is an infrequent itemset; if the lower bound is not
smaller than the minimum support, then it is a frequent itemset. Finally, if we
can not determine the frequency by the previous value, we need to compute the
probabilistic support and compare it to the minimum support.

Step 4: If a child node is frequent, we will recall Step 3 for it; otherwise, it will
be pruned.

Step 5: If a node has no children and is not in the final results, it is a probabilistic
maximal frequent itemset. We can add it into the probabilistic maximal frequent
itemset collection. Because of our depth-first mining manner, there is no need
to remove the subset from the collection.

Complexity. The overall time complexity of the PMFIM algorithm depends
on the database size n, the minimum support A, the minimum probabilistic
confidence 7, and the count of PMFIT nodes t. For each new generated node,
there are three possible computing cost. The first is O(m) where m is the count
of current probabilistic maximal frequent itemsets; the second is O(n); the third
is O(nlog®n). Generally, m < n < nlog®n; thus, the worst time complexity is
O(nlog®n). Nevertheless, as will be demonstrated in our experiments, the count
of probabilistic support computing is greatly small, which guarantee that the
performance can be improved significantly.
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Algorithm 1. PMFIM Algorithm

Require: n;: node of PM FIT denote itemset I; UD: Uncertain Database; PM FIC"
Probabilistic Maximal Frequent Itemset Collection; A\: minimum support; 7: mini-
mum probabilistic confidence;

1: for each itemset J(|J| = |I|) order larger than I do

2: if J is probabilistic maximal frequent itemset and J is the last items in the

sorted items list then

3 break;

4: generate the child node nyus of nr;

5 if TuJ e PMFIC then

6.

7

8

CALL PMFIM(niuy, UD, PMFIC, X, T);
compute AZ(I'UJ), A(TUJ), Ib(AZ(TUJ)) and ub(AL (I U J));
if ub(AL(IUJ)) < X then

9: delete nyus;

10: continue;

11:  if I(AE(TUJ)) > X then

12: CALL PMFIM(nus, UD, PMFIC, X\, T);
13:  else

14: compute AX(I'UJ);

15: if AF(I'uJ)> X then

16: CALL PMFIM(nrus, UD, PMFIC, A, 7);
17: else

18: delete nryy;

19: if n; has no children and I is not in PMFIC then
20: add I in PMFIC;

4 Experiments

We conducted the experiments to evaluate the performance of PMFIM. The
state-of-the-art algorithm TODIS-MAX[20], which has been presented much
more efficient than pApriori, was used as the evaluation method. While TODIS-
MAX focused on the tuple-uncertainty based databases, we re-implemented it
for the attribute-uncertainty based databases. The dataset size |[U D], the relative
minimum support /\T(:ﬁ), and the minimum probabilistic confidence 7 are
the main elements that may affect the uncertain data mining, which, as a result,
were used to compare the algorithms in runtime and memory cost.

4.1 Running Environment and Datasets

Both algorithms were implemented with C++4-, compiled with Visual Studio 2010
running on Microsoft Windows 7 and performed on a PC with a 2.90GHZ Intel
Core i7-3520M processor and 8GB main memory. We evaluated the algorithms
on 2 synthetic datasets generated by the IBM synthetic data generator and 3
real-life datasets [25]. The detailed data characteristics are shown in Table 2. We
used the item correlation to show the density of an uncertain database, that is,
a smaller correlation value denotes a denser data.
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Table 2. Uncertain dataset characteristics

Uncertain size of average. | minimal | maximal | number | mean | variance | item
DataSet dataset trans. trans. trans. of items Correlation
length length length

T25I15D320K | 320 002 | 26 1 67 994 0.87 |0.27 38
T40I10D100K | 100 000 | 39 4 7 1000 0.79 |0.61 25
KOSARAK 990 002 |8 1 2498 41 270 | 0.5 0.28 5159
ACCIDENTS | 340 183 | 33 18 51 468 0.5 0.58 14
CONNECT4 | 67 557 43 43 43 129 0.78 | 0.65 3

4.2 Effect of Relative Minimum Support

We set a fixed minimum probabilistic confidence and compared the performance
of the two algorithms when the relative minimum support was changed.

Running Time Cost Evaluation. As can be seen in Fig. 2, the runtime cost
of the two algorithms reduced linearly with a decrease of the relative minimum
support. Plus, to compare our algorithm to TODIS-MAX, we can observe the
following results. On the one hand, when the relative minimum support was high,
the runtime cost of the TODIS-MAX method was a little lower than the PMFIM
over most of the datasets. This is due to the advantage of the top-down mining
manner in TODIS-MAX, that is, a faster pruning will be employed if the super-
sets are not frequent, which is more useful when performing over dense dataset.
On the other hand, when the relative minimum support became lower, the per-
formance of TODIS-MAX turned worse significantly, which can also be clearly
noticed over denser datasets. As shown in the figure, over the densest dataset
CONNECT/, PMFIM achieved almost a thousand time faster than TODIS-
MAX when the relative minimum support was 0.7, and then, the TODIS-MAX
can be almost not measured since the runtime cost increased too much; over the
KOSARAK, the sparsest dataset, our algorithm can also achieved hundreds-fold
speedup when the relative minimum support was 0.05. This outperforming fur-
ther increased when the relative minimum support turned smaller. This is also
because of the different mining fashions: TODIS-MAX employed the top-down
method, which, when the relative minimum support was small, may use more
frequent items to generate infrequent itemsets, whose size will exponentially
increased along with the count of frequent items. Even though TODIS-MAX
employed the expected support to prune certain computing, the rest comput-
ing was still too large to conduct. In comparison to that, our algorithm was a
bottom-up method, i.e., only frequent itemsets were generated; with the help
of superset pruning, the computing will not increase sharply when the relative
minimum support became lower.

Memory Cost Evaluation. We also compared the maximal memory usages
of the two algorithms. As shown in Fig. 3, similar to the runtime cost, the mem-
ory usages decreased when the relative minimum support increased. In addition,
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Fig. 2. Running time cost vs relative minimum support

we can see that in a majority of cases TODIS-MAX used more memory than
our algorithm. Since our algorithm employed the divided-and-conquer method
proposed in TODIS-MAX, the running memory cost was similar when the rela-
tive minimum support was high. Nevertheless, when it became low, the memory
usage of TODIS-MAX will increased exponentially. Again, it was because of the
massively generated infrequent itemsets. Besides, the lattice used in TODIS-
MAX was another reason that use more memory. Note that we did not show
the memory cost of TODIS-MAX when the relative minimum support was low,
this is because that the runtime cost was too high to perform the TODIS-MAX
algorithm in limited time.

4.3 Effect of Data Size

We evaluated the scalability of the two algorithms, that is, we performed
the algorithms w.r.t. different data sizes, which are shown in Fig.4. The
T25115D320K dataset was used as the evaluation dataset. We separately got
the first n(from 20K to 320K) transactions to conduct the algorithms. Plus,
the relative minimum support and the minimum probabilistic confidence were
set to the fixed values. Note even though the relative minimum support was
fixed, the minimum support changed since the data size was different. As shown
in Fig.4(a), when the dataset turned larger, the runtime cost of the two algo-
rithms also increased, but the PMFIM algorithm was much more stable when
the dataset became larger. This presents that our algorithm can accurate esti-
mate most of the probabilistic supports no matter how the data size increased.
However, in Fig. 4(b), with the increasing size of transactions, the memory cost
of both algorithms increase linearly. It is reasonable since we showed the maximal
memory cost during running; thus, once we directly computed the probabilistic
support, the memory will be more used for more transactions.
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Fig. 3. Memory cost vs relative minimum support

4.4 Effect of Minimum Probabilistic Confidence

Definition 2 shows that a larger minimum probabilistic confidence may result
in a less possibility that an itemset becomes frequent, which will reduce the
computing cost and the memory usage. We evaluated two algorithms for differ-
ent minimum probabilistic confidences(from 0.00001 to 0.1) when the relative
minimum support was fixed.

Figures5 and 6 separately presented the runtime cost and the memory
usage. To our surprise, we find that when the minimum probabilistic confidence
increased, both the runtime and the memory cost of the two algorithms kept
almost unchanged. This shows that the minimum probabilistic confidence had
little effect on the performance of the algorithms. It is due to the reason that the
probabilistic density function was highly sparse when the dataset size was large,
which results that most of the minimum probabilistic confidence can slightly
change the probabilistic support, and thus can almost not change the types of
the itemsets.
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Fig. 4. Effect of data size for A\, = 0.1, 7 = 0.9
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5 Conclusions

In this paper we studied the behavior of probabilistic maximal frequent itemset
mining over uncertain databases. We defined the probabilistic maximal frequent
itemset, which is much reasonable and can supply more pruning considerations.
Based on this, an extended enumeration tree named PMFIT was introduced
to efficiently index and maintain the probabilistic frequent itemsets. A bottom-
up algorithm named PMFIM, mining in a depth-first manner, was proposed,
in which we used the support and the expected support to estimate whether an
itemset is frequent, which greatly reduced the computing cost and memory usage;
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in addition, a superset pruning method was employed to further improve the
mining performance. OQur extensive experimental studies show that our PMFIM
algorithm achieved thousands or more faster speed than TODIS-MAX, and also
significantly outperformed in memory cost.
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