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Abstract We propose to use finite elements and BDF2 time stepping to solve
the problem of computing a solution to the time dependent wave equation with
a variable sound speed in an infinite sound hard pipe (waveguide). By using the
Laplace transform and an appropriate Dirichlet-to-Neumann (DtN) map for the
problem, we can prove that this problem can be reduced to a variational problem
on a bounded domain that has a unique solution. This solution can be discretized
in space using finite elements (projecting into a Fourier space on the two artificial
boundaries to allow the rapid calculation of the DtN map). We discretize in time
using the Convolution Quadrature (CQ) approach and in particular BDF2 time-
stepping. Thanks to CQ we obtain a stable and convergent discretization of the DtN
map, and hence of the fully discrete BDF2-finite element scheme without a CFL
condition. We illustrate the method with some numerical results.

1 Introduction

Simulating sound propagation in pipes (also called waveguides) requires to solve
the wave equation in a sound hard acoustic waveguide. In this paper we consider
the use of a finite element time domain approach to the problem. We suppose
that the waveguide encloses a bounded perturbation assumed to be a region in
which the sound speed differs from the background speed in the rest of the
waveguide. We refer to the perturbation as the scatterer. A sound wave is incident
on this perturbation and produces a scattered wave that needs to be computed. For
simplicity we will work in two spatial dimensions, but the algorithm we develop can
be used for a true three dimensional pipe with obvious modifications.
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Fig. 1 Cartoon of the main
geometric elements used in
our analysis. Finite elements
are used in the domain P0

which includes the scatterer
D. The artificial boundaries
are ˙

�

and ˙
C

Let us consider a waveguide P D .0; H/ � R, containing an obstacle D which is
assumed to be bounded and have a Lipschitz continuous boundary. Denote by n the
unit outward normal on @P, i.e. n D .�1; 0/ on x1 D 0 and the opposite on x1 D H.
Similarly, we use the notation nD for the unit outward normal on @D. Figure 1 shows
a graphic of the computational domain.

The refractive index n.x/ is assumed to be real and frequency independent, and
such that n.x/ D 1 if x 2 P n D and n.x/ 6D 1 if x 2 D. Later in the paper we
will comment on impenetrable scatterers and frequency dependent coefficients. The
speed of sound in the background waveguide outside D is a constant c0.

We suppose that a given incident field uinc hits the scatterer. The incident field is
a bounded smooth solution of the background wave equation so that it satisfies the
wave equation in the free waveguide:

1

c2
0

@2
ttuinc D �uinc in R � P ;

@nuinc D 0 on R � @P ;

where @2
tt denotes the second time derivative, and @n denotes the normal derivative.

The boundary condition models a sound hard wall. In the sequel we assume that the
incident field uinc does not hit the scatterer D before t D 0, that is,

uinc D @tuinc D @2
ttuinc D 0 in D; for t � 0 : (1)

In the time domain, the wave equation and boundary conditions for the total wave
u and the scatterer field usc are

n2

c2
0

@2
ttu D �u in P; for t > 0 ;

u D uinc C usc in P; for t > 0 ;

@nu D 0 on @P; for t > 0 ;

u D 0 in P; at t D 0; (2)

@tu D 0 in P; at t D 0:
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Here n is understood to be a function of positions x. There is no need for a condition
at infinity because usc propagates with finite velocity and so for any t > 0 there
is a distance M.t/ such that usc.t; x/ D 0 for any x D .x1; x2/ with x1 2 .0; H/,
jx2j > M.t/. Our problem is to approximate u (or equivalently usc) and we shall
use finite elements in space because they can approximate general boundaries of the
scatterer easily.

To use finite elements we introduce a computational domain P0 WD .0; H/�.0; L/

for L > 0 big enough to enclose the scatterer, that is, such that D � P0 (see Fig. 1).
Then we can cover P0 with finite elements (in our case using triangles). The only
obstacle to a standard finite element approach in space is the need for a special
artificial boundary condition at x2 D 0 and x2 D L that takes care of the infinite
waveguide on either side of P0. This can be constructed using the Perfectly Matched
Layer (PML) (see [9]); in fact, provided the PML is chosen to handle both traveling
and evanescent modes in the solution this can be very successful. However the PML
is difficult to analyze and requires an informed choice of the PML parameters so
instead we propose to use a time domain Dirichlet-to-Neumann (DtN) map on the
artificial interfaces x2 D 0 and x2 D L following the approach of [6]. With this
approach we need to store the solution on the artificial boundaries for all time steps,
but, at least at low frequencies and in two dimensions this is not a crushing problem
since only a few modes need to be stored for each time step.

We propose to use implicit time stepping to take care of possible refined meshes
in some regions of the simulations, as well as to allow for changes in refractive index
from place to place (this would change the CFL of an explicit scheme from place
to place). In particular we shall use the Laplace transform to analyze the truncated
problem (cf. [1, 7]) and convolution quadrature (cf. [10]) to prove that a family
of time stepping schemes including Backward Differentiation Formula 2 (BDF2)
give rise to stable and convergent time stepping method. An added bonus is that,
at least before spatial discretization, the method shows how to construct perfect
discrete DtN maps matched to the time stepping scheme. An alternative approach
using more standard time stepping and integral equations on the interfaces might be
constructed along the line of [3], but we do not pursue that here.

The paper proceeds as follows. In the next section we give details of how
to reduce the problem to a family of Laplace domain equations posed on the
computational domain P0. Then in Sect. 3 we summarize the analysis of the Laplace
domain problems, and then relate these back to a fully discrete time stepping scheme
using convolution quadrature. The fully discrete scheme is shown to be optimally
convergent. Then in Sect. 4 we provide a few numerical results from our method
implemented using the multi-frequency approach of Banjai and Sauter proposed
in [2].
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2 Reduction to a Bounded Domain

It is convenient to perform the initial analysis using the scattered field usc D u � uinc

which satisfies

n2

c2
0

@2
ttusc D �usc C F in P; for t > 0 ;

@nusc D 0 on @P; for t > 0: (3)

Above, we have set

F D 1

c2
0

.1 � n2.x//@2
ttuinc :

Notice that F D 0 outside D, for any t 2 R, since n.x/ D 1 there. Furthermore,
F D 0 in the whole P0 for any t � 0 according to (1). On the other hand, (1) also
suggests that the scattered field is causal and, hence, we impose the initial conditions

usc D @tusc D 0 in P; at t D 0:

In order to analyze (3), we transform it to the Laplace domain. More precisely,
for any smooth and causal function f .t/, the Laplace transform we use is defined as

L Œ f �.s/ D
Z 1

0

f .t/ exp.�st/ dt for s 2 C� ;

where C� D fsI s D � � i! with � > ��; ! 2 R; � > �; ! 2 Rg for a fixed posi-
tive � 2 R. Then, working formally with Eq. (3), we have that the Laplace transform
of the scattered field, Ousc D L Œusc�.s/, solves

s2n2

c2
0

Ousc D �Ousc C OF in P ; (4)

@n Ousc D 0 on @P : (5)

Above, OF stands for the Laplace transform of F; let us recall that OF D 0 in P n D.
As already mentioned, we make use of a bounded section of the pipe P0 D

.0; H/ � .0; L/ containing the scatterer D in its interior (see Fig. 1). Then, adopting
the usual Galerkin strategy, the problem in P0 consists in finding Ousc 2 H1.P0/ such
that, for any v 2 H1.P0/,

Z
P0

n2

c2
0

s2 Ousc v C
Z

P0

r Ousc � rv �
Z

˙
C

@n0 Ousc v C
Z

˙
�

@n0 Ousc v D
Z

P0

OF v ; (6)
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where the unit vector n0 D .0; 1/ is normal to the artificial boundaries ˙� D
.0; H/ � f0g and ˙C D .0; H/ � fLg.

In order to deal with the integrals on ˙˙, we next define the DtN maps OTs
˙.Ousc/ D

˙@n0 Ousc on ˙˙. Working in the remaining parts of the pipe P n P0, where we have a
homogeneous wave equation, we may obtain explicit expressions of the DtN maps.

More precisely, let us start by considering P� D .0; H/ � .�1; 0/. Then Ousc 2
H1.P�/ satisfies

s2

c2
0

Ousc D �Ousc in P� ; (7)

@n Ousc D 0 on @P� n ˙� : (8)

Taking advantage of Eq. (8), we write the scattered field in P� as

Ousc.x1; x2/ D
1X

mD0

um.x2/ cos
�m�x1

H

�
in P� ; (9)

where each um.x2/ is bounded for x2 ! �1. Then, Eq. (7) means that

� .um/00 C m2�2

H2
um C s2

c2
0

um D 0 for x2 < 0 : (10)

Also notice that um.0/ D um;0, where
˚
um;0

�1
mD0

are the complex Fourier expansion
coefficients of Ousc on ˙�:

Ousc D
1X

mD0

um;0 cos
�m�x1

H

�
on ˙� :

In consequence, denoting

�m � �m.s/ D s

c0

s
1 C m2�2

H2

c2
0

s2
; (11)

and choosing <.�m/ > 0 we have

Ousc.x1; x2/ D
1X

mD0

um;0 cos
�m�x1

H

�
exp.�m x2/ in P� : (12)

In particular, it follows that

@n0 Ousc D @x2 Ousc D
1X

mD0

�m um;0 cos
�m�x1

H

�
on ˙� : (13)
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Summing up, we have the following explicit expression of the DtN map on ˙�:

OTs�� D �
1X

mD0

�m.s/ �m cos
�m�x1

H

�
on ˙� ; (14)

for any � whose Fourier expansion on ˙� is

� D
1X

mD0

�m cos
�m�x1

H

�
; (15)

where �m (m D 0; : : : ; 1) are the complex expansion coefficients.
Similarly, we can work in PC to obtain an explicit expression of OTsC on ˙C. We

now make use of the DtN maps to rewrite the variational formulation (6) of the
model problem in the Laplace domain as follows: Find Ousc 2 H1.P0/ such that, for
any v 2 H1.P0/,

Z
P0

n2

c2
0

s2 Ousc v C
Z

P0

r Ousc � rv �
Z

˙
C

OTsC Ousc v �
Z

˙
�

OTs� Ousc v D
Z

P0

OF v : (16)

3 Convergence Analysis

The analysis of existence, uniqueness and finite element convergence for the
variational problem in the Laplace domain (16) follows the general steps of the
analysis of the periodic grating problem in [6]. According to this, we only make
an outline of the most important results of such analysis. To this end, we start
introducing the following s-dependent norm on H1.P0/:

kvks;H1.P0/ D
�Z

P0

.
jsj2
c2

0

jvj2 C jrvj2/ dx
�1=2

for v 2 H1.P0/ :

For each r 2 Œ0; 1�, we define the following s-dependent norm on Hr.˙˙/:

k�ks;Hr.˙
˙

/ D
 C1X

mD0

.
jsj2
c2

0

C m2�2

H2
/r j�mj2

!1=2

;

for any � 2 Hr.˙˙/ written by means of its Fourier expansion (15). We also define
the associated s-dependent norm on H�r.˙˙/ by duality.

Notice that the s-dependent H1.P0/ norm corresponds to a weighted energy for
the field after inverse Laplace transforming back to the time domain. Besides, the
s-dependent boundary norm on Hr.˙˙/ is chosen so that both the trace of functions



Time Dependent Scattering in an Acoustic Waveguide 327

in H1.P0/ and the DtN maps can be estimated by appropriate norm bounds with
explicit s-independence, as we detail in the following subsection.

3.1 Well-Posedness of the Variational Problem in the Laplace
Domain

Following directly the argument in [6, Lemma 2.1] we can show the following
bound of the trace operator 	˙

˙

W H1.P0/ ! H1=2.˙˙/ in terms of weighted norms:

k	˙
˙

vks;H1=2.˙
˙

/ � C1 kvks;H1.P0/ for v 2 H1.P0/ ;

where C1 D 2

q
2 c0

L H �
.

Moreover, using the Fourier definition of the DtN operator (14) and reasoning as
in the proof of [6, Lemma 2.2], we deduce the following bound of the DtN operators
OTs

˙ W H1=2.˙˙/ ! H�1=2.˙˙/ in terms of weighted norms:

k OTs˙�ks;H�1=2.˙
˙

/ � Ck�ks;H1=2.˙
˙

/ for � 2 H1=2.˙˙/ ;

where C is independent of s.
We can now analyze the variational formulation of the Laplace domain problem

on P0 applying the Lax-Milgram Lemma. To this end, we define the s-dependent
sesquilinear form as W H1.P0/ � H1.P0/ ! C associated to the variational
formulation (16), given by

as.w; v/ WD
Z

P0

n2

c2
0

s2 w v C
Z

P0

rw � rv �
Z

˙
C

OTsCw v �
Z

˙
�

OTs�w v :

Let us emphasize the following properties of the sesquilinear form as.�; �/ in terms
of s 2 C� :

• By using the definition of the s-dependent H1.P0/ norm, and the bounds on the
trace operator and the DtN maps, we have the following continuity bound:

jas.w; v/j � C2 kwks;H1.P0/ kvks;H1.P0/ ; (17)

where C2 D maxf1; kn2kL1.P0/g C 8 c0

L H �
.

• Using Bamberger and HaDuong’s technique [1] as in the proof of [6, Lemma
3.1], we have the following coercivity bound in terms of s-dependent norms

<.as.v; sv// � � inf
x2P0

n2.x/ kvk2
s;H1.P0/

: (18)
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Notice that the estimates (17) and (18) make clear their dependence on both s 2
C� and w; v 2 H1.P0/. In particular, we can apply the Lax–Milgram theorem to
guarantee the well-posedness of problem (16); moreover, we have the following
bound on its unique solution:

kOuscks;H1.P0/ � C

�
k OFkL2.P0/ ;

where C is independent of s, Ousc and OF.

3.2 Spatial Discretization of the Problem in the Laplace
Domain

Discretization of H1.P0/ is by standard finite elements. More precisely, we consider
a regular mesh family Th; h > 0, of P0 consisting of triangles K of maximum
diameter h and which can be mapped from the reference triangle element OK using
an affine mapping mK W OK ! K. Then we define the finite element space Sh of
continuous finite elements on Th. In particular

Sh WD ff 2 C 0.P0/I f jK D Of ı mK for some Of 2 Pq 8K 2 Thg ;

where Pq denotes the set of complex valued polynomials of total degree at most q.
The only remaining difficulty in discretizing the variational problem by means

of the approximation space Sh is that we need to apply the DtN operators to traces
of finite element functions. This could be done using an integral equation on ˙˙
as in [3], but for the simple geometry here we can truncate the Fourier expansions
involved in the explicit expression of the DtN maps. This may be done efficiently
by means of a trigonometric basis of H1=2.˙˙/, which is a common strategy in the
frequency domain. More precisely, let us introduce the finite-dimensional space

PN WD span
n
cos

�m�x1

H

�
I m D 0; 1; : : : ; N

o
;

as well as the L2.˙˙/ orthogonal projections pN;˙ W L2.˙˙/ ! PN . We then
approximate the operators OTs

˙ by means of OTs
N;˙ D OTs

˙ ı pN;˙, and the s-dependent
sesquilinear forms as W H1.P0/ � H1.P0/ ! C by

as
h;N.w; v/ WD

Z
P0

n2

c2
0

s2 w v C
Z

P0

rw � rv �
Z

˙
C

� OTs
N;Cw

�
pN;Cv

�
Z

˙
�

� OTs
N;�w

�
pN;�v :
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With this approach, the discrete counterpart of problem (16) consists of finding
Ousc;h;N 2 Sh such that, for any v 2 Sh,

as
h;N.Ousc;h;N ; v/ D

Z
P0

OF v : (19)

Reasoning as at continuous level, we can see that the discrete sesquilinear form
as

h;N.�; �/ is bounded and coercive in terms of s-dependent norms, here again with the
same dependence on s 2 C� and � as in the continuous case. Indeed, properties (17)
and (18) remain valid if we replace the sesquilinear form as W H1.P0/�H1.P0/ ! C

by its discrete counterpart as
h;N W H1.P0/ � H1.P0/ ! C. In particular, this allows

us to reason just as we did before to guarantee the existence of a unique solution of
the discrete problem (19), Ousc;h;N 2 Sh, and deduce the following bound:

kOusc;h;Nks;H1.P0/ � C

�
k OFkL2.P0/ :

This result is analogous to [6, Theorem 3.4].
We can then prove an error estimate based on Strang’s second lemma in which

we keep track of the dependence on the parameter s 2 C� . The analysis is similar
to [6, Theorem 3.5]:

kOusc � Ousc;h;Nks;H1.P0/ � jsj
�

�
.

C2

infx2P0 n2.x/
C 1/ kOusc � Owhks;H1.P0/

CC1 k	˙
C

Ousc � pN;C	˙
C

Ouscks;H1=2.˙
C

/

CC1 k	˙
�

Ousc � pN;�	˙
�

Ouscks;H1=2.˙
�

/

�
;

where Owh 2 Sh and C1 and C2 are the s-independent constants previously introduced
(see (17) and (18)).

By taking the inverse Laplace transform of the above estimate, we can then
derive an error estimate for the semi-discrete approximation usc;h;N of usc (i.e. only
discretizing in space). More precisely, following the approach of [10], let T > 0

denote the final time for the solution and set

Hr
0..0; T/I X/ D fu 2 Hr..�1; T/I X/ I u.t; �/ D 0 for t < 0g ; (20)

where X stands for any Hilbert space. We then have the following theorem.

Theorem 1 Assume that OF 2 L2.˝/, s D � � i! with � > �0 and n2 > ı,
for some constants �0; ı > 0. Then there exists a unique solution Ous

sc;h;N 2 Sh

to (19) and furthermore there is a constant C such that, for any t 2 .0; T/ and



330 L. Fan et al.

vh 2 H2
0..0; T/ISh/,

kusc;h;N.t/ � usc.t/kH1.P0/ � C
�
kusc � vhkH2

0 ..0;T/IH1.P0//

CkpN;Cusc � usckH2
0 ..0;T/IH1=2.˙

C

//

C kpN;�usc � usckH2
0 ..0;T/IH1=2.˙

�

//

�
: (21)

Here C depends on T but is independent of usc and t, and of the discretization
parameters h and N .

3.3 Discretization in Time

Following the Convolution Quadrature (CQ) approach proposed in [10], to dis-
cretize in space and time we can use the discrete Laplace transform. To do this we
need to choose a suitable time discretization. Let �t denote the time step �t D T=Nt

where Nt is the number of time steps, and let tn D n�t. As usual for CQ, a
good choice of multistep method is BDF2 which approximates the solution y.t/
of y0 D f .t; y/ using the difference equation

3

2
ynC2 � 2ynC1 C 1

2
yn D �t f .tnC2; ynC2/ for n D �1; 0; 1; : : : ;

where yn D 0 for n � 0. The generating polynomial for this method is

	.
/ D 3

2
� 2
 C 1

2

2 for 
 2 C :

The discrete time Laplace transform of the solution we wish to find is denoted
Ou�t

sc;h;N 2 Sh and satisfies the Laplace domain variational problem with s replaced
by 	.
/=�t:

a	.
/=�t.Ou�t
sc;h;N ; vh/ D

Z
P0

OFjsD	.
/=�t vh for all vh 2 Sh ; (22)

where this equation holds for all 
 2 C with j
j < 1.
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Taking the inverse discrete Laplace transform we obtain a fully discrete time
stepping problem that determines u�t;n

sc;h;N 2 Sh for n D 0; 1; : : :. In particular, as in
[6] we introduce a new variable

Oz�t
h;N D 	.
/

�t
Ou�t

sc;h;N ; (23)

so that (22) can be rewritten as finding Ou�t
sc;h;N 2 Sh such that

Z
P0

n2

c2
0

	.
/

�t
Oz�t

h;N vh C
Z

P0

r Ou�t
sc;h;N � rvh �

Z
˙

C

OT	.
/=�t
C .pN Ou�t

sc;h;N/ vh

�
Z

˙
�

OT	.
/=�t� .pN Ou�t
sc;h;N/ vh D

Z
P0

OFjsD	.
/=�tvh for all vh 2 Sh : (24)

Introducing the z-transform of the discrete time solution as

Ou�t
sc;h;N D

1X
mD0

u�t;m
sc;h;N 
m; Oz�t

h;N D
1X

mD0

z�t;m
h;N 
m ;

and equating terms in 
 in (23) shows that the standard BDF2 equation is satisfied

1

�t

�
3

2
u�t;m

sc;h;N � 2u�t;m�1
sc;h;N C 1

2
u�t;m�2

sc;h;N

�
D z�t;m

sc;h;N

for each m � 0 where u�t;p
sc;h;N D 0 if p � 0.

To analyze (24) suppose that we have a finite Fourier series w DPN
mD0 wm cos.m�x1=H/. Then from (14) we see that

OT	.
/=�tw D �
NX

mD0

�m.
	.
/

�t
/ wm cos.

m�x1

H
/ ;

where �m.s/ is given by (11). The same expansion holds for OT	.
/=�t
C . Expanding

�m.	.
/=�t/ in terms of 
 gives

�m.
	.
/

�t
/ D

1X
jD0

��t
m;j


j;

for some coefficients ��t
m;j when j
j < 1. These coefficients can be computed

exactly for small values of j and in general computed numerically using a discrete
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approximation to the Cauchy integral formula as in [4, 6]. For example

��t
m;0 D

q
4 �2c2

0 .�t/2 m2 C 9 H2

2�t c0 H
;

��t
m;1 D �6

H

�t c0

q
4 �2c2

0 .�t/2m2 C 9 H2

;

��t
m;2 D

�
44 �2c2

0 .�t/2m2 C 27 H2
�

H

2�t c
�
4 �2c2

0 .�t/2m2 C 9 H2
�3=2

;

and so on. Now define

QT.j/
˙ w D �

NX
mD0

��t
m;j wm cos.

m�x1

H
/ :

Equating powers of 
 in (24) gives

Z
P0

n2

c2
0�t

�
3

2
z�t;m

sc;h;N � 2z�t;m�1
sc;h;N C 1

2
z�t;m�2

sc;h;N

�
vh C

Z
P0

ru�t;m
sc;h;N � rvh

�
mX

jD0

Z
˙

C

QT.j/
C .pNu�t;m�j

sc;h;N / vh �
mX

jD0

Z
˙

�

QT.j/� .pNu�t;m�j
sc;h;N / vh D

Z
P0

OF�t;mvh ;

(25)

for all vh 2 Sh.
We see that inside P0 the method corresponds to using BDF2 and finite elements

for the wave equation. On the artificial boundaries ˙˙ the method provides a
discrete approximation to the DtN map that uses a discrete convolution at each
time step. In particular, at time step m this requires access to the N C 1 Fourier
coefficients of u�t;j

sc;h;N for j D 0; : : : ; m on the two artificial boundaries. Thus
storage requirements grow with time, but for pipes at low frequency there are few
propagating modes and so N is not large (besides the propagating modes, some
evanescent modes also need to be stored depending how far the artificial boundary
is away from the scatterer).

At the expense of more notation, we can now eliminate z�t;m
sc;h;N from the difference

equation to obtain the discretization of a second order in time problem for usc alone.
Following Lubich’s strategy [10] as in [6] we can prove the following

fully discrete error estimate where W4
0 ..0; T/I L1.P0// is defined analogously to

Hr
0..0; T/I X/ in (20):

Theorem 2 Suppose we use BDF2 to discretize in time, and regular finite elements
to discretize in space. In addition, suppose F 2 W4

0 ..0; T/I L1.P0//. Then the time
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discrete finite element solution u�t;n
sc;h;N is well defined for each time step n D 0; 1; : : :

and satisfies the error estimate

ku�t;n
sc;h;N � usc.tn/kH1.P0/ � C

�
.�t/2

Z T

0

Z
P0

ˇ̌
@4

t F
ˇ̌C kusc � vhkH2

0 ..0;T/IH1.P0//

CkpN;�usc � usckH2
0 ..0;T/IH1=2.˙

�

// C kpN;Cusc � usckH2
0 ..0;T/IH1=2.˙

C

//

�

for any vh 2 H2
0..0; T/ISh/. Here the constant C depends on T and ˙C, but is

independent of usc and vh, and the discretization parameters h, N and �t .

The theory we have outlined extends to impenetrable (sound hard or sound
soft scatterers with little change). For frequency dependent refractive indices, the
Laplace domain results can be proved under suitable conditions on the behavior of
the refractive index in the Laplace domain (see for example [5]).

4 Numerical Results

Although the analysis of problem (16) and its discretization are written in terms of
the Laplace transform of the scattered field, in practice we approximate the total
field u D usc C uinc. This avoids performing area integrals for F. Assuming the
source of the incident wave is in the section of the pipe P�, in the Laplace domain
and after discretization in space, we seek Ouh;N 2 Sh which is the unique solution of

as
h;N.Ouh;N ; vh/ D

Z
˙

�

@n0 Ouinc vh �
Z

˙
�

OTs� Ouinc vh ; (26)

for any vh 2 Sh. Notice that there is no need for a boundary condition on ˙C since
the total field is outgoing there.

To deal with problem (26), in practice we approximate OTs� Ouinc by OTs
N;� Ouinc.

Above we have shown how the Laplace domain problem can be converted into a
time stepping problem using CQ as in [10]. Here, to demonstrate the method, we
instead use the discrete Laplace transform approach from [4]. Suppose the final
time of integration is T and we wish to take Nt timesteps. In Banjai and Sauter’s
approach (26) is solved for Nt choices of s chosen depending on the time-stepping
method used (in fact fewer problems need to be solved in practice). An inverse
discrete transform then gives the time dependent solution. We use the parameter
choices from [4] even though the theory in that paper is for an integral equation
based approach.
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4.1 Convergence Rate

To obtain a simple exact solution we can consider an empty pipe. In this case
the total field is simply given by the incident field, and the code must propagate
the incident field through the finite element domain. We choose the computational
domain to be P0 D .0; 0:6/ � .0; 1/ with ˙� at x2 D 0 and ˙C at x2 D 1,
and the width of the pipe H D 0:6. The final time is T D 6 by which time the
wave has almost left the computational domain. The incident field is a plane wave
uinc D f .t � x1=c/ where c D 1 and

f .�/ D cos.2�.� � H=c// exp.�1=.2�2/.� � L=c � tp/2/

where tp D 3, � D 6=.2� bw/, and bw D 1:71 denotes the bandwidth of the
incident field; notice that the center frequency is 1. The parameters are chosen so
that f is approximately zero in P0 at t D 0. We choose a fixed spatial mesh shown
in Fig. 2 (left panel) where the mesh size is h 	 0:016, and use piecewise linear
finite elements in space (using the FreeFem++ to implement the algorithm [8]) and
BDF2 in time. Although only one mode is needed for the DtN maps in this case, we
choose N D 7 for the Fourier spaces on ˙� and ˙C.

For simplicity we report the discrete maximum norm error at the nodes in the
mesh as a function of Nt in the right hand panel of Fig. 2. The convergence rate is
consistent with O.N�2

t / convergence for at least part of the convergence history. We
have no explanation for the increased rate at Nt D 1024. In any case the numerical
results show that we can obtain accurate and convergent solutions over a wide range
of time step sizes. Indeed, the coarsest time step is �t 	 0:09 and the finest time
step is �t 	 0:006, and stability is seen across this range of time steps.

Discretization Parameter N
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Fig. 2 Using the fixed spatial mesh shown in the left hand panel, we show the discrete maximum
norm error at the spatial nodes as a function of the number of time steps in the right hand panel.
We have predicted N�2

t error in the H1.P0/ norm and see somewhat better than this rate at finer
temporal discretization
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4.2 Scattering from a Penetrable and Impenetrable Obstacles

Our next examples illustrate the flexibility of this approach since the finite element
method can handle different boundary conditions and possible inhomogeneity of the
scatterer. We start with a penetrable scatterer as analyzed in this paper. We choose
n.x/ D 1 in the pipe, and n.x/ D 2 inside a disk of radius 0.3 centered at .0; 0:6/.
In order to keep the ratio of mesh size to wavelength roughly constant, the mesh
inside the scatterer is refined according to the local refractive index. In Fig. 3 we
show the spatial mesh and three snapshots of the same incident field as used in the
previous section choosing the number of time steps Nt D 512 (from the previous

Fig. 3 Results for a penetrable scatterer. Top left: the spatial mesh, refined inside the scatterer. Top
right: A snapshot of the total field at t � 3 when the incident wave is arriving at the scatterer from
below. Bottom left: A snapshot of the total field at t � 4 when the maximum of the incident wave
is at the scatterer. Curved wave fronts in the scatterer show that the wave has slowed there. Bottom
right: A snapshot of the total field at t � 5 when the incident wave starts to pass the scatterer. A
focal point is visible on the upper boundary of the scatterer
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section we know the method propagates the incident wave with roughly 1% error
when the obstacle is not present). Clearly, as expected, the waves slow down in the
scatterer and are transmitted through the scatterer with a focal point on one side of
the circle. No instability is evident.

In our second example we consider scattering from a sound soft obstacle. This
corresponds to enforcing the Dirichlet boundary condition u D 0 on the boundary
of the same disk as used in the previous example. Results are shown in Fig. 4.

Fig. 4 Results for a sound soft scatterer. Top left: the spatial mesh. Top right: A snapshot of the
total field at t � 3 when the incident wave is arriving at the scatterer from below. Bottom left: A
snapshot of the total field at t � 4 when the maximum of the incident wave is at the scatterer. The
incident wave is strongly reflected by the scatterer. Bottom right: A snapshot of the total field at
t � 5 when the incident wave starts to pass the scatterer. Above the scatterer the wave is decreased
in magnitude compared to Fig. 3 as is to be expected
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5 Conclusions

In this paper we have shown how to derive and analyze a fully discrete time stepping
method for the wave equation in an infinite pipe or waveguide. Using the DtN map
to truncate the domain we obtain a coupled finite element and discrete DtN map for
the discrete solution at each time step. Limited numerical results suggest the method
is stable and accurate.

The main drawback of the method is that the solution needs to be recorded on
the artificial boundaries to allow the convolution needed at each time step to be
computed. However if there are only a few propagating modes in the solution this is
not a crushing overhead unless very long solution times are required.
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