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Preface

This year marked the 20th Annual International Conference on Research in Compu-
tational Molecular Biology. RECOMB 2016 was held in Santa Monica, CA, during
April 17–21, 2016. This volume contains the 35 extended or short abstracts selected for
oral presentation at RECOMB 2016 by the Program Committee (PC). Each of the 172
submissions consisted of a full paper, and was assigned to at least three PC members
and reviewed with the help of many external reviewers. Following the initial reviews,
final decisions were made after an extensive discussion of the submissions among the
members of the PC. In 2016, RECOMB allowed parallel submission to the proceedings
as well as to a journal. Papers accepted for oral presentation that had simultaneously
been submitted to a journal are published as short abstracts. Parallel submissions that
had not appeared in a journal by the time of the conference were to be deposited in the
preprint server arxiv.org. All other papers that were accepted for RECOMB 2016 were
invited for submission to an edited journal version of a special issue of the Journal of
Computational Biology. In addition to the paper presentations, RECOMB 2016 fea-
tured six invited keynote talks by leading scientists worldwide. The keynote speakers
were Karen Adelman (National Institute of Environmental Health Sciences at the
National Institutes of Health), Phil Bradley (Fred Hutchinson Cancer Research Center),
Peter S. Kim (Stanford University), Rob Knight (University of California, San Diego),
Leonid Kruglyak (University of California, Los Angeles), and Teresa Przytycka
(National Center for Biotechnology Information at the National Institutes of Health).
Following the tradition started at RECOMB 2010, RECOMB 2016 also featured
highlight talks presenting computational biology papers that were published in journals
during the last 18 months. There were 29 highlight submissions, six of which were
selected for oral presentation at the main conference.

The success of RECOMB depends on the effort, dedication, and devotion of many
colleagues. I especially thank the Organizing Committee chair, Eleazar Eskin, for
hosting the 2016 conference and marshalling the entire endeavor, including the Mike
Waterman Symposium, three satellite meetings, and the main conference; Ting Chen
for substantial organizational help; Danielle Everts for administrative support; the
Steering Committee and especially its chair, Bonnie Berger, for help, advice, and
support throughout the process; Teresa Przytycka (Program Chair of RECOMB 2015)
for answering my many questions and sharing her experiences with me; Donna Slonim
for chairing the highlights track; Fabio Vandin for chairing the posters track; Fengzhu
Sun for organizing the Mike Waterman Symposium; Carl Kingsford, Alex Schoenhuth,
Fabio Vandin, and Barbara Engelhart for chairing the satellite meetings; the main
conference and satellite PC members and external reviewers for their timely reviews of
assigned papers despite their busy schedules; the authors of the papers, highlights, and
posters for their scientific contributions; and all the attendees for their enthusiastic
participation in the conference. We also thank the International Society of Computa-
tional Biology (ISCB) and the National Science Foundation for student support.



Finally, on this occasion of the 20th anniversary of RECOMB, the entire RECOMB
community thanks Sorin Istrail, Pavel Pevzner, and Michael Waterman for having the
vision to start this conference series back in 1997.

February 2016 Mona Singh
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The following paper summarizes the first 10 years of the RECOMB conference and
was published in 2006. We include it here in order to commemorate the first 20 years of
the RECOMB conference. Later in this volume is a new manuscript summarizing years
11 through 20 of RECOMB.



10 Years of the International Conference on Research
in Computational Molecular Biology (RECOMB)*

Sarah J. Aerni and Eleazar Eskin

The RECOMB 10th Year Anniversary Committee

The tenth year of the annual International Conference on Research in Computational
Biology (RECOMB) provides an opportunity to reflect on its history. RECOMB has
been held across the world, including 6 different countries spanning 3 continents
(Table 1). Over its 10 year history, RECOMB has published 373 papers and 170
individuals have served on its various committees. While there are many new faces in
RECOMB each year, a significant number of researchers have participated over many
years forming the core of the RECOMB community.

Over the past ten years, members of the RECOMB community were key players in
many of the advances in Computational Biology during this period. These include the
sequencing and assembly of the human genome, advances in sequence comparison,
comparative genomics, genome rearrangements and the HapMap project among others.

10 Years of RECOMB Papers

Over RECOMB’s 10 year history, 731 authors have published a total of 373 papers in
the conference proceedings. These papers span the diversity of research areas in
Computational Biology and present many new computational techniques for the
analysis of biological data.

Table 1. The locations and dates of each year of RECOMB. The program and conference chair
are listed for each conference in the final two columns.

Location Dates Program Chair Conference Chair

1997 Santa Fe, USA January 20-23 Michael Waterman Sorin Istrail
1998 New York, USA March 22-25 Pavel Pevzner Gary Benson
1999 Lyon, France April 11-14 Sorin Istrail Mireille Régnier
2000 Tokyo, Japan April 8-11 Ron Shamir Satoru Miyano
2001 Montreal, Canada April 22-25 Thomas Lengauer David Sankoff
2002 Washington, USA April 18-21 Eugene Myers Sridhar Hannenhalli
2003 Berlin, Germany April 10-13 Webb Miller Martin Vingron
2004 San Diego, USA March 27-31 Dan Gusfield Philip Bourne
2005 Boston, USA May 14-18 Satoru Miyano Jill Mesirov, Simon Kasif
2006 Venice, Italy April 2-5 Alberto Apostolico Concettina Guerra

* reprint from RECOMB 2006, LNBI 3909, pp. 546–562, DOI 10.1007/11732990_45



It should be noted that some authors have variances in how names appear
throughout the years, including differing first names, initials, and middle names. While
every effort was made to normalize the names, any such error could lead to the skewing
of data and there may be small errors in the reporting of individual participation
throughout the paper.

As a preliminary analysis, we consider the number of papers for each researcher
that has appeared throughout the 10 years of RECOMB in the proceedings. In such a
measure, Richard Karp who has authored 12 different papers in RECOMB throughout
the 10 years would be the top participant.

Using the graph in Figure 1, we can identify the most collaborative members of the
RECOMB community (hubs in a protein network). The most collaborative authors are
the individuals that have the most number of co-authors. Ron Shamir is the most
collaborative RECOMB author with 22 co-authors (Table 3).

Similarly, we can identify which groups of authors have had the most success
working together (complexes in protein networks). The team of Eric S. Lander, Bonnie

Fig. 1. Graphical view of interactions between RECOMB authors represented as a “protein
interaction network” (giant component). Vertices of the graph represent authors while edges
connect vertices corresponding to co-authors. Authors whose names are displayed are authors
who have at least 16 coauthors.
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Table 2. RECOMB’s most prolific authors. The table identifies authors who have published at
least 4 papers in RECOMB.

Author Number of Papers Author Number of Papers

Richard Karp 12 Serafim Batzoglou 6
Ron Shamir 11 Dan Gusfield 6
Pavel Pevzner 11 Webb Miller 5
Bonnie Berger 10 Fengzhu Sun 5
Amir Ben-Dor 10 Ralf Bundschuh 5
Nir Friedman 9 Jeremy Buhler 5
Eugene Myers 9 Jens Lagergren 5
Zohar Yakhini 9 Roded Sharan 4
Tao Jiang 9 Benno Schwikowski 4
Benny Chor 8 Nancy Amato 4
Michael Waterman 8 Eran Halperin 4
David Sankoff 8 Zheng Zhang 4
Martin Vingron 7 Martin Farach-Colton 4
Ting Chen 7 Sorin Istrail 4
Steven Skiena 7 Vlado Dancík 4
Eric Lander 7 Golan Yona 4
Hans-Peter Lenhof 6 Dannie Durand 4
John Kececioglu 6 Mathieu Blanchette 4
Vineet Bafna 6 Adam Siepel 4
Bruce Donald 6 Tatsuya Akutsu 4
David Haussler 6 Eran Segal 4
Lior Pachter 6 Thomas Lengauer 4

Table 3. RECOMB contributors with more than 10 co-authors. For each author the number of
individuals with whom they have coauthored papers is listed.

Author Name Num of Coauthors Author Name Num of Coauthors

Ron Shamir 22 Hans-Peter Lenhof 16
Serafim Batzoglou 20 Vlado Dancik 14
Bonnie Berger 20 Steven Skiena 14
Pavel Pevzner 20 Benny Chor 14
Michael Waterman 19 Lydia Kavraki 13
Zohar Yakhini 19 Bruce Donald 13
Tao Jiang 18 Martin Farach-Colton 12
Richard Karp 18 Sorin Istrail 12
Eric Lander 18 Lior Pachter 12
Nir Friedman 18 Eugene Myers 11
Amir Ben-Dor 17 David Sankoff 11
Martin Vingron 17 Vineet Bafna 11
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Berger and Serafim Batzoglou have published 3 papers together and are the only group
of three authors which have published more than two papers. The most prolific pair of
authors is Amir Ben-Dor and Zohar Yakhini who have published 7 papers together.
21 pairs of authors have published at least 3 papers as shown in Table 4.

Relationships between individual authors can be established in other ways as well.
In Figure 2 we analyze the relationships between the most prolific authors (Table 2). By
examining the relationships between individuals as advisors in both PhD and post-
doctoral positions, the connections between the most prolific authors can be seen as a
phylogeny. In addition, the individuals are shown on a timeline indicating the times at
which they first began publishing in the field of Computational Biology.

We manually classified each paper into one of 16 categories: Protein structure
analysis, Molecular Evolution, Sequence Comparison, Motif Finding, Sequence anal-
ysis, Population genetics/SNP/Haplotyping, Physical and Genetic Mapping, Gene
Expression, Systems Biology, RNA Analysis, Genome rearrangements, Computational
Proteomics, Recognition of Genes, Microarray design, DNA computing and Other.
Using these classifications, we can observe which authors have written the most about a
single topic and which authors have written about the most topics. Both Bonnie Berger

Table 4. Coauthor Pairs. All pairs of authors who have written 3 or more papers accepted by
RECOMB throughout the 10 year history of the conference are listed in the table.

Author Names Number of Papers

Amir Ben-Dor Zohar Yakhini 7
Bonnie Berger Eric Lander 4
Zheng Zhang Webb Miller 4
Serafim Batzoglou Bonnie Berger 3
Serafim Batzoglou Eric Lander 3
Amir Ben-Dor Benny Chor 3
Amir Ben-Dor Richard Karp 3
Amir Ben-Dor Benno Schwikowski 3
Benny Chor Tamir Tuller 3
Tao Jiang Richard Karp 3
Richard Karp Ron Shamir 3
David Haussler Adam Siepel 3
Eric Lander Jill Mesirov 3
Fengzhu Sun Ting Chen 3
Ralf Zimmer Thomas Lengauer 3
Bruce Donald Christopher Langmead 3
Bruce Donald Ryan Lilien 3
Nir Friedman Yoseph Barash 3
Michael Hallett Jens Lagergren 3
Guang Song Nancy Amato 3
Eran Segal Daphne Koller 3
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and Benny Chor have contributed the most papers (6) on a single topic, Protein
Structure Analysis and Molecular Evolution respectively. Table 5 shows the top
contributors in a single area.

On the opposite end of the spectrum are the authors who contributed papers on
different topics (Table 6).

Fig. 2. Phylogeny of Authors. In this figure authors are organized across a timeline representing
their earliest publications in the field of Computational Biology. Solid lines indicate PhD
advisors, while dotted lines represent postdoctoral advisors. While we attempted to accurately
link the timeline and RECOMB authors/genealogy, the figure represents only approximate time
estimates and approximate topology of the RECOMB tree.

10 Years of the International Conference on RECOMB XVII



Table 5. Most consistent authors. For each author in the table, a subject is indicated for which
he or she has written at least 3 papers. The number of papers in the 10 years of RECOMB by the
author on the given subject is indicated.

Author Name Author Name Num of papers

Benny Chor Molecular Evolution 6
Bonnie Berger Protein structure analysis 6
David Sankoff Genome rearrangements 5
Ralf Bundschuh Sequence Comparison 5
Bruce Donald Protein structure analysis 5
Nir Friedman Gene Expression 5
Jens Lagergren Molecular Evolution 5
Amir Ben-Dor Gene Expression 4
Richard Karp Physical and Genetic Mapping 4
Webb Miller Sequence Comparison 4
David Haussler Molecular Evolution 4
Zohar Yakhini Gene Expression 4
Lior Pachter Recognition of Genes 4
Dannie Durand Molecular Evolution 4
Eugene Myers Sequence Comparison 3
John Kececioglu Sequence Comparison 3
Tao Jiang Physical and Genetic Mapping 3
Ron Shamir Sequence analysis 3
Michael Waterman Physical and Genetic Mapping 3
Hans-Peter Lenhof Protein structure analysis 3
Zheng Zhang Sequence Comparison 3
Dan Gusfield Population genetics/SNP/Haplotyping 3
Tandy Warnow Molecular Evolution 3
Douglas Brutlag Protein structure analysis 3
Jon Kleinberg Protein structure analysis 3
Franco Preparata Sequence analysis 3
Chris Bailey-Kellogg Protein structure analysis 3
Michael Hallett Molecular Evolution 3
Jonathan King Protein structure analysis 3
Jeremy Buhler Sequence Comparison 3
Kaizhong Zhang RNA Analysis 3
Nancy Amato Protein structure analysis 3
Eran Halperin Population genetics/SNP/Haplotyping 3
Ryan Lilien Protein structure analysis 3
Tamir Tuller Molecular Evolution 3
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For each author we create a topic profile which is a 16 dimensional vector con-
taining the number of papers of each topic that an individual has published in
RECOMB normalized by dividing by the total number of papers published. Intuitively,
an author’s topic profile represents the areas of research in which the author works on.
Not surprisingly, co-authors tend to work on the same topics. The average pairwise
Euclidean distance between any two authors topic profile is 1.19 while the average
distance between co-authors is only 0.61. Similarly, papers written by the same author
tend to be on the same topic. The chances that any two papers are on the same topic are
0.09 while the chance that two papers that share one author is on the same topic is 0.21.

Trends in RECOMB Authors over Time

The number of authors contributing to the conferences has fluctuated with the largest
number in 2006 at 134. 1998 represents the year in which the fewest number of authors
submitted multiple papers, that is, most authors had a single paper that was accepted to
the conference (Table 7).

2006 had the lowest proportion of single-authored papers with only one of the 40
accepted papers showing a single author (Table 8 and Figure 3).

It appears that over the years there is a trend in an increase in the number of authors
per paper with a slight decrease in papers per author. This indicates that while there are
more authors on any one single paper, authors are less likely to have multiple papers in
any given year.

There are multiple ways to gauge the participation of individuals in the conference.
One such measure might be to determine the span of years over which individuals have
papers appearing in the proceedings. This was measured by determining the years of the

Table 6. Most Diverse Authors. These are authors spanning the largest number of subjects.
Authors are given who have papers in RECOMB in more than 4 subjects.

# of Subjects Author Name # of Subjects Author Name

8 Pavel A. Pevzner 5 Fengzhu Sun
7 Steven S. Skiena 5 Ting Chen
7 Richard M. Karp 4 Tatsuya Akutsu
7 Ron Shamir 4 Bonnie Berger
6 Amir Ben-Dor 4 Hans-Peter Lenhof
6 Tao Jiang 4 Benno Schwikowski
6 Martin Vingron 4 Dan Gusfield
6 Eric S. Lander 4 Thomas Lengauer
6 Zohar Yakhini 4 Vineet Bafna
5 Serafim Batzoglou 4 Nir Friedman
5 Eugene W. Myers 4 Eran Segal
5 Michael S. Waterman 4 Roded Sharan
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first followed by the most recent papers of individual authors, and determining the span of
years over which they had participated. Using such a measure, ten authors have papers
published over a span of all ten years of the conference listed in the table. These authors
are Benny Chor, Bonnie Berger, Sampath Kannan, John Kececioglu, Martin Vingron,
David Haussler, Pavel Pevzner, Serafim Batzoglou, Dan Gusfield and Tao Jiang.

However, such a measure may not be completely representative of a researcher’s
participation in the conference. Over the 10 years of RECOMB, no author has con-
tributed to every year of the conference (Table 9).

Table 7. “Authors per paper” and “papers per author” statistics

Year Papers Authors Averages
Author per Paper Paper per Author

1997 42 101 2.8 1.2
1998 38 96 2.6 1.0
1999 35 106 3.3 1.0
2000 36 122 3.8 1.1
2001 35 92 2.8 1.1
2002 35 87 2.7 1.1
2003 35 88 2.8 1.1
2004 38 111 3.1 1.1
2005 39 121 3.4 1.1
2006 40 134 3.4 1.1

Table 8. Author Numbers in Papers. The table shows the percent of papers in each that had the
given number of authors determined by counting the number of papers with the indicated number
of authors and dividing it by the total number of papers in RECOMB in that year.

Year Percent of papers with given number of authors
1 2 3 4 5 6 7 8 9 10 11

1997 19.0 42.9 14.3 9.5 9.5 0.0 0.0 2.4 0.0 0.0 2.4
1998 18.4 31.6 28.9 15.8 5.3 0.0 0.0 0.0 0.0 0.0 0.0
1999 8.6 37.1 22.9 8.6 11.4 5.7 5.7 0.0 0.0 0.0 0.0
2000 2.8 30.6 19.4 22.2 13.9 5.6 0.0 0.0 0.0 0.0 5.6
2001 17.1 31.4 28.6 8.6 8.6 2.9 2.9 0.0 0.0 0.0 0.0
2002 14.3 34.3 25.7 17.1 8.6 0.0 0.0 0.0 0.0 0.0 0.0
2003 8.6 42.9 25.7 5.7 17.1 0.0 0.0 0.0 0.0 0.0 0.0
2004 7.9 39.5 21.1 13.2 10.5 2.6 2.6 2.6 0.0 0.0 0.0
2005 2.6 28.2 28.2 25.6 7.7 2.6 2.6 2.6 0.0 0.0 0.0
2006 2.5 30.0 32.5 12.5 12.5 5.0 2.5 0.0 2.5 0.0 0.0
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Fig. 3. Distribution of papers with given number of authors over the 10 years of RECOMB

Table 9. Authors with RECOMB papers in most number of years

Author Name Num of Years Author Name Num of Years

Bonnie Berger 9 Tao Jiang 5
Pavel Pevzner 9 Benno Schwikowski 4
Ron Shamir 8 Nancy Amato 4
Amir Ben-Dor 8 Eran Halperin 4
Richard Karp 8 Vineet Bafna 4
Benny Chor 7 Sorin Istrail 4
Zohar Yakhini 7 Webb Miller 4
David Sankoff 7 Vlado Dancík 4
Eugene Myers 6 David Haussler 4
Bruce Donald 6 Mathieu Blanchette 4
Lior Pachter 6 Fengzhu Sun 4
Hans-Peter Lenhof 5 Adam Siepel 4
John Kececioglu 5 Serafim Batzoglou 4
Nir Friedman 5 Dan Gusfield 4
Martin Vingron 5 Jens Lagergren 4
Ting Chen 5 Steven Skiena 4
Ralf Bundschuh 5 Eric Lander 4
Jeremy Buhler 5 Thomas Lengauer 4
Michael Waterman 5
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Trends in RECOMB Paper Topics

As bioinformatics has grown and changed over the 10 years since RECOMB’s
inception, so have the subjects which comprise the papers accepted at each conference
(Table 10). Some subjects, such as Protein Structure Analysis has remained a
stronghold in the papers throughout the 10 years of RECOMB. Not only is it the most
represented subject over the course of time, at 72 total papers in this field, with a steady
portion of the total papers in each year in this field, it entails nearly 30 percent of the
accepted papers in 2006.

While protein structure remained a consistent part of the RECOMB content, other
subjects have fluctuated, disappeared, or gained strength over time. Sequence com-
parison, which composed well over 25 percent of all papers in the first year of
RECOMB, fell to 10 percent of the total content of the 2006 conference. Similarly,
Physical and Genetic Mapping which exceeded protein structure analysis in 1997 has
completely disappeared in 2006. RNA analysis and Systems Biology have also been
growing in popularity since the first papers were accepted in the subjects in 1998 and
1999 respectively.

Computational Proteomics and Population Genetics each represented five percent
of the total number of accepted papers. While neither was very abundant in the first

Table 10. Distribution of topics of RECOMB papers. “Other” category includes more specific
subjects such as drug design, DNA denaturization, etc.

Subject Total 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

Protein structure
analysis

72 16.7 18.4 25.7 27.8 17.1 17.1 11.4 15.8 12.8 30.0

Molecular
Evolution

52 4.8 15.8 14.3 13.9 11.4 8.6 11.4 13.2 20.5 25.0

Sequence
Comparison

40 28.6 21.1 2.9 8.3 5.7 8.6 2.9 7.9 7.7 10.0

Motif Finding 32 0.0 15.8 5.7 8.3 14.3 8.6 11.4 15.8 7.7 0.0

Sequence analysis 22 0.0 0.0 5.7 5.6 22.9 11.4 8.6 5.3 0.0 2.5

Population
genetics/ SNP/
Haplotyping

21 2.4 2.6 0.0 0.0 0.0 11.4 20.0 7.9 7.7 5.0

Physical and
Genetic
Mapping

20 23.8 7.9 8.6 5.6 0.0 0.0 2.9 0.0 2.6 0.0

Gene Expression 20 0.0 0.0 8.6 11.1 8.6 17.1 5.7 2.6 2.6 0.0

Systems Biology 20 0.0 0.0 5.7 2.8 2.9 2.9 11.4 5.3 12.8 10.0

RNA Analysis 18 0.0 2.6 2.9 2.8 2.9 5.7 2.9 10.5 7.7 10.0

Genome
rearrangements

15 9.5 5.3 2.9 2.8 0.0 2.9 5.7 2.6 5.1 2.5

Computational
Proteomics

14 0.0 0.0 2.9 2.8 8.6 0.0 2.9 5.3 10.3 5.0

Recognition of
Genes

10 7.1 0.0 2.9 2.8 5.7 0.0 0.0 5.3 2.6 0.0

Other 10 0.0 10.5 11.4 2.8 0.0 0.0 0.0 2.6 0.0 0.0

Microarray design 5 2.4 0.0 0.0 2.8 0.0 5.7 2.9 0.0 0.0 0.0

DNA computing 2 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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four years of the conference, they seem to be gaining momentum over time. Genome
rearrangement has maintained a consistent presence throughout the 10 years of
RECOMB. Most notably, however, is the area of molecular evolution which has
evolved from a small presence of 4.8 percent of all accepted papers in 1997 to 25
percent of the total accepted papers in 2006.

RECOMB has grown more competitive over time, with an increase in submissions
to over 200 in the last three years (Table 11). The number of submissions in 2006 has
nearly doubled over the first year of the conference.

Table 11. Paper Acceptance Rates. The table gives the paper acceptance rates based on the
number of papers submitted and accepted over the 10 years of RECOMB.

Year Number Submitted Number Accepted Rate

1997 117 43 37%
1998 123 38 31%
1999 147 35 24%
2000 110 36 33%
2001 128 35 27%
2002 118 35 30%
2003 175 35 20%
2004 215 38 18%
2005 217 38 18%
2006 215 40 19%

Table 12. Proportion of USA/Non-USA RECOMB papers

Year USA Non-USA

1997 67% 33%
1998 66% 34%
1999 66% 34%
2000 54% 46%
2001 69% 31%
2002 86% 14%
2003 71% 29%
2004 74% 26%
2005 54% 46%
2006 65% 35%
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Origins of RECOMB Papers

The first authors of the papers have spanned the globe, representing 25 countries.
While US first authors regularly contributed over 60 percent of the papers accepted to
the conference, in 2000 and 2005, held in Tokyo and Boston respectively, the split
neared 50 percent (Table 12). Most strikingly, over 85 percent of the papers the 2002
conference held in Washington, DC had first authors from US institutions.

Israel, Germany and Canada had first authors contributing papers to nearly every
conference (Figure 4). Israel became the second most represented country during 5
years, including 2003 when the conference was held in Germany where 80 percent of
non-US authors were from Israel. Canada, Germany and Italy represented the
runner-up position during 2 years each. Italy contributed the largest proportion of first
authored papers during 2002 when 40% of non-USA first authors were from Italian
institutions, which is the second largest percentage in any year.

Throughout RECOMB’s history, over 90% of the first authors were involved in the
public sector with the exception of a brief interruption in 2001 when just over 11% of
first authors were from Industry. In 2002, the conference was hosted by Celera, during
which nearly 9% of first authors were involved in the private sector, the second largest
amount during the conference’s history. However, the contributions from industry have
steadily declined since 2002.

RECOMB’s Most Cited Papers

Several of the papers published in RECOMB have had a significant influence on
research in Computational Biology and have been widely cited. Table 13 contains a list
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Fig. 4. Distribution of countries of origin of non-US first authors1

1 Category Other includes Chile, Belgium, Australia, Spain, Netherlands, Finland, Switzerland, New
Zealand, Austria, and Taiwan.
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of the most cited RECOMB papers as of January 2006 according to Google Scholar.
A difficulty in obtaining this list is that many of the RECOMB papers are later pub-
lished in journals and the citations are split between the original RECOMB version and
the journal version which may lead to some inaccuracies in calculating the number of
citations.

Table 13. RECOMB’s most cited papers. The number of citations given in the final column is
based on the journal in which they were published, and are accurate as of January 1, 2006 when
the citations were last confirmed.

Paper Title RECOMB
Year

Journal #
Citations

Nir Friedman, Michal Linial, Iftach
Nachman, Dana Pe’er. “Using Bayesian
networks to analyze expression data”

2000 J Comp Biol
2000:7

506

Manolis Kamvysselis, Nick Patterson, Bruce
Birren, Bonnie Berger, Eric S. Lander.
“Whole-genome comparative annotation
and regulatory motif discovery in multiple
yeast species”

2003 Nature 2003:
423

385

Amir Ben-Dor, Zohar Yakhini. “Clustering
gene expression patterns”

1999 J Comp Biol
1999:6

355

Harmen J. Bussemaker, Hao Li, Eric D.
Siggia. “Regulatory element detection
using correlation with expression (abstract
only)”

2001 Nat Genet
2001:27

265

Amir Ben-Dor, Laurakay Bruhn, Nir
Friedman, Iftach Nachman, Michèl
Schummer, Zohar Yakhini. “Tissue
classification with gene expression
profiles”

2000 J Comp Biol
2000:7

245

Serafim Batzoglou, Lior Pachter,
Jill P. Mesirov, Bonnie Berger, Eric S.
Lander. “Human and mouse gene
structure: comparative analysis and
application to exon prediction”

2000 Genome Res
2000:10

190

Isidore Rigoutsos, Aris Floratos. “Motif
discovery without alignment or
enumeration”

1998 Bioinformatics
2000:14

150

Jeremy Buhler, Martin Tompa. “Finding
motifs using random projections”

2001 J Comp Biol
2002:9

138

Martin G. Reese, Frank H. Eeckman, David
Kulp, David Haussler. “Improved splice
site detection in Genie”

1997 J Comp Biol
1997:4

131

(Continued)
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RECOMB Keynote Speaker Series

The conference has been honored to have many excellent speakers throughout the 10
years of the conference. Every year between 7 and 9 distinguished individuals were
invited to deliver lectures at the conference in a variety of fields (Table 14).

RECOMB includes a distinguished lecture series which consists of the Stanislaw
Ulam Memorial Computational Biology lecture, the Distinguished Biology lecture, and
New Technologies lectures delivered by a different set of individuals every year
(Table 15) with the exception of 1999 and 2005. In 199 There was no Biology lecture,
while in 2005 no distinguished lectures were delivered on new technologies. 2004 in-
cluded an additional address in which Richard Karp delivered the lecture awarded the
Fred Howes Distinguished Service Award.

Table 13. (Continued)

Paper Title RECOMB
Year

Journal #
Citations

Haim Kaplan, Ron Shamir, Robert E.
Tarjan. “Faster and simpler algorithm for
sorting signed permutations by reversals”

1997 SIAM J
Comput
1999:29

127

Alberto Caprara. “Sorting by reversals is
difficult”

1997 RECOMB
1997

111

Vlado Dancík, Theresa A. Addona, Karl R.
Clauser, James E. Vath, Pavel A. Pevzner.
“De Novo Peptide Sequencing via
Tandem Mass Spectrometry”

1999 J Comp Biol
1999:6

109

Pierluigi Crescenzi, Deborah Goldman,
Christos Papadimitriou, Antonio
Piccolboni, Mihalis Yannakakis. “On the
complexity of protein folding”

1998 J Comp Biol
1998:5

104

Bonnie Berger, Tom Leighton. “Protein
folding in the hydrophobic-hydrophilic
(HP) is NP-complete”

1998 J Comp Biol
1998:5

89

Donna K. Slonim, Pablo Tamayo,
Jill P. Mesirov, Todd R. Golub, Eric S.
Lander. “Class prediction and discovery
using gene expression data”

2000 RECOMB
2000

87

Mathieu Blanchette. “Algorithms for
phylogenetic footprinting”

2001 J Comp Biol
2002:9

84

David Sankoff, Mathieu Blanchette.
“Multiple genome rearrangements”

1998 J Comp Biol
1998:5

84

Donna K. Slonim, Leonid Kruglyak, Lincoln
Stein, Eric S. Lander. “Building human
genome maps with radiation hybrids”

1997 J Comp Biol
1997:4

81
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Table 14. Invited speakers over the 10 years of RECOMB

Year Speaker names

1997 David Botstein, Sam Karlin, Martin Karplus, Eric Lander, Robert Lipshutz, Jonathan
King, Rich Roberts, Temple Smith, Terry Speed

1998 Ruben Abagyan, Charles Cantor, David Cox, Ron Davis, Klaus Guberna tor, Joshua
Lederberg, Michael Levitt, David Schwartz, John Yates

1999 Peer Bork, Cyrus Chothia, Gene Myers, John Moult, Pitor Slonimsky, Ed Southern,
Peter Willett, John Wooley

2000 Eric Davidson, Walter Gilbert, Takashi Gojobori, Leroy Hood, Minoru Kanehisa,
Hans Lehrach, Yvonne Martin, Yusuke Nakamura, Svante Paabo

2001 Mark Adams, Roger Brent, George Church, Franz Lang, Klaus Lindpaintner, Yvonne
Martin, Mark Ptashne, Philip Sharp, Matthias Wilm

2002 Ruben Abagyan, Ali Brivanlou, Evan Eichler, Harold Garner, David Ho, Gerry
Rubin, Craig Venter, Marc Vidal

2003 Edward Trifonov, Christiane Nüsslein-Volhard, Árpád Furka, Andrew Clark, David
Haussler, Arthur Lesk, Dieter Oesterhelt, Terry Speed, Kari Stefansson

2004 Carlos Bustamante, Russell Doolittle, Andrew Fire, Richard Karp, William
McGinnis, Deborah Nickerson, Martin Nowak, Christine Orengo, Elizabeth
Winzeler

2005 David Altshuler, Wolfgang Baumeister, James Collins, Charles DeLisi, Jonathan
King, Eric Lander, Michael Levine, Susan Lindquist

2006 Anne-Claude Gavin, David Haussler, Ajay Royyuru, David Sankoff, Michael
Waterman, Carl Zimmer, Roman Zubarev

Table 15. Distinguished lecture series in Computational Biology, Biology, and New
Technologies

Year Stanislaw Ulam Memorial
Computational Biology Lecture

Distinguished
Biology Lecture

Distinguished New
Technologies Lecture

1997 Eric Lander Rich Roberts Robert Lipshutz
1998 Joshua Lederberg Ron Davis David Cox
1999 Pitor Slonimsky Ed Southern
2000 Minoru Kanehisa Walter Gilbert Leroy Hood
2001 George Church Philip Sharp Mark Adams
2002 Craig Venter David Ho Harold Garner
2003 Edward Trifonov Christiane

Nüsslein-Volhard
Árpád Furka

2004 Russell Doolittle Andrew Fire Carlos Bustamante
2005 Charles DeLisi Jonathan King
2006 Michael Waterman Anne-Claude

Gavin
Roman Zubarev
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The RECOMB Organizers

Since its inception in 1997, many scientists have participated in the conference in many
fashions. While the committees have enjoyed the membership of over 170 different
individuals between 1997 and 2006, many have participated over multiple years. The
Steering Committee had consistent presence of 5 scientists between 1997 and 2005,
including Michael Waterman, Pavel Pevzner, Ron Shamir, Sorin Istrail and Thomas
Lengauer. The steering committee included 6 members throughout the first 8 years of
the conference, with Richard Karp rounding out the group through 2003, and passing
the position on to Terry Speed in 2004. In 2005 Michal Linial joined the Steering
Committee to increase its size to 7.

Table 16. RECOMB Committee Membership. Each year shows the number of members in each
committee.

Year Number of Members
Steering Organizing Program

1997 6 5 23
1998 6 4 21
1999 6 6 29
2000 6 8 27
2001 6 9 23
2002 6 11 28
2003 6 5 31
2004 6 9 42
2005 7 17 43
2006 7 9 38

Table 17. RECOMB Program Committee Membership

Name Years

Michael Waterman 10
Pavel Pevzner 10
Ron Shamir 10
Thomas Lengauer 10
Sorin Istrail 10
Martin Vingron 9
Richard Karp 9
Terry Speed 7
David Sankoff 6
Satoru Miyano 6
Gene Myers 5
Tandy Warnow 5
Dan Gusfield 5
Gordon Crippen 5
Sridhar Hannenhalli 5
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The organizing committee has had a far more variable composition. Between 1997
and 2006, a total of 81 individuals have comprised the committee. The program
committee has grown in size throughout the years of the conference (Table 16). While
the size of the organizing and program committees do not correlate perfectly, the trend
toward an increasing number of members per year has been exhibited in both.
Numerous individuals have served on program committees in multiple years
(Table 17).

RECOMB Funding

RECOMB has received support from a variety of sources. The US Department of
Energy, US National Science Foundation and the SLOAN Foundation have been 3
major sponsors over the 10 years. Many other sponsors have significantly contributed
to the conference, including IBM, International Society for Computational Biology
(ISCB), SmithKline Beecham, Apple, Applied Biosystems, Celera, Compaq, Com-
pugen, CRC Press, Glaxo-SmithKline, Hewlett-Packard, The MIT Press and the Broad
Institute, Accelerys. Affymetrix, Agilent Technologies, Aventis, Berlin Center for
Genome Based Bioinfornatics-BCB, Biogen, Boston University’s Center for Advanced
Genomic Technology, Centre de recherche en calcul applique (CERCA), CNRS,
Conseil Regional Rhone-Alpes, Eurogentec-Seraing, Geneart GmbH, Genome Thera-
peutics, IMGT, INRA, LION Biosceince, LIPHA, Mairie de Lyon, Mathworks, Mil-
lennium Pharmaceuticals, Max Planck Institute for Molecular Genetics, Microsoft
Research, NetApp, Novartis, Paracel, Partek Incorporated, Pfizer, Rosetta Biosoftware,
Schering AG, Sun Microsystems, Technologiestiftung Berlin, The European Com-
mission, High-level Scientific Conferences, The German Federal Ministry for Educa-
tion and Research, The San Diego Supercomputer Center, The University of
California-San Diego, Timelogic, Wyeth, Universitat degli Studi di Padova, Italy,
DEI and AICA.

Conclusion

The approach of the 10th RECOMB conference held in Venice Italy provides us an
opportunity to reflect on RECOMB’s history. The landscape of computational biology
has changed drastically since the first RECOMB Conference was held in Santa Fe, New
Mexico. Today’s conference contains papers covering research topics that did not exist
10 years ago. Over this period, many individuals have made significant research
contributions through published papers. Many of the original founders of the
RECOMB conference are still active, and many new faces are becoming active in the
community each year.
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Abstract. The year 2016 marks the 20th anniversary of the RECOMB
(REsearch in Computational Molecular Biology) conference. On this
occasion, we collect some facts and statistics about the conference’s
papers, authors, speakers, reviewers, and organizers. These data provide
a succinct summary of the RECOMB conference over the last decade
and can serve as a starting point for introspection and discussion about
the future of the conference.

1 Introduction

Twenty years has passed since inception of the RECOMB (REsearch in Com-
putational Molecular Biology) conference and during these years RECOMB has
established itself as the flagship conference for computational biology. The twenty
year anniversary of RECOMB has given us a chance to review the accomplish-
ments of the community and reflect on strengths and weaknesses of the confer-
ence. Since a review was written in 2006 summarizing the first 10 years [1], this
review focuses on the most recent 10 years of the conference. In the past ten
years RECOMB has been held all over the world covering three continents and
seven different countries as shown in Table 1. A total of 355 papers have been
accepted and presented at the RECOMB conference covering diverse topics in
computational biology. The highest number of papers accepted was for year 2011
with 43 accepted papers while the lowest number of papers accepted was for year
2012 with only 31 papers accepted.

These papers have advanced the field of computational biology, and intro-
duced new computational methods. Some of these methods have been widely
utilized for the analysis of high throughput genomic data. Some of the methods
have contributed to high profile consortia projects including the ENCyclopedia
of DNA Elements (ENCODE) project, The Cancer Genome Atlas (TCGA), and
the 1000 Genomes project.
c© Springer International Publishing Switzerland 2016
M. Singh (Ed.): RECOMB 2016, LNBI 9649, pp. 3–16, 2016.
DOI: 10.1007/978-3-319-31957-5 1
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Table 1. RECOMB conference location and organizers in the past ten years

Year Location Dates Program Chair Conference Chair # papers

2007 San Francisco, USA April 21 – April 25 Terry Speed Sandrine Dudoit 37

2008 Singapore March 30 – April 2 Martin Vingron Limsoon Wong 34

2009 Tucson, USA May 18 – May 21 Serafim Batzglou John Kececioglu 36

2010 Lisbon, Portugal August 12 – August 15 Bonnie Berger Arlindo Oliveira 36

2011 Vancouver, Canada March 28 – March 28 Vineet Bafna S. Cenk Sahinalp 43

2012 Barcelona, Spain April 21 – April 21 Benny Chor Rodric Guigo 31

2013 Beijing, China April 7 Fengzhu Sun Xuegong Zhang 32

2014 Pittsburgh, USA April 2 – April 5 Roded Sharan Panayiotis Benos 35

Russell Schwartz

2015 Warsaw, Poland April 12 – April 15 Teresa Przytycka Jerzy Tiuryn 36

Bartek Wilczyński

2016 Los Angeles, USA April 17 – April 21 Mona Singh Eleazar Eskin 35

2 The Authors and Presenters: The People that Have
Made RECOMB a Success

2.1 The Authors

During these past ten years RECOMB has benefited from the contribution of
many junior researchers in addition to well-established scientists. The most pro-
lific authors — those with the largest number of RECOMB papers in the last 10
years — are shown in the Table 2. There were only four authors who published
more than 1 paper on average over these 10 RECOMBs: Drs. Eleazar Eskin,
Pavel Pevzner, Bonnie Berger and Benjamin J. Raphael from UCLA, UCSD,
MIT and Brown University respectively. Some of the most prolific authors in
the first ten years of RECOMB conference (from 1997 to 2006) have continued
to publish many influential papers in RECOMB. However, there are many junior
researchers that have been added to the list of prolific authors. This is a great
testimony to the inclusiveness of the RECOMB conference.1

A co-authorship graph (Fig. 1) gives a sense of the collaborative nature of
the RECOMB community. In this graph, nodes represent authors and edges are
drawn between authors who have co-authored at least four RECOMB paper
together in the last 10 years. The size of the node corresponds to the number
of papers published. The width of the edges are proportional to the number of
papers the two researchers co-authored, and the color of the node indicates the
degree of the author: redder indicates a larger number of co-authors.
1 Several authors have used variants of their names over the years. For all the analy-

ses described in this paper, an effort was made to manually resolve slight name
variations. However, it is possible that some errors remain in the analysis.
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Table 2. Authors with the most papers in RECOMB over the last 10 years.

# papers Author # papers Author

15 Eleazar Eskin 5 Richard M. Karp

13 Pavel A. Pevzner 5 Pei Zhou

12 Bonnie Berger 5 Nuno Bandeira

11 Benjamin J. Raphael 5 Nebojsa Jojic

9 Vineet Bafna 5 Bernard M. E. Moret

9 Eran Halperin 5 Alexander J. Hartemink

9 Bruce Randall Donald 4 Yu Lin

8 Fabio Vandin 4 William Stafford Noble

8 Cenk Sahinalp 4 Vladimir Jojic

7 Serafim Batzoglou 4 Sebastian Bcker

7 Roded Sharan 4 Ron Shamir

7 Jinbo Xu 4 Paul Medvedev

7 Chris Bailey-Kellogg 4 Noah Zaitlen

6 Sebastian Will 4 Ming Li

6 Rolf Backofen 4 Mathias Mhl

6 Niko Beerenwinkel 4 Louxin Zhang

6 Jianyang Zeng 4 Leen Stougie

6 Jian Peng 4 Jérôme Waldispühl

6 Eric P. Xing 4 Jian Ma

6 Carl Kingsford 4 Glenn Tesler

5 Ziv Bar-Joseph 4 Eli Upfal

5 Yun S. Song 4 Deniz Yörükoglu

5 Wing-Kin Sung 4 Christopher James Langmead

5 Teresa M. Przytycka 4 Buhm Han

5 Sivan Bercovici

It is not surprising that the depicted graph consists of one big component
and few smaller components. The big component includes a large portion of
the RECOMB authors which are centered around few hubs. There are clear
clusters inside this big component and it seems each of these clusters are mostly
based on collaborations inside each institute and are centered around prolific
authors. For instance you can see a clear clustering of authors from Carnegie
Mellon University as an extended segment in this component. A similar pattern
is observed for researchers from UCSD. In addition, the graphs shows frequent
collaborations between researchers from UCLA and Tel Aviv University.

The pairs of authors who have the largest number of shared RECOMB pub-
lications are shown in Table 3. This table illustrates the productive collabora-
tion between the members of the trios {Fabio Vandin, Benjamin J. Raphael,
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Eli Upfal} working on systems biology/networks in cancer and {Rolf Backofen,
Sebastian Will, Mathias Möhl}, with publications on RNA structure.

Table 3. Most frequent co-authorship pairs.

Author Author # papers

Benjamin J. Raphael Fabio Vandin 6

Rolf Backofen Sebastian Will 5

Bruce Randall Donald Pei Zhou 5

Mathias Möhl Sebastian Will 4

Mathias Möhl Rolf Backofen 4

Buhm Han Eleazar Eskin 4

Eli Upfal Fabio Vandin 4

Benjamin J. Raphael Eli Upfal 4

2.2 Keynote Speakers

The RECOMB conference has benefited from a line of high-profile keynote speak-
ers. These include Nobel laureates Dr. Elizabeth H. Blackburn, Dr. Ada E.
Yonath and Dr. Michael Levitt, in addition to Curt Stern Award recipients
Dr. Patrick O. Brown, Dr. Leonid Kruglyak, and Dr. Evan E. Eichler. A list of
keynote speakers is given in Table 4.

3 The Papers: It’s All About the Science

Word clouds of the titles and abstracts (see Figs. 2 and 3) of the last 10 years
of RECOMB papers help to illustrate the main topics of the conference. The
expected words are revealed as frequent in these word clouds: “Sequence”, “Pro-
tein”, “Model”, “Data”, “Method”, “Algorithm”, “Gene”, and so on — neatly
summarizing the focus of the conference on method and algorithm development,
recently particularly in genome and protein analysis.

We tracked how the top-twenty biologically meaningful words that appeared
in the abstracts changed over time. Figure 4 shows the number of abstracts
that contain these terms for each year of the last 10. The top five most common
words used were “genome”, “protein”, “gene”, “structure” and “complex”, again
showing the consistency of the focus of the conference at least at this broad level.
We did not observe any major trends in the change in the relative frequency of
the terms over the late 10 years.
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Table 4. Keynote speakers

Year Speakers

2007 Elizabeth H. Blackburn, Jennifer Marshall Graves, Yishi Jin, Jay D.
Keasling, Harry F. Noller, Patrick O. Brown, Abby Dernburg, Aviv Regev

2008 Edison Liu, Sang Yup Lee, Andrei Lupas, Howard Cedar, Vivian Cheung,
Temple F. Smith, Suzanne Cory

2009 Carlos D. Bustamante, Rade Drmanac, Mark Gerstein, Eran Halperin,
Michael Hammer, Joanna Mountain, Stephen Quake, Mostafa Ronaghi,
Pardis Sabeti, Michael Snyder

2010 Cecilia Arraiano, David Bartel, Isaac Kohane, Phil Kapranov, Norbert
Perrimon Mona Singh

2011 Evan Eichler, Daphne Koller, Marco Marra, Karen Nelson, Elaine Mardis,
Joseph Nadeau

2012 Richard Durbin, Eileen Furlong, Thomas Gingeras, Alfonso Valencia, Ada E.
Yonath

2013 Scott Fraser, Takashi Gojobori, Deborah Nickerson, Nadia A. Rosenthal,
Chung-I Wu, Sunny Xie

2014 Ian T. Baldwin, Atul Butte, James J. Collins, Trey Ideker, Tom Mitchell,
Sarah A. Tishkoff

2015 M. Madan Babu, Bonnie Berger, M. Magda Konarska, Michael Levitt, Bas
van Steensel, Wacaw Szybalski

2016 Karen Adelman, Phil Bradley, Peter S. Kim, Rob Knight, Leonid Kruglyak,
Teresa Przytycka

Fig. 2. Word clouds showing the frequency of words in titles of accepted RECOMB
papers since 2007.

3.1 Citations

Using Google Scholar, we compiled the number of citations of all the papers
published in RECOMB in the past ten years. If a paper was published in both
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Fig. 3. Word clouds showing the frequency of words in abstracts of accepted RECOMB
papers since 2007.
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Fig. 5. Histogram of the number of years each PC member has served.

RECOMB and in a journal (e.g., JCB, Genome Research, etc.) we included the
citations count for both maximum and the sum in the table.2

The papers with over seventy citations are shown in Table 5. Overall, 21
papers have a citation count over 70, indicating that RECOMB has published a
number of influential and widely-read papers.

In addition, we calculated the average number of citations per year for
each paper and the list of papers with more than 10 citation per year is
shown in Table 6. It is interesting to note that the papers with high cita-
tion span many topics in computational biology. However, there is a clear
bias for genomics/assembly papers and systems biology/networks papers to
be among the top cited papers. We assigned the papers with over high cita-
tions into five groups of Genomics, Systems Biology, RNA/Protein structure,
Phylogeny/Evolution and Expression/Transcription. Interestingly out of the 21
papers 16 (76 %) of them fall into two category of Genomics or Systems biology.
This might be an indication that the number of researchers working in these
fields is generally larger than the number of researchers working for instance in
evolution or structure (RNA and protein).

4 The Organizers and Reviewers: People that Make It
All Happen

The organization of the conference is a significant undertaking each year. It relies
on the volunteered time of many individuals, most notably those on the program
committee who provide careful reviews to inform the selection of the paper.
2 If a paper’s title changed significantly between the RECOMB version and the journal

version, it is quite possible that additional citations were missed.
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Table 5. Papers with at least 70 citations.

Paper authors and title RECOMB Journal Num. citations (sum) Num.

year (max) citations

Rohit Singh, Jinbo Xu, Bonnie Berger. Pairwise global
alignment of protein interaction networks by matching
neighborhood topology

2007 PNAS 299 492

Nicholas D. Pattengale, Masoud Alipour, Olaf R. P.
Bininda-Emonds, Bernard M. E. Moret, Alexandros
Stamatakis. How many Bootstrap replicates are
necessary?

2009 J Comput
Biol

211 371

Fereydoun Hormozdiari, Can Alkan, Evan E. Eichler,
Sleyman Cenk Sahinalp. Combinatorial algorithms for
structural variation detection in high throughput
sequenced genomes

2009 Genome
Res

224 224

Fabio Vandin, Eli Upfal, Benjamin J. Raphael. De novo
discovery of mutated driver pathways in cancer

2011 Genome
Res

132 132

Jason Flannick, Antal F. Novak, Chuong B. Do, Balaji S.
Srinivasan, Serafim Batzoglou. Automatic parameter
learning for multiple network alignment

2008 J Comput
Biol

77 130

Fabio Vandin, Eli Upfal, Benjamin J. Raphael. Algorithms
for detecting significantly mutated pathways in cancer

2010 J Comput
Biol

115 128

Joshua A. Grochow, Manolis Kellis. Network motif
discovery using subgraph enumeration and
symmetry-breaking

2007 121 121

Maxim Kalaev, Vineet Bafna, Roded Sharan. Fast and
accurate alignment of multiple protein networks

2008 J Comput
Biol

61 118

Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin,
Vineet Bafna, Roded Sharan. QNet: a tool for querying
protein interaction networks

2007 J Comput
Biol

58 115

Song Gao, Niranjan Nagarajan, Wing-Kin Sung. Opera:
reconstructing optimal genomic scaffolds with
high-throughput paired-end sequences

2011 J Comput
Biol

105 105

Osvaldo Zagordi, Lukas Geyrhofer, Volker Roth, Niko
Beerenwinkel. Deep sequencing of a genetically
heterogeneous sample: local haplotype reconstruction
and read error correction

2009 J Comput
Biol

85 95

Sourav Chatterji, Ichitaro Yamazaki, Zhaojun Bai,
Jonathan A. Eisen. CompostBin: a DNA
composition-based algorithm for binning environmental
shotgun reads

2008 92 92

Yu Peng, Henry C.M. Leung, SM Yiu, Francis Chin. IDBA -
a practical iterative de Bruijn graph de novo assembler

2010 92 92

Wei Li, Jianxing Feng, Tao Jiang. IsoLasso: a LASSO
regression approach to RNA-Seq based transcriptome
assembly

2011 J Comput
Biol

87 87

Jonathan Laserson, Vladimir Jojic, Daphne Koller. Genovo:
de novo assembly for metagenomics

2010 J Comput
Biol

70 83

Tali Raveh-Sadka, Michal Levo, Eran Segal. Incorporating
nucleosomes into thermodynamic models of
transcription regulation

2009 Genome
Res

82 82

Christos Kozanitis, Chris Saunders, Semyon Kruglyak,
Vineet Bafna, George Varghese. Compressing genomic
sequence fragments using SlimGene

2010 J Comput
Biol

58 80

Chen Yanover, Ora Schueler-Furman, Yair Weiss.
Minimizing and learning energy functions for side-chain
prediction

2007 J Comput
Biol

48 80

Yu-Wei Wu, Yuzhen Ye. A novel abundance-based algorithm
for binning metagenomic sequences using l-tuples

2010 J Comput
Biol

53 78

Sharon Bruckner, Falk Hffner, Richard M. Karp, Ron
Shamir, Roded Sharan. Topology-free querying of
protein interaction networks

2009 J Comput
Biol

78 105

Eilon Sharon, Eran Segal. A feature-based approach to
modeling protein-DNA interactions

2007 PLoS
Comput
Biol

73 73
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Table 6. Papers with average number of citations per year ≥10.

Paper authors and title RECOMB
year

Journal Avg.
cita-
tions
(max)

Avg.
cita-
tions
(sum)

Rohit Singh, Jinbo Xu, Bonnie Berger. Pairwise global alignment of
protein interaction networks by matching neighborhood topology

2007 PNAS 33.2 54.6

Nicholas D. Pattengale, Masoud Alipour, Olaf R. P. Bininda-Emonds,
Bernard M. E. Moret, Alexandros Stamatakis. How many Bootstrap
replicates are necessary?

2009 J Comput Biol 30.1 53.0

Fereydoun Hormozdiari, Can Alkan, Evan E. Eichler, Sleyman Cenk
Sahinalp. Combinatorial algorithms for structural variation
detection in high throughput sequenced genomes

2009 Genome Res 32.0 32.0

Fabio Vandin, Eli Upfal, Benjamin J. Raphael. De novo discovery of
mutated driver pathways in cancer

2011 Genome Res 26.4 26.4

Fabio Vandin, Eli Upfal, Benjamin J. Raphael. Algorithms for detecting
significantly mutated pathways in cancer

2010 J Comput Biol 19.2 21.3

Song Gao, Niranjan Nagarajan, Wing-Kin Sung. Opera: reconstructing
optimal genomic scaffolds with high-throughput paired-end
sequences

2011 J Comput Biol 21 21

Layla Oesper, Ahmad Mahmoody, Benjamin J. Raphael. Inferring
intra-tumor heterogeneity from high-throughput DNA sequencing
data

2013 Genome Biol 19 20.6

Maxim Kalaev, Vineet Bafna, Roded Sharan. Fast and accurate
alignment of multiple protein networks

2008 J Comput Biol 7.6 19.6

Wei Li, Jianxing Feng, Tao Jiang. IsoLasso: a LASSO regression
approach to RNA-Seq based transcriptome assembly

2011 J Comput Biol 17.4 17.4

Jason Flannick, Antal F. Novak, Chuong B. Do, Balaji S. Srinivasan,
Serafim Batzoglou. Automatic parameter learning for multiple
network alignment

2008 J Comput Biol 9.6 16.2

Melissa Gymrek, David Golan, Saharon Rosset, Yaniv Erlich. lobSTR: a
short tandem repeat profiler for personal genomes

2012 Genome Res 16.3 16.3

Yu Peng, Henry C.M. Leung, SM Yiu, Francis Chin. IDBA - a practical
iterative de Bruijn Graph de novo assembler

2010 15.3 15.3

Jonathan Laserson, Vladimir Jojic, Daphne Koller. Genovo: de novo
assembly for metagenomics

2010 J Comput Biol 11.6 13.8

Osvaldo Zagordi, Lukas Geyrhofer, Volker Roth, Niko Beerenwinkel.
Deep sequencing of a genetically heterogeneous sample: local
haplotype reconstruction and read error correction

2009 J Comput Biol 12.1 13.5

Joshua A. Grochow, Manolis Kellis. Network motif discovery using
subgraph enumeration and symmetry-breaking

2007 13.4 13.4

Christos Kozanitis, Chris Saunders, Semyon Kruglyak, Vineet Bafna,
George Varghese. Compressing genomic sequence fragments using
SlimGene

2010 J Comput Biol 9.6 13.3

Leonid Chindelevitch, Daniel Ziemek, Ahmed Enayetallah, Ranjit
Randhawa, Ben Sidders, Christoph Brockel, Enoch S. Huang.
Causal reasoning on biological networks: interpreting
transcriptional changes

2012 Bioinformatics 12 13

Yu-Wei Wu, Yuzhen Ye. A novel abundance-based algorithm for binning
metagenomic sequences using l-tuples

2010 J Comput Biol 8.3 13

Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna,
Roded Sharan. QNet: a tool for querying protein interaction
networks

2007 J Comput Biol 6.4 12.7

Tali Raveh-Sadka, Michal Levo, Eran Segal. Incorporating nucleosomes
into thermodynamic models of transcription regulation

2009 Genome Res 11.7 11.7

Sourav Chatterji, Ichitaro Yamazaki, Zhaojun Bai, Jonathan A. Eisen.
CompostBin: a DNA composition-based algorithm for binning
environmental shotgun reads

2008 11.5 11.5

Sharon Bruckner, Falk Hffner, Richard M. Karp, Ron Shamir, Roded
Sharan. Topology-free querying of protein interaction networks

2009 J Comput Biol 10.6 10.6

Osvaldo Zagordi, Armin Tpfer, Sandhya Prabhakaran, Volker Roth,
Eran Halperin, Niko Beerenwinkel. Probabilistic inference of viral
quasispecies subject to recombination

2012 6.5 10.5

Salim A. Chowdhury, Rod K. Nibbe, Mark R. Chance, Mehmet
Koyuturk. Subnetwork state functions define dysregulated
subnetworks in cancer

2010 J Comput Biol 9 10.3

Y. William Yu, Deniz Yorukoglu, Jian Peng, Bonnie Berger. Quality
score compression improves downstream genotyping accuracy

2014 Nature Biotech 6 10
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Fig. 6. Categorizing the PC (Program Committee) and SC (Steering Committee) to
“Never Previously on Committee”, “On Committee in Previous Year”, and “On Com-
mittee Sometime Previously”. Panel (a) and (b) illustrate this categorization for PC
and SC, respectively.



14 F. Hormozdiari et al.

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

P
ap

er
s 

P
ub

lis
he

d 
by

 P
C

 (
%

)

0

20

40

60

80

100

(a)

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

P
ap

er
s 

P
ub

lis
he

d 
by

 S
C

 (
%

)

0

20

40

60

80

100

(b)

Fig. 7. Panel (a) and Panel (b) illustrate a histogram of the percentage of papers
published each year from PC and SC members, respectively. We observe that over
the years, anywhere from 25 % to 63 % of papers that are published in RECOMB
are contributed by the PC members. We observe that 2 % to 11 % of papers that are
published in RECOMB are contributed by the SC members.

Figure 5 gives a histogram of the number of people serving for various num-
bers of years. Many people have served on the RECOMB program committee
for only one year of the last 10. A few people have served nearly every year since
2007. They are: Marie-France Sagot, Russell Schwartz, Thomas Lengauer (each
served 8 years); Bonnie Berger, Knut Reinert, Michal Linial, Satoru Miyano,
Sorin Istrail, William Noble (each serving 9 years); Jens Lagergren, Martin Vin-
gron, Tatsuya Akutsu, Mona Singh (each serving all 10 years).

The PC has ranged in size between 40 people (2007) and 82 people (2014).
Figure 6(a) shows the consistency of the PC over time. We classified each PC
member into one of three categories: the PC member has never previously been
on the PC of RECOMB, the PC member was on the PC the previous year and
the PC member was not on the PC the previous year but had been on the
PC sometime previously. As shown in the figure, there is a consistent core of
PC members throughout the years. Figure 6(b) provides the same analysis for
the SC.

On average over the last 5 years, 30 % of the PC members were newcomers
each year, meaning that they had not served between 2007 and that year (see
Fig. 6). On average each year 45 % of the program committee had not served in
the year previous. These numbers indicate that while there is a strong core of con-
sistent program committee members, the program committee is fairly dynamic
and changing year-to-year.

Figure 7(a) illustrates a histogram for the fraction of the papers published
each year from the PC members. We observe that over the years, anywhere
from 25 % to 63 % of papers that are published in RECOMB are contributed by
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Fig. 8. Categorization of the PC members in the last 10 years (2007–2016) based on
the number of papers published.

the PC members. We conduct the same experiment for the steering committee
(SC). We observe that 2 % to 11 % of papers that are published in RECOMB
are contributed by the SC members (see Fig. 7(b)).

We categorize the PC members for each year in the last 10 years based on
the number of papers published. We categorize them into 6 categories which are
as follow: PC members who have no paper published in the last 10 years, PC
members who have published one paper in the last 10 year, PC members who
have published two papers in the last 10 year, PC members who have published
three paper in the last 10 year, PC members who have published four paper in
the last 10 year, and PC members who have published five and more paper in
the last 10 year. Figure 8 illustrates this categorization of the PC members.
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Fig. 9. Abstract generated from a 2nd-order Markov model trained on RECOMB
abstracts from 2007–2015.

5 Conclusion

RECOMB remains a central and important part of the computational biology
community. It has produced a number of highly cited and influential papers,
and still serves as the premier venue for algorithmic work directed at biological
problems. A great many people have worked to make this happen, only some of
which it was possible to mention by name in this short article.

Although we can not predict which direction RECOMB will go in the next
10 years, we can use the current data to make some predictions. Figure 9 gives
a simulated RECOMB abstract generated randomly from a 2nd-order Markov
model trained on the RECOMB abstracts of between 2007–2015. While clearly
the goal of completely automating biological discovery has a long way to go,
RECOMB over the last 10 years has moved the community significantly further
along toward that goal, and hopefully that progress will continue with RECOMB
at its center for many more years.
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Abstract. Current analytic approaches for querying large collections of
chromatin immunoprecipitation followed by sequencing (ChIP-seq) data
from multiple cell types rely on individual analysis of each dataset (i.e.,
peak calling) independently. This approach discards the fact that func-
tional elements are frequently shared among related cell types and leads
to overestimation of the extent of divergence between different ChIP-
seq samples. Methods geared towards multi-sample investigations have
limited applicability in settings that aim to integrate 100s to 1000s of
ChIP-seq datasets for query loci (e.g., thousands of genomic loci with a
specific binding site). Recently, [1] developed a hierarchical framework for
state-space matrix inference and clustering, named MBASIC, to enable
joint analysis of user-specified loci across multiple ChIP-seq datasets.
Although this versatile framework both estimates the underlying state-
space (e.g., bound vs. unbound) and also groups loci with similar patterns
together, its Expectation-Maximization based estimation structure hin-
ders its applicability with large numbers of loci and samples. We address
this limitation by developing a MAP-based Asymptotic Derivations from
Bayes (MAD-Bayes) framework for MBASIC. This results in a K-means-
like optimization algorithm which converges rapidly and hence enables
exploring multiple initialization schemes and flexibility in tuning. Com-
parisons with MBASIC indicates that this speed comes at a relatively
insignificant loss in estimation accuracy. Although MAD-Bayes MBA-
SIC is specifically designed for the analysis of user-specified loci, it is
able to capture overall patterns of histone marks from multiple ChIP-
seq datasets similar to those identified by genome-wide segmentation
methods such as ChromHMM and Spectacle.

Keywords: Small-variance asymptotics · MAD-Bayes · Unified state-
space inference and clustering · ChIP-seq

1 Introduction

Many large consortia (e.g., ENCODE [2], REMC [3]) as well as investigator-
initiated projects generated large collections of ChIP-seq data profiling multiple
c© Springer International Publishing Switzerland 2016
M. Singh (Ed.): RECOMB 2016, LNBI 9649, pp. 19–36, 2016.
DOI: 10.1007/978-3-319-31957-5 2
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proteins and histone modifications across a wide variety of systems. Most current
approaches for analyzing data from multiple cell types perform initial analyses
such as peak calling in ChIP-seq independently in each cell/tissue/condition
type. This approach ignores the fact that functional elements are frequently
shared between related cell types, and leads to an over estimation of the extent of
functional divergence between the conditions. Although the uniform processing
pipelines developed by data-generating consortia and the resulting analysis of
consortia data enable easy access to these data, joint analysis approaches that
take advantage of the inherent relationships between datasets and cell types are
required. Joint inference for ChIP-seq datasets can be formulated as inferring
for each locus whether or not it exhibits ChIP-seq signal in a given condition
and also grouping loci based on their profile similarity across multiple samples.

It is now widely accepted that joint analysis of these types of data can uncover
signals that are otherwise too small to detect from a single experiment [4,5].
Among the available joint analysis methods, jMOSAiCS [6] builds on ChIP-seq
peak-caller MOSAiCS [7] and incorporates a multi-layer hidden states model
that governs the relationship of enrichment among different samples. [8] utilizes
a one-dimensional Markov random field (MRF) model to account for spatial
dependencies along the genome while modeling individual components by mix-
tures of Zero Inflated Poisson or Negative Binomial models. dCaP [9] uses a
three-step log-likelihood ratio test to jointly identify binding events in multiple
experimental conditions. ChromHMM [10] and Segway [11] are two commonly
adopted approaches for segmenting the genome into chromatin states based on
histone ChIP-seq and rely on hidden Markov models and Bayesian Networks,
respectively. Recently, Spectacle [12] provided a transformative improvement of
ChromHMM by utilizing spectral learning for parameter estimation in HMMs.
hiHMM [13] uses a Bayesian non-parametric formulation of the HMMs while
taking into account species-specific biases.

Overall, available strategies for considering multiple ChIP-seq datasets simul-
taneously can be broadly classified based on (i) whether or not they can deal with
only TFs [14,15], only histone modifications [10–12,16,17], or both [5,6] types
of ChIP-seq data; (ii) whether or not they rely on a priori analysis of individual
datasets [10,12,14,15,17], (iii) whether or not they focus on differential occu-
pancy and can handle very few numbers of conditions [14,18,19], (iv) whether
or not they can scale up to 100s to 1000s of datasets. These approaches, with the
potential exception of [12], do not scale up to 100s to 1000s of datasets since they,
to a large extent, utilize variants of hidden Markov models and/or implement
variants of the Expectation-Maximization (EM) algorithm [20] for parameter
estimation. Furthermore, none of these approaches accommodate querying of
multiple datasets for selected loci. Their analysis results serve to “annotate”
user-specified loci without any notion of uncertainty.

We recently introduced MBASIC [1] as a probabilistic method for querying
multiple ChIP-seq datasets jointly for user-specified loci. When multiple ChIP-
seq datasets (multiple TFs profiled in different cell/tissue types under a variety of
conditions) are available, the key inference encompasses both identifying peaks
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in individual datasets (state-space mapping) as well as identifying groups of
loci that cluster across different experiments (state-space clustering). At the
core of MBASIC are biologically validated and commonly adapted models for
measurements from individual experiments (e.g., read data models from [7,21]
for state-space mapping) and a mixture model for clustering of the loci with
similar state-space mapping. Parameter estimation in this versatile model is
based on the EM algorithm and hence does not scale up with large numbers
of user-specified loci and ChIP-seq datasets. In this paper, we adopt a small-
variance asymptotics framework for MBASIC and derive a K-means-like MAD-
Bayes algorithm [22]. This alternative estimation framework for MBASIC targets
large-scale datasets and genomic loci. Specifically, we consider a mixture of Log-
normal distributions for state-specific observations with a Chinese Restaurant
Process (CRP) [23,24] as the clustering prior. Small-variance asymptotics for
maximizing the posterior distribution leads to a K-means like objective function
with a key penalty term for the number of clusters. Extensive comparisons with
MBASIC indicate that this approach can significantly speed up model estimation
without significant impact on the estimation performance. Although methods
like ChromHMM and Spectacle inherently have a different purpose than MAD-
Bayes MBASIC, we compared the three on histone ChIP-seq data from GM12878
cells. This comparison indicated that MAD-Bayes MBASIC can capture the
overall patterns that these segmentation methods identify.

2 Method

We begin our exposition with an overall description of the Bayesian MBASIC
model (Fig. 1) and then derive the MAD-Bayes algorithm. Some key aspects of
our approach are model initialization and tuning parameter selection. Although
these aspects arise in all of the above mentioned joint analysis methods, they
are typically not well studied because of the computational costs.

2.1 The Bayesian MBASIC Model

We consider I genomic loci of interest, indexed from i = 1, · · · , I, from the ref-
erence genome with observations from K different experimental conditions. We
use the notion of loci loosely in the sense that these loci could correspond to pro-
moter regions of genes (all or members of specific pathways), locations of genome
with a specific transcription factor (TF) binding motif, or peaks from a specific
ChIP-seq experiment. The K conditions denote different TFs and cell/tissue
types. Then, the key inference concerns analyzing I loci based on these K exper-
iments. To further motivate the circumstances this inference problem arises, we
consider an example from GATA-factor biology. In [25], we were interested in
an overall analysis of all the E-box-GATA composite elements based on all the
ENCODE ChIP-seq data to identify sites similar to the functional E-box-GATA
composite element at the +9.5 loci which is causal for MonoMAC disease (a
rare genetic disorder associated with myelodysplasia, cytogenetic abnormalities,
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Fig. 1. Overview of the MBASIC modeling framework. Curves within each panel depict
different replicates under the experimental conditions C1, C2, and C3. Loci A and D
are in the same cluster.

and myeloid leukemias) [26]. The E-box-GATA composite elements are repre-
sented by CANNTGN{6-14}AGATAA oligonucleotides, where N denotes any
nucleotide and N{6-14} denotes any nucleotide sequence of length 6 to 14 bps
and are found abundantly in the genome, e.g., hg19 harbors ∼102 K of them.
Joint analysis of these loci over, for example, all the available ENCODE TF
ChIP-seq datasets (∼880 based on https://www.encodeproject.org) to identify
groups of loci that are similar to the +9.5 element represents one potential appli-
cation. In the MBASIC framework, the binding states are governed by a clus-
tering structure, which groups genomic loci with similar overall binding states
across experiments together. For the E-box-GATA composite elements exam-
ple, in addition to the binding states for each candidate loci across experiments,
MBASIC also reports a clustering of loci based on the binding states. The cluster
with the +9.5 loci harbors candidate E-box-GATA elements to follow up [25].

Let nk denote the number of experimental replicates for the k-th condition.
We denote the observation for the i-th locus under condition k for the l-th
replicate by Yikl, for 1 ≤ i ≤ I, 1 ≤ k ≤ K, and 1 ≤ l ≤ nk. We assume
that a latent state is associated with the i-th locus and the k-th condition. θiks

is the indicator for the state to be s, where s takes values in a discrete state-
space {1, · · · , S}. In a ChIP-seq experiment, we typically have S = {1, 2}, where
θik1 = 1 or θik2 = 1 indicates that the i-th locus is unenriched (unbound) or

https://www.encodeproject.org
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enriched (bound) under condition k, respectively. Our model consists of two key
components. The first component, state-space mapping, assumes the following
distribution of Yikl conditional on θik:

(Yikl|θiks = 1) i.i.d.∼ fs(·|μkls, σkls, γikls),

where fs is a density function with parameters μkls, σkls, and γikls denotes
covariates encoding known information for locus i. Note that γikls carries infor-
mation related to how the counts for unenriched loci arise (when θik = 0), i.e.,
data from control Input experiments, GC content, and mappability [21]. In this
paper, we take fs to be Log-normal distribution to represent ChIP-seq read
counts after potential normalization for mappability and GC content:

(log(Yikl + 1)|θiks = 1) i.i.d.∼ N(μklsγikls, σ
2
kls), (1)

where we utilize conjugate priors μkls ∼ N(ξ, τ2) and σ2
kls ∼ Gamma(ω, ν).

The second part of the Bayesian MBASIC model is state-space clustering.
We assume that the loci can be clustered into J groups denoted by C1, · · · , CJ ,
i.e., {1, 2, · · · , I} = C1∪· · ·∪CJ . Let zij = 1 if the i-th locus belongs to cluster j
and 0 otherwise. The states for the loci within the same cluster follow a product
multinomial distribution:

(θiks)S
s=1|zij = 1 i.i.d.∼ Multinomial (1, (wjks)1≤s≤S) ,

S∑

s=1

wjks = 1, (2)

with non-informative prior (wjks)1≤s≤S ∼ Dir(1, 1, · · · , 1). We further assume
a Chinese Restaurant Process [24] as a prior for the number of clusters J . Let
α be a hyper-parameter of the model. The first locus forms C1 at the start and
each locus gets assigned to a cluster recursively. Suppose we have assigned loci
1, · · · , i − 1 to J ′ clusters. The i-th locus is then assigned to Cj′ , j′ ≤ J ′ with
probability proportional to the size of Cj′ . It can also form a new cluster Cj′+1

with probability proportional to α. Then, the prior density for a partition with
J clusters is

f(zij , i = 1, · · · , I, j = 1, · · · , J) = αJ−1 Γ (α + 1)
Γ (α + I)

J∏

j=1

(
I∑

i=1

zij − 1

)
!. (3)

With these specifications, we can derive the posterior density of the model for
parameter estimation. Although the resulting posterior density leads to a Gibbs
sampling algorithm, such a Gibbs sampling scheme requires excessive compu-
tational time for mixing (data not shown). Therefore, we derive MAD-Bayes
algorithm by utilizing small-variance asymptotics.

2.2 MAD-Bayes Algorithm

We further make the following small-variance assumptions for the MBASIC
model:



24 C. Zuo et al.

Assumption 1. All data sets have equal variance: σ2
kls = σ2 → 0.

Assumption 2. For a given cluster and condition, one of the hidden states
dominates with wjks ∈ {1 − (S − 1)e−λw/σ2

, e−λw/σ2} for λw > 0.

Assumption 3. α = e−λwλr/2σ2 σ2→0−→ 0 for λw, λr > 0.

Proposition 1. Under 1, 2, 3, and as σ2 → 0, the posterior density reduces to

− 2σ2 logP(θ, z, μ, σ, w, J |Y )

=
I∑

i=1

K∑

k=1

nk∑

l=1

S∑

s=1

θiks[log(yikl + 1) − μklsγikls]2

+λw

I∑

i=1

J∑

j=1

zij

[
K∑

k=1

S∑

s=1

(θiks − wjks)2
]

+ λwλr(J − 1) + Constant + o(1).

(4)

This proposition implies that the MAP estimate of the MBASIC framework
with CRP and Log-normal mixture model is asymptotically equivalent to the
solution of the following optimization problem:

min
μ,z,θ,w,J

I∑

i=1

K∑

k=1

nk∑

l=1

S∑

s=1

θiks[log(yikl + 1) − μklsγikls]2

+λw

I∑

i=1

J∑

j=1

zij

[
K∑

k=1

S∑

s=1

(θiks − wjks)2
]

+ λwλr(J − 1),

(5)

where the objective function can be viewed as a weighted loss function that
integrates the state inference error from Log-normal density as the first term,
the clustering error as the second term, and the cost for creating new clusters
as the third term. Here, λw > 0 and λr > 0 are tuning parameters that ensure
that the cluster assignments are non-trivial. The equal variance assumption is
inherently quite strong for ChIP-seq data; however, it was recently shown to
work well as a first approximation in a differential ChIP-seq analysis context
[19]. We next derive the MAD-Bayes algorithm to generate a local solution for
this minimization problem (Algorithm1).

We note that each step of this algorithm does not increase the objective
function in Eq. (5), and the updates for wjks’s and μkls’s minimize the objective
function for a fixed configuration of θiks’s and zij ’s. Moreover, there are finite
number of combinations for θiks’s and zij ’s such that no cluster is empty and all
clusters are distinct from one another. With such observations, we conclude the
convergence of this algorithm.

Proposition 2. Algorithm1 converges after a finite number of iterations to a
local minimum of the objective function in Eq. (5).
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Algorithm: The MAD-Bayes algorithm for the Bayesian MBASIC model.

repeat

1. Update the cluster labels zij ’s. For each i = 1, · · · , I, compute the
distance between locus i and each existing cluster j = 1, · · · , J as:

tj =
K∑

k=1

S∑

s=1

(θiks − wjks)
2

and find the minimal j0 = arg min tj . If tj0 < λr, assign zij0 = 1.
Otherwise,generate a new cluster J + 1 with a single locus i.

2. Assign the states θiks’s. For i = 1, · · · , I, k = 1, · · · , K, and
s = 1, · · · , S, let

s0 ← arg min
s

nk∑

l=1

[log(yikl + 1) − μklsγikls]
2

+ λw

J∑

j=1

zij

⎡

⎣(1 − wjks)
2 +
∑

s′ �=s

w2
jks′

⎤

⎦

and let θiks0 = 1, θiks = 0 for s �= s0.
3. Update the Log-normal mean parameters μkls’s. For k = 1, · · · , K,

l = 1, · · · , nk, and s = 1, · · · , S,

μkls ←
∑I

i=1 θiks log(yikl + 1)γikls∑I
i=1 θiksγikls

.

4. Update the Multinomial parameters wjks’s. For j = 1, · · · , J ,
k = 1, · · · , K, and s = 1, · · · , S,

wjks ←
∑I

i=1 zijθiks∑I
i=1 zij

.

until Convergence;

Algorithm 1. The MAD-Bayes algorithm for the Bayesian MBASIC model.

2.3 Model Initialization

Similar to the EM algorithm variants for HMMs, the MAD-Bayes algorithm
for MBASIC also converges to a local solution and hence can be sensitive to
initial starting values. We present a guided two-stage initialization strategy for
the states and clusters to attenuate the impact of initialization. We start from
initialization of the states by minimizing the state inference error (the first term
in Eq. (5)), which has a degenerate form if λw = 0:
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min
μ,θ

I∑

i=1

K∑

k=1

nk∑

l=1

S∑

s=1

θiks[log(yikl + 1) − μklsγikls]2. (6)

Therefore, we use Algorithm 1 by setting λw = 0 to initialize θiks’s and μkls’s.
We utilize these initial values of θiks’s and consider three options for the

cluster initialization (i.e., zij ’s and wiks’s): K-means, K-means++, and Adaptive
K-means++, where the first two require a pre-determined number of clusters J
which we discuss in Sect. 2.4. The K-means option runs hard K-means algorithm
on the θiks’s; while the K-means++ option assigns a cluster label to each unit
i with probability inversely proportional to its distance to the current clusters
di =

∑J
j=1 zij

∑K
k=1

∑S
s=1(θiks − wjks)2. The adaptive K-means initialization

uses a K-means++ style, but increases the number of clusters from J = 1, until
the value of the function in Eq. (7) does not decrease.

2.4 Selecting the Tuning Parameters

We note that the CRP prior for the number of clusters and the small-variance
asymptotics assumptions introduce tuning parameters for the MAD-Bayes algo-
rithm (Algorithm 1). Even for the models with one tuning parameter, [22]
acknowledged the difficulty in choosing their appropriate values in practice.
Hence, we propose an empirically-motivated method for tuning parameter selec-
tion. In practice, we don’t expect our small-variance assumption e−λw/σ2 → 0
as σ2 → 0 to hold rigidly for real data; however, we expect e−λw/σ2

to be small
since it represents the prior probability of enrichment. To maintain the relative
small value of e−λw/σ2

, we set λw as 2σ̂2 with σ̂2 obtained by optimization of
the first term in Eq. (5):

σ̂2 = min
μ,θ

I∑

i=1

K∑

k=1

nk∑

l=1

S∑

s=1

θiks[log(yikl + 1) − μklsγikls]2.

Our computational experiments (data not shown) indicate that varying λw in
the order of σ̂2 does not impact model estimation. The λr parameter mediates
between the clustering error and the cost of the number of clusters for fixed λw.
We choose a set of candidate λr values by considering the conjugacy between λr

and J . Suppose J is a global minimum of the objective function in Eq. (5), then
fixing the θiks’s, λw, λr, J minimizes

I∑

i=1

J ′∑

j=1

zij

[
K∑

k=1

S∑

s=1

(θiks − wjks)2
]

+ λr(J − 1). (7)

Therefore, we let

L(J ′) = min
z,w

⎧
⎨

⎩

I∑

i=1

J ′∑

j=1

zij

[
K∑

k=1

S∑

s=1

(θiks − wjks)2
]⎫
⎬

⎭ ,
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with L(J) − L(J + 1) ≤ λr ≤ L(J − 1) − L(J) (Fig. 4). Algorithm 2 applies this
idea to choose a list of candidate λr values up to the square root of total number
of instances.

Algorithm: Choosing m candidate values of the tuning parameter λr.

1. Compute the surrogate values of L(J ′) for 1 ≤ J ′ ≤ �√I� := Jmax,
2. Let λ′

j = (L(j − 1) − L(j + 1))/2 for 2 ≤ j ≤ Jmax − 1
3. Choose 1

m+2
-th, 1

m+2
-th, · · · , m

m+2
-th quantile in the {λ′

r} as candidate
values.

4. Given a selected λr, choose the initial number of clusters as
J ← arg minj |λ′

j − λr|.

Algorithm 2. Algorithm for choosing m candidate λr values.

Finally, we use the Silhouette score [27], which has been successfully used
for evaluating goodness of fit in clustering, across these values of the tuning
parameters.

3 Results

3.1 Computational Experiments

We designed computational experiments to evaluate MAD-Bayes MBASIC in
settings where the underlying truth is known. In our experiments, we considered
I user-specified loci (e.g., promoters from I genes, binding sites of a transcrip-
tion factor, or peaks from a ChIP-seq experiment). Given multiple simulated
ChIP-seq datasets, there are different “baseline” methods for performing these
loci-focused analysis. Therefore, in addition to MBASIC, we considered such
alternative approaches that practitioners might adopt.

– MBASIC: The EM algorithm on the full MBASIC model, where singleton,
i.e., unclusterable loci, are also taken into account.

– SE-HC: A two-stage method with first State Estimation on individual
datasets (i.e., conventional peak calling), and then combining the results
by hierarchical clustering on the posterior probabilities of the states θ̃iks =
P (θiks = 1|Y ) from the first stage.

– SE-MC: A two-stage method with first State Estimation on individual
datasets (i.e., conventional peak calling), and then combining the results
by mixture clustering on the binarized results θ∗

iks0
= 1, where s0 =

arg maxs P (θiks = 1|Y ) from the first stage.
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– PE-MC: A two stage method with first Parameter Estimation on individ-
ual datasets to determine the state-specific observations distributions (e.g.,
distributions of the read counts), and then combining the results by simul-
taneous state inference and mixture clustering. This is essentially similar to
MBASIC, except that state-specific densities are fixed and not updated at
every iteration.

The alternatives to MBASIC use two-stage procedures for model estimation,
decoupling either the estimation of the state-space variables or the distrib-
utional parameters from the mixture modeling of state-space clustering. For
example, SE-HC corresponds to overlapping user-loci with the peak sets from
the ENCODE project and generating and clustering the binary overlap or peak
confidence profiles of the loci. In contrast, PE-MC is analogous to estimating
the distributional parameters of state-space for each individual experiment sep-
arately and then clustering with these fixed distributions as in [6,28]. These
benchmark algorithms are in spirit analogous to procedures in many applied
genomic data analyses where the association between observational units are
estimated separately from the estimation of individual data set specific parame-
ters [28–30].

For the MAD-Bayes algorithm, we evaluated all the three clustering ini-
tializations: Adaptive K means, K means, and Kmeans++. The MAD-Bayes
algorithm automatically selects the number of clusters. We used the Silhou-
ette score for SE-HC to accommodate hierarchical clustering and used Bayesian
Information Criterion for the other methods. The experiments utilized I = 4, 000
genomic loci, J = 10 clusters, and K = 20 experimental conditions. For each
condition, the number of replicates, nk, were drawn from 1 to 3 with probabil-
ities (0.3, 0.5, 0.2). The clustering concentration parameter was simulated from
non-informative prior α ∼ Dir(0.1, · · · , 0.1). The state probabilities, wjkss, were
simulated from Dir(1, · · · , 1). The Log-normal parameters were set as follows:
the mean was simulated from N(2∗s, 0.052), where s represented the state label;
and the standard error was set to 0.5. We considered four scenarios by varying
the number of states S between 2 and 4, and the proportion of singleton loci
as ζ = 0, 0.4. Here, singletons represented loci with overall ChIP-seq enrich-
ment profile different than the clusters, i.e., unclusterable locus, and introduced
noise to the model. Results for each setting were summarized over 10 simulated
datasets. We compared the algorithms in terms of run-time, state-space infer-
ence (identifying whether or not each locus is bound), and also the clustering
structure via the adjusted Rand index [31].

Figure 2(a) displays run-time comparisons of the methods and indicates that
all three implementations of the MAD-Bayes algorithm are about 100 times
faster than the EM on full MBASIC and the PE-MC algorithm, and about
10 times faster than the two-step SE-HC and SE-MC algorithms. This speed
improvement is significant and makes it possible for the MBASIC framework
to scale up. For example, MAD-Bayes can process I = 100, 000 and K = 2000
(e.g., 100, 000 DNase accessible regions in the genome across all the available



A MAD-Bayes MBASIC Model for Large Collections of ChIP-Seq Data Sets 29

)b()a(

S = 2 S = 4

32
64

128
256
512

1024
2048
4096
8192

32
64

128
256
512

1024
2048
4096
8192

ζ
=

0
ζ

=
0.4

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

T
im

e 
(s

ec
s)

S = 2 S = 4

0.025

0.050

0.075

0.100

0.025

0.050

0.075

0.100

ζ
=

0
ζ

=
0.4

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

S
ta

te
−

sp
ac

e 
P

re
di

ct
io

n 
E

rr
or

)d()c(

S = 2 S = 4

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

ζ
=

0
ζ

=
0.4

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

A
dj

us
te

d 
R

an
d 

In
de

x

S = 2 S = 4

0.00

0.25

0.50

0.75

1.00

ζ
=

0.4

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

A
da

pt
iv

e
K

−
m

ea
ns

+
+

K
−

m
ea

ns

K
−

m
ea

ns
+

+

M
B

A
S

IC

P
E

−
M

C

S
E

−
H

C

S
E

−
M

C

P
ro

po
rt

io
n 

of
 S

in
gl

et
on

s 
 in

 S
pu

rio
us

 C
lu

st
er

s

Fig. 2. (a) Run-time comparisons on a 64 bit machine with Intel Xeon 3.0 GHz proces-
sor and 64 GB of RAM and 8 cores. (b) State-space prediction error. (c) Clustering
accuracy based on the adjusted Rand index. (d) Clustering assignments of the single-
tons when ζ = 0.4.

ENCODE ChIP-seq data) in about 6 hours while the EM algorithm on full
MBASIC requires more than a week.

We also observe that speed up in run time does not come at a significant loss
in accuracy. Figure 2(b) compares state-space prediction errors of the algorithms
and indicates that while MAD-Bayes MBASIC does not perform as accurately
as the EM algorithm on full MBASIC and PE-MC, it performs significantly bet-
ter than SE-HC and SE-MC algorithms, both of which would be the baseline
choices for many practitioners. Existence of singleton genomic loci deteriorate
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performance of all the algorithms. When there are no singletons, MAD-Bayes
with varying cluster initializations perform the best (Fig. 2(c)). When ζ = 0.4
indicating that 40% genomic loci do not belong to any cluster, the MAD-Bayes
algorithm tends generate extra, i.e., spurious, clusters for such loci (Fig. 2(d))
instead of forcing them into other clusters. As a result, the true clusters are
largely preserved and less polluted by singletons (Fig. 5) compared to other
methods which do not handle singletons (PE-MC, SE-HC, SE-MC).

3.2 Application to Histone ChIP-Seq Data from GM12878 Cells

The key inference question for the MBASIC framework is identifying the enrich-
ment patterns for a given set of user-specified loci across large sets of ChIP-seq
datasets and grouping these loci to elucidate similarities and differences. From
this point of view, the MBASIC framework is more loci-focused and not directly
comparable with any of the available joint analysis methods that can handle
large datasets. However, to get a general sense of how MBASIC would compare
with ChromHMM [10] and its computationally efficient version Spectacle [12],
we analyzed ChIP-seq data of 8 histone marks (H3k4me1, H3k4me2, H3k4me3,
H3k9ac, H3k27ac, H3k27me3, H3k36me3, and H4k20me1 from GM12878 cells)
from the ENCODE project. Raw data and peak calls for these marks are available
at https://www.encodeproject.org/. We used the 9038 peaks on chr 18 from the
ENCODE uniform processing pipeline as the input loci to MAD-Bayes MBASIC
and fixed the number of clusters as 20 since Spectacle identified robust number
of chromatin states across multiple chromatin modification datasets as 20. As a
result, we also set the number of emission states in chromHMM as 20.

We then performed pairwise comparisons of all the three approaches by
matching their clusters/states via maximizing the sum of Jaccard index [32].
We reordered the cluster/state labels of MAD-Bayes and Spectacle according to
their agreement with ChromHMM. For example, MAD-Bayes cluster “C1” and
Spectacle emission state “E1” are both matched to ChromHMM emission state
“E1”; however, this does not necessarily indicate that these two are the best
matches between MAD-Bayes and Spectacle.

Figure 3(a) displays that the overall agreements between MAD-Bayes vs.
Spectacle and MAD-Bayes vs. ChromHMM follow the same trend with the
degree of agreement between Spectacle vs. ChromHMM, which we think of as
the baseline agreement since they are both HMM based. In particular, for the
emission states with agreement between Spectacle vs. ChromHMM, the corre-
sponding MAD-Bayes clusters also have higher agreement with these. When
there is large discrepancy between Spectacle vs. ChromHMM, the MAD-Bayes
clusters tend to agree with results from one of the methods. For example, MAD-
Bayes “C2” agrees better with Spectacle, and MAD-Bayes “C18” overlaps bet-
ter with ChromHMM. Figure 3(b) and (c) display comparisons of MAD-Bayes
MBASIC to ChromHMM and Spectacle, respectively. We observe that some of
MAD-Bayes clusters are distributed over multiple clusters of ChromHMM and
Spectacle, e.g., MAD-Bayes cluster “C5” overlaps with the “E12”, “E13”, “E14”
of both ChromHMM and Spectacle. This overall agreement indicates that the

https://www.encodeproject.org/
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Fig. 3. (a) Comparison of clusters and state labels between MAD-Bayes, Spectacle,
and ChromHMM. (b) Jaccard index between MAD-Bayes clusters and ChromHMM
states. (c) Jaccard index between MAD-Bayes clusters and Spectacle states. The diag-
onal blocks indicate agreement between clusters and states; MAD-Bayes clusters and
Spectacle states are ordered according to their overlap with the ChromHMM states.
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clustering task of MAD-Bayes on the histone marks is reasonable even though
it is using selected loci and is not accounting for local dependencies inherent
among genomic loci with broad histone marks.

4 Discussion

In this paper, we derived a MAD-Bayes algorithm by developing a Bayesian ver-
sion of the MBASIC model. Our evaluations indicated that MAD-Bayes MBA-
SIC significantly improves the computational time without sacrificing accuracy.
We also observed that even though MAD-Bayes MBASIC does not have a built-in
mechanism for singletons (unclusterable loci), it groups singletons as additional
clusters and minimizes their effect on other more coherent clusters.

We developed MAD-Bayes MBASIC as a fast method for querying large sets
(1000s) of ChIP-seq data with user-specified large sets of loci. This represents
the first application of the MAD-Bayes framework in a large scale genome regu-
lation context. From a practical point of view, we showed that this approach is
both more efficient and powerful than using individual analysis of each datasets
and clustering them with an off-the-shelf method such as hierarchical cluster-
ing or finite mixture models. From an algorithmic point of view, we developed
an empirical method for selecting tuning parameters. This improves the cur-
rent state-of-the-art for MAD-Bayes implementations since they lack principled
methods for tuning parameter selection. The MBASIC framework offers flexibil-
ity in a number of aspects of experimental design, such as different numbers of
replicates under individual experimental conditions. This is a relatively impor-
tant point because many peak callers will operate separately on individual peaks
sets or handle two jointly [33] leaving the reconciliation of peaks over multiple
replicates to the user. Our current derivation of the MAD-Bayes relied on Log-
normal distribution; however, it can be extended to larger class of exponential
family distributions via the Bregman divergence [34]. Such extensions are likely
to foster its use with other genomic data types such as RNA-seq, DNAse-seq,
and Methyl-seq, where both state-space estimation and clustering of similar loci
pose significant challenges.
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Appendix
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Fig. 4. A graphical interpretation of the conjugacy between λr and J . We use the
K-means initialization to compute surrogate values for L(J) for a large collection of
J ≥ 1. The λr value that can yield J clusters in the global solution must satisfy:

supJ′>J
L(J)−L(J′)

J−J′ ≤ λr ≤ infJ′>J
L(J′)−L(J)

J′−J
. When λr satisfies this condition, a line

with slope −λr passing through (J, L(J)) on the graph should be tangent to the trace
of all L(J) values. Although using the surrogate L(J) values can lead to the curve
connecting the L(J) values to be con-convex, making the solution for λr not hold for
some J , we can use a convex approximation to the trace of L(J) so that so that a
λr exists for each J . A simpler approach is to order the L(J) from largest to smallest
and require the following condition for λr. L(J) − L(J + 1) ≤ λr ≤ L(J − 1) − L(J).
Algorithm 2 essentially applies this idea to select the λr values. Each J corresponds
to a λr of value [L(J − 1) − L(J + 1)]/2 that satisfies the conjugacy inequality. The
algorithm essentially tries to identify the range of λr that leads up to

√
I number of

clusters.
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Fig. 5. Comparison of the clustering accuracy with the adjusted Rand index by exclud-
ing the singleton loci.
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Abstract. Ribosome profiling quantitatively captures ribosome loca-
tions during translation. The resulting profiles of ribosome locations are
widely used to study translational speed. However, an accurate estima-
tion of the ribosome location depends on identifying the A-site from ribo-
some profiling reads, a problem that was previously unsolved. Here, we
propose a novel method to estimate the ribosome A-site positions from
high-coverage ribosome profiling reads. Our model allows more reads to
be used, accurately explains the 3-nt periodicity of ribosome profiling
reads from various lengths, and recovers consistent ribosome positions
across different lengths. Our recovered ribosome positions are correctly
highly skewed towards a single frame within a codon. They retain sub-
codon resolution and enable detection of off-frame translational events,
such as frameshifts. Our method improves the correlation with other
estimates of codon decoding time. Further, the refined profiles show that
yeast wobble-pairing codons are translated slower than their synony-
mous Watson-Crick-pairing codons. These results provide evidence that
protein synthetic rate can be tuned by codon usage bias.

Keywords: Ribosome profiling · A-site recovery · Translation rate

1 Introduction

Ribosome profiling is an important sequencing technique that enables var-
ious genome-wide translational studies, including on translational response
to stress [16,20,37], protein synthesis rate [24], alternative translation initia-
tion [13,23], translation evolution [3,26], cell development [4,34], and the role of
specific translation regulation factors [17,18,38]. The experiment extracts mRNA
fragments protected by bound ribosomes (also called ribosome footprints) from
RNase I digestion [20]. The technique is analogous to taking snapshots of ribo-
some locations during translation. Therefore the ribosome footprint counts at
codon locations should be related to the elongation time [19,21]. The vector
c© Springer International Publishing Switzerland 2016
M. Singh (Ed.): RECOMB 2016, LNBI 9649, pp. 37–52, 2016.
DOI: 10.1007/978-3-319-31957-5 3
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of footprint counts at codon locations of a mRNA is called a ribosome profile,
and each individual count is called a ribosome pileup. To date, ribosome pro-
files are generally used to qualitatively visualize ribosome pauses (e.g., [18,21]),
translation initiation, and translation termination (e.g., [1,10]). Yet attempts
to quantify translation speed, even from the same experiment, often result in
controversial conclusions on the determinants of translation rate [2].

One of the challenges in translation speed quantification is accurate measure-
ment of ribosome decoding locations. Currently, there is no method to extract the
precise ribosome decoding locations when the snapshots are taken [2,25]. The
ribosome P-site or A-site is usually considered the active decoding site [2,14,
21,22,25,27,30,35,38]. This is because the A-site is where the aminoacyl-tRNA
enters the ribosome, and the P-site is the position of peptide bond formation.
Only the location of either the P-site or the A-site needs to be estimated from
the experiment data, and the other one can be inferred.

In past analyses, the A-site location estimation is usually based on simple
heuristics. One widely used strategy is that the A-site is simply placed at 15
bases away from the 5’ end of the footprint read [20,27,32,35]. This is shown to
be accurate for the typical ribosome footprint size (about 28 nt for yeast) [20].
However, the read length from ribosome profiling experiments can span a wide
range [18,22,25,38], with as little as 40 % being 28-nt reads [26]. The A-site
position for 28-nt reads might not be suitable for other read lengths.

Since a read length not equal to the typical footprint size is mainly caused by
incomplete RNase digestion during the experimental procedure [19], an alterna-
tive strategy is to use a constant A-site offset for a given read length [7,21,22].
This assumes that the digested portion is always the same for all reads with the
same length. Because ribosomes move in units of codons (3 nt), such a strategy
implies a 3-nt periodic ribosome position pileups. For every 3-nt period, these
pileups should also be highly concentrated on a single base (a reading frame).
However, such a highly skewed frame distribution is not always observed in read
pileups for all read lengths (See one example in Sect. S1, Fig. S1). Thus, a large
fraction of ribosome footprints have incomplete or over-digestion (length �= 28),
and the simple offset heuristic is insufficient to explain the observed complex
frame distribution pattern caused by various nuclease digestion possibilities.

In short, ribosome profiling is a powerful technique to study genome-wide
translation mechanisms, but ribosome profiling data are inherently noisy due
to complicated experiment pipelines. Specifically, imperfect RNase digestions
distort true ribosome profiles and might bury biologically meaningful insights.
Such complicated non-universal digestions vary between replicates and labora-
tories and cannot be well captured by existing simple heuristics of A-site assign-
ments. We introduce a new model and computational method to recover the
A-site positions from ribosome profiling data. Our method does not make the
incorrect assumption that all reads with the same size are digested to the same
extent. Instead, we systematically remove the distortion caused by imperfect
digestions and retrieve true ribosome positions. Our procedure results in better
A-site position estimation, which enables comparisons of ribosome profiling data
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from different replicates, conditions, and labs, and will hopefully lead to a better
understanding of translation speed and regulation.

2 Contributions

Observing that read pileups for each read length have a unique start for the 3-nt
periodicity, we assume that there is a predominant digestion pattern for each read
length. However, individual reads can be over-digested or under-digested to a
certain amount centered around this major digestion pattern. Such an imperfect
digestion causes the ribosome A-site to be a variable distance away from the
read start. We also assume that there is an unknown underlying true A-site
profile consistent across all read lengths. We define this true A-site profile as
the ribosome position signal. Such a signal at a particular location is blurred to
its surrounding neighborhood due to imperfect RNase digestions. We therefore
model the observed read pileups as a blurring of the unknown ground truth
positions. We then recover the ground truth positions by combining read pileups
from different lengths and allowing the reads to be re-allocated with a non-
universal A-site offset (deblur).

Compared to previous work, our procedure does not assume any specific
prior distribution of RNase digestion patterns, nor do we assume the imperfect
digestion is limited to a 3-nt window [7,39]. Rather, we learn the probabili-
ties of the digestion for each read length from the observed data, enabling a
more flexible model to explain the ribosome read pileups. Also, unlike heuristics
that discard the off-frame reads [35] or take the sum of reads in all three frames
[14,30], we do not assume all ribosome reads are from a single reading frame, nor
do we need to distinguish reads from different frames. Instead, we re-distribute
reads to their nearby loci, naturally causing the ribosome pileups to be concen-
trated towards a single frame within a codon. Our approach therefore preserves
the sub-codon resolution in the estimated A-site positions. We show that on
a synthetic frameshift test set, our method retains the frame preferences and
strengthens the frame skewness in the estimated A-site profiles.

We showcase our method by estimating codon decoding time (CDT) [7] in
yeast ribosome profiling data [1]. Although abundant tRNAs are expected to
speed up codon decoding, the näıve global offset heuristic only recovers a weak
negative correlation between the tRNA abundance estimates and the CDT. This
correlation improves after using our deblurred profiles. Also, for codons decoded
by the same tRNA, our estimated CDT shows that the less stable wobble pair-
ing codons generally translate more slowly than their synonymous codons with
Watson-Crick pairing. We find that the difference in decoding time between
Watson-Crick-paired codons and wobble-paired codons is generally larger than
the difference between two wobble-paired codons. Such phenomena was previ-
ously only observed in metazoans [35]. This observation is consistent with the
expectation that wobble pairing is likely to be delayed by the higher probabil-
ity of tRNA rejection [36]. Our result therefore provides evidence for the first
time in yeast to support such a mechanism. Together, our analysis gives further
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Fig. 1. Model of the observed ribosome profiling read pileups. The observed read pile-
ups Pobs(l) for read length l are modeled as a convolution effect between a blur vector
b(l) and a clear ribosome position signal Ptrue(l). The blur vector diffuses a signal to its
nearby locations. The clear signal is somewhat consistent across all read lengths, and
can be captured by a consensus clear signal Ptrue. An additive slack variable εt is used
to match Ptrue(l) with Ptrue, and an additive error εo is used to match the modeled
pileups with the observed pileups. Our goal is to extract the consensus clear ribosome
positions Ptrue from the observed ribosome pileups for all read lengths (Pobs(l)).

evidence that frequent codons translate faster than rare codons, and that both
tRNA abundance and wobble pairing play roles in elongation speed.

3 Methods

3.1 Algorithm Overview

For a given transcript and each read length l, let Pobs(l) be the observed ribosome
distribution from ribosome profiling reads. We model Pobs(l) as the result of
a blurring effect on an unknown, lengh-specific clear ribosome position signal
Ptrue(l). We assume such a position signal is consistent across all read lengths,
and is deviated from an unknown consensus position signal Ptrue (Fig. 1). We
aim to recover the clear position signal from the observed blurred version of the
read positions across all read lengths. The length-specific clear signals Ptrue(l)
should be consistent with each other, and our modeled positions P̂obs(l) should
agree well with the observed read positions Pobs(l). We formulate this task as
a total least square optimization problem, where the difference between Ptrue

and Ptrue(l) and the difference between Pobs(l) and P̂obs(l) are simultaneously
minimized. We develop an EM-like procedure to optimize the objective and to
extract the hidden clear position signal Ptrue concurrently. One example of our
deblur result is shown in Fig. S2.
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3.2 Modeling Observed Profiles as Blurred Ribosome
Position Signals

We model the observed ribosome read distribution Pobs(l) for read length l as
a convolution between an unknown clear ribosome position distribution Ptrue(l)
and an unknown blur probability vector b(l): P̂obs(l) = b(l) ∗ Ptrue(l), where ∗
is the convolution operator. The blur vector diffuses the position signal to its
neighbor areas. This means, for location i on a transcript, the estimated observed
ribosome abundance is a linear combination of the nearby true signals:

P̂obs(l)[i] =
w∑

j=−w

b(l)[j] × Ptrue(l)[i − j],

where w is the width of the blurring effect. The notation x[i] indicates the ith
element of vector x.

We require Ptrue(l) to be as consistent as possible across all read lengths.
Specifically:

Ptrue(l)[i] = Ptrue[i − kl] − εt(l)[i − kl],

where Ptrue is the consensus position signal consistent across all read lengths,
εt(l) is the deviation of Ptrue(l) from Ptrue due to length-specific digestion pref-
erences, and kl is a shift to align profiles with different lengths.

Profiles with different lengths can be aligned by observing that the start of the
3-nt periodicity is read length specific. We observe from the meta-profiles that
the 3-nt peridicity for reads with length l starts at −l + 16 (Fig. S1). Therefore
the amount of shift between profile of length l1 and profile of length l2 is −l1 +
16 − (−l2 + 16) = l2 − l1. In our model, to align profiles with different lengths,
Ptrue(28) is used as the anchor, therefore Ptrue(l) can be aligned to Ptrue(28)
by shifting kl = l − 28 to the right. We denote by P kl

true and εkl
t (l) the shifted

version of the original vectors.
The starts of the 3-nt periodicity also indicate the locations of the majority

of the ribosome read 5’ boundaries when ribosomes start translating. They thus
give the most probable A-site offsets for different read lengths. Although these
offsets themselves cannot entirely capture the various distances between the A-
site and the read boundaries, they serve as a good starting point for explaining
the major digestion pattern of a given read length.

Putting everything together, the observed read locations Pobs(l) of length l
are assumed to be generated from the hidden Ptrue signal as:

Pobs(l) =

̂Pobs(l)︷ ︸︸ ︷(
P kl
true − εkl

t (l)
)

︸ ︷︷ ︸
Ptrue(l)

∗b(l) +εo(l),

where εo(l) is the deviation of the modeled profile P̂obs(l) from the observed
profile Pobs(l). In short, the hidden consensus Ptrue is shifted with an additive
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difference εt(l), convolved with a blur vector b(l) to get the modeled profile
P̂obs(l), and the difference between the observed profile Pobs(l) and the modeled
profile is then measured with an additive error εo(l). The parameters kl, εt(l),
εo(l), b(l) must be optimized to find the hidden Ptrue. We explained above the
rationale of choosing kl, and we describe how other parameters are optimized in
the following sections.

3.3 Deblurring Ribosome Profiles — a Least Square Optimization

Our goal is to use the blurred observed profiles Pobs(l) to deconvolve the clear
ribosome position signal Ptrue of a transcript. Such clear signals should be con-
sistent across all read lengths, and should be a good estimate of the observed
ribosome distribution after applying the blurring effect. The consensus clear
position signal Ptrue and the deviation between the consensus and the length-
specific ribosome signal (εt(l)) are adjusted to minimize two terms: the difference
between the observed profile and the modeled profile and the difference between
the consensus and the length-specific ribosome signal. Specifically:

min
Ptrue,εt(l)

∑

l

α(l)
[
‖Pobs(l) − P̂obs(l)‖22 + ‖P kl

true − Ptrue(l)‖22
]
, (1)

where α(l) is the total read count with length l for the tested transcript. Intu-
itively, if some read length is more abundant, the true position signal recovered
from that read length should be weighted more.

Using Ptrue(l) = P kl
true−εkl

t (l) and P̂obs(l) = b(l)∗(
P kl
true−εkl

t (l)
)
, we rewrite

(1) to be:

min
Ptrue,εt(l)

∑

l

α(l)
[‖Pobs(l) − b(l) ∗ (

P kl
true − εkl

t (l)
)‖22 + ‖εkl

t (l)‖22
]
. (2)

If the blur vectors b(l) are known, we can use an EM-like framework to find the
least square solution:

M-step: We fix Ptrue and adjust εt(l) to optimize the total least square problem
in (2), where εt for each l can be optimized separately:

min
εt(l)

‖b(l) ∗ εkl
t (l) − (

b(l) ∗ P kl
true − Pobs(l)

)‖22 + ‖εkl
t (l)‖22, (3)

where bold indicates the variables we are optimizing. The optimal εt(l) is found
via a least square solver with Ridge regression [12] (damp = 1).

E-step: We fix P̂obs(l) and Ptrue(l) as estimated from the M-step, and adjust the
consensus Ptrue to minimize the objective in (1). The expected Ptrue is therefore
the weighted average of all Ptrue(l). After the M-step, the new estimation of
Ptrue(l) is P kl

true − εkl
t (l), so the weighted average of Ptrue(l) is:

P ′
true =

∑

l

α(l)(P kl
true − εkl

t (l))∑
l′ α(l′)

= Ptrue −
∑

l

α(l)εkl
t (l)∑

l′ α(l′)
. (4)
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We set all negative entries of P ′
true to be zero, and renormalize P ′

true so that it
sums to 1. This constrains Ptrue to remain valid and in practice appears to have
a minor effect on the shape of Ptrue.

We repeat the EM-like procedure until the change of the objective in (2)
compared to the objective value from the previous step is smaller than 0.01.

We initially set Ptrue to be the in-frame values of the observed read pileups
with length 28:

Pinit[i] =

{
Pobs(28)[i] if i is a multiple of 3,

0 otherwise.
(5)

Pobs(28) is used as the initial consensus because 28 is the typical ribosome foot-
print size for yeast. For such size, the real physical ribosome footprint bound-
aries should be most likely to overlap with the read ends. This is because an
imperfect digestion for reads with length 28 has to be caused by a simultaneous
over-digestion from one end and an under-digestion from the other end, which is
likely to be relatively rare. Therefore, the observed read pileups with read length
28 should be the most clear and the closest to the ground truth position signal.
Indeed, these profiles show the strongest frame skewness and the most visible
3-nt periodicity (Fig. S1).

3.4 Estimating Blur Vectors from Meta-profiles

The deblur process depends on a known set of blur vectors (b(l)) — a crucial ele-
ment to model the imperfect digestion in ribosome reads. These vectors describe
the probability of relocating ribosomes to transfer the clear ribosome position
signal to the observed read pileups. Since these pileups are read 5’ end pileups
(see below), essentially the blur vectors adjust a true footprint boundary to the
observed read boundary. They therefore indicate the probability of the amount
of under/over digestion from the 5’ end, and capture the read-length-specific
digestion patterns.

These blur vectors can be estimated directly from the ribosome reads via
meta-profiles. Meta-profiles are widely used to reveal the positional patterns of
ribosome profiles [6,15,17,20–22,33]. They do so by summing read pileups from
all transcripts for each position. The blur vectors can be estimated from these
meta-profiles because convolution satisfies the distributive property.

To generate the meta-profiles, we group reads by lengths, and accumulate the
positions of the 5’ ends relative to the start codon for all transcripts. We then
include the first 350 locations away from the start codon in the meta-profiles.
We only use transcripts with length >350 to reduce convolution boundary effect.
Also, to avoid the outlier points biasing the shape of the blur vector, we exclude
locations in the meta-profiles with the top 1.65 % highest read counts. This
threshold is chosen by assuming the top 5 % of in-frame reads (1/3 of total
reads) are outliers.

To estimate the blur vectors, we use an EM-like procedure similar to the
earlier deblur optimization. In this procedure, the observed transcript profiles
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are replace by the meta-profiles, and the blur vectors are adjustable variables.
The procedure is exactly the same as described in the previous section, except
that the blur vector is first estimated prior to the M-step:

min
b(l)

‖Mkl
true ∗ b(l) − Mobs(l)‖22,

where the “M” variables are the meta-profiles, and we replace Ptrue by Mtrue

and Pobs(l) by Mobs(l) in (3) – (5). The blur vector size, which limits the diffusion
range of the position signal, is set to 31. This way the signal can be diffused,
either to the left or to the right, as far as approximately half the size of a
ribosome. A non-negative least square solver (scipy.optimize.nnls) is used
to find the best b(l). All blur vectors with different read lengths are optimized
separately.

3.5 Estimating the A-Site Profile

We merge the length-specific true profiles to get an overall ribosome position
signal for a given transcript — the A-site profile. It is the weighted sum of all
the length-specific true profiles, shifted to the right by 15:

Ctrue[i] =
∑

l

α(l)Ptrue(l)[i + kl − 15].

The shift is needed since the true profiles are estimated from the reads 5’ ends,
and Ptrue(28) is the anchor to align profiles with different length. We shift by
15 since it is the major A-site offset of reads with length 28, and it is the A-site
offset under perfect digestion.

3.6 Codon Decoding Time Estimation

To investigate the influence of tRNA abundance and wobble pairing on trans-
lation speed, we estimate codon decoding time using the procedure in [7]. The
in-frame (frame-0) deblurred read counts are used as the input ribosome count
for each codon position. Such counts are normalized by the average ribosome
count for each transcript, as is done in [22,38]. Following [7], these normalized
counts are grouped by codon types to form codon count distributions, with the
exclusion of the first and last 20 codon positions of each transcript and posi-
tions with ribosome counts less than 1. Each codon distribution is fit with a log
normal distribution. The skewness of the log normal distribution is used as an
estimate of the codon decoding time, as it has been shown to be informative
for estimating the elongation speed from ribosome profiling data among various
species [7].

3.7 Read Alignment and Data Preprocessing

We test the deblur method on ribosome profiling data from Saccharomyces cere-
visiae, where ambiguous mapping is not ubiquitous. We use ribosome reads from
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a yeast study, where the data is of high quality and of high sequencing depth
(GSM1335348) [1].

Reads were first aligned to the yeast noncoding RNA reference, which
includes rRNA, tRNA, snoRNA, etc., to remove noncoding contaminants. The
remaining reads are then mapped to the yeast transcriptome. The yeast non-
coding RNA reference and the transcriptome reference are downloaded from the
Saccharomyces Genome Database [11]. Alignments are performed with STAR [9]
with parameters --clip3pAdapterSeq CTGTAGGCACCATCAAT --outFilterMis-
matchNmax 1, which automatically ‘softclips’ the unaligned adapter sequences
and any unaligned bases at the 5’ end of the reads, allowing at most 1 mismatch.
Only uniquely mapped reads, about 83 % of the non-contaminated reads, are
used to generate the observed profiles Pobs(l).

The observed profile of a given length is included for a transcript in the deblur
process if more than 50 % of the in-frame loci have non-zero ribosome counts.
Here, we define ‘in-frame’ as the frame with the highest total read count. Only
transcripts with at least two observed profiles from different read lengths are
tested for deblur.

Such filtering results in 1966 transcripts with high ribosome coverage. This
transcript set size agrees with the size of highly expressed transcript set: 2108
transcripts share an estimated expression level >100 transcript per million
(TPM) (expression are estimated using Salmon [29] with the RNA-seq data
from the same experiment (GSM1335347) [1]).

Fig. 2. Effect of shifting and deblurring on profile consistencies across different read
lengths. Pobs(l) is the observed profile of length l, Pinit is the in-frame values of Pobs(28),
which is also the initial guess of the true profile, kl is the shift applied to a profile,
Ptrue(l) is the length-specific deblurred profile, and Ptrue is the consensus of Ptrue(l)s.
Bar plots of the Pearson correlation are between (A) Pobs(l) and Pinit, (B) P kl

obs(l)

and Pinit, (C) P kl
true(l) and Pinit, and (D) P kl

true(l) and Ptrue. The improvement of the
Pearson correlation between the read-length-specific profiles and the true profiles is the
combinational effect of the right amount of shifts and the success of deblurring.

4 Results

4.1 Consistent Read-length-specific Profiles

To test how shifting and deblurring affect the consistencies among profiles with
different read lengths, we compare read-length-specific profiles with the in-frame
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values of the observed profiles with length 28 (Pinit, Eq. (5)). We choose Pinit for
comparison because it is the original data in which we have the most confidence.
We use the Pearson correlation coefficient as a measurement of the consistency
between the read-length-specific profile and Pinit.

Two factors jointly improve the consistencies of ribosome profiles among
different lengths: the deblur procecess, and allowing a length-specific shift and
deviation from the consensus. Initially, none of the raw observed profiles (Pobs(l))
correlate well with the in-frame values of Pobs(28) (Fig. 2A). However, the cor-
relations are improved if the observed profiles are properly shifted and aligned
to Pobs(28) (Fig. 2B). The correlations can be further increased by applying the
deblur process to recover the length-specific clear profiles (Ptrue(l)) (Fig. 2C).
Lastly, compared to the initial guess of the consensus (Pinit), at the end of the
deblur process, the final consensus estimation (Ptrue) correlate better with the
length-specific clear profiles (Fig. 2D). Overall, the correlation between Ptrue(l)
and Ptrue for most lengths is close to 1. Since Ptrue is the centroid of Ptrue(l),
the good correlation between the two indicates that the deblurred profiles are
consistent across different read lengths.

4.2 Improved Frame Skewness

Our deblur process improves the frame skewness of the recovered A-site profiles,
even if it does not explicitly optimize or force frame skewness. The in-frame
position is the reading frame where reads are preferentially distributed within
a codon. It is usually frame 0 for the A-sites of ribosome footprints with the
absence of frameshifts. It is desirable for the recovered ribosome A-site profiles
to be highly skewed towards frame 0. This is because ribosomes move in units
of codons, so ribosome profiles should have 3-nt periodicity. Also, such profiles
should be mainly concentrated on frame 0, since frameshifts are rare. Indeed,
after deblur, the in-frame skewness does improve from an average of 71 % to 92 %
(Mann-Whitney U test p < 3 × 10−308; Fig. 3). This indicates that the deblur
process produces ribosome profiles with less noise. It also enables more reads to
be used in downstream analysis. For instance, if only the in-frame reads are used
to represent the codon-level ribosome counts, the deblur process will allow on
average 20 % more reads to be used.

4.3 Deblur Process Produces Sub-codon Resolution Profiles

The deblur procedure does not assume that the recovered A-site profiles are all
from a fixed frame, thus it keeps the sub-codon resolution of the A-site pro-
files, and allows detection of potential programmed frameshifts. To test whether
the deblur process can recover profiles with frameshifts, we synthetically gen-
erate frameshifts as follows: We first choose a random frame-0 location as the
frameshift point in a transcript, we then shift all reads with a start location
after such point to the right. This is to simulate an insertion in the transcript
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Fig. 3. Histograms of in-frame
(frame 0) portion of reads
before and after deblur. The
recovered A-site profiles have
a higher in-frame skewness
compared to the original pro-
files.

Fig. 4. Histograms of the frame-0 portion of the
ribosome profiles before the frameshift point and
the frame-1 portion of the ribosome profiles after
the frameshift point. The deblur process strength-
ens the frame skewness while keeping the estimated
ribosome positions to be in the correct frame.

to induce a frameshift. The recovered A-site profiles should have a high skew-
ness towards frame 0 before the frameshift point, and a high skewness towards
frame 1 after the frameshift point (see example in Fig. S6).

The deblur process successfully maintained and improved the skewness of
frame 0 before the frameshift point and the skewness of frame 1 after the
frameshift point (Fig. 4). Therefore, combining profiles with lengths other than
28 during the deblur process results in a recovery of a clear frameshifted A-site
profile, regardless of the incorrect initial guess. To sum up, frameshift detection
is an important task, but current frameshift detection method [27] suffers from
high false positive rates. Our deblur process recovers ribosome profiles with a
clear frame preference, which will promote the development of a better frameshift
detection.

4.4 Wobble Pairing Codons Translate Slower Than Watson-Crick
Pairing

The tRNA abundance was expected to be negatively correlated with the codon
decoding time (CDT) [7,8,14,22], and such correlation is strengthened using
our deblurred profiles. After deblur, 85 % of the codon distributions have a
smaller variance, indicating the deblur process successfully removes noise from
the observed read pileups. From these distributions, the estimated CDT is the
skewness of a lognormal fit [7] (details in Methods). Such estimated CDT is
compared with the tRNA Adaptation Index (tAI) [31] — proxy for the tRNA
concentration. The deblur process strengthens the Spearman correlation between
the tAI and the estimated CDT from −0.21 (p = 0.1) to −0.46 (p = 1 × 10−4).
This provides stronger evidence that tRNA abundance play roles in elongation
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speed. Similarly, the raw frequency of codon usage also negatively correlates with
the estimated CDT (Spearman correlation −0.5, p = 3.7× 10−5), indicating fre-
quent codons are translated faster than rare codons.

Wobble pairing could also affect the elongation speed. Since there are usu-
ally fewer tRNA types than codon types, some of the codons that encode the
same amino acid must be decoded by the same tRNA. Wobble pairing allows a
tRNA to recognize more than one codon. Within these synonymous codons, the
determinant of the codon decoding speed is the efficiency of the tRNA recog-
nizing the corresponding codon. According to the Wobble hypothesis [5], the
last two bases of the tRNA anticodon form Watson-Crick base pairs and bond
strongly to the first two bases of the codon. However, the anticodon’s first base
can form a wobble pair: The base G can either Watson-Crick pair with C, or
wobble pair with U; the base I (inosine, edited from A) can also both wobble pair
with C and U, but I:U pairing has a less favorable geometry [35]; the base U can
Watson-Crick pair with A, and wobble pair with G. It has been hypothesized
that wobble paired codons tend to be translated slower than their synonymous
Watson-Crick paired codons, since wobble pairs are more likely to be rejected
before peptidyl transfer, causing the tRNA selection cycle to be repeated [36].

Fig. 5. Relative differences of the CDT between pairs of codons that are decoded
by the same tRNA. Lighter colors are time differences estimated from original ribo-
some profiles, and darker colors are time differences estimated from deblurred pro-
files. The anticodon : codon pairings are: (A) U:A (Watson-Crick) vs U:G (wobble),
(B) G:C (Watson-Crick) vs G:U (wobble), (C) I:C (stronger wobble) vs I:U (weaker
wobble). The average relative time difference estimated from the deblurred profiles is:
0.2 between U:A and U:G, 0.1 between G:U and G:C, and 0.04 between I:U and I:C;
the average relative time difference estimated from the original profiles is 0.12 between
U:A and U:G, 0.07 between G:U and G:C, and 0.07 between I:U and I:C.
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We investigated how wobble pairing influences CDT in yeast. We focus on
pairs of codons that are translated by the same tRNA, so that the influence
of tRNA concentration on the elongation speed is controlled. In this case, the
codon pair shares the first two bases, and differs in the third base. We compared
the estimated decoding time between the codon pairs, and find that the wobble
pairing codons indeed are estimated to often translate slower than the Watson-
Crick pairing codons (Fig. 5).

We expect the decoding time difference between two wobble paired codons
to be smaller than the difference between a wobble pair codon and a Watson-
Crick pair codon, if the wobble-paired tRNA is truly more likely to leave the
ribosome without successful peptidyl transfer [36]. For the three codon pairs
being compared, we would therefore expect the time difference between I:C and
I:U to be smaller than the time difference between G:C and G:U, and between
U:A and U:G. To control for the absolute level of the translation time, we use
the relative decoding time difference between a synonymous codon pair. It is
defined as: Δt = (twobble − tWatson-Crick)/tWatson-Crick, where tx is the estimated
decoding time for a codon with either wobble pairing or Watson-Crick pairing.

Using the profiles from the deblur process, the decoding time difference is
inline with the above expectation. The decoding time difference between a wob-
ble paired codon and a Watson-Crick paired codon is indeed visibly larger than
the decoding time difference between two wobble pair codons (Fig. 5). Although
such a trend was first seen in metazoans [35], it was not observed for most
wobble paired codons in yeast [2,14,28]. It is also less obvious when CDTs are
estimated from the original ribosome profiles (Fig. 5). This indicates that the
uncorrected ribosome profiles obscure true ribosome A-site positions. Together,
the CDT estimated from the deblurred profiles strengthen the conclusion that
wobble pairing slows translation. These results also suggest that wobble pairing
can be used as a mechanism to regulate elongation speed.

5 Discussion

Estimating ribosome A-site positions from ribosome profiling data is a challeng-
ing necessary step in quantifying codon-specific translation speed and ribosome
pausing. There are controversial conclusions about whether the tRNA level plays
an important role in CDT. Different analysis pipelines performed on different
experiments show that the estimated CDT sometimes strongly correlates with
the codon usage [14], sometimes weakly correlates with tAI [22], and sometimes
does not correlate with the codon optimality [2] or tRNA level [30]. Different
estimates of CDT alone produce different correlations between the estimated
decoding time and the tRNA level among different species [7,8]. The fact that
there is evidence both for and against the correlation between tRNA levels and
CDT indicates that a better codon decoding time analysis pipeline is needed.

We here by no means try to touch all aspects of the elongation time esti-
mation, nor do we try to emphasize or diminish the impact of tRNA level on
the translation dynamics. We focus on recovering the A-site positions from the
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ribosome profiling data, the first step of any quantitative analysis on codon
rate or pausing strength. We show via several lines of intrinsic and extrin-
sic evidence that our deblur method provides better estimates of A-site pro-
files, leading new insights on translation dynamics. Source code for the deblur
method and the analysis can be found at: http://www.cs.cmu.edu/∼ckingsf/
software/riboasitedeblur/. An appendix including Sect. S1 and Figs. S1, S2,
S6 and additional information is available at http://www.cs.cmu.edu/∼ckingsf/
software/riboasitedeblur/deblur appendix.pdf.
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Abstract. Disease causing pathogens such as viruses, introduce their
proteins into the host cells where they interact with the host’s pro-
teins enabling the virus to replicate inside the host. These interactions
between pathogen and host proteins are key to understanding infectious
diseases. Often multiple diseases involve phylogenetically related or bio-
logically similar pathogens. Here we present a multitask learning method
to jointly model interactions between human proteins and three different,
but related viruses: Hepatitis C, Ebola virus and Influenza A. Our mul-
titask matrix completion based model uses a shared low-rank structure
in addition to a task-specific sparse structure to incorporate the various
interactions. We obtain upto a 39 % improvement in predictive perfor-
mance over prior state-of-the-art models. We show how our model’s para-
meters can be interpreted to reveal both general and specific interaction-
relevant characteristics of the viruses. Our code, data and supplement is
available at: http://www.cs.cmu.edu/∼mkshirsa/bsl mtl.

Keywords: Host-pathogen protein interactions · Multitask learning ·
Matrix completion

1 Introduction

Infectious diseases such as H1N1 influenza, the recent Ebola outbreak and bac-
terial infections, such as the recurrent Salmonella and E. coli outbreaks are a
major health concern worldwide, causing millions of illnesses and many deaths
each year. Key to the infection process are host-pathogen interactions at the
molecular level, where pathogen proteins physically bind to human proteins to
manipulate important biological processes in the host cell, to evade the host’s
immune response and to multiply within the host. Very little is known about
these protein-protein interactions (PPIs) between pathogen and host proteins for
c© Springer International Publishing Switzerland 2016
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any individual disease. However, such PPI data is widely available across several
diseases, and the central question in this paper is: Can we model host-pathogen
PPIs better by leveraging data across multiple diseases? This is of particular
interest for lesser known or recently evolved diseases where the data is partic-
ularly scarce. Furthermore, it allows us to learn models that generalize better
across diseases by modeling global phenomena related to infection.

An elegant way to formulate the interaction prediction problem is via a graph
completion based framework, where we have several bipartite graphs over mul-
tiple hosts and pathogens as illustrated in supplementary Fig. S1. Nodes in the
graphs represent host and pathogen proteins, with edges between them represent-
ing interactions (host protein interacts pathogen protein). Given some observed
edges (interactions obtained from laboratory based experiments), we wish to
predict the other edges in the graphs. Such bipartite graphs arise in a plethora
of problems including: recommendation systems (user prefers movie), citation
networks (author cites paper), disease-gene networks (gene influences disease)
etc. In our problem, each bipartite graph G can be represented using a matrix
M , where the rows correspond to pathogen proteins and columns correspond to
host proteins. The matrix entry Mij encodes the edge between pathogen protein
i and host protein j from the graph, with Mij = 1 for the observed interactions.
Thus, the graph completion problem can be mathematically modeled as a matrix
completion problem [2].

Most of the prior work on host-pathogen PPI prediction has modeled each
bipartite graph separately, and hence cannot exploit the similarities in the edges
across the various graphs. Here we present a multitask matrix completion method
that jointly models several bipartite graphs by sharing information across them.
From the multitask perspective, a task is the graph between one host and one
pathogen (can also be seen as interactions relevant to one disease). We focus
on the setting where we have a single host species (human) and several related
viruses, where we hope to gain from the fact that similar viruses will have similar
strategies to infect and hijack biological processes in the human body. Our model
is motivated by the following biological intuition governing protein interactions
across diseases.

1. An interaction depends on the structural properties of the proteins, which are
conserved across similar viruses as they have evolved from common ancestors.
We use a component to capture these latent similarities, that is shared across
tasks.

2. In addition to the shared properties discussed above, each pathogen has also
evolved specialized mechanisms to target host proteins. These are unique to
the pathogen and can be expressed using a task-specific parameter.

This leads us to the following model that incorporates the above ideas.
The interactions matrix Mt of task t can be written as: Mt = μt ∗
(shared component) + (1 − μt) ∗ (specific component), with hyperparameter μt

allowing each task to customize its’ amount of shared and specific components.
To incorporate the above ideas, we assume that the interactions matrix M is

generated from two components. The first component has low-rank latent factors
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over the human and virus proteins, with these latent factors jointly learned over
all tasks. The second component involves a task specific parameter, on which we
additionally impose a sparsity constraint as we do not want this parameter to
overfit the data. Section 3 discusses our model in detail. We trade-off the relative
importance of the two components using task-specific hyperparameters. We can
thus learn what is conserved and what is different across pathogens, rather than
having to specify it manually.

The applications that we consider involve extremely sparse graphs with a
large number of nodes and very few observed edges. There will be nodes i.e.,
proteins that are not involved in any known interactions – the model should be
able to predict links between such prior ‘unseen’ node pairs (this is called the
cold start problem in the recommendation systems community). For instance, the
host-pathogen PPI network of human-Ebola virus (column-3, Table 1) has ≈ 90
observed edges (equivalent to 0.06 % of the possible edges) which involve only 2
distinct virus proteins. Any biologist studying virus-human interactions will be
more interested in the virus proteins which have yet unknown interactions. The
main contributions of this work are:

1. We extend the basic matrix decomposition framework from [1] to the multi-
task setting by incorporating the structure between the tasks and providing
a mechanism for the tasks to share information.

2. We leverage node features which allows us to predict on unseen nodes.
3. We apply the model to an important problem – prediction of interactions in

disease-relevant host-pathogen protein networks, for multiple related diseases
and demonstrate significant gains in performance over prior state-of-the-art
multitask models.

4. We use unlabeled data to initialize the parameters of our model, which gives
us a modest boost in prediction performance.

1.1 Background: Host-Pathogen Protein Interactions

The experimental discovery of host-pathogen protein interactions involves bio-
chemical and biophysical methods such as co-immunoprecipitation (co-IP), yeast
two-hybrid (Y2H) assays, co-crystallization. The most reliable experimental
methods are often very time-consuming and expensive, making it hard to inves-
tigate the prohibitively large set of possible host-pathogen interactions – e.g., the
bacterium Bacillus anthracis with about 2321 proteins when coupled with the
100,000 human proteins gives ≈ 232 million protein pairs to validate. Compu-
tational techniques complement laboratory-based methods by predicting highly
probable PPIs. Supervised machine learning based methods use the few known
interactions as training data and formulate the interaction prediction problem
in a classification setting.

1.2 Prior Work

Most of the prior work in PPI prediction has focused on building models sep-
arately for individual organisms [13,16] or on building a model specific to a
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disease in the case of host-pathogen PPI prediction [5,9,17]. There has been
limited work on combining PPI datasets to learn joint models. [14] proposed
a semi-supervised multi-task framework to predict PPIs from partially labeled
reference sets. [10] develop a task regularization based framework that incor-
porates the similarity in biological pathways targeted by various diseases. [21]
uses a collective matrix factorization based approach in a multi-task learning
setting for within species PPI prediction. The methods used in all prior work on
PPI prediction do not explicitly model the features of the proteins and cannot
be applied on proteins which have no known interactions available. Our work
addresses both these issues.

2 Bilinear Low-Rank Matrix Decomposition

In this section, we present the matrix decomposition model that we extend for
the multitask scenario. In the context of our problem, at a high level, this model
states that – protein interactions can be expressed as dot products of features
in a lower dimensional subspace.

Let Gt be a bipartite graph connecting nodes of type υ with nodes of type ς.
Let there be mt nodes of type υ and nt nodes of type ς. We denote by M ∈
R

mt×nt , the matrix representing the edges in Gt. Let the set of observed edges
be Ω. Let X and Y be the feature spaces for the node types υ and ς respectively.
For the sake of notational convenience we assume that the two feature spaces
have the same dimension dt

1. Let xi ∈ X denote the feature vector for a node i
of type υ and yj ∈ Y be the feature vector for node j of type ς. The goal of the
general matrix completion problem is to learn a function f : X × Y → R that
also explains the observed entries in the matrix M . We assume that the function
f is bilinear on X × Y. This bilinear form was first introduced by [1] and takes
the following form:

f(xi,yj) = xᵀ
i Hyj = xᵀ

i UV ᵀyj (1)

The factor H ∈ R
dt×dt maps the two feature spaces X and Y. This model

assumes that H has a low-rank factorization given by H = UV ᵀ, where U ∈
R

dt×k and V ∈ R
dt×k. The factors U and V project the two feature spaces to a

common lower-dimensional subspace of dimension k. While the dimensionality
of the feature spaces X and Y may be very large, the latent lower dimensional
subspace is sufficient to capture all the information pertinent to interactions.
To predict whether two new nodes (i.e., nodes with no observed edges) with
features pi and qj interact, we simply need to compute the product: piUV ᵀqj .
This enables the model to avoid the cold start problem that many prior models
suffer from. The objective function to learn the parameters of this model has two
main terms: (1) a data-fitting term, which imposes a penalty for deviating from
the observed entries in Ω and (2) a low-rank enforcing term on the matrix H.

1 The dimensions being different does not influence the method or the optimization
in any way.
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The first term can be any loss function such as squared error, logistic-
loss, hinge loss. We tried both squared error and logistic-loss and found their
behaviour to be similar. The squared error function has the advantage of being
amenable to adaptive step-size based optimization which results in a much faster
convergence. The low-rank constraint on H (mentioned in (2) above) is NP-hard
to solve and it is standard practice to replace it with either the trace-norm or
the nuclear norm. Minimizing the trace norm (i.e., sum of singular values) of
H = UV ᵀ, is equivalent to minimizing ‖U‖2F + ‖V ‖2F . This choice makes the
overall function easier to optimize:

L(U, V ) =
∑

(i,j)∈Ω

cij �(Mij ,x
ᵀ
i UV ᵀyj) + λ(‖U‖2F + ‖V ‖2F ) (2)

where �(a, b) = (a − b)2

The constant cij is the weight/cost associated with the edge (i, j) which
allows us to penalize the error on individual instances independently. The para-
meter λ controls the trade-off between the loss term and the regularizer.

3 The Bilinear Sparse Low-Rank Multitask Model
(BSL-MTL)

In the previous section, we described the bilinear low-rank model for matrix
completion. Note that in order to capture linear functions over the features, we
introduce a constant feature for every protein (i.e., [xi1]). We now discuss the
multitask extensions that we propose. Let {Gt} where t = 1 . . . T be the set of
T bipartite graphs and the corresponding matrices be {Mt}. Each matrix Mt

has rows corresponding to node type υt and columns corresponding to the node
type ςt. The feature vectors for individual nodes of the two types be represented
by xti and ytj respectively. Let Ωt be the set of observed links (and non-links) in
the graph Gt. Our goal is to learn individual link prediction functions ft for each
graph. In order to exploit the relatedness of the T bipartite graphs, we make
some assumptions on how they share information. We assume that each matrix
Mt has a low-rank decomposition that is shared across all graphs and a sparse
component that is specific to the task t. That is,

ft(xti,ytj) = xᵀ
tiHtytj , where Ht = μtUV ᵀ + (1 − μt)St (3)

As before, the shared factors U and V are both R
dt×k (where the common

dimensionality dt of the two node types is assumed for convenience). The matrix
St ∈ R

dt×dt is a sparse matrix. The objective function for the multitask model
is given by:

L(U, V, {St}) =
1

N

T∑

t=1

∑

(i,j)∈Ωt

ct
ij �
(
Mtij ,xᵀ

tiHtytj

)2
+ λ(‖U‖2F + ‖V ‖2F ) +

T∑

t=1

σt‖St‖1

(4)
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Here N =
∑

t |Ωt|, is the total number of training examples (links and non-
links included) from all tasks. To enforce the sparsity of St we apply an �1 norm.
In our experiments, we tried both �1 and �2 norms and found that the �1 norm
works better.

Optimization: The function L(U, V, {St}) is non-convex. However, it is convex
in every one of the parameters (i.e., when the other parameters are fixed) and
a block coordinate descent method called alternating least squares (ALS) is
commonly used to optimize such functions. To speed up convergence we use an
adaptive step size.

Convergence: The ALS algorithm is guaranteed to converge only to a local
minimum. There is work showing convergence guarantees to global optima for
related simpler problems, however the assumptions on the matrix and the para-
meter structure are not very practical and it is difficult to verify whether they
hold for our setting.

Initialization of U and V : We tried random initialization (where we randomly
set the values to lie in the range [0 1]), and also the following strategies that
initialize: U0 ← top-k left singular vectors, and V 0 ← top-k right singular vectors
from the SVD of

∑

(i,j)∈Γ

xiy
ᵀ
j . We set Γ to (a) training examples from all tasks,

or (b) a random sample of 10000 unlabeled data from all tasks. We found that
using the unlabeled data for initialization gives us a better performance.

3.1 Handling the ‘Curse of Missing Negatives’

For the MC algorithm to work in practice the matrix entries Mij should represent
interaction scores (range [0 1]) or take binary values (1s for positives and 0s for
negatives). Our experiments with PPI probabilities (obtained using the MINT-
scoring algorithm) gave bad models. The binary matrix setting requires some
observed 0s. However non-interactions are not available as they cannot be verified
experimentally for various reasons. Please refer to the supplementary Sect. S1 for
details.

4 Experimental Setup

4.1 Datasets and Features

We use three human-virus PPI datasets from the PHISTO [18] database (ver-
sion from 2014), the characteristics of which are summarized in Table 1. The
Influenza A task includes various strains of flu: H1N1, H3N2, H5N1, H7N3.
Similarly, the Hepatitis task includes various strains of the virus.2 All three
are single-strand RNA viruses, with Hepatitis being a positive-strand ssRNA

2 Since we use data from several strains for each task, the PPI data contains some
interactions that are interologs. Please see the supplementary Sect. S4 for details.
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Table 1. Tasks and their sizes. Each column corresponds to one bipartite graph
between human proteins and the pathogen indicated in the column header. All
pathogens are single stranded RNA viruses. The interactions and the protein count
both includes data across various strains of each pathogen

Task → Influenza A Hepatitis C Ebola

Number of HP PPIs (positives) 848 981 90

# of distinct virus proteins in PPIs 54 151 2

# of distinct human proteins in PPIs 362 385 88

Total # of virus proteins across strains 542 163 150

Number of negatives 84800 98100 9000

Density of observed graph‡ (as %) .15 .60 .06

HP PPI: host-pathogen protein-protein interactions
‡: considering all proteins from the two tasks involved
Note: considering the total number of human proteins to be ≈ 100, 000

whereas Influenza and Ebola are negative-strand viruses. The density of the
known interactions is quite small when considering the entire proteome (i.e., all
known proteins) of the host and pathogen species (last row in Table 1).

Features: Since the sequence of a protein determines its structure and conse-
quently its function, it may be possible to predict PPIs using the amino acid
sequence of a protein pair. [15] introduced the “conjoint triad model” for predict-
ing PPIs using only amino acid sequences. They partitioned the twenty amino
acids into seven classes based on their electrostatic and water affinities.3 A pro-
tein’s amino acid sequence is first transformed to a class-sequence (by replacing
each amino acid by its class). For k=3, they count the number of times each
distinct trimer (set of three consecutive amino acids) occurred in the sequence.
Since there are 343 (73) possible trimers (with an alphabet of size 7), the fea-
ture vector containing the trimer frequency counts will have 343 elements. To
account for protein size, they normalized the counts by linearly transforming
them to lie between 0 and 1. Thus the value of each feature in the feature vector
is the normalized count for each of the possible amino acid three-mers. We use
di-, tri- and four-mers thus leading to a total of 2793 features (72 + 73 + 74).
Such features have been successfully applied in prior work [5,10].

4.2 Competing Methods

We compare BSL-MTL to various single-task and multitask methods, which
includes conventional multitask methods and other recent low-rank and sparse
models, and prior work on HP PPI prediction. Wherever appropriate, we con-
catenated the features of the two node types into a single feature vector. Let
W ∈ R

T×dt be the matrix with the task-specific weight vectors wt. For a uni-
form comparison we used least squared loss in all the methods. The MALSAR
3 For details of these classes, please refer to the supplementary or the original paper.
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package was used for some of the baselines. Refer to supplementary Sect. S2 for
parameter tuning.

Single task (STL): Ridge regression with �2 regularization.
MMTL: The mean regularized multitask learning model from [6].
Low rank model (TraceNorm): A low-rank structure is enforced on W
by minimizing the nuclear norm ‖W‖∗.
Sparse + low-rank (SpLowRank) [3]: W is assumed to have the decom-
position: W = P + Q, where P is sparse and Q has a low-rank structure.
IMC [8,12]: This is the link-prediction model from Sect. 2, where data from
all tasks is combined without incorporating any task relationships (compara-
ble to the ‘union’ setting from [20]). U and V are shared by all tasks. We use
the same initialization for this method as we do for our model. A compari-
son to this model tells us how much we gain from the task-specific sparsity
component St.
MTPL [10]: A biologically inspired regularizer is used to capture task simi-
larity.
BSL-MTL: This work, Bilinear sparse low-rank multitask learning.

Table 2. Area Under the Precision-Recall curve for each task in the two settings. X%
training indicates the fraction of the labeled data used for training and tuning the
model with the rest (100-X)% used as test data. We report the average AUC-PR over
10 random train-test splits (stratified splits that maintain the class-skew of 1:100). The
standard deviation is also shown. The performance of the best baseline and the overall
best method (BSL-MTL) is highlighted in bold. The first row is the only single-task
method and all others are multitask models.

10% training 30% training

Ebola Hep-C Influenza Ebola Hep-C Influenza

STL (Ridge Reg.) 0.189±.09 0.702±.08 0.286±.02 0.220±.03 0.802±.03 0.428±.03

MMTL [6] 0.113±.04 0.767±.03 0.321±.02 0.129±.02 0.802±.04 0.430±.03

Trace-norm 0.199±.11 0.767±.03 0.318±.02 0.207±.02 0.808±.02 0.409±.03

SpLowRank [3] 0.144±.07 0.767±.02 0.318±.02 0.153±.02 0.814±.01 0.414±.03

MTPL [10] 0.217±.08 0.695±.02 0.345±.02 0.260±.05 0.713±.01 0.496±.03

IMC [12] 0.087±.04 0.779±.02 0.362±.01 0.122±.02 0.801±.01 0.410±.03

BSL-MTL 0.233±.10 0.807±.02 0.486±.02 0.361±.03 0.842±.01 0.560±.02

4.3 Evaluation Setup

We first compare all the methods in two settings, where a small proportion
of the available labeled data is randomly sampled and used to train a model
which is then evaluated on the remaining data. For the first setting we randomly
split the labeled data from each task into 10 % training and 90 % test, such
that the class-skew of 1:100 is maintained in both splits (i.e., stratified splits).
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The second setting uses a 30 % training, 70 % test split. We use identical splits
for all algorithms. In each setting we generate ten random splits and average the
performance over the ten runs. Next, we do a standard 10-fold cross validation
(CV) experiment (8 folds to train, 1 fold as held-out, 1 fold as test data). In this
setting, each algorithm has access to a much larger training set but a significantly
smaller test set. The two prior settings (10 % and 30 %) portray a more realistic
multitask scenario where we have access to little training data from each task.

We report the area under the precision recall curve (AUC-PR) along with
the standard deviation. AUC-PR has been shown to give a more informative
picture of an algorithm’s performance than ROC curves in high class imbalance
datasets [4] such as ours.

5 Results

Table 2 has the AUC-PR for all methods. Note that the AUC-PR of a random
classifier model is ≈ 0.01. The first row (STL) is the single-task baseline and
all others are multitask models. In general, we notice that multitask learning
benefits all tasks. The first three columns show the results in the 10 % setting.
Our model (last row) has significant gains for Influenza (1.3 times better than
the next best) and modest improvements for the other tasks. The variance in the
performance is high for the Ebola task (column 1) owing to the small number of
positives in the training splits (8 positives). The most benefits for our model are
seen in the 30 % setting for all tasks, with improvements of 39 %, 3 % and 12 %
on the Ebola, Hepatitis and Influenza tasks, respectively. Ebola, the data-poorest
task, benefits the most. 10 fold CV results are in the supplementary Sect. S3.

5.1 Biological Significance of the Model

The model parameters U , V and S are a source of rich information which can
be used to further understand host-pathogen interactions. Note that our fea-
tures are derived from the amino acid sequences of the proteins which provide
opportunities to interpret the parameters.

Clustering Proteins Based on Interaction Propensities. We analyze
the proteins by projecting them using the model parameters U and V into a
lower dimensional subspace (i.e., computing XUᵀ and Y V ᵀ to get projections
of the virus and human proteins respectively). The principal component analy-
sis (PCA) of this lower dimensional representation is compared with PCA in
the original feature space (protein sequence features) in Fig. 1. Firstly, the pro-
jected data has a much better separation than the original data. Secondly, Fig. 1
(right) tells us that Hepatitis-C and Influenza have many proteins with similar
binding tendencies, and that these behave differently than most Ebola virus pro-
teins. This observation is not obvious in the PCA of the original feature space
(Fig. 1 left), where proteins with similar sequences cluster together. These clus-
ters of proteins can be analyzed further for enrichment of Gene Ontology (GO)
annotations.
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Fig. 1. First two components from Principal
component analysis (PCA) of virus proteins.
Left : PCA of original feature space. Right : PCA
of projected subspace. Shape of the points indi-
cates the virus the protein belongs to.
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viruses.
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Fig. 3. Sequence motif constructed
from the top four-mer features of virus
proteins across all three viruses.
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Fig. 4. Sequence motif constructed
from the top four-mer features of
human proteins

Sequence Motifs from Virus Proteins. In Figs. 2, 3 and 4, we show sequence
motifs derived from the top k-mers that contribute to interactions. The signifi-
cant entries of the model parameters U , V and {St} were used to compute these
motifs. The top positive-valued entries from the product UV T indicate which
pairs of features: ((fv, fh): virus protein feature, human protein feature) are
important for interactions across all the virus-human PPI tasks. Analogously,
the entries from St give us pairs of features important to a particular virus-
human task ‘t’. We find that most of the top entries from UV T correspond to
linear virus features, whereas those from the various St involve bilinear features.
We analyze the k-mers corresponding to the top 20 features from each of the
matrices.

Note that our features do not directly correspond to a unique amino-acid
k-mer (see Sect. 4.1): the virus feature fv will map to several amino-acid
sequences (for instance KKCC, KRCC, RRCC etc. all map to a single feature
due to the molecular similarity between the amino acids K and R being both
positively charged). Given the set of top virus features we can obtain the corre-
sponding set of amino-acid k-mers, say AAv, by reversing the feature-generation
step. However most of the possible k-mers do not appear in the training data
(ex: out of the 160,000 (= 204) possible 4-mers ≈ 24, 000 appear). Let AAtr

be the set of amino-acid k-mers that appear in the training data. Then, the
intersection Iv = AAv ∩ AAtr gives us the important amino-acid k-mers from
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virus proteins w.r.t interaction prediction. To summarize Iv, we use a popular
tool Seq2Logo [19] to generate a sequence motif. The logos for the two-, three-,
four-mers from Iv are generated independently. Since we only want to summa-
rize, we use the Shannon logo type (which does not consider any background
amino-acid distribution) with the following settings: clustering-method = None,
weight-on-prior = 1 (pseudo-counts do not make sense in our analysis). Figures 2
and 3 show the motif that is common across viruses.

This procedure described above is used to analyze the most significant human
protein features, obtained from the matrix UV T , which are shown in Fig. 4. We
observe that the shared trimer motif for virus proteins in Fig. 2 is dominated by
hydrophilic amino acids (K, R, T, D, E). All other motifs seem to be dominated
by hydrophobic residues (I, P, L, V, A, G) though S and T do appear in some
motifs as well. The human protein motifs are shown in Fig. 4. Further analysis
with trimers and tetramers specific to the pathogens is in the supplementary,
Sects. S5 and S6. These task-specific features (i.e., k-mers) are obtained from the
matrices Sebola, Shepc and Sflu respectively. In most cases, the first position of
the trimer was less significant than the second and third, while for the tetramer
all four positions show clear preferences.

Phosphorylation sites: We found the frequent occurrence of S and T and some-
times Y in the motifs striking and suspected this may be related to the amino
acids being frequent targets of phosphorylation. Phosphorylated sites often serve
as PPI sites, and databases such as Phosphosite [7] are repositories for known
sites in human proteins. Since these are sites in human proteins, we searched
for the patterns from the 4-mer motif in Fig. 4 and found several to be flank-
ing known phosphorylation sites in human proteins: LLLs, LLLt, ILLs, PPPs,
PIPs, PIPt, LIPs, PLLt (lower-case indicates the putative phosphorylation site).
This observation also supports the notion that the motifs our method finds are
biologically interesting.

Novel Interactions with Ebola Proteins. The top four Ebola-human PPI
are all predictions for the Ebola envelope glycoprotein (GP) with four different
human proteins (Note: GP is not in the gold standard PPIs). There is abundant
evidence in the published literature [11] for the critical role played by GP in virus
docking and fusion with the host cell. A list of interactions will be provided on
the corresponding authors website.
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ETH Zürich, Basel, Switzerland

niko.beerenwinkel@bsse.ethz.ch
2 Swiss Institute of Bioinformatics, Basel, Switzerland

Abstract. In recent years, high-throughput sequencing technologies
have facilitated the generation of an unprecedented amount of genomic
cancer data, opening the way to a more profound understanding of
tumorigenesis. In this regard, two fundamental questions have emerged:
(1) which alterations drive tumor progression? and (2) what are the
evolutionary constraints on the order in which these alterations occur?
Answering these questions is crucial for therapeutic decisions involv-
ing targeted agents, which are often based on the identification of early
genetic events. Mainly because of interpatient heterogeneity, progression
at the level of pathways has been shown to be more robust than progres-
sion at the level of single genes. Here, we introduce pathTiMEx, a prob-
abilistic generative model of tumor progression at the level of mutually
exclusive driver pathways. pathTiMEx employs a stochastic optimiza-
tion procedure to jointly optimize the assignment of genes to pathways
and the evolutionary order constraints among pathways. On cancer data,
pathTiMEx recapitulates previous knowledge on tumorigenesis, such as
the temporal order among pathways which include APC, KRAS and
TP53 in colorectal cancer, while also proposing new biological hypothe-
ses, such as the existence of a single early causal event consisting of the
amplification of CDK4 and the deletion of CDKN2A in glioblastoma.
The pathTiMEx R package is available at https://github.com/cbg-ethz/
pathTiMEx. Supplementary Material for this article is available online.

1 Introduction

Over the last years, our basic understanding of tumorigenesis has increased
substantially, primarily as a result of the large-scale use of high-throughput
sequencing technologies. High-resolution genomic, epigenomic, transcriptomic
and proteomic information from tens of thousands of cancerous samples are now
publicly available [7–9], providing the medical and research communities with an
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unprecedented amount of genetic data. In this context, two fundamental ques-
tions have emerged in describing tumorigenesis [34]: (1) which alterations drive
tumor progression? and (2) what are the evolutionary constraints on the order
in which these alterations occur? Answering these questions is crucial not only
for therapeutic decisions, but also for the basic understanding of carcinogenesis.
Early genetic events, such as point mutations or copy number aberrations, have
a particularly important role in tumor development, as they may induce the
so-called oncogenic addiction [29,42], when some tumors rely on one single dom-
inant oncogene for growth and survival [39]. The identification of these events
can prioritize the validation of candidate drug targets.

In the context of identifying important events in carcinogenesis, genes which
have a positive selective advantage and significantly contribute to tumor pro-
gression are termed drivers, while genes which are selectively neutral are termed
passengers. Intuitively, drivers and passengers can be classified according to
their marginal alteration frequencies in a cohort of patients. However, the highly
diverse alteration landscape characteristic of malignant tumors is often poorly
explained solely by the highly frequently altered genes [37]. A more sensitive
and robust identification of driver events consists in analyzing the joint effect
of multiple alterations performing the same functional role in tumor progres-
sion, commonly referred to as pathways. Once one of the members of a pathway
is altered, tumors gain a significant selective advantage, which is not further
increased by the alteration of additional pathway members. The clones with
only the first alteration likely become dominant, rendering all alterations in the
same pathway to display a mutually exclusive pattern. Therefore, in tumorigen-
esis, identifying groups of mutually exclusive genes can lead to identifying driver
events.

Several computational approaches to identify mutually exclusive pathways
either de novo [12,22,23,26,38,40,44] or based on literature-derived biologi-
cal interaction networks [2,11] have recently been developed. Multidendrix [26]
employs integer linear programming to find multiple driver pathways, improv-
ing on the tool Dendrix [40], which identifies a single pathway with both high
coverage and high exclusivity. CoMEt [44] further improves the methodology of
Multidendrix by proposing a generalization of Fisher’s exact test for evaluating
mutual exclusivity. Muex [38] is a statistical model in which members of mutually
exclusive groups are required to have similar alteration frequencies, MEMCover
[23] detects dysregulated mutually exclusive subnetworks across different cancer
types, and Daisy [22] employs a data-driven approach for identifying synthetic
lethality interactions in cancer, which lead to mutual exclusivity. Finally, TiMEx
[12] is a generative probabilistic model which quantifies exactly the degree of
mutual exclusivity for each identified pathway. TiMEx explicitly models tumori-
genesis as a dynamic process, accounting for the interplay between the waiting
times to alteration of each gene and the observation time. Except TiMEx, all
other methods ignore the fact that mutually exclusive patterns occur over time,
during disease progression.
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Fig. 1. Overview of pathTiMEx. In the first step, a cancer genomics dataset (con-
sisting of, for example, point mutations or copy number aberrations for a cohort of
patients) is preprocessed in the form of a binary alteration matrix, with rows rep-
resenting patients and columns representing alterations. A black square encodes the
presence of an alteration, and a white square encodes its absence. In the second step,
on the basis of the binary matrix, mutually exclusive groups of alterations (pathways)
are inferred with TiMEx [12], and the progression among pathways is inferred with
CBN [19]. In the third step, the progression among pathways is used as the initial
solution to a stochastic optimization routine, which consists of two parts. First, given
the fixed optimal progression among pathways, the assignment of genes to pathways
is optimized via a Markov Chain Monte Carlo (MCMC) approach [30]. Second, given
the fixed optimal assignment of genes to pathways, the progression among pathways is
optimized via simulated annealing [24]. The joint optimization is repeated until both
the assignment of genes to pathways and the progression among pathways converge to
the joint optimal solution.

In the context of evolutionary order constraints in cancer (see [4,15] for
recent reviews on progression models), Fearon and Vogelstein [18] were the first
to show that not all progression paths are equally probable. Based on genetic
and clinical data, their model proposed the existence of a linear order among
several mutations in colorectal cancer. Next, oncogenetic trees [14] generalized
the idea of a single progression path, by allowing diverging temporal orderings
of events, under the assumption that each event depends on a single parent. At
the cost of increased computations, Bayesian Networks for cancer progression
[3,5,19,21,35] addressed the restriction of tree-based methods of not allowing
different progression paths to converge. For example, Conjunctive Bayesian Net-
works (CBN) [5,19] are generative models of tumor progression, defined by a
partial order on a set of events, and in which the occurrence of each event can
depend on more than one parent. Other approaches include RESIC [1], which
explicitly considers the evolutionary dynamics of mutation accumulation, Pro-
gression Networks [16], which employ mixed integer linear programming, and
CAPRESE [28] and CAPRI [32], which use a framework of probability causa-
tion.

Virtually all cancer progression models are designed to infer tumorigenesis
using only cross-sectional data, i.e. single-time snapshots from multiple patients.
However, because of the very high interpatient heterogeneity [41], carcinogenesis
often follows different progression paths in different individuals. Even though the
selective pressure in cancer is known to be stronger on pathways than on single
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alterations [20,41], only three previous models describe tumorigenesis at the level
of pathways [10,20,34]. Commonly, in a first step, single alterations are mapped
to literature-derived pathways, and, in a second step, progression algorithms are
used to infer the order constraints among pathways [10,20]. Besides the inherent
disadvantages of using literature-derived pathways, such as lack of specificity
and large pathway size, these approaches are assuming that the inference of
either driver pathways or order constraints are independent of eachother. On the
contrary, Raphael and Vandin [34] have formally shown that the single a priori
knowledge of either pathways or progression is not sufficient for inferring the
correct joint solution. However, their joint integer linear programming model of
progression among mutually exclusive pathways assumes that cancer progresses
via a single linear path, which is a very restricted representation of tumorigenesis.

Here, we introduce pathTiMEx, a probabilistic generative model of cancer
progression at the level of driver pathways (Fig. 1). pathTiMEx directly general-
izes TiMEx [12], a waiting time model for mutually exclusive cancer alterations,
and CBN [19], a waiting time model for cancer progression at the level of single
genes (Fig. 2). We assume that, in tumor development, alterations can either
occur independently, or depend on eachother by being part of the same path-
way or by following particular progression paths. By inferring these two types
of potential dependencies simultaneously, pathTiMEx jointly identifies driver
events and the evolutionary order constraints among them. In our approach,
the structure among pathways is modeled as a directed acyclic graph (DAG),
hence the model of Raphael and Vandin [34] is a special case of pathTiMEx,
corresponding to the situation when the structure is fixed to a linear path.

On publicly available cancer data, pathTiMEx recapitulates previous knowl-
edge on tumorigenesis, such as the temporal order among pathways which include
APC, KRAS and TP53 in colorectal cancer, while also proposing new biologi-
cal hypotheses, such as the existence of a single early causal event consisting of
the amplification of CDK4 and the deletion of CDKN2A in glioblastoma. Our
approach represents the first joint probabilistic generative model of cancer pro-
gression via multiple paths, at the level of mutually exclusive driver pathways.

2 Methods

2.1 Probabilistic Model

Preliminaries. Let G = {1, . . . , n} and P = {1, . . . , k} be two sets of
genetic events, with associated random variables TG = (T1, . . . , Tn) and UP =
(U1, . . . , Uk), where Tg represents the waiting time to occurrence of event g ∈ G
and Up represents the waiting time to occurrence of event p ∈ P. Given G,
let the vector of random variables π = (π1, . . . , πn) be a partition of G. In the
context of tumor evolution, G is a set of n genes, and P is a set of k mutu-
ally exclusive pathways, to which the n genes are assigned via π. Given π, let
(P,≺) be a partially ordered set (poset), where ≺ is a reflexive, antisymmet-
ric and transitive order relation on the events in P. If two events i, j ∈ P are
related as i ≺ j, then event i occurs before or at the same time as event j,
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which directly corresponds to an order restriction between their corresponding
waiting times: Ui < Uj . We define the set of parents of any event p ∈ P to be
pa(p) := {j ∈ P | j ≺ p and � k ∈ P s.t. k �= p, j and j ≺ k ≺ p}. We assume
that each event can only occur once all its parents have occurred, and that
the occurrence of an event represents the irreversible fixation of its alteration,
referred to as mutation. Each tumor progresses from T0, the onset of cancer,
corresponding to the occurrence of the first cellular signal related to the growth
of a malignant tumor, until Tobs, the observation time, corresponding to the time
of tumor biopsy. Without loss of generality, T0 is set to 0.

Generative Model. We assume that genes are uniformly assigned to pathways,
subject to the restrictions that π is a partition and that the poset (P,≺) is uni-
formly distributed over the space of all transitively reduced Bayesian Networks
of size k, denoted here by Dk. Tobs is regarded as a system failure time, hence
it follows an exponential distribution with an unknown rate: Tobs ∼ Exp(λobs).
We extend (P,≺) to include order relations among the events in P and the
observation event obs, and we denote the extended poset by (Pobs,≺), where
Pobs = {P ∪ obs}.

The genes in the same pathway are assumed to contribute to the same bio-
logical function, such that, up to various degrees of mutual exclusivity, only one
gene is necessary and sufficient to be mutated for cancer to progress. The mutual
exclusivity interaction among the members of each pathway drives tumor pro-
gression via a mutation in the gene with the shortest waiting time. Therefore,
the waiting time of pathway p is the minimum waiting time of its gene members:
Up := min

g:πg=p
Tg. Once all the parents of pathway p have occurred, the waiting

times of its members follow exponential distributions with rates equal to the
rates of evolution specific to each gene. Hence, starting from the initial time T0,
the waiting time of gene g is Tg ∼ max

j∈pa(πg)
Uj + Exp(λg), which is equivalent

to Tg ∼ max
j∈pa(πg)

min
k:πk=j

Tk + Exp(λg). Following the mathematical framework of

TiMEx [12], the parameter μp represents the degree of mutual exclusivity of
pathway p and it is modeled as the fractional increase in fixation probability
of the clones in which only the gene with the shortest waiting time mutates,
provided that its waiting time is also shorter than the observation time. With
probability μp, alterations in additional pathway members do not fixate before
observation time. Hence, μp is the probability that p is perfectly mutually exclu-
sive, i.e. at most one gene in p is mutated. Consequently, 1 − μp quantifies
deviations from perfect mutual exclusivity, such that, with probability 1 − μp,
the temporal dynamics of the gene members of p are independent, conditioned
on the observation time. In this case, a gene is mutated if and only if its waiting
time is shorter than the observation time.

The true mutational statuses of the n genes are represented by the vector
of binary random variables X = (X1, . . . , Xn). Any instantiation of X , namely
x = (x1, . . ., xn) is referred to as a true genotype and can be alternatively rep-
resented as a collection of sets s = {s1, . . . , sk}, where each set sp := {g |
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πg = p and xg = 1}, ∀p ∈ P consists of the genes mutated in pathway p. The
mutational status of any gene g depends on its own waiting time, the wait-
ing time of pathway πg, and the observation time. Therefore, with probability

μπg
, Xg =

{
1, if Uπg

= Tg and Tg < Tobs

0, otherwise
and, with probability 1 − μπg

,

Xg =

{
1, if Tg < Tobs

0, otherwise
. Due to both biological and experimental noise, it can

either happen that a mutation present in a gene is not observed (false negative),
or that a gene is incorrectly labeled as mutated (false positive). We denote the
observed genotype by the vector of random variables Y = (Y1, . . . , Yn), where
each Yg represents the observed mutational status of gene g ∈ G. Y is generated
from X by drawing from a Bernoulli distribution with P (Yg = Xg) = 1 − ε,
where ε ∈ [0, 1).

T1 T2 T7 T8

X2 X4 X5 X6 X7X1 X8

Y2 Y4 Y5 Y6 Y7Y1 Y8

T4 T5 T6T3

X3

Tobs

Y3

U2

U3U1

Fig. 2. The probabilistic graphical model pathTiMEx. Nodes represent variables
and directed edges represent dependencies. The hidden variables are colored, while the
observed ones are not, and the three colors correspond to three different pathways.
Variables Tg are the waiting times to alteration of the genes, Up are the waiting times
to alteration of the pathways, Tobs is the observation time, Xg are the true mutational
statuses of the genes, and Yg are the observed ones. The corresponding generative
distributions are depicted alongside. Additionally, the assignment of genes to pathways
π ∼ U{P}, where P is the set of k mutually exclusive pathways, the poset (P, ≺) ∼ Dk,
the intensity of mutual exclusivity of pathways μp ∼ U [0, 1], and the error probability
per gene ε ∼ U [0, 1). By Dk, we denote the set of transitively reduced DAGs with k
vertices.

Consequently, the pathTiMEx model θ (Fig. 2) is characterized by the
poset (Pobs,≺), together with 2n + k + 2 additional parameters: θ =
((Pobs,≺) , λ1, . . . , λn, λobs, π1, . . . , πn, μ1, . . . , μk, ε), where λi > 0 are the expo-
nential waiting time rates of the events in G ∪ obs, πg ∈ P are the assignments
of genes to pathways, μp ∈ [0, 1] are the degrees of mutual exclusivity of the
pathways, and ε ∈ [0, 1) is the probability of an erroneous observation at the
level of genes. The set of random variables {TG , UP , Tobs,X , Y }, together with
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the dependencies among its elements, form a Bayesian Network. pathTiMEx is a
direct generalization of both TiMEx [12], which only models independent mutu-
ally exclusive pathways, and CBN [19], which only models progression among
single genes. Similarly to the two models, pathTiMEx is unidentifiable up to
λobs, since cross-sectional input datasets lack temporal information. After set-
ting λobs = 1 (without loss of generality), equivalent to scaling the waiting time
rates by λobs, the reparametrized model becomes identifiable.

μp, the degree of mutual exclusivity of pathway p, together with ε, the error
probability per gene, represent different ways of capturing the effects of bio-
logical and technical noise acting either on each pathway or on their progres-
sion. In order to remove the redundancy of modeling two non-independent error
processes, we assume that all pathways are perfectly mutually exclusive and that
deviations from both mutual exclusivity and progression constraints are jointly
explained by ε. In the remainder of this paper, we consider that μp = 1, ∀p ∈ P.
The general expression of the likelihood when μp ∈ [0, 1] is given in Sect. S1.1.

Likelihood. The joint probability density of the waiting times is

fTG ,UP ,Tobs (tG , uP , tobs | θ) =
∏

g∈G
fTg (tg | Ui = ui, ∀i ∈ pa(πg); θ)

×
∏

p∈P
fUp (up | Tj = tj , ∀j s.t. πj = p; θ) fTobs (tobs | θ)

=
∏

g∈{G∪obs}
λge

−λg

⎛

⎝tg− max
i∈pa(πg)

min
j:πj=i

tj

⎞

⎠

× �tg> max
i∈pa(πg)

min
j:πj=i

tj
∀g ∈ G (1)

Conditioned on the observation time and on the waiting times of the pathways,
the true mutational statuses of genes in separate pathways are independent.
Their conditional probability distribution is

P (X | TG , UP , Tobs, θ) =
∏

g∈G
P
(
Xg | Tg, Uπg , Tobs, θ

)
=
∏

p∈P
P (Sp | Tk, ∀k s.t πk = p;Tobs; θ)

(2)

In the absence of noise, in a given pathway p, a true genotype contains no
mutations if the observation time is shorter than the waiting times of all pathway
members. Alternatively, since μp = 1, a single mutation (of gene j) is present
in the set sp if and only if p is perfectly mutually exclusive. The presence of
additional mutations in p represents a deviation from mutual exclusivity and, in
the absence of noise, has probability 0
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P
(

s
p | Tk = tk, ∀k s.t. πk = p; Tobs = tobs; θ

)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

P

(

Tobs < min
i:πi=p

Ti

)

if sp = ∅

P

(

Tj < min
i:πi=p;i�=j

(Ti, Tobs)

)

if sp = {j}

0 if |sp| ≥ 2

(3)

The likelihood of the true genotype X is the marginal probability

P (X | θ) =

∫
· · ·
∫

R
n+k+1
≥0

fTG ,UP ,Tobs (tG , uP , tobs | θ) P (X | TG , UP , Tobs, θ) dtG duP dtobs

(4)

which can be decomposed into a sum over all linear extensions of the poset
(Pobs,≺) (proof in Sect. S1.1). Conditioned on the true genotype, the likelihood
of the observed genotype is

P (Y | X , θ) =
∏

g∈G
P (Yg | Xg, θ) = εd(Y −X ) (1 − ε)n−d(Y −X ) (5)

where d (X , Y ) =
∑

g∈G | Yg − Xg | is the Hamming distance between the true
genotype X and the observed genotype Y . If we denote by J (P) the set of all
true genotypes compatible with the poset (Pobs,≺), it follows that the likelihood
of the observed genotype Y is

L (θ | Y ) = P (Y | θ) =
∑

X∈J(P)

P (Y | X , θ) P (X | θ) (6)

The log likelihood of a dataset of N independent samples Y =
(
Y 1, . . . , Y N

)
,

where each Y i is an observed genotype, is

l (θ | Y) =
N∑

i=1

log L
(
θ | Y i

)
(7)

2.2 Inference

Given a dataset of N independent samples Y, the inference scheme of path-
TiMEx aims to maximize the log likelihood in (7). The initial solution of our
inference procedure is generated by first running TiMEx [12] with default para-
meters (μpair = 0.5, ppair = 0.01 and pgroup = 0.1) iteratively on the input
binary dataset. Each time, the largest and most significant pathway is retained
and TiMEx is ran again on the dataset from which the members of the recently-
identified pathway were excluded. This procedure is repeated until no more sig-
nificantly mutually exclusive pathways are found. TiMEx identifies mutually
exclusive groups as maximal cliques, and estimates the waiting time rates of the
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genes λg, as well as the mutual exclusivity intensities of the pathways μp, by
computing the maximum likelihood estimates (MLEs) numerically. In a second
step, the CBN routine [19] is ran on the binarized matrix obtained by encoding
a pathway as altered whenever at least one of its gene members is altered. CBN
estimates the waiting time rates of the pathways λp, as well as the error prob-
ability ε, via a nested Expectation-Maximization (EM) algorithm [13], where,
conditioned on an optimal fixed value of ε, λp are optimized and, conditioned on
the optimal fixed values of λp, ε is optimized. The progression among pathways
is inferred via simmulated annealing [24].

Starting from the initial solution, the joint optimization of pathways and
structure follows a framework similar to an EM algorithm: conditioned on the
optimal assignment π, the poset (P,≺) is optimized and, conditioned on the opti-
mized poset, a new optimal assignment is computed. The procedure is repeated
until both π and (P,≺) converge. Specifically, in iteration i ≥ 2, given an opti-
mal fixed structure

(
P̂i−1, ≺̂i−1

)
, πi is optimized via a Markov Chain Monte

Carlo (MCMC) scheme [30]. This amounts to minimizing the number of contra-
dictions due to both mutual exclusivity and progression Ei, which represents the
number of ones that would need to be changed to zeroes to ensure consistency
of the data Y with both πi and

(
P̂i−1, ≺̂i−1

)
. For fixed parameters (P,≺), λ,

and μ = 1, Ei =
∑N

j=1 d
(
Xj , Y j

)
, where X =

(
X1, . . . , Xn

)
is the set of true

genotypes. Therefore, mimizing Ei is equivalent to maximizing the likelihood in
(7) as a function of ε, and Êi = Nn ε̂i (proof in Sect. S1.2). A detailed explana-
tion of the MCMC scheme, including its computational complexity, is given in
Sect. S1.2.

Given the optimal assignment π̂i, (Pi,≺i) is optimized via simmulated
annealing, by locally maximizing the likelihood function in (7), given a set of
optimal parameters λ̂p and ε̂ found via the nested EM procedure. Starting from a
poset P , a new acylic poset P ′ is proposed and it is accepted either if it increases
the likelihood, or with probability exp

(
−

[
l
(
λ̂p, ε̂, P

)
− l

(
λ̂p, ε̂, P

′
)]

/T
)
. The

temperature T reduces the risk of remaining in local optima.

3 Results

3.1 Simulations

We compared the performance of the iterative and the classic TiMEx proce-
dures using simulated data, for various noise levels ε and number of samples N .
Specifically, we considered two independent mutually exclusive groups consisting
of two genes each, for which the waiting time rates λ were uniformly sampled
between 0.1 and 2. According to this simulation scenario, the genes cover a wide
range of alteration frequencies, from less than 1 % to more than 60 % [12]. In
the absence of noise, all pathways were perfectly mutually exclusive, i.e. μ = 1.
With noise probability ε ∈ {0, 0.05, 0.1, 0.15}, each entry in the binary alteration
matrix consisting of N ∈ {100, 400, 1000} patients was flipped either from zero to
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one or otherwise. We generated 100 datasets corresponding to each of the above
configurations, and inferred mutually exclusive groups with either the iterative
or the classic TiMEx procedures. Iterative TiMEx clearly outperformed Classic
TiMEx for all tested sample sizes and noise levels (Fig. S1).

Additionally, we designed a simulation experiment assessing the performance
and stability of pathTiMEx, for the noise levels ε and sample sizes N mentioned
above. We simulated a progression model consisting of 12 genes assigned to 5
mutually exclusive pathways. The assignment of genes to pathways was random,
with the sole restriction that each pathway contained at least one gene. 87 % of
the 100 generated datasets included at least one pathway with a single member
and 78% of them included at least one pathway with at least four members. The
order constraints among pathways were generated as a DAG with a number of
edges uniformly sampled as to satisfy an edge density (number of existing edges
divided by number of all possible edges) of between 0.4 and 0.8. In consequence,
each poset had at least one unconnected pathway, and the majority of pathways
were connected to either one or two other pathways. Our simulation scenarios
resemble real cancer datasets in terms of number of pathways, alteration frequen-
cies, noise levels and the presence of pathways either consisting of single genes
or unconnected to other pathways [20,34]. On all simulated datasets, we jointly
inferred mutually exclusive pathways and the order constraints among them with
pathTiMEx. We compared our results with the initial solution of pathTiMEx,
namely iteratively identifying mutually exclusive groups with TiMEx [12], fol-
lowed by optimizing the order dependencies among the groups a single time with
CBN [19]. As Rapahel and Vandin’s tool [34] is not publicly available, we were
not able to compare our results with their approach on simulated data.

The convergence of pathTiMEx increases with increasing sample size and
decreasing noise levels (Table S1). For ε = 0, the algorithm converged in all
cases for all sample sizes, while for ε = 0.1, it converged in 51 % of the runs for
N = 100, 97 % for N = 400, and 98 % for N = 1000. Similarly, up to random
fluctuations, the number of iterations required for convergence decreases with
increasing sample size and decreasing noise levels. When N = 400, pathTiMEx
converges in an average of 2.6 iterations for ε = 0, as compared to an average of
12.5 iterations when ε = 0.15. The runtime per iteration increases with increasing
sample size, and remains largely uninfluenced by noise, with the exception of the
largest sample size. The decrease in runtime per iteration with increasing noise
level when N = 1000 can be explained by a slight, but noticeable, increase in
false negative rate.

pathTiMEx identified the optimal assignment of genes to pathways in the
largest percentage of cases (Fig. S2A). The average Rand index [33] between the
true pathways and the estimated ones ranged from 95 % for ε = 0 to 84 % for
ε = 0.15 in the case of N = 100 (with corresponding Jaccard indices [27] of 0.75
and 0.44), and from 99 % to 92 % when N = 1000 (with corresponding Jaccard
indices of 0.94 and 0.68). pathTiMEx outperformed the naive initial solution in
almost all situations, with the exception of large sample sizes and a large noise
level. In these cases, as previously mentioned, the joint effect of large sample size
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and low progression signal lead to an increase in both false positive and false
negative rates. For all sample sizes and noise levels, among the cases in which
the genes were correctly assigned to pathways (clustering similarity indices of
1), pathTiMEx further identified the correct progression structure in the large
majority of cases (Fig. S2B). As expected, structure similarity increases with
increasing sample size and decreasing noise levels.

3.2 Cancer Data

We used pathTiMEx to jointly infer mutually exclusive driver pathways and the
order constraints among them in publicly available cancer data: a small colorec-
tal cancer dataset [43], a large colorectal cancer dataset (TCGA, provisional)
[9], and a large glioblastoma dataset (TCGA, provisional) [9]. We compared
our results with the naive approach of decoupling the identification of mutually
exclusive groups and the inference of their progression, which is the initial solu-
tion to our stochastic joint optimization scheme. Additionally, as Raphael and
Vandin’s approach [34] is a special case of pathTiMEx, we facilitated the direct
comparison between the two tools by optimizing the assignment of genes to
pathways under a fixed linear progression with an unspecified number of stages.
Under these constraints, pathTiMEx is much faster than the algorithm in [34],
as solely optimizing mutual exclusivity for a fixed progression involves one single
iteration of the MCMC chain.

For the three datasets, we assessed the stability of the joint optimal solu-
tions across 100 runs, and in each run the joint optimization procedure was iter-
ated at most 100 times (Table S2). For each identified order dependency among
pathways, we computed its weight, i.e. its frequency across runs. As the initial
pathways were fixed in all cases, the edge weights in the initial solutions only
evaluate the stability of the order constraints and are usually higher. Addition-
ally, the estimation of the waiting time rates λ and the error probability ε was
highly stable (less than 0.01 % variance across runs). According to our model,
high rates of evolution λ indicate early events, while low λ indicate late events.

Colorectal Cancer (Wood et al. 2007 [43]). The colorectal cancer dataset
published by Wood et al. [43], consisting of eight genes mutated with frequency
above 5 % in 95 samples, has been previously used in [20,34] for analyzing can-
cer progression among pathways. The optimal structure inferred by pathTiMEx
(Fig. 3A) reaffirmed the current knowledge on tumor progression in colorectal
cancer: APC is an early event (λ = 9.5), followed by KRAS (λ = 2.89) and TP53
(λ = 1.92). pathTiMEx immediately converged in all 100 runs to the same joint
solution (Table S2), with an estimated ε̂ of 0.13.

None of the five identified mutually exclusive pathways were also identified
by the naive approach, i.e. they were not part of the initial solution, which means
that mutual exclusivity and progression have been jointly optimized. For exam-
ple, the naive approach estimated that the group TP53 and PIK3CA is inde-
pendent and it occurs earlier in progression than KRAS and TCF7L2. The same
temporal order was inferred by Raphael and Vandin in [34], and also by path-
TiMEx if assuming a linear structure (Fig. 4A). On the contrary, pathTiMEx
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Fig. 3. Results of pathTiMEx on publicly available cancer data. The opti-
mal solution inferred by pathTiMEx is shown on the left hand side, for three cancer
datasets. The naive approach (right hand side) assumes that pathways and progression
are decoupled, and it represents the initial solution of our stochastic joint optimization
scheme. Each pathway is followed to its right by its waiting time rate estimate λ and
by the estimate of the intensity of mutual exclusivity μ. The weight on each edge (as a
percentage) shows how likely it is to infer a directed dependency between the same two
groups, across 100 runs. The percentage is computed relative to all the cases in which
the algorithm converged in less than 100 iterations (100/100 runs for the colorectal
cancer dataset in Wood et al. 91/100 runs for the TCGA colorectal cancer dataset
and 26/100 runs for glioblastoma). In the glioblastoma dataset, (D) indicates the copy
number deletion of a gene, while (A) indicates its copy number amplification.
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identified TP53 and EVC2 (λ = 1.92) as a later event than KRAS, which is
consistent with the current knowledge on colorectal tumorigenesis [17,18]. Addi-
tionally, by enforcing a linear order among pathways, our model obtained a better
score than Raphael and Vandin’s approach [34] (Fig. 4A). The late events found
by pathTiMEx were PIK3CA and EPHA3 (λ = 0.17), together with FBXW7
and TCF7L2 (λ = 0.08). These findings, similar to the ones obtained if assuming
a linear progression, confirm previous observations in [20].

The gene-level model of tumor progression proposed by Gerstung et al. in [20]
also identified APC as an early event, followed by a pathway including KRAS
and TP53, which was unconnected to other pathways. However, their pathway-
level model of cancer progression employed large literature-derived pathways and
did not attempt to identify pathways de novo.

Colorectal Cancer (TCGA). For 258 colorectal cancer samples, we analyzed
point mutation data for 473 genes, either significantly recurrently mutated as
identified by MutSig [25], or part of copy number aberrations as identified by
GISTIC 2.0 [31]. In addition to the three mutually exclusive groups found by
Iterative TiMEx [12], we introduced in our analysis four more genes with known
involvement in colorectal tumorigenesis [34]: ELF3, SOX9, SMAD2 and SMAD4.
pathTiMEx converged in 91 % of the runs, with an estimated ε̂ of 0.16 (Table S2).
The most likely progression structure (Fig. 3B) was found in 40 % (37) of the
91 runs. The average Jaccard index [27] between the pathways alternatively
reported and the most likely pathways was 0.81 (with a minimum of 0.66).
Across all runs, provided that the reported pathways were also the most likely
ones, the dependencies among them were identical.

The optimal structure inferred by pathTiMEx (Fig. 3B) was in high accor-
dance with our findings on the colorectal cancer dataset analyzed above
(Fig. 3A), and also highly consistent with the current knowledge on colorec-
tal tumorigenesis [17,18]. Specifically, APC (λ = 2.3) was the earliest event,
followed by a mutually exclusive pathway including KRAS (λ = 1.47), and later
followed by TP53 and SOX9 (λ = 1.04). Interestingly, on both colorectal cancer
datasets, even if APC was initially part of a mutually exclusive group, in the
optimal solution it is the single early starting event. This finding emphasizes
the particular importance that APC has in the progression of colorectal can-
cer [18]. As previously, the naive approach identified TP53 as an early event,
and only following the joint optimization of mutual exclusivity and progression,
mutations in TP53 were reported as later events. Most of the genes part of the
identified mutually exclusive groups are known interaction partners in colorectal
cancer, such as the tumor suppressors SMAD2 and SMAD4 [34]. Interestingly,
pathTiMEx identifiedMUC4, a gene which is aberrantly expressed in colorectal
adenocarcinomas, but with an unknown prognostic value [36], as part of the
same mutually exclusive group with three oncogenes in the Ras-Raf pathway,
namely BRAF, NRAS and KRAS [34].

In conclusion, the results of pathTiMEx are highly consistent on both col-
orectal cancer datasets, and more consistent with the literature than previous
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approaches. By imposing a linear order, our model estimated a progression of
four stages, and obtained a better score than Raphael and Vandin’s approach [34]
(Fig. 4B). Hence, pathTiMEx offers a better explanation of colorectal tumorige-
nesis than the naive initial solution and the models in [20,34].
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EVC2   PIK3CA   TP53 

KRAS   TCF7L2

FBXW7

pathTiMEx Raphael and Vandin (2015)
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PIK3CA   TCFL72   TP53

BRAF   KRAS   NRAS

SMAD2   SMAD4   SOX9

no. mismatches: 138

B

ELF3

no. mismatches: 145

Fig. 4. Comparison between pathTiMEx and the approach of Raphael and
Vandin (2015) [34], on (A) the colorectal cancer dataset from Wood et al.
(2007) and (B) the colorectal cancer dataset from TCGA. In order to facilitate
the direct comparison between the two models, we optimized the assignment of genes
to pathways with pathTiMEx, assuming a fixed linear progression with an unspecified
number of stages. We computed the scores E for the two models, i.e. the number of
mismatches due to violation of both mutual exclusivity and progression constraints.
pathTiMEx estimates four progression stages on both colorectal cancer datasets, and
performs better than the model in [34], by identifying pathways with smaller numbers
of mismatches. In (B), minor differences in data preprocessing led to the gene MUC4
only being present in pathTiMEx, and the genes FAM123B and TCFL72 only being
present in the model from [34].

Glioblastoma (TCGA). We analyzed the glioblastoma dataset discussed in
[26] and preprocessed as explained in [12], consisting of point mutations and
copy number aberrations for 486 genes, in 261 patients. In glioblastoma, tumor
progression is less known and more difficult to infer than in colorectal cancer
[10]. Consequently, our algorithm converged slower than in the case of the two
colorectal cancer datasets (Table S2), and the noise rate was estimated to ε̂ = 0.2.
pathTiMEx only reached a stable solution in 26 % of the runs in less than 100
iterations, to however always the same pathways and dependencies among them.

The optimal solution of pathTiMEx (Fig. 3C) consisted of fewer pathways
than the initial solution. Unlike colorectal cancer, all members of the optimal
pathways were part of large mutually exclusive groups, which points to the large
variability of tumor progression in glioblastoma. Following the joint optimization
scheme, pathTiMEx identified as a very early event (λ = 412) the group which
included the deletion of CDKN2A and the amplification of CDK4A. These two
genes are interaction partners and belong to the pathways CDC42 signaling
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events and Cyclin D associated events in G1. This group is directly temporally
related to a later event consisting of the copy number amplifications of MDM4
and MDM2, together with the point mutation of TP53 (λ = 0.89), which are
all members of the p53 pathway [6] and were previously identified as playing a
role in tumor progression in glioblastoma [10,34]. The point mutation of TP53
and the amplification of MDM4 were initially reported as a mutually exclusive
pair by the naive approach. Following the joint optimization scheme, the pair
was merged with the amplification of MDM2, a member of the same pathway.
Interestingly, the point mutation and the deletion of PTEN, together with the
point mutation of PIK3CA (λ = 1.38), which belong to the PI3K pathway, were
identified as part of a mutually exclusive group which also included IDH1.

In conclusion, despite the high variability in the data, pathTiMEx offers
new insights into tumorigenesis in glioblastoma, by jointly optimizing mutually
exclusive pathways and the order constraints among them.

4 Conclusion

In this paper, we introduced pathTiMEx, a probabilistic model of tumor pro-
gression at the level of mutually exclusive driver pathways, together with an
efficient stochastic joint optimization scheme. pathTiMEx is a step forward from
the approaches which separately infer either mutually exclusive groups of alter-
ations, or progression in tumorigenesis at the level of single genes. The simul-
taneous identification of driver pathways and the evolutionary order constraints
among them may have important therapeutic implications, particularly by tar-
geting members of early mutually exclusive pathways [42].

pathTiMEx is a direct generalization of both TiMEx [12], a waiting time
model for independent mutually exclusive pathways, and CBN [19], a waiting
time model for cancer progression at the level of single genes. It assumes that,
in tumor development, alterations can either occur independently, or depend on
eachother by being part of the same pathway or by following particular pro-
gression paths. By inferring these two types of potential dependencies simulta-
neously, pathTiMEx jointly addresses the two fundamental questions of identi-
fying drivers and progression. pathTiMEx models the order constraints among
pathways as a DAG, hence the only previous approach performing simultaneous
inference [34] is a special case of pathTiMEx, corresponding to the situation
when the structure is fixed to a linear path.

However, despite its advantages, pathTiMEx still models a very simplified
representation of tumor progression. Future extensions of the model may aim to
relax some of its assumptions, such as the hard assignment of genes to pathways,
which doesn’t allow for pathway cross-talk, or the irreversibility of mutations,
which renders our approach not applicable to gene expression data. Moreover,
model performance for large datasets with high levels of noise may improve by
devising alternative ways of modeling temporal dependencies between waiting
times, specifically accounting for false positive and false negative dependencies.

In applications on cancer datasets, pathTiMEx recapitulates previous knowl-
edge on tumorigenesis, while also offering new insights on the order constraints
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among pathways in cancer progression. The results of pathTiMEx are highly
consistent on the two colorectal cancer datasets analyzed, and more consistent
with the literature than previous approaches. In glioblastoma, pathTiMEx pro-
poses the existence of a single early causal event consisting of the amplification
of CDK4 and the deletion of CDKN2A. These results clearly indicate that path-
TiMEx is not only theoretically justified by its treatment of tumorigenesis on
the level of pathways as a probabilistic generative process, but is also fruitfully
applicable in practice.
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Boca, S.M., Barber, T., Ptak, J., et al.: The genomic landscapes of human breast
and colorectal cancers. Science 318(5853), 1108–1113 (2007)

44. Wu, H.T., Leiserson, M.D., Vandin, F., Raphael, B.J.: Comet: A statistical app-
roach to identify combinations of mutually exclusive alterations in cancer. Cancer
Res. 75(15 Supplement), 1936–1936 (2015)



Clonality Inference from Single Tumor Samples
Using Low Coverage Sequence Data

Nilgun Donmez1,2, Salem Malikic1,2, Alexander W. Wyatt2,3,
Martin E. Gleave2, Colin C. Collins2,3, and S. Cenk Sahinalp1,2,4(B)

1 School of Computing Science, Simon Fraser University, Burnaby, BC, Canada
cenk@sfu.ca

2 Vancouver Prostate Centre, Vancouver, BC, Canada
3 Department of Urologic Sciences, University of British Columbia,

Vancouver, BC, Canada
4 School of Informatics and Computing, Indiana University, Bloomington, IN, USA

Abstract. Inference of intra-tumor heterogeneity can provide valuable
insight into cancer evolution. Somatic mutations detected by sequencing
can help estimate the purity of a tumor sample and reconstruct its sub-
clonal composition. While several methods have been developed to infer
intra-tumor heterogeneity, the majority of these tools rely on variant
allele frequencies as estimated via ultra-deep sequencing from multiple
samples of the same tumor. In practice, obtaining sequencing data from
a large number of samples per patient is only feasible in a few can-
cer types such as liquid tumors, or in rare cases involving solid tumors
selected for research. We introduce CTPsingle, which aims to infer the
subclonal composition using low-coverage sequencing data from a single
tumor sample. We show that CTPsingle is able to infer the purity and
the clonality of single-sample tumors with high accuracy even restricted
to a coverage depth of ∼30x.

Keywords: Intra-tumor heterogeneity · Cancer progression · DNA
sequencing

1 Introduction

In the past decade, cancer genomics and sequencing revealed a striking degree
of intra-tumor diversity in cancer. Molecular evidence increasingly suggests that
this diversity has clinical implications. The pioneering work studying intra-tumor
heterogeneity typically focused on a small number of selected genomic alterations
from several tumor samples and involved manually reconstructing the phylogeny
of these tumors [4,17]. Nevertheless, large-scale cancer sequencing efforts such as
the PanCancer Analysis of Whole Genomes (PCAWG) require fully-automated
methods [20].

Recently, we developed a tool named CITUP to tackle this problem in the
existence of multiple samples from the same tumor. Using simulations and real
data, we showed that CITUP is able to reconstruct the tumor phylogeny when
c© Springer International Publishing Switzerland 2016
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supplied with deep sequencing data on multiple samples from a single patient
[12]. While targeted deep sequencing or high coverage exome sequencing are
feasible alternatives to whole genome sequencing, obtaining multiple samples
from solid tumors is a challenge in most clinical settings.

In fact, the majority of the tumor cohort currently analysed by PCAWG [20]
have single sample, low to medium coverage sequencing data. Unfortunately, for
CITUP and similar tools that exploit multiple samples to infer clonality, the
ability to robustly determine the subclonal architecture of tumors deteriorate
with decreasing number of samples per tumor [12]. To overcome this challenge
and improve the purity and subclonal composition estimation in single-sample
tumors, we introduce a new tool named CTPsingle that is specifically designed
to work with low coverage sequencing data from a single sample.

CTPsingle features a robust clustering framework based on a beta-binomial
mixture model and infers possible phylogenies using a fast mixed integer linear
programming (mILP) formulation. Currently, CTPsingle is also used to infer
clonality as a part of the Tumor Evolution and Heterogeneity working group of
PCAWG [20]. The core functionality of CTPsingle is implemented in R using
open source packages DPpackage [7] and lpSolve [1]. CTPsingle is freely available
from https://github.com/nlgndnmz/CTPsingle.

1.1 Related Work

CTPsingle is partially based on CITUP, which uses a mixed Quadratic Integer
Programming (mQIP) framework. Like CITUP, CTPsingle works on somatic sin-
gle nucleotide variants (sSNVs) on copy neutral regions of the genome. However,
unlike CITUP, which takes variant allele frequencies (VAFs) as input, CTPsin-
gle takes reference and variant read counts as input and clusters sSNVs using a
beta-binomial mixture model. This allows CTPsingle to infer the number of sub-
clones in advance of phylogeny search and account for the higher noise in VAFs
associated with low coverage. In addition, CTPsingle employs a simplified, iter-
ative mILP formulation implemented using the freely available lpSolve library
[1] and does not rely on any commercial libraries such as IBM CPLEXTM.

CTPsingle is also related to TrAp [19], PhyloSub [8], rec-BTP [6], Clomial
[21], BayClone [18], PyClone [16], LICHeE [14] and AncesTree [3]. The majority
of these methods are designed to work with SNVs in copy neutral regions and
are developed specifically for multiple samples, while a few of them can also work
with single-sample datasets. Other relevant tools such as THetA2 [13], TITAN
[5], CLONET [15] and PhyloWGS [2] are designed to work on copy number data,
although some of them allow the use of additional type of mutation calls.

While rec-BTP is also exclusively designed for single-sample tumors, we had
previously shown that this method has inferior performance compared to CITUP
even on single-sample datasets [12]. Moreover, this tool does not report which
mutations are assigned to which subclones, prohibiting us from calculating some
of the evaluation measures we use in this paper. Instead, we compare CTPsingle
to AncesTree, LICHeE and PyClone, which can also take single-sample data as

https://github.com/nlgndnmz/CTPsingle
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input. AncesTree has an integer linear programming framework where it formu-
lates the problem of clonality inference as a variant allele factorization problem
[3]. LICHeE works by constructing an evolutionary constraint network and find-
ing the best scoring spanning trees [14]. While PyClone does not attempt to
infer tree topologies, it has a similar clustering framework to CTPsingle that is
based on a Dirichlet process [16]. We show that CTPsingle outperforms these
methods even when they are supplied with more than one sample per tumor.
In addition, we compare CTPsingle to CITUP and demonstrate that CTPsingle
performs better than CITUP in low-coverage datasets.

2 Methods

2.1 Input Processing

As input, CTPsingle takes reference and variant read counts for single nucleotide
variant (SNV) calls. These calls can be obtained from whole-genome, whole-
exome or targeted sequencing data. CTPsingle expects only somatic SNVs in its
input; all germline mutations should be discarded in advance. CTPsingle also
expects the mutations to reside in copy number neutral regions. In other words,
CTPsingle assumes all mutations to be heterozygous in diploid regions, although
mutations on non-autosomal (i.e. X and Y) chromosomes can be included if the
gender of the patient is given. Tri-allelic mutations should also be discarded from
the input.

2.2 Robust Clustering Using Beta-Binomial Mixture Modelling

The clustering of mutations is performed via a beta-binomial model in CTPsin-
gle. Suppose we have M mutations called in a tumor sample. Let yi denote the
number of variant read counts for mutation i and ni denote the number of total
reads covering the same position (i.e. reference + variant reads). The following
assumes yi is binomial distributed with an unknown (i.e. variable) probability
of success pi:

yi|(ni, pi) ∼ Binom(ni, pi); i = 1, 2, ...,M (1)

We further assume that the probability parameter pi is generated from a
Dirichlet Process (DP) as given below:

pi|G ∼ G (2)
G|(α,G0) ∼ Dir(α,G0) (3)

Above, the concentration parameter α can either be given as a user-defined
input or further sampled from a Gamma distribution. The baseline distribution
G0 is taken to be the Beta distribution with parameters a1 and b1:
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G0 = Beta(a1, b1) (4)

Since the prior Beta distribution is conjugate to the Binomial distribution,
resulting in a beta-binomial posterior, inference can be performed using a stan-
dard Markov Chain Monte Carlo (MCMC) method [11].

Above, the model parameters α, a1, b1 are set to 0.001, 5.0, 5.0 respectively in
our implementation. These values were selected empirically based on our obser-
vation on real data, however, they can be modified by the user if desired. In
addition to the estimated values pi, the algorithm provides the inferred number
of clusters and an assignment of the mutations to these clusters.

Mutations on Haploid Regions: Since clustering is performed in read count space
rather than cellular prevalence space, read counts for trivially homozygous muta-
tions (such as those in X and Y chromosomes in males) should be properly
adjusted. In CTPsingle, this is done by adjusting the total read count of the
position. Let vi and ri denote the variant and reference read counts respectively
for mutation i. Suppose ti is the copy count of the region containing mutation
i in the tumor sample and hi is the copy count of that region in the normal
sample. Then, ni is set to be:

ni =
(

2
ti

vi

)
+

(
2
hi

ri

)
(5)

In essence, this formulation mimics ‘phantom’ chromosomes that emit reads
containing the reference allele whenever appropriate and can be applied to clonal
single copy deletions in addition to non-autosomal chromosomes. Finally, yi = vi
for all mutations. Note that here we assume that the normal sample does not
contain any chromosomal abnormalities. Such regions, if exist, should be removed
from automated analysis and manually investigated.

2.3 Estimation of Tumor Purity and Phylogeny Inference

From the clustering stage, we obtain the number k of subclones (i.e. clusters)
and the mean allelic frequency sj for each subclone j = 1, 2, ..., k. Since we
modify all mutations to be heterozygous, cellular frequency of each subclone
s∗
j is simply calculated as s∗

j = 2sj . Given the cellular frequency of subclones,
we estimate the tumor purity p as the highest frequency of any subclone: p =
max(s∗

j ); j = 1, 2, ..., k. To standardise predictions and identify clonal mutations
easily, we adjust the cellular frequencies with the estimated tumor purity to
obtain cancer cell fractions (CCFs). That is, if fj denotes the CCF of subclone

j, we set fj = s∗
j

p . Essentially, this ensures the ancestral cluster to always have
a CCF of 1.0. Note that this formulation assumes that the cancer is uni-focal.
Like most other tools, CTPsingle can not explicitly handle multi-focal tumors.

Similar to CITUP, CTPsingle considers all tree topologies. An mILP formu-
lation is applied to each tree topology independently in order to find the optimal
assignment of the clusters subject to phylogenetic constraints. As the number of
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clusters k is determined in advance, CTPsingle only processes those trees with
k nodes. The detailed mILP formulation is described in Appendix 1.

3 Results

3.1 Simulations

To evaluate CTPsingle in a controlled environment and compare its performance
to AncesTree, LICHeE and PyClone, we performed two sets of simulations:
(1) with low coverage (∼32x) as routinely observed in whole genome sequencing
experiments; and (2) with ultra-high coverage (∼2800x) as typically obtained
from deep sequencing experiments. As the other methods are primarily intended
for multi-sample datasets, for each coverage-depth, we also generate two sets of
simulations: (a) with a single sample per tumor; and (b) with two samples per
tumor. Although CTPsingle can not exploit the additional information that can
be obtained from the second sample, our results demonstrate that it achieves
better results in all four experiment settings. For each experiment setting, we
simulate 50 instances. The rest of the simulation details are given in Appendix 2.

We compare the performance of the tools using three measures: (i) estimated
tumor purity; (ii) number of subclones predicted; and (iii) root mean square
error (RMSE) of cancer cell fractions.

The RMSE measure is calculated using the cancer cell fractions of mutations
reported by each method as follows. Let PCF (mi) denote the cancer cell frac-
tion of the subclone where mutation i is assigned to and TCF (mi) denote the
true cancer cell fraction of the subclone from which mutation i originates. Then
RMSE is calculated as:

√∑
i∈S(PCF (mi) − TCF (mi))2

|S| (6)

where S represents the set of mutations reported by the tool. Above, the cancer
cell fractions for each tool is computed using the subclonal frequencies reported
by the tool and adjusted by the tumor purity estimated in the same way as is
done in CTPsingle. We note that both AncesTree and LICHeE discard a small
number of mutations in some cases, possibly giving them an unfair advantage
in the calculation of RMSE. CTPsingle and PyClone report all mutations. The
calculation of tumor purity, number and frequency of the subclones, and the
running parameters for the tools are described in Appendix 2.

Figure 1 shows the comparison of the true versus predicted tumor purities for
each experiment. As can be seen from the plots, CTPsingle outperforms other
methods in all experiments. For the low coverage datasets, both AncesTree and
LICHeE tend to underestimate the purity, although AncesTree also calls near 1.0
purity in some cases. While the purity estimates are significantly improved for
AncesTree in the case of deep coverage, LICHeE estimates show little difference
for deep coverage. This is probably due to the fact that this method directly
works with variant allele frequencies hence can not distinguish between high
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Fig. 1. Comparison of true versus predicted tumor purity across the simulation exper-
iments. Each dot represents a distinct sample and is colored based on its real tumor
purity. The red lines illustrate the y = x line in each plot.

and low coverage data. In contrast, CTPsingle estimates purity with almost
100 % accuracy in the deep coverage samples. The two outliers in the case of
multi-sample deep coverage experiment belong to the same tumor instance and
it is due to the fact that this tumor contains a subclone consisting of only 2
mutations. We also note that PyClone appears to report a purity over 1.0 for
some samples. This is because this tool reports allelic frequencies rather cellular
frequencies. Thus, we multiply the frequencies reported by PyClone by a factor
of 2 to calculate the purity estimated by this tool. However, for some samples
the original frequencies seem to be closer to the true purity. Nevertheless, we
choose to keep this practice as it improves the overall correlation between the
predicted and true purities for this tool, especially for the low coverage samples.
In addition, this problem does not affect the RMSE evaluation, as cancer cell
fractions are already normalised (i.e. the highest CCF will always be 1.0).

Figure 2 shows the distribution of #subclones error for each method across
the experiments. #subclones error is simply calculated as the absolute difference
between the predicted number of subclones versus the true number of subclones.
Once again, the plots show that CTPsingle outperforms the other methods in all
experiment settings. In deep coverage datasets, CTPsingle correctly estimates
the number of subclones in all but a few cases.

The histogram of the RMSE values for each sample is shown in Fig. 3. In
the low coverage datasets, RMSE values are typically below 0.3 for CTPsingle,
while this measure can range up to 0.8 for AncesTree and LICHeE. Note that
the samples with low RMSE often represent the cases where the number of sub-
clones are correctly identified, although RMSE can also be low if two subclones
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Fig. 2. Comparison of the absolute difference between the true and predicted number
of subclones across the simulation experiments. The single-sample experiments contain
50 samples and the multi-sample experiments contain a total of 100 (50 × 2) samples.
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Fig. 3. The histogram of root mean square error (RMSE) values across the simulation
experiments. For each sample, RMSE is calculated between the true cancer cell fraction
(CCF) of mutations vs the predicted CCF based on the subclone assignments reported
by the method. The bin size for the histogram is set to 0.1 for each plot. The single-
sample experiments contain 50 samples and the multi-sample experiments contain a
total of 100 (50 × 2) samples.
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with very similar frequencies are merged into one cluster. Hence, this measure
penalizes methods that tend to merge subclones with very different frequencies.
For the deep coverage datasets, CTPsingle has less than 0.1 RMSE.

We also compare CTPsingle with CITUP on the same simulation datasets. To
save computation time, we run CITUP only on trees with the correct number
of nodes. Despite this advantage, we observe that CTPsingle performs better
than CITUP on the low coverage datasets, although the performance of the two
methods are very similar on the deep coverage datasets (Fig. S3; Appendix 2).

In terms of running time, we observe that LICHeE is the fastest tool and
typically completed within a couple of minutes on our simulation datasets. While
CTPsingle is slower than LICHeE, it completed all but a few samples within
30 min and did not exceed one hour on any sample. In contrast, AncesTree and
PyClone took several hours on many samples.

3.2 CTPsingle Identifies Subclonal Populations in Prostate Tumors

To illustrate the possible use of CTPsingle in a real clinical setting, we also report
the results of CTPsingle on two prostate tumors processed in house. Clinical
details of these tumors are given in Table 1. For each patient, fresh frozen (FF)
and formalin-fixed parafin embedded (FFPE) tissue taken at the time of radical
prostatectomy are subjected to whole-exome sequencing. Since blood samples
were not available for these patients, we also obtained whole-exome sequencing
data from adjacent benign tissue. Sequencing and mutation calling details are
given in Appendix 3. Full clinical details and genomic analysis for these tumours
will be described elsewhere.

The percent of the genome with copy number alterations, the number of
somatic SNVs and the tumor purity estimated by CTPsingle for each patient are
given in Table 1. We remark that due to the high degradation level of FFPE sam-
ples, less somatic mutations are detected compared to FF samples. In addition,
we determine the copy number alterations - thus copy number neutral regions -
using the FF samples only since the copy number segmentations obtained from
FFPE samples tend to be noisier.

Despite the difficulty of calling mutations from highly degraded FFPE tis-
sues, we observed a reasonable consistency between the predictions in FF and

Table 1. Clinical samples. Below, the Gleason score and prostate specific antigen
(PSA) levels are given as measured at diagnosis. Coverage is calculated as the mean
total read depth of called mutations. The percent of the genome under copy num-
ber alterations (%CNA) are calculated based on the whole-exome sequencing on the
fresh frozen sample for each patient. Purity denotes the estimated tumor purity by
CTPsingle.

Patient ID PSA Gleason score Clinical

stage

Coverage FF (FFPE) %CNA #sSNVs

FF (FFPE)

Purity FF

(FFPE)

DP1566 5.48 9 (4+5) T2c 55.0× (47.7×) 38 241 (166) 0.73 (0.60)

DP1570 5.4 9 (5+4) T1c 61.3× (59.8×) 15 262 (208) 0.37 (0.55)
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Fig. 4. Subclonal composition of two prostate tumors using fresh frozen and formalin-
fixed parafin embedded (FFPE) samples as predicted by CTPsingle. Known cancer-
related genes containing non-synonymous coding mutations are shown next to nodes
based on their subclonal assignments. The numbers in parentheses give the total num-
ber of mutations assigned to each node including synonymous mutations. The PTEN
mutations in the FF and FFPE samples of DP1566 represent distinct mutations. The
rest of the mutations are identical between FF and FFPE in both patients.

FFPE samples from the same patient. We also remark that confidently calling
somatic mutations is particularly challenging in this dataset due to a lack of
pure normal sample obtained from blood. Since adjacent benign tissue can be
contaminated with cancer cells, less stringent criteria have to be employed while
calling mutations resulting in a higher number of false positives in addition to
false negatives.

Figure 4 illustrates the subclonal composition of each sample as predicted by
CTPsingle. While the number of inferred subclones and their frequencies differ
between FF and FFPE samples, the figure shows that the order of the mutations
are conserved as expected. Note that, although branching tree topologies are
also possible in these samples, these can not be confidently determined without
additional samples or information. Therefore, we only report the linear expansion
topologies.

In the FF sample of patient DP1566, we see that a TP53 mutation is placed
at the starting clone, while a PTEN mutation is placed at a secondary level.
In the FFPE sample, in addition to the same TP53 mutation, a distinct PTEN
mutation is also placed at the top level suggesting a convergent evolution in
these two samples.

In patient DP1570, a TP53 mutation is placed at the secondary level in both
FF and FFPE samples. Interestingly, for this patient, CTPsingle predicts an
ARID1B mutation at the top level. ARID1B is a protein coding gene involved in
transcriptional regulation of select genes by chromatin remodelling and has been
previously implicated in pancreatic cancer [9]. This patient also contains a high-
impact KDM5A mutation that results in a stop codon loss. KDM5A is a histone
demethylase that specifically demethylates Lys-4 of histone H3 and is known
to interact with many other proteins including retinoblastoma [10]. While this
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mutation is only detected in the FFPE sample, this may be due to the very low
tumor purity of the FF sample for this patient. An alternative explanation could
be that this mutation is contained by a private subclone that is only present in
the FFPE sample.

It is intriguing that this patient contains predicted mutations in two sepa-
rate genes related to chromatin regulation. As chromatin remodelling is crucially
involved in the fine-tuning of cell growth, DNA repair and chromosome segrega-
tion, mutations in these genes may act as cancer drivers. Indeed, a comparison
of the epigenetic profiles of the tumor samples to that of the adjacent benign
samples, as assayed by ChiP-on-ChiP or ChiP-Seq experiments, could provide
valuable insight into the progression of this patient’s cancer. Validating these
mutations and investigating the epigenetic profile of this tumor is part of our
plans as future work.

4 Conclusion

In this work, we introduce CTPsingle as a robust alternative to existing clonality
inference methods in cases where obtaining multi-sample sequencing from tumors
is unfeasible. Using realistic simulations, we show that CTPsingle achieves sat-
isfactory results on single-sample datasets even with low sequencing depths and
is able to reconstruct the subclonal composition of tumors with high accuracy
on deep sequencing data. Our preliminary results on two prostate tumors also
suggest that CTPsingle can help identify the presence of subclones on real exome
sequencing data.

While our simulations include a wide range of parameters such as varying
tumor purity and number of mutations (including highly disproportionate num-
ber of mutations and cancer cell fractions per subclone, Fig. S2; Appendix 2),
we acknowledge that real clinical datasets have additional challenges such as
DNA degradation and sequencing errors. However, some of these challenges can
be mitigated by careful post-processing of sequencing data and are typically
taken into account by state-of-the-art mutation calling software. Furthermore,
we observe that CTPsingle is still able to accurately infer the subclonal composi-
tion of tumors in the presence of a small fraction of false positive SNVs (Fig. S4;
Appendix 4). Nevertheless, we acknowledge that a larger cohort with experimen-
tal validation is necessary to further demonstrate CTPsingle’s performance in a
clinical setting.

Like several other tools, CTPsingle is limited to somatic SNVs in copy-neutral
regions and hence is not applicable to tumors with high chromosome instabil-
ity. On the other hand, our experiments suggest that its performance does not
deteriorate significantly on moderately copy-number altered genomes (Fig. S4;
Appendix 4). Nonetheless, we are currently working to extend our methods to
include copy number alterations and hoping to release a comprehensive tool that
is applicable to all tumors in the near future.
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Appendix

The supplementary material including additional figures are located at https://
github.com/nlgndnmz/CTPsingle.
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Abstract. Genome-wide association studies commonly examine one
trait at a time. Occasionally they examine several related traits with the
hopes of increasing power; in such a setting, the traits are not generally
smoothly varying in any way such as time or space. However, for function-
valued traits, the trait is often smoothly-varying along the axis of inter-
est, such as space or time. For instance, in the case of longitudinal traits
like growth curves, the axis of interest is time; for spatially-varying traits
such as chromatin accessibility it would be position along the genome.
Although there have been efforts to perform genome-wide association
studies with such function-valued traits, the statistical approaches devel-
oped for this purpose often have limitations such as requiring the trait to
behave linearly in time or space, or constraining the genetic effect itself
to be constant or linear in time. Herein, we present a flexible model for
this problem—the Partitioned Gaussian Process—which removes many
such limitations and is especially effective as the number of time points
increases. The theoretical basis of this model provides machinery for han-
dling missing and unaligned function values such as would occur when
not all individuals are measured at the same time points. Further, we
make use of algebraic re-factorizations to substantially reduce the time
complexity of our model beyond the naive implementation. Finally, we
apply our approach and several others to synthetic data before closing
with some directions for improved modelling and statistical testing.

Keywords: Genome-wide association study · Longitudinal traits ·
Time-series traits · Functional traits · Function-valued traits · Linear
mixed models · Gaussian process regression · Radial basis function

1 Introduction

Genome-wide association studies commonly examine one trait at a time. Occa-
sionally they examine several related traits with the hopes of increasing power; in
such a setting, the traits are not generally smoothly varying in any way such as
time or space. However, with the advent of wearables for health and the “quan-
tified self” movement; the broad deployment of cheap sensors in domains such
as agriculture and breeding; and the approaching ubiquity of electronic health
records, we shall soon see the ubiquity of function-valued traits. Longitudinal
c© Springer International Publishing Switzerland 2016
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traits are one example of function-valued traits—traits which can be viewed as
a smooth function of some variable. For example, that variable could be time in
a clinical history corresponding to a longitudinal trait, or it could be position in
the genome, corresponding to a spatial trait such as chromatin accessibility [1].
Such function-valued traits offer new opportunities to dissect genetics. However,
maximally benefiting from such opportunities requires that the rich, smoothly-
varying structure within these traits can be leveraged by the statistical model
of choice. Rich trait structure arises from constraints in the physical world such
as that time moves forward and is smoothly varying, or that the correlation
between positions on the genome is slowly decreasing according to genetic dis-
tance on the chromosome. Modelling approaches in these settings should take
into account such constraints while still allowing for flexibility in the shapes of
the traits. Furthermore, it stands to reason that the genetic effect might alter
the functional form of a trait, such as the shape of a growth curve, a pattern
of weight gain, bone loss, or electrocardiogram signal. Thus, flexible modelling
beyond linear genetic effects is also one of our goals. Figure 1 shows a set of sim-
ple canonical traits and genetic effects that we would like to be able to detect.
These canonical traits will also serve as the basis of our synthetic experiments
for comparing the behaviour of several modelling approaches. In these examples,
by design, a genetic effect which is constant or linear in time will fail to properly
model the data. Although these traits are rather idealized, they present a good
starting point with which to examine the problem.

Fig. 1. Simulated traits with 100 time points taking on values uniformly spaced
between 0 and 12. Each plot shows what the mean (noise-free) trait looks like for
each of the SNP values 0 (blue), 1 (green) and 2 (red). The noise added (not shown) is
iid with respect to both time and individuals. Note that we hear display the maximum
genetic effect for each kind of trait for visual clarity.

The simplest problem one might tackle in our chosen setting is to find out
which individual single-nucleotide polymorphisms (SNPs) are correlated to the
trait of interest, a so-called marginal test. Those that are correlated are then
assumed to have a reasonable probability of being causal for the trait, or of
tagging a nearby SNP which is causal for the trait. While it is also of interest to
test sets of SNPs jointly [2–4], we here focus on marginal SNP testing, leaving a
generalization to set tests for future work. The solution to this marginal testing
problem entails (1) proposing a statistical model of the data, and (2) obtaining
some weight-of evidence of a genetic effect such as a p-value or Bayes factor. In
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this work we focus primarily on the first task but discuss our future directions
for the second task in concluding.

Numerous approaches for analyzing function-valued genetic associations have
been proposed in recent years [1,4–15]. However, these do not necessarily make
effective use of the rich trait structure to increase power because they often
assume restrictive forms of the genetic effect or the trait itself. Also, in some
cases the statistical efficiency does not scale well with the number of time points,
which are expected to be quite numerous in the settings discussed earlier. Next
we give a brief overview of some of these approaches and their weaknesses in
tackling the kinds of problems we are interested in.

Sikorska et al. use an approximate linear mixed model that accounts for cor-
relation in time and assumes that a trait evolves over time in a linear manner;
they also assume that the SNP effect itself is additive. Musolf et al. first cluster
the trait without accounting for genetics and then seek genetic effects on the
cluster labels, thereby pre-supposing that all causal SNPs segregate the traits in
a similar manner. Shim et al. first apply a wavelet-transform to the trait data,
thereby transforming the traits to lie in a coordinate system based on (hierarchi-
cal) scales and locations; they then perform association testing in this new space.
While this approach enables flexible functions of time to be modelled, the SNP
effects are restricted to be linear because the wavelet transform itself is linear.
Das et al. construct a different Legendre polynomial-based model to model the
trait for each test SNP allele, learning each model in a largely independent man-
ner. They then test whether the time-specific mean effects are different between
the alleles, although it’s not clear how they combine time points in their statisti-
cal testing framework. Also note that Das et al. remove SNPs with minor allele
frequency (MAF) less than ten percent from their experiments since the MAF
dictates the amount of data available to each allele-specific model. Finally, there
has been some related work on detecting differential expression using Gaussian
Process regression which shares many aspects of our approach, while differing in
several respects including parameter sharing, independence among individuals,
and substantial differences in time complexity in the case of aligned time points,
partly owing to the use of a different noise model and inference algorithm [16].

In our work, we propose an extremely flexible approach for modelling
function-valued traits with genetic effects. In particular, our approach, based on
Gaussian Process (GP) regression with a Radial Basis Function (RBF) kernel [17]
at its core, can in principle capture any smoothly-varying trait in time, where the
smoothness is controlled by a “length scale” parameter. This length scale para-
meter is estimated using maximum likelihood, thereby effectively deducing the
complexity of the trait functional form directly from the data. As for the genetic
effect, similarly to Das et al., our model has three components corresponding to
three partitions of the data, yielding an extremely non-restrictive class of genetic
effects since the GP for each allele can look completely different from the other
alleles when no parameters are shared. In our experiments we assume that basic
properties such as the noise level and length-scale are likely to be common to
all alleles and hence tie these parameters together for more efficient statistical
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estimation. However, the model need not be used in this manner. Furthermore,
because the RBF kernel effectively integrates out the time points, the number of
model parameters does not scale with the number of time points, but is instead
fixed–a desirable property when many time points are observed. We call our
model the Partitioned GP for partitioned Gaussian Process regression.

2 Partitioned Gaussian Processes

As already mentioned our model uses at its core GP regression [17], a class of
models which encompasses linear mixed models, the more widely-used concept
in genetics [18–21]. The GP regression literature contains results not typically
found in the genetics community that we make use of including the use of RBF
kernels and Kronecker-product-based refactorizations of matrix-variate normal
probability distributions yielding computational efficiencies [22] in the case of
aligned and non-missing time points. Also, although we have not yet imple-
mented it, by virtue of using the GP machinery we can immediately access
variational approximations to reduce computational time complexity [23,24] in
the case of missing data or unaligned time points. We now formally introduce
our null model, followed by an exposition of how to do efficient computations in
it before introducing the alternative model and computation of p-values.

2.1 Null Model

Our null model, M0, assumes that the SNP has no effect on the trait (and so
does not enter the model), but does capture correlation in time by way of an
RBF kernel. Let Y be the N × T matrix of traits for N individuals and T time
points. Let W be the NT × 1 times at which the traits were measured, and let
vec(Y) denote the unrolled version of Y into a vector of dimension NT × 1,

vec(Y) =

⎛

⎜⎜⎜⎝

y11
y21
...

yNT

⎞

⎟⎟⎟⎠

Then

M0 : p(vec(Y)) = N (
vec(Y)

∣∣0, σ2
rKRBF (W,W|l) + σ2

eINT

)
, (1)

where N (a | b,C) is a Gaussian distribution in vector a with mean b and covari-
ance C; INT is the NT × NT identity matrix; σ2

r and σ2
e are scalar parameters

which control the overall variance contributed by each kernel; KRBF (l) is an
NT ×NT radial basis function kernel with length-scale parameter l and elements
defined by KRBF (wij , wqp|l) ≡ exp

(
− ||wij−wqp||

2l2

)
. The length-scale parameter

determines the overall scale on which the trait varies within an individual. For
very rapidly varying traits, it is small, and for slowly varying traits it is large.
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The RBF kernel models the dependence in time while the identity kernel
models the remaining environmental noise. Note that the RBF kernel here mod-
els not only correlation between time points within an individual but also equally
across individuals. That is, we make the assumption that the trait at time point
t is more correlated across individuals i and j than between time points t and
t + t0 for the same person (where t0 is an offset in time). While at first this
may seem a counterintuitive choice, it turns out that for the types of traits we
are interested in, it is the correct thing to do. Namely, we are interested in set-
tings in which the traits are the same across all individuals (or later for those
with the same genetics), other than by virtue of noise. Examples of such traits
are shown in Fig. 1. An example where this is might be a reasonable assump-
tion would be growth curves where on average the curves look the same for a
species, but with a particular mutation the curve suddenly changes trajectory.
An example where this is an unreasonable assumption would be un-aligned elec-
trocardiographic signals where no two people would in general look the same at
time t unless their signals had been re-scaled and aligned. When the assumption
of correlation in time between individuals is not believed to be reasonable, one
can easily remove this restriction from the model, leaving time correlations only
within an individual. In fact, as we explain in the next section, it is algebraically
and computationally trivial to make such a change while retaining all efficient
computations. However, by removing this assumption from the model one loses
statistical power if the assumption is actually valid in the data. In fact, when
conducting our synthetic experiments we found that removal of this assumption
in the model substantially weakened the results (data not shown).

Note that for simplicity, we assume that covariates such as age and gender
have been regressed out of the trait ahead of time, although these could easily be
incorporated in to the model, by way of the Gaussian mean (i.e.fixed effects). All
remaining expositions (other than for the pseudo-inputs and variational infer-
ence) can be readily extended to having covariates directly included with no
change to the computational time complexity. We make a similar assumption
about population structure and family relatedness, which can be regressed out
using either principle components [25] or linear mixed models [21], although
investigating the best way to do this for function-valued traits is an open area
for investigation. Finally, in Eq. 1 we did not assume that traits for each person
were measured at the same time points or that no trait values were missing.
However, in the next section on efficient computations, we will need to make
this assumption. In Sect. 2.4 we outline ways to relax this assumption.

Efficient Computation of the Likelihood. In order to obtain a p-value by
way of statistical testing we need to estimate the maximum likelihood para-
meters of our model over and over, once per genetic marker. Computing the
maximum likelihood over and over again for each hypothesis is a non-trivial goal
in the sense that general kernel-based methods have time complexity which scales
cubically in the dimension of the kernel (here NT ), and space complexity which
is quadratic in that dimension. However, in some cases, structure in the kernel
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can be leveraged to gain substantial speed-ups (e.g. [21]). For Partitioned GPs
such structure arises when there is no missing data and all traits are measured
at the same time points for all individuals. In this case, the likelihood can be re-
written with Kronecker products in the covariance term, yielding dramatically
reduced time and space complexities. Later we discuss how to achieve speed-ups
in the face of missing or unevenly-spaced time points using the Partitioned GP,
which can require some approximations, whereas the present exposition requires
no approximation.

The RBF kernel (dimension NT × NT in Eq. 1) is a specially structured
kernel because of the repeating times across individuals. This structure means
that we can re-write the Gaussian likelihood in Eq. 1 in matrix-variate form as
follows [22],

M0 : p(Y) = N (
Y

∣∣0, σ2
rKRBF (W,W|l) ⊗ JN + σ2

eINT

)
, (2)

where here we have overloaded KRBF (W,W|l) to now indicate a T ×T matrix,
and where JN is the square matrix of all ones of size N . The symbol ⊗ denotes
the Kronecker product which produces a square matrix of dimensions ab × ab
for A⊗B if A and B are square matrices of dimension a and b respectively. The
computational time complexity of evaluating the likelihood in Eq. 1 is O(N3T 3)
because one must compute the inverse and determinant of the covariance matrix
of dimension NT × NT . In contrast, using a spectral-decomposition-based re-
factoring [22] of Eq. 2, the computational time complexity can be reduced to
O(T 3).1 In particular, if one defines UrSrUT

r as the spectral decomposition of
the T × T matrix KRBF (l), and UjSjUT

j as the spectral decomposition of JN ,
then one can write the log likelihood of the null model as follows [22]:

L0 = −NT

2
ln(2π) − 1

2
ln |Sr ⊗ Sj | − 1

2
vec(UT

r YUj)T (Sr ⊗ Sj)−1vec(UT
r YUj).

(3)

It is also easy to generalize this expression and its derivative when the mean of
the Gaussian is non-zero; we do so to make one of the models we compare against
(Furlotte et al.) significantly faster than in their original presentation (they could
not do the same because they jointly model population structure) [5].

Note that the individuals are not identically and independently distributed
(iid) in our null model because of the term JN . If we were to replace JN with the
identity matrix, then the individuals would be iid, which thus amounts to relax-
ing the assumption mentioned in the introduction wherein time points across
individuals are correlated.

As described earlier, we have assumed that population structure and family
structure have already been accounted for, but these could instead be incorpo-
rated in to the model by adding to JN a genetic similarity matrix [21], incurring
a time complexity of O(N3 + T 3) in the most general case.
1 If JN were an arbitrary matrix the time complexity would be O(N3 + T 3), but

because the spectral decomposition of JN can be computed once and cached, the
complexity becomes O(T 3). Moreover, because it is an all-ones matrix, its spectral
decomposition can be computed more efficiently than in the general case.
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For parameter estimation we use gradient descent to obtain the maximum
likelihood solution in parameters l, σ2

r , σ
2
e—all scalars. The reader is referred to

Stegle et al. for the derivative expressions which have the same time complexity
as Eq. 3 [22]. Because the log likelihood is not convex, we use multiple random
re-starts, finding empirically that five restarts in our experiments yielded good
results.

2.2 Alternative Model

Now that we have fully described the null model and how to efficiently compute
its log likelihood, we generalize this model to an alternative model which handles
a wide range of genetic effects. To do so, we create a separate GP for each
partition of the data, where the partition is defined by the alleles of the test
SNP (using whatever encoding of the data one desires, such as a s = 0, 1, 2
encoding of the number of mutant alleles across the two chromosomes),

MA : p(Y) =
S∑

s=1

N (
Ys

∣∣0, σ2
rsKRBF (W,W|l) ⊗ JNs

+ σ2
eINsT

)
, (4)

where S denotes the number of alleles in the SNP encoding, Ys is the subset
of trait data for which the individual has SNP value s, and where Ns is the
number of such individuals. In principle, one could use a different length scale,
l and variance parameters σ2

e for each partition s, but we have found that in
our experiments, tying them together yielded good results and allowed us to test
SNPs with much lower MAF owing to the data sharing offered by the shared
parameters. While it may seem at first glance that this parameter tying might
coerce the trait to look the same across SNP partitions, in fact, we are only
coercing broad properties of the trait to be similar, such as the scale on which
the signal changes, and only loosely at that. Because GP regression is a non-
parametric model, the data itself plays a large role in defining the posterior
distribution of functional forms; it is for this reason that our model is able to
capture substantially different functional forms even with tied parameters.

The same efficient computations outlined earlier for the null model can just
as well be applied to this alternative model, and so the time complexity of
computing the alternative model likelihood has as an upper bound that of the
null model, which happens only when all individuals are assigned to the same
partition. Note too that the null model can computed just once and then cached
across all SNPs tested for increased efficiency.

Beyond data sharing across partitions by virtue of shared parameters, the
model has good statistical efficiency owing to the fact that GPs operate in the
kernel space [17] where the number of parameters does not depend on the number
of time points. All in all, we find in our experiments that as few as seven samples
per partition appears to be sufficient, which with cohort sizes in the tens if not
hundreds of thousands, imposes little restriction on the MAF.
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2.3 Hypothesis Testing

Standard frequentist hypothesis testing uses a null model that is nested in the
alternative model which then allows one to use a likelihood ratio or score test,
for example. However, even when models are nested, these tests require that
model assumptions are met, and typically that sample sizes are large enough
for asymptotics to be valid. In cases where model or asymptotic assumptions
are unmet, one can appeal to various forms of permutation testing to obtain
calibrated p-values. Because our models are not nested, we cannot rely on stan-
dard theories to compute p-values, and could therefore turn to permutation
testing. However, as it turns out, when we apply a standard χ2 test to generate
p-values for our Partitioned GP, we find that our type 1 error is controlled, albeit
extremely conservatively even though the assumptions of this test are not here
met (see Results). Furthermore, in the discussion, we outline a nested version of
the Partitioned GP that we are currently working on.
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Fig. 2. Paired plot of the −log p-values generated from the null distribution, for 10
time points versus each of 100 and 150 time points.

The precise way in which we apply a standard χ2 test is that we compute
the maximum likelihood of the data under the null and under the alternative
models, LA and L0, count the number of degrees of freedom different between
them, d, and then apply the standard p-value computation. Our null model has
no partitions and has three free scalar parameters: σ2

r and l, the overall-variance
and length-scale for the time-based kernel, and σ2

e for the residual noise. Our
alternative model shares all parameters across partitions except for the time-
based kernel variances, σ2

rs (one per SNP allele), leading to two more parameters
than the null model. We count these two parameters as two extra degrees of
freedom even though these parameters are constrained to be greater than zero
and so are not truly full degrees of freedom—such miscounting can only lead
to overly-conservative p-values in the case of properly nested models. Our test
statistic is then twice the difference between the null and alternative maximum
log likelihoods, Δ ≡ 2(LA − L0), from which we compute a p-value using a χ2

d

test with d = 2 of freedom. While this p-value is uncalibrated, as we shall see in
the Results section, it turns out to control type 1 error.
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Table 1. Control of type 1 error at significance thresholds α for traits with 10 time
points using 390,272 tests. Fraction of p-values below that threshold, with absolute
numbers in parentheses.

Model α = 10−2 α = 10−3 α = 10−4 α = 10−5

Partitioned GP 1.1 × 10−3(434) 6.7 × 10−5(26) 0.0(0) 0.0(0)

Inverse K score 9.1 × 10−3(3568) 8.8 × 10−4(342) 5.6 × 10−5(22) 1.0 × 10−5(4)

Inverse linreg 9.8 × 10−3(3828) 9.4 × 10−4(366) 6.1 × 10−5(24) 1.0 × 10−5(4)

Furlotte et al. 9.2 × 10−3(3589) 9.3 × 10−4(362) 6.1 × 10−5(24) 1.5 × 10−5(6)

2.4 Handling Traits with Missing Data or Which
are Unevenly-Sampled Across Individual

In a model with a vector Gaussian likelihood, such as Eq. 1, missing trait data can
readily be handled by simply removing any rows with missing data, because this
procedure is equivalent to marginalization in a Gaussian [17]. In such a manner, if
using Eq. 1, one could take T to be the number of uniquely observed time points
across all individuals, even if many individuals were missing many of these time
points. This procedure could also capture the case where different individuals
were measured at different time points. However, in the Kronecker version of
the likelihood written for computational efficiency gains (Eq. 2), one can no
longer perform this arbitrary marginalization by simply removing an element of
the phenotype vector, because with the Kronecker-factorized covariance matrix
one would have to either remove all individuals missing a time point, or all
time points missing an individual. Therefore, if one wants both computational
efficiency and a means to readily marginalize over missing data, one must appeal
to alternative formulations and/or approximations. The approach we propose is
keep the Gaussian likelihood in vector form, as in Eq. 1, but to augment the
model with latent inducing inputs [23,24], which are points in time (or space,
depending on the type of trait) that are included in the model. Inducing inputs
can be thought of as pseudo-observations in time (or space) that are included
in the RBF kernel inputs; when conditioned on, these pseudo-observations make
any observed data conditionally independent of each other. This has the effect
of reducing the time complexity from O((NT )3) in Eq. 1 to O(NTQ2) for Q
inducing inputs. In such a variational approach, only the number of pseudo-
observations need be specified, not the locations, as these are learned as part of
the parameter estimation procedure. Also note that if one uses as many pseudo-
observations as there are uniquely observed time points, then the algorithm is
exact. As a consequence, one could use this approach as an alternative to the
efficient Kronecker product approach we described. We have not yet performed
experiments with this approach, but these methods are well-studied and their
application should be rather direct.
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3 Results

As discussed in the introduction, many models have been developed to per-
form genome-wide association studies with function-valued traits. However, these
models tend to have constraints on the type of genetic or time effect that can be
recovered (e.g., only constant or linear effect in time, or only linear in the SNP),
or are limited to relatively few time points because the number of parameters
scales with the number of time points. For our experiments we have chosen a
set of baseline models to test particular hypotheses about what kinds of models
work and where they fail, in the settings we care about—in particular, explor-
ing what happens when there are a large number of time points such as would
be collected be wearables and other sensors. The models we compare and their
short-hand notation are:

1. Partitioned GP : As described above, using the (exact) Kronecker product
implementation.

2. Furlotte et al.: A linear mixed model where correlation in time is modelled
using an auto-correlation kernel (here we use an RBF as we do with our
Partitioned GP), and where in the alternative model, the SNP is a fixed effect,
shifting the trait at all time points by the same amount [5]. A standard LRT
test is used for the one-degree-of-freedom test. Note that we here do not use
the population structure kernel used in [5] as our experiments are not affected
by such factors.

3. Inverse linreg : To examine how models for which the number of parameters
increases with the number of time points, we use inverse linear regression
model wherein the SNP is modelled as the dependent variable and each trait
in time is an independent variable. Testing is done with a χ2 test with T
degrees of freedom (total number of time points, assumed to be the same for
all individuals). Note that in place of inverse linear regression, we could have
used inverse multinomial/“soft-max” regression. However, because prelimi-
nary results suggested the results were similar, we chose to experiment with
only the linear model.

4. Inverse K score: This model can be viewed as a Bayesian equivalent to Inverse
linreg where the time-effects are integrated out, yielding a linear mixed model.
In this way, the model does not dependend on the number of time points. We
then apply a score test to obtain a p-value (e.g. [2]).

We systematically explore each of these approaches on simulated phenotypic
data where we know the ground truth, examining type 1 error control, power,
and ability to rank hypotheses regardless of calibration. We based our simulated
data on the actual SNPs in the CARDIA data set (dbGaP phs000285.v3.p2)
which, after filtering out individuals missing more than 10 % of their SNPs, any
SNPs missing more than 2 % of individuals, or with MAF less than 5 % left 1,441
individuals with 540,038 SNPs. The only covariate we use is an off-set, which we
regress on as a pre-processing step before applying the models.

To simulate time-varying traits, we used a set of canonical functions that
were representative of the types of signal we were interested in exploring. In
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Fig. 3. Power curves as a function of time for all methods. On the vertical axis is the
median −log p-value for each method over eight thousand SNP tests. The top plot is
for tests with SNP effect, and the lower plot is for those with no SNP effect. ∗As noted
in the main text, the numerical routine used to get p-values for Inverse K score does not
yield numeric values less than around 10−8, thereby likely making this method appear
worse than it might be; however, we get a better sense of its behaviour in Fig. 5.

particular, we used a wave, linear, bias, and a stretch as shown in Fig. 1. For
null data, we generated noisy versions of these, where the noise was iid in time
and individual. For non-null data we modified the noise-free trait in a smoothly
varying way as a function of genotype before adding iid noise. For the wave
(a sin wave), the amplitude increased as a linear function of the SNP; for the
linear (a straight line), the slope changed as a linear function of the SNP; for
the bias, the horizontal intercept changed as a linear function of the SNP; for
stretch (a sin wave), the frequency changed as a linear function of the SNP.
We varied both the SNP effect intensities and the amount of noise. One can
summarize the strength of the SNP effect at each time point by the fraction of
variance explained by the genetic signal at each time point (i.e., the variance of
the noiseless trait divided by total variance, all at a given time point) as shown
in Fig. 4. Because we were interested specifically in seeing which models could
handle many time points, we conducted experiments with 10, 50, 100, and 150
time points.

Fig. 4. Average fraction of variance accounted for by genetics at each time point in
each canonical function over the range of settings used, for the traits with 100 time
points.
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Fig. 5. ROC curves for the simulated data with T equal to 10, 50, 100 and 150 time
points, for small False Positive Rates (less than 0.01). The vertical axis shows the False
Positive Rate, and the horizontal axis, the True Positive Rate.

Our first goal was to establish whether our Partitioned GP controls type 1
error so that we could use its p-values at face value for power comparisons, even
if they are not calibrated. First we used 8,000 tests at each of 10, 50, 100 and
150 time points, finding that the smallest number of time points (10) was always
the least conservative (Fig. 2). Therefore, we ran much larger scale simulations
of null-only data for 10 time points, obtaining 390,272 test statistics. With just
under half a million tests, we had resolution to check for control of type 1 error
up to a significance level of α = 10−5. As can be seen in Table 1, all methods
control the type 1 error up to α = 10−5. Note that our method controls the
type 1 error extremely conservatively, which could potentially hurt our method
in a power comparison. However, as we see next, our method is still the most
powerful overall in our experiments.

Having established that our method controls type 1 error, we next set out to
see if it had more power to detect associations than the other methods. Figure 3
shows the median test statistic for both our null (lower plot) and non-null (upper
plot) experiments, and demonstrates that our methods has maximum power for
the traits and methods chosen. Because our type 1 error control experiments
only went to α = 10−5, we chose to include the lower plot (Null). This null plot
shows that while the inverse kernel score remains calibrated, the inverse linear
regression becomes substantially inflated, failing to control the type 1 error. Our
method, is extremely conservative in controlling the type 1 error, yet maintains
maximal power. We also break down these plots by trait type in Fig. 6. Here
we see that Furlotte et al., despite only modelling a mean shift in the trait, is
able to capture stretch, though not wave, for which the mean between alleles is
identical. For stretch and wave, the Partitioned GP is the clear winner, while
for linear, all method work equally well, and for stretch, Furlotte et al. and the
Partitioned GP have the most power.

Note that the inverse kernel score test appears to have terrible power. How-
ever, this plot is perhaps misleading in the sense that this method uses a numeri-
cal routine (Davies method) which has limited precision, yielding many zeros for
tiny p-values (usually those smaller than 10−8). The only way to handle this was
either to keep these at zero, which would give that method an unfair advantage,
or to replace all zero p-values with 10−8, which is what we chose to do, thereby
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(a) wave (b) stretch

(c) linear (d) bias

Fig. 6. Power curves as in Fig. 3, but separated by trait types shown in Fig. 1. ∗Again,
as noted in the main text, the numerical routine used to get p-values for Inverse K
score does not yield numeric values less than around 10−8, thereby likely making this
method appear worse than it might be; however, we get a better sense of its behaviour
in Fig. 5.

showing the model in a worse light with respect to power than we believe it
may have if there were a way to compute p-values with more precision. As a
consequence, we next investigated the ability of each model to discriminate true
nulls from alternatives by using a Receiver Operating Characteristics (ROC)
curve—a metric which does not depend in any way on calibration and may be
less sensitive to p-value resolution.

Figure 5 shows the ROCs for each method, where we now see that the inverse
kernel score test performs extremely well, though not as well as the Partitioned
GP. Note that inverse linear regression, though showing inflated test statistics
in the lower panel of Fig. 3, here demonstrates that it maintains the ability to
properly rank the hypotheses from most to least significant, though again, not
as well as the Partitioned GP. Note that the performance of Furlotte et al. is
not terribly surprising since it is only able to capture shifts in the mean of the
functional trait, whereas our simulation scheme is deliberately testing richer SNP
effects.

4 Discussion

We have introduced a new method for performing GWAS on function-valued
traits. Our model is extremely flexible in its capacity to handle a wide range of
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functional forms. This flexibility is achieved by using a non-parametric statisti-
cal model based on RBF Gaussian processes. Computations in this model are
efficient when time points are aligned and traits are not missing, scaling only
cubically with the number of time points as opposed to cubic in the number of
time points times individuals, as would be the case in a naive computation. We
have also outlined how to do efficient computations even in the presence of miss-
ing trait data or unaligned samples. In a comparison against three other models
on synthetic data, each with different characteristics and ways of handling the
problem, we achieved maximal power, and maximal ability to discriminate null
versus alternative tests as judged by an ROC curve. Our model is especially
good at handling traits with many time points.

One downside of the model as presented is that the null model is not nested
inside the alternative model, making computation of calibrated p-values with-
out permutations most likely impossible. We were able to bypass this issue by
demonstrating empirically that naive application of a likelihood ratio test con-
trols the type 1 error, yielding extremely conservative p-values. However, we are
currently investigating a version of the Partitioned GP model which has its null
model nested in the alternative model and is therefore likely to yield calibrated
p-values and therefore potentially a larger power gain. In this model, the par-
titions of the alternative model are all placed within a single Gaussian, with
correlation parameters for each pair of alleles dictating how similar the GP for
each allele should be. When these parameters are equal to one, we obtain the
present alternative model. When these parameters are zero, we obtain the null
model, thereby making it nested inside of the alternative. Other directions of
interest are to extend this type of modelling approach to testing sets of SNPs
rather than only single SNPs, and to incorporate model-based warping of the
phenotype so as to coerce the data to better adhere to the Gaussian residual
assumption [26].
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Abstract. High-throughput sequencing (HTS) of metagenomes is prov-
ing essential in understanding the environment and diseases. State-of-
the-art methods for discovering the species and their abundances in an
HTS sample are based on genome-specific markers, which can lead to
skewed results, especially at species level. We present MetaFlow, the
first method based on coverage analysis across entire genomes that also
scales to HTS samples. We formulated this problem as an NP-hard
matching problem in a bipartite graph, which we solved in practice by
min-cost flows. On synthetic data sets of varying complexity and simi-
larity, MetaFlow is more precise and sensitive than popular tools such
as MetaPhlAn, mOTU, GSMer and BLAST, and its abundance estima-
tions at species level are two to four times better in terms of �1-norm.
On a real human stool data set, MetaFlow identifies B.uniformis as most
predominant, in line with previous human gut studies, whereas marker-
based methods report it as rare. MetaFlow is freely available at http://
cs.helsinki.fi/gsa/metaflow.

1 Introduction

Microbes—microscopic organisms that cannot be seen by the eye, which include
bacteria, archaea, some fungi, protists and viruses—are found almost every-
where, in the human body, air, water and soil, and play a vital role in maintain-
ing the balance of ecosystems. For example, diazotrophs are solely responsible
for the nitrogen fixation process on earth [9], and half of the oxygen on earth is
produced by marine microbes [11].

Metagenomic sequencing allows studying microbes sampled directly from the
environment without prior culture. A fundamental analysis of a metagenomic
sample is finding what species it contains (the sample richness) and what are
their relative abundances. This is a challenging task due to the similarity between
the species’ genomes, sequencing errors, and the incompleteness of reference
microbial databases.

S. Ahmed and A.I. Tomescu—Equal contribution.

c© Springer International Publishing Switzerland 2016
M. Singh (Ed.): RECOMB 2016, LNBI 9649, pp. 111–121, 2016.
DOI: 10.1007/978-3-319-31957-5 8

http://cs.helsinki.fi/gsa/metaflow
http://cs.helsinki.fi/gsa/metaflow


112 A. Sobih et al.

One of the first methods, applicable only at high taxonomic levels [7], focused
on 16S ribosomal RNA marker genes. Its limitations have been mitigated by high-
throughput sequencing of the entire genomes in a metagenomic sample, and a
number of methods dealing with this data have been proposed. The simplest of
them is to align the reads to a reference database, using e.g. BLAST [1], and
to choose the best alignment for every read. This approach cannot break the
tie between multiple equally-good alignments of a read, and it cannot detect
false positive alignments. One way of avoiding alignment ties, but not false
positive alignments, is to estimate the sample structure only at a high taxo-
nomic level. For example, MEGAN [4] assigns each read with ties to the lowest
common ancestor of its alignments in the reference taxonomic tree. Another
method for breaking ties was proposed in PhymmBL [2], based on Interpolated
Markov Models (IMMs). For each read, it combines the BLAST alignment score
to a particular genome, with another score based on the probability of the read
being generated by an IMM of that genome. This results in a single maximum-
scoring alignment for every read, which improves over basic BLAST alignments.
This method still cannot eliminate false alignments, and does not scale to high-
throughput sequencing samples. For example, it takes one hour to classify 5,730
reads of length 100 bp [2].

Fig. 1. Overview of the methods compared in this paper. In the yellow box,
reads are aligned only to genomic markers, and the relative abundances are highly
skewed: marker 1 receives more false mappings (in red) because it is similar with a
subsequence of the second genome (gray); marker 2 has a drop in coverage due to a
sequencing bias, and it is covered only by three reads (orange); marker 3 is covered also
by some reads sequenced from a species not in the reference database (violet). In the
green box, reads have whole-genome BLAST alignments, but the relative abundances
are still skewed: the tie in the alignment of the red reads is not resolved, and the
violet reads from an unknown species aligning to the third genome are not removed. In
the blue box, the coverage-sensitive mapping of the reads: the red reads are correctly
aligned to the second genome (in the gray sequence) and the violet reads from an
unknown species are discarded from the third genome.
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The current state-of-the-art approach is to construct a small curated refer-
ence database of genomic markers. These markers can be clade-specific marker
genes (MetaPhlAn [12]), universal marker genes (mOTU [14]), or genome-specific
markers not restricted to coding regions (GSMer [15]). The reads are aligned only
to these marker regions, which makes it a fast process, and the estimations are
more accurate at the species level because of the marker curation process. How-
ever, due to the short length of the marker regions, the abundance estimations
can be extremely skewed in some cases. In addition, the markers are uniquely
identifying the microbial genomes only among the currently known genomes,
meaning that the entire database of markers must be re-computed with the
addition of each new reference microbial genome.

In this paper, we propose a new method which addresses the problems of
equally-good alignments and of false alignments, with accurate estimates at the
species level. Our method takes into account the entire read alignment landscape
inside all genomes in the reference database. The main idea is to exploit the
assumption that if enough reads are sampled, then these reads will cover most
of the genomic regions. In addition, not relying on specific genomic markers,
there is no need to curate a reference database. Our problem formulation is
based on a matching problem applied to a bipartite graph constructed from
read alignments. This problem is NP-hard, but we give a practical strategy for
solving it with min-cost network flows. See Fig. 1 for an overview of all methods.

We performed experiments on synthetic and real data sets, and compared
MetaFlow with popular tools MetaPhlAn [12], mOTU [14], GSMer [15], and
standard BLAST alignments. MetaFlow outperforms the other methods in its
ability to correctly identify the species and their abundance levels. On synthetic
data, MetaFlow’s predictions are more precise and sensitive, and its abundance
estimations are up to two to four times better in terms of �1-norm. On a real fecal
metagenomic sample from the Human Microbiome Project, MetaFlow reports
B.uniformis as predominant species, in line with previous human gut studies [8].
However, marker-based methods MetaPhlAn and mOTU assign it a low abun-
dance.

2 Methods

We assume in input a set of BLAST hits of the metagenomic reads inside a
collection of reference genomes, which we call known genomes. The output is the
richness of the sample and the relative abundance of each known species. This
is obtained by selecting, for every read, exactly one hit in a reference genome,
or classifying it as originating from a species not in the reference database (we
call such species unknown).

The optimal selection is the one simultaneously achieving the following three
objectives: (1) few coverage gaps, (2) uniform coverage, and (3) agreement
between BLAST scores and final mappings. Objective (1) allows the detection
of outlier genomes that have only few regions covered. Objective (2) breaks ties
between read alignments, and is also based on detecting abnormal read coverage
patterns.
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We model the above-mentioned input for this problem as a bipartite graph,
such that the reads form one part of the bipartition, and the reference genomes
form the other part of the bipartition. Objectives (1)–(3) are not modeled inde-
pendently, but combined in a single objective function, as discussed in the
next section. Our modeling is inspired by the interesting Coverage-sensitive
many-to-one min-cost bipartite matching problem, introduced in [5] for map-
ping reads to complex regions of a reference genome. We extended this model
to our metagenomic context, since reads can have mappings to more than one
reference genome, or can originate from unknown species.

2.1 Problem Formulation and Computational Complexity

Assume that the reads have BLAST hits in the collection of reference genomes
G = {G1, . . . , Gm}. We partition every genome Gi into substrings of a fixed
length L, which we call chunks. Denote by si the number of chunks that each
genome Gi is partitioned into. We construct a bipartite graph G = (A ∪ B,E),
such that the vertices of A correspond to reads, and the vertices of B correspond
to the chunks of all genomes G1, . . . , Gm. Specifically, for every chunk j of genome
Gi, we introduce a vertex yi

j , and we add an edge between a read x ∈ A and
chunk yi

j ∈ B if there is a BLAST mapping of read x starting inside chunk j of
genome Gi. This edge is assigned the cost of the mapping (BLAST scores can
be trivially transformed to costs), which we denote here by c(x, yi

j). In order to
model the fact that reads can originate from unknown species (whose genome is
not present in the collection G), we introduce an ‘unknown’ vertex z in B, with
edges from every read x ∈ A to z, and with a fixed cost c(x, z) = γ, where γ is
appropriately initialized.

In the coverage-sensitive metagenomic mapping problem stated below, the
tasks are: first, for each Gi, to find the number of reads sequenced (i.e., origi-
nating) from it, which we denote by ri (ri is 0 if Gi is an outlier); second, to
select an optimal subset M ⊆ E such that for every read x ∈ A there is exactly
one edge in M covering it (a mapping of x). These must minimize the sum of
the following two costs:

(A) the sum, over all chunks of every genome Gi, of the absolute difference
between ri/si and the number of read mappings it receives from M (corre-
sponding to Objective (2));

(B) the sum of all edge costs in M (corresponding to Objective (3)).

Our formal problem definition is given below. We use the following notation:
n is the number of reads, m is the number of different genomes where the reads
have BLAST hits, si is the number of chunks of each genome Gi, i ∈ {1, . . . , m},
and in a graph G = (V,E), dM (v) denotes the number of edges of a set M ⊆ E
incident to a vertex v.
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Coverage-sensitive metagenomic mapping. Input:
– a bipartite graph G = (A ∪ B,E), where A is the set of n reads, B =

{y1
1 , . . . , y

1
s1 , . . . , y

m
1 , . . . , ym

sm} ∪ {z} is the set of all genome chunks plus
z, the ‘dummy’ node,

– a cost function c : E → Q,
– constants α ∈ (0, 1), β, γ ∈ Q+.
Tasks:
– find a vector R = (r1, . . . , rm) containing the number of reads sequenced

(i.e., originating) from each genome Gi, i ∈ {1, . . . , m},
– find a subset M ⊆ E such that dM (x) = 1 holds for every x ∈ A (i.e.,

each read is covered by exactly one edge of M)
which together minimize:

(1 − α)
∑

{x,y}∈M

c(x, y) + α · β ·
m∑

i=1

si∑

j=1

∣∣∣∣
ri
si

− dM (yi
j)

∣∣∣∣ + γdM (z).

In the full version of the paper we show that the coverage-sensitive metage-
nomic mapping problem is NP-hard for all α ∈ (0, 1). Thus, we opt for the
common iterative refinement strategy, akin to the strategy behind k-means clus-
tering [13], or Viterbi training strategies with Hidden Markov Models [3]. In
Sect. 2.2 we detail this approach; the main ideas are:

1. If the unknown vector R = (r1, . . . , rm) is fixed to some value R =
(a1, . . . , am), then the optimal mapping M can be found in polynomial time
with min-cost flows. We show this in the full version of the paper.

2. For finding the optimal R, we start with a vector R0 = (a1, . . . , am), where ai

equals the number of reads with BLAST hits to Gi. We repeat the following
process, until the vector R converges to a stable value. For each iteration j:
(a) find the optimal mapping M j by min-cost flows, with input Rj ;
(b) update Rj to Rj+1, a vector whose i-th component equals meani ·si; here

meani is the 20 %-trimmed mean read coverage of the chunks of genome
Gi, obtained from M j .

2.2 Overview of the Implementation

Our practical implementation is divided into five stages. These depend on some
parameters, whose complete list is in the full version of the paper.

Stage 1: Removing outliers species. A genome Gi ∈ G is considered an
outlier if at least one of the following conditions holds.

– The average read coverage of Gi (i.e., the number of reads with BLAST hits
to Gi multiplied by the average read length and divided by the length of Gi)
is lower than a given parameter.
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– The average read mapping per chunk (i.e., the number of reads with BLAST
hits to Gi divided by si) is lower than a given parameter.

– The percentage of chunks without any BLAST hit is more than a given para-
meter.

In this stage, we remove each outlier genome Gi and the reads that have BLAST
hits only to Gi.

Stage 2: Breaking ties inside each genome. A read can have BLAST hits
to different chunks of the same genome. In this stage, for each read remaining
after Stage 1, we select only one BLAST hit in each genome, as follows. For each
remaining genome Gi ∈ G, we create a sub-problem instance G = (A ∪ B,E)
where A consists only of the reads that have BLAST hits to Gi, and B consists
only of the chunks of Gi (excluding the unknown vertex z, which will be dealt
with in Stage 4). We fix the one-element vector R as R = (r1) = (|A|), and solve
this sub-problem using min-cost flows. After this stage, every read has at most
one hit to each genome, but it can still have hits to multiple genomes.

Stage 3: Breaking ties across all genomes. A read can be mapped to differ-
ent species, due to the similarity between their genomes. In order to select only
one read mapping across all genomes, we solve the coverage-sensitive metage-
nomic mapping problem on a graph G = (A∪B,E), as follows. The set A consists
of all remaining reads, and the set B of all chunks of the remaining genomes.
The set of edges E is the one obtained by the filtration done in Stage 2. Since
this problem is NP-hard, we employ the iterative refinement strategy, coupled
with min-cost flows, mentioned at the end of Sect. 2.1. After each iteration j, we
use the resulting mapping M j to remove outlier genomes, as in Stage 1. After
this stage, each read is mapped to exactly one genome, and to only one of its
chunks.

Stage 4: Identifying reads from unknown genomes. In this stage we iden-
tify reads originating from species whose reference genomes are not present in
the reference database. We run the same min-cost flow reduction as in Stage 2,
to which we add the unknown vertex z. If a read is mapped to z, then it will
be marked as coming from an unknown genome and removed from the graph.
Finally, we again remove outlier genomes, as in Stage 1.

Stage 5: Estimating richness and relative abundances. For every
genome Gi, we compute its average read coverage read cov(i), and its rela-
tive abundance rel abun(i) as: read cov(i) = ri · R/length(i), rel abun(i) =
read cov(i)/

∑m
j=1 read cov(j), where ri is the number of reads mapping to Gi

after Stages 1–4, R is the average read length, and length(i) is the length of Gi.

3 Experimental Setup

Our experimental setup measures the effect of the following three factors: (1)
genotypic homogeneity between the species, (2) complexity of the sample (i.e. the
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number of species), and (3) the presence of species unknown to the methods.
We simulated two types of data sets: a low complexity type (LC), consisting of
4 M reads sampled from 15 different species, and a high-complexity type (HC),
consisting of 40 M reads sampled from 100 different species. The goal of the
simulated LC data sets is to evaluate the methods under different levels of geno-
typic homogeneity between the species. For example, species with high genotypic
homogeneity are difficult to precisely identify and their presence usually leads
to incorrect predictions. We explain these levels of similarity in the full version
of the paper. The simulated HC data sets test how a large number of randomly
chosen species influences the accuracy of the methods. As opposed to the LC
data sets, they do not test the ability of the tools to deal with similar species.
This experimental setup is in line with previous studies [6,12].

In both the LC and HC data sets, we had two experimental scenarios: one
in which all species in the sample are known to the methods (LC-Known, HC-
Known), and one in which a fraction of them are unknown (LC-Unknown, HC-
Unknown). LC-Known is the “perfect-information” scenario, which though not
realistic, shows the performance of the tools in the best possible conditions. HC-
Unknown is the most realistic scenario. In total, these simulated experiments
contain 48 data sets.

The abundances of the species in each data set were chosen log-normal
distributed (with mean = 1, standard deviation = 1), also in line with previous
experiments [12]. This presents a challenge in finding less abundant species, since
the ratio between the most abundant species and the least abundant is 100 in
most cases, and the top 10 % most abundant species represents about 35 % of
the sample. We selected in total 817 bacterial species from the NCBI micro-
bial genome database, and used Metasim [10] to create the data sets using the
default 454-pyrosequencing error model (with mean read length = 250 and stan-
dard deviation = 1).

In order to evaluate the accuracy of the richness estimations, we evaluated the
sensitivity (also called recall) and the precision. Sensitivity is defined as TP/NS,
and precision is defined as TP/(TP + FP ), where TP is the number of species
correctly identified by the tool, FP is the number of species not present in the
sample but reported by the tool, and NS is the true number of species in the
sample. In order to obtain a single measure of accuracy, we also computed the
harmonic mean of precision and sensitivity, known as F-measure, and defined as
2·precision·sensitivity/(precision+sensitivity). To evaluate the accuracy of the
relative abundance predictions, we measured the �1-norm of these abundances
for each data set, expressed in percentage points. For the data sets with unknown
genomes, we excluded the unknown genomes from the abundance vectors and we
re-normalized the resulting relative abundances to the known genomes. Note that
some methods, such as MetaPhlAn [12] and mOTU [14], give some abundance
estimations for the unknown genomes at a higher taxonomic levels (e.g. genus).
Our method is focused instead on the core problem of analyzing the known
species, without estimating the relative abundances of the unknown genomes.
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Table 1. Running times of the methods with the increase of data set size. MetaFlow
starts the analysis from the BLAST alignments (column “BLAST”). The data sets of
size 4 M and 40 M are the synthetic ones; the reported running times are averages over
all data sets of the same size. The data set of size 280 M is the real one.

Data set size BLAST MetaFlow MetaPhlAn mOTU GSMer

4 M 243 min 28 min 14 min 9 min 42 min

40 M 1572 min 459 min 132 min 84 min 364 min

280 M 3.5 days 2025 min 387 min 380 min N/A

We compared the performance of MetaFlow against BLAST [1],
MetaPhlAn [12], mOTU [14] and GSMer [15]. In the BLAST analysis, we always
selected the best alignment; in case of multiple equally-good alignments, we ran-
domly selected one of them; if the read coverage of a species is below 0.3×, then
we considered it an outlier. GSMer does not provide relative abundances, so
we compared only the accuracy of the richness estimations. For mOTU, some
species among our known genomes were not covered in its database, so in our
evaluation it received full marks on these species. On the other hand, some of
the species chosen as unknown in our experiments already existed in mOTU’s
database. For these species, we removed mOTU’s correct prediction.

We also ran our tool using a real data set. We merged 6 G DNA Stool samples
of a female from Human Microbiome Project (5 samples were generated using
Illumina, and one sample using LS454). Their accession numbers are in the full
version of the paper. The read length of all reads was normalized to 100 bp. The
total number of reads from all samples was 287,565,377, out of which 98,223,162
BLAST mapped to one or more species. Only alignments with identity ≥97%
were selected as an input for MetaFlow. In addition to the full reference genomes
in NCBI’s microbial database, we also used two other references: a supercontig
of B.uniformis (accession number NZ JH724260.1), because B.uniformis was
previously reported as most abundant in fecal samples [8]; and the longest scaf-
fold of B.plebeius (accession number NZ DS990130.1) because MetaPhlAn and
mOTU report B.plebeius as most abundant in this sample.

See Table 1 for the running times of the methods tested in this paper.

Table 2. Average over the F-measure and �1-norm in each experimental scenario. The
15 LC data sets contain 4 M reads from 15 species, and the 9 HC data sets contain
40 M reads from 100 species.

LC-Known LC-Unknown HC-Known HC-Unknown

F-measure �1-norm F-measure �1-norm F-measure �1-norm F-measure �1-norm

MetaFlow 0.971 10.41 0.825 17.87 0.976 4.86 0.883 8.01

MetaPhlAn 0.946 26.42 0.770 31.48 0.958 18.61 0.844 19.13

BLAST 0.909 12.46 0.745 21.47 0.920 5.94 0.809 11.25

GSMer 0.218 N/A 0.163 N/A 0.327 N/A 0.259 N/A

mOTU 0.924 36.31 0.780 43.74 0.949 10.55 0.847 18.73
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4 Discussion

Synthetic Data Sets. We summarize the experimental results on simulated
data in Table 2 and in Fig. 2. The complete results on each LC data set are in
the full version of the paper. Since BLAST reports alignments in all the refer-
ence genomes, its sensitivity is always the maximum achievable. However, this
comes at the cost of low precision, since there is no proper strategy for breaking
ties among alignments, or for properly removing outlier genomes. MetaPhlAn
and mOTU have better precision and F-measure than BLAST, confirming that
marker genes are a good way of distinguishing between similar species. However,
the sensitivity of the marker-based methods suggests that such an approach is
not always accurate in identifying all species present in the sample, especially at
a high level of species similarity.

These results also confirm our hypothesis that taking into account the cover-
age across the entire genome improves the abundance estimation. For example,
even though BLAST has a lower F-measure, it has better �1-norm than marker-
based methods. This is due to the fact that marker regions are much shorter
compared to the genome length, and thus slight variations in coverage in these
regions can easily skew the abundance estimation. MetaFlow achieves the maxi-
mum sensitivity of BLAST, but it manages to highly improve the precision, and
it also obtains the best F-measure among all the tested methods. Comparing
the LC and HC scenarios, we can also observe that MetaFlow’s richness estima-
tions are robust with the increase in sample size. Moreover, since MetaFlow is
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Fig. 2. Results of the tools on all simulated data sets. The x-axis is the sensitiv-
ity and the y-axis is the precision; each circle is one experiment; inside each plot, the
size of the circles is proportional with the �1-norm (smaller is better). In LC-Known
data set: 15 data sets, each with 4 M reads from 15 species, all known. In LC-Unknown:
15 data sets, each with 4 M reads from 15 species, out of which 3 are unknown. In HC-
Known: 9 data sets, each with 40 M reads from 100 species, all known. In HC-Unknown:
9 data sets, each with 40 M reads from 100 species, out of which 15 are unknown. The
unknown species are among 31 bacterial species from the NCBI microbial genome data-
base, published after 2014. GSMer’s results are not included in the figures, since its
precision and sensitivity were always much lower than the other methods (see Table 2).
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also based on whole-genome read alignments, it gives a much better abundance
estimation than marker-based methods, with an improvement of 2–4× in aver-
age �1-norm. Our problem formulation also filters out outlier species and false
alignments, thus improving the abundance estimations over BLAST.

Finally, the results are always better on the HC data sets than on the LC
data sets for all tools, because a small variation is more severe in a sample with
15 species than in a sample with 100 species. Recall also that the LC data sets
were constructed to have similar species, whereas in the HC data sets the species
were randomly chosen. The data sets with high genotypic homogeneity show that
such scenario remains a difficult one: even though MetaFlow improves both the
richness and abundance estimation of the competing methods, its precision drops
to an average of 0.85 and its �1-norm increases to an average of 40.

Real Data Set. On the fecal metagenomic sample, the most abundant species
reported by MetaFlow is B.uniformis (23.6 % relative abundance), which was
also reported as the most abundant species in human feces [8]. This high
abundance is also supported by the fact that 15,418,699 reads are mapped by
BLAST only to B.uniformis. In the end, 10,721,492 are assigned by MetaFlow
to B.uniformis, because of the uneven read coverage. This corresponds to an
average read coverage of 220. Note also that the 10th most abundant species
according to MetaFlow, A.shahii, has relative abundance 2.3 % and average read
coverage 21. MetaPhlAn and mOTU assign B.uniformis abundances 1.7 % and
6.4 %, respectively.

The second most abundant species reported by MetaFlow is B.vulgatus,
another common species in human feces [8]. MetaFlow’s predicted abundance
is 22.3 % (average read coverage 208), which is in line with MetaPhlAn’s pre-
diction of 17.7 % and, to an extent, mOTU’s prediction of 11.9 %. In the full
version of the paper we give the list of the top 10 prediction of MetaFlow, and
their abundances reported by MetaPhlAn and mOTU. Four out of the top six
species have also been reported by [8] as predominant in human feces, and they
constitute 59 % of the sample according to MetaFlow (relative to the species
known to MetaFlow).

The top abundant species in MetaPhlAn’s and mOTU’s predictions is
B.plebeius, with 25 % and 16 % relative abundance, respectively. MetaFlow’s
reported abundance is 5.2 %. Note also that 62 species reported by MetaPhlAn
are not available in the database of reference genomes given to MetaFlow
(NCBI’s database plus B.uniformis and B.plebeius). Since our predicted abun-
dances are relative to the known genomes only (average read coverages are also
outputted by MetaFlow), the abundance of B.uniformis relative to all species in
the sample may be lower than 23.6%, but it cannot be significantly lower than
the one of B.vulgatus, as MetaPhlAn and mOTU predict.

Acknowledgement. We thank Romeo Rizzi for discussions about the computational
complexity of our problem. This work was partially supported by the Academy of
Finland under grants 284598 (CoECGR) to A.S. and V.M. and 274977 to A.T.



MetaFlow: Metagenomic Profiling Based on Whole-Genome Coverage 121

References

1. Altschul, S.F., et al.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–
410 (1990)

2. Brady, A., Salzberg, S.L.: Phymm and PhymmBL: metagenomic phylogenetic clas-
sification with interpolated Markov models. Nat. Methods 6(9), 673–676 (2009)

3. Durbin, R., et al.: Biological Sequence Analysis: Probabilistic Models of Proteins
and Nucleic Acids. Cambridge University Press, Cambridge (1998)

4. Huson, D.H., et al.: MEGAN analysis of metagenomic data. Genome Res. 17(3),
377–386 (2007)

5. Lo, C., et al.: Evaluating genome architecture of a complex region via generalized
bipartite matching. BMC Bioinform. 14(S–5), S13 (2013)

6. Mavromatis, K., et al.: Use of simulated data sets to evaluate the fidelity of metage-
nomic processing methods. Nat. Methods 4(6), 495–500 (2007)

7. Poretsky, R., et al.: Strengths and limitations of 16S rRNA gene amplicon sequenc-
ing in revealing temporal microbial community dynamics. PLoS One 9(4), e93827
(2014)

8. Qin, J., et al.: A human gut microbial gene catalogue established by metagenomic
sequencing. Nature 464(7285), 59–65 (2010)

9. Raymond, J., et al.: The natural history of nitrogen fixation. Mol. Biol. Evol. 21(3),
541–554 (2004)

10. Richter, D.C., et al.: MetaSim-A sequencing simulator for genomics and metage-
nomics. PLoS One 3(10), e3373 (2008)

11. Rocap, G., et al.: Genome divergence in two Prochlorococcus ecotypes reflects
oceanic niche differentiation. Nature 424(6952), 1042–1047 (2003)

12. Segata, N., et al.: Metagenomic microbial community profiling using unique clade-
specific marker genes. Nat. Methods 9(8), 811–814 (2012)

13. Steinhaus, H.: Sur la division des corps matériels en parties. Bull. Acad. Polon.
Sci. Cl. III. 4, 801–804 (1956)

14. Sunagawa, S., et al.: Metagenomic species profiling using universal phylogenetic
marker genes. Nat. Methods 10(12), 1196–1199 (2013)

15. Tu, Q., et al.: Strain/species identification in metagenomes using genome-specific
markers. Nucleic Acids Res. 42, e67 (2014)



LUTE (Local Unpruned Tuple Expansion):
Accurate Continuously Flexible Protein Design

with General Energy Functions
and Rigid-rotamer-like Efficiency

Mark A. Hallen1, Jonathan D. Jou1, and Bruce R. Donald1,2,3(B)

1 Department of Computer Science, Duke University, Durham, NC 27708, USA
2 Department of Chemistry, Duke University, Durham, NC 27708, USA

3 Department of Biochemistry, Duke University Medical Center,
Durham, NC 27710, USA

brd+recomb16@cs.duke.edu

Abstract. Most protein design algorithms search over discrete confor-
mations and an energy function that is residue-pairwise, i.e., a sum of
terms that depend on the sequence and conformation of at most two
residues. Although modeling of continuous flexibility and of non-residue-
pairwise energies significantly increases the accuracy of protein design,
previous methods to model these phenomena add a significant asymp-
totic cost to design calculations. We now remove this cost by modeling
continuous flexibility and non-residue-pairwise energies in a form suit-
able for direct input to highly efficient, discrete combinatorial optimiza-
tion algorithms like DEE/A* or Branch-Width Minimization. Our novel
algorithm performs a local unpruned tuple expansion (LUTE), which
can efficiently represent both continuous flexibility and general, possibly
non-pairwise energy functions to an arbitrary level of accuracy using a
discrete energy matrix. We show using 47 design calculation test cases
that LUTE provides a dramatic speedup in both single-state and multi-
state continuously flexible designs.

1 Introduction

Protein design algorithms compute protein sequences that will perform a desired
function [5]. They generally do this by minimizing the energy of a desired bind-
ing or structural state (or some combination thereof [19,30]) with respect to
sequence [4,5,7,9,13,15,25,27]. Given a model of the conformational space of a
protein and its energy function (which maps conformations to their energies),
this is a well-defined computational problem [5].

Previously, this minimization problem has been most efficient to solve if two
restrictions are imposed on the model. First, the conformational space of the
protein is modeled as discrete. Specifically, each residue takes on conformations
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from a discrete set (typically, experimentally observed sidechain conformations
known as rotamers [23]). Hence, we optimize with respect to the amino-acid
type and rotamer of each residue. Second, the energy function is assumed to be
residue-pairwise, i.e., it is assumed to be a sum of terms that each depend on
the amino-acid types and conformations of at most two residues.

A large body of efficient algorithms has been developed for this restricted
case of the protein design problem, many of which offer provable accuracy. In
particular, the dead-end elimination (DEE) algorithm [4] removes rotamers that
provably cannot be part of the global minimum-energy conformation (GMEC).
The A* algorithm from artificial intelligence [22] finds the optimal conformation
using these unpruned rotamers [29]. This DEE/A* framework has been general-
ized to model free-energies for each sequence instead of simply GMECs [13,32]
(the K∗ algorithm). It has also been generalized to optimize combinations of
stability and specificity by minimizing, with respect to sequence, a linear combi-
nation of the conformationally optimized energies of several bound and unbound
states of a protein, instead of just the energy of a single state [19] (the comets
algorithm). Several methods in addition to DEE/A* have also been used to
address the protein design problem. Some of these, such as Metropolis Monte
Carlo and simulated annealing [27,31], lack provable guarantees of accuracy, and
thus may miss the optimal conformation significantly [41]. Other algorithms with
provable accuracy are also available, largely building on techniques from inte-
ger linear programming [26,37] and weighted constraint satisfaction [37,45,46].
Notably, treewidth- and branch-width-based algorithms, such as TreePack [48]
and BWM∗ [24], solve this problem with provable accuracy in polynomial time
for systems whose residue interaction graph has treewidth or branch-width
bounded by a constant [24].

However, proteins are actually continuously flexible, and continuous flexibil-
ity both in the sidechains [9] and backbone [21] has been shown to result in
significantly lower energies and biologically better sequences [9,21]. Although a
residue sidechain will usually be found in the vicinity of the modal conforma-
tion for a rotamer, its dihedral angles will often differ from this mode by 10◦ or
more [23]. These continuous adjustments are often critical for determining what
conformations are sterically feasible [9]. Thus, incorporation of continuous flex-
ibility modeling substantially increases the accuracy of designs. The minDEE
and iMinDEE methods [9,13] do this for continuous sidechain flexibility, and
DEEPer does this [21] for simultaneous continuous sidechain and backbone flex-
ibility. These methods replace the traditional discrete rotamers used in DEE/A*
with voxels in the conformation space of each residue, called residue confor-
mations (RCs). An RC is defined as an amino acid type together with bounds
on each of the conformational degrees of freedom of the residue (e.g., sidechain
dihedrals) [21]. The modal conformation for a rotamer is usually found at the
center of this voxel. In this model, the conformation space of an entire protein
is a union of voxels, each of which is constructed as the cross-product of single-
residue voxels. Thus, each voxel in the conformation space of the entire protein
is represented by a list of RCs, one for each residue being modeled as flexible.
RCs are constructed to be small enough that we can use local minimization to
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find the optimal energy within the voxel. This applies to both the single-residue
and entire-protein voxels.

However, the global minimum energy in this model could not previously be
computed directly by DEE/A*. Instead, DEE/A* was used to enumerate RC
lists (protein conformational voxels) in order of a lower bound on minimized
energy [9,13,21]. Subsequently, the optimal energy for each RC list with a suffi-
ciently low-energy lower bound was computed by minimization. The lower bound
was computed from minimized pairwise interaction energies [13]. This minimiza-
tion was accelerated significantly by precomputing polynomials to approximate
the energy landscape, using the EPIC algorithm [20]. However, minimization
was still the bottleneck in continuously flexible designs and prevented them
from approaching the efficiency of designs with discrete flexibility. In essence,
these previous methods modeled continuously flexibility by modify-
ing DEE/A* and making it do much more work. In contrast, LUTE
achieves much greater efficiency by representing continuous flexibility
in a form suitable for direct input into DEE/A*.

We must also address the question of the energy function. The energy land-
scape of a real protein is not residue-pairwise, or otherwise exactly described
solely as the sum of local terms. There is, however, ample evidence that pro-
tein interactions are local in a more general sense [6,20,47,49]—i.e., that the
cross-derivative of the energy with respect to conformational degrees of free-
dom of two residues will tend to zero fairly quickly as the distance between the
residues increases. These properties are also observed for more realistic energy
functions that return an energy for the entire protein, rather than breaking
the energy into terms as molecular mechanics does. For example, the Poisson-
Boltzmann model for implicit solvation [42] and quantum-chemical models return
an energy for the entire system on which they are run. Thus, a viable app-
roach to modeling protein energies more realistically is to infer local terms from
full-protein energies. Vizcarra et al. [47] apply this approach to the Poisson-
Boltzmann model, calculating pairwise energies from differences in full-protein
conformational states and achieving a pairwise energy matrix that quite accu-
rately matches the Poisson-Boltzmann energies of full conformations. However,
their method can only accommodate rotamer pairs, does not support continuous
flexibility, and can only be used when substituting a single rotamer into a con-
formation is possible while maintaining the conformation of the other residues.
This is impossible when residues share conformational degrees of freedom, which
is typically needed for backbone flexibility [12,21], and may also cause problems
in the case of steric clashes. Also, DEE/A* has been generalized to accommo-
date higher-than-pairwise energy terms if these terms are computed explicitly for
particular tuples, e.g., triples of residues [33]. However, most energy functions
modeling higher-than-pairwise effects, including Poisson-Boltzmann, return a
single energy for the entire system, rather than a sum of explicit local terms as
required by algorithms such as those in Ref. [33].

Hence, today’s protein and drug designers are faced with a choice. They can
neglect continuous flexibility and energy terms that aren’t explicitly local (e.g.,
explicitly pairwise), thus incurring significant error. Or they can pay a massive
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overhead to incorporate them—by enumerating many conformations (for contin-
uous flexibility) or searching exhaustively (for non-pairwise energy functions).
We now offer a way around this dilemma. We construct an energy function that
is an explicit, discrete sum of local energy terms, which are associated with
tuples of RCs. This function maps RC lists, which represent voxels in the con-
formation space of a protein, to energies. But it will approximate, to arbitrary
accuracy, the minimized voxel energy, which can be computed with any energy
function: no need for residue-pairwiseness or any other local representation.
Computing this approximation is a machine learning problem, and we attack
it with a least-squares method. Our approach has some resemblance to cluster
expansion methods, which have previously been used in quantum mechanics [3]
and to represent optimized energies for protein sequences [17,18]. However, as
discussed in Ref. [20], approximations of energy surfaces can be much more com-
pact if unrealistically high-energy regions of conformational space are excluded
from the approximation (and from the subsequent conformational search). Thus,
unlike cluster expansion methods, we exclude pruned tuples of RCs, making our
derived energy function a local unpruned tuple expansion, or LUTE. Because con-
formational and sequence search using the LUTE energy function is a discrete
optimization problem of the type solved by DEE/A*, BWM∗, and other very
efficient algorithms, it allows designs to run quickly using these algorithms, while
still approximating continuous flexibility and highly realistic energy functions to
a high level of accuracy.

We have implemented LUTE in the osprey [10,13,14] open-source pro-
tein design package, which has yielded many designs that performed well
experimentally—in vitro [2,8,11,16,36,40,43] and in vivo [8,16,36,40] as well
as in non-human primates [40]. osprey contains a wide array of flexibility mod-
eling options and provably accurate design algorithms [10,14], allowing LUTE
to be used for many types of designs.

By presenting LUTE, this paper makes the following contributions:
1. A method to represent continuous flexibility and general energy functions

to arbitrary accuracy in a local unpruned tuple expansion (LUTE) that can
be used directly as input to discrete combinatorial search algorithms like
DEE/A*.

2. A free implementation of LUTE in our laboratory’s open-source osprey
protein-design software package [2,8,13,14], available for download [14] upon
publication as free software [14], supporting representation of both continuous
sidechain and backbone flexibility and of molecular-mechanics and Poisson-
Boltzmann energy functions.

3. Integration of LUTE with the DEE/A* [29], iMinDEE [9], BWM∗ [24], and
comets [19] algorithms for sequence and conformational search.

4. Bounds on the time and space complexity of protein design calculations that
model continuous flexibility and/or use energy functions with non-local terms.
The time and space complexity are exponential merely in the branch-width
w of the residue interaction graph, and thus the designs can be done in poly-
nomial time for systems whose branch-width is bounded by a constant.

5. Experimental results for 47 computational design calculations on 36 pro-
tein structures using LUTE, which demonstrate its accuracy and efficiency
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in single-state designs, multistate designs and for both n-body Poisson-
Boltzmann and pairwise energy functions.

2 Methods

The basic strategy of LUTE is to create a discrete, quick-to-evaluate energy
matrix that tells us everything we need to know for design purposes about
the continuous energy landscape of a protein. We will now describe this energy
matrix and how it works.

Our goals in protein design (both GMEC [9,29] and binding/partition func-
tion [13,32] calculations) can be posed in terms of a discrete function E(r) that
maps an ordered list r of RCs to an energy. The list r contains exactly one RC
per residue and thus represents a voxel V (r) in conformation space, where a vec-
tor x of sequence and conformational degrees of freedom satisfies x ∈ V (r) if the
degree-of-freedom bounds defined by each RC in r are respected by every degree
of freedom in x. The conformational degrees of freedom in x will generally be
continuous internal coordinates, e.g., sidechain dihedrals. We let E′(x) denote
the energy of the protein system, as a function of all its degrees of freedom.

For calculation of the GMEC energy Eg, we wish to minimize E′(x) with
respect to x. Letting R be the set of all possible voxels, the domain over which
we minimize is a finite union of voxels

⋃
r∈R

V (r):

Eg = min
x∈ ⋃

r∈R

V (r)
E′(x) = min

r∈R
min

x∈V (r)
E′(x), (1)

which can be expressed in the form min
r∈R

E(r) where

E(r) = min
x∈V (r)

E′(x). (2)

Similarly, partition function calculations seek to calculate the partition function

q =
∫

⋃

r∈R

V (r)

exp
(

−E′(x)
RT

)
dx =

∑

r∈R

∫

V (r)

exp
(

−E′(x)
RT

)
dx (3)

where R is the gas constant and T is the temperature. Letting

E(r) = −RT ln

⎛

⎜⎝
∫

V (r)

exp
(

−E′(x)
RT

)
dx

⎞

⎟⎠ (4)

we have a formulation of q in terms of the discrete free energy function E(r):

q =
∑

r∈R

exp
(

−E(r)
RT

)
. (5)
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Fig. 1. LUTE makes continuously flexible design efficient by representing
continuous flexibility using local, discrete energy terms. (A) Protein design
with discrete flexibility searches over a discrete (albeit large) conformational space
(“Conf”), looking for low-energy (“E”) conformations. Highly efficient algorithms like
DEE/A* are available for this problem. (B) Protein design with continuous flexibility
must search over a large space of voxels (blue) in a continuous conformational space,
but we are usually interested only in the minimum-energy point of each voxel. We
thus want a way to search combinatorially over these minimum-energy points. (C) The
minimized energy of a voxel in protein conformational space depends on all rotamers
in the voxel (arrow 1). But we can expand this minimized energy as a sum of local
contributions from low-order tuples (e.g., pairs) of residues (arrows 2, 3). (Minimized
conformations shown in red, ideal rotamers in blue). (D) This expansion, known as
LUTE, gives us a discrete combinatorial search problem of the same form as protein
design with discrete flexibility (arrows 4, 5). But this new discrete problem searches
over the minimum-energy points (red) of voxels in continuous conformational space
(blue). We can solve this problem very efficiently. Figure shows Leu 29, Leu 51, Phe
55, and Lys 59 of the Atx1 metallochaperone (PDB id 1CC8 [39]).

Alternately, if we use the definition in Eq. (2) to define E(r), then Eq. (5) gives
us the approximation used in Refs. [13,32] for the partition function.

Because r is a discrete variable, the energy E(r) can be decomposed as a
sum of energies associated with tuples of RCs (Fig. 1). If all the RCs in a tuple
are in the list r, then that tuple’s energy will contribute to E(r). Most higher-
order tuples of RCs consist of residues too far apart to have higher-order inter-
actions, and thus do not contribute significantly to the energy (see Sect. 1 and
Ref. [20]). We can reduce the number of tuples needed substantially further if we
only try to represent favorable, non-clashing conformations. By eliminating high-
energy conformations, this restriction of conformational space greatly reduces the
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range of energy values over which E(r) must be accurate. To achieve this, we
prune tuples that cannot be part of favorable conformations, and consider only
conformations whose tuples are all unpruned. Our expansion is much more effi-
cient to compute after provably unfavorable tuples are pruned. Hence, we are
able to represent the energy E(r) as a local unpruned tuple expansion, or LUTE.

Let us consider a conformational space with continuous and discrete degrees
of freedom, consisting of RCs, and a mapping E(r) that we can readily calculate.
For example, in a typical continuously flexible design, E(r) is defined by Eq. (2),
which we assume can be calculated by local minimization. Suppose we have a
set T of tuples of RCs at different residue positions. T can contain pairs but also
may contain triples, etc. We then define our local unpruned tuple expansion as
a mapping m : T → R ∪ {⊥}. m defines a real coefficient for each tuple t ∈ T ,
except for pruned tuples, for which m(t) =⊥. Let Tr denote the set of tuples in
T that consist only of RCs in r. For example, if T is the set of all possible RC
pairs, then Tr will consists of all pairs of RCs in the list of RCs r. Then LUTE
predicts r to be a pruned conformation if m(t) =⊥ for any t ∈ Tr, and otherwise
it predicts E(r) =

∑
t∈Tr

m(t). We refer to the data structure representing the

mapping m as the LUTE energy matrix. We call it an energy matrix because it
takes a form similar to that of traditional pairwise energy matrices [4,9,21,29],
although it contains significantly different numerical values when computed for
the same design system.

The limiting behavior of LUTE is favorable. As we expand the set T , we
must eventually approach perfect accuracy, because if T is the set of all tuples
of RCs at different positions, then m can represent E(r) for each full RC list r
explicitly.

If we assume locality of E(r) (see Sect. 1), we can expect inaccuracies to
diminish fairly quickly with increasing size of T , because the component of E(r)
modeling the interactions of a residue i will depend only on the RCs assigned
to residues fairly close in space to i. As a result, we expect a relatively compact
LUTE expansion for any practical protein design problem. In practice, expan-
sions in pairs and triples have worked well (see Sect. 3).

Most algorithms for protein design with discrete rotamers take a matrix
of pairwise energies as input. By simply substituting a LUTE energy matrix
for this pairwise energy matrix, we can convert any of these algorithms into
an equally efficient design algorithm that searches a continuous search space
instead of a discrete one, and/or that optimizes a non-pairwise energy function
instead of a pairwise one. The LUTE energy matrix is computed once, before
the search, which takes only polynomial time in the number of residues. For
example, we need quadratic time to compute a LUTE matrix for which T is all
pairs of RCs. Details of the computation by least squares of the LUTE matrix,
and of the use of this matrix in search algorithms, are provided in the Supple-
mentary Information (SI) which is available online at http://www.cs.duke.edu/
donaldlab/Supplementary/recomb16/lute/

http://www.cs.duke.edu/donaldlab/Supplementary/recomb16/lute/
http://www.cs.duke.edu/donaldlab/Supplementary/recomb16/lute/
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3 Results

We present here complexity results and computational experiments regarding
the performance of LUTE. In Sect. 3.1, we show that the combination of LUTE
with the BWM∗ [24] search algorithm is guaranteed to solve continuously flex-
ible protein designs in polynomial time given a residue interaction graph with
branch-width bounded by a constant. In Sects. 3.2 and 3.3, we present 30 single-
state and 17 multistate protein design calculations using LUTE. We measure the
gains in efficiency provided by LUTE and its ability to accurately and efficiently
perform calculations that, due to their large amount of continuous flexibility
(Sect. 3.2) or non-pairwise energy function (Sect. 3.3), are inaccessible to previ-
ous algorithms. These results include designs with both continuous sidechain and
backbone flexibility. Sidechain dihedrals were allowed 9◦ of continuous motion
in either direction relative to the modal value for each sidechain rotamer [23],
while backbone flexibility (when present) was modeled as in Ref. [21].

3.1 Polynomial-Time Protein Design with Continuous Flexibility

Fig. 2. LUTE markedly reduces the
cost of continuously flexible conforma-
tional search. Ratios (without LUTE:with
LUTE) of the number of nodes in the
A* tree before enumeration of the GMEC
(or of the last conformation if several con-
formations closely spaced in energy were cal-
culated; see Ref. [20]), versus number of
flexible residues. A 20-residue sidechain
placement with node ratio 2× 105 is not
shown because it would break the scale.

Protein design in the general case
is NP-hard [1,35]. In practice, how-
ever, many designs exhibit special
properties that make them more
tractable. For example, the residue
interaction graph—the graph whose
edges encode nonnegligible interac-
tions between pairs of residues—
of practical designs often has low
branch-width. It has been previously
shown that protein design with dis-
crete rotamers can be performed
in asymptotic time exponential only
in the branch-width [24] w. Fur-
thermore, these branch-widths can
be small irrespective of the num-
ber of mutable residues [24]. Thus,
for many protein designs with dis-
crete rotamers the corresponding
GMEC can be found in polyno-
mial time. If one substitutes the
LUTE matrix for the discrete pair-
wise energy matrix in this complex-
ity result, then design with con-
tinuous flexibility and a constant-
bounded branch-width can be solved
in polynomial time as well. We can make this rigorous using the follow-
ing theorem, whose proof is provided in SI Section E. In this theorem,
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a LUTE energy function is a function E(r) =
∑
t∈Tr

m(t), where m : T −→ R∪{⊥}
maps RC tuples to real coefficients (for this purpose, the coefficient ⊥ of a
pruned tuple is effectively ∞). Let n be the number of mutable residues, q be the
maximum number of allowed RCs at any mutable residue position, and βt and βs

be the time and space costs (respectively) to compute the branch-decomposition.
This theorem establishes the complexity both of GMEC calculations and of enu-
meration of subsequent conformations in gap-free ascending order of energy.
The latter is essential for calculation of partition functions, which can be used
to account for entropy in predictions of binding [13,24,32].

Theorem 1. For a LUTE energy function whose residue interaction graph has
branch-width w, the GMEC can be computed in O(nw2q

3
2w + βt) time and

O(nwq
3
2w) space, and each additional conformation can be enumerated in order

of LUTE energy in O(n log q) time and O(n) space.

3.2 Continuous Flexibility

LUTE single-state designs were run on 23 protein design systems from
Ref. [20] with 4–16 mutable residues, as well as five larger systems (17–
40 mutable residues), to measure the efficiency of LUTE and to observe
the behavior of LUTE on the larger systems. Many of these larger sys-
tems are intractable by previous methods (except post-hoc minimization
methods that do not account for continuous flexibility during the search).
The results show that the discrete DEE/A* search with LUTE is dra-
matically more efficient even compared to EPIC, which offers previously
state-of-the-art efficiency for continuously flexible design [20] (Fig. 2). They
also demonstrate that LUTE can handle very large continuously flexible
designs—including a 40-residue sidechain placement, which covers a large
fraction of the residues in the Atx1 metallochaperone (Fig. 4, left), and a
20-residue design on the same structure with 5 amino-acid types allowed at
every position. Furthermore, the LUTE energy matrix consistently represented
the true energy landscape very closely (Fig. 3). Optimal sequences and confor-
mations with LUTE differed significantly from the same designs run without
continuous flexibility: the same top conformation was returned in only 2 of the
28 single-state designs. On average, 31 % of the RCs in the optimal conforma-
tions differed from each other. This is consistent with previous work showing
that protein design calculations with and without continuous flexibility differ
significantly in their results [9,21].

For many systems, LUTE achieved a fit with residual under 0.01 (kcal/mol)2

with only a pairwise expansion. In cases when the pairwise expansion’s residual
was higher, an expansion in sparse triples was performed instead. In all but one
case, the triples expansion’s residual was less than thermal energy at room tem-
perature (0.59 kcal/mol, i.e., 0.35 (kcal/mol)2), and thus deemed insignificant.
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The one outlier case was a 14-residue design on ponsin (PDB id: 2O9S). It
exhibited significant local minimization errors, which caused even the matrix of
pairwise lower-bound energies (computed before LUTE precomputation begins)
to have errors of at least ∼10 kcal/mol. These errors indicate the failure of
either our local minimizer or our assumption that local minimization suffices
within RCs. As a result of these errors, the LUTE residual even with triples
was 1.9 kcal/mol for this system, seven times worst than the next worst residual
(the 40-residue Atx1 design). Our software now detects this problem and warns
the user before the LUTE computation begins.

Fig. 3. LUTE accurately represents
continuously minimized energies.
Residuals for LUTE ((kcal/mol)2) on
the cross-validation data set, measuring
the difference between the EPIC energy
and a pairwise expansion (blue) or one
with sparse triples (red; computed only if
pairwise residual exceeded 0.01). x axis:
number of flexible residues. Inset: All the
same data plotted on a linear scale.

17 multistate protein designs were
also performed, using a combination
of LUTE with our comets [19] mul-
tistate protein design algorithm (see
SI Sect. 1). The systems from these
designs were taken from Ref. [19];
details are provided in SI Section G.
The same designs were run with and
without continuous flexibility, with
LUTE used in the continuous case.
As discussed in Ref. [19], comets
provably returns the same results as
exhaustive search over sequences, but
it provides a speedup compared to
that exhaustive search by (a) consid-
ering only a portion of the sequences
in the search space explicitly, and (b)
only performing a full conformational
optimization for a small portion of
the sequences in (a). However, pre-
viously [19] (a) was only significant
in designs without continuous flexi-
bility, and (b) was much more pro-
nounced without continuous flexibil-
ity. LUTE brings continuously flexi-
ble comets designs up to speed with
discrete designs on the same system
(SI Fig. S3).

3.3 Designs that Provably Optimize Poisson-Boltzmann Energies

We also ran LUTE conformational optimization calculations on two proteins
using the Poisson-Boltzmann energy function, which is non-pairwise. This energy
was evaluated using Delphi [34,38] in place of the pairwise EEF1 [28] solva-
tion energy that is used by default in osprey. Interestingly, triple energies
did not provide significant benefit here, but LUTE was found to describe the
Poisson-Boltzmann energy landscape with a high degree of accuracy. Previous
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Fig. 4. LUTE enables very large provably accurate protein designs with
continuous flexibility (left) and with Poisson-Boltzmann energy functions
(right). Left: previously, protein designs with continuous flexibility only finished when
performed with significantly fewer flexible residues, compared to designs with discrete
rotamers. Even 20-residue designs were often intractable. But LUTE solved a sidechain
placement problem with continuous flexibility in which 40 residues (purple) were made
flexible in the Atx1 metallochaperone (PDB id 1CC8 [39]). Right: previous designs
using the Poisson-Boltzmann energy function could not optimize this function directly,
but only used Poisson-Boltzmann energies to rerank top hits from optimization of
a simpler, pairwise energy function. But LUTE can optimize the Poisson-Boltzmann
energy function directly—e.g., in a sidechain placement of 20 residues (purple) of Atx1.

work has shown that an accurate pairwise representation can be obtained for
Poisson-Boltzmann energies of discrete, rigid rotamers [47], but our LUTE
results show that a very accurate representation of continuously minimized
Poisson-Boltzmann energies is possible as well. With continuous flexibility, a
6-residue sidechain placement on the unliganded TIR1/IAA7 complex (PDB
code 2P1Q [44]) with continuous flexibility achieved a total residual of 6× 10−4

and took about 4 days. Furthermore, a 20-residue sidechain placement without
continuous flexibility on the bacterial metallochaperone protein Atx1 (PDB code
1CC8 [39]; Fig. 4, right) was solved in 2.5 h, with total residual 0.04 (kcal/mol)2.
Unlike previous protein design calculations that use Poisson-Boltzmann energies,
our new calculations provably return the minimum of the (LUTE-approximated)
Poisson-Boltzmann energy over the entire conformational space, rather than
simply over a set of top hits from an initial search that used a cheaper energy
function.

4 Conclusions

The protein design problem enjoys a wide array of powerful algorithms for con-
formational and sequence search. These algorithms take a discrete energy matrix
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and perform sequence optimizations, both in the single-state and multistate
cases. At the same time, previous work in bioinformatics and quantum chem-
istry has made great progress toward quantitatively accurate modeling of the
flexibility and energy landscapes of biomolecular systems. Uniting these fields to
perform designs with highly realistic modeling would result in great biomedical
impact, both in protein and drug design. However, because state-of-the-art flex-
ibility and energy modeling methods do not produce a discrete matrix, there is
a gap between these fields. LUTE offers a strategy to bridge this gap. By repre-
senting continuous flexibility and general energy functions in a discrete matrix,
it greatly increases the realism of the modeling that discrete combinatorial opti-
mization algorithms like DEE/A* can directly accommodate. We thus believe
that LUTE can serve as a foundation for greatly improved biomolecular design
protocols.
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S.: Fast search algorithms for computational protein design. J. Comput. Chem.
(2016)

47. Vizcarra, C.L., Zhang, N., Marshall, S.A., Wingreen, N.S., Zeng, C., Mayo, S.L.:
An improved pairwise decomposable finite-difference Poisson-Boltzmann method
for computational protein design. J. Comput. Chem. 29(7), 1153–1162 (2008)

48. Jinbo, X., Berger, B.: Fast and accurate algorithms for protein side-chain packing.
J. ACM 53(4), 533–557 (2006)

49. Zhang, D.W., Zhang, J.Z.H.: Molecular fractionation with conjugate caps for full
quantum mechanical calculation of protein-molecule interaction energy. J. Chem.
Phys. 119(7), 3599–3605 (2003)



Improving Bloom Filter Performance
on Sequence Data Using k-mer Bloom Filters

David Pellow1, Darya Filippova2, and Carl Kingsford2(B)

1 The Blavatnik School of Computer Science,
Tel Aviv University, 69978 Tel Aviv, Israel

2 Computational Biology Department, School of Computer Science,
Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA, USA

carlk@cs.cmu.edu

Abstract. Using a sequence’s k-mer content rather than the full
sequence directly has enabled significant performance improvements in
several sequencing applications, such as metagenomic species identifica-
tion, estimation of transcript abundances, and alignment-free comparison
of sequencing data. Since k-mer sets often reach hundreds of millions of
elements, traditional data structures are impractical for k-mer set stor-
age, and Bloom filters and their variants are used instead. Bloom filters
reduce the memory footprint required to store millions of k-mers while
allowing for fast set containment queries, at the cost of a low false pos-
itive rate. We show that, because k-mers are derived from sequencing
reads, the information about k-mer overlap in the original sequence can
be used to reduce the false positive rate up to 30× with little or no addi-
tional memory and with set containment queries that are only 1.3–1.6
times slower. Alternatively, we can leverage k-mer overlap information
to store k-mer sets in about half the space while maintaining the original
false positive rate. We consider several variants of such k-mer Bloom fil-
ters (kBF), derive theoretical upper bounds for their false positive rate,
and discuss their range of applications and limitations. We provide a ref-
erence implementation of kBF at https://github.com/Kingsford-Group/
kbf/.

Keywords: Bloom filters · Efficient data structures · k-mers

1 Introduction

Many algorithms central to biological sequence analysis rely, at their core, on k-
mers — short substrings of equal length derived from the sequencing reads. For
example, sequence assembly algorithms use k-mers as nodes in the de Bruijn
graph [10,19]; metagenomic sample diversity can be quantified by comparing
the sample’s k-mer content against a database [17]; k-mer content derived from
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RNA-seq reads can inform gene expression estimation procedures [9]; k-mer-
based algorithms can dramatically improve compression of sequence [1,11] and
quality values [18].

A single sequencing dataset could generate hundreds of millions of k-mers
making k-mer storage a challenging problem. Bloom filters [2] are often used
to store sets of k-mers since they require much less space than hash tables or
vectors to represent the same k-mer set while retaining the ability to quickly test
for the presence of a specific k-mer at the cost of a low false positive rate (FPR)
[4–8,10–16]. For example, Bloom filters allow for efficient k-mer counting [8],
can be used to represent de Buijn graphs in considerably less space [10], and can
enable novel applications like inexact sequence search over very large collections
of reads [14].

The small size of Bloom filters has allowed algorithms to efficiently process
large amounts of sequencing data. However, smaller Bloom filter sizes have to
be traded off against higher false positive rates: a smaller Bloom filter will incor-
rectly report the presence of a k-mer more often. Sequencing errors and natural
variation noticeably increase k-mer set sizes, with recent long read data driving
k-mer set sizes even higher due to this data’s lower overall quality profiles. To
support large k-mer sets, researchers can either increase the Bloom filter size,
choose a more costly function to compute set containment, or attempt to reduce
false positive rate through other means.

To eliminate the effects of Bloom filter’s false positives when representing a
probabilistic de Bruijn graph [10] — where two adjacent k-mers represent an
implicit graph edge — one can precompute the false edges in the graph and
store them separately [4]. The results of querying the Bloom filter for a k-mer
are modified such that a positive answer is returned only if the k-mer is not in the
critical false positive set. The size of the set of critical false positives is estimated
to be 6Nf where N is the number of nodes in the graph (and the number of
k-mers inserted into the Bloom filter) and f is the false positive rate of the
original Bloom filter [12]. Cascading Bloom filters lower the FPR by storing a
series of smaller nested Bloom filters that represent subsets of critical k-mers [12].

While specific Bloom filter applications achieved improved false positive per-
formance by using additional data structures, these applications assume the
FPR of general-purpose Bloom filters derived in the paper that presented them
originally [2]. This FPR is calculated based on the assumption that elements
inserted into the Bloom filter are independent. In biological sequencing appli-
cations which store k-mers, the elements are not independent: if all k-mers of
a sequence are stored, then there is a k − 1 character overlap between adjacent
k-mers. The information about the presence of the k-mer’s neighbours can be
used to infer the k-mer itself is part of the set — without the use of additional
storage.

We use k-mer non-independence to develop k-mer Bloom filters (kBF) with
provably lower false positive rates. We first consider a kBF variant where we
are able to achieve more than threefold decrease in FPR with no increase in
required storage and only a modest delay in set containment queries (1.2–1.3×
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slower when compared to classic Bloom filter). We then consider a kBF with
a stricter set containment criteria which results in more than 30-fold decrease
in FPR with a modest increase in required storage and up to 1.9× delay in set
containment queries.

Since the existence of k-mers in the Bloom filter can be inferred from the
presence of neighbouring k-mers, we can also drop certain k-mers entirely, spar-
sifying the Bloom filter input set. We implement sparsifying kBFs and achieve
k-mer sets that are 51–60% the size of the original set with a slightly lower FPR
at the cost of slower set containment queries.

The space and speed requirements vary between different kBF variants
allowing for a multitude of applications. In memory-critical algorithms, such as
sequence assembly [10] and search [14], sparse kBF can lower memory require-
ments allowing to process larger read collections. Applications relying on k-mers
for error correction [15] or classification [17] may benefit from using kBF with
guaranteed lower false positive rates to confidently identify sequencing errors
and to distinguish between related organisms in the same clade.

2 Reducing False Positive Rate Using Neighbouring
k-mers

When testing a Bloom filter for the presence of the query k-mer q, for example
AATCCCT (see Fig. 1), the Bloom filter will return a positive answer — which could
be a true or a false positive. However, if we query for the presence of neighbouring
k-mers xAATCCC k-mers (where x is one of {A,C,G, T}) and receive at least one
positive answer, we could be more confident that AATCCCT was indeed present
in the Bloom filter. There is a non-zero chance that q is a false positive and its
neighbour is itself a true positive, however, this is less likely than the chances
of q being a false positive and thus lowers the false positive rate. We formally
introduce the kBF and derive the probabilities of such false positive events below.

2.1 One-Sided k-mer Bloom Filter

We define a kBF that only checks for the presence of a single overlapping neigh-
bour when answering a set containment query as a one-sided kBF (1-kBF). Each
k-mer q observed in the sequence or collection of sequencing reads is inserted into
a Bloom filter B independently in the standard way. To test for q’s membership
in a 1-kBF, the Bloom filter B is first queried for q. If the query is successful,
then q is either in the true set of k-mers U , or is a false positive. If q ∈ U and all
k-mers in U were added to the Bloom filter, the set containment query for q’s
neighbour should return “true”. We generate all eight potential left and right
neighbours for q and test whether B returns true for any of them (see Algo-
rithm1). Under the assumption that every read or sequence is longer than k,
every k-mer will have at least one neighbour in the right or left direction.
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TAATCCCTTATCTGCAGTTCAA

TAATCCC
AATCCCT

ATCCCTT

(a)

(b)

(c)

0 1 10 0 0 1 1 0 0 1 0 0 0 0 0 0 0 1 0

TGCATGC (d)

false positive

Fig. 1. The k-mers from a sequence are stored in a Bloom filter. False positives could
occur when the bits corresponding to a random k-mer not in the sequence are set
because of other k-mers which are in the Bloom filter. The true k-mers from the
sequence all share sequence overlaps with other true k-mers from the sequence. We
show how this overlap can be used to reduce the false positive rate and sparsify the set
of k-mers stored in the kBF.

Algorithm 1. One-sided kBF contains functions
1: function One-sided kBF contains(query)
2: if BF.contains(query) then
3: return contains set(NEIGHBOUR SET(query))

4: return false

5: function contains set(set)
6: for kmer ∈ set do
7: if BF.contains(kmer) then return true

8: return false

2.2 Theoretical FPR for a One-Sided k-mer Bloom Filter

We show that the theoretical upper bound for the FPR of a one-sided kBF is
lower than that for the classic Bloom filter [2]. Suppose we inserted n unique
k-mers into a Bloom filter of length m using h hash functions. Then the expected
proportion of bits that are still 0 is E = (1 − 1/m)hn and the actual proportion
of zeros, p, is concentrated around this mean with high probability [3]. The false
positive rate f is:

f = (1 − p)h ≈ (1 − E)h =
(
1 − (1 − 1/m)hn

)h

. (1)

Let q′ be q’s neighbour that overlaps q by k − 1 characters on either the left or
the right side, and let tk be a probability that a random k-mer is a true positive
(i.e. is present in the set U). We assume further that events such as “q is a false
positive” and “q′ is a false positive” are independent since the false positives
result from bits being set by uniform random hashes of other k-mers inserted
into the Bloom filter. Then the chances that we get a false positive when testing
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for the presence of a random k-mer q and one of its eight neighbours q′ are:

f ′ = f · Pr(BF returns “True” for at least one of the adjacent k-mers) (2)
= f · (1 − Pr(BF returns “False” for every adjacent k-mer)) (3)

= f · (
1 − Pr(BF returns “False” for an adjacent k-mer)8

)
(4)

= f · (
1 − (1 − Pr(BF returns “True” for an adjacent k-mer))8

)
(5)

= f · (
1 − (1 − (f + tk))8

)
. (6)

Assuming that k-mers are uniformly distributed, we can estimate tk as the chance
of drawing a k-mer from the set U giving the set of all possible k-mers of length k,
or tk = |U |/4k. For reasonably large values of k ≥ 20, tk will be much smaller
than f allowing us to estimate an upper bound on f ′:

f ′ < f · (
1 − (1 − 2f)8

)
(7)

quantifying how much lower f ′ is than the false positive rate f for the classic
Bloom filter.

2.3 Two-Sided k-mer Bloom Filter

The FPR could be lowered even more by requiring that there is a neighbouring
k-mer extending the query k-mer in both directions in order to return a positive
result. This is a two-sided k-mer Bloom filter, 2-kBF. However, this requires
dealing with k-mers at the boundary of the input string. In Fig. 1, it can be
seen that the first k-mer (TAATCCC) only has a right neighbour and no left neigh-
bouring k-mers. We call this an edge k-mer, which must be handled specially,
otherwise the 2-kBF would return a false negative.

To avoid this, 2-kBF maintains a separate list that contains these edge
k-mers. We augment the Bloom filter with a hashtable EDGE k-mer set that
stores the first and last k-mers of every sequence in order to handle edge cases.
When constructing the kBF from a set of sequence reads, the first and last k-mer
of each read are stored. Since reads can overlap, many of the read edge k-mers,
will not be true edges of the sequence. After all the reads have been inserted
into the Bloom filter, each of the stored k-mers is checked to see if it is an edge
k-mer of the sequence and if it is, then it is saved in the final table of edge k-
mers. The only k-mers that will be stored in the final edge table are those at the
beginning and end of the sequence, or those adjacent to regions of zero coverage.
Pseudocode for querying a two-sided k-mer Bloom filter is given in Algorithm2.

2.4 Theoretical FPR for a Two-Sided k-mer Bloom Filter

Ignoring edge k-mers for simplicity and following the same assumptions and
derivation as in Sect. 2.2, the FPR for two-sided kBF, f ′, is

f ′ = f · Pr(BF returns “True” for at least one of the left adjacent k-mers)·
Pr(BF returns “True” at least one of the right adjacent k-mers).

(8)
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Algorithm 2. Two-sided kBF contains function
1: function two-sided kBF contains(query)
2: if BF.contains(query) then
3: Contains left ← contains set(LEFT NEIGHBOUR SET(query))
4: Contains right ← contains set(RIGHT NEIGHBOUR SET(query))
5: if Contains right == true and Contains left == true then
6: return true
7: if Contains right == true or Contains left == true then
8: if EDGE k-mer SET.contains(query) then
9: return true

10: return FALSE

This leads to
f ′ = f · (

1 − (1 − (f + tk))4
)2

. (9)

An upper bound for this expression can be estimated as:

f ′ < f · (
1 − (1 − 2f)4

)2
. (10)

3 Using Sequence Overlaps to Sparsify k-mer Sets

We can use the assumption that the set of k-mers to be stored, U , contains
k-mers derived from an underlying string T to reduce the number of k-mers that
must be stored in B without compromising the false positive rate. If we want to
store a set U , we can choose a subset K ⊆ U that will be stored in B. The idea
is that every k-mer u ∈ U will have some neighbours that precede it and some
that follow it in the string T .

Let Lu ⊂ U be a set of k-mers that occur before u in T , and let Ru ⊂ U
be a set of k-mers that occur after u in T . If we can guarantee that there is at
least one k-mer of Lu and at least one k-mer of Ru that are close to u stored in
B, then we can infer the presence of u from the presence of v ∈ Lu and w ∈ Ru

without having to store u ∈ B. By reducing the k-mers that must be kept in B,
we can maintain the set U using a smaller filter B. For example, in Fig. 1 the
k-mer AATCCCT is preceded by TAATCCC and followed by ATCCCTT. If these two
k-mers are stored in B then the presence of the middle k-mer AATCCCT in the
sequence can be inferred without having to store it in the Bloom filter.

More formally, define Pvu to be the set of positions of k-mer v occurring
before u in T , and let Auw be the set of positions of k-mer w occurring after u
in T . We then define, for v ∈ Lu and w ∈ Ru, the set of all distances between
occurrences of these k-mers that span u:

Su(v, w) = {iw − iv | iv ∈ Pvu, iw ∈ Auw}.
For some skip length s, if we can guarantee that minSu(v, w) ≤ s for some
v, w ∈ K then we can infer the presence of u without storing it in the Bloom
filter by searching for neighbouring k-mers that satisfy minSu(v, w) ≤ s. This
leads to the following k-mer sparsification problem:
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Problem 1. Given a set of k-mers U , find a small subset K ⊂ U such that for
all u ∈ U , either u ∈ K or there is a k-mer v ∈ K ∩ Lu and w ∈ K ∩ Ru with
minSu(v, w) ≤ s.

We call this problem the relaxed k-mer sparsification problem. When we require
exactly s skipped k-mers between those k-mers chosen for K we have the strict
k-mer sparsification problem:

Problem 2. Given a set of k-mers U , find a small subset K ⊂ U such that for
all u ∈ U , either u ∈ K or there is a k-mer v ∈ K ∩ Lu and w ∈ K ∩ Ru with
s ∈ Su(v, w).

These sparsification problems would be easy if we could observe T — a
solution would be to select every sth k-mer (Approach 3 below). However, we
assume that we see only short reads from T , and must select K as best as
possible. Below, we propose three solutions to the k-mer sparsification problem
that are appropriate in different settings.

Approach 1: Best index match per read sparsification (kmers come from reads;
arbitrary s). K will be built greedily by choosing k-mers from each read. Given
a read r, we choose every sth k-mer starting from a particular index ir, choosing
ir such that the set of k-mers Kr chosen for this read has the largest intersection
with the set of k-mers K chosen so far.

Approach 2: Sparsification via approximate hitting set (k-mers come from reads;
s= 1). When s = 1, the relaxed k-mer set sparsification problem can also be
formulated as a minimal hitting set problem: For each k-mer k ∈ U , create a
set Lk which includes k and every k-mer which immediately preceded it in some
read, and a set Rk which includes k and every k-mer which immediately followed
it in some read. Let L = {Lk : k ∈ U} and R = {Rk : k ∈ U}. A solution to the
minimal hitting problem choses a minimally sized set K such that at least one
k-mer from K is in every set in R and L: ∀N ∈ {R ∪ L} ∃k ∈ K s.t. k ∈ N and
|K| is minimized. We use a greedy approximation for the hitting set problem to
choose K, the sparse set of k-mers. In each step of the greedy approximation,
we add the k-mer which hits the most sets in L ∪ R to K.

Approach 3: Single sequence sparsification (kmers come from a known sequence
T; arbitrary s). In the special case where input sequences are non-overlapping
(e.g. a genome or exome) rather than multiple overlapping sequences (e.g. the
results of a sequencing experiment), we solve the strict k-mer sparsification prob-
lem by taking each k-mer starting from the beginning of the sequence and then
skipping s k-mers. This is a simple and fast way to choose the sparse set K,
but restricted only to this special case, and will not work for sparsifying the
k-mers from a set of reads generated in a sequencing experiment. It is useful,
for example, if the input sequences are a reference genome which will be queried
against.

Once K has been chosen, a sparse kBF can be queried for k-mers from
U using the pseudocode in Algorithm 3. Two different query functions are
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given: relaxed-contains for when K satisfies the conditions of Problem1,
and strict-contains for when K satisfied the conditions of Problem2. We
call two k-mers with s skipped k-mers between them s-distant neighbours. The
helper functions contains neighbours determine whether k-mers neighbour-
ing the query k-mer at specified distances to the left and right are present and
decide present determines whether the query is present depending on whether
it has neighbouring k-mers or is an edge. Note that the sparse kBF also main-
tains a set of edge k-mers which is queried when a k-mer has neighbours in one
direction but not the other.

4 Results and Discussion

We test the performance of the proposed kBFs on a variety of sequencing exper-
iments and compare to classic Bloom filters. For each test, we store the k-mers
from the input file in the kBF and create a query set by mutating k-mers from
the input. We test on multiple species and types of experiments that could typi-
cally be used in applications that require Bloom filters over a range of input file
sizes. The different data sets are summarized in Table 1.

Table 1. Read sets on which kbf variants were tested. Only reads without “N”
bases were included.

Accession Type Read count Read length

ERR233214 1 WGS of P. aeruginosa 7,571,879 92

SRR1031159 1 Metagenomic, WGS 674,989 101

SRR514250 1 Metagenomic, WGS 44,758,957 100

SRR553460 Human RNA-seq 66,396,200 49

chr15 Human chromosome (hg19) 1 81 Mbp

For all tests we used a k-mer length of k = 20 and 2 hash functions in the
underlying Bloom filter. This choice of k is long enough that only a fraction of
all possible k-mers are present in reasonably large datasets and shorter than all
read lengths. The Bloom filter length is 10 times the number of k-mers inserted
into it for each of the input files. For one-sided kBF and two-sided kBF, the
underlying Bloom filter will be exactly the same as the classic Bloom filter they
are compared to. For sparse kBF, the smaller sparse k-mer set is stored, so the
underlying Bloom filter is smaller. The sparse kBFs use a skip length of s = 1.
The implementations of the kBF variants described wrap around the basic Bloom
filter implementation from libbf (http://mavam.github.io/libbf), which is used
for the classic Bloom filter.

To create a query k-mer set for testing we randomly select (uniformly, with
replacement) 1 million k-mers from the input file and mutate one random base.
This creates a set of k-mers that are close to the real set, and will therefore have

http://mavam.github.io/libbf
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Algorithm 3. Sparse kBF contains functions
1: function decide present(query, Contains left, Contains right)
2: if Contains right == true and Contains left == true then
3: return true
4: if Contains right == true or Contains left == true then
5: if EDGE k-mer SET.contains(query) then
6: return true
7: return false

8: function strict-contains neighbours(query, left dist, right dist)
9: Contains left ← contains set(

s distant left neighbour set(query, left dist))
10: Contains right ← contains set(

s distant right neighbour set(query, right dist))
11: return decide present(query, Contains left, Contains right)

12: function relaxed-contains neighbours(query, l dist, r dist)
13: Contains left ← contains set(⋃

i≤l dist

s distant left neighbour set(query, i))

14: Contains right ← contains set(⋃
i≤r dist

s distant right neighbour set(query, i))

15: return decide present(query, Contains left, Contains right)

16: function strict-contains(query, s)
17: if BF.contains(query) then
18: if strict-contains neighbours(query, s, s) then
19: return true
20: for i ← 0 to s − 1 do
21: if strict-contains neighbours(query, i, s − (i + 1)) then
22: return true
23: return false

24: function relaxed-contains(query, s)
25: if BF.contains(query) then
26: if relaxed-contains neighbours(query, s, s) then
27: return true
28: else
29: for i ← 0 to s − 1 do
30: if relaxed-contains neighbours(query, i, s − (i + 1)) then
31: return true
32: return false

realistic nucleotide sequences while still providing many negative queries to test
the false positive rate. For one experiment (SRR1031159) we also query with 1
million true queries (not mutated) to determine the worst-case impact on query
time.
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4.1 One-Sided and Two-Sided kBF Performance

The one-sided and two-sided kBF implementations achieve substantially better
FPRs than the classic Bloom filter (Table 2) at the cost of some query time
overhead (Fig. 2). For the one million mutated queries, only about one quarter
of the queries are true positives, and one-sided kBF and two-sided kBF take
1.3 and 1.6 times as long to perform the queries, respectively. In the worst case,
when all of the queries are true positives (SRR1031159 TP) one-sided kBF and
two-sided kBF are 3.3 and 5.8 times slower respectively, while the speed of the
classic Bloom filter does not change.

One-sided kBF has a FPR less than one third of the classic Bloom filter FPR
at a cost of an extra one third the query time. Query times are extremely low,
and this extra cost totals less than half a second to perform one million.

Table 2. False positive rates. Comparison of FPRs for classic Bloom filters, and the
different kBF implementations. The theoretical FPRs are also shown in the last row
(calculated according to Eqs. 1, 7, and 10). Hitting set sparsification uses the relaxed
contains function, while best match uses the strict contains function. The sparse
hitting set results for SRR514250 1 are missing since the method never completed on
this data set.

Accession Classic 1-kBF 2-kBF Sparse

Best match Hitting set

ERR233214 1 0.0329 0.0104 0.0009 0.0284 0.0311

SRR1031159 1 0.0329 0.0104 0.0009 0.0279 0.0306

SRR514250 1 0.0329 0.0106 0.0010 0.0290 —

SRR553460 0.0329 0.0104 0.0009 0.0285 0.0314

Chr15 0.0328 0.0104 0.0009 0.0284 0.0309

Theoretical FPR: 0.0328 <0.0138 <0.0019 — —

The two-sided kBF requires a special data structure which stores the set of
edge k-mers that may not be found because there is no adjacent k-mer on one
side. The total number of k-mers and the number of k-mers in the edge set of
each file are compared in Table 3. There is also extra memory and speed overhead
during the two-sided kBF creation: as the sequence file is read in and split into
k-mers, a set of k-mers at the edges of all reads (which could potentially be
sequence edges that need to be stored separately) is maintained. After k-mers are
inserted into the Bloom filter, the edges are checked, and only the true sequence
edges, which do not have neighbouring k-mers on both sides, are stored. We
do not optimize the kBF implementations for the one time cost of creating the
k-mer set and populating the Bloom filter but note that the potential edge set
could be pruned on the fly, keeping it smaller than the maximum size achieved
here. We report the number of potential edge k-mers stored in the edge set,
and the amount of extra time to check the edges in Table 3. In all tested cases,
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Fig. 2. Query times. Comparison of the time to query 1 million k-mers in classic BF
and the different kBF implementations (average of 10 runs)

the number of edge k-mers stored is a small fraction of the total number of
k-mers, reaching at most 6 % of the total. It is smallest when there are very few
true sequence edges (in the single chromosome) and can be large if there are
many reads with errors in the edge k-mers or many areas with zero coverage. If
this overhead can be tolerated, applications could use two-sided kBF to achieve
significantly lower FPRs.

Two-sided kBF provides a FPR that is 30× smaller than classic Bloom fil-
ters with a small query time penalty. Two-sided kBF also has a one-time cost of
initialization to keep track of all potential edge k-mers and then determine the
true edges. The extra time for this is only a small fraction of the total initializa-
tion cost. However, a large number of potential edge k-mers are stored during
initialization. This number depends on the number of unique reads, and for the
data sets with few long reads, i.e. the single chromosome, there is very little
overhead, while when there are many reads, the first and last k-mer of each read
could be stored.

4.2 Sparse kBF Performance

The sparse kBF implementations achieve slightly better FPRs than the classic
Bloom filters while using a smaller filter. We report the FPRs for the best index
match and hitting set implementations of sparse kBF in Table 2. We do not
report specific results for single sequence sparsification (Approach 3) since we
found in practice the results are the same as for best match sparsification in the
cases where it is relevant. When a sparse set of k-mers is used, sparse kBF is
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Table 3. Two-sided kbf overhead. The number of extra edge k-mers that are stored
for two-sided kBF is compared to the total number of k-mers. The one-time initial-
ization overhead includes keeping track of all potential edge k-mers and extra time to
query which are the true edge k-mers. The number of potential edge k-mers is com-
pared to the number of true edge k-mers as well as the total number of k-mers. The
initialization time for two-sided kBF is shown as a fold-change over populating the
classic Bloom filter with the k-mer set (average of 10 runs).

Accession # of k-mers # of edge k-mers # potential edge
k-mers

Init. time (fold
change)

ERR233214 1 41,766,273 1,134,617 6,310,923 1.632×
SRR1031159 1 29,937,099 632,996 1,088,645 1.162×
SRR514250 1 442,498,904 6,656,205 53,063,633 1.813×
SRR553460 196,863,538 12,271,956 38,806,654 2.453×
Chr15 70,240,374 1 2 0.909×

able to use the sequence overlap to recover a similar FPR for this smaller set of
k-mers.

The sparsification performance of the different implementations is compared
in Table 4. The sparsification methods perform well, with the best match achiev-
ing close to the ideal size of one half the number of k-mers. The hitting set spar-
sification method does not perform as well, choosing a k-mer set that is roughly
10 % larger than the best match method.

Table 4. Number of k-mers selected by Sparse kbf. Comparison of the number
of k-mers in the sparsified k-mer set for the different implementation methods and for
the classic Bloom filter.

Accession # k-mers Classic # k-mers best match # k-mers hitting set

ERR233214 1 41,766,273 21,783,670 23,635,764

SRR1031159 1 29,937,099 15,120,795 16,992,976

SRR514250 1 442,498,904 237,264,629 —

SRR553460 196,863,538 102,224,726 115,593,454

Chr15 70,240,374 36,064,290 39,152,979

Sparse kBF queries are significantly slower than classic Bloom filter queries.
The speeds to perform 1 million queries for the classic BF and the different
sparse kBF implementations are shown in Fig. 2. The time overhead of querying
neighbouring k-mers is about ten times that for a classic Bloom filter, but is still
only around 1–2 s for one million queries. In memory-constrained applications,
it could be worth paying this timing penalty for smaller k-mer sets. The time
overhead will grow exponentially as s is increased, but even very small s (such
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Table 5. Sparse kbf overhead. Comparison of the one-time overhead for the initial-
ization of the sparse kBF implementations. The one time cost of splitting the sequences
into k-mers, choosing the k-mer set, checking the edge k-mers, and inserting them into
the Bloom filter is reported. The hitting set implementation for SRR514250 1 used up
all available memory and did not complete running. Results are the averages over 10
runs.

Accession Initialization memory overhead (GB) Initialization time overhead (sec)

2-kBF Best match Hitting set 2-kBF Best match Hitting set

ERR233214 1 3.45 4.26 42.00 121.9901 192.7540 857.8472

SRR1031159 1 1.62 2.07 28.67 21.7156 21.5318 373.4421

SRR514250 1 29.54 38.41 - 1342.1470 1856.5640 -

SRR553460 17.85 22.55 198.18 699.4796 932.5057 6012.9880

Chr15 3.94 4.49 67.04 43.5708 25.7702 844.1708

as s = 1 shown in our experiments) significantly reduces the size of the stored
k-mer set. Similarly, as s increases, the FPR will increase, but as we showed
here, for small s, the FPR is comparable to the FPR of a classic Bloom filter.

The hitting set sparsification implementation has a very large memory foot-
print and takes a lot of time to choose the sparse k-mer set. For the largest
file (SRR514250), the implementation uses up all available RAM and does not
complete even after running for several days. Table 5 compares the total time
to split the input sequences into k-mers, choose the k-mer set, determine the
edge k-mers and populate the Bloom filter for the different sparsification imple-
mentations and two-sided kBF. We compare with two-sided kBF because it also
has edge k-mers, making it the most similar non-sparse implementation to the
sparse kBF implementations. The memory overhead of initialization (measured
as the maximum resident set size of the process) is also compared in Table 5.

The relaxed contains function, which must be used when K is selected using
the hitting set formulation, needs to check more possible neighbouring k-mers,
making the hitting set sparsification queries slower than the other implementa-
tions. The hitting set implementation also does not do as good a job of sparsifying
the original set of k-mers. Hitting set sparsification also takes orders of magni-
tude more memory and time than the other methods and than the non-sparse
kBF implementation.

In contrast to the hitting set sparsification, best match sparsification achieves
close to one half of the original k-mer set with little extra overhead in initial-
ization time or memory. The strict contains function for sparse kBF also has a
better FPR than the relaxed version and takes less time to perform one million
queries. In practice, there is little difference between the best match sparsifica-
tion and single sequence sparsification, since they will both yield approximately
the same k-mer set in a case where single sequences are being sparsified. These
results mean that best match sparsification is the simplest and best way to spar-
sify any set of sequences, without having to determine whether it is a special
case of non-overlapping sequences.
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5 Conclusion

Together, the possibilities of drastically reducing the false positive rate or reduc-
ing the size of the Bloom filter have the potential to enable continued per-
formance improvements in many applications that use Bloom filters to store
k-mers from sequences. These performance improvements are necessary to allow
biological sequence applications to continue to scale to larger and many more
experiments.
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Abstract. Contig assembly is the first stage that most assemblers solve
when reconstructing a genome from a set of reads. Its output consists
of contigs – a set of strings that are promised to appear in any genome
that could have generated the reads. From the introduction of contigs
20 years ago, assemblers have tried to obtain longer and longer contigs,
but the following question was never solved: given a genome graph G
(e.g. a de Bruijn, or a string graph), what are all the strings that can be
safely reported from G as contigs? In this paper we finally answer this
question, and also give a polynomial time algorithm to find them. Our
experiments show that these strings, which we call omnitigs, are 66 %
to 82 % longer on average than the popular unitigs, and 29 % of dbSNP
locations have more neighbors in omnitigs than in unitigs.

1 Introduction

The genome assembly problem is to reconstruct the sequence of a genome
using reads from a sequencing experiment. It is one of the oldest bioinfor-
matics problems; nevertheless, recent projects such as the Genome 10 K have
underscored the need to further improve assemblers [8]. Current algorithms face
numerous practical challenges, including scalability, integration of new data
types (e.g. PacBio), and representation of multiple alleles. While these are
extremely important, assemblers do not produce optimal results even in very
simple and idealized scenarios. Several papers have thus developed better the-
oretical underpinnings [9,21,22,25,36,40], often resulting in improved practical
assemblers [1,31,37,41].

In most theoretical studies, the assembly problem is formulated as finding
a genomic reconstruction, i.e. a single string that represents the sequence of
the genome. However, the presence of repeats means that a unique genomic
reconstruction usually does not exist. In practice, assemblers instead output
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at http://arxiv.org/abs/1601.02932
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several strings, called contigs, that are “promised” to occur in the genome. We
refer to this restatement of the genome assembly problem as contig assembly.
Contigs can then be used to answer biological questions (e.g. about gene content)
or perform comparative genomic analysis. When mate pairs are available, contigs
can be fed to later assembly stages, such as scaffolding [2,18,33] and then gap
filling [3,34].

Assemblers implement different strategies for finding contigs. The common
strategy is to find unitigs, an idea that can be traced back to 1995 [13]. Unitigs
have the desired property that they can be mathematically proven to occur in
all possible genomic reconstructions, under clear assumptions on what “genomic
reconstruction” means. We will refer to strings that satisfy such a property as
being safe (Definition 3), and will say that a contig assembly algorithm is safe if
it outputs only safe strings. Though most assemblers have a safe strategy at their
core, they also incorporate heuristics to handle erroneous data and extend contig
length (e.g. bubble popping, tip removal, and path disambiguation). Properties
of such heuristics, however, are difficult to prove, and this paper will focus on
core algorithms that are safe.

While the unitig algorithm is safe, it does not identify all possible safe strings
(see Fig. 1). An improved safe algorithm was used in the EULER assembler [31],
and further improvements were suggested based on iteratively simplifying the
assembly graph [10,15,20,31]. However, these algorithms still do not always out-
put all the safe strings. In fact, since the initial consideration of contig assembly
20 years ago, the fundamental question of finding all the safe strings of a graph
is still open.

In this paper, we finally answer this question by giving a polynomial-time
algorithm for outputting all the safe strings in the common genome graph models
(de Bruijn and string graphs, Sect. 4). The key ingredient for this result is a
graph-theoretic characterization of the walks that correspond to safe strings
(Sect. 3). We call such walks omnitigs and our algorithm the omnitig algorithm.
In our experiments on de Bruijn graphs built from data simulated according
to our assumptions, maximal omnitigs are on average 66% to 82% longer than
maximal unitigs, and 29 % of dbSNP locations have more neighbors in omnitigs
than in unitigs.

Our results are naturally limited to the context of our model and its assump-
tions. Intuitively, we assume that (i) the sequenced genome is circular, (ii) there
are no gaps in coverage, and (iii) there are no errors in the reads. A mathe-
matically precise definition of our model is in Sect. 2, were we also argue that
such a model is necessary if we want to prove even the simplest results about
unitigs. Similar to previous studies, we also do not deal with multiple chromo-
somes or the double-strandedness of DNA and assume the genome is represented
by a covering walk. As with previous papers that developed better theoretical
underpinnings [9,22,25,30], it is necessary to prove results in a somewhat ideal-
ized setting. While this paper falls short of analyzing real data, we believe that
omnitigs can be incorporated into practical genome analysis and assembly tools
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– similar to the way that error-free studies of de Bruijn [30] and paired de Bruijn
graphs [22] became the basis of practical assemblers [1,31,40].
Related Work. The number of related assembly papers is vast, and we refer the
reader to some surveys [23,27]. For an empirical evaluation of the correctness
of several state-of-the-art assemblers, see [35]. Here, we discuss work on the
theoretical underpinnings of assembly.

There are many formulations of the genome assembly problem. One of
the first asks to reconstruct the genome as a shortest superstring of the
reads [13,14,29]. Later formulations referred to a graph built from the reads,
such as a de Bruijn graph [9,31] or a string graph [25,37]. In an (edge-centric)
de Bruijn graph, the reconstructed genome can be modeled as a circular walk
covering every edge exactly once—Eulerian—[31], or at least once [11,20,21,26].
In a string graph, the reconstructed genome can be modeled as a circular walk
covering every node exactly once—Hamiltonian—[19,28], or at least once [26].
These models have also been considered in their weighted versions [20,26,28],
or augmented to include other information, such as mate-pairs [12,22,32]. Each
such notion of genomic reconstruction brought along questions concerning its
validity. For example, under which conditions on the sequencing data (e.g., cov-
erage, read length, error rate) is there at least one reconstruction [17,24], or
exactly one reconstruction [4,16,31]. If there are many possible reconstructions,
then what is their number [7,15] and in which aspects one is different from all
others [7]. In contrast to the framework of this paper, all these formulations deal
with finding a single genomic reconstruction as opposed to a set of safe strings
(i.e. contigs).

The most commonly employed safe strings are the ones spelled by maximal
unitigs, where unitigs are paths whose internal nodes have in- and out-degree
one. Figure 1 show an example of the output of the unitig algorithm, and also
illustrates that it does not identify all safe strings. The EULER assembler [31]
takes unitigs a step further and identifies strings spelled by paths whose inter-
nal nodes have out-degree equal to one (with no constraint on their in-degree).
It can be shown that such strings are also safe. However, the most complete
characterization of safe strings that we found is given by the Y-to-V algorithm
[10,15,21]. Consider a node v with exactly one in-neighbor u and more than one
out-neighbors w1, . . . , wd. The Y-to-V reduction applied to v removes v and its
incident edges from the graph and adds nodes v1, . . . , vd with edges from u to
vi and from vi to wi, for all 1 � i � d. The Y-to-V reduction is defined sym-
metrically for nodes with out-degree exactly one and in-degree greater than one.
The Y-to-V algorithm proceeds by repeatedly applying Y-to-V reductions, in
arbitrary order, for as long as possible. The algorithm then outputs the strings
spelled by the maximal unitigs in the final graph (see Fig. 1d for an example).
The Y-to-V algorithm can also be shown to be safe, but, as we will show in
Fig. 1, it does not always output all the safe strings. We are not aware of any
study that compares the merits of Y-to-V contigs to unitigs, and we therefore
perform this analysis in Sect. 5.
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Basic Definitions. Given a string x and an index 1 � i � |x|, we define
pre(x, i) and suf(x, i) as its length i prefix and suffix, respectively. If x and y are
two strings, and suf(x, k) = pre(y, k) for some k � |x| − 1, then we define x ⊕k y
as x[1..|x| − k] concatenated with y. A k-mer of x is a substring of length k. Let
R be a set of strings, which we equivalently refer to as reads. The node-centric
de Bruijn graph built on R, denoted DBk

nc(R), is the graph whose set of nodes
is the set of all k-mers of R, in which there is an edge from a node x to a node y
iff suf(x, k − 1) = pre(y, k − 1) [6]. The edge-centric de Bruijn graph built on R,
denoted DBk

ec(R) is defined similarly to DBk
nc(R), with the difference that there

is an edge from x to y iff suf(x, k −1) = pre(y, k −1) and x⊕k−1 y is a substring
of some string in R [9]. The weight of the edges of DBk

nc(R) and DBk
ec(R) is

k − 1.
We denote by n and m the number of nodes and edges, respectively, of an

arbitrary graph G. We use N−(v) to denote the set of in-neighbors of a node v.
A walk w is a sequence (v0, e0, v1, e1, . . . , vt, et, vt+1) where v0, . . . , vt+1 are
nodes, and each ei is an edge from vi to vi+1, and t � −1. Its length is its
number of edges. A path is a walk where the nodes are all distinct, except possi-
bly the first and last nodes. Walks of length at least one are called proper. A walk
whose first and last nodes coincide is called circular walk. A path with first node
u and last node v will be called a u-v path. A walk is called node-/edge-covering
if it passes at least once through each node/edge.

Let � be a function labeling the nodes of G and let c be a function giving
weights to the edges (intuitively, c should represent the length of overlaps). One
can apply the notion of string spelled by a walk by defining the string spelled by
w as spell(w) = �(v0) ⊕c(e0) �(v1) ⊕c(e1) · · · ⊕c(et) �(vt+1).

2 Problem Formulation

There are various theoretical approaches to formulating the assembly problem.
Here, we adopt a model that captures the most popular ones: the node-centric
de Bruijn graph, the edge-centric de Bruijn graph, and the string graph [25]. We
generalize these using a notion of genome graph:

Definition 1 (Genome graph). A graph G with edge-weights given by c and
node-labels is a genome graph if and only if (1) for every edge e = (u, v),
suf(u, c(e)) = pre(v, c(e)), and (2) for any two walks w1 and w2, w1 is a subwalk
of w2 if and only if spell(w1) is a substring of spell(w2).

Both node- and edge-centric de Bruijn graphs are genome graphs, directly
by their definition. Similarly, the interested reader can verify that string graphs,
as commonly defined in [21,25,26,36], are genome graphs. Intuitively, the first
condition states that the edge-weights represent the length of overlaps between
strings, while the second condition prohibits a certain redundancy in the graph.
It can be broken if, for example, there are nodes with duplicate labels, or if
some labels are substrings of others. Or, for strings graphs, it can be broken if
transitive edges are not removed from the graph [25]. We now augment a genome
graph with a rule defining a “genomic reconstruction.”
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Definition 2 (Graph model). A graph model G is defined by

• An algorithm transforming a set of reads R into a genome graph G(R).
• A rule determining if a walk in G(R) is a genomic reconstruction.

Intuitively, a genomic reconstruction spells a genome that could have gener-
ated the observed set of reads R. In this paper, we consider two graph models.
In the edge-centric model, a genomic reconstruction is a circular edge-covering
walk; its underlying genome graph can be e.g. an edge-centric de Bruijn graph.
In the node-centric model, a genomic reconstruction is a circular node-covering
walk; its underlying genome graph can be a node-centric de Bruijn graph or a
string graph. We assume, without explicitly stating it onwards, that G(R) con-
tains at least one genomic reconstruction, and additionally that G(R) is always
different from a single cycle. We now define the safe strings:

Definition 3 (Safe string). Given a set of reads R and a graph model G, a
string s is said to be a safe string for G(R) if for every genomic reconstruction
w of G(R), s is a substring of spell(w).

In particular, for a node-centric (respectively, edge-centric) graph model G,
a string s is safe if for every circular node-covering (respectively, edge-covering)
walk w, s is a substring of spell(w). Solving the following problem gives all the
safely-retrievable information from a graph model.

Definition 4 (The safe and complete contig assembly problem). Given
a set of reads R and a graph model G, find all safe strings for G(R).

In this paper we solve this problem for the node- and edge-centric models
defined above. Due to space limitations, we will focus on the edge-centric model
here, and leave the node-centric model for the full version of the paper [38].
As a technical aside, our algorithms will output only maximal safe strings, in
the sense that they are not a substring of any other safe string. In fact, this is
desirable in practice, and moreover, the set of all safe strings is the set of all
substrings of the maximal ones.
A note on assumptions: Our model makes three implicit assumptions, as outlined
at the end of the Introduction. Here, we observe that such assumptions are
necessary to prove even the simplest desired property: that the unitig algorithm
outputs only safe strings. Let w = (v0, e0, v1, e1, v2) be a unitig in an edge-centric
de Bruijn graph G built from the (k + 1)-mers of a genome S. If the genome is
not circular (assumption (i)), then e.g. the last k-mer of S can be v0, its first
k-mer can be v1, the string v0 ⊕k v1 can appear inside S, but v0 ⊕k v1 ⊕k v2
does not have to appear in S. If there are gaps in coverage (assumption (ii)),
then both an in-neighbor v′ and an out-neighbor v′′ of v1 may be missing from
G making w look safe whereas in reality v0 ⊕k v1 ⊕k v2 may not be a substring
of S. A sequencing error (assumption (iii)) creates a bubble in G with one of its
paths being a unitig not spelling a substring of S.
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AC CG

GTTA

GA GG

(a) Graph G

AC
CG

CG

GTTA

GA GG

(b) Transformed graph GT

AC CG
CG GT TA AC
CG GG GA AC

(c) Maximal unitigs of G

AC CG GT TA AC
AC CG GG GA AC
(d) Maximal unitigs of GT

CG GT TA AC CG GG GA AC CG
CG GG GA AC CG GT TA AC CG

(e) Maximal omnitigs of G

A
C

G

T
A

C

G

G

(f) The original genome and its contigs

Fig. 1. The output of the three algorithms on the edge-centric de Bruijn graph G
from (a), built from the circular string in (f). Each contig is drawn as an arc on the
wheel in (f). (c): the maximal unitigs of G; (b): the Y-to-V reduction is applied to node
CG and the resulting graph GT is shown; no more reductions are applicable and GT

has two maximal unitigs, shown in (d); (e): the maximal omnitigs of G. Note that this
example illustrates that the Y-to-V algorithm does not always output all safe strings,
because its output (d) does not contain the strings of (e).

3 Characterization of Safe Strings: Omnitigs

Definition 5 (Omnitig, edge-centric model). Let G be a directed graph and
let w = (v0, e0, v1, e1, . . . , vt, et, vt+1) be a walk in G. We say that w is an omnitig
iff for all 1 � i � j � t, there is no proper vj-vi path with first edge different
from ej, and last edge different from ei−1.

The following theorem states that the omnitigs spell all the safe strings. Its
proof is left for the full version of the paper [38].

Theorem 1. Given an edge-centric graph model G = G(R) built for a set of
reads R, a string s is safe for G iff s is spelled by an omnitig in G.

4 Omnitig Algorithm

In this section, we use Theorem 1 to give the omnitig algorithm (Algorithm 1)
and prove that it runs in polynomial time (Theorem2). The algorithm finds all
maximal omnitigs of G(R), which, by Theorem 1, are exactly the maximal safe
strings of G(R). This is based on the following observation, which follows directly
from the definition of omnitigs:

Observation 1. Consider a walk w′ = (v0, e0, . . . , et−1, vt, et, vt+1) of length
at least two, and consider its subwalk w = (v0, e0, . . . , et−1, vt). Then w′ is an
omnitig if and only if (i) w is an omnitig and (ii) for all 0 � i � t − 1, there is
no proper vt-vi path with first edge different from et and last edge different from
ei−1.
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Algorithm 1. Omnitig algorithm
1 extend(w)
2 denote w = (v0, e0, v1, e1, . . . , vt−1, et−1, vt);
3 foreach edge e = (vt, y) out-going from vt do
4 X := (N−(v1) ∪ · · · ∪ N−(vt)) \ {v0, . . . , vt};
5 let G′ equal G minus the edge e;
6 if there is no path in G′ from vt to a node of X then
7 extend((v0, e0, v1, e1, . . . , vt−1, et−1, vt, e, y));

8 if w was never extended then
9 W := W ∪ {w};

10 W := ∅;
11 foreach edge e = (u, v) of G do
12 extend((u, e, v));

13 remove from W any walk that is a subwalk of another walk in W ;
14 return {spell(w) : w ∈ W};

The idea of the algorithm is to start a depth-first traversal of G from every
edge (Lines 11–12), which by definition is an omnitig, and to keep traversing
edges as long as the current walk is an omnitig. An omnitig w is thus recursively
constructed, by possibly extending to the right with each edge e out-going from
its last vertex (Lines 3–7). If w extended with e is not an omnitig, then we
abandon this extension because Observation 1 tells us that no further extension
could be an omnitig. To check if this extension is an omnitig or not, it is enough
to check whether condition (ii) of Observation 1 is satisfied (Lines 4–6). Condi-
tion (i) is automatically satisfied because of the structure of the algorithm–we
extend only walks that are omnitigs.

Next, we show that the algorithm runs in polynomial time. First, we show
that the number of omnitigs included in W , prior to removal of non-maximal
ones, is polynomial (proof left for the full version [38]):

Lemma 1. Let W be a set of omnitigs in an edge-centric graph model G(R). If
no omnitig in W is a prefix of another omnitig in W , then |W | � nm and the
length of any omnitig in W is at most nm.

Note that Line 8 guarantees that W , prior to removal of subwalks in Line 13,
satisfies the prefix condition of Lemma 1. Lemma 1 then implies that reporting
one omnitig by our algorithm takes polynomial time, and there are only poly-
nomially many omnitigs reported. Thus:

Theorem 2. Let R be a set of reads and G(R) be an edge-centric graph model.
Algorithm1 outputs in polynomial time all safe strings of G(R).

Prior to starting, we apply the Y-to-V algorithm and the standard graph
compaction algorithm to compact unitigs [5]. This significantly reduces the num-
ber of nodes/edges in the graph without changing the maximal safe strings.
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In the full version [38] we describe other implementation details that are cru-
cial in practice. Our implementation is freely available for use at https://github.
com/alexandrutomescu/complete-contigs.

5 Experimental Results

We wanted to test the potential of omnitigs as an alternative to unitigs, under
the assumptions of Sect. 2. We chose one bacterial genome, E.coli, and one larger
genome, Human chr10 (circularized). The graph model was the edge-centric de
Bruijn graph built on the set of all (k + 1)-mers of the genome. We used k = 31
and k = 55 for E.coli and chr10, respectively, according to what was used in
practice for their assembly.

Table 1. Results for DBk
ec(R), where R is the set of all (k + 1)-mers of the genome.

E.coli (k = 31) chr10 (k = 55)

# strings avg len E-size time (s) # strings avg len E-size time (s)

unitigs 1,743 2,654 33,309 <1 259,845 546 8,344 1

Y-to-V 1,004 4,682 33,632 <1 159,101 878 8,376 2

omnitigs 983 4,832 34,557 <1 158,236 887 8,401 1, 046

We wanted to measure the effect of omnitigs on assembly contiguity in terms
of (1) increase in contig length, and (2) increase of biological context for elements
of interest. To measure the increase in length, we measured the average contig
length and the E-size. Since multiple contigs can cover overlapping regions, we
found the E-size metric [35] to be more appropriate than the N50 metric. The E-
size of a set of substrings of a genome is defined as the average, over all genomic
positions i, of the mean length of all substrings spanning position i. This was
computed by aligning the contigs to the reference. Table 1 shows that omnitigs
exhibit significantly more contiguity than unitigs, with an average contig length
that is 62–82 % higher. The little improvement in the E-size (1–4 %) indicates
that the increase in average length comes from shorter contigs.

We wanted to also measure the potential of omnitigs to improve downstream
biological analysis, relative to unitigs. Longer contigs can provide more flanking
context around important genomic elements such as SNPs. One general type of
study collects statistics about the relationship of each SNP to other SNPs on the
same contig; such a study is necessarily limited by the number of SNPs present
on the same contig [39]. We call this number the block size of a SNP. To see
the effect of omnitigs on such a study, we identified chr10 locations of SNPs in
the human population (using dbSNP), and the block size of each SNP in the
omnitig vs. the unitig algorithms. Figure 2A shows that omnitigs in many cases
provide more SNP context. The number of SNPs whose block size increased was
∼1.7 million (out of ∼5.9 million) and whose block size increased by more than

https://github.com/alexandrutomescu/complete-contigs
https://github.com/alexandrutomescu/complete-contigs
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10 was ∼137 thousand. The average number of SNPs per unitig was 41, with
only 26 per unitig. Consistent with the contiguity results of Table 1, the effect is
more pronounced on contigs with less SNPs.

Fig. 2. The increase in SNP block size in omnitigs compared to unitigs (A) and Y-to-V
contigs (B). Each point is a SNP, and the x-value is the block size of the unitig (in A)
or Y-to-V contig (in B) covering it. The y-value is the increase in the block size, when
compared with omnitigs. Note that the y-axis does not represent the block size, but a
difference of block sizes.

We also compared omnitigs to Y-to-V contigs. Y-to-V contigs have been pro-
posed in the literature [10,15,21], but, to the best of our knowledge, there has
not been a quantitative study comparing their merits against other contig algo-
rithms. Omnitigs also provide more SNP context than Y-to-V contigs, with ∼266
thousand SNPs having an increase in block size (Fig. 2B). Omnitigs are only mar-
ginally better than Y-to-V contigs in terms of average contiguity (Table 1). Our
results suggest that, though not as beneficial as omnitigs, Y-to-V contigs may
nevertheless provide a faster alternative to unitigs than the omnitig algorithm.

Table 1 also shows the wall-clock running times of our algorithms. The exper-
iments were run on a node with two Xeon 2.53 GHz CPUs. We parallelized the
omnitig algorithm so that it utilized all 8 available cores. We observe negligible
running times for all algorithms on E.coli. On chr10, the running time of the
omnitig algorithm is significantly longer (by 18 mins) than the unitig or Y-to-V
algorithm, though it would still not form a bottleneck in an assembly pipeline.
The memory usage did not exceed 1 GB at any point, though we believe it can
be significantly reduced with a more careful implementation.

Conclusion: There are two natural directions for future work: practical and the-
oretical. In the practical direction, the omnitig algorithm should be extended to
handle the complexities of real data such as sequencing errors, imperfect cover-
age, linear genomes, and double-strandedness. This is a non-trivial task which
is outside the scope of the current study, but it will be important in facilitating
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the application to genome analysis and assembly. In the theoretical direction,
we believe that omnitigs exhibit more structure that can be exploited in a faster
algorithm for finding all maximal omnitigs. We are also currently studying the
graph model when a genomic reconstruction is any collection of circular covering
walks (as in metagenomic sequencing of bacteria).
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nologies allows each mutant variant to be sequenced in a single pass. How-
ever, high error rate limits the ability to reconstruct heterogeneous viral
population composed of rare, related mutant variants. In this paper, we
present 2SNV, a method able to tolerate the high error-rate of the single-
molecule protocol and reconstruct mutant variants. 2SNV uses linkage
between single nucleotide variations to efficiently distinguish them from
read errors. To benchmark the sensitivity of 2SNV, we performed a
single-molecule sequencing experiment on a sample containing a titrated
level of known viral mutant variants. Our method is able to accurately
reconstruct clone with frequency of 0.2 % and distinguish clones that
differed in only two nucleotides distantly located on the genome. 2SNV
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1 Introduction

Majority of the emerging and re-emerging diseases (influenza, hantaviruses,
Ebola virus, and Nipah virus), which represent a global threat to the public
health, are caused by RNA viruses [28]. RNA viruses can be featured by their
robust adaptability and evolvability due to their high mutation rates and rapid
replication cycles [6,15]. This enables a within-host RNA virus population to
organize as a complex and dynamic mutant swarm of many highly similar viral
genomes. This mutant spectrum, also known as quasispecies [9], is continuously
maintained and regenerated during viral infection [7,19]. Deep sequencing has
provided a new lens to monitor individual viral variants accelerating the under-
standing of escape and resistance mechanisms [3,26], in addition to providing
insights about the viral evolutionary landscape and the genomic interactions
[22,30,39].

Short reads offered by commonly used fragmentation-based protocols are
well suited to detect discrete genome components, such as the frequency of each
single-nucleotide polymorphism. However, high similarity of the individual viral
genomes imposes a huge challenge to assemble discrete components into a popu-
lation of full-length viral genomes. In particular, mutations are often located on
the distances unreachable by the short reads. Therefore even hybrid technologies
based on error correction of PacBio reads with Illumina reads were not applied
to sequencing of viral variants. Indeed, short reads cannot tell the allele – the
same short read is equally well mapped to a variant with the major allele and a
variant with the minor allele.

Single Molecule Real Time (SMRT) sequencing is a parallelized single mole-
cule DNA sequencing method. PacBio SMRT sequencing reads are much longer
than sequencing reads provided by Illumina, however, its throughput is much
lower and the error rate is significantly higher. The read length offered by a
single-molecule sequencing protocol [8] is comparable to the genome size of most
RNA viruses. It allows each genome variant to be sequenced in a single pass,
providing an accurate phasing of the distant mutations. The main drawbacks of
the long single-molecule technologies are the high error rate and comparatively
low throughput, limiting ability of those technologies to study the heterogeneous
viral populations. Thus, a complete profiling of all viral genomes within a mutant
spectrum is not yet possible.

Recently, this problem has been addressed using various computational
and statistical approaches implemented in Quasirecomb [36], PredictHaplo [32],
HaploClique [35], VGA [24], and kGEM [33]. These methods perform reasonably
well on short reads with high coverage and low error rate, but our experimen-
tal validation shows far from satisfactory performance on the sequencing data
provided by single-molecule technologies. Also a workflow for reconstruction of
closely related variants from raw reads generated during SMRT sequencing was
proposed in [4]. Note that a recent method for haplotyping using Pacbio reads
proposed in [34] is only applicable for diploid organisms and is not suitable for
viral haplotyping with numerous variants.
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In this paper, we present two Single Nucleotide Variants (2SNV), a com-
prehensive method for the accurate reconstruction of the heterogeneous viral
population from the long single-molecule reads. The 2SNV method hierarchi-
cally clusters together reads containing pairs of correlated (i.e., linked) SNVs
until no cluster has correlated SNVs left and outputs consensus of each clus-
ter. It allows to reduce error rate and differentiate true biological variants from
sequencing artifacts, thus providing increased accuracy to study diversity and
composition of the viral spectrum. To benchmark the sensitivity of 2SNV, we
performed a single-molecule sequencing experiment on a sample containing a
titrated level of known viral mutant variants. We were able to reconstruct a
haplotype with a frequency of 0.2 % and distinguish clones that differed in only
two nucleotides. We also showed that 2SNV outperformed existing haplotype
reconstruction tools. With a high sensitivity and accuracy, 2SNV is anticipated
to facilitate not only viral quasispecies reconstruction, but also other biological
questions that require detection of rare haplotypes such as genetic diversity in
cancer cell population, and monitoring B-cell and T-cell receptor repertoire.

2 Methods

Any method for reconstruction of viral variants from single-molecule reads
should overcome low volume and high error rate of sequencing data combined
with very high similarity and very low frequency of viral variants. This chal-
lenge is equivalent to extraction of an extremely weak signal from very noisy
background with signal-to-noise ratio approaching zero. However impossible this
task may seem, a satisfactory solution can be based on distinguishing random-
ness of the noise from systematic signal repetition. Previously, linkage between
SNVs was used for distinguishing sequencing errors from SNVs [23], however, to
the best of our knowledge, it was never applied for haplotyping.

Since all reads are from the same RNA region of very similar sequences,
they can be reliably aligned to each other. In general, the errors in different
positions are independent from each other and the further these positions are
from each other the less likely any dependency can be caused by systematic
errors. Therefore, even slightly more than expected co-occurrence of two rare
alleles in non-adjacent positions may serve as a trustful signature of one or
more rare variants having the both rare alleles. Such single nucleotide variations
(SNVs) are called linked.

The proposed 2SNV method recursively clusters reads containing pairs of
linked SNVs until no pair of SNVs exhibits statistically significant linkage in
any cluster. Then each cluster should contain just a single viral variant which
can be simply reconstructed as the consensus of all reads in the cluster.

In the remainder of the section we derive statistical conditions of SNV linkage
and then give detailed description of the 2SNV method which identifies rare
variants based SNV pairs satisfying these conditions.
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2.1 Linkage of SNV Pairs

In this section we analyze statistical significance of the linkage between a pair
of SNVs which allows to distinguish reads emitted by a rare variant from back-
ground errors.

We assume that errors are random and a rare variant has at least 2 mis-
matches with other variants. Let us consider an arbitrary pair of two distinct
positions I, J ∈ {1, . . . , L}, I �= J , where L be the length of the amplicon (see
Fig. 1b). Let I1 and J1 be the alleles of the most frequent 2-haplotype (I1J1).
Note that (I1J1) should be a 2-haplotype from at least one true viral variant
assuming that the error rates in the I-th and J-th positions are small and inde-
pendent.

Let I2 �= I1 and J2 �= J1 be the alleles of another 2-haplotype. Let Ekl,
k, l ∈ {1, 2}, be the expected number of reads with 2-haplotypes (IkJl). The
following theorem can be used to decide if the haplotype I2 �= I1 exists.

Theorem 1. Assume that the sequencing error is random, independent and does
not exceed 50%. If no viral variant with the haplotype (I2J2) exists, then the
expected value of E22 is at most

E22 ≤ E21 · E12

E11
(1)

The inequality (1) becomes an equality if at least one of 2-haplotypes (I1J2) or
(I2J1) also does not exist.

Proof. Let εklI and εklJ , k, l ∈ {1, 2}, be the probabilities to observe the allele l
instead of the true allele k in the positions I and J , respectively. We are not going
to estimate the parameters εklI . The model only assumes that these parameters
are random, independent, and do not exceed 50 %.

Let Tkl, k, l ∈ {1, 2}, be the true count of 2-haplotypes (IkJl). Then error
randomness and independence imply that

Ekl =
∑

m,n=1,2

εmk
I εnlJ Tmn

In order to prove (1), it is sufficient to show that E11 · E22 ≤ E12 · E21

assuming that T22 = 0. Indeed,

E11 · E22 =
∑

m,n=1,2

εm1
I εn1J Tmn ·

∑

m,n=1,2

εm2
I εn2J Tmn

= ε11I ε11J ε12I ε12J T 2
11 + ε21I ε11J ε22I ε12J T 2

21 + ε11I ε21J ε12I ε22J T 2
12

+ (ε11I ε11J ε12I ε22J + ε11I ε21J ε12I ε12J )T11T12

+ (ε11I ε11J ε22I ε12J + ε21I ε11J ε12I ε12J )T11T21

+ (ε11I ε21J ε22I ε12J + ε21I ε11J ε12I ε22J )T12T21
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E12 · E21 =
∑

m,n=1,2

εm1
I εn2J Tmn ·

∑

m,n=1,2

εm2
I εn1J Tmn

= ε11I ε12J ε12I ε11J T 2
11 + ε21I ε12J ε22I ε11J T 2

21 + ε11I ε22J ε12I ε21J T 2
12

+ (ε11I ε12J ε12I ε21J + ε11I ε22J ε12I ε11J )T11T12

+ (ε11I ε12J ε22I ε11J + ε21I ε12J ε12I ε11J )T11T21

+ (ε11I ε22J ε22I ε11J + ε21I ε12J ε12I ε21J )T12T21

Note that only coefficients for T12T21 are different for these products. There-
fore, if either T12 = 0 or T21 = 0, then E11 · E22 = E12 · E21. Otherwise, let all
three 2-haplotypes (I1J1), (I1J2), and (I2J1) exist. Then

E12E21 − E11E22

= (ε11I ε22J ε22I ε11J + ε21I ε12J ε12I ε21J − ε11I ε21J ε22I ε12J − ε21I ε11J ε12I ε22J )T12T21

=
(

1 − ε12I
ε11I

ε21I
ε22I

)(
1 − ε12J

ε11J

ε21J
ε22J

)
ε11I ε22J ε22I ε11J T12T21 > 0

The last inequality holds since observing the true allele is more probable than
observing the erroneous allele and, therefore, εklI < εkkI and εklJ < εkkJ , k, l ∈
{1, 2}. QED

Note that Theorem 1 does not require linkage disequilibrium of haplotypes -
the lack of linkage is explained by errors. The 2SNV method uses Theorem 1 to
decide if the alleles I2 and J2 are linked as follows. Let Okl, k, l ∈ {1, 2}, be the
observed number of reads with 2-haplotypes (IkJl). Let n be the total number
of reads covering the both positions I and J , then

p =
O21 · O12

O11 · n
(2)

is the largest probability of observing the 2-haplotype (I2J2) among these n
reads. The probability to observe at least O22 reads in the (n, p) binomial dis-
tribution equals

Pr(X ≥ O22) = 1 −
O22−1∑

i=1

(
n

i

)
pi(1 − p)n−i (3)

Since we are looking for a pair of SNVs among
(
L
2

)
possible pairs, we also

adjust to multiple testing using Bonferroni correction requiring

1 −
O22−1∑

i=1

(
n

i

)
pi(1 − p)n−i ≤ P(

L
2

) (4)

where p is defined in (2) and P is the user-defined P -value, by default P = 0.01.
Finally, when the cluster is too small, the statistical test (4) may be not

stringent enough to weed out spurious linkages. Therefore, we require the number



Long Single-Molecule Reads Can Resolve the Complexity 169

of reads O22 to be at least an empirically defined value (by default equal 30), in
order to decide whether there is an additional haplotype producing these reads.

Note that the binomial model used in (4) may not be stringent enough to
compensate for reducing PPV caused by overdispersion especially for higher cov-
erage. In future releases of our tool we plan to take in account additional variance
modeling unknown experimental data processes contributing to variance, e.g.,
replacing the binomial distribution with the beta-binomial distribution.

2.2 2SNV Method for Viral Variant Reconstruction

The input to 2SNV consists of a set of aligned PacBio reads (see Fig. 1(a)).
Alignment required to be in a form of multiple sequence alignment (MSA).
The MSA algorithms are too slow to handle PacBio datasets, so instead, we
use pairwise alignment by BWA [20] and b2w from Shorah [41] to transform
pairwise alignment to MSA format.

The main novel step of the 2SNV algorithm identifies a pair of linked
SNVs (see Fig. 1(b)). with higher than expected portion of reads containing the
2-haplotype with the both minor alleles according to (2–4).

The 2SNV method maintains a partition of all reads into clusters. Each
cluster is assumed to consist of the reads emitted by the single variant coinciding
with the cluster consensus (see Fig. 1(c)). Until no pair of SNVs in the cluster
C is linked, we recursively partition C into two clusters C1 and C2. C1 consists
of reads with the linked pair of SNVs C2 consists of the remaining reads of C.

Fig. 1. Overview of the 2SNV method: (a) multiple sequence alignment of reads from
the same amplicon; (b) identification of a linked SNV pair in positions I and J ;
(c) recursive cluster splitting: (i) finding consensus of reads with the linked SNV pair,
(ii) finding Voronoi region of this consensus, (iii) update the original cluster and the
consensuses for the two new clusters.



170 A. Artyomenko et al.

Algorithm 1. 2SNV Algorithm
procedure 1: constructing the consensus haplotype for all reads:

Initialize the set of all clusters with a single cluster with all reads C ← {R}
For each position i find allele of highest frequency ai

Consensus(C) ← (a1, . . . , aL)
procedure 2: partitioning reads into simple clusters

while not all clusters are simple do
for each non-simple cluster C ∈ C do

if no pair SNVs is linked according to (2-4) then
Regard C as a simple cluster

else
Find a pair of linked SNVs I2 and J2 minimizing (3)
Find the set C1 of all reads with the 2-haplotype (I2J2)
Find the consensus c1 ← Consensus(C1)
C1 ← V oronoi(c1)
C2 ← C \ C1, c2 ← Consensus(C2)
C ← C ∪ {C1} ∪ {C2} \ {C}

procedure 3: estimating frequencies of the consensuses of simple clusters
Run kGEM algorithm for the set of haplotypes {Consensus(C), C ∈ C}.

We further modify C1 and C2 by replacing them with the Voronoi regions of
their consensuses, where the Voronoi region of the consensus c1 of C1 consists
of reads that are closer to c1 than to the consensus of C2. Finally, kGEM finds
maximum likelihood estimates of frequencies of haplotypes represented by cluster
consensuses using expectation-maximization algorithm [33].

Algorithm 1 describes the formal pseudocode of the 2SNV algorithm.

3 Results

We were using 3 datasets: PacBio reads from a single IAV clone and 10 IAV
clones, and simulated PacBio reads from 20 HCV clones.

Error-prone PCR was performed on the influenza A virus (A/WSN/33) PB2
segment using GeneMorph II Random Mutagenesis Kits (Agilent Technologies,
Westlake Village, CA) according to manufacturer’s instruction. The 2 kb region
was amplified from the IAV viral population and subjected to PacBio RS II
sequencing using 2 SMRT cells with P4-C2. The average read length was 1973 bp
and ranges from 200 bp to 5 kb. Some reads are much longer than the amplified
region due to long insertions which are sequencing errors. Raw sequencing data
have been submitted to the NIH Short Read Archive (SRA) under accession
number: BioProject PRJNA284802. The nucleotide sequences of the 10 clones
are freely available at http://alan.cs.gsu.edu/NGS/?q=content/2snv.

The Dataset with a Single IAV Clone. There total number of reads were
11,907 and the average Hamming distance between the true haplotype and reads
is 14.4 %.

http://alan.cs.gsu.edu/NGS/?q=content/2snv
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The Dataset with 10 IAV Clones. 10 independent clones, ranging from 1 to
13 mutations from the original single were selected. These 10 clones were mixed
at a geometric ratio with two-fold difference in occurrence frequency for con-
secutive clones starting with the maximum frequency of 50 % and the minimum
frequency of 0.1 %. The pairwise edit distance between clones are given in the
heat-map on Fig. 2 in Supplement. In total, there were 33,558 reads generated
from 10 clones.

The Simulated Dataset with 20 HCV Clones. 21K simulated PacBio reads
were generated from 1739-bp long fragment from the E1E2 region of 20 HCV
sequences [38] using simulator pbsim [29]. The reads were simulated with mean
accuracy 98 % and minimum accuracy 95 % reflecting advancements in PacBio
technology. We have generated reads 10 times for two distributions of the clone
frequencies – uniform (all frequencies are 5 %) and skewed (a single clone has
90.5 % and every other clone has frequency 0.5 %).

3.1 Reconstruction of Viral Variants

2SNV was compared with 2 tools originally tuned to handle HIV variants (Pre-
dictHaplo [32] and Quasirecomb [36]) and kGEM [33] tuned for a short HCV
amplicon. We could not compare with HaploClique [35] since it is no longer
maintained by the authors. A workflow [4] is not currently available and we
were not able to run it on our data. Also the experimental data in [4] are also
not fully available and we were not able to run 2SNV on these data.

For the dataset with a single IAV clone 2SNV, kGEM, and PredictHaplo
were able to reconstruct no more a single variant which perfectly matches the
original clone. Quasirecomb reported multiple variants none fully matching the
original clone.

For the dataset with 10 IAV clones, 2SNV reported 10 haplotypes: the 9
most frequent haplotypes exactly matching 9 most frequent clones and the least
frequent haplotype (1 %) not matching any clone. The correlation between the
estimated and true frequencies of the 9 correctly reconstructed haplotypes is
99.4 %. PredictHaplo was able to reconstruct only 6 true variants missing 4
variants with total frequency of 8 % while not having any false positives. In order
to reliably compare the reconstruction rate of two methods, we have applied
them to 40 sub-samples of the original data (each subsample consists of 33558
reads randomly selected with repetition from the original data). The results are
presented on Fig. 4 and Table 1 in Supplement. kGEM was able to reconstruct
only 2 most frequent clones and Quasirecomb failed to reconstruct even a single
clone.

In order to estimate how accuracy of reconstruction methods depends on the
coverage, we have randomly sub-sampled N reads (N = 500, 1000, 2000, 4000,
8000, 16000) from the original 33558 reads and run 2SNV and PredictHaplo.
The results are shown on Fig. 2 in Supplement. For each coverage and each
clone (except Clone5), 2SNV more accurately estimates the frequency. Clone6
and Clone8 for all sub-samples, Clone4 for N ≤ 8000 and Clone 3 for N ≤ 1000
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are missed by PredictHaplo but reconstructed by 2SNV. Clone6 which is only two
mutations away from the more frequent Clone5 was successfully reconstructed
for N ≥ 4000 while PredictHaplo was never able to reconstruct Clone6. Note
that since these 2 SNVs between Clone5 and Clone6 are far apart, only long
reads can reconstruct this rare variant. From the last plot one can see that the
false positive rate for PredictHaplo is also higher than for 2SNV, e.g. 2SNV does
not report false positives for N ≤ 8000. The averages of all runs are given in
Table 2 in Supplement.

For the simulated dataset with 20 HCV variants, we have compared 2SNV
only with PredictHaplo. For the uniform frequency distribution the average sen-
sitivity and PPV for 2SNV are 85 % and 100 %, respectively, while for Predic-
tHaplo the corresponding values are 72 % and 53 %, respectively. For the skewed
frequency distribution, the average sensitivity and PPV for 2SNV are 99 % and
69 %, respectively, while for PredictHaplo the corresponding values are 36 % and
46 %, respectively.

Runtime. The runtime of 2SNV is linear with respect to the number of reads,
however implementation is O(nlogn) due to parallelization (see Fig. 5 in Sup-
plement) and quadratic with respect to the length of the amplicon region. For
all experiments we used the same PC (Intel(R) Xeon(R) CPU X5550 2.67 GHz
x2 8 cores per CPU, DIMM DDR3 1333 MHz RAM 4Gb x12) with operating
system CentOS 6.4.

4 Discussion

Haplotype phasing represents one of the biggest challenges in next-generation
sequencing due to the short read length. The recent development of single-
molecule sequencing platform produces reads that are sufficiently long to span
the entire gene or small viral genome. It not only benefits the assembly of genomic
regions with tandem repeat [5,18,37], but also offers the opportunity to examine
the genetic linkage between mutations. In fact, it is shown that the long read
in single-molecule sequencing aids haplotype phasing in diploid genome [31],
and in polyploid genome [1]. Nonetheless, the sequencing error rate of single-
molecule sequencing platform is extremely high (≈14% as estimated by this
study), which hampers its ability to reconstruct rare haplotypes. This draw-
back prohibits single-molecule sequencing platform from applications in which
a high sensitivity of haplotypes are needed, such as quasispecies reconstruction.
In this study, we have developed 2SNV, which allows quasispecies reconstruc-
tion using single-molecule sequencing despite the high sequencing error rate.
The high sensitivity of 2SNV permits the detection of extremely rare haplotypes
and distinguish between closely related haplotypes. Based on titrated levels of
known haplotypes, we demonstrates that 2SNV is able to detect a haplotype that
has a frequency as low as 0.2 %. This sensitivity is comparable to many deep
sequencing-based point mutation detection methods [10,11,13,21]. In addition,
2SNV successfully distinguishes between Clone5 and Clone6 in this study, which
are only two nucleotides away from each other. It highlights the sensitivity of
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2SNV to distinguish closely related haplotypes. Our results also show that the
sensitivity is coverage-dependent, implying that the sensitivity of 2SNV may fur-
ther improve when sequencing depth increases. Therefore, the constant increase
of sequencing throughput offered by single-molecule sequencing technology pro-
vides the unprecedented resolution promising to increase number of discovered
rare haplotypes.

The ability to accurately determine the genomic composition of the viral pop-
ulations and identify closely related viral genomes makes our tool applicable for
dissecting evolutionary trajectories and examining mutation interactions in RNA
viruses. Evolutionary trajectories and mutation interactions have been shown to
play an important role in viral evolution, such as drug resistance [2,3,26,39],
immune escape [12], and cross-species adaptation [14,16]. An unbiased and accu-
rate understanding of the genomic composition of the RNA viruses opens a new
avenue to study the underlying mechanism of adaptation, persistence and viru-
lence factors of the pathogen, which are yet to be comprehended.

While viral quasispecies reconstruction is used as a proof-of-concept in this
study, the application of 2SNV can be extended to detect haplotype variants
in any sample with high genetic heterogeneity and diversity, such as B-cell and
T-cell receptor repertoire, cancer cell populations, and metagenomes. It is shown
that monitoring B-cell and T-cell receptor repertoire helps investigate virus-host
interaction dynamics [17,27,40,42,43]. Furthermore, examining the genetic com-
position of the cancer cell populations in high sensitivity can facilitate diagnosis
and treatment [25]. Therefore, we anticipate that 2SNV will benefit different sub-
fields of biomedical research in the genomic era. We also propose that 2SNV can
be applied to increase the resolution of metagenomics profiling from species level
to strain level. In summary, 2SNV is a widely applicable tool as single-molecule
sequencing technology being popularized.

Supplement. The Supplement to this paper containing Figs. 1–6 and
Tables 1 and 2 is available here: http://alan.cs.gsu.edu/NGS/?q=content/2snv
supplement
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Abstract. Reads from paired-end and mate-pair libraries are often
utilized to find structural variation in genomes, and one common app-
roach is to use their fragment length for detection. After aligning read-
pairs to the reference, read-pair distances are analyzed for statistically
significant deviations. However, previously proposed methods are based
on a simplified model of observed fragment lengths that does not agree
with data. We show how this model limits statistical analysis of identify-
ing variants and propose a new model, by adapting a model we have pre-
viously introduced for contig scaffolding, which agrees with data. From
this model we derive an improved null hypothesis that, when applied in
the variant caller CLEVER, reduces the number of false positives and
corrects a bias that contributes to more deletion calls than insertion
calls. A reference implementation is freely available at https://github.
com/ksahlin/GetDistr.

1 Introduction

Genomic structural variation, for example insertion and deletion of DNA, are
common in the human population and have been linked to various diseases and
conditions. The basic question scientists and clinicians want to answer is: given a
DNA sample from a donor and a suitable reference genome, what structural vari-
ants does the donor have in comparison to the reference? Methods for identifying
structural variants are continuously worked on, in terms of both experimental
protocols and bioinformatic analysis. Short-read technologies are, despite their
weaknesses, the primary data source because of the superior throughput/cost
ratio. It is today important to improve accuracy of predictions and in particular
to reduce the false-positive rate while retaining sensitivity. To that end, we have
c© Springer International Publishing Switzerland 2016
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worked on improving the statistical analysis of paired reads, using paired-end
(PE) or mate-pair (MP) libraries, for evaluating the significance of a detected
insertion or deletion.

While aligned reads are important for identifying short variants and sub-
stitutions, larger variants and variants in repetitive regions where alignment is
difficult are easier detected by paired reads spanning over the region. In PE and
MP protocols, reads are from the ends of DNA fragments from the donor. PE
libraries have short-range fragment lengths (up to 100 s bp), MP libraries are
long range (1000 s bp), and they each have their own strengths and limitations.
PE libraries often has superior coverage and narrow fragment length distrib-
ution while long range MP libraries can span larger insertions and, at similar
read coverage, provide higher span coverage (the number of MP pairs separated
by a random position) than PE libraries, which in theory can make up for the
increased variation in individual fragment lengths by increasing statistical power
from more observations.

Numerous structural variation algorithms using read pairs, and their frag-
ment length, to detect variants have been proposed. Many tools use only discor-
dant read pairs for downstream calling of variants, i.e., read pairs that align at
a distance smaller than μ− kσ or larger than μ+ kσ base pairs from each other,
where μ and σ are the mean and standard deviation of the fragment length distri-
bution and k ∈ R [2,5,11,12,20]. This restriction may reduce the computational
demand, but it sacrifices sensitivity [17] by removing observations.

There are also tools with a statistical model/approach that utilizes all read
pairs. CLEVER [17] finds insertions and deletions based on statistically signifi-
cant deviation of the mean fragment length of all reads1 over a position from μ.
This method finds more and smaller variants compared to methods that use
only discordant reads [17]. [9] models the number of discordant and concor-
dant read pairs (classified by a cutoff) over a region as following a binomial
distribution and finds inversions and deletions based on statistically significant
accumulation of discordant read pairs over regions. However, any binary classifi-
cation cutoff causes loss of information [8], thus statistical power, as they do not
consider how much above or below the cutoff a fragment length is2. Another app-
roach is non-parametric testing of the distribution over a region, e.g., using the
Kolmogorov-Smirnov test [15], but as [17] noted, this is computationally expen-
sive. [10] presented a model to find the most likely common deletion length from
several donor genomes with different fragment length distributions by maximiz-
ing the likelihood of observed fragment lengths given a deletion size and each of
the distributions.

1 With some modifications to account for heterozygous variants. Only reads that have
enough overlap and similar fragment lengths are grouped together.

2 Under a normal distribution, 100 continuous observations are statistically equivalent
to 158 binary observations for the best possible “cut point”, which is the mean. The
loss of information becomes worse the further away the cut point is from the mean,
e.g., μ ± kσ, as k increases. In practice k ∈ [3, 6] in variant detection tools.
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These methods however assumes that the probability of a fragment length
being observed over a position/region follows the probability distribution of the
full library fragment length distribution, which is not true [22]. Longer fragment
lengths span more positions than shorter fragment lengths, so over any position
in the genome there will be a bias towards read-pairs further apart than μ. This
observation bias of fragment sizes has been investigated earlier in an assem-
bly context, estimating the gap size between contigs [18,21,22]. The approaches
given in [18,21] are more general by using the exact (empirical) distribution
over the fragment length, which also makes them computationally demanding.
GapEst [22] assumes a normal fragment length distribution and derives an ana-
lytic expression for the likelihood of a gap size that scales very well, which opens
up for other applications where this type of problem needs to be calculated for
a large number of instances, e.g., structural variation detection. There is no
previous work known to the authors on incorporating this model, or a similar
one, to structural variation and investigating how it affects the balance between
detecting deletions and insertions.

1.1 Contribution

We use the statistical model given in [22] and present it in the context of struc-
tural variation detection. The model provides a probability distribution for the
fragment sizes we observe over a position (e.g., a potential breakpoint) or region.
Given this distribution we derive a null-hypothesis distribution to detect vari-
ants. We show that the corrected null-hypothesis agrees with both simulated and
biological data, while a commonly used null-hypothesis does not. We implement
the null-hypothesis in the state-of-the-art fragment-length based variant caller
CLEVER [17]. Although CLEVER uses constraints and assumptions that do
not agree with our model, we show that the detection of insertions and deletions
becomes more balanced and that the number of false positive calls decreases.
This is a promising first result as we could only apply a part of our theory in
CLEVER without a significant restructuring of the code. We also believe that
this work is a step towards creating a statistical rigorous approach for read pair
fragment lengths where we can detect indels to a much higher resolution than
cutoff based ones.

In some places, we have to refer to an Appendix, which can be found in a
bioRxiv (http://dx.doi.org/10.1101/036707) version of this paper.

2 Methods

We will review a model used to determine contig distances in scaffolding [22] and
use it in the context of structural variation detection. Notation and assumptions
are presented in Sect. 2.1. In Sect. 2.2 we present the probability distribution in
a structural variation detection context. Section 2.4 discuss a commonly used
null-hypothesis used for detecting variants with fragment length and derives an
improved null-hypothesis using our model.

http://dx.doi.org/10.1101/036707
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2.1 Notation and Assumption

We refer to our model as the Observed Fragment Length (OFL) model. This
model carries no new concepts and makes the same assumptions as the Lander-
Waterman model [14], but adds a variable and some constants. We only state it
here for convenience of referencing to a model when we derive probabilities and
a null-hypothesis. Read pairs are sampled independently and uniformly from the
donor genome. Let G denote the length of the reference genome. Alignment of
read pairs to the reference genome yields our observations: distance o between
reads in a read pair, read length r, and number of allowed “inner”3 softclipped
bases s [16] in an alignment, see Fig. 1a. Read-pair distances x come from a
library fragment length distribution f(x) (either given or estimated from align-
ments). We denote the mean and standard deviation of this distribution as μ
and σ. Finally, a parameter δ models the number of missing or added base pairs
in the reference, compared to the donor sequence. That is, if the donor sequence
contains an insertion, δ is negative and we say that the donor sequence has δ
added bases. Similarly, if the donor sequence contains a deletion, δ is positive
and we say that the donor sequence has δ deleted bases. For a given read-pair
with fragment length x, let wG,p(x) denote the probability that it spans over
position p on a genome of size G. As we do not model that any two positions
have different probabilities to be spanned over (reads are drawn uniformly), w
will not depend on p and we omit it and refer to wG(x) from now on.

Fig. 1. (a) Constants and variables in the OFL model. The figure illustrates the sce-
nario of an insertion in the donor genome of length δ at position p. Two reads (marked
by arrows) of length r are at distance o from each other, with the left read partially
aligned leaving s positions unaligned (softclipped). (b) Illustration of a full fragment
size distribution f(x) from N(4000, 2000) (blue line), from which H0 is derived. The
green dashed line shows the observed fragment distribution over any variant free posi-
tion for fragments coming from f(x) for the simplified case when r, s, δ = 0 (i.e., this
is exactly the function xf(x)). Red lines indicate the μ±2σ quantiles of f(x). It is less
likely to observe a smaller fragment size over any given position in the genome (see
density of green distribution at red lines), as opposed to identical significance under
f(x).

3 We call the side of the read that is closest to its mate “inner”.
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2.2 Probability Function over Observed Fragment Lengths

The distribution and probabilities derived in this section closely matches those
given in [22] with the minor addition of the constant s. We restate the expressions
in a structural variation context for clarity.
No Variant. First, we assume that donor and reference are identical, therefore
δ = 0 at any position. Given the OFL model, the probability that we observe a
read pair with fragment size x over a position p on a genome of length G is

P (x|δ = 0) =
wG(x)f(x)∑
x wG(x)f(x)

=
(x−2(r−s))

G f(x)
∑

x
(x−2(r−s))

G f(x)
. (1)

Here f(x) is the probability to draw a fragment of length x from the full library
and wG(x) the probability that it spans over position p. The denominator is a
normalization constant to make P a probability. It is assumed that x ≥ 2(r−s).
For example, if the read length is 100 and maximum allowed softclipped bases
of an aligned read is 30 a read pair with fragment length 300 will have 300 −
2(100 − 70) = 160 possible placements where it spans position p. For simplicity,
we omit the special case when p is near the end of a chromosome.

Modeling Variant at a Position. Let δ be the unknown variant size. In this case
we cannot observe the true fragment length x of read pairs. What we observe
is instead o = x − δ (see Fig. 1a). A modification of w(x) is needed as fragment
sizes is now required to span δ base pairs and have sufficiently many base pairs
on each side to be mapped (2(r − s)). We have

w(x, δ) =
1
G

max{x − δ − 2(r − s) + 1, 0}.

The 0 in the max function keeps the function weight to 0 in case we have no
possible placing of a paired read over a variant. We can simplify this function to
be expressed in o, as o = x − δ, and write w(o) = G−1 max{o − 2(r − s) + 1, 0}.

We see that the function w is constant for any given observation and can
therefore be interpreted as a “weight” function, hence the notation w.

2.3 Probability of Variant Size δ

We can express the probability of δ given observations as P (δ|o). Lacking prior
information about δ, we model it with the uniform distribution4. Using Bayes
theorem, we get

P (δ|o) =
P (o|δ)P (δ)

P (o)
∝ P (o|δ)P (δ) ∝ P (o|δ)

4 A more informative prior could improve results, e.g., by fitting to the expected
frequency and length of variants, studied in [4,6]. By tailoring the prior we could
essentially obtain any specificity and sensitivity for a given indel size. We believe
that is promising future work.
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where P (o) and P (δ) are constant by the assumption of a uniform distribution.
We now have

P (o|δ) =
w(o|δ)f(δ + o|δ)∑

t w(t − δ)f(t)
(2)

where the denominator is the sum of all possible fragment sizes that can be
observed given δ and f . We can now find the most likely δ using maximum
likelihood estimation (MLE) over (2). The time complexity for the MLE is O(n+
log t)5 if f ∼ N (with t continuous), where n is the number of observations [22].
Note that we implicitly get P (x|δ) since P (x|δ) = P (o + δ|δ) = P (o|δ).

2.4 Null-Hypothesis and Statistical Testing

Let Y
.= O|δ = 0, that is, the random variable over observed fragment lengths

given δ = 0. Let ȳ
.=
∑n

i=1 yi

n be the sample mean of observed fragment lengths.
Considering ȳ a random variable over experiments, it is commonly assumed that
ȳ ∼ N(μ, σ/

√
n), i.e., the distribution of the sample mean of f(x) under the

central limit theorem (CLT), and this distribution is used as null-hypothesis
[5,17]. We call this null-hypothesis H0. Furthermore, the variant size δ is esti-
mated from observed fragment lengths o as δ̂ = μ − ō [5,9,10,12,17,20]. At first
glance this formula seems reasonable since we take the expected fragment size
and subtract the mean of the observations, but it has strong limitations. One is
that δ̂ in this case has an upper bound of μ − 2(r − s) since o ≥ 2(r − s). This
equation implies that we can never span over a sequence longer than μ−2(r−s).
We use Eq. 2 to derive the correct mean and standard deviation of Y given the
OFL model, denoted μp and σp respectively. The derivation of μp is similar to
derivation of observed fragment size linking two contigs given in [22], and the
derivation of σp is a special case of the derivation of the variance of observed
fragment size linking two contigs given in [23]. See proof in Appendix6.

Theorem 1. Given the OFL model, f ∼ N(μ, σ), and δ = 0, we have μp ≈
μ + σ2

μ−(2(r−s)+1) and σp ≈ σ

√
1 − σ2 (μ − (2(r − s) + 1))−2.

The null-hypothesis is that there is no variant, thus δ = 0. Under CLT, as n
increases, we therefore have ȳ ∼ N(μp, σp/

√
n). Notice that we can calculate

μp and σp without the assumption f ∼ N(μ, σ) by using an empirical estimate
of f(x) from aligned read pairs. Nevertheless, the closed expression formulas in
Theorem 1 illustrates a basic feature of the model — larger variance increases
the discrepancy between μ and μp. It is also robust to non-normality, as we will
see in Sect. 3.2. In case we have enough observations to motivate the Z-test, we
perform a simple Z-test and obtain a p-value based on a two sided test (both
deletions and insertions are tested for) using the z-statistic

z =
ȳ − μp

σp/
√

n
. (3)

5 n to obtain sample mean ō, and log t to search the convex ML curve.
6 http://dx.doi.org/10.1101/023929, Sect. 5.5.

http://dx.doi.org/10.1101/023929
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We refer to the null-hypothesis test using (3) as H ′
0. Thus, we have derived

a different distribution under the null-hypothesis which we advocate should be
used instead of H0. In case we have few observations (more often over insertions),
approximation with the Z-test is poor. To get an exact test we would need to
derive the distribution of

∑n
i=1 Yi, for n observations yi i ∈ [1, n]. This could

improve power to detect insertions, but we refrain from studying this in the
present paper.

3 Results

We discuss why modeling bias contributes to making deletion calls more fre-
quent than insertions calls in Sect. 3.1. In Sect. 3.2 we show that our corrected
hypothesis agrees with biological data, and in Sect. 3.3 that how indel detection
is affected in CLEVER when our null-hypothesis is inserted.

3.1 Bias Between Detection of Deletions and Insertions

As donor fragments need to span over insertions (δ > 0), and this probability
is w(x, δ) = 1

G max{x − δ − 2(r − s) + 1, 0} according to the OFL model, it is
less likely that such fragments will be observed, as δ grows. We will therefore
have a lower sample size over insertions in general. This naturally gives less
power to detect an insertion compared to a deletion of similar size. However,
methods using H0 have less power than necessary. Firstly, as μp > μ, this gives
too many significant upper quantile p-values (deletions) and too few significant
lower quantile p-values (insertions). The difference in significance of observing a
fragment of size μ + 2σ compared to observing a fragment of size μ − 2σ under
H0, compared to the when observed under H ′

0 is seen in Fig. 1b. Secondly, the
positive skew of the OFL distribution (Fig. 1b) makes a Z-test approximation
less powerful compared to an exact test, especially for small sample sizes — as
is more likely for insertions.

3.2 Evaluating the Accuracy of H ′
0

We evaluated the accuracy of our null-hypothesis on three mate pair libraries. We
used a mate pair library from Rhodobacter sphaeroides from [21] denoted rhodo,
a mate pair library from Plasmodium falciparum used in [13] denoted plasm, and
mate-pair data from a human individual in the CEPH 1463 family-trio7. For the
human dataset we aligned the reads to the complete human genome, but limited
analysis to chromosome 13. We call this dataset hs13. Table 1 shows information
about the datasets. Recall from Sect. 2.4 that μp and σp are the true mean and
standard deviation of fragment lengths over a position that does not contain
a variant. Let μ̂c

p and σ̂c
p refer to the estimated quantity of μp and σp from

the closed formulas in Theorem 1. Similarly, let μ̂e
p and σ̂e

p be the estimates of

7 http://www.ebi.ac.uk/ena/data/view/ERR262996.

http://www.ebi.ac.uk/ena/data/view/ERR262996


Structural Variation Detection with Read Pair Information 183

Table 1. Library information. Reads were aligned with BWA-MEM [16] version 0.7.12
with default parameters. Physical coverage is c, for all reads, and c (pp), for restricted
proper pairs, i.e., read pairs that have both mates mapped in correct orientation and
within a distance that depends on a statistical filtering of outliers based on the library
distribution. The filtering bounds were roughly 10000, 6000, and 14000 bp for rhodo,
plasm, and hs13 respectively. μ and σ are the mean and standard deviation of the
full fragment length distribution. True mean insert-size and standard deviation over
a position on the genome, μp and σp (calculated as the average over all positions in
the genome) and predictions with closed formula, μ̂c

p and σ̂c
p, and exact calculation, μ̂e

p

and σ̂e
p.

Organism r c c (pp) μ σ μp σp μ̂e
p σ̂e

p μ̂c
p σ̂c

p

rhodo 101 43 34.5 2640 1390 3480 1534 3446 1526 3434 1143

plasm 75 4.9 4.2 2955 524 3056 511 3056 517 3053 515

hs13 80 11.1 9.0 2947 1454 3688 1780 3719 1806 3705 1241

(a) f(x) (b) p-values of H0 based on
μ, σ (naive) in equation 3.

(c) CDF-values P (X < x)
of f(x)

(d) Distribution of μp, ∀p ∈
[1, G].

(e) p-values of H ′
0 based on

μ̂e
p, σ̂

e
p in equation 3

(f) CDF-values P (X < x)
of w(x)f(x)

Fig. 2. (a) The fragment length distribution f(x) for the hs13 dataset and the red line
is a best fit of a truncated normal distribution. f(x) deviates significantly from a normal
distribution. Although the mean of f(x) is 2947, the average observed fragment length
over position p (μp) over all positions on hs13 shows that most values occur between
3000–4500 bp with the average around 3688 bp (d) — as approximately predicted from
μ̂e
p and μ̂c

p. Figures (b) and (c) shows the p-value distribution and CDF values from
using H0 (i.e., using μ and σ). Figures (e) and (f) shows the p-value distribution and
CDF values from using H ′

0 (i.e., using μ̂e
p and σ̂e

p).
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μp and σp by using an empirical distribution of f(x) (estimated from a sample)
and summing up the probabilities in Eq. 2 with δ = 0. Estimates and observed
values are shown in Table 1. It is our assumption that an overwhelming majority
of positions are variant free8. Thus, we expect a model that fits data should give
a uniformly distributed p-value distribution. Our observations are summarized
below.

Predicting μp. μp is estimated very well by both μ̂e
p and μ̂c

p; compare Fig. 2d
for hs13, and Appendix Figs. 3b and d for rhodo and plasm respectively with
the estimated values in Table 1. Hence, testing ō = μ̂e

p (or μ̂c
p) as in H ′

0 introduce
symmetrical cumulative distribution function (CDF) values, Fig. 2f, compared
to CDF based on testing ō = μ̂ where all values are distributed around 1.0 —
suggesting significant deletions, see Fig. 2c.

Predicting σp. The closed formula predictions of σp works best if f(x) is normal
(plasm). For rhodo and hs13, σ̂e

p and σ̂c
p differs significantly and σ̂e

p should be
used, compare σp with σ̂e

p and σ̂c
p in Table 1.

p-values. The p-value distribution (ideally uniform) greatly improves with H ′
0

(Fig. 2e) compared to p-values obtained with H0 (Fig. 2b). Abnormalities in the
p-values are most likely explained by: alignment artifacts (some regions are more
difficult aligning to), fragment length bias [1,19], coverage bias from GC-content,
and in some cases, real variants, see evaluation of hs13 dataset in Sect. 5.7 of
the Appendix. Similar p-value distributions are obtained on rhodo and plasm
genome (data not shown) — that should not contain any variants — indicating
that most of the enrichment of low p-values on hs13 is explained by any of the
former three causes.

Table 2. Insertions and deletions called with CLEVER using H0 and H ′
0. Column δ

contains the size of 50 insertions and deletions, simulated on the reference genomes by
either deleting or inserting a δ bp sequence on the reference. A “0” indicates that the
original biological dataset was used.

Dataset δ H0 H ′
0

TP (del/ins) FP (del/ins) TP (del/ins) FP (del/ins)

plasm 0 0 (0/0) 20 (6/14) 0 (0/0) 27 (6/21)

2000 89 (50/39) 22 (8/22) 89 (50/39) 38 (8/30)

rhodo 0 0 (0/0) 78 (78/0) 0 (0/0) 18 (14/4)

2000 49 (49/0) 54 (54/0) 57 (45/12) 13 (9/4)

sim-N(500,75) 75 94 (94/0) 0 (0/0) 78 (62/16) 0 (0/0)

100 110 (100/10) 0 (0/0) 188 (100/88) 0 (0/0)

ETP (hits) TC (del/ins) ETP (hits) TC (del/ins)

hs13 0 9 (31) 1740 (1740/0) 3 (4) 8 (8/0)

8 Even small variants δ � σ will not affect the model much.
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3.3 Implementing the Corrected Null-Hypothesis in CLEVER

In this section we illustrate as a proof-of-concept how the corrected hypothesis
H ′

0 (with μ̂e
p and σ̂e

p) balances the ratio between detected insertions and dele-
tions. We applied H ′

0 in CLEVER (v 1.1). However, we want to emphasize that
we did not tailor the statistical tests as needed to fit the assumptions made by
their particular method. This limits the performance improvement. To further
improve results with CLEVER, we would need to (1) implement exact tests for
few observations — giving more power to detect insertions, (2) use the OFL-
model for CLEVER’s discovery of positions to study, (3) based on our model
adjust CLEVER’s methods to handle, e.g., heterozygous variants and controlling
the false discovery rate. This would require additional modeling and significant
restructuring of the code and we do not consider it here. Our aim here is only to
illustrate how the simple adjustment of inserting H ′

0 instead of H0 in CLEVER
has a significant impact on the output. We investigated how the replacement
of H ′

0 instead of H0 changed variant calls from CLEVER on hs13, rhodo and
plasm as well with ideal condition simulated data denoted sim-N(·, ·) (full sim-
ulated results in Appendix Sect. 5.6). For simulated variants, similarly to [17],
a prediction is classified as a true positive (TP) if the breakpoint prediction is
not further than one mean insert size (i.e., at most μ − 2r) away from the true
breakpoint. Otherwise it is classified as a false positive (FP). All variant calls on
rhodo and plasm that are not from simulated variants are assumed to be false
positives.

Because hs13 likely harbors true variants, we used annotated variants from
dbVar [7], together with manual inspection in BamView [3], to assess if hits
are true or false positives. For a deletion call in CLEVER with start and
end coordinates ps, pe and a deletion in dbVar with coordinates qs, qe, we let
max del = max(pe−ps, qe−qs) and overlap = min{0,min(pe, qe)−max(ps, qs)}.
We let hit value = overlap/max del and a call is a hit if hit value > T , where
0 < T < 1 is a threshold. Because dbVar contains a large amount of annotated
variants from several individuals and CLEVER produces many calls under H0,
roughly 173, 106 and 40 hits are expected by chance with T = 0.25, 0.5, 0.75
(estimation in Appendix Sect. 5.3), which is similar numbers to the observed
hits from CLEVER: 226, 109 and 31 respectively under T = 0.25, 0.5, 0.75. We
therefore further manually evaluated the hits produced with T = 0.75 by looking
for coverage drop and accumulation of softclips near each breakpoint. This gave
us Estimated True Positives (ETP) as a rough measure of the TP rate for hs13.
Therefore, we report ETP and Total Calls (TC) for hs13 in Table 2, contrary to
simple TP and FP for the other data sets where we have the ground truth.

Improvements. From Table 2 and Fig. 5 (Appendix) we see that CLEVER
with H0 detects significantly more deletions than insertions of the same sizes.
Using H ′

0, reduces this bias to some extent by increasing the detection of inser-
tions across all data sets. CLEVER also returns significantly fewer false positive
deletion calls with H ′

0, see rhodo Table 2 and sim-N(300, ·). Even though H0

have more sensitivity in calling deletions on hs13, the signal disappears in the
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overwhelming amount of total calls, compare ETP and TC for H0 and H ′
0 in

Table 2.

Deterioration. A consequence of using H ′
0 is fewer deletion calls, which unfor-

tunately also removes some true positive deletion calls (Table 2 and Appendix
Fig. 5). It also increases the FP insertion calls on plasm (Table 2). We believe
that calling variants with the plasm library carries additional difficulties due to
its GC-poor genome sequence, such as positional fragment length bias [1,19].

Additional evidence that most calls with H0 on hs13 are FPs are found by
comparing statistics on CLEVER’s deletion calls (Appendix Fig. 6) and numbers
reported in recent extensive studies [4,6]. For example, [4] provide frequency dis-
tributions for both previously discovered and new deletions on single genomes.
Roughly 250 deletions have lengths over 1000 bp (inspection of plot). The simpli-
fying assumption that large-indel distribution is uniform over chromosomes gives
around 8 expected deletions9 in size range 1000 bp. This approximate number,
and the fact that almost all calls were removed when using H ′

0 corroborates,
that the vast majority (in the order of > 99%) of calls with H0 are FPs — likely
a consequence of using H0 : μp = 2410 compared to the true value μp = 3719.

4 Conclusions

We stated a probability distribution of observed fragment length over a position
or region and derived a new null-hypothesis for detecting variants with fragment
length, which is sound and agrees with biological data. Applied in CLEVER, our
null-hypothesis detects more insertions and reduces false positive deletion calls.
Results could be further improved by deriving an exact distribution instead
of a Z-test and updating CLEVER’s edge-creating conditions to agree with
our model. The presented model, distribution, and null-hypothesis are general
and could be used together with other information sources such as split reads,
softclipped alignments, and read-depth information.
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Abstract. A fundamental problem in comparative genomics is to com-
pute the distance between two genomes in terms of its higher-level orga-
nization (given by genes or syntenic blocks). For two genomes without
duplicate genes, we can easily define (and almost always efficiently com-
pute) a variety of distance measures, but the problem is NP-hard under
most models when genomes contain duplicate genes. To tackle dupli-
cate genes, three formulations (exemplar, maximum matching, and any
matching) have been proposed, all of which aim to build a matching
between homologous genes so as to minimize some distance measure.
Of the many distance measures, the breakpoint distance (the number of
non-conserved adjacencies) was the first one to be studied and remains
of significant interest because of its simplicity and model-free property.

The three breakpoint distance problems corresponding to the three
formulations have been widely studied. Although we provided last year
a solution for the exemplar problem that runs very fast on full genomes,
computing optimal solutions for the other two problems has remained
challenging. In this paper, we describe very fast, exact algorithms for
these two problems. Our algorithms rely on a compact integer-linear
program that we further simplify by developing an algorithm to remove
variables, based on new results on the structure of adjacencies and match-
ings. Through extensive experiments using both simulations and biolog-
ical datasets, we show that our algorithms run very fast (in seconds) on
mammalian genomes and scale well beyond. We also apply these algo-
rithms (as well as the classic orthology tool MSOAR) to create orthology
assignment, then compare their quality in terms of both accuracy and
coverage. We find that our algorithm for the “any matching” formula-
tion significantly outperforms other methods in terms of accuracy while
achieving nearly maximum coverage.

Keywords: Breakpoint distance · Exemplar · Intermediate · Maximum
matching · Gene family · ILP · Orthology assignment

1 Introduction

The combinatorics and algorithmics of genomic rearrangements have been the
subject of much research in comparative genomics since the problem was for-
mulated in the 1990s (see, e.g., [1]). Perhaps the most fundamental problem is
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the computation of some distance measure between two genomes. When the two
genomes being compared have no duplicate genes (or synteny blocks, since the
basic unit of description need not be restricted to genes), we have linear-time
algorithms for most of these distance problems, such as the breakpoint distance,
the inversion distance [2], and the DCJ distance [3,4].

However, gene duplications are widespread events and have long been recog-
nized as a major driving force of evolution [5,6]. To define the distance in the
presence of duplicate genes, three formulations have been proposed, all based
on building a matching between duplicate genes and discarding copies not in
the matching. This matching leads to treating each matched pair as a new gene
family and thus removes duplicates, reducing the distance problem to its sim-
plest version. In all formulations, the goal is to return that matching (from
among all those obeying stated constraints) which minimizes the chosen distance.
The first formulation is due to Sankoff [7], who proposed the exemplar model
(E-model): select exactly one matched pair in each gene family. Several years
later, Blin et al. [8] proposed the maximum matching model (M-model): use as
many matched pairs as possible—until all genes in the genome with the smaller
number of copies in each gene family are matched. Finally, Angibaud et al. [9]
proposed what we shall term the intermediate model (I-model): the matching
must contain at least one matched pair per gene family—so that the focus is
clearly on minimizing the distance, not on meeting constraints on the match-
ing. Figure 1 illustrates these three formulations. Unfortunately, for almost all
distance measures, the corresponding distance problems under the three formu-
lations are NP-hard [10].

a1 −b1 c1 −a2 −b2 c2

a3 −c3 −b3 −a4 c4

(G1 and G2)

a1 −b1 c1

a3 −b3 c4

(E-BDP)

a1 −b1 −a2 c2

a3 −b3 −a4 c4

(I-BDP)

a1 −b1 c1 −a2 c2

a3 −c3 −b3 −a4 c4

(M-BDP)

Fig. 1. Examples for E-BDP, I-BDP and M-BDP. Optimal matchings are shown within
each model.

In this paper, we focus on the distance problems in the presence of duplicate
genes under the breakpoint distance measure. We refer to the three correspond-
ing problems under the three formulations as E-BDP (short for exemplar break-
point distance problem), M-BDP, and I-BDP, respectively. Many algorithms
have been proposed for these problems. For E-BDP, Sankoff gave a first branch-
and-bound algorithm in his original paper [7]. Nguyen et al. gave a much faster
divide-and-conquer approach [11], while Angibaud et al. [9] gave an exact algo-
rithm by formulating it as an integer linear program (ILP). In [12], we gave an
exact solution through combining ILP and novel preprocessing algorithms and
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constraint-generating algorithms, which runs very fast (in a few seconds) and
scales up to the largest genomes analyzed on both simulations and biological
datasets. For M-BDP, Blin et al. [8] had defined (but not tested) a branch-and-
bound algorithm, while Swenson et al. [13] gave an approximation algorithm. In
[14], Angibaud et al. gave exact ILP formulations as well as several heuristics
for both M-BDP and I-BDP—the heuristics being needed as the ILP formula-
tions did not scale well. The ILP formulations in [14] were tested on 12 bacterial
genomes, with numbers of genes varying from a few hundreds to three thou-
sand; among the 66 pairwise comparisons, their ILP for I-BDP took 3 min on
63 of them, but could not terminate on the other 3 within a few hours. It thus
remained a challenge to design fast and exact algorithms for I-BDP (and the sim-
pler M-BDP) that could scale easily to mammalian genome sizes and beyond.

From the perspective of biologist, neither the E-model nor the M-model is
satisfactory. In real gene families, we expect to find multiple orthologs, not just
a single pair, so the E-model is an oversimplification and provides only a small
amount of information, which in turn could lead to distortions in the pairwise
distances. The M-model suffers from an even more fundamental problem: forcing
all genes in the genome with the smaller number of copies to be matched effec-
tively amounts to stating that every one of these genes has an ortholog in the
other genome, something that clearly need not always be true. In terms of evolu-
tionary events, this requirement also gives a much larger weight to duplications
and losses of genes than to genomic rearrangements, thus implying that dupli-
cation and loss events are much less likely than rearrangement events. In other
words, the M-model loses the model-free characteristic of the breakpoint dis-
tance. In contrast, the I-model retains the model-free property of the breakpoint
distance while making full use of the information present in the gene families.

In this paper, we describe fast and exact algorithms for M-BDP and I-BDP.
These algorithms employ ILP formulations and use a novel algorithm to reduce
the number of key variables in the ILP, based on new results we prove about
matchings and adjacencies. We evaluate these algorithms on simulated genomes
and on several mammalian genomes. Our results show that our algorithms easily
scale beyond the size of mammalian genomes: in all of our testing, almost all
instances took a few seconds and none more that 70 s. They also demonstrate
that our new algorithm to reduce the number of variables is a crucial contributor
to this speed, especially for the more challenging I-BDP. Thus, with our previ-
ous (and equally fast) algorithm for E-BDP [12], we now have fast and exact
algorithms to compute the breakpoint distance under all three formulations.

We also apply our algorithms to infer orthologs among five mammalian
genomes and compare the quality of these assignments both among the three for-
mulations and with the classic orthology tool MSOAR [15–17]. (We use MSOAR
as it is one of the few orthology tools based on genome rearrangements and
matching and because it has been extensively tested by its authors against other
orthology tools.) The results demonstrate that the I-model substantially outper-
forms all other methods in terms of accuracy while giving very high coverage—
close to the M-model (which defines the maximum possible number).
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2 Problem Statement

We model each genome as a set of chromosomes and model each chromosome as
a linear or circular list of genes. Each gene is represented by a signed (+ or −)
symbol, where the sign indicates the transcriptional direction of this gene. Given
a chromosome, we can reverse the list of symbols and switch all the signs, which
will result in the same chromosome; for instance, g1g2 · · · gn−1gn and −gn −
gn−1 · · · − g2 − g1 represent the same linear chromosome. Homologous genes
among the given genomes are grouped into gene families. In this paper, we
assume that the given genomes have the same set of gene families, denoted by
F. For a gene family f ∈ F and a genome G, we use F (G, f) to denote the set of
genes in G that come from f . We say a gene family f ∈ F is a singleton in G if
|F (G, f)| = 1; otherwise we say f is a multi-gene family.

Two consecutive genes g and h on the same chromosome, with g ahead of h
along the chromosome, form an adjacency, written as gh. Given two genomes G1

and G2, we say two adjacencies g1h1 ∈ G1 and g2h2 ∈ G2 form a pair of shared
adjacencies or a PSA, written as 〈g1h1, g2h2〉, if g1 and g2 (and also h1 and h2)
have the same sign and come from the same gene family, or g1 and h2 (and also
h1 and g2) have opposite signs and come from the same gene family. If two given
genomes G1 and G2 contain only singletons (have at most one gene each per
gene family), then, for each adjacency in G1 (resp. G2), there exists at most one
adjacency in G2 (resp. G1) shared with it.

Given two genomes G1 and G2 that may contain multi-gene families, we
define a matching between them as a one-to-one correspondence between a subset
of genes in G1 and a subset of genes in G2, such that each element of the matching
is a pair of homologous genes. We denote by M the set of all possible matchings
between G1 and G2. For a matching M ∈ M and a gene family f ∈ F, we use
M(f) to denote the set of gene pairs in M that come from f . We say a gene is
covered by M if it appears in some pair in M . Given M ∈ M, we can modify G1

and G2 as follows: we first remove all genes that are not covered by M , then set
up a new distinct gene family for each pair of genes in M . Clearly, these two new
genomes contain only singletons; we denote by S(M) the set of PSAs between
such two new genomes induced by M .

Given two genomes, the breakpoint distance problem is to compute a match-
ing (satisfying some requirements depending on certain models) such that the
number of shared adjacencies between the new genomes induced by this match-
ing is maximized. Define the following sets of matchings:

Me = {M ∈ M : |M(f)| = 1,∀f ∈ F};
Mi = {M ∈ M : |M(f)| ≥ 1,∀f ∈ F};
Mm = {M ∈ M : |M(f)| = min{|F (G1, f)|, |F (G2, f)|},∀f ∈ F}.
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Then the three problems corresponding to the three formulations can be writ-
ten as:

max
M∈Me

|S(M)| (E-BDP)

max
M∈Mi

|S(M)| (I-BDP)

max
M∈Mm

|S(M)| (M-BDP)

Notice that our formulations are essentially based on conserved adjacencies,
not breakpoints. For the E-model and the M-model, the two are equivalent; for
the I-model, they are different (although clearly similar). This is due to the fact
that the number of breakpoints equals the total number of adjacencies minus the
number of conserved adjacencies, and that for the E-model and the M-model,
the number of adjacencies is a fixed value, while for the I-model it is variant.
Using conserved adjacencies rather than breakpoints has a significant advantage
when the size of the matching is not fixed, as in the I-model the measure rewards
both increased coverage and increased structural similarity.

3 Algorithms

We described a fast and exact algorithm for E-BDP in previous work [12]. In this
section, we describe fast and exact algorithms for I-BDP and M-BDP. Both algo-
rithms use the same framework, consisting of an integer linear program (ILP),
described in Sect. 3.1, and an algorithm to reduce the number of variables in
the ILP, described in Sect. 3.2. In each of them, we first describe the formula-
tion or algorithm for I-BDP, then we state them for M-BDP, mainly focusing on
clarifying their differences.

3.1 ILP Formulations

We first generalize the definition of adjacency. For two genes g and h on the
same chromosome (g is ahead of h), we use [g, h] to represent the genes from
g to h along the chromosome (including g and h), and use (g, h) to represent
the genes between g and h (excluding g and h). We say [g, h] forms a potential
adjacency for I-BDP, if we can remove all genes in (g, h) such that at least one
gene remains in each gene family (as required by I-BDP). We say two poten-
tial adjacencies [g1, h1] ∈ G1 and [g2, h2] ∈ G2 form a pair of shared potential
adjacencies (PSPA), written as 〈[g1, h1], [g2, h2]〉, if g1 and g2 (and also h1 and
h2) have the same sign and come from the same gene family (case 1), or g1
and h2 (and also h1 and g2) have opposite signs and come from the same gene
family (case 2). Without loss of generality, in the following we always assume
that a PSPA belongs to case 1—all corresponding results for PSPAs belonging to
case 2 can be derived directly in a symmetric way. We denote by Pi the set of all
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PSPAs between G1 and G2 for I-BDP. Given a matching M ∈ Mi, we say a PSPA
p = 〈[g1, h1], [g2, h2]〉 ∈ Pi survives w.r.t. M if we have 〈g1h1, g2h2〉 ∈ S(M).

Let M∗
i ∈ Mi be an optimal matching for I-BDP. Our ILP formulation to

compute M∗
i has three types of variables. First, for every gene g in the two

given genomes, we use one binary variable xg to indicate whether g is covered
by M∗

i . Second, for each pair of homologous genes g1 ∈ G1 and g2 ∈ G2, we use
one binary variable yg1,g2 to indicate whether pair 〈g1, g2〉 is in M∗

i . Third, for
every PSPA p ∈ Pi, we use one binary variable zp to indicate whether p survives
w.r.t. M∗

i .
Our ILP to compute M∗

i has three types of constraints. First, we require that
for each gene family in each genome, at least one gene is covered by M∗

i :
∑

g∈F (G1,f)

xg ≥ 1, ∀f ∈ F;

∑

g∈F (G2,f)

xg ≥ 1, ∀f ∈ F.
(1)

Second, we use the following constraints to guarantee that gene g is covered by
M∗

i if and only if there exists a pair in M∗
i that includes g:

∑

g2∈F (G2,f)

yg1,g2 = xg1 , ∀g1 ∈ F (G1, f),∀f ∈ F;

∑

g1∈F (G1,f)

yg1,g2 = xg2 , ∀g2 ∈ F (G2, f),∀f ∈ F.

Third, for each PSPA p = 〈[g1, h1], [g2, h2]〉 ∈ Pi, we require that, if p survives
w.r.t. M∗

i , then we must have 〈g1, g2〉 ∈ M∗
i , 〈h1, h2〉 ∈ M∗

i , and that all genes
in (g1, h1) ∪ (g2, h2) cannot be covered by M∗

i :

yg1,g2 , yh1,h2 ≥ zp, ∀p = 〈[g1, h1], [g2, h2]〉 ∈ Pi;
1 − zp ≥ xg, ∀g ∈ (g1, h1) ∪ (g2, h2).

(2)

The objective of the ILP is to maximize the sum of the variables for PSPAs:

max
∑

p∈Pi

zp.

A few modifications to this ILP for I-BDP provide an ILP for M-BDP.
We say that [g, h] is a potential adjacency for M-BDP if at least
min{|F (G1, f)|, |F (G2, f)|} genes remain in gene family f ∈ F after genes in
(g, h) are removed. Let Pm be the set of PSPAs for M-BDP and let M∗

m ∈ Pm be
one optimal matching. We can construct the ILP to compute M∗

m from the above
one to compute M∗

i by replacing M∗
i with M∗

m, Pi with Pm, and constraints (1)
with the following ones:

∑

g∈F (G1,f)

xg = min{|F (G1, f)|, |F (G2, f)|}, ∀f ∈ F;

∑

g∈F (G2,f)

xg = min{|F (G1, f)|, |F (G2, f)|}, ∀f ∈ F.
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Our ILP formulations use the same ideas we used for the exact algorithm to
solve E-BDP in [12]. They are similar to those proposed in [14], but have fewer
variables. In fact, the variables in our formulations are a subset of those in the
formulations of [14]: the authors use two additional binary variables, cg1,h1 and
cg2,h2 , for each PSPA 〈[g1, h1], [g2, h2]〉 to indicate whether g1h1 and g2h2 form
adjacencies in the resulting genomes. In our formulations, the functions of these
variables are carried out by constraints (2). ILP solvers typically do better with
fewer variables and do not suffer (and often benefit) from the addition of extra
constraints.

3.2 Building a Sufficient Subset

The number of binary variables corresponding to the PSPAs is the most impor-
tant factor affecting the efficiency of our ILP formulations. We now describe an
algorithm to reduce the number of these variables while preserving the optimal-
ity of the ILP. Formally, we say P ⊂ Pi is sufficient if there exists an optimal
matching M∗

i ∈ Mi such that for any PSA 〈g1h1, g2h2〉 ∈ S(M∗
i ), its correspond-

ing PSPA 〈[g1, h1], [g2, h2]〉 is in P. Clearly, if we replace Pi by a sufficient subset
P in the ILP formulation described in Sect. 3.1, an optimal matching can be still
obtained. In the following we first prove two conditions to reduce a single PSPA,
then use these results to devise an iterative algorithm to compute a sufficient
subset of reduced cardinality.

Intuitively, the first lemma states that we can remove a PSPA without break-
ing sufficiency if it can be split into two PSPAs.

Lemma 1. Let P ⊂ Pi be a sufficient subset. Let p = 〈[g1, h1], [g2, h2]〉 ∈ P. If
there exists gene x1 ∈ (g1, h1) and gene x2 ∈ (g2, h2) that have the same sign
and come from the same gene family, then we have that P \{p} is sufficient.

Proof. We prove this lemma by contradiction. Suppose that P \{p} is not suf-
ficient. Let M∗

i be any optimal matching. Since P is sufficient but P \{p} is
not, p survives w.r.t. M∗

i , i.e., we have 〈g1h1, g2h2〉 ∈ S(M∗
i ). Let M ′

i =
M∗

i ∪ {〈x1, x2〉}. Clearly, we have that S(M ′
i) = S(M∗

i ) \{〈g1h1, g2h2〉} ∪
{〈g1x1, g2x2〉, 〈x1h1, x2h2〉}. Thus we have that |S(M ′

i)| = |S(M∗
i )| + 1, contra-

dicting with the assumption that M∗
i is optimal. 	


We now give another condition to reduce the size of a sufficient subset. Intu-
itively, the following lemma states that we can remove a PSPA without breaking
sufficiency if there exists a gene inside that can play the same role as one of its
four boundary genes.

Lemma 2. Let P ⊂ Pi be a sufficient subset. Set p = 〈[g1, h1], [g2, h2]〉 ∈ P
and X = {〈x1, x2〉 : 〈[h1, x1], [h2, x2]〉 ∈ P}. If there exists h ∈ (g1, h1) satisfying
〈[g1, h], [g2, h2]〉 ∈ P, such that for all 〈x1, x2〉 ∈ X, we have 〈[h, x1], [h2, x2]〉 ∈ P,
then P \{p} is sufficient.

Proof. Let M∗
i be an optimal matching. If p does not survive w.r.t. M∗

i , then
we can conclude that P \{p} is sufficient. Now consider the case where p survives
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w.r.t. M∗
i , i.e., 〈g1h1, g2h2〉 ∈ S(M∗

i ). Set M ′
i = M∗

i \{〈h1, h2〉} ∪ {〈h, h2〉}.
Consider the difference between S(M∗

i ) and S(M ′
i). Clearly, at most two PSAs

in S(M∗
i ) can be affected by the removal of 〈h1, h2〉. One of them is 〈g1h1, g2h2〉,

while we have 〈g1h, g2h2〉 ∈ S(M ′
i) in return. If we further have 〈h1x1, h2x2〉 ∈

S(M∗
i ) for some 〈x1, x2〉, we must also have 〈hx1, h2x2〉 ∈ S(M ′

i) in return. Thus,
we have |S(M ′

i)| = |S(M∗
i )|, which implies that M ′

i is also optimal. On the other
hand, we can show that all PSAs in S(M ′

i) have their corresponding PSPAs in
P \{p}. In fact, p does not survive w.r.t. M ′

i , and we have 〈[g1, h], [g2, h2]〉 ∈ P and
〈[h, x1], [h2, x2]〉 ∈ P; finally, the validity of all other PSAs in S(M ′

i) is guaranteed
by the sufficiency of P. Thus, in addition to the optimality of M ′

i , we have that
P \{p} is sufficient. 	

Given a PSPA 〈[g1, h1], [g2, h2]〉, Lemma 2 only proves the condition related to
h1. We can derive the other three conditions for g1, g2 and h2 analogously. If
a PSPA passes any of these four conditions, it can be removed while keeping
sufficiency.

Based on the above two lemmas, our algorithm to build a sufficient sub-
set (BSS) of reduced cardinality proceeds as follows. The algorithm initializes
the current set of PSPAs P as Pi, and then it iteratively removes redundant
PSPAs in P. In each iteration, the algorithm examines each PSPA p ∈ P using
the above two lemmas: if p passes either of the tests, then we update P as P \{p}
and starts a new iteration. The algorithm terminates if no PSPA passes any tests
in an iteration.

We give two examples to illustrate the effect of the BSS algorithm. First,
suppose that two genomes contain a pair of nontrivial (n > 1) shared seg-
ments 〈g1g2 · · · gn, h1h2 · · ·hn〉, i.e., gk and hk have the same sign and come
from the same gene family, for 1 ≤ k ≤ n. Then there are n · (n − 1)/2
PSPAs generated from this shared segment, namely, 〈[gi, gj ], [hi, hj ]〉 for all
1 ≤ i < j ≤ n. After running BSS on these PSPAs, we can get a suf-
ficient subset with only (n − 1) PSPAs, namely, 〈[gk, gk+1], [hk, hk+1]〉, 1 ≤
k ≤ n − 1. The removal of PSPAs is due here to Lemma 1—Lemma 1 is
very effective when genomes contain duplicate segments. Secondly, suppose
that G1 contains a segment a1b1c1 and G2 contains a segment a2b2b3 · · · bnc2.
Here 2 · (n − 1) PSPAs can be generated from these two segments, namely,
〈[a1, b1], [a2, bk]〉 and 〈[b1, c1], [bk, c2]〉, 2 ≤ k ≤ n. After applying BSS on these
PSPAs, we can see that a sufficient subset with at most 4 PSPAs is returned,
namely, {〈[a1, b1], [a2, b2]〉, 〈[b1, c1], [bn, c2]〉}∪{〈[a1, b1], [a2, bk]〉, 〈[b1, c1], [bk, c2]〉}
for some k, 2 ≤ k ≤ n, where the value of k depends on the order in which these
PSPAs are tested in BSS. The removal of PSPAs here is due to Lemma 2—
Lemma 2 is very effective when genomes contain locally duplicate genes.

Since M-BDP requires keeping the maximum number of pairs, we have that
a PSPA 〈[g1, h1], [g2, h2]〉 ∈ Pm cannot have a pair of genes x1 ∈ (g1, h1) and
x2 ∈ (g2, h2) within the same gene family. In other words, the PSPAs that are
tested for removal in Lemma 1 do not appear in Pm by definition. In fact, it is
clear that Pm is a (usually very small) subset of Pi, making M-BDP significantly
easier to solve than I-BDP (as is also apparent from the results of Sects. 4 and 5).
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Lemma 2 holds unchanged for M-BDP. Thus the BSS algorithm for M-BDP uses
only Lemma 2.

4 Simulation Results

We refer to the full algorithms (ILP plus BSS) for I-BDP and M-BDP as I-A1
and M-A1, respectively, and refer to the baseline algorithms (just the ILP) for
I-BDP and M-BDP as I-A0 and M-A0, respectively. We use simulated data to
evaluate these four algorithms in order to illustrate both the performance of the
full algorithms and the effectiveness of the BSS reduction algorithm. We do not
explicitly compare with the algorithms proposed in [14] for I-BDP and M-BDP,
because their performance is similar to and bounded by that of I-A0 and M-A0
respectively, as discussed in Sect. 3.1.

We simulate a pair of genomes as follows. We start from a genome with only
one linear chromosome consisting of N singletons. We then perform S1 segmen-
tal duplications to make some multi-gene families, which then forms the ancestor
genome. A segmental duplication randomly chooses a segment of length L and
inserts its copy to another random position. The two extant genomes then spe-
ciate independently from this ancestor genome. After that on each branch it
happens randomly mixed I inversions and S2 segmental duplications. An inver-
sion randomly chooses two positions in the genome and then reverses the segment
in between. We make sure that the expected number of genes per gene family
in each extant genome is 2 (the average copy number of each gene family in
human, mouse and rat genomes, are 1.46, 1.55 and 1.28, respectively; thus in
terms of duplicated genes, our simulated genomes are more complicated than
typical mammalian genomes). Therefore, we have that (S1 + S2) · L = N . Let
r1 = S1/(S1 + S2) be the percentage of segmental duplications before speci-
ation for each genome. Let r2 = I/(I + S2) be the percentage of inversions
after speciation. We can calculate that S1 = r1 · N/L, S2 = (1 − r1) · N/L, and
I = r2 ·(1−r1)·N/(L·(1−r2)). Thus, a simulation configuration is determined by
parameters (N,L, r1, r2). For each parameter combination, we randomly simu-
late 10 independent instances and run the four algorithms (I-A1, I-A0, M-A1 and
M-A0) to calculate the average running time over these 10 instances. Since ILP
might take very long time, we give a time limit of 30 min for each instance—an
algorithm will be terminated when it exceeds such time limit.

In the following experiments, all our ILP instances are solved with
GUROBI [18]. We first test parameters (N = 10000, L, r1 = 0, r2), where
r2 ∈ {0.0, 0.1, · · · , 0.9} and L ∈ {1, 5, 10}. In this setting, all segmental duplica-
tions appear after speciation (r1 = 0), and the expected number of genes in each
extant genome is 20000. The results on these parameters are shown in Table 1.
First, we can observe that as L increases, all algorithms take more time, indicat-
ing that the simulated instances become harder with larger L. This is because
longer shared segments create drastically more PSPAs (in order of O(n2), where
n is the length of this shared segments). Second, all the four algorithms take
less time as r2 increases. This is because larger r2 means more inversions after
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Table 1. Comparison of the four algorithms on parameters (N = 10000, L, r1 = 0, r2).
For each combination, if all 10 instances finish in 30 min, the average running time (in
seconds) is recorded; otherwise, the number of finished instances is recorded in paren-
theses. All four programs were run on an 8-core (2.1GHz) PC with 16GB memory.

r2
L = 1 L = 5 L = 10

I-A1 I-A0 M-A1 M-A0 I-A1 I-A0 M-A1 M-A0 I-A1 I-A0 M-A1 M-A0

0.0 1 2 0 0 25 (0) 8 8 55 (0) 10 12

0.1 1 1 0 0 21 (0) 7 9 43 (0) 10 13

0.2 0 0 0 0 14 (0) 7 7 33 (0) 9 11

0.3 0 0 0 0 11 (0) 5 4 26 (0) 8 8

0.4 0 0 0 0 6 554 3 3 22 (0) 7 8

0.5 0 0 0 0 4 123 2 2 15 (0) 6 5

0.6 0 0 0 0 2 38 1 1 10 (0) 4 4

0.7 0 0 0 0 1 3 1 0 7 430 3 2

0.8 0 0 0 0 0 0 0 0 4 70 1 1

0.9 0 0 0 0 0 0 0 0 0 0 0 0

speciation, which can destroy existing PSPAs. Third, we can see I-A1 can finish
in less than 1 min for all parameters, while I-A0 will exceed time limit for large
L and small r2—this proves that the BSS algorithm is very crucial for I-BDP.
Fourth, we can see both M-A1 and M-A0 can finish in a very short time for
all parameters, indicating that the ILP formulation for M-BDP is already very
efficient. This is because the definition of M-BDP determines that the number
of PSPAs is reasonably small, as we analyzed theoretically in Sect. 3.2. For the
same reason, we can also observe that M-BDP is easier to solve than I-BDP.

We then test parameters (N = 20000, L, r1 = 0.5, r2), where r2 ∈
{0.0, 0.1, · · · , 0.9} and L ∈ {1, 5, 10}. In this setting, the expected number of
genes in the ancestor genome is 30000, and the expected number of genes in each
extant genome is 40000. The results are shown in Table 2. Again, we can observe
that the instances become harder to solve as L increases and r2 decreases. Also
observe that M-A1 and M-A0 takes similar (and very small) amount of time,
since the ILP formulation for M-BDP is already very efficient. We emphasize
that I-A0 can only finish within the time limit for small L and large r2, while
I-A1 can get the optimal solution for all parameters very fast, showing that the
BSS algorithm plays a key role in producing a fast algorithm for I-BDP. Notice
that in these simulations, the size of extant genomes exceeds that of typical
mammalian genomes and our full algorithms (I-A1 and M-A1) return optimal
solutions in a very short time.
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Table 2. Comparison of the four algorithms on parameters (N = 20000, L, r1 =
0.5, r2). The setup is the same as in Table 1.

r2
L = 1 L = 5 L = 10

I-A1 I-A0 M-A1 M-A0 I-A1 I-A0 M-A1 M-A0 I-A1 I-A0 M-A1 M-A0

0.0 6 (0) 2 2 48 (0) 22 25 104 (0) 44 36

0.1 8 (0) 2 2 45 (0) 26 22 93 (0) 39 39

0.2 5 521 1 1 42 (0) 22 24 89 (0) 38 37

0.3 6 200 1 1 37 (0) 20 19 83 (0) 36 32

0.4 8 28 1 1 31 (0) 18 17 65 (0) 31 29

0.5 4 3 2 1 29 (0) 16 17 57 (0) 35 31

0.6 2 1 1 1 25 (0) 13 14 52 (0) 29 26

0.7 1 1 1 0 18 (0) 11 15 42 (0) 27 22

0.8 1 1 1 0 8 336 5 7 27 (0) 18 15

0.9 1 1 2 0 2 3 1 1 11 437 8 5

5 Biological Results

We study five well-annotated genomes, human (H.s.), gorilla (G.g.),
orangutan (P.a.), mouse (M.m.), and rat (R.n.). For each species, we collect
all the protein-coding genes and download their positions on the chromosomes
and their Ensembl gene family names from Ensembl (http://www.ensembl.org).
Genes are grouped into the same gene family if they have the same Ensembl gene
family name. For each species, we merge each group of tandemly arrayed genes
into a single gene by keeping only the first gene and discarding the following
ones in the group.

We perform pairwise comparisons among these five species. For each pair
of species, we compare the running time for the four algorithms (I-A1, I-A0,
M-A1 and M-A0). We also run another two algorithms for comparison, namely,
the exact algorithm to solve E-BDP described in [12] (referred to as E-A1),
and MSOAR [16], which uses heuristics to compute a matching such that the
inversion distance induced by this matching is minimized. The results are shown
in Table 3. Note that I-A0 cannot finish within the time limit for any pair, while
I-A1 can finish in a very short time (less than 30 s except one taking 72 s) for all
pairs, once again indicating that the BSS algorithm is indispensable for solving
I-BDP. The BSS algorithm improves the solution for M-BDP as well, allowing
M-A1 to finish within 2 s for all pairs. (MSOAR takes quite long time for these
pairs, ranging from half an hour to a few hours.) Thus we now have exact and
very fast algorithms (E-A1, I-A1 and M-A1) for all three formulations.

All of these algorithms give a matching between the homologous genes for
each pair of species, a matching that defines a subset of orthologs under a par-
simonious evolutionary assumption. We thus apply our full algorithms (E-A1,
I-A1 and M-A1) together with MSOAR to infer orthologs among these 5 species.

http://www.ensembl.org
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Table 3. The running time (in seconds) of the algorithms on comparing five genomes.
I-A0 cannot finish in 30 min for any species pair.

Species pairs I-A1 I-A0 M-A1 M-A0 E-A1 MSOAR

G.g.&H.s. 8 N/A 1 1 2 1770

G.g.&M.m. 20 N/A 1 59 3 5298

G.g.&P.a. 16 N/A 1 1 2 3191

G.g.&R.n. 22 N/A 1 4 3 12555

H.s.&M.m. 23 N/A 1 2 2 3660

H.s.&P.a. 9 N/A 1 2 2 1585

H.s.&R.n. 22 N/A 1 6 2 7328

M.m.&P.a. 18 N/A 1 1 2 4287

M.m.&R.n. 72 N/A 2 66 2 5627

R.n. &P.a. 18 N/A 1 2 3 6009

The quality of the inferred orthologs is evaluated using two measures, the cover-
age (the number of orthologous pairs identified) and the accuracy. To compute
the accuracy of a matching, we use the gene symbols (HGNC symbols for primate
genes, MGI symbols for mouse genes, and RGD symbols for rat genes, down-
loaded from Ensembl): those gene pairs that have the same gene symbol form
the set of true orthology pairs. We say a pair in a matching is trivial if it consists
of two singletons. Notice that by definition all trivial pairs must appear in the
matchings returned by these four algorithms. We thus exclude trivial pairs for
comparison. Among the non-trivial pairs in a matching, we say a pair is assess-
able if at least one gene in this pair is covered by some true orthology pair.
Then the accuracy of a matching is defined as the ratio between the number of
non-trivial true orthology pairs in this matching and the number of (non-trivial)
assessable pairs in this matching.

The quality of the orthologs inferred by these four algorithms is shown in
Table 4. First, we can observe that the coverage of I-A1 (by definition, it is
between E-A1 and M-A1) is much closer to M-A1 (much higher than E-A1).
Second, notice that the accuracy of I-A1 significantly outperforms the other
three algorithms—it is 1.08 % higher than E-A1, 0.89 % higher than M-A1, and
1 % higher than MSOAR, on average over the 10 pairs. Third, the quality of
MSOAR is very close to M-A1, in terms of both the coverage and accuracy (the
accuracy of M-A1 is 0.11 % higher than that of MSOAR on average). Thus, we
believe that I-A1 is an excellent choice for inferring orthologs, which outperforms
in terms of both coverage and accuracy.

We do not evaluate the accuracy of these algorithms on simulation data.
The reason is that orthology assignment requires a biologically credible model
for generating simulation data—a model that need combine duplications, losses,
rearrangements, and sequence mutations and indels. Such a model that takes
into account all these evolutionary events in a biologically reasonable way is
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Table 4. The performance of the algorithms on inferring orthologs among the five
genomes.

Species pairs Trivial
Non-trivial Accuracy (%)

E-A1 I-A1 M-A1 MSOAR E-A1 I-A1 M-A1 MSOAR

G.g. &H.s. 8331 3448 7830 8131 8051 97.51 98.18 97.56 97.60

G.g. &M.m. 7304 3478 7572 8025 7858 97.33 98.29 97.61 97.48

G.g. &P.a. 7737 3399 7466 7893 7720 97.26 98.10 97.37 97.17

G.g. &R.n. 6915 3787 7826 8610 8317 94.65 96.12 94.56 94.43

H.s. &M.m. 7932 3250 7546 7834 7722 97.89 98.71 98.16 98.20

H.s. &P.a. 8091 3223 7355 7585 7501 98.27 98.73 98.03 98.05

H.s. &R.n. 7436 3638 7808 8196 8072 94.64 96.10 94.94 94.93

M.m. &P.a. 7311 3276 7208 7537 7408 97.91 98.61 97.95 97.81

M.m. &R.n. 7953 3706 8376 8837 8671 94.82 96.52 95.63 95.20

R.n. &P.a. 6911 3610 7466 7987 7789 94.90 96.63 95.27 95.08

currently not available. Besides, we have high-quality fully assembled genomes
with curated annotations to assess these methods, which leaves little necessity
to perform comparison on simulation data.

6 Conclusion and Discussion

We have described exact and very fast algorithms for the three breakpoint dis-
tance problems, by formulating them as integer linear programs and designing
additional algorithms to improve their efficiency through proving key properties
of these problems. Using extensive experiments on both simulations and biolog-
ical datasets, we have demonstrated that these algorithms scale beyond the size
of mammalian genomes, and also achieve very high accuracy when applied to
infer orthologs. We conclude that among those orthology assignment tools, I-A1
is the most suitable choice, since it gives highest accuracy and nearly highest
coverage.

We also help understanding the structures of these problems through proving
several properties. As we have already illustrated, these properties are crucial in
designing efficient algorithms for the corresponding problems. Notice that some
properties are common among the three problems, while some others only hold
for one or two of them. In Sect. 3.2, we give some theoretical analysis between
I-BDP and M-BDP through showing that Lemma 1 only applies for I-MDP,
while Lemma 2 holds for both of them. Now we further state the relationship
between E-BDP and I-BDP/M-BDP. We can easily prove that both lemmas in
this paper also apply to E-BDP. On the other side, in [12], we proved a lemma
for E-BDP stating that if one pair in a PSA is in an optimal matching, then
the other pair can be also fixed optimally. However, this property does not hold
for I-BDP and M-BDP. To see that, consider the example of G1 = a1b1c1b2d1
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and G2 = a2b3d2b4c2. Notice that 〈a1, a2〉 is a singleton pair and thus must
be in any optimal matching. If we apply this property, then 〈b1, b3〉 is also in
some optimal matching. However, we can easily verify that for both I-BDP and
M-BDP, 〈b1, b3〉 is not in any optimal matching.

Acknowledgements. We thank Daniel Dörr for helpful discussions.
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9. Angibaud, S., Fertin, G., Rusu, I., Thévenin, A., Vialette, S.: A pseudo-boolean
programming approach for computing the breakpoint distance between two
genomes with duplicate genes. In: Tesler, G., Durand, D. (eds.) RECMOB-CG
2007. LNCS (LNBI), vol. 4751, pp. 16–29. Springer, Heidelberg (2007)

10. Blin, G., Chauve, C., Fertin, G., Rizzi, R., Vialette, S.: Comparing genomes with
duplications: a computational complexity point of view. ACM/IEEE Trans. Com-
put. Bio. Bioinf. 14, 523–534 (2007)

11. Nguyen, C.T., Tay, Y.C., Zhang, L.: Divide-and-conquer approach for the exemplar
breakpoint distance. Bioinformatics 21(10), 2171–2176 (2005)

12. Shao, M., Moret, B.M.E.: A fast and exact algorithm for the exemplar breakpoint
distance. In: Przytycka, T.M. (ed.) RECOMB 2015. LNCS, vol. 9029, pp. 309–322.
Springer, Heidelberg (2015)

13. Swenson, K.M., Marron, M., Earnest-DeYoung, J.V., Moret, B.M.E.: Approximat-
ing the true evolutionary distance between genomes. In: Proceedings of the 7th
SIAM Workshop on Algorithm Engineering and Experiments (ALENEX 2005),
pp. 121–129. SIAM Press (2005)
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Abstract. Many important questions in molecular biology, evolution
and biomedicine can be addressed by comparative genomics approaches.
One of the basic tasks when comparing genomes is the definition of mea-
sures of similarity (or dissimilarity) between two genomes, for example
to elucidate the phylogenetic relationships between species.

The power of different genome comparison methods varies with the
underlying formal model of a genome. The simplest models impose the
strong restriction that each genome under study must contain the same
genes, each in exactly one copy. More realistic models allow several copies
of a gene in a genome. One speaks of gene families, and comparative
genomics methods that allow this kind of input are called gene family-
based. The most powerful – but also most complex – models avoid this
preprocessing of the input data and instead integrate the family assign-
ment within the comparative analysis. Such methods are called gene
family-free.

In this paper, we study an intermediate approach between family-
based and family-free genomic similarity measures. The model, called
gene connections, is on the one hand more flexible than the family-based
model, on the other hand the resulting data structure is less complex
than in the family-free approach. This intermediate status allows us to
achieve results comparable to those for family-free methods, but at run-
ning times similar to those for the family-based approach.

Within the gene connection model, we define three variants of
genomic similarity measures that have different expression power. We
give polynomial-time algorithms for two of them, while we show NP-
hardness of the third, most powerful one. We also generalize the measures
and algorithms to make them more robust against recent local disrup-
tions in gene order. Our theoretical findings are supported by experi-
mental results, proving the applicability and performance of our newly
defined similarity measures.

1 Introduction

Many important questions in molecular biology, evolution and biomedicine can
be addressed by comparative genomics approaches. One of the basic tasks in
c© Springer International Publishing Switzerland 2016
M. Singh (Ed.): RECOMB 2016, LNBI 9649, pp. 204–224, 2016.
DOI: 10.1007/978-3-319-31957-5 15
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this area is the definition of measures of similarity between two genomes. Direct
applications of such measures are the computation of phylogenetic trees or the
reconstruction of ancestral genomes, but also more indirect tasks like the pre-
diction of orthologous gene pairs (derived from the same ancestor gene through
speciation) or the transfer of gene function across species profit immensely from
accurate genome comparison methods.

Indeed, over the past forty-or-so years, many methods have been proposed
to quantify the similarity of single genes, mostly based on pairwise or multiple
sequence alignments. However, in many situations similarity measures based on
whole genomes are more meaningful than gene-based measures, because they
give a more representative picture and are more robust against side effects such
as horizontal gene transfer. Therefore, in this paper we develop and analyze
methods for whole genome comparison, based on the physical structure (gene
order) of the genomes.

The most simple picture of a genome is one where in a set of genomes under
study orthologous genes have been identified beforehand, and only groups of
orthologous genes (also known as gene families) are considered that have exactly
one member in each genome. In this model, a variety of genomic similarity
(or distance) measures have been studied and are relatively easy to compute
[1–4]. However, the singleton gene family is a great oversimplification compared
to what we find in nature. Therefore, more general models have been devised
where several genes from the same family can exist in one genome. The com-
putation of genomic similarities in these cases is generally much more difficult,
though. In fact, many problem variants are NP-hard [5–9].

Another biological inaccuracy arises from the fact that a gene family assign-
ment is not always without dispute, because orthology is usually not known but
just predicted, and most prediction methods require some arbitrary threshold,
deciding when two genes belong to the same family and when not. Therefore gene
family-free measures have recently been proposed, based on pairwise similarities
between genes [10–13]. While the resulting similarity measures are very promis-
ing, their computation is usually not easier than for the family-based models
and therefore NP-hard as well [10,13].

In this paper, we study an intermediate approach between family-based and
family-free genomic similarity measures, gene connections. It requires some pre-
processing of the genes contained in the genomes under study, but in a less strin-
gent way than in the family-based approach. On the other hand, the resulting
data structure is less complex than in the family-free approach, where arbitrary
(real-valued) similarities between genes are considered. This intermediate status
allows us to achieve results comparable to those for family-free methods, but at
time complexities similar to those for the family-based approach.

The paper is structured as follows. We first define three new genome simi-
larity measures based on conserved gene adjacencies (Sect. 2), followed by some
pointers to related literature (Sect. 3). Each of the three following sections is then
devoted to one of the similarity measures. We show that the first problem can
be computed in polynomial time, but is biologically quite simplistic. The second
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one, while avoiding some of the weaknesses of the first, is NP-hard to compute
and can therefore not be applied for genomes of realistic size. The third measure,
finally, provides a compromise between biological relevance and computational
complexity. In Sect. 7 we compare the results obtained with our similarity mea-
sures experimentally, using a large data set of plant (rosid) genomes. The last
section concludes the paper.

The implemented algorithms used in this work as well as the studied dataset
are available for download from http://bibiserv.cebitec.uni-bielefeld.de/newdist.

2 Basic Definitions

An alphabet is a finite set of characters. A string over an alphabet A is a sequence
of characters from A. Given a string S, S[i] refers to the ith character of S and
|S| is the length of S, i.e., the number of characters in S. In a signed string S,
each character is labeled with a sign, denoted sgnS(i) for the character at index
position i. A sign is either positive (+) or negative (−). In comparative genomics,
for example, the signs may indicate the orientations of genes on their genomic
sequences, which themselves are represented as strings. Therefore in this paper
we use the term gene as a synonym for “signed character” and the term genome
as a synonym for “signed string”.

Definition 1 (gene connection graph). Given two genomes S and T , a gene
connection graph G(S, T ) of S and T is a bipartite graph with one vertex for
each gene of S and one vertex for each gene of T . An edge between two vertices,
one from S and one from T , indicates that there is some connection between the
two genes represented by these vertices.

The term connection in the above definition is not very specific. Depending
on the data set and context, connections may be defined based on gene homol-
ogy, sequence similarity, functional relatedness, or any other similarity measure
between genes.

For ease of notation, we let S[i] denote both the ith gene of genome S, as well
as the vertex of G representing this gene. Similar for T [j]. The set of edges of a
graph G is denoted by E(G). The size of a graph G is the number of its edges,
|G| = |E(G)|. Further, we define a connection function t that returns for an index
position i of S the list t(i) of index positions in T that are connected to S[i] by
an edge in G(S, T ). That is, t(i) = [j | (i, j) ∈ E(G(S, T )) for 1 ≤ j ≤ |T |]. The
function s(j) for an index position of T is defined analogously.

A pair of adjacent index positions (i, i′) with i′ = i + 1 in a string is called
an adjacency. Note that this definition of adjacency only considers direct neigh-
borhood of genes (i′ = i + 1), while all our following uses of this term refer to
an extended definition given by Zhu et al. [14], who introduced generalized gene
adjacencies as follows:

Definition 2 (adjacency). Given an integer θ ≥ 1, a pair of index positions
(i, i′) with i′ ≤ i + θ in a string is a (θ-) adjacency.

http://bibiserv.cebitec.uni-bielefeld.de/newdist
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In other words, two genes of the same genome form a θ-adjacency if the
number of genes between them is less than θ. In the following we will frequently
differentiate between simple adjacencies (θ = 1) and generalized adjacencies
(θ ≥ 1).

As mentioned in the Introduction, in this paper we are interested in defining
measures of similarity to compare pairs of genomes. A simple approach is based
on their number of conserved adjacencies. Although below we will study differ-
ent variants of similarities, they all use the following basic notion of conserved
adjacency:

Definition 3 (conserved adjacency). Given two genomes S and T and a
gene connection graph G(S, T ), a pair of adjacencies (i, i′) in S and (j, j′) in T
is called a conserved adjacency, denoted (i, i′||j, j′), if one of the following two
holds:

(a) (i, j) ∈ E(G(S, T )), (i′, j′) ∈ E(G(S, T )), sgnS(i) = sgnT (j) and sgnS(i′) =
sgnT (j′); or

(b) (i, j′) ∈ E(G(S, T )), (i′, j) ∈ E(G(S, T )), sgnS(i) �= sgnT (j′) and sgnS(i′) �=
sgnT (j).

For an illustration of these definitions, see Fig. 1.

Fig. 1. Gene connection graph of two genomes S = (+a, +b, +c, −d, −e, +f) (top
row) and T = (+t, +u, −v, +w, −x, −y, +z) (bottom row). Conserved 2-adjacencies
are (1, 2||1, 2), (2, 3||2, 4), (3, 4||4, 6) and (5, 6||5, 7). Note that (2, 3||1, 3), (2, 3||2, 3),
(4, 5||6, 7) and (4, 6||5, 6) are no conserved 2-adjacencies because the signs do not match
the definition.

We further denote two conserved adjacencies as conflicting if their intervals
in either genome are overlapping:

Definition 4 (conflicting conserved adjacencies). Two conserved adjacen-
cies (i, i′||j, j′) and (k, k′||l, l′) are conflicting if (1) (i, i′||j, j′) �= (k, k′||l, l′) and
(2) [i, i′ − 1] ∩ [k, k′ − 1] �= ∅ or [j, j′ − 1] ∩ [l, l′ − 1] �= ∅.

Subsequently a set of conserved adjacencies is denoted as non-conflicting if
the above-defined property does not hold between any two of its members.

In the example of Fig. 1, (3, 4||4, 6) and (5, 6||5, 7) are the only conflicting
conserved adjacencies. All other pairs are non-conflicting.

The different similarity measures that we consider in this work are expressed
by the following three problem statements:
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Problem 1 (total adjacency model). Given two genomes S and T and a gene
connection graph G(S, T ), count the number of pairs of index positions (i, i′) in
S and (j, j′) in T that form a conserved adjacency. In other words, compute

adj (S, T ) = |{(i, i′||j, j′) | 1 ≤ i < i′ ≤ |S| and 1 ≤ j < j′ ≤ |T |}|.
Because a gene connection graph G(S, T ) is not limited to one-to-one connec-

tions between genes of genomes S and T , solutions to Problem1 may biologically
not be very plausible. Therefore we define a second measure, motivated by the
one used in [10,11], which asks for one-to-one correspondences between genes of
S and T in its solutions:

Problem 2 (gene matching model). Given two genomes S and T , a gene con-
nection graph G(S, T ) and a real-valued parameter α ∈ [0, 1], find a bipartite
matching M in G(S, T ) such that the induced sequences SM and TM maximize
the measure

Fα(M) = α · adj (SM , TM ) + (1 − α) · edg(M),

where edg(M) = |M | is the size of matching M . (The induced sequences SM and
TM are the subsequences of S and T , respectively, that contain those characters
incident to edges of M .)

As we will see later in this paper, solving Problem2 is NP-hard even for simple
adjacencies. Therefore we define a third, intermediate measure, which is more
efficient to compute in practice, while producing one-to-one correspondences
between gene extremities. It is defined as the size of the largest subset of non-
conflicting conserved adjacencies found in a pair of genomes:

Problem 3 (adjacency matching model). Given two genomes S and T and a gene
connection graph G(S, T ), let C be the set of conserved adjacencies between S
and T . Compute the size |C�| of a maximum cardinality set of non-conflicting
conserved adjacencies C� ⊆ C.

3 Related Work

As mentioned above, the gene connection graph input format that we propose
here is an intermediate between gene families and the family-free model. Indeed,
we do not require the gene connection graph to be transitive, which is the main
difference to the gene family graph, where vertices are assigned to genes and edges
are drawn between genes from different genomes whenever they belong to the
same family, thus forming bipartite cliques. (This graph has not been introduced
under this name in the literature, but is implicitly mentioned already in [15] and
later more explicitly in [10].) On the other end, the gene similarity graph [11] is
a weighted version of the gene connection graph, increasing the expression power
by its ability to represent different strengths of gene connections.

The only previous use of such an intermediate model in comparative genomics
that we are aware of is in the form of indeterminate strings in [12].
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Definition 5 (indeterminate string, signed indeterminate string).
Given an alphabet A, a string S over the power set P(A)\{∅} is called an inde-
terminate string over A. In other words, for 1 ≤ i ≤ n, ∅ �= S[i] ⊆ A. In a
signed indeterminate string S, any index position i has a sign sgnS(i), which
therefore is the same for all characters at that position.

Given two genomes S and T and a gene connection graph G(S, T ), it is
easy to create a pair of signed indeterminate strings S′ and T ′ over an alphabet
A′ that contain the same set of conserved adjacencies as S and T : For any
edge e = (S[i], T [j]) of G(S, T ), create one symbol e′ ∈ A′ and let e′ ∈ S′[i]
and e′ ∈ T ′[j]. The signs are just transferred from S and T to S′ and T ′,
respectively: sgnS′ [i] = sgnS [i] for all i, 1 ≤ i ≤ |S|, and sgnT ′ [j] = sgnT [j] for
all j, 1 ≤ j ≤ |T |.

Conversely, given two indeterminate strings S′ and T ′, we can easily
create sequences S and T and the corresponding gene connection graph
with the same set of conserved adjacencies. In order to do this, let
A = {1, 2, . . . , |S′|, 1′, 2′, . . . , |T ′|′}, set S = sgnS′[1]1, . . . , sgnS′[|S′|]|S′|, T =
sgnT ′[1]1′, . . . , sgnT ′[|T ′|]|T ′|′, and create in G(S, T ) an edge e = (S[i], T [j]) when-
ever S′[i] ∩ T ′[j] �= ∅.

Clearly, all the information about conserved adjacencies between these two
representations is identical, while sometimes the graph representation and some-
times the representation as signed indeterminate string is more concise.

Indeterminate strings in [12] were used to identify regions of common
gene content (gene clusters) in two genomes, which is important in functional
genomics. Here our focus is on conserved adjacencies (which can be seen as small
clusters of just two genes) for defining whole-genome similarities. Similar mea-
sures are known for singleton gene families as the breakpoint distance [16,17],
have been extended to gene families in [5,7,15] and were defined for the family-
free model in [10].

4 An Optimal Solution for Problem1

In order to solve Problem 1, we construct a list L of edges of G(S, T ) using
connection function t(i) for 1 ≤ i ≤ |S|. In doing so, we assume that the elements
of t(i), 1 ≤ i ≤ |S|, are sorted in increasing order. If this is not given as input,
it can always be achieved by applying counting sort to all lists t(i) in overall
O(|S| + |T | + |G(S, T )|) time, which is proportional to the input size.

We present with Algorithm 1 a solution to Problem 1 for simple adjacencies
and subsequently extend this approach for the generalized case. Our algorithm
is a simple, linear time procedure which uses three pointers e, e′, e′′ into list L.
These pointers simultaneously traverse L while reporting any pair of adjacent
parallel edges (e, e′) or crossing edges (e, e′′).

Correctness. Given a pair (i, j) ∈ L, there are overall four cases for the signs
of index i in S and index j in T , each with two sub-cases for the signs of index
i + 1 in S and index j + 1 or index j − 1 in T , listed in the following.



210 L.A.B. Kowada et al.

Algorithm 1
Input: genomes S and T , gene connection graph G(S, T )
1: Create a list L of all edges (i, j) ∈ E(G(S, T )) ordered by primary index i and

secondary index j
2: Let e′ = (i′, j′) and e′′ = (i′′, j′′) point to the second element of L
3: for each element e = (i, j) of L in sorted order do
4: if sgnS(i) = sgnT (j) then
5: while i′ < i + 1 or (i′ = i + 1 and j′ < j + 1) do
6: advance e′ = (i′, j′) by one step in L
7: end while
8: if (i′, j′) = (i + 1, j + 1) and sgnS(i′) = sgnT (j′) then
9: report the conserved adjacency (i, i′||j, j′)

10: end if
11: else
12: while i′′ < i + 1 or (i′′ = i + 1 and j′′ < j − 1) do
13: advance e′′ = (i′′, j′′) by one step in L
14: end while
15: if (i′′, j′′) = (i + 1, j − 1) and sgnS(i′′) �= sgnT (j′′) then
16: report the conserved adjacency (i, i′′||j′′, j)
17: end if
18: end if
19: end for

(1) If sgnS(i) = + and sgnT (j) = +, then we have a conserved adjacency
(i, i + 1||j, j + 1) if and only if (i + 1, j + 1) ∈ L and either sgnS(i + 1) = +
and sgnT (j + 1) = + or sgnS(i + 1) = − and sgnT (j + 1) = −.

(2) If sgnS(i) = + and sgnT (j) = −, then we have a conserved adjacency
(i, i + 1||j − 1, j) if and only if (i + 1, j − 1) ∈ L and either sgnS(i + 1) = +
and sgnT (j − 1) = − or sgnS(i + 1) = − and sgnT (j − 1) = +.

(3) If sgnS(i) = − and sgnT (j) = +, then we have a conserved adjacency
(i, i + 1||j − 1, j) if and only if (i + 1, j − 1) ∈ L and either sgnS(i + 1) = −
and sgnT (j − 1) = + or sgnS(i + 1) = + and sgnT (j − 1) = −.

(4) If sgnS(i) = − and sgnT (j) = −, then we have a conserved adjacency
(i, i + 1||j, j + 1) if and only if (i + 1, j + 1) ∈ L and either sgnS(i + 1) = −
and sgnT (j + 1) = − or sgnS(i + 1) = + and sgnT (j + 1) = +.

Clearly, cases 1 and 4 and cases 2 and 3 can be summarized to the two cases
given in Algorithm 1.

Runtime Analysis. The list L has length |G(S, T )| and can be constructed and
sorted in linear time O(|S| + |T | + |G(S, T )|), as discussed above. Each of the
three edge pointers e, e′ and e′′ traverses L once from the beginning to the end,
so that the for loop in lines 3–19 takes O(|L|) time. Therefore the overall running
time is O(|S| + |T | + |G(S, T )|).
Space Analysis. The algorithm needs space only for the two input strings S and
T , the list L and some constant-space variables. Therefore the space usage is of
order O(|S| + |T | + |G(S, T )|).
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Extension to Generalized Adjacencies. Algorithm 1’ solves Problem 1 for gener-
alized adjacencies. Following the same strategy as Algorithm 1, the extension
requires next to the main pointer e additional 2θ pointers into list L that are
denoted e′

t and e′′
t , 1 ≤ t ≤ θ. While it traverses through each element (i, j) in

the list using pointer e, each pointer e′
t, 1 ≤ t ≤ θ, is subsequently increased to

point to the smallest element larger than or equal to (i + t, j + 1) in L. A copy
ê of pointer e′

t is then used to find candidates (i + t, j + 1), . . . , (i + t, j + θ).
Likewise, pointers e′′

t , 1 ≤ t ≤ θ, are incremented to the smallest element larger
than or equal to (i + t, j − θ), whereupon copy ê of e′′

t is used to find candidates
(i + t, j − θ), . . . , (i + t, j − 1).

All pointers e, e′
t, and e′′

t , 1 ≤ t ≤ θ are continuously increased, thus each
traversing L once. Any instance of pointer ê visits at most θ elements in each
iteration, thus leading to an overall running time of O(θ2|G(S, T )|). The running
time is asymptotically optimal in the sense of worst case analysis, since there
can be just as many θ-adjacencies in graph G(S, T ). Algorithm 1’ requires O(θ+
|S| + |T | + θ2|G(S, T )|) space.

5 Complexity of Problem2

While one may hope that the intermediate status of the gene connection graph
between the gene family graph and the gene similarity graph allows more efficient
algorithms than for the more complex gene similarity graph, this is not the case
for the gene matching model.

Only for α = 0, we have Fα(M) = edg(M) = |M | and therefore Prob-
lem 2 reduces to computing a maximum bipartite matching, which is possible in
polynomial time [18]. However, this case is not very interesting because it com-
pletely ignores conserved adjacencies and just compares the gene content of the
two genomes. All interesting cases are more difficult to solve, as the following
theorem shows:1

Theorem 1 Problem 2 is NP-hard for 0 < α ≤ 1.

Proof. We will focus on simple adjacencies (θ = 1), as this is sufficient to prove
Theorem 1. Inspired by the proof of Bryant [5] for the family-based case, we
provide a P-reduction from Vertex Cover: Given a graph G = (V,E) and an
integer λ, does there exist a subset V ′ ⊆ V such that |V ′| = λ and each edge in
E is adjacent to at least one vertex in V ′?

Our reduction transforms an instance of Vertex Cover into an instance
of the decision version of Problem 2: Given strings S and T , a gene connection
graph G(S, T ), a real value α, 0 < α ≤ 1, and a real value F ≥ 0, does there
exist a bipartite matching M in G(S, T ) such that Fα(M) ≥ F?

Let G = (V,E) and λ be an instance of Vertex Cover with V =
{v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. Then we construct an alphabet A
1 A weaker result, namely the NP-hardness of Problem 2 for values of α between 0

and 1/3, can be found in [19].
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Algorithm 1’
Input: genomes S and T , gene connection graph G(S, T ), gap threshold θ
1: Create a list L of all edges (i, j) ∈ E(G(S, T )) ordered by primary index i and

secondary index j
2: Let e′

t = (i′t, j
′
t) and e′′

t = (i′t, j
′
t), 1 ≤ t ≤ θ, point to the second element of L

3: for each element e = (i, j) of L in sorted order do
4: if sgnS(i) = sgnT (j) then
5: for each e′

t = (i′t, j
′
t), 1 ≤ t ≤ θ do

6: while i′t < i + t or (i′t = i + t and j′
t < j + 1) do

7: advance e′
t = (i′t, j

′
t) by one step in L

8: end while
9: let ê = (̂ı, ĵ) ← e′

t

10: while ı̂ = i + t and ĵ ≤ j + θ do
11: if sgnS (̂ı) = sgnT (ĵ) then
12: report the conserved adjacency (i, ı̂||j, ĵ)
13: end if
14: advance ê = (̂ı, ĵ) by one step in L
15: end while
16: end for
17: else
18: for each e′′

t = (i′′t , j′′
t ), 1 ≤ t ≤ θ do

19: while i′′t < i + t or (i′′t = i + t and j′′
t < j − θ) do

20: advance e′′
t = (i′′t , j′′

t ) by one step in L
21: end while
22: let ê = (̂ı, ĵ) ← e′′

t

23: while ı̂ = i + t and ĵ < j − 1 do
24: if sgnS (̂ı) �= sgnT (ĵ) then
25: report the conserved adjacency (i, ı̂||ĵ, j)
26: end if
27: advance ê = (̂ı, ĵ) by one step in L
28: end while
29: end for
30: end if
31: end for

of size 2n + 4m + 2 given by

A = V ∪ {v′
i | vi ∈ V } ∪ E ∪ {e′

i | ei ∈ E} ∪ {xi, x
′
i | 1 ≤ i ≤ m + 1}.

The two genomes S and T are constructed as follows:

S = v1v
′
1v2v

′
2 . . . vnv′

nx1x
′
1e1e

′
1x2x

′
2e2e

′
2x3x

′
3 . . . xmx′

meme′
mxm+1x

′
m+1

and

T = xm+1x
′
m+1xmx′

m . . . x2x
′
2x1x

′
1vnEnv′

nvn−1En−1v
′
n−1 . . . v1E1v

′
1

where Ei is a string of the symbol pairs eje
′
j for the edges ej that are adjacent

to vi. The gene connection graph G(S, T ) has an edge for each pair of identical
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symbols S[i] and T [j]. The parameter α may be chosen arbitrarily within the
range 0 < α ≤ 1.

First, we show that among the matchings maximizing the value Fα for this
problem, there is always at least one which is a maximal matching. Let M be a
non-maximal matching in G(S, T ) maximizing Fα and consider an edge � �∈ M
that may be added to M , forming a new matching M ′ = M ∪ {�}. Clearly, �
can dismiss at most two adjacencies of M in M ′, so adj(M ′) ≥ adj(M) − 2.
But in our construction, where the symbols of A (except the ei and e′

i) are in
reverse order in S related to T , and furthermore each ei and each e′

i is between xi

and xi+1 in S, any new edge � added to M can dismiss at most one adjacency:
If � is adjacent to a symbol a and the symbol a′ is adjacent to another edge
�′ ∈ M (or vice-versa) then adj(M ′) = adj(M) + 1. Moreover, if two partner
edges �, �′ �∈ M are added to M and thus M ′ = M ∪ {�, �′}, then adj(M ′) ≥
adj(M) and edg(M ′) = edg(M) + 2. Therefore Fα(M ′) > Fα(M) for α < 1 and
Fα(M ′) ≥ Fα(M) for α = 1.

Next, we show that there is a vertex cover of size λ for a graph G if and
only if Problem2 has a solution with F = α(2m + 1 + (n − λ)) + (1 − α)(2n +
4m + 2). Note that by construction of S, T and G(S, T ), conserved adjacencies
in a maximal matching are only possible between pairs of the same symbol of
A, i.e. viv

′
i, eie

′
i or xix

′
i. Therefore we can simplify the notation and represent

an adjacency (i, i′||j, j′) by the pair of elements in S, S[i]S[i′]. Clearly, any
maximal matching of G(S, T ) has |S| = 2n + 4m + 2 edges. Moreover, any
maximal matching realizes at least the 2m + 1 conserved adjacencies eie

′
i and

xix
′
i. The other possible adjacencies are the viv

′
i. If there exists a solution with

value F = α(2m + 1 + (n − λ)) + (1 − α)|S|, then there are at least n − λ
adjacencies involving viv

′
i. These adjacencies are possible if the respective edges

of G are covered by λ vertices. If we do not have a solution with value F , then
G does not have a vertex cover of size λ. 
�
Solving Problem2 for simple adjacencies, we make use of a method described
in [19], that was originally developed for solving the gene family-free variant of
Problem 2. In doing so, it constructs an integer linear program (ILP) similar
to program FFAdj-Int described in [10]. It includes a preprocessing algorithm
that identifies small components in gene similarity graphs which are part of an
optimal solution. This approach enables the computation of optimal solutions
for small and medium-sized gene similarity graphs. However, as the method
is specifically tailored for gene family-free analysis, it does not perform very
efficiently on gene connection graphs, as we will see in Sect. 7. We refer to this
ILP and its preprocessing step as Algorithm 2.

We further believe it will be difficult to develop a practical algorithm solving
Problem 2 for generalized adjacencies.

6 Computing Exact Solutions for Problem3

We present a polynomial time algorithm solving Problem3 for simple adjacencies
which makes use of the following graph structure:
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Definition 6 (conserved adjacencies graph). Given two genomes S and
T and a set C = {(i1, i′1||j1, j′

1), . . . , (in, i′n||jn, j′
n)} of conserved adjacencies

between S and T , the conserved adjacencies graph AC(S, T ) is a bipartite graph
with one vertex for each gene adjacency (i, i′) of S that occurs in C and one
vertex for each gene adjacency (j, j′) of T that occurs in C. The edges correspond
to the conserved adjacencies in C.

Pseudocode of our algorithm is shown in Algorithm3. Clearly its running
time is dominated by the time to compute a maximum matching in line 3,
which in unweighted bipartite graphs with n vertices and m edges is possible
in O(m

√
n) time [18]. In our case n ≤ |S| + |T | − 2 and m ≤ n2, therefore

Algorithm 3 takes overall O((|S| + |T |)5/2) time.

Algorithm 3
Input: genomes S and T , gene connection graph G(S, T )
1: Let C be the set of conserved adjacencies reported by Algorithm 1 applied to S, T

and G(S, T )
2: Construct the conserved adjacencies graph A = AC(S, T )
3: Compute a maximum bipartite matching M on A
4: return |M |

Extension to Generalized Adjacencies. Other than for the first two problems,
the properties of Problem3 change drastically when generalized adjacencies are
considered. Because a θ-adjacency corresponds to an interval of up to θ + 1
consecutive genes, the intervals of two θ-adjacencies for θ ≥ 2 can overlap on
more than two genes, or even be contained in one another. The complexity of
Problem 3 for θ ≥ 2 remains an open question.

Solving Problem3 for generalized adjacencies, we propose Algorithm 3’ that
follows the same strategy as its counterpart for simple adjacencies. However,
while for the latter it was possible to find a maximum subset of non-conflicting
θ-adjacencies using a maximum matching approach, here we propose an ILP,
described in Fig. 2. The ILP makes use of two types of binary variables, a(i, j)
for each edge (i, j) in the gene connection graph G(S, T ), and b(i, i′, j, j′) for
each θ-adjacency (i, i′||j, j′) in Cθ. We say that a binary variable is saturated if
it is assigned value 1. While maximizing the number of saturated b(.) variables
(which represents the output of the program), our ILP imposes matching con-
straints (C.01) for the set of edges in selected θ-adjacencies. Further constraints
(C.02) ensure that for each θ-adjacency (i, i′||j, j′) (a) both edges between its
corresponding genes are saturated and (b) no saturated edge is incident to a gene
in interval [i+1, i′ −1] of genome S (i.e. a possibly empty interval corresponding
to all genes between i and i′) and interval [j+1, j′ −1] of genome T , respectively.
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Algorithm 3’
Input: genomes S and T , gene connection graph G(S, T ), gap threshold θ
1: Let Cθ be the set of conserved adjacencies reported by Algorithm 1’ applied to S,

T and G(S, T )
2: Compute a maximum cardinality set of non-conflicting conserved θ-adjacencies

C�
θ ⊆ Cθ using the ILP given in Fig. 2

3: return |C�
θ |

7 Experimental Results

Genomic Dataset. We study genomes of 18 rosid species (see Table 1). Rosids
are a prominent subclass of flowering plants to which also many agricultural
crops belong. The genomic sequences of the studied species were obtained from
Phytozyme [20]2, an online resource of the Joint Genome Institute providing

ILP solving Step 2 in Algorithm 3’
Objective:

maximize
∑

(i,i′||j,j′′)∈Cθ

b(i, i′, j, j′)

Constraints:

(C.01) for each i ← 1 to |S|,
∑

j∈t(i)

a(i, j) ≤ 1

for each j ← 1 to |T |,
∑

i∈s(j)

a(i, j) ≤ 1

(C.02) for each (i, i′||j, j′) ∈ Cθ

if sgnS(i) = sgnS(i′) then
2 · b(i, i′, j, j′) − a(i, j) − a(i′, j′) ≤ 0

otherwise
2 · b(i, i′, j, j′) − a(i, j′) − a(i′, j) ≤ 0

end if

for each ı̂ ← [i + 1, i′ − 1] and each ĵ in t(̂ı)
b(i, i′, j, j′) + a(̂ı, ĵ) ≤ 1

for each ĵ ← [j + 1, j′ − 1] and each ı̂ in s(ĵ)
b(i, i′, j, j′) + a(̂ı, ĵ) ≤ 1

end for

Domains:

(D.01) for each (i, j) ∈ E(G(S, T )), a(i, j) ∈ {0, 1}
(D.02) for each (i, i′||j, j′) ∈ Cθ, b(i, i′, j, j′) ∈ {0, 1}

Fig. 2. Integer linear program for finding a maximum subset of non-conflicting con-
served adjacencies of a given set Cθ.

2 The described experiments were performed on data sets of Phytozyme v10.3.
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databases and tools for comparative genomics analyses of plant genomes. Most
of the studied plant genomes are partially assembled, comprising up to 5,000
scaffolds covering one or more annotated protein coding genes. While the smallest
genome in our data set contains roughly 24,500 genes, the largest spans with
56,000 genes more than twice as many. Rosids, just like many other plants, met
their evolutionary fate through multiple events of whole genome duplication,
followed by periods of fractionation, in which many duplicated genes were lost
again.

Construction of Gene Connection and Gene Family Graphs. Next to the genomic
sequences and gene annotations, Phytozyme also provides gene family informa-
tion in form of co-orthologous clusters computed by InParanoid [21]. InPara-
noid follows a seed-based strategy by identifying pairs of orthologous genes (the
“seeds”) through reciprocal best BLASTP hits. These are subsequently used to
recruit inparalogs, eventually forming groups of co-orthologous genes.

Table 1. The genomic dataset of 18 rosid species used in our experiments.

Species Version # genes # scaffolds Reference

A. thaliana TAIR10 27,416 7 [22]

B. rapa FPSc v1.3 40,492 669 [20]

B. stricta v1.2 27,416 854 [20]

C. clementina v1.0 24,533 94 [23]

C. rubella v1.0 26,521 123 [24]

E. grandis v1.1 36,376 1,315 [25]

E. salsugineum v1.0 26,351 61 [26]

F. vesca v1.1 32,831 8 [27]

G. max Wm82.a2 56,044 147 [28]

G. raimondii v2.1 37,505 133 [29]

L. usitatissimum v1.0 43,471 1,028 [30]

M. truncatula Mt4.0v1 50,894 1,033 [31]

P. persica v1.0 27,864 59 [32]

P. trichocarpa v3.0 41,335 379 [33]

P. vulgaris v1.0 27,197 91 [34]

R. communis v0.1 31,221 4,962 [35]

T. cacao v1.1 29,452 99 [36]

V. vinifera Genoscope.12X 26,346 33 [37]

We ran BLASTP on all genes of our dataset using an e-value threshold of 10−5

and otherwise default parameter settings. We then constructed gene connection
graphs for all 153 genome pairs by establishing edges between vertices whose
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corresponding genes share reciprocal BLASTP hits. We refer to these graphs
as BLASTP GC graphs. Similarly, we constructed pairwise gene family graphs
using InParanoid’s homology assignment, which we refer to as InParanoid GF
graphs.

Unsurprisingly, the BLASTP GC graphs are much larger in size than the
InParanoid GF graphs. We observed average sizes of 150,000 edges for the for-
mer, whereas the latter graphs had on average only one fifth of this size. More-
over, only 4 % of edges in InParanoid GF graphs were not contained in their
BLASTP GC counterparts. Lacking ground truth of homologies in our dataset,
we take a conservative stance by assuming that InParanoid’s homology assign-
ment can be considered true, or, in other words, that it contains only a negligible
number of false positives. However, we conclude from a previous study [38], in
which InParanoid (as well as all other gene family prediction tools in that study)
exhibited a poor recall, that the homology assignment may be incomplete. That
being said, we regard the edges of BLASTP GC graphs with suspicion. In doing
so, we assume many of them leading to false positive homology assignments. We
perform subsequent analysis to outline a possible procedure of identifying addi-
tional potential homologies that are supported by conservation in gene order in
BLASTP GC graphs.

Implementation. All computations were performed on a Linux machine using a
single 2.3 GHz CPU. We implemented Algorithms 1, 1’, 3, and 3’ in Python. For
Algorithm 2 we used the implementation of [19]. In Algorithm 3, the maximum
cardinality matching was computed using an implementation of Hopcroft and
Karp’s algorithm [18] provided by the Python-based NetworkX3 library. The
ILPs of Algorithms 2 and 3’ were run using CPLEX4, a solver for various types
of linear and quadratic programs.

Runtimes. The runtimes of Algorithms 1 and 3 are shown in Fig. 3 (left). The
runtime analysis was repeated 5 times and is visualized by whisker plots. For each
of the 153 BLASTP GC graphs in our dataset, the computation was finished in
less than 50 CPU seconds. Moreover, our evaluation reveals that the enumeration
of the set of conserved adjacencies in our dataset requires often more time than
the subsequent computation of the maximum matching for Algorithm3. The plot
on the right side of Fig. 3 shows that the runtimes of Algorithm 1’ for θ = 2, 3, 4
increase only moderately for higher values of θ.

Comparing our methods to the gene family-free approach, an implementation
of a heuristic method described in [10] failed to return a result for the gene
family free variant of Problem2 on the BLASTP GC graph of R. communis and
V. vinifera within 36 hours of computation. Surprisingly, running Algorithm 2
with α = 0.1 just as long, we were able to obtain a suboptimal solution of which
CPLEX reported an optimality gap of only 1.89 %. Nevertheless, as a reference
for comparison with our various models it would be even more informative to

3 http://networkx.github.io/.
4 http://www.ibm.com/software/integration/optimization/cplex-optimizer/.

http://networkx.github.io/
http://www.ibm.com/software/integration/optimization/cplex-optimizer/
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have optimal solutions of these problems. We leave it as an open problem whether
it is possible to improve our ILPs in order to achieve this.
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Fig. 3. Left: runtimes of Algorithms 1 and 3 for all 153 BLASTP GC graphs of the
studied dataset. Right: runtimes of Algorithm 1’ for θ = 2, 3, 4.

Further, we were able to compute exact results for Problem 3 and θ = 2 with
Algorithm 3’ for all 153 but 19 BLASTP GC graphs and all but 16 InParanoid
GC graphs, limiting computation time to two hours per graph instance.

Gene Connection vs. Gene Family Graphs. The overlap between the set of con-
served simple adjacencies identified in BLASTP GC graphs and in InParanoid
GF graphs is visualized in the left plot of Fig. 4. Overall, 70 % of the conserved
adjacencies of the InParanoid GF graphs were also found in the BLASTP GC
graphs whereas we find in the latter 90 % more conserved adjacencies than in the
former. Investigating the high number of InParanoid adjacencies that are missing
in BLASTP GC graphs, we discovered that many generalized adjacencies of the
former span genes that are connected (and therefore breaking the surrounding
adjacency) in their BLASTP GC counterparts. However, the mean number of
connected intervening genes was only 1.4. In fact, the overlap of 2-adjacencies in
BLASTP GC graphs with 1-adjacencies of InParanoid GF graphs was at 83 %
of all adjacencies in the latter (Fig. 4, right plot).

Lastly, Fig. 5 visualizes the number of non-conflicting conserved adjacencies
in BLASTP GC and InParanoid GF graphs computed for θ = 1 using Algo-
rithm3 (left plot) and computed for θ = 2 using Algorithm 3’ (right plot). For the
former we observed on average 42% more non-conflicting conserved adjacencies
in BLASTP GC graphs when compared to their InParanoid GF counterparts,
whereas for the latter, this number dropped to 32%. Nevertheless, from θ = 1 to
θ = 2 the absolute number of non-conflicting conserved adjacencies increases on
average by 27% for BLASTP GC graphs, respectively by 37% for InParanoid
GF graphs.



New Genome Similarity Measures Based on Conserved Gene Adjacencies 219

Fig. 4. Overlap of conserved adjacencies between BLASTP GC and InParanoid GF
graphs
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Fig. 5. Numbers of non-conflicting conserved adjacencies in BLASTP GC and InPara-
noid GF graphs for θ = 1 (left) and θ = 2 (right).

8 Conclusion

We have presented new similarity measures for complete genomes, thereby defin-
ing gene connections as an intermediate model of genome similarity representa-
tions, between gene families and the gene family-free approach. Our theoretical
results with some problem variants being polynomial and others being NP-hard
show that we are very close to the hardness border of similarity computations
between genomes with unrestricted gene content. On the practical side we could
show that the computation of genomic similarities in the gene connection model
gives meaningful results and is possible in reasonable time, if the measures and
algorithms are designed carefully.

A few questions remain open, though. While Problem3 is polynomial for
θ = 1, the complexity for larger values of θ is unknown. Moreover, it is always
difficult to choose optimal values for parameters like the gap threshold θ. It will
certainly be worthwhile to examine whether parameter estimation methods for
generalized adjacencies as the ones developed in [39] can be adapted to the gene
connection model.
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Various model extensions can also be envisaged. The adjacency matching
model (Problem 3) removes inconsistencies from the output of the total adja-
cencies model (Problem 1) by computing a maximum matching on it. It could
be tested whether other criteria to remove genes from the genomes and thus
derive consistent sets of conserved adjacencies yield even better results. More-
over, the resulting reduced genomes with conserved adjacencies could be used
to predict orthologies between the involved genes, not only to compute genomic
similarities.

An alternative objective function for our problem formulations, instead of
counting (generalized) gene adjacencies, could be a variant of the summed adja-
cency disruption number [40] that also allows to distinguish between small and
larger distortions in gene order.

Finally, Algorithm 3 can easily be generalized for weighted gene similarities
(instead of gene connections). It remains to be evaluated if such a more fine-
grained measure in the spirit of a family-free analysis has advantages compared
to the unit-cost measures studied in this paper.
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Abstract. Computing the phylogenetic diversity of a set of species is
an important part of many ecological case studies. More specifically, let
T be a phylogenetic tree, and let R be a subset of its leaves represent-
ing the species under study. Specialists in ecology want to evaluate a
function f(T , R) (a phylogenetic measure) that quantifies the evolution-
ary distance between the elements in R. But, in most applications, it is
also important to examine how f(T , R) behaves when R is selected at
random. The standard way to do this is to compute the mean and the
variance of f among all subsets of leaves in T that consist of exactly
|R| = r elements. For certain measures, there exist algorithms that can
compute these statistics, under the condition that all subsets of r leaves
are equiprobable. Yet, so far there are no algorithms that can do this
exactly when the leaves in T are weighted with unequal probabilities.
As a consequence, for this general setting, specialists try to compute the
statistics of phylogenetic measures using methods which are both inexact
and very slow.

We present for the first time exact and efficient algorithms for com-
puting the mean and the variance of phylogenetic measures when leaf
subsets of fixed size are selected from T under a non-uniform random
distribution. In particular, let T be a tree that has n nodes and depth
d, and let r be a non-negative integer. We show how to compute in
O((d+log n)n logn) time and O(n) space the mean and the variance for
any measure that belongs to a well-defined class. We show that two of
the most popular phylogenetic measures belong to this class: the Phy-
logenetic Diversity (PD) and the Mean Pairwise Distance (MPD). The
random distribution that we consider is the Poisson binomial distribu-
tion restricted to subsets of fixed size r. More than that, we provide a
stronger result; specifically for the PD and the MPD we describe algo-
rithms that compute in a batched manner the mean and variance on T
for all possible leaf-subset sizes in O((d + log n)n logn) time and O(n)
space.

For the PD and MPD, we implemented our algorithms that perform
batched computations of the mean and variance. We also developed alter-
native implementations that compute in O((d+ log n)n2) time the same
output. For both types of implementations, we conducted experiments
and measured their performance in practice. Despite the difference in
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the theoretical performance, we show that the algorithms that run in
O((d+log n)n2) time are more efficient in practice, and numerically more
stable. We also compared the performance of these algorithms with stan-
dard inexact methods that can be used in case studies. We show that our
algorithms are outstandingly faster, making it possible to process much
larger datasets than before. Our implementations will become publicly
available through the R package PhyloMeasures.

1 Introduction

One of the most important aspects of biological diversity is phylogenetic diver-
sity. Given a certain set of species, ecologists often want to know whether these
species are close or distant phylogenetic relatives [13]. This is relevant in estimat-
ing the importance of conserving some of these species, and can provide insight
into the ecological mechanisms that form species communities [6].

To measure the phylogenetic diversity between a set of species, biologists use
the following process: first, they choose a phylogenetic tree T where the exam-
ined set of species are represented by a subset of leaf nodes R. The next step is
to evaluate a function f(T , R) which measures the distance between the nodes
in R. We call such a function a phylogenetic measure. Two very popular phy-
logenetic measures are the Phylogenetic Diversity (PD) and the Mean Pairwise
Distance (MPD–see Sect. 2 for their formal definition). Whichever measure f
we may use, in most applications it is not enough to compute only the value
f(T , R) for the examined set R; we also have to check if f(T , R) is significantly
different than the value of f on a randomly selected leaf subset in T that has
the same size as R. To measure this, ecologists calculate an index that is defined
as follows:

FI =
f(T , R) − μr(f, T )√

varr(f, T )
,

where r = |R| is the number of elements in R, value μr(f, T ) is the mean
value of f among all leaf subsets in T that consist of r elements, and varr(f, T )
is the variance of f among these subsets. Therefore, to calculate index FI we
need to compute the mean and variance of f over all leaf subsets of size r. Of
course, the value of these two statistical moments depends on the probability
distribution that we use to select the leaf subsets. There exist several algorithms
that efficiently calculate these moments For the special case that leaves are
selected with equal probability [8,12].

Yet, in many cases biologists want to incorporate that certain species are
more abundant than others. This can be done by assigning to each leaf node
v in T a probability value p(v); this value represents the abundance in nature
of the species represented by v. In this setting, the goal is to compute μr(f, T )
and varr(f, T ) so that these reflect the probability values associated with the
leaves in T . We call these values the weighted moments of f . Computing the
weighted moments requires also to define a probability distribution that assigns
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to each subset of r leaves a probability of selection, based on the individual leaf
probabilities. However, so far there does not exist any approach that shows how
to do this exactly and efficiently. Faller et al. provide results for the PD measure,
yet they consider a more relaxed model where the mean and the variance are
computed among leaf subsets of unequal size [3].

In the absence of an exact solution, ecologists calculate the weighted moments
of phylogenetic measures using an inexact approach. According to this approach,
several leaf subsets (usually around a thousand) are selected at random from T .
Then, f is calculated for each of these subsets, and the mean and variance of f are
approximated based on these calculated values. If r and the number of leaves in
T are sufficiently large, this approach does not guarantee a good approximation
of the weighted moments. Even worse, these methods can be very slow since
they require to select and process a large number of samples. Therefore, there
is a need for an exact and also efficient method that calculates the weighted
moments of a phylogenetic measure.

Our Results. Inspired by the above, we present for the first time exact and effi-
cient algorithms for computing the weighted moments of phylogenetic measures
for leaf subsets of fixed size. Let T be a tree with n nodes and depth d, and let r
be a non-negative integer. We show that we can compute in O((d+log n)n log n)
time and O(n) space the mean and the variance for any measure that belongs to
a certain class. We call the measures of this class edge-decomposable measures.
We show that both PD and MPD belong to this class. For the algorithms that we
propose, we calculate the mean and variance of an edge-decomposable measure
based on the following distribution; leaf-subsets are conceptually selected using
the Poisson binomial distribution (where each leaf v is picked in a Bernoulli trial
with probability p(v)), and then a resulting subset is accepted only if it consists
of exactly r elements. Specifically for the PD and MPD, we yield a stronger
result; we present algorithms that compute in a batched manner the weighted
moments of these measures for many leaf-subset sizes. These algorithms compute
the mean and variance for all possible leaf-subset sizes in O((d + log n)n log n)
time.

We implemented the algorithms that perform batched computations of the
weighted moments for PD and MPD. We developed two kinds of implemen-
tations; we implemented the aforementioned algorithms that run in O((d +
log n)n log n) time, but also algorithms that run in O((d+log n)n2) time and are
numerically more stable. For both types of implementations, we conducted exper-
iments and measured their performance in practice. Despite the difference in the
theoretical performance, we show that the algorithms that run in O((d+log n)n2)
time perform better in practice. The latter algorithms are highly parallelisable;
with simple adjustments we were able to boost their performance and process
fast very large phylogenies. For a tree of 71,181 leaves, our implementations com-
puted the weighted moments for all 71,181 subset sizes in less than two and a
half minutes for the PD, and in less than six minutes for the MPD. We compared
the performance of the latter implementations with a program that estimates
the weighted moments based on an inexact sampling method. In this comparison
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our algorithms were found to be remarkably faster, making it possible to process
much larger datasets than before. We intend to make our implementations pub-
licly available through the R package PhyloMeasures [11].

2 Definitions and Notation

Notation Related to Phylogenetic Trees. Let T be a phylogenetic tree. We use E
to denote the edges of T , and for any edge e ∈ E we use w(e) to represent the
weight of e. We indicate the set of nodes in T by V , and we indicate the set of
leaf nodes in this tree by S. We use n to represent the total number of nodes in
T , and we use s to indicate the number of leaves in T . We consider that T is
a rooted tree; in the case of unrooted trees, we pick an arbitrary node which is
not a leaf, and consider this node as the root. We define the depth of T as the
maximum number of edges that appear on a simple path between the root of T
and a leaf. We consider that the maximum degree in T (the maximum number
of nodes adjacent to a single node of T ) is upper-bounded by a constant. Except
the root, all other internal nodes in T have degree greater than two. The results
described in this work can be easily extended to trees of non-constant maximum
degree, by converting such a tree into a binary one in O(n) time. Let R be a
subset of |R| = r leaves in T , and let e be an edge in E. We use SR(e) to denote
the set of leaves in R which appear in the subtree of e. We indicate the number
of these leaves by sr(e). We represent the (unique) minimum-size subtree of T
that spans all the leaves in R by T (R). Let u, v ∈ S be two leaves in T and let
π be the simple path that connects these leaves. We define the cost of π as the
sum of the weights of the edges that appear on this path. We represent this cost
as cost(u, v).

Phylogenetic Measures. Two of the most popular phylogenetic measures are the
Phylogenetic Diversity (PD) and the Mean Pairwise Distance (MPD). The value
of the PD for R is equal to:

PD(T , R) =
∑

e∈T (R)

w(e).

Hence, the value of the PD for R is the cost of the minimum-size subtree T (R)
in T that spans all leaves in R.

Let r be the number of elements in R. The MPD of R is equal to the average
cost of a simple path in T that connects any two distinct leaves in R. More
formally:

MPD(T , R) =
2

r(r − 1)

∑

{u,v}∈R

cost(u, v).
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Probability Distribution. Let T be a phylogenetic tree, and let each leaf node
v ∈ S be associated with a probability value p(v). We consider the following
random process for selecting a subset of exactly r leaves; each leaf v ∈ S is
initially sampled independently with probability p(v), and if the resulting subset
R of sampled leaves consists of exactly r elements then we output R, otherwise
we repeat the process. Therefore, the probability of selecting a subset which does
not have exactly r elements is zero. The probability that a specific subset R of
r leaves is selected according to this process is:

1
Cr

∏

v∈R

p(v)
∏

u∈S\R

(1 − p(u)), (1)

where Cr is a normalising constant equal to:

Cr =
∑

G⊆S
|G|=r

∏

x∈G

p(x)
∏

y∈S\G

(1 − p(y)). (2)

In other words, the probability of selecting a specific subset R of r elements
is equal to the probability of selecting R with n (non-identical) independent
Bernoulli trials, divided by the sum of probabilities of all possible subsets of size
r that are picked with such trials. The distribution that is entailed from this
model is similar to the Poisson binomial distribution, restricted to subsets of
fixed size r [2]. We call this constrained variant the Restricted Poisson Binomial
distribution, or RPB for short. Note that in the RPB model the selection of
two leaves u and v is not statistically independent; this is a consequence of
considering only leaf subsets of the same size.

3 Description of Algorithms

3.1 Computing the Mean and Variance of Edge-Decomposable
Measures

Let T be a phylogenetic tree of constant degree, and consider that every leaf v in
this tree is assigned a probability value p(v) ∈ [0, 1]. We next focus on the prob-
lem of computing the expected value and the variance of phylogenetic measures
when subsets of exactly r leaves are selected from T according to the RPB dis-
tribution. In particular, we examine this problem for phylogenetic measures that
belong to a certain class. We call the measures of this class edge-decomposable
measures. Intuitively, we call a measure edge-decomposable if for any input pair
T , R we can express f(T , R) as a sum of terms such that: each term corresponds
to exactly one edge e ∈ E, and for each edge e the corresponding term can be
evaluated in constant time if we know already the edge weight w(e) and sr(e)
(the number of leaves in R appearing in the subtree of e). More formally, we can
express this as follows:

Definition 1. Let T be a phylogenetic tree and let R be a subset of r leaves in T .
A phylogenetic measure f is edge-decomposable if:
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(I) The value of f can be expressed as a sum of the form:

f(T , R) =
∑

e∈E

w(e) · c(sr(e), r), (3)

where c is a function whose definition does not depend on T or R. We call
c the contribution function of f .

(II) Given values α and β, we can evaluate c(α, β) in constant time.

The proof of the following lemma appears in the full version of this paper [10].

Lemma 1. Measures PD and MPD are edge-decomposable.

Next we sketch an algorithm that computes the expected value of any edge-
decomposable measure according to the RPB model. Let f be such a measure
and let c be its contribution function. Let T be a tree such that each leaf v ∈ S is
assigned a probability value p(v) ∈ [0, 1]. Let Er[f(T , R)] represent the expected
value of f among all subsets R ⊆ S(T ) of exactly r elements selected based on
the RPB distribution. This expected value is equal to:

Er[f(T , R)] =
∑

e∈E

s(e)∑

i=0

w(e) · c(i, r) · P(sr(e) = i), (4)

where P(sr(e) = i) is the probability that exactly i out of the r elements of a
leaf subset fall in the subtree of e. This probability is equal to:

P(sr(e) = i) =
1
Cr

∑

R⊆S
|R|=r and sr(e)=i

∏

v∈R

p(v)
∏

u∈S\R

(1 − p(u)), (5)

where Cr is the normalising constant defined in Eq. (2). From (5) and (2), we
observe that computing P(sr(e) = i) boils down to calculating two sums of
products. To compute these sums efficiently, the key idea is to express them in
terms of coefficients of certain polynomials. More specifically, let G be a subset
of the leaves in T . We define PolG to be the following univariate polynomial:

PolG(x) =
∏

v∈G

(p(v) · x + (1 − p(v))) .

Consider rewriting the above polynomial as a sum of the form
∑

j ajx
j . We call

this sum the summation representation of PolG. In this representation, consider
the coefficient of the k-th power of x. We indicate this coefficient by CF(G, k).
This is equal to:

CF(G, k) =
∑

R⊆G
|R|=k

∏

v∈R

p(v)
∏

u∈G\R

(1 − p(u)).



Fast Phylogenetic Biodiversity Computations 231

Based on this observation, it follows directly that Cr = CF(S, r). More than that,
we can express the probability value P(sr(e) = i) by rewriting (5) as follows:

P(sr(e) = i) =
1
Cr

∑

R⊆S
|R|=r and sr(e)=i

∏

v∈R

p(v)
∏

u∈S\R

(1 − p(u))

=
1
Cr

∑

G⊆S(e)
|G|=i

∏

v∈G

p(v)
∏

u∈S(e)\G

(1 − p(u))
∑

M⊆S\S(e)
|M |=r−i

∏

y∈M

p(y)
∏

z∈(S\(S(e)∪M))

(1 − p(z))

=
CF(S(e), i) · CF(S \ S(e), r − i)

CF(S, r)
. (6)

Hence, to compute value P(sr(e) = i) it suffices to construct the summation
representations of polynomials PolS(e), PolS\S(e), and PolS , and then extract
the required coefficients.

Let G be a subset of leaves G ∈ S, consisting of g leaves. We can compute
PolG in O(g log2 g) time in the following manner: first we construct all binomials
p(v)·x+(1−p(v)) such that v ∈ G. Then, we partition the set of these polynomials
into pairs, and we multiply the elements of each pair using the Fast Fourrier
Transform (FFT) [7]. We repeat this process on the resulting polynomials, until
we end up with a single polynomial. Multiplying two polynomials of maximum
degree k takes O(k log k) time with the FFT. At each repetition, the sum of
the degrees of the processed polynomials is equal to g, and we perform O(log g)
repetitions in total; this leads to O(g log2 g) time for the entire algorithm.

Using the above process, and based on (4) and (6), we could consider the
following approach to compute the mean of f : first we compute Cr = CF(S, r) by
constructing PolS in O(n log2 n) time and extracting the r-th coefficient. Then,
for each edge e ∈ T we construct from scratch polynomials PolS(e) and PolS\S(e),
and use the coefficients of these polynomials to compute values P(sr(e) = i)
for every integer i ∈ [0, s(e)]. The described approach would require in total
O(n2 log2 n) time; for every edge e we need to spend O(n log2 n) time to construct
PolS(e) and PolS\S(e) since one of these polynomials has degree which is at least
n/2. Yet, we can design an algorithm which is more efficient when T is relatively
balanced. In fact, we can achieve a similar result not only for the mean, but also
for the variance of f . We provide the next lemma.

Lemma 2. Let T be a phylogenetic tree that has n nodes and depth d, and let
f be an edge-decomposable measure. Let r be a non-negative integer. We can
compute the mean and variance of f for leaf-subsets of size r according to the
RPB distribution in O((d + log n)n log n) time, using O(n) space.

3.2 Batched Computations for the Moments of Popular Measures

So far, we showed that we can efficiently compute the mean and the variance for
any edge-decomposable measure f ; we showed that this can be done for a single
subset size r in O((d + log n)n log n) time according to the RPB model. The
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described algorithms are generic, and work for any edge-decomposable measure
f ; these algorithms use the contribution function of f as a black box for their
computations, and they do not take into account how this function is defined.
This gives rise to the following question; given a specific phylogenetic measure,
can we derive more efficient algorithms which are especially designed for this
measure? Indeed, in the rest of this section we show that we can do this for two
popular measures; these are the PD and MPD. In particular, let T be a tree
that has s leaves and n nodes in total. For each of these measures we provide
algorithms that calculate the mean and the variance in O((d+log n)n log n) time
for all subset sizes in the range {1, 2, . . . , s}. That means, instead of spending
O((d + log n)n log n) time for computing the statistical moments of a measure
for a single subset size r, we can compute the moments for all s possible leaf
subset sizes in asymptotically the same time. We state formally our results for
PD and MPD in the following theorem. The proof of the theorem appears in the
full paper.

Theorem 1. Let T be a phylogenetic tree that has n nodes and depth d. We can
compute the mean and the variance of the PD and MPD on T in the RPB model
for all possible leaf-subset sizes in O((d + log n)n log n) time in total. The space
required for these computations is O(n). In a more general setting, let A(k) be
the time complexity of a polynomial multiplication algorithm when applied on two
polynomials of maximum degree k. We can compute the mean and the variance
of the PD and MPD on T in the RPB model for all possible leaf-subset sizes in
O((d + log n)A(n)) time in total, using O(n) space.

4 Implementations and Experiments

Based on our theoretical results, we implemented algorithms that compute in a
batched manner the mean and variance of the PD and MPD. More specifically,
for each of these two measures we implemented two algorithms; the first algo-
rithm for each measure computes the mean and the variance for all leaf-subset
sizes in O((d+log n)n log n) operations and uses the FFT. The second algorithm
implemented for each measure computes the same output while performing mul-
tiplications of polynomials in a naive manner; the multiplication subroutine that
we use here takes O(k2) time to compute the product of two polynomials of max-
imum degree k. Therefore, and according to Theorem 1, the running time of the
latter implementation is O((d + log n)n2). We refer to the implementations that
make use of the FFT as fft pd and fft mpd. We call these the FFT-based
implementations. We refer to the other two implementations as naive pd and
naive mpd. We call those two the naive-based implementations. All described
implementations were developed in C++, and for each implementation we also
developed an interface to R.

We conducted experiments on our implementations using two different phy-
logenetic tree datasets. The first dataset is a phylogenetic tree of all mammal
species [1]. It has 4,510 leaf nodes, 6,618 nodes in total, and depth 39. To speed
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up our algorithms, we converted this tree into a binary one by adding extra
interior nodes and edges of zero weight. This can be performed in O(n) time,
and maintains the same mean and variance as for the initial one for any edge-
decomposable measure. The resulting tree has 9,019 nodes, and depth 42. We
refer to the latter tree as mammals. The second dataset is a tree that represents
the phylogeny of eukaryotic organisms [4]. This tree is unrooted, so we picked
an internal node and used that as the root. We converted this tree into a binary
one, and the resulting dataset has 142,361 nodes (71,181 leaves) and depth 86.
We refer to the this tree as eukaryotes.

All experiments were performed on a 64-bit computer with an Intel i7-3770
CPU. This CPU consists physically of eight virtual cores where each core is a
3.40 GHz processor. The main memory of the computer is 16 Gigabytes, and the
operating system installed on this computer is Ubuntu version 14.04.

In the first set of experiments, we measured the running time of all four
implementations on subtrees that we extracted from mammals. We extracted
eighteen trees from mammals such that each tree consisted of 250k + 260 leaves,
with k ranging from zero to seventeen. For each extracted tree, we ran our imple-
mentations and computed the mean and the variance for all possible leaf-subset
sizes. The running times measured for this experiment are illustrated in Fig. 1.
We see that the naive-based implementations outperform the FFT-based ones.
Also, the implementations for the PD are faster than the ones for MPD (this is
expected since for the MPD computations we need to construct more polynomi-
als than for PD). For the largest tree that we used (the complete mammals tree
with 4,510 leaves) implementation fft pd took 10.6 s to compute the required
moments, while naive pd took 3.08. For the same tree, program fft mpd took
24.83 s and naive mpd took 7.83 s. We also repeated this experiment using an
inexact method. More specifically, for a given subset-size r we select at random
from mammals one thousand leaf-subsets of this size. For this we used function
sample in software platform R; this function samples a subset from a weighted
set of elements by sequentially picking an element t with probability p(t) divided
by the sum of probabilities of all remaining items. For each sample, the PD and
MPD values where computed using the functions of package PhyloMeasures,
and the mean and the variance of each measure was calculated from these val-
ues. We refer to this inexact method as the heuristic. The heuristic method took
more than an hour to execute for this tree, both for the PD and the MPD.
Even for the smallest tree that we considered in this experiment (260 leaves),
the heuristic method took 19.22 and 26.92 s for the PD and MPD respectively.

This difference between the naive-based and FFT-based programs seems
to contradict the theoretical complexity of the corresponding algorithms. One
explanation is that the FFT has a larger constant hidden in its asymptotical
time complexity than the naive multiplication algorithm. It is the case that the
gap in performance becomes smaller as the tree size increases. Even so, prelimi-
nary experiments showed that also for much larger trees (such as the complete
eukaryotes, with > 70,000 leaves) the FFT-based algorithms were slower.
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Fig. 1. Left: the measured running times of the FFT-based and naive-based imple-
mentations on trees extracted from mammals dataset. Right: the running times of the
two parallelized implementations on trees extracted from eukaryotes.

Also, as already mentioned, the FFT is a numerically unstable method. The
robustness of this method depends on the precision of evaluating trigonometric
functions, to generate the so-called complex roots of unity (also known as “twin-
dle” factors) [9]. As a result, for our FFT-based implementations and for all the
datasets that we considered, almost the entire output was wrong. For this rea-
son, and because of the difference in performance, we focused on improving the
efficiency of the naive-based implementations. We describe this in more detail
with the next set of experiments.

In the second set of experiments, we boosted the naive-based implementa-
tions by introducing parallelism. We did this by re-designing the naive operator
that performs polynomial multiplications. More specifically, let Pα and Pβ be
two polynomials of maximum degree m, and let g denote the number of available
processors. When computing the product Pγ = Pα ⊗ Pβ , we split the compu-
tation of the at most 2m coefficients of Pγ into 2m/g groups, and fed each
group to a different processor. This simple adjustment leads to an algorithm
whose time complexity is O((d+log n)(n2/g+n log n)). We made this adjustment
to both of our naive-based methods. We refer to these adjusted implementations
as parallel pd and parallel mpd. We evaluated the running time of the paral-
lelized implementations on trees extracted from the eukaryotes dataset. These
trees consist of 5000k + 1181 leaves, with k ranging from zero to fourteen. For
these experiments, at any point during the executions, the maximum number of
active parallel threads was set to eight, the number of available processors on
our computer. The results of the experiments appear in Fig. 1.

We see that both implementations perform very fast even for datasets with
many thousands of leaves. For the complete eukaryotes tree, parallel pd took
143 s to execute, and parallel mpd took 355 s. Recall that, during these execu-
tions, each program calculated the mean and the variance for as many leaf-subset
sizes as the number of leaves in the tree.
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In the third set of experiments we demonstrate how our implementations
can speedup the computations for standard case studies in Ecology. To do this,
we used the mammals tree and a dataset that represents mammal communities
around the world. The community dataset that we used is a presence-absence
matrix which is structured as follows; each column of the matrix corresponds
to a mammal species, and each row corresponds to a geographical region. Each
entry Mij in the matrix has value one or zero, based on whether the i-th species
resides in the region represented by the j-th row.

To construct the matrix, we produced a raster of the world with a resolution
of 193 km. Then, we used polygons that represent the geographical areas where
mammal species reside. These polygons were acquired from the International
Union for Conservation of Nature (IUCN) [5]. We overlayed the polygons on
the world raster, and extracted for each cell the community of species whose
polygons overlap with the cell. We then represented each extracted community
as a separate row in the presence-absence matrix. We refer to the resulting
matrix as communities. The communities matrix consists of 4,971 rows and
4,173 columns. The number of columns in this matrix is smaller than the number
of leaves in mammals because we excluded marine mammals, and because data
was absent for a few of the other species. To each species v in mammals we
assigned a probability value p(v) equal to the sum of entries in the corresponding
column of communities, divided by the total number of rows in the matrix. The
species that were not represented by a column in communities were assigned a
probability value equal to zero.

For each species set R in communities we used our implementations to com-
pute an index based on the MPD. This index is called the reverse-Net Related-
ness Index (rNRI), the reverse of the NRI index [13]. For a species set R of r

species this is equal to: rNRI(T , R) = MPD(T ,R)−μr(T )√
varr(T )

, where T is the phyloge-

netic tree, μr(MPD, T ) is the mean value of MPD among all leaf subsets of r
elements, and varr(MPD, T ) is the variance of MPD among these subsets. The
rNRI values were computed using the interface of our implementations in R. To
calculate MPD(T , R) for a single subset R we used the efficient implementation
of this measure that appears in the R package PhyloMeasures. Figure 2 shows
the world grid colored according to the computed rNRI values (observe that
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8

Fig. 2. The world raster of 193 Km resolution, colored according to the rNRI values
of mammal communities. Red regions represent areas of higher relative phylogenetic
biodiversity, while blue regions indicate lower diversity.
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Australia shows remarkably high rNRI values, due to mixing of many marsupial
and placental mammal lineages, leading to high pairwise distances; in contrast,
northern South America shows particularly low rNRI values, indicating a con-
centration of closely related lineages).

Using parallel mpd, the time taken to compute all the rNRI values is 2.6 s.
The time taken to compute these values with naive mpd is 8.5 s. Using the heuris-
tic method, it took more than 65 min and 58 s to compute the rNRI values for
all the species sets in communities. Comparing this with the performance of our
methods, we conclude that our algorithms provide a huge speedup for standard
applications in Ecology. This allows to process much larger datasets than it was
possible before. We intend to incorporate our parallelized implementations to
the R package PhyloMeasures.
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1 Abstract

Understanding the dynamic regulation of gene expression in cells requires the
study of important temporal processes, such as differentiation, the cell division
cycle, or tumorigenesis. However, in such cases, the precise sequence of changes
is generally not known, few if any marker genes are available, and individual
cells may proceed through the process at different rates. These factors make it
very difficult to judge a given cell’s position within the process. Additionally,
bulk RNA-seq data may blur aspects of the process because cells at sampled at
a given wallclock time may be at differing points along the process. The advent
of single cell RNA-seq enables study of sequential gene expression changes by
providing a set of time slices or “snapshots” from individual moments in the
process. To combine these snapshots into a coherent picture, we need to infer an
“internal clock” that tells, for each cell, where it is in the process.

Several techniques, most notably Monocle and Wanderlust, have recently
been developed to address this problem. Monocle and Wanderlust have both
been successfully applied to reveal biological insights about cells moving through
a biological process. However, a number of aspects of the trajectory construc-
tion problem remain unexplored. For example, both Monocle and Wanderlust
assume that the set of expression values they receive as input have been curated
in some way using biological prior knowledge. Wanderlust was designed to work
on data from protein marker expression, a situation in which the number of
markers is relatively small (dozens, not hundreds of markers) and the markers
are hand-picked based on prior knowledge of their involvement in the process.
In the initial application of Monocle, genes were selected based on differential
expression analysis of bulk RNA-seq data collected at initial and final time-
points. In addition, Monocle uses ICA, which assumes that the trajectory lies
along a linear projection of the data. In general, this linearity assumption may
c© Springer International Publishing Switzerland 2016
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not hold in biological systems. In contrast, Wanderlust can capture nonlinear
trajectories, but works in the original high-dimensional space, which may make
it more susceptible to noise, particularly when given thousands of genes, many
of which are unrelated to the process being studied. Another challenging aspect
of trajectory construction is the detection of branches. For example, a devel-
opmental process may give rise to multiple cell fates, leading to a bifurcation
in the manifold describing the process. Wanderlust assumes that the process is
non-branching when constructing a trajectory. Monocle provides the capability
of dividing a trajectory into a branches, but requires the user to specify the
number of branches.

In this paper, we present SLICER (Selective Locally linear Inference of
Cellular Expression Relationships), a new approach that uses locally linear
embedding (LLE) to reconstruct cellular trajectories. SLICER provides four
significant advantages over existing methods for inferring cellular trajectories:
(1) the ability to automatically select genes to use in building a cellular trajectory
with no need for biological prior knowledge; (2) use of locally linear embedding,
a nonlinear dimensionality reduction algorithm, for capturing highly nonlinear
relationships between gene expression levels and progression through a process;
(3) automatic detection of the number and location of branches in a cellular
trajectory using a novel metric called geodesic entropy; and (4) the capability to
detect types of features in a trajectory such as “bubbles” that no existing method
can detect. Comparisons using synthetic data show that SLICER outperforms
existing methods, particularly when given input that includes genes unrelated to
the trajectory. We demonstrate the effectiveness of SLICER on newly generated
single cell RNA-seq data from human embryonic stem cells and murine induced
cardiomyocytes.
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Abstract. Genome-wide chromosome conformation capture (Hi-C) has
been widely used to study chromatin interactions and the 3D struc-
tures of the genome. However, few computational approaches are exist-
ing to quantitatively analyze Hi-C data, thus hindering the investigation
of the association between 3D chromatin structure and genome func-
tion. Here, we present HSA, a novel approach to reconstruct 3D chro-
matin structures at the genome-scale by modeling multi-track Hi-C data.
HSA models chromatin as a Markov chain under a generalized linear
model framework, and uses simulated annealing to globally search for
the latent structure underlying the cleavage footprints of different restric-
tion enzymes. HSA is robust, accurate, and outperforms or rivals existing
computational tools when evaluated on simulated and real datasets in
diverse cell types.

Keywords: 3D chromatin structure · Multi-track modeling · Genome-
wide · Hi-C
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Introduction and Motivation. The immune system consists of hundreds of immune
cell types working coordinately to maintain tissue homeostasis. Thus, discovering the
genetic control underlying inter-individual variation in the abundance of immune cell
subpopulations requires simultaneous quantification of numerous immune cell types.
Current experimental technologies, such as fluorescence-activated cell sorting (FACS)
[1], can follow the dynamics of only a limited number of cell types, hence hindering a
comprehensive analysis of the full genetic complexity of immune cell quantities. One
possible way to attain a global immunophenotyping is to mathematically infer, by
means of a deconvolution technique [2–5], the abundance of a variety of immune cell
subpopulations based on gene-expression profiles from a complex tissue, without the
need of direct cell sorting measurements. Based on these predicted immunophenotypes,
a genome-wide association study can be applied to uncover the genetic basis for these
immune traits.

Methods. We developed a novel computational methodology to identify significant
associations between immune traits and polymorphic DNA loci. Our method combines
(i) prior knowledge on the transcriptional profile of various immune cell-types;
(ii) gene-expression data in a given cohort of individuals; and (iii) genotyping data of
the same individuals. Our method utilizes a deconvolution method which computa-
tionally infers the global dynamics of immune cell subsets for each individual.
Specifically, we exploit associations between cell types, genes and genotypes to select
an informative group of marker genes, rather than the full transcriptional profile, to
attain a more accurate deconvolution-based model.

Results. We applied our method to both synthetic and real biological data to evaluate
its ability to uncover the genetic basis of immune traits. Our analysis of synthetic data
confirms that our method can handle non-conventional artifacts and outperforms the
standard approach. Overall, the methodology presented is general and can be applied
using various deconvolution tools and in the context of various biological applications,
in both human and mouse.
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Extended Abstract

Recent advances in sequencing technologies have enabled high throughout pro-
filing of several types of molecular datasets including mRNAs, miRNAs, methy-
lation, and more. Many studies profile one or more of these types of data in a
time course. An important experimental design question in such experiments is
the number of repeats that is required for accurate reconstruction of the signal
being studied. While several studies examined this issue for static experiments
much less work has focused on the importance of repeats for time series analysis.

Obviously, the more points that can be profiled between the start and end
points, the more likely it is that the reconstructed trajectory is accurate. How-
ever, in practice the number of time points that are used is usually very small.
The main limiting factor is often the budget. While technology has greatly
improved, high-throughput NGS studies still cost hundreds of dollars per specific
experiment. This is a major issue for time series studies, especially those that
need to profile multiple types of biological datasets (mRNA, miRNAs, methy-
lation etc.) at each selected point. Another issue that can limit the number of
experiments performed (and so the total number of time points that can be
used) is biological sample availability. Thus, when designing such experiments
researchers often need to balance the overall goals of reconstructing the most
accurate temporal representation of the data types being studied and the need
to limit the number of experiments as discussed above.

Given these constraints, an important question when designing high-
throughput time-series studies is the need for repeat experiments. On the one
hand, repeats are a hallmark of biological experiments providing valuable infor-
mation about noise and reliability of the measured values. On the other, as
discussed above, repeats reduce the number of time points that can be profiled
which may lead to missing key events between sampled points. Further, if we
assume that the biological data being profiled can be represented by a (smooth)
continuous curve, which is often the case, then the autocorrelation between suc-
cessive points can also provide information about noise in the data. In such cases,
more time points, even at the expense of fewer or no repeats, may prove to be a
better strategy.

Indeed, when looking at datasets deposited in GEO (roughly 25% of all GEO
datasets are time-series), we observe that most of these do not use repeats.
c© Springer International Publishing Switzerland 2016
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However, to the best of our knowledge, no analysis to date was performed to
determine the trade-offs between a dense sampling strategy (profiling more time
points) and repeat sampling (profiling fewer points, with more than one experi-
ment per point). To study this issue, we use both theoretical analysis and analysis
of real data. In our theoretical analysis, we consider a large number of piecewise
linear curves and noise levels and compare the expected errors when using the
two sampling methods. While the profiles in these biological datasets are usu-
ally not piecewise linear, such curves represent important types of biological
responses (for example, gradual or single activation, cyclic behavior, increase
and then return to baseline, etc.). We also analyze time-series gene expression
data to determine the performance of these strategies on real biological data.

Overall, for both, theoretical analysis when using reasonable noise levels and
real biological data, we see that dense sampling outperforms repeat sampling
indicating that for such data autocorrelation can indeed be a useful feature when
trying to reduce the impact of noise on the reconstructed curves. Our results
support the commonly used (though so far not justified) practice of reducing or
eliminating repeat experiments in time-series high-throughput studies.
Supporting code and datasets: www.cs.cmu.edu/∼esefer/genetheoretical
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Extended Abstract

With the projected rise of genotyping in the clinic, there has been increas-
ing interest in using patient data to perform genomewide association studies
(GWAS) [5, 9]. The idea is to allow doctors and researchers to query patient
electronic health records (EHR) to see which diseases are associated with which
genomic alterations, avoiding the expense and time required to recruit and geno-
type patients for a standard GWAS. Such a system, however, leads to major
privacy concerns for patients [6]. These privacy concerns have led to tight reg-
ulations over who can access this patient data–often it is limited to individuals
who have gone through a time consuming application process.

Various approaches have been suggested for overcoming this bottleneck.
Specifically, there has been growing interest in using a cryptographic tool known
as differential privacy [2] to allow researchers access to this genomic data [3, 4, 8,
11, 12]. Previous approaches for performing differentially private GWAS are
based on rather simple statistics that have some major limitations; in particu-
lar, they do not correct for a problem known as population stratification, some-
thing that is needed when dealing with the genetically diverse populations in
many genetic databases. Population stratification is the name given to system-
atic genomic differences between human populations [10]. It turns out that these
differences make it difficult for GWAS to find biologically meaningful associa-
tions between common alleles in the population and phenotypes. In order to
avoid this problem, various methods have been suggested (EIGENSTRAT [7],
LMMs [10], genomic control [1]).

In this work we focus on producing GWAS results that can handle popula-
tion stratification while still preserving private phenotype information (namely
disease status). In particular, we develop a framework that can turn commonly
used GWAS statistics (such as LMM based statistics and EIGENSTRAT) into
tools for performing privacy preserving GWAS. We demonstrate this framework
on one such statistic, EIGENSTRAT [7]. Our method, denoted PrivSTRAT,
uses a differentially private framework to protect private phenotype information
(disease status) from being leaked while conducting GWAS. Importantly, ours
is the first method able to correct for population stratification while preserving
privacy in GWAS results. This advance introduces the possibility of applying a
c© Springer International Publishing Switzerland 2016
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differentially private framework to large, genetically diverse groups of patients
(such as those present in EHR!).

We test the resulting differentially private EIGENSTRAT statistic, PrivS-
TRAT, on both simulated and real GWAS datasets to demonstrate its utility.
Our results show that for many common GWAS queries, PrivSTRAT is able to
achieve high accuracy while enforcing realistic privacy guarantees.

Implementation available at: http://groups.csail.mit.edu/cb/PrivGWAS.
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Recent sequencing technology breakthroughs have resulted in an exponen-
tial increase in the amount of available sequencing data, enabling major sci-
entific advances in biology and medicine. At the same time, the compute
and storage demands associated with processing such datasets have also dra-
matically increased. Outsourcing computation to commercial low-cost clouds
provides a convenient and cost-effective solution to this problem. However, expos-
ing genomic data to an untrusted third-party also raises serious privacy concerns
[1]. Read alignment is a critical and computationally intensive first step of most
genomic data analysis pipelines. While significant effort has been dedicated to
optimize this task, few approaches have addressed outsourcing this computation
securely to an untrusted party. The few secure solutions that exist either do not
scale to whole genome sequencing datasets [2] or are not competitive with the
state of the art in read mapping [3].

In this work we present BALAUR, a privacy preserving read mapping tech-
nique that securely outsources a significant portion of the read-mapping task to
the public cloud, while being highly competitive with existing state-of-the-art
aligners. Our approach is to reduce the alignment task to a secure voting proce-
dure based on matches between read and reference kmers, taking advantage of the
high similarity between the reads and their corresponding positions in the refer-
ence. At a high level, BALAUR can be summarized in the following two phases:
(1) fast identification of a few candidate alignment positions in the genome using
the locality sensitive hashing scheme MinHash [4] on the private client and (2)
secure kmer voting against each such candidate position to determine the opti-
mal read mappings on the public server. To outsource Phase 2 securely to the
cloud, voting is performed using encrypted kmers of each read and its selected ref-
erence candidate contigs. In order to prevent frequency attacks using background
knowledge (e.g. kmer repeat statistics), our encryption scheme uses the traditional
cryptographic hashing scheme SHA-1, along with unique per-read keys and intra-
read repeat masking, which prevents the adversary from detecting kmers that are
equal across and inside each read or contig. We compare the performance of BAL-
AUR with several popular and efficient non-cryptographic state-of-the-art read
aligners, such as BWA-MEM [5] and Bowtie 2 [6], using simulated and real whole
human genome sequencing datasets. We demonstrate that our approach achieves
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similar accuracy and runtime performance on typical short-read datasets, while
being significantly faster than state of the art in long read mapping.
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Next-generation sequencing technologies allow the measurement of somatic muta-
tions in a large number of patients from the same cancer type. One of the main
goals in the analysis of these mutations is the identification of mutations associ-
ated with clinical parameters, for example survival time. This goal is hindered by
the extensive genetic heterogeneity in cancer, with different genes mutated in dif-
ferent patients. This heterogeneity is due to the fact that genes and mutations act
in the context of pathways, and it is therefore crucial to study mutations in the
context of interactions among genes. In this work we study the problem of iden-
tifying subnetworks of a large gene-gene interaction network that have somatic
mutations associated with survival from genome-wide mutation data of a large
cohort of cancer patients. We formally define the associated computational prob-
lem by using a score for subnetworks based on the test statistic of the log-rank
test, a widely used statistical test for comparing the survival of two given popu-
lations. We show that the computational problem is NP-hard in general and that
it remains NP-hard even when restricted to graphs with at least one node of large
degree, the case of interest for gene-gene interaction networks.

We propose a novel randomized algorithm, called Network of Mutations
Associated with Survival (NoMAS), to find subnetworks of a large interaction
network whose mutations are associated with survival time. NoMAS is based on
the color-coding technique, but differently from previous applications of color-
coding our score is not additive, therefore NoMAS does not inherit the guarantees
given by color-coding for the identification of the optimal solution. Nonetheless,
we prove that under a reasonable model for mutations in cancer NoMAS does
identify the optimal solution with high probability when the subnetwork size is
not too large and given mutations from a sufficiently large number of patients.
We implemented NoMAS and tested it on simulated and cancer data. The results
show that our method does indeed find the optimal solution and performs bet-
ter than greedy approaches commonly used to solve optimization problems on
networks. Moreover, on two large cancer datasets NoMAS identifies subnetworks
with significant association to survival, while none of the genes in the subnetwork
has significant association with survival when considered in isolation.

This work is supported, in part, by the University of Padova under project
CPDA121378/12 and by NSF grant IIS-1247581.
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Abstract. The reconstruction of phylogenetic trees from mixed popula-
tions has become important in the study of cancer evolution, as sequenc-
ing is often performed on bulk tumor tissue containing mixed populations
of cells. Recent work has shown how to reconstruct a perfect phylogeny
tree from samples that contain mixtures of two-state characters, where
each character/locus is either mutated or not. However, most cancers
contain more complex mutations, such as copy-number aberrations, that
exhibit more than two states. We formulate the Multi-State Perfect Phy-
logeny Mixture Deconvolution Problem of reconstructing a multi-state
perfect phylogeny tree given mixtures of the leaves of the tree. We charac-
terize the solutions of this problem as a restricted class of spanning trees
in a graph constructed from the input data, and prove that the prob-
lem is NP-complete. We derive an algorithm to enumerate such trees
in the important special case of cladisitic characters where the order-
ing of the states of each character is given. We apply our algorithm to
simulated data and to two cancer datasets. On simulated data, we find
that for a small number of samples, the Multi-State Perfect Phylogeny
Mixture Deconvolution Problem often has many solutions, but that this
ambiguity declines quickly as the number of samples increases. On real
data, we recover copy-neutral loss of heterozygosity, single-copy amplifi-
cation and single-copy deletion events, as well as their interactions with
single-nucleotide variants.
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The genetic heterogeneity found within tumour cells is considered a major cause
for the development of drug resistance during cancer treatment. Subclonal cell
populations may possess a distinct set of genetic lesions that render them non-
susceptible to the selected therapy resulting in an eventual tumour regrowth
originating from the surviving cells. To develop more efficient therapies it is
therefore paramount to understand the subclonal structure of the individual
tumour along with its mutational history.

Classical next-generation sequencing techniques provide admixed mutation
profiles of millions of cells whose deconvolution into subclones is often an under-
determined problem that limits the resolution at which the subclonal compo-
sition can be reconstructed. Recent technological advances now allow for the
sequencing of individual cells. While this progress comes at the cost of higher
error rates, it still provides the possibility to reconstruct mutational tumour
histories at an unprecedented resolution.

We present a stochastic search algorithm to identify the evolutionary history
of a tumour from noisy and incomplete mutation profiles of single cells. Our app-
roach, termed SCITE, comprises a flexible MCMC sampling scheme that allows
us to compute the maximum likelihood mutation tree and to sample from its
posterior probability distribution. Tree reconstruction can include attachment
of the single-cell samples and can be combined with estimating the error rates
of the sequencing experiments. We evaluate SCITE on real cancer data showing
its scalability to present day single-cell sequencing data and improved accuracy
in tree reconstruction over existing approaches. In addition, we estimate from
simulation studies the number of cells necessary for reliable mutation tree recon-
struction which could inform the design of future single-cell sequencing projects.
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Understanding associations among microbes and associations between
microbes and their environmental factors from metagenomic sequencing data is a
key research topic in microbial ecology, which could help us to unravel real interac-
tions (e.g., commensalism, parasitism, competition, etc.) in a community as well as
understanding community-wide dynamics. Although several statistical tools have
been developed for metagenomic association studies, they either suffer from com-
positional bias or fail to take into account environmental factors that directly affect
the composition of a microbial community, leading to some false positive asso-
ciations. For example, two unrelated microbes may appear to be associated just
because they both respond to the same environmental perturbation.

We propose metagenomic Lognormal-Dirichlet-Multinomial (mLDM), a hier-
archical Bayesian model with sparsity constraints to bypass compositional
bias and discover new associations among microbes and associations between
microbes and their environmental factors. mLDM is able to: (1) infer both
conditionally dependent associations among microbes and direct associations
between microbes and environmental factors; (2) consider both compositional
bias and variance of metagenomic data; and (3) estimate absolute abundance
for microbes. These associations can capture the direct relationships underly-
ing pairs of microbes and remove the indirect connections induced from other
common factors. mLDM discovers the metagenomic associations using a hierar-
chical Bayesian graphical model with sparse constraints, where the metagenomic
sequencing data generating process is captured by the hierarchical latent vari-
able model. Specifically, we assume that the read counts are proportional to

This paper was selected for oral presentation at RECOMB 2016 and an abstract is
published in the conference proceedings. The work is supported by the NSFC grant
(Nos: 61305066, 61561146396, 61332007, 61322308), NIH grant (NIH/NHGRI 1U01
HG006531-01) and NSF grants (NSF/OCE 1136818 and NSF/DMS ATD 7031026).
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the latent microbial ratios which are determined by their absolute abundance.
The microbial absolute abundance is influenced by two factors: (1) environmen-
tal factors, whose effects on the microbes are denoted by a linear regression
model; and (2) the associations among microbes encoded by a latent vector,
which is determined by the matrix that records microbial associations and the
mean vector that affects the basic absolute abundance of microbes. By introduc-
ing sparsity regularization, mLDM can capture both the conditionally dependent
associations among microbes and the direct associations between microbes and
environmental factors. The task is formulated as solving an optimization prob-
lem, which can be solved using coordinate descent or proximal methods. For
model selection, we choose the best parameters via extended Bayesian informa-
tion criteria (EBIC).

To show the effectiveness of the proposed mLDM model, we conducted
several experiments using synthetic data, the western English Channel time-
series sequencing data, and the Ocean TARA data, and compared it with
several state-of-the-art methodologies, including PCC, SCC, LSA, CCREPE,
SparCC, CCLasso, glasso (graphical lasso), SPIEC-EASI (mlasso) and SPIEC-
EASI (glasso). The results demonstrate that the association network computed
by the mLDM model, is closest to the true network, and that the mLDM model
can recover most of the conditionally dependent associations. For the latter two
experimental datasets, mLDM can discover most known interactions in addition
to several potentially interesting associations.
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1 Introduction

Metagenomic sequencing techniques produce large data sets of DNA fragments
(e.g. reads or contigs) from environmental samples. To understand the microbial
communities and functional structures within the samples, metagenomic sequence
fragments need to be first assigned to their taxonomic origins from which they
were derived (also called “binning”) to facilitate downstream analyses.

Arguably the most popular metagenomic binning approaches are alignment-
based methods. A sequence fragment is searched against a reference database con-
sisting of full genomes of organisms, and the highest scoring organism is assigned
as the taxonomic origin. Although efficient sequence alignment algorithms, includ-
ing BWA-MEM [1], Bowtie2 [2] and (mega)BLAST [3], can readily be used for this
purpose, the computational cost of alignment-based methods becomes prohibitive
as the size of the sequence dataset grows dramatically, which is often the case in
recent studies.

Another completely different binning approach is based on genomic sequence
composition, which exploits the sequence characteristics of metagenomic frag-
ments and applies machine learning classification algorithms to assign puta-
tive taxnomic origins to all fragments. Since classifiers, such as support vector
machines, are trained on whole reference genome sequences beforehand, composi-
tional methods normally are substantially faster than alignment-based methods
on large datasets. The rationale behind compositional-based binning methods is
based on the fact that different genomes have different conserved sequence com-
position patterns, such as GC content, codon usage or a particular abundance
distribution of consecutive nucleotide k-mers. To design a good compositional-
based algorithm, we need to extract informative and discriminative features from
the reference genomes. Most existing methods, including PhyloPythia(S) [4, 5],
use k-mer frequencies to represent sequence fragments, where k is typically small
(e.g. 6 to 10). While longer k-mers, which capture compositional dependency
c© Springer International Publishing Switzerland 2016
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within larger contexts, could potentially lead to higher binning accuracy, they
are more prone to noise and errors if used in the supervised setting. Moreover,
incorporating long k-mers as features increases computational cost exponentially
and requires significantly larger training datasets.

2 Method

We introduce a novel compositional metagenomic binning algorithm, Opal,
which robustly represents long k-mers in a compact way to better capture the
long-range compositional dependencies in a fragment. The key idea behind our
algorithm is built on locality-sensitive hashing (LSH), a dimensionality-reduction
technique that hashes input high-dimensional data into low-dimensional buck-
ets, with the goal of maximiz the probability of collisions for similar input data.
To the best of our knowledge, it is the first time that LSH functions have
been applied for compositional-based metagenomic binning. We propose to use
them first to represent metagenomic fragments compactly and subsequently for
machine learning classification algorithms to train metagenomic binning mod-
els. Since metagenomic fragments can be very long, sometimes from hundreds
of bps to tens of thousands of bps, we hope to construct compositional pro-
files to encode long-range dependencies within long k-mers. To handle large
ks, we develop string LSH functions to compactly encode global dependencies
with k-mers in a low-dimensional feature vector, as oppose to directly using a
4k-length k-mer profile vector. Although LSH functions are usually constructed
in a uniformly random way, we propose a new and efficient design of LSH func-
tions based on the idea of the low-density parity-check (LDPC) code invented
by Robert G Gallager for noisy message transmission [6, 7]. A key observation
is that Gallager’s LDPC design not only leads to a family of LSH functions
but also makes them efficient such that even a small number of random LSH
functions can effectively encode long fragments. Different from uniformly ran-
dom LSH functions, the Gallager LSH functions are constructed structurally
and hierarchically to ensure the compactness of the feature representation and
robustness when sequencing noise appears in the data. Methodologically, start-
ing from a Gallager design matrix with row weight t, we construct m hash
functions to encode high-order sequence compositions within a k-mer. In con-
trast to the O(4k) complexity it would take to represent contiguous k-mers, our
proposed Gallager LSH adaptation requires only O(m4t) time. For very long
k-mers, we construct the Gallager LSH functions in a hierarchical fashion to fur-
ther capture compositional dependencies from both local and global contexts. It
is also possible to use Opal as a “coarse search” procedure in the compressive
genomics manner to reduce the search space of alignment-based methods [8].
We first apply the compositional-based binning classifier to identify a very small
subset or group of putative taxonomic origins which are ranked very highly by
the classifier. Then we perform sequence alignment between the fragment and
the reference genomes of the top-ranked organisms. This natural combination of
compositional-based and alignment-based methods provides metagenomic bin-
ning with high scalability, high accuracy and high-resolution alignments.
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3 Results

To evaluate the performance of Opal, we trained an SVM model with features gen-
erated by the Gallager LSH method. When tested on a large dataset of 50 micro-
bial species, Opal achieved better binning accuracy than the traditional method
that uses contiguous k-mer profiles as features [4]. Moreover, our method is more
robust to mutations and sequencing errors, compared to the method with the
contiguous k-mer representation. Opal outperformed (in terms of robustness and
accuracy) BWA-MEM [1], the state-of-the-art alignment-based method. Remark-
ably, we achieved up to two orders of magnitude improvement in binning speed on
large datasets with mutations rates ranging from 5 % to 15 % over 20–50 microbial
species; moreover, we found Opal to be substantially more accurate than BWA-
MEM when the rate of sequencing error is high (e.g., 10–15 %). It is counterintu-
itive that a compositional binning approach is as robust as or even more robust
than alignment-based approaches, particularly in the presence of high sequenc-
ing errors or mutations in metagenomic sequence data. Finally, we combined both
compositional and alignment-based methods, by applying the compositional SVM
with the Gallager LSH coding as a “coarse-search” procedure to reduce the tax-
onomic space for a subsequent alignment-based BWA-MEM “fine search.” This
integrated approach is almost 20 times faster than original BWA-MEM and also
has substantially improved binning performance on noisy data. The above results
indicate that Opal enables us to perform accurate metagenomic analysis for very
large metagenomic studies with greatly reduced computational cost.
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2011CBA00300, 2011CBA00301, the National Natural Science Foundation of China
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Metagenome sequencing has emerged as a technology of choice for analyzing
bacterial populations and discovery of novel organisms and genes. While many
metagenomics assemblers have been developed recently, assembly of metage-
nomic data remains difficult thus stifling biological discoveries.

We developed metaSPAdes tool that addresses the specific challenges of
metagenomic assembly by combining new algorithmic ideas with methods previ-
ously proposed for assembling single cells [1] and highly polymorphic genomes [2].

metaSPAdes features (i) efficient analysis of strain mixtures, (ii) a novel
repeat resolution approach that utilizes the local read coverage of the regions
that are being reconstructed, (iii) a novel algorithm that, somewhat counter-
intuitively, utilizes strain differences to improve reconstruction of the consensus
genomes of a strain mixture, and (iv) improved running time and reduced mem-
ory footprint to enable assemblies of large metagenomes.

We benchmarked metaSPAdes against the state-of-the-art metagenomics
assemblers (MEGAHIT [3], IDBA-UD [4] and Ray-Meta [5]) across diverse
datasets and demonstrated that it results in high-quality assemblies.
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Extended Abstract

Communication and coordination play a major role in the ability of bacterial
cells to adapt to changing environments and conditions. Recent work has shown
that such coordination underlies several aspects of bacterial responses includ-
ing their ability to develop antibiotic resistance. Here we show that a variant
of a commonly used machine learning algorithm, distributed gradient descent, is
utilized by large bacterial swarms to efficiently search for food when faced with
obstacles in their environment. Similar to conventional gradient descent, by sens-
ing the food gradient, each cell has its own belief about the location of the food
source. However, given limits on the ability of each cell to accurately detect and
move toward the food source in a noisy environment with obstacles, the indi-
vidual trajectories may not produce the optimal path to the food source. Thus,
in addition to using their own belief each cell also sends and receives messages
from other cells (either by secreting specific proteins or by physical interaction),
which are integrated to update its belief and determine its direction and velocity.
The process continues until the swarm converges to the food source.

Our main contribution is to better understand the computation performed
by cells during collective foraging. Current models of this process are largely
based on differential equation methods which do not fully take into account how
the topology of the cellular interaction network changes over time. Furthermore,
the assumptions made by these models about the ability of cells to identify the
source(s) of the messages and to utilize a large (effectively continuous valued)
set of messages, are unrealistic given the limited computational powers bacteria
cells possess.

Here, we develop a distributed gradient descent algorithm that makes bio-
logically realistic assumptions regarding the dynamics of the cells, the size of the
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messages communicated, and their ability to identify senders, while still solving
the bacterial food search problem more efficiently (in terms of the overall com-
plexity of messages sent) and more quickly (in terms of the time it takes the
swarm to reach the food source) when compared to current differential equation
models. We prove that our model converges to a local minimum, under reason-
able assumptions on how bacteria communicate and perform simulation studies
and analysis of experimental data. These experiments indicate that our commu-
nication model is feasible and leads to improvements over prior methods and
over single cell and single swarm behavior.

There are many parallel requirements of computational and biological sys-
tems, suggesting that each can learn from the other. We conclude by discussing
how the efficient and robust bacterial gradient descent algorithms we developed
can be used by distributed sensors or wireless networks that operate under strict
communication and computation constraints.

Supporting movies: www.andrew.cmu.edu/user/sabrinar/Bacteria
Simulation Movies/

www.andrew.cmu.edu/user/sabrinar/Bacteria_Simulation_Movies/
www.andrew.cmu.edu/user/sabrinar/Bacteria_Simulation_Movies/
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Abstract. Aptamers, short synthetic RNA/DNA molecules binding specific tar-
gets with high affinity and specificity, are utilized in an increasing spectrum of
bio-medical applications. Aptamers are identified in vitro via the Systematic
Evolution of Ligands by Exponential Enrichment (SELEX) protocol. SELEX
selects binders through an iterative process that, starting from a pool of random
ssDNA/RNA sequences, amplifies target-affine species through a series of selec-
tion cycles. HT-SELEX, which combines SELEX with high throughput sequenc-
ing, has recently transformed aptamer development and has opened the field to
even more applications. HT-SELEX is capable of generating over half a billion
data points, challenging computational scientists with the task of identifying
aptamer properties such as sequence-structure motifs that determine binding.
While currently available motif finding approaches suggest partial solutions to
this question, none possess the generality or scalability required for HT-SELEX
data, and they do not take advantage of important properties of the experimental
procedure.

We present AptaTRACE, a novel approach for the identification of sequence-
structure binding motifs in HT-SELEX derived aptamers. Our approach lever-
ages the experimental design of the SELEX protocol and identifies sequence-
structure motifs that show a signature of selection towards a preferred structure.
In the initial pool, secondary structural contexts of each k-mer are distributed
according to a background distribution. However, for sequence motifs involved
in binding, in later selection cycles, this distribution becomes biased towards
the structural context favored by the binding interaction with the target site.
Thus, AptaTRACE aims at identifying sequence motifs whose tendency of resid-
ing in a hairpin, bugle loop, inner loop, multiple loop, dangling end, or of being
paired converges to a specific structural context throughout the selection cycles
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of HT-SELEX experiments. For each k-mer, we compute the distribution of
its structural contexts in each sequenced pool. Then, we compute the relative
entropy (KL-divergence) based score, to capture the change in the distribution
of its secondary structure contexts from a cycle to a later cycle. The relative
entropy based score is thus an estimate of the selection towards the preferred
secondary structure(s).

We show our results of applying AptaTRACE to simulated data and an in
vitro selection consisting of high-throughput data from 9 rounds of cell-SELEX.
In testing on simulated data, AptaTRACE outperformed other generic motif
finding methods in terms of sensitivity. By measuring selection towards sequence-
structure motifs by the change in their distributions of the structural contexts
and not based on abundance, AptaTRACE can uncover motifs even when these
are present only in a small fraction of the pool. Moreover, our method can also
help to reduce the number of selection cycles required to produce aptamers
with the desired properties, thus reducing cost and time of this rather expensive
procedure.
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Hidden Markov Models (HMM) are statistical models frequently used in Copy
Number Variant (CNV) detection. Classic frequentist maximum likelihood tech-
niques for parameter estimation like Baum-Welch are not guaranteed to be glob-
ally optimal, and state inference via the Viterbi algorithm only yields a single MAP
segmentation.Nevertheless,Bayesianmethods likeForward-BackwardGibbs sam-
pling (FBG) are rarely used due to long running times and slow convergence.

Here, we exploit that both state sequence inference and wavelet regression
reconstruct a piecewise constant function from noisy data, though under differ-
ent constraints. We draw upon a classic minimaxity result from wavelet theory
to dynamically compress the data into segments of successive observation whose
variance can be explained as emission noise under the current parameters in each
FBG iteration, and are thus unlikely to yield state transitions indicating a break
point. We further show that such a compression can be rapidly recomputed with
little overhead using a simple data structure. Due to the summary treatment
of subsequent observations in segments (or blocks) derived from the wavelet
regression—see panels (a) and (b) below—we simultaneously achieve drastically
reduced running times as well as improved convergence behavior of FBG. To the
best of our knowledge this shows for the first time that a fully Bayesian HMM
can be competitive with or outperform the current state of the art.

This makes routine diagnostic use and re-analysis of legacy data collections
feasible; to this end, we also propose an effective automatic prior. An open
source software implementation is available at http://schlieplab.org/Software/
HaMMLET/.
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One of the hallmarks of cancer genome is aneuploidy, which causes abnormal
copy numbers of alleles. Structural variations (SVs) can further modify the ane-
uploid cancer genomes into a mixture of rearranged genomic segments with exten-
sive range of somatic copy number alterations (CNAs). Indeed, aneuploid cancer
genomes have significantly higher rate of CNAs and SVs. However, althoughmeth-
ods have been developed to identify SVs and allele-specific copy number of genome
(ASCNG) separately, no existing algorithm can simultaneously analyze SVs and
ASCNG. Such integrated approach is particularly important to fully understand
the complexity of cancer genomes.

In this work, we introduce a novel computational method Weaver to identify
allele-specific copy number of SVs (ASCNS) as well as the inter-connectivity of
them in aneuploid cancer genomes. To our knowledge, this is the first method
that can simultaneously analyze SVs and ASCNG. Under the same method
framework, Weaver also provides base-pair resolution ASCNG. Note that in this
work we specifically focus on the quantification of SV copy numbers, which is
the key novelty of our method. Our framework is flexible to allow users to choose
their own variant calling (including SV) tools. We use the variant calling results
to build a cancer genome graph, which is subsequently converted to a pair-
wise Markov Random Field (MRF). In the MRF, the ASCNS and SV phasing
configuration, together with ASCNG, are hidden states in the nodes and the
observations contain all sequencing information, including coverage, read linkage
between SNPs as well as connections between SVs and SNPs. Therefore, our goal
of finding the ASCNS and SV phasing together with ASCNG is formulated as
searching the maximum a posteriori (MAP) solution for MRF. We apply Loopy
Belief Propagation (LBP) framework to solve the problem.

We extensively evaluated the performance of Weaver using simulation. We
also compared with single-molecule Optical Mapping analysis and evaluated
using real data (including MCF-7, HeLa, and TCGA whole genome sequenc-
ing samples). We demonstrated that Weaver is highly accurate and can greatly
refine the analysis of complex cancer genome structure. We believe Weaver pro-
vides a more integrative solution to study complex cancer genomic alterations.
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When the first reads generated using Single Molecule Real Time (SMRT) tech-
nology were made available, most researchers were skeptical about the ability of
existing algorithms to generate high-quality assemblies from error-prone SMRT
reads. Roberts et al. [3] even referred to this widespread skepticism as the error
myth and argued that new assemblers for error-prone reads need to be developed
to debunk this myth.

Recent algorithmic advances resulted in accurate assemblies from error-prone
reads generated by Pacific Biosciences and even from less accurate Oxford
Nanopore reads. However, previous studies of SMRT assemblies were based on the
overlap-layout-consensus (OLC) approach, which dominated genome assembly in
the last decade, is inapplicable to assembling long reads. This is a misunderstand-
ing since the de Bruijn approach, as well as its variation called the A-Bruijn graph
approach [2], was originally developed to assemble rather long Sanger reads.

There is also a misunderstanding that the de Bruijn graph approach can only
assemble highly accurate reads and fails while assembling error-prone SMRT
reads, yet another error myth that we debunk. The A-Bruijn graph approach
was originally designed to assemble inaccurate reads as long as any similari-
ties between reads can be reliably identified. However, while A-Bruijn graphs
have proven to be useful in assembling Sanger reads and mass spectra (highly
inaccurate fingerprints of amino acid sequences of peptides [1]), the question of
how to apply A-Bruijn graphs for assembling SMRT reads remains open. We
show how to generalize de Bruijn graphs to assemble long error-prone reads and
describe the ABruijn assembler, which results in more accurate genome recon-
structions than the state-of-the-art algorithms for assembling Pacific Biosciences
and Oxford Nanopore reads.
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In studies of molecular evolution, phylogenetic trees are rooted trees, whereas
phylogenetic networks are rooted acyclic digraphs. Edges are directed away from
the root and leaves are uniquely labeled with taxa in phylogenetic networks.
An important bioinformatics task is checking the “consistency” of two evolution-
ary models. This has motivated researchers to study the problem of determining
whether a tree is displayed by a network or not, which is called the tree contain-
ment problem (TCP) [2, 3]. The cluster containment problem (CCP) is related
algorithmic problem that asks whether or not a subset of taxa is a cluster in a
tree displayed by a network [2].

Both the TCP and CCP are NP-complete [3], even on a very restricted class
of networks [4]. An open questions was posed by van Iersel et al. asking whether
or not the TCP is solvable in polynomial time for binary reticulation-visible
networks [1, 2, 4]. A network is reticulation-visible if every reticulation separates
the root of the network from some leaves [2], where reticulations are internal
nodes of indegree greater than one and outdegree one.

We give an affirmative answer to the open problem of van Iersel, Semple and
Steel by presenting a cubic time algorithm for the TCP for arbitrary reticulation-
visible networks. The key tool used in our answer is a powerful decomposition
theorem. It also allows us to design a linear-time algorithm for the cluster con-
tainment problem for networks of this type and to prove that every galled net-
work with n leaves has 2(n − 1) reticulation nodes at most. The full version of
this work can be found at arXiv.org (arXiv:1507.02119v2).
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Abstract. Protein-protein interaction (PPI) network alignment greatly benefits
the understanding of evolutionary relationships among species and identifying
conserved sub-networks. Although a few methods have been developed for
multiple PPI networks alignment, the alignment quality is still far away from
perfect. This paper presents a new method ConvexAlign for joint alignment of
multiple PPI networks that can generate functionally much more consistent
alignments than existing methods.

1 Introduction

This paper presents a novel method ConvexAlign for one-to-one global network
alignment (GNA). A one-to-one alignment is a mapping in which one protein is cannot
be aligned more than one protein in another network. ConvexAlign calculates the
optimal alignment by maximizing a scoring function that integrates sequence simi-
larity, network topology and interaction preserving. We formulate the problem as an
integer program and relax it to a convex optimization problem, which enables us to
simultaneously align all the PPI networks, without resorting to the widely-used
seed-and-extension or progressive alignment methods. Then we use ADMM to solve
the relaxed convex optimization problem. Our results show that ConvexAlign out-
performs several popular alignment methods both topologically and biologically.

2 Method

Scoring function. Let G ¼ V ;Eð Þ denote a PPI network where V is the set of vertices
(proteins) and E is the set of edges (interactions). A one-to-one multiple alignment
between N networks is given by a binary matrix X where Xij vi; vj

� � ¼ 1 if and only if vi
and vj are aligned and there is at most one 1 in each row or column of X. It is easy to see
X is positive semi-definite. Let C represent a matrix where each value Cij indicates the
similarity between two proteins vi and vj. Our goal is to find an alignment that max-
imizes the number of matched orthologous proteins and the number of preserved edges.
We define the node score of an alignment A as follows: fnode Að Þ ¼ P

1� i\j�N
Cij;Xij.

We also define the edge score to count the number of preserved edges between all pairs
of networks:
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fedge Að Þ ¼
X

1� i\j�N

~1; yij; 8 vi; vi
0ð Þ 2 Ei; vj; vj

0� � 2 Ej; 1� i\j�N;

where yij ¼ Xij vi; vj
� �

Xij vi0; vj0
� �

. We aim to find the multiple alignment A that maxi-
mizes a combination of node and edge score as follows: f ¼ 1�ð
aÞfnodeðAÞþ afedgeðAÞ, where a describes the trade-off. By doing some calculations, the
above objective function can be reformulated as

max
X

1� i\j�N

1� að Þ Cij;Xij
� �þ a ~1; yij

D E
ð1Þ

yij 2 f0; 1g Eij j� Ejj j;Xij 2 f0; 1g Vij j� Vjj j; 1� i\j�N

Bijyij �F ij Xij
� �

;Xij~1�~1;XT
ij
~1�~1; 1� i\j�N

X<0;Xii ¼ I Vij j; 1� i�N

where Bij is coefficient and ℱij is a linear operator that picks the corresponding element
of Xij for each constraint.

Optimization via Convex Relaxation. It is NP-hard to directly optimize (1) because
the variables are binary. Therefore, we first relax the problem to obtain a convex
optimization problem that can be solved to global optimum within polynomial time.
We then use an ADMM method to solve the relaxed convex optimization problem that

Fig. 1 Specificity and the number of consistent clusters generated by the competing methods for
different c on real data where c is the number of species.
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can align all the proteins together. Finally, a greedy rounding strategy is applied to
convert fractional solution to integral.

3 Results

We use both real and synthetic data to evaluate the performance of our method,
ConvexAlign, with several popular methods. Tested on the PPI networks of five species
human, yeast, fly, mouse and worm, ConvexAlign shows a better performance in terms
of specificity and the number of functionally consistent clusters for all the clusters
composed of proteins from c ¼ 2; 3; 4; 5 species (Fig. 1). We have similar results on
synthetic data.
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1 Introduction

Protein-Protein Interaction (PPI) networks, providing a comprehensive land-
scape of protein interacting patterns, enable us to explore biological processes
and cellular components at multiple resolutions. For a biological process, a num-
ber of proteins need to work together to perform the job. Proteins densely inter-
act with each other, forming large molecular machines or cellular building blocks.
Identification of such densely interconnected clusters or protein complexes from
PPI networks enables us to obtain a better understanding of the hierarchy and
organization of biological processes and cellular components.

Most existing methods apply efficient graph clustering algorithms [1–3] on
PPI networks, often failing to detect possible densely connected subgraphs and
overlapped subgraphs. In this paper, we introduce a novel approximate algorithm
to efficiently enumerate putative protein complexes from biological networks.
The problem is formulated as finding a diverse set of dense subgraphs that
cover as many as proteins as possible. To handle large networks, we take a
divide-and-conquer approach to speedup the algorithm in a distributed manner.
By comparing with existing clustering-based algorithms on several yeast and
human PPI networks, we demonstrate that our method can detect more putative
protein complexes and achieve better accuracy.

2 Method

We propose to model the problem of detecting complexes in biological networks
as discovering the diversified maximal dense subgraphs. With the density mea-
sure, the dense subgraphs, that are protein complexes, can be defined explicitly
and flexibly. Instead of enumerating all the dense subgraphs, we only find a small
set of diversified maximal dense subgraphs. By maximal, we mean those com-
plexes that are not subset of any other dense subgraphs thus cannot be further
extended; By diversified, we mean a diverse set of dense subgraphs which cover
c© Springer International Publishing Switzerland 2016
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as many proteins as possible in the network. Combined into one goal, overlap is
allowed but redundancy should be minimized.

In this paper, searching and diversifying are integrated tightly into one whole
process. The key component of our algorithm is a set of efficient search trees that
compactly traverse all the dense subgraphs by a depth-first construction. A node-
specific potential is adopted to guide the search process. Furthermore, we identify
two properties, the pseudo anti-monotonicity property for density and the sub-
modularity property for diversity, and develop efficient pruning techniques based
on these two properties. In this way, we extract the diversified dense subgraphs
on the fly during the enumeration of the maximal dense subgraphs, thus greatly
improve the scalability of the algorithm. Finally, the algorithm is scaled up in
parallel to handle large-scale networks.

3 Result

We extensively evaluate the effectiveness and efficiency of our method on several
PPI networks from yeast and human. We first evaluate the number of results
and coverage for different methods on all the datasets under different density
thresholds, showing our method can detect more complexes, while getting larger
coverage. Then, we assess the quality of the predicted complexes by a composite
score of three scores: fraction (frac), accuracy (acc) and maximum matching ratio
(mmr), on both weighted and unweighted network (which is the binary version
of the weighted datasets). In almost all the networks, our approach detects more
putative complexes, and achieves higher accuracy and better one-to-one mapping
with reference complexes in the ground truth databases than several state-of-art
algorithms. The source code and supplementary data are available at https://
github.com/zgy921028/MDSMine.

(a) (b)

Fig. 1. Results (bottom-up: frac, acc, mmr) of various methods on 4 PPI weighted
datasets using SGD (a) and MIPS (b) gold standard.
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