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Preface

During recent years applied mathematics techniques have attained considerable
dissemination within the experimental sciences and engineering. Special attention
has been devoted to biomathematics and medicine, including the analysis of math-
ematical models for the description of tumors, blood flux in arteries, the heart and
flow patterns inside an aneurysm dome. A significant element of this dissemination
also derives from the applications of mathematics in industry. International meetings
such as those of the European Consortium for Mathematics in Industry (ECMI)
and the International Council for Industrial and Applied Mathematics (ICIAM) bear
witness to these advances. In Spain, various research groups have contributed to this
development; most have been based in universities across the country, sometimes
acting in collaboration with nonpublic laboratories. Links and coordination with
foreign groups and universities have also proved essential. The significance of the
Spanish contribution is reflected in the fact that the next ECMI meeting will take
place in Santiago de Compostela in June 2016, while Valencia will host the next
ICIAM congress in 2019.

The XXIVth Congress on Differential Equations and Applications/XIVth
Congress on Applied Mathematics was held in Cádiz (a city founded more than
three millennia ago), Spain, from 8 to 12 June 2015. This biennial international
conference is the most important event organized by the Spanish Society of Applied
Mathematics (SEMA). Any information on the conference is available on the
Society website: http://www.sema.org.es/web/index.php. The conference brought
together an excellent group of international and national researchers interested
in the different branches of applied mathematics. Topics ranged from tsunami
prediction to modeling of epidemiological processes and encompassed mathematics
in architecture, high-order long-term integration of dynamical systems, the search
for exact solutions of ordinary differential equations, oceanography, numerical
acoustics, mathematics in industry, numerical linear algebra, and so on. This wide
variety of subject matter reflects the multidisciplinary nature of the various research
projects being carried out at present by both Spanish teams and groups in other
countries

v
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vi Preface

The collection of articles in this book represents a selection of the contributions
presented at this conference in Cádiz. Every submitted paper has undergone a
standard refereeing process. The volume provides a good summary of the recent
activity of the various Spanish research groups interested in the applications of
mathematics to different branches of the experimental sciences and engineering.

The publication has been made possible by the contributions of a number of
people. First of all, we would like to thank the authors themselves for submitting
their work. Special thanks are due to the referees who agreed to participate: their
comments and suggestions have resulted in improvements in most of the included
contributions. Finally, we would like to express our gratitude to Francesca Bonadei
from Springer for the patience, attention and support that she has shown at every
stage of the editorial process.

Puerto Real, Spain Francisco Ortegón Gallego
Puerto Real, Spain María Victoria Redondo Neble
Puerto Real, Spain José Rafael Rodríguez Galván
February 2016
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Approximate Osher-Solomon Schemes
for Hyperbolic Systems

M.J. Castro, J.M. Gallardo, and A. Marquina

Abstract The Osher-Solomon scheme is a classical Riemann solver which enjoys a
number of interesting features: it is nonlinear, complete, robust, entropy-satisfying,
smooth, etc. However, its practical implementation is rather cumbersome, compu-
tationally expensive, and applicable only to certain systems (compressible Euler
equations for ideal gases or shallow water equations, for example). In this work, a
new class of approximate Osher-Solomon schemes for the numerical approximation
of general conservative and nonconservative hyperbolic systems is proposed. They
are based on viscosity matrices obtained by polynomial or rational approximations
to the Jacobian of the flux evaluated at some average states, and only require a bound
on the maximal characteristic speeds. These methods are easy to implement and
applicable to general hyperbolic systems, while at the same time they maintain the
good properties of the original Osher-Solomon solver. The numerical tests indicate
that the schemes are robust, running stable and accurate with a satisfactory time step
restriction, and the computational cost is very advantageous with respect to schemes
using a complete spectral decomposition of the Jacobians.

1 Introduction

The Osher-Solomon scheme, introduced in [12], is a nonlinear and complete
Riemann solver enjoying a number of interesting features: it is robust, entropy-
satisfying, smooth, and has a good behavior with slowly-moving shocks. Its main
drawback is that it requires the computation of a path-dependent integral in phase
space, leading to a very complex and computationally expensive Riemann solver.
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2 M.J. Castro et al.

Due to this difficulties, its practical application has been restricted to certain
systems, e.g., the compressible Euler equations [15].

In [7], Dumbser and Toro introduced a reformulated version of the Osher-
Solomon solver, denoted as DOT (Dumbser-Osher-Toro), in which the integrals
in phase space are numerically approximated by means of a Gauss-Legendre
quadrature formula. This leads to a scheme much simpler than the original one and
applicable to general hyperbolic systems. In particular, the viscosity matrix of the
numerical flux is defined as a linear combination of the absolute value matrix of
the physical flux evaluated at certain quadrature points. The computation of these
absolute value matrices requires the knowledge of the complete eigenstructure of the
system. Thus, the scheme may be computationally expensive for systems in which
the eigenstructure is not known or difficult to compute.

In this work we propose an alternative version of the DOT solver, in which the
absolute value matrices are approximated using appropriate functional evaluations
of the Jacobian of the flux evaluated at the quadrature points. These schemes
only require a bound on the maximum speed of propagation, thus avoiding the
computation of the full eigenstructure of the system. Several families of approxi-
mations have been considered. The first one is based on Chebyshev polynomials,
which provide optimal uniform approximations to the absolute value function.
On the other hand, it is well-known that rational functions provide more precise
approximations to jxj than polynomial functions. For this reason, two different
families of rational approximations have also been used, based on Newman [10]
and Halley [4] functions. This families of functions have also been considered in
the recently introduced RVM schemes (see [6]).

The proposed approximate Osher-Solomon schemes have been applied to a
number of initial value Riemann problems for ideal magnetohydrodynamics, to
observe their behavior with respect to some challenging scenarios in numerical
simulations. The numerical tests indicate that our schemes are robust, stable and
accurate with a satisfactory time step restriction. Comparisons with the DOT solver
and some other well-known schemes in the literature (e.g., Roe and HLL) have also
been performed.

2 Preliminaries

Consider a hyperbolic system of conservation laws

@tw C @xF.w/ D 0; (1)

where w.x; t/ takes values on an open convex set ˝ � R
N and FW˝ ! R

N is
a smooth flux function. We are interested in the numerical solution of the Cauchy
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problem for (1) by means of finite volume methods of the form

wnC1
i D wn

i � �t

�x
.FiC1=2 � Fi�1=2/; (2)

where wn
i denotes the approximation to the average of the exact solution at the cell

Ii D Œxi�1=2; xiC1=2� at time tn D n�t (the dependence on time will be dropped
unless necessary). We assume that the numerical flux is given by

FiC1=2 D Fi C FiC1
2

� 1

2
QiC1=2.wiC1 � wi/; (3)

where Fi D F.wi/ and QiC1=2 denotes the numerical viscosity matrix, which
determines the numerical diffusion of the scheme.

The condition of hyperbolicity of system (1) states that the Jacobian matrix of
the flux at each state w 2 ˝ ,

A.w/ D @F

@w
.w/;

can be diagonalized as A D PDP�1, where D D diag.�1; : : : ; �N/, �i being the
eigenvalues of A, and the matrix P is composed by the associated right eigenvalues
of A. As it is usual, we denote the positive and negative parts of A, respectively,
as AC D PDCP�1 and A� D PD�P�1, where D˙ D diag.�1̇ ; : : : ; �Ṅ /, with
�C

i D max.�i; 0/ and ��
i D min.�i; 0/. It is clear that A D AC C A�. On the other

hand, the absolute value of A is defined as jAj D AC � A�.
It is interesting to note that the well-known Roe’s method [13] can be written

in the form (3) with viscosity matrix QiC1=2 D jAiC1=2j, where AiC1=2 is a Roe
matrix for the system. Several numerical methods have been developed by using
approximations to jAiC1=2j as viscosity matrices. A general approach to build such
kind of approximations by means of polynomial and rational functions has recently
been introduced in [5, 6]. In particular, it has been shown that a number of well-
known schemes in the literature can be viewed as particular cases within this general
framework: Roe, Lax-Friedrichs, Rusanov, HLL, FORCE, and many others.

3 The Osher-Solomon Scheme

The Osher-Solomon scheme [12] is a nonlinear Riemann solver that possesses
a number of interesting features: it is entropy-satisfying, robust, differentiable
and good behaved for slowly-moving shocks. On the contrary, its implementation
is rather cumbersome, computationally expensive, and only applicable to certain
systems.
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Let A.w/ be the Jacobian of F evaluated at w, and assume the flux splitting

F.w/ D FC.w/C F�.w/; (4)

where

A˙.w/ D @F˙

@w
.w/:

The classical Osher-Solomon numerical flux is then defined as

FiC1=2 D FC.wi/C F�.wiC1/:

Let now ˚ be a path in the phase-space ˝ linking the states wi and wiC1, i.e.,
˚ W Œ0; 1� ! ˝ is a Lipschitz continuous function such that ˚.0/ D wi and ˚.1/ D
wiC1. Then, we can write

F�.wiC1/ � F�.wi/ D
Z 1

0

A�.˚.s//˚ 0.s/ds;

from which we deduce

FiC1=2 D Fi C
Z 1

0

A�.˚.s//˚ 0.s/ds: (5)

Similarly, we could also write

FiC1=2 D FiC1 �
Z 1

0

AC.˚.s//˚ 0.s/ds: (6)

Combining (5) and (6), the Osher-Solomon flux can be written as

FiC1=2 D Fi C FiC1
2

� 1

2

Z 1

0

ˇ̌
A.˚.s//

ˇ̌
˚ 0.s/ds: (7)

The expression (7) for the numerical flux depends on the path ˚ in phase-space,
so in general it may be difficult to compute. Osher and Solomon [12] proposed a
way to build, under certain assumptions, a path which makes possible to perform the
integration. Unfortunately, the resulting solver is rather complex, computationally
expensive, and only applicable to certain systems.

In [7] the authors propose a way to circumvent the drawbacks of the Osher-
Solomon solver, maintaining at the same time its good features. First, the path
consisting in segments is chosen:

˚.s/ D wi C s.wiC1 � wi/; s 2 Œ0; 1�:
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Thus (7) can be written in the form (3), with viscosity matrix

QiC1=2 D
Z 1

0

ˇ̌
A.wi C s.wiC1 � wi//

ˇ̌
ds:

To avoid the analytical integration, the integral is evaluated numerically using a
Gauss-Legendre quadrature formula. The resulting numerical flux, denoted as DOT
(Dumbser-Osher-Toro), has the form (3) with viscosity matrix given by

QiC1=2 D
qX

kD1
!k

ˇ̌
A.wi C sk.wiC1 � wi//

ˇ̌
; (8)

where sk 2 Œ0; 1� and !k are the weights of the quadrature formula. The resulting
scheme is simple to implement and applicable to general hyperbolic systems. On the
other hand, it needs the full eigenstructure of the system, which must be computed
numerically when it is not known or difficult to calculate.

4 Approximate Osher-Solomon Schemes

With the aim of simplifying the computation of the DOT numerical viscosity
matrix (8), it would be desiderable to approximate the intermediate matrices

ˇ̌
A.wi C sk.wiC1 � wi//

ˇ̌
; k D 1; : : : ; q;

in a simple and efficient way. Two approaches will be considered in this section, one
based on Chebyshev polynomials and another relying on rational approximations.

Let P.x/ be a polynomial approximation to the absolute value function jxj in the
interval Œ�1; 1�, satisfying the stability condition [5]

jxj � P.x/ � 1; 8 x 2 Œ�1; 1�: (9)

For a given matrix A, if �max is the eigenvalue of A with maximum absolute value
(or an upper bound of it), jAj can be approximated as

jAj � j�maxjP�j�maxj�1A/:

Denote

A.k/iC1=2 D A.wi C sk.wiC1 � wi//; k D 1; : : : ; q;

where A is the Jacobian matrix of F, and let �.k/iC1=2;max be the eigenvalue of A.k/iC1=2
with maximum absolute value. Then, the polynomial approximate Osher-Solomon
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flux is given by (3) with viscosity matrix

QiC1=2 D
qX

kD1
!keP.k/iC1=2; (10)

where

eP.k/iC1=2 D ˇ̌
�
.k/
iC1=2;max

ˇ̌
P

�ˇ̌
�
.k/
iC1=2;max

ˇ̌�1
A.k/iC1=2

�
: (11)

Remark 1 The advantage of formula (10) with respect to (8) is that in the latter it is
necessary to compute the full eigenstructure of the system, while in the former only
an upper bound on the spectral radius is needed.

Notice that the closer the polynomial P.x/ is to jxj in the uniform norm, the
more similar the approximate flux (10) will be to the Osher-Solomon flux (8).
This suggests to use accurate polynomial approximations to jxj for building (10).
In particular, Chebyshev approximations will be considered in the numerical
experiments. Specifically, for a given p � 1 we take P.x/ D �2p.x/, where

�2p.x/ D 2

�
C 4

�

pX
jD1

.�1/ jC1

.2j � 1/.2j C 1/
T2j.x/; x 2 Œ�1; 1�;

T2j.x/ being the Chebyshev polynomials. As it is well-known, the order of approx-
imation of �2p.x/ to jxj is optimal in the L1.�1; 1/ norm. Moreover, the recursive
definition of the polynomials T2k.x/ provides an explicit and efficient way to
compute �2p.x/.

As it is well-known, the order of approximation to jxj can be greatly improved by
using rational functions instead of polynomials. This suggests to consider rational
approximate Osher-Solomon fluxes of the form (3) with viscosity matrix

QiC1=2 D
qX

kD1
!keR.k/iC1=2; (12)

where eR.k/iC1=2 is defined as in (11), but taking as basis function a rational approxi-
mation R.x/ to jxj satisfying the stability condition (9). Following [6], two different
families of rational functions will be considered:

• Given a set of r � 4 distinct points X D f0 < x1 < � � � < xr � 1g, construct the
polynomial

p.x/ D
rY

kD1
.x C xk/:
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Fig. 1 Left: Chebyshev �4.x/ and Halley H1.x/ and H2.x/ functions. Right: Newman R4.x/ and
Halley H3.x/ functions. Notice the different scaling in both figures

The Newman rational function [10] associated to X is defined as

Rr.x/ D x
p.x/� p.�x/

p.x/C p.�x/
:

The rate of approximation of Rr.x/ to jxj depends on the choice of nodes X:
several possibilities can be found in the literature. Here, we will take xk D
exp.�kr�1=2/, which provides an exponential rate of approximation [10].

• The Halley rational functions Hr.x/ are recursively defined as [6]

HrC1.x/ D Hr.x/
Hr.x/2 C 3x2

3Hr.x/2 C x2
; H0.x/ D 1:

It can be proved that kHr.x/ � jxjk1 D 3�r.

Figure 1 shows a comparison between the Chebyshev �4.x/, Newman R4.x/, and
Halley Hr.x/ (r D 1; 2; 3) functions.

Both the Chebyshev polynomials �2p.x/ and the Newman functions Rr.x/ do not
satisfy the stability condition (9) strictly, although this can be easily fixed with a
slight modification: see [6] for details. However, in practical computations there
are no appreciable differences between both approaches. On the other hand, Halley
functions Hr.x/ satisfy (9) by construction. As long as the functions considered do
not cross the origin, no entropy-fix is needed in the presence of sonic points.

5 Application to Ideal Magnetohydrodynamics

In this section we apply the approximate Osher-Solomon schemes introduced
previously to solve some challenging problems related to the ideal magnetohydro-
dynamics equations.
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The ideal magnetohydrodynamics (MHD) equations read as

8̂
ˆ̂<
ˆ̂̂:

@t� D �r � .�v/;
@t.�v/ D �r � ��vvT C �

P C 1
2
B2
�
I � BBT

�
;

@tB D r � .v � B/;
@tE D �r � �� �

��1P C 1
2
�q2

�
v � .v � B/ � B

�
;

(13)

where � is the mass density, v and B are the velocity and magnetic fields, and E
is the total energy. If q and B denote the magnitudes of the velocity and magnetic
fields, the total energy can be expressed as

E D 1

2
�q2 C 1

2
B2 C �";

where the specific internal energy " is related to the hydrostatic pressure P through
the equation of state P D .� � 1/�", � being the adiabatic constant. The total
pressure P� is defined as P C PM , where PM D 1

2
B2 is the magnetic pressure. In

addition to the equations, the magnetic field satisfies the divergence-free condition

r � B D 0:

Notice that if B D 0 then the MHD system reduces to the Euler equations for ideal
gases. Let us remark that the spectral structure of (13) has been widely analyzed in
the literature (see, e.g., [3, 14]).

The ideal MHD equations (13) constitute a system of conservation laws. In the
numerical experiments we will focus in the two-dimensional case. Then, (13) can
be written as

@tw C @xF.w/C @yG.w/ D 0;

where w D .�; �vx; �vy; �vz;Bx;By;Bz;E/t,

F.w/ D

0
BBBBBBBBBBB@

�vx

�v2x C P� � B2x
�vxvy � BxBy

�vxvz � BxBz

0

vxBy � vyBx

vxBz � vzBx

vx.E C P�/� Bx.vxBx C vyBy C vzBz/

1
CCCCCCCCCCCA

;
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and

G.w/ D

0
BBBBBBBBBBB@

�vy

�vxvy � BxBy

�v2y C P� � B2y
�vyvz � ByBz

vyBx � vxBy

0

vyBz � vzBy

vy.E C P�/ � By.vxBx C vyBy C vzBz/

1
CCCCCCCCCCCA

:

Let us define .bx; by; bz/ D .Bx;By;Bz/=
p
�, b2 D b2x C b2y C b2z , and the acoustic

sound speed a D p
�P=�. The Alfven, fast and slow waves in the x-direction are,

respectively,

ca D jbxj; c2f ;s D 1

2

�
a2 C b2 ˙

q
.a2 C b2/2 � 4a2b2x

�

(and similarly for the y-direction). The eight characteristic velocities are given by

�1 D vx � cf ; �2 D vx � ca; �3 D vx � cs; �4 D vx;

�5 D vx; �6 D vx C cs; �7 D vx C ca; �8 D vx C cf :

The characteristic fields associated to �1;8, �3;6, �2;7 and �4;5 are called, respectively,
the fast, slow, Alfven and entropy waves. Once the fast velocities are known, it is
easy to compute �max.

To ensure the stability and accuracy of the numerical schemes it is essential to
enforce the divergence-free constraint on the magnetic field. This is done here using
the technique proposed in [2], where a correction is applied at the end of every time
step. Specifically, the magnetic field B is modified as Bc D B C r	, where 	 is a
solution of the Poisson problem �	 C r � B D 0, which is computed with a finite
difference method.

For high-order schemes, the WENO-type compact third-order reconstruction
operator introduced in [8] has been used. The numerical experiments have been
performed using structured meshes, although they can be designed on general
nonuniform quadrilateral meshes following the guidelines in [8] and the references
therein.

5.1 Smooth Isentropic Vortex

The purpose of this test is to analyze the convergence and stability of the proposed
numerical schemes. Specifically, the smooth two-dimensional convected isentropic
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vortex for the Euler equations proposed in [9] has been considered. The initial
condition consists in a linear perturbation of an homogeneous state, of the form

.�; vx; vy;P/ D .1C ı�; 1C ıvx; 1C ıvy; 1C ıP/:

Denoting r2 D .x�5/2C.y�5/2, the perturbations of velocity, density and pressure
are given by

�
ıvx

ıvy

�
D "

2�
e
1�r2
2

�
5 � y
x � 5

�
; ı� D .1C ıT/

1
��1 � 1; ıP D .1C ıT/

�
��1 � 1;

being

ıT D � .� � 1/"2

8��2
e1�r2

the temperature perturbation. The values " D 5 and � D 1:4 have been used.
The problem has been solved in the computational domain Œ0; 10� � Œ0; 10�

with periodic boundary conditions and CFL=0:8. In Table 1 are shown the results
obtained after one time period at t D 10 with the third-order OS-Cheb-4, OS-
Newman-4, OS-Halley-2 and DOT schemes. As it can be seen, all the proposed
schemes give similar results as the DOT method. We remark again that the
advantage of our schemes is that the eigenstructure of the system need not to be
known.

Table 1 Isentropic vortex OS-Cheb-4 OS-Newman-4

N L1 error L1 order L1 error L1 order

16 1.47E+00 � 1.47E+00 �
32 7.77E–01 0.92 7.95E–01 0.89

64 1.98E–01 1.97 2.03E–01 1.97

128 1.37E–02 3.85 1.39E–02 3.87

OS-Halley-2 DOT

N L1 error L1 order L1 error L1 order

16 1.46E+00 � 1.45E+00 �
32 7.81E–01 0.90 7.95E–01 0.87

64 1.95E–01 2.00 1.96E–01 2.02

128 1.33E–02 3.87 1.33E–02 3.88

Third order results for the density component � at time
t D 10
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Fig. 2 Isentropic vortex. Density cut in the x-direction, computed with the third-order OS-Cheb-4
scheme. Left: time t D 10. Right: time t D 100

Furthermore, the solution has been calculated at time t D 100, after ten time
periods. Figure 2 shows a cut through the center of the vortex in the x-direction for
the density variable. The solution has been computed with the third-order OS-Cheb-
4 method using 128 cells, although any of the other schemes gives a similar result.
As it can be observed, the dissipation is very small in this case.

5.2 Orszag-Tang Vortex

The Orszag-Tang vortex system [11] has been widely analyzed in the literature, as
it provides a model of complex flow containing many significant features of MHD
turbulence. Starting from a smooth state, the system develops complex interactions
between different shock waves generated as the system evolves in the transition to
turbulence.

The initial data proposed in [17] has been considered. For .x; y/ 2 Œ0; 2�� �
Œ0; 2��, we take

�.x; y; 0/ D �2; vx.x; y; 0/ D � sin.y/; vy.x; y; 0/ D sin.x/;

Bx.x; y; 0/ D � sin.y/; By.x; y; 0/ D sin.2x/; P.x; y; 0/ D �;

with � D 5=3. Periodic boundary conditions are imposed in the x- and y-directions.
The computations have been done using a 192 � 192 uniform mesh and CFL=0:8.

Figure 3 shows the results obtained with the third-order OS-Cheb-4 scheme
at times t D 0:5, t D 2 and t D 3, for the density and pressure components
(analogous solutions are obtained with the third-order OS-Newman-4, OS-Halley-2,
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Fig. 3 Evolution of the Orszag-Tang vortex. Density (left) and pressure (right) computed at times
(top to bottom) t D 0:5, t D 2 and t D 3. Results obtained with the third-order OS-Cheb-4 scheme

and DOT schemes). The results are in very good agreement with those found in the
literature, which shows that our schemes are robust and accurate enough to resolve
the complicated structure of this vortex system. Finally, Table 2 shows the relative
CPU times with respect to the first-order DOT scheme.
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Table 2 Orszag-Tang vortex Method CPU (first order) CPU (third order)

DOT 1:00 5:82

OS-Cheb-4 0:16 1:04

OS-Newman-4 0:38 2:32

OS-Halley-2 0:50 2:79

Relative CPU times with respect to the first-order OS
solver. Final time: t D 0:2

5.3 The Rotor Problem

In this section we consider the rotor problem proposed in [1]; see also [16]. Initially,
there is a dense rotating disk at the center of the domain, while the ambient fluid
remains at rest. These two areas are connected by means of a taper function, which
helps to reduce the initial transient. Since the centrifugal forces are not balanced, the
rotor is not in equilibrium. The rotating dense fluid will be confined into an oblate
shape, due to the action of the magnetic field.

The computational domain is Œ0; 1� � Œ0; 1� with periodic boundary conditions.
Define r0 D 0:1, r1 D 0:115, f D .r1�r/=.r1�r0/ and r D Œ.x�0:5/2C.y�0:5/2�1=2;
then, the initial conditions are given by

.�.x; y/; vx.x; y/; vy.x; y// D

8̂
<̂
ˆ̂:
.10;�.y � 0:5/=r0; .x � 0:5/=r0/ if r < r0;

.1C 9f ;�.y � 0:5/f=r; .x � 0:5/f=r/ if r0 < r < r1;

.1; 0; 0/ if r > r1;

with Bx D 2:5=
p
4� , By D 0 and P D 0:5. We take � D 5=3.

Figure 4 shows the solutions obtained with the third order OS-Cheb-4 scheme
at time t D 0:295 on a 200 � 200 mesh with CFLD 0:8. The results are in good
agreement with those in [1, 16]. As in the previous tests, OS-Newman-4 and OS-
Halley-2 give similar results as OS-Cheb-4. On the contrary, the DOT scheme fails
for this problem around time t � 0:187. Finally, Fig. 5 shows a comparison between
the third-order OS-Cheb-4 and HLL methods. As it can be seen, HLL produces less
precise results than OS-Cheb-4. This shows that the choice of the first order solver
is important even when it is intended to be used as building block for high-order
schemes.
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Fig. 4 Rotor problem. Density � (top left), pressure P (top right), Mach number jvj=a (bottom
left) and magnetic pressure jBj2=2 (bottom right) computed at time t D 0:295. Results obtained
with the third-order OS-Cheb-4 scheme with 200� 200 cells

6 Conclusions

We have proposed a new kind of Riemann solvers for hyperbolic systems, which are
based on a simplified version of the classical Osher-Solomon scheme. The Osher-
Solomon solver relies on the evaluation of the integral of the absolute value matrix
of the flux Jacobian through a path linking states in phase space. This integral can
be approximated by an appropriate quadrature formula, as it is done in the DOT
solver introduced in [7]. To avoid the evaluation of the absolute value matrices
at the quadrature points, which require the computation of the full eigenstructure
of the system, we have proposed several ways to approximate them accurately
and efficiently. In particular, Chebyshev polynomial approximations and two kinds
of rational approximations, based on Newman and Halley functions, have been
considered. Rational functions provide much more precise approximations than
polynomials; thus, for problems in which the structure of the solution is complex,
rational-based methods are, in general, a more efficient choice than polynomial-
based methods.
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Fig. 5 Test 5.3: Comparison between the solutions obtained with the third-order HLL (left) and
third-order OS-Cheb-4 (right) schemes. Top: density. Bottom: Mach number

To build the associated approximate Osher-Solomon schemes, only a bound on
the spectral radius of the Jacobian is needed. The proposed schemes have been
compared with the DOT, Roe, and HLL schemes. An additional feature of our
schemes is that no entropy-fix is needed.

Different initial value Riemann problems for ideal magnetohydrodynamics
in the two-dimensional case have been considered to test the performance of
the approximate Osher-Solomon schemes. The numerical tests indicate that our
schemes are robust, stable and accurate with a satisfactory time step restriction.
Approximate Osher-Solomon schemes thus provide an efficient alternative when
approximating time-dependent solutions in which the spectral decomposition is
complex or computationally expensive.
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Spectral Shape Analysis of the Hippocampal
Structure for Alzheimer’s Disease Diagnosis

G. Maicas, A.I. Muñoz, G. Galiano, A. Ben Hamza, and E. Schiavi,
for the Alzheimer’s Disease Neuroimaging Initiative

Abstract We present an automatic pipeline for spectral shape analysis of brain
subcortical hippocampal structures with the aim to improve the Alzheimer’s Disease
(AD) detection rate for early diagnosis. The hippocampus is previously segmented
from volumetric T1-weighted Magnetic Resonance Images (MRI) and then it is
modelled as a triangle mesh (Fang and Boas, Proceedings of IEEE international
symposium on biomedical imaging, pp 1142–1145, 2009) on which the spectrum
of the Laplace-Beltrami (LB) operator is computed via a finite element method
(Lai, Computational differential geometry and intrinsic surface processing. Doctoral
dissertation. University of California, 2010). A fixed number of eigenpairs is used
to compute, following (Li and Ben Hamza, Multimed Syst 20(3):253–281, 2014),
three different shape descriptors at each vertex of the mesh, which are the heat
kernel signature (HKS), the scale-invariant heat kernel signature (SIHKS) and
the wave kernel signature (WKS). Each of these descriptors is used separately in
a Bag-of-Features (BoF) framework. In this preliminary study we report on the
implementation of the proposed descriptors using ADNI (adni.loni.usc.edu), and
DEMCAM (T1-weighted MR images acquired on a GE Healthcare Signa HDX 3T
scanner) datasets. We show that the best quality of the DEMCAM dataset images
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have a great impact on the AD rate of detection which can reach up to 95 %. For
further development of the modelling approach, local deformation analysis is also
considered through a spectral segmentation of the hippocampal structure.

1 Introduction

Alzheimer’s disease (AD) is the most common form of cognitive disability in older
people, and the number of affected patients is expected to considerably increase in
the next future due to the population longer living. Early diagnosis of AD would
greatly benefit the public health and society, resulting in patient quality of life and
reduced treatment costs.

The development of magnetic resonance images (MRI) has given rise to a
deeper study of the architecture of the human body. More precisely, diagnosis of
Alzheimer’s disease has benefited from this fact due to the possibility of studying the
structure of the different components of the brain which show anatomical changes
as the disease advances (see for example [18]).

The hippocampus, which is located in the medial temporal lobe of the brain, and
is important for memory and spatial navigation, has been shown as one of the main
components of the brain that changes in the progression of AD [1]. Its atrophy due
to neurodegenerative diseases such as AD can be evaluated in terms of the global
change in the volume of the hippocampus as well as through the quantification of the
global and local changes in its shape. Hippocampal volumetry on MR images has
been shown to be a useful tool in AD diagnosis, providing significant discrimination
ability. It is, however, inadequate to fully describe the effect of the disease on the
morphology of hippocampus. In addition to volumetry, hippocampal shape analysis
is an emerging field enlarging the understanding of the development of the disease.
Among the different methods employed to model the hippocampus and to detect the
shape changes (deformation) caused by AD, shape surface processing represented
by spherical harmonics [8] and statistical shape models (SSMs) have been proved
to be efficient in modeling the variability in the hippocampal shapes among the
population [16].

In this work, we primarily focus on spectral techniques based on the Laplace-
Beltrami operator. Such techniques have been successfully applied to shape recog-
nition of subcortical structures [10]. In [19] a heat kernel based cortical thickness
estimation algorithm, which is driven by the graph spectrum and the heat kernel
theory, is used to capture grey matter geometry information from in vivo brain MR.
These approaches allow to compute some shape spectral descriptors such as the heat
kernel signature (HKS), the scale invariant heat kernel signature (SIHKS) and wave
kernel signature (WKS), which we apply to the ADNI and DEMCAM datasets. In
order to assist the diagnosis of Alzheimer we merge the spectral analysis into a
Bag of Features (BoF) (see [13] for details) framework proposed in [11] for shape
retrieval. The diagnosis (discrimination) is then effected in the space of descriptors
through the comparison of their histograms. Finally we propose a novel method
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for anatomical structure segmentation based on the decreasing rearrangement of the
second eigenfunction of the Laplace-Beltrami (LB) operator. As an application, we
consider a partition of the hippocampus into three regions exploring if just one of
them mostly encapsulate the early damages caused by this dementia.

The rest of this paper is organized as follows. In Sect. 2, we consider the heat
equation on a closed surface, introducing the LB operator on compact manifolds.
In order to expand the solution into eigenfunctions of the LB operator we define its
discretization using FEM which leads to solve a generalized eigenvalue problem. In
Sect. 3, the BoF approach for shape recognition is presented and the three different
shape descriptors are introduced. Local analysis is performed in Sect. 4 through
a spectral segmentation algorithm which exploits the properties of the decreasing
rearrangement of a function. The experiments and results obtained are described
in Sect. 5. Finally we summarize the conclusions of our study which is an on-
going research in the framework of Project TEC2012-39095-C03-02: Mathematical
Models based on Biomarkers.

2 Spectral Analysis of the LB Operator

The heat diffusion process has recently been applied successfully to shape recogni-
tion [10, 11]. In this section, we present the heat equation and eigenvalue problem on
a compact manifold representing the hippocampus surface. We discretize the heat
equation in a triangular mesh, which is automatically generated (see [5]) in order to
find the LB spectrum using FEM.

Assume M � R3, where R denotes the set of real numbers, to be a compact
connected Riemannian manifold. Then, the heat diffusion process in the manifold is
described by the following equation

ut D �Mu; 8 .x; t/ 2 M � Œ0;1/ (1)

u.x; 0/ D f .x/; 8 x 2 M (2)

where the scalar field u W M � Œ0;1/ ! R is the amount of heat at a point on the
surface (hippocampus) at time t, and �M is the LB operator defined as follows:

�M f D divM .rM f / D 1p
G

2X
iD1

@

@xi

0
@p

G
2X

jD1
gij @f

@xj

1
A ;

where G D det.gij/ and .gij/ is the inverse of the metric matrix. Considering
u.x; 0/ D ı.x � y/, the solution k.x; y; t/ of the Eq. (1) is called the heat kernel
(HK), which is a measure of the amount of heat that moves from x to y after time t.
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The HK corresponding to the solution to problem (1)–(2) can be expressed as

k.x; y; t/ D
1X

iD1
e��i t	i.x/	i.y/: (3)

where .�i; 	i/ are the eigenpairs (spectrum) of the LB operator. Notice that being the
manifold closed, we find that �1 D 0 and the first eigenfunction 	1 is constant. The
rest of the eigenvalues satisfy 0 < �2 < �3 < : : :, being this sequence diverging.

In order to expand the solution in terms of the eigenpairs, we need to solve first
the following eigenvalue problem:

�M	n D ��n	n; n D 1; 2; � � � : (4)

Instead of solving the previous eigenvalue problem, we use a finite element
method (FEM) to find numerically an approximate solution in a triangular mesh
[10].

Hence, we consider the following weak formulation of the problem: Find 	 2
H1.M /, such that for any test function u 2 H1.M /, it is satisfied

Z
M
.�M	/u dV D ��

Z
M
	u dV: (5)

After the weak formulation for the problem is found, its discretization is the
second step according to FEM. Hence, we consider the manifold representing the
hippocampus surface as a triangular mesh composed of N vertices and L triangles:
fV D fpigN

1 ;T
h D fTlgL

1g, where the superindex h refers to the diameter of the
triangulation. Let Vh be the space generated by those functions: Vh D fuh 2
C.M /juhjk 2 P1; k 2 Thg; where Th is the set of triangles and P1 is the set of
two-variables linear functions. Each of the elements in Vh is called a linear finite
element. Following [10], the discrete version of (5) is: Find 	h 2 Vh such that

X
l

Z
Tl

rM	h � rM h
i D �h

X
l

Z
Tl

	h h
i ; 8 h

i 2 Sh;

for i D 1; : : : ;N, where Sh is a basis of Vh consisting on the element shape functions
(Fig. 1).

Considering the following matrices involving every element of the mesh: 	h DPN
1 xi 

h
i , Ah D .aij/N�N , where aij D P

l

R
Tl

rM h
i rM h

j ; and Bh D .bij/N�N ,
with bij D P

l

R
Tl
 h

i  
h
j ; the variational problem (5) is then equivalent to the

following eigenvalue problem:

Ahx D �hBhx;

where x D .x1; � � � ; xN/
t are the unknown associated eigenfunctions (i.e. eigen-

vectors which can be thought of as functions on the mesh vertices). This gener-
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Fig. 1 Representation of the first four eigenfunctions of the LB operator. Notice that the first
eigenfunction takes approximately a constant value, as expected. The second eigenfunction is
known by capturing well topological features and the geometry of the shape (it corresponds to
the sound we hear the best [7])

alized eigenvalue problem may be efficiently solved using the Arnoldi method of
ARPACK. The computation of the local integrals

R
Tl
 h

i  
h
j and

R
Tl

rM h
i rM h

j ;

is carried out following the ideas presented in [10] based in the use of barycenter
coordinates, and which we will briefly describe here. Let Tl be a triangle defined by
the vertices Tl D fp0; p1; p2g,  h

i 2 Sh and  h
i D f i;0;  i;1;  i;2g the corresponding

values at the vertices of the considered triangle. A point p 2 Tl may be expressed in
barycenter coordinates as

p D x1. p1 � p0/C x2. p2 � p0/C p0

such that 0 � x1; x2; x1 C x2 � 1. For p 2 Tl, the values of the functions  i and  j

might be estimated by using linear interpolation as follows:

 h
i . p/ D x1. i;1 �  i;0/C x2. i;2 �  i;0/C  i;0;

 h
j . p/ D x1. j;1 �  j;0/C x2. j;2 �  j;0/C  j;0:

Therefore, any of the integrals needed to find matrix B may be approximated as

Z
Tl

 h
i  

h
j dv D

Z 1

0

Z 1�x1

0

 h
i . p/ h

j . p/dx2dx1:
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Finally, we need to find an estimation of integrals taking part in the matrix A entries.
Note that in a linear finite element method, the gradient in each element will be
constant vectors. Thus, we may write

Z
Tl

r h
j � r h

i dv D area.Tl/.r h
i jTl � r h

j jTl /;

where area.Tl/ is the area of the element considered. The computation of the
gradients r h

i jTl and r h
j jTl , is carried out through the following expression for

r h
i jTl and analogously for r h

j jTl (see [10] for details):

r h
i jTl D . i;1 �  i;0;  i;2 �  i;0/

�
@x1 � @x1 @x1 � @x2

@x2 � @x1 @x2 � @x2

��1 �
p1 � p0
p2 � p0

�

where @x1 D p1 � p0 and @x2 D p2 � p0.

3 Modeling Shapes

Methods for recognizing 3D shapes by their meaningful parts may be broadly
divided into two categories. The first, following [11], is the skeleton based method
(see [9]). The second one, which is the one considered in our study, is the surface
based method. In the latter case, a shape is modelled as a frequency histogram,
which is later used to compare it. The bag of features, the chosen methodology in
this work, is an example of methodology that belongs to this group.

3.1 Bag of Features

The bag of features (BoF) paradigm (see [13] for details) is one of the most popular
feature-based methods for shape recognition, retrieval and detection. The steps for
the BoF methodology are the following: First, we detect and extract features from
every shape in the training database. Second, we compute a dictionary of visual
words using the training data, and allocate each feature to the closest vocabulary
word. Next, we obtain the histogram of frequency for every shape. And finally, given
a test shape, we model it as its histogram of frequency using the same signature, and
we determine its class by majority voting of the closest training neighbors.

Local descriptors have been proven to perform well on shape recognition tasks.
For every training sample, at each point of the mesh, a feature vector is computed.
We build different bag of features using each of the following descriptors: the heat
kernel signature (HKS), the scale-invariant heat kernel signature (SIHKS) and the
wave kernel signature (WKS).
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In order to quantize the feature space, the data are clustered using training
samples. These data representatives are called vocabulary features. In our study,
we use the k-means algorithm (see [12] for details). As each shape is modelled
by a histogram, comparing shapes is tantamount to measuring histogram similarity.
Two different histograms comparison metrics are used: chi-squared and Spearman
distances.

3.2 Shape Descriptors

As introduced before, two different kinds of descriptors will be used: heat-diffusion
and wave based descriptors. The former measures the amount of heat that remains
in a point of the shape after some time t. Therefore, it is possible to capture
shape information using small diffusion times and global characteristics when heat
diffuses for a longer time. In addition, several times t or scales will be considered
to build a feature vector for each point in the shape. The latter descriptor, which is
based on the resolution of the Schrödinger equation, describes a shape by means of
the probability of finding a quantum particle at a particular point of the shape.

3.2.1 HKS

At a given point of the mesh p 2 M , the heat left after a time t if initially
all of it was concentrated at one point, that is u.p; 0/ D ı.p/, is described by
k.p;p; t/ D Kt.p;p/ (see (3)), where t is the diffusion time or time scale. The heat
kernel signature at each p 2 M is defined as a n-dimensional vector

HKS.p/ D .Kt1 .p;p/; � � � ;Ktn.p;p//; (6)

where t1; � � � ; tn are different time scales.
The main advantages of the HSK are [4, 14]: it is robust to noise, it is easy to

compute as it is based on the first eigenvalues and eigenfunctions, and the HKS
of a shape is unique except under isometries. A major drawback of HKS is that it
depends on the pixels’ volume of the shape, therefore, the same hippocampus in two
different scales differs on this descriptor.

3.2.2 SIHKS

In order to overcome the just mentioned dependence of HKS on the scale of
the shape, Bronstein and Kokkinos [3] proposed an updated heat kernel signature
which is independent on the scale-space. The scale invariant heat kernel signature,
SIHKS (see [11]), which we consider in our study has been proven to improve
results related to the HKS or the WKS [3, 11]. Next, we shall briefly describe the
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derivation of the SIHKS for reader’s convenience. Given a shape M , the heat kernel
signature at a point p 2 M at time t is given by (6). Considering the same shape
scaled, M 0 D ˇM , the relation between the eigenvalues and eigenfunctions of the
Laplace-Beltrami operator of the two shapes satisfy �

0

i D ˇ2�i and 	
0

i D ˇ	i; and
the heat kernel signature for each point p 2 M 0 at a time t can be written as

K
0

t .p;p/ D
1X

iD1
e.��iˇ

2t/	i	iˇ
2 D ˇ2Kˇ2 t.p;p/: (7)

The expression (7) relates the heat kernel signature of a point in the ˇ-scaled version
M 0 at time t with the descriptor of the non-scaled version of the shape at time
ˇ2t. In order to accomplish the scale invariance for the HKS, we need to remove ˇ
from (7). For this purpose, we shall first write the HKS in a logarithmic time t D ˛�

for each point p 2 M , K� D K˛� .p;p/: Hence, in the scaled version of the surface,
M 0 D ˇM , the heat kernel signature can be written as follows K

0

� D ˇ2K2log˛ˇC� ,
and (7) is translated into

K
0

� D ˇ2K�Cs (8)

where s D 2log˛ˇ. Now, taking logarithms in (8) and derivating with respect to � ,
we obtain that

d

d�
log K

0

� D d

d�
logˇ2 C d

d�
log K�Cs D 0C d

d�
log K�Cs; (9)

where d
d� log K

0

� will be computed in terms of the eigenpairs of the LB operator,
through the following identity:

d

d�
log K

0

� D �Pi�0 �i˛
� log˛e��i˛

�
	2i

�Pi�0 e��i˛� 	2i
: (10)

Taking the discrete Fourier transform in (9) to obtain FK
0

.!/ D FK.!/e2�!s; and
computing the modulus of the Fourier transform, we find jFK

0

.!/j D jFK.!/j:
Therefore, jFK.!/j is scale-invariant, and we can consider the scale-invariant heat
kernel signature at each p 2 M defined as a n-dimensional vector

SIHKS.p/ D .jFK.!1/j; � � � ; jFK.!n/j/;

for different frequencies !1,. . . ,!n.

3.2.3 WKS

Instead of building a descriptor based on the heat diffusion on the manifold, Aubry
et al. [2] proposed a signature, the wave kernel signature (WKS), based on the
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consideration of the Schrödinger equation

@ 

@t
.x; t/ D i�M .x; t/;

whose solution is a wave function which describes quantum aspects of a system.
Hence, the use of WKS is in fact a quantum approach to shape analysis.

Next, we shall present a basic description of the WKS (see [2, 11] for more
details). The basic idea is to characterize a point p 2 M by the average probabilities
over time of quantum particles of different energy levels to be measured in p. So,
let f 2E be an energy probability distribution of the estimated energy E at time t D 0

of a quantum particle which position on the manifold is not known. Then, the wave
function of the particle  E.x; t/, if there are no repeated eigenvalues of the Laplace-
Beltrami operator, can be written as

 E.x; t/ D
1X

kD0
eiEkt	k.x/fE.Ek/; (11)

where f.Ek; 	k.x//g are the eigenpairs of the Laplace-Beltrami operator, which rep-
resent the energy levels of the quantum system (eigenvalues) and the corresponding
wave functions (eigenfunctions) which describe the associated energy state. In fact,
the probability to measure a particle at the point of the manifold p 2 M , is
j E.p; t/j2: Due to the fact that the time parameter has not clear interpretation in
our analysis, it will be not taken into consideration when defining the WKS. Then,
the wave kernel signature at a point p of the manifold M , is the probability to
measure a quantum particle overtime in an energy level

WKS.E;p/ D lim
T!1

1

T

Z T

0

j E.p; t/j2dt; (12)

which can be written as

WKS.E;p/ D
1X

kD0
	2k .p/f

2
E .Ek/: (13)

Regarding the energy distributions f 2E , in [2] it is discussed that the log-normal
probability distribution for f 2E models well the energies for our purpose. Therefore,
we choose f 2E to be a Gaussian distribution in the logarithmic scale. Considering
a logarithmic energy scale sc D log.E/, the wave kernel signature at p 2 M is
defined as follows:

WKS.sc;p/ D Csc

X
k

	2k .p/e
�.sc�log Ek/

2

2
2 ; (14)
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where Csc is the normalizing constant Csc D
�P

k e
�.sc�log Ek/

2

2
2

��1
. We obtain an

n-dimensional vector by considering different values for sc (different energy levels)
as well as 
 .

Two important properties led us to include this descriptor in out study. First, it is
invariant under isometries. In addition, if two shapes have the same WKS for every
point of it, then both shapes are the same except for an isometry. Secondly, it is
robust to noise, scale or holes in the shape.

4 Local Deformation

Recent findings suggest that the deformations on the hippocampus due to AD do
not occur uniformly [19]. This leads to the necessity to develop local deformation
analysis and an attempt is done here where we spectrally segment the hippocampus
into different regions (classes).

We propose to apply the Neighborhood filter (NF) in terms of the decreasing
rearrangement, which has recently been applied to image segmentation in [6]. In
order to find a spectral segmentation of the hippocampus, we apply this technique
to the quantized values of the second eigenfunction, since it is the first eigenfunction
which does not take a constant value and it captures well topological features and
the geometry of the shape (see [11]). In fact, the second eigenfunction of the LB
operator follows the pattern of the overall shape of an object, and this geometric
property is well known and used for various applications including mesh processing,
feature extraction, manifold learning, data embedding, etc. (see [17]).

It is important to remark that this technique is computationally extremely
efficient because the integrals involved are 1-dimensional. After applying the NF,
the fixed point solution is a staircasing piecewise constant function which defines,
through thresholding, a partition of the hippocampus into regions (classes) where
each one of them can be understood as a segmentation of the initial shape [6].

5 Experimental Results

In our experiments we compare hippocampi using the BoF built with the three
different spectral shape descriptors that we described in Sect. 3. Our aim is to
achieve an acceptation rate around 80 % or above, as volume or surface area
discriminate up to 80 %.

We classify hippocampi according to two disjoint classes: AD and control. To
evaluate similarity between shapes, we consider two different histogram metrics,
which are the chi-squared and Spearman distances. We use a total of seven
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eigenpairs of the LB operator to construct the descriptors. Experimentally we found
that no clear improvement is achieved when using a larger number.

5.1 Database

In order to carry out our analysis, we used two datasets.

DEMCAM The DEMCAM project was a research initiative developed in Madrid
for Alzheimer’s dementia early detection. This dataset was collected from several
hospitals of Madrid. It consists of 38 subjects, 19 control patients and 19 patients
suffering from Alzheimer’s disease. A total of nine subjects from each class are
used as training data and the rest is test data. For each subject, a 3D high-resolution
T1-weighted MR image was acquired on a GE Healthcare Signa HDX 3T scanner.
All original MRIs were automatically segmented using FreeSurfer, which process
included a bias field correction (N3 algorithm). Using the open source software
iso2mesh, we obtained the left and right hippocampus represented as a triangular
mesh. This mesh is described by its faces (triangles) and their vertices (Fig. 2).

ADNI The ongoing Alzheimer’s disease Neuroimaging Initiative (ADNI) has been
designed to provide researchers a common data framework to help in the evaluation
of new methods in Alzheimer’s disease detection. We considered a total of 180
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Fig. 2 NF-Decreasing rearrangement of the second eigenfunction of the Laplace-Beltrami opera-
tor quantized in 256 levels for a control hippocampus
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subjects, 90 healthy patients and 90 ill subjects. We built a test data of 100 samples,
including 50 of each category. Forty of the remaining patients were used as training
data. Notice that the field strength (1.5T) is lower in ADNI than in DEMCAM (3T).
This fact will affect the rates of AD detection.

ADNI data used in the preparation of this article were obtained from the
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu).
The ADNI (Principal Investigator Michael W. Weiner, MD) began in 2003 as
a public-private partnership. The aim of ADNI has been to test whether serial
magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be com-
bined to describe the development of mild cognitive impairment (MCI) and early
Alzheimer’s disease (AD).

Next, we present the experimental results obtained with the two datasets consid-
ering for classification just the left hippocampus, just the right hippocampus or the
whole hippocampal structure.

5.2 DEMCAM Database

It is remarkable that SIHKS achieves the best performance with an acceptance
rate of 95 % when considering both hippocampi. It outperforms WKS (90 % when
considering information only of right hippocampi) and HKS (85 % when taking
into account information from both hippocampi). In addition, as we expected,
more information is captured by combining descriptors from both left and right
hippocampi in the case of SIHKS and HKS. However, WKS uses right hippocampi
to distinguish better healthier from dementia patients. This suggests that combining
information leads to a better detection and also that the right hippocampus is more
damaged by this disease. In fact, right hippocampus detection outperforms left
hippocampus diagnosis in the maximum acceptance rates we obtained for SIHKS,
WKS and HKS (see Table 1).

Table 1 Acceptance rates
(%) with the standard BoF
using HKS, SIHKS and WKS
for DEMCAM data

DEMCAM HKS SIHKS WKS

Left hippocampus 65 80 70

Right hippocampus 80 90 90

Joined 85 95 85
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5.3 ADNI Database

Once again, SIHKS yields the best performance by correctly identifying 80 % of
cases. As it was expected, information from both hippocampi (left and right) is
taken into account in this outcome. HKS correctly classified 78 % of cases while
WKS obtained 74 %. Also, these maxima are achieved when combining information
from both left and right hippocampi (see Table 2). Regarding histogram similarity,
the results show that Spearman distance leads to obtain the maximum performance
for all signatures, as it occurs when considering the DEMCAM dataset.

Therefore, from this study we can argue that the scale-invariant heat kernel
signature is the most suitable descriptor for detecting Alzheimer’s disease. This
conclusion is in agreement with [11] where it is stated that SIHKS outperformed
the HKS and the WKS in most cases for shape retrieval.

5.4 Local Deformation Analysis

In order to find which zone of the hippocampus encodes more information for
identifying Alzheimer’s disease, we spectrally divide hippocampi into three regions,
applying the Neighborhood filter (NF) in terms of the decreasing rearrangement.

We consider the zones detailed in Fig. 3 to build a BoF for each of the descriptors.
In Table 3 we present the acceptance rates obtained for ADNI data for each of the
just mentioned zones. The results show that SIHKS encodes most of the information
for detecting Alzheimer’s disease from zone 3. Region analysis using WKS as
signature describes a similar behavior because encoding information from just
region 2 outperforms the general WKS approach by 1 %. On the other hand, no
clear information is obtained by using the HKS for local analysis. Nevertheless,
71 % of hippocampi were assigned correctly its class just by considering region
2. This descriptor needs a more global information of the shape for an accurate
diagnosis. Following [11] we also model each shape by concatenating histograms
corresponding to zones one, two and three, but this does not improve the descriptor
performances.

Table 2 Acceptance rates
(%) with the standard BoF
using HKS, SIHKS and WKS
for ADNI data

ADNI HKS SIHKS WKS

Left hippocampus 76 71 67

Right hippocampus 68 78 73

Joined 78 80 74
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Fig. 3 Segmentation
(partition) of a hippocampus
into three classes using the
NF in terms of the decreasing
rearrangement. Zone 1:
blue-colored region. Zone 2:
green-colored region. Zone 3:
red-colored region

Table 3 Acceptance rates
(%) for each region of the
hippocampus detailed in
Fig. 3, with the standard BoF
using HKS, SIHKS and WKS
for ADNI data

ZONE HKS SIHKS WKS

1 67 69 65

2 71 72 75
3 70 78 59

Concatenating 72 78 73

5.5 Preprocessing

In order to evaluate the effect of a preprocessing step in the hippocampus and to
analyze if the noise removal involves an improvement in the detection rates of
AD, we use the smoothing approach technique described in [15]. To be precise,
we solve numerically the diffusion equation on the hippocampus by means of the
convolution of the heat kernel, expressed as a series expansion of the eigenpairs of
the LB operator, with the signal consisting of the coordinates of each of the vertices
of the manifold.

According to our observations, no increase of performance is achieved by
smoothing hippocampi. In fact, SIHKS and WKS best performances decreased,
while HKS best acceptation rates remain constant [2]. This results suggests that
the three signatures are robust to small rates of topological noise. This property
is very important due to the fact that segmentation of the hippocampi from MRI
may include noise. Therefore, it seems not to be necessary to apply a preprocessing
step before building the BoF, which prevents from losing small details and saves
computation time. In addition, the lack of precise hippocampi extraction from
MRI may influence the performance of the techniques used here, as automatic
segmentation of the hippocampus might not include important details to detect AD.
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6 Conclusions

In this paper, we presented the use of three descriptors, namely HKS, SIHKS and
WKS, in the bag-of-features framework for automatic detection of Alzheimer’s dis-
ease. Our results showed that SIHKS is the best signature in detecting Alzheimer’s
disease in the proposed framework for both datasets. When the whole hippocampi
structure is considered, the performance of our method further increases.

In an effort to study if the hippocampal structure is deformed uniformly or
any of the regions is most damaged by this dementia, we proposed a spectral
segmentation method of the hippocampus based on the reformulation of a NF using
the decreasing rearrangement. Our preliminary results suggest that local analysis
deformation usually detects a region with a greater discriminative power, but it can
be different for various descriptors which makes premature any conclusion. Finally,
the detection rates for 3T (DEMCAM) images are relatively greater than for 1.5T
images (ADNI), which is a clear evidence that the proposed technique benefits from
image quality.
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Characterizations of M-Banded ASSR Matrices

P. Alonso, J.M. Peña, and M.L. Serrano

Abstract Almost strictly sign regular matrices form an important subclass of
sign regular matrices, and they contain the class of almost strictly totally positive
matrices. Almost strictly sign regular matrices were characterized through the
Neville elimination in Alonso et al. (J Comput Appl Math 275:480–488, 2015). In
this paper we present some characterizations of banded almost strictly sign regular
matrices.

1 Introduction

Totally Positive (TP) matrices are matrices with all their minors nonnegative and
Sign Regular (SR) matrices are matrices whose minors of the same order have the
same sign. These matrices arise naturally in many areas of mathematics, statistics,
mechanics, computer-aided geometric design, economics, etc. (see, for example, [3,
6]). The interest of nonsingular SR matrices comes from their characterizations as
variation-diminishing linear maps: the number of changes of sign in the consecutive
components of the image of a vector is bounded above by the number of changes of
sign in the consecutive components of the vector.

A very important subclass of TP matrices that appears in many applications are
the Almost Strictly Totally Positive (ASTP) matrices, matrices whose minors are
positive if and only if all their diagonal entries are positive (see [8, 9]). Among the
examples of ASTP matrices, we have Hurwitz matrices and B-spline collocation
matrices. These last matrices usually present a banded structure.

In [10] the authors introduce the Almost Strictly Sign Regular (ASSR) matrices,
as those whose nontrivial minors of the same order have all the same strict sign.
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Matrices that are both ASSR and TP are ASTP. On the other hand, in [1] the
authors present an algorithmic characterization of ASSR matrices using Neville
Elimination (NE). NE is an alternative procedure to Gaussian elimination that is
especially efficient when we work with SR matrices and their subclasses or when
using pivoting strategies in parallel implementations.

In this paper we present a simple characterization of banded ASSR matrices.
Section 2 includes some basic results and the characterization of ASSR matrices
given in [1]. Section 3 analyzes ASSR matrices whose minors of order less than
or equal to a given positive integer r are nonnegative. Finally, Sect. 4 presents the
characterizations of banded ASSR matrices. Results of Alonso et al. [2] for the
particular case of tridiagonal matrices are also recalled.

2 Previous Results

In this work, we deal with matrices that are defined by the sign of their minors.
Thus it is necessary to introduce some classical notations that will properly handle
the involved submatrices.

For k; n 2 N, with 1 � k � n, Qk;n denotes the set of all increasing sequences
of k natural numbers not greater than n. For ˛ D .˛1; : : : ; ˛k/, ˇ D .ˇ1; : : : ; ˇk/ 2
Qk;n and A an n � n real matrix, we denote by AŒ˛jˇ� the k � k submatrix of A
containing rows ˛1; : : : ; ˛k and columns ˇ1; : : : ; ˇk of A. If ˛ D ˇ, we denote by
AŒ˛� WD AŒ˛j˛� the corresponding principal submatrix. In addition, Q0

k;n denotes the
set of increasing sequences of k consecutive natural numbers not greater than n.

For each ˛ 2 Qk;n, we denote by the dispersion of ˛ the number

d.˛/ WD
k�1X
iD1

.˛iC1 � ˛i � 1/ D ˛k � ˛1 � .k � 1/ (1)

with the convention d.˛/ D 0 for ˛ 2 Q1;n.
Note that d.˛/ D 0 implies that ˛ 2 Q0

k;n.
The characterizations presented here are based on the signs of the pivots of the

NE, so we will introduce briefly this procedure (see [7]).
If A is a nonsingular n � n matrix, NE consists of at most n � 1 successive major

steps, resulting in a sequence of matrices as follows:

A DeA.1/ ! A.1/ ! � � � !eA.n/ D A.n/ D U (2)

where U is an upper triangular matrix.
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For each t, 1 � t � n, A.t/ D
�

a.t/ij

�
1�i;j�n

has zeros in the positions a.t/ij , for

1 � j � t, j � i � n. Besides it holds that

a.t/it D 0; i � t ) a.t/ht D 0; 8h � i: (3)

Matrix A.t/ is obtained from eA.t/ reordering rows t, t C 1, : : : , n according to a
row pivoting strategy which satisfies (3).

To obtaineA.tC1/ from A.t/, zeros are introduced below the main diagonal of the
tth column by subtracting a multiple of the ith row from the .i C 1/th, for i D n � 1,
: : : , t. The elements Qa.tC1/ij are obtained according to the following formula

8̂
ˆ̂̂<
ˆ̂̂̂
:

a.t/ij ; 1 � i � t;

a.t/ij � a
.t/
it

a
.t/
i�1;t

a.t/i�1;j; if a.t/i�1;t 6D 0; t C 1 � i � n;

a.t/ij ; if a.t/i�1;t D 0; t C 1 � i � n:

(4)

The element

pij D a. j/
ij ; 1 � i; j � n; (5)

is called the .i; j/ pivot of NE of A and the number

mij D

8̂
<̂
ˆ̂:

a. j/
ij

a. j/
i�1;j

�
D pij

pi�1;j

�
; if a. j/

i�1;j ¤ 0;

0; if a. j/
i�1;j D 0;

(6)

the .i; j/ multiplier. Note that mij D 0 if and only if pij D 0 and by (3)

mij D 0 H) mhj D 0; 8h > i: (7)

The ASSR matrices have their zero and nonzero elements grouped in certain
positions (see [10]). This property inspires the following definitions:

Definition 1 A matrix A D �
aij
�
1�i;j�n

is called type-I staircase if it satisfies
simultaneously the following conditions:

• a11 6D 0; a22 6D 0; : : : ; ann 6D 0.
• aij D 0, i > j ) akl D 0, 8l � j; i � k.
• aij D 0, i < j ) akl D 0, 8k � i; j � l.
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Definition 2 A matrix A D �
aij
�
1�i;j�n is called a type-II staircase matrix if it

satisfies simultaneously the following conditions:

• a1n 6D 0; a2;n�1 6D 0; : : : ; an1 6D 0.
• aij D 0, j > n � i C 1 ) akl D 0, 8i � k; j � l.
• aij D 0, j < n � i C 1 ) akl D 0, 8k � i; l � j.

Observe that all entries of a matrix that is simultaneously type-I and type-II
staircase are nonzero.

In order to clearly describe the zero pattern of a nonsingular matrix A type-I
staircase (or type-II staircase), it is adequate to introduce the next sets of indices
(see [9]):

Definition 3 Let A D �
aij
�
1�i;j�n

be a type-I staircase matrix. We define

i0 D 1; j0 D 1; (8)

for k D 1; : : : ; l:

ik D max
˚
i = aijk�1 6D 0

�C 1 .� n C 1/; (9)

jk D max
˚

j � ik = aikj D 0
�C 1 .� n C 1/; (10)

where l is given in this recurrent definition by jl D n C 1.
Analogously we define

Oj0 D 1; Oi0 D 1; (11)

for k D 1; : : : ; r:

Ojk D max
n

j = aOik�1j 6D 0
o

C 1 .� n C 1/; (12)

Oik D max
n
i � Ojk = aiOjk D 0

o
C 1 .� n C 1/; (13)

where Oir D n C 1.
In this way, we denote by I, J,bI and bJ the following sets of indices

I D fi0; i1; : : : ; ilg ; J D f j0; j1; : : : ; jlg ;
bI D

nOi0; Oi1; : : : ; Oir
o
; bJ D

nOj0; Oj1; : : : ; Ojr
o
;

thereby defining the zero pattern in the matrix A.

In addition, for subsequent results, it is also necessary to introduce the indices jt
and Oit, as well as the concept of nontrivial matrices.
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Definition 4 Let A be a real n�n matrix, type-I staircase, with zero pattern I, J,bI andbJ. Let be 1 � i; j � n. If j � i we define

jt D max f js = 0 � s � k � 1; j � js � i � isg ; (14)

being k the unique index satisfying that jk�1 � j < jk, and if i < j

Oit D max
nOis = 0 � s � k0 � 1; i � Ois � j � Ojs

o
; (15)

being k0 the only index satisfying that Oik0�1 � i < Oik0 .

Definition 5 For a real type-I (type-II) staircase matrix A D �
aij
�
1�i;j�n

a submatrix
AŒ˛jˇ�, with ˛; ˇ 2 Qm;n is nontrivial if all its main diagonal (anti-diagonal)
elements are nonzero, that is, aii ¤ 0 (ai;n�iC1 ¤ 0) for all i D 1; : : : ; n.

The minor associated to a nontrivial submatrix (AŒ˛jˇ�) is called nontrivial minor
(det AŒ˛jˇ�).
Definition 6 An r � r matrix Pr is called backward identity matrix if the element
.i; j/ of matrix Pr is defined in the form

	
1; if i C j D r C 1;

0; otherwise:

TP and ASTP matrices have been widely studied in the literature, and they are
formally defined below.

Definition 7 Let A D �
aij
�
1�i;j�n be a real matrix. A is a TP matrix if each

submatrix AŒ˛jˇ�, with ˛; ˇ 2 Qk;n satisfies that

det AŒ˛jˇ� � 0:

Definition 8 Let A D �
aij
�
1�i;j�n be a real type-I staircase matrix. Then A is an

ASTP matrix, if A is TP and each nontrivial submatrix AŒ˛jˇ�, with ˛; ˇ 2 Q0
k;n

satisfies that

det AŒ˛jˇ� > 0:

ASTP matrices were characterized in [8] taking into account the pivots of the NE
of matrix A.

Next, we define the signature vector (˙1) that is commonly used to store the sign
of the minors of order k, with k D 1; : : : ; n.

Definition 9 Given a vector " D ."1; "2; : : : ; "n/ 2 R
n, we say that " is a signature

sequence, or simply, is a signature, if "i D ˙1 for all i � n.
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Note that if a matrix is ASTP its signature sequence is " D .1; 1; : : : ; 1/. Then
each minor of order k has positive sign because "k D C1.

Definition 10 A real n � n matrix A is said to be SR with signature " D
."1; "2; : : : ; "n/ if all its minors satisfy that

"m det AŒ˛jˇ� � 0; ˛; ˇ 2 Qm;n; m � n: (16)

Definition 11 A real n � n matrix A is said to be ASSR with signature " D
."1; "2; : : : ; "n/ if it is either type-I or type-II staircase and all its nontrivial minors
det AŒ˛jˇ� satisfy that

"m det AŒ˛jˇ� > 0; ˛; ˇ 2 Qm;n; m � n: (17)

Observe that an ASSR matrix is nonsingular.
In [10] the authors prove the next characterization of ASSR matrices:

Theorem 1 Let A be a real n � n matrix and " D ."1; "2; : : : ; "n/ be a signature.
Then A is nonsingular ASSR with signature " if and only if A is a type-I or type-II
staircase matrix and all its nontrivial minors with ˛; ˇ 2 Q0

m;n, m � n, satisfy

"m det AŒ˛jˇ� > 0; ˛; ˇ 2 Q0
m;n; m � n: (18)

The next result (proved in [1]) establishes the relationship between the signatures
of A and PnA.

Corollary 1 Let Pn be the n � n identity matrix. A matrix A D .aij/1�i;j�n is
ASSR if and only if PnA is also ASSR. Furthermore, if the signature of A is
" D ."1; "2; : : : ; "n/, then the signature of PnA is "0 D ."0

1; "
0
2; : : : ; "

0
n/, with

"0
m D .�1/ m.m�1/

2 "m, for all m D 1; : : : ; n.

The following result shows the relationship between ASSR and ASTP matrices.

Proposition 1 Let A be an ASSR and TP matrix. Then A is ASTP.

Proof If A is an ASSR matrix, then (17) is satisfied for all nontrivial minors of A. In
addition, A is a TP matrix, and so det AŒ˛jˇ� � 0 for all ˛; ˇ. Then, it is immediate
to conclude that " D .1; 1; : : : ; 1/. Therefore A is ASTP. �

Also in [1] the authors establish the following necessary conditions for a matrix
to be ASSR.
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Theorem 2 Let A D .aij/1�i;j�n be a nonsingular type-I staircase matrix, with zero
pattern defined by I, J,bI,bJ. If A is ASSR with signature " D ."1; "2; : : : ; "n/. Then:

• The NE of A can be performed without row exchanges and the pivots pij satisfy,
for any 1 � j � i � n,

pij D 0 , aij D 0; (19)

"j�jt"j�jtC1pij > 0 , aij 6D 0; (20)

where "0 D 1 and jt as defined in (14).
• The NE of AT can be performed without row exchanges and the pivots qij satisfy,

for any 1 � i � j � n,

qij D 0 , aij D 0; (21)

"i�Oit"i�OitC1qij > 0 , aij 6D 0; (22)

where "0 D 1 and Oit as defined in (15).

Remark 1 Let A D �
aij
�
1�i;j�n

be a type-I staircase matrix, such that the NE of A

and AT can be performed without row exchanges. If we denote by pij the pivot of
NE of A when i � j and by qij the pivot element of NE of AT when i < j, then, if
aij 6D 0, we have that:

(a) If i � j, and jk�1 � j < jk:

pij D

8̂
<
:̂

aij; j D jt;

det AŒi � j C jt; : : : ; i � 1; ij jt; : : : ; j � 1; j�

det AŒi � j C jt; : : : ; i � 1j jt; : : : ; j � 1�
; j > jt;

(23)

with jt defined in (14).

(b) If i < j, and Oik�1 � i < Oik:

qij D

8̂
<̂
ˆ̂:

aij; i D Oit;
det AT Œ j � i C Oit; : : : ; j � 1; jjOit; : : : ; i � 1; i�

det AT Œ j � i C Oit; : : : ; j � 1jOit; : : : ; i � 1� ; i > Oit;
(24)

with Oit defined in (15).



40 P. Alonso et al.

Let A D �
aij
�
1�i;j�n be an n � n matrix and h D 1; : : : ; n � 1. We denote by Ah

the matrix defined as

Ah D .ah
ij/1�i;j�n�hC1; ah

ij D aiCh�1;jCh�1: (25)

Analogously, the transpose of Ah, i.e. AT
h , is denoted as

AT
h D .aT;h

ij /1�i;j�n�hC1; aT;h
ij D ajCh�1;iCh�1: (26)

Taking into account the previous notations, it is evident that Ah D AŒh; : : : ; n�
and AT

h D AT Œh; : : : ; n�.
Next, and using the NE of Ah and AT

h , the characterizations given in [1] for type-I
or type-II staircase ASSR are presented.

Theorem 3 A nonsingular matrix A D �
aij
�
1�i;j�n is ASSR with signature " D

."1; "2; : : : ; "n/, with "2 D 1 if and only if, for every h D 1; : : : ; n � 1, the following
properties hold simultaneously:

(i) A is type-I staircase.
(ii) The NE of the matrices Ah and AT

h can be performed without row exchanges.
(iii) The pivots ph

ij of the NE of Ah satisfy conditions corresponding to (19) and (20),
and the pivots qh

ij of the NE AT
h satisfy (21) and (22).

(iv) For the positions .ih; jh/ of matrix Ah:

• if ih � jh and ih � jh D iht � jht then "jh�jht
"jh�jht C1 D "jh�1"jh ,

• if ih < jh and ih � jh D Oi h
t � Oj h

t then "ih�Oiht "ih�Oi h
t C1 D "ih�1"ih ,

where indices iht ; j
h
t ;

Oi h
t ;

Oj h
t are given by conditions corresponding to (14)

and (15).

Theorem 4 Let Pr be the r � r backward identity matrix. A nonsingular matrix
A D �

aij
�
1�i;j�n

is ASSR with signature " D ."1; "2; : : : ; "n/, with "2 D �1 if and
only if, for every h D 1; : : : ; n � 1, the following properties hold simultaneously:

(i) B D PnA is type-I staircase.
(ii) The NE of the matrices Bh D Pn�hC1Ah and BT

h D Pn�hC1AT
h can be performed

without row exchanges.
(iii) The pivots ph

ij of the NE of Bh satisfy conditions corresponding to (19), (20),
and the pivots qh

ij of the NE of BT
h satisfy (21) and (22).

(iv) For the positions .ih; jh/ of matrix Pn�hC1Ah:

• if ih � jh and ih � jh D iht � jht , then "jh�jht
"jh�jht C1 D "jh�1"jh ,

• if ih < jh and ih � jh D Oi h
t � Oj h

t , then "ih�Oi h
t
"ih�Oi h

t C1 D "ih�1"ih ,

where indices iht ; j
h
t ;

Oi h
t ;

Oj h
t are given by conditions corresponding to (14)

and (15).
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Considering the previous results, in the following section certain ASSR matrices
are characterized. The goal is to leverage its structure to simplify the given
characterization and reduce its computational cost.

3 ASSR Matrices with Signature .1; 1; : : : ; 1; "rC1; : : : ; "n/

In this section we characterize ASSR matrices such that they (or their opposite
matrices) have a signature vector whose r first positions are C1. In [10], the authors
analyze the particular case that r D n � 1, that is .1; 1; : : : ; 1; "n/. For example,
the tridiagonal nonnegative ASSR matrices have always this signature. In [2] the
authors studied this case.

Next, we are going to present a characterization of this type of matrices, based on
Theorem 3. If A is an ASSR matrix with signature " D ."1; "2; : : : ; "n/ and h � n,
then Ah (given by (25)) is ASSR matrix with signature "h D ."1; "2; : : : ; "n�hC1/. In
addition, when "j D 1, for j D 1; : : : ; r, then Ah is ASTP for h D n � r C 1; : : : ; n.
Besides, if h0 � h, then Ah0 is a submatrix of Ah, and so also Ah0 is ASTP. Then,
in order to prove that A is ASSR, it is sufficient to show that An�rC1 is ASTP, and
checking Theorem 3 for the matrices Ah with h D 1; : : : ; n � r.

Theorem 5 Let A D .aij/1�i;j�n be a real, nonsingular matrix. Then A is ASSR
with signature " D .1; 1; : : : ; 1; "rC1; : : : ; "n/ with r � 2 if and only if, for h D
1; : : : ; n � r, the following properties are simultaneously satisfied:

(a) A is type-I staircase.
(b) The NE of Ah and AT

h can be performed without rows exchange.
(c) The pivots ph

ij of the NE of Ah satisfy conditions corresponding to (19) and (20)
and the pivots qh

ij of the NE of AT
h satisfy (21) and (22).

(d) For the positions .ih; jh/ of the matrix Ah:

• if ih � jh and ih � jh D iht � jht , then "jh�jht
"jh�jht C1 D "jh�1"jh ,

• if ih < jh and ih � jh D Oiht � Ojht , then "ih�Oiht "ih�Oiht C1 D "ih�1"ih ,

where indices iht , jht , Oi h
t and Oj h

t are given by conditions corresponding to
Definition 4.

(e) An�rC1 is ASTP.

Proof Let us first assume that A is ASSR with signature " D .1; : : : ; 1; "rC1; : : : ; "n/.
By Theorem 3, (a)–(d) are satisfied. Besides, since An�rC1 has signature
" D .1; 1; : : : ; 1/, it is ASTP and also (e) holds.

For the converse, let us assume that (a)–(e) are simultaneously hold. Condi-
tion (a) corresponds to the item (i) of Theorem 3.

Observe that the matrix An�rC1 D AŒn�rC1; : : : ; n� contains the n�.n�rC1/C
1 D r last rows and columns of A. Therefore it is ASSR with signature .1; 1; : : : ; 1/.
By applying (e), An�rC1 is ASTP, and so Ah is ASTP for each h D n � r C 1; : : : ; n.
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Then, by the characterization given by Theorem 2.1 of [8], it is satisfied

ph
ij � 0;

ph
ij D 0 , ah

ij D 0:

Taking into account that "j D 1, for all j, it is possible to write (in particular when
i � j):

"j�jt"j�jtC1ph
ij D ph

ij > 0 , ah
ij 6D 0:

In the cases h D 1; : : : ; n � r C 1, by using (c), (19) and (20) are satisfied,
and taking into account the above arguments, for the remaining cases they are also
satisfied.

Likewise, as Ah is ASTP for h D n � r C 1; : : : ; n, then so AT
h is, and with the

same reasoning, (21) and (22) are fulfilled. Therefore (iii) of Theorem 3 is proven.
By Theorem 2.1 of [8], the NE of Ah and AT

h for h D n � r C 1; : : : ; n can be
performed without rows exchanges. This fact joint with the item (b) prove (ii).

Finally, by applying (d), if h � n � r C 1 then (iv) is verified; if h > n � r C 1

then "s D 1 for each s D 1; : : : ; r and (iv) is also fulfilled, due to "jh�jht
"jh�jht C1 D

1 D "jh�1"jh . Then by Theorem 3, the matrix A is ASSR.
Moreover, since An�rC1 is ASTP, all its signatures must be C1 and "1 D � � � D

"r D 1. �

4 Banded Matrices

In this section, ASSR matrices whose non-zero entries are confined to a diagonal
band (main diagonal and parallel diagonals), are characterized. The results will
be applied also to matrices with anti-diagonal band. The following definitions are
introduced in [5].

Definition 12 Given a matrix A D �
aij
�
1�i;j�n

let us consider an integer M < n. We
say that A is M-banded matrix if aij D 0 when ji � jj > M. If, in addition aij ¤ 0

when ji � jj D M, we say that A is an strictly M-banded matrix.

By Theorem 1 of [5], a nonsingular SR M-banded matrix is an strictly M-banded
matrix if aij ¤ 0 when ji � jj � M.

Definition 13 An n � n matrix A is called (strictly) anti-M-banded if PnA is a
(strictly) M-banded matrix, where Pn is the backward identity matrix given in
Definition 12.

Taking into account that strictly M-banded matrices are type-I staircase, we can
obtain the signature sequence for the case ASSR.
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Proposition 2 Let A D .aij/1�i;j�n be a strictly M-banded ASSR matrix. If A is non-
negative, then its signature is " D .1; 1; : : : ; 1; "n�MC1; : : : ; "n/. If A is nonpositive,
then its signature is " D .�1; 1;�1; : : : ; .�1/n�M�1; .�1/n�M; "n�MC1; : : : ; "n/:

Proof Consider k � n � M. Then the submatrix AŒM C 1; : : : ;M C kj1; : : : ; k� is
triangular of order k, and the associated minor is

det AŒM C 1; : : : ;M C kj1; : : : ; k� D aMC1;1aMC2;2 : : : aMCk;k:

If aij � 0, then det AŒM C 1; : : : ;M C kj1; : : : ; k� > 0 and therefore "k D 1.
If aij � 0, then the sign of det AŒM C 1; : : : ;M C kj1; : : : ; k� is .�1/k, thus

"k D .�1/k and the proof is complete. �

Next, we are going to characterize the nonsingular and strictly M-banded ASSR
matrices. Due to the structure of these matrices, they are type-I staircase matrices,
and their zero pattern is:

.0/ .1/ .2/ .n � M � 1/ .n � M/
I D f1; M C 2; M C 3; � � � ; n ; n C 1g;
J D f1; 2; 3; � � � ; n � M ; n C 1g;
bI D f1; 2; 3; � � � ; n � M ; n C 1g;
bJ D f1; M C 2; M C 3; � � � ; n ; n C 1g:

Look at the consequences of this zero pattern. Let us fix a position .i; j/ of A such
that ji � jj � M, then:

• If i � j there exists a unique k such that jk�1 � j < jk. When j < n, then jk�1 D j
and ik�1 D M C j. When j D n, then jk�1 D n � M and ik�1 D n.

• If i < j there exists a unique k0 such that Oik0�1 � i < Oik0 . Since i < n then
Oik0�1 D i, and Ojk0�1 D M C i.

If we want to use the ASSR matrices characterization given in Theorem 3 or
Theorem 5, it is important to calculate the index jt defined in (14) and the index Oit
defined in (15) for each non-zero position of A.

Lemma 1 Let A be an n�n strictly M-banded matrix. Then, for every position .i; j/
such that ji � jj < M it is satisfied:

(i) If i D j C M, then jt D j and it D M C j.
(ii) If ji � jj < M, then jt D 1, it D 1 when i � j, and Oit D 1, Ojt D 1 when i < j.

(iii) If i D j � M, then Oit D i and Ojt D M C i.
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Proof

(i) If i D j C M > j, j 2 f1; 2; : : : ; n � Mg and i 2 fM C 1;M C 2; : : : ; ng. In this
position, j < n and we have jk�1 D j and ik�1 D M C j. Therefore

j � jk�1 D 0

i � ik�1 D . j C M/ � . j C M/ D 0



) j � jk�1 D i � ik�1;

and thus jt D j and it D M C j.
(ii) Now, we are going to study the positions .i; j/ such that ji � jj < M:

• Positions .i; j/, with i D j 2 f1; 2; : : : ; ng. If i D j < n, then jk�1 D j,
ik�1 D n � M, and if 1 � s < k � 1 we obtain

j � js D j � .s C 1/ D j � s � 1

i � is D j � .M C s/ D j � s � M



) j � js > i � is:

If i D j D n then

j � jk�1 D n � .n � M/ D M
i � ik�1 D n � n D 0



) j � jk�1 > i � ik�1:

So, in both cases, we conclude jt D j0 D 1, it D i0 D 1.
• If the position verifies 0 < i � j < M, then ik�1 D j C M and jk�1 D j, if
1 < s < k � 1, it is verified:

j � js D j � .s C 1/ D j � s � 1

i � is D i � .M C s C 1/ D i � M � s � 1

)
) j � s�1 > j �M � s�1 > i � s�1;

that is, j � js > i � is. Thus jt D j0 D 1 and it D i0 D 1.
• Analogously, if .i; j/ verifies 0 < j � i < M, then Oik�1 D i and Ojk�1 D i C 2.

We choose 1 � s � k � 1,

i � Ois D i � .s C 1/ D i � s � 1

j � Ojs D j � .M C s C 1/ D j � M � s � 1

)
) i � s�1 > j � s�1 > j �M � s�1;

and so i � Ois > j � Ojs. Therefore Oit D Oi0 D 1 and Ojt D Oj0 D 1.

(iii) If i D j � M, then i < j thus i 2 f1; 2; : : : ; n � Mg, j 2 fM C 1; : : : ; ng. As
i ¤ n, Oik0�1 D i and Ojk0�1 D M C i. Then:

i � Oik0�1 D i � i D 0

j � Ojk0�1 D .i C M/� .i C M/ D 0



) i � Oik0�1 D j � Ojk0�1;

and therefore Oit D i and Ojt D M C i. �
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If a matrix A is ASSR, nonnegative and strictly M-banded, we can use Theorem 5,
for r D n � M, because the signature of the matrix is .1; : : : ; 1; "n�MC1; : : : ; "n/, as
we have seen in Proposition 2. So, we can prove the following theorem:

Theorem 6 Let A be a strictly M-banded, real, n�n and nonsingular matrix. Then,
A is ASSR with signature " D .1; 1; : : : ; 1; "n�MC1; : : : ; "n/ if and only if, for every
h D 1; : : : ;M, the following conditions hold simultaneously:

(i) A is type-I staircase.
(ii) The NE of Ah D AŒh; : : : ; n� and AT

h can be performed without rows exchange.
(iii) The pivots of the NE of Ah and AT

h :

• For i � j, if j � n � M,

ph
ij > 0 , ah

ij 6D 0;

and if j > n � M, for i D j; : : : ;M C j,

"n�MC1ph
i;n�MC1 > 0;

"j�1"jp
h
ij > 0; j D n � M; : : : ; n:

• For i < j, if i � n � M,

qh
ij > 0 , aijh 6D 0;

and if i > n � M, for j D i C 1; : : : ;M C i,

"n�MC1qh
n�MC1;j > 0;

"i�1"iq
h
ij > 0; i D n � M; : : : ; n:

(vi) An�M D AŒn � M; : : : ; n� is ASTP.

Proof Assume first that A is an ASSR matrix with signature sequence given by
" D .1; 1; : : : ; 1; "n�MC1; : : : ; "n/. The hypothesis of Theorem 5 are fulfilled for
r D n � M. Items (i), (ii) and (iv) are satisfied trivially. Let see how conditions (c)
and (d) of this theorem are transformed for h D 1; : : : ;M.

We are going to study the different possible cases:

• If ih D jh C M, we know that jht D jh and iht D M C jh. In these positions, it
is fulfilled: jh 2 f1; 2; : : : ; n � Mg, ih 2 fM C 1;M C 2; : : : ; ng. In this case,
"jh�jht

"jh�jht C1 D "0"1 D 1, and therefore condition (20) is transformed into
ph

ij > 0.
Moreover, condition (d) is always fulfilled, due to ih D jh C M, thus ih � jh D

M D iht � jht , and, as jh � 1; jh < n � M, "jh�1"jh D 1 D "jh�jht
"jh�jht C1. Therefore

the condition is verified.
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• If ih D jh with jh 2 f1; 2; : : : ; n � Mg, then "jh�1"jh D 1, for jh D n � M
"jh�1"jh D "n�MC1 and condition (20) is transformed into ph

ij > 0, for jh < n � M,
"n�MC1ph

n�MC1 > 0, and for jh > n � M, "jh�1"jh ph
ij > 0.

As jht D 1 D iht , "jh�1"jh D "jh�jht
"jh�jht C1, condition (d) is fulfilled.

• If ih D jh � M, then Oiht D ih and Ojht D M C ih. Moreover, ih 2 fM C 1; : : : ; ng
and jh 2 f1; 2; : : : ; n � Mg. In this case, "ih�Oiht "ih�Oiht C1 D "0"1 D 1. Therefore

condition (22) is fulfilled, resulting qh
ij > 0.

Condition (d) is also fulfilled, since being ih D jh �M, ih � jh D �M D Oiht �Ojht ,
and as ih � 1; ih < n � M, "ih�1"ih D 1 D "Oih�biht "Oih�Oiht C1 and the condition is
fulfilled.

• Finally, for those positions for which jih � jhj < M, either jt D 1 and it D 1, or
Oit D 1 and Ojt D 1, and in this case condition (d) trivially holds.

Regarding condition (c), it can be rewritten as follows:

(a) For i � j:

– If j � n � M,

ph
ij > 0 , ah

ij 6D 0:

– If i D j; : : : ;M C j,

"n�MC1ph
i;n�MC1 > 0;

"j�1"jp
h
ij > 0; j D n � M; : : : ; n:

(b) For i < j,

– If i � n � M,

qh
ij > 0 , aijh 6D 0:

– If j D i C 1; : : : ;M C i,

"n�MC1qh
n�MC1;j > 0;

"i�1"iq
h
ij > 0; i D n � M; : : : ; n:

So, it has been proven that .iii/ also holds.
To prove the converse, we use again Theorem 5. Note items (a), (b), (c) and (e)

of this theorem are trivially fulfilled. Let’s prove that (d) is also fulfilled, by using
Lemma 1. Let .ih; jh/ be such that ji � jj � M. Then we have the following cases:

• If ih D jh C M, then jh � N � M, and so "jh�1"jh D 1. Moreover, jht D jh, then
"jh�jht

"jh�jht C1 D "0"1 D 1, and therefore condition (d) holds.
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• If ih D jh � M, then ih � N � M, and so "Oih�1"Oih D 1. Moreover, Oiht D ih, then
"ih�Oiht "ih�Oiht C1 D "0"1 D 1, and condition (d) holds.

• Finally, we study the case jih � jhj < M.
If ih � jh then jht D 1, and so "jh�1"jh D "jh�jht

"jh�jht C1.
If ih < jh then Oit D 1, and so "ih�Oiht "ih�Oiht C1 D "Oih�1"Oih .

In any case, condition (d) of Theorem 5 is fulfilled, so that we can conclude that the
matrix A is ASSR with signature " D .1; 1; : : : ; 1; "n�MC1; : : : ; "n/. �

If A is a nonpositive nonsingular strictly M-banded matrix then �A is a matrix
satisfying hypothesis of Theorem 6. Therefore both types of matrices have been
characterized, and we can deduced the following consequence of Proposition 2 and
Theorem 6.

Corollary 2 Let A be a strictly M-banded, real, n � n, nonsingular matrix. Then A
is ASSR if and only if either A is nonnegative and satisfies (i)–(iv) of Theorem 6 or
A is nonpositive and �A satisfies (i)–(iv) of Theorem 6.

Given a strictly anti-M-banded matrix A, we can apply Corollary 2 in order to
obtain the following characterization:

Corollary 3 Let A be a strictly anti-M-banded, real, n � n, nonsingular matrix.
Then A is ASSR if and only if either A is nonnegative and PnA satisfies (i)–(iv) of
Theorem 6 or A is nonpositive and �PnA satisfies (i)–(iv) of Theorem 6.

4.1 A Particular Case: 1-Banded (Tridiagonal) Matrices

Focusing on the case of tridiagonal matrices, a tridiagonal matrix of order n � 2

is a 1-banded matrix, i.e., a matrix A D .aij/1�i;j�n, with aij D 0 for all i, j when
ji � jj > 1.

Using Corollary 3.4 of [4], we can see that the only signatures they can present
are the following: " D .1; 1; : : : ; 1; "n/ or " D .�1; 1; : : : ; .�1/n�1; "n/.

In [2] we have proved that a nonnegative (A � 0) tridiagonal ASSR matrix is
strictly tridiagonal or it is an ASTP matrix, i.e., with signature .1; 1; : : : ; 1/.

Lemma 2 Let A D .aij/1�i;j�n be a real nonnegative tridiagonal ASSR matrix. If
there exists j, 1 < j � n such that aj;j�1 D 0, or aj�1;j D 0, then A is ASTP.

If A is nonpositive tridiagonal matrix, its signature is .�1; 1;�1; : : : ; .�1/n�1; "n/.
Thus �A is tridiagonal ASSR matrix with signature .1; 1; : : : ; 1; .�1/n"n/ and we
can apply the previous result to matrix �A. Thereby, if the matrix has an zero
element in the position .i; j) with ji � jj D 1, then either A or �A is ASTP.

In the following result (see Theorem 25 of [2]) we characterize the nonsingular
and nonnegative tridiagonal ASSR matrices.
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Theorem 7 Let A D .aij/1�i;j�n be a real nonnegative tridiagonal matrix and
nonsingular. Then A is ASSR with " D .1; 1; : : : ; 1; "n/ if and only if it holds that:

(a) A is type-I staircase.
(b) The NE of the matrices A and AT can be performed without row changes.
(c) The pivots pij of the NE of A and the pivots qij of the NE of AT satisfy:

• If i � j,

pij D 0 , aij D 0; (27)

j < n; pij > 0

j D n; "npin > 0



, aij ¤ 0: (28)

• If i < j,

qij D 0 , aij D 0; (29)

qij > 0 , aij ¤ 0: (30)

(d) A2 D AŒ2; : : : ; n� is ASTP.

If A � 0 (that is, a matrix whose entries are all nonpositive), then �A has
signature .1; 1; : : : ; 1; .�1/n"n/. Therefore it is possible to apply the previous result
to matrix �A, and then all the tridiagonal ASSR matrices are characterized.
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A Review of Numerical Analysis
for the Discretization of the Velocity Tracking
Problem

Eduardo Casas and Konstantinos Chrysafinos

Abstract In this paper we are reviewing results regarding the velocity tracking
problem. In particular, we focus on our work (Casas and Chrysafinos, SIAM
J. Numer. Anal. 50(5):2281–2306, 2012; Casas and Chrysafinos, Numer. Math.
130:615–643, 2015; and Casas and Crysafinos, to appear in ESAIM: COCV)
concerning a-priori error estimates for the velocity tracking of two-dimensional
evolutionary Navier-Stokes flows. The controls are of distributed type, and subject to
point-wise control constraints. The standard tracking type functional is considered,
however the option of setting the penalty-regularization parameter � D 0 in front
of the L2.0;TI L2.˝// norm of the control in the functional is also discussed. The
discretization scheme of the state and adjoint equations is based on a discontinuous
time-stepping scheme combined with conforming finite elements (in space) for the
velocity and pressure. Provided that the time and space discretization parameters,
� and h respectively, satisfy � � Ch2, error estimates of order O.h/, O.h2/ and

O.h
3
2� 1

p / for some p > 2, are discussed for the difference between the locally
optimal controls and their discrete approximations, when the controls are discretized
by piecewise constants functions, the variational discretization approach or by using
piecewise-linears in space respectively for � > 0. For the case of � D 0, (bang-
bang type controls) we also discuss various issues related to the analysis and
discretization, emphasizing on the different features compared to the case � > 0. In
particular, fully-discrete estimates for the states are presented and discussed.
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1 Introduction

In this paper we are reviewing various results from our works of [6–8] regarding
the approximation of the velocity tracking problem. The velocity tracking problem
is defined as follows: We seek velocity vector field y, pressure p and control vector
field u such that

(P)

	
min J.u/
u 2 Uad

where

J.u/ D 1

2

Z T

0

Z
˝

jyu.t; x/ � yd.t; x/j2 dxdt C �

2

Z T

0

Z
˝

ju.t; x/j2 dxdt:

Here we denote by yd the given target velocity profile and yu the solution of the 2d
evolution Navier-Stokes equations with right hand side the control variable u, i.e.,

8<
:

yt � ��y C .y � r/y C rp D f C u in ˝T D .0;T/ �˝;
div y D 0 in ˝T ; y.0/ D y0 in ˝;
y D 0 on ˙T D .0;T/ � �:

(1)

The set of feasible controls is denoted by Uad and it is defined for �1 < ˛j < ˇj <

C1, j D 1; 2, by

Uad D fu 2 L2.0;TI L2.˝// W ˛j � uj � ˇj a.e. in ˝T ; j D 1; 2g:

The physical meaning of the velocity tracking problem is to drive the velocity vector
field to a given target field yd, by using a control function of distributed type. In our
setting, the control function satisfies point-wise constraints and � � 0 is a penalty
parameter, which is typically small compared to the actual size of the data. There is
an important distinction between the case � > 0 and the case � D 0. The absence
of the Tikhonov regularization term from the cost functional, i.e. � D 0, typically
leads to optimal controls of bang-bang type, creating substantial difficulties for the
analysis and numerical analysis, despite the fact that point-wise control constraints
are being imposed. Indeed, the absence of the regularizing term leads to loss of
regularity and to non-standard second order sufficient conditions, and hence to
severe technical difficulties both in the analysis and in the construction of suitable
numerical schemes (e.g. see for instance [5, 8, 16]). On the other hand the presence
of the Tikhonov regularizing term provides the crucial relation between the control
and adjoint variables facilitating the derivation of second order sufficient conditions
(see for e.g. [14]) and hence the derivation of error estimates for various choices
of discretization spaces for the controls when combined with piecewise constants
in time, and classical finite element spaces for the velocity and the pressure (see
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e.g. [7]). For various related discussions, references regarding the analysis and the
computational significance of such optimal control problems we refer the reader
to [29]. The analysis of the above control problem is well understood, (see e.g.
[1, 4, 29, 33, 46, 50] and references within), where various aspects, including first
and second order necessary conditions are developed and analyzed. Our paper is
organized as follows: At the remaining of the introduction, we present some related
references regarding the numerical analysis of the velocity tracking problem. In
Sects. 2 and 3 we formulate the optimal control problem including first and second
order necessary and sufficient conditions and we stress their importance for the
development of error estimates. Then, in Sect. 4, we define the discrete state and
adjoint-state problems and we present the basic numerical analysis results of [6],
and [7] under suitable regularity assumptions. Finally, in Sect. 5, we present the
results of [7, 8] for the discretization of the optimal control problems.

1.1 Related Results

We begin with some earlier results related to the numerical analysis of the velocity
tracking problem of the evolutionary Navier-Stokes equations. First, we note that in
[30, 31] a gradient algorithm is analyzed for a fully discrete scheme based on the
implicit Euler in time discretization combined with inf-sup stable elements for the
discretization for the velocity and pressure respectively. In particular convergence
of the proposed algorithm is proven, in case of distributed controls, and of bounded
distributed controls respectively. Error estimates for the semi-discrete (in space)
discretization are derived in [21] in case of distributed controls without control
constraints by using a variational discretization approach (see [32]).

For the approximation of control problems associated to parabolic semilinear
equations, error estimates are presented in [41], by using both the variational
discretization and the piecewise linears for the discretization of the controls. The key
feature of their analysis is a two step discretization approach. First, the state equation
is discretized in time and then in space. Note that by taking advantage of the
boundedness of the semi-discrete in time-space states they obtain error estimates for
the controls, without imposing the assumption � � Ch2. However, a strong second
order necessary condition is also needed. Their approach is not easily translated to
the control of Navier-Stokes systems because the non-linearity involves the gradient
of the state and the boundedness of the states fails. Moreover, the discretization in
time of the state equation leads to a stationary Navier-Stokes system, for which we
cannot guarantee the uniqueness of a solution. Finally in [19] a convergence result
for an optimal control problem related to semi-linear parabolic pdes is presented
under minimal regularity assumptions on the given data.

For earlier work on these schemes within the context of optimal control
problems, having states constrained to linear parabolic pdes, we refer the reader
to [37, 38] for (optimal) error estimates for an optimal control problem for the
heat equation, with and without control constraints respectively. Error estimates
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for discontinuous time-stepping schemes for distributed optimal control problems
related to linear parabolic pdes with possibly time dependent coefficients, were
presented in [17, 18]. An analysis of second order Petrov-Galerkin Crank-Nicolson
scheme and of a Crank-Nicolson scheme, for an optimal control problem for the
heat equation were analyzed in [2, 39] respectively where estimates of second-order
(in time) are derived. However, the regularity assumptions on the control, state and
adjoint variables are not present in the nonlinear setting of Navier-Stokes equations.
Further results regarding error analysis can be found in [40, 43, 44].

We refer the reader to [23–26, 48] (see also references within) for various
results related to the approximation of parabolic pdes without controls and to [20]
for discontinuous time-stepping schemes of arbitrary order for the Navier-Stokes
equations in 2d and 3d. Further results concerning the analysis and numerical
analysis of the uncontrolled Navier-Stokes can be found in the classical works of
[28, 34, 35, 47]. For several issues related to the analysis and numerics of optimal
control problems we refer the reader to [49] (see also references within). Finally, we
refer the reader to [9] for the analysis of control problems of 3D evolution Navier-
Stokes equations.

2 Definitions and Preliminaries

Throughout this work we assume that ˝ is a bounded open and convex subset in
R
2 with a C2 boundary � . The outward unit normal vector to � at a point x 2 � is

denoted by n.x/. For given 0 < T < C1, we denote ˝T D .0;T/ �˝ and ˙T D
.0;T/�� . We use the standard notation for Sobolev spaces: H1.˝/ D H1.˝IR2/,
H1
0.˝/ D H1

0.˝IR2/, H�1.˝/ D .H1
0.˝//

0 and Ws;Np.˝/ D Ws;Np.˝IR2/ for 1 �
Np � 1 and s > 0 as well as the standard notation for the spaces of integrable
functions

L20.˝/ D fw 2 L2.˝/ W
Z
˝

w.x/ dx D 0gI

LNp.˝/ D LNp.˝IR2/. Furthermore, we define (see for instance Lions and Magenes
[36, Vol. 1]) the time-space space,

H2;1.˝T/ D
	

y 2 L2.˝T/ W @y

@xi
;
@2y

@xixj
;
@y

@t
2 L2.˝T/; 1 � i; j � 2




equipped with the standard norm. It is well known that every element of H2;1.˝T/,
after a modification over a zero measure set, is a continuous function from Œ0;T� �!
H1.˝/. Finally, we also denote by H2;1.˝T/ D H2;1.˝T/ � H2;1.˝T/.
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In order to handle the case of � D 0, we will also need to define the following
generalizations of the above spaces: For given a number 1 � Np � 1, and we set

W2;1
Np .˝T/ D

	
y 2 LNp.˝T/ W @y

@xi
;
@2y

@xixj
;
@y

@t
2 LNp.˝T/; 1 � i; j � 2




equipped with the standard norm. We note that H2;1.˝T/ D W2;1
2 .˝T/.

The usual spaces of divergence-free vector fields can be defined in a standard
way:

YNp D fy 2 W1;Np
0 .˝/ W div y D 0 in ˝g;

HNp D fy 2 LNp.˝/ W div y D 0 in ˝ and y � n D 0 on � g:

Finally, we define W.0;T/ D fy 2 L2.0;TI Y2/ W yt 2 L2.0;TI Y�
2 /g. It is well

known that W.0;T/ � Cw.Œ0;T�;H2/, where Cw.Œ0;T�;H2/ is the space of weakly
continuous functions y W Œ0;T� �! H2.

We will frequently abbreviate the notation of divergence-free vector fields: Y D
Y2 and H D H2.

Standard regularity assumptions will be imposed on the data in order to guarantee
the existence of a strong solution, i.e., f; yd 2 L2.˝T/ and y0 2 Y. A weak solution
of (1) will be sought in the space W.0;T/ D fy 2 L2.0;TI Y/ W yt 2 L2.0;TI Y�/g.
We note that W.0;T/ � Cw.Œ0;T�;H/, where Cw.Œ0;T�;H/ is the space of weakly
continuous functions y W Œ0;T� �! H.

To write the weak formulation of (1), we define the bilinear and trilinear forms
a W H1.˝/ � H1.˝/ �! R and c W L4.˝/ � H1.˝/ � H1.˝/ �! R in a standard
way:

a.y; z/ D �

Z
˝

.ry W rz/ dx D �

2X
i;jD1

Z
˝

@xi yj @xi zj dx

c.y; z;w/ D 1

2
ŒOc.y; z;w/� Oc.y;w; z/�

with Oc.y; z;w/ D
2X

i;jD1

Z
˝

yj

�
@zi

@xj

�
wi dx:

Now, a weak solution of (1) is an element y 2 W.0;T/ such that for a.e. t 2 .0;T/,
	
.yt;w/C a.y;w/C c.y; y;w/ D .f C u;w/ 8 w 2 Y
y.0/ D y0:

(2)

Equation (2) has a unique solution in W.0;T/ and the existence of a pressure p 2
D.˝T/ satisfying (1) holds in the distribution sense. Due to the regularity assumed
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on f, y0 and ˝ , then some extra regularity is proved for .y; p/. In particular, we
have that y 2 H2;1.˝T/\ C.Œ0;T�;Y/ and p 2 L2.0;TI H1.˝//, the pressure being
unique up to an additive constant; see, for instance, Ladyzhenskaya [34], Lions [35],
Temam [47].

For various properties related to the trilinear term c we refer the reader to [34, 35]
or [47].

The following theorem analyzes the state equation, under further non-standard
regularity assumptions, and it is based on results of by Solonnikov [45, Theo-
rem 4.2].

Theorem 1 Suppose that the data of (1) satisfy: � > 0, f 2 LNp.˝T/ and

y0 2 W2� 2
Np ;Np.˝/ \ Y2, with 3 < Np < C1. Then, for every u 2 LNp.˝T/ the

state equation (1) has a unique solution yu 2 W2;1
Np .˝T/ and an associate pressure

pu 2 LNp.0;TI W1;Np.˝//, which is unique up to the addition of a function of LNp.0;T/.
Moreover, the following estimate holds

kyukW2;1
Np .˝T /

C krpukLNp.˝T /
� Cu

�
kf C ukLNp.˝T /

C ky0k
W
2� 2

Np ;Np.˝/

�
; (3)

where Cu depends on kfCukL2.˝T / and ky0kY2 . Furthermore, the constant Cu in (3)
can be chosen the same for every u 2 Uad. In addition, there exists a constant M˛;ˇ

such that 8u 2 Uad

kyukC.Œ0;T�IY
Np/ C kyuk

C
0;1� 3

Np . N̋T /
� M˛;ˇ

�
kf C ukLNp.˝T /

C ky0k
W
2� 2

Np ;Np.˝/

�
; (4)

where C0;1� 3
Np . N̋ T/ is the space of Hölder functions in N̋ T of order 1 � 3

Np .

It is well known that the mapping G W L2.˝T/ ! H2;1.˝T/ \ C.Œ0;T�I Y/,
associating to each control u the corresponding state G.u/ D yu solution of (2), is
well defined and continuous. Hence the functional J W L2.˝T/ �! R is also well
defined and continuous. The proof of the existence of at least one solution of (P) is
standard. Below, we state the differentiability of G and J.

Theorem 2 ([6, 8]) Let 2 � Np < C1 and assume that f 2 LNp.˝T/ and y0 2
W2� 2

Np ;Np.˝/\ Y2. Then, the mapping

G W LNp.˝T/ �! W2;1
Np .˝T/\ C.Œ0;T�I YNp/

is of class C1. Moreover, for any u; v; vi 2 LNp.˝T/, i D 1; 2, if we denote yu D
G.u/, zv D G0.u/v, zvi D G0.u/vi, and zv1v2 D G00.u/.v1; v2/, then zv and zv1v2 are
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the unique solutions of the following equations

8<
:
@zv

@t
� ��zv C .yu � r/zv C .zv � r/yu C rpv D v in ˝T ;

div zv D 0 in ˝T ; zv.0/ D 0 in ˝; zv D 0 on ˙T ;
(5)

8̂
<̂
ˆ̂:

@zv1v2

@t
� ��zv1v2 C .yu � r/zv1v2 C .zv1v2 � r/yu

C.zv2 � r/zv1 C .zv1 � r/zv2 C rp12 D 0 in ˝T ;

div zv1v2 D 0 in ˝T ; zv1v2 .0/ D 0 in ˝; zv1v2 D 0 on ˙T ;

(6)

for some pv; p12 2 LNp.0;TI W1;Np.˝//, which are unique up to the addition of a
function of L2.0;T/.

Theorem 3 ([6, 8]) Under the assumptions of Theorem 2, the cost functional J W
LNp.˝T/ �! R is of class C1 and for every u; v 2 LNp.˝T/ we have

J0.u/v D
Z T

0

Z
˝

.'u C �u/v dxdt; (7)

J00.u/v2 D
Z T

0

Z
˝

.jzvj2 � 2.zv � r/zv'u/dxdt C �

Z T

0

Z
˝

jvj2dxdt; (8)

where zv D G0.u/v is the solution of (5) and 'u 2 W2;1
Np .˝T/ \ C.Œ0;T�I YNp/ is the

unique element satisfying for every w 2 Y2

8<
:

�.'u;t;w/C a.'u;w/C c.w; yu;'u/C c.yu;w;'u/

D .yu � yd;w/ 8w 2 Y;
'u.T/ D 0:

(9)

Before establishing the first order optimality conditions, we should observe that
(P) is not convex, hence we should distinguish global and local solutions.

Definition 1 We say that a control Nu 2 Uad is a local minimum of (P) in the LNp.˝T/

sense, 1 � Np � 1, if there exists " > 0 such that J. Nu/ � J.u/ for all u 2 Uad \
B". Nu/, where B". Nu/ is the ball of LNp.˝T/ centered at Nu and radius ". We say that Nu
is a strict local minimum if the previous inequality is strict for every u ¤ Nu.
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Since Uad is bounded in L1.˝T/, it is immediate to check that Nu is a local
minimum in the LNp.˝T/ sense with Np < 1 if an only if it is a local minimum
in the L1.˝T/ sense. In addition, if Nu is a local minimum in the L1.˝T/ sense, then
it is a local minimum in the LNp.˝T/ sense for every 1 � Np < 1. The contrary is not
necessarily true. In the sequel, whenever we say that Nu is a local minimum of (P), it
should be understood in the L2.˝T/ sense.

Now, the first order optimality conditions easily follow (see e.g. [6, 8, Theo-
rem 3.3]).

Theorem 4 Suppose that the assumptions of Theorem 2 hold. Let us assume that Nu
is a local solution of problem (P), then there exist Ny; N' 2 W2;1

Np .˝T/ \ C.Œ0;T�;YNp/
such that

	
.Nyt;w/C a.Ny;w/C c.Ny; Ny;w/ D .f C Nu;w/ 8 w 2 Y;
Ny.0/ D y0;

(10)

	 �. N't;w/C a. N';w/C c.w; Ny; N'/C c.Ny;w; N'/ D .Nyu � yd;w/ 8w 2 Y;
N'.T/ D 0;

(11)

Z T

0

Z
˝

. N'C � Nu/.u � Nu/ dxdt � 0 8u 2 Uad: (12)

Corollary 1 Under the assumptions of Theorem 4, the following properties hold
for j D 1; 2:

1- If � > 0 then

Nuj.t; x/ D ProjŒ˛j;ˇj�

�
� 1
�

N'j.t; x/

�
for a.a. .t; x/ 2 ˝T ; (13)

and hence Nu 2 W1;Np.˝T/\ C.Œ0;T�;W1;Np.˝T// holds.
2- If � D 0 then

8̂
<̂
ˆ̂:

Nuj.t; x/ D ˛j ) N'j.t; x/ � 0;

Nuj.t; x/ D ˇj ) N'j.t; x/ � 0;

˛j < Nuj.t; x/ < ˇj ) N'j.t; x/ D 0;

and

(
N'j.t; x/ > 0 ) Nuj.t; x/ D ˛j;

N'j.t; x/ < 0 ) Nuj.t; x/ D ˇj;

(14)

and hence Nu is a bang-bang control if measf.x; t/ 2 ˝T W j N'.t; x/j ¤ 0g D 0.
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3 Second Order Analysis

Now, we are ready to state second order conditions. We note that it is possible to
prove necessary and sufficient conditions similar to elliptic Navier–Stokes velocity
tracking problem (see e.g, [15]). First, we define the cone of critical directions:

CNu D fv 2 L2.0;TI L2.˝// W v satisfies (16) � (17) and J0. Nu/v D 0g; (15)

vj.t; x/ � 0 if ˛j D Nuj.t; x/; (16)

vj.t; x/ � 0 if Nuj.t; x/ D ˇj; j D 1; 2: (17)

Then, we have the following result; see [6].

Theorem 5 Suppose that the assumptions of Theorem 2 hold. Let Nu be a local
solution of problem (P), then J00. Nu/v2 � 0 8v 2 CNu. Conversely, if � > 0 and
Nu 2 Uad satisfies

J0. Nu/.u � Nu/ � 0 8u 2 Uad;

J00. Nu/v2 > 0 8v 2 CNu n f0g (18)

then there exist " > 0 and ı > 0 such that

J. Nu/C ı

2
ku � Nuk2L2.˝T /

� J.u/ 8u 2 Uad \ B". Nu/

where B". Nu/ is the L2.˝T/-ball of center Nu and radius ".

Now, we proceed to the case where � D 0. We note that the absence of the
Tikhonov regularizing term leads to bang-bang controls. The analysis is more
delicate, and we refer the reader to [8] for the proofs. Our main focus here, is to
highlight the differences between the two cases.

The condition J00. Nu/v2 > 0 for all v 2 CNu n f0g is not enough to deduce local
optimality for Nu. This is usual in infinite dimension optimization problems. For
� > 0 the second order analysis is very similar to the finite dimensional case.
For � D 0 two differences appear. First we observe that for � > 0 the condition
J00. Nu/v2 > 0 for all v 2 CNu n f0g is equivalent to the existence of ı > 0 such that
J00. Nu/v2 � ıkvk2L2.˝/ for all v 2 CNu. This equivalence fails for � D 0. Second, we
have pointwise constraints for the controls, and hence we need to increase the cone
of critical directions; see [22]. This extension of the cone is not necessary for � > 0.
To this end, for every % > 0 we consider the extended cone

C%Nu D fv 2 L2.˝T/ W vsatisfies (16) � (17) and J0. Nu/v � %kzvkL2.˝T /g; (19)
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The following theorem states the sufficient second order condition; see [8] for a
detailed proof, and [3, 10, 11, 13, 14] for additional discussion on the sufficient
second order conditions.

Theorem 6 Suppose that the assumptions of Theorem 2 hold. Let us assume that
Nu 2 Uad satisfies (10)–(12) along with the associated state and adjoint state .Ny; N'/ 2
.W2;1

Np .˝T/ \ C.Œ0;T�I YNp//2. We also suppose that

9% > 0 and 9ı > 0 W J00. Nu/v2 � ıkzvk2L2.˝T /
8v 2 C%Nu : (20)

Then, there exist " > 0 and  > 0 such that the following inequality holds



2
kyu � Nyk2L2.˝T /

C J. Nu/ � J.u/; 8u 2 Uad with ku � NukL2.˝T / < ": (21)

4 Approximation of the State and Adjoint-State Equations

A family of triangulations fKhgh>0 of N̋ , is constructed in the standard way. Two
parameters hK and %K are associated to each element K 2 Kh. Here, hK denotes
the diameter of the set K and %K is the diameter of the largest ball contained in
K. The size of the mesh is denoted by h D maxK2Kh hK , and standard regularity
assumptions on the triangulation are assumed:

1. There exist two positive constants %K and ıK such that hK
%K

� %K and h
hK

� ıK
8K 2 Kh and 8h > 0.

2. Define ˝h D [K2Kh K, and let ˝h and �h denote its interior and its boundary,
respectively. We assume that the vertices of Kh placed on the boundary �h are
points of � .

Since ˝ is convex, from the last assumption we have that ˝h is also convex.
Moreover, we know that

j˝ n˝hj � Ch2I (22)

see, for instance, [42, estimate (5.2.19)].
On the mesh Kh we consider two finite dimensional spaces Zh � H1

0.˝/

and Qh � L20.˝/ formed by piecewise polynomials in ˝h, vanishing in ˝ n ˝h

and satisfying the standard approximation properties of the usual finite elements
considered in the discretization of Navier-Stokes equations: “Taylor-Hood”, P1-
Bubble finite element, and some others; see [28, Chap. 2]. In particular, we assume
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that:

(A1) If z 2 H1Cl.˝/\ H1
0.˝/, then

inf
zh2Zh

kz � zhkHs.˝h/ � ChlC1�skzkH1Cl.˝/; for 0 � l � 1 and s D 0; 1:

(23)
(A2) If q 2 Hl.˝/\ L20.˝/, then

inf
qh2Qh

kq � qhkL2.˝h/ � ChkqkH1.˝/: (24)

(A3) The subspaces Zh and Qh satisfy the inf-sup condition: 9c > 0 such that

inf
qh2Qh

sup
zh2Zh

b.zh; qh/

kzhkH1.˝h/kqhkL2.˝h/

� c; (25)

where b W H1.˝/ � L2.˝/ �! R is defined by

b.z; q/ D
Z
˝

q.x/div z.x/ dx:

We also consider a subspace Yh of Zh defined by

Yh D fyh 2 Zh W b.yh; qh/ D 0 8qh 2 Qhg:

The discretization in time is based on the lowest order discontinuous (in time)
Galerkin approach. First, we consider a grid of points 0 D t0 < t1 < : : : < tN� D T,
and we denote �n D tn � tn�1. We make the following assumption,

9%0 > 0 s.t. � D max
1�n�N�

�n < %0�n 81 � n � N� and 8� > 0: (26)

Given a triangulation Kh of ˝ and a grid of points ftngN�
nD0 of Œ0;T�, we set 
 D

.�; h/. Finally, we consider the following spaces

Y
 D fy
 2 L2.0;TI Yh/ W y
 j.tn�1;tn/
2 Yh for 1 � n � N� g;

Q
 D fq
 2 L2.0;TI Qh/ W q
 j.tn�1;tn/
2 Qh for 1 � n � N�g:

We have that the functions of Y
 and Q
 are piecewise constant in time. The
elements of Y
 can be written in the form

y
 D
N�X

nD1
yn;h�n; with yn;h 2 Yh; (27)
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where �n is the characteristic function of .tn�1; tn/. For every discrete state y
 we
will fix y
.tn/ D yn;h, so that y
 is continuous on the left. In particular, we have
y
.T/ D y
 .tN� / D yN� ;h.

4.1 The Discrete State Equation

Our first goal is to discretize the state equation (1) or equivalently (2). We employ the
lowest order discontinuous time-stepping Galerkin method in time, i.e., piecewise
constants in time while for the spatial discretization we use conforming finite
element spaces. For any u 2 L2.0;TI L2.˝// the discrete state equation is given
by

8̂
ˆ̂̂<
ˆ̂̂̂
:

For n D 1; : : : ;N� ;�
yn;h � yn�1;h

�n
;wh

�
C a.yn;h;wh/C c.yn;h; yn;h;wh/

D .fn C un;wh/ 8wh 2 Yh;

y0;h D y0h;

(28)

where

.fn;wh/ D 1

�n

Z tn

tn�1

.f.t/;wh/dt; .un;wh/ D 1

�n

Z tn

tn�1

.u.t/;wh/dt; (29)

y0h 2 Yh with ky0 � y0hkL2.˝h/ � Ch; and ky0hkH1.˝h/ � C: (30)

It well known that the discrete equation (28) has at least one solution. Concerning
uniqueness and error estimates under the prescribed regularity assumptions, the
following results were proven in [6, Theorem 4.7], and [7, Theorem 12]

Theorem 7 Given u 2 L2.˝T/, let us denote the solution of (2) by y 2 H2;1.˝T/\
C.Œ0;T�I Y/, and let y
 2 Y
 be any solution of (28)-(29)-(30). Then, there exists a
constant C > 0 independent of u, y and 
 such that

max
1�n�N�

ky.tn/� y
.tn/k C ky � y
kL2.0;TIH1.˝h//

� C
n�

h
ky0kL2.0;TIL2.˝// C hkykL2.0;TIH2.˝// C hky0kH1.˝/

o
: (31)

ky � y
kL1.0;TIL2.˝h// � C
n��

h
C p

�
�

ky0kL2.0;TIL2.˝//

ChkykL2.0;TIH2.˝// C hky0kH1.˝/

�
: (32)

Moreover, if there exists a constant C0 > 0 such that � � C0h2 for every 
 D
.�; h/, then fy
g
 is bounded in L1.0;TI H1.˝h// and (28) has a unique solution.



The Velocity Tracking Problem 63

Moreover, the following estimate holds:

ky � y
kL2.0;TIL2.˝// � Ch2 8u 2 Uad; (33)

where C is independent of 
 .

A few remarks are under way:

1. Standard techniques developed for the numerical analysis of the uncontrolled
Navier-Stokes equations can not be directly applied in the optimal control
setting due to the limited regularity in presence of control constraints. We note
that standard bootstrap arguments fail to increase regularity for the state, adjoint
and control variables. The case of � D 0 is even more restrictive in terms of the
available regularity. Hence, we view the results of the above theorem (in terms
of the available regularity) optimal.

2. The proposed numerical scheme, based on the discontinuous time-stepping
Galerkin dG(0) scheme, is the implicit Euler scheme. However the analysis of
the scheme is performed in a totally discontinuous (in time) fashion, in order to
avoid any additional regularity assumption. In particular, we note that the proof
is based the construction on locally (in time) L2.tn�1; tnI L2.˝// projections, as
well as on suitable duality arguments in a way to avoid the use of global (in
time) interpolants.

3. The two parameters � and h need to satisfy the assumption � � Ch2 in order
to prove that the discrete equation has a unique solution, and our estimate is
optimal in L2.0;TI H1.˝// norms for the state and adjoint. We emphasize that
if we discretize the state equation only in time, not in space, then we cannot
prove uniqueness of a solution for the resulting elliptic system. Indeed, this
discrete elliptic system is very close to the stationary Navier-Stokes system, for
which there is no a uniqueness result. Therefore, it is not surprising that the
discretization parameter � is needed to be small compared with h if we want to
prove the uniqueness of a solution for the full discrete system. The key idea of
[6] was to utilize ideas from [15] developed for the stationary Navier-Stokes,
together with a detailed error analysis of the uncontrolled state and adjoint
equations of the underlying scheme.

4.2 The Discrete Adjoint-State Equation

Associated to the discrete state equation (28), the cost functional J is approximated
by J
 W L2.˝T/ �! R

J
 .u/ D 1

2

Z T

0

Z
˝h

jy
 � ydj2 dx dt C �

2

Z T

0

Z
˝h

juj2 dx dt



64 E. Casas and K. Chrysafinos

and we have a first expression of its derivative as follows

J0

 .u/v D

Z T

0

Z
˝h

.y
 � yd/z
 dxdt C �

Z T

0

Z
˝h

uv dxdt;

where y
 D y
 .u/ is the discrete state corresponding to the control u and z
 is the
solution of the linearized equation

8̂
ˆ̂̂<
ˆ̂̂̂
:

For n D 1; : : : ;N� ;�
zn;h � zn�1;h

�n
;wh

�
C a.zn;h;wh/C c.zn;h; yn;h;wh/

Cc.yn;h; zn;h;wh/ D 1
�n

R tn
tn�1
.v.t/;wh/ dt 8wh 2 Yh;

z0;h D 0I

(34)

see [6, Theorem 4.12]. By using the adjoint state equation

8̂
ˆ̂̂<
ˆ̂̂̂
:

for n D N� ; : : : ; 1; and 8wh 2 Yh;�
'n;h � 'nC1;h

�n
;wh

�
C a.'n;h;wh/C c.wh; yn;h;'n;h/

Cc.yn;h;wh;'n;h/ D 1
�n

R tn
tn�1
.yn;h � yd.t/;wh/ dt;

'N�C1;h D 0;

(35)

the derivative of J
 can be expressed as

J0

.u/v D

Z T

0

Z
˝h

.'
 C �u/v dxdt: (36)

Observe that in the above system (35), first we compute 'N� ;h from 'N�C1;h D 0

and then we descend in n until n D 1. Unlike to the discrete states y
 where we fix
y
.tn/ D yn;h, we will set for the discrete adjoint states '
 .tn�1/ D 'n;h for every
1 � n � N� . Analogously to Theorem 7, we have the following result.

Theorem 8 Let u 2 L2.˝T/, 'u 2 H2;1.˝T/ \ C.Œ0;T�I Y/ the solution of (9)
and '
 2 Y
 the solution of the discrete equation (35). Suppose that there exists
a constant C0 > 0 such that � � C0h2 for every 
 D .�; h/. Then, there exists a
constant C > 0 independent of 
 such that for all u 2 Uad

k'u � '
kL2.0;TIL2.˝h//

Ch.k'u � '
kL1.0;TIL2.˝h// C k'u � '
kL2.0;TIH1.˝h// � Ch2: (37)
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5 Error Estimates of the Discrete Optimal Control Problem

We define the discrete control problem as follows

(P
 )

	
min J
.u
 /
u
 2 U
;ad

where different possibilities will be analyzed for U
;ad 	 U
 \ Uad.
In this final section we present the main results of [7, 8]. We also comment on

the fine relation between regularity of optimal solutions and the corresponding rates
of convergence.

5.1 The Case � > 0

In this case three different choices for U
;ad are considered.

1. Piecewise constant controls:

Uh D Uh;0 D fuh 2 L2.˝h/ W uhjK 	 uK 2 R
2 8K 2 Khg

and

U
 D U
;0 D fu
 2 L2.0;TI Uh/ W u
 j.tn�1;tn� 2 Uh; for 1 � n � N� g:

2. Piecewise linear controls:

Uh D Uh;1 D fuh 2 C. N̋ h/ W uhjK 2 P1.K/2 8K 2 Khg

and

U
 D U
;1 D fu
 2 L2.0;TI Uh/ W u
 j.tn�1;tn/
2 Uh for 1 � n � N�g:

3. Variational discretization:

Uh D Uh;2 D L2.˝h/ and U
 D U
;2 D L2.0;TI L2.˝h//:

For any of the above choices, the discrete problem (P
 ) has at least one solution,
and the family of problems (P
 ) realizes a good approximation of problem (P). We
refer the reader to [6, Theorems 4.13 and 4.15] for a detailed proof.

Theorem 9 For every 
 D .�; h/ let Nu
 be a global solution of problem (P
 ). Then
the sequence f Nu
g
 is bounded in L2.˝T/ and there exist subsequences, denoted in
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the same way, converging to a point Nu weakly in L2.˝T/. Any of these limit points
is a solution of problem (P). Moreover, we have

lim

!0

kNu � Nu
kL2.0;TIL2.˝h// D 0 and lim

!0

J
 . Nu
 / D J. Nu/: (38)

In addition, let Nu be a strict local minimum of (P), then there exists a sequence f Nu
g

of local minima of problems (P
 ) such that (38) holds.

Now, we are ready to proceed to main results regarding convergence rates. In
the remaining of this section, Nu denotes a local solution of (P) and for every 
 , Nu

denotes a local solution of (P
 ) such that kNu� Nu
kL2.0;TIL2.˝h// ! 0; see Theorem 9.
We also denote by Ny and N' the state and adjoint state associated to Nu, and Ny
 and N'

will denote the discrete state and adjoint state corresponding to Nu
 . The goal is to
estimate the rate of the convergence . Nu
 ; Ny
 ; N'
 / ! . Nu; Ny; N'/.

As in [6, 12, Sect. 4], all the elements u
 2 U
 , for U
 D U
;0 and U
 D U
;1, are
extended to .0;T/ �˝ by setting u
 .x; t/ D Nu.x; t/ for .x; t/ 2 .0;T/ � .˝ n˝h/.

Let us write Nu D .Nu1; Nu2/. Associated to the components Nuj, j D 1; 2, for every
t 2 .0;T/, we split the elements .In;K/, with In D .tn�1; tn� and K 2 Kh, as follows:
T
 D T j


;1 [ T j

;2 [ T j


;3, j D 1; 2, where

T
 D fK � In W 1 � n � N� and K 2 Khg;

T j

;1 D fK � In 2 T
 W N'j.x; t/C �Nuj.x; t/ ¤ 0 8.x; t/ 2 K � Ing;

T j

;2 D fK � In 2 T
 W N'j.x; t/C �Nuj.x; t/ D 0 8.x; t/ 2 K � Ing;

T j

;3 D T
 n .T j


;1 [ T j

;2/:

Finally, let us denote

E
 D kNu � Nu
kL2.0;TIL2.˝h//

CkNy � Ny
kL2.0;TIL2.˝h// C k N' � N'
kL2.0;TIL2.˝h//; (39)

E
 D kNy � Ny
kL1.0;TIL2.˝h// C kNy � Ny
kL2.0;TIH1.˝h//

Ck N' � N'
kL1.0;TIL2.˝h// C k N' � N'
kL2.0;TIH1.˝h//: (40)

Then we have the following error estimates.

Theorem 10 Suppose that (18) holds, and there exists a constant C0 > 0 such
that � � C0h2 for every 
 D .�; h/. Moreover, if U
 D U
;1 we also assume that
yd 2 Lp.˝T// with 3 < p < C1 and for some constant M > 0

2X
jD1

X
K�In2T j


;3

jKj�n � Mh: (41)
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Then, then we have the following estimates

E
 �

8̂
<
:̂

Ch if U
 D U
;0;
Ch

3
2� 2

p if U
 D U
;1;
Ch2 if U
 D U
;2;

(42)

E
 � Ch in all cases. (43)

A few comments follow:

• For the estimates of (43), we point out that they are optimal in the natural
energy norm under the given regularity. In particular, given the regularity of
strong solutions for the evolutionary Stokes and Navier-Stokes equations, it is
not possible to improve the estimate. Hence, it seems that if we are interested
in the energy norm, then the choice of piecewise constants controls is the most
effective in the computational point of view.

• The splitting of the general elements T
 D T j

;1[T j


;2[T j

;3, j D 1; 2 is performed

in way to distinguish the role of active and inactive space - time elements. The
related assumption (41) is similar to one of [40, 44], and it is valid in many cases
(see related discussions in [40, 44]). Let us observe that the set of points f.x; t/ W
N'j.x; t/ C �Nuj.x; t/ D 0g is usually formed by isolated points .x; t/, curves or
surfaces in ˝T . The amount of cells K � In intersecting such surfaces is typically
at most of order 1

h� . This number is smaller for points or curves. This justifies the
assumption (41).

5.2 The Case � D 0

When the Tikhonov regularization term is absent the situation is much more com-
plicated. First the absence of the projection formula (13) severely complicates the
numerical analysis since there is no possibility to recover additional regularity for
the controls through the adjoint via classical bootstrap arguments. As a consequence
it is not clear if there is any possibility to recover the improved rate in L2.˝T/ norm
when piecewise linears are being used for the approximation of the controls. To
this end we restrict our results to the cases U
 D U
;0. Hence, the discrete control
problem can be formulated as follows:

(P
 )

	
min J
 .u
 /
u
 2 U
;ad

where U
;ad D Uad \ U
 .
It is easy to prove that for every 
 , the control problem (P
 ) has at least one

solution. In the next theorem we state the results of [8, Theorems 4.4 and 4.6]
regarding the convergence of the solutions of (P
 ) towards solutions of (P).
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Theorem 11 1. Let f Nu
g
 be a sequence of solutions of problems (P
 ) and let
fNy
g
 be the associated discrete states. Then, if Nu is the weak limit in L2.˝T/ of
f Nu
g
 as 
 ! 0, then Nu is a solution of (P). Moreover, fNy
g
 converges strongly
to Ny in L2.˝T/, where Ny is the continuous state associated with Nu. In addition, if
Nu is a bang-bang control, then Nu
 ! Nu as 
 ! 0 strongly in Lp.˝T/ for every
1 � p < C1.

2. Let Nu be a strict local minimum of (P). Let Ny and N' be the state and adjoint state,
respectively. Let us assume that Nu is bang-bang control. Then, there exist " > 0,

0 > 0 and a sequence f Nu
gj
 j�
0 , such that each Nu
 is a local solution of (P
 )
satisfying

(a) J
 . Nu
 / � J
.u
 / 8u
 2 U
;ad \ NB". Nu/, NB". Nu/ denoting the L2.˝T/ ball.
(b) Nu
 ! Nu strongly in Lp.˝T/ for every 1 � p < C1.

Finally, we state the result regarding convergence rates:

Theorem 12 Let Nu be a local solution of (P) with associated state Ny and adjoint
state N'. Suppose that (20) holds, and there exists a constant C0 > 0 such that
� � C0h2 for every 
 D .�; h/. Let f Nu
g
 be a sequence of local minima of problems
(P
 ) such that J
. Nu
 / � J
 .u
 /8u
 2 U
;ad\ NB". Nu/, where NB". Nu/ denotes a L2.˝T/

ball, and Nu
 ! Nu in L2.˝T/. Let fNy
g
 be the corresponding discrete states. Then,
there exists a constant C > 0 independent of 
 such that

lim
j
 j!0

1pj
 j kNy
 � NykL2.˝T / D 0: (44)

Remark 1 We note that when � D 0, the discrete optimality condition takes the
form

Z T

0

Z
˝h

N'
 .x; t/.u
 .x; t/ � Nu
 .x; t// dx dt � 0 8u
 2 U
;ad:

Similar to the continuous case, this is a fundamental difference between the case
� > 0 where the discrete optimality condition takes the form,

Z T

0

Z
˝h

. N'
 .x; t/C � Nu
 .x; t//.u
 .x; t/ � Nu
 .x; t// dx dt � 0 8u
 2 U
;ad :

In this case the standard projection relation between the control and adjoint is
available, and the estimates of Theorems 7 and 8 combined with the second order
analysis of Theorem 5, imply estimates for the control, state and adjoint variables
(see e.g. [6, 7]). On the other hand when � D 0, in addition to the lack of regularity
for the controls, the classical ‘bootstrap’ argument fails to imply estimates for the
control and the adjoint, when combined with the second order analysis of Theorem 6
(see e.g. [8]). However, it is still possible to obtain an estimate for the difference
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between the state, and its discrete approximation. This is due to the fact that using
Theorem 6, only the difference between the state and its discrete version is involved
when deriving error estimates for the states. We also note that that despite the lack of
regularity on the controls, the estimates presented in Theorem 7 are still applicable.
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Asymptotic Analysis of a Viscous Flow
in a Curved Pipe with Elastic Walls

Gonzalo Castiñeira and José M. Rodríguez

Abstract This communication is devoted to the presentation of our recent results
regarding the asymptotic analysis of a viscous flow in a tube with elastic walls. This
study can be applied, for example, to the blood flow in an artery. With this aim, we
consider the dynamic problem of the incompressible flow of a viscous fluid through
a curved pipe with a smooth central curve. Our analysis leads to the obtention of an
one dimensional model via singular perturbation of the Navier-Stokes system as ",
a non dimensional parameter related to the radius of cross-section of the tube, tends
to zero. We allow the radius depend on tangential direction and time, so a coupling
with an elastic or viscoelastic law on the wall of the pipe is possible. To perform the
asymptotic analysis, we take a change of variable to a reference domain where we
assume the existence of asymptotic expansions on " for both velocity and pressure
which, upon substitution on Navier-Stokes equations, leads to the characterization
of various terms of the expansion. This allows us to obtain an approximation of the
solution of the Navier-Stokes equations.

1 Introduction

Last decades, applied mathematics have been involved in some new fields where
they had not been applied before. One of these fields is biomedicine, from which
new methods to improve the diagnosis and treatment of different diseases are
demanded. In particular, in the case of cardiovascular problems, modeling the blood
flow in veins and arteries is a difficult problem.

G. Castiñeira (�)
Facultad de Matemáticas, Departamento de Matemática Aplicada, Univ. de Santiago de
Compostela, 15782 Santiago de Compostela, Spain
e-mail: gonzalo.castineira@usc.es

J.M. Rodríguez
Departamento de Métodos Matemáticos y de Representación, E.T.S. Arquitectura, Universidade
da Coruña, 15071 A Coruña, Spain
e-mail: jose.rodriguez.seijo@udc.es

© Springer International Publishing Switzerland 2016
F. Ortegón Gallego et al. (eds.), Trends in Differential Equations and Applications,
SEMA SIMAI Springer Series 8, DOI 10.1007/978-3-319-32013-7_5

73

mailto:gonzalo.castineira@usc.es
mailto:jose.rodriguez.seijo@udc.es


74 G. Castiñeira and J.M. Rodríguez

A large number of articles have studied the flow of a viscous fluid through a
pipe. For example, in [3, 6, 12] the flow behavior inside the pipe is related with
the curvature and torsion of its middle line. In [3] the main term of the asymptotic
expansion of the solution is compared with a Poiseuille flow inside a pipe with rigid
walls. In [9], the same problem but with visco-elastic walls is considered, leading
to a fluid-structure problem. In [4] the secondary flow is studied, the boundary layer
in [11], both depending on values of Dean number. More recently, the non-steady
case in tube structures, has been considered in [7, 8], where estimates of the error
between exact solution and the asymptotic approximation are proved.

There are also articles where the flow in blood vessels is modeled. An one
dimensional model is presented in [2], where clinical procedures where this model
can be useful are highlighted. Another model for blood flow in arteries is developed
in [10], relating blood pulse and flow patterns, and remarking how this kind of
models can help with the design of treatments for particular diseases.

In this article, we shall follow the spirits of [5], where asymptotic analysis is used
to find a model for a steady flow through a curved pipe with rigid walls. We shall
consider, instead, an unsteady flow and elastic walls. The structure of this article
is the following: in Sect. 2 we shall describe the problem in a reference domain, in
Sect. 3 we shall suppose the existence of an asymptotic expansion of the solution
and we shall identify the first terms of this expansion, in Sect. 4 we shall show some
examples of the tangential and transversal velocity, and finally, we shall present
some conclusions in Sect. 5.

2 Setting the Problem in a Reference Domain

Let us suppose that central curve of the pipe is parametrized by c.s/, where s 2 Œ0;L�
is the arc-length parameter, and the interior points of the pipe are given by

.x; y; z/ D c.s/C " r R.t; s/ Œ.cos �/N.s/C .sin �/B.s/� ;

where r 2 Œ0; 1�, � 2 Œ0; 2��, fT D c0;N;Bg is the Frenet-Serret frame of c, and
"R.t; s/ is the radius of the cross-section of the pipe at point c.s/ and time t (see
Fig. 1). The non dimensional parameter " represents the different scale of magnitude
between the pipe diameter and its length, so we shall assume that " << 1.

Fig. 1 Domain of the
original problem. Note that
"R denotes the radius of the
pipe
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Fig. 2 Reference domain
after the change of variable,
we obtain a cylinder of radius
one

Let us introduce the following notation, s1 WD s; s2 WD �; s3 WD r for the
variables, and fv1 WD T; v2 WD N; v3 WD Bg, for the Frenet-Serret frame of c. This
new notation will allow us to use Einstein summation convention in what follows.

Let be the subsets of R3 defined by ˝" D Œ0;L� � Œ0; 2�� � Œ0; "� and ˝ D
Œ0;L� � Œ0; 2�� � Œ0; 1�. We define the maps

	"1 W ˝ ! ˝";

	"2 W ˝" ! Ő "
t ;

given by the expressions

	"1.s1; s2; s3/ D .s1; s2; "s3/ DW .s"1; s"2; s"3/;
	"2.s

"
1; s

"
2; s

"
3/ D c.s"1/C s"3R.t; s

"
1/Œ.cos s"2/v2.s

"
1/C .sin s"2/v3.s

"
1/�:

(1)

We can then introduce the change of variable from the reference domain ˝ (see
Fig. 2),

	" D �
	"2 ı 	"1

� W ˝ ! Ő "
t ;

	".s1; s2; s3/ D c.s1/C "s3R.t; s1/Œ.cos s2/v2.s1/

C.sin s2/v3.s1/� DW .x"1; x"2; x"3/:
(2)

Let us consider the incompressible Navier-Stokes equations in the domain Ő "
t

given by,

@u"

@t
C .ru"/u" D 1

�0
div T" C b"0; (3)

div u" D 0; (4)

where u" stands for the velocity field, b"0 is the density of body forces and T" is the
stress tensor given by

T" D �p"I C 2�˙ ";
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where p" is the pressure field, � the dynamic viscosity and where

˙ " D 1

2

�ru" C .ru"/T
�
:

Let � D �=�0 be the kinematic viscosity, so we can write these equations,

@u"

@t
C .ru"/u" C 1

�0
rp" � ��u" D b"0; (5)

div u" D 0: (6)

We shall consider continuity between the fluid and the wall of the pipe displace-
ments. Let us suppose that only radial displacements of the wall are allowed. Then
the boundary condition at the interface of the fluid and the wall of the pipe can be
expressed as

u" D
�
"
@R

@t

�
n" at s"3 D "; (7)

where n" is the outward unitary normal at s"3 D ".
Our next step is to write the equations of the problem in the reference domain˝ .

Taking into account the change of variable (2), we can associate to each vector field
w" in Ő "

t , a new vector field w."/ defined in ˝ , as follows

w"i D w" � ei D .w"kek/ � ei D .wk."/vk/ � ei DW wk."/vki;

where fe1; e2; e3g is an orthonormal basis, we are using the Einstein summation
convention (where latin indices indicate sum from 1 to 3), and we denote vki WD
vk � ei.

In the case of a scalar field p" in Ő "
t , we associate a new scalar field p."/ defined

in ˝ , as

p".t"; x"1; x
"
2; x

"
3/ D p."/.t; s1; s2; s3/:

With these considerations, the incompressible Navier-Stokes equations in the
reference domain can be written

Dt.uk."/vki/C
 
@.uk."/vki/

@sq

@sq

@x"j

!
.um."/vmj/

�� @

@sm

 
@.uk."/vki/

@sq

@sq

@x"j

!
@sm

@x"j
D � 1

�0

@p."/

@sq

@sq

@x"i
C b0k."/vki; (8)

@

@sq
.uk."/vkj/

@sq

@x"j
D 0; (9)
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where we have used the operator defined by

Dt WD @

@t
� s3

R

@R

@t

@

@s3
:

Finally, from the boundary condition (7) at s"3 D ", we obtain

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

u1."/ D 0 at s3 D 1;

u2."/ D "
@R

@t
cos s2 at s3 D 1;

u3."/ D "
@R

@t
sin s2 at s3 D 1:

(10)

3 Asymptotic Expansion of the Solution

Following [5], we assume that there exists a formal expansion on powers of " for
the components of velocity and pressure fields of the form,

uk."/ D u0k C "u1k C "2u2k C : : : (11)

p."/ D 1

"2
p0 C 1

"
p1 C p2 C : : : (12)

If we substitute (11) and (12) into (8)–(9), and group the terms multiplying the
same powers of ", we are able to identify the first terms of expansion (11)–(12).
Identifying these terms is a very hard and long work, and we refer the interested
reader to our future work [1], currently under development. However, we shall
present as an example, how the zeroth-order terms have been obtained.

Upon substitution of (11) and (12) in (8), we group the terms multiplied by "�3 in
the continuity equation, obtaining the following equations related with the zeroth-
order term of pressure,

� sin s2
s3

@p0

@s2
C cos s2

@p0

@s3
D 0; (13)

cos s2
s3

@p0

@s2
C sin s2

@p0

@s3
D 0: (14)
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Therefore, it is clear that

p0 D p0.t; s1/: (15)

This is, the zeroth-order term of pressure does not depend on the cross-sectional
variables and only depends on time and on the point s1 of the middle line of the
curved pipe. We group terms multiplied by "�2 on the continuity equation, obtaining
the equations

1

.rs3/2
@2u01
@s22

C 1

r2s3

@u01
@s2

C 1

r2
@2u01
@s23

D 1

��0

@p0

@s1
; (16)

1

.rs3/2
@2u02
@s22

C 1

r2s3

@u02
@s2

C 1

r2
@2u02
@s23

D 1

��0

�
� sin s2

rs3

@p1

@s2
C cos s2

r

@p1

@s3

�
; (17)

1

.rs3/2
@2u03
@s22

C 1

r2s3

@u03
@s2

C 1

r2
@2u03
@s23

D 1

��0

�
cos s2

rs3

@p1

@s2
C sin s2

r

@p1

@s3

�
: (18)

Now, firstly, let us introduce the local cartesian coordinates at cross section of the
pipe at s1,

z D .z2; z3/ D .s3 cos s2; s3 sin s2/: (19)

Using the change of variable (19) in (16) , we obtain the following problem for the
axial component of the zeroth-order term of velocity,

8<
:
�zu01 D r2

��0

@p0

@s1
; in !;

u01 D 0 at s3 D 1;

(20)

where ! D f.z2; z3/=z22 C z23 � 1g. The problem (20) has a unique solution which
expression is

u01 D R2

4�0�

@p0

@s1
.s23 � 1/: (21)

Now, grouping terms multiplied by "�1 in the incompressibility equation, we find
that

� sin u02
s3

@u02
@s2

C cos s2
@u02
@s3

C cos s2
s3

@u03
@s2

C sin s2
@u03
@s3

D 0: (22)
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Now, we use (19) in this equation and in (17)–(18). Then, the cross-sectional
components of the zeroth-order term of velocity denoted by U0 D .u02; u

0
3/ and

the first order term of pressure, are solution of the problem,

8̂
<̂
ˆ̂:
�zU0 D r

��0
rzp1

divzU0 D 0;

U0 D 0 at s3 D 1:

(23)

By the Theorem 2.4 in [13], this problem has uniqueness of solution up to a constant
depending on s1 for the pressure term. This solution is

u02 D u03 D 0; p1 D p1.t; s1/: (24)

We sum up the terms identified in this work in what follows. We shall identify
here u0;u1;u2; p0; p1 and p2.

As we presented, the term of order zero of velocity, u0, verifies

u01 D R2

4�0�

@p0

@s1
.s23 � 1/; (25)

u02 D u03 D 0: (26)

Moreover, the zero order term of pressure, p0, is the solution of the problem,

@

@s1

�
R4
@p0

@s1

�
D 16��0R

@R

@t
; (27)

plus suitable boundary conditions.
The components of the next order term of velocity, u1, are

u11 D
�
3R3s3 cos s2

16��0

@p0

@s1
C R2

4��0

@p1

@s1

�
.s23 � 1/; (28)

u12 D s3R

16�0�

�
2
@

@s1
.R2

@p0

@s1
/� R2s23

@2p0

@s21

�
cos s2; (29)

u13 D s3R

16�0�

�
2
@

@s1
.R2

@p0

@s1
/� R2s23

@2p0

@s21

�
sin s2; (30)
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where  D .s1/ is the curvature of the middle line of the pipe at c.s1/, and first
order term of pressure, p1, is the solution of the problem,

@

@s1

�
R4
@p1

@s1

�
D 0; (31)

where we also have to consider the appropriate boundary conditions.
The first component of the second order term of velocity, u2, is

u21 D R2

16

�
R2

4�0�2
@2p0

@t@s1
� R4

16�20�
3

@p0

@s1

@2p0

@s21
� R2

2�0�

@3p0

@s31

C112R2

8�0�

@p0

@s1

�
.s43 � 1/C R2

4

�
� 1

4�0�2
@

@t

�
R2
@p0

@s1

�

C R2

16�20�
3

@p0

@s1

@

@s1

�
R2
@p0

@s1

�
C 1

4�0�

@2

@s21

�
R2
@p0

@s1

�

�7
2R2

16�0�

@p0

@s1
C 1

�0�

@p20
@s1

� b01
�

�
.s23 � 1/

C R6

1152�20�
3

@p0

@s1

@2p0

@s21
.s63 � 1/C 3R3

16�0�

@p1

@s1
.s33 � s3/ cos s2

C 5R4

64�0�

@p0

@s1
.s43 � s23/ cos.2s2/; (32)

and the second order term of pressure, p2, is

p2 D �R2

4

@2p0

@s21
s23 C p20.t; s1/; (33)

where p20.t; s1/ is the solution, with the adequate boundary conditions, of the
problem

@

@s1

�
R4
@p20
@s1

�
D @

@s1

�
� 3R8

64�0�2
@p0

@s1

@2p0

@s21
� R6

12

@3p0

@s31
� 2R6

48

@p0

@s1

� R7

8�0�2
@R

@s1

�
@p0

@s1

�2
� R4

2

�
@R

@s1

�2
@p0

@s1

�R5

2

@2R

@s21

@p0

@s1
� R5

@R

@s1

@2p0

@s21
C R5

2�

@R

@t

@p0

@s1
C R6

6�

@2p0

@t@s1

CR4�0b01

: (34)
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Let U2 D .u22; u
2
3/. Therefore .U2; p3/ solves the following problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

�zU2 D R

�0�
rzp

3 C F in !;

div U2 D g in !;

U2 D 0 in @!:

(35)

The scalar field g and the vectorial field F, derived from the asymptotic procedure
(see [1] for details), are defined by the following expressions respectively

g WD �s3R
2 cos s2

�
1

4�0�

@

@s1

�
R2
@p0

@s1

�
.s23 � 1/� @R

@s1

R

2�0�
s23

�

� 3R

16��0

@

@s1

�
R3

@p0

@s1

�
s3 cos s2.s

2
3 � 1/� R

4��0

@

@s1

�
R2
@p1

@s1

�
.s23 � 1/

C s3R2

16�0�
cos s2

�
2
@

@s1

�
R2
@p0

@s1

�
� R2s23

@2p0

@s21

�

�3R4� sin s2
16�0�

@p0

@s1
.s23 � 1/C s3

@R

@s1

�
3R3 cos s2
16�0�

@p0

@s1
.3s23 � 1/

C R2

2�0�

@p1

@s1
s3

�
; (36)

F WD
 

R6

16�2�3

�
@p0

@s1

�2 �
s43 C 1

�

C
 

� R6

8�20�
3

�
@p0

@s1

�2
� 9R4

16�0�

@2p0

@s21
� R4

4�0�

@

@s1

@p0

@s1

!
s23

� R4

8�0�

@2p0

@s21
s23 cos2 s2 C 5R2

8�0�

@

@s1

�
R2
@p0

@s1

�

C R4

4�0�

@

@s1

@p0

@s1
� R2

�
b02; (37)

��R4

4�0�

@p0

@s1
.s23 � 1/� 2R4

16�0�

@2p0

@s21
s23 cos s2 sin s2 � R2

�
b03

�
: (38)
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Problem (35) has an unique solution .U2; p3/ ( where U2 is unique, but p3 is
unique except for an arbitrary function depending only on s1), if a compatibility
condition (

R
!

g D 0) is fulfilled (see [13]). That is, multiplying by a test function
and integrating over ! the divergence equation of (35), we have that

Z
!

divU2v D
Z
!

gv;

using the Green formula we find that

�
Z
!

U2 � rzv C
Z
ı!

�
U2 � n

�
v D

Z
!

gv:

Hence, taking into account that U2 D 0 on ı! and considering a constant test
function, we conclude

Z
!

g D 0: (39)

Computing this condition using the expression in (36), and together with Eq. (31),
we can see that (39) is verified, so we can ensure existence of a unique solution of
the problem (35).

As we have observed just above, the expressions of g and F are polynomial on
s3, so U2 can be explicitly computed and is also polynomial on s3.

To finish, we need to close the equations with a law on the wall of the pipe. There
are different possibilities (for example, elastic or viscoelastic laws). In the simplest
case (see [2]), we can consider an algebraic elastic law:

p0 � pe D Eh0
R20
.R � R0/ (40)

where E is the Young modulus of the wall, h0 its thickness, R0 the radius of the
cross-section at rest, and pe is the external pressure.

4 Some Examples

In this section we shall present some examples in order to illustrate the behavior of
the approximated solution obtained in the previous section.

We start plotting the main tangential velocity u01 and its corrections u11 and u21.
We observe in Fig. 3 that u01 is a Poiseuille flow (other works as [3, 9] have also
shown this behavior). In Fig. 4 we can see that u11 is a correction of u01 that takes into
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Fig. 3 Plot of u01 field

Fig. 4 Plot of u11 field
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Fig. 5 Plot of u21 field

account the curvature of the middle line (the fluid is faster in the side of the cross
section of the pipe pointing to N). The correction of order two u21, has a complex
dependence on various terms (32), but we get also a Poiseuille flow (Fig. 5).

We have seen at (26) that, at order zero, the transversal velocity is zero, so the
tangential velocity is dominant. The first order correction, U1 D .u12; u

1
3/, is related

with the expansion and contraction of the pipe wall in radial direction. We can see

in Fig. 6 different cases depending on the value of @p0

@s1
(dp1), @

2p0

@s21
(dp2) and @r

@s1
(dr).

The second order correction of transversal velocity, U2 D .u22; u
2
3/, is related with

the recirculation of the fluid in the cross section of the pipe, as we can see in Fig. 7,
where we show different cases depending on the curvature (k), its derivative (dk)
and the torsion (tau) of the middle line of the pipe.

5 Conclusions

A transient model for a newtonian fluid through a curved pipe with elastic walls
has been obtained. The asymptotic expansions have allowed us to find out the main
components of velocity and their corrections. Furthermore, we have verified that
our model reduces to the obtained in [5], when steady case and rigid walls are
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Fig. 6 Plot of .u12; u
1
3/ field
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Fig. 7 Plot of .u22; u
2
3/ field

considered, that is, by replacing (40) by the equality R D R0. Plots presented here
(see Figs. 3–7) compare very well with real patterns of blood flow and agree with
the data available in the literature. A simple algebraic elastic law for the pipe wall
has been considered in (40), but other more general laws can be used.
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5. Marušić-Paloka, E.: The effects of flexion and torsion on a fluid flow through a curved pipe.

Appl. Math. Optim. 44, 245–272 (2001)
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A Two-Scale Homogenization Approach
for the Estimation of Porosity in Elastic Media

Joaquín Mura and Alfonso Caiazzo

Abstract We propose a novel method for estimating the porosity of an elastic
medium starting from inner displacement measurement, such as the ones that
can be obtained from seismogram data for the study of soils or from magnetic
resonance elastography for the diagnosis of tissue diseases. The approach is based
on a two-scale homogenization, which relates geometrical characteristics of the
void-elastic solid mixture at the small (mesoscopic) scale of the pore with an
effective elasticity tensor at the large (macroscopic) scale of the effective material.
Through semi-analytical approximations of the homogenized equations, the idea
can be further extended considering slight variations in the shape of the pore. This
procedure leads eventually to an inverse problem formulation that enable us to
recover approximately the porosity field by means of the finite element formulation
of the effective macroscale problem only. We validate the multiscale approximation
and the two-scale porosity estimation method with numerical examples.

1 Introduction

The behavior of elastic materials characterized by the presence of small cavities
has been largely studied since it is of utmost importance for a vast amount of
applications in material sciences, biomechanics and engineering. When describing
mathematically this class of materials, the interaction between the mesoscopic scale
(the cavities) and the macroscopic one (the matrix) is not negligible and lead to
corrective terms in classical Navier equations. These coefficients can be explicitly
derived under certain conditions, using two-scale or periodic homogenization,
assuming geometrical periodicity, or via small amplitude homogenization, if the

J. Mura
School of Civil Engineering, Pontificia Universidad Católica de Valparaíso, Av. Brasil 2147,
Valparaíso, Chile
e-mail: joaquin.mura@ucv.cl

A. Caiazzo (�)
Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Leibniz Institute im
Forschungsverbund Berlin e.V., Mohrenstrasse 39, 10117, Berlin, German
e-mail: caiazzo@wias-berlin.de

© Springer International Publishing Switzerland 2016
F. Ortegón Gallego et al. (eds.), Trends in Differential Equations and Applications,
SEMA SIMAI Springer Series 8, DOI 10.1007/978-3-319-32013-7_6

89

mailto:joaquin.mura@ucv.cl
mailto:caiazzo@wias-berlin.de


90 J. Mura and A. Caiazzo

contrast between material coefficients is small. These two approaches can be
considered as special applications of a more general Homogenization theory (see,
e.g., [14]), providing mathematical results that lately have set the basis for a
new class of numerical methods, aiming at accurately solving multiscale problems
without excessive use of computational resources [2, 7, 11].

In this paper we focus on porous soils, and, in particular, on detecting the regions
characterized by different porosities starting from seismic data. This problems
corresponds to characterize the porosity of a soil sample starting from the inner
displacement response to a harmonic excitation. To this aim, we perform the
following steps: (1) we obtain an upscaled problem splitting the dynamics on the
micro- and the macroscale, via a homogenized model for a solid matrix with an
array of small cavities; (2) we derive semi-analytical approximations of the solution
of the mesoscopic cell problems, which allow to write the effective elasticity tensor
as a function of the porosity and of the material constants; (3) we construct an
optimization framework to recover the porosity (mesoscopic parameter) solving a
homogenized inverse problem at the macroscale. To solve the inverse problem, we
adopt an iterative variational approach based on the solution of an adjoint problem
(see e.g. [8, 9]).

The algorithm is validated using synthetic displacement data, obtained simulat-
ing the full problem.

The rest of the paper is organized as follows. In Sect. 2 we describe the multiscale
elasticity problem and the corresponding two-scale homogenization. In Sect. 3 we
derive semi-analytical expressions of the effective tensor coefficients, which are then
used in Sect. 4 to define a multiscale variational inverse problem for the estimation
of porosity starting from measurement of the internal displacement field. Numerical
results are presented in Sect. 5, while Sect. 6 draws the conclusion.

2 Two-Scale Modeling of Elastic Media with Void Inclusions

Let us assume to deal with a biphasic material, composed of an elastic matrix,
with shear modulus �, compression modulus (Lamé first parameter) �, and small
void inclusions (empty pores) of different sizes. Furthermore, we assume that the
following conditions are satisfied: (1) the inclusions are very small with respect to
the matrix and isolated from each other; (2) they can be organized into a periodic
array; (3) they have spherical shape.

In this setting, the properties of the effective material can be obtained via a
two-scale homogenization, in order to characterize the effect of the mesoscale
geometry (i.e. the pores) only from a macroscopic point of view [12, 13]. In
particular, we adopt the two scales homogenization presented in [4] (and extended
in [5] to the time harmonic regime), which is summarized in this section. For
other recently proposed approaches concerning homogenization in the context of
elasticity problems, we refer the reader to, e.g., [3, 6].
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Let a bounded domain ˝ � R
d (d D 2; 3) represent the space occupied by the

material and let the small parameter 0 < � 
 1, denote the aspect ratio between the
inclusions and the container matrix. Under the above assumptions, we consider the
composite material as the combination of a large number of equal mesoscopic cells,
i.e.

˝� D
[

i

˝�;i ;

where ˝�;i WD �Y C xi contain a single inclusion, Y D Œ0; 1�N is the unitary cell in
R

N (N D 2; 3), and xi denotes the center of the cell (see Fig. 1).
In this configuration, the unitary cell Y can be decomposed as

Y D YS [ � [ YF

where YS and YF stand for the domains occupied by the matrix and the void,
respectively, and � denotes the interface between them (as shown in Fig. 1).

Remark 1 The porosity of the material, defined as the fraction of void volume, is
given by

	 D jYFj :

Remark 2 (Effective Density) Let �k;�.y/ the characteristic function of the solid
domain in the cell k. If the solid matrix has a constant density �S, then the effective

Fig. 1 Sketch of the
mesoscopic and macroscopic
scales in the composite
material

Ωε

Y

εYF

YS
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density in the microscopic cell is given by

��.y/ D
X

k

�S�
k;�
S .y/

(summing up all the contribution of the cells), while the cell-averaged density is

� D 1

jYj
Z

Y
��.y/ dy D jYSj

jYj �S D .1 � 	/�S : (1)

2.1 Linear Elasticity in Harmonic Regime

Since our main motivation is to address the estimation of soil properties starting
from seismogram data, we focus on a time harmonic regime, with the pulsation
driven by a known frequency ! > 0. In this configuration, the displacement of the
material can be described by a vector field d� W ˝ ! R

d (d D 2; 3/ obeying the
following equation:

� ��!2d� � div 
.d�/ D f in ˝�; (2)

completed with the boundary conditions

8̂
<̂
ˆ̂:


.d�/n� D 0 on � �;k; k D 1; : : :


.d�/n� D gext on �N ;

d� D dext on �D;

(3)

and with the linear constitutive relation


.d�/ D Ce.d�/ D �div.d�/I C 2�e.d�/;

where

e.d/ D 1=2
�rd C rdT

�

denotes for the linear strain tensor.
In (3), the subsets �N and �D of the @˝� denote the external Neumann and

the Dirichlet boundaries, respectively, while n� stands for the outgoing normal
vector on the boundary. Finally, gext and dext denote the external forces and the
external imposed displacements, respectively, which are assumed to be known from
experimental data.
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2.2 Asymptotic Expansion

In order to obtain the effective equations in the limit of small inclusions (� ! 0),
we use the following multiscale ansatz for the displacement field

d�.x/ D
2X

kD0
�kdk.x; x=�/C O.�3/ : (4)

Furthermore, let us denote with y D x=� the so-called fast variable (defined in the
unit cell Y), and let us introduce the splitting of the spatial derivative

@ D @x C .1=�/@y : (5)

Inserting (4)–(5) in (2) and collecting the terms of the same orders in �, one obtains a
system of equations for the variables x and y, describing the macroscopic dynamics
(leading order) and the dynamics at the pore scale at different orders in �. For the
zeroth order it holds

8<
:

�divy
y.d0/ D 0 in ˝ � YS;


y.d0/n D 0 on ˝ � �;
d0 Y � periodic,

(6)

whose solution is given by a displacement field d0 constant in y (but not in x).
Collecting the terms of first order in � yields an equation for d1:

8<
:

�divy
y.d1/ D 0 in ˝ � YS;


y.d1/n D �
x.d0/n on˝ � �:
d1 Y � periodic

(7)

while the second order field d2 is described by

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

� divy
y.d2/ D �!2d0 C divx.
y.d1/C 
x.d0//

C divy
x.d1/ in ˝ � YS;


y.d2/n D �
x.d1/n on˝ � �;
d2 Y � periodic.

(8)

Notice that, since the frequency is independent from �, Eqs. (6)–(8) do not
depend on the harmonic waves, when solving the dependence on y of d0, d1 and
d2, respectively. In other words, at the spatial scale of the pores, the length-wave of
the excitation is, at first order in �, too large to be perceived with the fast variable y.
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The only contribution of the term associated with the frequency just appear in
the right hand side of (8). This equation will be used later to obtain the formula of
the effective tensor.

2.3 Homogenized Elasticity Tensor

In what follows, let us denote with

h f iYS.x/ D 1

YS

Z
YS

f .x; y/ dy

the average of a function f over YS with respect to the fast variable. The variable d2

can be eliminated by direct integration of (8), thanks to the so-called compatibility
condition in YS with respect to y [12]. Hence, one gets the following differential
problem for the macroscopic variable d0:

8̂
<̂
ˆ̂:

��!2d0 � divx
�

x.d0/C h
y.d1/iYS

� D f in ˝;


x.d0/n D gext on �N ;

d0 D dext on �D;

(9)

For the study problem (9) it is convenient to introduce the change of variable [4]

d1.x; y/ D
NX

k;lD1
Œex.d0/.x/�kl�

kl.y/: (10)

Hence, by inserting (10) into (9), one can conclude that (9) describes the dynamics
of a compressible material, with the effective elasticity tensor given by

Ceff
ijkl D �ıijıkl C 2�ıijkl C hŒ
y.�

kl/�ijiYS ; (11)

where ıijkl WD 1
2
.ıliıkj C ıkiılj/, and the variable �kl can be obtained solving the

following problem on the cell YS [4]:

8<
:

�divy
y.�
kl/ D 0 in YS;


y.�
kl/n D �Tkln on �;
�kl is Y � periodic,

(12)

with

Tkl
ij D ��ıijıkl C 2�ıijkl : (13)
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In the two-dimensional case, the following expressions for Tkl hold:

T11 D
�
�C 2� 0

0 �

�
;T22 D

�
� 0

0 �C 2�

�
;T12 D T21 D

�
0 �

� 0

�
; (14)

while for a three-dimensional problem one obtains

T11 D
2
4�C 2� 0 0

0 � 0

0 0 �

3
5 ; T12 D T21 D

2
4 0 � 0� 0 0

0 0 0

3
5 ;

T22 D
2
4� 0 0

0 �C 2� 0

0 0 �

3
5 ; T13 D T31 D

2
4 0 0 �0 0 0

� 0 0

3
5 ;

T23 D T32 D
2
4 0 0 00 0 �

0 � 0

3
5 ; T33 D

2
4� 0 0

0 � 0

0 0 �C 2�

3
5 :

In practice, in order to solve for the macroscopic dynamics for given �, � and
inclusion radius (i.e. for given porosity), the effective tensor coefficients shall be
every time evaluated solving the corresponding cell problems (12) for the variable
�kl. In order to obtain a faster procedure, which does not require the solution of
the cell problems for any configuration of parameters, in the following Section we
derive semi-analytic approximations of the effective tensor coefficients (similarly as
in [5]), exploiting the symmetry and linearity properties of (12) and using numerical
interpolation.

3 Approximation of the Two-Dimensional Effective Tensor

For the sake of simplicity, in what follows we will restrict to the two-dimensional
case. Moreover, for the application of interest (estimation of porosity in soil), we
will focus on small porosities and � D O.�/.

According to (11), the element Cijkl of the effective tensor depends on the
microscale through the integrals

aijkl D
Z

YS

Œ
y.�kl/�ij dy ;
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which, for symmetry reasons (see, e.g., [4]), satisfy

a1111 D a2222 ;

a1122 D a2211 ;

a1212 D a1221 D a2121 D a2112 ;

a1112 D a1121 D a1211 D a2212 D a1222 D a2111 D 0 :

(15)

Hence, the effective elasticity tensor is completely defined by just three coefficients

Ceff
1111 D Ceff

2222 D �C 2�C hŒ
y.�
11/�11iYS ;

Ceff
1122 D Ceff

2211 D �C hŒ
y.�
11/�22iYS ;

Ceff
1212 D Ceff

1221 D Ceff
2112 D Ceff

2121 D �C hŒ
y.�
12/�12iYS :

(16)

Observing that jYSj D .1 � 	/, we introduce the notations

a1 D a1111 D .1� 	/hŒ
y.�
11/�11iYS

a2 D a1212 D .1� 	/hŒ
y.�
12/�12iYS

a3 D a1122 D .1� 	/hŒ
y.�
11/�22iYS D .1 � 	/hŒ
y.�

22/�11iYS :

(17)

3.1 The Coefficients a1 and a3

First, let us introduce the quantity

aC D a1 C a3 D .1 � 	/hŒ
y.�
11 C �22/�11iYS (18)

Hence, aC can be computed from the solution to the differential problem obtained
adding up the cell problems for .k; l/ D .1; 1/ and .k; l/ D .2; 2/:

8̂
<̂
ˆ̂:

�divy
y.�
C/ D 0 in YS;


y.�
C/n D �

�
2.�C �/ 0

0 2.�C �/

�
n on �;

�C is Y � periodic.

(19)
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Problem (19) is now linear in .� C �/, due to the symmetric boundary condi-

tion (19)2. Hence, one can consider the variable O�C WD �C

�C� which satisfies

8̂
<̂
ˆ̂:

�divy
y. O�C/ D 0 in YS;


y. O�C
/n D �

�
2 0

0 2

�
n on �;

�C is Y � periodic.

(20)

and rewrite (18) as

aC D .1 � 	/.�C �/

Z
YS


y. O�C/11:

Furthermore, we observe that, multiplying both � and � by the same constant, the
solution to (20) does not change. Hence, the integral

R
YS

y. O�C/11 shall depend on

the Lamé coefficient only through their ratio.
Let ı D �

�
. Based on the above considerations, we search for an approximation

of aC using the ansatz

aC D .�C �/
A.ı/	

B.ı/C C.ı/	
:

The coefficients A, B and C have been fitted from several numerical simulations,
which resulted in the approximation

a1 C a3 D aC D .�C �/

�
� 5.1C ı/	

2C 4.2C ı/	

�
: (21)

As next, we obtained by numerical interpolation the following approximation

a1 � a3 D aC
�

ı2

ı4 C 2ı2 � 1
� 	

�ı

�
; (22)

which, combined with (21) yields

a1 D aC
�
1

2
C ı2

2.ı4 C 2ı2 � 1/
� 	

2�ı

�
;

a3 D aC
�
1

2
� ı2

2.ı4 C 2ı2 � 1/ C 	

2�ı

�
:

(23)
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3.2 The Coefficient a2

The remaining integral a2 is obtained from the solution of the cell problem

8̂
<̂
ˆ̂:

�divy
y.�
12/ D 0 in YS;


y.�
12/n D �

�
0 ��

�� 0

�
n on �;

�C is Y � periodic,

(24)

whose solution is linear in �. Once more, considering the differential problem

satisfied by the function �12

�
, one can conclude that a2

�
depends on the Lamé

coefficients only through ı. Moreover, numerical evidence showed that, for small
porosity and in the regime � D O.�/, a2 behaves almost linearly in 	, Hence, in
order to determine the coefficient, we considered a numerical interpolation for the
variable ı, which resulted in the following expression

a2 D ��	
�
�

2
C 4.5� ı2/.ı2 � 2/

15ı2.ı2 C 1/

�
: (25)

3.3 Semi-Analytical Effective Tensor

In conclusion, the non-zero entries of the effective elasticity tensor are approximated
as

Ceff
1111 D Ceff

2222 D

�C 2�C .�C �/

�
� 5.1C ı/	

2C 4.2C ı/	

��
1

2
C ı2

2.ı4 C 2ı2 � 1/
� 	

2�ı

�
;

Ceff
1122 D Ceff

2211 D �C .�C �/

�
� 5.1C ı/	

2C 4.2C ı/	

��
1

2
� ı2

2.ı4 C 2ı2 � 1/ C 	

2�ı

�
;

Ceff
1212 D Ceff

1221 D Ceff
2112 D Ceff

2121 D �

�
1� 	

�
�

2
C 4.5 � ı2/.ı2 � 2/

15ı2.ı2 C 1/

��
:

(26)

Even if based on heuristic considerations and a coarse numerical interpolation,
the results showed that the formulas (23) and (25) provide satisfactory approxima-
tions in the range of small porosity and for � D O.�/. A detailed comparison of the
coefficients for small porosities, and for two particular choices of � and �, is shown
in Fig. 2.
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Fig. 2 Comparisons of the coefficients of the effective elasticity tensor computed numerically
(red) and with the approximations (23) and (25) (blue). Left: � D � D 100MPa. Right: � D
30MPa, � D 10MPa

4 Estimation of Porosity Through the Homogenized Model

Finally, we exploit the results of Sects. 2 and 3 to define a two-scale variational-
based estimation algorithm for the identification of material porosity using harmonic
wave analysis. In particular, the analytical approximations (26) of the effective ten-
sor coefficients allows us to solve the inverse problem without resolving numerically
the dynamics at the fine scale (of the pores).
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For the set up of the problem, we assume that the porosity field 	.x/ W ˝ ! Œ0; 1�

is an unknown function of space, and that a set of displacement measurements (for
a given frequency !) at different location inside ˝ is available, described by a field

d!exp W M ! R
d;

with (M � ˝). The inverse problem is formulated as a minimization problem for
the objective functional

J.	/ D 1

2

Z
M

ˇ̌
d	 � d!exp

ˇ̌2
; (27)

where d	 denotes the numerical solution for the macroscopic displacement corre-
sponding to a particular porosity field 	:

8̂
<̂
ˆ̂:

��!2d	 � div
�
Ceff ex.d	/

� D 0; in ˝;

Ceff ex.d	/n D 0 on �N ;

d	 � n D dbd on �D:

(28)

The minimization problem for J.	/ is solved with a variational procedure similar to
the one described in [8, 9], which is shortly summarized below. First, we compute
the derivative of J.	/ with respect to a given increment � of the porosity field by
perturbing the system in the variable 	, yielding a new problem for the sensitivity
of d	 , which will be denoted as @	d	 . Then, the gradient of the functional J.	/ can
be obtained as the Fréchet derivative of (27):

�
@J

@	
; �

�
D
Z
M

�
.d	 � d!exp/ � @	d	

�
� dx (29)

along any increment direction � . Introducing the adjoint problem

8̂
<̂
ˆ̂:

��!2z	 � div
�
Ceff ex.z	/

� Dd	 � d!exp in ˝;

Ceff ex.z	/n D0 on �N ;

z	 � n D0 on �D;

(30)

one can rewrite Eq. (29) as

�
@J

@	
; �

�
D �

Z
M

�
!2�Sd	 � z	 C �

@	Ceff


e.d	/ W e.z	/
�
� dx; (31)

which is obtained testing the variational formulation of (28) with v D z	 and testing
the variational formulation associated with (30) with @	d	 .
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Using (31), a descent direction for J can be obtained defining the increment as
� D �˛S, where ˛ > 0 is a free parameter, controlling the length of the step along
the �-direction and

S D �!2�Sd	 � z	 � �
@	Ceff


e.d	/ W e.z	/: (32)

In particular, the tensor @	Ceff in (32), i.e. the derivative of Ceff with respect to 	,
can be computed using (26), without the need of multiple numerical solution of
the microscopic cell problem (12) for different porosity (i.e. pore size in the cell
problem).

4.1 The Algorithm

Our two-scale estimation algorithm can be summarized as follows. As initial
conditions, let be given a porosity field 	.0/ (e.g. equal to a constant 	0), let ˛.0/ D 1,
and let S.0/ D S.	.0// [as in (32)].

Until a convergence criterium is satisfied, do:

1 Compute 	.k/ D 	.k�1/ � ˛.k/S.k/ (possibly restrict 	.k/ between 0 and 1).
2 Evaluate the homogenized tensor Ceff .	.k// using (26).
3 Solve (28) and compute the macroscopic solution d.k/,
4 Evaluate J.k/ D J.	.k//:

if J.k/ � J.k�1/ ) set 	.kC1/ D 	.k/, ˛.kC1/ D ˛.k/

2
and go back to step 1

else (if J.k/ < J.k�1/).
5 Evaluate the derivatives of Ceff .	.k// through (26).
6 Solve the adjoint problem (30) for z.k/.
7 Compute S.k/ using (32).

In the numerical results presented below we used, as indicators of convergence,
either a lower bound on the magnitude of the increment in porosity or the relative
decrease of the objective functional between successive iterations.

5 Numerical Results

This section is devoted to the numerical results. In all cases, the finite element
formulations have been implemented and solved with FreeFem++ [1, 10]. The
programs used for the numerical tests are available for download at http://wias-
berlin.de/people/caiazzo/FreeFem/cedya2015.zip.

In order to validate the two-scale homogenization model, we consider a square
computational domain˝ D �

0; 2
3

2
consisting of an elastic matrix and several small

void inclusions of circular shape, with radii such that the resulting porosity is equal
to 0.07 in the outer part and to 0.15 in the inner part (Fig. 3, left). The synthetic

http://wias-berlin.de/people/caiazzo/FreeFem/cedya2015.zip
http://wias-berlin.de/people/caiazzo/FreeFem/cedya2015.zip
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Fig. 3 Left: The domain with two sub-regions of different porosity (outer: 	 D 0:07, inner: 	 D
0:15) used for testing the two-scale porosity estimation method. Right: The coarse mesh used for
solving the homogenized problems within the estimation algorithm

Fig. 4 Solution obtained with the estimation algorithm in the case � D � D 100MPa. Top-
Left: result without adding noise to the mesoscopic solution. Top-Right: result with 1 % of noise.
Bottom-Left: 2.5 % of noise. Bottom-Right: 5 % of noise. All the simulations have been performed
using the homogenized formulation (on the coarse mesh shown in Fig. 3, right)
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Fig. 5 Solution obtained with the estimation algorithm in the case � D 30MPa, � D 10MPa.
Top-Left: result without adding noise to the mesoscopic solution. Top-Right: result with 1 % of
noise. Bottom-Left: 2.5 % of noise. Bottom-Right: 5 % of noise. All the simulations have been
performed using the homogenized formulation (on the coarse mesh shown in Fig. 3, right)

measurements to feed the minimization algorithm have been constructed solving
the full scale problem (2)–(3) on a very fine mesh (around 130K nodes and 256K
triangles) then interpolating the displacement on a much coarser mesh (3K nodes
and 6K triangles), that does not resolve the geometry of the inclusions (Fig. 3, right).
Finally, the obtained displacement field has been perturbed with Gaussian noise. The
frequency has been fixed to 50 Hz.

Figures 4 and 5 show the estimated porosity for � D � D 100MPa and � D
30MPa, � D 10MPa, respectively. In both cases, the estimation algorithm is able
to detect the larger porosity, also perturbing the interpolated measurements with
random noise (up to an intensity of 5 %).

The detailed behavior of the objective functional J.	/ for � D � D 100MPa
is shown in Fig. 6. A similar descent behavior has been obtained in the case
� D 30MPa, � D 10MPa (not shown). In particular, we observe that, also in
the noisy cases, the variational approach is still able to find a descent direction of
the functional.
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Fig. 6 Convergence history of the objective functional for � D � D 100MPa, for different level
of noise. For the sake of visualization, the curves have been renormalized with respect to the initial
value (indicated in the legend)

Finally, it is worth noticing that the estimation algorithm, although seeking the
minimum with respect to a displacement field of the small scale problem (2)–
(3), is purely based on the solutions of the homogenized problems (28)–(30). The
numerical results, besides drastically improving the efficiency of the computation,
provide an intrinsic validation of the two-scale approximation of the original
elasticity problem in terms of the local cell problems (12) and the semi-analytical
approximations (23) and (25).

6 Conclusions

We presented a novel algorithm for the detection of porosity in elastic media based
on a variational optimization procedure, extending the two-scale approach firstly
presented in [5]. The main advantage of the proposed methodology is that it allows
to formulate the inverse problem directly on the homogenized version of the original
equation, parametrizing semi-analytically the upscaled elasticity tensor in terms of
mesoscopic geometrical properties (e.g. the shape of the pores). We showed that
the semi-analytical formulas provide a good approximation for the detection of void
pores in selected cases of interests (small porosity and � D O.�/) and in moderate
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harmonic regime. However, further developments are needed in order to obtain more
robust approximations for a wider range of Lamé coefficients and to extend the
procedure to the high frequency regime.
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A Matrix Approach to the Newton Formula
and Divided Differences

J.M. Carnicer, Y. Khiar, and J.M. Peña

Abstract The Crout factorization of a Vandermonde matrix is related with the
Newton polynomial interpolation formula expressed in terms of divided differences.
Another triangular factorization, which can be related with the Newton formula in
terms of finite differences, is provided by the Doolittle factorization. The influence
of the order of the nodes on the conditioning of the corresponding linear system is
analyzed, considering the three cases of increasing order, Leja order and increasing
distances to the origin. The lower triangular systems for the computation of divided
and finite differences are analyzed and the conditioning of the corresponding lower
triangular matrices is studied. Numerical examples are included.

1 Introduction

In this paper we analyze the problem of estimating the coefficients of the polynomial
interpolant with respect to different bases. First we consider the monomial basis,
which gives rise to a linear system whose coefficient matrix is the Vandermonde
matrix. Then we use the Newton basis. The problem of computing the divided
differences leads to a linear system whose coefficient matrix is lower triangular.

The Vandermonde matrix can be decomposed into triangular matrices by means
of the Newton formula for the Lagrange interpolation polynomial problem. The
resulting triangular factorization coincides with the Crout factorization because the
upper triangular matrix has unit diagonal, as recalled in Sect. 2. In Sect. 2, we also
recall the results of [3] showing that the computation of both triangular factors
and their inverses can be performed with high relative accuracy. We present in
Sect. 3 the results for the Doolittle factorization of the Vandermonde matrix, where
the lower triangular factor has unit diagonal. We also present in this section three
different orderings of the nodes: natural, Leja and a new ordering that will be called
central ordering. We discuss their influence on the conditioning (cf. [7]) of the
Vandermonde linear system. The numerical experiments of Sect. 3 show the nice
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properties of this new ordering when the interval is centered at the origin. Finally,
in Sects. 4 and 5 we analyze the systems Ld D f and QL� D f, where f is the vector
of the initial data, d and� are the divided and finite differences, and L and QL are the
lower triangular matrices of the Crout and the Doolittle factorizations, respectively.
The conditioning of QL under several orderings is studied. For equidistant nodes, it
is shown that QL is better conditioned with the Leja ordering than with the natural
ordering. Numerical experiments are also included.

2 Lagrange and Newton Formulas

Let us pose the Lagrange interpolation problem. Given an .n C 1/-dimensional
function space U, distinct nodes x0; : : : ; xn, and values f0; : : : ; fn, we want to find
u 2 U such that u.xi/ D fi, i D 0; : : : ; n.

Let .u0; : : : ; un/ be a basis of U. Then we can write the solution u, which is called
the interpolant, respect to this basis with coefficients c0; : : : ; cn, u D Pn

iD0 ciui, and
the interpolation problem is reduced to the linear system

M
�u0; : : : ; un

x0; : : : ; xn

�
c D f;

where c D .c0; : : : ; cn/
T ; f D . f0; : : : ; fn/T in RnC1 and the matrix

M
�u0; : : : ; un

x0; : : : ; xn

�
D .uj.xi//i; jD0;:::;n

in R.nC1/�.nC1/ is called the collocation matrix of the basis at the nodes x0; : : : ; xn.
We consider the particular case U D Pn, the space of the polynomials of degree

less than or equal to n, and the monomial basis m D .m0; : : : ;mn/
T , mj.x/ WD xj,

j D 0; : : : ; n. Then the problem of finding the coefficients c of the interpolant is
reduced to solve the system

Vc D f; (1)

where

V D V.x0; : : : ; xn/ WD M
�m0;m1; : : : ;mn

x0; x1; : : : ; xn

�
(2)

is the Vandermonde matrix with nodes x0; : : : ; xn, whose .i; j/ entry is vij D xi
j,

i; j D 0; : : : ; n.
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We denote the interpolation polynomial by p.x/. The solution of the Lagrange
interpolation problem can be expressed using Lagrange formula

p.x/ D
nX

jD0
f .xj/lj.x/; lj.x/ D

nY
kD0
k¤j

x � xk

xj � xk
; j D 0; : : : ; n;

where the functions lj are the Lagrange polynomials. Let us denote by l D
.l0; : : : ; ln/T the Lagrange basis.

If we compare the expressions of the interpolant with respect to both bases l and
m, we have

lT f D mTc:

Using (1), we have lT f D mTV�1f for all f, and so we deduce that

lT D mTV�1; (3)

i.e., the matrix of change of basis between the Lagrange basis and the monomial
basis is the inverse of the Vandermonde matrix. Expanding the elements of the
Lagrange basis in terms of the monomial basis, we obtain that the entry .i; j/ of
V�1 is

v
.�1/
ij D .�1/n�i

P
k1<���<kn�i2f0;:::;ngnf jg xk1 � � � xkn�iQ

k¤j.xj � xk/
: (4)

The Newton formula

p.x/ D
nX

jD0
Œx0; : : : ; xj� f!j.x/

expresses the polynomial interpolant in terms of the Newton basis, ! D
.!0; : : : ; !n/, and the divided differences dj D Œx0; : : : ; xj� f , j D 0; : : : ; n. The
elements of the Newton basis are

!j.x/ D .x � x0/ � � � .x � xj�1/; j D 0; : : : ; n: (5)

Each element !j of the Newton basis is a monic polynomial of degree j such that
!j.xi/ D 0 for i < j and for this reason the collocation matrix of the Newton basis
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M
�
!0;:::;!n

x0;x1;:::;xn

�
is a lower triangular matrix. Let us denote by L this matrix

L D

0
BBBBBB@

1 0 � � � 0

1 x1 � x0 � � � 0

1 x2 � x0
: : :

:::
:::

:::
: : : 0

1 xn � x0 � � � .xn � x0/ � � � .xn � xn�1/

1
CCCCCCA
; (6)

with

lij D !j.xi/: (7)

Observe that L is the matrix of change of basis between the Newton basis and the
Lagrange basis

!T D lTL; (8)

and so

Ld D f; (9)

where d D .d0; : : : ; dn/
T is the vector of divided differences.

Let

U WD

0
BBBBBB@

1 x0 x20 � � � xn
0

0 1 Œx0; x1�x2 � � � Œx0; x1�xn

0 0 1
: : :

:::
:::
:::

: : :
: : : Œx0; : : : ; xn�1�xn

0 0 � � � 0 1

1
CCCCCCA
: (10)

From the Newton formula applied to the monomials, m0; : : : ;mn, we deduce

mT D !TU: (11)

Relating the formulas (3), (8) and (11) we have

V D LU; (12)

that is, the matrices L and U form the (unique) Crout factorization of the Vander-
monde matrix. The Crout factorization is characterised by the fact that L is a lower
triangular matrix whose diagonal entries are the pivots of the Gaussian elimination
and U is an upper triangular matrix with unit diagonal.
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The LU factorization is used frequently to solve linear systems. In order to solve
Vc D f, with V D LU, we consider the following two triangular systems

Ld D f; Uc D d: (13)

The solution of the system Vc D f is reduced to the successive solution of these
triangular systems with matrices L and U. These systems link the solution with the
intermediate vector d, the vector of the divided differences, and, therefore, they are
directly related with the Newton formula. We will study the lower triangular system
in Sect. 4.

In [3] we proposed the following algorithms to compute L and U. The first
algorithm computes the entries of the matrix L

li0 D 1; i D 0; : : : ; n;

lij D li;j�1.xi � xj�1/; i D j; : : : ; n; j D 1; : : : ; n: (14)

The second method computes U as follows

u00 D 1; u0j D x0u0;j�1; j D 1; : : : ; n;

uii D 1; uij D ui�1;j�1 C xiui;j�1; j D i C 1; : : : ; n; i D 1; : : : ; n: (15)

The following algorithms compute the entries of L�1 and U�1, respectively

l.�1/ij D � l.�1/i�1;j
xi � xj

; j D 0; : : : ; i � 1;

l.�1/ii D 1Qi�1
jD0.xi � xj/

; i D 0; : : : ; n; (16)

u.�1/00 D 1; u.�1/0j D �xj�1u.�1/0;j�1; j D 1; : : : ; n;

u.�1/ii D 1; u.�1/ij D u.�1/i�1;j�1 � xj�1u.�1/i;j�1; j D i C 1; : : : ; n; i D 1; : : : ; n:
(17)

Let us recall that a value X can be obtained with high relative accuracy (HRA)
if the relative error of the computed valuebX can be bounded as follows:

jjX �bXjj
jjXjj � Cu;

where C is a positive constant independent of the arithmetic precision and u is the
unit roundoff.
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In [5], it was shown we can compute with high relative accuracy the products,
quotients and true additions (addition of numbers with the same sign) of expressions
that can be computed with high relative accuracy. The subtractions (addition of
numbers with the opposite sign) are permitted only with initial data of the problem.

It is well-known that the inverse of a Vandermonde matrix with nonnegative
increasing nodes can be computed with HRA because the matrix is totally nonnega-
tive and its bidiagonal factorization can be obtained with high relative accuracy (see
[4] and [8]). The following result (corresponding to Theorem 1 of [3]) shows that
such computation is possible whenever all distinct nodes have the same nonstrict
sign and for all possible order configurations of the nodes.

Theorem 1 Let V be the Vandermonde matrix in (2) corresponding to a sequence
of distinct nodes of the same nonstrict sign. Then V�1 can be computed with HRA
through the formula (4) .

We also have the following results, corresponding to Theorems 2 and 3 of [3]
respectively, about the matrices L and U and their inverses. For the matrices L
and L�1 there are no restrictions on the nodes, that is, HRA can be ensured for
all possible signs and order configurations of the nodes.

Theorem 2 Let L be the lower triangular matrix in (6). Then L and L�1 can be
computed with HRA for any distinct nodes, xi, i D 0; : : : ; n, using algorithms (14)
and (16), respectively.

In contrast to Theorem 2, the following result requires the same restrictions on
the nodes as in Theorem 1 to ensure that U and U�1 can be computed with HRA.

Theorem 3 Let U be the upper triangular matrix in (10) corresponding to a
sequence of nodes with the same nonstrict sign. Then U and U�1 can be computed
with HRA, using algorithms (15) and (17), respectively.

3 Triangular Factorizations and the Influence of the Order
of the Nodes

In the previous section we have used the Crout factorization LU of a Vandermonde
matrix V . However, the most common triangular factorization used with Gaussian
elimination is V D QL QU where QL is a lower triangular matrix with unit diagonal
and QU an upper triangular with the pivots of the Gaussian elimination on the main
diagonal. This factorization is also called the Doolittle factorization. Let D be the
diagonal matrix with the pivots of the Gaussian elimination on the main diagonal.
Then we have

QL D LD�1; QU D DU: (18)



A Matrix Approach to the Newton Formula and Divided Differences 113

Since L, U and their inverses can be computed with HRA by the results of the
previous section, it easily follows that QL and QU and their inverses can be computed
with HRA under certain conditions on the nodes.

We have seen that the Crout factorization V D LU is related with the Newton
formula in terms of divided differences. The Doolittle factorization V D QL QU can be
related with the Newton formula in terms of finite differences

p.x/ D
nX

jD0
�.x0; : : : ; xj/f Q!j.x/;

where

Q!j.x/ D !j.x/

!j.xj/
; j D 0; : : : ; n; (19)

and

�.x0; : : : ; xj/f D .xj � x0/ � � � .xj � xj�1/Œx0; : : : ; xj� f ; j D 0; : : : ; n;

are a different normalization of the divided differences.
Different orderings of the nodes are related with different row pivoting strategy

of Gaussian elimination and this leads to different conditioning of the triangular
factors. A common ordering consists of setting the nodes in increasing order, that
is, x0 < � � � < xn. This ordering will be called natural ordering.

If the nodes are positive and increasing 0 < x0 < � � � < xn, then the Vandermonde
matrix has all its minors nonnegative, i.e., it is a totally positive matrix. Some
properties of the totally positive matrices suggest that Gaussian elimination without
reordering of rows gives good stability results (see [1]), in particular for the
conditioning of QU (see [9]). This fact provides a motivation to work with the nodes
in increasing order.

However, other orderings of the nodes may also lead to stability in the compu-
tations. In the diagonal of the matrix L we have the pivots of Gaussian elimination.
Through a strategy of partial pivoting, we try to maximize the multipliers in each
step. Note that partial pivoting is equivalent to reorder the nodes. In fact, this way of
arranging the nodes is equivalent to Leja ordering (see [2] and [6]), leading to nice
properties of the lower triangular factors. The Leja ordering is achieved using the
following strategy (see [10]).

1. We can choose as the first node x0 any node in the set. However, to maximize jx1�
x0j in the second step, we may choose one extreme point, either the minimum or
the maximum.
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2. In the second step, x1 is chosen such that

jx1 � x0j D max
jD1;:::;n jxj � x0j:

So x1 is the other extreme (minimum or maximum).
3. In the i-th step, we select xi such that

i�1Y
kD0

jxi � xkj D max
jDi;:::;n

i�1Y
kD0

jxj � xkj:

We consider another ordering of the nodes that we call the central ordering,
where the nodes are ordered increasingly according to a center c. If x0; : : : ; xn are
ordered following the central ordering then

jx0 � cj � jx1 � cj � � � � � jxn � cj:

Since the Vandermonde matrix computes the coefficients with respect to the
powers centered at the origin, we shall only consider in our problem the center
c D 0.

In order to test the central ordering, we shall perform our experiments with
intervals centered at the origin. We also consider intervals starting at zero, due to the
total positivity of the Vandermonde matrix when the nodes are ordered increasingly.
Observe that the natural order is the central order for an interval starting at zero.

Remark 1 Since L can be expressed in terms of differences of nodes, the translation
of the nodes does not have any have influence on the behaviour of L, in contrast
to the behaviour of U. Then, for any order, the properties of the matrix L will be
analyzed in intervals of different lengths.

The condition number of a nonsingular matrix is given by

1.A/ WD jjAjj1jjA�1jj1
and it is a measure of the sensitivity of the solution of the linear systems respect
to the perturbations of the initial data. The high conditioning of the Vandermonde
matrix explains the difficulty to estimate the coefficients of the interpolant with
respect to the monomial basis. If we have a triangular factorization of the Van-
dermonde matrix, then we can find the solution by solving two triangular linear
systems. Then the conditioning of each triangular matrix will influence in each
step. So, the product of both condition numbers will provide an upper bound of
the sensitivity of the solution of the linear systems with respect to data perturbations
when using triangular factorization algorithm. We call this product, 1.L/1.U/
or 1. QL/1. QU/, joint condition number.
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For our tests, we consider two types of intervals for the nodes: centered at the
origin and starting at zero. We take the intervals Œ�1; 1� and Œ�1:5; 1:5� as examples
of the first type and Œ0; 1� and Œ0; 3� as examples of the second type.

We will take equidistant nodes in Œa; b�

xi WD a C 
.i/
b � a

n
; i D 0; : : : ; n;

where 
 is a permutation of the set f0; : : : ; ng corresponding to the associated order.
We consider three orderings for these nodes:

• Natural: the nodes are ordered increasingly.
• Leja: the nodes are ordered according to the strategy (1), (2) and (3) described

previously in this section.
• Central: the nodes are ordered increasingly according to their distance to the

origin.

As mentioned in the previous section we shall consider in our numerical
experiments two triangular factorizations of the Vandermonde matrix V , the Crout
factorization V D LU and the Doolittle factorization V D QL QU.

The following tables collect information about the condition number of the
Vandermonde matrix and the product of the condition numbers of the triangular
factors for different dimensions.

Let us compare the joint condition number of both factorizations. Let us start
with nodes in Œ0; 1�.

In Table 1 we can see that the best order of the nodes for the LU factorization is
the natural ordering. However, Table 2 shows that the best joint condition number
for the Doolittle factorization corresponds to the Leja ordering but there are no

Table 1 
1

.L/
1

.U/ in
Œ0; 1�

Natural Leja

n 
1

.V/ 
1

.L/
1

.U/

3 216 416 672

4 1:7067 � 103 3:4333 � 103 5:7600 � 103

5 1:2500 � 104 3:3700 � 104 5:6386 � 104

9 4:8184 � 107 3:3789 � 108 7:6455 � 108

19 5:0877 � 1016 5:3085 � 1018 2:7287 � 1019

Table 2 
1

.QL/
1

. QU/ in
Œ0; 1�

Natural Leja

n 
1

.V/ 
1

.QL/
1

. QU/
3 216 576 800

4 1:7067 � 103 6:8267 � 103 7:6800 � 103

5 1:2500 � 104 9:0667 � 104 6:0450 � 104

9 4:8184 � 107 3:6280 � 109 4:1542 � 108

19 5:0877 � 1016 1:9664 � 1021 6:3140 � 1017
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Table 3 
1

.L/
1

.U/ in
Œ0; 3�

Natural Leja

n 
1

.V/ 
1

.L/
1

.U/

3 266:6667 512 2240

4 2:8681 � 103 6:8661 � 103 2:2511 � 104

5 2:6963 � 104 7:2298 � 104 3:2855 � 105

9 4:0049 � 108 1:4074 � 109 5:5271 � 109

19 2:0837 � 1019 1:6470 � 1020 3:2911 � 1020

Table 4 
1

.QL/
1

. QU/ in
Œ0; 3�

Natural Leja

n 
1

.V/ 
1

.QL/
1

. QU/
3 266:6667 938:6667 1:1852 � 103

4 2:8681 � 103 9:9000 � 103 1:5775 � 104

5 2:6963 � 104 1:1612 � 105 1:6111 � 105

9 4:0049 � 108 2:2396 � 109 3:9113 � 109

19 2:0837 � 1019 2:3145 � 1020 2:6917 � 1020

Table 5 
1

.L/
1

.U/ in Œ�1; 1�
Natural Leja Central

n 
1

.V/ 
1

.L/
1

.U/

3 18 327:5556 193:3333 78

4 53:3333 2:2295 � 103 580 245:3333

5 187:5000 1:2696 � 104 2:0157 � 103 915:488

9 2:0562 � 104 1:5169 � 107 2:1156 � 105 1:2454 � 105

19 1:7511 � 109 8:6376 � 1014 5:8935 � 1010 2:122 � 1010

significative differences between the QL QU factorization with the Leja ordering and
the LU factorization with natural ordering.

The system Vc D f is worse conditioned in the interval Œ0; 3� than in the
interval Œ0; 1�, as can be seen in Tables 3 and 4. We can also see in Tables 3
and 4 that the differences between the joint condition number and the conditioning
of V are much smaller for the interval Œ0; 3� than for the previous interval Œ0; 1�.
Besides, the differences among the considered factorizations and orderings are less
significative for the interval Œ0; 3�. Even if the interpolant takes the same values in
each interval, their coefficients are scaled in a different way and this fact affects the
joint conditions.

Tables 5 and 6 correspond to the interval Œ�1; 1�. We see that 1.L/1.U/ is
lower with the central order. Table 6 shows that the Doolittle factorization behaves
better with the Leja order. If we compare the two factorizations for high values of
n, we see that the lowest value is achieved for the LU factorization with the central
order.

Table 7 collects the joint condition number of the LU factorization with the three
orderings in the interval Œ�1:5; 1:5�. We can see that the best ordering is the central
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Table 6 
1

.QL/
1

. QU/ in Œ�1; 1�
Natural Leja Central

n 
1

.V/ 
1

.QL/
1

. QU/
3 18 784 113:3333 96

4 53:3333 7:4667 � 103 360 672

5 187:5000 6:1512 � 104 1:2788 � 103 2:9451 � 103

9 2:0562 � 104 3:0868 � 108 1:6768 � 105 1:7532 � 106

19 1:7511 � 109 4:5246 � 1017 2:2233 � 1010 2:4734 � 1013

Table 7 
1

.L/
1

.U/ in Œ�1:5; 1:5�
Natural Leja Central

n 
1

.V/ 
1

.L/
1

.U/

3 18:9583 942:5000 381:8750 137:5000

4 62:5185 7:1397 � 103 905:6909 490:9722

5 192:4190 5:1245 � 104 3:4541 � 103 1:6736 � 103

9 1:8257 � 104 1:3326 � 108 4:4569 � 105 2:0001 � 105

19 2:3696 � 109 7:0152 � 1016 8:4964 � 1010 6:5344 � 1010

Table 8 
1

.QL/
1

. QU/ in Œ�1:5; 1:5�
Natural Leja Central

n 
1

.V/ 
1

.QL/
1

. QU/
3 18:9583 1:5275 � 103 276:2500 405

4 62:5185 1:3504 � 104 633 2268

5 192:4190 1:4203 � 105 1:6537 � 103 9:0202 � 103

9 1:8257 � 104 1:4643 � 109 2:7830 � 105 6:2784 � 106

19 2:3696 � 109 2:0495 � 1019 4:1203 � 1010 8:2891 � 1013

ordering followed closely by the Leja ordering. In Table 8 we consider the QL QU
factorization for the same interval. In this case, the Leja ordering gives better results
for the joint condition number 1. QL/1. QU/.

The conclusions of the numerical experiments can be summarized as follows. For
the Crout factorization the best choices are central ordering, for intervals centered
at the origin, and natural ordering, for intervals starting at zero. For the Doolittle
factorization the best choice corresponds to the Leja ordering. Finally, for intervals
centered at the origin the natural order gives the worst results.

4 Computation of Divided Differences

In the previous section, we have focused in the joint condition number because we
were interested in estimating the coefficients of the interpolant with respect to the
monomial basis. In this section we are going to analyze how the intervals and the
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different orderings of the nodes affect to the lower triangular matrices L and QL. The
solution of the triangular system Ld D f is the vector d of divided differences, which
are the coefficients of the interpolant respect to the basis ! D .!0; : : : ; !n/

T given
by (5), is reduced to solve one of the triangular systems of (13)

Ld D f:

Therefore, the condition number 1.L/ is related with the stability of the computa-
tion of the divided differences.

Tables 9, 10 and 11 show the condition number of the matrix L with nodes in
the different intervals that we have proposed for the numerical experiments in the
previous section.

By analyzing these tables we conclude that the best choice for all proposed
intervals is the Leja order. The fact that the condition number of L is lower with
the Leja order is not surprising since we have already mentioned in Sect. 3 that the
Leja ordering controls the size of the entries of the lower triangular matrix.

Table 9 
1

.L/ in Œ0; 1� Natural Leja

n 
1

.L/

3 104 72

4 549:3333 341:3333

5 2:9253 � 103 1:6760 � 103

9 2:4370 � 106 1:1165 � 106

19 5:2459 � 1013 1:7479 � 1013

Table 10 
1

.L/ in Œ�1; 1� Natural Leja Central

n 
1

.L/

3 33:5000 14:5000 22:5000

4 112 38:6667 61:3333

5 373:4548 99:0417 170:2917

9 4:5301 � 104 4:3480 � 103 9:6775 � 103

19 6:9906 � 109 6:7112 � 107 2:2788 � 108

Table 11 
1

.L/ in
Œ�1:5; 1:5� Natural Leja Central

n 
1

.L/

3 32 8 22

4 101:2222 13:9095 56:8889

5 302:7358 25:2631 139:4173

9 2:3969 � 104 260:5714 4:8004 � 103

19 1:4329 � 109 7:5274 � 104 3:3873 � 107
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5 Computation of Finite Differences

Let us considerer the Newton formula in terms of the finite differences

p.x/ D
nX

jD0
�.x0; : : : ; xj/ Q!j.x/:

We denote by �j D �.x0; : : : ; xj/ and by � D .�0; : : : ; �n/
T . Hence to find the

coefficients of the interpolant respect to the basis Q! D . Q!0; : : : ; Q!n/
T given by (19)

we have to solve the system

QL� D f:

We denote by Qlij and Ql.�1/ij the .i; j/ entries of QL y QL�1, respectively. By (7) and (18)
we have

Qlij D lij
!j.xj/

D !j.xi/

!j.xj/
; i; j D 0; : : : ; n: (20)

We use the formula

Œx0; : : : ; xi� f D
iX

jD0

f .xj/Q
k2f0;:::;ignfjg.xj � xk/

D
iX

jD0

f .xj/

!0
iC1.xj/

which allows us to establish the following relation between d and f

di D
iX

jD0

fj
!0

iC1.xj/
; i D 0; : : : ; n:

By (9), d D L�1f, and we deduce that the .i; j/ entry of the matrix L�1 is

l.�1/ij D 1

!0
iC1.xj/

when j � i and 0 otherwise. So, by (18), the .i; j/ entry of QL�1 is

Ql.�1/ij D !i.xi/l
.�1/
ij D !i.xi/

!0
iC1.xj/

: (21)

Remark 2 Taking into account (20) and (21) we can ensure that QL and its inverse
are invariant under afine transformations of the nodes because their elements are
products of quotients of differences of the nodes.
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We now present a result for the condition number of QL when using the Leja
ordering for not necessarily equidistant nodes.

Proposition 1 Let x0; : : : ; xn nodes following the Leja ordering. Let QL be the matrix
associated with the representation of the Newton formula with finite differences.
Then

1. QL/ � n2n:

Proof For each vector s whose entries satisfy si 2 f�1; 0; 1g, i D 0; : : : ; n, let c be
the solution of the system QLc D s.

Let us see by induction on k that jckj � 2k, k D 0; : : : ; n. For k D 0 it is trivial
because QL�1 has unit diagonal and therefore

c0 D s0 H) jc0j � 1:

Assume that the results holds for k � 1. Since the nodes follow the Leja order, we
have

!j.xj/ � !j.xi/; 8i � j:

Then, taking into account (20),

jQlijj � 1; j � i:

and so

jj QLjj1 � n:

Due to the following equality

ck D sk C
k�1X
jD0

Qlkjcj;

we have

jckj � jskj C
k�1X
jD0

jQlkjj jcjj � 1C .1C 2C � � � C 2k�1/ D 2k:

For each k, we take s D .sign.Ql.�1/kj //jD0;:::;n. Then the k-th entry of the vector c WD
QL�1s is

ck D
kX

jD0
Ql.�1/kj sign.Ql.�1/kj / D

kX
jD0

jQl.�1/kj j � 2k;
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and therefore

jj QL�1jj1 D max
kD0;:::;n

kX
jD0

jQl.�1/kj j � 2n:

Finally, we have

1. QL/ D jjQLjj1jj QL�1jj1 � n2n: ut

We have seen in the numerical experiments in Tables 9, 10 and 11 of Sect. 4
that the Leja ordering gives better conditioning of L than the natural ordering for
equidistant nodes. We want to prove that an analogous property for QL always holds.
We first obtain the conditioning for QL for equidistant nodes and natural order.

Proposition 2 Let xi D a C i
n .b � a/, i D 0; : : : ; n, be equidistant nodes in the

interval Œa; b� and let QL be the lower triangular matrix in (18). Then, QL is the lower
triangular Pascal matrix and

1. QL/ D 4n:

Proof We evaluate the basis functions !j given by (5) at equidistant nodes

!j.xi/ D
j�1Y
kD0
.xi � xk/ D

j�1Y
kD0

b � a

n
.i � k/

D
�b � a

n

�j
i.i � 1/ � � � .i C 1 � j/ D

�b � a

n

�j iŠ

.i � j/Š
: (22)

Analogously, we compute !0
iC1.xj/ D Q

k2f0;:::;ignfjg.xj � xk/ for equidistant nodes

!0
iC1.xj/ D

Y
k2f0;:::;ignfjg

.xj � xk/ D
�b � a

n

�i Y
k2f0;:::;ignfjg

. j � k/

D .�1/i�j
�b � a

n

�i
jŠ.i � j/Š: (23)

By (20) and (22) we obtain

Qlij D iŠ

.i � j/ŠjŠ
D
 

i

j

!
j D 0; : : : ; i; i D 0; : : : n:
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So, QL is the lower triangular Pascal matrix. Now we can compute the infinity norm
of QL.

jj QLjj1 D max
iD0;:::;n

iX
jD0

 
i

j

!
D max

iD0;:::;n 2
i D 2n:

By (21)–(23), the .i; j/ entry of QL�1 is

Ql.�1/ij D !i.xi/

!0
iC1.xj/

D .�1/iCj

 
i

j

!
:

Then

jj QL�1jj1 D max
iD0;:::;n

iX
jD0

 
i

j

!
D max

iD0;:::;n 2
i D 2n:

And finally, we have

1. QL/ D jjQLjj1jj QL�1jj1 D 4n: ut

In the following result we compare the natural and the Leja ordering using the
previous results.

Corollary 1 Let QL be the lower triangular matrix in (18). The condition number of
QL with nodes following the Leja ordering is lower than the condition number of QL
with equidistant nodes following the natural ordering.

Proof By Propositions 1 and 2 it is sufficient to prove that

n2n � 4n; n D 1; 2; 3; : : :

And it is equivalent to prove

n � 2n;

and this last inequality holds for all n. ut
In Table 12 we can see the numerical experiments of these previous results. Due

to Remark 2, 1. QL/ does not depend on the interval but only on the ordering. We
can also observe that the conditioning of QL for Leja ordering is considerably lower
than the upper bound n2n. In this sense, we recall the observation by Reichel in
[10] on the subexponential growth of a condition number associated to the Newton
formula with Leja nodes.
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Table 12 
1

.QL/ for natural
and Leja ordering

Natural Leja

n 
1

.QL/
3 64 8:8889

4 256 16

5 1:0240 � 103 14:8800

9 2:6214 � 105 46:1569

19 2:7488 � 1011 91:9666

Finally we summarize the results of the two last sections. We have seen
experimentally in Tables 9, 10 and 11 that the best choice for the L matrix is the
Leja ordering. Moreover, we have proved, for equidistant nodes, that the condition
number of QL is lower with the Leja ordering than with the natural ordering.
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Long-Time Behavior of a
Cahn-Hilliard-Navier-Stokes Vesicle-Fluid
Interaction Model

Blanca Climent-Ezquerra and Francisco Guillén-González

Abstract A model about the dynamic of vesicle membranes in incompressible
viscous fluids is introduced. The system consists of the Navier-Stokes equations
with an extra stress depending on the membrane, coupled with a Cahn-Hilliard
phase-field equation in 3D domains. This problem has a time dissipative energy
which leads, in particular, to the existence of global in time weak solutions. By using
some extra regular estimates, we prove that every weak solution is strong and unique
for sufficiently large times. Moreover, the asymptotic behavior of these solutions is
analyzed. We prove that the w-limit set is a subset of the set of equilibrium points.
By using a Lojasiewic-Simon type inequality and a continuity result with respect to
the initial values, we demonstrate the convergence of the whole trajectory to a single
equilibrium.

1 Introduction

In this paper, we consider a model for the dynamic of vesicle membranes within
incompressible viscous fluids. This type of models was introduced by Helfrich
[7]. The model that we will consider in this paper consists of the Navier-Stokes
equations with an extra stress depending on the membrane, coupled with a Cahn-
Hilliard phase-field equation transported by the fluid.

Membranes are formed by lipid bilayers. Under appropriate conditions, they
withdraw into itself forming a sort of bag, named vesicle. The equilibrium con-
figurations of vesicle membranes can be obtained minimizing the Helfrich bending
elastic energy [7], fixing its surface area and volume.

A phase function can be used to model the vesicle membrane as a diffuse
interface. In the literature, a coupled Allen-Cahn and Navier-Stokes problem is
studied approaching both constrains, area and volume, in a penalized manner. The
existence of global in time weak solutions of this model is proven in [5]. In [8]
authors prove the existence and uniqueness of local in time solution. Under periodic
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boundary conditions, the stability near of local minimizers of the elastic bending
energy is investigated in [9].

On the other hand, a Cahn-Hilliard phase-field model is introduced in [1], without
taking into account the vesicle-fluid interaction. In [6], the long-time behavior for a
2D Cahn-Hilliard-Navier-Stokes model, without membranes, is studied.

Now a Cahn-Hilliard-Navier-Stokes model with Neumann boundary conditions
will be considered. In particular, by using the volume conservation of the Cahn-
Hilliard equation, the volume constraint will be implicitly imposed and therefore,
only the surface area constraint must be approximated via penalization.

We obtain existence of global weak solutions for arbitrary initial data and prove
that any global weak solution becomes a bounded strong solution after a sufficiently
large time. Then, its long-time behavior is studied identifying a unique critical point
as the limit of the whole trajectory as the time goes to infinity, by means of an
appropriate Lojasiewicz-Simon’s Lemma and a local in time continuous dependence
result with respect to regular initial conditions.

2 The Model

We will analyze the case where the bending energy Eb is given by a simplified elastic
Willmore energy modified to penalize the surface area constraint [4]:

Eb.	/ D 1

2"

Z
˝

.�"�	 C 1

"
F0.	//2 dx C 1

2
M.A.	/ � ˛/2 (1)

where F0.	/ D .j	j2�1/	 for each 	 2 IR; being F.	/ D 1

4
.	2�1/2 the Ginzburg-

Landau potential, M > 0 is the penalization constant, " is related to the interface
width, and

A.	/ D
Z
˝

�
"

2
jr	j2 C 1

"
F.	/

�
dx;

approaches the surface area.

Remark 1 The results of this paper can be extended to the case of replacing the

surface area A.	/ only by A.	/ D
Z
˝

"

2
jr	j2 dx considered in [1].

We are going to consider a Cahn-Hilliard phase-field model which is conservative
for the phase function. Therefore, the volume constraint

V.	/ D
Z
˝

	.x; t/ dx D V0

�
D
Z
˝

	0.x/ dx

�
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is satisfied implicitly. By denoting

w WD ıEb.	/

ı	
(2)

(depending on � WD ıA.	/

ı	
D �"�	 C 1

"
F0.	/), we will analyze the following

Navier-Stokes-Cahn-Hilliard equations in ˝ � .0;C1/:

@tu C .u � r/u � ��u � �wr	 C rq D 0; (3)

r � u D 0; (4)

@t	 C u � r	 � ��w D 0: (5)

Remark 2 In both cases, the variational derivative w WD ıEb.	/

ı	
and � WD ıA.	/

ı	
are identified as a L2.˝/-function via the L2.˝/ scalar product.

The constants � > 0, � > 0 and � > 0 are coefficients depending on viscosity,
elasticity and mobility, respectively. The system (2)–(5) is completed with the
boundary conditions

uj@˝ D 0; @n	j@˝ D 0; @n�	j@˝ D 0; @nwj@˝ D 0; (6)

and the initial conditions

u.0/ D u0; 	.0/ D 	0 in ˝: (7)

For compatibility, we assume u0j@˝ D 0 with r � u0 D 0 and @n	0j@˝ D 0.
By using in the w-equation (5) the free-divergence constraint r � u D 0, the non-

slip condition uj@˝ D 0, and the last boundary condition @nwj@˝ D 0, it is easy

to deduce that
d

dt

Z
˝

	.x; t/ dx D 0, that is, the conservative character of 	 in ˝ .

Therefore, the total volume is conserved:

Z
˝

	.x; t/ dx D
Z
˝

	0.x/ dx WD V0 2 IR:

On the other hand, for all N	 2 H2,

DıEb.	/

ı	
; N	
E

D 1

"

Z
˝

�.�"� N	 C 1

"
F0.	/ N	/

CM.A.	/ � ˛/.

Z
˝

"r	 � r N	 C 1

"
F0.	/ N	/
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Observe that from the boundary conditions given in (6) for 	, we also have r� �
nj@˝ D 0. This enables us, after some integrations by parts, using r� � nj@˝ D 0

and @n N	j@˝ D 0, to identify
ıEb.	/

ı	
with w via the L2.˝/-scalar product, where

w D ���C 1

"2
�F0.	/C M.A.	/ � ˛/� D "�2	 C G.	/

with

G.	/ D �1
"
�F0.	/C 1

"2
F0.	/�C M.A.	/ � ˛/�: (8)

Since @n	j@˝ D 0, in particular @nF0.	/j@˝ D 0, hence

Z
˝

��F0.	/ dx D
Z
@˝

�F00.	/.r	 � n/ dx D 0:

Integrating (8),

Z
˝

w dx D
Z
˝

G.	/ dx D 1

"2

Z
˝

�F0.	/ dx C M.A.	/ � ˛/
Z
˝

� dx: (9)

By using w D "�2	CG.	/ as auxiliary variable, we rewrite the problem (2)–(5) as

@tu C .u � r/u � ��u � �wr	 C rq D 0; (10)

r � u D 0; (11)

@t	 C u � r	 � ��w D 0; (12)

"�2	 C G.	/� w D 0: (13)

By denoting m0 D h	0i D 1

j˝j
Z
˝

	0.x/ dx, we define the following mean-value

variables

 .x; t/ D 	.x; t/ � m0 and z D w � hG.	/i:

Observe that hG.	/i D 1

"2
hF0.	/�i C M.A.	/� ˛/h�i.
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Let us consider the following mean-value spaces:

L2� D
	

w 2 L2.˝/I
Z
˝

w D 0



;

Hk� D
	

w 2 Hk.˝/I
Z
˝

w D 0



k � 1;

H2
1 D ˚

w 2 H2�.˝/I @nw D 0 on @˝
�

Hk
2 D ˚

w 2 Hk�I @nwj@˝ D 0; @n�wj@˝ D 0
�

k � 4:

We will consider˝ regular enough to use the regularity of the two following elliptic
Laplacian-Neuman, Bilaplacian-Dirichlet-Neumann problems, respectively:

8<
:

��z D f in ˝

@nzj@˝ D 0;

Z
˝

z dx D 0;

8̂
<̂
ˆ̂:

�2 D f in ˝
@n j@˝ D 0; @n� j@˝ D 0;Z
˝

 dx D 0

where f W ˝ 7! IR, f 2 L2.˝/,
Z
˝

f dx D 0. From the H2-regularity of the first

problem, we have the following equivalents norms:

kzk2 � j�zj2 in H2
1 ; (14)

and from the H4, H5 and H6-regularity of the second problem,

k k4 � j�2 j2 in H4
2 ; k k5 � k�2 k1 in H5

2 ; k k6 � k�2 k2 in H6
2 :

(15)

By rewriting the Eqs. (10)–(13) in the variables

 .x; t/ D 	.x; t/ � m0 and z D w � hG.	/i

we obtain

@tu C .u � r/u � ��u � �zr C r Qq D 0; (16)

r � u D 0; (17)

@t C u � r � ��z D 0; (18)

"�2 C G. / � z D 0; (19)
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where Qq D q � �hG.	/i and

G. / D G. C m0/ � hG. C m0/i
D �1

"
�F0. C m0/C 1

"2
F0. C m0/.�"� C 1

"
F0. C m0//

CM.A. C m0/ � ˛/.�"� C 1

"
F0. C m0// � hG. C m0/i:

Observe that,
Z
˝

 dx D 0 and
Z
˝

z dx D 0. The system (16)–(19) is completed

with the boundary conditions

uj@˝ D 0; @n j@˝ D 0; @n� j@˝ D 0; @nzj@˝ D 0; (20)

and the initial conditions

u.0/ D u0;  .0/ D  0 WD 	0 � h	0i in ˝: (21)

Finally, by denoting

Eb. / D Eb. C m0/ (22)

then,

ıEb. /

ı 
D "�2 C G. / D z: (23)

3 Some Preliminary Results

We are going to consider the following notations:

• In general, the notation will be abridged. We set Lp D Lp.˝/, p � 1, H1
0 D

H1
0.˝/, etc. If X D X.˝/ is a space of functions defined in the open set ˝ , we

denote by Lp.0;TI X/ the Banach space Lp.0;TI X.˝//. Also, boldface letters
will be used for vectorial spaces, for instance L2 D L2.˝/N .

• The Lp-norm is denoted by j � jp, 1 � p � 1, the Hm-norm by k � km (in particular
j � j2 D k � k0). The inner product of L2.˝/ is denoted by .�; �/. The boundary
Hs.@˝/-norm is denoted by k � ksI@˝ .

• We set V the space formed by all fields u 2 C1
0 .˝/

N satisfying r � u D 0. We
denote H (respectively V) the closure of V in L2 (respectively H1). H and V are
Hilbert spaces for the norms j � j2 and k � k1, respectively. Furthermore,

H D fu 2 L2I r �u D 0; u �n D 0 on @˝g; V D fu 2 H1I r �u D 0; u D 0 on @˝g:
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• From now on, C > 0 will denote different constants, depending only on the fixed
data of the problem.

Lemma 1 Given � 2 L2.˝/, we consider  as the solution of the elliptic problem

8̂
<
:̂

�"� C 1

"
F0. C m0/ D � in ˝;

@n j@˝ D 0;

Z
˝

 dx D 0:

Then, the following inequalities hold

k k1 � C.1C j�j2/; (24)

k k2 � C.1C j�j2 C k k31/: (25)

Proof Firstly, by taking  C m0 as test function, we obtain

"jr j22 C 1

"
j C m0j44 D .�; C m0/C 1

"
j C m0j22:

By using Young and Holder inequalities, and the Poincaré inequality for mean-value
functions, we obtain:

C"k k21C 1

"
j Cm0j44 � 1

2
j�j22C .

1

2
C 1

"
/j Cm0j22 � 1

2
j�j22C 1

2"
j Cm0j44CC;

hence,

k k21 � Cj�j22 C C

and (24) holds. Secondly, from the regularity of the problem (bootstrap’s argument)

8̂
<
:̂

�"� D � � 1

"
F0. C m0/ in ˝

@n j@˝ D 0;

Z
˝

 dx D 0;

we obtain that k k2 � C.j�j2 C 1
"
jF0. C m0/j2/. From the definition of F0,

jF0. Cm0/j2 � C.j Cm0j36Cj Cm0j2/ � C.k Cm0k31Cj Cm0j2/ � C.1Ck k31/:

Therefore, k k2 � C.1C j�j2 C k k31/ and (25) holds. ut
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Assume the following starting point:
Let E; ˚ 2 L1loc.0;C1/ be two positive functions with E 2 H1.0;T/ 8T > 0,

satisfying

E0.t/C ˚.t/ � 0; a.e. t 2 .0;C1/. (26)

Therefore, E is a decreasing function with E 2 L1.0;C1/ and

9 lim
t!C1 E.t/ D E1 � 0: (27)

Moreover, by integrating (26), one has ˚ 2 L1.0;C1/.
The following results are proved in [3] and [2].

Lemma 2 Let ˚;B 2 L1.0;C1/ be two positive functions such that ˚ 2 H1.0;T/
8T > 0, which satisfies

˚ 0.t/ � C.˚.t/3 C B.t//: (28)

Then, there exists a sufficiently large T� � 0 such that ˚ 2 L1.T�;C1/ and

9 lim
t!C1˚.t/ D 0:

In order to apply the previous result to a sequence of approximate solutions
(furnished for instance by the Galerkin method), an extension of Lemma 2 for
sequences of functions will be necessary in order to get uniform bounds with respect
to the index of sequence. Specifically,

Lemma 3 Let ˚m 2 L1.0;C1/, Em 2 L1.0;C1/, be two positive sequences of
functions satisfying (26) and (28) for some constant C > 0 independent of m. Let
E.t/ D lim

m!C1 Em.t/ a.e. t 2 .0;C1/ (assuming that the limit exists). Therefore, for

each ı 2 .0; 1/, there exists a sufficiently large time T� D T�.ı/ � 0, independent
of m, such that ˚m 2 L1.T�;C1/ and k˚mkL1.T�;C1/ � ı:

The proof of the following Lojasiewicz-Simon inequality is like the one that
appears in Lemma 5.2 of [9] changing periodic by Neumann boundary conditions
and periodic by zero mean spaces.

Lemma 4 (Lojasiewicz-Simon Inequality) Let S be the following set of equilib-
rium points related to the bending energy (1)

S D f 2 H4
2.˝/ W "�2 C G. / D 0 a.e in ˝g: (29)
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If  1 2 S , there are three positive constants C, ˛, and � 2 .0; 1=2/ (depending
on  1), such that for all  2 H4

2 and k �  1k2 � ˇ, then

jEb. / � Eb. 1/j1�� � C jzj2 (30)

where z D z. / WD "�2 C G. /.

4 Weak Solutions

Definition 1 Let u0 2 H and  0 D 	0 � m0 2 H2
1 , we say that .u;  ; z/ is a global

weak solution of (16)–(21) in .0;C1/, if

u 2 L2.0;C1I V/\ L1.0;C1I H/; z 2 L2.0;C1I H1�/
 2 L1.0;C1I H2

1/;
(31)

satisfying

h@tu;ui C ..u � r/u;u/C �.ru;ru/� �.zr ;u/ D 0 8 u 2 V; (32)

h@t ; zi C .u � r ; z/C �.rz;rz/ D 0; 8 z 2 H1� (33)

".� ;� /C .G. /;  /� .z;  / D 0; 8 2 H2
1 ; (34)

and the initial conditions (21).

Observe that the initial conditions, (21), have sense from (31)–(33). Moreover,@tu 2
L4=5.0;C1I V0/ and @t 2 L2.0;C1I .H1�/0/.

4.1 Energy Equality and Large Time Estimates

In a formal manner, we assume that .u;  ; z/ is a regular enough solution of (16)–
(21). By taking Nu D u, Nz D z and N D @t as test function in (32), (33) and (34)
respectively, we have

1

2

d

dt
juj22 C �jruj22 � �.z r ;u/ D 0;

.@t ; z/C .u � r ; z/C � jrzj22 D 0;

"
d

dt

1

2
j� j22 C .G. /; @t / � .z; @t / D 0:
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Adding the first equality plus the second and third ones multiplied by �, the term
.z; @t / cancels, as well as the nonlinear convective term .u � r ; z/ with the elastic
term �.z r ;u/, arriving at the following equality

1

2

d

dt
.juj22 C �"j� j22/C �.G. /; @t /C �jru.t/j22 C �� jrz.t/j22 D 0: (35)

Since
ıEb. /

ı 
D z,

d

dt
Eb. .t// D

DıEb. /

ı 
; @t 

E
D .z; @t /

D ".�2 ; @t /C .G. /; @t / D "
1

2

d

dt
j� j22 C .G. /; @t /:

We define the total free energy E.u;  / D Ek.u/C�Eb. /, being Eb. / the bending

energy defined in (22) and Ek.u/ D 1
2

Z
˝

juj2 the kinetic energy. Then, equality (35)

can be rewritten as the following energy equality:

d

dt
E.u.t/;  .t// C �jru.t/j22 C �� jrz.t/j22 D 0; (36)

which shows the dissipative character of the model with respect to the total free
energy E.u.t/;  .t//. Moreover, assuming the initial estimates .u0;  0/ in H � H1�,
the following uniform “weak” bounds in the infinite time interval .0;C1/ hold:

u in L1.0;C1I H/ \ L2.0;C1I V/; � in L1.0;C1I L2/; z in L2.0;C1I H1/:

(37)

From the bound of � and Lemma 1, we have also:

 in L1.0;C1I H2
1/: (38)

4.2 Additional Estimates for  in H5
2

By using previous weak estimate (38), we can deduce

ju � r j22 � juj26jr j23 � Ckuk21: (39)
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Since  2 L1.0;C1I H2/, in particular 2 L1.0;C1I L1/, then F0. /, F00. /
and F000. / are also bounded in L1.0;C1I L1/. Therefore, we have

jG. /j2 � C; (40)

jrG. /j2 � C.1C k k3/; (41)

and

j�G. /j2 � C.1C k k4/: (42)

From the  -equation (19), by using (15), (40)–(42), we obtain

k k4 � C.1C jG. /j2 C jzj2/ � C.1C jzj2/:

In particular, from (42) and Poincaré inequality for the mean-value function z,

j�G. /j2 � C.1C jzj2/ � C.1C jrzj2/: (43)

On the other hand, again from (19), by using (41) and the interpolation inequality
k k3 � k k1=22 k k1=24 , we deduce k k5 � C.kzk1 C k k1=22 k k1=24 / and,
therefore, since k k2 � C and k k4 � C.1C jzj2/, then k k5 � C.kzk1 C 1/. In
particular,

 2 L2loc.0;C1I H5/: (44)

For instance, weak solutions furnished by a limit of Galerkin approximate
solutions satisfy the corresponding energy inequality (changing in (36) the equality
D 0 by � 0) and this inequality energy suffices to prove rigorously all previous
estimates (37) and (44) for instance for the Galerking approximations.

5 Strong Solution

Definition 2 Let u0 2 V and  0 D 	0 � m0 2 H3
2 , we say that .u;  ; z/ is a global

strong solution of (16)–(19), (21) in .0;C1/, if

u 2 L1.ŒT�
reg;C1/I H1/\ L2.ŒT�

reg;C1/I H2/; z 2 L2loc.0;C1I H2
1/

 2 L1.0;C1I H3
2/;  2 L1

loc.0;C1I H6
2/;

(45)
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satisfies the system (16)–(19), almost everywhere in .0;C1/ � ˝ and the initial
conditions (21)

Moreover, @tu 2 L2.ŒT�
reg;C1/I L2/ and @t 2 L2loc.0;C1I L2/.

5.1 Strong Estimates for Velocity for Large Times

By taking into account that .zr ; Nu/ D �. rz; Nu/, Nu 2 V; (32) can be rewrite as:

h@tu; Nui C ..u � r/u; Nu/C �.ru;r Nu/� �.rz  ; Nu/ D 0 8 Nu 2 V;

by means of taking �Au C @tu as a test function (A being the Stokes operator), by
applying interpolation, Hölder and Young’s inequalities, we attain:

d

dt
jruj22 C �jAuj22 C j@tuj22 � C

�j.u � r/uj22 C j.rz/ j22
�

� C
�juj26jruj23 C jrzj22j j21

� � C
�kuk31kuk2 C jrzj22k k1k k2

�
� �

2
kuk22 C C

�kuk61 C jrzj22
�
:

Therefore, we obtain

d

dt
kuk21 C �

2
kuk22 C j@tuj22 � C

�kuk61 C jrzj22
�
: (46)

By denoting

˚1.t/ WD kuk21; �1.t/ WD �

2
kuk22 C j@tuj22; B1.t/ WD jrzj22;

Eq. (46) can be rewritten as

˚
0

1 C �1 � C.˚3
1 C B1/: (47)

Notice that, owing to (37), B1.t/ 2 L1.0;C1/.
From (47), we can deduce two different results:

• There existsbT D bT.ku.0/k21/ such that

u 2 L1.Œ0;bT�I H1/\ L2.Œ0;bT�I H2/; @tu 2 L2.Œ0;bT�I L2/:

This fact has been proved in [9] or [8] for a Navier-Stokes Allen-Cahn model
with different boundary conditions that we are considering in this paper.
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• Since the hypothesis of Lemma 2 holds, there exists T�
reg � 0 (sufficiently large)

such that

u 2 L1.ŒT�
reg;C1/I H1/; (48)

and ku.t/k1 ! 0 as t " C1. Moreover, integrating (47) in Œ0; t� for all t > 0, we
obtain the following regularity, also in ŒT�

reg;C1/:

u 2 L2.ŒT�
reg;C1/I H2/; @tu 2 L2.ŒT�

reg;C1/I L2/:

5.2 Global in Time Strong Estimates for  

By taking z D @t 2 H1� in the z-equation (33), we obtain:

j@t j2 C .u � r ; @t /C �.rz;r@t / D 0: (49)

By taking  D �@t 2 H2
1 (see (20)) in the  -equation (34) multiplied by � and

integrating respectively, once, twice and once by parts the first, second and third
term, taking into account that r@t �nj@˝ D 0, rG. / �nj@˝ D 0 and rz�nj@˝ D 0,
then, we obtain:

"
�

2

d

dt
jr� j22 C �.�G. /; @t / � �.rz;r@t / D 0: (50)

Adding (49) and (50), the term �.rz;r@t / cancels, and it remains:

"
�

2

d

dt
jr� j22 C j@t j22 D �.u � r ; @t /C �.�G. /; @t /:

In particular,

"
d

dt
jr� j22 C j@t j22 � C.ju � r j22 C j�G. /j22/: (51)

We can bound the convective term as

ju � r j22 � juj26 jr j23 � C kuk21
From (15), (19), (39) and (42), we have that k k6 � C.1 C k k4 C j@t j2 C
kuk1/: By interpolation, k k4 � Ck k1=42 k k1=24 k k1=46 , hence, k k4 � Ck k1=26 .
Therefore,

k k26 � C.1C j@t j22 C kuk21/: (52)
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By using (52) in (51), we obtain

d

dt
jr� j22 C C0k k26 � C

�
1C kuk21 C ju � r j22 C j�G. /j22

�

and owing to (39) and (43), we have

d

dt
jr� j22 C C0k k26 � C

�
1C kuk21 C jrzj22

�
: (53)

Since k k3 is equivalent to .j� j2 C jr� j2/ and, taking into account the weak
estimate of  , equivalent to .1C jr� j2/, from (53), we obtain

d

dt
k k23 C C0k k26 � C

�
1C kuk21 C jrzj22

�
: (54)

By denoting

˚2.t/ WD k k23; B2.t/ WD kuk21 C jrzj22;

from (54), in particular,

˚
0

2 C C0˚2 � C.1C B2/: (55)

Multiplying (55) by et and integrating in time, we obtain

˚2.t/ � ˚2.0/e
�C0t C Ce�C0t

Z t

0

eC0s.1C B2.s// ds:

Therefore,˚2.t/ � ˚2.0/CC.1�e�C0t/CC
Z t

0

B2.s/ ds: Since B2.t/ 2 L1.0;C1/,

we have that ˚2 2 L1.Œ0;C1//. Moreover, integrating (51) and (54) in Œ0; t�, we
obtain

 2 L1.0;C1I H3
2/;  2 L2loc.0;C1I H6

2/; @t 2 L2loc.0;C1I L2�/:
(56)

Moreover, from (19),

z 2 L2loc.0;C1I H2
1/:

Observe that in this model, it has been possible to obtain the estimates for the
velocity and for the phase separately of each other.

Remark 3 The phase equation is satisfied any everywhere, globally in time, if the
data are sufficiently regular.
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Consequently, fixed the initial datum .u0;  0/ 2 H�H2
1 , by using a Galerkin Method

and proceeding in analogous way to Sect. 3.3 of [2], one can prove existence of weak
solutions of (16)–(21), in .0;C1/, and also, existence (and uniqueness) of strong
solution in .T�

reg;C1/ for a large sufficiently time T�
reg � 0.

6 Convergence at Infinite Time

From the energy-inequality, (36), we have for each t � 0

E.u.t/;  .t// � E.u0;  0/C
Z t

0

.�jruj22 C �� jrzj22/ d� � 0: (57)

In particular, there exists a number E1 � 0 such that the total energy satisfies

E.u.t/;  .t// & E1 in IR as t " C1: (58)

The !-limit set of a fixed global weak solution, .u;  /, associated to the initial data,
.u0;  0/ 2 V � H3

2 , can be defined as follows:

!.u;  / D f.u1;  1/ 2 V � H3
2 W 9ftng " C1 s.t.

.u.tn/;  .tn// ! .u1;  1/ weakly in V � H3
2g:

Let S be the set of equilibrium points of (16)–(19) (see also (29)):

S D f.0;  / W  2 H4
2.˝/ W "�2 C G. / D 0 a.e in ˝g:

Lemma 5 If .u";  "; z"/, for some " > 0, and .u0;  0; z0/ are two regular solutions
in .0;T�/ of (16)–(21); associated to the different initial conditions, .u"0;  

"
0 / 2

H1 � H3
2 and .u0;  0/ 2 H1 � H3

2 , respectively, then u" � u0,  " �  0 and z" � z0

depend continuously of the initial values in the following sense: If u"0 ! u0 weakly
in H1 (and strongly in L2) and  "0 !  0 weakly in H3

2 (and strongly in H2
1), then,

u" � u0 ! 0 in L1.0;T�I L2/\ L2.0;T�I H1/;

 " �  0 ! 0 in L1.0;T�I H2/\ L2.0;T�I H5/:

Proof We denote u D u"� u0,  D  " � 0 and z D z" � z0 By means of taking u,
z and @t , respectively, as test functions in the difference between the equations for
.u";  "; z"/ and .u;  ; z/, the term .z; @t / cancels, as well as the term .u � r ; z/
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with �.z r ;u/ then, the following equality is attained:

1

2

d

dt
.juj22 C "2�j� j22/C �jruj22 C �� jrzj22 D �..u � r/u0;u/

C�.z"r ;u/� �.u"r ; z/C �.G. "/� G. 0/; @t / WD
4X

iD1
Ii:

(59)

Observe that

G. "/ � G. 0/ D �ŒF000. " C m0/r. " C  0/r C 6 .r 0/2�
�2ŒF0. " C m0/� C 3. " C  0 C 2m0/ � 

0�

C 1

"2
ŒF0. " C m0/ .. 

" C m0/
2 C . " C m0/. 

0 C m0/C . 0 C m0/
2 � 1/

C3 . " C  0 C 2m0/F0. 0 C m0/�

CM"2

2
.�� " C 1

"
F0. " C m0//

Z
˝

r. " C  0/r dx

CM".A. 0/� ˛/.�� C 1

"
.F0. " C m0/� F0. 0 C m0///:

By applying the regularity already obtained, we can infer that

jG. "/� G. 0/j2 � Ck k2 jrG. "/ � rG. 0/j2 � Ck k3; (60)

hence the terms on the right hand side of (59) can be to bounded as follows (here
ı > 0 is a sufficiently small constant):

I1 � juj2jru0j3juj6 � ıkuk21 C Cku0k1ku0k2juj22;

I2 � jz"j3jr j6juj2 � Cjuj22 C Ckz"k21k k22;

I3 � ju"j2jr j3jzj6 � ıjrzj22 C Ck k22;

I4 D �.G. "/� G. 0/;�ur 0 � u"r C ��z/ � C.k k2juj2 C k k22 C I41/:

where

I41 D j.rG. "/� rG. 0/;rz/j � Ck k3kzk1 � Ck k1=22 k k1=24 kzk1
� C.k k1=22 .jG. "/ � G. 0/j1=22 C jzj1=22 /kzk1 � C.k k2kzk1 C k k1=22 kzk3=21 /

� C.k k2.jrzj2 C k k2/C k k1=22 .jrzj2 C k k2/3=2 � ıjrzj22 C Ck k22:
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Therefore, taking into account the equivalence of the norms k k2 and j� j2, we
arrive at

d

dt

�juj22 C "2�j� j22
� � a.t/.juj22 C j� j22/

where a.t/ is bounded in L1.0;T/ for all T > 0. Applying Gronwall’s Lemma and
taking into account that ju.0/j22 D ju"0 � u0j22 and j� .0/j22 � k "0 �  0k22, one has

ju.t/j22 C "2�j� .t/j22 � .ju"0 � u0j22 C k "0 �  0k22/ exp

�Z t

0

a.s/ ds

�

and the convergence of u" in L1.0;T�I L2/ and  " in L1.0;T�I H2
1/ is obtained.

Coming back to the inequality

d

dt
.juj22 C "2�j� j22/C C.�jruj22 C �� jrzj22/ � a.t/.juj22 C j� j22/;

we obtain the convergence of u" in L2.0;T�I H1/ and of z in L2.0;T�I H1�/, and in
particular, the convergence of  in L2.0;T�I H5

2/. ut
Theorem 1 The set !.u;  / is nonempty and !.u;  / � S . Moreover, for any
.0;  1/ 2 !.u;  /, then Eb. 1/ D E1 holds.

Proof By applying Lemma 2 in (47), we obtain that u.t/ ! 0 in H1
0, therefore,

u1 D 0. Let .u;  / be a weak solution of problem of (16)–(20), associated to the
initial conditions, .u.0/;  .0// D .u0;  0/ and let .0;  1/ be an element of the
!-limit set !.u;  /, that is,

9ftng " C1 s.t. .u.tn/;  .tn// ! .0;  1/ weakly in V � H3
2:

Let tn � T�
reg be and .v; �/ the unique regular solution in .0;bT/ of (16)–(20),

associated to the initial condition .0;  1/. Since E.u.t/;  .t// & E1 in IR as t "
C1; we also have

E.u.tn C Nt/;  .tn C Nt// & E1 in IR as n " C1

for Nt 2 Œ0;bT�. By applying Lemma 5 with u0 D 0,  0 D  1, u"0 D u.tn/ and
 "0 D  .tn/, and denoting

un.Nt/ WD u.tn C Nt/  n.t/ WD  .tn C Nt/;
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then

un ! v in L1.0;bTI L2/ \ L2.0;bTI H1/;

 n ! � in L1.0;bTI H2/ \ L2.0;bTI H5/

as n " C1. In particular, E.un.Nt/;  n.Nt// ! E.v.Nt/; �.Nt// in IR, for all Nt 2 Œ0;bT�.
Therefore,

E.v.Nt/; �.Nt// D E1 8 Nt 2 Œ0;bT�:

Since
d

dt
E.v.Nt/; �.Nt// D 0, from the energy equality for .v; �/, we obtain

�jrv.Nt/j22 C �� jrQz.Nt/j22 D 0 8 Nt 2 Œ0;bT�;
where Qz D "2�2�CG.�/. Taking into account that v.0/ D 0, then for each Nt 2 Œ0;bT�,
v.Nt/ 	 0 and also, Qz.Nt/ is constant, hence in particular �Qz D 0. Therefore, from the
Qz-equation, @t� C v � r� D 0 and hence, @t� D 0. Consequently, v.Nt/ D 0 and
�.Nt/ D  1 for all Nt 2 Œ0;bT�. ut
Theorem 2 Under the hypotheses of Theorem 1, there exists  1 2 H4

2 such that
 .t/ !  1 in H3

2 weakly as t " C1, i.e. !.u;  / D f.0;  1/g.

Proof Let .0;  1/ 2 !.u;  / � S , i.e, there exists tn " C1 such that u.tn/ ! 0

in V and  .tn/ !  1 in H3
2 weakly.

Without any loss of generality, it can be assumed that E.u.t/;  .t// >

E.0;  1/.D E1/ for all t > 0, because otherwise, if it exists some Qt > 0 such that
E.u.Qt/;  .Qt// D E.0;  1/, then, from the energy equality (36),

E.u.t/;  .t// D E.0;  1/; jru.t/j22 D 0 and jrz.t/j22 D 0 for each t � Qt:

Therefore, u.t/ D 0 and z.t/ is constant for each t � Qt. In particular, by using the
z-equation (18), then @t .t/ D 0, hence  .t/ D  1 for each t � Qt. In this situation
the convergence of the  -trajectory is trivial.

Assuming E.u.t/;  .t// > E.0;  1/.D E1/ for all t > 0, the proof is now
divided into three steps.

Step 1: Assuming there exists t? > T�
reg such that

k .t/ �  1k2 � ˇ and ju.t/j2 � 1 8 t � t?
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where the solution is strong in .T�
reg;C1/ and ˛ > 0 is the constant appearing

in Lemma 4 (of Lojasiewicz-Simon’s type), then the following inequalities hold:

d

dt

�
.E.u.t/;  .t// � E.0;  1//�

�
C C � .jru.t/j2 C jrz.t/j2/ � 0; 8 t � t?

(61)Z t2

t1

k@t k.H1
�

/0 � C

�
.E.u.t1/;  .t1//� E.0;  1///� ; 8 t2 > t1 � t?;

(62)

where � 2 .0; 1=2� is the constant appearing in Lemma 4.
Indeed, the energy equality (36) can be written as

d

dt
.E.u.t/;  .t// � E1/C C

�jru.t/j22 C jrz.t/j22
� D 0:

Hence, in particular, from Poincaré inequality:

d

dt
.E.u.t/;  .t// � E

1

/C C.ju.t/j2 C jz.t/j2/ .jru.t/j2 C jrz.t/j2/ � 0; 8t � 0:

Therefore, by taking the time derivative of the (strictly positive) function

H.t/ WD .E.u.t/;  .t// � E1/� > 0;

and the Poincaré inequality, we obtain

dH.t/

dt
C �.E.u.t/;  .t// � E1/��1

�C.ju.t/j2 C jz.t/j2/ .jru.t/j2 C jrz.t/j2/ � 0; 8t � 0:

(63)

On the other hand, by recalling that the unique critical point of the kinetic energy

is u D 0, by taking into account that jEk.u/�Ek.0/j D 1

2
juj22 and since 2.1��/ >

1 and ju.t/j2 � 1, then

jEk.u.t// � Ek.0/j1�� D 1

21��
ju.t/j2.1��/2 � Cju.t/j2 8 t � t?:

Therefore, by using the Lojasiewicz-Simon inequality (given in Lemma 4):

.E.u.t/;  .t// � E1/1�� � jEk.u.t// � Ek.0/j1��
CjEb. .t// � Eb. 1/j1�� � C.ju.t/j2 C jz.t/j2/; (64)
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From (63) and (64), we obtain

dH.t/

dt
C � C.jru.t/j2 C jrz.t/j2/ � 0; 8 t � t?

and (61) is proved.
Integrating (61) into Œt1; t2� for any t2 > t1 � t?, we have

.E.u.t2/;  .t2//� E1/� C � C
Z t2

t1

.jru.t/j2 C jrz.t/j2/dt

� .E.u.t1/;  .t1//� E1/� :
(65)

By using the weak estimate k .t/k2 � C in the z-equation @t D �u �r C�z,
one has

k@t k.H1
�

/0 � C.jruj2 C jrzj2/:

By using this inequality in (65), (62) is attained.
Step 2: There exists a sufficiently large n0 such that tn0 � T�

reg and k .t/ �
 1k2 � ˇ and ju.t/j2 � 1 for all t � tn0 , where ˇ is the constant appearing in
Lemma 4.
The bound ju.t/j2 � 1 is based on u.t/ ! 0 in H1

0. We now focus on the bound
for k .t/ �  1k2. Since  .tn/ !  1 in H2 and E.u.tn/;  .tn// ! E1 D
Eb. 1/, then for any " 2 .0; ˛/, there exists an integer N."/ such that, for all
n � N."/,

k .tn/ �  1k2 � " and
1

�
.Eb.u.tn/;  .tn//� E1/� � ": (66)

For each n � N."/, we define

tn WD supft W t > tn; k .s/ �  1k2 < ˇ 8s 2 Œtn; t/g:

It suffices to prove that tn0 D C1 for some n0. Assume by contradiction that tn <
tn < C1 for all n, hence in this way k .tn/� 1k2 D ˇ and k .t/� 1k2 < ˇ
for all t 2 Œtn; tn/. By applying step 1 for all t 2 Œtn; tn�, from (62) and (66) we
obtain,

Z tn

tn

k@t k.H1
�

/0 � C"; 8 n � N."/:

Therefore,

k .tn/ �  1k.H1
�

/0 � k .tn/ �  1k.H1
�

/0 C
Z tn

tn

k@t k.H1
�

/0 � .1C C/";
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which implies that limn!C1 k .tn/ �  1k.H1
�

/0 D 0. Since  is bounded in
L1.t�;C1I H3

2/, . .t//t�t� is relatively compact in H2. Therefore, there exists
a subsequence of  .tn/, which is still denoted as  .tn/, that converges to  1 in
H2. Hence, k .tn/ �  1k2 < ˇ for a sufficiently large n, which contradicts the
definition of tn.
Step 3: There exists a unique  1 such that  .t/ !  1 weakly in H3

2 as t "
C1.
By using Steps 1 and 2, (62) can be applied, for all t2 > t1 � tn0 , hence

k .t2/ �  .t1/k.H1
�

/0 �
Z t2

t1

k@t k.H1
�

/0 ! 0; as t1; t2 ! C1.

Therefore, . .t//t�tn0
is a Cauchy sequence in .H1�/0 as t " C1, hence the

.H1�/0-convergence of the whole trajectory is deduced, i.e. there exists a unique
 2 .H1�/0 such that  .t/ !  1 in .H1�/0 as t " C1. Finally, the weak H4

2-
convergence by sequences of  .t/ proved in Theorem 1, yields  .t/ !  1 in
H4
2 weakly. ut
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Explicit Blow-Up Time for Two Porous Medium
Problems with Different Reaction Terms

Giuseppe Viglialoro

Abstract This paper deals with the blow-up phenomena of classical solutions to
porous medium problems, defined in a bounded domain of R

n, with n � 1. We
distinguish two situations: in the first case, no gradient nonlinearity is present in the
reaction term contrarily to the other case. Specifically, some theoretical and general
results concerning the mathematical model, existence analysis and estimates of the
blow-up time t� of unbounded solutions to these problems are summarized and
discussed. More exactly, for both problems, explicit lower bounds of t� if blow-
up occurs are derived in the case n D 3 and in terms of an auxiliary function. On the
other hand, in order to compute the real blow-up times of such blowing-up solutions
and discuss their properties, a general resolution method is proposed and used in
some two-dimensional examples.

1 Introduction

Partial differential equations (PDEs) represent one of the most powerful and
efficacious mathematical techniques used to model several real world phenomena.
Subsequently, it is very important to control the solutions of the corresponding
problems; herein we present theoretical and numerical approaches capable to infer
explicit and accurate estimates of the solution of two specific reaction-diffusion
problems.

In line with all the above, different reaction-diffusion phenomena, naturally
appearing in various physical, chemical and biological applications, are exactly
formulated through nonlinear parabolic PDEs. In this sense, the solutions of these
time-dependent equations can be commonly characterized by global boundedness
in time or, contrarily, by unboundedness in finite or infinite time. For results dealing
with global existence and nonexistence, blow-up, blow-up rates and lower and upper
bounds of blow-up time of solutions to different and general parabolic problems and
systems we refer the reader to [3, 5–7, 11, 14, 15, 18, 24, 25].
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As far as the blowing-up solutions are concerned, due to its importance in
real applications, many authors pay attention to estimates of the blow-up time to
those problems whose source (reaction) term depends, generally not linearly, on the
solution and/or also on its gradient (see, for instance, [12, 13, 23, 28, 29] and the
references therein).

In this sense, if u D u.x; t/ represents the real value of the unknown at the spatial
point x and at the instant time t, here we are concerned with this reaction-diffusion
problem, the complete Porous Medium Equation (see [27]),

ut D �.um/C f .u; jruj/;

where m belongs to a suitable subset of R
C and where the reaction f may also

contain the convection term associated to jruj.
Precisely, the main goal of this work is to control the blow-up time t� of

unbounded solutions to the following two problems

8̂
<̂
ˆ̂:

ut D �.um/C k1up; x 2 ˝; t 2 .0; t�/;
u D 0; x 2 @˝; t 2 .0; t�/;
u D u0.x/ > 0; x 2 ˝;

(P1)

and
8̂
<̂
ˆ̂:

ut D �.um/C k1up � k2jrujq; x 2 ˝; t 2 .0; t�/;
u D 0; x 2 @˝; t 2 .0; t�/;
u D u0.x/ > 0; x 2 ˝;

(P2)

where˝ is a bounded and smooth domain ofRn (with n � 1), k1 > 0 and k2 > 0, for
some constants p � 2 and p > q > 3

2
, and where u0.x/ is positive in ˝ , satisfying

the compatibility condition u0.x/ D 0 on @˝ . We primarily dedicate our discussion
to nonnegative classical solutions of (P1) and (P2) which exist for a certain period
of time but that eventually may present a delta function at some finite time t�.

We also precise that in (P2) we set p > q, since for p � q the negative convection
gradient term, which has a damping effect, may contrast the power source term and
the solution does not blow up in finite time (see [20]).

The rest of this paper is organized as follows. A reduced mathematical model
of the motion of a gas in a porous medium is derived in Sect. 2; moreover an
interpretation of the concept of porosity is also here given.

In Sect. 3 we present the main theoretical results, summarized in Theorems 2
and 3. Specifically, once an appropriate time-dependent energy function is defined
(the so called E-energy), it is possible to derive, in the three-dimensional setting,
lower bounds for t� to solutions to problems (P1) and (P2) that are unbounded in
such an energy.
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We deal with the resolution method of the two problems in Sect. 4; starting from
a common weak formulation, we propose an algorithm based on a mixed Finite
Element Method in space and Euler Method in time capable to numerically solve
them. This resolution approach is implemented in the 2D case; hence, we analyze
the behaviors of the solutions and, subsequently, compute the blow-up time t�,
precisely in terms of the aforementioned E-energy.

Finally, the paper is complemented with some conclusions (Sect. 5).

2 Mathematical Model of the Porous Medium Equation

Very often, studying the evolution of physical, biological and chemical phenomena,
the spatial diffusion of the quantity in consideration is modeled through the heat
diffusion law: the flow is proportional to the gradient of the temperature and has the
opposite direction, so that there is a motility towards zones of reduced density. Such
a model is based on the not so realistic assumption that the quantity spreads with
infinity velocity and reaches all the points instantly.

In this sense, a more suitable model is the one in which the diffusion arises with
finite velocity, physically appropriate to describe processes involving flow of an
isentropic gas through porous media like, for instance, sand or gravel. Anyway, an
exhaustive analysis of the general microscopic phenomenon is out of the scope of
this notes (we refer the interested reader to [10, 16]); therefore, in the sequel we
only derive a simplified mathematical model.

Essentially, if ˝ � R
n (n � 1) identifies the domain occupied by the porous

medium, for any time t > 0 a macroscopic approach of the diffusion of a gas through
such a medium leads to take into account these equations in ˝ � .0;1/:

8̂
<̂
ˆ̂:

p D p0�˛; equation of state;

��t C div.��!v / D 0; conservation of mass;
�!v D ��

�
rp; Darcy’s Law;

where p D p.x; t/, � D �.x; t/ and �!v D �!v .x; t/ represent the pressure, the
density and the velocity at the point x and instant t of the gas, respectively, and
with p0; �; �; � and ˛ positive constants, where in addition ˛ � 1.

By arranging the previous three equations we obtain

�t D �p0
��

div.�r�˛/ D �p0˛

��.˛ C 1/
��˛C1;

so that if ˛ D m � 1, after an appropriate linear transformation of the temporal
variable t, we infer the Porous Medium Equations (also known as P.M.E.)

ut D �.um/; x 2 ˝; t 2 .0;1/; (1)



150 G. Viglialoro

with m 2 Œ2;1/ and where u D u.x; t/ represents the density of the gas in the new
variables.

Remark 1 Let us point out that:

• the parameter � depends on the porosity of the medium (and defines the portion
of the medium that can be crossed by the gas), � on its permeability and � on the
viscosity of the gas.

• Although Eq. (1) was derived for m � 2, herein we will consider m 2 .1;1/,
since m 2 .1; 2/ is also meaningful and concerns the fusion of the ionized gases.

• For m D 1 the heat diffusion model is recovered while that m 2 .0; 1/ represents
the mathematical problem of the so called plasma diffusion phenomena; we will
not dedicate to this case because it presents strong differences with the case
m > 1.

2.1 Interpretation of Porosity

As explained, from the mathematical point of view, it is well known that the
diffusion term affecting u for the heat transfer phenomena (infinity velocity) is
described by �u; for the flow in porous media (corresponding to finite velocity)
this term is replaced by�.um/, m representing precisely the porosity degree.

Heuristically and intuitively, it is possible to connect the spread velocity j�!v j of
the gas and the porosity coefficient m of the medium: the larger m is, the smaller

j�!v j, that is j�!v j D j���!
v.m/j is a decreasing function of m:

j���!
v.m1/j < j���!

v.m2/j; for any m1 > m2: (2)

In particular, the limit case limm!1C
j���!
v.m/j D 1 holds.

2.2 Some Properties of the Solutions to the P.M.E.

Although the efficiency of the computers allows us to achieve very precise numerical
approximations to a number of difficult problems, it is always very useful rely on
analytical solutions or some of their qualitative properties. In this sense, we want to
briefly summarize some general aspects connected to the solutions of the P.M.E.

Specifically, under symmetry assumptions on the domain ˝ � R
n, Barenblatt

and Pattle found an explicit formula for solutions to Eq. (1) in terms of a delta
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Fig. 1 Representations of solutions to P.M.E. (a) Barenblatt-Pattle solution, for n D 1 with C D
0:2 and m D 2: (b) Barenblatt-Pattle solution, for n D 2 with C D 0:2 and m D 2, at t D 2

function-type initial condition with integral C (see [4, 17]), whose expression is

u.jxj; t/ D max
n
0; t�a

h
C � a.m � 1/

2nm

jxj2
t
2a
n

i 1
m�1
o
; (3)

where a D .m � 1C 2=n/�1:
The solution u presented in (3) has some interesting features; we mention, for

instance:

1. the support of u is a ball with radius increasing in time;
2. the maximum of u decreases in time, for any x given;
3. in the absence of flow through the boundary,

R
Rn u.jxj; t/dx D C, constant in

time (mass conservation);
4. limt!0C

u.jxj; t/ D Cı.x/, in the sense of distributions.

In line with this, for further completeness, Fig. 1a, b provide graphical representa-
tions of the analytical expression (3) in one and two dimensions, respectively.

2.3 Existence Results and Blow-Up Phenomena

In the previous section, we focused on analytical and classical solutions of Eq. (1);
now we are interested in a more general analysis regarding the following Cauchy
problem:

8̂
<̂
ˆ̂:

ut D �.um/C f .u/; x 2 ˝; t 2 .0;1/;

u D 0; x 2 @˝; t 2 .0;1/;

u D u0.x/ � 0; x 2 ˝:
(4)

Since �.um/ D div.mum�1ru/, the porous medium operator does not obey the
uniform parabolicity condition when the initial datum vanishes in an open subset of
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˝ (observe that, on the contrary, we fix strictly positive u0.x/ in (P1) and (P2));
hence, no classical solution of the equation exists. Subsequently, an appropriate
variational formulation of the previous Cauchy problem has to be introduced to
ensure existence and uniqueness of weak solutions (see, for instance, [2, 27]). Here,
we only provide the forthcoming theorem.

Firstly, we give this

Definition 1 We say that u is a weak solution of problem (4) in ˝ � .0;1/ if for
any T > 0,

• u 2 L1.˝ � .0;T//.
• um 2 L1..0;T/I W1;1

0 .˝//.
• The identity

Z T

0

Z
˝

.rum � r	 � u	t/dxdt D
Z
˝

u0.x/	.x; 0/dx C
Z T

0

Z
˝

f	dxdt;

holds for any 	 2 C1.˝ � .0;T// which vanishes on @˝ � Œ0;T/ and for t D T.

Theorem 1 Let f be a global Lipschitz continuous function such that f .0/ D 0 and
m > 1. Then, for any u0.x/ � 0, continuous and bounded in ˝ , there exists � > 0,
with � � 1, such that problem (4) admits a unique weak solution in Œ0; �/.

Proof See [21]. �
When f is superlinear (or more generally not globally Lipschitz) the situation is
quite different and the weak solution exists and is bounded at least for a small time
interval 0 < t < t1. However, it may become unbounded in a finite time t�:

lim
t!t�

sup jjujjL1.˝/ D 1: (5)

In this case we say that u blows up at t D t� in the L1-norm.

3 Lower Bound for Blow-Up Time

In this section we establish results concerning lower bounds for t� of unbounded,
classical and nonnegative solutions to both problems (P1) and (P2).

We, previously, need this

Definition 2 For any nonnegative solution u of (P1), or (P2), let us introduce the
E-energy

E.t/ D
Z
˝

um.p�1/dx; (6)

with E.0/ D R
˝

um.p�1/
0 dx > 0.
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We say that u blows up (or is unbounded) in E-energy (6) at finite time t� if

lim
t!t�

E.t/ D 1:

Hence, we can present these two fundamental results:

Theorem 2 Let ˝ be a bounded domain of R3 with Lipschitz boundary. Assume
p � 2 and d D .m � 1/=.p � 1/, with 2 � 1=p < m < p. If u is a nonnegative
classical solution of (P1) becoming unbounded in E-energy (6) at time t D t�P1 , then

t�P1 � b1

Z 1

E.0/

d�

��
D TP1 ; (7)

where

� D 2m C 3d � 1

2m C 3d � 3
> 1;

b1 being a positive computable constant depending on the data.

Proof See [22]. �

Theorem 3 Let ˝ be a bounded domain of R3 with Lipschitz boundary. Assume
p � 2 and ı a real number verifying

1 < ı <
2

3
.m C d/

�2m C 3d � 3

2m C 3d � 1

�
;

where d D .m � 1/=.p � 1/, with 2 � 1=p < m < p and p > q > 3
2
. If u is a

nonnegative classical solution of (P2) becoming unbounded in E-energy (6) at time
t�P2 , then

t�P2 �
Z 1

E.0/

d�

c7�˛ C c8�˛ˇ
D TP2 ; (8)

where

(
˛ D 2.mCd/�ı

2.mCd/�3ı > 1;
ˇ D 2mC3d�1

2mC3d�3˛ > 1;

c7 and c8 being two positive computable constants depending on the data.
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Proof For any nonnegative solution u of (P2), let us set s D p � 1. Due to the
divergence theorem and the boundary condition, we lead to

E0.t/ D ms
Z
˝

ums�1Œ�.um/C k1u
p � k2jrujq�dx

D �ms
Z
˝

rums�1 � r.um/dx

C msk1

Z
˝

us.mC1/dx � msk2

Z
˝

ums�1jrujqdx

D �m2s.ms � 1/
Z
˝

ums�3Cmjruj2dx

C msk1

Z
˝

us.mC1/dx � msk2

Z
˝

ums�1jrujqdx:

(9)

Now, using inequality (2.10) in [19], we achieve

msk2

Z
˝

ums�1jrujqdx D msk2
� q

ms C q � 1
�q
Z
˝

jru
msCq�1

q jqdx � msk
Z
˝

umsCq�1dx;

(10)

where k D k2
�

2
p
�1

msCq�1
�q

, �1 being the first positive eigenvalue of the fixed

membrane problem

�w C �w D 0 in ˝; w > 0 in ˝; w D 0 on @˝:

Let us observe that, as specified for instance in [1], �1 represents the optimal
constant of the classical Poincaré inequality.

For simplicity, we indicate

us D V; � D q � 1

s
< 1; d D m � 1

s
< 1:

Furthermore, let us also note that

jrVj2 D s2u2.s�1/jruj2: (11)

As a consequence, since m > 2 � 1
p , using (10) and (11), relation (9) becomes

E0.t/ � �c1

Z
˝

V.m�2/CdjrVj2dx C c2

Z
˝

VmC1dx � kms
Z
˝

VmC�dx

D �c3

Z
˝

jrV
mCd
2 j2dx C c2

Z
˝

VmC1dx � kms
Z
˝

VmC�dx;

(12)
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where
8̂
<̂
ˆ̂:

c1 D m2.ms�1/
s ;

c2 D msk1;

c3 D 4
.mCd/2

c1:

On the other hand, the Hölder inequality yields

Z
˝

VmC1dx �
� Z

˝

VmC�dx
� ��1
���

� Z
˝

VmC�dx
� 1��
���
;

for some positive constant � > 1. Therefore, by means of

arb1�r � ra C .1 � r/b; (13)

valid for a; b > 0 and 0 < r < 1, we have

Z
˝

VmC1dx � � � 1

� � �
"1

Z
˝

VmC�dx C 1 � �

� � �"
� ��1
1��

1

Z
˝

VmC�dx; (14)

where "1 is a positive constant to be chosen. Specifically, if "1 D k ���
k1.��1/ ,

replacing (14) into (12), we get

E0.t/ � �c3

Z
˝

jrV
mCd
2 j2dx C c4

Z
˝

VmC�dx; (15)

where

c4 D c2
1 � �
� � �"

� ��1
1��

1 :

From now on, let ı be such that

1 < ı <
2

3
.m C d/

�2m C 3d � 3
2m C 3d � 1

�
: (16)

For � D d C ı > 1, the Hölder inequality leads to

Z
˝

VmC�dx D
Z
˝

V.mCd/Cıdx �
� Z

˝

VmCddx
� 2.mCd/�ı

2.mCd/
� Z

˝

.V
mCd
2 /6dx

� ı
2.mCd/

:

(17)
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In addition, since u D 0 on @˝ , the Sobolev embedding in R
3, W1;2

0 ,! L6, provides

Z
˝

�
V

mCd
2

�6
dx � � 6

� Z
˝

jrV
mCd
2 j2dx

�3
; (18)

� D 4
1
2 3� 1

2 �� 2
3 being the best Sobolev constant (see [26]).

Replacing (18) into (17), we obtain

Z
˝

V.mCd/Cıdx � �
3ı

mCd

� Z
˝

VmCddx
� 2.mCd/�ı

2.mCd/
� Z

˝

jrV
mCd
2 j2dx

� 3ı
2.mCd/

;

and, introducing a positive constant "2, through (13) we get (recall (16))

Z
˝

V.mCd/Cıdx

� �
3ı

mCd

�
"2

� Z
˝

VmCddx
� 2.mCd/�ı
2.mCd/�3ı

� 2.mCd/�3ı
2.mCd/

�
"
1� 2.mCd/

3ı

2

Z
˝

jrV
mCd
2 j2dx

� 3ı
2.mCd/

� �
3ı

mCd "2
2.m C d/� 3ı

2.m C d/

� Z
˝

VmCddx
� 2.mCd/�ı
2.mCd/�3ı

C �
3ı

mCd "
1� 2.mCd/

3ı

2

3ı

2.m C d/

Z
˝

jrV
mCd
2 j2dx:

(19)

To bound the term
� R

˝
VmCddx

� 2.mCd/�ı
2.mCd/�3ı

, let us observe that the Hölder and the

Schwarz inequalities give, respectively,

Z
˝

VmC1dx �
� Z

˝

V2.mCd/dx
� 1

mC2d
� Z

˝

Vmdx
�mC2d�1

mC2d
; (20)

and

Z
˝

V2.mCd/dx �
h Z

˝

�
V

mCd
2

�6
dx
Z
˝

VmCddx
i 1
2
: (21)

Now, using in (21) relation (18), we have

Z
˝

V2.mCd/dx � � 3
� Z

˝

jrV
mCd
2 j2dx

� 3
2
� Z

˝

VmCddx
� 1
2
:
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Subsequently, (20) becomes

Z
˝

VmC1dx � �
3

mC2d

� Z
˝

jrV
mCd
2 j2dx

� 3
2.mC2d/

� Z
˝

VmCddx
� 1
2.mC2d/

� Z
˝

Vmdx
� mC2d�1

mC2d
:

(22)

In addition, we first use the Hölder inequality to lead to

Z
˝

VmCddx �
� Z

˝

VmC1dx
�d� Z

˝

Vmdx
�1�d

; (23)

and then insert this estimate in (22); combining terms, applying (13) and setting

2.m C d/� ı
2.m C d/� 3ı D ˛ > 1;

we have

� Z
˝

VmC1dx
�˛ � �

6˛
2mC3d

� Z
˝

jrV
mCd
2 j2dx

� 3˛
2mC3d

� Z
˝

Vmdx
�˛ 2mC3d�1

2mC3d

� �
6˛

2mC3d
3˛

2m C 3d

Z
˝

jrV
mCd
2 j2dx

C �
6˛

2mC3d
2m C 3d � 3˛
2m C 3d

� Z
˝

Vmdx
�˛ 2mC3d�1

2mC3d�3˛
;

(24)

where we have also taken into account assumption (16).
Hence, rearranging again (23) with (13) we attain

� Z
˝

VmCddx
�˛ �

h� Z
˝

VmC1dx
�d� Z

˝

Vmdx
�1�di˛

� d
� Z

˝

VmC1dx
�˛ C .1 � d/

�Z
˝

Vmdx
�˛
;

so that in view of (24) expression (19) becomes (recall � D d C ı)

Z
˝

VmC�dx �� 3ı
mCd C 6˛

2mC3d 3˛d



2m C 3d
"2

Z
˝

jrV
mCd
2 j2dx

C �
3ı

mCd C 6˛
2mC3d d


2m C 3d � 3˛
2m C 3d

"2

� Z
˝

Vmdx
�˛ˇ

C .1 � d/"2�
3ı

mCd 

� Z

˝

Vmdx
�˛

C �
3ı

mCd
3ı

2.m C d/
"
1� 2.mCd/

3ı

2

Z
˝

jrV
mCd
2 j2dx;

(25)
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where 2.mCd/�3ı
2.mCd/ D 
 and

ˇ D 2m C 3d � 1
2m C 3d � 3˛

> 1:

Lastly, coming back to inequality (15), relation (25) provides

E0.t/ �
�

c5"2Cc6"
1�

2.mCd/
3ı

2 �c3
� Z

˝

jrV
mCd
2 j2dxCc7

� Z
˝

Vmdx
�˛Cc8

� Z
˝

Vmdx
�˛ˇ

;

(26)

with

c5 D �
3ı

mCd C 6˛
2mC3d

3˛dc4


2m C 3d
; c6 D 3ıc4�

3ı
mCd

2.m C d/
;

and

c7 D �
3ı

mCd .1 � d/"2
c4; c8 D �
3ı

mCd C 6˛
2mC3d

2m C 3d � 3˛

2m C 3d
"2c4d
:

As detailed in Appendix, if this relation is satisfied

c3 � c5
�c5

c6

� �3ı
2.mCd/

� 3ı

.2m C 2d � 3ı/

�� 3ı
2.mCd/ 2.m C d/

2.m C d/ � 3ı ;

then there exits at least a value of "2 such that c5"2 C c6"
1� 2.mCd/

3ı

2 � c3 � 0; for such
a value of "2 inequality (26) is simplified to

E0.t/ � c7
� Z

˝

Vmdx
�˛ C c8

� Z
˝

Vmdx
�˛ˇ

;

or, by (6),

dE

c7E˛ C c8E˛ˇ
� 1:

Upon an integration, we have for t < t�

t� �
Z 1

E.0/

d�

c7�˛ C c8�˛ˇ
;

so that the proof is complete. �
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Remark 2 Regarding the aforementioned theorems, let us clarify that although
Theorem 2 directly arises from Theorem 3 setting k2 D 0, the first and principal
result has been derived by Shafer in 2008; subsequently, the detailed proof given
above, uses also ideas of Schaefer [22].

Let us underline some aspects concerning the solution u of (P1), or (P2), in terms of
the E-energy defined in (6):

• If E.t/ is unbounded at finite time t�, there exists a time t1 (that might be also
0) such that E.t1/ D E.0/ and E.t/ > E.t1/, for t 2 .t1; t�/ (see Fig. 2);
subsequently, it is possible to express the estimate of t� only in terms of the
initial energy E.0/, as in (7) and (8).

• If E.t/ is unbounded at t D t�, then jjujjL1.˝/ is also unbounded at t D t�; in
other words, if u blows up in the E-energy (relation (6)) it also does in the sense
of relation (5).

• If the E-energy decreases in time or reaches a constant value (see Fig. 3) we say
that u is bounded in time in the sense of the E-energy and, for editing reasons
which will be clear later, we improperly set “t� D 1”.

Remark 3 Qualitatively, the difference k1up � k2jrujq models a sort of competition
between a source effect (represented by the power term), that increases the
internal energy of the system and therefore accelerates the blow-up time, and a
damping effect (represented by the gradient term), that breaks such an energy and,

Fig. 2 Possible behaviors of the E-energy in terms of time, once E.t/ is supposed to be unbounded
at finite time t�

Fig. 3 Possible behaviors of the E-energy in terms of time, once E.t/ is supposed to be bounded
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Fig. 4 Analysis of lower
bounds and blow-up times of
solutions to problems (P1)
and (P2)

subsequently, contrasts this growth, works against it and slows down the blow-up
time.

In terms of the two main problems, the situation discussed in Remark 3 is sketched
in Fig. 4: for problem (P1) (respectively, (P2)), if the E-energy defined in (6) is
finite, the solution u is bounded in such an energy for any t belonging to Œ0;TP1 /

(respectively, Œ0;TP2 /). In addition, the interval Œ0;TP1 / (respectively, Œ0;TP2/) is
not maximal and it is not known a priori the length of the interval .TP1 ; t

�
P1
/

(respectively, .TP2 ; t
�
P2
/). On the contrary, if the E-energy is unbounded at t�P1

(respectively, t�P2), it is known that TP1 < TP2 and that t�P1 < t�P2 .

4 Numerical Resolution Method and Examples

In this section a resolution technique for both problems (P1) and (P2), based on a
mixed semi-discrete in space and a single-step method in time, is presented. Exactly,
in order to derive a general numerical procedure, let us formulate such problems
jointly:

8̂
<̂
ˆ̂:

ut D �.um/C f q
p .u; jruj/; x 2 ˝; t 2 .0; t�/;

u D 0; x 2 @˝; t 2 .0; t�/;
u D u0.x/ � 0; x 2 ˝;

(27)

where f q
p .u; jruj/ will be defined below.

4.1 Finite Element Method: Semi-Discretization in Space

Let ˝ be a bounded and regular domain of R
n, with n � 1. If a mesh of ˝ is

fixed, and N represents the total number of nodes of ˝ , let U be the numerical
approximation of the solution u of (27): therefore,

U .x; t/ D
NX

iD1
ui.t/' i.x/; (28)

where ' i.x/ 2 H1
0.˝/ is the standard hat basis at the vertex xi, for i D 1; : : : ;N.
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Thanks to the divergence theorem, multiplying the differential equation in (27)
by a generic test function ' j.x/ and taking into consideration the homogeneous
boundary condition, for any j D 1; : : : ;N; t � 0, this variational formulation in
space is achieved

.Ut; '
j/C .rU m;r' j/ D .f q

p .u; jruj/; ' j/I (29)

in the equation above, .�; �/ stands for the usual L2 inner product.
In order to compute the evolution in time of the coefficients ui appearing in (28),

let �t D tkC1 � tk be a given time step, with k D 0; 1; 2; : : : (t0 D 0), and Uk the
approximation of U .x; t/ at time tk. By applying the forward Euler finite difference
approximation to system (29), it is seen that

.
UkC1 � Uk

�t
; ' j/C .rU m

k ;r' j/ D .f q
p .Uk; jrUkj/; ' j/;

i.e., taking into account (28),

M
ukC1 � uk

�t
C Kum

k D F q
p .uk/; (30)

with

(
M 2 R

N�N W Mij D R
˝
' i.x/' j.x/dx;

K 2 R
N�N W Kij D R

˝
r' i.x/ � r' j.x/dx;

and F q
p .uk/ 2 R

N such that

F q
p .uk/j D k1

Z
˝

.

NX
iD1

ui
k'

i.x//p' j.x/dx;

if f q
p .u; jruj/ D k1up (corresponding to (P1)) and

F q
p .uk/j D k1

Z
˝

.

NX
iD1

ui
k'

i.x//p' j.x/� k2.
NX

iD1
ui

kjr' i.x/j/q' j.x/dx;

if f q
p .u; jruj/ D k1up � k2jrujq (corresponding to (P2)).
Let us note that we have set uk D .u1k ; : : : ; u

N
k /

T , where T represents the
transposition operator. In these circumstances, ui

k is the approximation of the
solution u of problem (27) at time tk, for k D 0; 1; 2; : : :, and at space point xi,
for i D 1; 2; : : : ;N:

With regards to the estimate of the blow-up time t�, measured in the sense of
Definition 2, the following numerical resolution algorithm is proposed. Let "0 be a
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fixed threshold: once the initial datum u0 and an integration step �t are given, u1 is
computed from (30). Successively, u1 is used to actualize u2, and so on. Moreover,
according to (6), we exit the loop when the numerical approximation of the E-energy
at step k

"k D
Z
˝

� NX
iD1

ui
k'

i.x/
�m.p�1/

dx; (31)

is greater than the initial threshold "0 (Stopping Criterion); eventually, t� � k�t
(see the scheme in Table 1).

Remark 4 It is well known that the forward Euler method is an explicit method
which presents only a linear accuracy with respect to the step size, and its local
truncation error is O..�t/2/; hence it is a first order method. Moreover, it may
manifest undesirable numerical instabilities.

On the other hand, we could obtain stability by means of implicit methods, for
instance through the forward Euler method, or others that have higher order (see
[9]). Anyway, such approach is more expensive to be implemented since (30) should
be replaced by

M
ukC1 � uk

�t
C Kum

kC1 D F q
p .uk/;

and, hence, ukC1 should be computed solving an implicit and nonlinear equation.
Nevertheless, since it is very simple to implement and also very intuitive, we

prefer to impose specific conditions on the time step size capable to make the

Table 1 Computation of the blow-up time t�. The necessary input data are the threshold "0, the
time step �t and the initial datum u0; successively, it is possible to calculate the sequence uk and
"k and, therefore, to calculate t�
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explicit Euler method stable. Specifically, if h represents the diameter of the largest
element in the mesh, by choosing �t=h2 small enough the forward method is
immune to oscillations and totally suitable to compute the solution as close to
the exact one (see again [9] for details). We believe that such approach is totally
appropriate to the aims of this research.

4.2 Numerical Simulations in R
2

In the following examples we want to investigate the influence of p, q, m and u0 on
the solution u of (P1) and (P2), and specially on the blow-up time t�. In such sense,
in order to carry out an accurate analysis of the efficiency of the presented algorithm
and of the obtained results, we have to take in mind Remark 3. In addition, we also
rely on relation (2) which suggests that the blow-up time t� has to increases with m
increasing.

4.2.1 Examples

In this section we solve system (27) in order to discuss some aspects corresponding
to solutions of (P1) and (P2). More exactly, for both problems we focus on

• the analysis of the value of t� with p, q and m varying;
• the influence of the initial data u0 on t�.

Remark 5 Let us point out that these numerical simulations have been obtained
by means of the software package FreeFem++ (see [8]). This is a free programming
language based in the Finite Element Method, focused on solving partial differential
equations. FreeFem++ is implemented in terms of the variational formulations of the
corresponding problems, so that it is straightforward to address problems involving
PDEs.

The results in Tables 2 and 3 have been computed in the domain Q D B1.0/ � R
C
0 ,

being B1.0/ D fx D .x; y/ 2 R
2 W x2 C y2 � 1 < 0g: Moreover, �t D 0:001,

k1 D k2 D 1, "0 D 107 and u0.x/ D ˛.1 � x2 � y2/, where ˛ > 0 was used in order
to change the initial E-energy E0 D E.u0/.

Table 2 emphasizes how the blow-up time t� of unbounded solutions u to
problem (P1) decreases with p increasing, once m and E0 are given and also with E0
increasing, for m and p fixed; the first case can be checked by comparing the first

Table 2 Analysis of
problem (P1)

m 1:2 1:2 1:3 1:3 1.3

p 2:3 2:4 2:4 2:4 2.4

E.u0/ 10:99 10:99 10:99 12:57 9.42

t�P1 0:186 0:108 0:157 0:101 1
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Table 3 Analysis of
problem (P2)

m 1.2 1:2 1:4 1:4

p 2.4 2:4 2:6 2:6

q 1.4 1:3 1:3 1:3

E.u0/ 10.99 10:99 10:99 12:57

t�P2 1 0:294 0:107 0:062

and second columns and the second by observing the third, fourth and fifth ones.
In particular, the last column shows that if E0 is not big enough, t� D 1 so that u
is globally bounded in E-energy (recall convention). Finally, t� decreases with the
porosity coefficient m (second and third columns).

On the other hand, as explained through the paper, Table 3 also highlights how
for m, p and E0 given, an increasing of q corresponds to a higher dumping effect of
the term jrujq, which results in a decreasing of the blow-up time t� of unbounded
solutions u; it is seen in the first two columns (the data of the first one even return
a bounded solution). In addition, if m; p and q are fixed, a higher initial energy E0
corresponds to solutions whose blow-up time is smaller than solutions associated to
smaller E0 (third and fourth columns).

5 Conclusions

This paper studies the bounded and unbounded (blowing-up) solutions of two
nonlinear parabolic problems defined in a bounded and regular domain of Rn, with
n � 1. The equations contain the diffusive term associated to the laplacian of a
power of the solution and in a case a reaction term (a power of the solution), which
represents a source, and in the other also a power of the gradient of the solution,
which models damping effect; moreover Dirichlet boundary conditions are fixed.
First we review partial theoretical results concerning existence and boundedness
and unboundedness properties of positive solutions to such problems, and then we
give lower bound estimates for the blow-up time of the blowing-up solutions in a
three-dimensional domain. In addition, we propose and employ a procedure capable
to numerically calculate these solutions; this algorithm is achieved by applying
a mixed semi-discretization in space and a single-step method in time to both
problems. Furthermore, the problems are numerically solved in two-dimensional
cases; in particular, the analysis of the results shows that:

• The numerical method is coherent with respect to the expected results since the
solutions obey natural laws and expectations.

• The problems are sensitive with respect to small variations of its data, in fact,
initial conditions or parameters slightly different each other can return both
blowing-up or bounded solutions.
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Appendix

For completeness of the reader, we emphasize some details used in the proof of
Theorem 3.

Proposition 1 Let the coefficients ci (i D 1; : : : ; 6) of Theorem 3 satisfy

c3 � c5
�c5

c6

� �3ı
2.mCd/

� 3ı

.2m C 2d � 3ı/
�� 3ı

2.mCd/ 2.m C d/

2.m C d/� 3ı
: (32)

Then there exits at least a � 2 .0;1/ such that

c5� C c6�
1� 2.mCd/

3ı � c3 � 0: (33)

Proof For any � 2 .0;1/, function˚.�/ WD c5�C c6�1�
2.mCd/
3ı attains its minimum

at the point

�m D
� 3ıc5

c6.2m C 2d � 3ı/

� �3ı
2.mCd/

:

Therefore, since

˚.�m/ D c5
�c5

c6

� �3ı
2.mCd/

� 3ı

.2m C 2d � 3ı/
�� 3ı

2.mCd/ 2.m C d/

2.m C d/� 3ı
;

and (32) holds, relation (33) is proven.

In addiction, let us give this

Remark 6 Relation (32) can be explicitly written as

1

k1

�k2
k1

� ��1
1�� � �

3ı
mCd s2.m C d/2

4m.ms � 1/

h� � �

� � 1

� 2
p
�1

ms C q � 1
�qi� ��1

1��
†;

being

† D 1 � �
� � �

� 6.m C d/�
6˛

2mC3d d˛


.2m C 3d/.2m C 2d � 3ı/
�1� 3ı

2.mCd/
:

Therefore, once m, p, q and ˝ are fixed in (P2), relation (32) is satisfied for
k2 (respectively, k1) big (respectively, small) enough. Since k2 is the coefficient
associated to �jrujq, which contrasts the explosion, and k1 the one associated to
up, which stimulates it, this effect of coefficients k1 and k2 is coherent in terms of
estimate (8). In fact, t� increases when constants c7 and c8 decreasing, which in turn
decrease with k2 (respectively k1) increasing (respectively, decreasing).



166 G. Viglialoro

Acknowledgements The author is member of the Gruppo Nazionale per l’Analisi Matematica,
la Probabilitá e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica
(INdAM). The author also gratefully acknowledges Sardinia Regional Government for the financial
support (P.O.R. Sardegna, F.S.E. 2007–2013). This work is also supported by the research group
IFQM315-Análisis Teórico y Numérico de Modelos de las Ciencias Experimentales, of the
Department of Mathematics of the University of Cadiz (Spain).

References

1. Acosta, G., Durán, R.G.: An optimal Poincaré inequality in L1 for convex domains. Proc. Am.
Math. Soc. 132, 195–202 (2004)

2. Aronson, D.G., Crandall, M.G, Peletier, L.A.: Stabilization of solutions of a degenerate
diffusion problem. Nonlinear Anal. Theor. 6, 1001–1022 (1982)

3. Bandle, C., Brunner, H.: Blow-up in diffusion equations: a survey. J. Comput. Appl. Math. 97,
3–22 (1983)

4. Barenblatt, G.I.: On some unsteady motions of a liquid or a gas in a porous medium. Appl.
Math. Mech. 16(1), 67–78 (1952)

5. Brändle, C., Quirós, F., Rossi, J.D.: Non-simultaneous blow-up for a quasilinear parabolic
system with reaction at the boundary. Comm. Pure Appl. Anal. 4, 523–536 (2005)

6. Farina, M.A., Marras, M., Viglialoro, G.: On explicit lower bounds and blow-up times in a
model of chemotaxis. Discret. Contin. Dyn. Syst. Suppl. 2015, 409–417 (2015)

7. Galaktionov, V.A., Vázquez, J.L.: The problem of blow up in nonlinear parabolic equations.
Discret. Contin. Dyn. Syst. 8, 399–433 (2002)

8. Hecht, F., Pironneau, O., Le Hyaric, A., Ohtsuda, K.: FreeFem++ (Third Edition, Version 3.19).
Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris. http://www.freefem.
org/ff++/

9. Larsson, S., Thomee, V.: Partial Differential Equations with Numerical Methods. Springer,
Heidelberg (2003)

10. Leibenzon, L.S.: The motion of a gas in a porous medium. Complete Works, vol. 2, Acad. Sci.
URSS, Moscow (1953) (in Russian)

11. Levine, H.A.: Nonexistence of global weak solutions to some properly and improperly posed
problems of mathematical physics: the method of unbounded Fourier coefficients. Math. Ann.
329(2), 205–220 (1975)

12. Marras, M., Vernier-Piro, S., Viglialoro, G.: Estimate from below of blow-up time in a
parabolic system with gradient term. Int. J. Pure Appl. Math. 93(2), 297–306 (2014)

13. Marras, M., Vernier-Piro, S., Viglialoro, G.: Lower bounds for blow-up time in a parabolic
problem with a gradient term under various boundary conditions. Kodai Math. J. 3, 532–543
(2014)

14. Marras, M., Vernier Piro, S., Viglialoro, G.: Lower bounds for blow-up in a parabolic-parabolic
Keller-Segel system. Discret. Contin. Dyn. Syst. Suppl. 2015, 809–916 (2015)

15. Marras, M., Vernier Piro, S., Viglialoro, G.: Blow-up phenomena in chemotaxis systems with
a source term. Math. Method Appl. Sci. (2015). doi:http://dx.doi.org/10.1002/mma.3728

16. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Medium. McGraw-Hill,
New York (1937)

17. Pattle, R.E.: Diffusion from an instantaneous point source with a concentration-dependent
coefficient. Q. J. Mech. Appl. Math. 12(4), 407–409 (1959)

18. Payne, L.E., Schaefer, P.W.: Lower bound for blow-up time in parabolic problems under
Neumann conditions. Appl. Anal. 85, 1301–1311 (2006)

19. Payne, L.E., Philippin, G.A., Schaefer, P.W.: Blow-up phenomena for some nonlinear parabolic
problems. Nonlinear Anal. Theor. 69(10), 3495–3502 (2008)

http://www.freefem.org/ff++/
http://www.freefem.org/ff++/
http://dx.doi.org/10.1002/mma.3728


Explicit Blow-Up Time for Two Porous Medium Problems with Different. . . 167

20. Quittner, R., Souplet, P.: Superlinear Parabolic Problems. Blow-Up, Global Existence and
Steady States. Birkhäuser Advanced Texts. Birkhäuser, Basel (2007)

21. Sacks, P.E.: The initial and boundary value problem for a class of degenerate parabolic
equations. Commun. Partial Differ. Equ. 8(7), 693–733 (1983)

22. Schaefer, P.W.: Lower bounds for blow-up time in some porous medium problems. Proc. Dyn.
Syst. Appl. 5, 442–445 (2008)

23. Souplet, P.: Recent results and open problems on parabolic equations with gradient nonlinear-
ities. Electron. J. Differ. Equ. 2001, 1–19 (2001)

24. Stinner, Ch., Winkler, M.: Finite time vs. infinite time gradient blow-up in a degenerate
diffusion equation. Indiana Univ. Math. J. 57(5), 2321–2354 (2008)

25. Straughan, B.: Explosive Instabilities in Mechanics. Springer, Berlin (1998)
26. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110, 353–372 (1976)
27. Vázquez, J.L.: The Porous Medium Equation: Mathematical Theory. Oxford Mathematical

Monographs. Clarendon Press, Oxford (2006)
28. Viglialoro, G.: On the blow-up time of a parabolic system with damping terms. C. R. Acad.

Bulg. Sci. 67(9), 1223–1232 (2014)
29. Viglialoro, G.: Blow-up time of a Keller-Segel-type system with Neumann and Robin boundary

conditions. Differ. Integral Equ. 29(3–4), 359–376 (2016)



Numerical Assessment of the Energy Efficiency
of an Open Joint Ventilated Façade for Typical
Meteorological Months Data in Southern Spain

Antonio Domínguez-Delgado, Carlos Domínguez-Torres,
and José Iñesta-Vaquera

Abstract A numerical evaluation of the energy efficiency of an open joint ven-
tilated façade under climatic conditions operating in Southern Spain is made for
typical meteorological month data for each month in the year. Results from CFD
computation suggest that the combined effect of the shading of the external wall
and the ventilation by the natural convection into the air gap may result in a
significative reduction of the heat load during the summer period and a reduction in
global energy consumption to get internal comfort in the building when compared
with an unventilated one, although the rate of energy savings achieved is relatively
sensitive to the combination of environmental conditions. The obtained results seem
to indicate that for the whole year, the use of the studied ventilated façade could
provide a global energy saving up to 13% when compared with the use of a standard
non-ventilated façade within the orientation and climatic conditions framework
considered.

1 Introduction

Over the last years, interest in the development of passive systems for heating and
cooling has experienced a remarkable rise because of the need to decrease the
energetic costs in the thermal conditioning of buildings.

In hot climates, the main advantage attributed to ventilated façades is the
reduction of cooling load for the building climatization. This reduction is achieved
by the combination of two factors: ventilation induced by natural convection in the
ventilated chamber and protection from solar radiation provided by the external
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layer of the façade. This way, ventilated façades, if well designed, can significantly
reduce the energetic demand for cooling, especially in situations of high solar
irradiation.

Previous studies show that the energy efficiency of this type of façade depends
strongly on the local weather conditions. Thereby some authors, Ciampi et al. [4]
and Patania et al. [13], describe the energetic efficiency decline of these façades
when the ambient temperature is high together with a reduction of the benefits of its
use in winter due to the penalization that ventilated façades produces in order to take
advantage of the solar irradiation. Both situations are found in the climatic context
of this study. Hence a careful evaluation of the energy efficiency for this kind of
façades when compared with standard non ventilated façades must be carried out in
order to determine the suitability of their use in terms of energy efficiency.

In this work we study the thermodynamic behavior of an open joint ventilated
façade during actual operating conditions in Southern Spain through the typical
meteorological month day data for each month of the year. This way an approxi-
mation to the whole year energetic balance is made. This balance is compared to the
equivalent one for a standard unventilated façade.

Specifically, we consider the climatic monthly typical values for each month of
the year for the city of Seville.

The numerical simulation of the air flow has been performed by using the Navier-
Stokes equations for thermodynamic flows and numerical simulations have been
carried out with a 2D Finite Element approach by using the FreeFem++ software
[2].

2 The Opaque Open Joint Ventilated Façade

The studied ventilated façade falls into the category of opaque open joint ventilated
façades. Basically it has been modeled as a two-dimensional system with a
composite inner wall and an outer layer. Thus, between both surfaces an air gap
is created.

The inner wall consists of successive layers of gypsum, brick and insulation from
inside to outside Fig. 1. The external coating is made of ceramic slabs of dimensions
0:33 � 0:66m. Between the slabs there are vertical and horizontal joints of 0:005m
width.

The air gap has a width of 0.04 m and it extends from the floor to the roof of
the building, along the entire façade. Communication with the external environment
takes place through openings located between the slabs, according to the considered
geometry.

Dimensions and physical characteristics of the different layers forming the stu-
died façade are described in Table 1.
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Fig. 1 Schematic section of
the open joint ventilated
façade

Table 1 Thermophysical characteristics of the ventilated façade

Layer Description Thickness Density Specific Heat Conductivity
(m) (kg/m3) (J/(kgK)) (W/(mK))

1( Ext.) Ceramic slabs 0.01 2800 1000 3.5

2 Air (ventilation duct) 0.04 1.184 1005 0.0255

3 Insulation 0.03 40 1674 0.029

4 Perforated bricks 0.12 1800 840 0.52

5 (Int.) Plastering 0.001 1800 831 0.81

3 The Physical Model

In this section it is made a generic description of the physical problem involving
the heat transfer and the movement of the air mass in the open joint ventilated
façade (OJVF). In the OJFV, the three basic mechanisms of heat transfer are present:
radiation, convection and conduction. Specifically, as it is shown in Fig. 2 the heat
transfer in the façade is determined by:

• Heat gain on the outer slab due to solar irradiation.
• Heat exchange by radiation between the outer surface and the environment.
• Heat exchange by radiation between the outer surface and the sky.
• Heat exchange by convection between the outer surface and the ambient air.
• Heat transfer by conduction through the outer slab.
• Radiative heat exchange between the surfaces which delimit the ventilated

channel.
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Fig. 2 Heat transfer in the
open joint ventilated façade

• Convective heat exchange between the surfaces of the ventilated channel and the
air flowing inside it.

• Heat transfer by conduction through the inner wall.
• Heat exchange by convection and radiation between the internal surface of the

inner wall and the interior of the building.

The thermal behavior of the ventilated façade can be summarized as follows:
at daylight hours the external layer receives direct and diffuse solar radiation plus
the radiation of solar origin reflected by the environment, basically by the ground.
Part of the solar radiation is absorbed and part is reflected. Moreover, throughout
the whole day it takes place a thermal long-wave radiative exchange among the
external layer, the ground, the environment and the sky. Simultaneously the external
surface of the outer layer exchanges heat by convection with the circulating external
air flow whose temperature is determined by the ambient temperature and the heat
convective exchange with the surface of the ground in front of the façade. All these
contributions result in a heat flow by conduction through the outer wall.

Inside the duct, radiative exchange between the surfaces inside the ventilated
channel as well as convective heat transfer between these surfaces an the air flow
take place.

The air flow speed through the ventilated chamber is conditioned by the natural
convection phenomenon which happens inside the chamber and by the air flow
coming in through the openings of the façade, which in turn is influenced by the
speed and temperature of exterior air.

Additionally, the velocity of the external air determine the convective heat
transfer between the external surface of the outer layer and the ambiance air. This
external convective heat transfer is also influenced by the heat transport made by air
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circulation that is conditioned by the temperatures of the ground surface, the outer
layer and the air incoming the domain.

The heat transfer is completed with the conduction through the wall and with
the heat transfer that happens on the wall inner surface. This last heat transfer
is determined by the convection with the air inside the room and by the thermal
radiation with the other walls and objects in the room.

In order to establish the physical model, it is necessary to take into account that
air flowing in the interior channel removes or adds heat to the walls of the channel
at a rate fundamentally determined by the air flow speed through the chamber and
by the difference of temperatures between the channel walls and the air.

Therefore the equations that describe the air flow, the equation for energy
transport by the air flow, and the heat transfer equations through the walls, slabs and
ground must be solved in every time step. Likewise the radiative exchanges must
be computed each time step in order to adequately approximate the heat transfer
through the façade.

4 Mathematical Formulation

In this section the governing equations for the air flow and for the thermal
conduction through wall, slabs and ground are given.

4.1 Equations that Govern the Fluid

For the air flow we consider the domain ˝ which it is described in Sect. 8 and it
is showed in Fig. 3. The governing equations for the fluid are the thermodynamic
Navier-Stokes equations with a Boussinesq approximation for the buoyancy. These
equations can be written as:

• Conservation of momentum:

@tU C U � rU � r � .�rU/C rp D b in ˝ � Œ0; tf �: (1)

• Continuity:

r � U D 0 in ˝ � Œ0; tf �: (2)

• Conservation of energy:

@tT C U � rT � ˛�T D 0 in ˝ � Œ0; tf � (3)
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where the unknowns are U D .u; v/, the velocity for the directions x and y
respectively; p is the pressure and T is the temperature of the fluid. � and ˛ are
respectively the cinematic viscosity and the thermal diffusivity of the air. Finally

b D
�

0

�gˇ.T � Ta/

�
(4)

represents the force of buoyancy due to natural convection, being g the gravitational
acceleration and ˇ the coefficient of thermal expansion that can be approximated
by ˇ D 1=Ta under the hypothesis of ideal gases, where Ta is the ambiance air
temperature.

Concerning to the air flow, the condition of non-slip velocity is imposed on all
the solid surfaces; in the air inlet to the computational domain the velocity and the
temperature of the air is fixed; we take slip condition at the top of the computational
domain and finally free outflow. Boundary values for temperature on the building
and ground surfaces are given by the energy balance equations described in Sect. 4.3.
The initial conditions are fixed from the environmental values of the respective
variables.

4.2 Thermal Conduction Through the Wall, Slabs and Ground

Heat conduction through the inner wall is modeled by the equation

@T

@t
� r � .˛rT/ D 0 (5)

where the diffusivity coefficient ˛ takes a value corresponding to each material of
the various layers of the wall. The same equation is used for thermal conduction
through the outer slab where now ˛ is the thermal diffusivity of the slab material.

For the external surfaces of the outer slabs the boundary condition for Eq. (5) is
given by the energy balance equation corresponding to each slab external surface as
it is explained in Sect. 4.3.

For the slabs and the insulating surface facing the duct, boundary conditions are
given by the energy balance equation corresponding to each surface as it is explained
in Sect. 4.4.

For the inner layer of the mass wall the boundary condition is imposed with
a fixed indoor temperature and a combined convection-radiation heat transfer
coefficient of 8 W/m2 K taken from several energy building standards.

Thermal conduction through the ground is governed by the same Eq. (5), with a
diffusivity coefficient

˛ D 0:5 10�6m2=s
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as it is recommended in [8]. The boundary conditions for the ground are: the
monthly average 4 m deep temperature provided by the climatic files from Energy
Plus and the energy balance equation at the ground surface as it is explained in
Sect. 4.3.

4.3 Energy Balance on the External Surfaces

For the external surfaces of the outer slab and the ground the energy balance is:

Qc;ext C QSW C QLW � k
@T

@n
D 0 (6)

where k is the conductivity of the slab or soil and Qc;ext is the convective heat flux
between the surface and the air flow. This flux is given by

Qc;ext D hc;ext.Ta � T/

where Ta is the reference air temperature, T is the surface temperature and hc;ext is
the convective heat transfer coefficient described in 4.5. Finally, QSW and QLW are
respectively the balance of radiative flux of solar origin and the balance of thermal
long-wave radiation on the surfaces described in Sects. 4.3.1 and 4.3.2.

4.3.1 Solar Radiative Flux Balance

The radiative flux of solar origin on every exterior surface is given by

QSW D ˛s � .Ib C Id C Ir/; .W=m2/; (7)

where ˛s is the solar absorptivity of the surface, Ib, Id are the incident direct and
diffuse solar radiation on the surface and Ir is the shortwave radiation of solar
origin reflected for the surrounding surfaces and that it is incident on the considered
surface.

The calculation of QSW is explained in Sect. 8.3.1.

4.3.2 Long-Wave Radiative Flux Balance

The long-wave radiative flux balance between the external surfaces, the ambiance
and the sky is calculated using the Stefan-Boltzmann’s law. For the outer slabs and
ground, the long-wave radiation heat flux emitted by every surface is given by

ELW D � 
 T4 (8)
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where � and T are the emissivity and temperature (given in Kelvin degrees) of the
surface and 
 D 5:670 � 10�8 .W=m2/ is the Stefan-Boltzmann’s constant.

In order to evaluate the long-wave radiation exchange with the ambiance, we
have considered surrounding objects 50 m away from the ventilated façade with
height equal to the façade and a emissivity of 0:85, typical for non-metallic surfaces.
For this surrounding we consider a surface temperature equal to the ambiance air
temperature.

Furthermore, the relative contribution of the sky downwelling radiation to the
long-wave radiative flux on the outer slabs surfaces depends of the fractional part
the sky occupies in the field of view of the façade. The estimation of this radiation
is described in Sect. 5

Therefore we have four sources of thermal long-wave radiation: the external
surfaces of outer slabs, the surface of ground, the surroundings and the sky. Then, the
net long wavelength (thermal) radiation flux exchange QLW in Eq. (6) is the balance
for each surface of the emitted long-wave radiation (8) and the absorbed long-wave
radiation that hits the considered surface from the other surfaces. The calculation of
QLW is detailed in Sect. 8.3.2.

4.4 Energy Balance on the Duct Surfaces

The energy balance for the surfaces into the duct is:

Qc;duct C QLW � k
@T

@n
D 0 (9)

being now k the different materials conductivity of the surfaces facing the duct.
Qc;duct is the convective heat transfer of every surface to the air flowing into de duct
and QLW is the long-wave radiative flux balance among the surfaces inside the duct.

Now the surfaces sources of thermal long-wave radiation are the external surface
of the insulating layer, the internal faces of the slabs, the floor at the bottom of
the duct and the sky at the top. Also the ventilation openings must be taken into
account for the global balance of the long-wave radiation into the duct. The radiative
exchange QLW is calculated following the same guidelines developed in Sect. 8.3.2.

To calculate Qc;duct we observe that previous numerical computations [13] show
that mean velocity of the flow does not exceed 0:5m/s into the duct, which is
confirmed by our computations. This implies a Reynolds number around 1200 and
a laminar behavior of the air flow into the duct. So, the usual Gnielinsky correlation
often used to determine the convective heat transfer coefficient in ducts for fully
developed turbulent flows is non indicated.

Instead, following Zhai et al. [16] we do a direct calculation of Qc;duct. This way
we computed the convective heat transfer by

Qc;duct D kair.Tair.xı/� Tw/
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where kair is the air conductivity, Tw is the surface temperature and Tair.xı/ is the
air temperature at a point inside the thermal laminar boundary layer of the flow. The
calculation of Qc;duct is explained in Sect. 8.4.

4.5 Convective Heat Transfer Coefficients

Convective heat transfer coefficient hc;ext for external building surfaces is essential
in order to calculate heat gains and losses from building façades to the ambiance air.
Following the recommendations of Mirsadeghi et al. [12] for low rise buildings, we
have considered the value

hc;ext D 6:31Vloc C 3:32; .W=m2 K/

proposed by Liu and Harris [11] for vertical façades. Here Vloc is the velocity
measured 0:5m away from the wall surface. For the ground horizontal surface
we used the correlations based on Jurges’s wind tunnel measurements [9]. The
correlation is as follows:

hc;ext D 4:1Vloc C 5:8; .W=m2 K/:

5 Estimation of the Downward Long-Wave Radiation of the
Sky

Total sky irradiance onto surfaces on Earth includes the shortwave radiation from
the Sun and the thermal long-wave radiation from the sky. Solar shortwave radiation
takes place only during daylight hours, but thermal downwelling radiation is present
throughout the whole day. So, although this radiation is normally named nocturnal
radiation, it takes place even during daylight hours. Thereby, building exterior
surface temperatures cannot be calculated accurately if the sky long-wave radiation
is not considered [10]. In fact, the sky can be used as a heat sink for building
radiating surfaces in such a way that if the emitted radiation of a surface exceeds
the absorbed radiation, the surface will cool down.

The downward long-wave radiation of the sky, Qsky, is usually approached by
using two different concepts: “sky emissivity” or “effective sky temperature”.

The effective sky temperature, Tsky, is defined as the temperature of the sky when
supposing that sky emits long-wave radiation as a blackbody. This way Qsky can be
computed as

QLW
sky D 
 T4sky; (10)

where 
 is the Stefan-Boltzmann constant.
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The other way, sky is assumed to act as a grey body having the temperature equal
to the absolute ambiance air temperature Ta and with a global sky emissivity �sky.
So, Qsky can be computed as

Qsky D �sky 
 T4a ; (11)

Both effective sky temperature and sky emissivity depend on several factors,
but the most significant ones are outdoor temperature, relative humidity of the
environment and cloud cover.

The effect of cloud cover on downwelling long-wave radiation is complex.
Essentially, clouds absorb outgoing IR radiation and emit thermal IR radiation
to a temperature higher that emitted by a clear sky. Thus, a cloudy day thermal
downwelling sky irradiance can increase over 34% regarding the sky irradiance of
a clear sky.

Walton [15] and Clark et al. [5] estimated that sky emissivity �sky of a cloudy sky
can be approximated by

�sky D .:787C :764 ln.
Tdp

273
//.1C 224

104
n � 35

104
n2 C 28

105
n3/

where Tdp is the absolute dewpoint temperature and n is the opaque sky cover in
tenths. This model has been used in this work to estimate the downward long-wave
radiation of the sky.

6 Studied Façades Features

We compared the energy behavior of the open join ventilated façade (OJVF) with a
standard unventilated one (NVF).

The studied OJVF is placed in a building of 5.05 m height with South orientation.
The external coating consists of 15 ceramic slabs of dimensions described belove.
The Spanish Technical Building Code [6] points out that the ventilated air gap width
should be between 30 and 100 mm for ventilated façades. Although some authors [4]
point out that the optimum energy efficiency for ventilated façades it is achieved for
a camera about 15 cm in width, we stick to the values set by the Technical Code and
the studied ventilated façade has a chamber 4 cm in width.

Inside the air gap an aluminium structure support the slabs. This structure is
composed of vertical profiles that coincide with the vertical joints blocking their
aperture to the external ambiance. So the effective air circulation between external
ambiance and the gap is carried out through the horizontal openings.

Dimensions and thermophysical characteristics of the studied façade are listed in
Table 1.
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For the external surface of the outer layer, an solar radiation absorptivity value
equal to 0:3 is considered. The emissivity coefficient of the two surfaces of the
external layer has been taken as 0:9 and for the inner wall surface facing the
ventilated chamber, the emissivity coefficient has been taken equal to 0:8. The
ground in front of the façade is composed of small stones block light colored and
an absorptivity value of 0:5 and an emissivity of 0:9 have been considered for it.
These values are taken according to the technical specifications for the materials
considered [1, 6].

The non ventilated façade has an usual layout consisting of plastering, insulation,
perforated bricks with the same characteristics and dimensions than the ventilated
façade and a external rough-coated of 15 mm.

7 Climatic Conditions

We have considered a set of environmental conditions that try to reproduce the most
yearly relevant features in Southern Spain. These conditions are characterized by
high temperatures as well as by relatively high levels of radiation during daytime
hours in summer and moderate temperatures in winter. Winds usually are not
strong but can range from absolute calm to a relatively moderate wind, which may
significantly increase the heat sensation in the hot season. In this work only a wind
velocity equal to 1 m/s has been considered for the sake of brevity. Some effects of
different wind velocities on the energetic performance of the ventilated façades are
showed in [7].

The climatic data used in the computation are been taken from the Energy Plus
weather data. For the typical day of every month, hourly values of solar radiation,
ambient temperature and downwelling radiation are been used.

8 Numerical Simulation

In this section some aspects related with the numerical simulation are briefly des-
cribed.

8.1 Computational Domain and Meshing

For the numerical solution of the set of equations describing the thermodynamic air
flow, we have started from a two-dimensional computational domain˝ that includes
both the ventilated façade and a wide region outside it, in order to adequately
simulate air flow in the front and top of the building containing the façade. The
incoming region in the front of the studied façade is 10H wide, and the height of
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Fig. 3 Non-scaled sketch of the computational domain

the considered computational domain is 4H , where H is the height of the ventilated
façade. A non-scaled sketch of the whole computational domain is showed in Fig. 3.

The domain ˝ has been meshed by using triangular elements to perform a
discretization of the problem by the Finite Element Method (FEM). Different
densities of the grid for ˝ have been used since the areas inside the ventilated
channel and around the ventilation openings require much more precision than the
incoming region in front of the building. The minimum size mesh into the higher
precision areas is taken equal to 0.001 m.

The mesh for the wall is conditioned for the thickness of the different layers
making up the wall. For the wall the minimum size mesh is taken for the plastering
layer where four knots are placed in the x direction. For the outer ceramic slabs we
have used ten knots in the x direction, enough to achieve a good precision for the
heat conduction equation. The mesh for the ground offers no special difficulty.

8.2 Numerical Resolution

The numerical resolution of Eqs. (1)–(3) is made by using mixed a P2 � P1 Finite
Element approximation for the velocity and pressure and a P1 approximation for
the temperature.
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For time discretization first the partial differential equations are semi-discretized
in time. Total derivatives are discretized thanks to the method of characteristics
Xn.x/ � x � Un.x/4t. The nonlinear term is discretized using a semi-implicit
formula whereas the other linear terms are discretized implicitly:

.TnC1.x/� Tn ı Xn.x//

4t
� r � .˛ rTnC1.x// D 0 in ˝

.UnC1.x/ � Un ı Xn.x//

4t
� r � .� rUnC1.x//C rpnC1.x/ D bnC1.x/ in ˝

r � UnC1 D 0 in ˝

where bnC1.x/ D
�

0

�gˇ.TnC1.x/� Ta/

�
.

The Eq. (5) for heat transfer through the inner wall, the outer layer and ground
have been solved by a P1 Finite Element approximation. The time discretization for
these equations are made by using an implicit Euler finite difference scheme:

.TnC1.x/ � Tn.x//

4t
� r � .˛rTnC1.x// D 0

where now ˛ is the diffusivity of each material.
For the temperature on the solid surfaces, the borders conditions are chosen from

the energy balance equations as it is described in Sects. 8.3 and 8.4.
In each time step the radiative balance on the surfaces is calculated and then the

balance energy on the solid surfaces is used to get the border conditions for the
temperature.

The FreeFem++ software [2] has been used for the computing implementation
of the considered discretizations.

8.3 External Surfaces Energy Balance Calculation

In this section the calculation of solar and long-wave radiative balances on every
external surface is described.

8.3.1 Solar Radiative Flux Balance Calculation

Let i D 1 : : :N be the index of the triangle faces on the exterior surfaces. The
balance of the radiative flux of solar origin for every face i is

QSW
i D ˛s

i .I
b
i C Id

i C
NX

jD1
JSW

j Fi;j/; .W=m2/; (12)
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where Ib
i ; Id

i are the incident direct and diffuse solar radiation on the face i. ˛s
i and

JSW
i are respectively the solar absorptivity and the solar radiosity of the face i and

finally Fi;j is the view factor based on i, between faces i and j [3].
The values of the radiosity are calculated by solving the system

ASW JSW D ESW; (13)

with

ASW D

0
BB@
1 � �s

1F1;1 ��s
1F1;2 � � � ��s

1F1;N
��s

2F2;1 1 � �s
2F2;2 � � � ��s

2F2;N
� � � � � � � � � � � �

��s
NFN;1 ��s

NFN;2 : : : 1 � �s
NFN;N

1
CCA

JSW D

0
BB@

JSW
1

JSW
2

� � �
JSW

N

1
CCA ; ESW D

0
BB@
�s
1.I

b
1 C Id

1 /

�s
2.I

b
2 C Id

2 /

� � �
�s

n.I
b
N C Id

N/

1
CCA

where �s
i is the solar reflectance of face i.

8.3.2 Long-Wave Radiative Flux Balance Calculation

We consider now a total of N C 2 surfaces. The first N surfaces are the above des-
cribed faces of the outer slabs and ground. To these faces, we add the N C 1 face
corresponding to the surrounding as described in Sect. 4.3.2 and the N C 2 corres-
ponding to the sky.

The long-wave radiation heat flux emitted by each face i for i D 1 : : :N C 2, is
given by

ELW
i D �i 
 T4i (14)

where �i and Ti are the emissivity and temperature (given in Kelvin degrees) of the
face i.

This way, the balance for long-wave radiation flux on face i, for i D 1; : : : ;N C
2 is given by

QLW
i D

NC2X
jD1

JLW
j Fi;j � JLW

i ; .W=m2/; (15)

where JLW
i is the long-wave radiosity of the face i and finally Fi;j is the view factor.
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The values of the long-wave radiosity JLW
i are calculated by solving the system

ALW JLW D ELW; (16)

with

ALW D

0
BBB@

1 � �1F1;1 ��1F1;2 � � � ��1F1;NC2
��2F2;1 1 � �2F2;2 � � � ��2F2;NC2

:::
::: � � � :::

��NC2FNC2;1 ��NC2FNC2;2 � � � 1 � �NC2FNC2;NC2

1
CCCA

JLW D

0
BB@

JLW
1

JLW
2

� � �
JLW

NC2

1
CCA ; ELW D

0
BB@

ELW
1

ELW
2

� � �
ELW

NC2

1
CCA :

Where �i is the long-wave reflectance of the face i and ELW
i is computed by

using (14).
For the sky the values of �NC2; ELW

NC2 and TNC2 are described in Sect. 5.

8.4 Duct Surfaces Energy Balance Calculation

To implement (9), the radiative exchange QLW is calculated following the same
guidelines showed in Sect. 8.3.2. To calculate the convective heat transfer Qc;duct

we use [16]:

Qc;duct D kair.Tair.xp/� Tw/

where Tair.xp/ is the nearest grid knot xp to the surface.
In order to have a good approximation of the heat transfer between the surfaces

of the duct and the air flow, the grid must have some knots inside the thermal laminar
boundary layer of the flow. For that, it is enough that the distance dxp from xp to the
surface verifies

dxp < ı (17)

where ı is the thickness of thermal boundary layer for natural convection [14].
For the geometry considered and the mean velocity found, we used a size mesh
of 0.001 m in the x direction in the duct, thereby (17) is verified.
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9 Results

The results from the numerical simulations show the expected qualitative behavior
for ventilated an unventilated façades. Thus, higher levels of solar radiation and
outside temperature produce higher heat flux into the building for both façades but
less for ventilated façade than for the unventilated one. Nevertheless, the opposite
behavior is observed in the cold season. It is observed that lower levels of solar
radiation and outside temperature produce higher heat flux out the building for both
façades, but less for the OJVF than for the NVF.

Other significant facts that numerical simulations highlight is the key role that
the reflected solar radiation from the ground and the downwelling radiation from
the sky play in the energetic behavior of the ventilated façade.

Computations show that for every month the higher slabs reach lower tempera-
tures than slabs located at the bottom. We have considered two floors in the building
to estimate the influence of this fact in the heat transfer to both floors. In the
following figures we can observe the differences between the heat flux into each
floor. In Figs. 4, 5, 6, 7 and 8, the hourly flux into the two floors of the building are
showed for typical months of Winter, Spring, Summer and Autumn.

In these figures it can be observed the most important factor in the heat transfer
through the façade is the ambient temperature combined with the radiative influence.

Another important fact observed is the time lag between the maximum of the
heat flux into the building and the maximum of the ambient temperature and solar
irradiation. This lag can be exploited to achieve indoor comfort by using some
passive techniques.

In Fig. 9 the monthly flux into the building is showed. For all months in the cold
season the heat transfer outward through the OPVJ is lower than through the NVF.
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Fig. 5 Heat flux through the ventilated façade in April
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Fig. 6 Heat flux through the ventilated façade in June

Also it is shown in this figure that heat gain for all months in the hot season is lower
for the OJVF than for the NVF.

Finally, Fig. 10 displays the yearly global energy behavior for both façades. In
the heating season the OJVF reduces the heat loss by approximately 5% when
compared to the NVF. In the cooling season the reduction of heat gain is about 34%.
This implies a yearly saving reduction around 13% for the OJVF when compared
to the standard NVF.
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Fig. 7 Heat flux through the ventilated façade in August
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Fig. 8 Heat flux through the ventilated façade in October
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Fig. 9 Monthly heat transfer into the building (kWh) for OJVF and NVF
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Fig. 10 Whole year energy balance for OJVF and NVF in cooling and heating season

10 Conclusions

A numerical code for simulating the energetic performance of a open joint ventilated
façade has been developed. The code has been used to draw conclusions about the
thermodynamic behavior of a specific ventilated façade, comparing its efficiency
with another non-ventilated façade for typical meteorological month data for each
month in the year.

The results seem to indicate that the studied ventilated façade has a better
behavior in terms of energetic efficiency compared to non-ventilated façade. The
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considered ventilated façade could provide energy savings rate of around 13% for
the whole year. In summer this saving rate could reach 34%.

We conclude that under climatic conditions in southern Spain, the use of the stu-
died ventilated façade could allow a major reduction in the heat load of the building
in relation to a non-ventilated façade with the same construction features and could
provide a significant reduction in the yearly energetic consumption.

In future research it would be interesting to do a sensitivity analysis and devote
a further study to the parameters and closure terms that add an important degree of
uncertainty to the analyzed problem.
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Planning Ecotourism Routes in Nature Parks

Eva Barrena, Gilbert Laporte, Francisco A. Ortega, and Miguel A. Pozo

Abstract The main objective of the Nature Parks is to preserve the diversity and
integrity of biotic communities for present and future use. Additionally, the Nature
Parks can contribute to the invigoration of the sustainable development and culture
heritage of its neighboring regions, as well as to the strengthening of the environ-
mental education for visitors by means of direct experiences. From this double point
of view, ecotourism is gaining acceptance as a tool for sustainable development
since the income of visitors to protected areas can contribute significantly to support
the economy of these areas and of the rural communities. This article proposes
different methodologies for determining efficient routes of ecotourism where the
main objective is the maximization of the cultural transmission experienced by
the visitors along the path traveled. The models are formulated by using integer
linear programming and its potential applicability is illustrated in the context of the
Doñana National Park, Spain.
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1 Introduction

In recent years there has been a major growth of tourist itineraries in every area
of the planet. Several classical tourism proposals centered on the local visit of a
specific destination have evolved towards more dynamic formulas where interactive
journeys, that highlight certain remarkable aspects along routes, are suggested to the
traveler [7].

In the design and implementation of these routes one usually offers the clients a
pathway where a specific category of heritage predominates: cultural, archaeologi-
cal, historical, artistic or natural. Additionally, in order to differentiate it from other
proposals in the same segment, new attractions (like natural monuments, literary
heroes, movie studios, architectural paradigms, etc.) are incorporated along the
route. Reference [17] lists several thematic routes in Spain, which have been con-
solidated in the tourism market because of their interest from different perspectives:
gourmet experiences, wine, literature, film, history, geology, etc. Additionally, that
document details how the introduction of legends, myths and fictional characters are
able to improve the marketing of the tourism products.

The recognition of the scenic value of routes emerged in U.S.A. during the
1920s. Following approval of the Act Scenic Byways in the U.S.A. Congress in
1989, forty-six U.S.A. states conducted initiatives of landscape protection which
resulted in the creation of the National Scenic Byways Program [18]. Basically, a
route must satisfy two requirements to obtain the recognition needed to become a
member of the National Scenic Byways Program (NSB): it must contain at least
one of six intrinsic qualities (scenic, recreational, natural, cultural, historical or
archaeological) and its territorial extension must cover more than one state. The
All-American Roads designation is even more elitist, since it is assumed that the
route contains attractions of all these qualities with a degree of uniqueness sufficient
to constitute by itself a tourist destination [8]. In November 2010, there were 120
members of NSB registered in the U.S.A. and 31 routes cataloged of All-American
Roads that satisfied the above requirements.

Outside North America we also find a large number of tourist itineraries, national
or international, which base their appeal on the scenic beauty of a route, additionally
supplemented with cultural and anthropological aspects (traditional architecture,
folklore, marketing of natural products, handicrafts, etc.). Although the list is
extensive, let us cite as examples the Camino de Santiago in Europe [20], the
Turquoise Trail in New Mexico [25] and the Red Interlagos in Chile [13].

Following this trend, in recent years we have witnessed around the world a
progressive increase in the number of visitors to protected areas, which is a good
indicator of the interest for such locations as places of leisure. The combination
of rural and natural attractions is the basis of a large number of recreational and
tourist activities which, if they are planned and rigorously managed, can generate
economic, social and cultural benefits for the local population. The nature tourism
is a strategy that has emerged in these protected areas and their surroundings,
with the dual aim of supporting the conservation of nature and of creating income
opportunities for those communities who live in rural areas [32].
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Fig. 1 Doñana region and these different ecosystem types

In the last years we have witnessed in Spain a progressive increase in the number
of visitors to protected areas, which is a good indicator of the general interest
in natural areas as a place of leisure. At the same time, this trend represents an
opportunity for developing an active environmental education along nature trails
designed for such a purpose. The Doñana region, the area studied in this research, is
located near the mouth of the Guadalquivir River, in the provinces of Huelva, Seville
and Cadiz (Fig. 1). It comprises a large area of marsh with lagoons and streams,
dunes, pine forests, shrubs and grasses and a rich and varied agriculture.

Since 1978, about 50,000 hectares are protected under the denomination of
National Park. Doñana was declared a Biosphere Reserve in 1981 and a World
Heritage Site in 1994. Doñana is also part of the list of Wetlands of International
Importance (Ramsar Convention), since this area represents a strategic scale in the
migratory bird transit between Europe and Africa [1]. Tourism inside and around
the Doñana National Park plays an important role in spreading the image of the
region internationally and in the economic development of the area. Doñana receives
over 400:000 visitors each year. Essentially, the main purpose of these visits is to
provide interpretation services in environmental and sustainability education and
in other recreational activities managed by the park administration, all by service
concessions. The number of visitor centers and information points has increased



192 E. Barrena et al.

dramatically in recent years and currently Doñana suffers a from certain level of
saturation in this type of tourism facilities [36].

Reference [24] defines the term ecotourism as responsible travel to natural areas
that conserves the environment and improves the welfare of local people. The
tourist destinations which consist of visiting a natural environment have increased
worldwide. Ecotourism routes are possibly one of the best tools to achieve greater
sensitivity and awareness of environmental values in the population, especially in
school age children, since they can serve to strengthen and develop knowledge in
subjects related to the environment. A basic objective of ecotourism experiences
should be the facilitation of education and learning and, subsequently, the changing
of attitudes and beliefs into those that are considered more environmental and
ecological. Simultaneously, it is also important to assess both the direct and
indirect, short- and long-term effects of tourist use on the natural environment [27].
Unplanned or poorly managed tourism activities can cause short-term negative
impacts on the environment and medium-long term in surrounding rural commu-
nities, squandering the benefits for which they were designed [26]. There exists an
extensive literature describing the negative impacts of ecotourism and calling for the
development of a framework in which the ecotourism actions are evaluated in order
to protect the environment from detrimental impacts [9]. The purpose of this article
is not to develop a new system of indicators to measure the environmental damage
due to tourism routes (despite of the fact that these having been reasonably traced),
but the incorporation of optimization tools for determining efficient paths.

The circuits around Natural Parks are often of circular shape, starting and
finishing in a center for the environmental interpretation [10, 19]. The length of
an itinerary should not exceed a certain threshold so that its realization does
not constitute a major effort for people and that the ecosystem does not become
affected. The circular routes must flow through different sites since this facilitates
the acquisition of new knowledge. The route design should also incorporate a high
level of biodiversity. The optimal number of stops for including comments to the
visitors is usually close to five, and the duration of each stop should not exceed 10–
15 minutes in order to maintain the visitors’ attention. Travel time may be increased
when people move on foot (hiking in silence) to reach an additional destination that
cannot be accessed using a motorized vehicle.

The optimal location of a cycle in a graph is prevalent in areas such as transport
and telecommunications and the basis for formulating this problem is commonly
inspired in the well-known Travelling Salesman Problem (TSP). Reference [22]
classifies the problems of locating cycles in two main categories: problems of
Hamiltonian tours, where all the nodes of the graph must necessarily be visited,
and non-Hamiltonian problems, where only a subset of nodes must be visited along
the cycle.

Arcs Routing Problems (ARP) consist of finding the least-cost route through
some edges or arcs of a graph, being subject to certain restrictions [11]. The
Orienteering Problem (OP) [35] is the problem of finding a tour maximizing the
collected profit and such that the travel cost does not exceed a given value. The
Tourist Trip Design Problem (TTPD) can be viewed as a variant of the orienteering
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problem on a directed graph in which a path must be determined to maximize the
utility value derived from the selection of places to be visited without violating
budget constraint [33]. This model has already been successfully applied in the
field tourism in order to calculate personalised walking routes in historic cities
[29, 30, 34] and bicycle itineraries [31].

The Orienteering Tour Problem (OTP) is a specific version where the start and
end nodes of the tour are identical [28]. Following this idea of imposing a circular
shape in the solutions, the Bus Touring Problem (BTP), introduced by [12] consists
of determining the optimal subset of tourist sites to be visited and scenic routes
to be traversed between a start point and an end point that coincide, such that the
total attractiveness of the tour can be maximized for a given constraints on the total
touring time, cost or total distance traveled. The sites and road segments of the
geographical region (i.e., vertices and arcs of the graph) are weighted with a non-
negative value of attractiveness that denotes the amount of enjoyment derived from
visiting a tourist site or traversing a scenic road segment, respectively.

The OTP and TSP models adapted for making decisions based on the selection
of heterogeneous arcs, will provide a methodological support for the construction
of solutions to the problem of designing ecotourism routes, particularly in environ-
mentally protected areas like National Park of Doñana (Huelva, Spain).

The remainder of this paper is organized as follows. Section 2 describes models
that can be applied to determine efficient routes under different objectives and
constraints. In Sect. 3 these models are redefined in order to fit the specific context
of a Natural Park. Conclusions follow in Sect. 4.

2 Selecting Adequate Models for Our Proposal

As mentioned above, the main objective of this research is to develop a methodology
in order to generate optimal routes for visiting natural areas with a high degree
of protection, assuming that the routes must be effective from the viewpoint
of visibility and for the transmission of information in relation to the existing
ecosystems and their diversity. Since the perception of landscape is formed through
serial images, the structure of feasible solutions should be treated abstractly as
closed paths (cycles) through the set of edges of a graph and, additionally, the
optimality condition will be attained by the maximum value of a linear function
that accumulates the utility perceived by the observer along the whole route, section
by section.

There are not many articles in which the assessment the designed route is carried
out on the basis of accumulating the benefit derived of traveling along their arcs,
instead of visiting their nodes. In fact, some relevant contributions have already
been previously cited:

• References [2–4, 14] propose models that maximize the total utility of the built
routes, without violating the vehicle capacity or the time limit.

• Reference [12] determines a transport route attractive in a tourist area.
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• Reference [31] provides an heuristic model to optimize the planning of cycling
in East Flanders.

• Reference [29] obtains personalised itineraries for each tourist that include
a series of activities to carry out sorted in time. A practical application of
the developed Tourist Support System is tested in the Autonomous Region of
Andalusia.

Assume initially that the territory under analysis is partitioned into polygonal
areas in which the prevalence of a particular ecosystem type (monochrome area)
has been identified. Subsequently, we can conclude that the underlying space to be
investigated is a union of monochromatic polygons (Fig. 2).

If terrain elevation reduces visibility inside a polygon, it could be partitioned
into several subpolygons (or triangular cells) in order to guarantee full visibility
from the each edge towards the interior of its corresponding cells (Fig. 3). Another
reason for splitting the territory into triangular cells is the existence of interesting
sites that would deserve to be considered as potential destinations along the itinerary.
Such sites must be incorporated as vertices in the final triangulation. Subsequently,
we assume that the territory under analysis is already divided into monochromatic
triangular areas. Edges that determine the territorial fragmentation can be associated
with a single ecosystem or with two ecosystems whenever they are a boundary
between two habitats.

Recall that the number of significant features required for a road to be a member
of the NSR program is six (specifically: archaeological, cultural, historic, natural,
recreational, and scenic qualities). This same level of variety exists in Doñana in
terms of territorial biodiversity, because there are six identified habitats: dunes,
beach, bank, forest, bushes, and marsh. If the observation made by the visitor of the
different biotopes was exclusively concentrated in the nodes of the graph, the design
objective of the route could be defined as that of determining a minimum cost tour
containing at least one vertex from each cluster (ecosystem). Following this idea, a
generalized TSP (GTSP) model turns out to be useful for designing cyclical paths
where one instance at least of the existing ecosystems must be collected along the
journey.

2.1 Formulating the GTSP

The GTSP [21] is a variation of the TSP in which the set of nodes is partitioned
into clusters and the objective is to find a minimum cost Hamiltonian cycle passing
through at least one node from each cluster. The GTSP and its variants arise in real-
life applications such as computer operations, manufacturing logistics, distribution
of goods by sea to the potential harbors [23]. An integer linear programming model
to formulate the GTSP follows.
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Fig. 2 A division of Doñana territory according to the different ecosystem types

Let G D .V;E/ be a graph, where V D fv1; v2; : : : ; vng is the set of nodes and
E D fe D .vi; vj/ W vi; vj 2 V; i < jg is the set of feasible edges interconnecting
pairs of nodes. The set V is partitioned into m disjoint clusters V D V1[V2[� � �[Vm.
A nonnegative cost ce � 0 is associated with each edge e 2 E and it is assumed that
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Fig. 3 A triangular fragmentation of territory hosting the dune ecosystem

the triangle inequality is satisfied. We denote by ı.i/ D f.vi; vj/ W vj 2 V; i < jg the
set of edges incident with node vi. Two families of variables are used in the model:

xe: a binary variable equal to 1 if and only if edge e is in the solution path. We
denote by x.ı.i// the sum of values xe for the edges e 2 ı.i/.
yi: a binary variable equal to 1 if and only if node vi is in the solution.
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The problem is then

minimize
X
e2E

cexe (1)

subject to

x.ı.i// D 2 yi .vi 2 V/ (2)

x.ı.S// � 2.yi C yj � 1/

.S � V; 2 �j S j� n � 2; vi 2 S; vj 2 V n S/
(3)

X
vi2Vh

yi � 1 .h D 1; : : : ;m/ (4)

xe 2 f0; 1g .e 2 E/ (5)

yi 2 f0; 1g .vi 2 V/: (6)

Objective (1) minimizes the cost of the cycle. Constraints (2) establish the
requirement that each node in the solution has two incident edges, and no incident
edge otherwise. Inequalities (3) are connectivity constraints which specify that the
solution is connected. Inequalities (4) force every vertex subset Vh to be visited at
least once. Constraints (5) and (6) impose conditions on the variables.

The cycle in Fig. 4 is of minimum cost and contains at least one vertex from each
cluster (different nodes have been assigned to the same cluster if they are instances
that correspond to the same ecosystem).

If the utility perceived by the user is not due to the visit to a point but to the
travel along a path, the optimization model is clearly different because the objective
must now be defined to maximize the profit captured by the traveler along the cycle,
which must necessarily be restricted in terms of total length (cost, travel time, time
of presence in the park).

2.2 Formulating the GOTP

Assume that the set of edges E can be partitioned in m different clusters: E D
E1 [ E2 [ � � � [ Em. The condition of forcing the cycle to contain at least one edge
belonging to each of the groups in question can be achieved by incorporating the
following restrictions:

P
e2Eh

xe � 1 .h D 1; : : : ;m/: (7)

This ensures that the model generates solutions with group diversity. Consistent
with the nomenclature coined in the literature, we will refer to this model as the
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Fig. 4 A GTSP-solution applied to Doñana Natural Park

Generalized Orienteering Tour Problem, introduced by [5]. Nonnegative parameters
pij � 0 represent the profit obtained by the traveler when traversing each edge. In
assessing these parameters, features of visibility and the intensity of its attractions
will be taken into account. The problem is then

maximize
X
.i;j/2E

pijxij (8)

subject to

X
.i;j/2E

cijxij � cmax (9)

x.ı.i// D 2 yi .vi 2 V/ (10)

x.ı.S// � 2.yi C yj � 1/I
.S � V; 2 �j S j� n � 2; vi 2 S; vj 2 V n S/

(11)

X
.i;j/2Eh

xij � 1 .h D 1; : : : ;m/ (12)

xij 2 f0; 1g ..i; j/ 2 E/ (13)

yi 2 f0; 1g .vi 2 V/: (14)
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The objective (8) maximizes the utility of the design cycle. Constraint (9) means
that the solution cost cannot exceed a maximum value. Constraints (10) impose
the requirement that each node has two incident edges if it belongs to the solution,
and has no incident edge otherwise. Inequalities (12) force every edge cluster to be
visited at least once.

3 Reformulating the Problem

Note that, as was previously pointed out, profit (special interest for the traveler)
could be located both along arcs as at vertices. Therefore, a new reformulation of
the context is required.

Let G D .fOg [ fDg [ V;A/ be a graph, where V D fv1; v2; : : : ; vng is the set
of nodes, O and D are special nodes called respectively origin and destination that
represent starting and ending points in the tour. Moreover, A D faij D .vi; vj/ W vi 2
fOg [ V; vj 2 fDg [ V; vi ¤ vjg is the set of feasible directed arcs interconnecting
pairs of vertices. Assume set A to be partitioned into m C 1 disjoint clusters, A D
A0[A1[� � �[Am, where A0 is the set of arcs without ecological interest for tourism
and Ak is the set of arcs where ecosystem i can be observed (k D 1; : : : ;m).

Each arc aij can be of exactly one of six exclusive types:

• Type 0: aij 2 A0; i.e., this arc has no tourist interest along the path (including the
final node vj).

• Type 1: aij 2 A0, but there exists a point of tourist interest at node vj that does
not deserve a visit.

• Type 2: aij 2 A0, but there exists some tourist interest at node vj that deserves a
visit.

• Type 3: aij 2 A0, but there exists a facility for relaxing travelers at node vj.
• Type 4: aij 2 Ak; this arc has ecological interest since the itinerary runs ecosystem

k. Node vj does not deserve a visit.
• Type 5: aij 2 Ak; this arc has ecological interest since the itinerary runs ecosystem

k. Node vj deserves a visit.

Each arc aij has also the following quantitative parameters:

• cij: is the time spent in traversing arc aij 2 A.
• cj: is the time spent in visiting node j.
• pij: is the profit perceived by travelers when crossing arc aij 2 A (pij 2 Œ0; 1�).
• pj: is the profit acquired by travelers when visiting node j (pj 2 Œ0; 1�).

Eight different options for each arc can be found according to whether the last
three parameters cj, pij and pj are zero or positive.

The idea of using graph transformations to solve our routing problem is inspired
by [6]. The first step of this transformation consists of generating virtual arcs
a.1/ij ; a

.2/
ij ; : : : ; a

.8/
ij , in accordance with the characteristics of the segment and the final
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vertex of real arc aij 2 A. For these new virtual arcs, it is necessary to redefine
values for the parameters of cost and profit in accordance with the type of arc under
consideration:

• Type 0: c0ij D cij; p0ij D 0.
• Type 1: c1ij D cij; p1ij D pj.
• Type 2: c2ij D cij C tj; p2ij D pj.
• Type 3: c3ij D cij C tr; p3ij D 0.
• Type 4: c4ij D cij; p4ij D pij.
• Type 5: c5ij D cij C tj; p5ij D pij C pj.

Here, tr is the time spent during relaxing at node vj and tj is the time required for
visiting node j.

In this way, the original Generalized Orienteering Tour Problem (GOTP) on G
can be transformed into an equivalent directed Generalized Travelling Salesman
Problem (GTSP) on a new graph H of virtual arcs.

Since any instance of node routing problem can be efficiently solved (for
instance, as is shown in [16] where a branch-and-price process is used), refer-
ence [15] propose carrying out a transformation of Arc Routing Problem instances
into Node Routing models by using a compact method which guarantees that the
number of nodes in the final graph is equal to the number of demanded edges in the
arc routing graph, plus one (the depot). This promising methodology helped obtain
solutions for some large size instances of Arc Routing Problems.

4 Conclusions

Different models were proposed in this paper for determining efficient routes
of ecotourism, where the main objective is the maximization of the cultural
transmission experienced by the visitors along the followed itinerary. These models
make use of integer linear programming and their potential was illustrated in
the context of the Doñana National Park (Spain). Finally, a graph transformation
was described in order to provide additional perspectives for solving the resulting
instance of Arc Routing Problem which is inherent to this setting.
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Isometries of the Hamming Space
and Equivalence Relations of Linear Codes
Over a Finite Field

M. Isabel García-Planas and M. Dolors Magret

Abstract Detection and error capabilities are preserved when applying to a linear
code an isomorphism which preserves Hamming distance. We study here two such
isomorphisms: permutation isometries and monomial isometries.

1 Introduction

Most of the important codes are special types of the so-called linear codes. There
are simple encoding and decoding procedures for them. In linear network coding
theory, it is usual to consider sets of subspaces of a given linear space over a finite
field, in general, and sets of subspaces of a given dimension, in particular.

Since vector space endomorphisms, not even isomorphisms, do not preserve
Hamming distance, which is an essential property of each code, we will restrict to
consider those isomorphisms which preserve Hamming distance. They map codes
onto codes with the same detection and correcting capabilities. These isomorphisms
are usually referred to as isometries of the Hamming space. Two examples of such
isomorphisms are those given by permutation and monomial matrices, and will be
called permutation isomorphisms and monomial isomorphisms, respectively.

Given a code, we can consider the set of all codes which can be obtained from
this one applying different isometries, the isometry class of a code. It makes sense to
find invariants describing each isometry class in order to compare codes among each
other. Isometry classes can be seen as equivalence classes under suitable equivalence
relations (permutation equivalence and monomial equivalence) and as orbits under
suitable group actions. This fact allows us to compute the number of non-isometric
linear codes of a given dimension. The code equivalence problem has been
studied by different authors though it can be a hard problem, specially for qgeq 5,
(see [3, 4]).
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The structure of the paper is as follows.
Section 2 contains some generalities about linear codes. In Sects. 3 and 4,

isometry classes of codes of a given dimension under permutation and monomial
equivalence, respectively, are studied. Section 5 is devoted to the computation of
the number of permutation and monomial non-isometric classes.

Throughout the paper, we will denote by Fp the finite field of p elements, p a
prime number, p 6D 2.

2 Preliminaries

In this section we will recall the basic definitions of linear codes which will be used
in the following sections.

A linear .n; k/-code C over Fp is a k-dimensional vector subspace of F
n
p. Its

elements are called codewords. A .n; k/-code has pk codewords.
Let us denote by V.k; n; p/ the set of all k-dimensional subspaces in F

n
p. It is

known that their number is equal to:

jV.k; n; p/j D
�

n
k

�
p

D . pn � 1/. pn � p/ : : : . pn � pk�1/
. pk � 1/. pk � p/ : : : . pk � pk�1/

:

Example 1 There are 13 2-dimensional vector subspaces in F
3
3 (therefore 13 .3; 2/-

linear codes over F33):

C1 D Œe1; e2�; C4 D Œe1; e2 C e3�; C7 D Œe1; e2 C 2e3�;
C2 D Œe1; e3�; C5 D Œe2; e1 C e3�; C8 D Œe2; e1 C 2e3�;
C3 D Œe2; e3�; C6 D Œe3; e1 C e2�; C9 D Œe3; e1 C 2e2�;

C10 D Œe1 C e2; e1 C e3�; C11 D Œe1 C e2; e2 C e3�;
C12 D Œe1 C e3; e2 C e3�; C13 D Œe1 C 2e2; e2 C 2e3�:

The Hamming distance between two codewords x D .x1; : : : ; xn/, y D
.y1; : : : ; yn/ is defined by:

d.x; y/ D jfi 2 f1; : : : ; ng j xi 6D yigj

and the Hamming weight of a codeword x D .x1; : : : ; xn/ is defined by:

w.x/ D jfi 2 f1; : : : ; ng j xi 6D 0gj:
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The distance or minimum distance of a code C is the minimum number of
positions in which any two distinct codewords differ. It is denoted by d.C/. The
weight of code C is defined as the smallest of the weights of non-zero codewords of
C and is denoted by w.C/.

The metric space Fn
p with the Hamming distance d is called Hamming space and

denoted by H.n; p/.

3 Permutation Isometry Classes

Let us denote by Pn.Fp/ the group of all permutation matrices. We will denote
by P.i1; : : : ; in/ the permutation matrix associated to the permutation i1: : :in; that is
to say, the permutation matrix in which the non-zero components are in columns
i1; : : : ; in.

Let us consider, for all P 2 Pn.Fp/, the mapping:

fp W V.n; k; p/ �! V.n; k; p/
C �! CPt:

This map is an isometry. We will refer to it as the permutation isometry associated
to the permutation matrix P.

Definition 1 Two linear .n; k/-codes C and C0 are called permutation isometric if
there exists a permutation isometry fP such that C0 D fP.C/, for some permutation
matrix P 2 Pn.Fp/.

That is to say, if for all codeword w0 2 C0 there exists a codeword w 2 C such
that w0 D wPt (and conversely).

Remark 1 This is an equivalence relation. Given a .n; k/-code C, its equivalence
class is NCP D f fP.C/ j P 2 Pn.Fp/g D fCPt j P 2 Pn.Fp/g.

Example 2 Let us consider p D 3 and the .2; 3/-code C7 (notations as in
Example 1) which consists of codewords:

f000; 100; 200; 012; 021; 112; 221; 121; 212g:

Straightforward calculations show that

C7P.1; 2; 3/ D C7 C7P.2; 1; 3/ D C8 C7P.3; 2; 1/ D C9
C7P.1; 3; 2/ D C7 C7P.2; 3; 1/ D C8 C7P.3; 1; 2/ D C9:

The permutation class of code C7 is: NCP D fC7;C8;C9g.
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Fixed points or invariant subspaces under all isomorphisms fP coincide with those
codes whose equivalence class consists of only one element.

Example 3 In the same conditions as in Examples 1 and 2 above ( p D 3),
straightforward calculations show that the only code which is invariant under fP,
for all P 2 P3.F3/, is C13. More concretely, all 13 vector subspaces are invariant
under fI3 , but, in the case of the other permutation matrices, the vector invariant
subspaces are those listed below.

P.2; 1; 3/ W C1;C6;C9;C12;C13
P.3; 2; 1/ W C2;C5;C8;C11;C13
P.1; 3; 2/ W C3;C4;C7;C10;C13
P.2; 3; 1/ W C13
P.3; 1; 2/ W C13:

Therefore the only equivalence class with an only element is: NCP
13 D fC13g.

Equivalence permutation classes of linear codes coincide with the orbits under
the group action

˛ W Pn.Fp/ � V.k; n; p/ �! V.k; n; p/
.P;C/ �! CPt:

That is to say, denoting the orbit of a k-dimensional vector subspace C by this

action by O˛.C/, we have that O˛.C/ D C
P

.

4 Monomial Isometry Classes

As anticipated in the Introduction, isomorphisms given by monomial matrices are
also isometries. We recall first some well-known properties of monomial matrices.

Definition 2 A monomial matrix of order n is a regular n � n-matrix which has in
each row and in each column exactly one non-zero component.

Monomial matrices form a group. The product of monomial matrices is again a
monomial matrix. The inverse of a monomial matrix is again a monomial matrix.

Unlike permutation matrices, monomial matrices are not necessarily orthogonal.
The following property of monomial matrices is well-known and will be useful

for our purposes.
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Lemma 1 Every monomial matrix is a product of a diagonal matrix with a
permutation matrix.

In general, we will make use of the following notation. Any monomial matrix
will be written as:

M.a1; : : : ; anI i1; : : : ; in/ D diag .a1; : : : ; an/P.i1; : : : ; in/:

Example 4

M.a1; a2; a3I 3; 1; 2/ D
0
@ 0 0 a1

a2 0 0

0 a3 0

1
A D

0
@a1 0 0

0 a2 0
0 0 a3

1
A
0
@0 0 11 0 0

0 1 0

1
A

D diag .a1; a2; a3/P.3; 1; 2/:

Let us denote by Mn.Fp/ the group of all monomial matrices. Let us consider,
for all M 2 Mn.Fp/ the mapping:

gM W V.k; n; p/ �! V.k; n; p/
C �! CMt:

This map is an isometry.

Definition 3 Two linear .n; k/-codes C and C0 are called monomially isometric if
there exists an isometry gM such that gM.C/ D C0, for some monomial matrix
M 2 Mn.Fp/.

That is to say, if for all codeword w0 2 C0 there exists a codeword w 2 C such
that w0 D wMt (and conversely).

Remark 2 This is an equivalence relation. Given a linear .n; k/-code C its equiva-

lence class is: C
M D fgM.C/ j M 2 Mn.Fp/g D fCMt j M 2 Mn.Fp/g.

Obviously, C
P � C

M
.

Example 5 Let us consider, as in Example 2, and with the same notations as in
Example 1, the .3; 2/-code:

C7 D f000; 100; 200; 012; 021; 112; 221; 121; 212g D Œe1; e2 C 2e3�:
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Then:

C7M.a1; a2; a3I 1; 2; 3/ D C7 if a2 D a3
C7M.a1; a2; a3I 1; 2; 3/ D C4 D Œe1; e2 C e3� if a2 6D a3
C7M.a1; a2; a3I 1; 3; 2/ D C7 if a2 D a3
C7M.a1; a2; a3I 1; 3; 2/ D C4 if a2 6D a3
C7M.a1; a2; a3I 2; 1; 3/ D C8 if a1 D a3
C7M.a1; a2; a3I 2; 1; 3/ D C5 D Œe2; e1 C e3� if a1 6D a3
C7M.a1; a2; a3I 3; 1; 2/ D C8 if a1 D a3
C7M.a1; a2; a3I 3; 1; 2/ D C5 if a1 6D a3
C7M.a1; a2; a3I 2; 3; 1/ D C9 if a1 D a2
C7M.a1; a2; a3I 2; 3; 1/ D C6 D Œe3; e1 C e2� if a1 6D a2
C7M.a1; a2; a3I 3; 2; 1/ D C9 if a1 D a2
C7M.a1; a2; a3I 3; 2; 1/ D C6 if a1 6D a2

and then C
M
7 D fC4;C5;C6;C7;C8;C9g.

Fixed points or invariant subspaces under isomorphisms gM , for all M 2 Mn.Fp/,
correspond to those codes having monomial equivalence class consisting only of one
element.

Example 6 Straightforward calculations lead to the following list of the 2-
dimensional codes in V.2; 3; 3/ which are invariant for the different monomial
isometries:

M.a1; a2; a3I 1; 2; 3/ W C1;C2;C3;C4;C5;C6;C7;
C8;C9;C10;C11;C12;C13 if a1 D a2 D a3
C1;C2;C3;C6;C9 if a1 D a2 6D a3
C1;C2;C3;C5;C8 if a1 D a3 6D a2
C1;C2;C3;C4;C7 if a2 D a3 6D a1

M.a1; a2; a3I 2; 1; 3/ W C1;C6;C9;C12;C13 if a1 D a2 D a3
C1;C6;C9;C10;C11 if a1 D a2 D 2a3
C1 if a1 6D a2

M.a1; a2; a3I 3; 2; 1/ W C2;C5;C8;C11;C13 if a1 D a2 D a3
C2;C5;C8;C10;C12 if a1 D a3 D 2a2
C2 if a1 6D a3

M.a1; a2; a3I 1; 3; 2/ W C3;C4;C7;C10;C13 if a1 D a2 D a3
C3;C4;C7;C11;C12 if a2 D a3 D 2a1
C3 if a2 6D a3



Isometries of the Hamming Space and Equivalence Relations of Linear Codes. . . 209

M.a1; a2; a3I 2; 3; 1/ W C10 if a1 D a3 D 2a2
C11 if a1 D a2 D 2a3
C12 if a2 D a3 D 2a1
C13 if a2 D a3 D a1

M.a1; a2; a3I 3; 1; 2/ W C10 if a1 D a2 D 2a3
C11 if 2a1 D a2 D a3
C12 if a1 D a3 D 2a2
C13 if a1 D a2 D a3:

According to the list above, we conclude that there are no codes with only one
element in its monomial equivalence class because there are no invariant subspaces
for all monomial matrices.

Monomial isometry classes coincide with the orbits with respect to the group
action of the group of monomial matrices Mn.Fp/ on the set of vector subspaces of
a given dimension.

ˇ W Mn.Fp/ � V.k; n; p/ �! V.k; n; p/
.M;C/ �! CMt:

The orbit of a k-dimensional vector subspace C under this action is: Oˇ.C/ D
C
M

.

5 Number of Isometry Classes

The main tool to compute the number of isometry classes is Burnside’s Lemma,
which can be applied in our case because the equivalence relations considered
(permutation and monomial isometry equivalences) are such that isometry equiv-
alence classes coincide with orbits under suitable group actions, as seen in previous
Sections.

Let us denote by Sn the symmetric group on n symbols. Recall that two
permutations �1; �2 2 Sn are conjugate if there exists 
 2 Sn such that �2 D

�1


�1.
The cycle type of a cycle is the data of how many cycles of each length are

present in the cycle decomposition of the cycle into disjoint cycles. If the cycle is a
product of m1 k1-cycles, m2 k2-cycles, . . . , mr kr-cycles (0 � m1 � m2 � � � � � mr),
then we will write that its cycle type is m1Cm2C� � �Cmr . With the notations above,

Xn

jD1jmj D n:

The following result is well known.
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Theorem 1 Let �1; �2 2 Sn be two permutations in the symmetric group Sn. Then
�1 and �2 are conjugate if and only if they have the same cycle type.

We list below all the permutations of the symmetric groups of n elements for
n D 2, n D 3 and n D 4, expressing the decomposition of the cycle in disjoint
cycles and the cycle type. For n > 4, analogous tables can be constructed.

For n D 2 and n D 3:

Permutation Disjoint cycles Cycle type
1 2 (1)(2) 1C 1

2 1 (1,2) 2

Permutation Disjoint cycles Cycle type
1 2 3 (1)(2)(3) 1C 1C 1

2 1 3 (1,2)(3) 1C 2

3 2 1 (1,3)(2) 1C 2

1 3 2 (1)(2,3) 1C 2

2 3 1 (1,2,3) 3
3 1 2 (1,3,2) 3

For n D 4:

Permutation Disjoint cycles Cycle type
1 2 3 4 (1)(2)(3)(4) 1C 1C 1C 1

2 1 3 4 (1,2)(3)(4) 1C 1C 2

3 2 1 4 (1,3)(2)(4) 1C 1C 2

4 2 3 1 (1,4)(2)(3) 1C 1C 2

1 3 2 4 (2,3)(1)(4) 1C 1C 2

1 4 3 2 (3,4)(1)(3) 1C 1C 2

1 4 3 2 (3,4)(1)(3) 1C 1C 2

3 1 2 4 (1,3,2)(4) 1C 3

2 3 1 4 (2,3,1)(4) 1C 3

4 1 3 2 (4,1,2)(3) 1C 3

2 4 3 1 (2,4,1)(3) 1C 3

4 2 1 3 (3,4,1)(2) 1C 3

3 2 4 1 (3,4,1)(2) 1C 3

1 4 2 3 (4,2,3)(1) 1C 3

1 3 4 2 (3,4,2)(1) 1C 3

2 1 4 3 (3,4)(1,2) 2C 2

3 4 1 2 (2,4)(1,3) 2C 2

4 3 2 1 (2,3)(1,4) 2C 2

4 1 2 3 (1,4)(2,3) 4
2 3 4 1 (2,3,4,1) 4
2 4 1 3 (2,4,1,3) 4
3 1 4 2 (3,1,4,2) 4
3 4 2 1 (3,4,2,1) 4
4 3 1 2 (4,3,1,2) 4
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Before applying it, we recall the statement of Burnside’s Lemma.

Lemma 2 (Burnside’s Lemma) Let G be a finite group which acts on a set X.
For each g in G we denote by 
.g/ the set of elements in X that are fixed by g (or
g-invariant). Then the number of orbits is

jX=G j D 1

jG j
X

g2G 
.g/:

Burnside’s Lemma, applied to our particular set-up, yields the following state-
ment.

Theorem 2

(a) The number of permutation isometry classes of codes of a given dimension k is
equal to:

1

nŠ

X
P2Pn.Fp/


.P/

where 
.P/ is the number of k-dimensional vector subspaces which are
invariant under the permutation isomorphism fP of V.n; k; p/.

(b) The number of monomial isometry classes is equal to:

1

nŠ

X
M2Mn.Fp/


.M/

where 
.M/ is the number of k-dimensional vector subspaces which are
invariant under the monomial isomorphism gM of V.n; k; p/.

Example 7 We consider the set of all 2-dimensional vector subspaces of F33 (see
Example 1). In Example 3 we have seen which codes are invariant under the
permutation isometries of V.2; 3; 3/. All 13 subspaces are fP-invariant for P D I3.
In the cases where the other permutation matrices are considered, the number
of invariant subspaces under fP is: 5 when P D P.2; 1; 3/, P D P.3; 2; 1/ or
P D P.1; 3; 2/ and 1 when P D P.2; 3; 1/ or P D P.3; 1; 2/.

Then the number of permutation equivalence classes is:

1

3Š
.13C 5C 5C 5C 1C 1/ D 5:

In the case of monomial isometry equivalence the number of monomial isometry
classes, using Example 6, are:

1

3Š
.2 � 13C 6 � 5C 3.4 � 5C 4 � 1/C 2.8 � 1// D 24:
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It may be tedious to do this computation in all cases. However, we can restrict
to consider the isomorphisms associated to one permutation matrix or monomial
matrix in each conjugacy class.

Lemma 3

(a) Let P.i1; : : : ; in/, P. j1; : : : ; jn/ be two permutation matrices. Assume that
i1 : : : in, j1 : : : jn have the same cycle type. Then:


.P.i1; : : : ; in// D 
.P. j1; : : : ; jn//:

(b) Let M.a1; : : : ; anI i1; : : : ; in/, M.˛1; : : : ; ˛nI j1; : : : ; jn/ be two monomial matri-
ces, conjugated in Mn.Fp/. Then:


.M.a1; : : : ; anI i1; : : : ; in// D 
.M.˛1; : : : ; ˛nI j1; : : : ; jn//:

We can now state the main result.

Theorem 3

(a) The number of permutation classes is equal to:

1

nŠ

X
P2Pn.Fp/

jV.k; n; p/Pj D 1

nŠ

X
P
P s.P/
.P/

where s.P/ is the number of permutation matrices having the same cycle type.
(b) The number of monomially equivalence classes is equal to:

1

nŠ

X
M2Mn.Fp/

jV.k; n; p/Mj D 1

. p � 1/n
1

nŠ

X
M

M s.M/
.M/

where s.P/ is the number of elements in each conjugate class.

Example 8 In Example 7 above, the only computations which had to be done are
the following ones.

Cycle type Permutation matrix Number of fP-invariant subspaces
1C 1C 1 I3 13
1C 2 P.2; 1; 3/ 5
3 P.2; 3; 1/ 1

since 
.P.3; 2; 1// D 
.P.1; 3; 2// D 
P.2; 1; 3// and 
.P.3; 1; 2// D

.P.2; 3; 1//. This suffices to compute the number of permutation isomorphism
classes:

1

3Š
.13C 3 � 5C 2 � 1/ D 5:
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An analogous simplification can be done in the case of monomial isomorphism
classes, (see [1]).

To compute the number of vector subspaces of a given dimension which are
invariant under permutation and monomial isomorphisms (
.P/ and 
.M/, for
all permutation matrices P and monomial matrices M), it is useful to know the
decomposition of a vector space into primary components and that of each primary
component as a direct sum of cyclic subspaces. We briefly recall this decomposition.

Let f be a linear operator on F
n
p, with associated matrix A in a given basis of Fn

p.
We will write QA.t/ D det.A � tIn/ the characteristic polynomial of f and denote
by MA.t/ the minimal annihilating polynomial of f (the monic polynomial of least
degree which annihilates all vectors in F

n
p). Note that they do not depend on the

choice of the basis of Fn
p.

Consider the decomposition of the minimal annihilating polynomial of f into
irreducible factors:

Mf .t/ D M1.t/
�1 � � � � � Ms.t/

�s

where �1; : : : ; �s � 0.
The vector subspaces Vi D fx 2 V j Mi. f /�i.x/ D 0g, 1 � i � s, are f -invariant

and V D V1 ˚ � � � ˚ Vs (primary decomposition of V). Moreover, each primary
subspace is a direct sum of cyclic subspaces:

Vi D< v1i > ˚ � � � ˚ < v
mi
i >; 1 � i � s

where < v >D Œv; f .v/; : : : ; f d�1.v/� being d the least degree of f such that
dimŒv; f .v/; : : : ; f d�1.v/� D dimŒv; f .v/; : : : ; f d�1.v/; f d.v/�. Then we can write

V D< v11 > ˚ � � � ˚ < v
m1
1 > ˚ � � � ˚ < v1s > ˚ � � � ˚ < vms

s > :

This is known as the decomposition into cyclic subspaces.
Note that the decomposition of each primary subspace Vi, 1 � i � s, as a direct

sum of cyclic subspaces is not unique. Nevertheless, two such decompositions have
the same sequence of numbers which are the different dimensions of the cyclic
subspaces and which will be referred to as cyclic-primary numbers.

Example 9 Let us consider f the linear endomorphism of F35 having as associated
matrix, in the natural basis of F

3
5, the permutation matrix P D P.1; 3; 2/. The

characteristic and minimal polynomials are: QP.t/ D .t C 4/2.t C 1/, MP.t/ D
.t C 4/.t C 1/.

Primary decomposition: F33 D E1 ˚ E2, with E1 D ker . f C 4I3/ D Œe1; e2 C e3�,
E2 D ker . f C I3/ D Œe2 C 4e3�.

Decomposition in cyclic subspaces: F35 D .E11 ˚ E21/ ˚ E2, with E11 D< e1 >,
E21 D< e2 C e3 >, E2 D< e2 C 4e3 >.

Note that these decompositions depend on the finite field.
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Example 10 Let us consider f the linear endomorphism of F3p having as associated
matrix, in the natural basis of F3p the permutation matrix P D P.2; 3; 1/.

The characteristic polynomial is: QP.t/ D .t � 1/.t2 C t C 1/.
If p D 5, t2 C t C 1 is irreducible over F5Œt� and MP.t/ D .t C 1/.t2 C t C 1/.
The primary decomposition is: F35 D E1 ˚ E2, with E1 D ker . f C 4I3/ D

Œe1 C e2 C e3�, E2 D ker . f 2 C f C I3/ D Œe2 C 4e1; e1 C 4e3�.
The decomposition in cyclic subspaces is:

F
3
5 D< e1 C e2 C e3 > ˚ < e1 C 4e3 > :

But if p D 7, t2C t C1 D .t C3/.t C5/ and the minimal annihilating polynomial
is: MP.t/ D .t C 3/.t C 5/.t C 6/.

The primary decomposition is: F37 D E1 ˚ E2 ˚ E3, with E1 D ker . f C 3I3/ D
Œe1 C 4e2 C 2e3�, E2 D ker . f C 5I3/ D Œe1 C 2e2 C 4e3�, E3 D ker . f C 6I3/ D
Œe1 C e2 C e3�.

The decomposition in cyclic subspaces is:

F
3
7 D< e1 C 2e2 C 4e3 > ˚ < e1 C 4e2 C 2e3 > ˚ < e1 C e2 C e3 > :

The starting point to obtain this decomposition is obtaining the minimal annihi-
lating polynomial of the endomorphism. In Appendix this polynomial is obtained
in the case where the endomorphism is a permutation isomorphism or a monomial
isomorphism.

Appendix: Minimal Annihilating Polynomial of Permutation
and Monomial Isometries

The minimal annihilating polynomial of a permutation isometry can be determined
by the decomposition of the permutation in disjoint cycles. More concretely, if
P1, P2 are two permutation matrices associated to two permutations 
2, 
2 with
the same cycle type (conjugate in the symmetric group), the minimal annihilating
polynomials MP1 .t/ and MP2 .t/ coincide.

Proposition 1 Let P be a permutation matrix associated to a permutation with

cycle type 1C m1
:̂ : :C 1C 2C m2

:̂ : :C 2C 3C m3
:̂ : :C 3C � � � C r C mr

:̂ : :C r. Then

MP.t/ D MCMf.t � 1/n1 ; .t2 � 1/n2 ; : : : ; .t3 � 1/n3 ; : : : ; .tr � 1/nr g

where ni D 0 if mi D 0 and ni D 1 if mi > 0, 1 � i � r (see [2]).
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Example 11 Let us consider P D P.2; 3; 4; 1; 6; 5/. Then 234165 D
.2; 3; 4; 1/.6; 5/ has cycle type 2C 4 and

MP.t/ D MCMf.t2 � 1/6; .t4 � 1/g D t2 � 1:

For any monomial matrix, M D M.a1; : : : ; anI i1 : : : in/, the characteristic polyno-
mial of the isomorphism gM can be obtained from the coefficients a1; : : : ; an and the
cycle type of the permutation i1 : : : in.

Lemma 4

(a) The characteristic polynomial of M is a product of factors, each of them
corresponding to one of the disjoint cycles in the decomposition of i1 : : : ik.

(b) Given a matrix M D M.a1; : : : ; akI j1; : : : ; jk/ with j1; : : : ; jk D . j1; : : : ; jk/ a
cycle of length k, the characteristic polynomial of M is tk � a1 � � � ak.

Example 12

M D M.1; 1; 2; 2; 2; 2; 2I 2; 3; 1; 5; 6; 7; 4/D

0
BBBBBBB@

0 1 0 0 0 0 0

0 0 1 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2

0 0 0 2 0 0 0

1
CCCCCCCA

2 3 1 5 6 7 4 D .2; 3; 1/.5; 6; 7; 4/ and then QM.t/ D .t3 � 2/.t4 � 16/.
In F5Œt�: QM.t/ D .t3 � 2/.t4 � 1/.
In F7Œt�: QM.t/ D .t3 � 2/.t4 � 2/.
In F11Œt�: QM.t/ D .t3 � 2/.t4 � 5/.

Let us denote by Gk.t/ the GCD of all factors in the characteristic polynomial
of M D M.a1; : : : ; anI i1; : : : ; in/ of degree k corresponding to cycles of length k,
1 � k � n.

Proposition 2 The minimal annihilating polynomial of monomial matrix M D
M.a1; : : : ; anI i1; : : : ; in/ is:

PM.t/ D LCM.G1.t/; : : : ;Gk.t//:
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Example 13 Let us consider

M D M.2; 3; 1; 1; 3; 4; 1; 1; 4I 2; 3; 1; 5; 4; 7; 6; 8; 9/

D

0
BBBBBBBBBB@

0 2 0 0 0 0 0 0 0

0 0 3 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 3 0 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 4

1
CCCCCCCCCCA

2 M9.F7/

2 3 1 5 4 7 6 8 9 D .2; 3; 1/.5; 4/.7; 6/.8/.9/.
QM.t/ D .t3 � 6/.t2 � 3/.t2 � 1/.t � 1/.t � 4/.
G1.t/ D .t � 1/.t � 4/, G2.t/ D .t2 � 3/.t2 � 1/, G3.t/ D t3 � 6.
PM.t/ D .t � 1/.t � 3/.t � 4/.t � 5/.t � 6/.t2 � 3/.

An example of invariant subspaces are those spanned by eigenvectors. We can deter-
mine the set of eigenvectors of a permutation isomorphism from the decomposition
of the permutation associated to it, into disjoint cycles and that of a monomial
isomorphism from the decomposition into disjoint cycles and the coefficients in
the matrix. The proofs are based on straightforward computations.

Proposition 3 Let P be a permutation matrix associated to a permutation which is
a disjoint product of cycles, and � 2 Fp an eigenvalue of P, � an mth-root of unity,
the vector .�jk ; : : : ; �j1 /, where j1; : : : ; jk is the result of re-ordering the indices of
the cycle .i1; : : : ; ik/ in such a way that j1 � � � � � jk. Then .�jk ; : : : ; �j1 / is the
eigenvector associated to the eigenvalue �.

Example 14 We will consider p D 5.

1. Let us consider the 2-cycle .2; 1/ and the 2 � 2-matrix associated to it. Then
the eigenvector for the eigenvalue � 2 F5, �2 D 1, is .�; 1/. Since the roots of
�2 D 1 are 1 and 4, there are two linearly independent eigenvectors: .1; 1/ and
.4; 1/.

2. If the permutation 3 � 3-matrix is associated to the 2-cycle .2; 3; 1/, the
eigenvector corresponding to the eigenvalue � 2 F5, �3 D 1, is .�; �2; 1/. The
equation �3 D 1 has only one root, 1, and therefore there is an unique eigenvector
is: .1; 1; 1/.

If we consider the 3 � 3-permutation matrix is associated to the 2-cycle
.3; 2; 1/, there is also an unique eigenvector: .1; 1; 1/.

3. Let us consider now the case of 4 � 4-permutation matrices associated to 4-
cycles. Let � be a 4th-root of unity (there are four 4th-roots of unity: �1 D 1,
�2 D 2,�3 D 3 and �4 D 4).

(i) If the 4-cycle is .1; 2; 3; 4/, the eigenvector corresponding to the eigenvalue
� 2 F5, is .�; �2; �3; 1/. That is to say, there are four linearly independent
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eigenvectors:

.1; 1; 1; 1/; .2; 4; 3; 1/; .3; 4; 2; 1/; .4; 1; 4; 1/:

(ii) If the 4-cycle is .1; 3; 4; 2/, the eigenvector corresponding to the eigenvalue
� 2 F5, �4 D 1, is .�; �3; �2; 1/. That is to say, there are four linearly
independent eigenvectors:

.1; 1; 1; 1/; .2; 3; 4; 1/; .3; 2; 4; 1/; .4; 4; 1; 1/:

(iii) If the 4-cycle is .1; 2; 3; 4/, the eigenvector corresponding to the eigenvalue
� 2 F5, �4 D 1, is .�; 1; �3; �2/. That is to say, there are four linearly
independent eigenvectors:

.1; 1; 1; 1/; .2; 1; 3; 4/; .3; 1; 2; 4/; .4; 1; 4; 1/:

(iv) If the 4-cycle is .1; 3; 2; 4/, the eigenvector corresponding to the eigenvalue
� 2 F5, �4 D 1, is .�; �2; 1; �3. That is to say, there are four linearly
independent eigenvectors:

.1; 1; 1; 1/; .2; 4; 1; 3/; .3; 4; 1; 2/; .4; 1; 1; 4/:

(v) If the 4-cycle is .1; 4; 2; 3/, the eigenvector corresponding to the eigenvalue
� 2 F5, �4 D 1, is .�; 1; �2; �3/. That is to say, there are four linearly
independent eigenvectors:

.1; 1; 1; 1/; .2; 1; 4; 3/; .3; 1; 4; 2/; .4; 1; 1; 4/:

(vi) If the 4-cycle is .1; 2; 4; 3/, the eigenvector corresponding to the eigenvalue
� 2 F5, �4 D 1, is .�; �3; 1; �2/. That is to say, there are four linearly
independent eigenvectors:

.1; 1; 1; 1/; .2; 3; 1; 4/; .3; 2; 1; 4/; .4; 4; 1; 1/:

4. Let us consider the permutation matrix associated to a cycle of type 2C2C4C8.
Then the minimal annihilating polynomial is: .t4 C 1/.t2 C 1/.t C 1/.t � 1/. The
eigenvalues in F5 are: �1 D 1, �2 D 4, �3 D 2 and �4 D 3, being the algebraic
multiplicities 4,4,1,1, respectively.
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Let us assume, for example, that the 2-cycles are: .9; 16/ and .13; 15/,
the 4-cycle is .1; 3; 5; 14/ and the 8-cycle is .2; 4; 6; 7; 8; 10; 11; 12/. Then the
following linearly independent eigenvectors are obtained.

�1 D 1 .0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 1; 0/

.0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0; 0; 0; 0; 0; 1/

.1; 0; 1; 0; 1; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0/

.0; 1; 0; 1; 0; 1; 1; 1; 0; 1; 1; 1; 0; 0; 0; 0/

�2 D 4 .0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 4; 0; 1; 0/

.0; 0; 0; 0; 0; 0; 0; 0; 4; 0; 0; 0; 0; 0; 0; 1/

.4; 0; 1; 0; 4; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0/

.0; 4; 0; 1; 0; 4; 1; 4; 0; 1; 4; 1; 0; 0; 0; 0/

�3 D 2 .2; 0; 4; 0; 3; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0/

�4 D 3 .3; 0; 4; 0; 2; 0; 0; 0; 0; 0; 0; 0; 0; 1; 0; 0/

Let us consider now a monomial matrix Let M D M.a1; : : : ; anI i1; : : : ; in/.

Proposition 4 The eigenvalues of M are the roots of the polynomials tk � aj1 � � � ajk
for each cycle j1 : : : jk of length k in the decomposition of the permutation i1 : : : in
into disjoint cycles, being aj1 ; : : : ; ajk the coefficients of M in columns j1; : : : ; jk.

Example 15 Let us consider

M D M.1; 1; 2; 2; 2; 2; 2I 2; 3; 1; 5; 6; 7; 4/D

0
BBBBBBB@

0 1 0 0 0 0 0

0 0 1 0 0 0 0

2 0 0 0 0 0 0

0 0 0 0 2 0 0

0 0 0 0 0 2 0

0 0 0 0 0 0 2

0 0 0 2 0 0 0

1
CCCCCCCA

We have: 2 3 1 5 6 7 4 D .2; 3; 1/.5; 6; 7; 4/ and therefore QM.t/ D .t3 � 2/.t4 �
16/.

In F5Œt�: QM.t/ D .t3 � 2/.t4 � 1/ and the eigenvalues of M are: 3.2/; 1; 2; 4.
In F7Œt�: QM.t/ D .t3 � 2/.t4 � 2/ and the eigenvalues of M are: 2; 5.
In F11Œt�: QM.t/ D .t3 � 2/.t4 � 5/ and the eigenvalues of M are: 7; 2; 9.

Assume that the permutation i1; : : : ; in splits into m1 cycles of length k1,. . . , ml

cycles of length kl. For any irreducible cycle . j/ of length 1, ej is an eigenvector. We
can generalize this as follows.

Proposition 5 Let aj1 : : : ajk be a cycle of length k � 2 in the decomposition of
the characteristic polynomial of M into irreducible factors and tk � aj1 : : : ajk the
corresponding factor in QM.t/. For each root � (in the case where there exists any)
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of this polynomial we obtain an eigenvector:

.�k�1; aj2aj3 : : : ajk ; �aj3 : : : ajk ; : : : �
k�3ajk�1ajk ; �

k�2ajk/

Example 16

M D M.a1; a2; a3; a4; a5; a6; a7; a8; a9I 2; 3; 4; 1; 6; 7; 8; 9; 5/

D

0
BBBBBBBBBB@

0 a1 0 0 0 0 0 0 0

0 0 a2 0 0 0 0 0 0

0 0 0 a3 0 0 0 0 0

a4 0 0 0 0 0 0 0 0

0 0 0 0 0 a5 0 0 0

0 0 0 0 0 0 a6 0 0

0 0 0 0 0 0 0 a7 0
0 0 0 0 0 0 0 0 a8
0 0 0 0 a9 0 0 0 0

1
CCCCCCCCCCA

the eigenvectors are:

• .�3; a2a3a4; �a3a4; �2a4; 0; 0; 0; 0; 0/.
• .�4; a6a7a8a9; �a7a8a9; �2a8a9; �3a9/.

For each root � of t4 � a1a2a3a4 and � of t5 � a5a6a7a8a9 in Fp.
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Advances in the Study of Singular Semilinear
Elliptic Problems

Daniela Giachetti, Pedro J. Martínez-Aparicio, and François Murat

Abstract In this paper we deal with some results concerning semilinear elliptic
singular problems with Dirichlet boundary conditions. The problem becomes
singular where the solution u vanishes. The model of this kind of problems is

8̂
<̂
ˆ̂:

u � 0 in ˝;

�div A.x/Du D F.x; u/ in ˝;

u D 0 on @˝;

where˝ is a bounded open set of RN , N � 1, A is a coercive matrix with coefficients
in L1.˝/ and F W .x; s/ 2 ˝ � Œ0;C1Œ! F.x; s/ 2 Œ0;C1� is a Carathéodory
function which is singular at s D 0.

Our aim is to study the meaning of the assumptions made on the singular function
F.x; s/ in the papers [Giachetti et al., J. Math. Pures Appl. (2016, in press); Giachetti
et al., Definition, existence, stability and uniqueness of the solution to a semilinear
elliptic problem with a strong singularity at u D 0 (Preprint, 2016); Giachetti et al.,
Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity
at u D 0 in a domain with many small holes (Preprint, 2016)], to extend some
uniqueness results of the solution given in the same papers, and to prove the L1-
regularity of the solutions under some regularity assumption on the data.
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1 Introduction

In the papers [3, 4] we study the problem of finding a function u which satisfies, in
a convenient sense, the following semilinear singular (in the u variable) problem

8̂
<̂
ˆ̂:

u � 0 in ˝;

�div A.x/Du D F.x; u/ in ˝;

u D 0 on @˝:

(1)

More precisely in [3] we deal with the case of mild singularities (see assump-

tion (4) below). This means that the singular term F.x; s/ grows at most like
1

s�
with

0 < � � 1 near s D 0.
In [3] ˝ is an open bounded set of RN ; N � 1 (no regularity is assumed on the

boundary @˝ of ˝), the matrix A satisfies

(
A.x/ 2 L1.˝/N�N ;

9˛ > 0; A.x/ � ˛I a:e: x 2 ˝; (2)

the function F satisfies

8̂
ˆ̂̂<
ˆ̂̂̂
:

F W .x; s/ 2 ˝ � Œ0;C1Œ! F.x; s/ 2 Œ0;C1� is a Carathéodory function;

i.e. F satisfies

i/ for a.e. x 2 ˝; s 2 Œ0;C1Œ! F.x; s/ 2 Œ0;C1� is continuous;

ii/8s 2 Œ0;C1Œ; x 2 ˝ ! F.x; s/ 2 Œ0;C1� is measurable;
(3)

and
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

9�; 9h with

i/ 0 < � � 1;

ii/ h.x/ � 0 a:e: x 2 ˝; h 2 Lr.˝/;

with r D 2N
NC2 if N � 3; r > 1 if N D 2; r D 1 if N D 1;

such that

iii/ 0 � F.x; s/ � h.x/

�
1

s�
C 1

�
a.e. x 2 ˝;8s > 0:

(4)

In [3] existence of at least one nonnegative solution in the sense of Definition 1
(given in Sect. 2 below) is proved; moreover uniqueness is also proved if F.x; s/
is nonincreasing or more generally “almost nonincreasing” in the s variable in the
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sense that

(
there exists �; 0 � � < �1; such that

F.x; s/ � �s � F.x; t/ � �t a:e: x 2 ˝; 8s;8t; 0 � t � s;
(5)

where �1 is the first eigenvalue of the operator �div sA.x/D in H1
0.˝/ and

sA.x/ D .A.x/C tA.x//=2 is the symmetrized part of the matrix A.x/.
Finally, the homogenization of these equations posed in a sequence of domains

˝" obtained by removing many small holes from a fixed domain ˝ is also
considered in [3].

In [4, 5] we study the case of strong singularities, which means that hypothe-
sis (4) is replaced by

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

i/ 9h; h.x/ � 0 a:e: x 2 ˝; h 2 Lr.˝/;

with r D 2N
NC2 if N � 3; r > 1 if N D 2; r D 1 if N D 1;

ii/ 9� W s 2 Œ0;C1� ! � .s/ 2 Œ0;C1Œ; � 2 C1.Œ0;C1Œ/;

with � .0/ D 0; � 0.s/ > 0 8s > 0;

iii/ 0 � F.x; s/ � h.x/

� .s/
a.e. x 2 ˝;8s > 0:

(6)

Remark 1 Note that condition (6) includes condition (4) if � .s/ D s�=.s� C1/ with
0 < � � 1.

Note also that in (6) the growth of F.x; s/ at the singularity s D 0 is more general
because it includes powerlike growth conditions of the type (4 iii) for any � > 0 and
also more general growth conditions like in the following example

F.x; s/ D h.x/

exp.� 1
s /

�
2C sin

�
1

s

��
a.e. x 2 ˝; 8s > 0: (7)

Note finally that (6 ii) implies that the function � is increasing and satisfies
� .s/ > 0 for every s > 0, as well as � 2 Liploc.Œ0;C1Œ/ with

0 < inf a�t�b �
0.t/ � sup a�t�b �

0.t/ < C1 8 a; b; 0 < a � b < C1:

ut
An existence result of at least one nonnegative solution in the sense of Defini-

tion 4 (given in Sect. 2 below) is proved in [4]. Uniqueness is also proved in [4] if
F.x; s/ is nonincreasing in the s variable.

In [5] we consider the homogenization in perforated domains for problems with
strong singularities.

The works [3, 4] were inspired by the paper [2] of L. Boccardo and L. Orsina
where they prove existence and regularity as well as non existence results.
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L. Boccardo and J. Casado-Díaz also proved in [1] an uniqueness result of
the solutions obtained by approximation and studied the stability of the solution
with respect to the G-convergence for a sequence of matrices A".x/ which are
equicoercive and equibounded.

In the first part of the present paper we make some remarks about the growth
condition (6). More precisely we prove that (6) is equivalent to a family of bounds
from above for the function F.x; s/ on the sets fs � kg, k > 0. In addition we
point out by an example that a function F which satisfies the growth condition from
above (6) does not in general satisfy a similar growth condition from below.

In the second part of the present paper we extend the uniqueness results given in
[3, 4]. In the case of a mild singularity [assumption (4)] we improve condition (5)
by allowing � D �1, where �1 is the first eigenvalue of the operator �div sA.x/D in
H1
0.˝/, and we prove the uniqueness of the solution under the further assumption

that the function F.x; s/ does not coincide wit �1 C c.x/ for any function c.x/ in any
set of the type fx 2 ˝; s�.x/ � s � sC.x/g. In the case of a strong singularity of
the type � .s/ D s�=.s� C 1/ with � > 1 [assumption (6)] we weaken the condition
on the monotonicity of F.x; s/ given in [4], requiring that F.x; s/ is only “� -almost
nonincreasing” in the s variable in the sense that

8<
:

there exists �; 0 � � < 4
� C 3

.� C 4/2
�1; such that

F.x; s/ � �s � F.x; t/ � �t a:e: x 2 ˝; 8s;8t; 0 � t � s:
(8)

Under this condition we prove that the problem can not have two different solutions
u1 and u2 satisfying u1 � u2 2 L1.˝/.

In the third part of the present paper we prove, assuming that the function h
in (6) belongs to Lt.˝/, t > N

2
if N � 2, t D 1 if N D 1, that any solution u to

problem (1) (not necessarily obtained by approximation) in the sense of Definition 4
below belongs to L1.˝/. Note that this L1-regularity result holds true under the
general growth condition (6) which allows one to consider functions F like (7).

The plan of the paper is the following. In Sect. 2 we recall the definitions of the
solution and the existence results given in [3, 4]. In Sect. 3 we study some features
of the assumptions (4) and (6). Sect. 4 is devoted to extend the uniqueness results
given in [3, 4]. In Sect. 5 we give an L1-regularity result for the solutions under a
stronger assumption on F.x; s/ in the x variable.

Notation
We denote as usual by D.˝/ the space of the functions C1.˝/ whose support is
compact and included on ˝ , and by D 0.˝/ the space of distributions on˝ .

For every s 2 R and every k > 0 we define as usual

sC D maxfs; 0g; s� D maxf0;�sg;
Tk.s/ D maxf�k;minfs; kgg; Gk.s/ D s � Tk.s/:
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2 Definitions of the Solution and Existence Results

In this section we recall the definitions of the solutions to problem (1) that we used
in the papers [3] (mild singularity), [4, 5] (strong singularity) and we recall the
statements of the existence results in both cases. In order to introduce the notion of
solution in the case of a strong singularity, we also need to recall the definition of
the space V .˝/ of test functions and a formal duality (see (14) below).

2.1 Mild Singularities

In the paper [3], in the case of mild singularities, we used the following definition
of a solution to problem (1).

Definition 1 ([3]) Assume that the matrix A and the function F satisfy (2), (3)
and (4). We say that u is a solution to problem (1) if u satisfies

u 2 H1
0.˝/; (9)

u � 0 a:e: in ˝; (10)

and
8̂
ˆ̂̂<
ˆ̂̂̂
:

8' 2 H1
0.˝/; ' � 0; one hasZ

˝

F.x; u/' < C1;Z
˝

A.x/DuD' D
Z
˝

F.x; u/':

(11)

ut
The existence result that we proved in [3] is the following.

Theorem 1 ([3]) Assume that the matrix A and the function F satisfy (2), (3)
and (4). Then there exists at least one solution u to problem (1) in the sense of
Definition 1.

2.2 Strong Singularities

In order to introduce the notion of solution to problem (1) that we use in [4], in
the case of strong singularities, we first define the following space V .˝/ of test
functions and a new notation (see (14) below).
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Definition 2 ([4]) We define the space V .˝/ as the space of the functions v which
satisfy

v 2 H1
0.˝/\ L1.˝/; (12)8̂

ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

9I finite; 9 O'i; 9Ogi; i 2 I; 9Of ; with

O'i 2 H1
0.˝/\ L1.˝/; Ogi 2 .L2.˝//N ; Of 2 L1.˝/;

such that

�div tA.x/Dv D
X
i2I

O'i.�div Ogi/C Of in D 0.˝/:

(13)

ut
In the definition of V .˝/ we use the notation O'i, Ogi, and Of to help the reader to

identify the functions which enter in the definition of the functions of V .˝/.
Note that V .˝/ is a vector space.

Definition 3 ([4]) When v 2 V .˝/ with

�div tA.x/Dv D
X
i2I

O'i.�div Ogi/C Of in D 0.˝/;

where I, O'i, Ogi and Of are as in (13), and when z satisfies

z 2 H1
loc.˝/\ L1.˝/ with 'z 2 H1

0.˝/; 8' 2 H1
0.˝/\ L1.˝/;

we will use the following notation

hh�div tA.x/Dv; zii˝ D
X
i2I

Z
˝

OgiD. O'iz/C
Z
˝

Of z : (14)

ut
We now give the definition of a solution to problem (1) that we used in [4].

Definition 4 ([4]) Assume that the matrix A and the function F satisfy (2), (3)
and (6). We say that u is a solution to problem (1) if u satisfies

8̂
ˆ̂̂<
ˆ̂̂̂
:

i/ u 2 L2.˝/\ H1
loc.˝/;

ii/ u.x/ � 0 a.e. x 2 ˝;
iii/Gk.u/ 2 H1

0.˝/ 8k > 0;

iv/ 'DTk.u/ 2 .L2.˝//N 8k > 0; 8' 2 H1
0.˝/\ L1.˝/;

(15)
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8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

8v 2 V .˝/; v � 0;

with � div tA.x/Dv D
X
i2I

O'i.�div Ogi/C Of in D 0.˝/;

where O'i 2 H1
0.˝/\ L1.˝/; Ogi 2 .L2.˝//N; Of 2 L1.˝/;

one has

i/
Z
˝

F.x; u/v < C1;

ii/
Z
˝

tA.x/DvDGk.u/C
X
i2I

Z
˝

OgiD. O'iTk.u//C
Z
˝

Of Tk.u/ D

D h�div tA.x/Dv;Gk.u/iH�1.˝/;H1
0.˝/

C hh�div tA.x/Dv;Tk.u/ii˝ D
D
Z
˝

F.x; u/v 8k > 0:

(16)

ut
This is a definition of a solution by transposition in the spirit of those introduced

by J.-L. Lions and E. Magenes and by G. Stampacchia.

Remark 2 We prove in [4] that every solution to problem (1) in the sense of
Definition 4 satisfies

ˇ.Tk.u// 2 H1
0.˝/ 8k > 0;

and that the following estimate holds true

˛kDˇ.Tk.u//k2.L2.˝//N � khkL1.˝/ 8k > 0;

where the function ˇ W s 2 Œ0;C1Œ! ˇ.s/ 2 Œ0;C1Œ is defined by

ˇ.s/ D
Z s

0

p
� 0.�/d�:

It is easy to show that in the case where � .s/ D s�=.s� C 1/ with � � 1 one can
actually prove [with the techniques of [4] but using now, in the formal computation,
the test function .Tk.u//� in place of � .Tk.u//] that

.Tk.u//
�C1
2 2 H1

0.˝/; (17)

which is a slightly different result. The estimate in this case is the following

˛
4�

.� C 1/2
kDTk.u/

�C1
2 /k2

.L2.˝//N � khkL1.˝/.1C k� / 8k > 0:

ut
In this case of strong singularities we proved in [4] the following existence result.
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Theorem 2 ([4]) Assume that the matrix A and the function F satisfy (2), (3)
and (6). Then there exists at least one solution u to problem (1) in the sense of
Definition 4.

3 Remarks on the Growth Assumptions of the Singular Term

In this section we discuss some issues concerning assumption (6).
In the following Proposition 1 we prove that condition (6) [and therefore (4))]

can be rewritten (in an equivalent way) through a family of bounds from above for
the function F on the sets fs � kg, k > 0.

Proposition 1 Assumption (6) is equivalent to the following one

8̂
<̂
ˆ̂:

8k > 0; 9hk 2 Lr.˝/;

with r D 2N
NC2 if N � 3; r > 1 if N D 2; r D 1 if N D 1;

such that 0 � F.x; s/ � hk.x/ a.e. x 2 ˝;8s � k:

(18)

Proof It is obvious that (6) implies (18) since we can take hk.x/ D h.x/

� .k/
for s � k.

Now we prove that (18) implies (6).
Choosing k D 1

n we deduce from (18) that

(
8n 2 N; n � 1; 9hn 2 Lr.˝/;

such that 0 � F.x; s/ � hn.x/ a.e. x 2 ˝;8s � 1
n :

(19)

We can always assume that, for n � 1, one has hnC1.x/ � hn.x/ almost everywhere
in ˝ , and we define cn by

cn D 1

khnkLr.˝/

1

2n
8n � 1:

Therefore we have cnC1 � 1
2
cn and

cn ! 0 as n ! C1: (20)

Now we define h D
1X
2

cnhnI then h 2 Lr.˝/ since cnkhnkLr.˝/ D 1

2n
and since

the series
1X
2

1

2n
is convergent.
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Let us define a function g by setting g
�
1
n

� D cnC1 for n � 1, by defining g as

the linear interpolation between cnC2 and cnC1 for
1

n C 1
� s � 1

n
, and by setting

g.0/ D 0. This function g is increasing, piecewise affine and continuous (see (20))
on Œ0; 1�.

Using inequality (19) for s � 1

n C 1
and the fact that g is increasing, we have for

1

n C 1
� s � 1

n
and n � 1

0 � F.x; s/ � hnC1.x/ D cnC1hnC1.x/
1

cnC1
� h.x/

1

cnC1
D h.x/

1

g. 1n /
� h.x/

1

g.s/
:

We have proved that (6 iii) is satisfied for 0 � s � 1 with the functions h D h
and � D g, where g 2 C0.Œ0; 1�/, g piecewise affine, g.0/ D 0 and g.s/ > 0 and
g0.s/ > 0 for s > 0.

For what concerns s � 1, we take an increasing and concave function
g 2 C1.Œ1;C1�/ \ Lip.Œ1;C1�/ such that g.1/ � g.s/ � 2g.1/ for s � 1. Using
(18) for s � 1 and the latest inequality we have for s � 1

F.x; s/ � h1.x/ D g.1/h1.x/

g.1/
� 2g.1/h1.x/

g.s/
:

Setting h.x/ D sup
˚
h.x/; 2g.1/h1.x/

�
, we have proved that (6 iii) is satisfied for

s � 0 with the functions h and g, where h 2 Lr.˝/, and where g satisfies (6 ii) but
does not belong neither to C1.Œ0;C1�/ nor to Lip.Œ0;C1�/.

It is easy to replace the function g by g defined by

g.s/ D
Z s

0

inff1; g0.t/gdtI

the function g is increasing, piecewise affine and continuous on Œ0; 1�, C1 on Œ1;C1�

and satisfies

(
g.0/ D 0; g.s/ > 0 8s > 0; g 2 Lip.Œ0;C1�/;

0 < inf a�t�b g0.t/ � sup 0�t�C1 g0.t/ < C1 8 a; b; 0 < a � b < C1;

(21)
as well as g � g; a more technical process allows one to build a function � with
� � g which still satisfies (21) and belongs to C1.Œ0;C1�/.

We have (almost completely) proved that (18) implies (6). ut
In the next Remark we point out that condition (6 iii) prescribes only a growth

from above on the function F but no growth from below.
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Remark 3 In this remark we give an example of function F satisfying condi-
tion (6 iii) with � .s/ D s2 and h D 1, i.e. such that

0 � F.x; s/ � 1

s2
8s > 0

which does not satisfy

F.x; s/ � C

s2
for any C > 0: (22)

Let 0 < � < 1 and define

sn D �.2
n�1/ and tn D �.2

.nC1/�2/; 8n � 0:

Then one has 8̂
<̂
ˆ̂:
0 < sn < 1; snC1 D � tn; tn D s2n; 8n � 0;

0 < snC1 < tn < sn < 1; 8n < 0;

sn ! 0 as n ! C1:

We now define a function F such that
8̂
ˆ̂<
ˆ̂̂:

F.s/ is continuous for every s > 0;

F.s/ D 1 for every s � 1;

F.s/ D 1

.sn/2
for every s such that tn � s � sn; 8n � 0:

Then

F.sn/ D 1

.sn/2
; F.tn/ D 1

tn
; 8n � 0:

It remains to define F in the intervals snC1 � s � tn. Since
1

s
<

1

.s/2
for s < 1, we

can choose the function F such that

1

s
� F.s/ � 1

.s/2
for every s such that snC1 � s � tn; 8n � 0:

Then the function F satisfies

1

s
� F.s/ � 1

.s/2
for every s; s � 1:

But F.tn/ D 1

tn
for every n � 0, and tn tends to 0 as n tends to C1, which proves

that there is no C > 0 such that (22) holds true. ut
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4 New Results About the Uniqueness of the Solution

In this section we prove some further results about the uniqueness of solution which
complete the results proved in [3, 4]. For the convenience of the reader we include
here the results of [3, 4].

We denote by �1 and 	1 the first eigenvalue and the first eigenfunction of the
operator �div sA.x/D in H1

0.˝/, where sA.x/ D .A.x/C tA.x//=2 is the symmetrized
part of the matrix A.x/, namely

8<
:
	1 2 H1

0.˝/; 	1 � 0;

Z
˝

j	1j2 D 1;

�div sA.x/D	1 D �1	1 in D 0.˝/:
(23)

4.1 Uniqueness in the Case of a Mild Singularity

We first recall the uniqueness result that we proved in [3] in the case of a mild
singularity.

Theorem 3 ([3]) Assume that the matrix A and the function F satisfy (2), (3)
and (4). Assume moreover that the function F.x; s/ is “almost nonincreasing” in
s, i.e. that

(
there exists �; 0 � � < �1 such that

F.x; s/� �s � F.x; t/� �t a:e: x 2 ˝; 8s;8t; 0 � t � s:
(24)

Then the solution to problem (1) in the sense of Definition 1 is unique.

Remark 4 Note that (24) holds with � D 0 when F.x; s/ is assumed to be
nonincreasing in the s variable.

Note also that if in place of (24) one assumes that the function

s 2 Œ0;C1� ! F.x; s/� �1s is nonincreasing, (25)

uniqueness of the solution to problem (1) in the sense of Definition 1 in general does
not hold true.

Indeed, consider the case where the matrix A satisfies (2) and is symmetric and
where the function F is defined by

F.x; s/ D �1Tk.s/ 8s � 0; (26)

where Tk is the truncation at height k > 0, for some k fixed, and where �1 and 	1
are defined by (23).

The function F defined by (26) satisfies assumptions (3), (4) and (25).
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Recall that 	1, the unique solution to (23), belongs to L1.˝/. Then for every t
with 0 � t � k=k	1kL1.˝/, the function

u D t	1

is a solution to (1) in the classical sense, and therefore in the sense of Definition 1.
This proves that uniqueness does not hold if assumption (24) is replaced by the

weaker assumption (25). ut
This counterexample, even if naive, indicates the mechanism of the possible non

uniqueness of the solution when hypothesis (24) is replaced by hypothesis (25):
indeed, if there are two different solutions to (1), then one has for almost every
x 2 ˝

F.x; s/ D �1s C c.x/ for s�.x/ � s � sC.x/;

as stated in the next Theorem. In other terms, uniqueness holds true for the solution
to (1) in the sense of Definition 1 when F.x; s/ satisfies (25) and does not coincide
with �1s C c.x/ for any c.x/ in any set of the type fx 2 ˝; s�.x/ � s � sC.x/g.

Theorem 4 Assume that the matrix A and the function F satisfy (2), (3) and (4).
Assume moreover that F satisfies (25).

If there exist two different solutions Ou and u to (1) in the sense of Definition 1, the
function F satisfies

F.x; s/ D �1s C c.x/ a.e. x 2 ˝; 8s; s�.x/ � s � sC.x/; (27)

where c.x/ 2 L1loc.˝/ and where

sC.x/� s�.x/ D t	1.x/ a.e. x 2 ˝; (28)

for some t > 0 which does not depend on x (recall that 	1.x/ > 0 for almost every
x 2 ˝).

Proof Assume indeed that Ou and u are two solutions to (1) in the sense of
Definition 1 such that Ou ¤ u. Using .Ou � u/C and .Ou � u/� as test functions in
the equations satisfied by u and Ou and subtracting, one obtains

Z
˝

A.x/D.Ou � u/D.Ou � u/ D
Z
˝

.F.x; Ou/ � F.x; u//.Ou � u/;

or equivalently

8̂
<
:̂

Z
˝

A.x/D.Ou � u/D.Ou � u/� �1
Z
˝

j.Ou � u/j2 D
D
Z
˝

..F.x; Ou/ � �1 Ou/� .F.x; u/� �1u//.Ou � u/:
(29)
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Assumption (25) then implies that the right-hand side of (29) is nonpositive,
which in turn implies, by the uniqueness of the first eigenfunction 	1 up to a
multiplicative constant, that

Ou � u D t	1 for some t 2 R: (30)

Exchanging if necessary Ou and u one can assume t > 0. Taking �C and �� as test
functions in (11) for every � 2 H1

0.˝/ proves that any solution u to problem (1) in
the sense of Definition 1 satisfies

F.x; u/ 2 L1loc.˝/; �div A.x/Du D F.x; u/ in D 0.˝/: (31)

From (31) applied to Ou and to u, and from (30) one deduces that

F.x; u.x/C t	1.x// D F.x; u.x//C t�1	1.x/ a.e. x 2 ˝;

for the parameter t defined above. Since the function F.x; s/� �1s is assumed to be
nondecreasing in s and since 	1.x/ > 0 for almost every x 2 ˝ , this implies that

F.x; u.x/C r	1.x// D F.x; u.x//C r�1	1.x/ a.e. x 2 ˝ 8r; 0 � r � t:

This proves (27) and (28) with

c.x/ D F.x; u.x//; s�.x/ D u.x/; sC.x/ D u.x/C t	1.x/I

note that c.x/ 2 L1loc.˝/ in view of (31). ut
Remark 5 The result of Theorem 4 also holds true in the case where the function
F.x; s/ is non singular at s D 0, is not assumed to be nonnegative and satisfies

jF.x; s/j � h.x/ a.e. x 2 ˝; 8s 2 R;

where h.x/ satisfies (4 ii). As far as we know, the result is new also in this case. ut

4.2 Uniqueness in the Case of a Strong Singularity

In [4] we proved the following uniqueness result.

Theorem 5 ([4]) Assume that the matrix A and the function F satisfy (2), (3)
and (6). Assume moreover that the function F.x; s/ is nonincreasing with respect
to s, i.e. that

F.x; s/ � F.x; t/ a:e: x 2 ˝; 8s;8t; 0 � t � s: (32)

Then the solution to problem (1) in the sense of Definition 4 is unique.
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Remark 6 If we compare the two uniqueness results Theorems 3 and 5, we note that
in Theorem 3, in the case of a mild singularity, we assumed that F.x; s/ is “almost
nonincreasing” in the s variable [see (24)] while in Theorem 5, in the case of a strong
singularity, we assumed the stronger condition that F.x; s/ is nonincreasing in the s
variable [see (32)]. ut

Now, we prove a Comparison Principle in the case of a strong singularity under
the weaker assumption that F.x; s/ is “� -almost nonincreasing” in s. Unfortunately
we are not able to prove a Comparison Principle which is completely general, since
we have to assume that .u1 � u2/C 2 L1.˝/ where u1 and u2 are the solutions we
want to compare. Moreover our proof deals only with the case where in (6 iii) the
function � is given by � .s/ D s�=.s� C 1/ with � > 1.

Proposition 2 (Comparison Principle) Assume that the matrix A satisfies (2).
Assume that the two functions F1.x; s/ and F2.x; s/ satisfy (3) and (6) with � .s/ D
s�=.s� C 1/, � > 1. Assume moreover that either F1.x; s/ or F2.x; s/ is “� -almost
nonincreasing”, i.e. satisfies

8<
:

there exists �; 0 � � < 4
� C 3

.� C 4/2
�1 such that

F.x; s/� �s � F.x; t/ � �t a:e: x 2 ˝; 8s;8t; 0 � t � s;
(33)

and that

F1.x; s/ � F2.x; s/ a.e. x 2 ˝; 8s � 0: (34)

Let u1 and u2 be any solutions in the sense of Definition 4 to problem (1)1 and (1)2,
where (1)1 and (1)2 are (1) with F.x; s/ replaced respectively by F1.x; s/ and
F2.x; s/. Assume also that

.u1 � u2/
C 2 L1.˝/: (35)

Then one has

u1.x/ � u2.x/ a.e. x 2 ˝:

Remark 7 Given F1.x; s/ and F2.x; s/ which satisfy (6), there is no loss of gen-
erality to assume that F1.x; s/ and F2.x; s/ satisfy (6) with the same h and � .

Indeed if 0 � Fi.x; s/ � hi.x/

�i.s/
, i D 1; 2, setting h.x/ D supfh1.x/; h2.x/g and

� .s/ D inff�1.s/; �2.s/g, one has
hi.x/

�i.s/
� h.x/

� .s/
. ut
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Proof In this proof we set

' D ..u1 � u2/
C/m; with m � 1C � C 1

2
:

First Step In this first step we will prove that

'2 D ..u1 � u2/
C/2m 2 V .˝/ for m � 1C � C 1

2
: (36)

Since u1; u2 belong to H1
loc.˝/ and m > 1, using (35), we have

..u1 � u2/
C/m 2 H1

loc.˝/\ L1.˝/; (37)

with

D...u1 � u2/
C/m/ D m..u1 � u2/

C/m�1D.u1 � u2/ in D 0.˝/:

Choosing k � k.u1�u2/CkL1.˝/, we have .u1�u2/C D Tk.u1�u2/C and therefore,
since u2 � 0,

( ˇ̌
D...u1 � u2/

C/m/
ˇ̌ D m.Tk.u1 � u2/

C/m�1jD.u1 � u2/j �
� m.Tk.u1//

m�1.jDu1j C jDu2j/:

Since m � 1 � �C1
2

and since .Tk.u1//
�C1
2 2 H1

0.˝/ \ L1.˝/ for any k > 0

[see (17)], we have .Tk.u1//m�1 2 H1
0.˝/\ L1.˝/. Therefore for i D 1; 2, and for

every j > 0, since

(
0 � .Tk.u1//

m�1jDuij D .Tk.u1//
m�1jDTj.ui/C DGj.ui/j �

� .Tk.u1//
m�1jDTj.uj/j C .Tk.u1//

m�1jDGj.ui/j;

we have, by (15 iv) and (15 iii), .Tk.u1//m�1jDuij 2 L2.˝/, i D 1; 2. Since
0 � ..u1 � u2/C/m � .Tk.u1//m 2 H1

0.˝/\ L1.˝/ it follows that

' D ..u1 � u2/
C/m 2 H1

0.˝/\ L1.˝/ for m � 1C � C 1

2
:

Finally since for 	 2 H1
0.˝/\ L1.˝/ one has

� div tA.x/D	2 D �2 div.	 tAD	/ D �2 tAD	D	 C 2	.�div tAD	/; (38)

it is not difficult to see that 	2 2 V .˝/ when 	 2 H1
0.˝/\ L1.˝/.

This completes the proof of (36).
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Second Step Since '2 D ..u1 � u2/C/2m � 0, we can take '2 as test function in
(16 ii) because of (36). We obtain

8<
:

h�div tA.x/D'2;Gk.ui/iH�1.˝/;H1
0 .˝/

C hh�div tA.x/D'2;Tk.ui/ii˝ D
D
Z
˝

Fi.x; ui/'
2; i D 1; 2:

In view of (14) and of (38) with 	 D ', this is nothing but

8<
:
2

Z
˝

' tAD'DGk.ui/ � 2

Z
˝

tAD'D'Tk.ui/C 2

Z
˝

tAD'D.'Tk.ui// D
D R

˝ Fi.x; ui/'
2; i D 1; 2;

which by an easy computation gives

2

Z
˝

' tAD'Dui D
Z
˝

Fi.x; ui/'
2; i D 1; 2:

Taking the difference between these two equations it follows that

2

Z
˝

' tA.x/D'D.u1 � u2/ D
Z
˝

.F1.x; u1/�
Z
˝

F2.x; u2//'
2: (39)

Since .u1 � u2/C 2 H1
loc.˝/\ L1.˝/ by (37), one has in L1loc.˝/

8̂
ˆ̂<
ˆ̂̂:

' tA.x/D'D.u1 � u2/ D
D m..u1 � u2/

C/m..u1 � u2/
C/m�1 tA.x/D.u1 � u2/

CD.u1 � u2/ D
D m

.m C 1
2
/2

sA.x/D
�
..u1 � u2/

C/.mC 1
2 /
�

D
�
..u1 � u2/

C/.mC 1
2 /
�
:

(40)

Subtracting the term �

Z
˝

..u1 � u2/
C/2mC1 in both sides of (39) and using (40), we

get

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

2m

.m C 1
2
/2

Z
˝

sA.x/D
�
..u1 � u2/

C/
2mC1
2

�
D
�
..u1 � u2/

C/
2mC1
2

�C
��

Z
˝

..u1 � u2/
C/2mC1 �

�
Z
˝

�
F1.x; u1/ � F2.x; u2/ � �.u1 � u2/

�
..u1 � u2/

C/2m:
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By the characterization of the first eigenvalue �1 of sA and setting

G1.x; s/ D F1.x; s/ � �s and G2.x; s/ D F2.x; s/ � �s;

we have

8̂
<̂
ˆ̂:

 
2m

.m C 1
2
/2
�1 � �

!Z
˝

..u1 � u2/
C/2mC1 �

�
Z
˝

.G1.x; u1/� G2.x; u2//..u1 � u2/
C/2m;

in which we choose m D 1C �C1
2

. This implies

8̂
<
:̂

�
4.� C 3/

.� C 4/2
�1 � �

�Z
˝

..u1 � u2/
C/2mC1 �

�
Z
˝

.G1.x; u1/ � G2.x; u2//..u1 � u2/
C/2m:

(41)

Third Step We want to show that

.G1.x; u1/� G2.x; u2//..u1 � u2/
C/2m � 0 a.e. in x 2 ˝: (42)

This will imply, by (41), that u1 � u2.
Recall that as a consequence of (38), 	2 2 V .˝/ when 	 2 H1

0.˝/ \ L1.˝/,
and therefore that  2 2 V .˝/ when  2 D.˝/. In view of (16 i), this implies
that Fi.x; ui/ 

2, i D 1; 2, belongs to L1.˝/, and therefore that Fi.x; ui/, i D 1; 2, is
finite almost everywhere. This fact excludes almost everywhere any indeterminacies
of the type 0 � 1 and of the type 1 � 1 in the computations below.

Consider first the case where G1.x; s/ is nonincreasing in s.
In view of (6 iii) and of (34) one has

��u2 � F1.x; u2/ � �u2 D G1.x; u2/ � G2.x; u2/;

which implies that G1.x; u2/ is finite almost everywhere. Moreover, using the fact
that G1.x; s/ is nonincreasing in s and then (34), one has

8̂
<̂
ˆ̂:
.G1.x; u1/� G2.x; u2//..u1 � u2/

C/2m �
� .G1.x; u2/� G2.x; u2//..u1 � u2/

C/2m � 0

on the set fx 2 ˝ W u1.x/ > u2.x/g;
(43)
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while on the other hand one has

(
.G1.x; u1/� G2.x; u2//..u1 � u2/

C/2m D 0

on the set fx 2 ˝ W u1.x/ � u2.x/g:
(44)

Collecting (43) and (44) proves (42) in this first case.
Consider now the case where G2.x; s/ is nonincreasing in s in this first case.
In view of (6 iii) and since G2.x; s/ is nonincreasing in s one has

��u1 � F2.x; u1/��u1DG2.x; u1/ � G2.x; u2/ on the set fx 2 ˝ W u1.x/ > u2.x/g;

which implies that G2.x; u1/ is finite almost everywhere. Moreover, using (34) and
then the fact that G2.x; s/ is nondecreasing in s, one has

8̂
<̂
ˆ̂:
.G1.x; u1/� G2.x; u2//..u1 � u2/

C/2m �
� .G2.x; u1/� G2.x; u2//..u1 � u2/

C/2m � 0

on the set fx 2 ˝ W u1.x/ > u2.x/g;
(45)

while (44) still holds true.
Collecting together (45) and (44) proves (42) in this second case.
The proof of Proposition 2 is complete. ut
Now we can state the following uniqueness result.

Theorem 6 Assume that the matrix A and the function F satisfy (2), (3) and (6)
with � .s/ D s�=.s� C 1/ for some � > 1. Assume moreover that the function F.x; s/
is “� -almost nonincreasing” with respect to s, i.e. satisfies assumption (33). Then
if u1 and u2 are two solutions to problem (1) in the sense of Definition 4 which are
such that .u1 � u2/ 2 L1.˝/, one has u1 D u2.

Proof Applying the Comparison Principle to the case where F1.x; s/ D F2.x; s/
with F.x; s/ satisfying (2), (3), (6) with � .s/ D s�=.s� C 1/ for some � > 1

immediately proves the uniqueness Theorem 6.

Remark 8 As in Proposition 2 and Theorem 6, we deal in this Remark with
functions F.x; s/ which satisfy (6) with � .s/ D s�=.s� C 1/ for some � > 1.

Note that in this setting, the definition (33) of a function “� -almost increasing”
depends on the value of � . This is not the case when 0 < � � 1, since in this case
the definition (24) of a function “almost increasing” does not depend on the value of
� . Note also that the limit as � > 1 tends to 1 of condition (33) is different of (and
stronger than) condition (24), since the limit .4=5/2 of the constant 4.�C3/=.�C4/2
which appears in (33) is strictly smaller than the constant 1 which appears in (24).

ut
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5 L1-Regularity of the Solutions

In this section we prove that any solution u to problem (1) in the sense of Definition 4
belongs to L1.˝/ (with an a priori estimate in this space) if the function h in (6 iii)
belongs to Lt.˝/, t > N

2
if N � 2, t D 1 if N D 1, and not only to Lr.˝/ .

The L1-regularity of the solutions obtained by approximation has been proved
in [2]. In [1] (see also [3]) the authors proved the L1-regularity for general solutions
(not necessarily obtained by approximation) in the case of a mild singularity.
Our result below is concerned with any solution in the sense of Definition 4 to
problem (1) for any function F satisfying the general growth condition (6), which
includes in particular mild singularities but also strong singularities with powerlike
growth conditions of the type (4 iii) for any � > 0 or even like the one of
example (7).

Specifically we prove the following regularity result.

Proposition 3 (L1.˝/ Regularity) Assume that the matrix A and the function F
satisfy (2), (3) and (6). Assume moreover that

h 2 Lt.˝/; t >
N

2
if N � 2; t D 1 if N D 1: (46)

Then every u solution to problem (1) in the sense of Definition 4 satisfies

u 2 L1.˝/; kukL1.˝/ � 1C 1

˛� .1/
C.j˝j;N; t/khkLt.˝/; (47)

for a constant C.j˝j;N; t/ which depends only on j˝j, N and t and is nondecreasing
in j˝j.
Proof We will first prove that

Z
˝

A.x/DGk.u/DGk.u/ D
Z
˝

F.x; u/Gk.u/ 8k > 0: (48)

Note that we can not use Gk.u/ as test function in (16 ii) since Gk.u/ does not
belong to V .˝/.

Following the proof of Proposition 5.1 in [4] we define for every k and n with
0 < k < n the function Sk;n as

Sk;n.s/ D

8̂
<̂
ˆ̂:
0 if 0 � s � k;

s � k if k � s � n;

n � k if n � s:
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We can prove as in the first two steps of the proof of Proposition 5.1 in [4] that
Sk;n.u/ 2 V .˝/ and that

Z
˝

A.x/DGk.u/DSk;n.u/ D
Z
˝

F.x; u/Sk;n.u/: (49)

We can also prove as in the third step of the proof of Proposition 5.1 in [4] that
Sk;n.u/ is bounded in H1

0.˝/ for k > 0 fixed independently of n > k. This allows us
to pass to the limit in n in the left-hand side of (49) up to a subsequence of n. On the
other hand we can apply Fatou’s Lemma to the right-hand side of (49) getting

Z
˝

F.x; u/Gk.u/ < C1:

Since 0 � Sk;n.s/ � Gk.s/ for n > k, Lebesgue’s dominated convergence allows us
order to pass to the limit in the right-hand side of (49) as n tends to infinity.

This proves (48).
Using now the coercivity (2) and the growth condition (6 iii) in (48) we have

8̂
<̂
ˆ̂:
˛

Z
˝

jDGk.u/j2 �
Z
˝

h.x/
Gk.u/

� .u/
D

D
Z
˝

h.x/
Gk.u/

� .u/
�

fu�kg

�
Z
˝

h.x/
Gk.u/

� .1/
�

fu�kg

8k � 1:

Define for k � 0

'.k/ D measfx 2 ˝ W u.x/ � kg:

When N � 3 (the proof is analogous when N D 2 and N D 1), using Sobolev’s
inequality and Hölder’s inequality with p defined by

1

t
C 1

2� C 1

p
D 1;

and processing as in [6] one obtains

'.h/ � 1

.h � k/2�

�
C2

S

˛� .1/
khkLt.˝/

�2�

'.k/
2�

p 8h; k; h > k � 1;

where 2� D 2N
N�2 and where the Sobolev’s constant CS is defined by

kvkL2� .˝/ � CSkDvk.L2.˝//N 8v 2 H1
0.˝/ when N � 3:
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Since 2�

p > 1; Lemma 4.1 of [6] implies that '.1Cd/ D 0; or in other terms that

u.x/ � 1C d a.e. x 2 ˝;

where

d D C2
S

˛� .1/
khkLt.˝/j˝j 2

�

p �1
2

2�

2��p ;

since '.1/ � j˝j. This immediately gives (47).

Remark 9 Observe that when F satisfies the growth condition (4), equality (48) is
trivial because Gk.u/ 2 H1

0.˝/ is an admissible test function in (11) since in this
case u 2 H1

0.˝/. ut
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Weighted Extrapolation Techniques for Finite
Difference Methods on Complex Domains
with Cartesian Meshes

A. Baeza, P. Mulet, and D. Zorío

Abstract The design of numerical boundary conditions in high order schemes is a
challenging problem that has been tackled in different ways depending on the nature
of the problem and the scheme used to solve it numerically. In this paper we propose
a technique to extrapolate the information from the computational domain to ghost
cells for schemes with structured Cartesian Meshes on complex domains. This
technique is based on the application of Lagrange interpolation with weighted filters
for the detection of discontinuities that permits a data dependent extrapolation,
with high order at smooth regions and essentially non oscillatory properties near
discontinuities. This paper is a sequel of Baeza et al. (J Sci Comput, 2015), where a
boundary extrapolation procedure with Boolean filters was developed. We show that
weighted extrapolation can tackle discontinuities more robustly than the procedure
introduced in Baeza et al. (J Sci Comput, 2015).

1 Introduction

Hyperbolic conservation laws have become the focus of many research lines in the
last decades. Very few analytic solutions are known for these equations, and thus
numerical methods to approximate them have been developed and improved along
the years.

The main motivation of this work is to extend some of the methods focused
on Cartesian meshes, whose use was relegated to rectangular domains and low
order boundary conditions, to problems with complex domains using high order
boundary conditions with extrapolation techniques at ghost cells capable to cope
with discontinuities in weak solutions that may approach the boundary.

Some authors have approached this problem from different perspectives, such
as in [9], where a technique based on second order Lagrange interpolation with
limiters is developed, [10, 11], with a high order approach but problem dependent
and relatively high computational cost. In [1], an extrapolation technique based
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on Boolean filters for the detection of discontinuities is developed, but with the
drawback of having a tuning parameter and lack of robustness for some demanding
problems (simulation failure for a certain threshold values range).

Our approach can be understood as an extension of [9] and [1] in the sense that
it is based on Lagrange extrapolation with weights akin to the WENO procedure,
but without imposing limitations on the order of the method or the number of ghost
cells and agnostic about the equation.

The organization of the paper is the following: In Sect. 2 we present the equations
and the numerical methods that we consider in this paper. The details of the
procedure for meshing complex domains with Cartesian meshes are explained in
Sect. 3. In Sect. 4 we expound how we perform extrapolations with the method for
the detection of singularities. Some numerical results that are obtained with this
methodology are presented in Sect. 5, with some simple tests in 1D to illustrate the
correct behavior of the proposed techniques and some more complex ones in 2D.
Finally, some conclusions are drawn in Sect. 6.

2 Numerical Schemes

The equations that will be considered throughout this paper are hyperbolic systems
of m two-dimensional conservation laws

ut C f .u/x C g.u/y D 0; u D u.x; y; t/; (1)

defined on an open and bounded spatial domain ˝ � R
2, with Lipschitz boundary

@˝ given by a finite union of piece-wise smooth curves, u W ˝ � R
C ! R

m, and
fluxes f ; g W Rm ! R

m. These equations are supplemented with an initial condition,
u.x; y; 0/ D u0.x; y/, u0 W ˝ ! R

m, and different boundary conditions that may
vary depending on the problem.

Although the techniques that will be expounded in this paper are applicable to
other numerical schemes, we use here Shu-Osher’s finite difference conservative
methods [8] with a WENO5 (Weighted Essentially Non-Oscillatory) [5] spatial
reconstruction, Donat-Marquina’s flux-splitting [4] and the RK3-TVD ODE solver
[7] in a method of lines fashion that we briefly describe here for the sake of
completeness. This combination of techniques was proposed in [6].

3 Meshing Procedure

We define our mesh starting from a reference vertical line, x D x and a horizontal
one y D y. Let hx > 0 and hy > 0 be the horizontal and vertical spacings of the
mesh, so that the vertical lines in the mesh are determined by: x D xr WD x C rhx,
r 2 Z and the horizontal ones by y D ys WD y C shy, s 2 Z. The cell with center
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.xr; ys/ is defined by:

Œxr � hx

2
; xr C hx

2
� � Œys � hy

2
; ys C hy

2
�:

The computational domain is then given by

D WD f.xr; ys/ W .xr; ys/ 2 ˝; r; s 2 Zg D .x C hxZ/ � .y C hyZ/\˝:

Notice that D is finite since ˝ is bounded.

3.1 Ghost Cells

We recall that WENO schemes of order 2k � 1 use an stencil (consecutive indexes)
of 2k points, therefore k additional cells are needed at both sides of each horizontal
and vertical mesh line in order to perform a time step. These additional cells are
usually named ghost cells and, in terms of their centers, are given by:

GC WD GC x [ GC y;

where

GC x WD f.xr; ys/ W 0 < d .xr; ˘x .D \ .R � fysg/// � khx; r; s 2 Zg ;
GC y WD ˚

.xr; ys/ W 0 < d
�
ys; ˘y .D \ .fxrg � R//

� � khy; r; s 2 Z
�
;

where˘x and ˘y denote the projections on the respective coordinates and,

d.a;B/ WD inffjb � aj W b 2 Bg;

for given a 2 R and B � R. Notice that d.a;;/ D C1, since, by convention,
inf ; D C1.

3.2 Normal Lines

There are many ways in which a numerical boundary extrapolation can be done, but
not all of them are suitable for the stability of the method or provide accurate results.
The motivation of the choice of the nodal disposition that we will next introduce has
been explained in [1].

We focus now on the two-dimensional setting and boundaries with prescribed
Dirichlet conditions, e.g., reflective boundary conditions for the Euler equations. In
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this situation, it seems reasonable that the extrapolation at a certain ghost cell P be
based on the prescribed value at the nearest boundary point. It can be proven that a
point N0 D N.P/ 2 @˝ satisfying

kP � N0k2 D minfkP � Bk2 W B 2 @˝g

also satisfies that the line determined by P and N0 is normal to the curve @˝ at N0,
if @˝ is differentiable at N0. Uniqueness of N0 holds whenever P is close enough to
the boundary, so we will henceforth denote N.P/ D N0.

We refer to [1] for further details.

3.2.1 Choice of Nodes on Normal Lines

If we wish to formally preserve a certain precision in the resulting scheme, it
is necessary to extrapolate the information from the interior of the domain in
an adequate manner. Therefore, if the basic numerical scheme has order r it is
reasonable to use extrapolation of this order at least. For the sake of clarity, we
will not distinguish between interpolation or extrapolation when these take place at
the interior of the domain.

We proceed in a similar fashion as in [9] and [1]. Let P 2 GC and consider the
corresponding point in @˝ at minimal distance, N.P/.

At first place, one needs to obtain data from the information in D at a set of
points N .P/ D fN1; : : : ;NRg, with R � r, on the line determined by the points
P and N0 D N.P/. By a CFL stability motivation, we will do the selection with a
spacing between them of at least the distance between P and N.P/. The justification
of this fact was done in [1]. We will choose the nodes depending on the slope of the
normal line, so that the use of interior information is maximized. See [1] for further
details.

We denote by v D .v1; v2/ the vector determined by P and N.P/, and Sq D
fNq;1; : : : ;Nq;Rg the closest set of points to Nq from the computational domain
sharing the same coordinate than Nq, whose horizontal or vertical 1D disposition
depends on the angle of the normal line as explained in [1].

Figure 1 shows graphical examples of the boundary extrapolation setup for a
certain ghost cell P.

Since we are now concerned on performing a weighted extrapolation and the
computation of smoothness indicators to build the weights can be very computa-
tionally expensive if the data is not equally spaced, as it will generally happen on
Dirichlet boundaries, we perform an additional step before extrapolating the value at
the ghost cell in order to generate a new stencil such that, together with the boundary
node, the global stencil is formed by equally spaced points.

Therefore, if Dirichlet conditions are prescribed, we use the data obtained in
Nq, 1 � q � R to perform 1D interpolations at the points Pq, 1 � q � R � 1,
where Pq D .Px

0 C qhx;P
y
0 C q v2

v1
hy/, 0 � q � R � 1 if jv1j � jv2j or Pq D
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Fig. 1 Examples of choice of stencil for Neumann boundary conditions: (a) vertical arrangement
of nodes in Sq; (b) horizontal arrangement of nodes in Sq

Fig. 2 Examples of choice of stencil for Dirichlet boundary conditions: (a) vertical arrangement
of nodes in Sq; (b) horizontal arrangement of nodes in Sq

.Px
0 C q v1

v2
hx;P

y
0 C qhy/, 0 � q � R � 1, otherwise, and use the data from the

stencil S .P/ D fP0;P1; : : : ;PR�1g to extrapolate it at the ghost cell P. In case
of outflow conditions, we extrapolate directly the data from the stencil S .P/ D
fN1;N2; : : : ;NRg. See Fig. 2 for graphical examples.

The above procedure for the selection of the interpolation nodes at the normal
lines and their corresponding sets Sq is performed only once at the beginning of
the simulation as long as the boundary does not change. With an adequate use of
this data structure, one can reconstruct data at order r (in case of smoothness) at the
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points N1; : : : ;NR on the normal line. Once these values are obtained, they are used
to finally extrapolate to the given ghost cell P.

The full extrapolation procedure is thus done in three stages in general: in the
first one data located at the normal lines is computed from the numerical solution
by (horizontal or vertical) 1D interpolation; in the second one, only performed on
Dirichlet boundaries, the nodes obtained in the first step are now used to interpolate
at new points at the normal line so that the information including the boundary
condition is equally spaced; in the last one, values for the ghost cells are obtained by
1D extrapolation along the normal line from the data in the normal line obtained in
the first stage (in case of outflow boundary) or the second stage (in case of Dirichlet
boundary). Note that all the above interpolations and extrapolations are performed
using equally spaced stencils, so that smoothness indicators can be computed easily.

To perform these two one-dimensional data approximations, it should be taken
into account that the selected stencils can include regions with singularities. We will
see in the next section how to proceed in this case.

4 Extrapolation

As stated in [1], special care must be taken when performing extrapolation at the
boundary. It was also seen there that the classical ENO and WENO methods are not
suitable for the task of extrapolation and developed a new technique that overcame
the above issue. Such technique was based on a Boolean criterion consisting on the
computation of a threshold based on the analysis of regularity in the extrapolation
stencil, taking into account that a shock can be arbitrarily close to the boundary.

We now present a new technique, which can be considered as an evolution
of the thresholding method, based on the computation of adimensional and scale
independent weights.

4.1 Weighted Extrapolation

We define inductively the following set of indexes:

J0 D f j0g; and X0 D fxjg j2J0 D fx j0g

where

j0 D argmin
j2J

jxj � x�j:

That is, X0 is the one point set including the closest node to the extrapolation point.
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Assume we have defined Jk�1, then Jk is defined by

Jk D Jk�1 [ f jkg and Xk D fxjg j2Jk

where

x jk D argmin
j2JnJk�1

jxj � x�j:

That is, we add the closest node to x� from the remaining nodes to choose as we
increase k. Xk and Ik can be defined for 0 � k � r.

By construction, it is clear that such sets can be written as a sequence of nodes
with successive indexes, i.e., a stencil:

Xk D fxikCjgk
jD0

for some 0 � ik � r � k, 0 � k � r.
Now, for each k, 0 � k � r, we define pk the interpolating polynomial of degree

at most k such that pk.xikCj/ D uikCj, 8j, 0 � j � k.
And given f!kgr

kD1 a set of weights, 0 � !k � 1, we define the following
recurrence:

u.0/� D p0.x�/ D ui0 ;

u.k/� D .1 � !k/u
.k�1/
� C !kpk.x�/; 1 � k � r:

We define the final result of the weighted extrapolation as

u� WD u.r/� ;

which will be taken as an approximation for the value u.x�/.
The chosen weights should verify that !k � 0 if the stencil Jk crosses a

discontinuity and !k � 1 if the data from the stencil is smooth. We will show
below a weight construction that verifies that property as well as the capability of
preserving the accuracy order of the extrapolation in case of smoothness.

From now on, we will assume that the nodes X are equally spaced and define
h D xiC1 � xi.

For each 1 � k � r, we define a slight modification of the Jiang-Shu smoothness
indicator associated to the stencil Jk as the following value:

Ik D 1

r

kX
`D1

Z xr

x0

h2`�1p.`/k .x/
2dx C ";

where " > 0 is a small positive number (in all our experiments, we take " D 10�100).
Now, given 1 � r0 � E

� r

2

�
, where E.x/ D maxZ \ .�1; x�, we will seek for

a smoothness zone along the stencils of r0 C 1 points as a reference.
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This procedure will work if there is only one discontinuity in the stencil, and

the restriction r0 � E
� r

2

�
is set in order to avoid a stencil overlapping, since

a discontinuity might eventually be in the overlapping zone and thus none of the
stencils would include smooth data.

4.1.1 Original Weights (OW)

We define

ISk D min
0�j�r�k

1

r

r0X
`D1

Z xr

x0

h2`�1q.`/k;j .x/
2dx C "; 1 � k � r0;

where qk;j is the polynomial of degree at most k such that qk;j.x jCi/ D u jCi for
0 � i � k, 0 � j � r � k.

Now, the weights are defined as follows

!k D 1 �
�
1 �

�
ISk

Ik

�s1�s2

; 1 � k � r0;

!k D min

	
1 �

�
1 �

�
ISr0

Ik

�s1�s2

; 1



; r0 C 1 � k � r:

(2)

The parameter s1 enforces the convergence to 0 when the stencil is not smooth,
while the parameter s2 enforces the convergence to 1 when it is smooth.

It can be shown that for a smooth stencil, if there exists some 1 � k0 � r0 such
that ju.k0/j >> 0 around the stencil, then

!k D 1 � O.hs2/

and if the stencil crosses a discontinuity, then

!k D O.h2s1/:

Taking into account these considerations, and assuming the above hypothesis, it
can be proven that if s2 � 1 then

u� D u.x�/C O.hrC1/:

4.1.2 Unique Weight Extrapolation (UW)

Since we seek for robustness combined with efficiency, the above extrapolation
method can be replaced in practice by a simpler one, based in the computation of
only one weight, that we will now explain in detail.
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Such simplification is performed in the following sense: Instead of gradually
increasing the degree of the interpolating polynomials, we will just average the
constant extrapolation (k D 0) and maximum degree extrapolation (k D r), that
is, we will consider

u� D .1 � !/p0.x�/C !pr.x�/ D .1 � !/ui0 C !pr.x�/;

where

! D min

	
1 �

�
1 �

�
ISr0

Ir

�s1�s2

; 1



:

In order to lower even more the computational cost and ensure that 0 � ! � 1

without having to bound it artifically by 1 when r0 > 1, we can replace the definition
of Ir, which is a smoothness indicator of the whole rC1 points stencil, by the average
of all smoothness indicators of the substencils of r0 C 1 points, i.e.:

I�
r WD 1

r � r0 C 1

r�r0X
jD0

Ir0;j;

where

Ir0;j D 1

r0

r0X
`D1

Z xr0Cj

xj

h2`�1q.`/r0;j
.x/2dx C ": (3)

Then one can define

! D 1 �
�
1 �

�
ISr0

I�
r

�s1�s2

;

which in this case it clearly verifies 0 � ! � 1.
After a similar analysis as performed for OW, under the hypothesis 9k0 2 N,

1 � k0 � r0 such that ju.k0/j >> 0 around the stencil, then

u� D u.x�/C O.hr0C1/;

where r0 D s2.r0 � k0 C 1/.
We will use in our experiments the above extrapolation technique taking R D 10

(a set of 10 points will be used to look for smooth zones), r D 4 (stencils of 5 points
for extrapolation), r0 D s1 D 2, s2 D 4 in order to achieve fifth order convergence
provided that the two first derivatives do not annihilate simultaneously.

Unlike OW, this extrapolation method does not provide the optimal order in
presence of a discontinuity, since the convergence order decays to 1 regardless of
the position of the discontinuity. However, this is not a major issue and in practice
the results are good.
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In this sense, we have to take into account as well that when a discontinuity
passes through the boundary, there will be a moment when only one cell will
be available, leading into an essentially constant extrapolation, regardless of the
method used, which yields again a first order accurate approximation.

5 Numerical Experiments

5.1 One-Dimensional Experiments

In this section we present some one-dimensional numerical experiments where both
the accuracy of the extrapolation method for smooth solutions and its behavior in
presence of discontinuities will be tested and analyzed for the UW extrapolation
method.

This approach will illustrate that the accuracy order will still be the expected one
in the smooth case and that the extrapolation method shows good performance in
the non-smooth case.

5.1.1 Linear Advection

The problem statement for this test is the same as in [10] and [1]. We consider the
linear advection equation

ut C ux D 0; ˝ WD .�1; 1/;

with initial condition given by u.x; 0/ D 0:25C0:5 sin.�x/ and boundary condition
u.�1; t/ D 0:25�0:5 sin.�.1Ct//, t � 0. We apply a numerical outflow condition at
x D 1, where Dirichlet boundary conditions cannot be imposed due to the direction
of propagation of the information.

It is immediately checked that the unique (smooth) solution to this problem is

u.x; t/ D 0:25C 0:5 sin.�.x � t//:

In order to numerically test the order of accuracy we perform tests at resolutions
given by n D 20 � 2j points, j D 1; : : : ; 5. The cell centers are xj WD �1C . j C 1

2
/hx,

with hx WD 2
n . We recall that the set of all cell centers which are interior to ˝ is

D WD ˚
xj W j 2 f0; : : : ; n � 1g� :

Since we use WENO5 reconstruction, we require 3 extra cells at each side of the
boundary, where extrapolation from the interior will take place.
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• x D �1: xj, �3 � j � �1.
• x D 1: xj, n � j � n C 2.

Given that the ODE solver is third order accurate, in order to attain fifth order

accuracy in the overall scheme, we need to select a time step given by �t D �
2
n

� 5
3 ,

with corresponding Courant numbers�t=hx D .2=n/2=3 � 1=202=3.
Since the left boundary conditions are time dependent, we also have to take into

account that a specific approximation is needed in each of the 3 stages in each RK3-
TVD time step. In general, if the inflow condition is given by some function g.t/
which is at least twice continuously differentiable, we have to use the following
values at the boundary to preserve third order accuracy [3]:

• First stage: g.tk/.
• Second stage: g.tk/C�tg0.tk/.
• Third stage: g.tk/C 1

2
�tg0.tk/C 1

4
�t2g00.tk/.

Taking into account all the previous considerations, we execute the simulation until
t D 1 for all the previously specified resolutions and we study the errors in the 1
and 1 norms, together with the order deduced from them. We consider different
modalities of boundary extrapolation:

• By thresholding, taking ı D ı0 D 0:99 (Table 1).
• Weighted, using the unique weight modality (Table 2).

From the Tables 1 and 2, it can be appreciated that the behaviour of the weighted
extrapolation method is better than the thresholding technique for lower resolutions,
while it is essentially as good as the thresholding method for higher resolutions.

Table 1 Extrapolation by thresholding, ı D 0:99

n Error k � k1 Order k � k1 Error k � k
1

Order k � k
1

40 5.45E�5 – 3.81E�4 –

80 3.06E�6 4.15 3.65E�5 3.38

160 1.34E�8 7.83 2.10E�7 7.44

320 2.64E�10 5.67 6.95E�10 8.93

640 8.26E�12 5.00 2.13E�11 5.03

Table 2 Weighted extrapolation

n Error k � k1 Order k � k1 Error k � k
1

Order k � k
1

40 9.99E�6 – 2.44E�5 –

80 2.79E�7 5.16 7.35E�7 5.05

160 8.51E�9 5.03 2.31E�8 4.99

320 2.65E�10 5.00 6.95E�10 5.06

640 8.26E�12 5.00 2.13E�11 5.03
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5.1.2 Linear Advection, Discontinuous Solution

We illustrate with this experiment the behavior of the schemes when discontinuities
are present and the entailed improvement with respect to using Lagrange extrapola-
tion with no filters. We consider the same meshing and data as in Sect. 5.1.1 for the
previous problem, but now the boundary condition is:

u.�1; t/ D g.t/ D
	
0:25 if t � 1

�1 if t > 1

With this definition, the unique (weak) solution to this problem has a moving
discontinuity and is given by:

u.x; t/ D
8<
:

�1 if x < t � 2
0:25 if t � 2 � x � t � 1

0:25C 0:5 sin.�.x � t// if x � t � 1

In Fig. 3 we check the graphical results that correspond to the simulation until t D
1:5, first using Lagrange extrapolation with no filters, afterwards with a filter with
ı D 0:75 and finally weighted extrapolation. As it can be seen in Fig. 3, Lagrange
extrapolation without filters leads to spurious oscillations around the left side of the
discontinuity, while thresholding and weighted extrapolation remove them.

5.2 Two-Dimensional Experiments

The equations that will be considered in this section are the two-dimensional Euler
equations for inviscid gas dynamics

ut C f .u/x C g.u/y D 0; u D u.x; y; t/;

u D

2
664
�

�vx

�vy

E

3
775 ; f .u/ D

2
664

�vx

p C �.vx/2

�vxvy

vx.E C p/

3
775 ; g.u/ D

2
664

�vy

�vxvy

p C �.vy/2

vy.E C p/

3
775 :

(4)

In these equations, � is the density, .vx; vy/ is the velocity and E is the specific
energy of the system. The variable p stands for the pressure and is given by the
equation of state:

p D .� � 1/

�
E � 1

2
�..vx/2 C .vy/2/

�
;

where � is the adiabatic constant, that will be taken as 1:4 in all the experiments.
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Fig. 3 Comparison of different extrapolations for the linear advection test with discontinuous
solution. (a) Lagrange extrapolation; (b) Lagrange extrapolation (zoom); (c) extrapolation with
thresholds; (d) extrapolation with thresholds (zoom); (e) weighted extrapolation; (f) weighted
extrapolation (zoom)

5.2.1 Double Mach Reflection

This experiment uses the Euler equations to model a vertical right-going Mach 10
shock colliding with an equilateral triangle. By symmetry, this is equivalent to a
collision with a ramp with a slope of 30 degrees with respect to the horizontal line,
which is how we will model the simulation to halve the computational cost.



256 A. Baeza et al.

Fig. 4 Schlieren plots of the density field at t D 0:2. (a) Density field: thresholding, ı D 0:9; (b)
density field: thresholding, ı D 0:5; (c) density field: thresholding, ı D 0:35; (d) density field:
weighted extrapolation

The initial conditions are the following:

u D .�; vx; vy;E/ D .8:0; 8:25; 0; 563:5/ if x � Ox
u D .�; vx; vy;E/ D .1:4; 0; 0; 2:5/ if x > Ox

where Ox is the point where the ramp starts.
We perform the simulation until t D 0:2. The experiment consists in different

simulations with different threshold values and the weighted extrapolation. In Fig. 4
we present a Schlieren plot of the result for the density � at a resolution of hx D
hy D

p
3
2

1
640

, both for thresholding and weighted extrapolation.
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Fig. 5 Density field: t D 0:5

The results show that the weighted extrapolation proposed in this paper produces
a result with a similar or even better quality than the ones obtained by the thresh-
olding technique without having to adjust additional tuning parameters. Moreover,
for simulations attempted to be performed with threshold values lower than 0.2,
the numerical simulation failed due to the existence of unphysical quantities for the
pressure, produced by oscillations near a shock, which illustrates that the weighted
extrapolation procedure is more robust than the thresholding technique.

5.2.2 Interaction of a Shock with Multiple Circular Obstacles

We repeat the previous experiment by adding multiple circles in the domain as
shown in Fig. 5. This test can also be found in [2]. In this case, we run the simulation
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until t D 0:5 and a mesh size of hx D hy D 1
512

on the whole domain, using
the weighted extrapolation technique. As in the previous experiment, we present a
Schlieren plot for the last time step in Fig. 5. These results are again consistent with
those obtained in [2].

It must be remarked that in this case, thresholding extrapolation fails for
threshold lower than about 0.99, which illustrates again that weighted extrapolation
is more robust for more demanding problems like this one.

6 Conclusions

In this paper we have compared a new weighted extrapolation for boundary
conditions with a thresholding technique. We have seen both theoretically and
through numerical experiments that weighted extrapolation entails an improvement
that overcomes some of the drawbacks inherent to the thresholding method.

Moreover, the weighted extrapolation technique does not need a tuning parameter
(except the exponents for the weights convergence speed) and permits a successful
detection for discontinuities, in which case it reduces to a low order method in order
to avoid the appearance of spurious oscillations. Numerical results have reported
as well that it is more robust than thresholding extrapolation in some complex and
demanding problems.

Acknowledgements This research was partially supported by Spanish MINECO grants
MTM2011-22741 and MTM2014-54388.
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High Order Nyström Methods for Transmission
Problems for Helmholtz Equation

Víctor Domínguez and Catalin Turc

Abstract We present super-algebraic compatible Nyström discretizations for the
four Helmholtz boundary operators of Calderón’s calculus on smooth closed curves
in 2D. These discretizations are based on appropriate splitting of the kernels
combined with very accurate product-quadrature rules for the different singularities
that such kernels present. A Fourier based analysis shows that the four discrete
operators converge to the continuous ones in appropriate Sobolev norms. This
proves that Nyström discretizations of many popular integral equation formulations
for Helmholtz equations are stable and convergent. The convergence is actually
super-algebraic for smooth solutions.

1 Introduction

The design of robust discretizations of the boundary integral equations in 2D
has been an active research topic in the last decades. The analysis of Galerkin
discretizations of boundary integral equations is by now well understood in the case
of smooth boundaries and boundary data. Indeed, their stability can be established
based on the coercivity of the principal parts of the boundary integral operators
featured in the integral formulations (a first result along these lines can be traced
back to [12]), and compact perturbation analysis arguments. On the other hand,
although Nyström/collocation methods are simpler to implement, their analysis
is somewhat more complicated. Given that for 2D problems boundary integral
operators can be thought of as periodic pseudo-differential operators, the analysis
of discretization schemes for boundary integral equations relies on Fourier analysis.
Galerkin as well as Nyström/collocation methods for periodic integral equations
have been fully analyzed for many periodic integral equations and these techniques
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have been also used to derive new methods as qualocation schemes, cf. [13] and
references therein.

Boundary integral formulations of Helmholtz equations in a certain domain rely
on single and double layer acoustic potentials and their Dirichlet and Neumann
traces on the boundary of that domain. These traces lead to the natural definition of
four boundary integral operators which are referred to as the Helmholtz boundary
integral operators of Calderon’s calculus. In this paper we focus on Nyström
methods based on suitable quadrature rules for the discretization of the four
Helmholtz boundary integral operators that feature in Calderon’s calculus. These
provide a means of defining fully discrete versions of these operators which can
be used easily to discretize complicate formulations involving rather complex
compositions of different boundary operators. Moreover, these discretizations can
be easily used in conjunction with iterative solvers based on Krylov subspace
methods.

The aim of this paper is not to propose new discretizations of the Helmholtz
boundary integral operators. Actually, most of those considered here can be found
and have been thoroughly analyzed in the literature, mostly by Kress (cf [5, 6]
and references therein). Our objective is therefore different: we want to propose
compatible discretizations of the four Helmholtz boundary integral operators that
lead to super-algebraic schemes for most of the boundary integral formulations of
the Helmholtz equation in 2D.

Helmholtz transmission problems for smooth interfaces provide a sufficiently
complex environment for testing our discretizations as they feature all of the four
Helmholtz boundary integral operators in Calderon’s calculus. Discretizations of
integral formulations of other types of boundary conditions can be readily produced
and analyzed with the methods we present in this paper.

Some of the formulations considered in this paper are direct, i.e., the unknowns
are physical quantities of the problem (typically the trace and the normal derivative
of the solution), others are indirect. Some of the indirect formulations considered in
this text could be more economical from a computational point of view. Besides,
some more sophisticated integral formulations lead to matrices with clustered
eigenvalues, which usually ensures a faster convergence of Krylov methods such as
GMRES. Demanding better spectral properties requires working with more complex
formulations whose discretization could seem challenging at first sight. We will
show that the discrete boundary layer operators can be used as black boxes in such
a way that the discretization of any integral formulation, however complicated, is
in fact straightforward. Moreover, for smooth data, we prove that the numerical
solutions converge super-algebraically, that is, faster than any negative power of N,
the number of degrees of freedom.

The paper is structured as follows: in Sect. 2 we discuss briefly the Helmholtz
transmission problem and introduce the boundary layer potentials and operators
for the Helmholtz equation. In Sect. 3 we reformulate these mappings as integral
operators acting on spaces of 2��periodic functions via a parameterization of
the interface. We present also their numerical discretizations and analyze their
convergence. We conclude by showing in Sect. 4 how these compatible discretiza-
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tions can be applied to solve numerically several boundary integral formulations
of the original Helmholtz transmission problem. Well-posedness and convergence
estimates are derived for the integral equations considered in this paper. Some
numerical experiments are presented in the final Sect. 6.

2 Helmholtz Transmission Problems and Boundary Integral
Operators

We start introducing the domain of the transmission problem (see Fig. 1). Let D� be
a compact domain with smooth boundary � which for simplicity we will assume
to be simply connected. Denote also DC WD R

2 n D�. We will write � for the trace
operator and @n for the unit normal derivative on � pointing toward DC. Given two
wavenumbers kC; k� that are complex numbers with non-negative imaginary part,
we consider the following Helmholtz transmission problem:

�uC C k2CuCD0 in DC
�u� C k2�u�D0 in D�
�uC� �u�D�uinc; @nuC��@nu� D �@nuinc

@ru
C�ikCuCDo.jrj�1=2/:

(1)

Here @r is the partial derivative on the radial direction and uinc is an incident wave
that is a solution of the Helmholtz problem for kC on a neighborhood of D�.
We assume that the transmission problem above together with its adjoint, that is
the transmission problem defined by taking k˙ in D�, are uniquely solvable. For
instance, if k˙ are real and � > 0 these hypotheses are known to be satisfied.
We refer to [4] for more comprehensive sets of values of k˙ and � fulfilling these
hypotheses.

Fig. 1 Sketch of the domain
of the transmission problem D+

D−

Γ
uinc
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Let

˚k.x/ WD i

4
H.1/
0 .kjxj/

(H.1/
0 is the Hankel function of first kind and order 0) be the outgoing fundamental

solution of the Helmholtz equation in R
2. The single and double layer operators are

defined as follows

SLk' WD
Z
�

˚k. � � y/'.y/d
.y/; DLkg WD
Z
�

@˚k. � � y/
@n.y/

g.y/d
.y/: (2)

We stress that for any density, the layer operators define solutions of the Helmholtz
equation in R

2 n� which satisfy, in addition, the radiation condition at infinity (last
condition in (1)). Moreover, the third Green formula states

u˙ D � SLk
˙

@nu˙ ˙ DLk
˙

�u˙: (3)

Let us denote by �˙; @ṅ the trace and respectively the normal derivative taken from
D˙. We have then the jump properties

�˙SLk D Vk @ṅ SLk D � 1
2
I C K>

k

�˙DLk D ˙ 1
2
I C K>

k @ṅ DLk D Hk

(4)

where I denotes the identity, Vk is the single layer operator, Kk and K>
k are the double

layer and adjoint double layer operator, and Hk is the hypersingular operator.
We can now proceed as follows: (a) we can use (4) and the transmission

conditions stated in (1) to compute the Cauchy data of the solution .u˙; @ṅ u/ and
reconstruct these functions using (3); (b) we can try to write the u˙ in terms of some
unknown densities associated with the potentials (2) and solve for these densities
via equations obtained from (4). Approach (a) leads to the so-called direct methods
whereas schemes obtained from (b) are known as indirect methods.

3 Associated Periodic Integral Operators
and their Approximation

3.1 Periodic Integral Operators

Let us consider a smooth regular 2��periodic parameterization of the curve �
given by x W R ! � . First we set the transmission data

h.s/ WD ���� uinc ı x
�
.s/; �.s/ WD ��@nuinc ı x

�
.s/ jx0.s/j: (5)
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We follow the same rule to reformulate layer potentials and boundary integral
operators as 2��periodic integral operators in the following sense: for SLk and the
associated boundary integral operators Vk and K>

k , the norm of the parameterization
jx0.t/j (t is the integration variable) is incorporated in the density function ' in (2),
whereas for DLk, and the corresponding boundary integral operators Kk and Hk this
term is incorporated in the kernels of these operators. In addition, the operators K>

k
and Hk are multiplied by jx.s/j, where s will be used henceforth as the variable
corresponding to the target point in all of the integral operators considered in this
text. With these conventions, we write the single, double and adjoint double layer
operator as follows

ŒVk'�.s/ D
Z 2�

0

A.s; t/ log sin2 s�t
2
'.t/dt C

Z 2�

0

B.s; t/'.t/dt (6)

ŒKkg�.s/ D
Z 2�

0

C.s; t/ sin2 s�t
2

log sin2 s�t
2

g.t/dt C
Z 2�

0

D.s; t/g.t/dt (7)

ŒK>
k '�.s/ D

Z 2�

0

C.t; s/ sin2 t�s
2

log sin2 t�s
2
'.t/dt C

Z 2�

0

D.t; s/'.t/dt (8)

with

A.s; t/ D � 1

4�
J0.kjx.s/ � x.t/j/

C.s; t/ D �k.x.s/ � x.t// � .x0
2.t/;�x0

1.t//

jx.s/� x.t/j2
J1.kjx.s/� x.t/j/

jx.s/� x.t/j
jx.s/� x.t/j2

sin2 s�t
2

B.s; t/ D i

4
H1
0.kjx.s/� x.t/j/� A.s; t/ log sin2 s�t

2

D.s; t/ D ik

4
H1
1.kjx.s/ � x.t/j/ .x.s/� x.t// � .x0

2.t/;�x0
1.t//

jx.s/� x.t/j
�C.s; t/ sin2 s�t

2
log sin2 s�t

2
:

(Observe that Kk and K>
k are transpose to each other). Very well known properties

of the Bessel functions imply that the functions A;B;C;D are smooth functions if
so is the map x, as we have already assumed above.

Regarding the parameterized version of the hypersingular operator, the
integration-by-parts like formula due to Maue [10] (see also [11]) allows to write
Hk as the integro-differential operator

ŒHkg� .s/ D ŒDVkD g� .s/ � ik2
�
Vk..x0.s/ � x0.�//g .s/: (9)

Here, D' WD ' 0 is simply the differentiation operator.
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3.2 Nyström Discretization

The structure of the kernels introduced in the previous section leads to tackle, apart
from the derivative operator, the evaluation of integrals as

Œ�'� .s/ WD
Z 2�

0

 .s � t/a.s; t/'.t/ dt; (10)

where a,  are 2��periodic, with a being smooth and  , in principle, singular at
0. The operators defined in Eq. (10) are 2��periodic pseudo-differential operators
(cf. [13, Chap. 7]).

3.2.1 Trigonometric Interpolation

Let us denote

TN WD span hen W �N < n � Ni; with en.t/ WD exp.int/; .n 2 Z/

the space of trigonometric polynomials of degree N. On TN we consider the
trigonometric interpolation problem on the uniform grid f j�=Ng:

TN 3 PNg s.t. .PNg/. j�
N / D g. j�

N /; j D 0; : : : ; 2N � 1:

The solution of the interpolating problem is given by

NX
nD�NC1

"
1

2N

NX
mD�NC1

g. j�
N /en.� im�

N /

#
en.int/ (11)

which can be computed in O.n log n/ operations using FFT.

3.2.2 Discrete Operators

We now introduce

Œ�N'� .s/ WD
Z 2�

0

 .s � t/PN Œa.s; �/'� .t/ dt � Œ�'� .s/ (12)

as discrete approximations of (10). Clearly �N' depends only on the pointwise
values of the density at the grid points, which justifies the use of the term “discrete”
when referring to these operators.
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Obviously, we are just working with a product-integration rule and the applica-
bility of such procedure relies on being able to compute

O .n/ WD 1

2�

Z 2�

0

 .t/e�n.t/ dt; n 2 Z

i.e., the Fourier coefficients of the weight function  . Fortunately, for the weight
functions featured above, these Fourier coefficients can be computed explicitly.
Indeed, for  1 WD log sin2 t

2
we have

O 1.n/ D 1
2�

Z 2�

0

log.sin2 t
2
/ e�n.t/dt D 1

2�

Z 2�

0

log.sin2 t
2
/ cos.nt/dt

D
(

�2 log 4; n D 0;

�2jnj�1; otherwise;

whereas for  2 WD sin2 t
2

log sin2 t
2

straightforward calculations yield

O 2.n/ D 1
2�

Z 2�

0

sin2 t
2

log.sin2 t
2
/ e�n.t/dt

D 1
8�

Z 2�

0

log.sin2 t
2
/ .2 cos.nt/ � cos.n � 1/t � cos.n C 1/t/ dt

D

8̂
<̂
ˆ̂:

1
2
; n D 0;

� 3
8
; jnj D 1;

1
4

�
1

jnC1j C 1
jn�1j � 2

jnj

; otherwise:

We stress that the calculation in the case of the weight  1 can be traced back to
[8, 9] (see also [6]). For the remaining case,  0 	 1, the same approach gives us
(see (11))

Z 2�

0

.PNg/.t/ dt D
NX

nD�NC1

"
1

2N

NX
mD�NC1

g. j�
N / exp.� imn�

N /

#Z 2�

0

exp.int/ dt

D �

N

2N�1X
jD0

g
� j�

N

�
;

i.e., the trapezoidal rule. Therefore, for  	 1, we simply have

Œ�N'� .s/ D �

N

2N�1X
jD0

a
�
s; j�

N

�
'.

j�
N

�
:
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3.2.3 Discrete Helmholtz Boundary Integral Operators

For the single layer operator we work with two types of discretizations. The first
one, proposed originally by Kress (cf. [6] and references therein) is simply

ŒVk;N'�.s/ WD
Z 2�

0

 1.s � t/ ŒPNA.s; �/'� .t/ dt C
Z 2�

0

ŒPNB.s; �/'�.t/dt: (13)

One can use the same approach for the double layer operator and obtain

ŒKk;N'�.s/ WD
Z 2�

0

 1.s � t/ŒPNC.s; �/ sin2 s��
2
'�.t/dt C

Z 2�

0

ŒPND.s; �/'� .t/dt:

(14)

The operator K>
k;N can be defined accordingly.

Alternatively, we can proceed in a different way and define the more accurate
approximation

ŒeKk;Ng�.s/ WD
Z 2�

0

 2.s � t/PN ŒC.s; �/g�.t/ dt C
Z 2�

0

ŒPND.s; �/g�.t/dt: (15)

The operatoreK>
k;N can be obviously defined in the same manner.

We can actually use the same approach for the single layer operator Vk. Indeed,
let us write first

A.s; t/ D � 1

4�
C 1 � J0.kjx.s/� x.t/j/

4� sin2 s�t
2

sin2 s�t
2

DW � 1

4�
CeA.s; t/ sin2 s�t

2
: (16)

We point out that function A.s; t/ is smooth with

eA.s; s/ 	 k2

4�
jx0.s/j:

Hence, using the Bessel operator defined as

Œ�'� .s/ WD � 1

4�

Z 2�

0

log sin2 s�t
2
'.t/ dt;

we have derived the following alternative expression for the single layer operator

Vk' D �' C
Z 2�

0

eA. � ; t/ 2. � � t/'.t/ dt C
Z 2�

0

B. � ; t/'.t/ dt DW �' C Rk';
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which can be exploited to lead to the following approximation

�eVk;N'

.s/ WD �

�'

.s/C

Z 2�

0

 2.s � t/ PN ŒeA.s; �/'�.t/ dt C
Z 2�

0

PN ŒeB.s; �/'�.t/ dt

DW ��'.s/C �eRk;N'

.s/: (17)

Obviously, eVk;N can be applied, in principle, only to trigonometric polynomials,
since otherwise the first term gives rise to an infinite series. As we will see later, this
is not a severe constraint for the numerical approximations we propose.

Finally, applying integration by parts and making use of the same quadrature
rules, we have

Hk D D�D C Tk (18)

with

�
Tk'


.s/ D

Z 2�

0

E.s; t/ log sin2 s�t
2
'.t/ dt C

Z 2�

0

F.s; t/'.t/ dt

where

E.s; t/ WD �@s@teA.s; t/ sin2 s�t
2

C 1
2

�
@seA.s; t/ � @teA.s; t/� sin.s � t/

C 1
2
eA.s; t/ cos.s � t/ � ik2

�
x0.s/ � x0.t/

�
A.s; t/

F.s; t/ WD �@s@tB.s; t/C 1
2

�
@seA.s; t/ � @teA.s; t/� sin.s � t/

CeA.s; t/. 1
2

C cos.s � t// � ik2.x0.s/ � x0.t//B.s; t/:

Then, following the same convention, we can define

Hk;N' WD D�D' C Tk;N' (19)

with

�
Tk;N'


.s/ D

Z 2�

0

 1.s � t/ ŒPNE.s; �/'� .t/dt C
Z 2�

0

ŒPNF.s; �/'�.t/dt

Again Hk;N is not a full discrete operators, but when applied to trigonometric
polynomials it can be computed exactly which turns out to be enough for our
purposes.
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3.3 Convergence Analysis

We develop our analysis in periodic Sobolev norms. For any p 2 R we first define
the Sobolev norm

k'k2p WD j O'.0/j2 C
X
n¤0

jnj2pj O'.n/j2:

The periodic Sobolev spaces of order p, denoted in what follows by Hp, can be
defined, for instance, as the completion of trigonometric polynomials in this norm.

We are ready to state the main theorem. The proof follows from application of
similar ideas to those introduced in [6, Chaps. 12 and 13] (see also [1]). Let us point
out that henceforth, for given A W X ! Y, we denote by kAkX!Y its operator norm.

Theorem 1 Let p > 1=2 and q � �1 with p C q > 1=2. Then, if
A 2 fKk;K>

k ;Vk;Hkg and AN is the corresponding approximation, i.e., AN 2
fKk;N ;K>

k;N ;Vk;N ;Hk;Ng,

kA � ANkHpCq!Hp � Cp;qN�q�minfp;1g: (20)

On the other hand, for A 2 fKk;K>
k ;Vkg and eAN 2 feKk;N ;eK>

k;N ;
eVk;Ng the

corresponding discretization, we have for q � �3 with p C q > 1=2.

kA �eANkHpCq!Hp�Cp;qN�q�minfp;3g: (21)

Proof For any function  we denote the convolution operator in the usual manner:

Œ  '�.s/ WD
Z 2�

0

 .s � t/'.t/ dt D
1X

nD�1
O .n/ O'.n/en.s/:

Then it is straightforward to check that for ' smooth enough, see (10),

Œ�'�.s/ D
Z 2�

0

a.s; t/ .s � t/'.t/ dt D
1X

nD�1
an.s/Œ  .en'/�.s/

where en.s/ D exp.ins/ and

an.s/ WD 1

2�

Z 2�

0

a.s; t/e�n.t/dt

is the nth Fourier coefficient of a.s; �/. Since function a is assumed to be smooth,
then for any P it holds that

sup
n2N
.1C jnj/PkankL1.0;2�/ < CP:
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Let us restrict ourselves to the cases  D  m, for m D 0; 1; 2 (see the beginning
of Sect. 3.2.2). Denote then by �m the corresponding operator and by �m;N , its
numerical approximation cf. (12). Clearly, the proof of this Theorem can be reduced
to studying

.�m � �m;N/' D
1X

nD�1
an m  .en' � PN.en'//:

We will make use of the following results:

(a) For m D 1; 2 it holds

k m  'kp � Cqk'kp�q; q � 2m � 1

whereas for m D 0

k 0  'kp D 2�j O'.0/j � 2�k'kpCq; 8q 2 R:

Indeed, for m D 1; 2

j O m.n/j � Cm.1C jnj/1�2m

with Cm independent of m which implies

k m  'k2p D j O m.0/ O'.0/j2 C
1X

nD�1

jnj2pj O .n/ O'.n/j2

� C2
m

"
j O m.0/ O'.0/j2 C

1X
nD�1

jnj2.pC1�2m/j O'.n/j2
#

D C2
mk'k2p�2mC1:

(b) The convergence estimate for the trigonometric interpolant [13, Theorem 8.2.1]

kPN' � 'kp � Cp;qN�qk'kpCq; 8p; q � 0; p C q > 1=2: (22)

(c) The fact that Hp for p > 1=2 is an algebra, cf [13, Lemma 5.13.1] and therefore

ka'kp � Cpkakpk'kp:

(d) The obvious bound kenkp � maxf1; jnjp}.
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We are ready to analyze the approximation error of the discrete operators. First, for
m D 0, that is, for integral operators with smooth kernel, we have

k.�0 � �0;N/'kp � C
1X

nD�1
kankpk 0  .en' � PN.en'//kp

D 2�Cp

1X
nD�1

kankpken' � PN.en'/k0

� Cp;qN�p�q
1X

nD�1
kankpkenkpCqk'kpCq

� Cp;qN�p�q

� 1X
nD�1

kankp.1C jnj/pCq

�
k'kpCq

� C0
p;qN�p�qk'kpCq

for all p C q > 1=2.
Let us examine the case m D 2. If p � 3, we can proceed similarly to conclude

k.�2 � �2;N/'kp �
1X

nD�1
kankpken' � PN.en'/kp�3

� Cp;qN�q�3
1X

nD�1
kankpkenkpCqk'kpCq � Cp;qN�q�3k'kpCq;

provided that p C q > 1=2 and q � �3. If p 2 Œ0; 3�, we can only get convergence
estimates for the interpolator in H0 (we can not expect faster convergence in weaker
norms). Therefore we have instead

k.�2 � �2;N/'kp �
1X

nD�1
kankpken' � PN.en'/k0 � Cp;qN�p�qk'kpCq:

Collecting these bounds, the result for m D 3 follows readily.
Case m D 1 is left as exercise for the reader. ut
We recall the functional properties of the boundary operators in the Sobolev

setting. Define

Dk WD
��Kk Vk

�Hk K>
k

�
:
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Then, Dk W HpC1 � Hp ! HpC1 � Hp is continuous for any p 2 R. Actually it holds

Kk;K>
k ;Rk W Hp ! HpC3: (23)

This extra regularizing property has been repeatedly used in the design and analysis
of boundary integral methods for Helmholtz equation.

If we define

Dk;N WD
"�Kk;N Vk;N

�Hk;N K>
k;N

#
; eDk;N WD

"�eKk;N eVk;N

�Hk;N eK>
k;N

#
;

the following result can be easily derived from Theorem 1.

Proposition 1 For any p > 1=2,

Dk;N ; eDk;N W HpC1 � Hp ! HpC1 � Hp (24)

are uniformly continuous. Moreover, if p > 1=2 and q � �1 with p C q > 1=2,

kDk;N � DkkHpCq�HpCq!Hp�Hp C keD k;N � DkkHpCq�HpCq!Hp�Hp � CN�q�minf1;pg;
(25)

and, for q � �2, p > 1=2 and p C q > 1=2,

keD k;N � DkkHpCqC1�HpCq!HpC1�Hp � CN�q�minf2;pg: (26)

Proof Define

Ek WD
��Kk Vk

�Tk K>
k

�
; Ek;N WD

��Kk;N Vk;N

�Tk;N K>
k;N

�
: (27)

Then

Dk;N � Dk D Ek;N � Ek: (28)

Equation (20) in Theorem 1 proves (25) since

kKk;N � KkkHpCq!�Hp � CN�q�minf1;pg (29a)

kK>
k;N � K>

k kHpCq!Hp � CN�q�minf1;pg (29b)

kVk;N � VkkHpCq!Hp � CN�q�1�minf1;pg (29c)

kTk;N � TkkHpCq!Hp � CN�q�minf1;pg (29d)

which hold for p C q > 1=2 and q � �1. Moreover, from the mapping properties of
the continuous operators, these estimates with q D 0 imply the first result for Dk;N .
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For the second estimate, we start now from

eD k;N � Dk D eF k;N � Fk (30)

where

Fk WD
��Kk Rk

�Tk K>
k

�
; eF k;N WD

��eKk;N eRk;N

�Tk;N eK>
k;N

�
; (31)

for which we have the error convergence estimates

keKk;N � KkkHp0

Cq0 !Hp0 � CN�q0�minf3;p0g; q0 � �3 (32a)

keK>
k;N � K>

k kHp0

Cq0 !Hp0 � CN�q0�minf3;p0g; q0 � �3 (32b)

keRk;N � RkkHp0

Cq0 !Hp0 � CN�q0�minf3;p0g; q0 � �3 (32c)

kTk;N � TkkHp0

Cq0 �Hp0 � CN�q0�minf1;p0g; q0 � �1: (32d)

(With the restriction p0 C q0 > 1=2 in all these cases). Choosing q0 D q and p0 D p
in all the estimates in (32) we get (25) which, in particular, implies (24) as a simple
consequence. To prove (26), we take .p0; q0/ D .p C 1; q/ in (32a), . p0; q0/ D . p; q/
in (32b), . p0; q0/ D . p C 1; q � 1/ in (32c) and . p0; q0/ D . p; q C 1/ in (32d).

In short, we have shown in this section two different types of discrete versions of
the Helmholtz boundary layer operators. The first type of discretization is simpler
and works well for equations stated in Hp � Hp such as the equations of the second
kind where the hypersingular operator is not the leading term, either because it does
not appear or because the strong singular part is canceled out. The second type
of discretization involving the operators eDk;N turns out to be more appropriate for
formulations in the natural space HpC1 � Hp or for complex formulations where the
operators are more involved and/or the operator Hk plays a dominant role. Actually,
we could keep Kk;N and K>

k;N in eDk;N and the desired convergence property, namely
keDk;N � DkkHp�HpC1!Hp�HpC1 ! 0 for any p > 1=2, still holds. We have prefered,
however, to collect in eD k;N the more accurate discretization. We will consider
several examples of these cases in next section.

4 Boundary Integral Equations for Transmission Problems
and their Nyström Discretizations

We consider numerical approximations of several well-posed formulations of the
transmission problem (1) presented in Sect. 2. Equipped with the discrete operators
introduced and analyzed in the previous section, the stability and convergence of the
resulting schemes can be now easily proven.
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For the sake of a simpler notation, we will denote in this section only by V˙;
H˙; etc the corresponding layer operators for k˙. Their discrete versions will be
denoted, as before, by simply adding the subscript N.

First we consider the Kress-Roach formulation cf [7]. Defining

L1

�
a
'

�
WD
�
1C�
2
I C

�
�K� � KC VC � V�
�.H� � HC/ �K>C � K>�

���
a
'

�
;

where I is the identity operator matrix, this formulation amounts to solving the
system of boundary equations

L1

�
a
'

�
D
�

f
�

�
: (33)

It is well known that if .f ; �/ D .h; � �/ cf. (5), then the unique solution is a D ut ıx,
' D jx0j.@nut/ıx where ut is exterior part of the total wave: ut D uC Cuinc. Clearly,
once this equation is solved, taking into account the transmission conditions (1), we
can evaluate u˙ by means of (2).

The discrete versions of the operators L1 are given by

L1;NWD 1C�
2
I C PN

�
�K�;N � KC;N VC;N � V�;N
�.H�;N � HC;N/ �K>C;N � K>�;N

�

D 1C�
2
I C PN

�
�K�;N � KC;N VC;N � V�;N
�.T�;N � TC;N/ �K>C;N � K>�;N

�

(recall (18)–(19)) where

PN D
�

PN

PN

�
:

Thus, the discrete problem is given by

L1;N

�
aN

'N

�
D
�

PNf
PN�

�
: (34)

Observe that the last equation implies that .aN ; 'N/ 2 TN � TN which allows us
to reformulate the method as a true Nyström scheme, where the unknowns are the
pointwise values of the densities at the grid points f j�

N g.
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We will consider next the Costabel-Stephan formulation [2]: Let

L2 WD
� �.K� C KC/ ��1VC C V�
�.H� C �HC/ K>C C K>�

�

D .1C ��1/
�

�

��D�D

�
C
� �K� � KC ��1eRC CeR�
�.T� C �TC/ K>C C K>�

�

and the associated system of integral equations

L2

�
a
'

�
D
�

f
�

�
: (35)

In this case, if we take . f ; �/ D .h; �/, then .a; '/ D .ut ı x; jx0j.@nut/ ı x/ is again
the exact solution.

Letting

eL 2;NWD .1C ��1/
�

�

��D�D

�
C PN

� �eK�;N �eKC;N ��1eRC;N CeR�;N
�.T�;N C �TC;N/ eK>C;N CeK>�;N

�
;

the method we propose for solving (35) can be written in operational form as follows

eL 2;N

�
aN

'N

�
D
�

PNf
PN�

�
: (36)

As before, .aN ; 'N/ 2 TN � TN for any pair .f ; �/ on the right hand side. (This can
be easily seen by noticing that the leading part in eL 2;N is diagonal in the complex
exponential bases).

The so-called regularized combined field integral equation, proposed in [3] will
be also analyzed here. Let

L3 D 1

� C 1
L1 C 2

� C 1

�
V

��H

�
L2 D

�
1
2
I C K� ���1V�
�H� 1

2
I � K>�

�
C RL2

with

R WD 1

� C 1

�
I 2V

�2�H �I

�
:

The boundary integral equation is then given by

L3

�
a
'

�
D R

�
f
�

�
: (37)
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It can be shown (see [3]) that this system of integral equations admits a unique
solution provided that  is chosen to be a complex number with positive imaginary
part. Moreover, this parameter can be adjusted to make eigenvalues cluster around 1.
Besides, by construction if we plug .h; �/ in the right hand side, the unique solution
is .ut ı x; jx0j.@nut/ı x/. In other words, this is a new direct method where Rk works
as some sort of preconditioner for L2.

The discretization of the regularized equations is done as follows. First, we set

R;N WD 1

� C 1

�
I 2�C PNeR;N

�2�D�D � 2�PNT;N �I

�

and next we define

eL 3;NWD
�

1
2
I C PNeK�;N ���1�� ��1PNeR�;N

�D�D C �PNT�;N 1
2
I � PNeK>�;N

�
C R;N

eL 2;N

D
�

1
2
I ���1�

�D�D 1
2
I

�
C PN

� eK�;N ��1eR�;N
�T�;N �eK>�;N

�
C R;N

eL 2;N :

(Observe that the first matrix operator maps TN � TN into itself.) The numerical
algorithm, in operator form, is given by

eL 3;N

�
aN

'N

�
D R;N

�
PNf
PN�

�
: (38)

Observe again that the right-hand-sides are trigonometric polynomials, and thus so
are the solutions of these discrete problems.

We also investigate an integral formulation based on an indirect method. That is,
unlike the formulations considered so far, the unknown is not immediately related
to traces on the boundary of the solution of the transmission problem. This integral
formulation, has an interesting feature: the solution of the transmission Helmholtz
problem can be reconstructed from knowledge of one boundary density only. In
other words, this integral equation needs half as many unknowns as the other integral
formulations considered in this paper thus far. Let us describe this equation, which
was first introduced in [4]. We seek a function � so that

u� D �2ŒSL���; uC D �SLC.I C 2K>�/� � 2DLCV��

(SL˙ and DL˙ are the corresponding parameterized layer potentials). The density
� can be computed by solving the boundary integral equation

L4 � WD �� C 1

2
�C K�� i�V� D f ; (39)



278 V. Domínguez and C. Turc

where f D �� i�g. Here � is a coupling parameter which must be real and different
from zero to ensure the well-posedness of the equation. In the definition of the
operator L4 we used the operators

K WD �K>�.�I � 2K>�/ � �K>C.I C 2K>�/C 2.HC � H�/V�

and

V WD ��VC.I C 2K>�/ � .I � 2KC/V�:

The discretizations of these operators are given by

KN WD �K>�;N.�I � 2K>�;N/� �K>C;N.I C 2K>�;N/C 2.TC;N � T�;N/V�;N


VN WD ��VC;N.I C 2K>�;N/� .I � 2KC;N/V�;N :

Thus, we define

L4;N WD � �C1
2

I C PNKN � i�PNVN ;

and the discretization of the equation L4� D f is given by

L4;N�N D PNf : (40)

Again, �N 2 TN regardless of the right hand side f .

Theorem 2 The mappings (33), (35), (37) and (39)

L1 WHp � Hp ! Hp � Hp; j D 1; 3

Lj WHpC1 � Hp ! HpC1 � Hp; j D 1; 2; 3

L4 WHp ! Hp

(41)

are continuous and invertible for all p 2 R.
Moreover, for p > 1=2,

kL1 � L1;NkHp�Hp!Hp�Hp � CpN� minf p;1g; (42a)

kL2 � eL 2;NkHpC1�Hp!Hp�HpC1 � CpN� minf p;2g; (42b)

kL3 � eL 3;NkHpC1�Hp!Hp�HpC1 � CpN� minf p;1g; (42c)

kL3 � eL 3;NkHpC1�HpC1!HpC1�HpC1 � CpN� minf p;1g; (42d)

kL4 � L4;NkHp!Hp � CpN� minf p;1g: (42e)
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Furthermore, we have the following convergence results: For all p > 1=2 and q � 0,
if .a1; '1/ denotes the exact solution for (33) and .a1N ; '

N
1 / is the corresponding

numerical solution of (34), it holds

ka � a1Nkp C k' � '1Nkp � CN�q
�kakpCq C k'kpCq


: (43a)

Let for j D 2; 3 .Qaj
N ; Q' j

N/ the continuous solution of (35) and (37) and .Qaj
N ; Q' j

N/ the
discrete solution of (36) and (38). Then we have

ka � Qa2NkpC1 C k' � Q'2Nkp � CN�q
�kakpCqC1 C k'kpCq


: (44a)

ka � Qa3NkpC1 C k' � Q'3Nkp � CN�q
�k f kpCqC1 C k�kpCq


: (44b)

ka � Qa3NkpC1 C k' � Q'3NkpC1 � CN�q
�k f kpCqC1 C k�kpCqC1


: (44c)

Finally if � is the solution of L4 and �N that given by the numerical scheme (40),

k� � �Nkp � CN�qk�kpCq; p > 1=2; q � 0:

In the estimates above, C > 0 is independent of a; ', f , � or �, and N.

Proof The functional properties stated in (41) are well known and can be easily
derived from the functional properties of the operators involved (see Proposition 1).

The proofs for all the convergence estimates share the same ideas. Thus, for
the sake of brevity we restrict ourselves to consider a few representative cases to
illustrate the kind of techniques used here.

Proof of (42a) and (43a) Denote as in (27)

E˙ WD
��K˙ V˙

�T˙ K>̇
�
:

Notice that E˙ W Hp � Hp ! HpC1 � HpC1 and therefore, from from (22),

k.PN � I /E˙kHpCq�HpCq!Hp�Hp � CN�q�1 (45)

for any p � 0, q � �1 with p C q > 1=2. Setting accordingly

E˙;N WD
��K˙;N V˙;N

�T˙;N K˙;N

�

we notice that cf (25) (see also (28))

kEk � Ek;NkHpCq�HpCq!Hp�Hp � CN�q�minf1;pg: (46)
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On the other hand,

L1 D 1C�
2
I C

�
1

�

�
EC � E�

�
�

1

�
;

L1;N D 1C�
2
I � PN

�
1

�

�
EC;N C PNE�;N

�
�

1

�
:

Therefore, (45) and (46) yield

kL1 � L1;NkHpCq�HpCq!Hp�Hp

� maxf�; 1g
�
k.PN � I /E˙kHpCq�HpCq!Hp�Hp

CkPNkHp�Hp!Hp�Hp
�kE˙ � E˙;NkHpCq�HpCq!Hp�Hp



� CN�q�minf1;pg: (47)

In particular, setting q D 0 implies (42a). The error estimate for the numerical
method is obtained using standard techniques:

����
�

a � a1N
' � '1N

�����
p

� C

����L1;N

�
a � a1N
' � '1N

�����
p

�
����.L1;N � L1/

�
a
'

�����
p

C
����L1

�
a
'

�
� L1;N

�
aN

'N

�����
p

�
����.L1;N � L1/

�
a
'

�����
p

C
����.I � PN/L1

�
a
'

�����
p

� CN�q
�kakpCq C k'kpCq

�
:

Proof of (42b) and (44a) For L2, we proceed in the same fashion with

F˙ WD
��K˙ R˙

�T˙ K>̇
�
; eF˙;N WD

"
�eK˙;N eR˙;N
�T˙;N eK>̇

;N :

#

which allows us to write

L2 D .1C ��1/
�

�

�� D�D

�
C
�
��1=2

�1=2

�
FC

�
�1=2

��1=2
�

C F�;

eL 2;N D .1C ��1/
�

�

�� D�D

�
C
�
��1=2

�1=2

�
FC;N

�
�1=2

��1=2
�

C F�;N :
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Since F˙ W HpC1 � Hp ! HpC3 � HpC2 holds as well, estimate (22) yields

k.PN � I /F˙kHpCqC1�HpCq!HpC1�Hp � CN�q�2

for any p � 0 and q � �1. On the other hand, from (26) (see also (30)),

kFk � eF k;NkHpCqC1�HpCq!HpC1�Hp � CN�q�minf2;pg

for any p > 1=2 and q � �2 with p C q > 1=2.
Thus

kL2 � eL 2;NkHpCqC1�HpCq!HpC1�Hp

� maxf�; 1g
�
k.PN � I /F˙kHpCqC1�HpCq!HpC1�Hp

CkPNkHpC1�Hp!HpC1�Hp

�kF˙ � eF˙;NkHpCqC1�HpCq!HpC1�Hp



� CN�q�minf2;pg (48)

which, with q D 0, implies in particular (42b). Estimate (44a) is proved from (48)
as in (43a).

Proof of (42d) and (44c) Notice first that F˙ W Hp � Hp ! HpC3 � HpC1 is
continuous and

kF˙ � eF˙;NkHpCq�HpCq!HpC2�Hp � CN�q�minfp;1g; p; p C q > 1=2; q � �1

which can be deduced from Eqs. (32a) and (32c) with p0 D p C 2 and q0 D q � 2

and from Eqs. (32b) and (32d) with p0 D p and q0 D q. Thus, similar arguments as
those used above for L2 can be applied to show a different estimate:

kL2 � eL 2;NkHpCqC1�HpCqC1!HpC2�Hp

� C
h
k.PN � I /F˙kHpCqC1�HpCqC1!HpC2�Hp

CkPNkHpC2�Hp!HpC2�Hp

�kF˙ � eF˙;NkHpCq�HpCq!HpC2�Hp

i

� C0N�q�2kF˙kHpCqC1�HpCqC1!HpCqC4�HpCqC2 C C0N�q�minfp;1g

� C00N�q�minfp;1g (49)

which holds for p > 1=2, q � �1 and p C q > 1=2.
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We are now ready to start analyzing the more complex formulation of this paper,
namely L3 and the corresponding discretization given by eL 3;N . Clearly,

L3 � eL 3;N D 1

� C 1
.L1 � eL 1;N/C 2

� C 1

�
R �eR;N

��.T � T;N/

�
L2

C 2

� C 1

�
V;N

��H;N

�
.L2 � eL 2;N/

DW T1 C T2 C T3: (50)

First term with eL 1;N defined as L1;N with eV˙;N ,eK˙;N and eK>̇
;N instead, can be

analyzed as in (47) to get

kT1kHpCqC1�HpCqC1!HpC1�HpC1 � CN�1: (51)

For the second term we emphasize that

kT2kHpCqC1�HpCqC1!HpC1�HpC1

� CN�q�minfp;1gkL2kHpCqC1�HpCqC1!HpCqC1�HpCq : (52)

(We have applied (32c) with p0 D p C 1 and q0 D q � 1 and (32d) with p0 D p C 1

and q0 D q and the mapping properties of L2).
Regarding the third term, using (49) we get

kT3kHpCqC1�HpCqC1!HpC1�HpC1 � CkL2 � eL 2;NkHpCqC1�HpCqC1!HpC2�Hp

� CN�q�minfp;1g: (53)

Gathering (51)–(53) in (50) we obtain

kL3 � eL 3;NkHpCqC1�HpCqC1!HpC1�HpC1 � CN�q�minfp;1g (54)

which implies (42d) by taking q D 0.
To prove (44c), we can easily see that, as in (48), we simply have to bound

����.L3 � eL 3;N/

�
a
'

�����
pC1

;

����
�
PNR;N � R

� �f
�

�����
pC1

:
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The first term has been already studied in (54). Regarding the second term, we have

����
�
PNR;N � R

� �f
�

�����
pC1

� C
�kR;N � RkHpCqC1�HpCqC1!HpC1�HpC1

Ck.PN � I /RkHpCqC1�HpCqC1!HpC1�HpC1

�kf kpCqC1 C k�kpCqC1


� CN�q
�kf kpCqC1 C k�kpCqC1


:

Notice that, unlike (43a), kf kpCqC1, k�kpCqC1 cannot be bounded in terms of
kakpCqC1 and kbkpCqC1 because we cannot guarantee that R is invertible. How-
ever, it follows that

kakpCqC1 C kbkpCqC1
� kL �1

3 RkHpCqC1�HpCqC1!HpCqC1�HpCqC1

�kf kpCqC1 C �kpCqC1


which allows us to write the convergence in terms of the regularity of the right-hand-
side instead.

The main point of this theorem is that convergence in higher Sobolev space
norms of the Helmholtz boundary operators allows to prove easily the stability and
convergence of the Nyström discretizations. The higher order discretizations feVk;N ;eRK;N ;eR>

K;Ng guarantee convergence of Nyström discretizations for rather complex
formulations whereas the simpler, but less accurate discretizations of second kind
integral formulations such as those based on the operators L1 still converge. The
analysis based on the results of Theorem 1, whose details are a bit more subtle,
allows us to employ optimal discretizations and norms in which the stability and
convergence results hold. Observe that on account of Sobolev embedding theorems,
all of the convergence results established above imply convergence in the L1 norm.

5 Numerical Experiments

For brevity, we only present numerical results for the Costabel-Stephan formulation
L2. We refer the reader to [1, 3] for extensive numerical results for the other
formulations.

The domains we have considered are the geometries depicted in Fig. 2. We have
taken kC D 8; k� D 32 in the Helmholtz transmission problems (1), with � D 1

in the transmission conditions across the interface. We have applied the numerical
schemes eL 2;N and L2;N . The latter scheme is that defined using V˙;N , the less
accurate approximation for V˙. We point out that only the first discretization has
been analyzed in this paper.
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Fig. 2 Kite and cavity geometries considered in the numerical experiments

Table 1 L1 error estimate in the far field for the discretizations L2;N and QL2;N for the Helmholtz
transmission problem in the kite (left) and cavity (right) domains

Kite Cavity

N L2;N eL 2;N L2;N eL 2;N

96 3.2E�02 9.1E�03 7.1E�02 1.7E�02

128 4.1E�04 2.5E�05 8.3E�04 6.3E�05

160 5.9E�11 5.8E�12 2.0E�10 3.3E�11

The L1 error estimate in the far field for the numerical solutions is shown in
Table 1. The exact solution has been computed using L1;N for sufficiently large
N, which, in turns, provides an indirect demonstration of the performance of this
discretization too.

Both methods converge super-algebraically to the exact solution, although eL 2;N

performs better with even a slightly faster convergence. Convergence, and specially
stability of L2;N remains as an open problem and certainly will deserve more
research in the future.
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Algebraic Inverse Integrating Factors for a Class
of Generalized Nilpotent Systems

Antonio Algaba, Natalia Fuentes, Cristóbal García, and Manuel Reyes

Abstract Usually, the study of differential systems with linear part null is done
using quasi-homogeneous expansions of vector fields. Here, we use this technique
for analyzing the existence of an inverse integrating factor for generalized nilpotent
systems, in general non-integrable, whose lowest-degree quasi-homogeneous term
is the Hamiltonian system y2@x C x3@y.

1 Introduction

We consider an autonomous system

Px D F.x/ D .P.x/;Q.x//T ; x 2 C
2; (1)

where F is a formal planar vector field defined in a neighborhood of the origin
U � C

2 having a singular point at the origin, i.e., F.0/ D 0 and P;Q 2 CŒŒx; y��
(algebra of the power series in x and y with coefficient in C).

A non-null C 1 class function V is an inverse integrating factor of system (1) (or
also of F) on U if it satisfies the linear partial differential equation LFV D div.F/V ,
being LFV WD P@V=@xCQ@V=@y, the Lie derivative of V respect to F, and div.F/ WD
@P=@x C @Q=@y, the divergence of F. This name for V comes from the fact that
1=V defines on U n fV D 0g an integrating factor of system (1) (which allows to
compute a first integral of the system on U n fV D 0g). So, if system (1) possesses
an inverse integrating factor V then it is integrable on U n fV D 0g. For more details
about the relation between the integrability and the inverse integrating factor see
[5, 9, 10, 19, 21].

The expressions of V are often simpler than the expressions of the first integrals,
see [7, 8]. The domain of definition and the regularity of V usually are larger than
the domain and the regularity of the first integral, see [9, 13, 22, 23].
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This concept also plays an important role in the study of the existence of limit
cycles of a vector field, because the zero-set fV D 0g, formed by orbits of the
system (1), contains the limit cycles of the system (1) which are in U, whenever
they exist, see [12, 15, 17]. The zero-set fV D 0g also contains the homoclinic and
heteroclinic connections between hyperbolic saddle equilibria, see [14]. Moreover,
the cyclicity of a limit cycle is related to the vanishing order of V , see [16].

The existence of inverse integrating factors in a neighborhood of a singularity
has been studied in some particular cases. We remark, among others, the papers
of Enciso and Peralta-Salas [12], Chavarriga et al. [8], Christopher et al. [11] and
Algaba et al. [5].

We are concerned to determine what degenerate systems have an algebraic
inverse integrating factor over C..x; y// (which will be named AIIF) where C..x; y//
denotes the quotient field of the algebra of the power series CŒŒx; y��. In this sense,
the only results we know are Walcher [24] where is claimed its existence for non-
degenerate cusp nilpotent singularity, and Algaba et al. [4] where it is characterized
all nilpotent systems having an algebraic inverse integrating factor.

Here, we deal with systems whose lowest degree quasi-homogeneous term
is .y2; x3/T . These systems are a class of generalized nilpotent systems. The
integrability problem of these class has been studied by Giné [18]. He proves that
the formal first integrals, if any, are of the form ykCF.x; y/where F starts with terms
of order higher than k. Moreover, if the system has a local analytic first integral then
it has also a local analytic first integral of the form yk C F.x; y/. This shape of the
first integral allows giving necessary conditions of analytic and formal integrability
for several families of polynomial systems.

This paper is organized as follows: the following section is devoted to providing
an expansion in quasi-homogeneous terms of an orbitally equivalent normal form
of systems whose lowest-degree term is a Hamiltonian vector field, Theorem 1.

Our results are presented in Sect. 3. We obtain a suitable normal form to study
the existence of an algebraic inverse integrating factor of perturbations of the quasi-
homogeneous Hamiltonian system y2@x C x3@y, see Theorem 2. Theorem 3 gives
a normal form of such systems having an algebraic inverse integrating factor.
Moreover, we give the shape of them, Theorem 4 states that the existence of a formal
inverse integrating factor is equivalent to the analytic integrability for these systems.

Finally, in Sect. 4 we compute the systems with an algebraic inverse integrating
factor for a family of planar systems (Theorem 5) and we solve the integrability
problem of the family (Theorem 6).

2 Quasi-Homogeneous Normal Forms

For more details on the concepts and definitions we give in this section, see [1].
Given t D .t1; t2/ non-null with t1 and t2 non-negative integer numbers without

common factors, we will denote by Pt
k to the vector space of quasi-homogeneous
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polynomials of type t and degree k, i.e.

Pt
k D f f 2 CŒx; y� W f ."t1x; "t2y/ D "kf .x; y/g;

and by

Qt
k D fF D .P;Q/T W P 2 Pt

kCt1 ; Q 2 Pt
kCt2g

to the vector space of the quasi-homogeneous polynomial vector fields of type t and
degree k. Any vector field can be expanded into quasi-homogeneous terms of type t
of successive degrees. Thus, the vector field F can be written in the form

F D Fr C FrC1 C � � � ;

for some r 2 Z, where Fj D .PjCt1 ;QjCt2 /
T 2 Qt

j and Fr 6	 0. Such expansion will
be expressed as F D Fr C q-h.h.o.t., where “q-h.h.o.t.” means “quasi-homogeneous
higher order terms.”

If we select the type t D .1; 1/, we are using in fact the Taylor expansion, but
in general, each term in the above expansion involves monomials with different
degrees.

The key in the problem of obtaining a normal form of the system (1) is to analyze
the effect of a near-identity transformation x D y C Pk.y/ and a reparameterization
of the time by dt

dT D 1C �k.x/, where Pk 2 Qt
k and �k 2 Pt

k, with k � 1.
The quasi-homogeneous terms of the transformed system Py D G.y/ agree with

the original ones up to degree r C k � 1 and for the degree r C k it has

GrCk D FrCk � .DPkFr � DFrPk/C �kFr D FrCk � ŒPk;Fr�C �kFr

D FrCk � LrCk.Pk; �k/

where we have introduced the homological operator under orbital equivalence:

LrCk W Qt
k � Pt

k �! Qt
rCk

.Pk; �k/ ! LrCk.Pk; �k/ D ŒPk;Fr� � �k Fr: (2)

Following the ideas of the conventional normal form theory, it is enough to
choose .Pk; �k/ 2 Qt

k �Pt
k adequately in order to simplify the .r C k/-degree quasi-

homogeneous term in system (1), by annihilating the part belonging to the range
of the linear operator LrCk. In other words, we can achieve that FrCk belongs to
a complementary subspace to the range of LrCk. When this has been done, we
say that the corresponding term has been reduced to normal form under orbital
equivalence. So, by means of a sequence of time-reparameterizations and near
identity transformations (by performing the procedure for k D 1, then for k D 2 and
so on) system (1) can be formally reduced to normal form under orbital equivalence,
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i.e. the system can be transformed into

Py D G.y/ D Gr.y/C GrC1.y/C � � � ; (3)

with Gr 6	 0 and GrCk 2 Cor.LrCk/ � Qt
rCk where Cor.LrCk/ is any

complementary subspace to the range of the homological operator LrCk. We note
that such space is not unique, in general.

Given h 2 Pt
rCjtj, we define the linear operator

`j W Pt
j�r �! Pt

j

�j�r �! `j.�j�r/ WD @h

@x

@�j�r

@y
� @h

@y

@�j�r

@x
; (4)

(Poisson bracket of h and �j�r) and denote by Cor.`j/ a complementary subspace
to the range of the linear operator `j (co-range of the operator `j).

We recall the conservative-dissipative splitting of a quasi-homogeneous vector
field. Given a fixed type t D .t1; t2/, for each Fk 2 Qt

k, there exist unique
polynomials �k 2 Pt

k and hkCjtj 2 Pt
kCjtj such that

Fk D XhkCjtj C �kD0; (5)

where hkCjtj D 1
kCjtj .D0 ^ Fk/ and�k D 1

kCjtj div.Fk/. ( Xh denotes the Hamiltonian

vector field whose Hamiltonian function is h; that is, Xh WD .�@h=@y; @h=@x/T ). Its
proof can be found in [4].

Fixed h 2 Pt
rCjtj, we consider the systems of the form

Px D Xh C q-h.h.o.t.; (6)

i.e. a class of systems which can be considered as perturbations of a Hamiltonian
system Xh 2 Qt

r, whose Hamiltonian function h is a quasi-homogeneous function.
In what follows, we will denote D0 WD .t1x; t2y/T 2 Qt

0.
Algaba et al. [3, 6] proved the following properties of the operators LrCk and `k.

Proposition 1 ([3, 6]) Consider system (6). For every non-negative integer k, it
verifies:

1. LrCk.Q
t
k � Cor.`k// D LrCk.Q

t
k � Pt

k/.
2. Cor.LrCk/ D XSrCkCjtj ˚ Cor.`rCk/D0.

being SrCkCjtj a subspace verifying Cor.`rCkCjtj/ D SrCkCjtj ˚ hCor.`k/.
3. If h has only simple factors on CŒx; y�, then Cor.`rCkCjtj/ D hCor.`k/, for all

k > r with Pt
k�r ¤ f0g.

Notice that we can to obtain Cor.`rCkCjtj/ from the co-range of the scalar linear
operator `k.
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Moreover, Algaba et al. [3] give the following property of the sets Pt
k:

Lemma 1 Fixed t D .t1; t2/, it has that:

1. Pt
k D f0g, if k … I t.

2. If k > t1t2 � jtj, then k 2 I t, i.e. Pt
k is a non-trivial space

being I t D fk D k1t1 C k2t2 C k3t1t2 2 N W k1; k2; k3 2 N; k1 < t2; k2 < t1g.

We define the following subsets of N0:

J1 D f j; j � rg;
J2 D f j; j � r C 1 such that Pt

j�r D f0gg; (7)

J D f j 2 J1 [ J2; SrCjtjCj ¤ f0gg: (8)

From Lemma 1, there exists m0 WD maxfN0 n I tg. Thus, j … J2, for all j � n0 WD
1C r C m0.
These properties allow to give an expression of Cor.LrCk/, or equivalently, to obtain
an orbital equivalent normal form up any order.

Theorem 1 Consider system (6) with h having only simple factors on CŒx; y�. An
orbital equivalent normal form becomes

Px D XhCg C �D0; (9)

being g D P
j2J grCjtjCj with grCjtjCj 2 SrCjtjCj and� D P

j>r �j with�j 2 Cor.`j/

and �jCrCjtj D h�j for all j … J1 [ J2 (i.e. j � n0/.

Consequently, it is enough the computation of the co-ranges of `j from r C 1 to
n0 C r C jtj � 1 to provide a normal form.

3 Main Results

We consider the degenerate systems of the form

.Px; Py/T D .y2 C
X
j�3

Pj.x; y/;
X
j�3

Qj.x; y//
T ; (10)

with Pj and Qj homogeneous polynomials of degree j and Q3.1; 0/ ¤ 0 (without
loss of generality, we can assume Q3.1; 0/ D 1).
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The first quasi-homogeneous polynomial of type .3; 4/, according to the degree,
are:

P
.3;4/
3 D fxg; P

.3;4/
4 D fyg; P

.3;4/
6 D fx2g;

P
.3;4/
7 D fxyg; P

.3;4/
8 D fy2g; P

.3;4/
9 D fx3g;

P
.3;4/
10 D fx2yg; P.3;4/11 D fxy2g; P.3;4/12 D fy3; x4g:

We write Pj.x; y/ D P
jDmCn amnxmyn and Qj.x; y/ D P

jDmCn bmnxmyn. The
quasi-homogeneous expansion with respect to t D .3; 4/ of system (10) is

� Px
Py
�

D

F5‚…„ƒ�
y2

x3

�
C

F6‚ …„ ƒ�
a30x3

b21x2y

�
C

F7‚ …„ ƒ�
a21x2y
b12xy2

�
C

F8‚ …„ ƒ�
a12xy2

b03y3 C b40x4

�
Cq-h.h.o.t.;

(11)

i.e., system (6) for r D 5; h D x4=4� y3=3 (h has only simple factors on CŒx; y�).
Thus, N0 n I .3;4/ D f1; 2; 5g, m0 D 5 and n0 D 11. Also, J1 D

f1; 2; 3; 4; 5g; J2 D f6; 7; 10g.
Table 1 shows the range and co-range of `j for 6 � j � 22.
It is straightforward to check that J is an empty set. Therefore, g is identically

null. So, from Theorem 1, we give the following result:

Theorem 2 A normal form orbitally equivalent of system (10) is

.Px; Py/T D .y2; x3/T C
X
j�0

�
˛12jC6x2h j C ˛12jC7xyh j C ˛12jC10x2yh j

C ˛12jC12x2h jC1 C ˛12jC15xh jC1 C ˛12jC16xh jC1�D0; (12)

Table 1 Range and co-range
of operator `j for system (11)

Range(`6)Dspan{0}, Cor(`6)Dspan{x2}

Range(`7)Dspan{0}, Cor(`7)Dspan{xy}

Range(`8)Dspan{y2}, Cor(`8)Dspan{0}

Range(`9)Dspan{x3}, Cor(`9)Dspan{0}

Range(`10)Dspan{0}, Cor(`10)Dspan{x2y}

Range(`11)Dspan{xy2}, Cor(`11)Dspan{0}

Range(`12)Dspan{7x4 � 12h}, Cor(`12)Dspan{h}

Range(`13)Dspan{x3y}, Cor(`13)D{0}

Range(`14)Dspan{x2y2}, Cor(`14)D{0}

Range(`15)Dspan{x3 � 6xh}, Cor(`15)Dspan{xh}

Range(`16)Dspan{11x4y � 12yh}, Cor(`16)Dspan{yh}

Range(`17)Dspan{x3y2}, Cor(`17)D{0}

Range(`18)Dspan{13x6 � 36x2h}, Cor(`18)Dspan{x2h}

Range(`19)Dspan{7x5 � 12xyh}, Cor(`19)Dspan{xyh}

Range(`22)Dspan{17x6y � 9x2yh}, Cor(`22)Dspan{x2yh}
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with D0 D .3x; 4y/T. The coefficients ˛j are named coefficients of order j of
system (12).

We state the well-known relationship between inverse integrating factors of
formally orbital equivalent vector fields.

Proposition 2 Let ˚ be a diffeomorphism and � a function on U � R2 such
that detD˚ has no zero on U and �.0/ ¤ 0. If V.x/ 2 CŒŒx; y�� is an inverse
integrating factor of the system Px D F.x/, then �.y/.det.D˚.y//�1V.˚.y// is an
inverse integrating factor of Py D ˚�.�F/.y/ WD D˚.y/�1�.y/F.˚.y//.

The following results have been established in Algaba et al. [4]:

Proposition 3 The functions f .h/ being f a scalar non-constant function of class
C 1 are first integrals and inverse integrating factors of the Hamiltonian system Px D
Xh with h 2 Pt

rCjtj.

Proposition 4 Consider system Px D Xh C �D0 with h 2 Pt
rCjtj having only simple

factors in its factorization on CŒx; y� and � D P
j>r �j; �j 2 Cor.`j/ and we denote

by N D minf j; �rCj 6	 0g. If V is an algebraic inverse integrating factor, then
V D f .h/1CN=.rCjtj/, being f a scalar formal function with f .0/ D 0 and f 0.0/ D 1,
is the unique algebraic inverse integrating factor, up to a multiplicative constant.

Proposition 5 Consider system Px D Xh C .�g.h/C �/D0 with h 2 Pt
rCjtj having

only simple factors in its factorization on CŒx; y�; � 2 Cor.`rCN/ n f0g, g a scalar
function, g.0/ D 1, and � D P

j>N �rCj, �j 2 Cor.`j/, �rCNCl.rCjtj/ 	 0 for all non-
negative integer l, then, under these conditions, the system possesses an algebraic
inverse integrating factor if and only if � 	 0.

Proposition 6 Consider system Px D Xh C �g.h/D0 where h 2 PrCjtj; � 2 PrCN

and g a C 1 class function with g.0/ D 1. Then, the function h1CN=.rCjtj/g.h/ is the
unique inverse integrating factor of the system, up to a multiplicative constant.

Next result is the main result of the paper, which characterizes the systems (10)
having an algebraic inverse integrating factor.

Theorem 3 System (10) possesses an algebraic inverse integrating factor if and
only if it is orbitally equivalent to one, and only one, of the following systems:

1.

.Px; Py/T D .y2; x3/T : (13)

In this case, the functions f .h C � � � / being f a scalar non-constant function of
class C 1 are inverse integrating factors of system (10).

2.

.Px; Py/T D .y2; x3/T C ˛12LC6x2hLg.h/D0: (14)
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Moreover, the algebraic inverse integrating factor of system (10) is given by
.h C � � � /LC1C1=12g.h C � � � /.

3.

.Px; Py/T D .y2; x3/T C ˛12LC7xyhLg.h/D0: (15)

Moreover, the algebraic inverse integrating factor of system (10) is given by
.h C � � � /LC1C2=12g.h C � � � /.

4.

.Px; Py/T D .y2; x3/T C ˛12LC10x2yhLg.h/D0: (16)

Moreover, the algebraic inverse integrating factor of system (10) is given by
.h C � � � /LC1C5=12g.h C � � � /.

5.

.Px; Py/T D .y2; x3/T C ˛12LC12hLC1g.h/D0: (17)

Moreover, the algebraic inverse integrating factor of system (10) is given by
.h C � � � /LC1C7=12g.h C � � � /.

6.

.Px; Py/T D .y2; x3/T C ˛12LC15xhLC1g.h/D0: (18)

Moreover, the algebraic inverse integrating factor of system (10) is given by
.h C � � � /LC1C10=12g.h C � � � /.

7.

.Px; Py/T D .y2; x3/T C ˛12LC16yhLC1g.h/D0 (19)

Moreover, the algebraic inverse integrating factor of system (10) is given by
.h C � � � /LC1C11=12g.h C � � � /

with D0 D .3x; 4y/T ; L � 0; g a scalar function with g.0/ D 1 and ˛j non-null.

Proof of Theorem 3 We perform the transformation which brings the system (10)
into the system (12).

If ˛j D 0 for all j, system (12) is system (13). From Propositions 2 and 3 it has
that the system (10) admits an algebraic inverse integrating factor and they are of
the form f .h C � � � /.

Otherwise, we assume that there exists some ˛j ¤ 0.
Let j0 D minf j; ˛j ¤ 0g be. Suppose, for instance, that j0 D 12L C 6 for a

certain L > 0. So, system (12) is of the form Px D Xh C .�g.h/ C �/D0, with
� D ˛12LC6x2hL; N D 12L C 1; g.h/ D 1 C ˛12.LC1/C6=˛12LC6h C � � � and
� D P

j>12LC6 �j with �j 2 Cor.`j/, �12jC6 	 0 for all non-negative integer j.
From Proposition 5, system (12) possesses an algebraic inverse integrating factor if
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and only if � 	 0, i.e. system (12) agrees with system (14). From Proposition 6,
the function V D hLC1C1=12g.h/ is an algebraic inverse integrating factor and
from Proposition 4, it is unique up to a multiplicative constant. Last, undoing the
change and by using Proposition 2, it has that system (10) has an algebraic inverse
integrating factor of the form V.h C � � � /.

For the cases j0 ¤ 12L C 6 it has the remaining systems (15)–(19)
since are systems considered in Proposition 5 being � the polynomial
xyhL; x2yhL; hLC1; x2hL; xhLC1 or yhLC1. So, the proof is completed. ut

Next result solves the formal integrability problem for system (10). In the
analytical case, according to the result of Mattei and Moussu [20], once the existence
of a formal first integral has been established, we can ensure that there is also an
analytical first integral.

Theorem 4 System (10) is integrable (it has a first integral) if and only if it admits
a formal inverse integrating factor (which can be zero at origin).

Proof of Theorem 4 Necessary condition. Assume that system (10) is an integrable
system. From Algaba et al. [3], the system is orbitally equivalent to a Hamiltonian
system. So, by Theorem 2, system (10) is orbitally equivalent to system (12) with
˛j D 0, for all j. From Theorem 3, it follows that the functions f .h C � � � / being
f a scalar non-constant function of class C 1 are inverse integrating factors of
system (10). Moreover, f may or may not to be zero at origin.

Sufficient condition. Assume that system (10) has an inverse integrating factor.
From Theorem 3, system (10) possesses a formal inverse integrating factor if it is
orbitally equivalent to the Hamiltonian system (13). So, system (10) is an integrable
system. ut

Note that the integrable systems (10) are orbital-reversible since are orbitally
equivalent to y2@x C x3@y, which is invariant to .x; y; t/ ! .�x; y;�t/. On the
contrary, the non-integrability does not have any relation with the reversibility. For
example, by applying Theorem 3, we check that:

1. System Px D y2 C 3x2.ay C b.y3=3C x4=4//; Py D x3 C 4xy.ay C b.y3=3C x4=4//
is reversible to the involution .�x; y/ and does not have an inverse integrating
factor.

2. System Px D y2 C 3x3; Py D x3 C 4x2y has the inverse integrating factor .y3=3C
x4=4/13=12 and it is not orbital reversible.

4 Application

We consider the family of generalized nilpotent systems given by

.Px; Py/T D .y2 C a30x
3 C a21x

2y; x3 C b21x
2y C b12xy2/T (20)
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Next result provides systems (20) that have an algebraic inverse integrating factor.

Theorem 5 System (20) possesses an algebraic inverse integrating factor if and
only if it satisfies one and only one of the following series of conditions:

(i) 3b21 � 4a30 D a21 D b12 D 0, b21 C 3a30 ¤ 0.
(ii) a30 D b21 D 3b12 � 4a21 D 0, b12 C a21 ¤ 0.

(iii) a30 D b21 D 4b12 � 3a21 D 0, b12 C a21 ¤ 0.
(iv) b21 C 3a30 D b12 C a21 D 0.

Proof of Theorem 5 First, we re-write the parameters of the following form:

a30 D 3d20 � c31; b21 D 4d20 C 3c31; a21 D 3d11 � 2c22; b12 D 4d11 C 2c22:

System (20) becomes

� Px
Py
�

D

F5‚…„ƒ�
y2

x3

�
C

F6‚ …„ ƒ
Xc31x2y C d20x

2

�
3x
4y

�
C

F7‚ …„ ƒ
Xc22x2y2 C d11xy

�
3x
4y

�
: (21)

The structure of the proof consists into computing successively the coefficients of
the dissipative part of the normal form (12) given by Theorem 2.

The effective computation of the normal form in this example is performed
following a procedure based on Lie transforms, because then we can exploit the
strengths of the computer algebra systems. The details of the procedure can be
found in [2], and the main tool is the Lie product of vector fields. Using Maple
in the computations, we have obtained the expressions for the coefficients of the
normal form (12).

The coefficient of order 6 of system (12) is ˛6 D d20.
We distinguish the following cases:

• Case d20 ¤ 0. By means of the change x D u
d320

, y D v

d420
and rescaling the time

by dt D d520dT, the system is transformed into

�
u0
v0
�

D
�
v2

u3

�
C XQc31u2v C u2

�
3u
4v

�
C XQc22u2v2 C Qd11uv

�
3u
4v

�
: (22)

where 0 D d
dT , Qc31 D c31

d20
, Qd11 D d11

d20
, Qc22 D c22

d20
.

From Theorem 3, system (22) admits an algebraic inverse integrating factor if
and only if its normal form is given by system (14), i.e. the coefficients ˛j, with
j ¤ 12k C 6, are zero, for all k.

The coefficient of order 7 of the normal form for system (22) is ˛7 D 7 Qd11�13Qc31.
If ˛7 D 0 .Qd11 D 13

7
Qc31/, the following coefficients are, up a positive multiplicative
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constant:

˛10 D � �Qc222 � .3Qc231 C 11
7

Qc31 � 2/Qc22 C 1
588

Qc31.1029Qc331 C 896Qc231 � 372Qc31 � 336/ ;
˛12 D � �Qc322 C . 15

2
Qc231 � 549

70
Qc31 � 41

425
/Qc222

�. 45
4

Qc431 � 1023
70

Qc331 � 45314
20825

Qc231 C 7547
5950

Qc31 C 6
17
/Qc22

C 1
1166200

Qc31.5685225Qc531 � 7796880Qc431 � 3296356Qc331
C1077816Qc231 C 637616Qc31 C 117600/


;

˛15 D . 4368
55

Qc31 � 49296
935

/Qc422 C .� 5824
11

Qc331 C 746616
935

Qc231 C 16743064
32725

Qc31 C 40608672
3108875

/Qc322
C. 61152

55
Qc531 � 412308

187
Qc431 � 13748072

6545
Qc331 C 1723218744

21762125
Qc231 C 37628458608

21762125
Qc31

C 3456128
621775

/Qc222 C .� 52416
55

Qc731 C 2039856
935

Qc631 C 87060662
32725

Qc531 � 1374070672
21762125

Qc431
� 77026810328

21762125
Qc331 � 56817681856

152334875
Qc231 C 1343749888

4352425
Qc31 C 1477632

17765
/Qc22

C 1456
5

Qc931 � 680706
935

Qc831 � 35263124
32725

Qc731 � 36588708
1978375

Qc631 C 278054454704
152334875

Qc531
C 561705613456

1066344125
Qc431 � 23540044736

96940375
Qc331 � 3968393728

30466975
Qc231 � 2955264

124355
Qc31:

It is easy to check that the three coefficients ˛10; ˛12 and ˛15 are zero simultaneously
if and only if Qc22 D Qc31 D 0. So, system (20) becomes

.Px; Py/T D .y2 C 3d20x
3; x3 C 4d20x

2y/T ;

i.e. case (i). This system possesses the algebraic inverse integrating factor .4y3 �
3x4/13=12.

• Case d20 D 0. In this case, ˛7 D d11.

We first assume that d11 ¤ 0. Therefore, the first coefficient of the normal form
different from zero is of order 7. From Theorem 3, system (22) admits an algebraic
inverse integrating factor if and only if its normal form is given by system (15), i.e.
the coefficients ˛j, with j ¤ 12k C 7, are zero, for all k.

The coefficient ˛10 of system (12) is, up multiplicative constant,

˛10 D d11c31.35c231 � 30c22 C 3d11/:

We analyze the following possibilities:

(a) c31 D 0. The coefficient ˛12 is 0 and

˛15 D d11c22.d11 C 2c22/
�
18d211 � 5c22d11 � 10c222


:
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We again distinguish three cases:

(a.1) c22 D 0. In this case, system (20) becomes

.Px; Py/T D .y2 C 3d11x
2y; x3 C 4d11xy2/T ;

i.e. case (ii). This system possesses the algebraic inverse integrating factor
.4y3 � 3x4/7=6.

(a.2) c22 D � 1
2
d11 ¤ 0. In this case, the system is

.Px; Py/T D .y2 C 4d11x
2y; x3 C 3d11xy2/T ;

i.e. case (iii).
Such system has the inverse integrating factor

��4y3 C 3x4 � 6d11x2y2

C3d211y
4
�7=6

.
(a.3) 18d211 � 5c22d11 � 10c222 D 0. The following coefficient ˛j; j ¤ 12k C 7,

non-null is, up positive multiplicative constant,

˛27 D �c22d11.d11 C 2c22/q.d11; c22/

q.d11; c22/ D 101640000c822 C 203280000c722d11 � 1447525800c622d
2
11

�2349158700c522d
3
11 C 2319593710c422d

4
11 C 3313232335c322d

5
11

�6331529024c222d
6
11 � 3604918332c22d

7
11 C 10328947200d811:

Imposing the condition (a.3), it has that ˛27 ¤ 0. Thus, the system does
not have an algebraic inverse integrating factor.

(b) c22 D 1
10

d11 C 7
5
c231, c31 ¤ 0. In this case,

˛12 D c331d11.21d11 C 17c231/:

Taking d11 D � 17
21

c231, we get, up positive multiplicative constant,

˛15 D �c1031 ¤ 0:

Therefore, the system does not have an algebraic inverse integrating factor.

Last, we assume that d11 D 0. In such case, the system is a Hamiltonian system
whose Hamiltonian function is � 1

3
y3C 1

4
x4Cc31x2yCc22x2y2. Such function is also

an algebraic inverse integrating factor of the system. This is case (iv). ut
The family (20) is a particular case of the family considered in [18, Theorem 7]

where the integrability of the system is studied. Giné [18] gives sufficient conditions
of integrability. Concretely, it proves that if b21 D a30 D a21 C b12 D 0 then
system (20) is integrable.
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As a direct consequence of Theorem 4, it has the following result which
characterizes the integrability of the systems (20):

Theorem 6 The integrable systems of the family (20) are

.Px; Py/T D .y2 C a30x
3 C a21x

2y; x3 � 3a30x
2y � a21xy2/T ;

(i.e. b21 C 3a30 D a21 C b12 D 0) for any real numbers a30 and a21.
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WENO Schemes for Multi-Dimensional Porous
Media Flow Without Capillarity

R. Bürger, F. Guerrero, M.C. Martí, and P. Mulet

Abstract In this work we derive a numerical technique based on finite-difference
WENO schemes for the simulation of multi-dimensional multiphase flows in a
homogeneous porous medium. The key idea is to define a compatible discretization
for the fluxes of the convective term in order to maintain their divergence-free
character not only in the continuous setting but also in the discrete setting, ensuring
the conservation of the sum of the saturations through time evolution. The one-
dimensional numerical technique is derived in detail for the case of neglected
capillarity effects. Numerical results obtained with one-dimensional and two-
dimensional standard tests of multiphase flow in a homogeneous porous medium
are shown.

1 Introduction

Mathematical models for multiphase flow processes in porous media under vertical
equilibrium have been used since the end of the nineteenth century in many different
physical situations such as oil and gas reservoirs [1, 5], water filtration [13] and
enhanced oil recovery [4]. All these applications have arisen in part due to the
development of suitable numerical models and efficient computational methods,
either using finite differences [2, 16] or finite elements [4].

The physical situation we are interested in study is the following: we consider
immiscible and incompressible N-phases fluid, therefore, phase densities and
viscosities of each phase are assumed to be constant, flowing through a rigid and
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homogeneous porous medium, with constant porosity and absolute permeability,
with no internal sources or sinks. We consider the phase velocities given by the
extension of Darcy’s law and we neglect the capillarity effects.

These assumptions lead to a closed system of partial differential equations for
the mass conservation that can be written as follows:

@u
@t

C @f.u/
@x

D @

@x

�
B.u/

@u
@x

�

where u is the vector of saturations, f.u/ is the fractional vector representing the
buoyancy effects, modeling the convective terms, and B.u/ is the capillary diffusion
tensor, which models diffusion terms. When capillary effects are neglected or small,
discontinuities and/or sharp gradients will develop in the numerical solutions that
call for sophisticated techniques to obtain accurate numerical simulation results.

High-Resolution Shock-Capturing (HRSC) schemes have been developed to
properly handle discontinuities in numerical simulations while obtaining high
order of resolution in smooth regions of the solution. Among the HRSC schemes,
the Weighted Essentially Non-oscillatory (WENO) finite-difference schemes have
become one of the most popular methods to approximate the solutions of hyperbolic
conservation laws. These schemes combine the upwinding framework, in which the
direction of propagation of the information on the computational mesh determines
the discretization of the equations on that mesh, with the WENO high-order upwind-
biased reconstructions, to control the creation and evolution of spurious numerical
oscillations.

Donat et al. [8, 9, 11] develop a progressive evolution towards the application of
finite-difference WENO schemes to one-dimensional multiphase porous media flow
processes. In [8] the one-dimensional vertical equilibrium two-phase model of [6] is
considered, assuming vertical equilibrium and using Darcy’s law [7], and it is shown
that WENO schemes can be successfully used to obtain accurate solutions of the
problem when neglecting capillary effects. When capillary effects are considered,
the stability restrictions for explicit numerical schemes are very restrictive, so the
use of Implicit-Explicit (IMEX) Runge-Kutta schemes is proposed to overcome the
stability restrictions on the time step due to the diffusive terms.

In [9, 11] the model is extended to three-phase flow and general N-phase flow,
respectively. It is proved that the IMEX-WENO scheme is suitable for solving the
physical problem independently of the magnitude of the considered capillary effects.

The model solved in [9, 11] is based on the fact that the assumption of vertical
equilibrium allows to explicitly express the derivative of the pressure appearing
in the constitutive mathematical model equations, due to Darcy’s law, in terms of
capillary pressures and other terms depending on the various fluid phases. While
this explicit expression of the pressure derivative is readily available in the one-
dimensional case, it is not possible to obtain a similar expression for the 2D model,
making impossible the extension of Donat et al.’s work to a multi-dimensional
framework. Since multiphase flows in porous media are of interest not only in a
one-dimensional framework, it is the primary purpose of this contribution to extend
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the use of finite-difference conservative WENO schemes to a multi-dimensional
version of this problem. This avoids using the explicit expression of the derivative
of the pressure. To this end, we propose to define a compatible data-dependent
discretization for the fluxes, valid for all equations of the system, that allows us
to explicitly obtain numerical approximations of the pressure and its derivative.

The paper is organized as follows. In Sect. 2, we derive the model equations
for multi-dimensional multiphase flow in porous media and we introduce the idea
of our proposed method in a multi-dimensional setting. Section 3 includes the
detailed definition of our semi-discrete formulation in the one-dimensional case.
Section 4 extends the method to the two-dimensional case. In Sect. 5 we perform
some numerical experiments on standard tests on multiphase flow in porous media,
both in 1D and 2D, to test the capabilities of the scheme proposed. Finally, in Sect. 6
we collect some conclusions and some proposals for future work.

2 Porous Media Flow

We denote by ui.x; t/, i D 1; : : : ;N, x 2 ˝ D .0; 1/d, t 2 R
C, the concentration (or

saturation) of the ith phase in the pore space, �i its density, assumed constant, and g
the gravity acceleration vector, g D .0; : : : ; 0;�9:81/T 2 R

d. Then, by Darcy’s law,
the velocity of the ith phase is given by

fi D �i.ui/.�ig � rpi/; fi 2 R
d; (1)

where pi is the phase pressure and

�i D kki.ui/

	�i
� 0

is the (normalized by porosity) relative mobility of the ith phase, assumed to be
function of their corresponding phase saturation only, �i D �i.ui/, where ki.ui/ is
the relative permeability of phase i, 0 � ki.ui/ � 1, k is the absolute permeability
of the porous medium, measuring the ability of the porous material to allow fluids
to pass through it, 	 is the (constant) porosity and �i is the viscosity of phase i,
assumed constant in our case.

Taking this into account, the continuity equations of all phases can be written as

0 D @ui

@t
C div .�i.ui/.�ig � rpi// ; i D 1; : : : ;N: (2)

These equations are supplemented with initial conditions and known normal fluxes
at the boundary, fi.x; t/ � n D qi.x; t/, for x 2 @˝ , with n denoting the unit normal
vector to the boundary pointing outwards˝ . In this paper we use qi D 0.
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The assumption that the fluid occupies the whole pore space yields that the
saturations satisfy

P
i ui D 1. Therefore, if we sum all the equations in (2) we

get:

0 D @
P

i ui

@t
C div

 
NX

iD1
�i.ui/.�ig � rpi/

!
:

If initially the fluid phases saturate the pores, i.e.,
P

i ui.x; 0/ D 1, for all x 2 ˝ ,
then we deduce that this will hold through time evolution, i.e.

P
i ui.x; t/ D 1, for

all x 2 ˝; t 2 R
C if and only if

0 D div

 
NX

iD1
�i.ui/.�ig � rpi/

!
: (3)

The equations in (2) and (3) form a system of N C 1 equations in the 2N unknowns
ui; pi, i D 1; : : : ;N, but they can be reduced to N equations in the 2N � 1 unknowns
u1; : : : ; uN�1, p1; : : : ; pN if we take into account that (3) is equivalent to u1 C � � � C
uN D 1, assuming that this holds initially. Therefore, N � 1 additional equations
have to be supplied in order to solve (2) and (3).

For this purpose capillary pressures Np1; : : : ; NpN�1 are introduced as the pressure
differences with respect to a reference non-wetting phase, which we take to be the
Nth phase:

Npi D pN � pi; i D 1 : : : ;N � 1:

Capillary pressures are specified as functions of the saturations, Npi D Npi.ui/.
Then, by this assumption, (3) can be written as follows, where the pressure

gradients of each fluid phase are expressed in terms of the corresponding capillary
pressure:

0 D div

 
NX

iD1
�i.ui/.�ig � rpN C r Npi.ui//

!
; (4)

�div .�.u/rpN// D �
NX

iD1
div .�i.ui/�ig/�

NX
iD1

div
�
�i.ui/Np0

i.ui/rui
�
;

where we define

�.u/ WD
NX

iD1
�i.ui/; u D .u1; : : : ; uN/:
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With appropriate boundary conditions for pN , the elliptic equation (4) can be solved
for pN , thus entailing a functional relation pN Œu�.

In 1D, (4), under the assumption of zero total boundary flux
P

i qi.t/ D 0, can
be explicitly solved as

rpN D
NX

iD1

�i.ui/

�.u/
.�ig C r Npi.ui//:

This yields a system of conservation laws for the concentrations ui, i D 1; : : : ;N:

0 D@ui

@t
C div

0
@�i.ui/

0
@�ig �

NX
jD1

�j.uj/

�.u/
.�jg C r Npj.uj//C r Npi.ui/

1
A
1
A :

(5)
In [9] it was proved that the diffusive part of (5) is weakly parabolic (i.e., the

eigenvalues of the diffusion tensor are non-negative), while the convective part
may have non-hyperbolic regions. In that paper, the authors propose the use of
a high-order WENO schemes, developed by Liu et al. in [15] and improved by
Jiang and Shu in [12], to discretize the convective part and to deal with the steep
gradients that may appear during the process. To overcome the severe stability
restrictions associated with explicit schemes for parabolic equations, an Implicit-
Explicit (IMEX) strategy, where the parabolic terms are handled by an implicit
discretization, is proposed and it is shown that it provides highly accurate and
efficient numerical solutions.

Unfortunately, the work developed in [8, 9, 11] can not be extended to a
multidimensional framework, as Eq. (4) can not be explicitly solved in more than
one dimension. In order to extend the use of finite-difference WENO schemes to
numerically solve multidimensional multiphase flow problems in porous media, we
propose the use of finite-difference WENO schemes to numerically solve Eq. (2),
using a compatible discretization for the fluxes fi in (1) that preserves the divergence-
free character of the numerical fluxes, i.e., we require Eq. (3) to be satisfied also
in the discrete setting. This property is necessary if one wants to assure that the
conservation of the concentration holds during time evolution, i.e.,

P
i ui.x; t/ D

1; 8t � 0.
For the sake of simplicity, to define the compatible discretization of the fluxes,

we will henceforth neglect the effects of capillarity, i.e. we assume zero capillary
pressures Npi D 0, so (4) is written for p WD pN as

� div .�.u/rp// D �
NX

iD1
div .�i.ui/�ig/ : (6)

Specifically, we consider a uniform Cartesian computational mesh on ˝ D
.0; 1/d, that contains md points, and, for i D 1; : : : ;N, we denote by vi.t/ 2 R

m�����m
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the d-dimensional matrix containing approximations of the sought solution at the
mesh points xj, j 2 N

d, vi;j.t/ � ui.xj; t/.
Let DhŒv� be a data-dependent discretization of �div (like that provided by finite-

difference WENO schemes, see the next section for further details), i.e., a linear
operator:

DhŒv�W
�
R

m�����m
�d ! R

m�����m:

Since the adjoint operator of �div is r, if we consider DhŒv� � �div, then the
discretization that we propose for r D .�div/� should be rhŒv� D DhŒv�

�,

DhŒv�
�WRm�����m ! �

R
m�����m

�d
:

Since the operator DhŒv� is linear, using the same argument that led us to (6), we
obtain a compatible spatial semi-discretization:

0 D v0
i.t/ � DhŒv�Qfi

0 D
 X

i

vi.t/

!0
� DhŒv�

X
i

Qfi; (7)

Qfi D �i.v/.�ig � DhŒv�
�ph/ � fi

where vi D .vi;j.t//, j 2 N
d and ph is the d-dimensional matrix that approximates

the function p on the computational mesh.
If
P

i vi;j.0/ D 1, then we deduce that
P

i vi;j.t/ D 1, for all t 2 R
C if and only

if

0 D DhŒv�
X

i

Qfi (8)

and

DhŒv��.v/DhŒv�
�ph D

X
DhŒv��i.v/�ig: (9)

Here we have used the notation �.v/ for a diagonal matrix such that .�.v/q/j D
.
P

i �i.vi;j//qj, understanding that � and �i act in a pointwise manner on their matrix
arguments. Now, (9) is a data-dependent discretization of (6), with a matrix which
is symmetric and positive semidefinite, since the elements in the diagonal of �.v/
are non-negative. The goal of this work is to use an ODE solver to solve (7) together
with the elliptic pressure-velocity equation (9).
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Since there are more details that have to be taken into account, for instance,
upwinding and numerical viscosity, we detail in the next section the operator form
in a one-dimensional setting.

3 One-Dimensional Porous Media Flows

We consider a uniform grid on Œ0; 1� defined by the cell centers xj D �
j � 1

2

�
h; j D

1; : : : ;m, with cell boundaries given by xjC 1
2

D xj C h
2
, where h D 1=m is the

uniform grid spacing, so that 0 D x 1
2
; 1 D xmC 1

2
.

To obtain high-order finite-difference conservative schemes for the approximate
solution of (2), we use Shu and Osher’s technique [17], for which the spatial
derivative in (2) can be exactly obtained by a conservative finite difference formula
that involves values of 'i at the cell boundaries,

fi.u.x//x D 1

h

�
'i

�
x C h

2

�
� 'i

�
x � h

2

��
; (10)

where the functions 'i are implicitly defined as

fi.u.x// D 1

h

Z xC h
2

x� h
2

'i.�/d�; i D 1; : : : ;N: (11)

Then we can discretize the spatial derivative in (2) as:

. fi.u//x.xj/ D
Ofi.xjC 1

2
/ � Ofi.xj� 1

2
/

h
C O.hr/ (12)

where Ofi is a highly accurate approximation to 'i obtained from known grid values
of fi.u/ [which are cell averages of 'i by (11)] on a stencil around xjC 1

2
such that

'i

�
xjC 1

2

�
D Ofi

�
xjC 1

2

�
C e

�
xjC 1

2

�
hr C O.hrC1/, for a locally Lipschitz continuous

function e.
We will compute the numerical fluxes Ofi;jC 1

2
D Ofi.xjC 1

2
/, i D 1; : : : ;N, using a

component-wise finite-difference scheme as:

Ofi;jC 1
2

D RC. f C
i;j�rC1; : : : ; f

C
i;jCr�1; xjC 1

2
/C R�. f �

i;j�rC2; : : : ; f �
i;jCrI xjC 1

2
/; (13)

where the functions fi̇ define a flux splitting for fi (necessary for stability purposes),
fi̇;k D fi̇ .xk/ and R˙ are upwind-biased .2r � 1/-order WENO reconstruction
operators, that we next describe.

In a general setting, given some cell averages Ngl [which are f C
i;l in (13)] of a

function g [which corresponds to 'i in (11)] on a stencil around the point xjC 1
2
,
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a .2r � 1/-order WENO reconstruction of g.xjC 1
2
/, is determined by a convex

combination:

q.xjC 1
2
/ D

r�1X
kD0

wk;jp
r
kCj.xjC 1

2
/;

where pr
kCj.x/ is the .r�1/th degree polynomial reconstruction defined on the stencil

Sk D fxjCk�rC1; : : : ; xjCkg, k D 0; : : : ; r � 1, i.e.,

Z x
lC 1

2

x
l� 1

2

g.x/dx D Ngl; l D j C k � r C 1; : : : ; j C k;

satisfying pr
kCj.xjC 1

2
/ D g.xjC 1

2
/ C O.hr/ and wk;j are weight functions which

depend on the smoothness of the function g on the corresponding stencil, so that
polynomials corresponding to singularity-crossing stencils should have a negligible
contribution to the convex combination.

For instance, for the third-order WENO scheme, named WENO3, that corre-
sponds to r D 2, one can write the left-biased WENO reconstruction appearing
in (13), as:

RC. f C
i;j�1; f

C
i;j ; f

C
i;jC1; xjC 1

2
/ D q.xjC 1

2
/ D

wC
0;j

�
�1
2

f C
i;j�1 C 3

2
f C
i;j

�
C wC

1;j

�
1

2
f C
i;j C 1

2
f C
i;jC1

�
D

�C
�1;j f C

i;j�1 C �C
0;j f C

i;j C �C
1;j f C

i;jC1;

where the coefficients �C
l;j , l D �1; 0; 1 are defined as linear combinations of the

corresponding WENO3 weight functions wC
k;j, j D 1; : : : ;m; k D 0; 1 and, for

this left-biased reconstruction, �C
2;j D 0. The same can be done for the right-biased

WENO reconstruction, using the weights w�
k;j to define the coefficients ��

l;j ; l D
�1; : : : ; 2, where, in this case, ���1;j D 0. As it can be readily seen in this example,
in general one has

rX
lD�rC1

�l̇;j D
r�1X
kD0

wk̇;j D 1: (14)

In order to avoid the phase dependence on the definition of the parameters
�l̇;j , we are using weights based on component-wise global smoothness indicators
defined by Levy et al. in [14]. These smoothness indicators, proposed to improve
the resolution of the scheme near the discontinuities, are defined as an average
of the smoothness indicators defined in [12] and are valid for all the components
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of the system. We will use the values of v instead of the values of f ˙.v/ in their
computation. We refer the reader to [12, 15] for further details on WENO schemes.

With these considerations, the numerical flux of a component-wise finite-
difference .2r � 1/-WENO scheme is given by

Ofi;jC 1
2

D
X
l2S

�C
l;j

Qf C
i;jCl C ��

l;j
Qf �
i;jCl; (15)

with the coefficients �l̇;j D �l̇ .vSCj/, S D f�r C 1; : : : ; rg, defined as linear
combinations of the corresponding .2r � 1/-WENO weight functions and where
vSCj denotes the N�2r matrix whose entries are .vS Cj/i;k D vi;j�rCk, i D 1; : : : ;N,
k D 1; : : : ; 2r.

In the definition of the numerical fluxes (15) we employ a Lax-Friedrichs flux
splitting:

Qfi̇;j D 1

2

�
fi̇;j ˙ ˛vi;j

�
;

fi̇;j D �i;j.�ig � rj̇ p/;

rj̇ p D rhŒv�j̇ p D .rhŒv�
˙p/j; �i;j D �i.vi;j/

(16)

(i.e., rhŒv�j̇ is the jth row of rhŒv�
˙) with the parameter ˛ being an upper bound of

the eigenvalues of f 0.v/, and where the linear operators p 7! rhŒv�
˙p approximating

rp remain to be determined.
Using (15) and (16), we can write the numerical flux for each phase as

Ofi;jC 1
2

D 1

2

rX
lD�rC1

�
�C

j;l f C
i;jCl C ��

j;l f
�
i;jCl C ˛.�C

j;l � ��
j;l /ui;jCl

�
: (17)

For the computation of some numerical fluxes near the boundary, such as Ofi; 12 or
Ofi;mC 1

2
, the knowledge of some values of the fluxes fi;j and saturations ui;j outside

the computational domain (for j … f1; : : : ;mg) is required. To define these flux
values we implement zero-flux boundary conditions fi.0/ D fi.1/ D 0 via linear
extrapolation, based on [3], as follows:

fi̇;�j D �fi̇;jC1;

fi̇;mCjC1 D �fi̇;m�j; j D 0; : : : ; r � 1:

For the saturations we use outflow boundary conditions:

vi;�j D vi;jC1;

vi;mCjC1 D vi;m�j; j D 0; : : : ; r � 1:
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With the notation for m C 1 vectors zi, i D 1; : : : ;N

zi;j D Ofi;jC 1
2
; j D 0; : : : ;m

and (16), (17), the numerical flux can be written in matrix-vector form as follows:

zi D � CE�i.�ige � rC
h p/C � �E�i.�ige � r�

h p/C ˛.� C � � �/Fvi

D g.� C C � �/E�i�ie � .� CE�irC
h C � �E�ir�

h /p C ˛.� C � � �/Fvi;

where we have introduced � ˙ D � ˙Œv� as the .m C 1/ � .m C 2r/ matrices given
by

� ˙
jC1;jClCr D 1

2
�j̇;l ; j D 0; : : : ;m; l D �r C 1; : : : ; r: (18)

The matrix �i D �iŒv� is the diagonal matrix with �iŒv�j;j D �i.vi;j/ and e D
.1; : : : ; 1/T 2 R

m.
The .mC2r/�m matrices E;F have been introduced to implement the boundary

conditions for fluxes and saturations respectively in matrix/vector form. These
matrices are defined to introduce the values of the boundary fluxes and saturations
into the vector of fluxes or saturations, respectively. For example, for WENO3
scheme, that corresponds to r D 2, these matrices are

E D ��e2; �e1; e1; : : : em; �em; �em�1
T
; F D �

e2; e1; e1; : : : em; em; em�1
T
;

where ei is the ith vector in the canonical basis of Rm.
We know that the action of the operator DhŒv� � �div on fi, using the definition

of zi, is described as follows:

.DhŒv� fi/j D �
Ofi;jC 1

2
� Ofi;j� 1

2

h
D zj�1;i � zj;i

h
; j D 1; : : : ;m: (19)

Then, if we introduce Dm 2 R
m�.mC1/ as

Dm D 1

h

2
664

�1 1

0 �1 1

: : : : : : : : : : : : : : :

�1 1

3
775 ;

and use the definition of the vector zi, we can rewrite (19) as

DhŒv� fi D � Dmzi

D � gDm.�
C C � �/E�i�ie � .�Dm�

CE�irC
h � Dm�

�E�ir�
h /p

� ˛Dm.�
C � � �/Fvi;
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so that the incompressibility equation (8) corresponds to:

0 DDhŒv�
X

i

fi

D � gDm.�
C C � �/E

X
i

�i�ie � .�Dm�
CE�rC

h � Dm�
�E�r�

h /p

� ˛Dm.�
C � � �/F

X
i

vi;

where � D P
i�i. Taking into account that

P
i vi D e and � ˙Fe D 1

2
e from (14)

and (18), we can write this equation as

.�Dm�
CE�rC

h � Dm�
�E�r�

h /p D �gDm.�
C C � �/E

X
i

�i�ie:

If we require that the matrix of this system be symmetric and positive semidef-
inite, then we have to take r˙ D r˙Œv� to be proportional to .�Dm�

˙E/T .
From (18), the right scaling yields:

r˙ D 2.�Dm�
˙E/T :

To summarize, the spatial semidiscretization of the problem can be written as

v0
i D biŒv� � AiŒv�pŒv� � ˛Dm.�

C � � �/Fvi;

AŒv�pŒv� D bŒv�; AŒv� D
X

i

AiŒv�; bŒv� D
X

i

biŒv�;

where

AiŒv� D rCŒv�T�irCŒv�C r�Œv�T�ir�Œv�;

biŒv� D g�i.rCŒv�C r�Œv�/T�iŒv�e;

and

DhŒv� D .rŒv�/T D
�rCŒv�C r�Œv�

2

�T

:

The spatially-discretized scheme can be solved by an appropriate ODE solver. In
this work we use Shu and Osher’s TVD Runge-Kutta 3 method proposed in [17],
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that can be written as:

v
.1/
i D vn

i ��tD.vn
i /;

v
.2/
i D 3

4
vn

i C 1

4
v
.1/
i � 1

4
�tD

�
v
.1/
i

�
;

vnC1
i D 1

3
vn

i C 2

3
v
.2/
i � 2

3
�tD

�
v
.2/
i

�
;

where D.v/i D biŒv� � AiŒv�pŒv� � ˛Dm.�
C � � �/Fvi and vn

i � vi.tn/; i D
1; : : : ;N.

4 Two-Dimensional Porous Media Flows

In this section we present the ideas for a two-dimensional extension of the scheme
presented in the previous section for 1D. We show the results obtained by the
component-wise WENO scheme.

For simplicity, we assume a Cartesian mesh .xi; yj/ on ˝ D .0; 1/2, with xi D
yi D .i � 1

2
/h; i D 1; : : : ;m; h D 1=m. Let us denote fi D . f x

i ; f
y
i /, g D

.0;�9:81/ D .gx; gy/:

f s
i D �i.ui/

�
�ig

s � @p

@s

�
; s D x; y:

Denote by ˛x; ˛y upper bounds of the eigenvalues of . f x/0 and . f y/0, respectively.
We order the nodes in (Cartesian) row major order, i.e. the node .xi; yj/ is at

position .i; j/ WD . j � 1/m C i.
From an extended .mC2r/�.mC2r/ matrix v, we define m.mC1/�m.mC2r/

matrices � x;˙; � y;˙ whose nonzero entries are given by

� Œv�
x;˙
. jC1;k/;. jClCr;k/

D � Œv�
x;˙
jC1C.k�1/.mC1/;jClCrC.k�1/.mC2r/ D

D 1

2
�l̇ .vSCj;k/I j D 0; : : : ;mI k D 1; : : : ;mI

� Œv�
y;˙
. j;k/;. j;kClC1/ D � Œv�

y;˙
jCkm;jC.kClC1/m D 1

2
�l̇ .vj;SCk/

j D 1; : : : ;mI k D 0; : : : ;m

with l D �r C 1; : : : ; r.
The two-dimensional extension of the proposal for the r operators is

rx;˙Œv� D 2.�Dx
m�

x;˙Œv�Ex/T ; ry;˙Œv� D 2.�Dy
m�

y;˙Œv�Ey/T ;



WENO Schemes for Multi-Dimensional Porous Media Flow Without Capillarity 313

where

Dx
m D Im ˝ Dm; Ex D Im ˝ E; Dy

m D Dm ˝ Im; Ey D E ˝ Im:

Analogously, we define:

Fx D Im ˝ F; Fy D F ˝ Im:

These matrices Ex;Ey;Fx;Fy correspond to the two-dimensional extension of
the boundary conditions already shown in Sect. 3 for the one-dimensional case. The
boundary conditions for the x-component of the fluxes are f x

i .0; y/ D f x
i .1; y/ D 0,

then we have:

f x
iI�j;k D �f x

iIjC1;k;

f x
iImCjC1;k D �f x

iIm�j;k; j D 0; : : : ; r � 1:

The boundary conditions for the y-component of the fluxes are f y
i .x; 0/ D f y

i .x; 1/ D
0. Then we have

f y
iIj;�k D �f y

iIj;kC1;

f y
iIj;mCkC1 D �f y

iIj;m�k; k D 0; : : : ; r � 1:

For the saturations we use outflow boundary conditions:

uiI�j;k D uiIjC1;k;

uiImCjC1;k D uiIm�j;k; j D 0; : : : ; r � 1;

uiIj;�k D uiIj;kC1;

uiIj;mCkC1 D uiIj;m�k; k D 0; : : : ; r � 1:

Therefore, the spatial semi-discretization for viI. j;k/.t/ � ui.xj; yk; t/ is given by

v0
i D biŒv� � AiŒv�pŒv��˛xDx

m.�
x;C � � x;�/Fxvi � ˛yDy

m.�
y;CŒv� � � y;�Œv�/Fyvi;

AŒv�pŒv� D bŒv�; AŒv� D
X

i

AiŒv�; bŒv� D
X

i

biŒv�;

(20)
where

AiŒv� D
X

signD˙

X
varDx;y

rvar;signŒv�T�iŒv�rvar;signŒv�;

biŒv� D �i

X
signD˙

X
varDx;y

gvarrvar;signŒv�T�iŒv�e;
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with the diagonal m2 � m2 matrix �iŒv� given by

�iŒv�. j;k/;. j;k/ D �i.viIj;k/:

5 Numerical Results

5.1 One-Dimensional Experiments

To test the numerical results obtained with the newly developed scheme, we consider
the same test problem as in [9, 11], which corresponds to a simulation associated to
a problem involving water filtration in a vertical column of porous soil containing
oil, gas and water. The initial conditions for the simulation are as follows:

u D .uw; ug; uo/ D
	
.1; 0; 0/; 0 � x � 0:5I
.0:2; 0:2; 0:6/; 0:5 < x � 1:0:

The subindices w, g and o refer to water, gas and oil respectively. The viscosities
and densities considered along all the numerical tests are .�w; �g; �o/ D .1; 1; 1/

and .�w; �g; �o/ D .1; 0:0012; 0:85/ respectively.
The numerical solutions have been obtained with WENO3 reconstructions and

the third-order TVD-Runge-Kutta ODE solver, with a mesh with m D 512 nodes.
The results obtained by our proposed numerical scheme are compared with those
obtained by the scheme developed in [9], in which the pressure gradient is obtained
by an analytical expression in terms of the capillary pressures and the relative
mobilities of the different fluid phases.

As it can be appreciated in Figs. 1 and 2 the numerical solution obtained when
using our proposed scheme, labeled WENO3-RK3, is very similar to the solution
obtained with the scheme by Donat et al. [9], labeled DGM 2014, even near the
boundaries and sharp profiles.

5.2 Two-Dimensional Experiments

Because of Neumann boundary conditions, the equation AŒv�pŒv� D bŒv� in (20) has
many solutions, differing only in the addition of a constant, and therefore they all
give the same discretized gradient. One can see that the system resulting of removing
one equation and setting to zero the corresponding unknown yields a solution of
the original system. We have used the conjugate gradient method with an ILU(0)
preconditioner [10] on this reduced system. We are aware that more sophisticated
and efficient alternatives (such as those based on multigrid techniques) could be
applied, but this is out of the scope of this contribution.
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Fig. 1 Water, gas and oil saturation numerical solutions at time T D 1:0, m D 512, k=h D 0:5
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Fig. 2 Enlarged regions of the water saturation numerical solution at time T D 1:0, m D 512,
k=h D 0:5
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5.2.1 Test Problem 1

To test our two-dimensional WENO scheme we propose the next experiment. It
represents the two dimensional version of the test problem shown in [9, 11]. Here
y D 0 represents the top of the domain and y D 1 its bottom.

The initial conditions for water, gas and oil saturations on the domain ˝ D
.0; 1/2 are:

u D .uw; ug; uo/.x; y/ D
	
.1; 0; 0/ .x; y/ 2 Œ0:25; 0:75�� Œ0; 0:5�
.0:2; 0:2; 0:6/ .x; y/ … Œ0:25; 0:75�� Œ0; 0:5�:

Figure 3 shows the evolution over time given by our two-dimensional WENO
scheme. We are using WENO3 with the values of the numerical viscosities ˛x D
˛y D 0:8 empirically determined in order to obtain stable solutions, but not too
softened near discontinuities.

The global behavior of the numerical solution seems to be physically correct.
Water flows downwards with a widening of the region dominated by water saturation
as time increases and an accumulation in the bottom of the domain. We can also
observe how the gas is accumulating very fast at the top of the domain as time
increases. The behavior of the oil is slightly different: it flows downwards near the
top and upwards near the bottom of the domain.

In Table 1 we show the computational times needed to obtain the numerical
solution at T D 1 for some mesh sizes m�m. A logarithmic least squares adjustment
applied to the table yields that the computational time is � 10�5:33m3:77. Let us
analyze this asymptotic computational time: The number of computations in each
time step on an m � m spatial grid is O.m2/C the cost of solving the sparse
m2 � m2 system of linear equations appearing in (20). The computational cost
of a direct solver on this system with bandwidth m is O.m3/ and, on the other
side, the computational cost of a multigrid solver could be not lower than O.m2/.
Since there are O.m/ time steps, the computational cost with direct solves would
be O.m/

�
O.m2/ C O.m3/

� D O.m4/, whereas for multigrid techniques could be
as low as O.m/

�
O.m2/ C O.m2/

� D O.m3/. The exponent 3:77 in the previous
adjustment suggests that there is some room for improving the performance of the
elliptic solver.

Table 1 Computation times
for the WENO3 scheme for
test problem 1 at T D 1:0

m CPU time (s)

50 12:9

100 142:5

200 2109:2

400 31; 955:8
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Fig. 3 Water, gas and oil saturations (from top to bottom) numerical solution for the test problem 1
at time T D 1:0 (left) and T D 2:0 (right), m D 200, k=h D 0:5
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Fig. 4 Water, gas and oil saturations numerical solution for the test problem 2 at time T D 1:0,
m D 200, k=h D 0:5

5.2.2 Test Problem 2

This experiment represents a simplified version of the evolution over time of a
bubble of gas and oil trapped in the middle of an aquifer with pure water. The initial
conditions are:

u D .uw; ug; uo/.x; y/ D
	
.0; 0:5; 0:5/ .x; y/ 2 Œ0:25; 0:75�� Œ0:25; 0:75�
.1; 0; 0/ .x; y/ … Œ0:25; 0:75�� Œ0:25; 0:75�:

As in test problem 1, we are using WENO3 with ˛x D ˛y D 0:8.
The evolution over time is shown in Fig. 4 for T D 1. The main behavior

observed is that of the gas. We observe how the gas leaves the bubble very soon
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reaching the top of the domain and accumulating there. On the other hand, oil seems
to concentrate in the intermediate region and water occupies the regions left by gas
and oil.

6 Conclusions

In this paper we have presented a numerical scheme that uses finite-difference
WENO schemes for the simulation of multi-dimensional multi-phase flow problems
in vertical equilibrium in a homogeneous porous medium. We have presented
the derivation of the scheme in the one-dimensional setting using WENO-based
numerical fluxes that yields divergence-free numerical fluxes not only on the
continuous setting but also on the discrete setting. We have showed some one-
dimensional numerical results to show that the behavior of the numerical solutions
obtained with the WENO-based fluxes is physically correct and very close to the
solution obtained with a scheme using an analytical expression of the pressure
gradient.

We have presented a two-dimensional extension of the scheme showing that
the numerical results obtained seem to be as good as the ones obtained in the
one-dimensional setting, physically speaking, and preserving the divergence-free
character of the continuous model equations.

However, this is a work in progress and there are some aspects that need to be
improved: the computational time needed to obtain the numerical solutions needs
to be diminished to test the scheme with finer meshes and we have to determine
appropriate values for the numerical viscosities, ˛x and ˛y in the Lax-Friedrichs
splitting, for both f x and f y fluxes.

Finally, the extension of the scheme to deal with non-zero capillary pressures,
applying IMEX schemes, is currently under investigation.

Acknowledgements This research was partially supported by Ministerio de Economía y Compet-
itividad under grant MTM2011-22741 and MTM2014-54388-P with the participation of FEDER.
M.C. Martí and R. Bürger acknowledge support by CONICYT Postdoctoral 2015 Fondecyt project
3150140. R. Bürger acknowledges support by Fondecyt project 1130154; Conicyt project Anillo
ACT1118 (ANANUM); Red Doctoral REDOC.CTA, MINEDUC project UCO1202 at Universidad
de Concepción; BASAL project CMM, Universidad de Chile and Centro de Investigación en
Ingeniería Matemática (CI2MA), Universidad de Concepción; and Centro CRHIAM Proyecto
Conicyt Fondap 15130015.

References

1. Aarnes, J., Kippe, V., Lie, K.A., Rustad, A.B.: Modelling of multiscale structures in flow
simulations for petroleum reservoirs. In: Hasle, G., Lie, K.A. (eds.) Geometric Modeling,
Numerical Simulation and Optimization: Applied Mathematics at SINTEF. Springer, Berlin
(2007)



320 R. Bürger et al.

2. Aziz, K., Settari, A.: Petroleum Reservoir Simulations. Applied Science Publishers, London
(1979)

3. Baeza, A., Mulet, P., Zorío, D.: High order boundary extrapolation technique for finite
difference methods on complex domains with cartesian meshes. J. Sci. Comput. 66(2), 761–
791 (2016). doi:10.1007/s10915-015-0043-2

4. Chen, Z., Huan, G., Ma, Y.: Computational Methods for Multiphase Flows in Porous Media.
Society for Industrial and Applied Mathematics, Philadelphia (2006)

5. Christie, M.A.: Upscaling of reservoir simulation. J. Pet. Technol. 48(11), 1004–1010 (1996)
6. Cunha, M.C.C., Santos, M.M., Bonet, J.E.: Buckley-Leverett mathematical and numerical

models describing vertical equilibrium process in porous media. Int. J. Eng. Sci. 42, 1289–
1303 (2004)

7. Darcy, H.: Les fontaines publiques de la ville de Dijon. Dalmont, Paris (1856)
8. Donat, R., Guerrero, F., Mulet, P.: IMEX WENO schemes for two-phase flow vertical

equilibrium processes in a homogeneous porous medium. Appl. Math. Inf. Sci. 7(5), 1865–
1878 (2013)

9. Donat, R., Guerrero, F., Mulet, P.: Implicit-Explicit methods for models for vertical equilibrium
multiphase flow. Comput. Math. Appl. 68(3), 363–383 (2014)

10. Golub, G.H., van Loan, C.F.: Matrix Computations, 4th edn. Johns Hopkins University Press,
Baltimore, MD (2013)

11. Guerrero, F., Donat, R., Mulet, P.: Solving a model for 1-D three phase flow vertical equilibrium
processes in a homogeneous porous medium by means of a weighted essentially non oscillatory
numerical scheme. Comput. Math. Appl. 66, 1284–1298 (2013)

12. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput.
Phys. 126(1), 202–228 (1996)

13. Juanes, R.: Displacement theory and multiscale numerical modeling of three-phase flow in
porous media. Ph.D. Thesis, University of Berkeley (2003)

14. Levy, D., Puppo, G., Russo, G.: Central weno schemes for hyperbolic systems of conservation
laws. Math. Model. Numer. Anal. 33, 547–571 (1999)

15. Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys.
115(1), 200–212 (1994)

16. Peaceman, D.W.: Fundamentals of Numerical Reservoir Simulation. Elsevier, New York
(1977)

17. Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing
schemes, ii. J. Comput. Phys. 83, 32–78 (1989)



Time Dependent Scattering in an Acoustic
Waveguide Via Convolution Quadrature
and the Dirichlet-to-Neumann Map

Li Fan, Peter Monk, and Virginia Selgas

Abstract We propose to use finite elements and BDF2 time stepping to solve
the problem of computing a solution to the time dependent wave equation with
a variable sound speed in an infinite sound hard pipe (waveguide). By using the
Laplace transform and an appropriate Dirichlet-to-Neumann (DtN) map for the
problem, we can prove that this problem can be reduced to a variational problem
on a bounded domain that has a unique solution. This solution can be discretized
in space using finite elements (projecting into a Fourier space on the two artificial
boundaries to allow the rapid calculation of the DtN map). We discretize in time
using the Convolution Quadrature (CQ) approach and in particular BDF2 time-
stepping. Thanks to CQ we obtain a stable and convergent discretization of the DtN
map, and hence of the fully discrete BDF2-finite element scheme without a CFL
condition. We illustrate the method with some numerical results.

1 Introduction

Simulating sound propagation in pipes (also called waveguides) requires to solve
the wave equation in a sound hard acoustic waveguide. In this paper we consider
the use of a finite element time domain approach to the problem. We suppose
that the waveguide encloses a bounded perturbation assumed to be a region in
which the sound speed differs from the background speed in the rest of the
waveguide. We refer to the perturbation as the scatterer. A sound wave is incident
on this perturbation and produces a scattered wave that needs to be computed. For
simplicity we will work in two spatial dimensions, but the algorithm we develop can
be used for a true three dimensional pipe with obvious modifications.

L. Fan • P. Monk
Department of Mathematical Sciences, University of Delaware, Newark, DE 19716, USA
e-mail: fanli0218@gmail.com; monk@udel.edu

V. Selgas (�)
Departamento de Matemáticas, Universidad de Oviedo, EPIG, 33203 Gijón, Spain
e-mail: selgasvirginia@uniovi.es

© Springer International Publishing Switzerland 2016
F. Ortegón Gallego et al. (eds.), Trends in Differential Equations and Applications,
SEMA SIMAI Springer Series 8, DOI 10.1007/978-3-319-32013-7_18

321

mailto:fanli0218@gmail.com
mailto:monk@udel.edu
mailto:selgasvirginia@uniovi.es


322 L. Fan et al.

Fig. 1 Cartoon of the main
geometric elements used in
our analysis. Finite elements
are used in the domain P0
which includes the scatterer
D. The artificial boundaries
are ˙

�

and ˙
C

Let us consider a waveguide P D .0;H/ � R, containing an obstacle D which is
assumed to be bounded and have a Lipschitz continuous boundary. Denote by n the
unit outward normal on @P, i.e. n D .�1; 0/ on x1 D 0 and the opposite on x1 D H.
Similarly, we use the notation nD for the unit outward normal on @D. Figure 1 shows
a graphic of the computational domain.

The refractive index n.x/ is assumed to be real and frequency independent, and
such that n.x/ D 1 if x 2 P n D and n.x/ 6D 1 if x 2 D. Later in the paper we
will comment on impenetrable scatterers and frequency dependent coefficients. The
speed of sound in the background waveguide outside D is a constant c0.

We suppose that a given incident field uinc hits the scatterer. The incident field is
a bounded smooth solution of the background wave equation so that it satisfies the
wave equation in the free waveguide:

1

c20
@2ttuinc D �uinc in R � P ;

@nuinc D 0 on R � @P ;

where @2tt denotes the second time derivative, and @n denotes the normal derivative.
The boundary condition models a sound hard wall. In the sequel we assume that the
incident field uinc does not hit the scatterer D before t D 0, that is,

uinc D @tuinc D @2ttuinc D 0 in D; for t � 0 : (1)

In the time domain, the wave equation and boundary conditions for the total wave
u and the scatterer field usc are

n2

c20
@2ttu D �u in P; for t > 0 ;

u D uinc C usc in P; for t > 0 ;

@nu D 0 on @P; for t > 0 ;

u D 0 in P; at t D 0; (2)

@tu D 0 in P; at t D 0:
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Here n is understood to be a function of positions x. There is no need for a condition
at infinity because usc propagates with finite velocity and so for any t > 0 there
is a distance M.t/ such that usc.t; x/ D 0 for any x D .x1; x2/ with x1 2 .0;H/,
jx2j > M.t/. Our problem is to approximate u (or equivalently usc) and we shall
use finite elements in space because they can approximate general boundaries of the
scatterer easily.

To use finite elements we introduce a computational domain P0 WD .0;H/�.0;L/
for L > 0 big enough to enclose the scatterer, that is, such that D � P0 (see Fig. 1).
Then we can cover P0 with finite elements (in our case using triangles). The only
obstacle to a standard finite element approach in space is the need for a special
artificial boundary condition at x2 D 0 and x2 D L that takes care of the infinite
waveguide on either side of P0. This can be constructed using the Perfectly Matched
Layer (PML) (see [9]); in fact, provided the PML is chosen to handle both traveling
and evanescent modes in the solution this can be very successful. However the PML
is difficult to analyze and requires an informed choice of the PML parameters so
instead we propose to use a time domain Dirichlet-to-Neumann (DtN) map on the
artificial interfaces x2 D 0 and x2 D L following the approach of [6]. With this
approach we need to store the solution on the artificial boundaries for all time steps,
but, at least at low frequencies and in two dimensions this is not a crushing problem
since only a few modes need to be stored for each time step.

We propose to use implicit time stepping to take care of possible refined meshes
in some regions of the simulations, as well as to allow for changes in refractive index
from place to place (this would change the CFL of an explicit scheme from place
to place). In particular we shall use the Laplace transform to analyze the truncated
problem (cf. [1, 7]) and convolution quadrature (cf. [10]) to prove that a family
of time stepping schemes including Backward Differentiation Formula 2 (BDF2)
give rise to stable and convergent time stepping method. An added bonus is that,
at least before spatial discretization, the method shows how to construct perfect
discrete DtN maps matched to the time stepping scheme. An alternative approach
using more standard time stepping and integral equations on the interfaces might be
constructed along the line of [3], but we do not pursue that here.

The paper proceeds as follows. In the next section we give details of how
to reduce the problem to a family of Laplace domain equations posed on the
computational domain P0. Then in Sect. 3 we summarize the analysis of the Laplace
domain problems, and then relate these back to a fully discrete time stepping scheme
using convolution quadrature. The fully discrete scheme is shown to be optimally
convergent. Then in Sect. 4 we provide a few numerical results from our method
implemented using the multi-frequency approach of Banjai and Sauter proposed
in [2].
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2 Reduction to a Bounded Domain

It is convenient to perform the initial analysis using the scattered field usc D u � uinc

which satisfies

n2

c20
@2ttusc D �usc C F in P; for t > 0 ;

@nusc D 0 on @P; for t > 0: (3)

Above, we have set

F D 1

c20
.1 � n2.x//@2ttuinc :

Notice that F D 0 outside D, for any t 2 R, since n.x/ D 1 there. Furthermore,
F D 0 in the whole P0 for any t � 0 according to (1). On the other hand, (1) also
suggests that the scattered field is causal and, hence, we impose the initial conditions

usc D @tusc D 0 in P; at t D 0:

In order to analyze (3), we transform it to the Laplace domain. More precisely,
for any smooth and causal function f .t/, the Laplace transform we use is defined as

L Œ f �.s/ D
Z 1

0

f .t/ exp.�st/ dt for s 2 C
 ;

where C
 D fsI s D �� i! with � > 
�; ! 2 R; � > 
; ! 2 Rg for a fixed posi-
tive 
 2 R. Then, working formally with Eq. (3), we have that the Laplace transform
of the scattered field, Ousc D L Œusc�.s/, solves

s2n2

c20
Ousc D �Ousc C OF in P ; (4)

@n Ousc D 0 on @P : (5)

Above, OF stands for the Laplace transform of F; let us recall that OF D 0 in P n D.
As already mentioned, we make use of a bounded section of the pipe P0 D

.0;H/ � .0;L/ containing the scatterer D in its interior (see Fig. 1). Then, adopting
the usual Galerkin strategy, the problem in P0 consists in finding Ousc 2 H1.P0/ such
that, for any v 2 H1.P0/,

Z
P0

n2

c20
s2 Ousc v C

Z
P0

r Ousc � rv �
Z
˙

C

@n0 Ousc v C
Z
˙

�

@n0 Ousc v D
Z

P0

OF v ; (6)
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where the unit vector n0 D .0; 1/ is normal to the artificial boundaries ˙� D
.0;H/� f0g and˙C D .0;H/ � fLg.

In order to deal with the integrals on˙˙, we next define the DtN maps OTs
˙.Ousc/ D

˙@n0 Ousc on˙˙. Working in the remaining parts of the pipe P n P0, where we have a
homogeneous wave equation, we may obtain explicit expressions of the DtN maps.

More precisely, let us start by considering P� D .0;H/ � .�1; 0/. Then Ousc 2
H1.P�/ satisfies

s2

c20
Ousc D �Ousc in P� ; (7)

@n Ousc D 0 on @P� n˙� : (8)

Taking advantage of Eq. (8), we write the scattered field in P� as

Ousc.x1; x2/ D
1X

mD0
um.x2/ cos

�m�x1
H

�
in P� ; (9)

where each um.x2/ is bounded for x2 ! �1. Then, Eq. (7) means that

� .um/
00 C m2�2

H2
um C s2

c20
um D 0 for x2 < 0 : (10)

Also notice that um.0/ D um;0, where
˚
um;0

�1
mD0 are the complex Fourier expansion

coefficients of Ousc on ˙�:

Ousc D
1X

mD0
um;0 cos

�m�x1
H

�
on˙� :

In consequence, denoting

m 	 m.s/ D s

c0

s
1C m2�2

H2

c20
s2
; (11)

and choosing <.m/ > 0 we have

Ousc.x1; x2/ D
1X

mD0
um;0 cos

�m�x1
H

�
exp.m x2/ in P� : (12)

In particular, it follows that

@n0 Ousc D @x2 Ousc D
1X

mD0
m um;0 cos

�m�x1
H

�
on ˙� : (13)
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Summing up, we have the following explicit expression of the DtN map on˙�:

OTs�� D �
1X

mD0
m.s/ �m cos

�m�x1
H

�
on ˙� ; (14)

for any � whose Fourier expansion on ˙� is

� D
1X

mD0
�m cos

�m�x1
H

�
; (15)

where �m (m D 0; : : : ;1) are the complex expansion coefficients.
Similarly, we can work in PC to obtain an explicit expression of OTsC on ˙C. We

now make use of the DtN maps to rewrite the variational formulation (6) of the
model problem in the Laplace domain as follows: Find Ousc 2 H1.P0/ such that, for
any v 2 H1.P0/,

Z
P0

n2

c20
s2 Ousc v C

Z
P0

r Ousc � rv �
Z
˙

C

OTsC Ousc v �
Z
˙

�

OTs� Ousc v D
Z

P0

OF v : (16)

3 Convergence Analysis

The analysis of existence, uniqueness and finite element convergence for the
variational problem in the Laplace domain (16) follows the general steps of the
analysis of the periodic grating problem in [6]. According to this, we only make
an outline of the most important results of such analysis. To this end, we start
introducing the following s-dependent norm on H1.P0/:

kvks;H1.P0/ D
�Z

P0

.
jsj2
c20

jvj2 C jrvj2/ dx
�1=2

for v 2 H1.P0/ :

For each r 2 Œ0; 1�, we define the following s-dependent norm on Hr.˙˙/:

k�ks;Hr.˙
˙

/ D
 C1X

mD0
.
jsj2
c20

C m2�2

H2
/r j�mj2

!1=2
;

for any � 2 Hr.˙˙/ written by means of its Fourier expansion (15). We also define
the associated s-dependent norm on H�r.˙˙/ by duality.

Notice that the s-dependent H1.P0/ norm corresponds to a weighted energy for
the field after inverse Laplace transforming back to the time domain. Besides, the
s-dependent boundary norm on Hr.˙˙/ is chosen so that both the trace of functions
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in H1.P0/ and the DtN maps can be estimated by appropriate norm bounds with
explicit s-independence, as we detail in the following subsection.

3.1 Well-Posedness of the Variational Problem in the Laplace
Domain

Following directly the argument in [6, Lemma 2.1] we can show the following
bound of the trace operator �˙

˙

W H1.P0/ ! H1=2.˙˙/ in terms of weighted norms:

k�˙
˙

vks;H1=2.˙
˙

/ � C1 kvks;H1.P0/ for v 2 H1.P0/ ;

where C1 D 2

q
2 c0

L H 
 .
Moreover, using the Fourier definition of the DtN operator (14) and reasoning as

in the proof of [6, Lemma 2.2], we deduce the following bound of the DtN operators
OTs

˙ W H1=2.˙˙/ ! H�1=2.˙˙/ in terms of weighted norms:

k OTs˙�ks;H�1=2.˙
˙

/ � Ck�ks;H1=2.˙
˙

/ for � 2 H1=2.˙˙/ ;

where C is independent of s.
We can now analyze the variational formulation of the Laplace domain problem

on P0 applying the Lax-Milgram Lemma. To this end, we define the s-dependent
sesquilinear form as W H1.P0/ � H1.P0/ ! C associated to the variational
formulation (16), given by

as.w; v/ WD
Z

P0

n2

c20
s2 w v C

Z
P0

rw � rv �
Z
˙

C

OTsCw v �
Z
˙

�

OTs�w v :

Let us emphasize the following properties of the sesquilinear form as.�; �/ in terms
of s 2 C
 :

• By using the definition of the s-dependent H1.P0/ norm, and the bounds on the
trace operator and the DtN maps, we have the following continuity bound:

jas.w; v/j � C2 kwks;H1.P0/ kvks;H1.P0/ ; (17)

where C2 D maxf1; kn2kL1.P0/g C 8 c0
L H 
 .

• Using Bamberger and HaDuong’s technique [1] as in the proof of [6, Lemma
3.1], we have the following coercivity bound in terms of s-dependent norms

<.as.v; sv// � 
 inf
x2P0

n2.x/ kvk2s;H1.P0/
: (18)
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Notice that the estimates (17) and (18) make clear their dependence on both s 2
C
 and w; v 2 H1.P0/. In particular, we can apply the Lax–Milgram theorem to
guarantee the well-posedness of problem (16); moreover, we have the following
bound on its unique solution:

kOuscks;H1.P0/ � C



k OFkL2.P0/ ;

where C is independent of s, Ousc and OF.

3.2 Spatial Discretization of the Problem in the Laplace
Domain

Discretization of H1.P0/ is by standard finite elements. More precisely, we consider
a regular mesh family Th; h > 0, of P0 consisting of triangles K of maximum
diameter h and which can be mapped from the reference triangle element OK using
an affine mapping mK W OK ! K. Then we define the finite element space Sh of
continuous finite elements on Th. In particular

Sh WD ff 2 C 0.P0/I f jK D Of ı mK for some Of 2 Pq 8K 2 Thg ;

where Pq denotes the set of complex valued polynomials of total degree at most q.
The only remaining difficulty in discretizing the variational problem by means

of the approximation space Sh is that we need to apply the DtN operators to traces
of finite element functions. This could be done using an integral equation on ˙˙
as in [3], but for the simple geometry here we can truncate the Fourier expansions
involved in the explicit expression of the DtN maps. This may be done efficiently
by means of a trigonometric basis of H1=2.˙˙/, which is a common strategy in the
frequency domain. More precisely, let us introduce the finite-dimensional space

PN WD span
n
cos

�m�x1
H

�
I m D 0; 1; : : : ;N

o
;

as well as the L2.˙˙/ orthogonal projections pN;˙ W L2.˙˙/ ! PN . We then
approximate the operators OTs

˙ by means of OTs
N;˙ D OTs

˙ ı pN;˙, and the s-dependent
sesquilinear forms as W H1.P0/ � H1.P0/ ! C by

as
h;N.w; v/ WD

Z
P0

n2

c20
s2 w v C

Z
P0

rw � rv �
Z
˙

C

� OTs
N;Cw

�
pN;Cv

�
Z
˙

�

� OTs
N;�w

�
pN;�v :
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With this approach, the discrete counterpart of problem (16) consists of finding
Ousc;h;N 2 Sh such that, for any v 2 Sh,

as
h;N.Ousc;h;N ; v/ D

Z
P0

OF v : (19)

Reasoning as at continuous level, we can see that the discrete sesquilinear form
as

h;N.�; �/ is bounded and coercive in terms of s-dependent norms, here again with the
same dependence on s 2 C
 and 
 as in the continuous case. Indeed, properties (17)
and (18) remain valid if we replace the sesquilinear form as W H1.P0/�H1.P0/ ! C

by its discrete counterpart as
h;N W H1.P0/ � H1.P0/ ! C. In particular, this allows

us to reason just as we did before to guarantee the existence of a unique solution of
the discrete problem (19), Ousc;h;N 2 Sh, and deduce the following bound:

kOusc;h;Nks;H1.P0/ � C



k OFkL2.P0/ :

This result is analogous to [6, Theorem 3.4].
We can then prove an error estimate based on Strang’s second lemma in which

we keep track of the dependence on the parameter s 2 C
 . The analysis is similar
to [6, Theorem 3.5]:

kOusc � Ousc;h;Nks;H1.P0/ � jsj



�
.

C2
infx2P0 n2.x/

C 1/ kOusc � Owhks;H1.P0/

CC1 k�˙
C

Ousc � pN;C�˙
C

Ouscks;H1=2.˙
C

/

CC1 k�˙
�

Ousc � pN;��˙
�

Ouscks;H1=2.˙
�

/

�
;

where Owh 2 Sh and C1 and C2 are the s-independent constants previously introduced
(see (17) and (18)).

By taking the inverse Laplace transform of the above estimate, we can then
derive an error estimate for the semi-discrete approximation usc;h;N of usc (i.e. only
discretizing in space). More precisely, following the approach of [10], let T > 0

denote the final time for the solution and set

Hr
0..0;T/I X/ D fu 2 Hr..�1;T/I X/ I u.t; �/ D 0 for t < 0g ; (20)

where X stands for any Hilbert space. We then have the following theorem.

Theorem 1 Assume that OF 2 L2.˝/, s D 
 � i! with 
 > 
0 and n2 > ı,
for some constants 
0; ı > 0. Then there exists a unique solution Ous

sc;h;N 2 Sh

to (19) and furthermore there is a constant C such that, for any t 2 .0;T/ and
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vh 2 H2
0..0;T/ISh/,

kusc;h;N.t/ � usc.t/kH1.P0/ � C
�
kusc � vhkH2

0 ..0;T/IH1.P0//

CkpN;Cusc � usckH2
0 ..0;T/IH1=2.˙

C

//

C kpN;�usc � usckH2
0 ..0;T/IH1=2.˙

�

//

�
: (21)

Here C depends on T but is independent of usc and t, and of the discretization
parameters h and N .

3.3 Discretization in Time

Following the Convolution Quadrature (CQ) approach proposed in [10], to dis-
cretize in space and time we can use the discrete Laplace transform. To do this we
need to choose a suitable time discretization. Let�t denote the time step�t D T=Nt

where Nt is the number of time steps, and let tn D n�t. As usual for CQ, a
good choice of multistep method is BDF2 which approximates the solution y.t/
of y0 D f .t; y/ using the difference equation

3

2
ynC2 � 2ynC1 C 1

2
yn D �t f .tnC2; ynC2/ for n D �1; 0; 1; : : : ;

where yn D 0 for n � 0. The generating polynomial for this method is

�.�/ D 3

2
� 2� C 1

2
�2 for � 2 C :

The discrete time Laplace transform of the solution we wish to find is denoted
Ou�t

sc;h;N 2 Sh and satisfies the Laplace domain variational problem with s replaced
by �.�/=�t:

a�.�/=�t.Ou�t
sc;h;N ; vh/ D

Z
P0

OFjsD�.�/=�t vh for all vh 2 Sh ; (22)

where this equation holds for all � 2 C with j�j < 1.



Time Dependent Scattering in an Acoustic Waveguide 331

Taking the inverse discrete Laplace transform we obtain a fully discrete time
stepping problem that determines u�t;n

sc;h;N 2 Sh for n D 0; 1; : : :. In particular, as in
[6] we introduce a new variable

Oz�t
h;N D �.�/

�t
Ou�t

sc;h;N ; (23)

so that (22) can be rewritten as finding Ou�t
sc;h;N 2 Sh such that

Z
P0

n2

c20

�.�/

�t
Oz�t

h;N vh C
Z

P0

r Ou�t
sc;h;N � rvh �

Z
˙

C

OT�.�/=�t
C .pN Ou�t

sc;h;N/ vh

�
Z
˙

�

OT�.�/=�t� .pN Ou�t
sc;h;N/ vh D

Z
P0

OFjsD�.�/=�tvh for all vh 2 Sh : (24)

Introducing the z-transform of the discrete time solution as

Ou�t
sc;h;N D

1X
mD0

u�t;m
sc;h;N �

m; Oz�t
h;N D

1X
mD0

z�t;m
h;N �m ;

and equating terms in � in (23) shows that the standard BDF2 equation is satisfied

1

�t

�
3

2
u�t;m

sc;h;N � 2u�t;m�1
sc;h;N C 1

2
u�t;m�2

sc;h;N

�
D z�t;m

sc;h;N

for each m � 0 where u�t;p
sc;h;N D 0 if p � 0.

To analyze (24) suppose that we have a finite Fourier series w DPN
mD0 wm cos.m�x1=H/. Then from (14) we see that

OT�.�/=�tw D �
NX

mD0
m.

�.�/

�t
/wm cos.

m�x1
H

/ ;

where m.s/ is given by (11). The same expansion holds for OT�.�/=�t
C . Expanding

m.�.�/=�t/ in terms of � gives

m.
�.�/

�t
/ D

1X
jD0

�t
m;j�

j;

for some coefficients �t
m;j when j�j < 1. These coefficients can be computed

exactly for small values of j and in general computed numerically using a discrete
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approximation to the Cauchy integral formula as in [4, 6]. For example

�t
m;0 D

q
4 �2c20 .�t/2 m2 C 9H2

2�t c0 H
;

�t
m;1 D �6 H

�t c0
q
4 �2c20 .�t/2m2 C 9H2

;

�t
m;2 D

�
44 �2c20 .�t/2m2 C 27H2

�
H

2�t c
�
4 �2c20 .�t/2m2 C 9H2

�3=2 ;

and so on. Now define

QT.j/˙ w D �
NX

mD0
�t

m;j wm cos.
m�x1

H
/ :

Equating powers of � in (24) gives

Z
P0

n2

c20�t

�
3

2
z�t;m

sc;h;N � 2z�t;m�1
sc;h;N C 1

2
z�t;m�2

sc;h;N

�
vh C

Z
P0

ru�t;m
sc;h;N � rvh

�
mX

jD0

Z
˙

C

QT.j/C .pNu�t;m�j
sc;h;N / vh �

mX
jD0

Z
˙

�

QT.j/� .pNu�t;m�j
sc;h;N / vh D

Z
P0

OF�t;mvh ;

(25)

for all vh 2 Sh.
We see that inside P0 the method corresponds to using BDF2 and finite elements

for the wave equation. On the artificial boundaries ˙˙ the method provides a
discrete approximation to the DtN map that uses a discrete convolution at each
time step. In particular, at time step m this requires access to the N C 1 Fourier
coefficients of u�t;j

sc;h;N for j D 0; : : : ;m on the two artificial boundaries. Thus
storage requirements grow with time, but for pipes at low frequency there are few
propagating modes and so N is not large (besides the propagating modes, some
evanescent modes also need to be stored depending how far the artificial boundary
is away from the scatterer).

At the expense of more notation, we can now eliminate z�t;m
sc;h;N from the difference

equation to obtain the discretization of a second order in time problem for usc alone.
Following Lubich’s strategy [10] as in [6] we can prove the following

fully discrete error estimate where W4
0 ..0;T/I L1.P0// is defined analogously to

Hr
0..0;T/I X/ in (20):

Theorem 2 Suppose we use BDF2 to discretize in time, and regular finite elements
to discretize in space. In addition, suppose F 2 W4

0 ..0;T/I L1.P0//. Then the time
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discrete finite element solution u�t;n
sc;h;N is well defined for each time step n D 0; 1; : : :

and satisfies the error estimate

ku�t;n
sc;h;N � usc.tn/kH1.P0/ � C

�
.�t/2

Z T

0

Z
P0

ˇ̌
@4t F

ˇ̌C kusc � vhkH2
0 ..0;T/IH1.P0//

CkpN;�usc � usckH2
0 ..0;T/IH1=2.˙

�

// C kpN;Cusc � usckH2
0 ..0;T/IH1=2.˙

C

//

�

for any vh 2 H2
0..0;T/ISh/. Here the constant C depends on T and ˙C, but is

independent of usc and vh, and the discretization parameters h, N and�t .

The theory we have outlined extends to impenetrable (sound hard or sound
soft scatterers with little change). For frequency dependent refractive indices, the
Laplace domain results can be proved under suitable conditions on the behavior of
the refractive index in the Laplace domain (see for example [5]).

4 Numerical Results

Although the analysis of problem (16) and its discretization are written in terms of
the Laplace transform of the scattered field, in practice we approximate the total
field u D usc C uinc. This avoids performing area integrals for F. Assuming the
source of the incident wave is in the section of the pipe P�, in the Laplace domain
and after discretization in space, we seek Ouh;N 2 Sh which is the unique solution of

as
h;N.Ouh;N ; vh/ D

Z
˙

�

@n0 Ouinc vh �
Z
˙

�

OTs� Ouinc vh ; (26)

for any vh 2 Sh. Notice that there is no need for a boundary condition on ˙C since
the total field is outgoing there.

To deal with problem (26), in practice we approximate OTs� Ouinc by OTs
N;� Ouinc.

Above we have shown how the Laplace domain problem can be converted into a
time stepping problem using CQ as in [10]. Here, to demonstrate the method, we
instead use the discrete Laplace transform approach from [4]. Suppose the final
time of integration is T and we wish to take Nt timesteps. In Banjai and Sauter’s
approach (26) is solved for Nt choices of s chosen depending on the time-stepping
method used (in fact fewer problems need to be solved in practice). An inverse
discrete transform then gives the time dependent solution. We use the parameter
choices from [4] even though the theory in that paper is for an integral equation
based approach.
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4.1 Convergence Rate

To obtain a simple exact solution we can consider an empty pipe. In this case
the total field is simply given by the incident field, and the code must propagate
the incident field through the finite element domain. We choose the computational
domain to be P0 D .0; 0:6/ � .0; 1/ with ˙� at x2 D 0 and ˙C at x2 D 1,
and the width of the pipe H D 0:6. The final time is T D 6 by which time the
wave has almost left the computational domain. The incident field is a plane wave
uinc D f .t � x1=c/ where c D 1 and

f .�/ D cos.2�.� � H=c// exp.�1=.2
2/.� � L=c � tp/
2/

where tp D 3, 
 D 6=.2� bw/, and bw D 1:71 denotes the bandwidth of the
incident field; notice that the center frequency is 1. The parameters are chosen so
that f is approximately zero in P0 at t D 0. We choose a fixed spatial mesh shown
in Fig. 2 (left panel) where the mesh size is h � 0:016, and use piecewise linear
finite elements in space (using the FreeFem++ to implement the algorithm [8]) and
BDF2 in time. Although only one mode is needed for the DtN maps in this case, we
choose N D 7 for the Fourier spaces on ˙� and˙C.

For simplicity we report the discrete maximum norm error at the nodes in the
mesh as a function of Nt in the right hand panel of Fig. 2. The convergence rate is
consistent with O.N�2

t / convergence for at least part of the convergence history. We
have no explanation for the increased rate at Nt D 1024. In any case the numerical
results show that we can obtain accurate and convergent solutions over a wide range
of time step sizes. Indeed, the coarsest time step is �t � 0:09 and the finest time
step is �t � 0:006, and stability is seen across this range of time steps.
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t
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Fig. 2 Using the fixed spatial mesh shown in the left hand panel, we show the discrete maximum
norm error at the spatial nodes as a function of the number of time steps in the right hand panel.
We have predicted N�2

t error in the H1.P0/ norm and see somewhat better than this rate at finer
temporal discretization
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4.2 Scattering from a Penetrable and Impenetrable Obstacles

Our next examples illustrate the flexibility of this approach since the finite element
method can handle different boundary conditions and possible inhomogeneity of the
scatterer. We start with a penetrable scatterer as analyzed in this paper. We choose
n.x/ D 1 in the pipe, and n.x/ D 2 inside a disk of radius 0.3 centered at .0; 0:6/.
In order to keep the ratio of mesh size to wavelength roughly constant, the mesh
inside the scatterer is refined according to the local refractive index. In Fig. 3 we
show the spatial mesh and three snapshots of the same incident field as used in the
previous section choosing the number of time steps Nt D 512 (from the previous

Fig. 3 Results for a penetrable scatterer. Top left: the spatial mesh, refined inside the scatterer. Top
right: A snapshot of the total field at t 	 3 when the incident wave is arriving at the scatterer from
below. Bottom left: A snapshot of the total field at t 	 4 when the maximum of the incident wave
is at the scatterer. Curved wave fronts in the scatterer show that the wave has slowed there. Bottom
right: A snapshot of the total field at t 	 5 when the incident wave starts to pass the scatterer. A
focal point is visible on the upper boundary of the scatterer
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section we know the method propagates the incident wave with roughly 1% error
when the obstacle is not present). Clearly, as expected, the waves slow down in the
scatterer and are transmitted through the scatterer with a focal point on one side of
the circle. No instability is evident.

In our second example we consider scattering from a sound soft obstacle. This
corresponds to enforcing the Dirichlet boundary condition u D 0 on the boundary
of the same disk as used in the previous example. Results are shown in Fig. 4.

Fig. 4 Results for a sound soft scatterer. Top left: the spatial mesh. Top right: A snapshot of the
total field at t 	 3 when the incident wave is arriving at the scatterer from below. Bottom left: A
snapshot of the total field at t 	 4 when the maximum of the incident wave is at the scatterer. The
incident wave is strongly reflected by the scatterer. Bottom right: A snapshot of the total field at
t 	 5 when the incident wave starts to pass the scatterer. Above the scatterer the wave is decreased
in magnitude compared to Fig. 3 as is to be expected
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5 Conclusions

In this paper we have shown how to derive and analyze a fully discrete time stepping
method for the wave equation in an infinite pipe or waveguide. Using the DtN map
to truncate the domain we obtain a coupled finite element and discrete DtN map for
the discrete solution at each time step. Limited numerical results suggest the method
is stable and accurate.

The main drawback of the method is that the solution needs to be recorded on
the artificial boundaries to allow the convolution needed at each time step to be
computed. However if there are only a few propagating modes in the solution this is
not a crushing overhead unless very long solution times are required.
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Location of Emergency Facilities
with Uncertainty in the Demands

Luisa I. Martínez-Merino, Maria Albareda-Sambola,
and Antonio M. Rodríguez-Chía

Abstract This work deals with the p-center problem, where the aim is to minimize
the maximum distance between any customer with demand and his center, taking
into account that each customer only has demand with a specific probability.
We consider an integer programming formulation for the problem and extensive
computational tests are reported, showing its potentials and limits on several types
of instances. Finally, some improvements on the formulation have been developed
obtaining in some cases much better resolution times.

1 Introduction

Discrete facility location models have been extensively studied in the literature.
Different kinds of facilities have been modeled, such as routers or servers in
communication networks, warehouses or distribution centers in supply chains, hubs
or transhipment nodes in passenger transport networks, and hospital or emergency
facilities in public service systems, among others. In general, the goal of these types
of problems is to locate the facilities among a set of candidate sites and assign
customers to the facilities optimizing some effectivity measure, that usually depends
on the distances between the facilities and the customers, see for instance [7, 9, 18]
and the references therein. The p-Center Problem (pCP) is a well-known discrete
optimization location problem which consists of locating p centers out of n sites and
assigning (allocating) the remaining n � p sites, to the centers, so as to minimize the
maximum distance (cost) between a site and the corresponding center, see Chap. 4
of [18] and [1, 16]. It was shown in [16] that the pCP is NP-hard.

A straight application of the pCP is the location of emergency services like
ambulances, hospitals or fire stations, since the whole population should be inside a
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small radius around some emergency center. The pCP has been extensively studied,
and both exact and heuristic algorithms have been proposed. Recent articles on the
matter are [8, 10, 12–14, 21]. We also refer the reader to Chap. 5 of [7]. A recent
survey on location of emergency services can be consulted in [3].

The uncertainties can be generally classified into three categories: provider-
side uncertainty, receiver-side uncertainty and in-between uncertainty, depending
on whether the uncertainties affect data concerning the facilities (capacities, avail-
ability, etc.—see, for instance, [4, 6, 23, 24, 26, 30]), the customers (demands,
locations, number), or concerning the distribution network (transportation costs or
times—see [25, 27] and references therein), respectively. In addition, two major
categories of approaches have been adopted in the literature to deal with uncertain
data in facility location models. Namely, stochastic programming (SP) and robust
optimization (RO). The former has been used typically to deal with decision-making
for facility locations in risk situations, in which the values of uncertain parameters
are governed by discrete or continuous probability distributions that are known to a
decision-maker. On the other hand, the RO approach attempts to optimize the worst-
case system performance in uncertain situations that lack any information about
the probability distributions of uncertain coefficients (e.g., [17]). Hence, the RO
approach generally describes uncertain data using pre-specified intervals or ranges.
Typical robustness measures include mini-max objective value and mini-max regret
in an objective value.

In this paper we focus on the receiver-side uncertainty and in the SP approach.
The SP approach has been widely applied to emergency logistics for short-notice
disasters (e.g., hurricanes, flooding, and wild fires) by assuming that possible
impacts of these disasters can be estimated based on historical and meteorological
data. The usual goal of these stochastic location models is to optimize the expected
value of a given objective function. A classical example of applying SP to disaster
relief is the scenario-based, two-stage stochastic model proposed by Mete and
Zabinsky [20], for medical supply pre-positioning and distribution in emergency
management. Other examples can be found in, for instance, [2, 5, 28].

The paper is organized as follows. First we introduce the problem in Sect. 2,
where some results related with the problem are presented. In Sect. 3 a mathematical
formulation is given and it is afterwards strengthened by using variable fixing and
adding valid inequalities. Then, in Sect. 4, we focus on a variant of the problem
where only the K largest distances are considered. Section 5 is devoted to the
computational results that both formulations provide and finally, in Sect. 6 we draw
some conclusions of the work.

2 The Problem

Let N D f1; : : : ; ng be the given set of sites or customers. Throughout the paper
we assume, without loss of generality, that the set of candidate sites for centers is
identical to N. Let p � 2 be the number of centers to be located. For each pair .i; j/,
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i; j 2 N, let dij be the distance (cost, travel time) from i to j. We assume dii D 0

8i 2 N and dij > 0 8i; j 2 N W i ¤ j. We do not assume other special properties like
satisfaction of triangle inequality, that is to say, strictly speaking d is not necessarily
a distance. But we need to do an additional assumption to deal with the case of ties
among several distances from the same site. If this is the case, in order to break
ties we suppose that there are preferences on the centers in such a way that sites
undoubtedly will choose one of the centers before the others. In practice, ties can be
broken by slightly perturbing the tied distances. Summarizing, we will also assume
dia ¤ dib 8i; a; b 2 N W a ¤ b. Associated with each customer i 2 N is the
probability of having demand 0 � qi < 1. The events of demand occurrence are
assumed to be independent.

To describe a solution to the PpCP we will need to identify the set of p sites
where facilities are open, and the assignment to one of those facilities of each of the
potential customers, since at the moment of making the decision we do not know
which customers will place a demand and which will not. In what follows, we will
distinguish between the assignment cost of a customer and its service cost. The
assignment cost corresponds to the distance between the customer and the facility it
is assigned to a priori, whilst the service cost takes this same value but only in the
scenarios where the customer does have demand.

In case of tie between a client and several plants, this will be assigned to the
plant with the largest index. In case of ties between two clients and their plants we
consider as the largest distance the one assigned to the client with the greatest index.

The goal of the PpCP is to identify the solution with the smallest expected value
(among all possible scenarios) of the maximum service cost (among all customers
with demand in that scenario). For any set of probabilities .q1; : : : ; qn/ with 0 �
qi � 1, i 2 N, any feasible solution of the PpCP is associated with a matrix .�ij/i;j2N ,
such that, �ij represents the probability that there is not demand at the sites whose
assignment cost (for this solution) is bigger than dij if site i is covered by plant j and
0 otherwise.

Lemma 1 The matrix .�ij/i;j2N satisfies:

1. ]f j 2 N W �ij ¤ 0g � 1 8i 2 N:
2. If d.1/ 6 � � � 6 d.n/ is a non-decreasing sequence of distances between each

customer and its assigned plant, and .1/; : : : ; .n/ is the corresponding sequence
of customers,

nX
jD1

�.i/j D
nY

tDiC1
.1 � q.t//:

3. We have that

nX
iD1

nX
jD1

�ijqi D 1 �
nY

iD1
.1 � qi/ 6 1: (1)
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This allows to compute the expected maximum service cost as

nX
iD1

nX
jD1

�ijdijqi:

Proof Each site is assumed to be served by just one plant. Then, for a given site
i 2 N, �ij will be 0 for any j 2 N such that j ¤ ji, being ji the plant covering i.
Observe that the cardinality of the set fi 2 N W �ij ¤ 0g will be different from 0

whenever no site i0 (covered by ji0) exists satisfying that di0j0 > dij and qi0 D 1. The
summation

Pn
jD1 �.i/j represents the probability that none of the sites . j/ with j > i

has demand. Then, this probability is given by,

nY
jDiC1

.1 � q. j//:

Finally, if � values are defined as above, for each of the distinct assignment cost d
(distances between each customer and its assigned plant),

X
iWd.i/Dd

X
j2N
�.i/jqi

gives the probability that the maximum service distance is d. Therefore, the sum
of all � values gives the probability that some service is provided (there is some
service cost). Equality (1) follows from the fact that the complement of this event is
the scenario where no customer has demand. Clearly, this quantity will never exceed
1.

The following result shows that every customer is covered by its closest service
facility.

Theorem 1 The optimal value of the objective function above is achieved in a
solution where every site is covered by its closest plant.

Proof Assume that two plants are located at places j and j0, and site i satisfies that
dij0 � dij. We will prove that the objective value when site i is covered by j is greater
than or equal to the case where i is covered by j0. Assume that dij0 is in the s-th
position of the non-increasing ordered sequence of distances between each site and
its allocated plant, and dij is in the t-th position when site i is covered by j instead
of j0. Let F j0 and F j be the objective value when i is allocated to plant j0 and to j
respectively. Also, let d.1/; : : : ; d.n/ and d0

.1/; : : : ; d
0
.n/ the nondecreasing sequence of

distances between each site and its allocated plant when i is allocated to plant j and
to plant j0, respectively.

d.1/ � : : : � d.n/

d0
.1/ � : : : � d0

.n/:
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Assume that d0
.s/ D dij0 , d.t/ D dij, q0

.s/ D q.t/ D qi and d0
.u/ D d.u�1/ and q0

.u/ D
q.u�1/ for all s C 1 � u � t.

F j0 � F j D
tX

uDs

nY
vDuC1

.1 � q0
.v//q

0
.u/d

0
.u/ �

tX
uDs

nY
vDuC1

.1 � q.v//q.u/d.u/

D
nY

vDtC1
.1 � q.v//

"
t�1X
uDs

q0
.u/d

0
.u/

tY
vDuC1

.1 � q0
.v//C q0

.t/d
0
.t/

�
t�1X
uDs

q.u/d.u/

tY
vDuC1

.1 � q.v// � q.t/d.t/

#
:

For the sake of readability, let F j0j WD F j0�F jQn
vDtC1.1�q.v//

. Hence,

F j0j D q0

.s/d
0

.s/

tY
vDsC1

.1� q0

.v//C
t�1X

uDsC1

q0

.u/d
0

.u/

tY
vDuC1

.1� q0

.v//C q0

.t/d
0

.t/

�
t�1X
uDs

q.u/d.u/

tY
vDuC1

.1� q.v// � q.t/d.t/

D q.t/d
0

.s/

t�1Y
vDs

.1 � q.v// � q.t/d.t/ C q.t/

2
4 t�2X

uDs

q.u/d.u/

t�1Y
vDuC1

.1 � q.v//C q.t�1/d.t�1/

3
5

D q.t/

2
4d0

.s/

t�1Y
vDs

.1� q.v//C
t�2X
uDs

q.u/d.u/

t�1Y
vDuC1

.1� q.v//C q.t�1/d.t�1/ � d.t/

3
5

� q.t/d.t/

2
4 t�1Y
vDs

.1� q.v//C
t�2X
uDs

q.u/

t�1Y
vDuC1

.1� q.v//C q.t�1/ � 1
3
5

� 0:

The last inequality is based on equality (1).

Corollary 1 The closest assignment constraints (C.A.C.) can be used as valid
inequalities for any formulation of the considered problem even if they are not
needed to formulate it.

Observe that, in fact, the service costs associated with customers that are very close
to a facility will seldom be the ones yielding the largest service cost in a scenario,
since many other customers (those with larger assignment costs) should have no
demand for this to happen. Therefore, the probability that a small assignment
cost becomes the actual largest service cost can be extremely low. For this
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Fig. 1 Solutions of the problem without C.A.C. (left) and with C.A.C. (right)

reason, the approximation of the PpCP that consists in taking into account only
the K 6 p largest assignment costs can be very tight, even for moderate values of K
(specially if demand probabilities qi are large). From now on, we will refer to this
approximation as K-PpCP.

Lemma 2 In the K-PpCP, closest assignment constraints must be explicitly
included in the formulation.

In this case, closest assignment constraints must be added to the formulation.
Otherwise we can’t assure that the sites are assigned to their closest located facility.
We show an example.

Example 1 Consider n D 10, p D K D 3 and the set of sites a1 D .81; 65/,
a2 D .71; 63/, a3 D .32; 62/, a4 D .22; 72/, a5 D .70; 21/, a6 D .44; 34/, a7 D
.17; 10/, a8 D .25; 36/, a9 D .90; 37/ and a10 D .23; 48/. We also suppose that
demand probabilities are q1 D 0:97, q2 D 0:12, q3 D 0:63, q4 D 0:27, q5 D 0:9,
q6 D 0:15, q7 D 0:24, q8 D 0:26, q9 D 0:33 and q10 D 0:17.

If C.A.C. are not included in the formulation, we obtain, as solution of the 3-
P3CP, an objective value of 13:08 and the plants are located at 3, 7 and 9. This solu-
tion allocates sites 4; 6 and 8 to plant 3, site 10 to plant 7 and sites 1; 2 and 5 to plant
9. However, in this case the distance between site 10 and plant located at 3 (d10;3 D
16:64) is smaller than the distance between 10 and 7 (d10;7 D 38:47). The left side
of Fig. 1 shows the solution for the problem if C.A.C. are not used. If we include the
C.A.C., the objective value is 17:58 and the plants are located at sites 1, 5 and 10.
We can see the solution of the problem using C.A.C. in the right side of Fig. 1.

Somehow, the PpCP can be seen as a tradeoff between other classical discrete
location models, such as the p-center, the p-median and the k-centrum. Indeed, when
all the demand probabilities coincide, the PpCP fits in the structure of the more
general ordered median problem ([16, 20, 24]). We next show an example where
the K-PpCP yields the solution of either of the above problems, depending on the
values of the probabilities of demand.



Location of Emergency Facilities with Uncertainty in the Demands 345

In the next example, the solution of K-PpCP coincides with the solution of p-
median problem for small values of q, with the solution of the K-centrum problem
for values of q close to 0:5 and with the p-center problem for values of q close
to 1. This illustrates the trend of behaviour of PpCP in comparison with classical
criteria in location theory for different values of q. Indeed, when the probability of
having demand in each site is small and they are almost identical, the probabilities
of each assignment cost being the largest service cost become very similar and,
therefore, the PpCP behaves very similarly to the p-median problem. As opposite,
if these probabilities are close to 1, the probability that the largest assignment cost
yields the largest service cost is close to 1 and, therefore, the weights of all the other
assignment costs in the objective function are very small, leading thus to solutions
that will be very close to those of the p-center problem.

Example 2 We have the following sites: a1 D .14; 70/, a2 D .40; 94/, a3 D .87; 5/,
a4 D .70; 70/, a5 D .21; 48/, a6 D .53; 16/, a7 D .0; 47/, a8 D .11; 11/,
a9 D .66; 75/ and a10 D .7; 68/. We consider the 4P3CP and different probability
vectors:

• q1 D . 0:07 ; 0:15 ; 0:03 ; 0:13 ; 0:01 ; 0:09 ; 0:03 ; 0:12 ; 0:13 ; 0:14 /:

• q2 D . 0:56 ; 0:41 ; 0:53 ; 0:53 ; 0:59 ; 0:6 ; 0:6 ; 0:42 ; 0:54 ; 0:47 / and
• q3 D . 0:88 ; 0:85 ; 0:95 ; 0:81 ; 0:98 ; 0:8 ; 0:99 ; 0:96 ; 0:86 ; 0:8 /:

As we can observe in Table 1, if we take demand probabilities equal to q1, the
optimal set of plants for the 4-P3CP coincides with the optimal solution of the 3-
median problem. Similarly, the solution obtained for the 4-3 centrum problem is
optimal for the 4-P3CP if we take demand probabilities equal to q2. Finally, Table 1
reports that the solution for the 4-P3CP and for the 3-center problem are the same
if we consider q3 as the vector of demand probabilities. Figure 2 shows the open
plants and assignments that are obtained as solution of the 4-P3CP for the different
probability vectors considered.

Table 1 Solutions corresponding to 4-P3CP, 3-median, 4-3centrum and 3-center respectively

K-PpCP p-median K-pcentrum p-center

Plants O.V. Plants O.V. Plants O.V. Plants O.V.

q1 {6,9,10} 10.32 {6,9,10} 170.74 {5,6,9} 130.68 {3,7,9} 37.64

q2 {5,6,9} 32.53

q3 {3,7,9} 37.52
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Fig. 2 Solutions corresponding to 3-median, 4-3 centrum and 3-center respectively

3 MIP Formulation for the PpCP

We next present a mixed integer programming formulation for the PpCP. As
mentioned above, the assignment costs involved in a solution will contribute to the
corresponding objective function value weighted with a probability that depends on
the customers with larger assignment costs. Therefore, together with the classical
binary location variables, other variables, used to sort the assignment costs and to
compute these probabilities are required. In particular, we define the following two
families of binary variables:

yj D
8<
:
1; if a plant is opened at site j,

for j 2 N;
0; otherwise,

xijk` D
8<
:
1; if i is allocated to j, k to ` and dij is the first

assignment cost larger than dk`,
0; otherwise,

for all i; j; k; ` 2 N such that dij > dk` or if dij D dk` for all i > k. We also define a
family of continuous variables
�ij D probability that no site with allocation distance greater than dij has demand

if i is allocated to j, and 0 otherwise.
Using these variables, the PpCP can be formulated as follows.

(F1) min
nX

iD1

nX
jD1
�ijqidij

s.t.
nX

jD1
yj D p; (2)



Location of Emergency Facilities with Uncertainty in the Demands 347

nX
kD1

nX
`D1

xijk` 6 yj; 8i; j 2 N (3)

nX
kD1

nX
`D1

xk`ij 6 y j; 8i; j 2 N (4)

nX
jD1

nX
kD1

nX
`D1

xijk` 6 1; 8i 2 N (5)

nX
jD1

nX
kD1

nX
`D1

xk`ij 6 1; 8i 2 N (6)

nX
iD1

nX
jD1

nX
kD1

nX
`D1

xijk` D n � 1; (7)

nX
kD1

nX
`D1

nX
j0D1

j0¤j

xij0k` C
nX

kD1

nX
`D1

xk`ij 6 1; 8i; j 2 N (8)

�k` > .1 � qi/�ij � 1C xijk`; 8i; j; k; ` 2 N (9)

�ij >
nX

kD1

nX
`D1

xijk` �
nX

kD1

nX
`D1

xk`ij; 8i; j 2 N (10)

yj; xijk` 2 f0; 1g; 8i; j; k; ` 2 N (11)

�ij 2 Œ0; 1�; 8i; j 2 N: (12)

In the objective function, �ijqi gives the probability that dij is the largest service
distance. Thus, the objective function accounts for the expected largest distance
from a customer with demand to its plant. Constraint (2) ensures that p facilities are
opened, and constraints (3) and (4) force that all assignments of customers are made
to open facilities. The sorting of the used assignment distances is made through
constraints (5)–(8), taking advantage of the variable definition (recall that xijk` is
not defined, or is fixed to zero, if dij ˆ dk`). In particular, constraints (5) and (6)
ensure that the distance to cover site i is at most one immediately greater/smaller
than another distance from a site and its plant. Constraints (8) together with (5)
and (6) ensure that any site i is covered by at most one plant and constraints (7)
guarantee that it is exactly one. Constraints (9)–(10) are used to guarantee that �
and x variables take consistent values. Finally, the last families of constraints set the
domains of the variables.
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3.1 Valid Inequalities

1. As shown in Corollary 1, C.A.C. are valid. Several alternative sets of CAC have
been proposed in the literature (see [11]). In this work, we have adapted the set
presented in [29]:

nX
kD1

nX
`D1

nX
aD1Idia>dij

xiak` C yj 6 1; 8i; j 2 N; (13)

nX
iD1

nX
jD1

nX
aD1Idka>dk`

xijka C y` 6 1; 8k; ` 2 N: (14)

These constraints have proven very useful in preliminary computational
results.

2. Constraint (7) can, in fact, be decomposed into the three constraints:

nX
iD1

X
j¤i

nX
kD1

X
`¤k

xijk` D n � p � 1; (15)

nX
iD1

X
j¤i

nX
kD1

xijkk D 1; (16)

nX
iD1

nX
kD1

xiikk D p � 1: (17)

However, despite being theoretically better than (7), the use of this family of
constraints does not reduce the computational effort required to solve formulation
(F1).

3. A valid inequality for this formulation is

nX
jD1

nX
kD1

nX
`D1

xijk` C xkji` > 1; 8i 2 N: (18)

Note that constraints (5) and (6) cannot be stated as equalities since, in both
cases, the expression in the left hand side will take value 0 in exactly one
customer, for any feasible solution (the customer with the smallest and the largest
assignment cost, respectively), but it has to take value 1 in all the others. Since
these two customers will undoubtedly be different, for any customer at least one
of the two expressions will take value 1, as stated in valid inequality (18).

In fact, combined with sets (5)–(7), it is not necessary to have both (8) and (18)
together. Indeed, constraints (8) plus (5) and (6) guarantee that any site i cannot
be assigned to more than one plant and constraints (18) ensure that any site is
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using (7), i.e. since there are n � 1 variables different to 0, these two conditions
are equivalent.

4. Other valid inequalities are

�k` 6 .1 � qi/�ij C 1 � xijk`; 8i; j; k; ` 2 N; (19)

�ij 6
nX

kD1

nX
`D1

xijk` C
nX

kD1

nX
`D1

xk`ij; 8i; j 2 N: (20)

If all distances are nonnegative, since we are minimizing and there are no
capacity constraints, constraints (19) and (20) are not necessary.

5. The sum of � values is known (Lemma 1):

nX
iD1

nX
jD1

�ijqi D 1 �
Y
i2N

.1 � qi/: (21)

So it can also be added as a valid inequality.

3.2 Fixing Variables

In this section we describe a series of criteria to fix some of the variables. which
can be useful to solve the problem. First, binary variables xijkl are defined for all
i; j; k; l 2 N such that dij > dkl or if dij D dkl for all i > k. For this reason we can fix:

xijk` D 0; 8i; j; k; ` 2 N; such that; dij < dk` or dij D dk` and i 6 k: (22)

Note that the smallest p assignment distances are all equal to zero. As mentioned
above, this tie could produce very inconvenient symmetries in the solutions. We
will break those ties arbitrarily, beforehand, using (22), to avoid those awkward
symmetries.

By the definition of these variables we also have that xijkl D 0 if i is not allocated
to j or k is not allocated to l. Due to the formulation of the problem, a customer
.i/ can only be allocated to one facility and it is served by its closest plant. As a
consequence,

xijik D 0; 8i; j; k 2 N:

xijk` D 0; 8i; j; k; ` 2 N such that dkj < dk`:

xijk` D 0; 8i; j; k; ` 2 N such that di` < dij:

Since p facilities are opened, and each customer will be assigned to its closest open
facility, and � variables are only non-null for pairs .i; j/ being j the server assigned
to customer i, we can set �ij D 0 if jf j0 ¤ j W dij0 > dijgj < p.
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Now we see other fixing variables possibilities. Suppose that di.1/ 6 di.2/ 6 : : : 6
di.n/ are the ordered distances of customer i to each site. Then, the variables can be
fixed in the following way:

xijk` D 0 for all i; j; k; ` 2 N such that dij > di.n�pC1/:

xk`ij D 0 for all i; j; k; ` 2 N such that dij > di.n�pC1/:

4 MIP Formulation for the K-PpCP

In this section we consider the variant of the previous model where only the K-
largest distances are considered in the objective function. In order to do that, we
need to use an additional family of variables:

zk` D
8<
:
1; if k is allocated to ` and the distance dk` is

among the n � K smallest distances,
0; otherwise.

Taking only into account the K largest distances, we obtain the following formula-
tion,

.F1K/ min
nX

iD1

nX
jD1
�ijqidij

s.t. constraints (2)–(7), (10)–(14), (18)

�k` > .1 � qi/�ij � 1C xijk` � zk`; 8i; j; k; ` 2 N; (23)

nX
iD1

nX
jD1

nX
k0

D1;`0D1
dk0`0>dk`

xijk0`0 � Kzk`; 8k; ` 2 N: (24)

zk` 2 f0; 1g; 8k; ` 2 N: (25)

Constraints (24) are used to guarantee that the z variables take consistent values.
In addition, (24) is similar to (9) where term �zkl has been included to distinguish
whether the distance dkl is among K-largest distances.

We can add as valid inequalities for this formulation,

zk` 6
nX

iD1

nX
jD1

xijk`; 8k; ` 2 N; (26)

zk` 6
nX

iD1

nX
jD1

xk`ij; 8k; ` 2 N: (27)
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5 Computational Results

In this section we provide computational results for the formulations presented
above. In order to know which valid inequalities improve the performance of
this first formulation, Tables 2 and 3 show the results obtained when different
inequality combinations are used. Both formulations were implemented using
Mosel programming language and compiled by Xpress 7.7. Instances were run on
a Intel(R) Core(TM) i7-4790K CPU 32 GB RAM. All the results reported in this
work have been run in this same computer. We also established a time limit of 2 h
to solve the problem.

In our experiments, we generated PpCP instances from the ORLIB p-median
data electronically available at http://people.brunel.ac.uk/~mastjjb/jeb/orlib. We
extracted several distance submatrices with different values of n from instances
pmed1, pmed2, pmed3, pmed4 and pmed5. The demand probabilities were gen-
erated randomly in Œ0; 1� and different values of p ranging from 2 to 10 were used.

Tables 2 and 3 report three columns of results for each variant of the formulation.
The first column shows average gap (in percentage) between optimal solution and
LP solution, the second column shows the average number of nodes that were used
in the B&B tree and, finally, average running time (in seconds) appears in the third
column. For each instance set the smallest average CPU times are marked in bold
face. Superindices in the running time columns report the number of instances that
were not solved in the limit time fixed to 7200 s.

It can be observed that running times considerably improve when C.A.C. are
added to the formulation. While F1 finds optimal solutions until n D 10 and p D 5,
the same formulation with C.A.C. can solve the PpCP for n D 15. We can observe
this in the second group of columns of Table 2. In the third group of three columns
we also use decomposed form of constraint (7) obtaining similar results.

We can also see in Table 2 the results of formulation F10, where F10 D F1 C
Œ(13) � (17)�C (18) � (7) � (8). In this variant of the formulation C.A.C. are added,
decomposed form of (7) is used and constraint (18) is used instead of (8). As we can
see, in terms of CPU time, this variant provides the best results.

Since best time results are obtained with F10 we continue the computational study
using this formulation. In Table 3 one can see the results of formulation F10 plus
different combinations of inequalities (19)–(21). We can observe that F10, F10C(20)
and F10 C (21) provide the best results.

In the case of the K-PpCP, results are reported in Table 4. As before, columns in
Table 4 show average gaps at the root node, number of nodes and running times for
each group of five instances. Again, bold face is used to mark the smallest times.

The first three columns correspond to formulation F1K , the second group of
columns corresponds to the same formulation plus constraints (26) and (27). In order
to improve these results we use decomposed form of constraint (7).

Note that, surprisingly, the K-PpCP turned out to be more difficult to solve than
the PpCP. One might expect that, in the case of the PpCP, part of the complexity
arises from the fact that � variables have to take a value that is the product of many
probabilities, which can cause numerical errors. However, as it happens in the p-

http://people.brunel.ac.uk/~mastjjb/jeb/orlib
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center problem, when only one or a few assignment distances are taken into account
in the objective function, many solutions exist with the same or very similar costs.
We attribute the difficulty of solving the K-PpCP to this fact.

6 Conclusions

In this paper we have addressed a location problem where there is an uncertainty
in the demand, i.e., the clients can have demand or not depending of a probability
distribution. In spite of the large number of real situations that fit to this model, this
has not been studied in the literature. We provide a first formulation for the problem
and some interesting properties of the problem are also provided.
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Regularized Inversion of Multi-Frequency EM
Data in Geophysical Applications

Patricia Díaz de Alba and Giuseppe Rodriguez

Abstract The purpose of this work is to detect or infer, by non destructive investi-
gation of soil properties, inhomogeneities in the ground or the presence of particular
conductive substances such as metals, minerals and other geological structures. A
nonlinear model is used to describe the interaction between an electromagnetic field
and the soil. Starting from electromagnetic data collected by a ground conductivity
meter, we reconstruct the electrical conductivity of the soil with respect to depth
by a regularized Gauss–Newton method. We propose an inversion method, based
on the low-rank approximation of the Jacobian of the nonlinear model, which
depends both on a relaxation parameter and a regularization parameter, chosen
by automatic procedures. Our numerical experiments on synthetic data sets show
that the algorithm gives satisfactory results when the magnetic permeability in
the subsoil takes small values, even when the noise level is compatible with real
applications. The inversion problem becomes much harder to solve if the value of
the permeability increases substantially, that is in the presence of ferromagnetic
materials.

1 Introduction

Electromagnetic induction (EMI) is a non-invasive technique used to characterize
the spatial variability of soil properties since the late 1970s. This technique has
had widespread use in archaeological, hydrological, and geotechnical applications.
In all cases, the soil property being investigated must influence its electrical
conductivity either directly or indirectly, for EMI techniques to be effective. EM
induction is becoming increasingly popular because it allows to collect large amount
of data rapidly and inexpensively, and because in some situations it provides a
better characterization of the spatial variations in soil properties than traditional
techniques.
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A ground conductivity meter (GCM) is a device often used in applied geophysics.
Its principle of operation is based on an alternating electrical current which flows
through a small electric wire coils (the transmitter). A second coil (the receiver)
is positioned at a fixed distance from the first one, and the two coil axes may be
aligned either vertically or horizontally with respect to the surface of the soil. The
transmitting coil generates an electromagnetic field above the ground, a portion
of which propagates into it. This EM field, called the primary field HP, induces
eddy currents in the ground, in turn generating a secondary EM field HS which
propagates back to the surface and the air above. The second wire coil acts as a
receiver, measuring the amplitude and phase components of both the primary and
secondary EM fields.

The measurements obtained by a GCM depend on some instrument settings, like
the orientation of the dipoles, the frequency of the alternating current, the inter-coil
distance, and the height of the instrument above the ground.

Assuming a linear dependence between the GCM response and the subsurface
electrical conductivity, a method was presented in [8] to estimate conductivities for
a simple multilayered earth model, which is applicable for low induction numbers.
The induction number, also called the “response parameter”, combines many of the
most significant parameters affecting the EM response into one single figure. It is
defined as

B D r

r
�0!


2
;

where 
 is the uniform electrical conductivity. The constant r is the inter-coil
distance, �0 D 4�10�7 H/m is the magnetic permeability of free space, and
! D 2�f , being f the operating frequency of the device in Hz.

Adopting this linear model, Borchers et al. [3] implemented a Tikhonov inverse
procedure to reconstruct conductivity profiles from measurements taken using a
GCM at various heights above the ground. Then, to account for high values of the
induction number, Hendrickx et al. [7] fitted the technique of Borchers et al. [3] to
a nonlinear model described in Ward and Hohmann [11].

In this work, we extend a regularized inversion procedure based on the damped
Gauss–Newton method, introduced by Deidda et al. [4]. The algorithm described
therein takes into consideration the quadrature part of the measured signal, which is
proportional to the “apparent” conductivity of the propagation medium. In order to
investigate the possibility of getting more information from the available data, we
consider either the in-phase or the quadrature component of the signal. Moreover,
we introduce the possibility to process data collected at different operating frequen-
cies, while in the mentioned paper the data to be inverted were obtained placing the
instrument at various heights above the ground. This new approach is motivated by
the availability of devices which use multiple frequencies simultaneously for each
measurement.
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The plan of the paper is the following. In Sect. 2 we describe the nonlinear
forward problem which models the experimental setting. Section 3 describes the
regularized inversion algorithm, and Sect. 4 reports the results of our numerical
experiments. Section 5 contains concluding remarks and discusses possible future
developments.

2 The Nonlinear Problem

The model here described is derived from Maxwell’s equations, keeping into
account the cylindrical symmetry of the problem. The input quantities are the
distribution of the electrical conductivity and the magnetic permeability in the
subsurface; the output is the instrument reading at height h.

The soil is assumed to possess a layered structure with n layers, each of thickness
dk, k D 1; : : : ; n; see Fig. 1. As a consequence, the electromagnetic variables are
piecewise constant. The thickness dn of the bottom layer is assumed to be infinite.
Let 
k and �k be the electrical conductivity and the magnetic permeability in the
k-th layer, respectively, and let uk.�/ D p

�2 C i
k�k!, where � is a variable of
integration which has no particular physical meaning.

The characteristic admittance of the k-th layer is given by

Nk.�/ D uk.�/

i�k!
; k D 1; : : : ; n:
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Fig. 1 Discretization and representation of the subsoil
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The surface admittance at the top of the k-th layer is denoted by Yk.�/ and verifies
the following recursion

Yk.�/ D Nk.�/
YkC1.�/C Nk.�/ tanh.dkuk.�//

Nk.�/C YkC1.�/ tanh.dkuk.�//
;

for k D n � 1; : : : ; 1. This recursion is initialized by setting Yn.�/ D Nn.�/ at the
lowest layer.

Now, let the reflection factor be

R0.�/ D N0.�/� Y1.�/

N0.�/C Y1.�/
;

where N0.�/ D �=.i�0!/. Then, assuming that the instrument coils are oriented
vertically,

HS

HP
D �r3

Z 1

0

�2e�2h�R0.�/J0.r�/ d�; (1)

where HP and HS denote the primary and secondary magnetic field. A similar
formula holds for the horizontal orientation of the coils [11]. We remark that (1)
defines a complex valued function which can be evaluated by the Hankel transform.

In many previous works, only the quadrature component of (1) has been
considered. This is justified by the fact that the imaginary part of HS=HP, scaled
by the constant 4=.�0!r2/, can be interpreted as an electrical conductivity, and is
generally referred to as the apparent conductivity. In this work we consider either
the in-phase or the quadrature component of the fields ratio, since they are both
measured by a GCM.

To underline the role of the parameters which influence the measurements, we let
m.� ;�I!; h/ WD HS=HP. The entries of the vectors � ;� 2 R

n are the conductivities
and permeabilities of the ground layers,! is the angular frequency of the instrument,
and h is its height above the ground.

3 Solution of the Inverse Problem

In this paper, we assume the magnetic permeability to be known in each of the
n layers. So the fields ratio (1) can be considered as a function of the values 
k,
k D 1; : : : ; n, of the conductivity in the subsoil layers.

Multiple measurements are needed to recover the distribution of conductivity
with respect to depth, so we assume that each measurement bij 2 C is recorded
at frequency !i, i D 1; : : : ;m! , and height hj, j D 1; : : : ;mh. This amounts to
m D m!mh data points.
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Let us consider the error in the model prediction, that is,

bij � m.� ; O�I!i; hj/;

where O� D . O�1; : : : ; O�n/
T is the known permeability distribution.

If the values bij and m.� ; O�I!i; hj/, with i D 1; : : : ;m! and j D 1; : : : ;mh, are
stacked in lexicographical order in the vectors b;m.� / 2 C

m (m D m!mh), the
residual vector can be written as

r.� / D F .b � m.� //; (2)

where F .z/ denotes either the real or the imaginary part of the vector z 2 C
m.

The problem of data inversion consists of computing the conductivity vector � D
.
1; : : : ; 
n/

T which determines a given data set b 2 C
m. As it is customary, we use

a least squares approach by solving the nonlinear problem

min
�2Rn

f .� /; f .� / D 1

2
kr.� /k2; (3)

where k � k represents the Euclidean norm.
The obvious choice of a solution algorithm for (3) is Newton’s method. Accord-

ing to it, the step sk in the iteration

� kC1 D � k C sk

is chosen by solving the n � n linear system

f00.� k/sk D �f0.� k/;

where f0.� / is the gradient vector of f .� / and f00.� k/ is its Hessian matrix.
The analytical expression of f00.� / is not always available, and its approximation

often implies a large computational effort. To overcome this difficulty, we resort
to the Gauss–Newton method, which minimizes at each step the norm of a linear
approximation of the residual r.� k C sk/; see (2).

Let r.� / be Fréchet differentiable and let � k denote the current approximation,
then we can write

r.� kC1/ ' r.� k/C J.� k/sk;

where J.� / is the Jacobian of r.� / D .r1.� /; : : : ; rm.� //
T , defined by

ŒJ.� /�ij D @ri.� /

@
j
; i D 1; : : : ;m; j D 1; : : : ; n:

The exact expression of the Jacobian matrix is given in [4, Theorem 3.2].
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At each iteration k, the step length sk is the solution of the linear least squares
problem

min
s2Rn

kr.� k/C Jksk; (4)

with Jk D J.� k/ or some approximation, leading to the following iterative method

� kC1 D � k C sk D � k � J�k r.� k/: (5)

The symbol J�k denotes the Moore–Penrose pseudoinverse of the matrix Jk [1].
When the residuals ri.� k/ are small or mildly nonlinear in a neighborhood of the

solution, the Gauss–Newton method is expected to behave similarly to Newton’s
method [1]. We remark that, while the physical problem is obviously consistent,
this is not necessarily true in our case, where the conductivity 
.z/ is approximated
by a piecewise constant function. Furthermore, in the presence of noise in the data
the problem will certainly be inconsistent.

To ensure convergence, the damped Gauss–Newton method replaces the approx-
imation (5) by

� kC1 D � k C ˛ksk; (6)

where ˛k is a relaxation parameter to be determined. To choose it, we use the
Armijo–Goldstein principle [9], which selects the step length ˛k as the largest
number in the sequence 2�i, i D 0; 1; : : : , for which the following inequality holds

kr.� k/k2 � kr.� k C ˛ksk/k2 � 1

2
˛kkJkskk2: (7)

This choice of ˛k ensures convergence of the method, provided that � k is not a
critical point [1], while the unrelaxed iteration may not converge at all.

The damped method allows us to include an important physical constraint in the
inversion algorithm, i.e., the positivity of the solution. In our implementation, ˛k

is the largest step size which both satisfies the Armijo–Goldstein principle (7) and
ensures that all the solution components are positive.

It is well known that problem (3) is extremely ill-conditioned. In particular,
it has been observed in [4] that the Jacobian matrix J.� / has a large condition
number virtually for each value of � in the solution domain. A common remedy
to overcome this difficulty consists of replacing the least-squares problem (4) by a
nearby problem, whose solution is less sensitive to the error present in the data. This
replacement is known as regularization.

A regularization method which particularly suits our problem, given the size of
the matrices involved, is the truncated singular value decomposition (TSVD). The
best rank ` approximation (` � p D rank.Jk/) to the Jacobian, according to the
Euclidean norm, can be obtained by the SVD decomposition Jk D U� VT , where
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� D diag.�1; : : : ; �p/ and U, V are matrices with orthonormal columns ui, vi,
respectively [1]. This factorization allows us to replace the ill-conditioned Jacobian
matrix Jk by a well-conditioned low-rank matrix A`, such that

kJk � A`k D min
rank.A/D` kJk � Ak:

Then, the regularized solution to (4) can be expressed as

s.`/ D �A�`r D �
X̀
iD1

uT
i r
�i

vi;

where r D r.� k/ and ` D 1; : : : ; p is the regularization parameter.
When some kind of a priori information on the problem is available, e.g., the

solution is a smooth function, it is sometimes useful to introduce a regularization
matrix L 2 R

t�n (t � n), whose kernel approximately contains the sought solution.
In this case, problem (4) is replaced by

min
s2S kLsk; S D fs 2 R

n W JT
k Jks D �JT

k r.� k/g;

under the assumption N .Jk/ \ N .L/ D f0g. Very common choices for L are the
discretization of the first derivative or the second derivative operators, which we will
denote by D1 and D2, respectively.

The generalized singular value decomposition (GSVD) of the matrix pair (Jk, L)
is the factorization

Jk D QU˙JZ�1; L D QV˙LZ�1; (8)

where QU and QV are orthogonal matrices and Z is nonsingular. By the simultaneous
factorization (8) it is possible to define a truncated GSVD (TGSVD) solution s`; see
[4, 5] for details.

Our algorithm for the regularized solution of (3) applies either TSVD or TGSVD
to each step of the damped Gauss–Newton method (6). For a fixed value of the
regularization parameter `, we substitute sk in (6) by the truncated SVD or GSVD
solution s.`/, obtaining the following iterative method

�
.`/
kC1 D �

.`/
k C ˛ks.`/k : (9)

We denote by � .`/ the solution at convergence.
The choice of the regularization parameter ` is crucial in order to obtain a good

approximation � .`/ of � . In real applications, experimental data are affected by
noise, so the data vector in the residual function (2) must be expressed as b DbbCe,
wherebb contains the exact data and e is the noise vector. If the noise is Gaussian and
an accurate estimate of kek is available, the discrepancy principle [5] determines `
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as the smallest index such that

kb � m.� .`//k � kek;

where  > 1 is a user-specified constant independent of kek.
In the absence of a trustful estimate of the noise level, many heuristic methods

have been introduced to approximate a regularization parameter. The L-curve,
introduced by Hansen [5], is the curve which connects the points with coordinates

�
log kr.� .`//k ; log kL� .`/k� ; ` D 1; : : : ; p:

In many discrete ill-posed problems this curve exhibits a typical “L” shape. The
L-curve criterion selects the index ` corresponding to the vertex of the “L”. This
choice often produces a smooth solution with a sufficiently small residual. In our
experiments, the corner is identified by means of the L-corner algorithm [6], which
in this particular situation proved to be the most effective technique; see [10] for a
review of methods.

4 Numerical Experiments

To assess the performance of our algorithm and to understand, at the same time,
which experimental setting is the most effective for the investigation of the soil
properties, we performed a set of numerical experiments on synthetic data sets. The
computations were executed in double precision using MATLAB R2015a on an
Intel Core i7 computer with 8 GB RAM, under the Linux operating system.

To model the conductivity of the subsoil with respect to depth, expressed in
meters, we chose the test function f .z/ depicted in Fig. 2. For fixed n and h D
.3:5m/=n, we let 
q D f .qh/ and b�q D �0 for q D 1; : : : ; n. Then, we apply the
forward model described in Sect. 2 to generate the instrument readings

0 0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1

Fig. 2 Graph of the test function used to model conductivity with respect to depth
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Obij D m.� ;b�I!i; hj/;

with i D 1; : : : ;m! and j D 1; : : : ;mh, corresponding to frequency !i D 2�fi and
height hj. Finally, we add Gaussian noise to the synthetic data by the formula

b D Ob C �kObkp
m

w;

where w is a vector with normally distributed entries with zero mean and unitary
variance, m D m!mh, and � is the noise level.

In order to simulate the use of a particular multi-frequency device, the Geophex
GEM-2 conductivity meter, we consider the coils to be in the vertical orientation at
a fixed distance r D 1:66m. The measurement height h is either 1 m (mh D 1) or
0.5 m and 1 m (mh D 2). Each data set is recorded simultaneously at the operating
frequencies fi D 775; 1175; 3925; 9825; 21725; 47025 (all expressed in Hertz), that
is, m! D 6. This instrument setting is currently being used to process data collected
in the Venice lagoon [2].

In the first experiment we investigate how to choose some of the parameters of the
methods, namely, the regularization matrix L, the heights number mh, the number of
layers n, and whether the function F .z/ in the residual (2) should be either the real
or the imaginary part of z. For each choice of the parameters, we apply the above
procedure to compute a synthetic data set, we add noise at level � D 10�3; 10�2,
and we generate 20 realizations of the random noise vector w, to produce 40 test
problems. For each test, we measure the relative error

E`opt D k� � � .`opt/k
k�k ;

where the regularization parameter `opt has been chosen in order to minimize the
value of E`, ` D 1; : : : ; p, so that the accuracy attained by the method is maximal.

For each combination of the selected parameters, we report in Table 1 the average
of the values of E`opt across the available 40 test problems. The table confirms that
the choice of the regularization matrix L D I produces the least accurate results,
as observed in [4], while D1 and D2 are more or less equivalent. The method is
not very sensitive upon the number of layers n and the accuracy does not improve
substantially when mh D 2, with respect to mh D 1. Since increasing mh implies a
larger data acquisition time, in our next experiments we will set L D D2, mh D 1,
and n D 30. Regarding the choice of the function F , both the real and imaginary
part of the signal seem to contain the same amount of information about the solution,
with the quadrature component reaching a slightly better accuracy. This suggests
that both components should be considered in the solution of the least squares
problem (3). We plan to extend the algorithm in this sense in our future work.
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Table 1 Best accuracy
attainable by the method for
selected choices of the
parameters

L mh n D 20 n D 30 n D 40

F D R I 1 3:6e � 01 3:7e � 01 3:7e � 01

2 4:5e � 01 4:5e � 01 4:4e � 01

D1 1 3:0e � 01 3:3e � 01 2:9e � 01

2 2:4e � 01 2:4e � 01 2:3e � 01

D2 1 2:4e � 01 2:1e � 01 2:8e � 01

2 2:5e � 01 2:5e � 01 2:3e � 01

F D I I 1 3:2e � 01 3:9e � 01 4:0e � 01

2 3:0e � 01 3:4e � 01 3:4e � 01

D1 1 1:9e � 01 2:3e � 01 1:9e � 01

2 2:1e � 01 1:9e � 01 1:9e � 01

D2 1 2:3e � 01 2:0e � 01 2:4e � 01

2 2:1e � 01 2:2e � 01 2:1e � 01

Each entry of the table is the average of E`opt across 40
experiments, with two noise levels and 20 noise realizations

Table 2 Results for different
values of the relative
magnetic permeability �r

�0 �r D 10 �r D 102 �r D 103

Optimal-R 2:3e � 01 4:3e � 01 5:3e � 01 5:5e � 01

0 13 9 19

Optimal-I 2:4e � 01 5:3e � 01 4:5e � 01 7:1e � 01

0 6 4 12

L-curve-R 2:6e � 01 6:3e � 01 4:7e � 01 5:4e � 01

0 20 18 27

L-curve-I 2:6e � 01 4:2e � 01 5:5e � 01 7:4e � 01

0 23 10 16

Each row displays the average error and the number of failures
across 40 experiments; see text. The upper block concerns the
optimal choice of `, the bottom block the choice by the L-curve

In our next experiment, we consider the presence of electromagnetic materials in
the subsoil (� > �0 in some layer) and analyze the effectiveness of the L-curve as
a method to choose the regularization parameter `. Table 2 is divided into two main
blocks: the first two rows concern the optimal choice ` D `opt, the last two rows the
choice ` D `L-curve, produced by the L-curve. The integer number on the bottom of
each row represents the number of failures, that is, how many of the 40 experiments
produced a relative error larger than 1.5. We verified that when the error is below
this limit it is still possible to recover from the solution significant information, e.g.,
the localization in depth of the maximal conductivity. The real number on the top of
each row represents the average of E`opt (first two rows) and E`L-curve (last two rows)
across the acceptable errors. The first column contains the result corresponding to
O�q D �0, q D 1; : : : ; n, as for the previous experiment. In the second to fourth
column, the magnetic permeability of each layer is set to

O�q D �r�0f .qh/C �0; q D 1; : : : ; n;
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where �r D 10; 102; 103, and f .z/ is the function of Fig. 2. The largest value of �r

roughly correspond to the magnetic permeability of iron.
From Table 2, it is immediately evident that the inversion problem is much harder

to solve when�r > 1. The considerable number of experiments whose relative error
is larger than 1.5 (the failures) suggests that the algorithm, originally conceived
for constant permeability �0, should be modified in order to deal with the general
situation. Nevertheless, when the algorithm does not fail the error for�r > 1 is only
slightly larger than for � D �0. Preliminary results on field data (see [2]) suggest
that the solutions produced by the method are still accurate for moderate values of
�r.

When the regularization parameter ` is chosen by the L-curve, rather than
optimally, the performance of the method gets worse, in terms of number of failures,
but the error is still acceptable. This experiment confirms that both the real and
imaginary part of the signal contain substantial information about the solution.

To illustrate the effect of regularization on the computed solutions we depict
in Fig. 3 the first four regularized solutions � .`/, that is, the limit solutions of
the iterative scheme (9) when ` D 1; 2; 3; 4. This experiment is characterized by
constant permeability �0 and noise level � D 10�3; the solution (thick line) is
computed by minimizing the real part of the signal. The exact solution is displayed
in each graph by a thin line. The graphs show that when the parameter is smaller
than the optimal value, the solution is over-regularized and it is just a sketch of
the correct conductivity profile. On the contrary, when ` is too large there are no
constraints on the error propagation, and the under-regularized solution exhibits
abnormal oscillations.

In Fig. 4 we compare the solution obtained by minimizing the real part of the data
(left column) to the one corresponding to the imaginary part (right column). The
thick line is the exact solution, the thin line is the optimal solution, the dashed line
represents the L-curve solution. The graphs in the top row correspond to �r D 10

and � D 10�3. When F D R, the L-curve selects the optimal parameter ` D 2,
with an error E`opt D E`L-curve D 0:37; when F D I , the algorithm fails.
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Fig. 3 Plot of the first four regularized solutions, computed by minimizing the real part of the
signal, compared to the exact solution. The magnetic permeability � D �0 is constant, the noise
level is � D 10�3
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Fig. 4 Solution obtained by minimizing the real part of the data (left) or the imaginary part (right);
� D 10�3, �r D 10 in the top row, �r D 102 in the bottom row. The value of ` is chosen either
optimally or by the L-curve

The bottom row of Fig. 4 displays a similar experiment, with �r D 102. In this
case, the L-curve correctly identifies the regularization parameter for the quadrature
part minimization (` D 3), with an error E`opt D E`L-curve D 0:70. On the contrary,
while the optimal error for the real part is E`opt D 1:36 (` D 3), the L-curve chooses
the parameter ` D 2, producing an incorrect solution.

5 Conclusions

In this paper we presented an extension of the algorithm proposed in [4] for the
inversion of EMI data in a geophysical setting. The algorithm has been generalized
in order to process data collected by multi-frequency devices, and to fit either the
real or the imaginary part of the signal. Moreover, we took into consideration the
presence of ferromagnetic materials in the subsoil.
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While the results corresponding to low magnetic permeability (� D �0) are
satisfactory, considering larger permeabilities makes the algorithm less robust. In
the near future, we plan to modify the inversion procedure in order to deal with the
complex signal as a whole, and with large values of �. Another problem we are
facing is the determination of both the conductivity and the permeability starting
from the data.

The new algorithm has been applied to EM data collected in the Venice lagoon,
using a multi-frequency device, to which the algorithm from [4] could not have been
applied. The results obtained seem to have correctly identified the structure of the
subsoil in the surveyed area; see [2].
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Total Positivity: A New Inequality and Related
Classes of Matrices

A. Barreras and J.M. Peña

Abstract In this paper we present the extension of some results to classes of
matrices related to total positivity. First, we survey some properties and results for
matrices with Signed Bidiagonal Decomposition (SBD matrices), a class of matrices
that contains Totally Positive (TP) matrices and their inverses. We also extend the
affirmative answer of an inequality conjectured for the Frobenius norm of the inverse
of matrices whose entries belong to Œ0; 1� to the class of nonsingular totally positive
matrices.

1 Introduction

There are some classes of structured matrices very important in applications and
that also present many advantages under a mathematical and a computational point
of view. In this last aspect, we can mention that recent research in Numerical
Linear Algebra has shown that certain classes of matrices allow us to perform many
computations to high relative accuracy, independently of the size of the condition
number (cf. [14]). For instance, the computation of their singular values, eigenvalues
or inverses. These classes of matrices are defined by special sign or other structure
and require to know some natural parameters to high relative accuracy, and they
are related to some subclasses of P-matrices. Let us recall that a square matrix is
called a P-matrix if all its principal minors are positive. Subclasses of P-matrices
with many applications are the nonsingular totally nonnegative matrices and the
nonsingular M-matrices (a nonsingular matrix A with nonpositive off-diagonal
entries is an M-matrix if A�1 has nonnegative entries). Usually, accurate spectral
computation (eigenvalues, singular values) or accurate inversion is assured when an
accurate matrix factorization with a suitable pivoting is provided. For instance, the
bidiagonal decomposition in the case of totally positive matrices (see [24]) or an
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LDU factorization after a symmetric pivoting in the case of diagonally dominant
matrices (cf. [12, 29]).

Let us recall that a matrix is totally positive (TP) if all its minors are nonnegative.
Let us remind that TP matrices are also called in the literature totally nonnegative
matrices (cf. [17]). The class of totally positive matrices is representative of the
properties mentioned in the first sentence of this introduction. It has applications
to many fields, presents interesting theoretical properties and has very nice stability
and computational properties (see [2, 17–19, 22, 24, 28, 31]).

In this paper, we survey the extension of some properties valid for TP matrices
to a more general class of matrices, called SBD matrices (matrices with signed
bidiagonal decomposition). We also extend the affirmative answer of an inequality
conjectured for the Frobenius norm of the inverse of matrices whose entries belong
to Œ0; 1� to the class of nonsingular TP matrices. In Sect. 2 we present the class
of SBD matrices and several results extending properties of TP matrices to the
new class (see also [7]). In Sect. 3 we introduce the basic concepts related to
the conjecture. We start with the case of tridiagonal TP matrices and provide a
proof using elementary arguments for the sake of self completeness. In Sect. 4 we
prove the extension to any class of P-matrices closed under Schur complements
and satisfying the Fisher inequality. As a consequence, we derive the result for
nonsingular TP matrices.

2 A Class of Matrices Related to Total Positivity

Let Qk;n be the set of sequences of k (� n) positive integers less than or equal
to n. Given ˛ 2 Qk;n and ˇ 2 Ql;n we denote by AŒ˛jˇ� the k � l submatrix of
A containing rows numbered by ˛ and columns numbered by ˇ. If ˛ D ˇ then
we denote the principal submatrix by AŒ˛� WD AŒ˛j˛�. We use ˛c to denote the
increasingly rearranged complement of ˛, ˛c D f1; : : : ; ng n ˛. Besides we denote
A.˛jˇ� WD AŒ˛cjˇ�, AŒ˛jˇ/ WD AŒ˛jˇc� and A.˛/ WD AŒ˛c�.

Some classes of matrices, including TP matrices, can be decomposed as a product
of bidiagonal matrices. These decompositions use matrices of the form

L.k/ D

0
BBBBBBBBBBB@

1

0 1
: : :

: : :

0 1

l.k/n�k 1
: : :

: : :

l.k/n�1 1

1
CCCCCCCCCCCA

;
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U.k/ D

0
BBBBBBBBBBB@

1 0
: : :

: : :

1 0

1 u.k/n�k
: : :

: : :

1 u.k/n�1
1

1
CCCCCCCCCCCA

;

where k D 1; : : : ; n � 1.
Let A be a nonsingular n � n matrix. Suppose that we can write A as a product of

bidiagonal matrices

A D L.1/ � � � L.n�1/DU.n�1/ � � � U.1/; (1)

where D D diag.d1; : : : ; dn/, and, for k D 1; : : : ; n � 1, L.k/ and U.k/ are matrices
as mentioned above satisfying:

1. di ¤ 0 for all i,
2. l.k/i D u.k/i D 0 for i < n � k,

3. l.k/i D 0 ) l.k�s/
iCs D 0 for s D 1; : : : ; k � 1 and

u.k/i D 0 ) u.k�s/
iCs D 0 for s D 1; : : : ; k � 1.

Then we denote (1) by BD.A/ a bidiagonal decomposition of A. It was proved,
in [4, Proposition 2.2], that this decomposition is unique.

Let us recall an important result that characterizes nonsingular TP matrices in
terms of it bidiagonal decomposition (it is a consequence of Theorem 4.2 of [20]).

Theorem 1 A nonsingular n �n matrix A is TP if and only if there exists a (unique)
BD.A/ such that:

1. di > 0 for all i.
2. l.k/i � 0, u.k/i � 0 for 1 � k � n � 1 and n � k � i � n � 1.

Let us now define a class of matrices with bidiagonal decomposition with special
sign conditions on the entries of bidiagonal matrices. This class will generalize the
class of nonsingular TP matrices. Recall that a vector " D ."1; : : : ; "m/ with "j 2
f�1; 1g for j D 1; : : : ;m is called signature.

Definition 1 Given a signature " D ."1; : : : ; "n�1/ and a nonsingular n � n matrix
A, we say that A is SBD with signature " if there exists a BD.A/ such that:

1. di > 0 for all i,
2. l.k/i "i � 0, u.k/i "i � 0 for 1 � k � n � 1 and n � k � i � n � 1.

We say that A is SBD, if it is SBD with some signature ". Observe that these
matrices are nonsingular.
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Given a signature " D ."1; : : : ; "n�1/, let us define a diagonal matrix K D
diag.k1; : : : ; kn/ with ki satisfying

ki 2 f�1; 1g 8 i D 1; : : : ; n; kikiC1 D "i 8 i D 1; : : : ; n � 1: (2)

Now, we present three results that provide characterizations of SBD matrices.
Some of these characterizations are given in terms of important matrices decompo-
sitions, such as LDU decomposition or UL decomposition.

The following theorem appeared in [4, Theorem 3.1] and provides several
characterizations of SBD matrices.

Theorem 2 Let A D .aij/1�i;j�n be a nonsingular matrix and let " D ."1; : : : ; "n�1/
be a signature. Then the following properties are equivalent:

.i/ A is SBD with signature ".
.ii/ KAK D jAj is TP, where K is any diagonal matrix satisfying (2).
.iii/ A�1 is SBD with signature �" D .�"1; : : : ;�"n�1/.
.iv/ jAj is TP and, for all 1 � i; j � n,

sign.aij/ D
8<
:
"j � � � "i�1; if i > j
1 ; if i D j
"i � � � "j�1; if i < j:

Observe that an SBD matrix with signature .1; : : : ; 1/ is a nonsingular TP matrix.
As a corollary of Theorem 2 we have the following result, which corresponds
with [4, Corollary 3.3]:

Corollary 1 Let A be a nonsingular matrix. Then the following properties are
equivalent:

.i/ A is SBD with signature .1; : : : ; 1/.
.ii/ A is TP.
.iii/ A�1 is SBD with signature .�1; : : : ;�1/.
Let us now present a characterization of SBD matrices in terms of their LDU
decomposition (cf. [4, Proposition 3.5]).

Proposition 1 An n � n matrix A is SBD with signature " D ."1; : : : ; "n�1/ if and
only if A D LDU, where L (resp., U) is a lower (resp., an upper) triangular matrix
with unit diagonal and SBD with signature " and D is a diagonal matrix whose
diagonal entries are positive.

Let us recall that, given a matrix A, a factorization A D BC is called an
UL decomposition if B is upper triangular and C is lower triangular. In order to
characterize SBD matrices in terms of their UL decomposition, we need to introduce
a new class of matrices (presented in [5]). We say that a matrix A is signature
similar to TP with signature ", denoted by SSTP with signature ", if A D KBK,
where B is TP and K satisfies (2). The following proposition (which corresponds
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with [5, Proposition 3.10]) gives a characterization of SBD matrices by their UL
decomposition.

Proposition 2 A matrix A is SBD with signature " if and only if there exists a lower
and an upper triangular SSTP matrices with signature ", AL and AU, such that
A D AUAL.

An algorithm can be performed with high relative accuracy if it does not include
subtractions (except of the initial data), that is, if it only includes products, divisions,
sums of numbers of the same sign and subtractions of the initial data (cf. [14]). Up
to now, we only have algorithms with high relative accuracy for a reduced number of
classes of matrices, related with total positivity (cf. [1, 10, 11, 24, 26]) or diagonal
dominance (cf. [12, 29]). In the problem of finding algorithms with high relative
accuracy, the choice of adequate parameters is crucial to avoid subtractions during
the algorithm. For nonsingular TP matrices, if we know with high relative accuracy
the entries of (1), then algorithms with high relative accuracy can be applied (cf. [23,
24]). We recall that, with the same parameters, these algorithms can be used to
compute with high relative accuracy the singular values, eigenvalues, inverses or
the LDU decomposition of SBD matrices (cf. [4]).

Given an SBD matrix A, let us observe that, from (1) and taking into account that
K2 D I, we have

KAK D .KL.1/K/ � � � .KL.n�1/K/.KDK/

.KU.n�1/K/ � � � .KU.1/K/; (3)

which is the BD.KAK/. Besides, taking into account (2), it can be checked that all
factors of BD.KAK/ are nonnegative.

As shown in recent references [13, 15, 23–26], the diagonal entries of the
diagonal matrix D of the BD.A/ (see Eq. (1)) and the off-diagonal entries of the
remaining factors of (1) can be considered natural parameters associated with A.
In the computation of these parameters, Neville elimination (see [26]) has been
frequently a useful tool. Let us see that if we assume that we know these parameters
with high relative accuracy for SBD matrices, then we can find algorithms with high
relative accuracy to compute their singular values, their eigenvalues, their inverses
or to solve certain linear systems Ax D b (those with Kb with a chessboard pattern
of signs).

For all the mentioned computations we can follow a procedure that were
presented in [4] and it can be summarized by the following steps:

1. From BD.A/, we obtain BD.jAj/, given by (3).
2. We can apply known algorithms with high relative accuracy for TP matrices to

BD.jAj/. Recall that, by Theorem 2, jAj is TP if A is SBD.
3. From the information obtained for jAj, we can get the corresponding result for A.

Let us now explain how to perform each of the previous steps.
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As for Step 1, let us assume that we know the BD.A/ (see Eq. (1)) with high
relative accuracy for a given SBD matrix. Then jAj D KAK for a diagonal matrix K
satisfying (2) and so we can deduce from (3) that

jAj D jL.1/j � � � jL.n�1/jjDjjU.n�1/j � � � jU.1/j (4)

is the BD.jAj/. Since all factors of BD.KAK/ are nonnegative, we have that
jL. j/j D KL. j/K, jU. j/j D KU. j/K for all j D 1; : : : ; n�1. Thus, (4) follows from (3).

As for Step 2, we apply the corresponding algorithm for TP matrices with high
relative accuracy, using BD.jAj/ (given by (4)). In particular, we consider the
following accurate computations with TP matrices:

A. The eigenvalues of jAj can be obtained by the method of [23, Sect. 5].
B. The singular values of jAj can be obtained by the method of [23, Sect. 6].
C. The inverse of jAj can be obtained by the method of [24, p. 736].
D. Observe that Ax D b is equivalent to solving .KAK/.Kx/ D Kb, that is,

jAj.Kx/ D Kb. Then, jAj�1 can be calculated accurately by the procedure of
the previous case. By Ando [2, Theorem 3.3], jAj�1 has a chessboard pattern of
signs and so, since Kb has also a chessboard pattern of signs, Kx D jAj�1.Kb/
can be calculated without subtractions and therefore with high relative accuracy.

As for Step 3, we have the following cases corresponding to each of the cases of
Step 2:

A. We have that jAj D KAK D K�1AK and so they are similar matrices and have
the same eigenvalues.

B. The singular values of A and jAj coincide because jAj D KAK, that is, jAj and A
coincide up to unitary matrices.

C. We have that jAj�1 D .KAK/�1 D KA�1K and so A�1 D KjAj�1K.
D. If we know Kx, then x D K.Kx/.

In addition, let us show that if we have the BD.A/ (see Eq. (1)) with high relative
accuracy, then we can also calculate the LDU decomposition of A with high relative
accuracy, and even obtain the matrix A with high relative accuracy. In fact, by the
uniqueness of the LDU decomposition of a matrix, it can be checked that

L D L.1/ � � � L.n�1/; U D U.n�1/ � � � U.1/: (5)

Since the bidiagonal matrices L.k/, U.k/ satisfy sign properties of Definition 1, then
we have that matrices L and U can be calculated without subtractions and so with
high relative accuracy. Then we can also compute A D LDU with high relative
accuracy.

Several properties of SBD matrices have been studied in [3, 4]. We summarize
some of them in the following result.

Proposition 3 Let A;B be two n�n SBD matrices with the same signature ". Then

.i/ AT is also SBD with signature ".
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.ii/ Any principal submatrix of A is SBD.
.iii/ AB is also SBD with signature ".
.iv/ A is a P-matrix, that is, it has all its principal minors positive.

Given two matrices A D .aij/1�i;j�n and B D .bij/1�i;j�n, we define the
Hadamard product, or entrywise product, of A and B as the matrix A ı B WD
.aijbij/1�i;j�n. The Hadamard core (cf. [5, 9]) of the n � n TP matrices is given
by

CTP WD fA W B is TP ) A ı B is TPg: (6)

It is known, by Fallat and Johnson [17, Theorem 8.2.5], that tridiagonal TP matrices
are in the CTP. Then, by Fallat and Johnson [17, Corollary 8.3.2], it can be deduced
the following result (cf. [5, Proposition 3.1]).

Proposition 4 Let A be an n � n tridiagonal TP matrix and B an n � n TP matrix.
Then det.A ı B/ � det A det B.

Given an n � n TP matrix A, then we say that A is oscillatory if a certain power
of A, Ak, becomes strictly totally positive; that is, all the minors of Ak are strictly
positive (see [2]). Recall that, by Ando [2, Theorem 4.2], a nonsingular TP matrix
A D .aij/1�i;j�n is oscillatory if and only if ai;iC1 > 0 and aiC1;i > 0 for all
i D 1; : : : ; n � 1. Moreover, observe that since an oscillatory matrix is TP and
nonsingular, we have that aii > 0 for all i D 1; : : : ; n (cf. [2, Corollary 3.8]). Thus,
a tridiagonal oscillatory matrix A D .aij/1�i;j�n satisfies aij ¤ 0 for ji � jj � 1.

It is known (cf. [31, Proposition 4.12], [9, Corollary 2.7] or [17, Corollary 8.2.6])
that the Hadamard product of two n�n tridiagonal TP matrices is again a tridiagonal
TP matrix. Taking into account that the nonsingularity of tridiagonal TP matrices is
also preserved by the Hadamard product (see Proposition 4), we can extend the
previous fact to nonsingular tridiagonal TP matrices. Thus, in [5, Proposition 3.2], a
generalization of [27, Theorem 1] from the class of tridiagonal oscillatory matrices
to the class of nonsingular tridiagonal TP matrices was given.

Proposition 5 Let A;B be two nonsingular n � n tridiagonal TP matrices. Then
A ı B is a nonsingular tridiagonal TP matrix.

We shall now extend Proposition 4 to the class of SBD matrices. Analogously
to (6), we define the Hadamard core of the n � n SBD matrices by

CSBD WD fA W B is SBD ) A ı B is SBDg: (7)

The following result (cf. [5, Proposition 3.4]) shows that tridiagonal SBD matrices
belong to CSBD.

Proposition 6 Let A be an n�n tridiagonal SBD matrix and B an n�n SBD matrix.
Then A ı B is SBD.
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The set of tridiagonal SBD matrices form a semigroup with respect to the
Hadamard product as the following corollary [5, Corollary 3.5] shows. It extends
Proposition 5 to tridiagonal SBD matrices and it is a direct consequence of
Proposition 6.

Corollary 2 Let A;B be two n � n tridiagonal SBD matrices. Then the matrix A ı B
is a tridiagonal SBD matrix.

Besides, Corollary 2 cannot be extended to SBD matrices that are not tridiagonal,
as the following example shows. Observe that the following matrix is a nonsingular
TP matrix

A D
0
@1:1 1 1

1 1 1

0 1 1:1

1
A ;

so, by Theorem 2, A is SBD. However, the matrix

A ı AT D
0
@1:1

2 1 0

1 1 1

0 1 1:12

1
A

satisfies that det.A ı AT/ D �0:9559 < 0. So A ı AT is not a P-matrix. Recall that,
by Proposition 3, SBD matrices are P-matrices, and then, we conclude that A ı AT

it is not SBD.
Let us recall that given A an n � n matrix, if AŒ˛ j ˇ� is invertible for some

˛; ˇ 2 Qk;n, 1 � k � n, then the Schur complement of AŒ˛ j ˇ� in A, denoted by
A=AŒ˛ j ˇ�, is defined as

A=AŒ˛ j ˇ� WD A.˛ j ˇ/ � A.˛ j ˇ�AŒ˛ j ˇ��1AŒ˛ j ˇ/: (8)

If ˛ D ˇ, we denote A=AŒ˛ j ˛� by A=AŒ˛�.
If A is invertible, we can use formula (1.29) of [2] to derive the following formula

for Schur complement of principal submatrices:

.A=AŒ˛�/�1 D A�1.˛/ D A�1Œ˛c�: (9)

In [17, Proposition 1.5.1], it is shown that the Schur complement of principal
submatrices using contiguous index sets, A=AŒ˛� with ˛ D .i; i C 1; : : : ; i C k � 1/,
of a nonsingular TP matrix, is TP. However, this result is not valid for general Schur
complements of TP matrices. For SBD matrices, in [5, Theorem 3.6] it was proved
that general Schur complements of principal submatrices of SBD matrices are again
SBD.

Theorem 3 Let A be an SBD matrix. Then A=AŒ˛�, the Schur complement of AŒ˛�
in A, is SBD for all ˛ 2 Qk;n, 1 � k � n.
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Finally, let us present a lower bound for a minimal eigenvalue of an SBD
matrix. Let us recall that the well-known Gerschgorin’s Circles Theorem provides
a lower bound for an eigenvalue with minimal absolute value, ��, of a matrix
A D .aij/1�i;j�n:

j��j � min
i

8<
:jaiij �

X
j¤i

jaijj
9=
; :

The following result improves this bound for SBD matrices. The next index subset
is used in following result: given i 2 f1; : : : ; ng let

Ji WD f jj jj � ij is oddg: (10)

Observe that, by Theorem 2, we know that KjAjK is SBD, where jAj is a TP
matrix; that is, SBD matrices are similar to TP matrices. So A and jAj have the same
eigenvalues. Recall that an eigenvalue with minimal absolute value of a nonsingular
TP matrix is positive (cf. [2, Corollary 6.6]). Thus, we know that SBD matrices
also satisfy this property. The following result extends to SBD matrices the bound
obtained in [30, Theorem 4.4] for nonsingular TP matrices and corresponds with [5,
Corollary 2.7].

Proposition 7 Let A be an n � n SBD matrix and let �� be an eigenvalue of A with
minimal absolute value. For each i 2 f1; : : : ; ng, let Ji be the index subset defined
by (10). Then

�� � min
i

8<
:aii �

X
j2Ji

jaijj
9=
; : (11)

The following example (which is included in [5, Example 2.8]) shows that the
bound given by Proposition 7 cannot be improved.

Example 1 Let us consider the SBD matrix

A D
0
@12 �7 �1
0 6 1

0 3 8

1
A :

The eigenvalues of A are 12, 9 and 5, which coincides with the eigenvalues of the
TP matrix jAj. Observe that the bound given by (11), �� � 5, cannot be improved,
because this bound is achieved by the smallest eigenvalue. Observe also that the
lower bound given by the Gerschgorin’s Circles Theorem is �� � minf4; 5; 5g D 4,
which is worse than the previous one.
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3 Inequality for Tridiagonal TP Matrices

We present in this section another property of tridiagonal TP matrices. In particular,
a lower bound for the norm of the inverse of a tridiagonal TP matrix with entries in
Œ0; 1� is presented.

Recall that, given a nonsingular n � n matrix A, the procedure of Gaussian
elimination without pivoting provides as result a sequence of n � 1 matrices:

A D A.1/ �! A.2/ �! � � � �! A.n/; (12)

where A.t/ has zeros below its main diagonal in the first t � 1 columns:

A.t/ D

0
BBBBBBBBBBBBB@

a.t/11 a.t/12 : : : : : : : : : : : : a.t/1n

0 a.t/22 : : : : : : : : : : : : a.t/2n
::: 0

: : :
:::

:::
:::

: : :
:::

:::
::: a.t/tt : : : a.t/tn

:::
:::

:::
:::

0 0 : : : : : : a.t/nt : : : a.t/nn

1
CCCCCCCCCCCCCA

:

Given a real matrix A D .aij/1�i;j�n its Frobenius norm is defined as

kAkF WD
0
@ nX

iD1

nX
jD1

a2ij

1
A
1=2

:

A Hadamard matrix of order n is a matrix A D .aij/1�i;j�n such that aij 2 f�1; 1g
whose rows and columns are mutually orthogonal; that is, AAT D nIn, where In is
the identity matrix of order n. An S-matrix of order n is a matrix A D .aij/1�i;j�n

such that aij 2 f0; 1g, formed by considering a Hadamard matrix of order n C 1 in
which the entries in the first row and column are 1, changing 1’s to 0’s and �1’s to
1’s, and deleting the first row and the first column.

Let Dn denote the set of all n � n matrices A whose entries are in the interval
Œ0; 1�. Sloane and Harwit proposed (see [32]) the following conjecture concerning
matrices in Dn.

Conjecture 1 If A 2 Dn is a nonsingular matrix, then

kA�1kF � 2n

n C 1
;

where the equality holds if and only if A is an S-matrix.
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This conjecture appeared from a problem in the field of spectroscopy (cf. [21]).
The conjecture were proved for matrices of odd order by Cheng in 1987 (see [8, 16]).

We now present a result that proves the conjecture for nonsingular tridiagonal TP
matrices that lie in the set Dn.

Proposition 8 Let A 2 Dn be a nonsingular tridiagonal TP matrix. Then

kA�1kF � 2n

n C 1
:

Proof We proceed by induction on n. If n D 2 it is known (see [16]) that kA�1kF �p
2 > 4=3.
Suppose that the result holds for matrices of order n � 1; that is, given QA 2

Dn�1 nonsingular tridiagonal TP, then k QA�1kF � 2n�2
n . Consider now A 2 Dn a

nonsingular tridiagonal TP matrix. Since, by Ando [2, Corollary 3.8], a nonsingular
TP matrix have positive principal minors, we have that a11 > 0. Then, after the first
step in Gaussian elimination, we have A.2/ D .a.2/ij /1�i;j�n (see Eq. (12))

A.2/ D

0
BBB@

a11 a12
0
::: A.2/Œ2; : : : ; n�
0

1
CCCA

where a.2/i1 D 0 for all i 2 f2; : : : ; ng and a.2/11 D a11 ¤ 0. Observe that we can
express A D L�1

1 A.2/ (DW .aij/1�i;j�n), where

L1 D

0
BBBBBB@

1
�a21
a11

1

0 1
:::

: : :

0 1

1
CCCCCCA
:

Thus, we have that

A�1 D .L�1
1 A.2//�1 D .A.2//�1L1

D

0
BBBB@

1
a11

ˇ2 � � � ˇn

0
::: .A.2/Œ2; : : : ; n�/�1
0

1
CCCCA

0
BBB@

1
�a21
a11

1

: : :

1

1
CCCA
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D

0
BBB@

.A�1/11 ˇ2 � � � ˇn

�2
::: .A.2/Œ2; : : : ; n�/�1
�n

1
CCCA (13)

where ˇi; �i are real numbers for all i 2 f2; : : : ; ng and .A�1/11 denotes the (1,1)
entry of A�1. Since A.2/ is nonsingular we have that B WD A.2/Œ2; : : : ; n� is also
nonsingular. Taking into account that A 2 Dn is tridiagonal TP and considering
Gaussian elimination, we have that

a.2/ij D aij 2 Œ0; 1�

for all i; j 2 f2; : : : ; ng, .i; j/ ¤ .2; 2/ and we deduce that

a.2/22 D a22 � a21
a11

a12 � a22 � 1

and

a.2/22 D a22 � a21
a11

a12 D det AŒ1; 2j1; 2�
a11

> 0:

Thus B 2 Dn�1. Furthermore, observe that B is also tridiagonal and it can be
expressed as the Schur complement B D A=AŒ1� and this Schur complement in a
TP matrix is TP (see [2, Theorem 3.3]). Thus, by the induction hypothesis, we have
that

kB�1kF � 2n � 2
n

: (14)

Observe that, since A 2 Dn is TP and considering the (1,1) cofactor of A and formula
(2) of [6] for the determinant of a tridiagonal matrix (det A D a11 det AŒ2; : : : ; n� �
a21a12 det AŒ3; : : : ; n�), we have

.A�1/11 D det AŒ2; : : : ; n�

det A
D det AŒ2; : : : ; n�

a11 det AŒ2; : : : ; n�� a12a21 det AŒ3; : : : ; n�

� det AŒ2; : : : ; n�

a11 det AŒ2; : : : ; n�
� 1: (15)

Thus, by (13)–(15) we can derive

kA�1k2F D kB�1k2F C �
.A�1/11

�2 C
nX

iD2
ˇ2i C

nX
iD2

�2i � kB�1k2F C C; (16)
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for any 0 � C � 1. Let us consider OC D 8n2�4
n2.nC1/2 , observe that then 0 � OC � 1 for

all n > 2 and thus, by (14) and (16), we have

kA�1k2F � kB�1k2F C OC �
�
2n � 2

n

�2
C 8n2 � 4

n2.n C 1/2
D
�

2n

n C 1

�2

and the results holds.

4 Inequality for a General Class of Matrices

In this section, we shall prove that the inequality of the conjecture recalled in the
previous section also holds for more general classes of matrices and, in particular,
for nonsingular TP matrices in Dn.

Our classes of matrices will be closed under Schur complements and will be
formed by P-matrices (all its principal minors are positive) satisfying, in addition, a
classical inequality called the Fisher inequality:

det A � det AŒ˛� det A.˛/

for any ˛ 2 Qk;n and 1 � k < n.

Theorem 4 Let A 2 Cn \ Dn, where Cn is any class of n � n P-matrices closed
under Schur complements and satisfying the Fisher inequality. Then

kA�1kF � 2n

n C 1
:

Proof We proceed by induction on n. If n D 2 it is known (see [16]) that kA�1kF �p
2 > 4=3.
Suppose that the result holds for matrices of order n � 1; that is, given QA 2

Cn�1 \ Dn�1, then k QA�1kF � 2n�2
n . Consider now A 2 Cn \ Dn. Since A is a P-

matrix, we have that a11 > 0. Then, after the first step in Gaussian elimination, we
have A.2/ D .a.2/ij /1�i;j�n (see Eq. (12))

A.2/ D

0
BBB@

a11 a12
0
::: A.2/Œ2; : : : ; n�
0

1
CCCA
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where a.2/i1 D 0 for all i 2 f2; : : : ; ng and a.2/11 D a11 ¤ 0. Observe that we can
express A D L�1

1 A.2/ (DW .aij/1�i;j�n), where

L1 D

0
BBBB@

1
�a21
a11

1

:::
: : :

�an1
a11

1

1
CCCCA :

Thus, we have that (13) holds. Since A.2/ is nonsingular we have that B WD
A.2/Œ2; : : : ; n� is also nonsingular. Taking into account that A 2 Dn is a P-matrix
and considering Gaussian elimination, we have that either

a.2/ij D aij 2 Œ0; 1�

or

a.2/ij D aij � ai1

a11
a1j � aij � 1

and

a.2/ij D aij � ai1

a11
a1j D det AŒ1; ij1; j�

a11
> 0:

Thus B 2 Dn�1. Furthermore, observe that B can be expressed as the Schur
complement B D A=AŒ1� and so B 2 Cn�1. In conclusion, B 2 Cn�1 \ Dn�1.
Thus, by the induction hypothesis, we have that (14) holds. Since A 2 Cn, Fisher’s
inequality implies that det A � a11 det AŒ2; : : : ; n� and, taking also into account that
A 2 Dn, we have

.A�1/11 D det AŒ2; : : : ; n�

det A
� det AŒ2; : : : ; n�

a11 det AŒ2; : : : ; n�
� 1: (17)

Thus, by (13), (14) and (17) we can derive (16) for any 0 � C � 1. Let us
consider OC D 8n2�4

n2.nC1/2 , observe that then 0 � OC � 1 for all n > 2 and thus, by (14)
and (16), we have

kA�1k2F � kB�1k2F C OC �
�
2n � 2

n

�2
C 8n2 � 4

n2.n C 1/2
D
�

2n

n C 1

�2

and the results holds.

As a consequence of the previous result, we can extend the result of the previous
section to all nonsingular TP matrices.
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Corollary 3 Let A 2 Dn be a nonsingular TP matrix. Then

kA�1kF � 2n

n C 1
:

Proof By Theorem 4, it is sufficient to see that the class of nonsingular TP matrices
is a class of P-matrices closed under Schur complements and satisfying the Fisher
inequality. By Ando [2, Corollary 3.8], nonsingular TP matrices are P-matrices. It
is well known that they are closed under Schur complements (cf. [2, Theorem 3.3]).
Finally, it is also well known that they satisfy the Fisher inequality (cf. [17]).

If we consider a nonsingular (tridiagonal) TP matrix A, observe that the lower
bound provided in Sects. 3 and 4 for the norm of A�1 could imply an ill conditioning
of A. However we have presented, in Sect. 2, accurate computations for these classes
of matrices that do not depend on the conditioning of the initial matrix.
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Applications of C1-Symmetries
in the Construction of Solvable Structures

Adrián Ruiz and Concepción Muriel

Abstract A complete set of first integrals for a third order ordinary differential
equation (ODE) that admits the non-solvable symmetry algebra sl.2;R/ can be
found by quadratures. These first integrals arise from a solvable structure that can be
constructed in terms of two first integrals associated to C 1-symmetries of a reduced
second order ODE. The general procedure is illustrated by an explicit example
where three independent first integrals of the third order equation are provided in
terms of a complete set of solutions to a second order linear ODE.

1 Introduction

If an nth order ordinary differential equation (ODE) admits a k-dimensional Lie
symmetry algebra, G ; then its general solution can be obtained by means of the
general solution of an .n�k/th order reduced equation and the solution of a kth order
auxiliary equation. If G is solvable, then the general solution of the corresponding
auxiliary equation can be obtained by k successive quadratures [8, 9, 14, 16].
However, if G is non-solvable, this step by step method of reduction is no longer
available. The reason is that, at a certain stage of the reduction process, at least one
of the generators of G cannot be used to proceed with the order reduction. In this
case we say, roughly speaking, that the corresponding symmetries have been lost
for the reduced equation.

Lost symmetries have been widely studied in the literature [1–5]. These lost
symmetries are called type I hidden symmetries and they are difficult to study
because there are no general methods for determining them. These type I hidden
symmetries can be found in the case of an ODE which admits the non-solvable
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symmetry algebra sl.2;R/. A basis of generators fv1; v2; v3g of sl.2;R/ can be
chosen verifying the following commutation relations:

Œv1; v3� D v1; Œv1; v2� D 2v3; Œv3; v2� D v2: (1)

If we use the vector field v1 (resp. v2 ) to reduce the order of the equation, the Lie
symmetry v3 can be recovered as Lie symmetry of the reduced equation, but v2
(resp. v1) is lost as Lie symmetry. On the other hand, if we use v3 at the first step,
then both vector fields v1 and v2 are lost as Lie point symmetries of the reduced
equation.

In 2001, Muriel and Romero [10] showed that many of the known reduction
processes can be explained by the invariance of the equation under a class of vector
fields called C1-symmetries or �-symmetries. In particular, in [11], the case of
the non-solvable algebra sl.2;R/ was studied and it has been proved that the lost
symmetries can be recovered as �-symmetries of the reduced equation. Besides, the
general solution of the original equation can be recovered by quadratures from the
solution of the reduced equation (see page 489 in [11] for details).

On the other hand, in 1991, Basarab-Horwath [7] introduced the concept of
solvable structure for involutive systems of vector fields. In [7] it is proved the
equivalence between the existence of a solvable structure and the integrability by
quadratures of an involutive system of vector fields. A solvable symmetry algebra
of an ODE is a particular case of solvable structure for the (trivially involutive)
system formed by the vector field associated to the ODE.

Our goal in this paper is to study some connections between solvable structures
and �-symmetries for third order ordinary differential equations admitting the non-
solvable symmetry algebra sl.2;R/. The main result states that if a third order
ordinary differential equation admits sl.2;R/ as symmetry algebra, then a solvable
structure with respect to the vector field associated to the equation can be explicitly
computed from such symmetry algebra by using �-symmetries. Once the solvable
structure is known, the equation can be solved by quadratures, as in the case of
solvable Lie algebras.

The paper is organized as follows. In Sect. 2 we include the concepts, notation
and previous results that will be used throughout the paper. In Sect. 3 we compute
explicitly a solvable structure for any third order ordinary differential equation
which admits sl.2;R/ as symmetry algebra. The adopted approach uses a reduced
ODE of second order, which inherits two non-equivalentC1-symmetries from two
of the generators of sl.2;R/: According to the results obtained in the preprint [13],
a solvable structure for this reduced equation can be explicitly constructed from the
inherited C 1-symmetries. Once this solvable structure is known, two independent
first integrals of the reduced equation associated to the inherited C 1-symmetries
can be found by quadratures. Such first integrals are used in Theorem 2 to construct
a solvable structure with respect to the original third order equation.

In Sect. 4 we use that solvable structure to integrate by quadratures the equation,
using the techniques given in [6, 7, 15]. Finally, in Sect. 5 we include an example
of a third order ordinary differential equation which admits the non-solvable Lie
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algebra sl.2;R/ to illustrate how to construct a solvable structure from that algebra.
This solvable structure is used to give a complete set of first integrals of the equation
in terms of two independent solutions of a second order linear ODE.

2 Preliminaries

2.1 Generalized C1-Symmetries, Equivalence of Generalized
C1-Symmetries and Common First Integrals

Throughout this paper M will denote an open subset of the space of the independent
and dependent variables .x; u/ of a given ordinary differential equation (ODE):

un D 	.x; u; u1; � � � ; un�1/: (2)

Let .x; u.n// denote the coordinates on the open set M.n/ of the corresponding
nth order jet space, where uj D dju

dxj , for 1 � j � n. By following [14, p. 288], we
consider smooth functions PŒu�, where the bracket notation means that P depends
on x; u and derivatives of u with respect to x, up to some finite, but unspecified order.
Let

v D �Œu�@x C �Œu�@u; (3)

be a generalized vector field (in the sense of the Definition 5.1 in [14]) and consider
a smooth function � D �Œu�: We define the nth order �-prolongation of v as the
vector field on M.n/

vŒ�;.n/� D v C
nX

iD1
�Œ�;.i/�Œu�@ui ; n � 1; (4)

whose coefficients are determined by the recursive formula

�Œ�;.i/�Œu� D .Dx C �/i.QŒu�/C �Œu�uiC1; 1 � i � n; (5)

where QŒu� D �Œu� � �Œu�u1 is the characteristic of the vector field v.

Definition 1 Let v be a generalized vector field of the form (3) and let � be a
differential function. We will say that the pair .v; �/ is a generalized C 1-symmetry
of Eq. (2) if

vŒ�;.n/�.un � 	/ D 0 when un D 	.x; u.n�1//: (6)
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Remark 1 If the infinitesimals �; � or the function � of a generalizedC 1-symmetry
.v; �/ of (2) depend on derivatives of u of order j � n, we substitute them according
to Eq. (2) and its differential consequences. In this way in what follows we can
consider, without loss of generality, only generalized C1-symmetries such that
�; �; � 2 C1.M.n�1//.

The vector field associated to Eq. (2) will be denoted by

A.x;u/ D @x C u1@u C � � � C 	@un�1

where the subscript .x; u/ is used to make clear the coordinates that we are using in
the equation. The following characterization of generalized C1-symmetries can be
proved as in [10, Theorem 2.1]: the pair .v; �/ is a generalized C 1-symmetry of (2)
if and only if

ŒvŒ�;.n�1/�;A.x;u/� D �vŒ�;.n�1/� � .A.x;u/ C �/.�/A.x;u/: (7)

We recall now the concept of A.x;u/-equivalent generalizedC 1-symmetries [13]:

Definition 2 We will say that two generalized C 1-symmetries .v1; �1/ and
.v2; �2/ of Eq. (2) are A.x;u/-equivalent (or simply equivalent) if the corresponding
vector fields

n
A.x;u/; v

Œ�1;.n�1/�
1 ; vŒ�2;.n�1/�

2

o

are dependent over C1.M.n�1//. In this case we will write

.v1; �1/
A.x;u/� .v2; �2/:

It can be checked that
A.x;u/� is an equivalence relation in set of generalized C 1-

symmetries of (2). In the equivalence class of a given generalized C 1-symmetry
.v; �/ there are two distinguished elements:

.QŒu�@u; �/ (8)

and

.@u; �Q/; where �Q D �C A.x;u/.Q/

Q
; (9)

that will be called the evolutionary and the canonical representative of the class,
respectively.
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2.2 Some Results on Solvable Structures

We recall the notion of solvable structure and some of its properties [6, 7, 15]. In
this section Mn denotes an nth-dimensional manifold,˝ D dx1 ^ � � � ^ dxn denotes
the volume form in a local system of coordinates on some open set of Mn and ⌟
denotes the interior product.

Definition 3 Let A D ˚
A1; � � � ;An�p

�
be an involutive system of independent

smooth vector fields defined on Mn, where p 2 N and p � n � 1.

1. A system fX1; � � � ;Xmg of independent vector fields, where m � p, is a system of
symmetries of A if

˚
A1; � � � ;An�p;X1; � � � ;Xm

�
are independent and there exist

some functions ck
i;j 2 C1.Mn/, for 1 � i � m and 1 � j; k � n � p, such that

ŒXi;Aj� D
n�pX
kD1

ck
i;jAk:

2. Let S D ˝
X1; � � � ;Xp

˛
be an ordered set of independent vector fields on Mn.

We will say that the ordered system A [ S D ˝
A1; � � � ;An�1;X1; � � � ;Xp

˛
is

a solvable structure with respect to A if Sj D ˚
A1; � � � ;An�1;X1; � � � ;Xj

�
is

in involution, X1 is a symmetry of A and XjC1 is a symmetry of Sj for j D
1; � � � ; p � 1.

When a solvable structure with respect to an involutive system A is known, then
a complete set of first integrals for A can be constructed by quadratures as follows
[6, 7, 15]:

Theorem 1 If hA1; � � � ;An�p;X1; � � � ;Xpi is a solvable structure with respect to
A D fA1; � � � ;An�pg then, locally,

!1 D Xp�1 ⌟ � � � ⌟ X1 ⌟ An�p ⌟ � � � ⌟ A1 ⌟˝
Xp ⌟ � � � ⌟ X1 ⌟ An�p ⌟ � � � ⌟ A1 ⌟˝

is exact;

!2 D Xp ⌟ Xp�2 ⌟ � � � ⌟ X1 ⌟ An�p ⌟ � � � ⌟ A1 ⌟˝
Xp ⌟ � � � ⌟ X1 ⌟ An�p ⌟ � � � ⌟ A1 ⌟˝

is exact module !1;

:::

!p D Xp ⌟ � � � ⌟ X2 ⌟ An�p ⌟ � � � ⌟ A1 ⌟˝
Xp ⌟ � � � ⌟ X1 ⌟ An�p ⌟ � � � ⌟ A1 ⌟˝

is exact module !1; � � � ; !p�1;

and the corresponding primitives are first integrals of the system
˚
A1; � � � ;An�p

�
.
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3 Solvable Structures and the Non-solvable Symmetry
Algebra sl.2 ;R/ for Third Order Ordinary Differential
Equations

Let us consider a third order ODE

u3 D 	.x; u; u1; u2/; (10)

defined for .x; u/ 2 M. Let us suppose that (10) admits the non-solvable Lie algebra
sl.2;R/ as a symmetry algebra. A base of generators fv1; v2; v3g of sl.2;R/ can be
chosen verifying the following commutation relations:

Œv1; v3� D v1; Œv1; v2� D 2v3; Œv3; v2� D v2: (11)

If we introduce canonical coordinates for the vector field v3 D �3.x; u/@x C
�3.x; u/@u; then the order of (10) can be reduced by one: let

'.x; u/ D .y.x; u/; ˛.x; u// (12)

be a local change of variables such that '�.v3/ D @˛ . We denote w D ˛1 D d˛
dy

and for i � 1, wi D ˛iC1 D diw
dyi . Locally, Eq. (10) can be written in terms of the

invariants fy;w;w1;w2g of v3 as the reduced equation:

w2 D Q	.y;w;w1/; (13)

defined for .y;w/ 2 M1, for some open set M1. We denote by A.y;w/ the vector field
associated to (13). We define the projection

�
.1/
v3 W '.1/.M.1// ! M1

.y; ˛;w/ ! .y;w/:

A vector field V on M.1/ is called �.1/v3 -projectable if Œv.1/3 ;V� D f v.1/3 , for some

f 2 C 1.M.1//: The corresponding projection is denoted by .�.1/v3 /�.V/:
In what follows, the functions and the vector fields defined on M.n/ will be

denoted by the same symbol in coordinates fx; u; u1; � � � ; ung and in coordinates
fy; ˛;w;w1; � � � ;wn�1g, with the omission of the change of variables '.n/.

According to [10, Theorem 3] the vector fields v1 and v2 can be used to obtain
two independent C1-symmetries of Eq. (13) by using the following procedure:

1. Let &1; &2 2 C1.M/ be such that: v3.&1/ D &1 and v3.&2/ D �&2:
2. The vector fields &1v

.1/
1 and &2v

.1/
2 are v.1/3 -projectable. If, for i D 1; 2 we denote

Yi D .�.1/v3 /�.&iv
.1/
i /; (14)



Applications of C1-Symmetries in the Construction of Solvable Structures 393

and

�i D �A.x;u/.&i/

&i
; (15)

then the pairs

.Y1; �1/ and .Y2; �2/ (16)

are C1-symmetries of Eq. (13).

At this stage we have the second order ODE (13) which admits two non-
equivalent C 1-symmetries. According to [12, Sect. 5] there exist two functions
I1 D I1.y;w;w1/ and I2 D I2.y;w;w1/ which are functionally independent first
integrals of A.y;w/ and such that

YŒ�1;.1/�
1 .I1/ D YŒ�2;.1/�

2 .I2/ D 0;

YŒ�1;.1/�
1 .I2/ ¤ 0; YŒ�2;.1/�

2 .I1/ ¤ 0:
(17)

An algorithm that can be followed to ease the determination of I1 D I1.y;w;w1/
and I2 D I2.y;w;w1/ by using solvable structures and integration by quadratures
can be seen in [13].

Next we show that these two first integrals, I1 and I2; written in terms of the
original variables fx; u; u1; u2g are also first integrals of the original third order
equation (10):

Proposition 1 Let I1 D I1.y;w;w1/ and I2 D I2.y;w;w1/ be two functionally inde-
pendent first integrals associated to the vector field A.y;w/: Then the corresponding
functions

Ii D Ii.y.x; u/;w.x; u; u1/;w1.x; u; u1; u2//; .i D 1; 2/ (18)

are two functionally independent first integrals of the vector field A.x;u/ associated
to the original Eq. (10).

Proof Let ' be the local change of variables defined in (12). The vector field A.x;u/

written in the new coordinates is:

'
.2/
� .A.x;u// D 1

Dx.y/ ı '�1 .A.y;w/ C w@˛/:

Since A.y;w/.Ii/ D 0 and
@Ii

@˛
D 0, we obtain that '.2/� .A.x;u//.Ii/ D 0, for i D

1; 2. The result follows by writing these relations in terms of the original variables
fx; u; u1; u2g. �
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So far we have a third order ordinary differential equation and two functionally
independent first integrals I1 and I2 constructed from two first integrals associated
to the C1-symmetries (16). We need another independent first integral in order
to complete the integration of the equation. Our next goal is the construction of a
solvable structure with respect to A.x;u/, by using I1 and I2, in order to compute a
remaining first integral.

Proposition 2 Let I1 D I1.y;w;w1/ and I2 D I2.y;w;w1/ be two functionally
independent first integrals associated to the vector field A.y;w/. Then:

1.
@.I1; I2/

@.w;w1/
¤ 0 on some open set V1 � M.2/

1 .

2.
@.w;w1/

@.u1; u2/
¤ 0 on some open set V2 � M.2/.

3. The function defined as ˚ D ˚.x; u; u1; u2/ D .x; u; I1; I2/ is a local change of
variables, where

Ii D Ii.y.x; u/;w.x; u; u1/;w1.x; u; u1; u2//; .i D 1; 2/:

Proof

1. If
@.I1; I2/

@.w;w1/
D 0, then there exists a function h D h.y;w;w1/ such that

@I1
@w

D

h
@I2
@w

and
@I1
@w1

D h
@I2
@w1

. Let .@w; �Q2 / be the canonical representative of .Y2; �2/

and denote

X2 D .@w/
Œ�Q2 ;.1/� D @

@w
C �Q2

@

@w1
:

Since X2.I2/ D 0; we can write,

X2.I1/ D @I1
@w

C �Q2
@I1
@w1

D h
@I2
@w

C �Q2h
@I2
@w1

D hX2.I2/ D 0: (19)

Since .@w; �Q2 /
A.y;w/� .Y2; �2/; (19) implies that YŒ�2;.1/�

2 .I1/ D 0; which cannot

happen because of (17). Consequently
@.I1; I2/

@.w;w1/
¤ 0 on some open set V1 �

M.2/
1 .

2. Let ' be local change of variables defined in (12). We have that, locally,
J'.2/.x; u; u1; u2/ ¤ 0. On the other hand:

J'.2/.x; u; u1; u2/ D @.y; ˛/

@.x; u/
� @.w;w1/
@.u1; u2/

;
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and
@.y; ˛/

@.x; u/
¤ 0; therefore

@.w;w1/

@.u1; u2/
¤ 0 on some open set V2 � M.2/.

3. It is clear that J˚.x; u; u1; u2/ D @.I1; I2/

@.u1; u2/
. By the chain rule we obtain that:

@.I1; I2/

@.u1; u2/
D @.I1; I2/

@.w;w1/
� @.w;w1/
@.u1; u2/

:

By applying items 1 and 2 of this proposition we conclude that J˚.x; u; u1;
u2/ ¤ 0: �

Now we are ready to explicitly provide a solvable structure with respect to the
vector field associated to the original third order equation.

Theorem 2 Let v1; v2; v3 be generators of the symmetry algebra sl.2;R/ of Eq. (10)
satisfying the conditions given in (11). For i D 1; 2; let Ii be the function defined
in (18) and define Zi D ˚�1� .@Ii /; where ˚.x; u; u1; u2/ D .x; u; I1; I2/: Then the set

hA.x;u/; v
.2/
3 ;Z1;Z2i (20)

is a solvable structure with respect to hA.x;u/i:
Proof Let us consider the local change of variables ˚ D ˚.x; u; u1; u2/ D
.x; u; I1; I2/ defined in Proposition 2. By applying the Proposition 1 we can write:

˚�.A.x;u// D @x C �.x; u; I1; I2/@u; (21)

where the function � is u1 written in the coordinates fx; u; I1; I2g: Since v.2/3 .I1/ D
v.2/3 .I2/ D 0, then

˚�.v.2/3 / D �3.x; u/@x C �3.x; u/@u:

Since v.2/3 is a Lie symmetry of Eq. (10), we have that:

Œ˚�A.x;u/; ˚�v.2/3 � D .A.x;u/.�3/ ı ˚�1/ � ˚�A.x;u/ (22)

and it is clear that:

Œ@I1 ; ˚�.v.2/3 /� D 0; Œ@I1 ; @I2 � D 0; Œ@I2 ; ˚�v.2/3 � D 0: (23)

Finally we obtain that, for i D 1; 2:

Œ˚�.A.x;u//; @Ii � D ��Ii

�3 � ��3

�
˚�.v.2/3 /� �3˚�.A.x;u//

�
: (24)
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By using (22)–(24) we conclude that

h˚�.A.x;u//; ˚�.v.2/3 /; @I1 ; @I2i

is a solvable structure with respect to h˚�.A.x;u//i. Coming back to the original
coordinates and defining

Zi D ˚�1� .@Ii /; for i D 1; 2; (25)

we conclude that

hA.x;u/; v
.2/
3 ;Z1;Z2i

is a solvable structure with respect to hA.x;u/i: �

4 Complete System of First Integrals of A.x;u/

In the previous discussion we have shown how to construct a solvable structure
hA.x;u/; v

.2/
3 ;Z1;Z2i with respect to hA.x;u/i from the non-solvable symmetry algebra

sl.2;R/. In this section, we apply the theory of solvable structures in order to
compute a complete system of first integrals of A.x;u/. We denote the volume form
˝ D dx ^ du ^ du1 ^ du2 and consider the following differential 1-forms, as in
Theorem 1:

!1 D Z1 ⌟ v.2/3 ⌟ A.x;u/ ⌟˝

Z2 ⌟ Z1 ⌟ v.2/3 ⌟A.x;u/ ⌟˝
;

!2 D Z2 ⌟ v.2/3 ⌟ A.x;u/ ⌟˝

Z2 ⌟ Z1 ⌟ v.2/3 ⌟A.x;u/ ⌟˝
;

!3 D Z2 ⌟ Z1 ⌟A.x;u/ ⌟˝

Z2 ⌟ Z1 ⌟ v.2/3 ⌟ A.x;u/ ⌟˝
:

According to Theorem 1, the differential 1-form !1 is exact, and a function �1
such that

d�1 D !1 (26)

is a common first integral of the system of vector fields fA.x;u/; v
.2/
3 ;Z1g (see [15]

for details).
Secondly, we also know that !2 is exact module !1. Nevertheless, since by

relations (22)–(24) the ordered set hA.x;u/; v
.2/
3 ;Z2;Z1i is a solvable structure with

respect to hA.x;u/i, then the differential 1-form!2 is closed and hence locally exact.
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A function�2 such that

d�2 D !2 (27)

is a common first integral of the system fA.x;u/; v
.2/
3 ;Z2g.

Finally we have that !3 is exact module !1 and !2, and a function�3 such that

d�3 D !3; mod !1;!2 (28)

completes the set of independent first integrals of the vector field A.x;u/.
The functions I1 and I2 given in (18) can be used to simplify the above-described

procedure as follows: these functions I1 and I2 are two independent first integrals
of A.x;u/; that are also first integrals of v.2/3 : In fact, by (25), I1 is a common

first integral of the set fA.x;u/; v
.2/
3 ;Z2g and I2 is a common first integral of the

set fA.x;u/; v
.2/
3 ;Z1g: On the other hand, by definition of !1; I1 is a common first

integral of the set fA.x;u/; v
.2/
3 ;Z1g;which implies that�1 and I1 must be functionally

dependent. Similarly �2 and I2 must be functionally dependent. Therefore, a
function�3 satisfying (28) can be found as a primitive of the restriction of !3 to the
submanifold of M.2/ where I1 and I2 are constant.

In the next section we present an example where this simplified method is
illustrated.

5 Example

In this section we apply the results obtained in this paper to a particular third order
equation that admits the non-solvable symmetry algebra sl.2;R/: The presented
method can be used to construct a solvable structure and derive three functionally
independent first integrals for any other equation admitting sl.2;R/:

Let us consider the following apparently simple but nontrivial third order
ordinary differential equation

u2u3 C 1 D 0: (29)

The vector field associated to (29) is given by

A.x;u/ D @x C u1@u C u2@u1 � 1

u2
@u2 :

The classical symmetry algebra (point and contact symmetries) of Eq. (29) is 3-
dimensional and generated by

v1 D @x; v2 D x2@x C 2 u x@u; v3 D x@x C u@u:

These vector fields satisfy the relations (11).
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We can use the vector field v3 to get an order reduction for Eq. (29). By
introducing the canonical coordinates

y D u

x
; ˛ D ln.x/ (30)

for v3; we obtain the following reduced equation:

w2 D �y2w4 � w5 � 3 y2w21
wy2

: (31)

Let A.y;w/ denote the vector field associated to this reduced equation. The Lie
symmetries v1 and v2 can be recovered as non-equivalent C 1-symmetries of the
reduced equation by following the procedure described in Sect. 3. Two functions
�1 and �2 satisfying v3.�1/ D �1 and v3.�2/ D ��2 can be easily calculated in
variables (30): by choosing �1 D e˛y�1 and �2 D e�˛y�1; the vector fields &1v

.1/
1

and &2v
.1/
2 are �.1/v3 -projectable, and the expressions of the respective projections, in

coordinates .y;w/, are:

Y1 D .�
.1/
v3 /�.&1v

.1/
1 / D �@y � w2@w;

Y2 D .�
.1/
v3 /�.&2v

.1/
2 / D @y � w2@w:

(32)

The pairs .Y1; �1/ and .Y2; �2/ are two non-equivalent C1-symmetries of Eq. (31)
for the respective functions

�1 D �A.y;˛/.&1/

&1
D �w C y�1 and �2 D �A.y;˛/.&2/

&2
D w C y�1: (33)

In order to determine two functions I1 D I1.y;w;w1/ and I2 D I2.y;w;w1/ such
that Ii is a first integral of fA.y;w/;Y

Œ�i ;.1/�
i g; for i D 1; 2;we consider the local system

of coordinates fs;m1;m2g where

s D � y2w3 C 2w1y C w

2w3
; m1 D � wy � 1

2w
; m2 D wy C 1

2w
; (34)

in which YŒ�1;.1/�
1 and YŒ�2;.1/�

2 are simultaneously straightened, i.e., YŒ�1;.1/�
1 D @m1

and YŒ�2;.1/�
2 D @m2 : In these coordinates A.y;w/ becomes

A.y;w/ D 1

m1
2 � m2

2

�
@s � .m2

1 C s

2
/@m1 � .m2

2 C s

2
/@m2

�
: (35)

In consequence, for i D 1; 2; the equation

m0
i.s/C mi.s/

2 C s

2
D 0 (36)
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is the reduced equation of (31) associated to the C1-symmetry .Yi; �i/: Equa-
tion (36) is a Riccati-type equation that can be converted into the second order linear
ODE

 00.s/C s

2
 .s/ D 0 (37)

through the standard transformation mi.s/ D  0.s/
 .s/ : It can be checked that two first

integrals I1 D I1.s;m1;m2/ and I2 D I2.s;m1;m2/ of (35) can be expressed in
terms of two independent solutions  1 D  1.s/ and  2 D  2.s/ of the Airy-type
equation (37) in the form

Ii.s;mi/ D mi 1.s/�  0
1.s/

mi 2.s/�  0
2.s/

; for i D 1; 2: (38)

These functions written in terms of the variables fy;w;w1g by using (34) are two
independent first integrals for the reduced Eq. (31).

According to Proposition 1, by writing these functions in terms of the original
variables by using the expressions of (34) in variables fx; u; u1; u2g

s D u u2 � 1

2
u21; m1 D xu1 � 2u

2x
; m2 D u1

2
; (39)

we obtain the following first integrals of A.x;u/ W

I1 D .xu1 � 2 u/ 1 .s/ � 2 x 0
1 .s/

.xu1 � 2 u/ 2 .s/ � 2 x 0
2 .s/

; I2 D u1 1 .s/ � 2 0
1 .s/

u1 2 .s/ � 2 0
2 .s/

; (40)

where s is given in (39).
Next we use these two first integrals to construct a solvable structure with respect

to hA.x;u/i by following the procedure of Theorem 2. In this example we use a slight
modification of the change of variables that appears in the proof of this theorem in
order to simplify the calculations. We define e̊.x; u; u1; u2/ D .x; s; I1; I2/; where s
is given in (39) and I1; I2 are given by (40). It can be checked that the Jacobian of
this transformation becomes

Je̊.x; u; u1; u2/ D �8 u1 x . 1.s/ 0
2.s/�  2.s/ 0

1.s//
2

...xu1 � 2 u/ 2 .s/ � 2 x 0
2 .s//.u1 2 .s/ � 2 0

2 .s///
2
:

Since the Wronskian of  1 and  2

W. 1;  2/.s/ D  1.s/ 
0
2.s/�  2.s/ 

0
1.s/ (41)

is not identically zero, we conclude that e̊ defines a local change of variables on
M.2/:
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We define, as in Theorem 2,eZi D e̊�1� .@Ii /; for i D 1; 2: Next we check that

hA.x;u/; v
.2/
3 ;
eZ1;eZ2i

is a solvable structure with respect to hA.x;u/i: For simplicity, we compute the

necessary Lie brackets in coordinates fx; s; I1; I2g: The respective expressions of v.2/3
and A.x;u/ in coordinates fx; s; I1; I2g become

e̊�.v.2/3 / D x@x;

e̊�.A.x;u// D @x C .I2 2.s/�  1.s// .I1 2.s/ �  1.s//
x .I2 � I1/W. 1;  2/

@s:
(42)

Therefore,

Œe̊�.A.x;u//; e̊�.v.2/3 /� D e̊�.A.x;u//;�e̊�.A.x;u//; @I1

 D �1.e̊�.v.2/3 /� xe̊�.A.x;u///;he̊�.v.2/3 /; @I1

i
D 0;�e̊�.A.x;u//; @I2

 D �2.e̊�.v.2/3 /� xe̊�.A.x;u///;he̊�.v.2/3 /; @I2

i
D Œ@I1 ; @I2 � D 0;

(43)

where

�1 D I2  2.s/ �  1.s/

.I2 � I1/.I1 2.s/ �  1.s//x ; �2 D � I1  2.s/�  1.s/

.I2 � I1/.I2 2.s/�  1.s//x
:

Relations (43) prove that hA.x;u/; v
.2/
3 ;
eZ1;eZ2i is a solvable structure with respect to

hA.x;u/i: In this way, we have constructed a solvable structure from the non-solvable
algebra sl.2;R/:

Now we use this solvable structure to find a first integral of A.x;u/ functionally
independent with I1 and I2: It can be checked that the corresponding differential
1-form

!3 D
eZ2 ⌟eZ1 ⌟A.x;u/ ⌟˝

eZ2 ⌟eZ1 ⌟ v.2/3 ⌟ A.x;u/ ⌟˝

in coordinates fx; s; I1; I2g becomes

e̊�!3 D 1

x
dx � W. 1;  2/ .I2 � I1/

.I2  2.s/ �  1.s// .I1  2.s/ �  1.s//ds: (44)
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A primitive of e̊�!3; restricted to the submanifold defined by I1 D C1 and I2 D C2;
for C1;C2 2 R; is given by

ln.x/� ln

�
C2 2.s/�  1.s/

C1 2.s/�  1.s/

�
:

Therefore, the function I3 D x
I2 2.s/ �  1.s/
I1 2.s/ �  1.s/ ; where s; I1; I2 are given in (39)

and (40), respectively, is a first integral of A.x;u/ functionally independent with I1
and I2:

In the original variables this first integral becomes

I3.x; u; u1; u2/ D .xu1 � 2u/ 2.s/ � 2x 0
2.s/

u1 2.s/ � 2 0
2.s/

:

The general solution of Eq. (29) can be expressed, in implicit form, as:

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

.xu1 � 2 u/ 1 .s/ � 2 x 0
1 .s/

.xu1 � 2 u/ 2 .s/ � 2 x 0
2 .s/

D C1;

u1 1 .s/ � 2 0
1 .s/

u1 2 .s/ � 2 0
2 .s/

D C2;

.xu1 � 2u/ 2.s/ � 2x 0
2.s/

u1 2.s/ � 2 0
2.s/

D C3

where Ci 2 R, for i D 1; 2; 3 and s D u u2 � 1
2
u21:

6 Conclusions

The process of integration by quadratures for ODEs that admit solvable symmetry
algebras is well known. For ODEs admitting non-solvable symmetry algebras, as
the Lie algebra sl.2;R/; this procedure is no longer available. Nevertheless, the
determination of a solvable structure for these ODEs lets to find by quadratures a
complete set of first integrals. Effective methods to construct solvable structures are
therefore very important in solving these ODEs.

In this paper we show how a solvable structure for the vector field of a third order
ODE admitting the non-solvable symmetry algebra sl.2;R/ can be constructed by
using two functionally independent first integrals associated to two non-equivalent
C1-symmetries of the reduced Eq. (13). Once the solvable structure has been
determined, a complete set of first integrals for the equation can be found by
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quadratures, although the symmetry algebra admitted by the equation is non-
solvable.
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Travelling Wave Solutions of a Generalized
Variable-Coefficient Gardner Equation

R. de la Rosa and M.S. Bruzón

Abstract In this paper, a simple way to construct exact solutions by using equiv-
alence transformations is shown. We consider a generalized variable-coefficient
Gardner equation from the point of view of Lie symmetries in partial differential
equations. We obtain the continuous equivalence transformations of the equation
in order to reduce the number of arbitrary functions and give a clearer formulation
of the results. Furthermore, we calculate Lie symmetries of the reduced equation.
Then, we determine the similarity variables and the similarity solutions which allow
us to reduce our equation into an ordinary differential equation. Finally, we obtain
some exact travelling wave solutions of the equation by using the simplest equation
method.

1 Introduction

Over the last years, nonlinear equations with variable coefficients have become
increasingly important due to these describe many nonlinear phenomena more
realistically than equations with constant coefficients. The variable coefficient Gard-
ner equation, the variable coefficient reaction-diffusion equation or the nonlinear
Schrödinger equation are just some examples. Gardner equation is widely used
in different fields of physics, for instance, fluid dynamics, plasma physics and
quantum field theory. Moreover, it also appears as a useful model to describe wave
phenomena in plasma and solid state.

In [6], it was considered a generalized variable-coefficient Gardner equation
given by:

ut C A.t/un ux C C.t/ u2nux C B.t/ uxxx C Q.t/ u D 0; (1)

where n is an arbitrary positive integer, A.t/, B.t/ ¤ 0, C.t/ ¤ 0 and Q.t/ are
arbitrary smooth functions of t.
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The problem lies in the fact that the analysis of equations involving arbitrary
functions seems rather difficult. Equivalence transformations arise for determining
an exhaustive solution of the problem. Furthermore, equivalence transformations
allow us to consider complete equivalence classes instead of individual equations.

An equivalence transformation is a non-degenerate change of variables acting on
dependent and independent variables so that it takes any equation of the form (1)
into an equation of the same form, except maybe the form of the arbitrary functions
A.t/, B.t/, C.t/ and Q.t/. Equivalence transformations play an important role in
the study of partial differential equations involving arbitrary functions due to the
fact that these allow an exhaustive study and a simple and clear formulation of the
results [8, 9, 14, 15, 18, 19].

In [6] was proved that the equivalence group of Eq. (1) is given by the set of
transformations

Qt D ˛.t/; Qx D .x C �2/e
�1 ; Qu D e�1��r r.t/u; (2)

where �1, �2, �r are arbitrary constants, and ˛ D ˛.t/, r D r.t/ are arbitrary
functions verifying ˛t ¤ 0. The new arbitrary elements are related with the old
ones by means of the transformations

QA D en�rrC.1�n/�1

˛t
A; QB D e3�1

˛t
B; QC D e2n�rrC.1�2n/�1

˛t
C;

QQ D Q C �rrt

˛t
; Qn D n:

(3)

The point that two arbitrary elements ˛.t/ and r.t/ appear in the group of
transformations (3) enables us to establish two of the arbitrary functions. Thus, by
using the equivalence transformation

Qt D e3�1
Z

B.t/dt; Qx D .x C �2/e
�1 ; Qu D e

��1
n

�
B.t/

C.t/

�� 1
2n

u; (4)

Eq. (1) takes the form

QuQt C QA.Qt/Qun QuQx C Qu2n QuQx C QuQxQxQx C QQ.Qt/Qu D 0; (5)

where

QA.Qt/ D e��1A.t/p
B.t/C.t/

;

and

QQ.Qt/ D e�3�1
�

Q.t/

B.t/
C C.t/

2nB.t/2

�
B.t/

C.t/

�
t

�
:
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This enables us to consider without losing generality the class

ut C A.t/unux C u2nux C uxxx C Q.t/u D 0; (6)

due to the study of symmetries and exact solutions of class (6) can be extended to (1)
undoing transformation (4).

In this paper we study Eq. (6) from the point of view of symmetry reductions
in partial differential equations. We use the Lie classical symmetries of Eq. (6)
obtained in [6] for functions A.t/ and Q.t/. From these symmetries, we obtain
the similarity variables and the similarity solutions which allow us to reduce the
equation to an ordinary differential equation. Then, we show some exact travelling
wave solutions for an ordinary differential equation by using the simplest equation
method given by Kudryashov.

2 Classical Symmetries of Class (6)

In the nineteenth century, Sophus Lie developed a method to study differential
equations known today as Lie classical method. This method is based on the
determination of the symmetry group of a differential equation by using a one-
parameter group of transformations. In other words, the largest transformation group
which acts in both dependent and independent variables of the equation so that
solutions of the equation are transformed into other solutions.

Lie theory is one of the most important and powerful methods used to study
differential equations. It is well known due to its many applications in mathematics
and physics. Among them, it is noted that symmetry groups can be used to
obtain exact solutions of partial differential equations, directly [10, 17, 20] or by
obtaining the similarity variables and the similarity solutions [7, 12]; or determine
conservation laws [2–4, 16].

A symmetry generator of Eq. (6) is a vector field

v D �.t; x; u/@t C �.t; x; u/@x C �.t; x; u/@u; (7)

where � , � and � are called infinitesimals, such that

pr.3/v.�/ D 0 when � D 0; (8)

where� represents Eq. (6) and

pr.3/v D v C � t@ut C �x@ux C �xxx@uxxx; (9)

is the third prolongation of the vector field (7). The functions �J are given by

�J.t; x; u.3// D DJ.�� �ut � �ux/C �uJt C �uJx;
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with J D . j1; : : : ; jk/, 1 � jk � 2, 1 � k � 3, and u.3/ denotes the set of partial
derivatives up to third order [13].

Invariance criterion (8) yields a determining system for the infinitesimals. From
this determining system if n, A.t/ and Q.t/ are arbitrary we obtain

v1 D @x:

New symmetries were obtained for the case n ¤ 1 in [6] and, for n D 1 in [5],
which are shown below:

2.1 Case 1: n ¤ 1

If the functions A.t/ and Q.t/ are given by,

A.t/ D c1.k1t C k2/
� 1
3 ; (10)

Q.t/ D c2.k1t C k2/
�1; (11)

where k1, k2, c1 and c2 are arbitrary constants, we get the following symmetry

v D a2 .k1t C k2/ @t C
�

a2k1
x

3
C a1

�
@x � a2k1

u

3n
@u; (12)

with a1 and a2 arbitrary constants, which is spanned by the generators

v1; v2 D .k1t C k2/ @t C k1
x

3
@x � k1

u

3n
@u: (13)

Finally, in the case that A.t/ D Q.t/ D 0 the algebra is three dimensional with
generators

v1; v4 D @t; v5 D t@t C x

3
@x � u

3n
@u: (14)

2.2 Case 2: n D 1

In this case, we have the generator

v D .k1t C k2/ @t C
�
ˇ C k1

x

3

�
@x C

�
� � k1

u

3

�
@u; (15)
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where A.t/, Q.t/, ˇ.t/, �.t/, k1 and k2 must satisfy the following conditions:

.k1t C k2/At C k1
3

A C 2� D 0; (16)

.k1t C k2/Qt C k1Q D 0; (17)

�A � ˇt D 0; (18)

�Q C �t D 0: (19)

3 Reductions and Exact Solutions

By using the Lie symmetries of Eq. (6), we can obtain the similarity variables
and the similarity solutions. This allows us to transform Eq. (6) into an ordinary
differential equation (ODE), solving the characteristic system

dt

�
D dx

�
D du

�
: (20)

3.1 Reductions for Case 1

In the following reductions we distinguish:

Reduction 1.1 Considering that A.t/ and Q.t/ are given by

A.t/ D c1t
� 1
3 ; Q.t/ D c2t

�1; (21)

we have Eq. (6) admits the generator

v D t@t C x

3
@x � u

3n
@u: (22)

Solving the characteristic system we obtain the similarity variable and the similarity
solution

z D x3

t
; u D h.z/

x
1
n

: (23)
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Taking into account (21) and (23) into Eq. (6), this equation is transformed into the
ODE

27h000n3z3 C 54h00n3z2 � h0n3z2 � 27h00n2z2 C 3h2nh0n3z

C6h0n3z C c2hn3z � 9h0n2z C 9h0nz C 3c1h
nh0n3z

2
3

�c1hnC1n2z� 1
3 � h2nC1n2 � 2hn2 � 3hn � h D 0:

(24)

Reduction 1.2 Now, if we assume that

A.t/ D c1; Q.t/ D c2; (25)

from (13), Eq. (6) admits the following generator

v2 � ˛v1 D @t � ˛@x; (26)

where ˛ ¤ 0 is an arbitrary constant. Solving characteristic system (20) we obtain
the similarity variable and the similarity solution

z D x C ˛t; u D h.z/: (27)

Substituting (25) and (27) into Eq. (6) we get the following ODE

h000 C h2nh0 C c1h
nh0 C ˛h0 C c2h D 0: (28)

3.2 Reductions for Case 2

Analogously to the previous section, we differentiate:

Reduction 2.1 Assuming afresh that A.t/ and Q.t/ are given by (21), we get
generator (22). Taking into account (20) we obtain

z D x3

t
; u D h.z/

x
: (29)

From (21) and (29), Eq. (6) can be transformed into the following ODE

27h000z 103 C 27h00z 73 � h0z 73 C 3h2h0z 43 � 6hz
1
3

C6h0z 43 C c2hz
4
3 C 3c1hh0z � h3 z

1
3 � c1h2 D 0:

(30)
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Reduction 2.2 We consider that the functions A.t/ and Q.t/ are given by

A.t/ D c2 � 2c1t; Q.t/ D 0: (31)

Then, from Eqs. (16)–(19) we have

ˇ.t/ D c3 C c1c2t � c21t
2; �.t/ D c1; (32)

where c3 is an arbitrary constant. Thus, we get the generator

v D @t C �
c3 C c1c2t � c21t

2
�
@x C c1@u:

By using (20) we obtain

z D x C c21
3

t3 � c1c2
2

t2 � c3t; u D c1t C h.z/: (33)

By means of (31) and (33), Eq. (6) is transformed into

h000 C h2h0 C c2hh0 � c3h
0 C c1 D 0: (34)

Finally, from (32), if we consider that ˇ D �˛ and � D 0, with ˛ ¤ 0 an
arbitrary constant, we obtain the travelling wave generator (26) which leads us to
the following ODE

h000 C h2h0 C c1hh0 C ˛h0 D 0: (35)

3.3 Travelling Waves Solutions

Considering the case A.t/ and Q.t/ constants for which the equation admits
translations in time and in the space (26) we obtained the reduced Eqs. (28) and (35).
In (28) we suppose c2 D 0, therefore Eq. (35) is a particular case of Eq. (28). The
reduced Eq. (28) can be integrated with respect to z

h00 C 1

2n C 1
h2nC1 C c1

n C 1
hnC1 C ˛h C c3 D 0; (36)

where c3 is the constant of integration. Multiplying Eq. (36) by h0 and integrating
once with respect to z we obtain

�
h0�2 D � h2 nC2

.n C 1/ .2 n C 1/
� 2 c1 hnC2

.n C 1/ .n C 2/
� ˛ h2 � 2 c3 h: (37)
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Let us assume that Eq. (37) has a solution of the form

h.z/ D aFb.z/; (38)

where a and b are parameters to be determined later. By substituting (38) into (37)
we obtain

.F0/2 D � 1

.2 n3 C 7 n2 C 7 n C 2/ a b2 Fb

h
.n C 2/ a2 nC1 F.2 nC1/ bC2

C .4 c1 n C 2 c1/ anC1 F.nC1/ bC2 C �
2 ˛ n3 C 7 ˛ n2C7 ˛ n C 2 ˛

�
a FbC2

C �
4 c3 n3 C 14 c3 n2 C 14 c3 n C 4 c3

�
F2

:

(39)
In the following we will determine the exponents and coefficients of Eq. (39) so that
Eq. (39) is solvable in terms of Jacobi elliptic function, i.e. Eq. (39) becomes

.F0/2 D r C mF2 C qF4; (40)

where r, m and q are constants. We may choose them properly such that the
corresponding solution F of the ODE (40) is one of the Jacobi elliptic, combined
Jacobi elliptic functions. If r D 1, m D �.1C k2/, q D 2k2, then the solution is

h1 D a Œsn.zjk/�b ; (41)

or

h2 D a Œcd.zjk/�b 	 a

�
cn.zjk/
dn.zjk/

�b

;

where 0 � k � 1, is called modulus of Jacobi elliptic functions, and sn.zjk/ is the
Jacobi elliptic sine function [1]. If r D 1� k2, m D 2k2 � 1, q D �2k2, the solution
is

h3 D a Œcn.zjk/�b ;

where cn.zjk/ is the Jacobi elliptic cosine function. If r D k2 � 1, m D 2 � k2,
q D �2, the solution is

h4 D a Œdn.zjk/�b ;

where dn.zjk/ is the third Jacobi elliptic function. By comparing the exponents and
the coefficients of Eqs. (39) and (40) we can obtain exact solutions for Eq. (37) with
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n D 1, c3 D 0 and ˛ D �1 when a D p
6, c1 D 0 and b D 1,

h D p
6 sech.z/:

In this case Eq. (6) is the Korteweg-de Vries equation.

3.4 The Simplest Method

Suppose that the nonlinear partial differential equation for u.x; t/ is in the form

�.u; ut; ux; uxx; : : :/ D 0;

where � is polynomial in u.x; t/ and its partial derivatives, in which the highest
order derivatives and nonlinear terms are involved. In order to obtain exact solitary
wave solutions of the equation, we have to pursue the following fundamental steps
[11]:

Step 1: We consider the travelling wave variable

u.t; x/ D h.z/ D h.x C ˛t/; (42)

where ˛ represents the speed of the travelling wave. The wave variable (42)
carries Eq. (6) into the following ordinary differential equation

�0.h; ˛h0; h0; h00; : : :/ D 0: (43)

Step 2: To seek the travelling wave solution of Eq. (43), we assume that (43) has
a solution in the following form

h.z/ D k0 C k1Y C � � � C kNYN C 1

�
Y 0

Y

�
C � � � C N

�
Y 0

Y

�N

; (44)

where kn (n D 0; 1; : : : ;N) and n (n D 1; 2; : : : ;N) are unknown constants to
be calculated, and Y.z/ is the general solution of the Riccati equation:

Y 0.z/C Y2.z/ � aY.z/� b D 0; (45)

with a and b constants which must be determined.
Step 3: The positive integer N in (44) can be determined by taking into consider-

ation the homogeneous balance between the highest order linear terms and the
nonlinear terms of highest order occurring in (43).

Step 4: Inserting (44) and the derivatives h0, h00; : : :, into (43) we get a polynomial
in Y.z/ and its derivatives. Requiring the vanishing of the different powers of the
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function Y.z/, we obtain an overdetermined system of equations which must be
solved to find kn, n and ˛. This complete the determination of the solution of the
ODE.

We will make use of this method to construct travelling wave solutions to the partial
differential equation (6) by means of Reduction 2.2 when k3 D 1, � D 0 and
ˇ D �˛. Thus, Eq. (6) takes the form

ut C c1uux C u2ux C uxxx D 0: (46)

This equation is transformed into (35) which can be integrated with respect to z

h00 C h3

3
C c1h2

2
C ˛h C k D 0; (47)

where k is the constant of integration. We consider Eq. (35), taking the homogeneous
balance between the highest order derivative h000 and the nonlinear term of highest
order h2h0 we obtain N D 2. Therefore, the solution of (35) takes the following form

h D k0 C k1Y C k2Y
2 C 1

�
Y 0

Y

�
C 2

�
Y 0

Y

�2
; (48)

where k0; k1; k2; 1; 2 are constant to be determined later and Y.z/ satisfies Eq. (45).
By Step 4 we obtain a system. By solving this system we obtain b D 0, 2 D �k2
and ˛; a; k0; k1; k2; 1 must satisfy the following equations

� 2a6k32 C 6a5k221 C 3a4c1k
2
2 � 6a4k2

2
1 C 6a4k0k

2
2 C 12a4k2 � 6a3c1k21

�12a3k0k21 � 12a3k2 C 2a331 � 6a31 � 6a2c1k0k2 C 3a2c1
2
1 � 6a2k2˛

C6a2k0
2
1 � 6a2k20k2 C 6a21 C 6ac1k01 C 6ak201

C6a˛1 C 3c1k
2
0 C 6k0˛ C 2k30 C 6k D 0;

2a5k32 � 5a4k221 C a4k1k
2
2 � 2a3c1k

2
2 C 4a3k2

2
1 � 2a3k1k21 � 4a3k0k

2
2

C6a3k2 C 3a2c1k21 � a2c1k1k2 C a2k1
2
1 C 6a2k0k21 C a2k1 � 2a2k0k1k2

C2a2k2 � a231 � 4a21 C ac1k11 C 2ac1k0k2 � ac1
2
1 C 2ak2˛

�2ak0
2
1 C 2ak0k11 C 2ak20k2 � c1k01 C c1k0k1 C k1˛ � k201 C k20k1 � ˛1 D 0;

(49)

8a4k32 � 16a3k221 C 8a3k1k
2
2 � 4a2c1k

2
2 C 10a2k2

2
1 � 12a2k1k21 � 8a2k0k

2
2

C2a2k21k2 C 32a2k2 C 4ac1k21 � 4ac1k1k2 C 4ak1
2
1 � 2ak211

C8ak0k21 C 4ak1 � 8ak0k1k2 � 2a31 � 12a1 C 2c1k11
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�c1k
2
1 � c1

2
1 � 2k0

2
1 C 4k0k11 � 2k0k

2
1 D 0;

8a3k32 � 12a2k221 C 12a2k22k1 � 12ak2k11 C 6ak2
2
1 � 61

C6ak2k
2
1 C 24ak2 � 3k211 C 3k1

2
1 C k31 C 6k1 � 31 D 0:

Equation (45) with b D 0 is the Bernoulli equation, so we can obtain the
corresponding solution h of the ODE (43) in terms of this equation. As a result,
the solution of the Bernoulli equation is

Y.z/ D a

�
Y1 C Y2

1C Y1 C Y2

�
; (50)

where Y1.z/ D sinh .a.z C c//, Y2.z/ D cosh .a.z C c// and c is an arbitrary
constant. Substituting (50) into (48) we obtain the following solution

h.z/ D k0 C a

2

h
k1
�
1C tanh

�a

2
.z C c/

��

C2 a k2 tanh
�a

2
.z C c/

�
C1

�
1 � tanh

�a

2
.z C c/

��i
:

By using transformation (27) we can obtain a solution of Eq. (46). In Figs. 1 and 2
we show two exact solutions of Eq. (46).

Fig. 1 Solution u.x; t/ of
Eq. (46) for a D c D k1 D 1,
k0 	 �7:71, k2 	 1:18,
1 D 5, ˛ 	 �17:12 and
k 	 �54:57
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Fig. 2 Solution u.x; t/ of
Eq. (46) for a D c D k1 D 1,
k0 	 �0:66, k2 	 �0:53,
1 D �1, ˛ 	 �0:92 and
k 	 �1:19

4 Conclusions

In this paper, a generalized variable-coefficient Gardner equation has been con-
sidered. By using equivalence transformations we can restrict our study to a
subclass (6) of Eq. (1) with fewer number of arbitrary functions. Symmetry analysis
of Eq. (6) with respect the time dependent functions has been presented. From the
symmetries of Eq. (6) we obtain the similarity reductions which transform Eq. (6)
into an ODE. By means of the similarity reductions and the simplest equation
method, we have obtained some exact travelling wave solutions. In view of the
analysis, we see how equivalence transformations can be used to simplify the search
of exact solutions of the equation and allow us to present these solutions in a simple
and clear form.
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A Second Order Local Projection
Lagrange-Galerkin Method for Navier-Stokes
Equations at High Reynolds Numbers

Rodolfo Bermejo and Laura Saavedra

Abstract We present a stabilized Backward Difference Formula of order 2-
Lagrange Galerkin method for the incompressible Navier-Stokes equations at high
Reynolds numbers. The stabilization of the conventional Lagrange-Galerkin method
is done via a local projection technique for inf-sup stable finite elements. We have
proven that for the Taylor-Hood finite element the a priori error estimate for velocity
in the l1.L2.˝///-norm is O.h2 C �t2) whereas the error for the pressure in the
l2.L2.˝///-norm is O.h2 C �t2/, with error constants that are independent of the
inverse of the Reynolds number. Numerical examples at high Reynolds numbers
show the robustness of our method.

1 Introduction

In most of industrial problems, we have to deal with flows at high Reynolds
numbers, namely, convection-dominated problems, appearing the hyperbolic nature
of time-dependent Navier-Stokes (NS) equations. The classic Lagrange-Galerkin
(LG) method consists of the discretization of the material derivative along the
trajectory of the fluid particles, using a finite difference scheme. This is a natural
way, from a physical point of view, to introduce upwinding and transforms the
NS equations into a linear Stokes problem. Therefore, at each time step, one has
to solve an algebraic linear system of equations which is more manageable than
the algebraic nonlinear system of equations produced by conventional implicit time
marching schemes. A priori, these advantages make LG methods look like efficient
methods to integrate NS equations. However, they have drawbacks concerned with
the calculation of some integrals which appear in the formulation of the numerical
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solution and whose integrands are defined in two different meshes. These integrals
have to be calculated very accurately to maintain the stability and the accuracy of
the method, see [2, 9], requiring thus the use of high order quadrature rules. Since
each quadrature point has an associated foot of characteristic curve, this means that
many systems of differential equations have to be solved backward in time. Hence,
LG methods may become less efficient than they look at first.

It is relatively easy to prove that LG methods are unconditionally stable if the
aforementioned integrals are calculated exactly. However, when the time step, �t,
is small and the viscosity is not sufficiently high to kill the instabilities there
are intervals of values of �t in which the solution becomes either unstable or
significantly less accurate. In order to fix this drawback, we present in this work
the stabilization of LG methods in the spirit of the local projection stabilization
approach of Braack and Burman [3] and Ganesan and Tobiska [4], just to cite a few.
This stabilization technique is well suited to LG methods because is relatively easy
to incorporate to any LG method code and maintains the symmetry of the linear
system that has to be solved in every time step.

2 A Lagrange-Galerkin Method for Navier Stokes Equations

Let ˝ � R
d (d D 2; 3), be a bounded domain with Lipschitz boundary � D @˝

and let Œ0;T� denote a time interval. We consider the Navier-Stokes equations for
a fluid of constant density (� D 1) under the action of an external force field f W
˝ � Œ0;T� ! R

d and with a known initial condition v.x; 0/ D v0.x/,

@v

@t
C .v � r/v � ��v C rp D f ;

divv D 0; (1)

vj� D 0;

where v W ˝ � Œ0;T/ ! R
d is the flow velocity, p W ˝ � Œ0;T/ ! R is the pressure

and � is the kinematic viscosity coefficient, which is assumed to be constant.
Lagrange-Galerkin methods are based on the discretization of Navier-Stokes

equations (1) along the characteristics of the operator
D

Dt
D d

dt
C v � r, known

as material derivative. Thus, we introduce the mapping X.x; tI �/ W .0;T/ ! R
d

solution of the initial value problem

8<
:

dX.x; tI s/

ds
D v.X.x; tI s/; s/;

X.x; tI t/ D x;
(2)
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which is called the characteristic curve through point .x; t/. The point X.x; tI s/
represents the position occupied at instant s by the point that is in x at instant t
and moves with velocity v. If v 2 L1.0;TI W1;1.˝// the problem (2) has a unique
solution X defined in Œ0;T� for each initial condition .x; t/ as

X.x; tI s/ D x �
Z s

t
v.X.x; tI �/; �/d�: (3)

Along the characteristic curves the time derivative is equal to the material derivative,

d

ds
v.X.x; tI s/; s/ D v0.X.x; tI s/; s/ C rv.X.x; tI s/; s/v.X.x; tI s/; s/

D D

Ds
v.X.x; tI s/; s/; (4)

therefore we can discretize the material derivative using a finite difference scheme.
In order to obtain our numerical schemes, we divide the interval Œ0;T� into N

subintervals of �t D T=N size and approximate the material derivative of velocity
along the characteristic curves using a Backwards Differential Formula of second
order (BDF2).

Let˝h D
Ne[

jD1
Tj be a regular quasi-uniform triangulation of the region˝ , Tj be a

simplex of dimension d and h be the maximum diameter of elements. We associate
with˝h the H1-conforming finite element spaces Vh � H1.˝/, V0h D Vh \H1

0.˝/

and Mh � L20.˝/.
In each time step we approximate the weak solution of problem (1) by two

functions .vnC1
h ; pnC1

h / 2 Vh0 � Mh. Then the characteristic curve X.x; tnC1I �/
is replaced by Xh.x; tnC1I �/, which is the numerical solution of the initial value
problem (2) replacing v with vh. Since vh.�; t/ may not exist if t … ft0; : : : ; tNg,
it is usually calculated by some extrapolation formula using certain values in the set
fvm

h gn
mD0.

Discrete problem BDF2-LG: Find f.vh; �h/gN
nD2 2 .V0h � Mh/

N such that

1

�t

�
Dn

hvh;wh
�C �

�rvnC1
h ;rwh

� C �
pnC1

h ; divwh
�

D �
f nC1;wh

�
;8wh 2 V0h; (5)

�
divvnC1

h ; qh
� D 0;8q 2 Mh (6)

for n 2 f1; : : : ;N � 1g with

Dn
hu WD 1

2

�
3unC1 � 4un ı Xn;nC1

h C un�1 ı Xn�1;nC1
h

�
;
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v0h D Rhv
0 2 V0h, Rh the L2 elliptic projector onto V0h and Xj;nC1

h .x/ D
Xh.x; tnC1; tj/. The approximate values v1h 2 V0h and p1h 2 Mh can be obtained
by a single step scheme.

3 Local Projection Stabilized Lagrange-Galerkin Method

The local projection stabilized LG method (LPS) can be interpreted as a variational
multiscale method. Such methods are based on the scale separation of turbulent
flows. When a flow becomes turbulent very different time and space scales appear
that make difficult or even impossible to predict the behaviour of the flow with
precision. Three type of scales are considered:

1. Large scales: in the Kolmogorov cascade these are the scales containing energy.
They are the scales of the mean flow, which are perfectly captured in the
simulation.

2. Small resolved scales: the ones of the inertial range, known as subfilter scales.
Kinetic energy is merely transferred to smaller scales, inertial effects are still
much larger than viscous effects. These scales are supposed to be captured by
the mesh.

3. Small unresolved scales: kinetic energy is dissipated by molecular viscosity at
these scales. Their effect on the other scales has to be modeled.

The finite element spaces Vh and Mh are decomposed as

Vh D Vh ˚ V0
h;Mh D Mh ˚ M0

h; (7)

where Vh;Mh are the finite dimension spaces for the large scales and V0
h;M

0
h are the

finite element spaces for the small resolved scales. In projection-based variational
multiscale methods the influence of the unresolved small scales on the large scales
is assumed to be negligible. Furthermore, in most of these methods the action of
unresolved small scales on the small resolved scales is modeled through a term of
added viscous stresses of the form

c.u0
h; v

0
h/ D

X
K2˝h

.�K.I �˘h/ruh; .I �˘h/rvh/; (8)

where �K is a mesh-dependent coefficient, I W L2.˝/ ! L2.˝/ is the identity
operator, and ˘h W L2.˝/ ! Gh, is the projection defined by the relation
˘hq D ˘K.qjK/, being ˘K W L2.K/ ! Gh.K/ a local projection operator in the
finite dimensional space Gh.K/ � frvhjK=vh 2 Vhg. This term appears on the
equation of momentum for the scales resolved obtaining the final problem

1

�t

�
Dn

hvh;wh
�C �

�rvnC1
h ;rwh

� C c.vnC10

h ;w0
h/C �

pnC1
h ; divwh

�
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D �
f nC1;wh

�
;8wh 2 V0h; (9)

�
divvnC1

h ; qh
� D 0;8q 2 Mh: (10)

In the LPS method proposed in this work the spaces Vh and Mh consist of P2
and P1 finite elements, respectively, and Gh.K/ is formed by P0 finite elements. The
added viscosity is taken as �K D caddh2k , with cadd a constant whose value has to be
adjusted in every simulation.

The error estimate that we have obtained for the velocity, under some regularity
assumptions, is

kv � vhkl1.L2.˝// D O.h2 C�t2/C min

�
C
�t

f .�/
;C
�t

h
; 2

�
h2

�t
; (11)

with C a constant and f .�/ a function of the viscosity.

4 Numerical Results

In this section we test the behavior of the local projection LG method through two
numerical examples. The first one is an academic example with known analytical
solution, proposed in Notsu and Tabata [10]. The second example is the flow past
an airfoil at zero angle of attack. This test was proposed in Guermond et al. [6] to
assess the behavior of the subgrid method proposed in this work.

4.1 Two Dimensional Flow in a Square Domain

This problem was solved for the modified Lagrange-Galerking methods in Bermejo
and Saavedra [1]. On a domain ˝ D .0; 1/2 we impose suitable initial, boundary
conditions and an external force term such that the exact solution of incompressible
Navier-Stokes equations, .v; p/ is given by

v1.x; t/ D .1C sin.�t// sin2.�x1/ sin.2�x2/; (12)

v2.x; t/ D �.1C sin.�t// sin2.�x2/ sin.2�x1/; (13)

p.x; t/ D .1C sin.�t// cos.�x1/ cos.�x2/: (14)

The final time was set to T D 1. The results shown below have been obtained with
dynamic viscosity values � D 10�5 and � D 10�7. We calculate the numerical
solution in a family of structured meshes ˝hj formed by right triangles whose edge
lengths are hj D 1=2j, j 2 f3; 4; 5; 6; 7g. The feet of the characteristic curves are
calculated by a Runge-Kutta method of order 4.
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In our previous work [1] we have seen that due to the use of numerical integration
to compute the terms

Z
˝

vh.X
n;nC1.x//wh.x/dx; (15)

instabilities appear when the diffusion is too small. If a BDF2 formula is used for
the discretization of the material derivative, these instabilities are more significant
and appear before when refining the time step. We have also demonstrated that the
use of high order quadrature rules delays the appearance of the instability and this
becomes weaker or even disappears completely. The following results show that
if a subgrid viscosity technique is used, these types of instabilities are smoothed
out. We have compared the influence on the stability of the increment of the order
of the quadrature rule with the increment of the added viscosity. Furthermore, the
accuracy achieved with the stabilized and standard LG methods is similar. Unless
otherwise specified, a Gaussian quadrature rule of order ten (25 nodes) is used to
approximate (15).

First, the results for Re D 105 are presented. The norm of the errors obtained for
the velocity are plotted in Fig. 1 with �t D 0:001. This figure shows that second
order convergence is obtained, as was expected for the theoretical results. In Fig. 2
the time convergence curve is plotted. We notice that the errors of LG method, are
nearly the same as those obtained with the stabilized method, until the solution
becomes unstable. As can be seen, the stability interval of the LPS method is larger
than the one of the convectional LG method. Figure 2 also shows that second-order
convergence in time is achieved with the different methods for both the pressure
and the velocity.

As in the previous case, the solution obtained with standard LG method for
� D 10�7/ becomes unstable when the time step decreases, even more if a low-
order quadrature rule is used. The same applies to stabilized methods although the
solutions are more stable. If we use a high order quadrature rule, increasing the
computational cost, we can see that the instabilities appear for smaller time steps. In
Fig. 3 the l1.L2/-norm of the velocity error is plotted using two different quadrature

Fig. 1 Space convergence
curve of the velocity,
Re D 105, �t D 0:001

1/128 1/64 1/32 1/16 1/8
10−4

10−3

10−2

10−1

100

h: mesh size

||u
−u

h|| l∞
(L

2 (Ω
))

LPS, τK=h2

LPS, τK=10h2

y=Ch2



A Local Projection LG Method for NS Equations at High Re 425

101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

N: Number of time steps

||v
−v

h|| l∞
(L

2 )

LG
LPS, τK=h2

LPS, τK=10h2

y=C(1/N)2

101 102 103
10−6

10−5

10−4

10−3

10−2

10−1

100

N: Number of time steps

||p
−p

h|| l2 (L
2 )

LG
LPS, τK=h2

LPS, τK=10h2

y=C(1/N)2

Fig. 2 Temporal error estimation for the velocity and the pressure obtained for h D 1=128 at
Re D 105
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Fig. 3 Time convergence curve of the velocity obtained with sixth-order (left panel) and tenth-
order (right panel) quadrature rules, Re D 107 , h D 1=128

rules (order 6 and 10) with �K D h2 and �K D 100h2. We notice that the accuracy
in the evaluation of the integrals (15) has a stronger effect on the stability than the
subgrid viscosity.

For the sake of completeness we present the results obtained with the BDF
formula of order one and LPS method with �K D h2 and a quadrature rule of
order 10. The time convergence curve can be seen in Fig. 4 where no instabilities
appear. The errors of the velocity and the pressure are computed with the norm
l2.H1/ because with this norm the instabilities should be seen before.

4.2 Flow Past a NACA0012 Airfoil at Zero Angle of Attack

Now, we show the simulations of the flow past the NACA0012 airfoil at zero angle
of attack at Re D 105 and Re D 3 � 106. The first value of the Reynolds number
corresponds to a laminar flow and the second one to a fully turbulent flow.

The definition of geometry of the airfoil NACA0012 is well-known and the
formula to create an airfoil between x D 0 and x D 1 can be found in a wide number
of references. To obtain some data for our simulations, as the types of meshes
and the experimental data for the comparison, we follow the work of the Langley
Research Center [11] where a validation NACA0012 airfoil case for turbulence
models is given.
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Fig. 4 Time convergence curve for LPS-BDF1 method, Re D 107, h D 1=128

Fig. 5 Mesh around de airfoil (top) and near the leading and trailing edges (bottom)

The computational domain is ˝ D Œ�5; 10� � Œ�5; 5� and we simulate until
T D 5s. The no-slip boundary condition is used on the airfoil, a unit horizontal
velocity is imposed on the boundary f.x; y/ 2 ˝=x D �5g\f.x; y/ 2 ˝=y D �5; 5g
and the convectional do-nothing condition is set in f.x; y/ 2 ˝=x D 10g.

The mesh consists of 71,785 elements, 182,893 velocity nodes and 37,036
pressure nodes, the mesh size inside the boundary layer is h D 10�3. This spatial
discretization is adequate to capture the viscous boundary layer for Re D 105 but in
the case of Re D 3� 106 our simulations could not give accurate results. In fact, the
mesh is too coarse to obtain a solution with classical Lagrange Galerkin methods
without a turbulence model. We have obtained solutions that blow up in final times.
Nevertheless, we have kept this mesh to check the behavior of stabilized methods,
even without including turbulence models. We shown in Fig. 5 the mesh around the
profile and details of the regions near the leading and trailing edges.
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Taking into account the conclusions extracted from the academic test, these
simulations are carried out with the first-order BDF formula and the quadrature
rule of order 10. For the stabilized method the parameter is �K D caddh2K , where cadd

is a constant value that will be specified in each case. We set the initial condition to
zero. The time step employed for Re D 105 is �t D 10�3 and when Re D 3 � 106
is �t D 5 � 10�4.

4.2.1 Results for Re D 105

The purpose of this experiment is to show that, at high Reynolds numbers, the
stabilized LG method gives a stable solution whereas the convectional LG method
fails.

In Fig. 6 we can see the contours of the velocity and the pressure at t D 5s
obtained by the standard LG method and the stabilized method, with Cadd D 0:1 and
Cadd D 1. The differences between the two methods are clearly observed in these
images and also the influence of the added viscosity in smoothing the solution. In
Fig. 7 the vorticity field at t D 3s is plotted. As can be seen, the instabilities had
already appeared at this time in the solution obtained with the standard LG method.

4.2.2 Results for Re D 3 � 106

In this section we show the simulations at Re D 3�106 with cadd D 1 and cadd D 2,
to see the effect of the added viscosity on the simulation. In this case the boundary
layers should be turbulent over more than half of the airfoil. We show in Fig. 8 the
upper and lowed pressure coefficients cp D 2. p�p1/=�U21 at t D 5s. We compare
our results with the experimental data given in Gregory and O’Reilly [5]. At this
point, we must say that, although the experiment is three dimensional, according to
[11] the data given in [5] are appropriate for the validation of surface pressures in
two-dimensional simulations.

In order to assess the influence of the subgrid viscosity on the flow, we plot in
Fig. 9 the vorticity field and the contours of the modulus of the velocity at t D 2:5s,
for cadd D 1 and cadd D 2. We can see that the vorticity field is very similar in the
two simulations, however there are differences in the modulus of the velocity. The
velocity is fully smooth for cadd D 2, whereas for cadd D 1 the contours are less
smooth. Nevertheless, in Fig. 8, the pressure coefficients show more oscillations if
the artificial viscosity is higher. We think that this small oscillatory character of both
solutions is due to the fact that the boundary layer is not well resolved.

We compare the results achieved with the local stabilized projection method
with those obtained using a RANS k � ! turbulence model using the commercial
ANSYS-Fluent code. In Fig. 10 the upper surface pressure coefficients predicted at
t D 5s with both methods are plotted. We observe that our results are close to both
the experimental and the RANS model results. As can be expected, the latter are
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Fig. 6 Velocity and pressure contours at t D 5s obtained with LG method (top) and with the LPS
method: cadd D 1 (middle) and cadd D 0:1 (bottom)

also oscillatory but with a smaller amplitude than that obtained with the stabilized
method.

We should notice the good results obtained with the coarse mesh used for this
Reynolds number and without the coupling of any turbulence model. In spite of
this, a more detailed study about the best choice of parameter cadd values should
be done instead of a simple trial and error strategy. As the only conclusion of our
last tests we can say that if we increase slightly the value of the added viscosity the
solution seems to be a little smother but not necessarily more precise. Furthermore,



A Local Projection LG Method for NS Equations at High Re 429

Fig. 7 Vorticity field at t D 3s for LG method (left) and stabilized LG method with cadd D 0:1

(right)
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Fig. 8 Pressure coefficient on the upper and lower surfaces at t D 5s with cadd D 1 (left) and
cadd D 2 compared to the experimental results at Re D 3� 106

studies will be performed which will include a Smagorinsky-type turbulent viscosity
�add following the works of John et al. [7, 8] (among others).

5 Conclusions

We have introduced a local projection BDF2-LG method for incompressible flows
at high Reynolds numbers. We have shown that this method is easy to implement
in a standard LG code. Numerical experiments show that, at very high Reynolds
numbers, the method is more stable than the conventional LG method, and when
both conventional and local projected stabilized LG methods are stable, the latter is
more accurate. However, to maintain the stability of the method when �t is small
we still need to use high order quadrature rules together with the stabilization term.
In future works, a more detailed study of the choice of the parameter cadd should be
done, taking into account the different scales of the problem.
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Fig. 9 Form left to right, vorticity field and contours of velocity at t D 2:5s and from top to
bottom: cadd D 1 and cadd D 2
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Fig. 10 cp profiles at t D 5s with the stabilized LG method and the k � ! model
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Finite Element Approximation of Hydrostatic
Stokes Equations: Review and Tests

Francisco Guillén-González and J. Rafael Rodríguez-Galván

Abstract We present a review of a theory of stability and accuracy of Finite
Element (FE) schemes for the Hydrostatic Stokes system which has been recently
developed in Guillén-González and Rodríguez-Galván (Numer Math 130(2):225–
256, 2015; SIAM J Numer Anal 53(4):1876–1896, 2015). Moreover, some new
numerical results, not previously published, will be shown. This theory makes pos-
sible numerical simulations for classical FE (without the need of vertical integration
required by most hydrostatic schemes in literature) and works even for anisotropic
(not purely hydrostatic) models. The key is that stability of mixed approximation
for Hydrostatic Stokes equations requires, besides the well-known Ladyzenskaja-
Babuška-Brezzi (LBB) condition, an extra inf-sup condition. Some new numerical
experiments are presented in this work. They suggest that for .P1C bubble/–P1

one can reduce the number of degrees of freedom and also computational effort,
without significantly worsening error orders. Some other unpublished numerical
experiments are also presented here, in singular 2D domains and in realistic 3D
domains (Gibraltar Strait).

1 Introduction

In this work we outline some formulations for the Hydrostatic Stokes equations (a
linearized version of the Primitive Equations, were the Boussinesq approximation is
taken into account and the Coriolis force is not considered) for which usual Stokes-
stable Finite Elements (FE) are also Hydrostatic-stable. As result, Hydrostatic
Stokes equations can be formulated as a mixed (Stokes-like) problem, which can be
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approximated by standard FE tools and for which vertical integrated formulations
(commonly used in most schemes in Oceanography) are avoided.

The equations of geophysical fluid dynamics governing the motion of the ocean
are derived from the conservation laws from physics. In the case of large scale ocean
(see e.g. [6]), the resulting system is too complex and, from a practical point of
view, numerous simplifications use to be introduced, including the “small layer”
hypothesis:

" D vertical scale

horizontal scale
is very small,

for example a few Kms over some thousand Kms, that is " ' 10�3; 10�4.
Considering the Boussinesq approximation, we focus on the momentum laws,

with yield to the Navier-Stokes (with homogeneous viscosity � D �x D �y D �z

equations). On the other hand, applying the rigid lid hypothesis and a vertical scaling
to the physical domain, it is transformed into the following isotropic or adimensional
domain, for which the ratio (horizontal scales)/(vertical scales) is of the order of
unity:

˝ D ˚
.x; z/ 2 R

3 = x D .x; y/ 2 S; �D.x/ < z < 0
�
:

Note that vertical scaling of the domain implies a modification of the vertical
momentum equation (see (2) below) due to which anisotropic viscosity ("2�z <

�x D �y) is introduced. For details, see e.g. [3, 4] and references therein.
We decompose the boundary of ˝ into three parts: the surface, �s D S � f0g,

the bottom, �b D f.x;�D.x// = x D .x; y/ 2 Sg, and the talus or lateral walls,
�l D f.x; z/ = x 2 @S;�D.x/ < z < 0g.

Finally, an "-dependent scaling of vertical velocity is introduced (see [3]), leading
to the following equations (called Anisotropic or Quasi-Hydrostatic Navier-Stokes
Equations and, for the limit case � D 0, Hydrostatic Navier-Stokes or Primitive
Equations) in the time-space domain .0;T/ �˝:

@tu C .u � rx/u C v@zu ���u C rxp D F; (1)

"2
˚
@tv C .u � rx/v C v@zv ���v

�C @zp D g; (2)

rx � u C @zv D 0; (3)

where rx D .@x; @y/
T , rx � u D @xu1 C @yu2, �� D �x@

2
xx C �y@

2
yy C �z@

2
zz, being

� D .�x; �y; �z/ the (adimensional kinematic) viscosity. The unknowns are the 3D
velocity field, .u; v/ W ˝ � .0;T/ ! R

3 and the pressure, p W ˝ � .0;T/ ! R. The
term F D .f1; f2/T models a given horizontal force while g involves vertical forces
due to gravity. In this paper, we focus on the constant density case, therefore g can
be written in potential form and incorporated into the pressure term, hence g D 0

can be assumed in (2). Anyway, it is important to note that, unlike most Primitive
Equations schemes, we focus on the mixed problem without injecting vertical forces
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into the horizontal motion equation. Therefore variable density can be treated in a
straightforward way. In a forthcoming paper, we deal into the general (transient,
nonlinear, variable-density case). The effects due to Coriolis acceleration are not
considered in this work because they are linear terms not affecting to the results
presented below.

The system is endowed with initial values for the velocity field, .u; v/jtD0 D
.u0; v0/ and adequate boundary conditions, for instance:

�z@zuj�s D gs; vj�s D 0; (4)

uj�b[�l D 0; vj�b D 0; (5)

"2rxv � nxj�l D 0; (6)

where gs represents the wind stress and nx is the horizontal part of the normal vector.
The limit of the Hydrostatic equations (1)–(3) when " ! 0 is studied on rigorous

mathematical grounds in [4] (stationary case) and [3] (evolutive case). As far as
we know, existence and regularity results for the differential problem (1)–(3), and
also numerical schemes, are based on the introduction of an equivalent integral-
differential problem, by doing a vertical integration. From the numerical point of
view, this idea has advantages (it is only necessary to compute a 2D pressure) but
also some drawbacks (for instance, standard FE in unstructured meshes, variable
density and non-hydrostatic cases are difficult to handle).

In Sect. 2 we review the stability and accuracy results of the FE approximation
for differential formulation (1)–(3), which have been recently obtained in [9]. The
main difficulty lies on the strong anisotropy of these equations when " is small,
which affects their stability and invalidates its approximation by means of standard
Stokes stable combinations of FE, such as Taylor-Hood P2 –P1, or the mini-
element, P1;b –P1. The reason is that a new “hydrostatic” inf-sup condition,
see .IS/Vh below, must be taken into account (in addition to the usual Stokes LBB
inf-sup condition, see .IS/Ph below) which is not satisfied by standard Stokes FE like
P2 –P1 and P1;b –P1. Then, we give some “non-standard” combinations of FE
which are stable for (1)–(3).

In Sects. 3 and 4 we go into some stabilized reformulations of the discrete
hydrostatic Stokes system related to (1)–(3) which are discussed in [10]. The first
reformulation (in Sect. 3) avoids the restriction .IS/Vh and allows the use of standard
Stokes FE combinations, like P2 � P1 (for which order O.h2/ can be proved) or
P1;b � P1 (of order O.h/). The second reformulation (Sect. 4) allows to control
the pressure in a stronger norm (adding @zph 2 L2.˝/). Order O.h/ is obtained for
P1;b � P1 (including @zp), although order O.h2/ is not clear for P2 � P1.

Finally, in Sect. 5 we introduce some innovative numerical experiments. First and
second ones show the power of stabilized reformulations in “critical” domains, with
discontinuous depth or without sidewall talus. Third test compares error order for
the most significant FE and formulations. Fourth one develops a new interesting idea
starting from the non-standard FE .P1;b;P1/ –P1 (presented in Sect. 2) based on
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eliminating bubbles from one component of the velocity. Then computation time
is reduced while error orders are not significantly different. Last numerical tests
exploits the facilities of our schemes for 3D tests in domains which have been
derived from real data.

2 Stability of Finite Elements Approximations for the
Hydrostatic Equations

Let us consider the hydrostatic linear steady variational equations related to (1)–(3)
for the less favorable case " D 0: find .u; v; p/ 2 U � V � P such that

�.ru;ru/� . p;rx � u/ D hf;ui 8u 2 U; (7)

. p; @zv/ D 0 8v 2 V; (8)

.r � .u; v/; p/ D 0 8p 2 P; (9)

where .�; �/ is the L2.˝/ scalar product and h�; �i denotes duality in U0, where

U D H1
b;l.˝/ D

n
u 2 H1.˝/2=uj�b[�l D 0

o
;

V D H1
z;0.˝/ D

n
v 2 L2.˝/ = @zv 2 L2.˝/; vj�s[�b D 0

o
;

P D L20.˝/ D
n

p 2 L2.˝/ =
R
˝

p D 0
o
:

U is equipped with the norm jjrujj (hereafter k�k denotes the L2.˝/-norm) while in
V we consider k@zvk, which is a norm owing to homogeneous Dirichlet condition
on �s [ �b and vertical Poincaré inequality. We take in P the usual L2.˝/-norm.
The function f in (7) results from gathering the horizontal force F and the Neumann
boundary condition (4).

Considering u as the only “coercive variable” in (7)–(9) and v, p as Lagrange
multipliers, the following inf-sup conditions are introduced:

sup
0¤.u;v/2U�V

.r � .u; v/; p/
k.ru; @zv/k � ˇpkpk 8p 2 P; .IS/P

sup
0¤p2P

.@zv; p/

kpk � ˇvk@zvk 8v 2 V; .IS/V

where k.ru; @zv/k is the usual norm of U � V .
It is not difficult to show that .IS/P and .IS/V hold if ˇp is the Stokes LBB

constant and ˇv D 1 (specifically, the first condition follows from Stokes LBB
condition while for the second one is enough to takeep D @zv, for each v 2 V).
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Then we can achieve well-posedness of (7)–(9) by the following result:

Theorem 1 The following statements are equivalent

1. U, V and P satisfy .IS/P and .IS/V.
2. Problem (7)–(9) is well-posed in U � V � P.

In this case, there exists a unique weak solution .u; v; p/ 2 U � V � P of (7)–(9) and
the following estimates hold:

kruk � 1

�
kfkU0 ; k@zvk � 1

ˇv
kfkU0 ; kpk � 2

ˇp
kfkU0 ; (10)

where kfkU0 denotes dual norm.

Theorem above has been proved in [9] (and previously in [2], using a similar
approach). In [9], a different proof is also presented (it is based on the saddle
point theory for mixed problems and is sharper in the sense of illustrating the role
of .IS/V).

In the discrete case, let Th be a regular family of meshes in ˝ satisfying the
usual regularity condition: there exists 
 > 1 such that hT � 
�T for every T 2 Th,
where hT is the diameter of the triangle T and �T is the maximum diameter of all
circles contained in T. Note that no kind of structure is assumed in Th (in particular,
vertical integration is not necessary).

Let Uh � U, Vh � V and Ph � P be conforming FE spaces and let us consider
the following FE approximation of (7)–(9): find .uh; vh; ph/ 2 Uh � Vh � Ph such
that

�.ruh;ruh/� . ph;rx � uh/ D .f;uh/ 8uh 2 Uh; (11)

. ph; @zvh/ D 0 8vh 2 Vh; (12)

.r � .uh; vh/; ph/ D 0 8ph 2 Ph: (13)

Let us introduce the discrete inf-sup conditions

sup
0¤.uh;vh/2Uh�Vh

.r � .uh; vh/; ph/

kruh; @zvhk � �pkphk 8ph 2 Ph; .IS/Ph

sup
0¤ph2Ph

. ph; @zvh/

kphk � �vk@zvhk 8vh 2 Vh; .IS/Vh

where �p, �v > 0. Note that .IS/Ph condition is similar to the Stokes LBB inf-
sup condition and in fact, one can see that every Stokes stable FE combination
satisfy .IS/Ph . In [1, 2, 9], it is shown the following result:
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Theorem 2 The following statements are equivalent:

1. Uh, Vh and Ph satisfy conditions .IS/Ph and .IS/Vh .
2. Scheme (11)–(13) is well-posed.

In this case, there exists a unique solution .uh; vh; ph/ 2 Uh � Vh � Ph of (11)–(13)
and the following estimates hold:

kruhk � 1

�
kfkU0 ; k@zvhk � 1

��v
kfkU0 ; kphk � 2

�p
kfkU0 : (14)

The proof is a mere translation to the discrete case of the proof of Theorem 1. Then
we can apply the Cea’s lemma in the Banach-Necas-Babuska framework (see [9]
and references therein) obtaining:

Corollary 1 (Error Estimates) Let .u; v; p/ and .uh; vh; ph/ be the solutions
of (7)–(9) and (11)–(13) respectively. There is a constant C > 0 (depending on
constants �p and �v of .IS/Ph and .IS/Vh ) such that:

k.r.u � uh/; @z.v � vh/; p � ph/k

� C

�
inf

uh2Uh

kr.u � uh/k C inf
vh2Vh

k@z.v � vh/k C inf
ph2Ph

kp � phk
�
:

Finally, the following necessary conditions (which can be shown from an
inspection of the FE linear system (11)–(13)) will be useful to analyze stability
of specific FEs:

Lemma 1 Let Nu D dim Uh, Nv D dim Vh and Np D dim Ph.

1. If .IS/Ph holds then Np � Nu C Nv .
2. If .IS/Vh holds then Nv � Np.

Let .Pk;Pl/ –Pm denote a FE approximation with Pk, Pl and Pm elements
for Uh, Vh and Ph, respectively. Note that usual Stokes conforming Lagrange FE
Pk –Pm correspond to the case k D l, for instance Taylor-Hood P2 –P1 is also
denoted as .P2;P2/ –P1. We say that .Pk;Pl/ –Pm is hydrostatic stable if the
related FE spaces satisfy .IS/Ph and .IS/Vh . Using the theory developed in this section
we can conclude:

Corollary 2

1. P1;b –P1 is not hydrostatic stable (it does not satisfy .IS/Vh ).
2. P2 –P1 is not hydrostatic stable.
3. .P2;P1/ –P0 is hydrostatic stable.

Proof A simple count of the degrees of freedom of P1;b –P1 and P2 –P1 in a
simple structured mesh shows that Nv (number of dofs. for v) is greater that Np,
then (according to Lemma 1) they do not satisfy .IS/Vh .
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On the other hand, .P2;P1/ –P0 satisfies Stokes LBB (see [11] and references
therein), therefore .IS/Ph holds. And, for each vh 2 Vh � P1 it is easy to verify .IS/Vh
(taking eph D @zvh 2 Ph � P0 for each vh 2 Vh).

Remark 1 Two interesting FE are .P1;b;P1/ –P1 and .P2;P1/ –P1, which
result eliminating degrees of freedom on Vh from the mini-element and the Taylor-
Hood element, respectively.

In [11] is shown that these FE are Stokes-stable in uniformly unstructured
meshes. Therefore .IS/Ph holds in those meshes. On the other hand, they satisfy
the necessary conditions expressed in Lemma 1. Numerical tests in [9] suggest
that .IS/Vh or a similar condition is satisfied in convex domains, but some new
experiments given in Sect. 5.1 suggest that .IS/Vh does not hold in non-convex
domains with discontinuous bottom function.

3 Stabilization of Vertical Velocity

Now we will try to recover, in the Hydrostatic case, the stability of classical Stokes
FEs. Let us consider the following reformulation of (7)–(9): find .u; v; p/ 2 U�V�P
such that

�.ru;ru/� . p;rx � u/ D hf;ui 8u 2 U; (15)

�.r � .u; v/; @zv/ � . p; @zv/ D 0 8v 2 V; (16)

.r � .u; v/; p/ D 0 8p 2 P: (17)

This new system is obtained by adding to (8) the consistent term �.r�.u; v/; @zv/

(which vanishes in the continuous problem). Indeed, (9) or (17) imply r � .u; v/ D
0 almost everywhere in ˝ , hence system (15)–(17) coincides with (7)–(9) and
therefore, (15)–(17) is well-posed.

In the discrete case, let Uh � U, Vh � V and Ph � P be three conforming
FE spaces. Let us consider the problem: find FE functions uh 2 Uh, vh 2 Vh and
ph 2 Ph such that

�.ruh;ruh/ � . ph;rx � uh/ D hf;uhi; (18)

�.r � .uh; vh/; @zvh/� . ph; @zvh/ D 0; (19)

.r � .uh; vh/; ph/ D 0; (20)

for all .uh; vh; ph/ 2 Uh�Vh�Ph. This system can be seen as the result of introducing
the stabilizing term �.r � .uh; vh/; @zvh/ in (11)–(13). But the equivalence of both
discrete systems cannot be guaranteed because, in this case, (20) cannot be applied
to deduce that �.r � .uh; vh/; @zvh/ D 0, due to @zVh 6� Ph in general.
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Anyway, as it is going to be outlined in this section (more details are presented
in [10]), .IS/Ph is a sufficient condition for the well-posedness of (18)–(20), i.e. the
discrete hydrostatic stability constraint .IS/Vh is not necessary when (8) is reformu-
lated as (19) (in consequence, any standard LBB-stable FE is stable for (18)–(20)).
And both stability and error estimates can be provided for this scheme.

Towards this end, we make use of the theory for mixed FE (see e.g. [5]).
Problem (15)–(17) can be written as: find w 2 W such that

a.w;w/C b. p;w/ D hf;wi 8w 2 W; (21)

b.p;w/ D 0 8p 2 P; (22)

for the following bilinear and linear forms:

a.w;w/ WD �.ru;ru/C �.@zv; @zv/C �.rx � u; @zv/;

b. p;w/ WD �. p;rx � u/� . p; @zv/;

hf;wi WD h.f; 0/;wiW0;W D hf;uiU0;U;

where we denote W D U � V , w D .u; v/ and w D .u; v/ 2 W. Similarly,
problem (18)–(20) can be written as:

a.wh;wh/C b. ph;wh/ D hf;whi 8wh 2 Wh; (23)

b.ph;wh/ D 0 8ph 2 Ph: (24)

Let us denote by Bh W Wh ! P0
h and Bt

h W Ph ! W0
h the linear forms defined

as hBhwh; phi D b.wh; ph/ D hwh;Bt
hphi, for all wh 2 Wh, ph 2 Ph. From mixed

methods theory, one has well posedness (existence and uniqueness of solution and
stability estimates) of (23)–(24) if:

1. a.�; �/ is coercive on ker Bh, i.e. exists ˛ > 0 such that

a.wh;wh/ � ˛kwhk2W 8wh 2 ker Bh: (25)

2. And b.�; �/ satisfies an inf-sup condition, i.e. there exists ˇ > 0 such that

sup
wh2Wh

b.wh; ph/

kwhkW
� ˇkphkP= ker Bt

h
8ph 2 Ph: (26)

Using a technical result for controlling krx � uk by means of krxuk, one can
achieve (25), while (26) is easy to show provided .IS/Ph holds. This way we can
prove the following result (see[10] for details):

Theorem 3 (Stability) Let Uh � U, Vh � V and Ph � P be families of FE in a
regular partition Th of ˝ satisfying the inf-sup condition .IS/Ph . Then scheme (18)–
(20) has a unique solution .uh; vh; ph/ 2 Uh � Vh � Ph, which satisfies the following
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stability estimates:

kuhk2 C k@zvhk2 � 4

�2
kfk2U0

; kphk � 5

�p
kfkU0 ; (27)

where �p is the constant in .IS/Ph .

Error estimates from mixed FE theory (see [5, 10]) conduce also to the following
result:

Theorem 4 (Error Estimates) Under conditions of Theorem 3, let .w; p/ D
.u; v; p/ be the solution of problem (7)–(9) (or (15)–(17)) and let .wh; ph/ D
.uh; vh; ph/ be the solution of scheme (18)–(20). Assume that there exists a positive
constant �p > 0 satisfying .IS/Ph . Then

kw � whkW � c1 inf
wh2Wh

kw � whkW C c2 inf
ph2Ph

kp � phkP (28)

kp � phkP � c3 inf
wh2Wh

kw � whkW C c4 inf
ph2Ph

kp � phkP; (29)

where c1; : : : ; c4 are constants depending on �, �p.

Remark 2 The form a.�; �/ is not symmetric, due to the stabilization term. A
symmetric bilinear form can be defined introducing the consistent term ��rx.r �
.u; v// in the horizontal momentum equation (15), thus one has:

Oa.w;w/ D �.ru;ru/C �.rx � u;rx � u/C �.@zv;rx � u/

C �.@zv; @zv/C �.rx � u; @zv/:

It can be show that this bilinear form is coercive, hence we can get similar results to
Theorems 3 and 4.

Remark 3 Following a standard reasoning in theory of finite elements (see [10] and
references therein), error estimates (28), (29) conduce to convergence estimates. For
instance, assuming that uh and vh are approximated in the same space Pr (r � 2)
and ph is approximated in Pr�1, one has:

k.u � uh/k C k@z.v � vh/k C kp � phk � Chr
�
k.u; v/kHrC1.˝/d C kpkHr.˝/

�
:

In particular, order O.h2/ is obtained in the P2 –P1 case if .u; v/ 2 H3.˝/ and
p 2 H2.˝/. In a similar way, order O.h/ can also be obtained for P1;b –P1 if
.u; v/ 2 H2.˝/ and p 2 H1.˝/. Our numerical results agree this statement, see
Sect. 5.
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Remark 4 The theory presented above can be extended to more general (not purely
hydrostatic) problems, with " > 0, so that more realistic problems from Oceanogra-
phy can be modeled. Let us consider the following linear steady variational problem,
where the stabilizing term .r � .u; v/; @zv/ is introduced:

�.ru;ru/� . p;rx � u/ D hf;ui 8u2 U; (30)

"2.rv;rv/C �.r � .u; v/; @zv/� . p; @zv/ D 0 8v2 V; (31)

.r � .u; v/; p/ D 0 8p 2 P: (32)

The discrete FE problem related to (30)–(32) can be set in the saddle point
framework (21)–(22), by defining the bilinear form

a.w;w/ WD �.ru;ru/C "2.rv;rv/C �.@zv; @zv/C �.rx � u; @zv/:

Then, arguing like in previous paragraphs, Theorems 3 and 4 (and Remarks 2 and
3) can be extended to the non-hydrostatic problem (30)–(32).

4 Regularization of the Vertical Derivative of Pressure

The formulation (15)–(17) of the Hydrostatic Stokes equations (7)–(9) can be
revised for obtaining accuracy rate also for the L2.˝/-norm of @zp. The idea is
to introduce an additional consistent term to the stabilized problem (15)–(17).

Concretely, let us consider the pressure space

bP D H1
z .˝/\ L20.˝/ D f p 2 L20.˝/ = @zp 2 L2.˝/g; (33)

endowed with the norm kpk2bP D kpk2 C k@zpk2. Then, let us consider the following

reformulation or (15)–(17): find .u; v/ 2 W D U � V and p 2 bP such that

�.ru;ru/� . p;rx � u/ D .f;u/; 8 u 2 U; (34)

�.r � .u; v/; @zv/ � . p; @zv/ D 0; 8 v 2 V; (35)

.r � .u; v/; p/C .@zp; @zp/ D 0; 8 p 2 bP: (36)

This system is obtained by adding to (17) the term .@zp; @zp/, which is consistent
in the sense that it vanishes if p satisfies (8). Indeed, by a density argument,
(8) imply @zp D 0 almost everywhere in ˝ , hence it is clear that the solution
of (15)–(17) satisfies (34)–(36). Since we are going to prove uniqueness of solution
of problem (34)–(36), both problems are equivalent. In particular the solution
of (34)–(36) satisfies energy estimates. Anyway, a new estimate, involving also the
L2.˝/-norm of @zp, is provided below.
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In this case, the saddle-point approach used in Sect. 3 can not be reproduced,
because it is not obvious how to obtain inf-sup conditions, similar to .IS/Ph , involving
the H1

z -norm of the pressure space bP defined in (33). Therefore, a different approach
is adopted, based on the Banach-Necas-Babuska Theorem (which can be interpreted
as a generalized Lax-Milgram theorem, see for instance [7], Theorem 2.6): Let us
define the following (non-symmetric) bilinear form on X � X:

A .�;�/ WD �.ru;ru/C �.@zv; @zv/C .@zp; @zp/

C �.rx � u; @zv/ � . p;r � .u; v//C .r � .u; v/; p/;

where � D .w; p/ 2 X, with w D .u; v/. Then problem (34)–(36) can be written as:

Find � 2 X such that A .�;�/ D hF;�iX0;X 8� 2 X;

where h�; �iX0;X, denotes the duality product and

hF;�iX0;X WD h.f; 0; 0/;�iX0;X D hf;uiU0;U:

One can prove that A satisfies the inf-sup and coercivity hypothesis of the
Banach-Necas-Babuska Theorem and therefore the following results can be stated
(see[10] for details):

Theorem 5 If Uh, Vh and bPh are FE spaces satisfying .IS/Ph with constant �p

(independent of h), there exists a unique solution .uh; vh; ph/ 2 Uh � Vh � bPh of
the discrete problem related to of (34)–(36), which satisfies the following a priori
estimates:

k.ruh; @zvh; ph; @zph/k � 1

�
kfkU0 ;

where � 2 .0; 1=2� is a constant independent of h (in fact, � only depends on � and
�p).

Theorem 6 Assume that .IS/Ph holds with constant �p > 0 (independent of h). Then
there is a constant C > 0 depending on �p (and independent of h) such that

k.r.u � uh/; @z.v � vh/; . p � ph/; @z. p � ph//k �
C
�

inf
uh2Uh

ku � uhk C inf
vh2Vh

k@z.v � vh/k C inf
ph2bPh

kp � phkH1
z

�
:

Remark 5 For the @zp regularized scheme, order O.h/ is obtained, even for @zp in
L2.˝/, for the combinationP1;b –P1 if u; v; p 2 H2.˝/, what improves the results
obtained in the non @zp-regularized scheme. But order O.h2/ cannot be reached for
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P2 –P1 (because a best approximation, for instance P2, would be required for
pressure).

Remark 6 In the anisotropic case (with " > 0), a reformulation like (34)–(36)
suffers an important modification, because Eq. (35) must be replaced by

.r � .u; v/; p/C .@zp � "2�v; @zp/ D 0; 8p 2 bP;
whose treatment is not straightforward.

5 Numerical Simulations

Here we present numerical experiments with a triple objective: First, to exploit
the flexibility of the schemes for approximations in domains with singularity in
the bottom (Sect. 5.1) or vanishing sidewall (Sect. 5.2). Second, in Sect. 5.3 we
introduce a set of experiments to compare the stabilized and unstabilized schemes
presented in previous sections, reaching conclusions which, so far, had not been
observed. Specifically, we show that stabilized .P1;b;P1/ –P1 FE is faster than
stabilized P1;b –P1, while error orders are comparable. Finally, in Sect. 5.5 we
present a realistic 3D numerical simulation (in the Gibraltar Strait) which, had never
been published in papers.

5.1 Experiments in a Domain with Discontinuous Bottom

We consider a non convex 2D domain which presents, as particularity, a bottom step
producing a discontinuity point in the depth function D.x/. More specifically, given
the surface interval S D Œ0; 1� we define D.x/ D 0:5 in Œ0; 1=2/ while D.x/ D 1 in
.1=2; 0�.

The standard FE software FreeFem++ [8] was employed. The domain is dis-
cretized using a non-structured mesh which is defined, using FreeFem++ meshing
capabilities, by 50 sub-intervals on the surface boundary, S, and also 50 sub-intervals
on the right, left and bottom boundaries. After computing the solution (uh; vh; ph),
the mesh is refined using FreeFem++ adaptmesh function. As as mesh adapting
indicator, we pass to this function the following data: uh=kuhk1 C vh=kvhk1 C
ph=kphk1. Then the solution is recomputed in the refined mesh.

In this test we compare the raw (with no stabilization) Hydrostatic Stokes
scheme (11)–(13) with the v-stabilized (and non @zp-regularized) formulation (18)–
(20). Note that these theoretical formulations are focused on the less favorable case
" D 0 (i.e. vanishing vertical viscosity) while horizontal viscosity is � D 1. In
a forthcoming paper, we deal into more realistic cases, from the point of view of
selection of viscosity, variable density, and other parameters.
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Fig. 1 Velocity streamlines (left) and pressure (right). Top: non v-stabilized (and non p-
regularized) scheme. Bottom: v-stabilized (and non p-regularized) scheme

For the first scheme, we used .P2;P1/ –P1 FE, which satisfy .IS/Ph in most
unstructured meshes. Previous experiments presented in [9] (but just in domains
where D is continuous) suggested that .IS/Vh also holds in those domains. But now,
velocity streamlines and pressure, presented in Fig. 1 (top), show some instabilities
as consequence of the stress produced by the discontinuity in the bottom.

For the second scheme, v-stabilization makes possible the use of P2 –P1 FE
and spurious oscillations are damped. Results are slightly better for the p-regularized
formulation (34)–(35) although for sake of brevity they are not shown here.

5.2 Cavity Test in a Convex Domain Without Sidewall Talus

Now we consider a 2D convex domain with no sidewall talus, namely �l D ;.
Note that this kind of tests are not easy to develop for usual integro-differential
formulations of the primitive equations, where normally the imposition of a talus
(D.x/ > Dmin > 0) is required.

Specifically, the domain is defined by the surface interval S D Œ0; 1� and the depth
function D.x/ D .x � 1=2/2 C 1=4 (vanishing on x D 0 and x D 1). We fix u D
x.1� x/ and v D 0 on �s, while u and v vanish on �l [ �b. For mesh adaptivity we
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Fig. 2 Mesh in a domain with no sidewall talus

Fig. 3 Pressure in a convex domain without talus, P2 –P1 FE. Top to bottom: pressure for the
v-stabilized scheme and pressure for the @zp-regularized scheme. Left: pressure iso-values. Right:
pressure on surface

used the indicator commented in Sect. 5.1. Figure 2 shows the resulting mesh, after
one solving+adaptation step, starting from a triangulation with n D 50 subintervals
on �s and �b.

Figure 3 shows pressure isolines for the v-stabilized scheme (18)–(20) and for
the @zp-regularized related to (34)–(36). Results show a quite different behaviour for
both schemes: maximum absolute values are different (�40 and �20, respectively),
and pressure isolines are almost uniformly distributed in the @zp-regularized case,
while for the v-stabilized scheme they are accumulated in corners x D 0 and x D 1,
suggesting a singularity where D.x/ D 0.

Velocity streamlines are not shown for current test because they present a stan-
dard behaviour for both schemes (with an identical maximum velocity magnitude,
equal to 0:2253936).



Finite Element Approximation of Hydrostatic Stokes Equations: Review and Tests 447

5.3 Error Orders

With the aim of comparing numerically error orders for unstabilized and stabilized
schemes, we have considered in the unit square domain in R

2 the following velocity
and pressure functions, which constitute an exact solution of the Hydrostatic
Problem (7)–(9):

u.x; y/ D cos.2�x/ sin.2�y/ � sin.2�y/; v.x; y/ D �u.y; x/;

p.x; y/ D 2� cos.2�x/:

The solution for the unstabilized scheme (11)–(13) has been approximated for
different mesh sizes and norms, using both .P1;b;P1/ –P1 and .P2;P1/ –P1

(which satisfy .IS/Ph but .IS/Vh is not clear). Also the v-stabilized scheme (18)–(20)
was used with P1;b –P1 and P2 –P1

Table 1 compares the results obtained for .P1;b;P1/ –P1 and stabilized
P1;b –P1. We have similar orders for u (optimal error order O.h2/ in L2 and O.h/
in H1). Orders for v are also comparable in L2-norm (over O.h3=2/) although better
for P1;b –P1. Only in H1

z -norm the order is clearly poorer for .P1;b;P1/ –P1

(about O.h1=2/ is suggested). Orders for pressure in L2 are similar for the two cases
(about order O.h3=2/).

Table 2 compares the results obtained for .P2;P1/ –P1 and P2 –P1. In this
case, optimal orders for u (O.h3/ in L2 and O.h2/ in H1 norms) arise for stabilized
P2 –P1 but only O.h3=2/ and O.h1=2/ are reached for .P2;P1/ –P1. Orders for
v are better for stabilized P2 –P1, specially in H1

z -norm (where surprisingly O.h2/
is obtained) and also they are better for pressure.

In brief, stabilized P1;b –P1 and P2 –P1 elements reach (and even surpass, in
some cases) optimal order and seem to be the best choice for solving the Hydrostatic
Stokes equations. Although, nonstabilized .P1;b;P1/ –P1 FE does not seem a bad
choice: it reaches also optimal order for horizontal velocity and pressure (but not for
vertical velocity in energy norm).

Table 1 Error orders for .P1;b;P1/ –P1 and v-stabilized P1;b –P1

.P1;b;P1/ –P1 P1;b –P1

h 2�3 2�4 2�5 2�6 2�7 2�3 2�4 2�5 2�6 2�7

u L2 2:442 1:998 2:187 1:945 2:044 1:616 1:908 1:982 1:999 2:002

H1
0 1:229 1:001 1:102 0:976 1:020 0:936 1:001 1:004 1:002 1:001

v L2 1:752 1:688 1:629 1:510 1:578 1:591 1:775 1:867 1:888 1:857

H1
z;0 0:463 1:117 0:490 0:327 0:508 0:830 0:947 0:992 1:000 1:001

p L2 1:702 1:423 1:767 1:903 1:643 1:625 1:812 1:733 1:641 1:579
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Table 2 Error orders for .P2;P1/ –P1 and v-stabilized P2 –P1

.P2;P1/ –P1 P2 –P1

h 2�3 2�4 2�5 2�6 2�7 2�3 2�4 2�5 2�6 2�7

u L2 2:912 2:803 2:369 2:458 2:561 3:129 3:047 3:029 3:018 3:010

H1
0 2:086 1:872 1:605 1:676 1:697 1:967 1:987 1:999 2:001 2:001

v L2 1:706 2:222 0:687 1:686 1:617 1:572 1:887 1:972 1:993 1:998

H1
z;0 0:641 1:240 �0:062 0:754 0:593 1:846 1:899 1:964 1:989 1:997

p L2 2:370 1:790 1:480 1:702 1:687 2:532 2:267 2:109 2:042 2:017

5.4 Comparison of Computation Times

Although numerical test Sect. 5.3 confirms that error order for stabilized
P1;b –P1 and P2 –P1 beat, in general, the nonstabilized .P1;b;P1/ –P1 and
.P2;P1/ –P1 ones. We must not forget that this latter schemes conduce to systems
with fewer number of unknowns and, maybe, to less computational effort (unless
unstabilized Hydrostatic schemes lead to ill conditioned systems).

So here we intend to check if the reduction of unknowns makes .P1;b;P1/ –P1

and .P2;P1/ –P1 to be faster (from the point of view of reduction of the
computation time) than P1;b –P1 and P2 –P1 FEs on stabilized schemes.

With this in mind, for each one of those FEs we measure the CPU times for
standard cavity tests with decreasing mesh size (and then, increasing number of
unknowns). More in detail, for each FE, we have run four cavity tests in the unity
square, taking unstructured meshes defined by n1 D 30, n2 D 60, n3 D 90 and
n4 D 120 subintervals on each one of its four edges.

Results are shown in Fig. 4, where we use the notation KLM to denote nonstabi-
lized .PK ;PL/ –PM and KLMs to denote stabilized .PK ;PL/ –PM spaces. For
instance, 221s denotes stabilized .P2;P2/ –P1 (i.e P2 –P1) FE.

Note that stabilized P1;b –P1 and P2 –P1 require less computational effort
than nonstabilized .P1;b;P1/ –P1 and .P2;P1/ –P1 FEs, presumably because
of better conditioned linear systems.

Note also that we introduced .P1;b;P1/ –P1 and .P2;P1/ –P1 in the
stabilized scheme, getting interesting conclusions:

• Stabilized .P2;P1/ –P1 FE is faster than P2 –P1. The drawback is that
(according to test Sect. 5.3) .P2;P1/ –P1 conduce to worse error orders and
one cannot hope to improve them by stabilizing.

• Stabilized .P1;b;P1/ –P1 FE is faster than P1;b –P1. And here we have really
an interesting result because error orders for .P1;b;P1/ –P1 are similar to
P1;b –P1 orders, according to test Sect. 5.3.

In conclusion, from the point of view of computational time (and error orders),
.P1;b;P1/ –P1 and .P2;P1/ –P1 are worse than stabilized P1;b –P1 and
P2 –P1, but if we stabilize .P1;b;P1/ –P1 we reach lower CPU time with orders
which are similar to stabilized P1;b –P1.
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Fig. 4 Evolution of CPU times for different FEs when the number of dof. increases

5.5 Realistic 3D Test in the Gibraltar Strait

We have exploited the facilities of schemes presented above for 3D tests in
unstructured meshes, automatically created in domains which have been defined
by real data.

Specifically, a 3D mesh (using the GMSH format) of the Gibraltar strait has been
constructed (using a specific Python script) from data which is available with free
license: coast lines were obtained from a map dataset available in naturalearthdata.
com and bathymetry data was downloaded from the U.S.A. National Geophysical
Data Center (ETOPO2v2).

Then FreeFem++[8] has been employed for programming the 3D P2 –P1 v-
stabilized Hydrostatic Stokes scheme (18)–(20), where (besides rigid lid v D 0

on surface) non-slip Dirichlet conditions have been imposed for u and v on the
bottom, including both European and African coast boundaries. On the remaining
boundaries, Neumann boundary conditions have been defined, specifically wind
traction for u on �s (�@zu D gs), where gs D 1, and null flux r.u; v/ � n D 0

on the east (Mediterranean) and west (Atlantic) artificial boundaries. We chose, as
in previous tests, horizontal viscosity � D 1 and, now, we selected � D 10�4 (so
that vertical viscosity is �2 D 10�8).

Figure 5 shows velocity streamlines and pressure. Hydrostatic restriction @zp D 0

is satisfactory approximated (note that, due to computational efficiency, mesh size
is not small). Extreme pressure values are concentrated in coast regions where depth
is extremely small, what suggest the convenience of improving the meshing process
in these regions.

naturalearthdata.com
naturalearthdata.com
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Fig. 5 3D Gibraltar strait test. Top to bottom: stream lines (.x; y/ and .x; z/ planes) and pressure
(.x; z/ plane)
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