
Chapter 6
Efficient Local Representations of Graphs

Edward Scheinerman

Abstract Informally, an efficient local representation of a graph G is a scheme
in which we assign short labels (representable by a “small” number of bits, hence
efficient) to G’s vertices so that we can determine if two vertices are adjacent simply
by examining the labels assigned to the pair of vertices (hence local). For some
classes of graphs (such as planar graphs), one can devise local representations, but
for others (such as bipartite graphs), this is not possible.

We present a conjecture due to Muller [22] and to Kannan, Naor, and Rudich
[15] that distinguishes those hereditary classes of graphs (closed under induced
subgraphs) for which an efficient local representation is feasible from those for
which it is not.

Notation All graphs in this chapter are simple: their edges are undirected, and
they have neither loops nor multiple edges. For a graph G D .V; E/, the number of
vertices is nearly always denoted by the letter n. The notation v � w indicates that
vertices v and w are adjacent, i.e., vw 2 E. For a positive integer n, we write Œn� for
the set f1; 2; : : : ; ng. We write lg n for the base-2 logarithm of n. We also write log n
but that is invariably wrapped in big-oh notation, so the base is irrelevant.

6.1 Seeking an Efficient Data Structure for Graphs

The efficient local representation of graphs problem is due to Muller [22] and to
Kannan, Naor, and Rudich [15].

Here’s the overarching question: How do we efficiently represent a graph in a
computer?

Perhaps the simplest method is via an adjacency matrix; the memory to store
this matrix uses ‚.n2/ bits, but this may be wasteful if the graph does not have

E. Scheinerman (�)
Department of Applied Mathematics and Statistics, Johns Hopkins University,
Baltimore, MD 21218, USA
e-mail: ers@jhu.edu

© Springer International Publishing Switzerland 2016
R. Gera et al. (eds.), Graph Theory, Problem Books in Mathematics,
DOI 10.1007/978-3-319-31940-7_6

83

mailto:ers@jhu.edu

84 E. Scheinerman

too many edges. In the latter case, adjacency lists may be a better option. See, for
example, [8, 12], or [31] for a discussion of data structures one may use to represent
a graph.

If we think of a graph as modeling relations between its vertices, then determin-
ing if two vertices are adjacent “should” only depend on some shared property of
the two nodes under consideration.

To illustrate our thoughts, we begin by discussing interval representations of
graphs.

6.1.1 Interval Representations of Graphs

Let G be a graph. We say that G has an interval representation if we can assign to
each vertex v 2 V.G/ a real interval Jv so that for distinct vertices v and w we have

v � w () Jv \ Jw 6D ¿:

For example, let G be the path graph with 1 � 2 � 3 � 4. The following assignment

1 7! Œ1; 3�; 2 7! Œ2; 5�; 3 7! Œ4; 7�; and 4 7! Œ6; 8�:

gives an interval representation for G. See [11] and [19]. Interval representations of
graphs are a special case of intersection representations [7, 12, 21, 24, 25].

This representation provides a terrific way to store a graph in a computer. For
each vertex, we only need to hold two numbers: the left and right end points of its
interval. To check if two vertices are adjacent, we just do some quick checks on four
numbers.

How much storage space does such a representation consume? We might be
concerned that we may need a great deal of precision to specify the intervals’ end
points. However, it’s not hard to show that if G has an interval representation, then
we can find a representation in which the end points are distinct values1 in Œ2n�.

This implies that for each vertex of the graph, we hold a scant O.log n/ bits
of information, and we can test adjacency simply by examining the information
attached to just the two vertices of interest.

Informally, this is what we mean by an efficient local representation of a graph.
To each vertex v we attach a “short” [hence efficient] label `.v/, and adjacency

1Here’s why: Closed intervals are compact. Therefore, given a finite collection of intervals, there
is a positive " such that the sizes of the gaps between nonintersecting pairs of these intervals are
all greater than ". This means we can enlarge intervals by moving left end points to the left and
right end points to the right by amounts less than "=2 and not create any additional intersections.
In this way, we may modify the representation so that all 2n end points of the intervals are distinct.
To determine if two intervals intersect, one only needs to know the relative order of the four end
points. Therefore, we may reassign the end points to be distinct values in f1; 2; : : : ; 2ng so long as
we preserve their order.

6 Efficient Local Representations of Graphs 85

between vertices v and w can be tested via a calculation whose inputs are just `.v/

and `.w/ [hence local as we do not consider labels on any other vertices nor do we
reference a global data structure such as an adjacency matrix].

Sadly, interval representations are not the ideal we seek because not all graphs
admit such a representation. A moment’s doodling shows that the four cycle C4 has
no such representation.

Graphs that have interval representations are called interval graphs, and for that
family, an efficient local representation is available. What about other families of
graphs?

6.1.2 Additional Examples

Trees

Let T be a tree with n vertices. Arbitrarily select a vertex of T to be called the root
and give the edges directions so that on any path to the root, all edges point toward
the root. Thus every vertex (other than the root) has a unique parent.

We now attach labels to the vertices of T . Each label `.v/ is an ordered pair of
integers .av; bv/ drawn from the set Œn�. The a-values are assigned arbitrarily; the
only requirement is that they be distinct. The b-labels depend on the direction of the
edge. If the edge from v to w is oriented v ! w, then bv D aw. That is, the second
element of v’s label is the first element of v’s parent. Since the root r does not have
a parent, its label is simply .ar; ar/. See Figure 6.1.

We now observe that the vertex labels are 2 lg n bits in length, and testing vertices
for adjacency only requires examining the labels of the two vertices:

v � w () av D bw or aw D bv: (6.1)

This efficient local representation method easily extends from trees to acyclic
graphs (forests). Indeed, the scheme works for graphs that are not trees. For
example, consider an n-cycle and label its vertices, in order, as follows:

.1; 2/ .2; 3/ .3; 4/ � � � .n � 1; n/ .n; 1/:

Test (6.1) applies here as well.

(1,2) (2,4)

(3,4)

(4,5) (5,5) (6,5)

Fig. 6.1 An efficient local representation for a tree. Each label is an ordered pair .a; b/. Observe
that the a-values are distinct. The vertex labeled .5; 5/ is the root and the b-label of every other
vertex is the a-label of its parent

86 E. Scheinerman

Planar Graphs

We can extend this technique to planar graphs. The minimum degree of planar graph
is at most 5. Let G be a planar graph with n vertices and assume that V.G/ D Œn�.
Here is how we label V.G/.

Let v be a vertex of minimum degree. The label we assign to v is a tuple of the
form `.v/ D .vI v1; v2; v3; v4; v5/ where the vi’s are v’s neighbors (or 0s if v has
fewer than 5 neighbors). Now delete v from G and repeat. Since G � v is planar,
we select a vertex, say w, of minimum degree in G � v and assign to it the label
`.w/ D .wI w1; w2; w3; w4; w5/ where the wi’s are (up to) five of its neighbors in
G � v. Delete w and continue until the entire graph is consumed. This labeling uses
6 lg n bits per vertex.

Once this labeling is created, we can test the adjacency of any two vertices x and
y just by examining their labels `.x/ D .xI x1; : : : ; x5/ and `.y/ D .yI y1; : : : ; y5/:
we simply check if x D yi or y D xi for some i.

k-Degenerate Graphs

The representation method we presented for planar graphs relies on an idea that we
can generalize. For a positive integer k, a graph G is called k-degenerate if ı.H/ � k
for all subgraphs H � G. We write Dk for the set of k-degenerate graphs. Note that
trees are 1-degenerate and planar graphs are 5-degenerate.

The labeling method we used for planar graphs readily extends to graphs in Dk.
Let G be an n-vertex graph in Dk. Without loss of generality we assume V.G/ D Œn�.
Choose a minimum degree vertex v of G, and let `.v/ D .vI v1; v2; : : : ; vk/ where
the vis are neighbors of v (or 0s if d.v/ < k). Delete v from G and repeat. The labels
assigned to vertices use .k C 1/ lg n bits, and adjacency testing is the same as for
planar graphs.

Complete Multipartite (Turan) Graphs

It is no surprise that interval graphs have efficient local representations; this is nearly
immediate from their definition. The existence of efficient local representations for
trees and planar graphs are instances of the same idea that shows graphs in Dk have
efficient local representations. Here is another example to illustrate the central idea.

Recall that a graph G is a complete multipartite graph if we can partition its
vertex set as V.G/ D I1 P[� � � P[Ik where each Ij is an independent set, and for i 6D j,
every vertex in Ii is adjacent to every vertex in Ij.

Here’s an efficient local representation. Given the partition of V.G/, let `.v/ D j
if v 2 Ij. We have v � w exactly when `.v/ 6D `.w/. Since the number of parts in
the partition of G is at most n, the number of bits used in the labels is bounded by
lg n, and so this is an efficient local representation.

6 Efficient Local Representations of Graphs 87

Circular Arc Graphs

The family of circular arc graphs [32] are a natural extension of interval graphs. In
this case, we assign to each vertex v of a graph G an arc Av of some fixed circle.
Vertices v and w are adjacent exactly when their arcs Av and Aw intersect.

As in the case of interval graphs, there is no loss of generality in assuming that
the 2n end points of the arcs representing G are distinct and therefore may placed
at the corners of a regular 2n-gon. Therefore, the arcs can be described using just
2 lg n bits, and hence we have an efficient local representation.

String Graphs

The family of string graphs [16, 17] generalize the circular arc graphs. In a circular
arc graph, each vertex is represented by a special type of curve: an arc on a fixed
circle. In a string graph, we use arbitrary planar curves. A graph G is a string graph
provided we can assign to each vertex v a curve Sv in the plane so that vertices v

and w are adjacent if and only if Sv \ Sw 6D ¿. As shown by Sinden [29], not all
graphs are string graphs.

Clearly a string representation of a graph is local, but is it efficient? Clearly
we cannot represent an arbitrary curve with just a handful of bits. Is there a trick
(such as the one we used for interval and circular arc graphs) that enables us to
bound the number of bits needed for each vertex? We shall see that the answer is no
(Proposition 2.5).

6.2 Efficient Local Representations

6.2.1 Main Definitions

The problem can be described as follows. Let P be a property of graphs. We want to
know if P-graphs have efficient local representations. This means n-vertex graphs
in P can be labeled with “short” labels—O.log n/ bits—and adjacency can be
tested just by comparing the labels on two vertices. The adjacency test is the same
for all graphs with property P .

Let’s be more precise. By a graph property we mean an isomorphism-closed set
of graphs: G 2 P ^H Š G H) H 2 P . It is sometimes more comfortable to refer
to a property as a class of graphs.

A graph property P is hereditary if it is closed under taking induced subgraphs;
that is, G 2 P ^ H � G H) H 2 P (where H � G denotes that H is an induced
subgraph of G). It is natural in this context to focus on hereditary properties because
if G has an efficient local representation, then G � v does as well.

Local representations are associated with graph classes (and not with individual
graphs).

88 E. Scheinerman

Definition 2.1. Let P be a hereditary property of graphs. A local representation
for P is a symmetric function A W ZC � Z

C ! f0; 1g such that for every graph
G 2 P there is a labeling function ` W V.G/ ! Z

C such that for distinct vertices
v; w of G, we have v � w () AŒ`.v/; `.w/� D 1.

In other words, A is an adjacency test used by all graphs in P . Each graph G
in P has its own labeling function `, and adjacency of two distinct vertices can be
tested by applying the test A to the labels assigned to the pair.

[Note that Definition 2.1 requires that the vertex labels be positive integers, but
in the examples in Section 6.1, the labels are tuples of integers. This is a minor
technicality as we could perform kludges such as converting a pair of nonnegative
integers .a; b/ into a ternary number by writing a and b in binary and separating the
values with a 2, like this: .18; 11/ 7! 1001021011three.]

Definition 2.1 omits any notion of efficiency and, consequently, is not interesting.
Indeed, all hereditary properties have local representations using this definition;
here’s how.

Let G be any graph and assume that V.G/ D Œn�. We label vertex v by `.v/ D
ŒvI a.v/� where a.v/ is an n-tuple of 0s and 1s that indicates the neighbors of v. That
is, the jth entry in a.v/ is 1 exactly when v � j. Stated differently, a.v/ is the vth

row of G’s adjacency matrix. The test function A applied to labels `.v/ D ŒvI a.v/�,
and `.w/ D ŒwI a.w/� simply returns the wth entry in a.v/.

In other words, if we allow long labels, the neighborhood of a vertex can be
trivially encoded in the label. We therefore impose a bound on the size of the vertex
labels. We have previously expressed this as a bound on the number of bits that
specify the label as being O.log n/. These bits can be merged to form a single
positive integer, and the restriction on the number of bits translates to requiring
labels to lie in a set of the form Œnk� where k is a given positive integer.

Definition 2.2. Let P be a hereditary property of graphs. An efficient local
representation for P is a symmetric function A W Z

C � Z
C ! f0; 1g and a

positive integer k such that every graph G 2 P there is a labeling function
` W V.G/ ! Œnk� (where n D jV.G/j) such that for distinct vertices v; w of G
we have v � w () AŒ`.v/; `.w/� D 1.

As before, the adjacency test A depends only on the property P . Likewise the
positive integer k is fixed for the class (does not depend on n). That labels take values
in Œnk� is tantamount to saying that the labels are (at most) k lg n bits in length. It is
in this sense, the representation is (space) efficient.

6.2.2 The Problem

When we failed to restrict the number of bits in the labels, the class of all graphs
G has a local representation. The interesting question is: What happens when we
require efficiency? Is there an efficient local representation for all graphs?

6 Efficient Local Representations of Graphs 89

This would be fantastic, but not surprisingly, the answer is no. To see why, we
use a counting argument. To that end, we recall the definition of the speed of a
hereditary property of graphs [1, 28].

Definition 2.3. Let P be a hereditary property of graphs and let n be a positive
integer. Define P.n/ to be the number of graphs in P with vertex set Œn�. The
function P.�/ is called the speed of the property.

For example, let G denote the class of all graphs. Then G .n/ D 2.n
2/. Or let P

be the property of having at most one edge. The set of graphs with vertex set Œn� that
has at most one edge consists of the edgeless graph Kn and

�n
2

�
graphs with exactly

one edge. Therefore P.n/ D 1 C �n
2

�
.

To show that not all hereditary properties admit an efficient local representation,
we prove the following.

Proposition 2.4. Let B be the class of bipartite graphs. Then B does not admit an
efficient local representation.

Proof. Suppose for contradiction that B admits an efficient local representation
.A; k/. Let n be a positive integer.

Every G 2 B with V.G/ D Œn� has a labeling function ` W Œn� ! Œnk�, and,
necessarily, different graphs have different labeling functions.

The number of functions from Œn� to Œnk� is nkn which implies that B.n/ � nkn.
However, it is easy to see that B.n/ � 2n2=4 which exceeds nkn once n is large
enough.

In a similar spirit, we show that the class of string graphs does not admit an
efficient local representation.

Proposition 2.5. Let S be the class of string graphs. Then S does not admit an
efficient local representation.

Proof. Recall that a graph G is a split graph [10] provided we can partition V.G/ D
K [I where K is a clique and I is an independent set. We show that the class of
string graphs contains all split graphs. Since the number of split graphs on vertex
set Œn� is at least as large as the number of bipartite graphs on Œn�, the result follows
exactly as in the proof of Proposition 2.4.

Let G be a split graph with V.G/ D K [I. To see that G is a string graph,
assign disjoint curves to the vertices in I. For the vertices in K, we choose curves
that emanate from a common point. If v 2 K is adjacent to i1; i2; : : : ; id 2 I, then v’s
curve can be chosen to intersect the disjoint curves that represent i1; i2; : : : ; id while
avoiding all other I-curves as in Figure 6.2. ut

Note that the key fact we used in the proof of Proposition 2.4 is that there are
too many graphs on n vertices. In order for a hereditary property P to admit an
efficient local representation, the speed of P must be bounded by a function of the
form nkn for a specific integer k.

90 E. Scheinerman

1

2

5

4

3

6

7

8

9

1

2

3

4

5
4

5

3

1

2

14

2

6

7

8

9

Fig. 6.2 We present a split graph and its string representation. The curves representing the
vertices in the independent set I D f6; 7; 8; 9g are the disjoint vertical line segments. The curves
representing the vertices in the clique K D f1; 2; 3; 4; 5g must intersect each other and exactly
those curves for vertices in I to which they are adjacent. For example, the curve representing
vertex 1 intersects vertical segments 6, 7, and 9, but not 8

Thus a hereditary property can fail to have an efficient local representation if it
contains too many graphs—it violates the “speed limit” P.n/ � nkn for all fixed
values of k.

What else could go wrong? That’s a great question. Raised by [15] and [22],
this is the question we offer our readers and present as our contribution to this
compendium of favorite conjectures:

Conjecture 2.6 (Muller 1987; Kannan, Naor, Rudich 1992). Let P be a heredi-
tary property of graphs. Then P admits an efficient local representation if and only
if there is an integer k such that P.n/ � nkn.

6.3 Challenging Examples

Conjecture 2.6 holds for a wide swath of hereditary graph properties including some
we have considered (acyclic graphs, planar graphs, interval graphs, circular arc
graphs) and many more we have not (such as permutation graphs [9] and threshold
graphs [20]).

The following examples are—as best we know—possible counterexamples. The
challenge is to find efficient local representations for these classes or show that none
exist. See [2, 6], or [21] to find other hereditary classes as possible challenges.

Line Segment Intersection Graphs
The class of line segment intersection graphs lies between interval and string

graphs. A graph G is a line segment intersection graph if we can assign to each v 2
V.G/ a planar line segment Lv in such a way that v � w if and only if Lv \ Lw 6D ¿.
Let L denote the class of line segment intersection graphs. See [3, 5, 18, 24].

6 Efficient Local Representations of Graphs 91

Using the techniques described in [26], one can derive an upper bound for L .n/

of the form n4n, and so—if we believe Conjecture 2.6—this class should admit an
efficient local representation.

Creating a local representation is easy; checking that it is efficient is difficult!
Here’s the representation. If G 2 L , then we know there is an assignment v 7! Lv

mapping vertices to line segments. These line segments can be represented as a
4-tuple of numbers .x; y; z; w/ that specify the end points of the segment as .x; y/

and .z; w/. It’s easy to check that there is no loss of generality in assuming that these
coordinates are positive rational numbers (because Q2 is dense in R

2). Therefore the
labeling becomes an 8-tuple of integers. (Furthermore, by clearing denominators,
we may assume all the coordinates are positive integers and a 4-tuple will suffice.)

Checking adjacency (i.e., intersection of the line segments) can be reduced to
evaluating a pair of polynomial functions on the end points (details in [26]).

The only issue that remains is this: How many bits do we need to specify the
end points? Do we need a high level of precision, or can this be accomplished with
O.log n/ bits?

Cographs
The class of complement reducible graphs [4], or cographs for short, can be

described recursively as follows:

• K1 is a cograph.
• If G is a cograph, so is its complement G.
• If G and H are cographs, then so is their disjoint union. (This is the graph formed

by simply taking copies of G and H on disjoint vertex sets and no additional
edges.)

Let C denote the class of cographs. It is easy to see that C is a hereditary
property. It is well known that cographs are exactly those graphs that do not contain
the path P4 as an induced subgraph.

With a bit of work, an upper bound of the form C .n/ � nkn can be derived. See
sequence A000669 in [30].

Therefore, if Conjecture 2.6 holds, property C admits an efficient local represen-
tation.

Tolerance Graphs
The class of tolerance graphs [13, 14] may be considered as a generalization

of interval graphs. We say that a graph G has a tolerance representation if we can
assign to each vertex v of G a pair .Iv; tv/ where Iv is a closed, real interval and tv is
a positive real number so that v � w in G if and only if the length of the intersection
Iv \ Iw is at least minftv; twg. Graphs with such a representation are called tolerance
graphs.

An application of the methods in [26] gives a speed bound of the form n3n, and
therefore tolerance graphs satisfy the hypothesis of Conjecture 2.6. Do they satisfy
the conclusion?

92 E. Scheinerman

Geometric Graphs
Let .X ; d/ be a metric space. A graph G has a geometric representation in

.X ; d/ if there is a mapping f W V.G/ ! X such that v � w if and only if
dŒf .v/; f .w/� � 1. See [23].

A particularly natural example is X D R
2 together with the Euclidean metric.

In this case, we can think of such graphs as having an intersection representation by
unit discs.

Still with the Euclidean metric, for X D R
k, the number of geometric graphs

with vertex set Œn� is bounded by an expression of the form nkn and therefore satisfies
the hypothesis of Conjecture 2.6. Do they satisfy the conclusion?

6.4 Variations

There are some natural variations on the core problem to consider.

6.4.1 Computation Concerns

We have focused on space-efficient representations. Each vertex holds a modest
quantity of information. The combined information held by two vertices is sufficient
to determine if they are adjacent. But at what cost? The authors of [15] also require
that the function A.�; �/ be efficiently computable—in time polynomial in the size of
the inputs. That is, the number of computational steps to check if v and w are
adjacent in an n vertex graph should be bounded by an expression of the form
.log n/t for some fixed exponent t.

This is a perfectly reasonable requirement but appears to make this difficult
problem only harder. Their conjecture (which we may dub the strong efficient
local representation conjecture) is that hereditary properties that satisfy the speed
limit P.n/ � nkn have an efficient local representation A that is polynomial-time
computable. Clearly the strong version of the conjecture implies the weaker.

6.4.2 Other Label Sizes

Why do we want label sizes with O.log n/ bits? This size is natural because already
to name the vertices (e.g., specify vertex names in Œn�) requires lg n bits. Thus the
desire that `.v/ be represented in O.log n/ bits is akin to saying that the labels are
“about the same size” as the vertex names.

If, however, we are willing to modify this requirement, we can generate a host of
additional problems.

6 Efficient Local Representations of Graphs 93

Suppose we permit vertex labels to be larger—say, O.
p

n/ bits. Then, presum-
ably, such local representations could encompass more hereditary graph properties.
If this is permitted, can we represent all hereditary properties that satisfy the speed
limit P.n/ � nkn? For the case of O.

p
n/ bits, the counting argument shows that

the properties must obey a bound of the form nk
p

n; if P does obey such a bound,
must it admit an O.

p
n/ bits-per-vertex local representation?

On the other hand, we might consider using smaller labels, i.e., with o.log n/ bits
per vertex. As an extreme example, suppose P is the property of being a complete
bipartite graph. Then we can label vertices with just a single bit (0 for vertices
in one part of the bipartition and 1 for vertices in the other) and use the function
A.x; y/ D 1Œx 6D y�.

Using the results in [28], we have the following result from [27].

Theorem 4.1. Let P be a hereditary property of graphs and let k be a positive
number with k < 1

2
. If, for all n sufficiently large, we have P.n/ � nkn, then P

admits a local representation in which the labels have O.1/ bits. ut
In other words, the “super efficient” [o.log n/ bits per vertex] local representation

conjecture is true. Furthermore, if a property has a representation using o.log n/ bits
per vertex, then it has a representation using a constant number of bits per vertex.

Acknowledgements Many thanks to Ralucca Gera and Craig Larson for the invitation to present
this problem at the 2012 SIAM Discrete Mathematics Conference in Halifax, Nova Scotia, and to
contribute to this volume. Thanks also to my students Elizabeth Reiland and Yiguang Zhang, as
well as to a highly dedicated referee, for many helpful comments on drafts of this chapter.

References

1. Balogha, J., Bollobás, B., Weinreich, D.: The speed of hereditary properties of graphs. J. Comb.
Theory Ser. B 79, 131–156 (2000)

2. Brandstädt, A., Le, V.B., Spinrad, J.: Graph Classes: A Survey. Society for Industrial and
Applied Mathematics, Philadelphia (1999)

3. Chalopin, J., Gonçalves, D.: Every planar graph is the intersection graph of segments in the
plane. In: STOC ’09 Proceedings of the Forty-First Annual ACM Symposium on Theory of
Computing, pp. 631–638 (2009)

4. Corneil, D.G., Lerchs, H., Burlingham, L.S.: Complement reducible graphs. Discret. Appl.
Math. 3(3), 163–174 (1981)

5. de Fraysseix, H., de Mendez, P.O., Pach, J.: Representation of planar graphs by segments. Int.
Geogr. 63, 109–117 (1991)

6. de Ridder, H.N., et al.: Information system on graph classes and their inclusions. http://www.
graphclasses.org/

7. Erdős, P., Goodman, A.W., Pósa, L.: The representation of a graph by set intersections. Can. J.
Math. 18(1), 106–112 (1966)

8. Even, S.: Graph Algorithms, 2nd edn. Cambridge University Press, Cambridge (2011)
9. Even, S., Pneuli, A., Lempel, A.: Permutation graphs and transitive graphs. J. ACM 19(3),

400–410 (1972)
10. Földes, S., Hammer, P.L.: Split graphs. Congr. Numer. 19, 311–315 (1977)

http://www.graphclasses.org/
http://www.graphclasses.org/

94 E. Scheinerman

11. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval
graphs. Can. J. Math. 16, 539–548 (1964)

12. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. North Holland,
Amsterdam (2004)

13. Golumbic, M.C., Trenk, A.N.: Tolerance Graphs. Cambridge University Press, Cambridge
(2004)

14. Golumbic, M.C., Monma, C.L., Trotter, W.T.: Tolerance graphs. Discret. Appl. Math. 9(2),
157–170 (1984)

15. Kannan, S., Naor, M., Rudich, S.: Implicit representation of graphs. SIAM J. Discret. Math. 5,
596–603 (1992)

16. Kratochvíl, J.: String graphs I. The number of critical nonstring graphs is infinite. J. Comb.
Theory (B) 52, 53–66 (1991)

17. Kratochvíl, J.: String graphs II. Recognizing string graphs is NP-hard. J. Comb. Theory (B) 52,
67–78 (1991)

18. Kratochvíl, J., Nesetril, J.: Independent set and clique problems in intersection defined graphs.
Comment. Math. Univ. Carol. 31(1), 85–93 (1990)

19. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the
real line. Fundam. Math. 51, 45–64 (1962)

20. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics. North-Holland, Amster-
dam (1995)

21. McKee, T., McMorris, F.R.: Topics in Intersection Graph Theory. Society for Industrial and
Applied Mathematics, Philadelphia (1999)

22. Muller, J.H.: Local structure in graph classes. Ph.D. thesis, Georgia Institute of Technology
(1987)

23. Penrose, M.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
24. Scheinerman, E.: Intersection classes and multiple intersection parameters of graphs. Ph.D.

thesis, Princeton University (1984)
25. Scheinerman, E.: Characterizing intersection classes of graphs. Discret. Math. 55(2), 185–193

(1985)
26. Scheinerman, E.: Geometry. In: Beineke, L., Thomas, R. (eds.) Graph Connections,

pp. 141–154. Clarendon Press, Oxford (1997)
27. Scheinerman, E.: Local representations using very short labels. Discret. Math. 203, 287–290

(1999)
28. Scheinerman, E., Zito, J.: On the size of hereditary properties of graphs. J. Comb. Theory (B)

61, 16–39 (1994)
29. Sinden, F.: Topology of thin-film RC-circuits. Bell. Syst. Technol. J. 45(9), 1639–1662 (1966)
30. Sloane, N.J.: The on-line encyclopedia of integer sequences. http://oeis.org/
31. Spinrad, J.: Efficient Graph Representations. The Fields Institute for Research in Mathematical

Sciences. The American Mathematical Society, Providence (2003)
32. Tucker, A.C.: Matrix characterizations of circular-arc graphs. Pac. J. Math. 39, 535–545 (1971)

http://oeis.org/

	6 Efficient Local Representations of Graphs
	6.1 Seeking an Efficient Data Structure for Graphs
	6.1.1 Interval Representations of Graphs
	6.1.2 Additional Examples
	Trees
	Planar Graphs
	k-Degenerate Graphs
	Complete Multipartite (Turan) Graphs
	Circular Arc Graphs
	String Graphs

	6.2 Efficient Local Representations
	6.2.1 Main Definitions
	6.2.2 The Problem

	6.3 Challenging Examples
	6.4 Variations
	6.4.1 Computation Concerns
	6.4.2 Other Label Sizes

	References

