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1 Introduction

There is a growing literature in economics and finance on methods of dealing with

catastrophic risks which can be seen as rare events with major consequences (see

Chichilnisky (2009) and the references therein). When attention is on financial

econometrics, some of these methods focus on estimating parameters of time series

models using quantile regression and copula techniques (see Alexander 2008; Allen

et al. Allen et al. 2009, 2012; Badshah 2012; Barnes and Hughes 2002; Bouyé

and Salmon 2009; Engle and Manganelli 2004; Koenker and Xiao 2006; Kumar

2012; Patton 2004, 2006a, b, 2009; Taylor 1999; Trivedi and Zimmer 2005; Xiao

2009 among many others). In this chapter we describe the application of quantile

regression and copula techniques to United States index stock market price return

and volatility data. The quantile regression model we use was initially described in

Koenker and Bassett (1978), and is an extension of the classical least squares estima-

tion of the conditional mean to a collection of different conditional quantile function

models. It is essentially a statistical technique intended to estimate and conduct infer-

ence about conditional quantile functions. It has the additional advantage of being

robust to heteroskedasticity, skewness and leptokurtosis which are typical features

of financial data.

The main purpose of this chapter is to apply quantile regression methods to inves-

tigate the relation between stock returns and implied volatilities. Though such an

investigation has been done before, the analysis in this chapter differs in terms of data

choice, span and the use of a GARCH filter to control for changes in the volatilities

of the series. Two of the series we examine have not been investigated in the quan-

tile regression framework: the Dow Jones Industrial Average Index and the S&P 100

Index. The other two have been examined but for a different time period. We also
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focus on tails of the distributions, which is particularly important since volatility

and extreme movements are not synonymous. As noted by many others, (see Neftci

2000) the prices of two assets could exhibit the same volatility but very different

patterns with regards to their extremes. For this reason, we consider methods that

examine the tails of the price distributions. Quantile regression methods are of use

when dealing with relationships at the tails of distributions. The relation between

stock returns and implied volatilities has long been studied given its practical impor-

tance for areas such as risk management, option pricing, and event studies (see for

example, the early papers by Cox and Ross 1976; Black 1976; Christie 1982). In sev-

eral recent papers, the relationship was shown to be asymmetric (see for example,

Badshah 2012; Dennis et al. 2006; Fleming et al. 1995; Giot 2005; Hibbert et al.

2008; Low 2004; Whaley 2000; Wu 2001; Allen et al. 2012). An asymmetric rela-

tionship means that the negative change in the stock market returns has a higher

impact on the volatility index than a positive change, or vice-versa. For this reason,

volatility indices are often referred to as being investors gauges of fear (see Whaley

2000). The theoretical basis for this asymmetric volatility-return relationship is the

focus of two hypotheses; namely, the leverage hypothesis (see Black 1976; Christie

1982) and the volatility feedback hypothesis (see French et al. 1987; Campbell and

Hentschel 1992). The leverage hypothesis states that if the stock price of a firm

declines, the relative proportion of equity (debt) value to the firm value decreases

(increases), which makes the firm’s stock riskier and increases its volatility as a

consequence. The volatility feedback hypothesis states that the negative change in

expected return tends to be intensified whereas the positive change in the expected

return tends to be dampened and these effects generate the asymmetric volatility

phenomenon.

The plan of the chapter is as follows. Section 2 discusses quantile regression.

Section 3 provides a review of some copula functions and dependence measures.

Section 4 deals with non-linear quantile regressions using copula theory. Section 5

deals with the data on US equities and the results. Section 6 contains the conclusion.

2 Quantile Regression

In this section, we provide a brief discussion of quantile regression. For convenience

and as a prelude to introducing the simple linear quantile regression model, we

briefly discuss a simple linear regression model. A simple bivariate linear regres-

sion model may be written as:

yt = 𝛼 + 𝛽xt + 𝜀t (1)

where the parameters 𝛼 and 𝛽 are constants and y is the independent variable, x

is the dependent variable, 𝜀 is the error term and subscript t is for time period t.

The standard assumptions include the provision that the errors are independent and

identically distributed with mean zero and that the x is exogenous suggesting that the
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conditional expectation of 𝜀t is zero. These conditions mean we can write E(y ∣ x) =
𝛼 + x𝛽. Assuming further that the y and x is bivariate normal will assure that the

distribution function F(y ∣ x) is normal and this distribution is completely specified

from knowledge of the conditional mean and conditional variance equations. The

ordinary least squares estimates are then the solution to the optimization problem

min
𝛼𝛽

∑

t
(yt − 𝛼 − 𝛽xt)2 (2)

When the joint distribution of x and y is not bivariate normal we need more than

the conditional mean and conditional variance to specify the conditional distribution

of the dependent variable. It is for this reason we need quantiles and by implication a

quantile regression framework. The definition of Koenker and Bassett’s (1978) linear

quantile regression is stated in terms of an optimization problem. Let q ∈ (0, 1) and

the qth quantile of the error term be defined as F−1
𝜀

, where the error has a distribution

function given as F
𝜀

The simple linear quantile regression model is then given as

F−1(q ∣ x) = 𝛼 + x𝛽 + F−1
𝜀
(q). (3)

where F−1(q ∣ x) is the q conditional quantile of the dependent variable in the general

case.

More generally, let (y1, y2,… , yT ) be a random sample on the regression process

with ut = yt − xt𝛽 having distribution function F and (x1, x2,… , xT ) be a sequence of

K-vectors of a known design matrix, the q-th quantile regression will be any solution

to the following problem:

min
𝛽𝜀Rk (

∑

t𝜀𝜏q

q ∣ yt − xt𝛽 ∣ +
∑

t𝜀𝜏1−q

(1 − q) ∣ yt − xt𝛽 ∣) (4)

with 𝜏q = {t ∶ yt ≥ xt𝛽} and 𝜏1−q is the complement.

Notice that the median (quantile) regression estimator minimizes the symmet-

rically weighted sum of absolute errors (where the weight is equal to 0.5). The

other conditional quantile functions are estimated by minimizing an asymmetrically

weighted sum of absolute errors, where the weights are now functions of the quantile

of interest. The properties of the estimator is provided in Theorem 1 of Koenker and

Basset (1978). As noted by Buchinsky (1998), quantile regression models have many

useful features: (i) with respect to non-gaussian error terms, quantile regression esti-

mators may be more efficient than least-square estimators, (ii) the entire conditional

distribution can be characterized, (iii) different relationships between the regressor

and the dependent variable may arise at different quantiles.

Whilst the modern treatment of quantile regression can be traced to Koenker and

Basset (1978), the use of the classical least squares’ methodology as a modern sta-

tistical framework can be traced to Galton (1886). As pointed out by Abdi (2007),

Galton used it in his work on the heritability of size, which formed the foundations

of correlation and (also gave the name to) regression analysis. For a fuller discussion
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of the history and pre-history of the classical least squares methodology, the reader

is referred to Harper (1974–1976). A distinguishing feature of Galton’s regression

approach is the minimization of the sum of squares of residuals in order to enable one

to estimate models for the conditional mean functions. The least squares method-

ology framework is not useful if interest is not focused on the conditional mean,

to avoid this short-coming researchers developed the quantile regression method.

Quantile regression methods provide a way for estimating models for the conditional

median function, and the full range of other conditional quantile functions. It is capa-

ble of providing a more complete statistical analysis of the stochastic relationships

among random variables by supplementing the estimation of conditional mean func-

tions with techniques for estimating an entire family of conditional quantile func-

tions. The estimated conditional quantile functions give a much more complete pic-

ture of the effect of covariates on the location, scale and shape of the distribution of a

response variable. The method has been extended, and it has found successful appli-

cation in many areas of applied econometrics. For example, in labor economics, we

can find examples based on the works of: Buchinsky and Leslie (1997) who investi-

gated wage structure; Eide and Showalter (1999) together with Buchinsky and Hunt

(1999) who investigated earnings mobility; and Eide and Showalter (1998) who con-

sidered issues related to educational attainment. In financial econometrics we can

find examples based on the works of: Taylor (1999) who estimated the distribution

of multiperiod returns using quantile regression; Engle and Manganelli (2004) who

proposed estimating value at risk (VaR) using quantile regression; Koenker and Xiao

(2006) who proposed a quantile autoregression model and applied it to weekly U.S.

gasoline prices; Bouyé and Salmon (2009) who developed a theory of non-linear

quantile regression modeling using copula and applied the theory to examine con-

ditional quantile dependency in the foreign exchange market; and Xiao (2009) who

developed a theory for quantile cointegration and applied the proposed model to US

stock index data.

It should be noted that an important generalization of the basic linear quantile

regression to the non-linear case was developed by Powell (1986) using a censored

regression modeling framework. The consistency of non-linear quantile regression

estimation has been investigated by White (1994), Engle and Manganelli (2004) and

Kim and White (2003). For an overview of quantile regression, see the guideline for

empirical research by Buchinsky (1998), the surveys by Koenker and Hallock (2001)

and Yu et al. (2003) together with the text by Koenker (2005).

3 Review of Copula Functions and Dependence

In this section, we state some well-known properties of copula functions and briefly

discuss some measures of dependence. We start with a few definitions and introduce

notation and terminology that are consistent throughout this chapter.

The interest in studying the relationship between United States index stock market

price return and implied volatility data motivates the need to discuss copula func-
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tions. A full treatment of copulas and their properties can be found in Joe (1997) and

Nelsen (2006). Nelsen (2006) defines copulas as “functions that join or couple mul-

tivariate distribution functions to their one-dimensional marginal distribution func-

tions.” Copula functions are particularly attractive to work with since they allow

us to separately model the marginal distribution and the dependence structure. In

dealing with dependence, copulas can provide us information on both the degree of

dependence and the structure of dependence. In particular, copula functions contain

information about the joint behavior of the random variables in the tails of the distri-

bution and can shed light on the symmetric, or asymmetric nature of the dependence.

Linear correlation is unable to shed light on tail dependence and/or the symmetry

property of dependence. We now provide a definition of a two-dimensional copula

and we state the most important result in copula theory, Sklar (1959)’s theorem.

Definition 1 (Nelsen (2006), p. 10) A two-dimensional copula (or 2-copula, or

briefly, a copula) is a real function C with the following properties:

1. For every u, v in [0, 1],

C(u, 0) = 0 = C(0, v) (5)

and

C(u, 1) = u,C(1, v) = v; (6)

2. For every, u1, u2, v1, v2in [0, 1] such that u1 ≤ u2 and v1 ≤ v2,

C(u2, v2) − C(u2, v1) − C(u1, v2) + C(u1, v1)) ≥ 0. (7)

Theorem 1 (Sklar (1959)’s Theorem, Nelsen (2006), p. 18) Let X and Y be two
random variables with joint distribution F. Then, there exists a copula C such that
for all x,y in ℝ̄ satisfying F(x, y) = C(FX(x),FY (y)). If FX ,FY are continuous, then C
is unique and FX ,FY represent the marginal distributions of X and Y respectively.

The above theorem of Sklar is very important, since it provides a way for us to

analyse the dependence structure of multivariate distributions without studying mar-

ginals distributions. In the case of multivariate continuous distribution functions, the

theorem allows us to view the univariate margins and the multivariate dependence

structure as separate entities. The underlying dependence structure of the multivari-

ate distribution can be represented by an adequate copula function.

Note from above, any bivariate distribution function whose margins are standard

uniform distributions is a copula. Furthermore, copula functions are joint distribution

functions of standard uniform random variables:C(u, v) = Pr(U1 ≤ u,U2 ≤ v). They

are also subjected to a version of the Fréchet-Hoeffding bounds inequality.

Theorem 2 (Fréchet-Hoeffding bounds inequality, Nelsen (2006), p. 11) Let M(u,
v) = min(u, v) and W(u, v) = max(u + v - 1.0) then for every copula C and every
(u, v) ∈ [0, 1]2,

W(u, v) ≤ C(u, v) ≤ M(u, v). (8)
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M is referred to as the Fréchet-Hoeffding upper bound and W as the Fréchet-

Hoeffding lower bound.

Definition 2 A parameter 𝜃 of a copula is called the dependence parameter if for

an m-variate function F, the copula associated with F is a distribution function C ∶
[0, 1]m → [0, 1] that satisfies

F(y1, y2,… , yT ) = C(F1(y1),… ,Fm(ym); 𝜃).

The copula dependence parameter measures the dependence between the marginals

and may be a vector of parameters. In bivariate applications, the dependence para-

meter is often represented by a scalar parameter and is the focus of estimation.

Copula theory has found successful applications in many fields. For applica-

tions and overview of copula to quantitative risk, see Embrechts et al. (2003) and

Embrechts et al. (2001), among others. For applications in finance and financial time

series, see Cherubini et al. (2004), and Patton (2009).

3.1 Some Dependence Concepts

In this subsection, we discuss the concept of dependence. There is a fairly large lit-

erature that deals with this concept and from what has been reported we can view

dependence as falling into at least three broad classes. The first discusses dependence

in terms of linear dependence relationship between variables in the center of the dis-

tribution or rank correlations if interest centers on non-linear monotonic transforma-

tion of the variables. The second considers dependence between variables in the tail

of the distribution in the presence of extreme events. The third examines dependence

along the whole distribution. Examples of the first approach are numerous and they

are exemplified in the use of classical least-squares regression to unravel dependence

between variables. Measures based on “regular” linear correlation of Pearson’s 𝜌 and

the rank correlation of Kendall’s 𝜏 and Spearman’s 𝜌 are often reported with this kind

of analysis. Pearson’s 𝜌 deals with the linear dependence between random variables

and when nonlinear transformations are applied to those random variables, linear

correlation is not preserved. Instead, a rank correlation coefficient measure, such

as Kendall’s 𝜏 or Spearman’s 𝜌, will be more appropriate. The rank correlations

measure the degree to which large or small values of one random variable asso-

ciates with large or small values of another random variable. Examples of the sec-

ond approach are found in the works of Longin and Solnik (2001), Ang and Chen

(2002) and (Patton 2006a, b) among many others who discuss exceedance correla-

tion and tail dependence. One focus is to discuss dependence in terms of exceedance

correlation which is defined as the correlation between two variables X and Y, con-

ditional on both variables being above or below certain thresholds 𝜇1 and 𝜇2, respec-

tively. The other focus is in terms of tail dependence a concept which is related to

exceedance correlation but it is different. Tail dependence is a key measure for risk
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management, which mainly focuses on the extreme events of joint distribution. It

measures the probability that both variables are simultaneously in their lower or

upper tails. The lower (left) and upper (right) tail dependence coefficients, 𝜆l and 𝜆r,

are defined as below.

Definition 3 𝜆l = limu→0Pr[FY (y) ≤ u ∣ FX(x) ≤ u] = limu→0
C(u,u)

u

Definition 4 𝜆r = limu→1Pr[FY (y) ≥ u ∣ FX(x) ≥ u] = limu→1
1−2u+C(u,u)

1−u

In both cases 𝜆l and 𝜆r ∈ [0, 1]. If 𝜆l or 𝜆r is positive, X or Y is said to be left

(lower) or right (upper) tail dependent. Patton (2009), provide examples of analysis

based on tail dependency.

Examples of the third approach can be found in many of the papers on quan-

tile regression and some recent papers in copula quantile regression modeling. In

this approach, a copula quantile regression is specified and the dependency between

variables of interests are reported for different quantiles. The approach is discussed

in Sect. 4.

3.2 Some Copula Functions

There are a large number of copulas to work with when modeling data. Each copula

imposes a different dependence structure on the data. Joe (1997, Chap. 5), Nelsen

(2006: 116–119) and Trivedi and Zimmer (2005) discuss a wide variety of bivariate

copulas and their properties. In this sub-section, we discuss some copulas that have

appeared frequently in finance applications, and we briefly describe their dependence

structures.

The most common copulas can be divided into two broad types: Elliptical and

Archimedean Copulas. Examples of the former being-Gaussian Copula and Stu-

dent’s t-Copula and of the latter being Clayton copula, Frank Copula and Gumbel

copula.

3.2.1 Elliptical Copulas

(i) Gaussian Copula.

Let us define ui = Fi(xi). The Gaussian (or normal) copula is the copula of the mul-

tivariate normal distribution. It takes the form

CGaussian(u1, u2; 𝜌) = 𝛷G(𝛷−1(u1), 𝛷−1(u2); 𝜌)

=
∫

𝛷
−1(u1)

−∞ ∫

𝛷
−1(u2)

−∞

1
2𝜋(1 − 𝜌

2)0.5
e{

−(x21−2𝜌x1x2+x
2
2)

2(1−𝜌2)
}dx1dx2

where 𝛷G is the standard bivariate normal distribution, 𝛷 is the cumulative distrib-

ution function of the standard normal distribution, with Pearson’s product moment
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correlation coefficient 𝜌, 𝜌 ∈ (−1, 1). The normal copula is quite flexible and allows

for equal degrees of positive and negative dependence and it includes both the lower

and upper Fréchet bounds in its permissible range.

(ii) Student’s t-copula.

Student’s t-copula is based on the multivariate t-distribution in the same way the

Gaussian copula is based on the multivariate normal distribution. It adds joint fat

tails to the Gaussian copula. The bivariate t-copula takes the form:

Ct(u1, u2; 𝜈, 𝜌) = 𝜙
𝜌
(𝜙−1

𝜈
(u1), 𝜙−1

𝜈
(u2))

=
∫

t−1
𝜈
(u1)

−∞ ∫

t−1
𝜈
(u2)

−∞

1
2𝜋(1 − 𝜌

2)0.5

× {1 +
(x21 − 2𝜌x1x2 + x22)

𝜈(1 − 𝜌
2)

}−
(𝜈+2)
2 dx1dx2

where t−1
𝜈

denotes the inverse of the cdf of the standard univariate t-distribution with

𝜈 degrees of freedom. The dependency parameters are 𝜌 and 𝜈 with 𝜌 ∈ (−1, 1) and

𝜈 > 2. The parameter 𝜈 controls the heaviness of the tails and when 𝜈 ≤ 3 the vari-

ance does not exist and when 𝜈 ≤ 5, the fourth moment does not exist. Large val-

ues of 𝜈, approximate a Gaussian distribution; Ct(u1, u2; 𝜈, 𝜌) → 𝛷G(u1, u2; 𝜌). The

t-copula is attractive because the degree of tail dependency can be set by changing the

degrees of freedom. The copula is important in finance and has been recommended

by a number of authors. (See, for example, Breymann et. al. 2003).

3.2.2 Archimedean Copulas

Archimedean copulas are an important class of copulas that have a wide range of

applications. They are easy to construct from generators. A great variety of families

of copulas belongs to this class, and they have many nice properties. (see Nelsen

2006). For a generator 𝜙, the Archimedean copula can be defined as:

CArchimedean(u1, u2; 𝛼) = 𝜙
−1(𝜙(u1) + 𝜙(u2))

and the density is given as:

cArchimedean(u1, u2; 𝛼) = 𝜙
−1
(2)(𝜙(u1) + 𝜙(u2))Π2

i=1𝜙
′(ui).

where 𝜙
−1
(2) is the 2nd derivative of the inverse generator function, 𝜙() is a convex

decreasing function, with 𝜙(1) = 0. The function 𝜙() depends on a single parameter

𝛼 that reflects the degree of dependence. Archimedean copulas allow a wide range

of dependence structure. Their mathematical and statistical properties are studied

in Genest and Rivest (1993). We will discuss three members of the Archimedean

families, namely Gumbel, Clayton and Frank Copula. The copula parameter 𝛼 of

the Archimedean copula is related to Kendall’s 𝜏 coefficient of correlation which is

defined as
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𝜏 = 2
n(n − 1)

n∑

i

∑

j>1
sgn(Xi − Xj)(Yi − Yj) (9)

where ‘sgn’ refers to the sign of the term that follows it. Genest and MacKay (1986)

show that there is a relationship between 𝜏 and 𝛼. The relationship is given as 𝜏 =

4
1
∫

0

𝜙(t)
𝜙
′(t)

dt + 1

(i) Clayton copula.

The Clayton (1978) copula is also referred to as the Cook and Johnson (1981) copula

and was originally studied by Kimeldorf and Sampson (1975). It takes the form

CClayton(u1, u2; 𝛼) =
{

(u−𝛼1 + u−𝛼2 − 1)−
1
𝛼 , 𝛼 ∈ (0,∞),

u1u2 , 𝛼 = 0.

and 𝛼 is the dependence parameter. As 𝛼 approaches zero the marginals become

independent and as it approaches infinity the copula attains the Fréchet upper bound.

The Clayton copula cannot account for negative dependence, although it does exhibit

strong left tail dependence and relatively weak right tail dependence. It has a tail

dependence property of 𝜆r = 0 and 𝜆l = 2−
1
𝛼 .

(ii) Frank copula.

The Frank copula, which appeared in Frank (1979) takes the form

CFrank(u1, u2; 𝛼) = −𝛼−1log
{
1 + (e−𝛼u1 − 1)(e−𝛼u2 − 1)

(e−𝛼 − 1)

}
, (10)

𝛼 ∈ (−∞, 0)
⋃
(0,∞). It has a tail dependence property of 𝜆r = 0 and 𝜆l = 0. The

Frank copula is useful in financial modeling for several reasons. First, it allows for

negative dependence between marginals. Second, it allows for symmetric tail depen-

dence. Third, it is able to achieve the Fréchet-Hoeffding bounds.

(iii) Gumbel copula.

The Gumbel copula which appeared in Gumbel (1960) takes the form

CGumbel(u1, u2; 𝛼) = exp(ū1𝛼 + ū2𝛼)
1
𝛼 , (11)

𝛼 ∈ [1,∞) and ūj = −loguj. It has a tail dependence property of 𝜆l = 0 and 𝜆r = 2
1
𝛼 .

Values of 1 and ∞ correspond to independence and the Fréchet-Hoeffding upper

bound. The copula does not attain the Fréchet-Hoeffding lower bound for any depen-

dence parameter value. Also it cannot account for negative dependence. The Gumbel

copula exhibits strong right tail dependence and relatively weak left tail dependence.
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4 Copula Quantile Regression

Both Chen et al. (2006) and Bouyé and Salmon (2009) have built on the quantile

regression work of Koenker and Basset (1978) to propose methods for estimating

copula based conditional quantile models. The papers assume a correct specifica-

tion of the parametric copula dependence function without specifying the underlying

marginal distribution functions. Chen et al. (2006) use a rescaled empirical cumula-

tive distribution function to obtain the marginals. After this, they employ the method

of maximum likelihood to obtain the copula parameter. Their resulting conditional

quantile functions are obtained by plugging in the estimated copula parameter and

the empirical marginal cumulative distribution function.

The approach we follow is that of Bouyé and Salmon (2009). They estimate sev-

eral distinct, non-linear quantile regression models implied by their copula specifi-

cations and gave closed forms of the quantile curve for several copulas. We begin

with some definitions.

Definition 5 (Bouyé and Salmon 2009) Let p(x, y; 𝜃) be the probability distribution

of y conditional on x. Then

p(x, y; 𝜃) = Pr[Y ≤ y ∣ X = x] (12)

= C1[FX(x),FY (y); 𝜃] (13)

with C1(u, v; 𝜃) =
𝜕

𝜕u
C(u, v, 𝜃).

Definition 6 (Bouyé and Salmon 2009) For a parametric copula C(., .; 𝜃), the

p-th copula quantile curve of y conditional on x is defined by the following implicit

equation

p = C1[FX(x),FY (y); 𝜃] (14)

where 𝜃 ∈ 𝛩 the set of parameters.

We give three of these copula quantile regression forms.

Normal CQR: The Normal CQR takes the form

y = F−1
Y

[
𝛷(𝜌𝛷−1(FX(x)) +

√
1 − 𝜌

2
𝛷

−1(q))
]

(15)

Student-t CQR: The Student-t CQR takes the form

y = F−1
Y

[
t
𝜈
(𝜌t−1

𝜈
(FX(x)) +

√
(1 − 𝜌

2)(𝜈 + 1)−1(𝜈 + t−1
𝜈
(FX(x))2))t−1𝜈+1(q))

]
(16)
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Clayton CQR The Clayton CQR takes the form

y = F−1
Y

[
(1 + FX(x)−𝛼(q

− 𝛼

1+𝛼 − 1))−
1
𝛼

]
. (17)

In the empirical exercise, we aim to estimate a different set of copula parameters

𝜃q for each quantile regression. Let (y1, y2,… , yT ) and (x1, x2,… , xT ) be a random

sample, the q-th quantile regression curve will be defined as yt = 𝜁 (xt, q; 𝜃q). The

parameters 𝜃q being any solution to the following optimization problem:

min
𝜃
(

T∑

t=1
(q − 𝟏yt≤𝜁(xt ,q;𝜃))(yt − 𝜁 (xt, q; 𝜃)) (18)

See Chap. 7 of Alexander (2008) and Bouyé and Salmon (2009) for details on

copula quantile regression modeling.

5 Data and Empirical Estimates

In this section we present the US data and the empirical estimates.

5.1 Preliminary Analysis and Summary Statistics

We examine the return-volatility relationship for indices reported on exchanges in

the United States of America. In the empirical analysis, we use daily price data for

market and volatility indices of four volatility-return pairs, namely, VXD and DJIA,

VIX and S&P 500 (SPX), VXO and S&P 100 (OEX), VXN and NASDAQ (NDX).

The daily prices are obtained from the Chicago Board Options Exchange for a period

of approximately 11 years from 2/02/2001 to 31/12/2012. For the analysis we use

percentage returns computed as 100 times the logarithmic changes. The volatility

indices are the VXD, VIX, VXO and the VXN and are discussed below. The CBOE

DJIA Volatility Index (VXD) is based on real-time prices of options on the Dow

Jones Industrial Average (DJIA), and is designed to reflect investors’ consensus view

of future (30-day) expected stock market volatility. The SPX VIX, is an index of

implied volatility of 30-day options on the S&P 500 calculated from all available

stock index option calls and puts bid and ask prices. The index, which was adopted

in September 2003 provides an estimate of expected stock market volatility for the

subsequent 30 days. According to Hibbert et. al. (2008), the Chicago Board Options

Exchange’s (CBOE) calculates the VIX from all available stock index option bid and

ask prices in the tradable range of these options providing an estimate of expected

stock market volatility for the subsequent 30 calendar days (about 21 trading days).
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It is based on options on the S&P 500 index (SPX) and it uses options across the

tradable range of all strike prices possessing both a bid and ask price; furthermore, it

is independent of any option-pricing model. The new method of calculation provides

a more robust measure of expected volatility along with option implied volatility

skew. The OEX VXO is the original VIX version that was introduced in 1993 and

is now disseminated under the ticker symbol VXO, and is based on the S&P 100

index. It considers only near-the-money options, and is calculated using the implied

volatilities obtained from the Black-Scholes option-pricing model. The calculation

of the CBOE NASDAQ-100 VXN Volatility Index is based on the CBOEs widely

accepted VIX methodology. VXN is calculated throughout the trading day based on

the near term volatility determined through pricing of NASDAQ-100 Index (NDX)

option prices. Like VIX, VXN is a measure of the market’s expectation of 30-day

volatility, but is based on the NDX rather than the SPX. The CBOE publishes indices

of these implied volatilities.

Figures 1 and 2 show the logarithmic return series of the stock return indices

and the volatility indices for the period 2/2/2001–31/12/2012. The time series plot

DJ

VDJ

S&P 500

VIX

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
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Fig. 1 Time series plot of the stock and volatility indices 2/2/2001–31/12/2012. Notes Daily clos-

ing percentage returns on the Dow Jones Industrial Average Index from February 2, 2001 through

December 31, 2012. Daily closing percentage returns on the Dow Jones Volatility Index from Feb-

ruary 2, 2001 through December 31, 2012. Daily closing percentage returns on the S&P 500 Index

(SPX) from February 2, 2001 through December 31, 2012. Daily closing percentage returns on the

VIX Index from February 2, 2001 through December 31, 2012
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S&P 100
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OEX
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NASDAQ
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VXN
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Fig. 2 Time series plot of the stock and volatility indices 2/2/2001–12/31/2012. Notes Daily clos-

ing percentage returns on the OEX Index from February 2, 2001 through December 31, 2012. Daily

closing percentage returns on the S&P 100 Volatility Index (VXO) from February 2, 2001 through

December 31, 2012. Daily closing percentage returns on the NASDAQ 100 Index from February 2,

2001 through December 31, 2012. Daily closing percentage returns on the NASDAQ 100 Volatility

Index (VXN) from February 2, 2001 through December 31, 2012

seem to show that the individual volatility index changes according to the respective

index return changes. Figure 3 gives the quantile-quantile plots for our series, and

none of the data series shows a good fit to the normal distributions. It is well known

that when the data distribution is not adequately described by a normal distribution,

quantile regression (QR) can provide more efficient estimates for the return-volatility

relationships (Badshah 2012). Table 1 gives the descriptive statistics for all the vari-

ables. All the variables show excess kurtosis, which indicates fat tails. Looking at

the Jarque-Bera test statistics in Table 1, we see that the statistics strongly reject the

presence of normal distributions in the series. Thus, we can conclude that all the

return time series (both the market and the volatility series) exhibit fat tails and are

not normally distributed. The reported ADF test statistics, based on an autoregres-

sion of order 8, also reject the presence of unit roots in the time series.
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Fig. 3 Quartile-Quartile Plot of the Stock and volatility indices 2/2/2001–12/31/2012. Notes Nor-

mal qq-plot for Daily closing percentage returns on the Dow Jones Industrial Average Index, the

Dow Jones Volatility Index, the S&P 500 Index(SPX), the VIX Index, the SP 100 Index(OEX), the

SP 100 Volatility (VXO), the NASDAQ 100 Index and the NASDAQ100 Volatility Index (VXN).

The data period is from February 2, 2001 through December 31, 2012

5.2 Empirical Results Linear Quantile Regression

Table 2 reports the point estimates of the intercept and regression coefficient for

all the volatility-return pairs. The results of the regression coefficients indicate an

inverse volatility return relationship. For example, if the DJ index rises by 10 %,

then the VDJ will be expected to fall by 34.77 %. Similarly, if the SPX rises by 10 %,

then the VIX will be expected to fall by 35.78 %.

Table 3 reports the estimates for the linear quantile regression model, with the

intercept 𝛼, and the slope coefficient 𝛽. The 𝛽 measures the dependence of volatil-

ity on market return. Note that as formulated, the ordinary linear regression model

(OLS) is incapable of capturing both the asymmetric and tail dependence between

price and implied volatility. In other words, the simple linear regression is incapable

of capturing the known empirical facts that (i) volatility increases much more after

a large fall in price than it decreases after a large price increase, (ii) volatility reacts

more strongly to extreme price moves than normal price moves. One way of address-
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Table 2 OLS Regression: Stock and volatility indices 2/2/2001–12/31/2012

Model 𝛼 p-value 𝛽 p-value

VDJ-DJ 0.0169 0.841 −3.4770 <0.0001

VIX-SPX −0.00163 0.983 −3.5778 <0.00015

VXO-OEX −0.02295 0.787 −3.978 <0.00015

VXN-NDX −0.034775 0.644 −1.8746 <0.00015

Notes The table reports the OLS regression results for the return volatility pairs. All the estimated

𝛽 values are significant at the 1 % level

ing this limitation is to employ a linear quantile regression framework. The reported

linear quantile regression results are different from those from the OLS. For exam-

ple, if the DJ index rises by 10 %, then the VDJ will be expected to fall by varying

amounts along the quantiles and not by 34.77 % as reported for the OLS. For exam-

ple, at the 50 % quantile level, we should expect a fall of 35.32 %, and this differs

from the 90 % quantile level amount of 37.3 %. Also, the results show that the esti-

mated dependence coefficient (𝛽) values are significant across the quantiles, and are

different. Though not reported, we did perform a test to see if the slopes were the

same at all the reported quantiles. For the test, we employ the anova command which

produces a quantile regression analysis of variance table and is based on tests pro-

posed by Koenker and Bassett (1982). These results indicate that the volatility-return

relationship changes across the quantiles and that they are also statistically signifi-

cant.

5.3 Empirical Results Quantile Copula

Tables 4 and 5 give estimates for the quantiles for the Normal and Student-t cop-

ulas. For the empirical analysis, we assumed the marginals for the bivariate cop-

ula quantile regression follow Normal and Student-t distributions. The univariate

Student-t distributions are allowed to have different degree of freedom parameters

(see Embrechts et al. 2001 or Fang and Fang 2002). Two versions of the regressions

are reported. In one, we work with raw volatility and stock return series and in the

second, we fit a GARCH (1, 1) with Student-t errors to the data and then work with

the standardized residuals. The estimation follows the general procedure outlined by

Bouyé and Salmon (2009). See also Appendix A of Koenker (2005). The rugarch

package (Version 1.2-3) of Ghalanos (2013) for R is used to extract the degrees of

freedom parameters and the standardized residuals of the series. The quantreg pack-
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Fig. 4 Calibration of copula

quantile regression of US

stock volatility on return:

2/2/2001–12/31/2012. Notes
Normal copula is (n) and t

copula is (t). The data period

is from February 2, 2001

through December 31, 2012

unfiltered
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age (Version 5.05) of Koenker (2012) for R is used to estimate the parameters of the

non-linear quantile regression. The nlrq optimization results of quantreg are depen-

dent on the starting values of the parameters and the algorithm option chosen for

optimization.The reported results here are based on using the L-BFGS-B option for

the Normal copula and the Brent option for the Student-t copula. In each table, the

left panel gives results for the raw data, and right panel gives results for the GARCH

(1, 1) filtered data. The estimates for the Clayton CQR are not reported. The GARCH

(1, 1)filter allows for control for the changes in volatility. As seen from the tables,

negative dependence is greater for low and high quantiles. Furthermore, the lower tail

negative dependence is higher than the upper tail negative dependence. The results

reported here are similar to those of Allen et al. (2012), who used data from US and

European exchanges and a different sample period and reported that for most of the

pairs they investigated, the negative dependence is greater for low and high quantiles.

It should be noted that they did not consider the Dow-Jones volatilitity-return pair

nor the S&P 100 volatility-return pair. They also found that the lower tail negative

dependence is also higher than the upper tail negative dependence. Figures 4 and 5

show the calibrated values of rho based on copula quantile regression of US stock

volatility on return under both the normal and Student t copulas without and with the

GARCH (1, 1) filter. The shape based on the GARCH (1,1) filtered data are much

more of an inverted U-shaped as compared to the non-filtered series. Figures 6, 7,

8 and 9 show the corresponding quantile curves with the GARCH (1, 1) filter. We

do not present those for the unfiltered series. It should be noted that neither Alexan-

der (2008) nor Allen et al. (2012) used some sort of filter to control for changes in

volatility. Neglecting to control for volatility changes can lead to incorrect inference

in a VaR analysis. For example, suppose one is interested in a VaR analysis and esti-

mates the 5 % quantile regression to achieve this, if one does not control for changes

in the level of volatility, the 5 % quantile regression line cannot be interpreted as a

true VaR measure since the probability of witnessing any particular price deviation

depends crucially on the variance of the distribution.
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Fig. 5 Calibration of copula

quantile regression of US

stock volatility on return:

2/2/2001–12/31/2012. Notes
Normal copula is (n) and t

copula is (t). The data period

is from February 2, 2001

through December 31, 2012

filtered with a GARCH(1, 1)
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Fig. 6 DJ volatility-return

quantile curves of normal

and Student t copulas. Notes
Daily closing percentage

returns on the Dow Jones

Industrial Average Index

from February 2, 2001

through December 31, 2012.

Daily closing percentage

returns on the Dow Jones

Volatility Index from

February 2, 2001 through

December 31, 2012
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Fig. 7 S&P 500

volatility-return quantile

curves of normal and Student

t copulas. Notes Daily

closing percentage returns on

the S&P 500 Index (SPX)

from February 2, 2001

through December 31, 2012.

Daily closing percentage

returns on the VIX Index

from February 2, 2001

through December 31, 2012
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Fig. 8 S&P 100

volatility-return quantile

curves of normal and

Student t copulas. Notes
Daily closing percentage

returns on the OEX Index

from February 2, 2001

through December 31, 2012.

Daily closing percentage

returns on the S&P 100

Volatility Index (VXO) from

February 2, 2001 through

December 31, 2012
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Fig. 9 NASD

volatility-return quantile

curves of normal and Student

t copulas. Notes Daily

closing percentage returns on

the NASADAQ 100 index

from February 2, 2001

through December 31, 2012.

Daily closing percentage

returns on the NASDAQ 100

Volatility Index (VXN) from

February 2, 2001 through

December 31, 2012
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6 Conclusion

In this article, we have applied quantile copula regression techniques to examine the

return-volatility relationship for indices reported on exchanges in the United States

of America. We adopt the approach of Bouyé and Salmon (2009), which allows one

to estimate copula based conditional quantile models. We utilize both linear quan-

tile regression and copula quantile regression to evaluate the asymmetric volatility-

return relationship between changes in the volatility index (VXD, VIX, VXO and

VXN) and the corresponding stock index return series (DJIA, S&P 500, the S&P

100 and NASDAQ). The data period is from February 2, 2001 through December

31, 2012. We find, firstly, that the relationship between stock return and implied

volatility depends on the quartile at which the relationship is being investigated. Sec-

ondly, we obtain results similar to those reported for European exchanges that show

the existence of an inverted U-shaped relationship between stock return and implied

volatility. This result was obtained even after controlling for changes in volatilities

of return using a GARCH (1, 1) filter. This conclusion holds for all the US stock and

implied volatility indices examined. Models that assumed otherwise are misspecified

because ignoring the role of quartiles will result in errors in any attempt to forecast

the relationship between returns and implied volatilities.
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There are several issues that have not been addressed in the chapter. First, unlike

Giot (2005), who examined the relationship between returns and volatility based on

high volatility bull market, low volatility bull market, high volatility bear market sub-

period classification, we have not concerned ourselves with such sub-period analysis

in this chapter. It will be interesting to find out if the relationship is different across

sub-periods. Second, the entire focus here is on the stock markets. Understanding the

relationship between returns and implied volatilities for other commodities should

be interesting.
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