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Introduction

R. Gera, S. Hedetniemi and C.E. Larson

1 Conjectures and Open Problems

This book has its roots in the idea that conjectures are central to mathematics
and that it is useful to periodically identify and survey conjectures in the various
branches of mathematics. Typically, the end results of mathematics research are
theorems, the most important and famous of which show up in textbooks, which in
turn are taught to students. This often gives students the impression that theorems
are the most important things in mathematics. The popular press reinforces this idea;
when mathematics is in the newspapers, it is most often to report a proof of some
well-known, unsolved conjecture or problem.

However, as every research mathematician knows, progress in mathematics
involves much more than proving theorems, and its practice is much richer.
Mathematics research involves not only proving theorems but raising questions,
formulating open problems, and stating the conjectures, the solutions to which
become the new theorems. Mathematics research also involves the formation of
new concepts and methods, the production of counterexamples to conjectures, the
simplification and synthesis of different areas of mathematics, and the development
of analogies across different areas of mathematics.

The three editors of this volume happen to be graph theorists, or more generally
discrete mathematicians, which explains the major focus of the following chapters.
In this collection of papers, the contributing authors present and discuss, often in
a storytelling style, some of the most well-known conjectures in the field of graph
theory and combinatorics.

Related to conjectures are open problems. Conjectures are either true or false.
But what counts as the resolution of a problem is often less clear-cut. Nevertheless,
a conjecture clearly specifies a problem—and many problems can be naturally
formulated as conjectures. For example, it is a famous unsolved problem to
determine whether or not the class P of decision problems is equal to its superclass
NP. The famous P=NP problem is one of the seven Millennium Problems identified
by the Clay Mathematics Institute, whose resolution carries a $1 million dollar
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prize [1]. For any problem like this, having a yes or no outcome, the associated
conjectures are either that the problem can be resolved in the positive or that it
cannot be. Many or most mathematicians, for instance, conjecture that P#ANP. But
a few, including Bela Bollabds, conjecture that P=NP.

While most mathematicians are most likely to be known for their theorems,
some are known for their conjectures. Fermat and Poincaré, while famous for their
theorems, are also known for their conjectures. Graph theorists know the name of
Francis Guthrie only for his conjecture that planar maps can be colored with four
colors [12].

The late, world-famous mathematician, Paul Erdds, is an exceptional example.
While he is known for, among other things, his development of Ramsey theory, the
probabilistic method, and contributions to the elementary proof of the prime number
theorem, he is perhaps equally famous for his conjectures and problems. He traveled
with these, talked about them, worked on them with hundreds of collaborators, and
even offered monetary prizes for the solutions of many of them. Some of his graph
theory conjectures are collected in [6]. His conjectures and prizes have inspired
considerable research and numerous research papers, and still 20 years after his
death in 1996, his conjectures continue to have considerable influence.

Not all conjectures are of equal importance or significance, and not all will have
the same influence on mathematics research. The resolution of some conjectures
will impact textbooks and even the history of mathematics. The resolution of others
will soon be forgotten. What makes a conjecture significant or important? A few
mathematicians have recorded their thoughts on this question.

The famous British mathematician, G. H. Hardy, the early twentieth century
analyst and number theorist, discussed this question in his 1940 essay, A Mathe-
matician’s Apology [10], which is a biographical defense of mathematics as he saw
and practiced it. Hardy is often remembered for discounting the practicality or utility
of mathematics.

Laszlo Lovasz has discussed the question of what makes a good conjecture [11].
He says that “it is easy to agree that” the resolution of a good conjecture “should
advance our knowledge significantly.” Nevertheless Lovdsz wants to make room
for some of the conjectures of Erdds that don’t obviously satisfy this criteria, but
are “conjectures so surprising, so utterly inaccessible by current methods, that their
resolution must bring something new—we just don’t know where.”

Lovész also discusses experimental mathematics as a source of conjectures, a
specific example of which being Fajtlowicz’s Graffiti [ 7], a computer program which
makes conjectures, many of which are in graph theory. It is easy to write a program
to produce syntactically correct mathematical statements. The difficulty in writing a
mathematical conjecture-making program is exactly how to limit the program to
making interesting or significant statements. When Fajtlowicz began writing his
program, he would ask mathematicians what constituted a good conjecture. John
Conway told him that a good conjecture should be “outrageous.” Erdds, in effect,
refused to answer, telling Siemion Fajtlowicz, “Let’s leave it to Rhadamanthus.”

We won’t here give a definitive answer to the question: what makes a good
conjecture? Fame is neither a necessary nor a sufficient condition for a conjecture
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to be considered good. Sociology plays some role in fame. The nonexistence of
odd perfect numbers is probably more famous due to its age, dating back to Euclid
and later to Descartes, than its importance [13]. But many conjectures of famous
mathematicians are worked on because of their intrinsic importance to mathematics.
We certainly expect there to exist little known but significant conjectures. The
history of mathematics contains numerous examples of important research which
was not recognized in its own time. The work of Galois, for instance, is a well-
known example.

Our thought is that there may not be any better way of identifying good
conjectures than to ask the experts, people who have tilled the mathematical soil
for some time and know best which seeds will sprout.

There are internal reasons why a given conjecture can be important, strictly
mathematical reasons related to the furtherance of mathematics research, and the
question, how would resolution of this conjecture advance mathematics?

Of course the goal of mathematics research, and what research mathematicians
are paid to do, is to advance mathematics. Mathematics is seen by the public as a
tool for the sciences—they would have much less interest in paying mathematicians
to be artists than they would as researchers who may play a role in improving their
lives.

But how can a conjecture play a role in advancing mathematics? In particular it
may seem that we have a new question to address: how does mathematics advance?

A conjecture can be said to advance mathematics if the truth of the conjecture
yields new knowledge about a question or object of existing mathematical interest.

Furthermore, the advancement of mathematics requires not just new concepts,
conjectures, counterexamples, and proofs (uniquely mathematical products) but also
effective communication. Lovasz writes:

“Conjecture-making is one of the central activities in mathematics. The creation
and dissemination of open problems is crucial to the growth and development of a
field”. Lovasz, in his 1998 reflection “One Mathematics™ [11], writes: “In a small
community, everybody knows what the main problems are. But in a community of
100, 000 people, problems have to be identified and stated in a precise way. Poorly
stated problems lead to boring, irrelevant results. This elevates the formulation
of conjectures to the rank of research results.” Conjecturing became an art in the
hands of the late Paul Erdos, who formulated more conjectures than perhaps all
mathematicians before him put together. He considered his conjectures as part of
his mathematical ceuvre as much as his theorems. One of my most prized memories
is the following comment from him: “I never envied a theorem from anybody; but I
envy you for this conjecture.”

2 About This Book

Earlier, we mentioned that this book grew out of the idea that conjectures are
central to mathematics and that it is useful to identify and survey conjectures in
the various branches of mathematics. This idea is not novel, and this volume has
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many predecessors, even in our own field of graph theory. Erdos, of course, regularly
gave talks on his favorite problems in graph theory and the other fields in which he
worked. Bondy and Murty’s classic text [5] included papers listing conjectures. A
recent version was compiled in 2014 by Bondy [4]. The Handbook of Graph Theory
lists conjectures and open problems as well. [9].

The conference Quo Vadis in Fairbanks, Alaska, in 1990, was also an inspiration,
when John Gimbel assembled many leading graph theorists to talk about the future
of graph theory [8].

A nice collection of open problems is present online in the “Open Garden
Problem™[2].

In this volume, we aim to contribute to the identification and distribution of the
outstanding problems in graph theory. We started this by co-organizing three special
sessions at AMS meetings on the topic “My Favorite Graph Theory Conjectures.”
These sessions were held at the winter AMS/MAA Joint Meeting in Boston in
January 2012, the SIAM Conference on Discrete Math in Halifax in June 2012,
and the winter AMS/MAA Joint Meeting in Baltimore in January 2014. At these
three sessions, some of the most well-known graph theorists spoke. All sessions
were highly popular and extremely well attended. At the Boston session, there was
standing room only for a series of 12 talks, and at the Halifax session, people
were sitting on the steps, and there were rows of people at the door listening
in. The speakers and the titles of their talks at these sessions can be found at
http://faculty.nps.edu/rgera/conjectures.html [3].

In this volume, we asked the contributors to write informally, to share anecdotes,
to pull back the curtain a little on the process of conducting mathematics research,
in order to give students some insights in mathematical practice. Thus, all chapters
are written in a much less formal style than that which is required in archival journal
publications.

The Editors
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Stephen T. Hedetniemi, Clemson University, Clemson, SC
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Chapter 1
Highly Irregular

Gary Chartrand

Abstract Over the years, there has been considerable interest in graph theory
concepts that have dealt with items that are all the same — such as the degrees of the
vertices in regular graphs, subgraphs in isomorphic decompositions of graphs and
subgraphs whose edges are colored the same in an edge coloring of a graph. More
recently, there has been interest in opposite concepts, that is, irregular concepts, such
as graphs whose vertices have different degrees, subgraphs in decompositions all of
which are non-isomorphic and subgraphs in an edge-colored graph, all of whose
edges are colored differently. It is concepts such as these that are discussed in this
chapter, together with related conjectures and open questions.

Mathematics Subject Classification 2010: 05C07, 05C70, 05C45, 05Cl15,
05C12, 05C05

The three graphs shown in Figure 1.1 are the unique connected graphs of orders 4,
5, and 6 having only two vertices of the same degree. That is, these three graphs are
“nearly irregular.” Over the years, much research has been done in graph theory
concerning concepts dealing with “all things the same.” In fact, what might be
considered the first purely theoretical paper in graph theory, Julius Petersen [24]
authored a paper in 1891 on regular graphs (all degrees the same). In recent decades,
there has been considerable research on concepts of a somewhat opposite nature
(all things different). This has led to a number of concepts, results, conjectures, and
open questions that have attracted the attention of many graph theorists.

G. Chartrand (P<)

Department of Mathematics, Western Michigan University, 1903 W. Michigan Ave.,
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e-mail: gary.chartrand @wmich.edu
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Dy P

Fig. 1.1 The only connected graphs of order n, where 4 < n < 6, having exactly two vertices of
the same degree

1.1 Introduction

When I began my graduate work at Michigan State University, the Chair of the
Department of Mathematics was J. Sutherland Frame. He was not only the Chair,
he taught a course and was the director of the local chapter of Pi Mu Epsilon.
Because of his promotion of and numerous contributions to Pi Mu Epsilon, a lecture
in his honor is presented each year at MathFest, a mathematics conference hosted
annually by the Mathematical Association of America. I became a member of Pi Mu
Epsilon when I was a junior and never missed a meeting when I was a junior, senior,
or graduate student. Professor Frame told my fellow graduate assistants and me that
it was not only our responsibility to teach (two courses each quarter except for my
last year) but to attend all colloquium talks. He said it was good for us to know what
mathematicians work on. We will probably only understand the first few minutes
of each talk, but it’s not our fault if we don’t. It’s the speaker’s fault. I faithfully
attended each colloquium talk.

Early in 1962, I had nearly completed my coursework for a PhD. One day there
was a note in my mailbox asking me to see the Chair of the Graduate Committee
(Professor Bonnie Stewart). This was a bit nerve-wracking for me because I didn’t
know what this meant. What Professor Stewart wanted to tell me, however, is that
I had never selected an area for my dissertation or an advisor. Of course, I knew
this. I told Professor Stewart that although I enjoyed (almost) all the courses I had
taken, I didn’t see myself doing research in any of these areas. He told me to talk
to some professors and think seriously about any suggestions they might have for
me. Fortunately, I had become acquainted with several faculty members at Michigan
State.

Luckily, during fall quarter 1962, I attended a colloquium talk given by Professor
Edward A. Nordhaus. His talk was on graph theory (specifically Ramsey numbers).
I had never heard of graph theory before but was immediately fascinated by it. The
very next day, I visited Professor Nordhaus and asked him if I could take a reading
course in graph theory from him. He told me that the only book on graph theory
with which he was familiar was one written in German (by Dénes Konig [18]), but
he was willing to give me a reading course in lattice theory. I told him that I'd
like to think about this. It wasn’t long afterward that I saw an advertisement in the
Notices of the American Mathematical Society for a new book (in English) titled
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Theory of Graphs [22], written by Oystein Ore of Yale University. I immediately
ordered a copy of this book, and when I received it, I took it to Professor Nordhaus
for him to see it. In this book, a theorem on graph colorings [20] due to Professors
Nordhaus and Gaddum (also a faculty member at Michigan State) was mentioned.
I showed this to Professor Nordhaus, and he said, “Let’s both read the book.” So 1
took a reading course in graph theory during winter quarter 1963 — although I had
already started reading the book during the preceding holiday break. After two or
three weeks, I knew that I enjoyed this subject and so I asked Professor Nordhaus if
he would be willing to be my advisor in graph theory. He agreed. He then told me
to find some problems to work on.

During the latter part of my graduate program, I had adopted a different way of
studying the courses I was taking. I had become accustomed to asking questions
of my own while I was working on assignments. This helped me a great deal in
my studying and would prove to help me when I started doing research. I ran into
the concept of line graphs in Ore’s book (although Ore called these interchange
graphs) and chose this for my dissertation topic. Unfortunately, I was working in an
area in which I had essentially no background and came up with questions that
I didn’t know were interesting or interesting enough or even new. I thoroughly
enjoyed this area, however. What I worked on in my dissertation varied widely.
I kept encountering questions that had little or nothing to do with line graphs.

In October 1963, I learned that Professor Nordhaus knew a mathematician in
graph theory from the University of Michigan: Frank Harary. I had run across his
name often from articles I had read in the library at Michigan State. I became very
familiar with that library. Professor Nordhaus called Frank Harary, who said that he
was willing to meet me. Professor Nordhaus and I drove to Ann Arbor so I could
meet Harary. Although it’s a long story, I earned a PhD from Michigan State in June
1964, became a faculty member at Western Michigan University, and was given
the opportunity to attend the graph theory seminar in fall 1964 at the University of
Michigan.

One of the many facts I stumbled into while working on my dissertation was that
no nontrivial graph contained vertices with distinct degrees.

Theorem 1.1. Every nontrivial graph contains two vertices having the same
degree.

Proof. Suppose that there exists a graph G of order n > 2 with distinct degrees.
Since 0 < degv < n — 1 for every vertex v of G, there must be exactly one vertex
having each of the degrees 0, 1, ...,n — 1. In particular, there exists a vertex x of G
with deg x = 0 and a vertex y of G with degx = n—1. This is impossible, however.m

While completing my dissertation, Professor Nordhaus took on a second doctoral
student: Mehdi Behzad. I told Behzad about the observation that no nontrivial graph
had vertices with distinct degrees, and he thought that this might make an interesting
note. While I thought it was interesting, I felt certain that this observation must
be well known even though I had never seen it mentioned anywhere. (Later I saw
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that Dirac noticed this years before.) I then thought that if we could come up with
something about graphs containing only two vertices with the same degree, then this
would add some substance to a joint note on this topic.

We showed that for every integer n > 2, there are exactly two graphs of order n
having only two vertices of the same degree — and that these graphs are (obviously)
complements of each other, one connected and one disconnected. The unique
connected graph of order n having exactly two vertices of the same degree is that
graph G with vertex set V(G) = {v1, v2, ..., v, such that v;v; € E(G) if and only
ifi+j>n+ 1 Forn=4,5,6,these are the graphs shown in Figure 1.1. For the
disconnected such graph of order n, v;v; is an edge if and only if i +j > n + 2.
If n = 2r > 4 is even, then for U = {uy,up,...,u}, W = {wi,wy,...,w,} and
V(G) = U U W, the graph G can be constructed by letting G[U] = K,, G[W] = K,
and ujw; € E(G)ifandonlyif 1 <i <jforj=1,2,....,r.Ifn=2r4+12> 3is
odd, then the construction is the same with |U| = r 4+ 1 and |W| = r.

I thought of calling a graph G “perfect” if no two vertices of G have the same
degree. That way the note could be given the humorous title “No Graph Is Perfect”
[5]. My idea for this title came from the final lines of the movie “Some Like It Hot”
(in which actors Jack Lemmon and Tony Curtis had been masquerading as members
of a female band) when Joe E. Brown asks the Lemmon character to marry him.
Then Lemmon takes off his wig and says he’s a man. Joe E. Brown then says, “Well
nobody’s perfect.” Of course, later I would learn that Claude Berge used the term
“perfect” to mean something entirely different in graph theory (see [6]).

Graph theory is filled with concepts and topics dealing with things that are the
“same,” including regular graphs (where the degrees of all the vertices are equal) and
isomorphic decompositions (where every two subgraphs in such a decomposition
are isomorphic). Later my use of “perfect” to mean the opposite of “regular”
necessarily had to be changed — and it was. Perfect became irregular. So for some
50 years, from time to time, this topic would occur to me when I asked myself
what would be the opposite of “the same” in whatever concept I was currently
considering and whether it might be interesting enough to study. That a concept
or topic is “interesting” was always critical.

I was fortunate to be given the opportunity to spend 1965-1966 at the University
of Michigan with Frank Harary. He would become a good friend of mine, and later
we would often discuss ideas we had for research topics. One day, while discussing
whether a topic was interesting enough to study, I recalled asking Harary whether a
topic being interesting is simply subjective. I've always remembered his response,
“That’s why we have to have good taste.”

One topic that came up a number of times is that of attempting to look at a
concept in a variety of ways. So a graph G is irregular if no two vertices of G
have the same degree. It’s not only rather easy to prove that no nontrivial graph is
irregular (as we saw in Theorem 1.1), it didn’t seem all that interesting. At one time,
two ideas occurred to me: (1) Give a different interpretation to the word “graph”
in the definition of “irregular graph.” (2) Give a different interpretation to the word
“degree” in the definition of “irregular graph.”



1 Highly Irregular 5
1.2 The Irregularity Strength of a Graph

It was easy to see that multigraphs exist in which every two vertices have different
degrees. The multigraph G in Figure 1.2(a) has this property. For example, if G is
a connected graph with E(G) = {ej, ez,...,en}, m > 2, then the multigraph H
obtained from G by replacing each edge ¢; (1 < i < m) by 2"~! parallel edges has
this property. Since multigraphs with many parallel edges were difficult to draw,
it would be easier to draw these multigraphs as (edge) weighted graphs, where
the weight w(uv) of an edge uv is the number of parallel edges joining u and v.
A weighted graph in which every two vertices have distinct degrees (where the
degree of a vertex is then the sum of the weights of its incident edges) was initially
called an irregular network rather than an irregular weighted graph. In fact, every
connected graph G of order 3 or more can be converted into an irregular weighted
graph by an appropriate assignment of weights to the edges of G (see Figure 1.2(b)).
The strength of a multigraph G is the maximum number of parallel edges joining
any two vertices of G. This gave rise to the irregularity strength s(G) of a graph
G, defined as the smallest positive integer k such that if each edge of G is assigned
one of the weights 1,2, ..., k, then an irregular weighted graph can be produced. I
decided that this subject might make an interesting talk at the 250th Anniversary of
Graph Theory Conference held at Indiana University-Purdue University Fort Wayne
in 1986. A paper [11] on this topic was written and appeared in the proceedings of
this conference, which was published in 1988.

Another paper [25] was published in 1988 containing a connection to the concept
of irregular graphs. The British mathematician David Wells has written extensively
on mathematics education. The fall 1988 issue of the journal The Mathematical
Intelligencer contained an article [25] written by Wells and titled Which is the Most
Beautiful? In this article, Wells listed 24 theorems and asked the readers to vote
for the theorems they considered the most beautiful. In 1990, he wrote a follow-up
article [26] titled Are These the Most Beautiful? giving the results of this survey.
The theorem that finished on top was Euler’s e™* = —1. Second place was another
theorem due to Euler: For every polyhedron with V vertices, E edges, and F faces,
V — E 4+ F = 2. The theorem stating that there are infinitely many primes came in
third place. The theorem coming in at #20 caught me by surprise:

At any party, there is a pair of people who have the same number of friends present.

vO—=0y, v O - w
5 4 3

Fig. 1.2 (a) An irregular multigraph and (b) irregular weighted graph
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Fig. 1.3 A graph with irregularity strength 3

First, I was surprised that it was even considered a theorem and also that it was
among the 24 theorems listed by Wells. Although not stated in terms of graphs,
what this theorem clearly says is that no graph is irregular. So perhaps the concept
of irregular graphs was better known and of more interest than I thought.

The problem of determining the irregularity strength of a graph would become
rather popular, with many research papers written on this topic. In fact, the
book Color-Induced Graph Colorings [30] by Ping Zhang contains a chapter on
irregularity strength. In this book, the structure of those graphs containing exactly
two vertices having the same degree is shown to play a useful role in the proofs of
certain results.

As an illustration, the 4-regular graph G = K, shown in Figure 1.3 has
irregularity strength 3. In this figure, each edge is assigned one of the weights 1,
2, 3 with the weighted degrees shown within the vertices. Since these degrees are all
distinct, s(G) < 3. Since no graph is irregular, s(G) > 2. Therefore, to verify that
s(G) = 3, it only remains to show that there is no way to assign the weights 1, 2 to
the edges of G to produce an irregular weighted graph. Although there are several
ways to see this, suppose, to the contrary, that an irregular weighted graph can be
obtained by assigning the weights 1, 2 to the edges of G. Let H be the spanning
subgraph of G all of whose edges are assigned the weight 1. Then H contains two
vertices u and v having the same degree, say deg, u = degy v = k. Since all edges
of G incident with u and v not belonging to H are assigned weight 2, the weighted
degrees of u and v in G are k + 2(4 — k) = 8 — k, a contradiction.

Aigner and Triesch [1] and Gyarfas [15] are among many who have obtained
bounds on the irregularity strength of a graph and exact values for certain classes of
graphs.

Theorem 2.1 ([11]). For each integer n > 3, s(K,) = 3.

Theorem 2.2 ([11, 15]). If G is a regular complete multipartite graph of order at
least 3, then

4 if G = K, , where r > 3 is odd

G) =
$(6) 3 otherwise.
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Theorem 2.3 ([1]). If G is a connected graph of order n > 4, then s(G) <n — 1.

One problem that interests me is that of finding a short, easily understood proof
of Theorem 2.3. While no formula has been obtained for the irregularity strength
of every tree, the following conjecture by Ebert, Hemmeter, Lazebnik, and Woldar
[13] has been made. The notation A(7") denotes the maximum degree of a tree 7.

Conjecture 2.4 ([13]). For a tree T, let n; be the number of vertices of degree i in
Tfori=1,2,...,A(T) and let

(ni+nip1 +---+m) +i—1

MT) = lrmax%
J

: 1§i§j§A(T)H.
(i)

Then s(T) = A(T) or s(T) = A(T) + 1.

1.3 The 1-2-3 Conjecture

As the title of Zhang’s book [30] suggests, years later assigning weights to edges
would be looked at in terms of assigning colors to edges, and the resulting degrees
would become vertex colors, where then the color of a vertex is the sum of the colors
of its incident edges. Zhang then came up with the idea of demanding that every two
adjacent vertices have different colors (a proper coloring) instead of requiring that
all vertices have different colors. It soon appeared that for every connected graph
of order at least 3, this vertex coloring condition could be accomplished using only
the colors 1, 2, 3 for the edges. But neither Zhang nor I could prove this. Zhang
suggested writing a paper mentioning this problem but I kept delaying this, hoping
that we could prove more than we had. Then we learned of a paper [17] on the exact
same problem and conjecture, which eventually acquired a rather catchy name. The
following conjecture is due to Karoniski, Luczak and Thomason [17].

The 1-2-3 Conjecture For every connected graph G of order 3 or more, each edge
of G can be assigned one of the colors 1, 2, 3 in such a way that the induced colors
of every two adjacent vertices are different.

This conjecture thus states that there is a nonproper edge coloring of every
connected graph of order 3 or more using only the colors 1, 2, 3 that gives rise
to a proper vertex coloring of this graph. This is illustrated for the three graphs
in Figure 1.4.

Fig. 1.4 Illustrating the 1-2-3 Conjecture
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Karonski, fuczak and Thomason [17] showed that there is an infinite class of
graphs for which the 1-2-3 Conjecture holds.

Theorem 3.1 ([17]). For every connected graph G of order 3 or more having
chromatic number at most 3, the 1-2-3 Conjecture holds.

While it is not known if the 1-2-3 Conjecture will become the 1-2-3 Theorem,
Maciej Kalkowski, Michat Karoriski, and Florian Pfender [16] showed that there
is, in fact, a 1-2-3-4-5 Theorem. Therefore, even a 1-2-3-4 Theorem appears to be
elusive.

Theorem 3.2 ([16]). For every connected graph G of order 3 or more, each edge
of G can be assigned one of the colors 1,2,3,4,5 in such a way that the induced
colors of every two adjacent vertices are different.

1.4 F-Irregular Graphs

Another way that an “irregular graph” might exist is if the term “degree” were
defined in a different way. While the standard degree of a vertex v in a graph G
is defined as (1) the number of vertices in G that are adjacent to v or (2) the number
of edges of G that are incident with v, it can also be defined as (3) the number of
subgraphs of G that contain v and are isomorphic to K,. But what if K, was changed
to some other graph?

For a connected graph F of order 2 or more and a graph G, the F-degree of a
vertex v of G, denoted by F deg v, is the number of subgraphs of G isomorphic to F
containing v. Therefore, in the case where F' = Kj, it follows that F' degv = degv.
This concept was described in [9] by Chartrand, Holbert, Oellermann, and Swart,
and some of the results obtained are given below.

Theorem 4.1 ([9]). Let F be a graph of order k > 2 and let G be a graph. If G
contains m copies of the graph F, then ZUEV(G) Fdegv = km.

Corollary 4.2 ([9]). Let F be a graph of even order and let G be a graph. Then G
has an even number of vertices with odd F-degree.

Of course, a special case of Corollary 4.2 is that every graph has an even number
of odd vertices. It was mentioned that every nontrivial connected graph can be
converted into an irregular weighted graph — except for one graph, namely, the
graph K. In the case of F-degrees, there may be a single exception here as well,
and it may be the same exception. An F-irregular graph is a graph in which no two
vertices have the same F-degree. We know that there is no F-irregular graph when
F = K, but for many other choices of F, there was success in constructing an F-
irregular graph. For the path P; of order 3, the graph G of Figure 1.5 is Ps-irregular,
where the P3;-degree of each vertex is shown in the figure.

Theorem 4.3 ([9]). For every integer n > 3, there exists a K, n-irregular graph.
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Fig. 1.5 A P;-irregular graph

Theorem 4.4 ([9]). For every integer n > 3, there exists a K,-irregular graph.

As the graph G of Figure 1.5 illustrates, there are Pz-irregular graphs. However,
it was shown in [9] that there is no regular Ps-irregular graph. Erdés, Székely, and
Trotter (Personal communication, 2014) showed that there are, in fact, infinitely
many Kj-irregular graphs, that is, no two vertices belong to the same number of
triangles. Whether there exist regular K3-irregular graphs is unknown.

Problem 4.5. Does there exist a regular Ksz-irregular graph?
The primary conjecture on this topic is the following, however.

Conjecture 4.6 ([9]). For every connected graph F of order 3 or more, there exists
an F-irregular graph.

1.5 Highly Irregular Graphs

Every four years during the period 1968—2000, Western Michigan University hosted
an international conference on graph theory. A faculty member who played a
major role in hosting these conferences was Yousef Alavi. Among the many
mathematicians who attended these conferences was Ron Graham, who became
good friends with Alavi. A common comical phrase used by Alavi was “highly
irregular”” To Alavi, many things that occurred were “highly irregular”” Graham
suggested the idea of introducing a concept to be called “highly irregular graphs”
and to write a paper with Alavi on this topic. All that was needed was a definition of
“highly irregular.” Ortrud Oellermann suggested a definition that we (Fan Chung,
Ron Graham, Paul Erdés, Ortrud Oellermann, and I) adopted for Yousef Alavi.
A graph G is highly irregular if for every vertex v of G, no two neighbors of
v have the same degree. The three trees in Figure 1.6 of orders 4, 8 and 16 are
therefore highly irregular. A paper [3] was then written with the title “Highly
irregular graphs.”
In [3] the following was observed.

Theorem 5.1 ([3]). For every integer n > 2, except n = 3,5,7, there exists a
highly irregular graph of order n.
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Fig. 1.6 Two highly irregular graphs

This does not mean that there are many highly irregular graphs, however.

Theorem 5.2 ([3]). If G(n) and HI(n) denote the number of graphs of order n and
the number of highly irregular graphs of order n, respectively, then

HI(n)
im =0.
n—o0 G(n)
The independence number o(T) of a tree T is the maximum number of vertices
in 7', no two of which are adjacent. The independence numbers of highly irregular
trees were investigated in [3] and the following result was stated.

Theorem 5.3 ([3]). If T is a highly irregular tree of order n > 2, then o(T) <
12n/19.

It is known that there are highly irregular trees T of order n for which a(7T) =
13n/21, but no example of a highly irregular tree T of order n with a(T) > 13n/21
has been found. Since 13n/21 =~ 0.62n and 121n/19 = 0.63n, the upper bound
stated in Theorem 5.3, if not sharp, is close to being sharp.

Problem 5.4. For highly irregular trees T of order n, what is a sharp upper bound
for a(T) in terms of n?

After working on the paper [3], Erd6s, Oellermann, and I continued to discuss
the topic of irregular graphs and wrote a paper for the College Mathematics Journal
titled “How to define an irregular graph” [10]. One idea was to define the k-degree
deg, v of a vertex v in a connected graph G as the number of vertices at distance k
from v. Therefore, deg, v = degv. A graph G is distance-k irregular if deg, v #
deg, u for every two distinct vertices u and v of G. That no graph is distance-1
irregular is a special case of the following observation.

Theorem 5.5 ([10]). For each positive integer k, no graph is distance-k irregular.

Proof. We already know that this is true for k = 1. Suppose, however, that there is
a distance-k irregular graph of order n for some k > 2. Then for each integer i €
{0,1,...,n— 1}, there is exactly one vertex of G whose k-degree is i. In particular,
there is a vertex u such that deg, (1) = 0 and vertex v such that deg,(v) = n — 1.
This says that all vertices of V(G) — {v} are at distance n — 1 from v, including u,
which is impossible. |
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Fig. 1.7 k-Path irregular graphs fork = 3,4.(a) G, (b) T

While this concept was not particularly interesting, a related one showed more
promise. For a positive integer k, a connected graph G is k-path irregular (see [4]) if
degu # degv for every two vertices # and v connected by a path of length & in G.
There are many 1-path irregular graphs, including the complete bipartite graphs K,
with s # t. The 2-path irregular graphs are precisely the highly irregular graphs.
The graph G in Figure 1.7(a) is 3-path irregular and the tree T in Figure 1.7(b) is
4-path irregular.

An open question in this topic is the following.

Problem 5.6. For a given positive integer n, which sets S of positive integers have
the property that there exists a connected graph G of order n that is k-path irregular
ifand only ifk € §?

1.6 The Ascending Subgraph Decomposition Conjecture

Applying “irregular” to concepts has occurred in situations not concerning degrees
of vertices. Decomposing a graph into subgraphs, each isomorphic to the same
graph, has been a topic of interest for many years. Indeed, decomposing a complete
graph into triangles is the concept of Steiner triple system, whose history goes back
to Thomas Kirkman. I thought that an irregular version of this may be decomposing
a graph into subgraphs no two of which are isomorphic. But every graph has this
property — just require every two subgraphs to have different sizes. In fact, if G is
a graph of size m, then (*}') < m < (*}?) — 1 for a unique integer k and G can
be decomposed into k subgraphs of different sizes. For every example I considered,
I noticed that there was such a decomposition with another property, namely, for
every graph G of size m with (*}') < m < (*1?) — 1, there was a decomposition
of G into k subgraphs Gy, G, ..., Gy of sizes my,my, ..., my, respectively, where
not only m; < my < --- < my but G;4| contains a subgraph isomorphic to G; for
i=1,2,...,k— 1.1 had a meeting scheduled with a research group one afternoon
and mentioned this possible conjecture to the group, which I called the Ascending
Subgraph Decomposition Conjecture.
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Fig. 1.8 An ascending subgraph decomposition of a graph

Conjecture 6.1. Let G be a graph of size m, where (k'zH) <m< (k'zﬂ) — 1. Then
G can be decomposed into k subgraphs G1, G, . .., Gy of different sizes where Giy1
contains a subgraph isomorphic to G; fori = 1,2,...,k— 1.

Figure 1.8 shows an ascending subgraph decomposition of a 3-regular graph G
of order 10 and size 15 = (%).

After a few minutes of discussing this conjecture with the research group, there
was a knock on the door of our meeting room. It was Paul Erdés, who had arrived to
give a lecture at Western Michigan University. He asked what we were working on.
This conjecture was mentioned to him, but we had to stop discussing it with him as
it was nearly time for his lecture, which we all attended. Near the end of his lecture,
we were surprised to hear him mention this conjecture. Not only that, he offered $5
for either a proof or a counterexample. As it turns out, I believe $5 was too little as
this conjecture has never been proved or disproved. Nevertheless, this led to a paper
on the topic by Alavi, Boals, Erdés, Oellermann, and myself [2].

1.7 Panconnected Graphs

One idea that occurred to me in the 1970s was that of studying graphs having two
vertices connected by paths of different lengths. A graph G of order n was defined
to be panconnected if every two vertices of G are connected by paths of all possible
lengths. More specifically, a graph G of order n is panconnected if for every two
vertices # and v with distance d(u, v) and every integer k with d(u,v) <k <n—1,
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there exists a u — v path of length k in G. Here, we will see an example of an open
problem that was in existence for many years — but finally settled. I gave the topic of
panconnected graphs to my doctoral student at the time, namely, Jim Williamson, to
work on for his dissertation [27] on Hamiltonian-connected graphs (in which every
two vertices are connected by a Hamiltonian path). Several well-known theorems
occurring in Hamiltonian Graph Theory are the following. In a graph G, the notation
02(G) denotes the minimum sum of the degrees of two nonadjacent vertices of G.

Theorem 7.1 ([8, p.152] [21, 23]). Let G be a graph of order n > 4.

(a) If 02(G) = n— 1, then G has a Hamiltonian path.
(b) If 02(G) = n, then G is Hamiltonian.
(¢) If 02(G) = n + 1, then G is Hamiltonian-connected.

An immediate corollary of Theorem 7.1 is the following, where §(G) denotes the
minimum degree of a graph G.

Corollary 7.2. Let G be a graph of order n > 4.

(a) If §(G) = (n—1)/2, then G has a Hamiltonian path.
(b) If §(G) = n/2, then G is Hamiltonian.
(¢) If8(G) = (n+ 1)/2, then G is Hamiltonian-connected.

Each of the results in Corollary 7.2 is sharp for if the lower bound is reduced by
1/2 in each case, the result no longer holds. Williamson [28] proved the following
result.

Theorem 7.3 ([28]). If G is a graph of order n > 4 such that §(G) > (n + 2)/2,
then G is panconnected.

The lower bound in Theorem 7.3 is sharp in the sense that if this lower bound
is reduced by 1/2, then the result no longer holds [28]. Perhaps surprisingly,
Williamson also showed that if G is a graph of order n > 4 such that 0,(G) > n+2,
then G need not be panconnected. In the graph G of order 8 shown in Figure 1.9,
02(G) = 10 = n + 2 but G is not panconnected since, for example, d(u, v) = 1 but
G contains no u — v path of length 2.

v

Fig. 1.9 A graph G of order n with 0,(G) = n + 2 such that G is not panconnected
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In fact, Williamson’s research resulted in the following theorem.

Theorem 7.4 ([28]). There exists no constant ¢ such that if G is a graph of order
n > 4 satisfying 0,(G) > n + ¢, then G is panconnected.

Theorem 7.4 is actually a consequence of the following result of Williamson.

Theorem 7.5 ([28]). If G is a graph of order n > 4 such that 0,(G) > 3"2_2, then
G is panconnected.

Williamson showed that if the lower bound in Theorem 7.5 is reduced by 1,
then the result no longer holds. For a number of years, it remained an open question
whether this result would hold if the lower bound in Theorem 7.5 were to be reduced
by 1/2. However, the situation was finally settled in [7], where Bi and Zhang proved
the following.

Theorem 7.6 ([7)). If G is a graph of order n > 4 such that 05(G) > >, then G
is panconnected.

1.8 Rainbow Connection

In 2006 Ping Zhang and I were to be visited at Western Michigan University by
Kathy McKeon and Garry Johns to work on a research problem — but we didn’t have
a problem to study. So I returned to my old standby: irregular something. I wondered
if there might be an interesting version of paths of different lengths connecting each
pair of vertices, but this returned me to panconnected graphs again.

The idea of locating monochromatically-colored subgraphs in edge-colored
graphs is essentially what is done when studying Ramsey numbers. In recent years,
problems concerning rainbow-colored subgraphs (in which no two edges are colored
the same) have become increasingly popular.

For example, there have been problems dealing with the rainbow Ramsey number
of two graphs F and H, which concerns edge colorings of a complete graph using
an arbitrary number of colors that result in either a monochromatic F (in which all
edges are colored the same) or a a rainbow H (in which no two edges are colored
the same). This topic is surveyed in [14]. Another example (see [29]) concerns,
for a prescribed complete graph, conditions under which proper edge colorings of
complete graphs of sufficiently large order can be decomposed into rainbow copies
of the prescribed complete graphs.

It occurred to me to consider assigning as few colors as possible to the edges of a
graph G so that every two vertices of G are connected by a rainbow path (in which
no two edges are colored the same). This concept could then be called rainbow
connection, which appealed to me because this is the title of a song written by Paul
Williams for Kermit the frog (Jim Henson) to sing in “The Muppet Movie.”

Specifically, an edge-colored graph G is defined to be rainbow connected if every
two vertices of G are connected by a rainbow path. The rainbow connection number
rc(G) of a graph G is the minimum number of colors required of an edge coloring



1 Highly Irregular 15

Fig. 1.10 A graph with rainbow connection number 3

of G so that the resulting edge-colored graph is rainbow connected. The rainbow
connection number of a (connected) graph G is necessarily at least as large as its
diameter diam(G). Since the diameter of the graph H in Figure 1.10 is 3, it follows
that rc(H) > 3. However, because the 3-edge coloring of H shown in Figure 1.10 is
a rainbow coloring, it follows that rc(H) = 3.

After an initial paper [12] on this topic, many other research papers in this
area occurred. In fact, in 2012, the book Rainbow Connections of Graphs [19] by
Xueliang Li and Yuefeng Sun was published.

In addition to the observations that (1) a graph G has rc(G) = 1 if and only if G
is complete and (2) a nontrivial connected graph G of size m has rc(G) = m if and
only if G is a tree, the following formulas for the rainbow connection numbers of
complete multipartite graphs were obtained.

Theorem 8.1 ([12]). For integers s andt with2 < s <t,
re(Ky,) = min {[¥/1 |, 4}.

Theorem 8.2 ([12]). For integers ny,ny,...,ny where k > 3 and 1 < n; < ny
< ... < g such that s = Zj:ll n;and t = ny,

1 l'fl’lk =1
rc(Kuynp,om) = 2 ifng, >2ands >t

min{[/¢ .3} ifs<t

Among the many unresolved questions in this area are the following Li, Personal
communication (2014).

Problem 8.3. Does there exist a constant ¢ > 0 such that if G is a non-complete
graph of order n with §(G) > n/2 + ¢, then rc(G) = 2? In particular, does §(G) >
n/2 imply that rc(G) = 27

Problem 8.4. Let k be a positive integer. Does there exist a constant ¢ > 0 such
that if G is a k-connected graph of order n, then rc(G) < [ﬂ +c?

Problem 8.4 is known to have an affirmative answer when £ = 1 or k = 2 but
the answer is unknown even when k = 3.

Acknowledgements I thank Xueliang Li and Tom Trotter for supplying useful information to
me. I also thank Stephen Hedetniemi, one of the editors of this book, for numerous valuable
suggestions.
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Chapter 2
Hamiltonian Extension

Ping Zhang

Abstract In the instructions accompanying William Hamilton’s Icosian Game, it
was written (by Hamilton) that every five consecutive vertices on a dodecahedron
can be extended to produce a round trip on the dodecahedron that visits each
vertex exactly once. This led to concepts for Hamiltonian graphs G dealing with
(1) for any ordered list of k vertices in G, there exists a Hamiltonian cycle in G
encountering these k vertices (not necessarily consecutively) in the given order
and (2) determining the largest positive integer k for which any ordered list of k
consecutive vertices in G lies on some Hamiltonian cycle in G as a path of order
k. Whether G is Hamiltonian or not, there is a cyclic ordering of the vertices of G
the sum of whose distances of consecutive vertices is minimum. These ideas are
discussed in this chapter along with open questions dealing with them.

AMS classification subjects: 05C45

2.1 Introduction

What do Leonhard Euler, Kazimierz Kuratowski, Karl Menger, and Frank Ramsey
have in common? While there are probably many possible answers to this question,
the desired answer here is: they are four famous mathematicians after whom four
famous theorems in graph theory are named, but who never worked in graph theory.
They are not the only non-graph theorists whose names are closely associated with
graph theory. One of the best known mathematicians belonging to this category
is William Rowan Hamilton. This Irish mathematician and physicist was born in
1805. Thirty years later he was knighted, becoming Sir William Rowan Hamilton,
for his accomplishments in physics. Among his accomplishments in mathematics,
he is known for his creation of the quaternions, a 4-dimensional associative normed
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division algebra over the real numbers. A quaternion is a number of the form a +
bi + cj + dk where a, b, ¢, and d are real numbers and i* = j> = k? = ijk = —1.
These numbers are an extension of the complex numbers and are noncommutative.
In fact, the quaternions were the first example of a noncommutative division algebra.

One of Hamilton’s last major discoveries was a noncommutative algebra he
referred to as icosian calculus. This algebra was based on three symbols i, x, and
A, all roots of unity, with > = 1, ¥ = 1, and > = 1, where A = ix. While
this algebra is not commutative, it is associative. These elements generate a group
isomorphic to the group of rotations of the regular dodecahedron. Hamilton saw that
these symbols relate to journeys about a dodecahedron which led to his invention
of a game called the Icosian Game. Hamilton was not only the inventor of this
game, he was also involved in its commercialization and even wrote the instruction
pamphlet that accompanied the game. A commercial version of this game was
referred to as Around the World. Hamilton associated 20 cities with the 20 vertices
of a dodecahedron where the names of the 20 cities began with the 20 consonants
of the English alphabet (y being considered a vowel here). A dodecahedron together
with the 20 cities Hamilton chose is shown in Figure 2.1. The goal then was to
discover a round trip moving along the edges of the dodecahedron that visits each
city exactly once.

Hamilton observed that it was possible to take a round trip about the dodecahe-
dron, visiting each vertex exactly once. Hamilton actually envisioned this game as a
two-person game, where the first player provides conditions that the second player
was to follow, as one proceeds about the dodecahedron. In one version of this game

\ T

B. Brussels  H. Hanover N. Naples T. Toholsk

C. Canton J. Jeddo P. Paris V. Vienna

D. Delhi K. Kashmere Q. Quebec W. Washington
F. Frankfort L. London R. Rome X. Xenia

G. Geneva M. Moscow S. Stockholm Z. Zanzibar

Fig. 2.1 Hamilton’s Icosian Game
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described by Hamilton, there are 20 markers, numbered 1 to 20. The first player is to
place markers 1, 2, 3, 4, 5, in order, on five consecutive vertices of a dodecahedron.
The second player is then to place the remaining markers 6, 7, ..., 20, in order, on
15 consecutive unmarked vertices, such that markers 5 and 6, and 20 and 1 appear
on consecutive vertices. This is the same as beginning with any path of order 5 on
the graph of the dodecahedron. From his icosian calculus, Hamilton knew that this
could always be done, no matter which five consecutive vertices are chosen first.

While Hamilton’s Icosian Game is credited for being the origin of Hamiltonian
cycles and Hamiltonian graphs, it is also known that Thomas Kirkman had earlier
considered round trips on polyhedra passing through each vertex exactly once.
Nevertheless, it is Hamilton’s name that became associated with these cycles and
graphs, not Kirkman’s.

2.2 k-Ordered Hamiltonian Graphs

Although many graph theorists are well aware of this origin of Hamiltonian cycles,
not many may be aware of the associated details. Indeed, Gary Chartrand once
reported that he knew about Hamilton’s Around the World game on a dodecahedron,
but admitted that he had never read the details until the early 1990s. When he
read what Hamilton had written in the instructions for his Icosian Game, two ideas
occurred to him — one he thought was probably new, while about the other, he wasn’t
sure. His first idea led him to create the concept of k-ordered Hamiltonian graphs.
We refer to the book [5] by Chartrand, Lesniak, and Zhang for graph theoretic
notation and terminology not described here.

A Hamiltonian graph G is a k-ordered Hamiltonian graph if for every k vertices
V1, V2, ...,V of G, there exists a Hamiltonian cycle C of G encountering these
k vertices (not necessarily consecutively) in the given order, somewhere on C.
While it is obvious that every Hamiltonian graph is 3-ordered Hamiltonian, it is
equally obvious that not every Hamiltonian graph is 4-ordered Hamiltonian (e.g.,
cycles). The graph of the dodecahedron, shown in Figure 2.1, is also not 4-ordered
Hamiltonian, as there is no round trip visiting all 20 cities that passes through the
cities Rome, Naples, Quebec, and Paris, in this order.

An obvious problem is to find sufficient conditions for a graph to be k-ordered
Hamiltonian. Chartrand started working on this concept with the graduate student
Michelle Schultz. Some time later, Chartrand received a letter from Joseph Gallian,
who was running his well-known summer REU program and looking for a possible
problem for one of his REU students. Chartrand suggested that Schultz and one of
Gallian’s students might work on this concept. Gallian chose to give the problem to
Lenhard Ng. Schultz and Ng worked on the problem, which led to a paper [17].

For a graph G, the minimum sum of the degrees of two nonadjacent vertices of G
is denoted by 0, (G), and the minimum degree of a (vertex in a) graph G is denoted
by §(G). In [17], it was proved that if G is a graph of order n and k is an integer
with 3 < k < n such that 0,(G) > n + 2k — 6, then G is k-ordered Hamiltonian.
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Consequently, if §(G) > J + k — 3, then G is k-ordered Hamiltonian. Later, many
others started investigating this concept, and the following improvements were
obtained.

Theorem 2.1 ([14]). Let G be a graph of order n and k an integer with 3 < k <
n/2. If 02(G) = n+ (3k — 9)/2, then G is k-ordered Hamiltonian.

Theorem 2.2 ([9]). Let G be a graph of order n > 11k — 3 for some integer k > 2.
If§(G) > (’21] + LéJ — 1, then G is k-ordered Hamiltonian.

The lower bounds for 0,(G) and §(G) presented in Theorems 2.1 and 2.2 that
imply that a graph G is k-ordered Hamiltonian are sharp. In [17], it was shown that
every k-ordered Hamiltonian graph is (k— 1)-connected. Later, sufficient conditions
were obtained on the connectivity of a graph, which imply that it is k-ordered
Hamiltonian.

Theorem 2.3 ([7]). Let G be a graph of order n such that 02(G) > n and k an
integer withk < n/176.If G is | 3k/2|-connected, then G is k-ordered Hamiltonian.

When only the minimum degree of a graph is considered, there is a slight
improvement of Theorem 2.3.

Theorem 2.4 ([7]). Let G be a graph of order n such that 5(G) > n/2 and k an
integer with k < n/176.If G is 3| k/2|-connected, then G is k-ordered Hamiltonian.

Both lower bounds for the connectivity of a graph in Theorems 2.3 and 2.4 are
best possible. A consequence of a result of Bollobds and Thomason[2] implies that
every 22k-connected graph G is k-ordered (i.e., for every k vertices vy, va, ..., Uk
of G, there exists a cycle C of G encountering these k vertices in the given order,
somewhere on C). This gave rise to the following question.

Problem 2.5 ([13]). What is the least connectivity f(k) for which every f(k)-
connected graph is k-ordered?

2.3 k-Path Hamiltonian Graphs

The second idea that occurred to Chartrand after reading Hamilton’s introduction to
the Icosian Game was one he thought may be known and concerned Hamiltonian
extension. As Hamilton observed, beginning with any path P of order 5 on the graph
H of the dodecahedron, P may be extended to a cycle containing every vertex of H.
That is, for every path P of order 5 (or less) in H, there always exists a Hamiltonian
cycle C of H such that P is a path on C. What Hamilton observed for paths of order 5
on the graph H does not hold for all paths of order 6. As is illustrated in Figure 2.2,
the path of order 6 (drawn in bold edges) with initial vertex s cannot be extended to
a Hamiltonian cycle on H, since the only way to reach y is through x, and then we
cannot return to s. Hamilton never mentioned this however. Hamilton’s observation
led Chartrand to introduce a concept that is defined for every Hamiltonian graph.
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Fig. 2.3 A graph G with he(G) =2

A Hamiltonian graph G of order n > 3 is called k-path Hamiltonian, for an
integer k with 1 < k < n, if for every path P of order k in G, there exists a
Hamiltonian cycle C of G such that P lies on C. Certainly, every Hamiltonian graph
is 1-path Hamiltonian. The largest integer k£ for which a Hamiltonian graph G is
£-path Hamiltonian for every integer £ with 1 < £ < k is the Hamiltonian extension
number he(G). Therefore, 1 < he(G) < n. If G is a Hamiltonian graph for which
some automorphism maps any edge of G onto any other edge of G, then he(G) > 2.
In fact, he(G) = 2 if and only if every edge of G lies on some Hamiltonian cycle
of G but some path of order 3 in G does not lie on any Hamiltonian cycle of G. For
example, the graph G of order 6 in Figure 2.3 has Hamiltonian extension number 2
since every edge of G lies on a Hamiltonian cycle, but the path (u, v, w) cannot be
extended to a Hamiltonian cycle in G. Furthermore, he(H) = 5 for the graph H of
the dodecahedron.

There is a rather curious question dealing with this topic that appears to have
never been answered (or perhaps even asked).

Problem 3.1. If G is a k-path Hamiltonian graph for some k > 2, is G also (k—1)-
path Hamiltonian?

If the question asked in Problem 3.1 has an affirmative answer, then the
Hamiltonian extension number of a Hamiltonian graph G can then be defined as
the largest positive integer k for which G is k-path Hamiltonian.

Observe that if G is a k-path Hamiltonian graph of ordern > 4, where 2 < k <n
such that 6(G) > k — 1, then every path of order k — 1 lies on a path of order &
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and so G is (k — 1)-path Hamiltonian. It has been verified that the question stated in
Problem 3.1 has an affirmative answer when 2 < k < 8 or whenk € {n,n—1,n—2}.

All graphs G of order n for which he(G) = n were characterized in a different
context by Chartrand and Kronk [3]. They referred to a graph G of order n > 3
as randomly Hamiltonian if by beginning with any vertex v; of G, selecting any
vertex v, adjacent to v, any vertex v3 adjacent to v, not already selected, and so
on, a Hamiltonian path (v, v2, v3, ..., v,) is always constructed with the additional
property that v, is adjacent to v;. The randomly Hamiltonian graphs G of order
n > 3 are precisely those graphs with he(G) = n. In particular, the result in [3] is
then the following.

Theorem 3.2 ([3]). A graph G of order n > 3 has Hamiltonian extension number n
if and only if either G is the complete graph K, the n-cycle C,, or when n = 2r is
even, the regular complete bipartite graph K, ,.

By Theorem 3.2, there are three graphs G of order n > 3 such that he(G) = n
if n is even and two such graphs if n is odd. There are no Hamiltonian graphs G of
order n, however, for which he(G) = n— 1 or he(G) = n — 2 as the following result
implies.

Proposition 3.3 ([6]). If G is a Hamiltonian graph of order n > 4 for which
he(G) > n—2, then he(G) = n.

While no graph of order n has Hamiltonian extension numbern — 1 orn — 2, a
graph G of order n > 4 can have Hamiltonian extension number n — 3. For example,
he(C; O K;) = n— 3 = 3. This is a consequence of the following result.

Proposition 3.4. For the Cartesian product C,, O K, of C, (n > 3) and K5,

he(C, DKy = 1 3 Umisodd
4 if nis even.

Proof. Let G = C, O K, where the two copies of C,, in G are (uy, us, . .., uy, Uy)

and (vy, vy, ..., Uy, V1), and u;v; is an edge of G for 1 < i < n.

First, suppose that n > 3 is odd. It is obvious that he(C; O K;) = 3 and
so assume that n > 5. Since G is Hamiltonian and every edge of G lies on
a Hamiltonian cycle of G, we begin with a path P of order 3. By symmetry,
we may assume, without loss of generality, that (i) P = (uy,u2,u3) or
(i) P = (u1,vy,vp). If (i) occurs, then P lies on the Hamiltonian cycle
(u1, uz, uz, v3, V2, V1, Uy, Up—i, ..., Vg, Ug, Us, ..., Uy, U1 ), while if (ii) occurs, then
P lies on the Hamiltonian cycle (uy, vy, V2, V3, ..., Up, Uy, Up—1, - - ., Uz, 17). Thus,
he(G) > 3. Since the path (u;, vy, vz, uy) of order 4 cannot be extended to a
Hamiltonian cycle in G, it follows that he(G) < 3 and so he(G) = 3 when n is odd.

When n > 4 is even, an argument similar to the one in the case where n is odd
shows that every path of order 1, 2 or 3 can be extended to a Hamiltonian cycle in G.
Next, we show that every path P of order 4 can be extended to a Hamiltonian cycle in
G. By symmetry, there are five possible choices for P, namely, Q) = (uy, us, u3, us),
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0y = (uy,uz,u3,v3), Q3 = (u1,u2,v2,v3), Q4 = (uy,uz,v2,v;), and Qs =
(u1,v1, v2, up). Each Q; lies on a Hamiltonian cycle H; for 1 < i < 5 as follows:

H1 = (ul,uz,u3,u4,u5, ey U, Uy U1y e ey vl,ul)

H2 = (Ml, Uz, U3, V3, V2, V1, VU, Uy—1,...,04,Uq4,U5,...,Uy,, I/ll)

H3 = (Ml,uz,U2,U3,M3,M4,U4,U5,M5,M6,... ,un,vn,vl,ul)

Hy = (1, u2,02, V1, Uy Up—ls o ooy U3, U3, Ug, oo . Uy, U])

Hs = (u1, vy, v2, Uz, Uz, v3, Vg, Ug, U5, V5, . .., Up—1, Uy—1, Up, Up, U1).

Thus, he(G) > 4. Since the path (i1, uy, us, v3, v4) of order 5 cannot be extended to
a Hamiltonian cycle in G, it follows that he(G) < 4, and so he(G) = 4 when n is
even. n

All five graphs Gy, G2, G3, G4, G5 shown in Figure 2.4 are 3-regular Hamiltonian
graphs of order 20. Obviously, every vertex of G; lies on a Hamiltonian cycle
of Gy, but the edge u;v; does not. Therefore, he(G;) = 1. On the other hand,
every edge of G, lies on a Hamiltonian cycle of G, but the path (i, v2, w,) does
not. That is, he(G,) = 2. In fact, for i = 3,4, 5, every path of order i lies on a
Hamiltonian cycle of G;, but the path (u3, v3, ws, x3) lies on no Hamiltonian cycle
of Gj3, the path (ug, v4, wg, x4, y4) lies on no Hamiltonian cycle of Gy4, and the path
(us, vs, ws, x5,¥5,25) lies on no Hamiltonian cycle of Gs. Since the graph Gy is
Cio O K>, it follows that he(G4) = 4 from Proposition 3.4. The graph Gs, having
Hamiltonian extension number 5, is due to Futaba Fujie (Personal communication
2015). Consequently, he(G;) = ifori =1,2,3,4,5.

There are 3-regular Hamiltonian graphs of order 20 having Hamiltonian
extension number 1 other than the graph G; of Figure 2.4. For example,
beginning with the cycle (vi, vy, ..., v, v1) of order 20 and adding the chords
V] V19, Va2, VoV11, V1oV12 and v;vp—; for i = 3,4,...,8 produces such a graph.
This graph can then be generalized to produce a class of 3-regular Hamiltonian
graphs of (even) order n > 10, all of which have Hamiltonian extension
number 1. The graphs G, and G5 are members of more general classes of 3-regular
Hamiltonian graphs with Hamiltonian extension numbers 2 and 3, respectively.
As we mentioned, the graph G4 is a member of a more general class of 3-regular
Hamiltonian graphs with Hamiltonian extension number 4, namely, the Cartesian
products C, O K, of C, and K, for all even integers n > 4. The graph H of the
dodecahedron, having Hamiltonian extension number 5, can be redrawn as shown
in Figure 2.5.

Several questions are suggested by these examples.

Problem 3.5. Is there an infinite class of 3-regular Hamiltonian graphs having
Hamiltonian extension number 5?

Problem 3.6. Is there a 3-regular Hamiltonian graph of order 20 having Hamilto-
nian extension number 6?
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w2

U1

w3 vs3

Fig. 2.4 Five 3-regular Hamiltonian graphs of order 20

Problem 3.7. Let M = max{he(G) : G is a 3-regular Hamiltonian graph}. Does
M exist? If so, what is M?

A number of results on Hamiltonian extension numbers were obtained in [6],
including the following three theorems, where a(G) denotes the independence
number of G.

Theorem 3.8 ([6]). If G is a Hamiltonian complete k-partite graph of order n for
some integerk € {3,4,...,n— 1}, then he(G) = n + 1 — 20(G).

Theorem 3.9 ([6]). If G is a graph of order n > 3 and §(G) > n/2, then

he(G) > 26(G) —n + 1.
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Fig. 2.5 The graph H of the dodecahedron

Theorem 3.10 ([6]). If G is a graph of order n > 4 such that 6(G) > rn for some
rational number r with 1/2 < r < 1, thenhe(G) > 2r— )n + 1.

Not only is the lower bound in Theorem 3.9 sharp, the lower bound presented in
Theorem 3.10 for the Hamiltonian extension number of a graph is sharp for every
rational number r € [1/2, 1). Of course, when r = 1/2 in Theorem 3.10, we have
the well-known theorem of Dirac [8].

2.4 Hamiltonian Walks

While a graph can only be k-path Hamiltonian for some positive integer k if it is
Hamiltonian, there is a Hamiltonian-related parameter, defined for all nontrivial
connected graphs, Hamiltonian or not, that was introduced by Seymour Goodman
and Stephen Hedetniemi [11, 12] in 1973.

Every connected graph G of order n > 2 and size m contains a closed spanning
walk. Indeed, if every edge of a connected graph G is replaced by two parallel edges,
then the resulting multigraph M of size 2m is Eulerian. Since an Eulerian circuit in
M givesrise to a closed spanning walk in G in which each edge of G appears twice,
it follows that G has a closed spanning walk of length 2m. A Hamiltonian walk
in G is a closed spanning walk of minimum length, and this length is denoted by
h(G). Therefore, h(G) < 2m. If G is a Hamiltonian graph of order 7, then of course
h(G) = n. Thus, h(G) is only of interest to study when G is not Hamiltonian, in
which case #(G) > n + 1. Goodman and Hedetniemi proved the following.

Theorem 4.1 ([12]). If T is a nontrivial tree of order n, then h(T) = 2(n — 1).

Proof. Since the size of a tree T of order n is n — 1, it follows by the remark above
that A(T) < 2(n — 1). Let W be a Hamiltonian walk in 7" and let uv be an edge of
T, where say u precedes v on W. Then uv is a bridge and so lies on W. We may
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therefore assume that W begins with u and is immediately followed by v. Since W
terminates at u, the vertex u appears a second time on W, and this occurrence of u
is immediately preceded by v. Thus the edge uv appears at least twice on W. Hence
h(T) > 2(n—1) and therefore /(T) = 2(n— 1). [

Since a Hamiltonian walk in a spanning tree T of a connected graph G is also a
Hamiltonian walk in G, it follows that 4(G) < h(T) < 2(n — 1) by Theorem 4.1.
From this, the next result follows.

Corollary 4.2 ([12]). For every nontrivial connected graph G of order n,
n<h(G)<2n-1).

An upper bound for the length of a Hamiltonian walk in a connected graph G in
terms of its order and 0, (G) was obtained by Jean-Claude Bermond [1].

Theorem 4.3. If G is a connected graph of order n > 3, then h(G) < 2n — 02(G).

A well-known theorem by Oystein Ore [18] states that if G is a connected graph
of order n > 3 such that 0»(G) > n, then G is Hamiltonian. From this, Theorem 4.3
states that #(G) < n and so h(G) = n, that is, G is Hamiltonian. Therefore,
Theorem 4.3 is a generalization of Ore’s theorem.

During the process of studying distance in graphs, Chartrand was led to the
following concept. Let G be a connected graph of ordern > 2 and let s : vy, vy, ...,
Uy, Uny1 = V1 be a cyclic ordering of the vertices of G. For the sequence s, the
number d(s) is defined by

d(s) = ) d(vi, vir1).
i=1

Since d(v;, viy1) > L fori =1,2,...,n, it follows that d(s) > n. The Hamiltonian
number h*(G) is defined in [4] as min {d(s)}, where the minimum is taken over all
cyclic orderings s of the vertices of G. Consequently, if G is a connected graph of
order n, then h*(G) > n and h*(G) = n if and only if G is Hamiltonian. For the
graph G = K 3 of Figure 2.6 and the two cyclic orderings s : vy, V3, V3, V4, U5, Vg

Fig. 2.6 A graph G with h*(G) = 6
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and s, : vy, v3, V2, Vg, Vs, U] Of the vertices of G, we have d(s;) = 8 and d(sy) = 6.
Since G is a non-Hamiltonian graph of order 5 and d(s;) = 6, it follows that
h*(G) = 6. In fact, for every cyclic ordering s of the vertices of G, either d(s) = 6
ord(s) = 8. 1Itis not difficult to observe that not only is 2*(G) = 6, but hi(G) = 6, as
well. In fact, it was observed that 2*(G) = h(G) for all graphs G that were initially
considered. This led to a conjecture and then to the following theorem.

Theorem 4.4 ([4]). If G is a nontrivial connected graph, then h*(G) = h(G).

Proof. Since the result is obvious if the order n of G is 2, we may assume that

n>3.Lets: vy, v, -, Uy, Uyt = V1 be acyclic ordering of the vertices of G for
which d(s) = h*(G) and let P?) be a v; — v;4; geodesic in G. Then the walk that
encounters the paths PV, P P™ in this order is a closed spanning walk of G

having 7*(G) as its length. Therefore, 1(G) < h*(G).

Next, let W = (ug, uy, ..., u;) be a Hamiltonian walk in G, whose length L(W)
thus satisfies #(G) = L(W) = k > n. Let v; = u;4; fori = 1,2. For 3 <i < n, let
v; = uj,, where j; is the smallest positive integer such that u;, ¢ {vi,vs,...,vi—1}.
Then s : vi,v2,...,V,, Uyy1 = V; is a cyclic ordering of the vertices of G. For
1 <i < n,let W; be the v; — v;4+ subwalk of W. Then

h*(G) <d(s) = Y d(vi.viy1) < Y L(W;) = L(W) = h(G)

i=1 i=1
and so 7*(G) = h(G). |

The fact that *(G) = h(G) for every nontrivial connected graph G says
that there is another way to look at the concept of Hamiltonian walks introduced
by Goodman and Hedetniemi, which in turn suggests concepts and questions
that would likely not have been considered otherwise. In particular, since the
Hamiltonian number of a connected graph G of order n > 2 is the minimum value
of d(s) over all cyclic orderings s of the vertices of G, this makes one wonder if
the values of d(s) other than the minimum may provide information on the structure
of G. One obvious concept, for example, is the upper Hamiltonian number h* (G)
of a connected graph G, defined by

ht(G) = max {d(s)},

where the maximum is taken over all cyclic orderings s of the vertices of G.
Therefore, h*(G) = 8 for the graph G of Figure 2.6. Observe that if s
V1, V2, ..., Uy, Upt1 = Uy 1S any cyclic ordering of the vertices of a connected graph,
then for each vertex v; (1 < i < n), both d(v;—1, v;) < e(v;) and d(v;, vi4+1) < e(v)),
where e(v;) denotes the eccentricity of v; (the distance from v; to a vertex farthest
from v;). Therefore, if G is a connected graph of order n > 3 with V(G) =
{v1, va, ..., vy}, then

n

WH(G) <) ew).

i=1



28 P. Zhang

Since the eccentricity of a vertex in G is at most the diameter of G, we have the
following upper bound for 4% (G) in terms of the order and diameter of G.

Observation 4.5. If G is a connected graph of order n > 3 and diameter d, then
h(G) < nd.

The upper bound in Observation 4.5 for the upper Hamiltonian number of
a connected graph has been shown to be sharp in [4]. For example, the graph
G = Cyy1 = (v1,v2,...,00%+1,V1), K > 1, has diameter k. For the sequence
§ UL, Ukt 1> Y2kt 15 ks U2ks - - o> Ugt2, U1, We have d(s) = nk = ndiam(G) = h™(G).

For a connected graph G of diameter d and an integer p with 1 < p < d, the pth
power GP of G is the graph with vertex set V(G) for which uv € E(G?) if and only if
1 < dg(u,v) < p. Thus, diam(GP) = [d/p]. In particular, for the graph G = Co41
and the sequence s above, d(s) = n[k/p] = n[(n—1)/2p] = h™ (G?).

By definition, 2/(G) < d(s) < h'(G) for every cyclic ordering s of the
vertices of G. The following result states that the Hamiltonian number and upper
Hamiltonian number can be equal only for two classes of graphs.

Theorem 4.6 ([4]). Let G be a nontrivial connected graph. Then h(G) = h*(G) if
and only if G is either a complete graph or a star.

By Theorem 4.6, only when a connected graph G is a complete graph or a star
can d(s) have a single value for each cyclic ordering of the vertices of G. More
generally, we have the following concept, introduced by Krél, Tong, and Zhu in [15].
For a connected graph G, the Hamiltonian spectrum H(G) of G is defined by

H(G) = {d(s) : sis acyclic ordering of the vertices of G}.
As an illustration, consider the Petersen graph P in Figure 2.7, whose vertices

are labeled as shown in this figure. Since P is a non-Hamiltonian graph of order 10,
h(P) > 11. On the other hand, let s : x1,x2,...,x;; = x; be any cyclic ordering of

Uy
U1
Us Us U
V2
V4
U3
Uy us

Fig. 2.7 The Petersen graph
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the vertices of P. Since diam(P) = 2, it follows that d(x;, x;+1) <2 for 1 <i < 10.
Hence d(s) < 2-10 = 20 and so h* (P) < 20. Therefore, 11 < h(P) < h™(P) < 20.
In fact, 2(P) = 11 and At (P) = 20. Consider the cyclic orderings s; (1 < i < 10)
as follows:

S1 - Uy, Uy, U3, U4, Us, Vs, U2, V4, V3, V1, U]
S2 . Uy, Uy, U3, U4, U5, V5, V2, V3, V4, U1, U]
S3 . UL, Uy, U3, U5, U4, V4, U2, V3, V5, U1, U]
S4 ¢ UL, U3, U5,UY, U4, V4, U2, V5, V3, U1, U]
S5 . Uy, U3, uUs, Uy, Us, V3, V5, V3, V4, V1, U]
Se¢ - U1, U3,U5,Uy, U4, Vs, V2, V4, V3, V1, U]
S§7 . Uy, U3, Us, Uy, Uy, V3, V5, V4, V2, V1, U]
Sg - UL, U3, U5,Up, V2, U4, VU3, V4, V5, U1, U]
S9 . U1, U3, U5,U, U4, V2, U3, V4, V5, U1, U]
S10 - U1, U3, Us, Uy, U4, V1, U2, U3, U4, Vs, U].

Since d(s;) = 10+4ifor 1 < i < 10, it follows for each integer k, with 11 < k < 20,
there exists a cyclic ordering s of the vertices of P such that d(s) = k. Therefore,
H(P) = {11,12,...,20}.

By Theorem 4.6, if G is a complete graph or a star of order at least 2, then
h(G) = h*(G). Hence, for every two cyclic orderings s and s” of the vertices of
these two graphs, the numbers d(s) and d(s") are trivially of the same parity. The
following theorem describes a more general class of graphs with this property.

Theorem 4.7 ([10]). For every two cyclic orderings s and s’ of the vertices of a
nontrivial connected graph G, the numbers d(s) and d(s') are of the same parity if
and only if G is complete or bipartite.

Of course, every tree is a bipartite graph. The Hamiltonian spectrum of every
tree was determined by Daphne Liu [16]. For a vertex v of a connected graph G, the
total distance td(v) of v is the sum of the distances from v to all vertices of G. The
minimum total distance over all vertices of G is called the median number of G and
is denoted by med(G).

Theorem 4.8 ([16]). Fora tree T of order n > 3,
H(T) ={2(n—1),2n,2(n+1),...,2med(T)}.

Hence, for every tree T of order n > 3, an integer k is d(s) for some cyclic
ordering s of the vertices of T if and only if k is even with 2(n — 1) < k < 2med(T).
A portion of the following result is an immediate consequence of Theorem 4.7.

Theorem 4.9 ([10]). If G is a nontrivial connected graph that is neither complete
nor bipartite, then there are not only two cyclic orderings s and s' of the vertices of
G such that d(s) and d(s') are of opposite parity, there are cyclic orderings s and s'
of the vertices of G such that d(s) — d(s') = 1.
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We are left with the following questions.

Problem 4.10. For which finite sets S of positive integers, does there exist a
nontrivial connected graph G whose Hamiltonian spectrum is S?

Problem 4.11. Let G be a connected bipartite graph of order n > 3 with the
property that an integer k is d(s) for some cyclic ordering s of the vertices of G
if and only if k is an even integer with h(G) < k < h™(G). Is it true that G is a tree?

Problem 4.12. The Petersen graph P has the property that H(P) is a set of ten
consecutive integers. For every positive integer k, does there exist a connected graph
G for which H(G) is a set of k consecutive integers?
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Chapter 3
Conjectures on Cops and Robbers

Anthony Bonato

Abstract We consider some of the most important conjectures in the study of the
game of Cops and Robbers and the cop number of a graph. The conjectures touch
on diverse areas such as algorithmic, topological, and structural graph theory.
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3.1 Introduction

The game of Cops and Robbers and its associated graph parameter, the cop number,
have been studied for decades but are only now beginning to resonate more widely
with graph theorists. One of the reasons for this owes itself to a challenging
conjecture attributed to Henri Meyniel. Meyniel’s conjecture, as it is now called,
is arguably one of the deepest in the topic and will likely require new techniques
to tackle. The conjecture has attracted the attention of the graph theory community
and has helped revitalize the topic of Cops and Robbers. See Section 3.2.

As the game is not universally known, we define it here and provide some nota-
tion (it is customary to always begin a Cops and Robbers paper with the definition
of cop number; regardless of best intentions, it is difficult to buck the trend). We
consider only finite, undirected graphs in this paper, although we can play Cops
and Robbers on infinite graphs or directed graphs in the natural way. Further, since
the cop number is additive on connected components, we consider only connected
graphs.
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We now formally define the game. Cops and Robbers is a game of perfect
information; that is, each player is aware of all the moves of the other player. There
are two players, with one player controlling a set of cops and the second controlling
a single robber. The game is played over a sequence of discrete time-steps; a round
of the game is a move by the cops together with the subsequent move by the robber.
The cops and robber occupy vertices, and when a player is ready to move in a
round, they must move to a neighboring vertex. The cops move first, followed by the
robber; thereafter, the players move on alternate steps. Players can pass or remain
on their own vertices. Observe that any subset of cops may move in a given round.
The cops win if after some finite number of rounds, one of them can occupy the same
vertex as the robber. This is called a capture. The robber wins if he can evade capture
indefinitely. Note that the initial placement of the cops will not affect the outcome of
the game, as the cops can expend finitely many moves to occupy a particular initial
placement (the initial placement of the cops may, however, affect the length of the
game).

Note that if a cop is placed at each vertex, then the cops are guaranteed to win.
Therefore, the minimum number of cops required to win in a graph G is a well-
defined positive integer, named the cop number of the graph G. The notation ¢(G)
is used for the cop number of a graph G. If ¢(G) = k, then G is k-cop-win. In the
special case k = 1, G is cop-win.

For a familiar example, the cop number of the Petersen graph is 3. In a graph G,
a set of vertices S is dominating if every vertex of G not in S is adjacent to some
vertex in S. The domination number of a graph G is the minimum cardinality of
a dominating set in G. Note that three cops are sufficient in the Petersen graph, as
the domination number upper bounds the cop number. See Figure 3.1. This bound,
however, is far from tight. For example, paths (or more generally, trees) have cop
number 1.

There are now a number of conjectures that have arisen on Cops and Robbers,
touching on many areas including algorithmic, topological, and structural graph
theory. Some of these are more or less known. We will discuss these in the sections
below.

Fig. 3.1 The Petersen graph with white vertices dominating
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When I am discussing Cops and Robbers with a newcomer, [ am aware of the
following, purely tongue-in-cheek principle:

Cops and Robbers Principle: Once you learn about Cops and Robbers, you are
compelled to prove results about it.

The Cops and Robbers Principle, while itself is unverifiable, does seem fairly
pervasive. One reason for this owes to the fact that the cop number, first defined in
1984, remains an unfamiliar parameter to many graph theorists. The cop number has
limited connections (at least based on our current knowledge) to commonly studied
graph parameters; this makes the field both challenging and fresh. The game is also
simple to define and easy to play. You can even play it with some coins on a drawn
graph with non-mathematicians.

Another reason why the Principle so often holds owes to the wealth of variations
possible with the game. Almost every talk I give on the subject at a conference
inspires the audience to spawn at least one (occasionally new) variation. This is
not surprising as mathematicians have active imaginations, and Cops and Robbers
definitely provides a fertile playground for the imaginative. One of my early
mentors, the late lattice theorist Gunter Bruns, told the story of how he knew a
mathematician who quit the field to become a poet. His reason for quitting was that
he did not have enough imagination!

As a concrete example of this aspect of the Principle, at the 2014 SIAM
Conference on Discrete Mathematics held in Minneapolis, colleagues Shannon
Fitzpatrick and Margaret-Ellen Messenger suggested the new variant Zombies and
Survivors. In this game, the zombies (cops) have minimal intelligence and always
move directly toward the survivor (robber) along a shortest path (if there is more
than one such path, then the zombies get to choose which one). We laughed at
the following instance of the game. Consider a group of |n/2| — 2 zombies on a
cycle C,, where n > 4. Place them on distinct, consecutive vertices, so they form a
path of zombies. The survivor then chooses a vertex distance two from the “lead”
zombie (that is the leaf of the zombie path). This placement of the zombies would
result in zombies endlessly chasing the survivor in an orderly path. The survivor is
forever just out of reach of the massive horde of hungry zombies! After learning
about this variant, I told my colleagues they may be watching too many horror
movies. In all seriousness, this variant speaks volumes about the broad appeal of
the game.

The historical origin of the game is an interesting story in its own right. The
game of Cops and Robbers was first considered by Quilliot [38] in his doctoral
thesis. The game remained largely unknown at this time until it was considered
independently by Nowakowski and Winkler [34]. According to Google Scholar, that
five-page paper is the most cited of either author! Mathematics is no exception to
the slogan “less is more.”

Interestingly, both [34, 38] consider the game played with only one cop. In
particular, they both focus on characterizing the cop-win graphs. The introduction
of the cop number came a year later in 1984 with the important work of Aigner and
Fromme [1].
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Our book summarizes much of the research on Cops and Robbers up to 2011;
see [12]. The interested reader is referred there for a broader background than
provided here; see also the surveys [2, 8, 9, 27].

3.2 Meyniel’s Conjecture

Graphs with cop number larger than one are not particulary well understood. The
cop-win case is, on the other hand, well characterized as we describe next.

The closed neighborhood of a vertex x, written N[x], is the set of vertices adjacent
to x (including x itself). A vertex u is a corner if there is some vertex v such that
Nlu] € NJv].

A graph is dismantlable if some sequence of deleting corners results in the
graph K. For example, each tree is dismantlable: delete leaves repeatedly until a
single vertex remains. The same approach holds with chordal graphs, which always
contain at least two simplicial vertices (that is vertices whose neighbor sets are
cliques). The following result characterizes cop-win graphs.

Theorem 1 ([34]). A graph is cop-win if and only if it is dismantlable.

The theorem provides a recursive structure to cop-win graphs, made explicit in
the following sense. Observe that a graph is dismantlable if the vertices can be
labeled by positive integers {1,2,...,n}, in such a way that for each i < n, the
vertex i is a corner in the subgraph induced by {i,i 4+ 1, ..., n}. This ordering of
V(G) is called a cop-win ordering (in the context of chordal graph theory, this is
called an elimination ordering). See Figure 3.2 for a graph with vertices labeled by
a cop-win ordering.

How big can the cop number be? First notice that for every positive integer
n, there is a graph with cop number n. Hypercubes, written Q, (where n is a
nonnegative integer), are a family of graphs realizing every possible cop number
(if we take Q; to be K;). To see this, note that it was shown in [32] that for the
hypercube Q, of dimension n, ¢(Q,) = ["}'7.

4

Fig. 3.2 A cop-win ordering of a cop-win graph
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For a positive integer n, let ¢(n) be the maximum cop number of a graph of order
n (recall that we only consider connected graphs). Meyniel’s conjecture states that
there is a constant d > 0 such that for all positive integers n we have that

c(n) < d+/n.

The conjecture was mentioned briefly in Frankl’s paper [23] as a personal
communication to him by Henri Meyniel in 1985 (see page 301 of [23] and reference
[8] in that paper). As Meyniel has since passed away, we may never know his
original motivation for the conjecture. Meyniel actually only published one short
paper on Cops and Robbers, on a topic unrelated to the conjecture; see [32].

Meyniel’s conjecture seemed to be largely unnoticed until recently. I may have
been partly responsible for Meyniel’s conjecture’s rehabilitation. In 2006, I attended
a small workshop organized by Genia Hahn at the Bellairs Research Institute in
Barbados, and I spoke about recent research on the cop number. The workshop
was delightful, in no small part owing to the beautiful location. Jan Kratochvil
was there, and it appeared that the Cops and Robbers Principle was still in effect.
He subsequently told Béla Bollobds about the parameter and conjecture, who
then produced [7] (I am making this assumption based on the acknowledgment
to Kratochvil in that paper). Since then the interest in the conjecture has steadily
grown. I also spoke at Bellairs about the capture time of a graph, which led to joint
with Kratochvil and others [13]. A play of the game with ¢(G) cops is optimal if its
length is the minimum over all possible plays for the cops, assuming the robber
is trying to evade capture for as long as possible. There may be many optimal
plays possible (for example on the path P4 with four vertices, the cop may start
on either of the two vertices in the center), but the length of an optimal game is
an invariant of G. When ¢(G) cops play on a graph G, we denote this invariant by
capt(G) and refer to this as the capture time of G. In [13], the authors proved that if
G is cop-win (that is has cop number 1) of order n > 5, then capt(G) < n — 3. By
considering small-order cop-win graphs, the bound was improved to capt(G) < n—4
for n > 7 in [25]. Examples were given of planar cop-win graphs in both [13, 25]
which prove that the bound of n — 4 is optimal. In addition to these works, capture
time was studied in grids [33] and hypercubes [17].

For many years, the best known upper bound for general graphs was the one
proved by Frankl [23].

Theorem 2 ([23]). Ifn is a positive integer; then
logl
c(n) =0 (n °8 Ogn) .

logn

I spoke about the cop number at the University of Waterloo in October 2007,
to a group consisting mainly of theoretical computer scientists. My talk spurred
a bright doctoral student Ehsan Chiniforooshan to consider improving on known
upper bounds on the cop number. The Cops and Robbers Principle was again in full
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force that day! Chiniforooshan exploited similar ideas with retracts and proved the
following bound, giving a modest improvement to Frankl’s bound.

Theorem 3 ([18]). Ifn is a positive integer; then

c(n) = 0( " )
logn

At the time of writing this chapter in January 2015, the conjecture is still open.
The best known upper bound was proved independently by three sets of authors.
Interestingly, all of them use the probabilistic method in their proofs.

Theorem 4 ([24, 31, 41]). If n is a positive integer, then

n
c(n) =0 (2(1_0(1))\/10“) .

To put Theorem 4 into perspective, even proving c(n) = O(n'~¢) for any given
€ > 0 remains open.

Pratat and Wormald in some recent work proved the conjecture for random
graphs [36] and for random regular graphs [37], which gives us more evidence that
the conjecture is true. I tend to believe the conjecture is true on good days; when
I am in a bad mood, I imagine the universe contains some strange graph with cop
number of larger order than /n.

There are graphs whose cop number is @(4/n); for example, consider the
incidence graphs of finite projective planes. These graphs are of order 2(¢*> + ¢+ 1),
where ¢ is a prime power, and have cop number g 4 1. See Figure 3.3 for an
example. The Cops and Robbers Principle was in effect when I described this graph
family to the design theorist Andrea Burgess, which led to several other families
with conjectured largest cop number; see [10].

275

165

Fig. 3.3 The Fano plane and its incidence graph, the Heawood graph
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Define my to be the minimum order of a connected graph G satisfying ¢(G) > k.
Trivially, m(1) = 1 and m(2) = 4. The recent work [3, 4] establishes the fact
that m3 = 10. The unique isomorphism type of graph of order 10 with cop number
3 is the Petersen graph. It is easy to see that Meyniel’s conjecture is equivalent to
the property that

mi = QK).

It might be fruitful to consider, therefore, the minimum orders of graph with a given
cop number. We do not even know the exact value of my4. The Petersen graph is
the unique 3-regular graph of girth 5 of minimal order. A (k, g)-cage is a k-regular
graph with girth g of minimal order. See [21] for a survey of cages. The Petersen
graph is the unique (3, 5)-cage, and in general, cages exist for any pair k > 2 and
g > 3. Aigner and Fromme [1] proved that graphs with girth 5 and degree k have
cop number at least k; in particular, if G is a (k, 5)-cage, then c¢(G) > k. Let n(k, g)
denote the order of a (k, g)-cage. Is it true that a (k, 5)-cage is k-cop-win? It is natural
to speculate whether m; = n(k, 5) for k > 4. It seems reasonable to expect that this
is true at least for small values of k. It is known that n(4,5) = 19, n(5,5) = 30,
n(6,5) = 40, and n(7,5) = 50. Do any of these cages attain the analogous m;?
More generally, we can ask the same question for large k: is my achieved by a (k, 5)-
cage?

3.3 Graph Genus

With the analogy of the chromatic number in mind, what can be said on bounds
on the cop number in planar graphs? This was settled early on by Aigner and
Fromme [1].

Theorem 5 ([1]). If G is a planar graph, then ¢(G) < 3.

The idea of the proof of Theorem 5 is to increase the cop territory; that is, a set
vertices S such that if the robber moved to S, then he would be caught. Hence, the
number of vertices the robber can move to without being caught is eventually is
reduced to the empty set, and so the robber is captured. While their proof is indeed
elegant, it is not easy to follow. We wrote a proof which hopefully is easier to digest
in Chapter 4 of [12] (based on ideas of Brian Alspach and Boting Yang).

The genus of a graph is the smallest integer #n such that the graph can be drawn
without edge crossings on a sphere with n handles. Note that a planar graph has
genus 0. Less is known about the cop number of graphs with positive genus, and
this provides our second major conjecture on the topic. The main conjecture in this
area is due to Schroeder, and this conjecture I think deserves to be better known.
In [40], Schroeder conjectured that if G is a graph of genus g, then ¢(G) < g + 3.
Quilliot [39] proved the following.
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Theorem 6 ([39]). If G is a graph of genus g, then c¢(G) < 2g + 3.
In the same paper where his conjecture was stated, Schroeder showed the following.

Theorem 7 ([40]). If G is a graph of genus g, then

«(G) < BgJ +3.

Theorem 7 implies the following.
Corollary 8 ([40]). IfG is a graph that can be embedded on a torus, then c¢(G) < 4.

We do not know much about the planar graphs with cop numbers 1, 2, or 3. As
cop-win graphs have a dismantling structure, that might help to classify the planar
cop-win graphs, but there is no success yet on that front.

3.4 Algorithms

We now describe a major conjecture on Cops and Robbers that was recently settled.
Indeed, it is not every day that one of your postdocs comes into your office claiming
to have proven a 20-year-old conjecture! We were lucky enough to have William
Kinnersley as a postdoctoral fellow for two years starting in 2012. William came to
Ryerson University having just completed his doctoral studies under Doug West’s
supervision, and he had a keen interest in the analysis of games played on graphs.
While he had not worked much with Cops and Robbers before he came to Ryerson,
the Cops and Robbers Principle was in effect, and he quickly delved into the topic.

EXPTIME is the class of decision problems solvable in exponential time.
A decision problem is EXPTIME-complete if it is in EXPTIME, and for every
problem in EXPTIME, there is a polynomial-time algorithm that transforms
instances of one to instances of the other with the same answer. William proved
that computing the cop number is EXPTIME-complete. Before going further to
discuss this, let us formalize things and consider the following two graph decision
problems.

k-COP NUMBER: Given a graph G and a positive integer k, is ¢(G) < k?

k-FIXED COP NUMBER: Let & be a fixed positive integer. Given a graph G, is
c(G) <k?

The main difference between the two problems is that in k-COP NUMBER, the
integer k may be a function of n and so grows with n. In k-FIXED COP NUMBER,
k is fixed and not part of the input and so is independent of n.

The following result has been proved several times independently in the literature
on the topic.

Theorem 9 ([6, 15, 28]). The problem k-FIXED COP NUMBER is in P.
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If k is not fixed (and, hence, can be a function of n), then the problem becomes
less tractable.

Theorem 10 ([22]). The problem k-COP NUMBER is NP-hard.

Theorem 10 is proved in Fomin et al. [22] by using a reduction from the following
well-known NP-complete problem:

DOMINATION: Given a graph G and an integer k > 2, is there a dominating set
in G of cardinality at most k£?

Goldstein and Reingold [26] proved that it is EXPTIME-complete to compute
the k-COP NUMBER problem assuming the initial position of the cops and robber
is given as part of the input. They also conjectured in [26] that --COP NUMBER
is EXPTIME-complete. Kinnersley settled this conjecture in a recent tour de force
[30], using a series of nontrivial reductions.

Note that Theorem 10 does not say that k-COP NUMBER is in NP; that is an
open problem! There is little research on the optimal running times for polynomial-
time algorithms to test if a graph has a small cop number such as 1, 2, or 3.

3.5 Variations

As you might expect, there are countless variations of the game of Cops and
Robbers. Usually (though not always) such variations provide more complications
than those found in the original game. One could play the game by giving the
cops more power; in this direction, we studied the game of distance k Cops and
Robbers [11, 15], where cops can capture the robber if it is within distance k. We
could speed up the robber [24], allow the robber to capture a cop [16], or make the
robber invisible [19, 20] (see Chapter 8 of [12] for more on these and other variants).
We could also play on infinite graphs [14, 29], where many results from the finite
landscape dramatically change.

We mention one variation in particular: the game of Lazy Cops and Robbers.
This game is played in a similar fashion to Cops and Robbers, but only one cop
may move at a time. Hence, Lazy Cops and Robbers is a game more akin to chess
or checkers. The analogous parameter is the lazy cop number, written c.(G). Our
knowledge of properties of the lazy cop number is limited, but in some cases its
value is much larger than the classical cop number.

This game and parameter were first considered by Offner and Ojakian [35]. For
hypercubes, it was proved in [32] that c¢(Q,) = ["42'11. In contrast, the following
holds for the lazy cop number.

2l < ¢(Q,) = 02" logn/n*/?). G.D

A recent result of [5] improves the lower bound in (3.1).
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Theorem 11 ([5]). For all € > 0, we have that

2”
CL(QH) = Q (n5/2+£) .

Thus, the upper and lower bounds on ¢ (Q,,) differ by only a polynomial factor. The
proof uses the probabilistic method coupled with a potential function argument. It is
an open problem to find the exact asymptotic order of c¢.(Q,). The behavior of the
lazy cop number on planar graphs or, more generally, graphs of higher genus is also
not well understood.

Cops and Robbers represents the tip of the iceberg of what are called vertex-
pursuit games, graph searching, or good guys vs bad guys games (the latter phrase
was coined by Richard Nowakowski). A tough but fun problem in this general
setting is on Firefighting in the infinite plane. Consider an infinite hexagonal grid.
Every vertex is either on fire, clear, or protected. Initially, all vertices are clear. In the
first round, fire breaks out on one vertex. In every round, a cop or firefighter protects
one vertex which is not yet on fire. The fire spreads in the next round to all clear
neighbors of the vertices already on fire. Once a vertex is on fire or is protected, it
permanently remains in that state. Note that unlike Cops and Robbers, the firefighter
does not play on the graph but can teleport anywhere it likes. Further, the fire the
mindlessly spreads where it can.

Two firefighters can protect vertices so that the fire only burns two vertices in
the hexagonal grid. It is not known if one firefighter can arrange things so the fire
burns only finitely many vertices. In other words, can one firefighter build a wall
containing the fire to a finite subgraph of the grid? It is conjectured that this is
indeed impossible.
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Chapter 4
On Some Open Questions for Ramsey
and Folkman Numbers
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Abstract We discuss some of our favorite open questions about Ramsey numbers
and a related problem on edge Folkman numbers. For the classical two-color
Ramsey numbers, we first focus on constructive bounds for the difference between
consecutive Ramsey numbers. We present the history of progress on the Ramsey
number R(5,5) and discuss the conjecture that it is equal to 43. For the multicolor
Ramsey numbers, we focus on the growth of R,(k), in particular for k = 3. Two
concrete conjectured cases, R(3, 3,3,3) = 51 and R(3, 3,4) = 30, are discussed in
some detail. For Folkman numbers, we present the history, recent developments, and
potential future progress on F,(3, 3; 4), defined as the smallest number of vertices
in any K4-free graph which is not a union of two triangle-free graphs. Although
several problems discussed in this paper are concerned with concrete cases and some
involve significant computational approaches, there are interesting and important
theoretical questions behind each of them.
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4.1 Introduction and Notation

In 2005, Arnold [4] wrote: From the deductive mathematics point of view most
of these results are not theorems, being only descriptions of several millions of
particular observations. However, I hope that they are even more important than
the formal deductions from the formal axioms, providing new points of view on
difficult problems where no other approaches are that efficient. The paper appeared
in the Journal of Mathematical Fluid Mechanics, and it has not much to do with
Ramsey theory. Yet the motivation of our paper is somewhat similar in that we
may seem to focus much on concrete cases. Although several problems in this
paper are concerned with concrete cases and some involve significant computational
approaches, there are interesting and important theoretical questions behind each of
them.

We obviously also try to look further for general results, but we do not want to
skip observing what is happening with the basic small open cases. Understanding
them better may lead to surprising general conclusions. For example, our work
on an old construction for R4(6) and many unsuccessful attempts to prove that
lim, 00 R-(3) r is infinite led to interesting general connections between our
methods and the Shannon capacity [78] discussed in Section 3.1.

The standard reference for Ramsey theory is a great book by Graham, Rothschild,
and Spencer [40], Ramsey Theory. The subject first concerned mathematical logic,
but over the years found its way into several areas of mathematics, computing, and
other fields. For the discussion of numerous applications, see the survey paper by
Rosta [66] and a very useful website by Gasarch [33]. There is also a colorful book
by Soifer [72] on the history and results in Ramsey theory, followed by a collection
of essays and technical papers based on presentations from the 2009 Ramsey theory
workshop at DIMACS [73]. A regularly updated survey of the most recent results
on the best-known bounds on various types of Ramsey numbers is maintained by
the second author [63].

The most important operation involved in the concept of Ramsey and Folkman
numbers is that of arrowing, which is defined as follows:

Definition 1.1 (Arrowing). Graph F arrows graphs Gu,...,G,, written F —
(G1,...,G,), ifand only if every r-coloring of the edges of F contains a monochro-
matic copy of Gy, in color i, for some 1 <i <.

The definition of the classical two-color Ramsey numbers can be stated in terms
of the arrowing relation as R(s, t) = min{n | K, — (Kj, K;) }, with a straightforward
generalization for more colors and noncomplete graphs. If all graphs G; are the same
G, we will use notation R, (G) for R(Gy, ..., G,), and if the graphs G; are complete,
we will write s; = |V(G;)| instead of G;. So, for example, R(5,5) = R(Ks, Ks), and
R,(3) is the smallest n such that the r-color arrowing K,, — (K3, ..., K3) holds. The
latter two cases are discussed in detail in Sections 2.2 and 4.3, respectively.
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Ramsey proved a theorem which implies the following:

Theorem 1.2 (Ramsey 1930 [65]). For r > 1 and all graphs G, ...,G,, the
Ramsey number R(Gy, ..., G,) exists.

Any edge r-coloring witnessing K, - (Gj,...,G,) will be called a
(Gy,...,Gy)-or(Gy, ..., G,;n)-coloring. Clearly, constructing any (Gy, . . . , G; n)-
coloring implies a lower bound n < R(Gy, ..., G,).

In the case of two colors, we will talk about (G, H)- and (G, H; n)-graphs, which
are simply (G, H; n)-colorings of K,,, where the first color is interpreted as the graph,
while the second as its complement. Let «(F) denote the independence number of
graph F, which is the maximum number of vertices in any independent set of F.
Note that R(s, 7) can be defined equivalently as the smallest integer n such that every
graph F on n vertices contains K, or has independence «(F) > t. An (s, t)-graph G
will be called Ramsey critical (for (s, t)) if it has R(s, ) — 1 vertices, i.e., it is an
(s,t; R(s,t) — 1)-graph. 6(G) and A(G) will denote the minimum and maximum
degree in G, respectively, and K,, — e is the complete graph on n vertices with one
edge removed. We will sometimes write n(G) = |V(G)| for the number of vertices
in G.

Next, we define the set of edge Folkman graphs by

Feo(s,t;k) ={F | F — (s,t) and K € F}.

Then, the corresponding edge Folkman number F,(s, t; k) is the smallest order
n(F) of any graph F in F,(s,t; k). Folkman proved that these graphs exist, as
follows:

Theorem 1.3 (Folkman 1970 [28]). Ifk > max(s, t), then F,(s, t; k) exists.

Edge Folkman numbers have obvious generalizations to arrowing graphs other
than complete graphs and to more colors as in F,(si, ..., Sy; k) and Fe(sy, ..., s k)
[58]. One can also color vertices instead of edges, which leads to so-called vertex
Folkman numbers. In general, much less is known about edge Folkman numbers
than for more studied vertex Folkman numbers [18]. Here, however, we will discuss
only the case of F,(3,3;k), in Section 4.4. Finally, we note that there exists much
more research activity related to Ramsey numbers than to Folkman numbers, though
the latter area is attracting significantly more attention in recent years.

The problem of deciding whether a graph F arrows triangles, that is, whether
G — (3,3), is of particular interest in Ramsey theory. This is coNP-complete,
and it appeared in the classical complexity text by Garey and Johnson in 1979 [32].
Some related Ramsey graph coloring problems are NP-hard or lie even higher in the
polynomial hierarchy. For example, Burr [8, 9] showed that arrowing (3, 3) is coNP-
complete together with other results about arrowing, and Schaefer [68] showed that
for general graphs F, G, and H, F — (G, H) is l'[g-complete.
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4.2 Two-Color Ramsey Numbers

4.2.1 Difference and Connectivity

The estimates of the difference between consecutive (in various meanings) Ramsey
numbers are difficult. What we know, most of the time, implies much weaker bounds
in comparison to what we expect to hold.

Problem 2.1.1 (ErdGs-Soés 1980 [12, 20]). Let Ay = R(3,k) — R(3,k—1). Is it
true that

AL oo? (Ak) 502

Only easy bounds 3 < Ay < k are known. The upper bound k is obvious since
the maximum degree of (3, k)-graphs is at most k — 1. The lower bound of 3 looks
misleadingly simple, but it is not trivial (Theorems 2.1.2 and 2.1.3 imply it). It
was argued in [36] that better understanding of A; may come from the study of
R(K3, K; — e) relative to R(K3, Ki) = R(3, k), since

Ax = (R(K3, Ky) — R(K3. Ky — €)) + (R(K3, Kk — €) — R(K3. Ki—1)).

Recent progress on what we know for small cases is significant [35, 36]; however
some very simple-looking questions still remain open. For example, we do not even
know for certain whether R(K3, K — ¢) — R(K3, Kx—1) is positive for all large k.

The following three theorems were proved by constructive methods as parts of
Theorems 2 and 3 in [79, 81] and Theorem 9 in [80]:

Theorem 2.1.2 ([81]). Givena (k,s)-graph G and a (k, t)-graph H, for some k > 3
and s,t > 2, if both G and H contain an induced subgraph isomorphic to some
Ki—1-free graph M, then R(k,s +t — 1) > n(G) + n(H) + n(M) + 1.

Theorem 2.1.3 ([81]). If 2 <s <tandk > 3, then

k=3, ifs=2;
R(k,s +t—1) > R(k, R(k,t !
(ks +1=1) 2 REs) F RN+ 75 007

The first inequality of Theorem 2.1.3 for s = 2, R(k,t + 1) > R(k,t) + 2k — 3,
was proved by Burr et al. in 1989 [10].

Theorem 2.1.4 ([80]). If k > 2,5 > 5, then RQ2k — 1,5) > 4R(k,s — 1) — 3.

We think that the progress on constructive lower bounds illustrated in Theo-
rems 2.1.2-2.1.4 is quite representative for the area, but it seems slow. It is much
slower than it was once anticipated by Erd6s, Faudree, Schelp, and Rousseau. In
1980, Paul Erdés wrote in [20], page 11 (using r for our R): Faudree, Schelp,
Rousseau and I needed recently a lemma stating
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. r(n+1,n)—r(n,n)
lim =

n—>00 n

(@)

We could prove (a) without much difficulty, but could not prove that r(n + 1,n) —
r(n, n) increases faster than any polynomial of n. We of course expect

r(n+1,n)

lim C2, ()

n—oo  r(n,n)
where C = lim,_, o r(n, n)l/”.

Based on the above theorems and considerations in [82], the best-known lower
bound estimate for the difference in (a) seems to be barely Q2(n). Asking others,
including collaborators of Erdds, did not lead us to any proof of this result, leaving
however some possibility that Erdés knew it. In summary, we think that it is
reasonable to consider (a) to be only a conjecture.

Beveridge and Pikhurko in [5], using Theorem 2.1.3, proved that the connectivity
of any (k, s; R(k, s) — 1)-graph, i.e., Ramsey-critical (k, s)-graph, is at least k — 1 for
all k, s > 3. In Theorem 8 of [82], we increased this bound on connectivity to k
for k > 5, and then we obtained further results about which Ramsey-critical graphs
must be Hamiltonian.

Theorem 2.1.5 ([82]). If k > 5 and s > 3, then the connectivity of any
(k,s; R(k,s) — 1)-graph is at least k. Furthermore, ifk > s —1 > 1 and k > 3,
except (k, s) = (3,2), then any (k, s; R(k, s) — 1)-graph is Hamiltonian.

In particular, all diagonal Ramsey-critical (k, k)-graphs are Hamiltonian for every
k > 3. It remains an open question for which k and s, when 3 < k < s — 1, Ramsey-
critical (k, s)-graphs are still Hamiltonian. We believe that the answer is positive at
least in the cases when s — k is small.

Conjecture 2.1.6. For all k > 2, there exists a Ramsey-critical (k + 1, k)-graph
with maximum degree at least R(k + 1,k)/2 — 1.

This conjecture seems weak, but we still have no idea how to prove or disprove it.
Many would even readily agree with an intuition that any Ramsey-critical (k+ 1, k)-
graph G satisfies the bound A(G) > |V(G)|/2. On the other hand, we clearly have
A(G) < R(k, k). Putting it together with the classical bound R(k + 1,k + 1) <
2R(k + 1, k), we propose the next conjecture.

Conjecture 2.1.7. R(k+ 1,k) <2R(k,k) and R(k + 1,k + 1) < 4R(k, k).

By the comments above, a yes answer to Conjecture 2.1.6 implies a yes for
Conjecture 2.1.7. We note that a very similar inequality, R(k + 1,k + 1) <
4R(k+ 1,k —1) 4 2, was proved by Walker [75] in 1968. There are straightforward
generalizations of these thoughts to other close-to-diagonal cases and to more than
two colors, but we stop short of proposing them as conjectures.
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4.2.2 On the Ramsey Number R(5,5)

What is the largest number of vertices in any Ks-free graph with independence
number less than 5?7 The answer is R(5,5) — 1. The values of R(s, ) are known
for all s and 7 with s + ¢t < 10 [63], so in this sense R(5, 5) is the smallest open case
in Ramsey theory.

The progress of knowledge about lower and upper bounds on R(5,5) first
spanned more than three decades; then it apparently stopped in 1997. What we
know now is almost the same as 17 years ago, while a significant gap between
bounds remains unchanged. The effort required to lower the upper bound on R(5, 5)
from 50 down to 49 was very significant, but still 49 is quite far from the best-known
lower bound of 43, which was obtained by Exoo in 1989 [23].

Theorem 2.2.1 ([23]). 43 < R(5,5) <49 [57].

The history of bounds on R(5, 5) is presented in Table 4.1. None of the results in
references listed until 1973 depended in a significant way on computer algorithms.
All of the later items involved at least some computational components to the degree
that their full verification by hand seems infeasible. Note that Table 4.1 stops the
listing in 1997. It is not the case that people did not try since then. We are aware
of several such attempts, but it seems that none of them were finally published.
The constructions allegedly improving on the lower bound of 43, which we have
seen, each contained an error. A few attempts to improve the upper bound tried to
derive some properties of, say, (5, 5; 45)-graphs; however we are not aware of any
recognized and significant results in this direction.

In 1997, McKay and the second author [57] posed the following conjecture:

Conjecture 2.2.2. R(5,5) = 43, and the number of (5, 5;42)-graphs is precisely
656.

Table 4.1 The history of bounds on R(5,5), based on [57]. (LP refers to linear
programming techniques)

Year | Reference Lower | Upper | Comments

1965 | Abbott [1] 38 Quadratic residues in Z37
1965 | Kalbfleisch [44] 59 Pointer to a future paper
1967 | Giraud [34] 58 Combinatorics, LP

1968 | Walker [75] 57 Combinatorics, LP

1971 | Walker [76] 55 Combinatorics, LP

1973 | Irving [43] 42 Sum-free sets

1989 | Exoo0 [23] 43 Simulated annealing

1992 | McKay-Radziszowski [54] 53 (4, 4)-graph enumeration, LP
1994 | McKay-Radziszowski [55] 52 LP, computation

1995 | McKay-Radziszowski [56] 50 Implication of R(4, 5) = 25

1997 | McKay-Radziszowski [57] 49
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The authors of [57] provided some strong evidence for its correctness. Of par-
ticular strength seems to be the fact that a few distinct methods to generate
(5,5;42)-graphs ended up in the same final set of 656 graphs. Three hundred
twenty-eight of these graphs, with the number of edges ranging from 423 to 430,
are posted at a website by McKay [53]; the other 328 on at least 431 edges are their
complements. All of the 656 graphs have the minimum degree 19 and maximum
degree 22. The automorphism groups of these graphs are surprisingly small; none
has order larger than 2, or more precisely 232 are involutions without fixed points,
and the remaining 424 groups are trivial. This is somewhat against an intuition
that complete sets of extreme graphs for typical Ramsey cases should contain some
graph with a larger automorphism group. We note, however, that graphs with more
symmetries in general are easier to find, and thus we think that any such (5, 5; 42)-
graph would have been already found if it existed.

In, McKay and Lieby (Research School of Computer Science, Australian
National University, personal communication, 2014) provided the following new
evidence for Conjecture 2.2.2, which required a computational effort of about 9
CPU years. Define the distance between two graphs on n vertices to be k if their
largest common induced subgraph has n — k vertices. McKay and Lieby report that
any new (5, 5;42)-graph H would have to be in distance at least 6 from every graph
in the set of 656 known (5, 5; 42)-graphs.

Some improvement of the upper bound in Theorem 2.2.1 might be possible, but
we consider that lowering it even just by 1 would be a great accomplishment.

Although the authors of this work share their ideas on most problems presented
herein, there is an exception in our positions on the so-called almost regular Ramsey
graphs and in consequence on Conjecture 2.2.2. A graph G is almost regular if
A(G)—46(G) < 1. The following Conjecture 2.2.3 on almost regular Ramsey graphs
was proposed by the first author, who explored it with Zehui Shao and Lingiang Pan
in 2008. Shao’s computational work in this direction appears in his thesis [70], but
otherwise was not published.

Conjecture 2.2.3. For all positive s and t and every 1 < n < R(s,t), there exists
an almost regular (s, t; n)-graph.

Needless to say, no counterexample to Conjecture 2.2.3 is known. However, since
none of the 656 known (5, 5;42)-graphs are almost regular, if Conjecture 2.2.2
holds, then Conjecture 2.2.3 is false. The first author supports Conjecture 2.2.3, but
not Conjecture 2.2.2, while the second author supports Conjecture 2.2.2 and thus
not Conjecture 2.2.3, unless the latter is restated only for sufficiently large s and .

4.2.3 Constructive Lower Bounds for R(3, k)

In 1995, Kim [47] obtained a breakthrough result establishing the asymptotics of
R(3, k) up to a multiplicative constant, when he raised the lower bound to match the
upper bound.
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Fig. 4.1 Construction of a (3, 9; 30)-graph H using Cs as a (3, 3; 5)-graph G, for k = 2

Theorem 2.3.1 ([47]). R(3.k) = O(k2/ logk).

Recently, in independent work by Bohman and Keevash [7] and by Fiz, Griffiths,
and Morris [27], impressive further progress has been obtained in closing on the
actual constants of Theorem 2.3.1.

Theorem 2.3.2 ([7,27]). (} +o0(1))k*/logk < R(3.k) < (1 + o(1))k*/logk [71].

The progress on asymptotic lower bounds for R(3,k) was obtained by the
probabilistic method [7, 27, 47, 74], which often yields very weak bounds for
concrete small cases. The upper bound of Theorem 2.3.2 is implicit in [71]. The
best specific constructions are usually obtained by insight, computations, and ad hoc
means. We lack general constructions which give both clear structure of the graphs
and good Ramsey lower bounds. One of the best-known and elegant constructions
is a recursive method by Chung, Cleve, and Dagum from 1993 [14]. We present an
instance of it in Figure 4.1.

Let G be a triangle-free graph on n vertices with independence «(G) = k&, i.e.,
G is a (3,k + 1;n)-graph. Consider graph H, called a fibration of G, formed by
six disjoint copies of G with two types of edges joining them (see Figure 4.1), as
described in [14]. Chung et al. proved that their construction produces a (3, 4k +
1; 6n)-graph H, which easily gives R(3,4k + 1) > 6R(3,k + 1) — 5. By solving
the recurrence, one obtains the asymptotic lower bound R(3, k) = Q(k'°86/1og4) ~
Q(kl.ZQ).

Other explicit constructions for R(3, k) leading to a better lower bound Q(k%/?)
were presented by Alon in 1994 [2] and Codenotti, Pudldk, and Resta in 2000 [15].
In 2010, Kostochka, Pudldk, and Rodl [48] improved further known constructive
lower bounds for R(k,n) for fixed 4 < k < 6, but their results still lagged
behind those obtained by the probabilistic method. For example, with k = 4, the
probabilistic Ky-free process used by Bohman yields R(4, n) = Q(n°/%/ log” n) [6],
while the constructive approach of [48] gives only R(4,n) = Q(n%/°).
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Challenge 2.3.3. Design a recursive lower bound construction of (3, k; n)-graphs
for R(3, k), with the number of vertices n larger than Q(k*/?).

4.3 Multicolor Ramsey Numbers

Using elementary methods in 1955, Greenwood and Gleason [41] established that
for the multicolor Ramsey numbers, for all k; > 2 and r > 2, we have

R(ki.....k) <2—r+ > Rlki.....ki1.ki — Lkipr. .. k), (4.1)

i=1

with strict inequality if the right-hand side of (4.1) is even and the sum has an even
term. The bound (4.1) reduces to the classical two-color upper bound for r = 2.
There are only two known non-trivial multicolor cases (r > 3 and k; > 3), for
the parameters (3,3,3,3) and (3,3,4), where this bound was improved. On the other
hand, very likely the bound (4.1) is never tight for r > 3, except for (3,3,3). We will
discuss the special cases of R4(3) = R(3, 3, 3,3) and R(3, 3, 4) in Subsections 4.3.2
and 4.3.3, respectively, in more detail.

4.3.1 Constructions and Limits

In 1973, Chung [11] proved constructively that R,(3) > 3R,—;(3) + R,—3(3) — 3,
and in 1983 Chung and Grinstead [13] showed that the limit

L= lim R,(3) (4.2)
r—>00

exists, though it may be infinite.

One of the most successful techniques for deriving lower bounds on R,(3)
is constructions based on Schur partitions and closely related cyclic and linear
colorings. A Schur partition of the integers from 1 to n, [1, n], is a partition into
sum-free sets. The Schur number s(r) is the maximum n for which there exists a
Schur partition of [1, n] into r sets. A simple argument gives s(r) + 2 < R,(3).

In an early work, Abbott [1] showed that s(r) > 89"/4=¢le” > 3 07", After much
more effort, the exact values of s(r) have been found for 1 < r < 4. What we
know now about Schur numbers s(r) provides the best-known lower bound of 3.199
for L, which is implied by the lower bound of 536 on s(6). This was obtained by
Fredricksen and Sweet in 2000 [31]. In Table 4.2, which summarizes the best-known
bounds on R,(3), three lower bounds for 5 < r < 7 are implied by constructions of
partitions for Schur numbers. For additional results and comments on constructive
lower bounds on R,(3) and general R(ky,--- , k;), see [80].
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Table 4.2 Bounds and values of R,(3)

r | Value or bounds | References

2 16 Folklore

3 117 Greenwood-Gleason 1955 [41]

4 1 51-62 Chung 1973 [11] - Fettes-Kramer-R 2004 [26]
5 |162-307 Exoo0 1994 [25] — bound (4.1)

6 |538-1838 Fredricksen-Sweet 2000 [31] — bound (4.1)

7 |1682-12861 Fredricksen-Sweet 2000 [31] — bound (4.1)

Recently, we improved a construction from [80] to one which permits us to
double the number of colors in a special way, as stated in the next theorem.

Theorem 3.1.1 ([78]). For integers k,n,m,s > 2, let G be a (k, ..., k;s)-coloring
with n colors containing an induced subcoloring of K, using less than n colors.
Then

Ron(k) > s> + m(R,(k — 1,k, ... k) — 1)+ 1.

The Shannon capacity ¢(G) of a noisy channel modeled by graph G is defined
as lim, 00 2(G")'/", where a(G") is the independence number of the n-th power of
graph G using the strong product of graphs. We proved in [78] that the construction
in the proof of Theorem 3.1.1 with k = 3 implies the following:

Theorem 3.1.2 ([78]). The supremum of the Shannon capacity over all graphs with
independence number 2 cannot be achieved by any finite graph power.

We also generalized Theorem 3.1.2 to graphs with bounded independence
number. The link between Shannon capacity and multicolor Ramsey numbers was
first studied by Erd&s, McEliece, and Taylor [22] in 1971, but it was not much
exploited afterward. As we showed in [78], the limits involved in the definition of
¢(G) and L can be linked via constructions as in Theorem 3.1.1. We note that at
least three different graph products are used in the work in this area: strong product
in the definition of ¢(G) [69], Cartesian product [1], and the so-called composition
used by us in [78, 80]. Each of these products is useful in a different way. We now
propose two conjectures related to Theorem 3.1.2.

Conjecture 3.1.3. For each k > 3, there does not exist any finite graph G with
independence number equal to k — 1 such that ¢(G) = lim,_ o0 R, (k)'/".

Conjecture 3.1.4. There exists a positive integer k such that 1im, .o R, (k)"
= 00.

The limit lim,,— oo R, (k)l/ " exists for each k > 3 by an argument similar to that in
the proof for k = 3 [13]. What remains open is for which k this limit is infinite. The
second of these conjectures seems a little easier, if it is true. If Conjecture 3.1.3 is
false, then L; = lim,— oo R, (k) " is finite, and actually we have L; < |V(G)| where G
is a counterexample graph. Hence, a proof of Conjecture 3.1.4 would imply a proof
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for Conjecture 3.1.3. We note that Conjecture 3.1.3 is not true for infinite graphs.
This was not considered in [22], but one could prove it using the same methods as
in [22].

The known values and bounds on R,(3) for small r are listed in Table 4.2 below.
The first open case for r = 4 is perhaps the most studied specific multicolor Ramsey
number, and we give more details about it in the next subsection. The lower bounds
in Table 4.2 for 5 < r < 7 were obtained by constructions of Schur colorings.

4.3.2 On the Ramsey Number R(3, 3, 3, 3)

The best-known bounds on R4(3) = R(3, 3, 3, 3) are given in the next theorem, after
which we conjecture that the actual value is 51.

Theorem 3.2.1 ([11]). 51 < R(3,3,3,3) <62 [26].
Conjecture 3.2.2. R(3,3,3,3) = 51.

We first overview the history of the upper bounds. The bound of 66 follows from
(4.1) and R3(3) = 17 [41]. The result R(3,3,3,3) < 65 appeared first in a 1973
paper by Whitehead [77], although he gives credit for part of the proof to Folkman.
Notes by Folkman were printed posthumously in 1974 [29]. No progress was made
on lowering further the upper bound until Sanchez-Flores [67] gave a computer-
free proof that R(3, 3, 3,3) < 64. In his 1995 article, Sanchez-Flores proved some
properties of 3- and 4-colorings of K, without monochromatic triangles and then
used them to derive the new upper bound. In 1994, Kramer [49] gave a series of talks
at a graph theory seminar at lowa State University to show that R(3, 3, 3,3) < 62.
These talks led to a 116-page-long unpublished manuscript [49], which provided the
spark to develop the algorithms for the computational verification of this result in
[26]. We consider it feasible to decide whether R(3, 3, 3, 3) < 61 with the techniques
similar to those in [26]; however we also consider that going down to 60 or less
would necessarily require a significantly new insight.

Between 1955 and 1973, the best-known lower bound was moving from 42 to 51
as listed in Table 4.3. In her 1973 article, Chung took an incidence matrix for one
of the two proper 3-colorings of K¢ and constructed from it the incidence matrix
corresponding to a good 4-coloring of Ks, thereby establishing R(3, 3, 3, 3) > 50.
Actually, this is a special case of the general construction by Chung for any number
of colors, mentioned at the opening of Subsection 3.1. To date, it gives the best-
known lower bound for four colors. Many other nonisomorphic proper 4-colorings
of K59 were obtained by the second author, though all of them had a structure very
similar to the one constructed by Chung, in that all of them have significantly less
edges in one of the colors. We summarize all these developments in Table 4.3.

We are aware of several attempts to use heuristic algorithms for the lower bound,
which had a hard time to produce correct constructions for the number of vertices
well below 50. Actually, we consider that designing a general heuristic method



54 X. Xu and S.P. Radziszowski

Table 4.3 History of bounds on R4(3), based on [26]

Year | References Lower | Upper
1955 | Greenwood-Gleason [41] 42 66
1967 | False rumors [66]

1971 | Golomb, Baumert [38] 46

1973 | Whitehead [77] 50 65
1973 | Chung [11], Porter cf. [11] 51

1974 | Folkman [29] 65
1995 | Sanchez-Flores [67] 64
1995 | Kramer (no computer) [49] 62
2004 | Fettes-Kramer-R (computer) [26] 62

which can come close to match or perhaps even beat Chung’s bound is an interesting
challenge for the computationally oriented approach. There exists a very large
number of 4-colorings of K,, without monochromatic triangles for n equal to 49 or
slightly less, yet the standard heuristic search techniques somehow fail to find them.
Understanding why this is happening could give new insights on how to design
better general search techniques.

4.3.3 On the Ramsey Number R(3,3,4)

In the multicolor case, when only complete graphs are avoided, the only known
nontrivial value of such type of Ramsey number is R(3,3,3) = 17 [41]. The only
other case whose evaluation does not look hopeless is R(3, 3, 4), which currently
is known to be equal to 30 or 31. The lower bound 30 < R(3, 3,4) was obtained
by Kalbfleisch in 1966 [45], while the best-known upper bound R(3,3,4) < 31 by
Piwakowski and the second author [60] in 1998. The same authors obtained some
further constraints on the final outcome in 2001 [61]. We are not aware of any further
progress on this case since then. Perhaps it is time to attack it again.

Conjecture 3.3.1 ([60, 61]). R(3,3,4) = 30.

It is known that if R(3,3,4) = 31, then any witness (3, 3, 4; 30)-coloring must
be very special. The known results of [44, 45, 60, 61], all obtained with the help of
computer algorithms, are summarized in the next three theorems. For edge coloring
C of K,,, the set C[k] consists of the edges in color .

Theorem 3.3.2 ([44, 60]). 30 < R(3,3,4) <31, and R(3,3,4) = 31 if and only if
there exists a (3, 3, 4; 30)-coloring C such that every triangle T C C[3] has a vertex
x € T with degc3(x) = 13. Furthermore, C has at least 14 vertices v such that

degeyy)(v) = degep(v) = 8 and degqz(v) = 13.
Theorem 3.3.3 ([61]). R(3,3,4) = 31 if and only if there exists a (3,3, 4;30)-

coloring C such that every triangle T C C[3] has at least two vertices x,y € T with
degepz) (x) = dege (v) = 13.
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Theorem 3.3.4 ([61]). R(3,3,4) = 31 if and only if there exists a (3,3, 4;30)-
coloring C such that every edge in the third color has at least one endpoint x with
degeps (x) = 13. Furthermore, C has at least 25 vertices v such that degcp,y(v) =
degep (v) = 8 and degcz(v) = 13.

Further elimination of all vertices of degree at least 14 in the third color, on
triangles in the third color, is perhaps within the reach of feasible computations.
Unfortunately, we don’t know of any approach which likely could be efficient
enough to proceed similarly as in [60, 61] for the remaining cases (including a
13-regular graph in the third color).

If you like this type of problem and wish to attack R(3, 3, 4), we would recom-
mend to try first a somewhat similar case of R3(Ky — ¢). This is almost certainly
easier than R(3,3,4), but still difficult enough to pose a serious computational
challenge. The best-known bounds are [24] 28 < R3(K4s —e) = R(K4 — e, K4 —
e, K4 — e) < 30 [59]. With some new approach and a lot of good luck, it might be
even possible to solve this case without the help of intensive computations.

Finally, we note that the Ramsey numbers of the form R(3, 3, k) are special since
their asymptotics are known up to a poly-log factor. A surprising result by Alon
and Rodl from 2005 [3] implies that R(3,3,k) = ©O(k*poly-logk). They actually
prove a more general result that for every fixed number of colors r > 2, when we
avoid triangles in the first  — 1 colors and K} in color r, we have R(3,...,3,k) =
O(k"poly-logk).

Note. Recently (March 2015), Codish, Frank, Itzhakov, and Miller posted an
arXiv manuscript [16] reporting on a very significant progress of work toward
the Ramsey number R(3, 3, 4). Namely, they apply a SAT solver to prove that if
any (3, 3, 4; 30)-coloring exists, then it must be 8-regular in the first two colors and
13-regular in the third. Furthermore, they anticipate that full analysis of all such
colorings will be completed, and thus the exact value of R(3, 3,4) will be known
soon.

4.4 Edge Folkman Numbers

In 1967, Erdds and Hajnal [21] posed a problem asking for a construction of a
Ks-free graph G whose every coloring of the edges with two colors contains a
monochromatic triangle. The proposers also expected (but did not prove) that for
every number of colors r, there is a Ky-free graph G whose every coloring of the
edges with r colors contains a monochromatic triangle. The latter for r = 2 reduces
to the question: Does there exist a K4-free graph that is not a union of two triangle-
free graphs? In 1970, Folkman [28] proved a general result implying that such
graphs exist, but far from providing their effective construction. We recommend
Chapter 27 in a book by Soifer [72] for an earlier, alternate, and complementary
perspective on problems discussed in this section.
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Table 4.4 Edge Folkman numbers F, (3, 3; k)

k F.(3,3;k) |Graphs References

>7 |6 Ks Folklore

6 8 Cs + K3 Graham 1968 [39]

5 15 659 graphs P-R-U 1999 [62]

4 19-786 See Table 4.5 | 2007 [64], 2014 [50]

Table 4.5 History of the edge Folkman number F, (3, 3; 4)
Year | Lower/upper bounds | Who/what

1967 | Any? Erd6s-Hajnal [21]

1970 | Exist Folkman [28]

1972 | 10 Lin [51]

1975 | 10109 Erdd6s offers $100 for proof [19]
1986 |8 x 10! Frankl-Rodl [30]

1988 |3 x 10° Spencer [74]

1999 |16 Piwakowski-R-Urbanski, implicit in [62]
2007 |19 R-X [64]

2008 | 9697 Lu [52]

2008 | 941 Dudek-Radl [17]

2012 | 786 Lange-R-X [50]

2012 | 100? Graham offers $100 for proof

Using notation from Section 4.1, we wish to understand the structure of the
graphs in the set F,(s,t; k) and in particular those with the smallest number of
vertices which define the value of the corresponding Folkman number F,(s, f; k).
Much work has been done for the general cases, but here we concentrate mainly
on the simplest-looking but already difficult case of arrowing triangles, namely, for
s=1t=3.

The state of knowledge about the cases F.(3, 3; k) is summarized in Table 4.4.
It is easy to see that k > R(s, t) implies F,(s,t;k) = R(s,t), which gives the first
row. Graham [39] found that Cs + K3 — (3, 3), which solved the first question
by Erd6s and Hajnal, and it gives the second row with k = 6. The next entry
for k = 5, after numerous papers on this case, was finally completed in 1999 by
Piwakowski, Urbanski, and the second author [62] who used significant help of
computer algorithms. The case of k = 4 is the hardest and still open. The known
bounds are stated in Theorem 4.1 below. We expect that any further improvements
to these bounds will be very hard to obtain. We discuss F,(3, 3; 4) in more detail in
the remainder of this section.

Theorem 4.1 ([64]). 19 < F,.(3,3;4) <786 [50].

The history of events and progress on F,(3, 3;4) is summarized in Table 4.5
starting with Erd6s and Hajnal’s [21] original question. The positive answer follows
from a theorem by Folkman [28] proved in 1970, which when instantiated to two
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colors produces a very large upper bound for F,(3, 3; 4). In 1975, Erd6s [19] offered
$100 (or 300 Swiss francs) for deciding if F,(3, 3;4) < 10'°, which later resulted to
be remarkably close to what can be obtained by using probabilistic methods. This
question remained open for over 10 years. Frankl and Rodl [30] nearly met Erdés’
request in 1986 when they showed that F,(3, 3;4) < 7.02 x 10'!. In 1988, Spencer
[74], using probabilistic techniques, proved the existence of a Folkman graph of
order 3 x 10? (after an erratum by Hovey), without explicitly constructing it. The
main idea of these probabilistic proofs [30, 74] is quite simple. Any K,-free graph G
such that G — (3, 3) proves the bound F,(3, 3;4) < |V(G)|. How to find such a G?
First, take randomly a graph F' from the set G(n, p) of all graphs on n vertices with
edge probability p, and then remove one edge from every K4 in F. The resulting
graph G is clearly K,-free and so has some probability of being the graph we need.
The difficult part is showing that this probability is positive for certain values of n
and p.

In 2008, Lu [52] showed that F,(3, 3;4) < 9697 by constructing a family of Ky-
free circulant graphs and showing that some such graphs arrow (3, 3) using spectral
analysis. Dudek and Rodl [17] developed a strategy to construct new Folkman
graphs by approximating the maximum cut of a related graph and used it to improve
the upper bound to 941. Lange and the authors [50] improved this bound first to 860
and then further to 786 with the MAX-CUT semidefinite programming relaxation as
in the Goemans-Williamson algorithm. The results of [50] were obtained by 2012,
though its publication year is 2014. During the 2012 SIAM Conference on Discrete
Mathematics in Halifax, Nova Scotia, Ronald Graham announced a $100 award for
determining if F,(3, 3;4) < 100.

Conjecture 4.2. 50 < F,(3,3;4) < 94.

At the end of Chapter 27 of The Mathematical Coloring Book by Soifer [72], it
is stated that a double prize of $500 was offered by the second author of this paper
for proving the bounds 50 < F,(3,3;4) < 127. These bounds are much stronger
than the best-known bounds in Theorem 4.1, but note that we are lowering further
the upper bound in Conjecture 4.2 because of Conjecture 4.4 and comments after it.

Next, we give more details on the upper bounds obtained in recent years. Building
on other methods, Dudek and Rddl [17] showed how to construct a graph Hg from
graph G, such that the maximum cut size of Hg determines whether or not G —
(3,3). The vertices of Hg are the edges of G, so |V(Hg)| = |E(G)|. For e;, e, €
V(Hg), if edges {e), e, e3} form a triangle in G, then {e;, ¢»} is an edge in Hg. Let
t(G) denote the number of triangles in G, so |E(Hg)| = 31(G). Let MC(H) denote
the MAX-CUT size of graph H.

Theorem 4.3 (Dudek-Raodl 2008 [17]). G — (3,3) if and only if MC(Hg) <
2t(G).

The intuition behind Theorem 4.3 is as follows. Any coloring of the edges G can
be seen as a partition of the vertices in Hg, with two colors giving a bipartition of
V(Hg). If a triangle in G is not monochromatic, then its edges are in both parts.
If we treat this bipartition as a cut, then the size of the cut counts each triangle
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twice for the two edges that cross it. Since there is only one triangle in a graph that
contains two given edges, this counts the number of non-monochromatic triangles.
Therefore, if there exists a cut of size 2¢(G), then it defines an edge 2-coloring of
G without monochromatic triangles. However, if MC(Hg) < 2t(G), then in each
coloring all three edges of some triangle are in one part, and thus G — (3, 3).

A benefit of converting the problem of arrowing (3,3) to MAX-CUT is that
the latter is well known and has been studied extensively in computer science
and mathematics. The related decision problem MAX-CUT(H, k) asks whether
MC(H) > k. MAX-CUT is NP-hard, and its decision problem was one of Karp’s
21 NP-complete problems [46].

The Goemans-Williamson MAX-CUT approximation algorithm [37] is a
polynomial-time algorithm that relaxes the problem to a semidefinite program
(SDP). It involves the first use of SDP in combinatorial approximation and has
inspired a variety of other successful algorithms. This randomized algorithm
returns a cut with expected size at least 0.878 of the optimal value. However,
in our case, all that is needed is the solution to the SDP, as it gives an upper bound
on MC(H). Another often effective method approximates MAX-CUT using the
minimum eigenvalue, or one can combine a partial exhaustive search with one of
the approximation methods [17, 50].

Define graphs G, on vertices Z, with an edge connecting x and y if and only
if x —y = «” for some nonzero o € Z,. If the graph G, , is K4-free, then it may
be a good candidate for a witness to the upper bound of n. Using the minimum
eigenvalue method, Dudek and Ro6dl [17] found that the graph Gog; 5 is a witness
of F,(3,3;4) < 941. A reduction of the same graph led to a better bound 860 [50],
and some modifications of graphs considered by Lu [52] produced the best-to-date
bound of 786 [50].

A puzzling question about triangle arrowing is however for a much smaller graph,
namely, for G7.3. This graph was used by Hill and Irving [42] in 1982 to establish
the bound 128 < R(4,4,4). About 10 years ago, Exoo proposed to consider this
graph for triangle arrowing. Since then, Exoo0, us, and many others tried to decide
whether Gy73 forces a monochromatic triangle if its edges are colored with two
colors. As far as we are aware, all are to no avail. Nevertheless, all failed attempts
build up more evidence for the positive answer to the following:

Conjecture 4.4. Exoo, G275 — (3,3).

Exoo suggested that even a 94-vertex-induced subgraph of Gj,73, obtained by
removing from it three disjoint independent sets of order 11, may still work. If true,
this would imply F,.(3,3;4) < 94.

One of the approaches for verifying the conjecture is by reducing {G | G 4
(3,3)} to the 3-SAT problem. We map the edges E(G) to the variables of ¢ € 3-
SAT, and for each (edge)-triangle xyz in E(G), we add to ¢¢ two clauses (x + y +
Z) A (x + ¥y + 2). One can easily see that G 4 (3, 3) if and only if ¢ is satisfiable.
Conjecture 4.4 above is equivalent to the unsatisfiability of ¢ for G = Gy273. In this
case, the formula ¢ has 2667 variables and 19558 3-clauses, two for each of the
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9779 triangles. In all, this is considered of only moderate size for the state-of-the-art
SAT solvers. Still, all of several attempts to decide this ¢¢ by us and others failed.

The lower bound on F,(3, 3; 4) is a challenge as well, as it is quite surprising that
only 19 is the best known. Even an improvement to 20 < F,(3, 3;4) would be a
good progress. Lin [51] obtained a lower bound of 10 in 1972 without the help of
a computer. All 659 graphs on 15 vertices witnessing F,(3,3;5) = 15 [62] contain
K4, thus giving the bound 16 < F,(3, 3;4). In 2007, the authors gave a computer-
free proof of 18 < F,(3, 3;4) and improved the lower bound further to 19 with the
help of computations [64]. Any proof or computational technique improving further
the lower bound of 19 very likely will be of significant interest.

We also wish to mention another interesting open problem about a related
Folkman number F,(Ky; — e, Ky — e;4). Note that clearly we have F,(3,3;4) <
F.(K4 — e, Ky — e;4). As commented by Lu [52] in his work on F,(3, 3; 4), he also
obtained as a side result the bound F.(Ky — e, Ky — ¢;4) < 30193. The gap here
between the known lower and upper bounds is much larger than that for F,(3, 3; 4),
so it should in principle be more feasible to make progress here.
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Chapter 5
All My Favorite Conjectures Are Critical

Teresa W. Haynes

Abstract My favorite graph theory conjectures involve the effects of edge removal
on the diameter of a graph and the effects of edge addition on the domination and
total domination numbers of a graph. Loosely speaking, “criticality” means that
the value of the parameter in question always changes under the graph modification.
This chapter presents five conjectures concerning criticality, namely, a conjecture by
Sumner and Blitch on the criticality of domination upon edge addition, a conjecture
by Murty and Simon on the criticality of diameter upon edge removal, and three
conjectures on the criticality of total domination upon edge addition. These last
three conjectures involving total domination are closely related, and surprisingly, a
solution to one of them would provide a solution to the Murty-Simon Conjecture on
diameter.

With acknowledgments and thanks to my special critical partners: Michael Henning,
Lucas van der Merwe, and Anders Yeo.

5.1 Introduction

When studying a graph parameter such as the diameter or domination number, it is
sometimes important to know the parameter’s behavior when changes are made to
the graph. The effects of modifying a graph by removing or adding an edge or by
removing a vertex are of particular interest in many applications of graph theory. For
example, in network design, fault tolerance is the ability of a network to withstand
the failure of a link (removing an edge) or a node (removing a vertex). On the
other hand, networks can be reinforced by adding links (edges). My favorite graph
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theory conjectures arise from questions involving the effects of edge removal on the
diameter of a graph and the effects of edge addition on the domination and total
domination numbers of a graph. Informally, the concept of “criticality” with respect
to a given graph parameter generally means that the value of the parameter always
changes under the graph modification.

In this chapter, I will discuss five such “critical” conjectures. The first of which
by Sumner and Blitch [35] concerns the effects of edge addition on the domination
number of a graph. Although this conjecture was settled in 1999, it remains one of
my favorite conjectures. The other four conjectures are still open and are closely
related as we shall see. One of them is a conjecture by Murty and Simon [5, 33]
about the effects of edge removal on the diameter of a graph, and the remaining
three concern the effects of edge addition on the total domination number of a graph.
Surprisingly, a solution to one of the conjectures involving total domination would
provide a solution to the Murty-Simon Conjecture on diameter.

Before presenting the conjectures, we give some basic terminology and a brief
background. The maximum distance between any two vertices in a graph G =
(V,E) is the diameter of G, denoted diam(G). A set S of vertices is a dominating
set of a graph G if every vertex in V' \ § is adjacent to a vertex in S. The domination
number y(G) is the minimum cardinality of any dominating set of G. A set of
vertices S is a fotal dominating set of a graph G if every vertex in V is adjacent to
a vertex in S, and the fotal domination number y,(G) is the minimum cardinality
of any total dominating set of G. Distance in graphs, diameter in particular, is
well studied in the literature. Domination and total domination are as well. Total
domination in graphs was introduced by Cockayne, Dawes, and Hedetniemi [6].
For more details, the reader is referred to Henning and Yeo’s [27] superb book on
total domination.

Change alone is unchanging. Heraclitus

To state the obvious, a graph parameter will either change or remain the same
when the graph is modified by adding/removing an edge or removing a vertex. The
question is does the parameter change or remain unchanged? I was first introduced
to these types of questions by my Ph.D. advisor, Professor Robert Brigham, when
I was a graduate student at the University of Central Florida. Professor Brigham
is a gifted teacher and was a wonderful mentor to me. At the very beginning of
my Ph.D. research, he instructed me to go to the library (yes, those were the days
before we could search databases like MathSciNet) and browse through articles to
see what appealed to me. He asked me to select one publication per week to report
to him. I was like a kid in a candy store looking through the papers. Eager to please,
I dutifully reported to him a different paper each week. After a few weeks of this
and what I am sure seemed like no end in sight to Professor Brigham, sounding
exasperated he said, “Teresa, just choose something. It doesn’t matter what. If
you study spiders long enough, you’ll learn to like them.” I did not know how to
reply because, although it should have been obvious, I had not realized that the
goal of looking through the papers was that on my own I would choose one. In
hindsight, I am not sure what I was thinking; I guess I must have thought Professor
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Brigham and I would choose the topic together or that during one of my reporting
sessions, he would suddenly announce, “This is the one.” I felt a little embarrassed
for not recognizing what was expected of me, so I immediately chose a topic.
Fortunately, I had just finished reading a manuscript that Brigham and Professor
Ronald Dutton [7] had recently submitted for publication. It was on the minimum
number of edges in domination insensitive graphs. A graph is domination insensitive
if its domination number does not change upon the removal of any edge. Not only
was this paper the most recent I had read, but the one I found most interesting of
all the ones I had reported. Hence, I selected domination insensitive graphs as my
research topic, and the good news is that, unlike spiders, it did not have to grow on
me. Following Brigham’s advice, for my Ph.D. research, I generalized domination
insensitive graphs by studying domination k-insensitive graphs, that is, those graphs
whose domination number remains unchanged when any k > 2 edges are removed.
This proved to be quite a difficult topic and sparked my lifelong interest in such
questions.

In the final year of my graduate studies, Professors Brigham and Dutton took
Julie Carrington, also a student at the time, and me to the /9th Southeastern
International Conference on Combinatorics, Graph Theory, and Computing in
Baton Rouge, Louisiana. It was at this conference I had the privilege of meeting
Professor Frank Harary. Professor Brigham introduced me to him on Wednesday
night at the conference banquet. I felt so honored and excited to meet him, as I
was acquainted with his graph theory book and had heard many refer to him as
the “father of modern-day graph theory.” The next day at the conference, Professor
Harary approached me and started talking. He was friendly and seemed to be
genuinely interested in the research I was doing. He asked me the topic of my
dissertation and I told him. He smiled and said it was interesting. Then he went
to his room to rest. A few hours later, I heard someone calling my name and saw
Professor Harary walking toward me. And in what became a life-changing moment
for me, he handed me a piece of paper on which he had handwritten six problems
(see Figure 5.1 for a copy of the handwritten letter). The problems were stated in
terms of the domination number because Harary knew I was studying it, but he said
to pick your favorite graph parameter and plug it into these six problems. The six
problems he suggested were

Changing and Unchanging Domination
Characterize the graphs G for which

. Y(G—v) # y(G) forallv € V.

. Y(G—e) # y(G) foralle € E.

. Y(G + e) # y(G) for all e € E(G).
. Y(G—v) =y(G) forallv e V.

. Y(G—¢) =y(G)foralle € E.

. Y(G + ¢e) = y(G) forall e € E(G).

AN AW =

In essence, Harary’s problems are to characterize graphs based on whether a
given graph parameter changes or remains the same when the graph is modified by
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Fig. 5.1 Harary’s original letter

one of three operations, namely, removing an edge, adding an edge, or removing
a vertex. (It is worth mentioning that graphs can be modified in other ways, e.g.,
subdividing an edge or contracting an edge, but these modifications are not the
subject of the conjectures considered here.) Note that the “unchanging” graphs from
Problem 5 on Harary’s list are precisely the domination insensitive graphs defined
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by Dutton and Brigham [7]. Further, Problems 1, 2, and 3 define “critical graphs.”
I found these problems extremely interesting and exciting when I first saw them,
and my interest in them has not waned.

This encounter also began several years of research collaboration with Professor
Harary. I feel very fortunate to have had this opportunity as he was a great mentor
and teacher. He encouraged me, shared many research ideas with me, and helped
me hone my writing skills. In addition, we became good friends. One of the most
valuable lessons that he taught me was that there is no such thing as revising a paper
too many times. When I was visiting him at New Mexico State University, I walked
into his office one morning, and there he sat revising one of his papers. Although
there was nothing strange about his doing this, what was strange was that the paper
he was marking up with his red pen had already been published! I asked him what
good would it do to mark up his copy of the actual journal article, especially since no
one would ever see it. He just smiled and said that the paper needed it and he would
see it. Those who knew Harary will attest that working with him could be a bit
trying at times, but I always appreciated his personality. He once told me, jokingly,
that I held the distinction of being his only female coauthor who had not thrown
something at him. Harary was definitely unique and creative; I often thought of him
as a fountain flowing with new research ideas. Professors Stephen Hedetniemi and
Gary Chartrand are two others with whom I have had the privilege of working who
naturally “ask the right questions” and “flow with many new ideas.”

5.2 The Sumner-Blitch Conjecture

History is always changing. Aung San Suu Kyi

Although the 1983 Sumner-Blitch Conjecture is a history, as it was settled in
1999, it was and still is one of my favorite “critical conjectures.” A graph G is
domination k-edge critical or just k-critical, if y(G) = k and the addition of any
edge decreases the domination number. Since adding an edge cannot increase the
domination number, these graphs are precisely the “changing” graphs defined by
Harary’s Problem 3. For more details, see Chapter 5 of [20] and Chapter 16 of [21].

It is straightforward to characterize the k-critical graphs for k < 2. Vacuously,
a graph is 1-critical if and only if it is the complete graph. The 2-critical graphs
are characterized as follows. A nontrivial star is the complete bipartite graph K| ,,
form > 1.

Theorem 1 ([35]). A graph G is 2-critical if and only if its complement G is the
union of nontrivial stars.

Although the k-critical graphs for k < 2 are easy to characterize, the level of
difficulty increases significantly for £ > 3, and to date these graphs have not been
characterized. The Sumner-Blitch Conjecture deals with a property of 3-critical
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Fig. 5.2 The smallest connected, 3-critical graph

Fig. 5.3 A 3-critical graph

graphs. The graph shown in Figure 5.2 is the smallest (in terms of order) connected,
3-critical graph [35]. Another example of a 3-critical graph is given in Figure 5.3.

The independent domination number i(G) is the minimum cardinality of an
independent dominating set of G. Sumner and Blitch [35] conjectured that for any
k-critical graph G, y(G) = i(G) = k. In 1994 Ao [1] disproved the conjecture for
k = 4, and a couple of years later Ao, Cockayne, MacGillivray, and Mynhardt [2]
disproved it for k > 4 by giving an elegant construction of a counterexample.
However, for the case of k = 3, the conjecture remained open and is restated as
follows:

Conjecture 1 ([35] Sumner-Blitch Conjecture, 1983). If G is a 3-critical graph,
then y(G) = i(G) = 3.

In [36] Sumner stated that although the stronger conjecture for all k-critical
graphs had been disproven for k > 4 in [1, 2], he still believed that Conjecture 1
for k = 3 is true. His belief was based mainly on an extensive computer search
that failed to find a counterexample. The results from this search had at one point
led him to believe that Conjecture 1 was too weak and that in fact, every vertex of a
3-critical graph belongs to an independent dominating set of cardinality 3. However,
at the time of writing Chapter 16 of [21], Sumner was aware of counterexamples to
this stronger form of the conjecture.

Conjecture 1 was listed in [16, 20, 32] as a major outstanding conjecture and
attracted attention of researchers worldwide. Sumner was not alone in believing that
the conjecture was true. Support for its validity mounted as it was proved in the
affirmative for subfamilies of 3-critical graphs. For instance, it was shown in [35]
that Conjecture 1 is true for a 3-critical graph G with any of the following properties:
G has a leaf, G has a cutvertex, or G has diameter 3. Further, Favaron, Tian, and
Zhang [9] showed that if a 3-critical graph G has minimum degree 6(G) > 2 and
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independence number §(G) + 2, then Conjecture 1 holds. Hence, computer data [35]
and the subsequent research supported the validity of Conjecture 1. I was among the
researchers that believed Conjecture 1 was true and personally spent much time
trying to prove it.

When the Sumner-Blitch Conjecture was about 15 years old, Professor C. M.
(Kieka) Mynhardt and I were co-advisors for Lucas van der Merwe, a Ph.D. student
at the University of South Africa. Mynhardt and I had both been interested in
Conjecture 1 for several years. The main topic we gave Lucas for his Ph.D. research
was to characterize the total domination critical graphs. There will be more on these
graphs when we discuss the Murty-Simon Conjecture in Section 5.3. As a side dish
to his main research, we also asked Lucas to work on Conjecture 1. We told him
to use it as something to consider during the dry periods of his research on total
domination. The Sumner-Blitch Conjecture intrigued Lucas as it had many of us,
so whenever he hit a sticking point in his research or needed a break from his main
topic, he turned his attention to this conjecture.

When Mynhardt and I gave the Sumner-Blitch Conjecture to Lucas, we knew
it was a very difficult problem and did not fully expect a solution. And, if he did
manage to settle the conjecture, we expected it to be in the affirmative. Were we
ever surprised! Before revealing the end of the story, I want to say a little more
about Conjecture 1. While it was a testy little conjecture, it was also very alluring.
My attempts to prove it seemed to get tantalizingly close, that is, the proof would
work for every case except for possibly one, seemingly insignificant, tiny one. One
always felt “if I could just account for that one missing edge,” then it would be
proven. I know, it seems that at this point, I should have considered looking for
a counterexample, but I had fallen into the trap of believing that the conjecture
was true.

Surprise is the greatest gift which life can grant us. Boris Pasternak

Time passed and Lucas’ research on total domination critical graphs was nearing
completion. Professor Mynhardt and I agreed that his results were sufficient for a
dissertation, so we encouraged him to begin putting his research in the final form
required by the University of South Africa. It is no secret (sorry, Lucas) that Lucas’
least favorite part of doing research is the writing process. Hence, I was not surprised
when Lucas kept coming up with excuses to postpone the writing. In an effort to
prompt Lucas to finish his dissertation, I called him to say that he really needed to
use the upcoming weekend to write. I was going out of town to visit my grandmother
and wanted him to have made substantial progress on it by my return on Monday.
He said, “I’ve been working on the Sumner-Blitch Conjecture and think I’'m close,
so I'd like to continue working on it through the weekend.” Thinking that Lucas was
stalling and procrastinating writing, I told him that I’d been “close” to a solution of
the Sumner-Blitch Conjecture for years and that he really needed to write his thesis.
I reminded him that he would have plenty of time to work on the conjecture after
his graduation. He pleaded with me saying, “But I’m so close, if I can find one more
edge, I'll be finished.” Remembering my attempts to prove the conjecture, I assured
him that I too had thought I was within “one edge” of proving the conjecture many
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times. At this point, he started to bargain saying, “If you’ll just let me work on it
this weekend, I promise that I will start writing my dissertation first thing Monday
morning.” Finally, I thought what can two more days matter, so I agreed and left
to go to my grandmother’s home. This was before cell phones were commonplace,
and I did not have one. I was surprised when Lucas called me on Saturday on my
grandmother’s home phone saying that he had solved the conjecture. I must admit
that I did not take him too seriously, probably because there had been times when I
thought I had proven it and realized my mistake later. Not expecting much, I told him
I would call him when I returned home. Sunday evening I gave him a call, and he
proceeded to describe a beautiful counterexample to the Sumner-Blitch Conjecture!
The minute I heard the counterexample, I knew he had it. I was so impressed by
Lucas’ counterexample, excited that Conjecture 1 had been settled, and shocked
that the conjecture was not true; emotions overwhelmed me. Although it was the
middle of the night at Mynhardt’s home in South Africa, we called her. She was so
excited that she did not sleep that night either.

Writing the paper to present the counterexample to this 16-year-old conjecture
was one of the fastest projects I have ever completed. In fact, the entire writing and
review process took only two weeks from start to acceptance, and it was published
shortly thereafter. Using notes and drafts from our previous work on the conjecture,
Mynhardt and I were prepared and able to do the actual writing of the paper [41]
in just a couple of days. We wanted to get the result out quickly, so we chose to
submit it to the Bulletin of the Institute of Combinatorics and Its Applications, which
is known for its rapid turnaround time. We included a cover letter with the paper
submission that explained the significance of the result and asked that the review of
our paper be expedited. It was published a couple of weeks later.

Van der Merwe’s counterexample not only shows that y(G) is not necessarily
equal to i(G) for 3-critical graphs G; it constructs 3-critical graphs G with
i(G) = k for every integer k > 3. Note for k = 3, the constructed graph G has
y(G) = i(G) = 3, so, in order to have a counterexample, we must have k > 4.
Hence, the smallest counterexample to the Sumner-Blitch Conjecture provided by
this construction is the graph for k = 4, which has 56 vertices. It is still unknown
whether there exists a smaller counterexample. Congratulations again, Lucas.

We conclude this section by giving the construction of the counterexample first
presented in [38] and later in [41]. Construct Gy for kK > 3 as follows: Begin with
a factorization of the complete graph K, with vertex set vy, vy, ..., vy into the
1-factors Fy, F», ..., For—1. Let the vertices of each F; be labeled v; 1, vi2, ..., ;2%
such that v;;v;, € E(F;) if and only if vjv, is an edge of the 1-factor F;. Then add
the edges v; v, for all i # h and j # p, that is, add edges such that vertex v;; is
adjacent to every vertex in every other factor F;,, where h # i, except the vertex vy,
for1 <i <2k—1and 1 <j < 2k. Assume, without loss of generality, that v; ;v
is an edge in F. It is straightforward to check that no two vertices dominate Gy and
that {vy 1, v2.1, 22} is a dominating set of Gy, so y(Gyx) = 3. There are only two
possibilities to check to show that Gy is 3-critical, namely, adding an edge v; ,v; 5 in
F; or adding an edge vj qvp, for i # h. If v;,v;; is not an edge in Gy, then v; v,
is in some Fj, where j # i. Hence, {v;4, vj,} is a dominating set of Gy + v;qVjp.
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Further, if v; ,v;; € E(F;), then {v;,, vy} is a dominating set of Gy + v;,Vp, for
h # i. In both cases, it follows that Gy is 3-critical. To see that i(G;) = k, observe
that since v;; is adjacent to every vertex except vy in F, for every h # i, it follows
that an independent dominating set containing vertices from different 1-factors must
have at least 2k — 1 vertices (one from each F;). On the other hand, an independent
dominating set contained in a single F; needs only k vertices (one from each adjacent
pair). Moreover, no fewer than k vertices form an independent dominating set of Gy,
s0 i(G) = k. Hence, the graph G is 3-critical and has i(Gy) = k.

5.3 The Murty-Simon Conjecture

In this section, we will consider another “critical conjecture.” This long-standing
conjecture proposes an upper bound on the number of edges in a graph of diameter 2
having the property that the removal of any edge increases its diameter. Such graphs
are called diameter-2-critical graphs. Clearly, removing an edge cannot decrease
the diameter, so the diameter-critical graphs are the “changing” graphs defined by
Problem 5 (substituting diameter for domination) on Harary’s list in Figure 5.1.
Murty and Simon (see [5, 33]) independently made the following conjecture:

Conjecture 2 (Murty-Simon Conjecture). If G is a diameter-2-critical graph
with n vertices and m edges, then m < |n*/4|, with equality if and only if G is
the complete bipartite graph KUJ I

This conjecture is credited to Murty and Simon in 1970s. However, according to
Fiiredi [10], Erdds attributed it to the work of Ore in the 1960s. In either case, the
conjecture is approximately a half-century old.

The Murty-Simon Conjecture, as we shall refer to it, has been proven for
some families of graphs. Mantel’s [30] result (a special case of a classic result of
Turan [37]) proves the Murty-Simon Conjecture for triangle-free graphs. Bounding
the number of triangles in a diameter-2-critical graph, Caccetta and Haggkvist [5]
proved that the conjecture holds for graphs of order n which have O(n*~) triangles
with a certain property. Hence, it would seem that looking at graphs having a large
number of triangles would be a place to start the search for a counterexample to
the conjecture. However, Plesnik [34] constructed families of diameter-2-critical
graphs with the property that each edge belongs to at least one triangle of the
graph, and Madden [29] constructed families of diameter-2-critical graphs with
©(n?) triangles. None of the graphs in these families have enough edges to be a
counterexample to the Murty-Simon Conjecture, and their constructions seem to
indicate that this approach is unlikely to lead to one. See also [11-14].

In 1975 Plesnik [33] proved that m < 3n(n — 1)/8 for any diameter-2-critical
graph with n vertices and m edges. In 1979 Caccetta and Héaggkvist [5] proved that
m < .27n? for such graphs. In 1984 Xu [44] published a “proof™ of the conjecture,
which he later retracted after discovering a mistake in it. In 1987 Fan [8] proved the
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bound of the conjecture for n < 24 and for n = 26. For diameter-2-critical graphs
of order n > 25, he showed that m < n?/4 + (n> — 16.2n + 56)/320 < .2532n2.

Perhaps Fiiredi’s [10] astounding asymptotic result from 1992 is the most
noteworthy contribution to date on the conjecture. He proved that the conjecture
is true for large n, that is, for n > ny where ng is a tower of 2s of height about 104,
However, even this striking result does not put the conjecture to rest. As remarked
by Madden [29], “ny is an inconceivably (and inconveniently) large number: it is a
tower of 2’s of height approximately 10'*. Since, for practical purposes, we are
usually interested in graphs which are smaller than this, further investigation is
warranted.” The Murty-Simon Conjecture has been studied by several other authors;
see, for example, [4, 28, 31] and elsewhere.

Although many impressive partial results have been obtained, the conjecture
remains open for general n. On the other hand, a recent discovery gives a new way
to look at the Murty-Simon Conjecture from the point of view of total domination,
a seemingly unrelated parameter. This is the topic of our next section.

5.4 The Equivalent Total Domination
Edge-Critical Conjecture

As we have seen, several attempts have been made to solve the Murty-Simon
Conjecture by attacking it head-on, that is, from the viewpoint of diameter-2-critical
graphs, and valuable partial results have been obtained using this direct method.
Nonetheless, in more than 50 years since the conjecture was first posed, it remains
unsettled.

I look at this game from a different perspective. Pitbull

Recently, however, Hanson and Wang [15] observed a relationship that essen-
tially equates the Murty-Simon Conjecture with a conjecture involving total dom-
ination in the complement graphs. Hence the problem can now be approached
from a new perspective, by coming at it “through the back door.” This surprising
connection, linking two seemingly disparate parameters, has given a breath of fresh
air into this problem.

I first heard of this fascinating connection from Lucas van der Merwe. He called
to tell me about it and suggested that we use it to attack the Murty-Simon Conjecture
from the total domination standpoint. He also shared several very good ideas that
he had for approaching it from this new perspective. We invited Professor Michael
Henning to join us on this adventure. Given our lifelong interests in domination,
of course, the three of us were excited by this unpredictable association with total
domination and eager to tackle the Murty-Simon Conjecture from this angle.

This pivotal link to total domination has resulted in a flurry of newfound interest
in the problem and allowed significant progress to be made on the conjecture. In the
remainder of this section, we will discuss the link and progress made using it.
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5.4.1 The Relationship: Diameter-2-Critical and 3,-Critical

In this section, we present a third “critical” conjecture involving total domination
edge critical graphs. We will see that a solution to this conjecture is, in fact, a
solution to the Murty-Simon Conjecture.

As mentioned in Section 5.2, the investigation of total domination edge critical
graphs was the topic of van der Merwe’s doctoral research [38, 40, 42, 43]. A
graph G is total domination edge critical if y,(G + e¢) < y,(G) for every edge
e € E(G) # @. Further if y,(G) = k, then we say that G is a k,-critical graph.
Therefore, a k;-critical graph has total domination number k, and the addition of any
edge decreases the total domination number. Note that here we are adding an edge to
a graph, whereas the criticality in the Murty-Simon Conjecture refers to removing
an edge from a graph. Since adding an edge cannot increase the total domination
number, the k;-critical graphs are the “changing” graphs in Harary’s Problem 3,
where total domination number is the selected parameter.

It is shown in [40] that the addition of an edge to a graph can change the total
domination number by at most two. Total domination edge critical graphs G with
the property that y,(G) = k and y,(G + ¢) = k — 2 for every edge ¢ € E(G) are
called k,-supercritical graphs.

Theorem 2 ([40]). For any edge e € E(G), y:(G) —2 < y/(G + e) < y:(G).

It’s useful to go out of this world and see it from the perspective of another one. Terry
Pratchett

We are now ready to discuss Hanson and Wang’s result, which gives the key
association between diameter-2-critical graphs and k;-critical graphs. The proof to
this unexpected result is short and simple, so we include a slightly modified version
of the proof in [15] here. First we make an observation.

Since any pair of vertices at distance 3 or more apart in G forms a total
dominating set of G, it follows that if diam(G) > 3, then y,(G) = 2. Moreover,
if § = {u, v} is a total dominating set of a graph G, then in G, u and v are not
adjacent and have no common neighbors, that is, diam(G) > 3. Hence, we have the
following result:

Observation 3. A graph G has y,(G) = 2 if and only if diam(G) > 3.

Theorem 4 ([15]). A graph is diameter-2-critical if and only if its complement is
3;-critical or 4,-supercritical.

Proof. Let G be a diameter-2-critical graph. Observation 3 implies that y,(G) > 3.
Moreover, diam(G — uv) > 3 for any edge uv € E(G). Again, by Observation 3,
we have that y,(G + uv) = 2. It follows from Theorem 2 that G is 3,-critical or
4,-supercritical.

Assume that G is 3,-critical or 4,-supercritical. Then y:(G + uv) = 2 for
any uv € E(G). Observation 3 implies that diam(G — uv) > 3 for any edge
uv € E(G). If diam(G) > 3, then y,(G) = 2, a contradiction. Hence, diam(G) < 2.
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Fig. 5.4 A diameter-2-critical graph G and its 3,-critical complement G. (a) G, (b) G

If diam(G) = 1, then G is complete and E(G) is empty, contradicting that y,(G) €
{3, 4}. Thus, we have that diam(G) = 2, and so, G is a diameter-2-critical graph. (]

For example, the self-complementary 5-cycle is both diameter-2-critical and
3,-critical. Figure 5.4 shows a diameter-2-critical graph G and its complement G,
a 3,-critical graph.

A result from van der Merwe’s dissertation [38, 39] characterized the
4,-supercritical graphs, supporting the Murty-Simon Conjecture, though we were
unaware of the connection at the time.

Theorem 5 ([39]). A graph G is 4,-supercritical if and only if G is the disjoint
union of two nontrivial complete graphs.

The reverse side also has a reverse side. Japanese Proverb

Note that the complement of a 4,-supercritical graph is a complete bipartite
graph, and the number of edges in a complete bipartite graph is maximized when
the partite sets differ in cardinality by at most one. Thus, Conjecture 2 (the
Murty-Simon Conjecture) holds for diameter-2-critical graphs whose complements
are 4,-supercritical, and a subset of these graphs are the extremal graphs of the

conjecture. Noting also that for a graph G of order n, |E(G)| < L’f J if and only

if |[E(G)| > P(”;Z) —I, it follows from Theorem 4 and Theorem 5 that proving the
Murty-Simon Conjecture is equivalent to proving the following conjecture:

Conjecture 3. If G is a 3,-critical graph with order n and size m, then m >
’Vn(n—Z)-‘
.|

Conjecture 3 arose from Theorem 4 in 2003. Proving this conjecture, and
consequently the Murty-Simon Conjecture, requires determining the minimum
number of edges in a 3,-critical graph on n vertices. When Mynhardt and I gave total
domination edge critical graphs to van der Merwe as a research topic, we started out
with the lofty goal of asking him to characterize the k;-critical graphs for all k > 3.1t
did not take us long to realize that we needed to limit our scope. Noting that k = 2 is
the smallest k for which ordinary domination can be k-critical and that these graphs
were easily characterized in [35], Mynhardt and I thought that we would ask him
to consider the smallest k£ for which a graph could be k;-critical, that is, k = 3.
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Hoping to jump start his research by giving him success with some low-lying fruits,
we narrowed the question to characterizing the 3,-critical graphs. Of course, we
were unaware that we were asking Lucas to prove the Murty-Simon Conjecture and
more. Lucas did a beautiful dissertation [38] and made significant progress toward
his goal, including determining several useful properties of 3,-critical graphs. He
characterized an infinite family of 3,-critical graphs (the graphs with a cutvertex),
solving a more general problem, and hence, Conjectures 2 and 3, for this family.
But he was not able to obtain a characterization of all 3;-critical graphs. Now that
we know the relationship to the Murty-Simon Conjecture, it is not surprising that
the problem of characterizing the 3,-critical graphs proved to be unattainable.

5.4.2 Progress on Conjecture 3

Prior to the knowledge that 3,-critical graphs were related to the diameter-2-critical
graphs of the Murty-Simon Conjecture, most of the work on 3,-critical graphs
focused on either trying to characterize them or obtaining bounds on their graphical
parameters, such as diameter. It was not until Hanson and Wang [15] discovered the
link that any attempt was made to determine a lower bound on their size or to study
the extremal (edge-minimal) graphs. This linkage has turned attention to these types
of questions concerning 3,-critical graphs as well as breathed new life into attacking
the Murty-Simon Conjecture by allowing it to be approached from the point of view
of domination. Our initial excitement about the connection has escalated as it has
been used to make significant progress on this elusive problem. We summarize the
progress in this section.

After van der Merwe contacted me about Hanson and Wang’s result, we
organized a summer workshop to focus on the problem. Michael Henning and
Anders Yeo visited Tennessee to work with us. We concentrated solely on the Murty-
Simon Conjecture via Conjecture 3 and worked very hard during this workshop and
subsequent meetings. It was at the first gathering that we proved Conjecture 3 for
3,-critical graphs having diameter 3.

One of the useful properties of 3,-critical graphs established by van der
Merwe [38] was the following bounds on their diameter:

Theorem 6 ([38, 40]1). If G is a 3;-critical graph, then 2 < diam(G) < 3.

By Theorem 6, every 3,-critical graph has diameter 2 or 3. Hanson and Wang [15]
proved the following result:

Theorem 7 ([15]). If G is a 3;-critical graph of diameter 3, order n, and size m,
then m > ’V"(";z)-‘.

Note that in order to prove that Conjecture 3 holds for 3,-critical graphs of
diameter 3, strict inequality is needed in Theorem 7. Hence, the first task we set out
to accomplish in our workshop was to prove strictness of their bound. We thought
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that it would be easy to show, but it turned out to be much more difficult than we
anticipated. To prove strictness, we needed to be able to add one more edge to the
edge count for 3;-critical graphs of diameter 3. While the bound in Theorem 7 has
a straightforward, short proof (only about a page), an extensive amount of work
was required to find this one additional edge. The counting arguments to prove the
following were lengthy and detailed:

Theorem 8 ([22]). If G is a 3;-critical graph of diameter 3, order n, and size m,
then m > ’V"(";z)-‘.

Thus, by Theorem 8§, the Murty-Simon Conjecture is proven for the graphs whose
complements have diameter 3. Hence, the problem is reduced to determining the
minimum number of edges in 3,-critical graphs of diameter 2.

Several years after our initial workshop, we [26] were able to prove the following
result for 3,-critical graphs with sufficiently small minimum degree:

Theorem 9 ([26]). If G is a 3;-critical graph of order n, size m, and minimum
degree §(G) > 1, then the following hold:

(a) If6 <0.3n, thenm > [n(n—2)/4].
(b) Ifn > 2000 and § < 0.321 n, thenm > [n(n—2)/4].

As before, we used the link between diameter-2-critical graphs and 3,-critical
graphs to prove the Murty-Simon Conjecture for diameter-2-critical graphs with
sufficiently large maximum degree A(G) by restating Theorem 9 in its equivalent
form as follows. Note that §(G) = n— 1 — A(G).

Theorem 10 ([26]). Let G be a diameter-2-critical graph of order n, size m, and
maximum degree A(G). Then the following hold:

@ IfA>0.7n, thenm < |n?/4).
(b) Ifn > 2000 and A > 0.6787n, then m < |n*/4].

Recall that Theorem 8 settles Conjecture 3 for 3,-critical graphs of diameter 3,
leaving the conjecture open only for the 3,-critical graphs of diameter 2. Restricting
their attention to these graphs, subsets of authors from Haynes, Henning, van der
Merwe, and Yeo proved Conjecture 3 for several families of 3,-critical graphs
and, hence, Conjecture 2 for their complements. The graph classes for which
Conjecture 3 is known to hold are summarized with references in Table 5.1. More
details on these results can be found in the respective references and in the survey
paper [25] on the Murty-Simon Conjecture.

A claw is an induced K 3, that is, a star with three edges. The house graph is a
5-cycle with a chord, and the diamond is a 4-cycle with a chord. A graph is said to
be H-free if it has no induced subgraph H. A graph G of order n is called k-vertex-
connected (or simply k-connected) if n > k 4 1 and deletion of any k — 1 or fewer
vertices leaves a connected graph. We say that G is a graph of connectivity-k to
mean that G is k-connected and G has a cutset of cardinality k.
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Table 5.1 Graph classes for which
Conjecture 3 holds

Diameter-3 graphs [22]
Connectivity-1 graphs | [22,38]
Connectivity-2 graphs | [24]
Connectivity-3 graphs | [24]
Claw-free graphs [23]
Cy-free graphs [17]
Diamond-free graphs | [18]
House-free graphs [19]

By Theorem 9, Conjecture 3 holds if 6(G) < 0.3 n. As summarized in [25], any
counterexample to Conjecture 3 would have the following properties:

Theorem 11. If G is a 3;-critical graph of order n that is a counterexample to
Conjecture 3, then the following hold:

(a) diam(G) = 2.

(b) §(G) > 0.3n.

(¢) G is 4-connected.

(d) G has a claw.

(e) G has an induced Cy.

() G has an induced diamond.
(g) G has an induced house.

Thus, the Murty-Simon Conjecture has been verified for a number of infinite
families of graphs, namely, the complements of the graphs listed in Table 5.1. Many
of the arguments used to prove the results presented in this section involved intricate
counting methods. For example, one of the first approaches suggested by van der
Merwe to count the number of edges in a 3,-critical graph is to partition its vertex
set into cliques. Notice that Conjecture 3 is true for a 3,-critical graph G of order
n if V can be partitioned into two cliques such that at least one of the cliques has
more than [n/2] vertices or the cliques are balanced with |n/2| and [n/2] vertices,
respectively, and G has at least one additional edge. Clearly, this type of partition
does not always exist, so for the purpose of counting edges, we considered what
we called pseudo-cliques. A set S of k vertices forms a pseudo-clique if we can
uniquely associate (]2‘) edges of G with S. If § is a pseudo-clique and e is an edge
of G associated with a missing edge in S, then we call e a pseudo-edge associated
with the pseudo-clique S. Thus, our aim in several of the proofs was to partition the
vertices of G into two pseudo-cliques (where any edge is a pseudo-edge for at most
one of the pseudo-cliques) and show that the pseudo-cliques have the properties to
yield the desired edge count.

Unfortunately, the techniques we used in each subproblem collapsed when
applied to the general problem. For example, the counting technique used to prove
the conjecture in the claw-free case does not apply to graphs having a claw.
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Similarly, different proof methods used for the other graph structures failed in the
more general case. Thus, although we have partial solutions, Conjecture 3, and,
hence, the Murty-Simon Conjecture, is still unsolved. The fact that the Murty-Simon
Conjecture remains open is a testimony to its difficulty and that there is still much
work to do. On the other hand, the significant partial results attained by using the
association to total domination are evidence that this new approach is promising.
Further, we believe that we have only skimmed the surface from the vantage point
of total domination, but in doing so have begun to understand it better and to develop
proof techniques that we can apply in future work. I would love to see the Murty-
Simon Conjecture and its equivalents settled and plan to continue diligently working
with my colleagues toward this goal. In fact, as we shall see in the next section, our
new aim is to prove an even stronger result than Conjecture 3 for the open portion
of the problem, that is, for the subfamily of 3,-critical graphs having diameter 2.

5.5 Two New Conjectures

As we have seen, the Murty-Simon Conjecture is true for diameter-2-critical graphs
whose complements have diameter 3 and that it remains to be settled only for the
diameter-2-critical graphs whose complements have diameter 2. Hence, proving the
Murty-Simon Conjecture is equivalent to proving Conjecture 3 for 3,-critical graphs
of diameter 2. Recently, Balbuena, Hansberg, Henning, and I [3] joined forces to
focus on this subfamily of 3,-critical graphs. We believe that in fact Conjecture 3
can be strengthened for this class of graphs. Our stronger conjectures are the subject
of this section.

Less is only more where more is no good. Frank Lloyd Wright

Noticing that the 3,-critical graphs of order n and diameter 2 seem to have many
more edges than the conjectured lower bound | (n(n — 2)/4] of Conjecture 3, we
posed the following stronger conjecture in [3]:

Conjecture 4. If G is a 3,-critical graph with order n, size m, and diam(G) = 2,
thenm > | (n*> — 4)/4].

It was proved in [3] that Conjecture 4 holds for a family H of graphs defined as
follows. A pair of nonadjacent vertices, say u and v, is called a dominating pair of
G if {u, v} dominates G. Let H be the subset of 3,-critical graphs of diameter 2 for
which every pair of nonadjacent vertices is a dominating pair. Family H is important
because we [3] believe that almost all extremal (edge-minimal) 3,-critical graphs of
diameter 2 belong to this family.

A bull graph consists of a triangle with two disjoint pendant edges as illustrated
in Figure 5.5. A graph is bull-free if it has no bull as an induced subgraph. It turns
out that family H is precisely the family of bull-free, 3,-critical graphs.

In order to characterize the extremal graphs, a subfamily of # was defined
in [3]. Let Cs(ny, ny, n3, n4, ns) denote the graph that can be obtained from a 5-cycle
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Fig. 5.5 The bull graph

Fig. 5.6 A graph in the family #,

X1X2X3X4X5X] by replacing each vertex x;, 1| < i < 5, with a nonempty clique
X;, where |X;| = n; > 1, and adding all edges between X; and X;y;, where
addition is taken modulo 5. For n > 5, let H, be the subfamily of H defined by
Hn = {C5(n1,n2,n3,n4,n5) | n = n3 = l,nz = I_nESJ orny; = [";3], and
n =24 ny + ng + ns}. As illustrated in [3], Figure 5.6 gives a schematic of graphs
in the family #,,, where in this diagram each X; represents the clique replacing x;,
all edges exist between the vertices of X4 and X5, the vertex x; dominates X, U X,
and the vertex x3 dominates X, U Xj.

The following result shows that Conjecture 4 holds for the graphs in H and that
the graphs H, are, in fact, the extremal ones in this family:

Theorem 12 ([3]). Let G € H have order n and size m. Then, m > [(n*> — 4)/4],
with equality if and only if G € H,,.

As an immediate consequence of Theorem 12, Conjecture 4, and, hence,
Conjecture 3, holds for the graphs in family #. In other words, the Murty-Simon
Conjecture is true for the diameter-2-critical graphs whose complements are .
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Recognizing that it was not necessary for every pair of nonadjacent vertices to be
a dominating pair (as required in family #) to prove Conjecture 4, we [3] relaxed
the condition to only requiring “many dominating pairs” as follows:

Theorem 13 ([3]). Let G be a 3;-critical graph of order n > 5, of size m, and
of diameter 2. If G has fewer than [n?/(4(n — 5))] non-dominating pairs, then
m> [n(n—2)/4].

The second conjecture posed in [3] predicts that the 3,-critical graphs of
sufficiently large order that achieve equality in the lower bound of Conjecture 4
belong to the family #,,.

Conjecture 5. Let G be a 3,-critical graph of diameter 2, of size m, and of
sufficiently large order n. Then, m > |(n> — 4)/4], with equality if and only if
G e H,.

In closing, we remark that proving Conjecture 4 would prove both Conjecture 3
and the Murty-Simon Conjecture. Also, we believe that further study of the graphs
in family A could shed some light on resolving these conjectures. We remain
excited about the connection between diameter-2-critical and 3,-critical graphs and
are convinced that continuing to approach the Murty-Simon Conjecture from the
standpoint of total domination shows promise. Recalling that I fell into the trap
of believing the Sumner-Blitch Conjecture and so wanted to prove it that I did
not search for a counterexample, it seems prudent to question whether history is
repeating itself. While one must remain open to the possibility of a counterexample,
the evidence seems to point in the other direction. In particular, Fiiredi’s [10] result
proving the Murty-Simon Conjecture for graphs of very large order offers strong
support for its validity. Also, the restrictions on any potential counterexample seem
to reinforce this. For more information on the Murty-Simon Conjecture and its
equivalents, the reader is referred to the survey paper [25].

Acknowledgements First I thank the editors for their initial conception of this volume and their
subsequent hard work to complete it. I also want to thank Wyatt Desormeaux and the anonymous
reviewers of this chapter for their many helpful comments.

References

. Ao, S.: Independent domination critical graphs. Master’s thesis, University of Victoria (1994)
. Ao, S., Cockayne, E.J., MacGillivray, G., Mynhardt, C.M.: Domination critical graphs with
higher independent domination numbers. J. Graph Theory 22, 9-14 (1996)

3. Balbuena, C., Hansberg, A., Haynes, T.W., Henning, M.A.: On total domination edge critical
graphs with total domination number three and with many dominating pairs. To appear in
Graphs Comb. 31, 1163-1176 (2015)

4. Bondy, J.A., Murty, U.S.R.: Extremal graphs of diameter two with prescribed minimum degree.
Stud. Sci. Math. Hung. 7, 239-241 (1972)

5. Caccetta, L., Hiaggkvist, R.: On diameter critical graphs. Discret. Math. 28(3), 223-229 (1979)

Do =



e

10.

1

—

12.

13.

14.

15.

16.

17.

18.

19.

20.

2

—_

22.
23.
24.

25.

26.
27.

28.

29.

30.
31.
. Mynhardt, C.M.: On two conjectures concerning 3-domination critical graphs. Congr. Numer.

32

33.

All My Favorite Conjectures Are Critical 81

Cockayne, E., Dawes, R., Hedetniemi, S.: Total domination in graphs. Networks 10, 211-219
(1980)

Dutton, R., Brigham, R.C.: An extremal problem for the edge domination insensitive graphs.
Discret. Appl. Math. 20, 113-125 (1988)

Fan, G.: On diameter 2-critical graphs. Discret. Math. 67, 235-240 (1987)

Favaron, O., Tian, F,, Zhang, L.: Independence and hamiltonicity in 3-critical graphs. J. Graph
Theory 25, 173-184 (1997)

Fiiredi, Z.: The maximum number of edges in a minimal graph of diameter 2. J. Graph Theory
16, 81-98 (1992)

. Gliviak, F.: On certain classes of graphs of diameter two without superfluous edges. Acta

F.R.N. Univ. Comen. Math. 21, 39-48 (1968)

Gliviak, F.: On the impossibility to construct diametrically critical graphs by extensions. Arch.
Math. (Brno) 11(3), 131-137 (1975)

Gliviak, F.: On certain edge-critical graphs of a given diameter. Matematicky Casopis 25(3),
249-263 (1975)

Gliviak, F.,, Kys, P, Plesnik, J.: On the extension of graphs with a given diameter without
superfluous edges. Matematicky Casopis 19, 92-101 (1969)

Hanson, D., Wang, P.: A note on extremal total domination edge critical graphs. Util. Math. 63,
89-96 (2003)

Haynes, T.W.: Domination in graphs: a brief overview. J. Comb. Math. Comb. Comput. 24,
225-237 (1997)

Haynes, T.W., Henning, M.A.: A characterization of diameter-2-critical graphs with no antihole
of length four. Cent. Eur. J. Math. 10(3), 1125-1132 (2012)

Haynes, T.W., Henning, M.A.: A characterization of diameter-2-critical graphs whose comple-
ments are diamond-free. Discret. Appl. Math. 160, 1979-1985 (2012)

Haynes, T.W., Henning, M.A.: A characterization of Ps-free, diameter-2-critical graphs.
Discret. Appl. Math. 169, 135-139 (2014)

Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel
Dekker, New York (1998)

. Haynes, T.W., Hedetniemi, S.T., Slater, PJ. (ed.), Domination in Graphs: Advanced Topics.

Marcel Dekker, New York (1998)

Haynes, T.W., Henning, M.A., van der Merwe L.C., Yeo, A.: On a conjecture of Murty and
Simon on diameter-2-critical graphs. Discret. Math. 311, 1918-1924 (2011)

Haynes, T.W., Henning, M.A., Yeo, A.: A proof of a conjecture on diameter two critical graphs
whose complements are claw-free. Discret. Optim. 8, 495-501 (2011)

Haynes, T.W., Henning, M.A., Yeo, A.: On a conjecture of Murty and Simon on diameter two
critical graphs II. Discret. Math. 312, 315-323 (2012)

Haynes, T.W., Henning, M.A., van der Merwe, L.C., Yeo, A.: Progress on the Murty-
Simon conjecture on diameter-2 critical graphs: a survey. J. Comb. Optim. (2013).
doi:10.1007/s10878-013-9651-7

Haynes, T.W., Henning, M.A., van der Merwe, L.C., Yeo, A.: A maximum degree theorem for
diameter-2-critical graphs. Cent. Eur. J. Math. 12, 1882-1889 (2014)

Henning, M.A., Yeo, A.: Total Domination in Graphs. Springer Monographs in Mathematics.
Springer, New York (2013). ISBN:978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online)
Krishnamoorthy, V., Nandakumar, R.: A class of counterexamples to a conjecture on diameter
critical graphs. Combinatorics and Graph Theory. Lecture Notes in Mathematics, pp. 297-300.
Springer, Berlin/Heidelberg (1981)

Madden, J.: Going critical: an investigation of diameter-critical graphs. Master’s thesis, The
University of Victoria Columbia (1999)

Mantel, W.: Wiskundige Opgaven 10, 60-61 (1906)

Murty, U.S.R.: On critical graphs of diameter 2. Math. Mag. 41, 138-140 (1968)

135, 119-138 (1998)
Plesnik, J.: Critical graphs of given diameter. Acta FR.N Univ. Comen. Math. 30, 71-93 (1975)



82

34.

35

37.
38.

39.

40.

41.

42.

43.

44,

T.W. Haynes

Plesnik, J.: On minimal graphs of diameter 2 with every edge in a 3-cycle. Math. Slovaca 36,
145-149 (1986)

. Sumner, D.P,, Blitch, P.: Domination critical graphs. J. Comb. Theory B 34, 65-76 (1983)
. Sumner, D.P., Wojcicka, E.: Graphs critical with respect to the domination number. In: Haynes,

T.W., et al. (eds.) Domination in Graphs: Advanced Topics, pp. 439—468. Marcel Dekker, Inc,
New York (1998)

Turan, P.: Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok 48, 436-452 (1941)
van der Merwe, L.C.: Total domination edge critical graphs. Ph.D. Dissertation, University of
South Africa (2000)

van der Merwe, L.C., Mynhardt, C.M., Haynes, T.W.: Criticality index of total domination.
Congr. Numer. 131, 67-73 (1998)

van der Merwe, L.C., Mynhardt, C.M., Haynes, T.W.: Total domination edge critical graphs.
Util. Math. 54, 229-240 (1998)

van der Merwe, L.C., Mynhardt, C.M., Haynes, T.W.: 3-domination critical graphs with
arbitrary independent domination numbers. Bull. Inst. Comb. Appl. 27, 85-88 (1999)

van der Merwe, L.C., Mynhardt, C.M., Haynes, T.W.: Total domination edge critical graphs
with maximum diameter. Discuss. Math. Graph Theory 21, 187-205 (2001)

van der Merwe, L.C., Mynhardt, C.M., Haynes, T.W.: Total domination edge critical graphs
with minimum diameter. Ars Comb. 66, 79-96 (2003)

Xu, J.: A proof of a conjecture of Simon and Murty (in Chinese). J. Math. Res. Exp. 4, 85-86
(1984)



Chapter 6
Efficient Local Representations of Graphs

Edward Scheinerman

Abstract Informally, an efficient local representation of a graph G is a scheme
in which we assign short labels (representable by a “small” number of bits, hence
efficient) to G’s vertices so that we can determine if two vertices are adjacent simply
by examining the labels assigned to the pair of vertices (hence local). For some
classes of graphs (such as planar graphs), one can devise local representations, but
for others (such as bipartite graphs), this is not possible.

We present a conjecture due to Muller [22] and to Kannan, Naor, and Rudich
[15] that distinguishes those hereditary classes of graphs (closed under induced
subgraphs) for which an efficient local representation is feasible from those for
which it is not.

Notation All graphs in this chapter are simple: their edges are undirected, and
they have neither loops nor multiple edges. For a graph G = (V, E), the number of
vertices is nearly always denoted by the letter n. The notation v ~ w indicates that
vertices v and w are adjacent, i.e., vw € E. For a positive integer n, we write [n] for
the set {1,2,...,n}. We write 1g n for the base-2 logarithm of n. We also write logn
but that is invariably wrapped in big-oh notation, so the base is irrelevant.

6.1 Seeking an Efficient Data Structure for Graphs

The efficient local representation of graphs problem is due to Muller [22] and to
Kannan, Naor, and Rudich [15].

Here’s the overarching question: How do we efficiently represent a graph in a
computer?

Perhaps the simplest method is via an adjacency matrix; the memory to store
this matrix uses ®(n?) bits, but this may be wasteful if the graph does not have
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too many edges. In the latter case, adjacency lists may be a better option. See, for
example, [8, 12], or [31] for a discussion of data structures one may use to represent
a graph.

If we think of a graph as modeling relations between its vertices, then determin-
ing if two vertices are adjacent “should” only depend on some shared property of
the two nodes under consideration.

To illustrate our thoughts, we begin by discussing interval representations of
graphs.

6.1.1 Interval Representations of Graphs

Let G be a graph. We say that G has an interval representation if we can assign to
each vertex v € V(G) areal interval J, so that for distinct vertices v and w we have

v~ew = J,NJ, #3T.
For example, let G be the path graph with 1 ~ 2 ~ 3 ~ 4. The following assignment
1—[1,3], 2+1[2,5], 3+—1[4,7], and 4 [6,38].

gives an interval representation for G. See [11] and [19]. Interval representations of
graphs are a special case of intersection representations [7, 12, 21, 24, 25].

This representation provides a terrific way to store a graph in a computer. For
each vertex, we only need to hold two numbers: the left and right end points of its
interval. To check if two vertices are adjacent, we just do some quick checks on four
numbers.

How much storage space does such a representation consume? We might be
concerned that we may need a great deal of precision to specify the intervals’ end
points. However, it’s not hard to show that if G has an interval representation, then
we can find a representation in which the end points are distinct values' in [2#].

This implies that for each vertex of the graph, we hold a scant O(logn) bits
of information, and we can test adjacency simply by examining the information
attached to just the two vertices of interest.

Informally, this is what we mean by an efficient local representation of a graph.
To each vertex v we attach a “short” [hence efficient] label £(v), and adjacency

"Here’s why: Closed intervals are compact. Therefore, given a finite collection of intervals, there
is a positive ¢ such that the sizes of the gaps between nonintersecting pairs of these intervals are
all greater than e. This means we can enlarge intervals by moving left end points to the left and
right end points to the right by amounts less than /2 and not create any additional intersections.
In this way, we may modify the representation so that all 2n end points of the intervals are distinct.
To determine if two intervals intersect, one only needs to know the relative order of the four end
points. Therefore, we may reassign the end points to be distinct values in {1, 2, ..., 2n} so long as
we preserve their order.
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between vertices v and w can be tested via a calculation whose inputs are just £(v)
and £(w) [hence local as we do not consider labels on any other vertices nor do we
reference a global data structure such as an adjacency matrix].

Sadly, interval representations are not the ideal we seek because not all graphs
admit such a representation. A moment’s doodling shows that the four cycle Cy4 has
no such representation.

Graphs that have interval representations are called interval graphs, and for that
family, an efficient local representation is available. What about other families of
graphs?

6.1.2 Additional Examples
Trees

Let T be a tree with n vertices. Arbitrarily select a vertex of T to be called the root
and give the edges directions so that on any path to the root, all edges point toward
the root. Thus every vertex (other than the root) has a unique parent.

We now attach labels to the vertices of 7. Each label £(v) is an ordered pair of
integers (a,, b,) drawn from the set [n]. The a-values are assigned arbitrarily; the
only requirement is that they be distinct. The b-labels depend on the direction of the
edge. If the edge from v to w is oriented v — w, then b, = a,,. That is, the second
element of v’s label is the first element of v’s parent. Since the root r does not have
a parent, its label is simply (a,, a,). See Figure 6.1.

We now observe that the vertex labels are 2 1g  bits in length, and testing vertices
for adjacency only requires examining the labels of the two vertices:

v~w < a, = b,ora, = b,. (6.1)

This efficient local representation method easily extends from trees to acyclic
graphs (forests). Indeed, the scheme works for graphs that are not trees. For
example, consider an n-cycle and label its vertices, in order, as follows:

(1,2) 2,3) (3.4) - (m—1,n) (n1).

Test (6.1) applies here as well.

(3.4

4,5) (5,5) (6,5)

(1,2) (2.4

Fig. 6.1 An efficient local representation for a tree. Each label is an ordered pair (a, b). Observe
that the a-values are distinct. The vertex labeled (5, 5) is the root and the b-label of every other
vertex is the a-label of its parent
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Planar Graphs

We can extend this technique to planar graphs. The minimum degree of planar graph
is at most 5. Let G be a planar graph with n vertices and assume that V(G) = [n].
Here is how we label V(G).

Let v be a vertex of minimum degree. The label we assign to v is a tuple of the
form £(v) = (v; vy, v2, U3, V4, V5) Where the v;’s are v’s neighbors (or Os if v has
fewer than 5 neighbors). Now delete v from G and repeat. Since G — v is planar,
we select a vertex, say w, of minimum degree in G — v and assign to it the label
L(w) = (w;wy, wa, w3, wyq, ws) wWhere the w;’s are (up to) five of its neighbors in
G — v. Delete w and continue until the entire graph is consumed. This labeling uses
6 1g n bits per vertex.

Once this labeling is created, we can test the adjacency of any two vertices x and
y just by examining their labels £(x) = (x;xq,...,x5) and £(y) = (¥;¥1,--.,Y5):
we simply check if x = y; or y = x; for some i.

k-Degenerate Graphs

The representation method we presented for planar graphs relies on an idea that we
can generalize. For a positive integer k, a graph G is called k-degenerate it §(H) < k
for all subgraphs H C G. We write Z; for the set of k-degenerate graphs. Note that
trees are 1-degenerate and planar graphs are 5-degenerate.

The labeling method we used for planar graphs readily extends to graphs in Z.
Let G be an n-vertex graph in %. Without loss of generality we assume V(G) = [n].
Choose a minimum degree vertex v of G, and let £(v) = (v; vy, Vs, ..., V) where
the v;s are neighbors of v (or Os if d(v) < k). Delete v from G and repeat. The labels
assigned to vertices use (k 4+ 1) Ign bits, and adjacency testing is the same as for
planar graphs.

Complete Multipartite (Turan) Graphs

It is no surprise that interval graphs have efficient local representations; this is nearly
immediate from their definition. The existence of efficient local representations for
trees and planar graphs are instances of the same idea that shows graphs in Z have
efficient local representations. Here is another example to illustrate the central idea.

Recall that a graph G is a complete multipartite graph if we can partition its
vertex set as V(G) = I; U--- U I; where each I; is an independent set, and for i # j,
every vertex in /; is adjacent to every vertex in ;.

Here’s an efficient local representation. Given the partition of V(G), let £(v) = j
if v € I;. We have v ~ w exactly when £(v) # £(w). Since the number of parts in
the partition of G is at most n, the number of bits used in the labels is bounded by
lgn, and so this is an efficient local representation.
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Circular Arc Graphs

The family of circular arc graphs [32] are a natural extension of interval graphs. In
this case, we assign to each vertex v of a graph G an arc A, of some fixed circle.
Vertices v and w are adjacent exactly when their arcs A, and A,, intersect.

As in the case of interval graphs, there is no loss of generality in assuming that
the 2n end points of the arcs representing G are distinct and therefore may placed
at the corners of a regular 2n-gon. Therefore, the arcs can be described using just
2 1g n bits, and hence we have an efficient local representation.

String Graphs

The family of string graphs [16, 17] generalize the circular arc graphs. In a circular
arc graph, each vertex is represented by a special type of curve: an arc on a fixed
circle. In a string graph, we use arbitrary planar curves. A graph G is a string graph
provided we can assign to each vertex v a curve S, in the plane so that vertices v
and w are adjacent if and only if S, N S,, # &. As shown by Sinden [29], not all
graphs are string graphs.

Clearly a string representation of a graph is local, but is it efficient? Clearly
we cannot represent an arbitrary curve with just a handful of bits. Is there a trick
(such as the one we used for interval and circular arc graphs) that enables us to
bound the number of bits needed for each vertex? We shall see that the answer is no
(Proposition 2.5).

6.2 Efficient Local Representations

6.2.1 Main Definitions

The problem can be described as follows. Let & be a property of graphs. We want to
know if &2-graphs have efficient local representations. This means n-vertex graphs
in & can be labeled with “short” labels—O(logn) bits—and adjacency can be
tested just by comparing the labels on two vertices. The adjacency test is the same
for all graphs with property .

Let’s be more precise. By a graph property we mean an isomorphism-closed set
of graphs: G € Z AH = G = H € . Itis sometimes more comfortable to refer
to a property as a class of graphs.

A graph property & is hereditary if it is closed under taking induced subgraphs;
thatis, Ge Z AH < G— H € & (where H < G denotes that H is an induced
subgraph of G). It is natural in this context to focus on hereditary properties because
if G has an efficient local representation, then G — v does as well.

Local representations are associated with graph classes (and not with individual

graphs).
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Definition 2.1. Let & be a hereditary property of graphs. A local representation
for & is a symmetric function A : Z* x Z* — {0, 1} such that for every graph
G € 2 there is a labeling function £ : V(G) — Z™ such that for distinct vertices
v,wof G, we have v ~ w <= A[l(v),£(w)] = 1.

In other words, A is an adjacency test used by all graphs in &?. Each graph G
in & has its own labeling function £, and adjacency of two distinct vertices can be
tested by applying the test A to the labels assigned to the pair.

[Note that Definition 2.1 requires that the vertex labels be positive integers, but
in the examples in Section 6.1, the labels are tuples of integers. This is a minor
technicality as we could perform kludges such as converting a pair of nonnegative
integers (a, b) into a ternary number by writing @ and b in binary and separating the
values with a 2, like this: (18,11) = 1001021011 yee.]

Definition 2.1 omits any notion of efficiency and, consequently, is not interesting.
Indeed, all hereditary properties have local representations using this definition;
here’s how.

Let G be any graph and assume that V(G) = [n]. We label vertex v by £(v) =
[v; a(v)] where a(v) is an n-tuple of Os and 1s that indicates the neighbors of v. That
is, the jth entry in a(v) is 1 exactly when v ~ j. Stated differently, a(v) is the v
row of G’s adjacency matrix. The test function A applied to labels £(v) = [v; a(v)],
and £(w) = [w; a(w)] simply returns the w" entry in a(v).

In other words, if we allow long labels, the neighborhood of a vertex can be
trivially encoded in the label. We therefore impose a bound on the size of the vertex
labels. We have previously expressed this as a bound on the number of bits that
specify the label as being O(logn). These bits can be merged to form a single
positive integer, and the restriction on the number of bits translates to requiring
labels to lie in a set of the form [1*] where k is a given positive integer.

Definition 2.2. Let &2 be a hereditary property of graphs. An efficient local
representation for &2 is a symmetric function A : Z* x ZT — {0,1} and a
positive integer k such that every graph G € & there is a labeling function
£ : V(G) — [n*] (where n = |V(G)|) such that for distinct vertices v, w of G
wehave v ~w <= A[{(v),L(w)] = 1.

As before, the adjacency test A depends only on the property <. Likewise the
positive integer k is fixed for the class (does not depend on n). That labels take values
in [1¥] is tantamount to saying that the labels are (at most) k Ig n bits in length. It is
in this sense, the representation is (space) efficient.

6.2.2 The Problem

When we failed to restrict the number of bits in the labels, the class of all graphs
% has a local representation. The interesting question is: What happens when we
require efficiency? Is there an efficient local representation for all graphs?
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This would be fantastic, but not surprisingly, the answer is no. To see why, we
use a counting argument. To that end, we recall the definition of the speed of a
hereditary property of graphs [1, 28].

Definition 2.3. Let &2 be a hereditary property of graphs and let n be a positive
integer. Define &?(n) to be the number of graphs in &2 with vertex set [n]. The
function Z(-) is called the speed of the property.

For example, let ¢ denote the class of all graphs. Then ¥ (n) = 26). Or let 2
be the property of having at most one edge. The set of graphs with vertex set [n] that
has at most one edge consists of the edgeless graph K, and (;) graphs with exactly
one edge. Therefore Z(n) = 1 + (;)

To show that not all hereditary properties admit an efficient local representation,
we prove the following.

Proposition 2.4. Let B be the class of bipartite graphs. Then 9 does not admit an
efficient local representation.

Proof. Suppose for contradiction that % admits an efficient local representation
(A, k). Let n be a positive integer.

Every G € % with V(G) = [n] has a labeling function £ : [n] — [#*], and,
necessarily, different graphs have different labeling functions.

The number of functions from [1] to [1nX] is n*" which implies that Z(n) < n*".
However, it is easy to see that #A(n) > 2/4 which exceeds n*" once n is large
enough.

In a similar spirit, we show that the class of string graphs does not admit an
efficient local representation.

Proposition 2.5. Let .7 be the class of string graphs. Then . does not admit an
efficient local representation.

Proof. Recall that a graph G is a split graph [10] provided we can partition V(G) =
K U I where K is a clique and 7 is an independent set. We show that the class of
string graphs contains all split graphs. Since the number of split graphs on vertex
set [n] is at least as large as the number of bipartite graphs on [n], the result follows
exactly as in the proof of Proposition 2.4.

Let G be a split graph with V(G) = K U I. To see that G is a string graph,
assign disjoint curves to the vertices in /. For the vertices in K, we choose curves

that emanate from a common point. If v € K is adjacent to iy, i>, ..., iz € I, then v’s
curve can be chosen to intersect the disjoint curves that represent iy, i, . . . , iy while
avoiding all other /-curves as in Figure 6.2. O

Note that the key fact we used in the proof of Proposition 2.4 is that there are
too many graphs on n vertices. In order for a hereditary property & to admit an
efficient local representation, the speed of &7 must be bounded by a function of the
form n*" for a specific integer k.
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Fig. 6.2 We present a split graph and its string representation. The curves representing the
vertices in the independent set I = {6, 7, 8, 9} are the disjoint vertical line segments. The curves
representing the vertices in the clique K = {1,2, 3,4, 5} must intersect each other and exactly
those curves for vertices in I to which they are adjacent. For example, the curve representing
vertex 1 intersects vertical segments 6, 7, and 9, but not 8

Thus a hereditary property can fail to have an efficient local representation if it
contains too many graphs—it violates the “speed limit” &2(n) < n*" for all fixed
values of k.

What else could go wrong? That’s a great question. Raised by [15] and [22],
this is the question we offer our readers and present as our contribution to this
compendium of favorite conjectures:

Conjecture 2.6 (Muller 1987; Kannan, Naor, Rudich 1992). Ler &2 be a heredi-
tary property of graphs. Then & admits an efficient local representation if and only
if there is an integer k such that 2 (n) < n*".

6.3 Challenging Examples

Conjecture 2.6 holds for a wide swath of hereditary graph properties including some
we have considered (acyclic graphs, planar graphs, interval graphs, circular arc
graphs) and many more we have not (such as permutation graphs [9] and threshold
graphs [20]).

The following examples are—as best we know—possible counterexamples. The
challenge is to find efficient local representations for these classes or show that none
exist. See [2, 6], or [21] to find other hereditary classes as possible challenges.

Line Segment Intersection Graphs

The class of line segment intersection graphs lies between interval and string
graphs. A graph G is a line segment intersection graph if we can assign to each v €
V(G) a planar line segment L, in such a way that v ~ wifandonlyif L, NL,, # @.
Let . denote the class of line segment intersection graphs. See [3, 5, 18, 24].
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Using the techniques described in [26], one can derive an upper bound for .Z(n)
of the form n*, and so—if we believe Conjecture 2.6—this class should admit an
efficient local representation.

Creating a local representation is easy; checking that it is efficient is difficult!
Here’s the representation. If G € .Z, then we know there is an assignment v > L,
mapping vertices to line segments. These line segments can be represented as a
4-tuple of numbers (x,y, z, w) that specify the end points of the segment as (x, y)
and (z, w). It’s easy to check that there is no loss of generality in assuming that these
coordinates are positive rational numbers (because Q? is dense in R?). Therefore the
labeling becomes an 8-tuple of integers. (Furthermore, by clearing denominators,
we may assume all the coordinates are positive integers and a 4-tuple will suffice.)

Checking adjacency (i.e., intersection of the line segments) can be reduced to
evaluating a pair of polynomial functions on the end points (details in [26]).

The only issue that remains is this: How many bits do we need to specify the
end points? Do we need a high level of precision, or can this be accomplished with
O(logn) bits?

Cographs
The class of complement reducible graphs [4], or cographs for short, can be
described recursively as follows:

* K is a cograph.

e If Gis a cograph, so is its complement G.

» If G and H are cographs, then so is their disjoint union. (This is the graph formed
by simply taking copies of G and H on disjoint vertex sets and no additional
edges.)

Let ¥ denote the class of cographs. It is easy to see that ¥ is a hereditary
property. It is well known that cographs are exactly those graphs that do not contain
the path P4 as an induced subgraph.

With a bit of work, an upper bound of the form %'(n) < n*" can be derived. See
sequence A000669 in [30].

Therefore, if Conjecture 2.6 holds, property ¥ admits an efficient local represen-
tation.

Tolerance Graphs

The class of tolerance graphs [13, 14] may be considered as a generalization
of interval graphs. We say that a graph G has a tolerance representation if we can
assign to each vertex v of G a pair (I,, t,) where I, is a closed, real interval and ¢, is
a positive real number so that v ~ w in G if and only if the length of the intersection
I, N1, is at least min{t,, 1,, }. Graphs with such a representation are called folerance
graphs.

An application of the methods in [26] gives a speed bound of the form »n°", and
therefore tolerance graphs satisfy the hypothesis of Conjecture 2.6. Do they satisfy
the conclusion?

3n
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Geometric Graphs

Let (Z°,d) be a metric space. A graph G has a geometric representation in
(Z,d) if there is a mapping f : V(G) — % such that v ~ w if and only if
d[f(v),f(w)] < 1. See [23].

A particularly natural example is 2~ = R? together with the Euclidean metric.
In this case, we can think of such graphs as having an intersection representation by
unit discs.

Still with the Euclidean metric, for 2~ = R, the number of geometric graphs
with vertex set [1] is bounded by an expression of the form 1" and therefore satisfies
the hypothesis of Conjecture 2.6. Do they satisfy the conclusion?

6.4 Variations

There are some natural variations on the core problem to consider.

6.4.1 Computation Concerns

We have focused on space-efficient representations. Each vertex holds a modest
quantity of information. The combined information held by two vertices is sufficient
to determine if they are adjacent. But at what cost? The authors of [15] also require
that the function A(:, -) be efficiently computable—in time polynomial in the size of
the inputs. That is, the number of computational steps to check if v and w are
adjacent in an n vertex graph should be bounded by an expression of the form
(log n)" for some fixed exponent z.

This is a perfectly reasonable requirement but appears to make this difficult
problem only harder. Their conjecture (which we may dub the strong efficient
local representation conjecture) is that hereditary properties that satisfy the speed
limit £2(n) < n*" have an efficient local representation A that is polynomial-time
computable. Clearly the strong version of the conjecture implies the weaker.

6.4.2 Other Label Sizes

Why do we want label sizes with O(log n) bits? This size is natural because already
to name the vertices (e.g., specify vertex names in [n]) requires lg n bits. Thus the
desire that £(v) be represented in O(log n) bits is akin to saying that the labels are
“about the same size” as the vertex names.

If, however, we are willing to modify this requirement, we can generate a host of
additional problems.
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Suppose we permit vertex labels to be larger—say, O(4/n) bits. Then, presum-
ably, such local representations could encompass more hereditary graph properties.
If this is permitted, can we represent all hereditary properties that satisfy the speed
limit £2(n) < n*"? For the case of O(/n) bits, the counting argument shows that
the properties must obey a bound of the form nkVr: if 2 does obey such a bound,
must it admit an O(/n) bits-per-vertex local representation?

On the other hand, we might consider using smaller labels, i.e., with o(log n) bits
per vertex. As an extreme example, suppose & is the property of being a complete
bipartite graph. Then we can label vertices with just a single bit (O for vertices
in one part of the bipartition and 1 for vertices in the other) and use the function
A(x,y) = 1fx # y].

Using the results in [28], we have the following result from [27].

Theorem 4.1. Let & be a hereditary property of graphs and let k be a positive
number with k < é If. for all n sufficiently large, we have 2 (n) < n*", then &
admits a local representation in which the labels have O(1) bits. O

In other words, the “super efficient” [o(log n) bits per vertex] local representation
conjecture is true. Furthermore, if a property has a representation using o(log n) bits
per vertex, then it has a representation using a constant number of bits per vertex.
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Chapter 7
Some of My Favorite Coloring Problems
for Graphs and Digraphs

John Gimbel

Abstract One of the central notions in graph theory is that of a coloring—a partition
of the vertices where each part induces a graph with some given property. The most
studied property is that of inducing an empty graph—a graph without any edges.
Changing the property slightly creates interesting variations. In this paper I will
discuss a few of my favorite coloring problems and variations. This discussion is
not meant to be comprehensive. The field is so massive that attempts to catalog all
important developments were abandoned many years ago. So I will restrict this to
a very small set of problems that reflect my personal interests and perhaps nothing
more.

Mathematics Subject Classification 2010: 05C15

7.1 Introduction

In this paper I will discuss a few of my favorite coloring problems. All graphs will be
simple, that is, without loops, arcs, and parallel edges, but may or may not be finite.
A coloring is simply a partition of the vertex set into parts, each of which induces
a graph having a given property. For example, in the most studied form of coloring,
each part induces an empty graph. I will refer to this as a traditional coloring.
It is often the case that mathematicians are interested in the minimum number of
parts possible in such a partition. In this particular example, the minimum number
is referred to as the chromatic number, denoted by x(G). More generally, we will
refer to the parts in such a partition as color classes and a given partitioning as a
coloring.
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7.2 Coloring the Plane

I am told that I do not need to restrict these remarks to my own problems. So I'll
first mention a problem I heard from Paul Erdos in 1980. The first place it appears
in print is in Martin Gardner’s monthly column in Scientific American in 1960 [26].
(All unreferenced results in this section can be found in [48].) The problem seems
to have been discussed beforehand in private communications between a number
of fine mathematicians. It is often referred to as the problem of Coloring the Plane
and also as the Hadwiger-Nelson Problem. You may also hear it referred to as “the
other four-color problem.” The problem can be simply stated. Let G, be the infinite
graph whose vertices are all points in the Cartesian plane and where two vertices
are adjacent if and only if the distance between them is exactly one unit.

Problem 1 (Coloring the Plane). What is the chromatic number of G, ?

For a lively discussion of the origins of the this problem, see [48]. This problem
was probably first considered in 1950 by the eighteen-year-old Edward Nelson, later
of Princeton University, who showed that four colors are necessary to color this
graph; that is, x(G,) > 4. As far as I know, he never published that result but
communicated it privately.

The bound is not difficult to demonstrate. Start with the three vertices of an
equilateral triangle, where each side has length one. If we color the vertices of this
triangle, then all three colors will appear. Now add to this triangle a vertex that has
one unit distance from two of these three vertices. If we three-color this “diamond,”
then the two, nonadjacent vertices must be given the same color. Now, make two
copies of this diamond and identify a vertex of degree two in each one, making them
a single vertex, but do this in such a way that the distance between the remaining
two vertices of degree two is one unit, and add an edge between them. Clearly, this
graph, known as the Moser Spindle [41], has chromatic number four (cf. Figure 7.1).

In 1950, John Isbell showed that y(G,) < 7. Several elegant demonstrations of
this can be given [33, 50]. To see this, consider tiling the plane with a collection of
hexagons, all of which have a diameter slightly less than one. As demonstrated in
Figure 7.2, it is not too difficult to assign seven colors to these hexagons so that the
distance between hexagons with the same color is greater than one.

A number of eminent mathematicians have offered speculation on this question.
Erdos felt that G, almost surely has chromatic number greater than four. Solid
evidence supports this. For example, nobody has found a collection of points
occupying 25% of the plane, where no distance between any two points in the
collection is one. Alexander Soifer believes [48] that x(G,) is either four or seven,
but conjectures it to be seven.

Further, a remarkable coloring of G, by puzzle expert Edward Pegg, Jr. uses six
colors on the majority of the plane. The remaining seventh color occupies only about
one third of one percent of the plane.
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The Moser Spindle

Fig. 7.1 The moser spindle

Fig. 7.2 A seven coloring of the plane

The problem of Coloring the Plane can be “reduced” to a finite graph in the
following sense. From de Bruijn [13] we know that the chromatic number of the
infinite graph G, is k if an only if G contains a finite subgraph having chromatic
number k. The proof of de Bruijn’s result uses the Axiom of Choice. Hadwiger
[32] showed that if the plane is covered by five, congruent-closed sets, then a pair of
points at distance one can be found in one of the sets. As a graduate student, Kenneth
Falconer showed that if all color classes are required to be Lebesgue measurable,
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then at least five colors are required. If each color class consists of unions of sets,
each bounded by a Jordan curve, then at least six colors are required.

The problem easily extends to higher dimensions. It is known that the graph G,
in 3-space has chromatic number somewhere between six and fifteen [8, 47].

Erdds asked, if we restrict ourselves to subgraphs of G, with high girth, where
the girth of a graph equals the length of a shortest cycle, can we push the chromatic
number down to three? Wormald [54] showed such a girth must be at least six. In
doing so, Wormald proved the existence of a subgraph of G, with 6,448 vertices
and girth five that has chromatic number four. While the existence of this graph is
known, no such explicit construction of this graph has been found.

7.3 Three Coloring Planar Graphs

The next question is also not mine. In fact, it isn’t even a question, but rather a
meta-question. Under what conditions can a planar graph be three-colored? I'll call
this the Three-Color Problem. There are a number of fascinating results about this
problem. Perhaps the most famous is often referred to as Grétzsch’s Theorem, which
states that any planar, triangle-free graph can be three-colored. Several elegant
proofs of this exist including a beautiful proof by Carsten Thomassen [53]. In
addition, Thomassen [51] shows that a toroidal graph (e.g., a graph that embeds on
the torus without the crossing of any edges), without cycles of lengths three or four,
can be three-colored. In [16] Dvorak et al. present a linear-time algorithm which
three colors planar, triangle-free graphs.

Another result in this area is mentioned, almost as an aside, in Heawood’s
disposition of Kempe’s fallacious proof of the Four-Color Theorem [36]. To slightly
reformulate the statement of this result, any planar triangulation can be three-colored
if it has no vertices of odd degree. In Heawood’s terms, “The proof of this is
not difficult, but it appears to shed no light on the main proposition.” And here,
the “main proposition” is a correct proof of the Four-Color Theorem. Despite the
observation of having a simple proof for three-coloring these planar triangulations,
Heawood didn’t offer one. Some discussion as to who first formulated a proof
continues. An interesting description can be found in [49]. Dirac mentioned in an
obituary for Heawood that surely Heawood had the proof but chose not to include
it in any of his published work on the subject. Soifer also believes that Kempe [48]
had a proof but omitted it, since it was not the main concern of his paper.

Allow me to mention a few related theorems that I find interesting. The first of
these appears to be an extension of Heawood’s result and is a special case of a more
general remark discovered by Ore ([46], Chapter 13). Given a plane embedding of
a graph G, where the number edges bounding each face is a multiple of three, then
G is three-colorable if each vertex has even degree. Further, a planar graph is three-
colorable if and only if it is a subgraph of a planar triangulation having no odd
vertices. This result is shown independently in a variety of places, including [40].
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Griinbaum showed [30] that any planar graph with at most three triangles is
three-colorable. He then asked, if all triangles are distanced at least one apart in
a planar graph, can it be three-colored? Ivan Havel [34] disproved this in 1969.
However, Havel wondered if pushing the triangles further apart would guarantee
three-colorability. This inspired an entire mathematical industry of related results
(see [48], Chapter 19). We now know, for example, that there is a very large integer
d such that if G is a planar graph in which any two triangles are at least distance
d apart, then G is three-colorable [15]. It is conjectured by Borodin [5] that the
distance d = 4 is sufficient to guarantee three-colorability. This is referred to as
the “strong version of Havel’s conjecture.” Supporting this conjecture is the fact
that if G is planar with no five-cycles nor any triangles within distance 3, then G is
three-colorable. Since testing a planar graph with maximum degree four for three-
colorability is NP-complete [27], it is probable that the problem of three-coloring
planar graphs will be with us for some time to come.

7.4 Erdos Problems

Perhaps all research mathematicians have a first love. For me, it is cochromatic
numbers. This was the topic of my doctoral dissertation. These numbers were
introduced by Linda Lesniak, my dissertation advisor, along with her friend H.
Joseph Straight. In their seminal paper [39], they generalized the definition of
split graphs. Split graphs were originally defined [24] in a University of Waterloo
technical report, by S. Foldes and P. Hammer in 1976. They later published a paper
[25] with the same title, in the 1977 Proceedings of the Eighth Southeastern Confer-
ence on Combinatorics, Graph Theory, and Computing. In fact, two nonequivalent
definitions are given in these two papers. In both definitions, the vertices of a split
graph can be partitioned into two sets. In the first definition, each set must induce
either an empty subgraph or a complete subgraph. In the second definition, exactly
one set induces an empty graph in the original graph, and the second set induces a
complete graph. Hence, using the first definition, a bipartite graph is a split graph.
However, using the second definition, nontrivial bipartite graphs are not split graphs.
It is this second definition that “stuck,” and now over 300 papers have been written
on this topic. In fact, the notion of a split graph was discussed earlier by Gydrfés
and Lehel [31], but they did not name these graphs, as they were not the central idea
of the paper. A popular characterization of split graphs, sometimes attributed to [24]
in terms of forbidden subgraphs, can be found in [31].

It was Lesniak and Straight [39] who defined the cochromatic number z(G) of a
graph G to be the fewest number of colors needed to color the vertices of G so that
each color class induces either a complete graph or an empty graph. Thus, using
either definition of a split graph, a split graph will have cochromatic number at
most two.

The topic of cochromatic numbers continues to be explored (see [6, 9]). In 1993
Paul Erd6s and I published a paper [19] of unsolved problems in cochromatic theory.
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Many of the problems have since been solved. For example, we asked if a graph has
chromatic number m, what is the largest cochromatic number of all (not necessarily
induced) subgraphs? Using an elegant application of probability, this was given
a best answer up to a constant coefficient by Alon et al. [2]. We asked another
question which remains open and is still one of my favorite problems. It concerns
the random graph R,,, formed by taking n labeled vertices and with probability one
half, adding an edge between each pair of distinct vertices. Relying on sophisticated
results proved by others, it isn’t difficult to show that as n goes to infinity, almost
surely

X(Rn)/2z(Ry) — 1.

So our related question concerns not the quotient but the difference.

Problem 2. Is it true that as n goes to infinity, almost surely
X (Ry) — 2(Ry) — 00?

At a random graph conference in Pozndn, Paul Erdos offered $100 if the answer
was yes and $1000 if the answer was no. He later told me he thought the $1000
prize was too high.

When I was young, Erdos visited Western Michigan University, where I was
a student. He encouraged me to study dichromatic numbers and told me they
were related to cocolorings. Initially, the connection wasn’t clear, but it came into
focus over time. Given D, a digraph without cycles of lengths one nor two, let
the dichromatic number of D, denoted d(D), be the smallest order of a coloring
of the vertices of D, for which there are no monochromatic cycles. This notion
was introduced [43] by the late, eminent Mexican mathematician, Professor Victor
Neumann-Lara in 1982. Unfortunately, the term is used elsewhere in graph theory
with another meaning. Independently, the dichromatic number was also developed
by Meyniel [37], who referred to these as a quasicolorings.

Given an oriented graph D of order n, label the vertices with the integers 1
through n. Then, construct a graph G(D) on the same vertex set and let vertices
i and j be adjacent in G(D) if i < j and i is oriented toward j in D. Note that
d(D) < z(G(D)). With this observation, along with a probabilistic argument, I was
able to show in joint work with Erdos and Dieter Kratsch [20] that if d(D) = m,
then D has at least c;mlog(m) vertices and at least c,m2log2(m) edges, for some
positive constants ¢; and ¢, and this result is best possible, except for a changes in
the constants. This answered an earlier question of Erdos [18].

Erdos also asked [18] for a fixed m, if D is an oriented graph of smallest
order with dichromatic number m, must D be a tournament? Clearly, if G is an
undirected graph of smallest order with a fixed chromatic number, then it must be a
clique. Erdos also asked if A is the maximum degree of the underlying graph of D,
must d(D) be o(A)? He speculated that for some constant ¢, it might be less than
cA /log(A). Erdos also asked [18], if a graph G has large chromatic number, can we
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put an orientation on it with large dichromatic number? This interesting question
remains unsolved.

Professors Neumann-Lara and Urrutia showed that if D is planar, then d(D) < 3
[45] but could not show that this bound is sharp. In fact, Neumann-Lara conjectured
[44] the following.

Conjecture 3 (Neumann-Lara). If D is a planar digraph then d(D) < 2.

This question has been pondered by Ararat Harutyunyan, who tells me he
believes it is more difficult than the Four-Color Problem. I’ve spent a bit of time with
this seemingly simple question and cannot answer it. It seems to be very slippery.

7.5 Danish Problems

I have had several opportunities to work in Copenhagen with Carsten Thomassen,
the eminent Danish graph theorist. We developed several coloring results. For
example, we were able to find the largest chromatic number of a triangle-free graph
with fixed size, asymptotically speaking. We were also able to show that if G is a
graph embedded on the projective plane, such that all contractible cycles have length
at least four, then G is three-colorable if and only if G doesn’t contain a non-bipartite
quadrangulation. We also showed that, for k at least four, there are only a finite
number of k-critical graphs with girth at least six that embed on a given surface. In
a similar vein, for k at least five, there are only a finite number of k-critical, triangle-
free graphs that embed on a given surface. These last two results were independently
discovered by my good friends Bojan Mohar and the late Steve Fisk [23].

These ideas seem to have generated a number of other results. Several open
problems rose from our work. For instance, for each surface S, we can compute
in polynomial time the chromatic number of any graph embedded on S that has
girth six or greater. And for triangle-free graphs G on this surface, we can decide in
polynomial time if the chromatic number of G is at most four. But we do not know
the following.

Problem 4. Does there exist a polynomial time algorithm that decides if a triangle-
free graph embedded on a fixed surface is three-colorable?

Problem 5. Does there exist a surface S and an infinite number of four-critical
graphs of girth five that embed on S?

Thomassen subsequently showed that there are no such graphs on the torus
nor on the projective plane [51]. Recent interesting results along these lines were
announced [16] by Zdenék Dvotak and Bernard Lidicky.

My favorite open problem following from the work with Thomassen is the
following. An S,-polytope is an orientable surface of genus g made by gluing convex
polygons together so that adjacent faces are not coplanar. The chromatic number of
such a surface is the fewest number of colors needed to color the regions so that
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adjacent regions are given different colors. Another way to think of this is to color
the dual of this surface. Thus, a vertex is placed in each region, and vertices are
adjacent if their corresponding regions are adjacent. For a fixed g, let us refer to the
largest chromatic number needed to color an S,-polytope as the chromatic number
of S, and denote it y(S,).

We were able to show that y(S;) = o(g*”), answering a question of Croft
et al. [10]. Perhaps the fraction 3/7 can be lowered. But we are unable to say if

Problem 6. Is x(S,) = O(1)?

Some days I think that the answer to this question is yes, while on other days I am
certain it isn’t. David Barnett [4] showed that y(S;) < 6. And Thomassen replaced
this six with five [52]. This leads me to ask:

Problem 7. Is y(S;) < 4?

In any case, I have yet to see an S,-polytope that needs five colors. If you know
of one, please let me know.

7.6 Turkish Problems

I have never been to Turkey but hope to visit there someday. I understand it
is a beautiful place, and the mixture of many interesting cultures is well worth
experiencing. On several occasions I've had the opportunity to meet Tinaz Ekim of
Bogazici University. Together, we are interested in extending the ideas in defective
coloring and combining them with the notion of cocoloring. Recall that a defective
coloring is one where each color class has a bound on the maximum degree of
the induced subgraph. To formalize slightly, let us say a collection of vertices is k
dependent if it induces a subgraph with maximum degree at most k. This notion
was originally formulated in [22]. A partition of the vertex set is k defective if each
part is k dependent and the k-defective chromatic number of G, denoted y;(G),
is the minimum order of all k-defective colorings. A k-defective cocoloring of
G is a partition of V(G) where each part induces a k-dependent graph in G or in
the complement of G. The minimum order of all k-defective cocolorings is the
k-defective cochromatic number and is denoted z;(G). It is not hard to show that if
G has seven or fewer vertices, then z1(G) is at most two. Professor Ekim discovered
the graph shown in Figure 7.3.

Here is a graph with one-defective cocoloring number three. We were also able
to show [17] that if G has order 11, then z;(G) < 3, but we do not know if this is
best possible.

Problem 8. Does there exist an integer n > 11 such that for all graphs of order at
mostn, 71 (G) < 3?



7 Some of My Favorite Coloring Problems for Graphs and Digraphs 103

Fig. 7.3 A graph with a one-defective cocoloring number of three

A similar problem exists for z;.
Problem 9. Is it true that if G has order at most 10 then z,(G) < 27

Given R, as defined in the previous section, we raise the following question,
similar to Problem 2.

Problem 10. Is it true that as n increases, almost surely
21(Ry) — 22(R,) — o0?

And one can easily generalize this question. Professor Ekim and I were able
to show the existence of a positive constant ¢ with the property that for any
natural numbers j and k, there exists a triangle-free graph G with j = y4(G), and
[ck/log(k)]j = x(G) [17]. With the possible change of the value of ¢, this is best
possible. We do not have a similar result for graphs of larger girth, but certainly a
similar result is true.

7.7 Alaska Problems

I would now like to comment on some results that came up in discussions with
my esteemed colleagues here in Fairbanks, Alaska. These all involve tweaking the
classical notion of color that is found above. In doing so, we stick to the basic
underlying notion that in a coloring, the vertices are divided up in some way so that
the induced subgraphs of each color class are simple, uncomplicated, and in some
way or another orderly. This applies to the types of colorings already discussed. In
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cocolorings the color classes are uniform in the sense that they are either empty or
complete graphs. In defective colorings, they are simple in the sense that the induced
subgraphs do not have any vertices of large degree.

A subcoloring of G is a coloring of the vertices of G where each color class
induces a disjoint union of cliques. (Disjoint unions of cliques are sometimes
called “equivalence graphs.”) We’ll let y,(G) denote the minimum order of all
subcolorings of G, and refer to it as the subchromatic number of G. This notion
was introduced by Albertson et al. [1] in 1989, as was an edge coloring counterpart
by Domke [14]. In a traditional coloring each color class consists of the union of a
group of complete graphs of order one. Hence, the subchromatic number is always
bounded above by the chromatic number. By similar reasoning, the subchromatic
number is bounded above by the cochromatic number, the one-defective chromatic
number, and the chromatic number of the complement.

The subchromatic number of a planar graph is at most four and, as a corollary
to a result of [11], this can be proved without resorting to the Four-Color Theorem.
From Grotzsch’s Theorem [29] we know that the subchromatic number of any planar
triangle-free graph is at most three. Professor Chris Hartman and I showed that the
question, Is y,(G) < 2?is NP-complete, even when restricted to planar, triangle-
free graphs with a maximum degree of four. (And here “four” cannot be replaced
by “three.”) Since the subchromatic number of a triangle-free graph equals the one-
defective chromatic number, we note that the question “Is y;(G) < 277 is also
NP-complete, even when restricted to planar, triangle-free graphs with a maximum
degree of four, answering a question of [12].

So what happens if we push the girth of such graphs even higher? If a planar
graph has girth 11 then by a result of NeSetfil, et al. [42], it must contain an
isolated vertex, a pendant vertex, or two adjacent vertices of degree exactly two.
By induction, such graphs have one-defective chromatic number and subchromatic
number at most two. So, for what maximum g can we say that if G is planar and
has girth g, do the questions “Is x,(G) < 2?” and “Is y;(G) < 27?” remain NP-
complete?

The complete four-partite graph K| , 3 4 clearly has a subchromatic number equal
to four. Professor Hartman and I showed that any graph with fewer vertices has a
subchromatic number of at most three [28]. This makes me wonder, how many
vertices are needed in a graph with subchromatic number five?

A related parameter involves k-divided colorings. For a fixed number , a graph is
k-divided if each component has order at most k. A k-divided coloring is a partition
of the vertex set where each part is k-divided. The k-divided chromatic number,
¢x(G) of G, is the minimum order of all k-divided colorings of G. In a traditional
coloring, each color class is 1-divided. Thus, y(G) = ¢;(G) and similarly y;(G) =
¢2(G) for all graphs.

Some interesting results exist for this parameter. For example, Alon et al. [3]
showed that if G has a maximum degree of four, then ¢57(G) < 2. This was later
improved by Haxell et al. [35] to six-divided colorings. It is known that for every
surface S and integer A, there is a k such that if G has maximum degree at most
A and embeds on S, then ¢;(G) < 3 [21]. On the other hand, Professor Chappell
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and I showed that for any fixed k, the decision problem “Is ¢, (G) < 27" is NP-
complete, even for planar graphs. Also, for k > 2 the problem “Is ¢x(G) < 3?77
is NP-complete, even for planar, triangle-free graphs with maximum degree four.
And in general, for fixed k and m, the problem “Is y;(G) < m?” is NP-complete.
So what sorts of other properties can be placed on graphs to turn these last three
problems from NP- complete to P?

Glenn Chappell and I were also able to show [7] that for every fixed surface S,
there is a k so that if G embeds on S, then ¢;(G) < 6. We believe that six can be
reduced, but have been unable to show this. We would like to know what is the
largest girth of a planar graph G with 3 = ¢,(G).

7.8 A Prague Problem

Let me close by mentioning a parameter developed with my close friend, Professor
Jaroslav Nesetfil, the long-serving lion of Czech combinatorics, who has spent
much of his distinguished career at Charles University. Suppose we are given an
unbounded number of isolated vertices to begin with. With these, we allow two
operations. We can take the disjoint union of graphs as well as the complement.
Through multiple applications of these two operations, we can build a family of
graphs known as cographs. There is a vast and significant body of literature on
these graphs. Professor Nesetfil and I studied colorings of graphs where each color
class induces a cograph. We call the minimum number of colors needed for such a
coloring the c-chromatic number of G, and denote it ¢(G). We were able to show
that the problem “Is ¢(G) < 3?7” is NP-complete for planar graphs. We would be
interested in answers to the following two problems.

Problem 11. Does there exist a planar, triangle-free graph G with ¢(G) = 3?

Problem 12. Is the decision problem, Is ¢(G) = 2?, NP-complete for planar,
triangle-free graphs?

7.9 Conclusion

As mentioned at the start, this paper is not meant to be comprehensive. And if you
read it completely you almost surely said, “Why didn’t he include one or two of
my favorite problems???” To you, dear reader, I offer my apologies and yet offer
my profuse thanks for your attention. A number of years ago, Professors Jensen and
Toft produced a marvelous book [38] on graph colorings, and by most accounts,
it was complete. It certainly cataloged all my favorite variations on the notion of
coloring. For a number of years, they maintained a website, where we were able to
add additional material on the topic including solutions to open problems listed in
their book. But the subject became too broad even for those specialists, and the web
project was eventually jettisoned. How can I be expected to cover the entire topic?
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Allow me one last observation. I list a large number of papers in the following
bibliography. Some of these I am referencing from other papers. I have looked at
some of them, but not all. I offer this as a simple caution. In gathering this material
together, I was often surprised by how many references I checked that proved to be
erroneous. Indeed, it seems that many of us are quoting from papers that quote from
others that quote from others, and a variety of errors in referencing get introduced in
this form of academic gossip. I don’t mean to suggest that this is unique to coloring
theory, nor more broadly to graph theory. So let me ask your forgiveness in advance
for errors in location and attribution. This is especially true if I failed to offer you
proper credit for some superb result you are very proud of and for which you richly
deserve praise.
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Chapter 8
My Top 10 Graph Theory Conjectures
and Open Problems

Stephen T. Hedetniemi

Abstract This paper presents brief discussions of ten of my favorite, well-known,
and not so well-known conjectures and open problems in graph theory, including
(1) the 1963 Vizing’s Conjecture about the domination number of the Cartesian
product of two graphs [47], (2) the 1966 Hedetniemi Conjecture about the chromatic
number of the categorical product of two graphs [28], (3) the 1976 Tree Packing
Conjecture of Gyarfds and Lehel [23], (4) the 1981 Path Partition Conjecture of
Lovasz and Mihok [8], (5) the 1991 Inverse Domination Conjecture of Kulli and
Sigarkanti [34], (6) the 1995 Queens Domination Conjecture [15], (7) the 1995
Nearly Perfect Bipartition Problem [9], (8) the 1998 Achromatic-Pseudoachromatic
Tree Conjecture [10], (9) the 2004 Iterated Coloring Problems and the Four-Color
Theorem [30], and (10) the 2011 y-graph Sequence Problem [16].

Mathematics Subject Classification 2010: 05C05,05C07,05C10,05C12,05C15,
05C38, 05C69, 05C78

Introduction

In the spring semester of 1961 at the University of Michigan, Prof. Frank Harary
taught his first course in graph theory. I was fortunate enough to be one of about
18 graduate students taking this course. Before every class, Frank would appoint
one of the students as the official notetaker. You were to write up your notes on
the material that he presented in that class, take them to Frank sometime before the
next class, have him read them over and make corrections if necessary, type them
up on mimeograph paper, run off copies, and distribute them at the time of the next
class. When the course was finished, we all had (and I still have) a complete set of
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notes for the course. It was this set of notes, and the notes produced from the second
course that Frank taught in the fall of 1964, that became the basis of his book, Graph
Theory [25].

An amusing note about this first course was that on page 1 of the first set of
notes, Frank provided this joke: “Now that the University of Michigan Mathematics
Department has a complete curriculum. ..” Even though graph theory, as a field of
study, was in its infancy back in 1961, it didn’t take Frank long to start presenting to
us interesting conjectures and open problems. In his very first lecture, he presented
to us the problem of deciding if two graphs are isomorphic and extending this
to the unsolved problem of finding a complete set of invariants for graphs. Three
lectures later he presented the problem of deciding if a partition of an even positive
integer is graphical, that is, if such a partition is the degree sequence of some graph,
and if it is graphical, to determine the number of non-isomorphic graphs having
this degree sequence. He also stated as an unsolved problem that of deciding if a
graphical degree sequence belongs to only one graph. He later stated as an unsolved
problem that of determining which permutation groups are the automorphism
groups of some graph, saying that this was known only for trees. Subsequently,
Frank presented the famous Kelly-Ulam Graph Reconstruction Conjecture and the
problem of characterizing Hamiltonian digraphs.

Thus, our introduction to the field of graph theory was generously sprinkled with
many fascinating conjectures and open problems. In the pages that follow, I will
present a collection of some of my favorite graph theory conjectures, using the idea
of just-in-time definitions, rather than giving here, in this introduction, all of the
definitions that will be needed later. I will present these conjectures in chronological
order of their first appearance in the literature.

8.1 Vizing’s Conjecture - 1963

Having spent most of my last 40 years researching the many aspects of the concept
of domination in graphs, it is only natural that I at least mention this well-known
conjecture, even though I haven’t done any research on it myself. Since it is arguably
the most famous conjecture in domination theory, about which more than 50 papers
have been written, I feel obligated to at least present it. But in order to do so, we
will need some definitions, not only for this conjecture but for those to follow.

Let us first assume that all graphs are connected. The open neighborhood of a
vertex v € V is the set N(v) = {u|uv € V} of vertices adjacent to v. Each vertex
u in N(v) is called a neighbor of v. The degree of a vertex v is deg(v) = [N(v)|.
The minimum and maximum degrees of a vertex in a graph G are denoted §(G)
and A(G), respectively. A vertex v € V is called an isolated vertex if it has no
neighbors, that is, deg(v) = 0. The closed neighborhood of a vertex v € V is the
set N[v] = N(v) U {v}.

The open neighborhood of a set S < V of vertices is N(S) = |J,es N(v), while
the closed neighborhood of a set S is the set N[S] = |, <5 N[v].
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A set S is a dominating set of a graph G if N[S] = V, that is, every vertex v € V is
either in § or is adjacent to a vertex in S. The minimum cardinality of a dominating
set in a graph G is called the domination number and is denoted y(G). A dominating
set of minimum cardinality is called a y-set.

A set S is independent if no two vertices in S are adjacent. The independent
domination number i(G) equals the minimum cardinality of a set that is both
independent and dominating.

The Cartesian product GLH of two graphs G and H is the graph GOH having as
vertex set the Cartesian product V(G) x V(H), where two vertices (u, v) and (¢, v')
in V(GOH) are adjacent in GOH if and only if either (i) u = ' and vv’ € E(H) or
(ii) uu’ € E(G) and v = v'.

Vizing’s Conjecture, 1963. For any two graphs G and H, y (GOH) > y(G)y(H).

Stated in words, Vizing’s Conjecture asserts that the domination number of the
Cartesian product of any two graphs G and H is greater than or equal to the product
of the domination number of G and the domination number of H.

It is easy to construct examples where y(GOH) > y(G)y(H), for example,
y(K3OP) = 2 > y(K3)y(P;) = 1 x 1 = 1, where K3 denotes a triangle, and
P; denotes a path of length one.

It is equally easy to construct examples where y(GOH) = y(G)y(H), for
example, the 4 x 4 graph, y(P4sOP4) = 4 = y(P4) xy(P4) = 2x2 = 4. If you have
never seen how to dominate the 4-by-4 grid graph, P,[1P4, with only four vertices,
you might try this on a sheet of paper. The solution is unique, up to isomorphism,
and is quite nice!

Vizing’s Conjecture has been extensively studied by many people, and there is
little that I can add to their combined efforts. For the interested reader, I recommend
two excellent and comprehensive survey papers, one by Hartnell and Rall in 1998
[27] and the other by Bresar, Dorbec, Goddard, Hartnell, Henning, KlavZar, and
Rall in 2012 [2]. I asked Prof. Rall if he could suggest some interesting problems
related to Vizing’s Conjecture for this section. He was kind enough to provide the
following, which we present with his permission:

Steve, there are a number of interesting questions that are either directly related
to trying to prove Vizing’s conjecture or that arose in a natural way while we worked
on the conjecture. The following list is certainly not complete, but I have tried to
include those that I find the most interesting or that will have a direct impact on
what is known about the conjecture.

We say that a graph G satisfies Vizing’s Conjecture provided y(GOH) >

y(G)y(H) for every graph H.

1. There is an interesting graphical invariant in our survey that has not, so far
as I know, received very much attention. For a given independent set I in a
graph G consider all the subsets D € V(G) such that I  N[D), that is, D
dominates 1. Obviously I is such a set D [since a set always dominates itself],
but if some pairs of vertices in I are distance two apart, then we could choose
a set of cardinality smaller than |I| that would dominate 1. On the other hand,
if I is actually a 2-packing [a set of vertices no two of which are distance-two
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apart], then no subset of smaller cardinality than |I| will dominate I. Here is the
invariant. We define y'(G) to be the maximum, over all independent sets I in G,
of the smallest cardinality of a set D such that I € N[D].

Since any dominating set of G also dominates any independent set in G, it
follows immediately that y'(G) < y(G). Aharoni, Berger, and Ziv showed that
for any chordal graph G, y'(G) = y(G), and Aharoni and Szabd proved that for
any pair of graphs G and H,

y(GOH) = y'(G)y(H).

Together these prove that any chordal graph satisfies Vizing’s Conjecture.
Here are several interesting problems in their own right. The first also has a
direct application to the conjecture and is given as Question 4.8 in [2].

Problem 1. Find other interesting classes of graphs such that y' and y assume
the same value for every graph in the class. Note that this will be true for all
graphs for which the 2-packing and domination numbers are equal.

Problem 2. Are there classes of graphs where y' can be computed efficiently?

2. This question arose in attempts to find a counterexample to the conjecture.
In Section 8.6 we made a list of a number of properties that any minimal
counterexample to the conjecture must hold. By minimal counterexample we
mean a graph G of smallest order such that for some graph H, y(GOH) <
y(G)y(H).

One of these properties is what Burton and Sumner call totally dot-critical.
A graph G is totally dot-critical if for every pair of vertices u and v in G,
Y(Gw) < V(G), where G, is the graph obtained from G by identifying u and
v and then removing any parallel edges. A graph G is domination edge-critical
if (G + xy) < y(G) whenever x and y are nonadjacent vertices in G. It turns
out that any minimal counterexample to Vizing’s conjecture is totally dot-critical,
and you can assume it is domination edge-critical.

Problem 3. Give a structural characterization of graphs that are both domina-
tion edge-critical and totally dot-critical. It would be interesting just to know
the structure of graphs having domination number 4 that are both domination
edge-critical and totally dot-critical.

3. Here is an interesting question that is probably easier to settle than Vizing’s
conjecture. Of course, its answer is “yes” if Vizing’s conjecture is true, but one
might be able to prove it without first proving Vizing’s conjecture.

Question. Is it the case that for every pair of graphs G and H, i(GOH) >
v(G)y(H)?
4. In 2000 Clark and Suen proved that for every pair of graphs G and H,

1
y(GOH) > ZV(G)V(H)-
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This was later slightly improved by Suen and Tarr to

1 1
y(GOH) = y(G)y(H) + , min{y(G). y(H)}

but no one has been able to prove a similar inequality to the one of Clark and
Suen with é replaced with a larger constant. To that end here is a problem that,
in my opinion, would be real progress toward settling Vizing’s conjecture.

Problem 4. Find a constant ¢ > é such that for every pair of graphs G and H,
y(GOH) = cy(G)y(H).

Let me thank Doug for taking the time to give us these related problems and add
just a few thoughts of my own. It is interesting to compare Vizing’s Conjecture
with a somewhat similar problem that remained unsolved for many years: what
is the domination number of the Cartesian product of two paths, that is, can the
value of y(P,,[0P,) be determined? These are commonly called grid graphs. 1 once
had a conversation with David Johnson about this problem, several years after
he and Michael Garey had published their seminal NP-completeness book [18].
I figured that he knew as much about the complexity of combinatorial problems
as anyone, but at that time it was not known if the grid domination problem was
NP-complete. He told me that surely this problem must be polynomially solvable,
indeed there must be a formula for this number, since we know everything there is
to know about these graphs. Years later he was essentially proven correct, when in
2011, Goncalves, Pinlou, Rao, and Thomasse published such a formula [20]. One
can’t help but wonder what, if anything, this says about the complexity of Vizing’s
Conjecture. On the other hand, you might say that grid graphs are just about the
simplest of all possible Cartesian products.

8.2 The Hedetniemi Conjecture - 1966

I started my PhD studies in the newly established Communication Sciences graduate
program at the University of Michigan, in the fall of 1961; this was a forerunner
of today’s PhD programs in Computer Science and Computer Engineering. At
that time I studied a decomposition theory for finite-state machines, developed by
two young researchers named Kenneth Krohn and John Rhodes (see, e.g., [33]).
In their decomposition theory, they showed that a finite-state machine could be
decomposed into a series connection of two smaller machines, if one could define a
homomorphism on the given machine. Since a finite-state machine can be viewed as
a finite-directed graph, my advisor at the time, Prof. John Holland (who pioneered
the study of genetic algorithms), recommended that I go see Prof. Frank Harary
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and ask him what was known about homomorphisms of graphs. Since I had taken
Harary’s first graph theory course, I knew him and he knew me. When I asked Prof.
Harary what was known about homomorphisms of graphs, he told me that precisely
one theorem was known, and it was by one of his former PhD students, named Geert
Prins (who was at that time a professor of mathematics at Wayne State University).
This theorem was later called the Homomorphism Interpolation Theorem, and it
later appeared in a paper by Harary, Hedetniemi, and Prins [26]. At that time Harary
gave me a copy of a typed letter he had recently received from Prins, detailing a
several page proof of this result. It was difficult for me to read and understand.

While sitting in the back row of a class in coding theory, being taught by the
well-known Prof. W. W. Peterson, a much simpler proof of this theorem dawned on
me. After class I went back to Harary’s office and showed him what was essentially
a three-line proof of this simple, but interesting, result. Harary was so pleased to see
this proof, that, on the spot, he invited me to do a PhD thesis with him on this subject.
This was my first theorem! Subsequently I went back to my advisor, Prof. Holland,
who encouraged me to pursue this line of research with Prof. Harary. When I finally
defended my dissertation, both Holland and Harary were listed as my co-advisors.

I soon discovered that virtually nothing was known about homomorphisms of
graphs, even though essentially homomorphisms were nothing other than colorings
of graphs, about which a fair amount was known, most especially colorings of planar
graphs and the famous Four-Color Conjecture. It was not long thereafter that I was
led to consider homomorphisms of various products of graphs and in particular the
categorical product of graphs.

The categorical product G x H of two graphs G and H is the graph with vertices
V(G)xV(H) and edges (1, v)(u',v') € E(GxH) if and only if uv’ € E(G) and vv’ €
E(H); this is also called the direct product and the tensor product. A homomorphism
from a graph G onto a graph H is a function ¢ : V(G) — V(H) having the property
that uv € E(G) implies ¢ (u)¢p(v) € E(H). Given a homomorphism ¢ : G — H,
we define the homomorphic image of G to be the graph Gp = (V¢, E¢), where
Ve ={¢(v).v € V(G)} and Ep = {¢p(u)¢(v),uv € E(G);}.

A proper coloring of a graph G is a vertex partition V = {V}, V,, ..., Vi}, into
independent sets. The chromatic number y(G) of a graph G equals the smallest
order of a proper coloring of G.

Given these definitions it is easy to see that if ¢ : G — H is a homomorphism,
then y(G) < x(G¢); this inequality was perhaps first observed by Ringel in
1959 [41] and later by Hajés in 1961 [24]. One can also observe that the natural
projection of the vertices of a categorical product G x H onto either their first
or second components defines natural homomorphisms ¢; : G x H — G and
¢» : GxH — H. Thus it follows that for any two graphs G and H, y(GxH) < x(G)
and x(G x H) < x(H). This observation is what led me, without thinking much
about it, to make the following conjecture [28]:

Hedetniemi Conjecture, 1966. For any graphs G and H, y(G x H) =

min{x(G). x(H)}.
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It is easy to see that this conjecture is true if the smaller chromatic number of G
and H is either 1, 2, or 3. Almost 20 years later, and with some significant effort,
El-Zahar and Sauer [11] were able to prove the following result:

Theorem 1. The chromatic number of the categorical product of two 4-chromatic
graphs in 4.

To this date, this theorem remains as perhaps the best result on this conjecture.
Little did I realize at the time just how difficult this conjecture would prove to be. It
is amusing to note that at the following website, this conjecture is not recommended
as suitable for undergraduates!

http://www.openproblemgarden.org/?g=op/hedetniemis
conjecture

Forty-nine years after this conjecture first appeared, much research has been
done on the deep and rich subject of colorings of products of graphs. The interested
reader is referred to three comprehensive surveys that have been published on this
conjecture, by Zhu in 1998 [49], Sauer in 2001 [43], and Tardif in 2008 [46]; the
surveys by Zhu and by Tardif are freely available on the web (just do a Google
search on “Hedetniemi conjecture’).

8.3 Tree Packing Conjecture (TPC) - 1976

A sequence of graphs Gy, G, ..., Gy can be packed into a graph H if H contains

a sequence Hi, H», ..., Hy of pairwise, edge-disjoint subgraphs such that for all i,
1 <i <k, G; ~ H;, that is, G; is isomorphic to H;.
Suppose you are given a collection of n — 1 trees, 1>, T3, ..., T,, where tree T;

has order i. Such a collection of n — 1 trees has > ;_,(i — 1) = n(n — 1)/2 edges.
Similarly, the complete graph K, also has n(n — 1)/2 edges. Thus, in theory, such a
collection of trees could pack perfectly into K,, without any overlapping edges. This
leads to the following conjecture, due to Gyarfds and Lehel [23]:

Tree Packing Conjecture, 1976. Any collection of n — 1 trees, 1, T3, ..., Ty,
where tree T; has order i, can be packed into K,,.

Although it appears unlikely that this nearly 40-year-old conjecture will be
solved any time soon, it does seem likely that a number of partial results can
be obtained concerning the packing of various kinds and numbers of trees into
complete graphs. For example, it should be easy to see that if all of the trees are
stars (trees of the form K] ,,), or if all of the trees are paths, then such a set of trees
can be packed into K,. There are several other results of this type.

Theorem 2 (Gyarfas and Lehel [23]). The TPC holds with the assumption that
each tree is either a path or a star.

Theorem 3 (Roditty [42]). The TPC holds with the assumption that all but three
of the trees are stars.
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Theorem 4 (Hedetniemi, Hedetniemi, Slater [29]). Any two trees of order n,
neither of which is a star, can be packed into K,,.

Theorem 5 (Slater, Teo, Yap [45]). If G| is a tree of order n and G, is any graph
of order n and size at most n — 1, where neither G| nor G, is a star and n > 5, then
G and G, can be packed into K.

Theorem 6 (Hobbs, Bourgeois, Kasiraj [31]). Any three trees T,,T,—1,Ty—>,
where tree T; has order i, can be packed into K.

Theorem 7 (Hobbs, Bourgeois, Kasiraj [31]). Anysetofn—1treesT,,T5,...,T,,
where tree T; has order i can be packed into K, if at most one of the trees T; has
diameter more than three.

It seems that one should be able to generate several more results along these
lines.

8.4 Path Partition Conjecture (PPC) - 1981

A longest path in a graph G = (V,E) is called a defour. The number of vertices
in a detour is the detour number of G and is denoted by t(G). If S C V, then the
subgraph induced by S is the graph G[S] = (S, E N (S x S)).

A vertex bipartition V = {V, V,} is called an (a, b)-partition of G if T(G[V;]) <
a and t(G[V;]) < b. A graph G is said to be t-partitionable if for every pair of
positive integers a, b such that a + b = 7(G), G has an (a, b)-partition.

Path Partition Conjecture, 1981. Every graph is t-partitionable.

An equivalent statement of this conjecture is given by Frick in [14]:

If G = (V,E) is any graph and (tj, 72) is any pair of positive integers, such
that G has no path with more than 7; 4 1, vertices, then there exists a bipartition
V = {V), Va} of the vertex set of G such that G[V;] has no path with more than t;
vertices, fori = 1, 2.

This conjecture was first mentioned by Lovasz and Mihdk in 1981 and appeared
in a paper by Laborde, Payan, and Xuong in 1983 [35]. In [9], Dunbar and Frick
present 14 cases in which the PPC is true, and in [14] Frick presents several more
cases in which the PPC is true. We present just a few of these here.

The Path Partition Conjecture is true when:

* Every cyclic block of G is Hamiltonian; obviously, this includes all Hamiltonian
graphs.

* G = G| + G, is the join of two graphs G, and G».

e G is 2-degenerate, i.e., every induced subgraph of G has a vertex of degree at
most 2.

* 7(G) < 13.

« A(G) <3.

* AG) = [V(G)] -8



8 My Top 10 Graph Theory Conjectures and Open Problems 117

* G is weakly pancyclic, i.e., G contains a cycle of every length between the girth
g(G) and the circumference c(G) of G, where the girth g(G) equals the minimum
length of a cycle in G, and the circumference c(G) equals the maximum length
of acyclein G.

e G is claw-free, that is, G contains no induced subgraph isomorphic to the
graph K 3.

e G is planar and has girth 5, 8 9, or 16.

Dunbar and Frick [9] also prove that if the PPC is true for all 2-connected graphs,
then it is true for all graphs. They suggest as an interesting problem that of deciding
if the PPC is true for all planar graphs.

The reader is also referred to a recent survey of the PPC by Frick [14], in which
a related, but weaker, conjecture is given, one in which Gary Chartrand, Dennis
Geller, and I had a role in creating. In 1968, we published a paper [4] in which we
introduced the idea of partitioning the vertices of a graph V = {V;, V,, ..., V;} into
a minimum number of subsets such that no induced subgraph G[V;] contains a path
of length greater than n, for some nonnegative integer n < |V(G)|. We denoted this
minimum number y,(G). In [9] this is reworded as follows: an n-detour coloring
of a graph G is a coloring of the vertices V(G) such that no path in G of length
greater than n is monocolored. The nth detour chromatic number y,(G) equals the
minimum number of colors that can be used to produce an n-detour coloring of G.
In [9], the authors state that “Our initial interest in the PPC was based on the fact
that, if the PPC is true, then the following conjecture is also true.”

Conjecture. For every graph G and every positive integer n < |V(G)|, x,(G) <
[t(G)/n].

In [14] Frick gives some interesting evidence that the PPC might be true. Let
7 denote the class of all finite, simple graphs. A property P of graphs is called
hereditary if whenever a graph G has property P, so does every subgraph of G. For
example, if a graph G is planar, so is every subgraph of G.

A property P is called additive if whenever two graphs G and H have property P,
so does the disjoint union G U H. For example, if graphs G and H are both acyclic,
then the disjoint union G U H is also acyclic.

Frick presents the following examples of additive, hereditary families of graphs
(we take the liberty of changing the notation slightly here):

O ={GeTI:EG) =0}

Cr = {G € I : for every connected component C of G, |V(C)| < k + 1}.

Ay ={G eI:A(G) <k}

D = {G € T : G is k-degenerate, every subgraph G' C G has §(G’) < k}.

Pr ={G €Z:1(G) <k+ 1, every path in G has order at most k + 1}.

Notice that the following families of graphs are equal:

O=Cy=Ag=Dy="P.
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In the following let P o Q denote the family of graphs G whose vertices can be
partitioned into two sets V. = {Vj, V,} such that the induced subgraph G[V;] has
property P and the induced subgraph G[V,] has property Q. Given this, the PPC
can be formulated as follows:

Path Partition Conjecture, 1981. For all integers p and g, Py44+1 € Py 0 Q.

It is interesting that several theorems of this form have been proved, also for
additive, hereditary properties.

Theorem 8 (Lovasz [37], 1966). For all positive integers p and q, Apyrq+1 € A,
oA,

Theorem 9 (Borodin [1], 1976). For all integers p and g, Dpyq+1 € D, 0 D,
Theorem 10 (Jensen-Toft [32], 1995). For all integers p and q, Cpig+1 S Cp 0 Cy.

8.5 Inverse Domination Conjecture - 1991

The minimum cardinality of a maximal independent set is called the independent
domination number and is denoted i(G), while the maximum cardinality of an
independent set is called the vertex independence number and is denoted By(G).
Independent sets of cardinality i(G) and B¢(G) are called i-sets and By-sets,
respectively. The maximum cardinality of a minimal dominating set is called the
upper domination number and is denoted I' (G).

In 1962 Ore [39] proved the following theorem, from which a number of
corollaries can be derived.

Theorem 11 (Ore). In any graph G = (V,E) having no isolated vertices, the
complement V — D of any minimal dominating set D is a dominating set.

Corollary 1. In any graph G = (V, E) having no isolated vertices, the vertices V
can be partitioned V. = {D, V — D} into two sets, each of which is a dominating set;
furthermore, the first set D can be chosen to be a minimal dominating set, a y-set, a
I"-set, a maximal independent set, an i-set, or a Bo-set, as desired.

Thus, in particular, in any graph G = (V,E) without isolated vertices, the
complement V—D of every y-set D is a dominating set, and therefore, V—D contains
a minimal dominating set. In 1991, Kulli and Sigarkanti [34] defined the inverse
domination number y~'(G) to equal the minimum cardinality of a dominating set
in the complement V — D of a y-set D; such a dominating set is called an inverse
dominating set of G.

In this paper they state the following as a theorem and give the following “proof.”

Theorem 12. For any graph G having no isolated vertices, y ' (G) < Bo(G).

Proof. Let D C V be a y-set of G, and let S C V — D be a maximal independent
set in the subgraph G[V — D] induced by the complement V — D of D. Consider the
following two cases:
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Casel. S =V —-D,thatis, V—-D —S = @. In this case S is an independent
dominating set of G, since every vertex in D must have at least one neighbor in
V — D, because, by assumption, G has no isolated vertices. Thus, S is an inverse
dominating set and being independent y ' (G) < |S| < Bo(G), as required.

Case 2. (V—D)—S # @.In this case, since S is a maximal independent set in the
induced subgraph G[V — D], then every vertex in (V — D) — S must be adjacent to
at least one vertex in S. Consider therefore how many vertices in D are dominated
by vertices in S.

Case 2.a. D C N(S), that is, every vertex in D is dominated by a vertex in S.
In this case S is an independent dominating set in G and, therefore, an inverse
dominating set in G. Thus, y '(G) < |S| < Bo(G), as required.

Case 2.b. S does not dominate every vertex in D. Let D' = D—(N(S)ND) # @
be the set of vertices in D not dominated by S. Since D is a minimum
dominating set in a graph having no isolated vertices, every vertex in D must
have a neighbor in V — D, and in particular every vertex in D’ must have a
neighbor in (V — D) — §, since no vertex in D’ is adjacent to any vertex in S.
Let S’ C (V — D) — S be a minimum cardinality set of vertices in (V — D) —§
that dominates every vertex in D'.

It follows that S U S is an inverse dominating set of G, that is, a dominating set
in the complement V — D of a y-set D of G.

At this point, all that remains is to show that |[S U S’| < Bo(G). But here is where
the proof by Kulli and Sigarkanti seems to have a problem. The authors correctly
state that [SU S’| < |SUD/|.

The authors then state that |S U D’| < B¢(G), but provide no reason why this is
true. Indeed, if S U D’ is an independent set, then this inequality is true. But there
is no guarantee that § U D’ is an independent set, since the set D' might not be
independent. Furthermore, there is no reason we can see why this inequality should
be true.

Thus, the Kulli-Sigarkanti “proof™ is not a proof, and we are left with the
following conjecture:

Inverse Domination Conjecture, 1991. For any graph G having no isolated
vertices, y " (G) < Bo(G).

As of this writing, we know of no proof that y~!(G) < Bo(G), and we are not
aware that any counterexample has been constructed. But there is a fair amount of
evidence that suggests that this conjecture might be true.

1. One can easily show that whenever y(G) = i(G), then y~1(G) < Bo(G). In this
case, the set S U D’ can always be made to be an independent set, by choosing
the y-set D to be an independent dominating set. It has been shown that if G is a
claw-free graph, i.e., K 3-free, then y(G) = i(G). Thus, the Inverse Domination
Conjecture holds for claw-free graphs; this has also been shown by Frendrup
etal. [13].

2. One can easily show that whenever Bo(G) = I'(G), then y1(G) < Bo(G). In this
case, any minimal dominating set, say S, in the complement V — D of a y-set D
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satisfies |S| < I'(G) = Bo(G). Thus, any such set S is an inverse dominating set
of cardinality at most Bo(G). It has been shown that quite a few classes of graphs
satisfy Bo(G) = I'(G) and therefore satisfy the Inverse Domination Conjecture.
These include the following classes (not defined here):

(1) Trees,
(i) Bipartite graphs, including all grid graphs,
(iii) Chordal graphs,
(iv) Circular arc graphs,
(v) Cy-free graphs,
(vi) Net-free graphs,
(vii) Upper bound graphs,
(viii) Trestled graphs,
(ix) Strongly perfect graphs,
(x) Cographs,
(xi) Permutation graphs,
(xii) Comparability graphs,
(xiii) Co-chordal graphs,
(xiv) Peripheral graphs,
(xv) Parity graphs,
(xvi) Gallai graphs,
(xvii) Perfectly orderable graphs,
(xviii) Middle graphs.

In [13], Frendrup, Henning, Randerath, and Vestergaard show that the Inverse
Domination Conjecture holds, not only for bipartite graphs, chordal graphs, and
claw-free graphs but also for the following classes of graphs:

(xix) Split graphs,
(xx) Very well-covered graphs,
(xxi) Cactus graphs.

3. Itis trivial to show that any graph having two disjoint y-sets satisfies the Inverse
Domination Conjecture; in this case y ' (G) = y(G) < i(G) < Bo(G). If a graph
does not have two disjoint y-sets, but does have a disjoint y-set and i-set, or a
disjoint y-set and By-set, then the Inverse Domination Conjecture is also true.

4. From the attempted proof of this conjecture by Kulli-Sigarkanti above, any graph
having an independent set S which is maximal independent in the complement
G[V — D] of a y-set D, that dominates every vertex in D except those in D', and
D’ is an independent set,which satisfies the Inverse Domination Conjecture.

5. A vertex cover is a set S of vertices having the property that for every edge
uv € E, either u € S or v € S. The vertex covering number ay(G) equals
the minimum cardinality of a vertex cover in G. It is well known that for any
graph G, the complement V — S of a vertex cover S is an independent set, and
conversely, the complement of any independent set is a vertex cover. It follows,
therefore, that for any graph G of order n, o(G) + Bo(G) = n; this is a well-
known theorem of Gallai [17]. It is also easy to see that for any graph G without
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isolated vertices, y(G) < «o(G). From this it follows that if a graph G has an
ap-set S that contains as a subset a y-set §* C §, then the Inverse Domination
Conjecture holds, since the complement V — S of S is a Bo-set, and therefore the
complement of " contains a Bo-set; thus, y ' (G) < Bo(G). Because of this, it
also follows that if y(G) = ao(G), then y~'(G) < Bo(G), and the conjecture is
true.

8.6 Queens Domination Conjecture - 1994

The Queen’s graph Q, is the graph obtained from an n-by-n chessboard from the
moves of a queen, namely, the vertices of Q, correspond one to one with the n?
squares of the n-by-n chessboard, and two vertices are adjacent in O, if and only
if the corresponding squares lie on a common row, column, or diagonal. Thus, the
vertices in any row, column, or diagonal form a clique (or complete subgraph) of Q,.
The Queens domination number y(Q,) equals the domination number of the graph
Q.. Equivalently, it equals the minimum number of queens necessary to cover, or
dominate, all squares of the chessboard not containing a queen.

The problem of determining the Queens domination number seems to be
extremely difficult, as exact values of y(Q,) have been determined for relatively few
values of n. An excellent discussion of the computational complexity of computing
the values of y(Q,) is given by Fernau in [12].

A closely related parameter is the independent Queens domination number i(Q,),
in which you seek a minimum number of queens on an n-by-n board that dominate
all squares, but no two of these queens can appear in the same row, column, or
diagonal, i.e., they cannot attack each other.

Figures 8.1 and 8.2 show solutions forn = 8 and n = 11. In fact, it is known that
y(Qs) = Y(Q9) = y(Q10) = y(Q11) = 5. I have always thought it is remarkable
that five Queens suffice to dominate the 11-by-11 chessboard. It is known that six
Queens are needed to dominate the 12-by-12 board, by the way.

Fig. 8.1 8 x 8 Queens domination
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Fig. 8.2 11 x 11 Queens domination

There is an interesting story to tell about the particular solution shown above
in Figure 8.1 that y(Qg) = 5. Since the 1850s many people have studied what is
generally known as “The Eight Queens Problem” (or in general, the "N Queens
Problem), in which one is asked to place eight queens on the 8-by-8 chessboard in
such a way that no queen can attack another queen. By contrast, in the “The Five
Queens Problem,” one is asked to place only five queens on the chessboard in such a
way that all unoccupied squares can be attacked by at least one queen, but it doesn’t
matter if two of the five queens can attack each other.

In January of 1977 I became Professor and Head of the Department of Computer
and Information Science at the University of Oregon. About a year later I was invited
to give a colloquium in the University of Oregon’s Department of Mathematics.
At that time I was working on a variety of domination problems, and this was
the topic of the colloquium talk that I gave. Unknown to me at the time, sitting
somewhere in the audience was a Professor Robin Dawes, who was in University of
Oregon’s Department of Psychology. In the colloquium talk, I happened to discuss
the application of domination in graphs to chessboards, and I mentioned the Queens
domination problem and showed several solutions for boards of different sizes.

A day later, I received through campus mail a short note from Professor Dawes, in
which he stated that he enjoyed the talk I had given and then showed me the solution
you see above in Figure 8.1, in which all five queens lie on the main diagonal. I had
never seen this solution before. Prof. Dawes simply asked, “Is this interesting?”

It was indeed quite interesting, for it took me only a few seconds to realize that
this solution had the property that not only were all unoccupied squares dominated
by these five queens but that all five queens were themselves dominated by another
queen! I could see that this was a type of domination that had not been studied
before.
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The domination number y(G) of a graph G = (V,E) can be defined as the
minimum cardinality of a set S € V such that N[S] = V, where this equality involves
the closed neighborhood N[S] of set S. In this definition there is no requirement that
every vertex v € S be dominated by, or adjacent to, another vertex in S. But Prof.
Dawes’ solution, in Figure 8.1, suggested to me the following definition and name:
the total domination number y,(G) of a graph G equals the minimum cardinality of a
set S € V such that N(S) = V, where this equality involves the open neighborhood
N(S) of set S.

At that time I had been doing a lot of research with Prof. E. J. Cockayne at the
University of Victoria, and so I mailed Ernie a letter (we did not have email in those
days!) telling him about this new definition and suggesting that we might work up a
paper introducing the idea of “total domination.” He quickly agreed to do this, and
we knew that we simply had to ask Prof. Dawes to be a co-author on this paper, to
which he kindly agreed. This paper [6] was the first to introduce the concept of total
domination, a concept on which more than 400 papers have now been published.

Over the next dozen years or so, I continued to explore various graph theory
parameters for graphs defined by the movements of various chess pieces, for
example, the bishops graph, the rooks graph, and the knights graph. At the 1994
Western Michigan University Graph Theory Conference, I gave a talk [15] in which
I made the following “obvious” conjecture:

Queens Domination Conjecture, 1994. For any n > 1, y(Q,) < Y(Qu+1).

Surely this must be true! How hard can it be to prove this? I have always felt that
some simple proof of this must exist. Yet, surprisingly, no such proof has appeared.
Why is this?

One possible answer is that a queen placed in the (n + 1)* row or column of an
(n + 1)-by-(n + 1) Queens graph attacks, or dominates, a set of squares within the
n-by-n Queens graph that cannot be attacked by any one queen inside the n-by-n
Queens graph. Thus, it is theoretically possible that fewer queens might be needed
to dominate Q,+; than are required to cover Q,. So far, no counterexample to this
simple conjecture has been found.

Without a doubt, the definitive paper on Queens domination is the 2001 paper by
Ostergard and Weakley [40]. I need not repeat here all of the many results in this
comprehensive paper, but perhaps a summary of known results would be helpful to
the reader. Can you see any pattern(s) in the following numbers?

(i) For all n < 120, the value of y(Q,) is either known or known to be one of two
consecutive values.

(ii) Forall n, y(Q,) < 69n/133 + O(1).

(i) Forall n, (n—1)/2 < y(Q,) < i(Qy).

@iv) y(Qn) = (n—1)/2,forn = 3,11.

) y(Qn) = [n/2],forn=1,2,4—7,9,10,12,13,17—19,21,23,25,27,29—
31,33,37,39,41,45,49,53,57,61,65,69,71,73,117, 121,125,129 — 131.

(vi) y(Qn) = [n/2]+ 1, forn = 8, 14,15, 16.
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(vii) ¥(Q,) € {[n/2],[n/2] + 1} for n = 20,22,24 — 26,28, 32, 34,35, 36, 38,
40,42, 43,44, 46,47,48,50, 51,52, 54,55,56,58,59, 60, 62, 63, 64, 66, 67,
68.70,72,74,75,76,78.,79,80, 82, 83, 84, 86, 87, 88,90, 92, 94 — 96,98 —
100, 102 — 104,106 — 108, 110 — 112, 114, 116, 118 — 120, 122, 126, 132.

Thus, the smallest value of n for which the value y(Q,,) is not known is n = 20;
either y(Q20) = 10 or y(Qy) = 11.

This brings to mind the following story. Back around 1985, Prof. Alice McRae,
now at Appalachian State University, was a PhD student of mine. She had been
taking a graduate course in which they were learning about genetic algorithms.
In my office one day, I asked her if she could write a genetic algorithm for
approximating the value of y(Q;s). At that time it was known that y(Q;s) was
either 9 or 10. So off she went. A day later she returned to my office and said
that y(Q1s) = 9! She had written her genetic algorithm and executed it for n = 18,
and within just a few seconds, her program had found a placement of nine queens
that dominated the 18-by-18 chessboard. Needless to say I was quite pleased and
surprised to hear this from Alice. Over the next weekend I continued to think about
this result. Early the next week when I saw Alice again, I said, “Alice, could you
run that program again, for n = 187 I couldn’t believe that her program found an
exact solution that fast. The next day, Alice came back into my office and told me
that her program once again found the same placement of nine queens, but it took
her program several hours of machine time to find it!

In their paper [40], Ostergard and Weakley make the following conjecture:

Conjecture (Ostergard and Weakley). For any n > 1, i(Q,) < [n/2] + 1.

They also wonder if there is any value of n, other than 3 and 11, for which
Y(@n) = (n—1)/2.

Here is one more thought about the Queens Domination Conjecture. In 2008,
Sinko and Slater [44] introduced the concept of Queens domination using only bor-
der squares bor(Q,). Surprisingly, they showed that bor(Q13) = 9 < bor(Qy2) =
10, and thus this type of Queens domination is not monotone!

8.7 Nearly Perfect Bipartition Problem - 1995

In 1969, R. L. Graham [21] defined a cutset of edges to be simple if no two edges
in the cutset have a vertex in common, that is, the set of edges in the cutset is a
disconnecting matching. Graham defined a graph to be primitive if G has no simple
cutset, but every proper subgraph of G has a simple cutset. He then asked: what are
the primitive graphs? The problem in this section is inspired by this question.

Aset S C V of vertices in a graph G = (V, E) is nearly perfect if every vertex in
V — S is adjacent to at most one vertex in S. Nearly perfect sets in graphs were first
defined and studied by Dunbar et al. in 1995 [9]. At that time S. T. Hedetniemi and
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McRae spent a fair amount of time considering, unsuccessfully, the complexity of
the following decision problem:

NEARLY PERFECT BIPARTITION

INSTANCE: Connected graph G = (V, E).

QUESTION: Can the vertices of G be partitioned into two sets V = {S,V — S} such
that both S and V — § are nearly perfect sets?

For the next 20 years, we knew of no progress that had been made on settling the
complexity of this problem.

Let us assume that the graph G in question is connected. If it is not connected,
then such a bipartition trivially exists in which there are no edges between V| and
V», as long as either V; or V; is a disjoint component of G.

If such a bipartition exists, then consider all edges between V| and V,. This
collection of edges must define a matching whose removal disconnects G. Thus, we
seek a disconnecting matching, that is, a matching M, the removal of the edges in
which it disconnects G. This in turn gives rise to the following, equivalent, decision
problem:

DISCONNECTING MATCHING
INSTANCE: Connected graph G = (V,E)
QUESTION: Does G contain a disconnecting matching?

It is immediately obvious that every edge in a tree forms a disconnecting
matching. Any graph with a leaf has a single edge, disconnecting matching. All grid
graphs have many disconnecting matchings. The well-known Petersen graph has a
disconnecting matching. On the other hand, no complete graph of order 3 or more
has a disconnecting matching.

Nearly Perfect Bipartition Problem, 1995. What is the complexity of Nearly
Perfect Bipartition or Disconnecting Matching?

I decided to include this problem in my top 10 largely because of Alice McRae.
In her 1988 PhD thesis [38], Alice had more than 80 original NP-completeness
theorems! Early in her graduate studies, she showed a knack for developing creative
solutions to all sorts of NP-completeness questions. In the many years since then,
whenever we are confronted with an NP-completeness question, we “Just ask
Alice.” Usually within 24 hours, and often overnight, Alice will send back an
NP-completeness proof! If Alice has trouble showing that some problem is NP-
complete, then it is probably a tough problem. Alice tried very hard to settle Nearly
Perfect Bipartition, but its complexity eluded us.

Addendum: After this paper had been completed, I heard from Alice that one of
her undergraduate students at Appalachian State University, named Neil Butcher,
had just solved this 20-year-old problem! Neil uses a transformation from the well-
known 1-in-3 SAT problem to show that Nearly Perfect Bipartition is NP-complete.
I have seen his proof and it is pretty impressive. So congratulations to Neil!
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8.8 Achromatic-Pseudoachromatic Tree Conjecture - 2004

As defined in Section 8.2, a proper k-coloring of a graph G = (V, E) is a partition
V = {V}, V,,..., Vi} such that each set V; is an independent set. A proper k-coloring
is called a complete coloring if for all i,j, 1 <i < j < k, there is at least one vertex
in V; that is adjacent to a vertex in V;.

The achromatic number of a graph G, denoted ¥ (G), equals the maximum order
k of a complete proper coloring of G. The achromatic number was first identified
and studied as a parameter by Harary et al. in 1967 [26] and named and further
studied by Harary and Hedetniemi in 1970 [25].

The pseudoachromatic number of a graph G, denoted ¥,(G), equals the maxi-
mum order k of a complete coloring of G. The only difference between ¥ (G) and
¥,(G) is that in a pseudoachromatic partition of order k = ¥,(G), the coloring need
not be proper, that is, the sets V; need not be independent sets. The pseudoachromatic
number was first studied by Gupta in 1968 [22].

Around 1998 I attempted to determine the difference between (7)) and ¥ (T)
for trees T and could not find a tree for which these values were different. Thus, on
my web pages, I conjectured that these two parameters were equal for trees. Seeing
this conjecture, Edwards [10] then published a paper in which he constructed a tree
T of order n = 408, for which ¥,(T) — ¥(T) = 1. In personal correspondence,
I then asked Edwards if he could construct a tree for which this difference was
greater than 1, but Edwards said that he could not. This then leads to the following
revised conjecture:

Achromatic-Pseudoachromatic Tree Conjecture, 2004. For any tree 7,
(1) < Ys(T) < y(T) + 1.

In [10], Edwards notes that for almost all trees, ¥ (T) = v,(T), and says that
Cairns [3] calculated the values of ¥ (T') and v,(T) for all trees of order n < 15 and
showed that for all of these trees, ¥ (T) = ¥,(T).

At the end of Edwards’ paper he says: “We have no doubt that smaller examples
could be found with sufficient effort.” Subsequently, my wife Sandee Hedetniemi,
our son Jason Hedetniemi, and I constructed the tree of order n = 23 in Figure 8.3,
for which ¥,(T) = ¥ (T) + 1. Notice that this tree has m = 22 edges, while the
complete graph of order 7, K7, has 21 edges. The coloring of the vertices of this tree
shows that ¥,(T) = 7; clearly there cannot be a pseudoachromatic 8-coloring of
this tree, since this would require at least 28 edges. Notice that except for the 1 — 1
edge between vertices x and y, this is a proper coloring.

It only remains to show that ¥ (7)) = 6 < 7. Consider the three vertices labeled
X,y,z in the middle of the tree. In any proper, complete coloring of T with seven
colors, 21 of the 22 edges must have the 21 required distinct color pairs. Thus, only
one edge can have a pair of colors assigned to it that is also assigned to one other
edge; call this the duplicate edge.

Notice that the two vertices marked x and z cannot receive the same color,
else there will be 12 edges having a common color. Assume, without loss of
generality, that x is colored 1 and z is colored 2. Since this must be a proper coloring,
it follows that vertex y cannot be colored either 1 or 2. Suppose, without loss of
generality, that vertex y is colored 3.
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Fig. 8.4 No achromatic 7-coloring

There must be an edge whose two vertices are colored 1 and 2.

Case 1. A vertex in column B is colored 2. In this case there will be eight edges,
one of whose vertices is colored 2; this will result in at least two duplicate edges.
See Figure 8.4.

Case 2. A vertex in column C is colored 1. In this case there will be eight edges,
one of whose vertices is colored 1; this will result in at least two duplicate edges.

We now know that a smallest tree for which ¥(T) = ¥(T) + 1 has order n,
where 16 < n < 23. The smallest order of a tree for which ¥(T) = ¥(T) + 1
remains unknown.
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8.9 Iterated Coloring Problems and the Four-Color
Theorem - 2004

In [30] Hedetniemi et al. defined and studied iterated colorings of graphs. These
colorings, or vertex partitions, are based on the following greedy algorithm, which
repeatedly removes from a graph G sets of vertices having some specified property
P, until no vertices are left.

Iterated Coloring Algorithm (ICA)
Input: graph G = (V, E), property P
Output: P-coloring V = {V|, V,,..., Vi)
i=0:
while (V is not empty) {

find an arbitrary P-set S in G[V];

i++;
Vi=S§;
V=V-5;
}

k=1

It can be seen that if P is the property of being a maximal independent set,
then the partition V. = {V}, V,, ..., Vi} produced by Algorithm ICA is a proper
coloring. Define i*(G) and B to equal the minimum and maximum orders of a
vertex partition produced by executing Algorithm ICA on a graph G. The following
is easy to see, where I'r(G), the Grundy number of G, equals the maximum order
of a partition V = {V1, V5, ..., Vi}, such that for every 1 < i < j < k, every vertex
in V; is adjacent to at least one vertex in V;. The Grundy number was first defined
and studied by Christen and Selkow in 1982 [5].

Proposition 1. For any graph G, i*(G) = x(G) < B;(G) = I'r(G).

Similarly, define y*(G) and T'*(G), the iterated domination numbers, to equal
the minimum and maximum orders of a partition produced by Algorithm ICA for
the property P of being a minimal dominating set. Thus, the following inequality
chain exists, since every maximal independent set is a minimal dominating set.

Proposition 2. For any graph G, y*(G) < i*(G) = x(G) < Tr(G) < T*(G).

Thus, the iterated domination number is a lower bound for the chromatic number,
and the upper iterated domination number is an upper bound for the Grundy number.
These two iterated numbers y*(G) and I'*(G) have not been studied very much.

We can augment this inequality chain once more, as follows: A set S € V is
called irredundant if for every vertex u € S, N[u] — N[S — {u}] # 0, that is, the
closed neighborhood Nu] of u contains a vertex that is not contained in the closed
neighborhood N[S — {u}] of the set S minus the vertex u. Define ir* (G), the iterated
irredundance number, to equal the minimum order of the vertex partition produced
by Algorithm ICA for the P property of being a maximal irredundant set.
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Proposition 3. For any graph G, ir*(G) < y*(G) < i*(G) = x(G).

The famous Four-Color Theorem asserts that for any planar graph G, y(G) < 4.
Thus, y*(G) < x(G) < 4. The problem is this: can you prove that for any planar
graph G, y*(G) < 4, without appealing to the Four-Color Theorem?

Similarly, since ir*(G) < y*(G) < y(G), it should be even easier to prove that
for any planar graph G, ir*(G) < 4, without appealing to the Four-Color Theorem.

We can take this progression from y(G) to y*(G) to ir*(G) one more step.
Define the irratic number irr(G) to equal the minimum order of a vertex partition
V. = {Vi,V,,...,Vi} produced by Algorithm ICA for the property of being
an irredundant set (but not necessarily a maximal irredundant set). It follows by
definition that

irr(G) < ir"(G) = y*(G) = x(G).

Iterated Coloring Problems. Can you prove that for any planar graph G,
y*(G) < 4, ir*(G) < 4, or irr(G) < 4, without appealing to the Four-Color
Theorem?

8.10 y-graph Sequence Problem - 2011

As introduced by Fricke et al. in [16], the y-graph of a graph G = (V, E) is the graph
G(y) = (V(y),E(y)), whose vertices correspond one to one with the y-sets of
G, and two y-sets, say S;, S, € V, form an edge in E(y) if there exists a vertex v; €
S) and a vertex v, € S5 such that (i) v is adjacent to vy, and (ii) S| = S, —{v,}U{v;}
and S, = §1 — {v;} U {v,}. Stated in other words, imagine placing a token on each
of the vertices in a y-set S;. If you can move the token on a vertex v; € S; along an
edge to an adjacent vertex v, and the resulting set S, = S| — {v;} U {v,} is another
y-set, then there is an edge between S; and S, in the y-graph G(y).

Figures 8.5 and 8.6 provide illustrations of the y-graph of the path Py and the
y-graph of the cycle Cjyp. We assume that the vertices of the path P, are labeled
inorder 1,2,3,...,10. Each of the 13 y-sets of Py is indicated in brackets beside
each vertex.

In [7], Connelly, Hutson, and Hedetniemi proved that for every graph H, there is
a graph G such that G(y) >~ H, that is, every graph H is the y-graph of some graph
G and, in fact, is the y-graph of a graph G having at most five more vertices than H.

Consider the process of repeatedly applying the y-graph construction starting

from a given graph G, that is, G AN G(y) AN G(y)(y), etc. We do not know much
about the nature of these sequences, but we have noticed that often the sequence
ends with K;. The following examples of this process are given in [16]:

1. K1, — K.

2. Cy -5 Ky -5 K.
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K, -5 K,

. Capygr RN Csit 2.

Ps -5 Cy =~ P,OP 5 Koy — K15 — K.
. P,0OP; - Ky S K.

. P30OP; L Gy U 2K, -5 Cs - G

. P,0Pyt - Ky -5 K.

. P,OPs -1 4P U 5K, -5 K.

10. Pyyr —> Py - K.

Although all of the y-graph sequences we have seen, so far, have terminated after
a small number of steps, for some graphs this sequence does not terminate. Here is
an example given in [16]:

C;0P, - C0C; - GOC0C; - ...

This leads us to ask the following question:

y-graph Sequence Problem. Does there exist a graph G whose y-graph
sequence is a cycle of length greater than one?

Here is a simpler version of this problem.

y-graph cycle of length two. Do there exist two distinct graphs G and H such
that the y-graph of G is H, i.e., G(y) ~ H, and the y-graph of H is G, i.e.,
H(y) ~ G?

8.11 Why Can’t We Solve Problems Like These?

Conjectures and problems like those above, and indeed the hundreds more in this
volume, lead us to wonder why so many of them survive our attempts to settle them,
some for more than 50 years. Having been involved in research for more than 50
years permits me to offer some thoughts:

1. The inherent difficulty of combinatorial or discrete mathematics. In 1956 the
famous mathematician John von Neumann published an article entitled The
General and Logical Theory of Automata [48]. In discussing “The Limitation
Which Is Due to the Lack of a Logical Theory of Automata, he said: “We are
very far from possessing a theory of automata which deserves that name, that
is, a properly mathematical-logical theory. There exists today a very elaborate
system of formal logic, and, specifically, of logic as applied to mathematics. This
is a discipline with many good sides, but also with certain serious weaknesses.
This is not the occasion to enlarge upon the good sides, which I have certainly
no intention to belittle. About the inadequacies, however, this may be said:
Everybody who has worked in formal logic will confirm that it is one of the
technically most refractory parts of mathematics. The reason for this is that it
deals with rigid, all-or-none concepts, and has very little contact with the con-



132 S.T. Hedetniemi

tinuous concept of the real or of the complex number, that is, with mathematical
analysis. Yet analysis is the technically most successful and best-elaborated part
of mathematics. Thus formal logic is, by the nature of its approach, cut off from
the best cultivated portions of mathematics, and forced onto the most difficult
part of the mathematical terrain, into combinatorics.”

2. Important connections to other branches of knowledge have not been made that
would greatly assist in developing some proofs. It has been widely recognized
that researchers come to the field of graph theory from many different branches
of mathematics, engineering, and science. Each of them sees problems in graph
theory from different problem modeling and problem-solving perspectives. Such
collaborations should be encouraged if we are to solve more of graph theory’s
conjectures and open problems.

3. Godel’s famous incompleteness theorem suggests that certain theorems exist that
cannot be proved. Perhaps, therefore, we will have to accept the fact that some
of these conjectures and open problems cannot be solved.

4. Many conjectures are of the form that some condition holds for all values of n
greater than or equal to some starting value. But what if counterexamples exist
for some very large values of n? How do we find these counterexamples? In
one case that I recall, a conjecture was made that for all graphs, one graph
parameter was always less than or equal to a second parameter. Several years
later, a researcher found a counterexample consisting of a graph having some
2,500,000 vertices! But one of the referees of this paper took a look at this
construction and was able to reduce the size of a counterexample to around
1,800,000 vertices! But smallest counterexamples this large pale in comparison
to other examples of large, smallest counterexamples; just do a Google search on
“Large counterexamples.”

5. Graph theorists almost always construct relatively short proofs. However, some
results can only be obtained by long proofs, say 100 pages long or longer. Very,
very few mathematicians are able to construct such proofs. Ron Graham once
told me that he had in his desk four theorems, each of which required more than
100 pages for him to prove.

6. As a general rule, mathematicians and their collaborators lack the available time,
the necessary persistence, the extended concentration, and the maintained focus
necessary to solve truly difficult problems.

7. It seems to require world-class expertise in order to solve some of the most
difficult problems. Not that many mathematicians who attempt to solve these
problems have achieved this level of expertise. In the recent book entitled
Outliers, The Story of Success, the author, Malcolm Gladwell [19], discusses
Chapter 2, The 10,000 Hour Rule. By this he meant the amount of time it takes to
practice, in order to become world class in a given profession. Gladwell presents
the following quote from an article by neurologist Daniel Levitin, “the emerging
picture from such studies is that ten thousand hours of practice is required to
achieve the level of mastery associated with being a world-class expert - in
anything. ... no one has yet found a case in which true world-class expertise was
accomplished in less time. It seems that it takes the brain this long to assimilate
all that it needs to know to achieve true mastery” [36].
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Given this, consider the case of a young PhD student in mathematics who
becomes an assistant professor. If such a person spends 10 hours every week of
the year for about 20 years dutifully practicing mathematics, they will finally
have met the 10,000-hour rule. In my experience, relatively few mathematicians
reach this 10,000-hour plateau.
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Chapter 9
Chvatal’s ty-Tough Conjecture

Linda Lesniak

Abstract In 1973, Chvital introduced the concept of “tough graphs” and
conjectured that graphs with sufficiently high toughness are hamiltonian. Here
we look at some personal perspectives of this conjecture, both those of Chvétal and
the author. Furthermore, we present the history of the conjecture and its current
status.

9.1 Reminiscences by Vasek Chvatal (October 26, 2014)

The reader who is unfamiliar with the concept of toughness or Chvital’s toughness
conjectures is encouraged to read Section 9.2 first.
Chvétal’s reminiscences (V. Chvétal, 2014, private communication):

It was a lucky combination of events during my post doctoral year that lead me to the
conjecture.

In the fall of 1970, I defended my doctoral thesis. My advisor Crispin Nash-Williams had
been interested in hamiltonian graphs among other things; in particular, he coined the term
‘forcibly hamiltonian’ to mean a sequence such that a graph with this degree sequence must
contain a Hamilton cycle. However, rather than steering me toward his own research agenda,
he had graciously given me free hand in choosing the topics around which I built the thesis.
I remained uninterested in hamiltonian graphs at that time.

This changed when Paul Erdos passed through Waterloo around the time of my defence. In
his lecture he mentioned his new generalization of Turan’s theorem: If a graph contains no
clique on more than r vertices, then it is degree-majorized by a graph containing no such
clique for the obvious reason that it is r-partite. I was bowled over by the beauty of Erdos’s
theorem and wondered at once how its paradigm could be applied to forcibly hamiltonian
sequences. Several weeks later, I found the answer: If a graph contains no Hamilton cycle,
then it is degree-majorized by a graph containing no such cycle for the obvious reason that
the removal of some cut set of k vertices breaks the graph into more than k components.
I decided to call graphs without such cut sets ‘tough’.

During the same year, Jack Edmonds treated me to private lectures revolving around his
notions of good algorithms and good characterizations, notions that he had been promoting
since the early 1960’s and that later became known as the notions of classes P and NP. In
particular, he expounded his view of theorems asserting that validity of some predicate A is a
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sufficient condition for the validity of another predicate B. Traditionally, such theorems are
presented as the implication ‘A — B’, but Jack preferred to present them as the disjunction
‘notA or B’ and he particularly liked these disjunctions when both of their predicates, notA
and B, had easily verifiable certificates of validity. These tutorials made a lasting impression
on me.

Then Herbert Fleischner came from Binghamton to lecture about his fresh proof of the
well-known conjecture made independently by Beineke, Nash-Williams, and Plummer
several years earlier: The square of every two-connected graph is hamiltonian. I was much
impressed by this feat, as was everyone else in the audience. Still, as a recent convert to
Jack’s doctrine, I could not help noticing that Herbert’s theorem did not conform to Jack’s
paradigm: I did not know any easily verifiable certificate of the predicate “G is not the
square of a two-connected graph”. This observation made me look for properties of squares
of two-connected graphs whose conjunction might make a graph hamiltonian and whose
lack had an easily verifiable certificate.

As a warm-up, I set up to prove without recourse to Herbert’s theorem that the square of
every two-connected graph is tough. This exercise taught me that a stronger statement was
true: in order to break the square of a two-connected graph into k components, one has
to remove not just k, but at least 2k vertices. In turn, the stronger statement suggested a
parametric generalization of toughness.

I had known that tough graphs were not necessarily hamiltonian, but I could not find
any 2-tough nonhamiltonian graphs; in fact, the largest ¢ for which I could find a #-tough
nonhamiltonian graph was 3/2. So I conjectured that for some 7, every t-tough graph is
hamiltonian. To provoke an interest in this conjecture, I stated shamelessly that it might be
valid for every ¢ greater than 3/2 and I pointed out that its validity for t = 2 would imply
Fleischner’s Theorem.

It goes without saying that the attention these conjectures received over the last forty years
has gratified me very much.

9.2 History of the 2-Tough Conjecture

In his seminal 1973 paper on toughness, Chvétal [12] introduced a new variant for
graphs. “It measures in a simple way how tightly various pieces of a graph hold
together; therefore, we shall call it toughness. Our central point is to indicate the
importance of toughness for the existence of hamiltonian circuits in a graph.”

Let k(G) denote the number of components in a graph G. If G is hamiltonian, then
clearly k(G — S) < |S| for every nonempty proper subset S of V(G). Equivalently, if
G is hamiltonian, then

s
KG—S) ~

for every nonempty proper subset S of V(G).
Chvatal [12] defined a noncomplete graph G to be t-tough if

s
kG —S) ~
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for every subset S of V(G) with k(G — S) > 1. Then the toughness t(G) of G is the
maximum ¢ for which G is r-tough. For n > 1, he set #(K,) = +o00. For example,
suppose G is obtained from the complete graph K, of order n > 3 by removing
an edge e = uv. Then G = K, — e, and the only subset of S of G for which
k(G—S) > 1is § = V(G) — {u, v}. Here, |S| = n — 2 and k(G — S) = 2. Thus,
(G) = |S| _n-= 2
k(G —S) 2
Let «(G) denote the (vertex) independence number of a graph G, and let k (G)
denote the (vertex) connectivity of G. Chvatal [12] established upper and lower
bounds for #(G) in terms of «(G), «(G), and |V(G)|.
If G is not complete and S is any subset of V(G) for which k(G — S) > 1,
then |S| > «x(G) and k(G — S) < «(G). Consequently, G is (k(G)/a(G))-tough.
It follows, then, from the definition of toughness that

k(G)

t(G) > #(G)’

9.1
For the upper bounds for #(G), consider first a smallest subset S for which
k(G —S) > 1. Then |S| = «k(G) and k(G — S) > 2, and so

1(G) < 9.2)

«(G)
5y
Similarly, taking S to be the complement of an independent set of «(G) vertices, we
obtain
(G) < V(@) —a(G) 9.3)
a(G)

If G is the complete bipartite graph K, , with 2 < m < n, we have k(G) = m,
a(G) = n, and |V(G)| = m + n. Combining the lower bound in (9.1) with the upper
bound in (9.3), we see that for2 < m < n, t(K,,,) = m/n. Thus, the bounds in (9.1)
and (9.3) are sharp.

Recall that a graph is called claw-free if it contains no induced bipartite
graph Kj 3. About ten years after Chvatal obtained his bounds, Matthews and
Sumner [20] showed that Chvatal’s upper bound #(G) < k(G)/2 was attained for
claw-free graphs.

These results for #(G) in terms of «(G) and « (G) are summarized below.

Theorem 1. For every noncomplete graph G,

€G) _ . _x(G)
ac) S1O=

These bounds for t(G) are sharp. Furthermore, if G is claw-free, then t(G) = * 5 -
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Fig. 9.1 A 1-tough nonhamiltonian graph H

i 4
Fig. 9.2 The Petersen graph P has #(P) < §

As we have seen, every hamiltonian graph G is 1-tough since

s
KG—S) ~

for every nonempty proper subset S of V(G). However, as noted by Chvital, the
converse only holds for graphs with at most six vertices. The graph H in Figure 9.1
was given by Chvatal as an example of a 1-tough nonhamiltonian graph of order 7.

Another example of a 1-tough nonhamiltonian graph is the Petersen graph P.
In fact #(P) = 4/3. The Petersen graph is shown in Figure 9.2. The set S of four
highlighted vertices satisfies |S|/k(G — S) = 4/3.

We know that high connectivity in a graph does not imply hamiltonicity.
Consider, for example, the complete bipartite graph K, ,, with m < n. Chvatal’s
hope was that large enough toughness in a graph G would, in fact, guarantee that G
is hamiltonian. In [12], he proposed the following conjecture.
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Conjecture 2 (Chvatal’s ry-tough conjecture). There exists ty such that every
to-tough graph is hamiltonian.

In [12], Chvital also constructed an infinite family of (3/2)-tough nonhamilto-
nian graphs. Consequently, he gave the following strengthening of Conjecture 2.

Conjecture 3. Every t-tough graph with t > 3/2 is hamiltonian.

However, Thomassen (see [5]) showed the existence of infinitely many non-
hamiltonian graphs G with #(G) > 3/2. Thus, Conjecture 3 was disproved although
the original 7y-tough conjecture remained open.

A k-factor of a graph G is a k-regular spanning subgraph of G. In particular, every
hamiltonian graph has a 2-factor. Since the Petersen graph has a 2-factor but is not
hamiltonian, these two concepts are not equivalent.

In [12], Chvatal proposed the following conjecture relating toughness and the
existence of k-factors.

Conjecture 4. Let G be a k-tough graph of order n > k 4+ 1 and kn even. Then G
has a k-factor.

Conjecture 4 was established in 1985 by Enomoto, Jackson, Katerinis, and Saito
[14] and shown to be best possible.

Theorem S. Conjecture 4 is true. Furthermore, given k > 1 and any € > 0, there
exists a (k — €)-tough graph of order n with n > k + 1 and kn even with no k-factor.

Corollary 6. Every 2-tough graph has a 2-factor. Furthermore, for any € > 0,
there exist infinitely many (2 — €)-tough graphs with no 2-factor.

Of course, Corollary 6 implies that the smallest possible 7y for which Chvatal’s
to-tough conjecture is true is #p = 2. This version became well-known as Chvétal’s
2-tough conjecture.

Conjecture 7 (Chvatal’s 2-tough conjecture). Every 2-tough graph is hamilto-
nian.

9.3 The 2-Tough Conjecture

Chvital’s 2-tough conjecture was exciting for many reasons. In [12], Chva-
tal showed that #(G?) > «(G) for every graph G. In particular, if G is a
2-connected graph, then #(G?) > 2. Consequently, the truth of the 2-tough
conjecture would imply Fleischner’s [15] beautiful 1974 result that the square of
every 2-connected graph is hamiltonian. Establishing the 2-tough conjecture would
also imply the validity of two conjectures made independently in the 1980s. The
first, Conjecture 8, is due to Matthews and Sumner [20].

Conjecture 8. Every 4-connected claw-free graph is hamiltonian.
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The second, Conjecture 9, is due to Thomassen [22].
Conjecture 9. Every 4-connected line graph is hamiltonian.

Although Conjecture 8 appears stronger than Conjecture 9 (every line graph is
claw-free), in 1997, Ryjacek [21] showed that they are equivalent. In order to do
so, he described a closure concept for claw-free graphs. This closure was based
on adding edges to a graph in such a way that hamiltonicity was not introduced
in a nonhamiltonian graph. The addition of edges, of course, always preserves
hamiltonicity.

Let G be a claw-free graph. For any vertex v of G, consider the subgraph G[N (v)]
of G induced by the neighborhood N(v) of v. If G[N(v)] is connected and not
complete, then all edges are added so that, in the resulting graph, the subgraph
induced by N(v) is complete. This procedure is repeated until it is impossible to
add more edges.

In [21], Ryjacek showed that the closure c/(G) that we obtain this way is well-
defined with several important properties.

Theorem 10. Let G be a claw-free graph. Then,

1. the closure cl(G) is uniquely determined,
2. cl(G) is hamiltonian if and only if G is hamiltonian,
3. cl(G) is the line graph of a triangle-free graph.

It follows from Theorem 10 that Conjectures 8 and 9 are equivalent. Furthermore,
the closure c/(G) of a claw-free graph has come to be called the “Ryjacek closure.”

This result of Ryjacek has an interesting story. The story is in some ways
indicative of the activity surrounding the 2-tough conjecture in the 25 years
following the introduction of the toughness parameter.

The Euler Institute for Discrete Mathematics and its Applications (EIDMA) was
aresearch school based in Eindhoven, the Netherlands, but with participating groups
in other cities in the Netherlands as well as in Belgium and Germany. The group in
Enschede consisted of faculty at the University of Twente and specialized in graph
theory and its applications.

In 1995, this group organized a workshop funded by the Dutch government on
the hamiltonicity of 2-tough graphs and related problems. The workshop was held
November 19-24, 1995 at the hotel Holterhof near Enschede. About 20 participants
from around the world were invited. I felt honored to be one of them. The following
is a quote from the introduction in the technical report on the EIDMA Workshop on
Hamiltonicity of 2-Tough Graphs [7].

As the central problem, the 2-tough conjecture was chosen, stating that every 2-tough graph

is hamiltonian. If true, the conjecture would imply that 4-connected claw-free graphs are

hamiltonian, which in turn would imply that 4-connected line graphs are hamiltonian. We

will refer to these conjectures as those of Chvatal, Matthews and Sumner, and Thomassen,
respectively, although Chvatal’s original conjecture (since disproved by Thomassen) was
that #-tough graphs with # > 3/2 are hamiltonian, along with the weaker condition (still
open) that there exists some # such that every #-tough graph is hamiltonian. His conjectures

seem to stem from an analysis of Fleischner’s result that squares of 2-connected graphs are
hamiltonian.
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On Monday three presentations were given by Bill Jackson (London), Jan van den Heuval
(Oxford) and Stephen Brandt (Berlin) on respectively claw-free and line graphs, toughness
results and eigenvalues. These three topics also roughly give the layout of the material in
this report. Mentioned will be results, conjectures, problems, examples, counterexamples
and remarks without going too much into details.

On the other days plenary sessions were held in the morning till 10.15 and in the afternoon
from 16.00 on. In between and in the evenings the meeting developed into a real workshop.
The most important things that happened were the following. Herbert Fleischner suggested
on Monday the equivalence of the two conjectures of Matthew and Sumner and Thomassen.
During the conference walk through the moors on Tuesday Zdenék Ryjacek (Pilsen) thought
about applying his techniques to this problem and on Wednesday presented his proof to the
group, which caused quite some excitement. In the evening the proof was checked by a
group of participants. Various consequences were discussed among which a new closure
concept called, for obvious reasons, the Ryjacek closure.

On a personal note, the EIDMA workshop on the Hamiltonicity of 2-Tough
Graphs was a mathematical experience I will always remember fondly. The location,
the hotel Holterhof, consisted of a beautiful former hunting lodge, where the work-
shop was held, and small cabins, where the participants stayed. The surrounding
woods made this remote location a perfect spot for research and collegiality. Our
primary contact with the outside world (remember, these were pre-cell and pre-Wi-
Fi days) was the International Herald Tribune that my husband bought each day
by bicycling the four miles into town. And for the Americans at the workshop, the
organizers arranged for a traditional Thanksgiving dinner complete with turkey and
all the trimmings.

Returning to the last paragraph from the introduction in the technical report, the
following quote is an interesting reflection by the conference organizersJ. A. Bondy,
H. J. Broersma, C. Hoede, and H. J. Veldman.

Although the main problem, Chvital’s conjecture, was hardly considered — most partic-
ipants think the conjecture is false anyway — the outcomes were quite satisfactory. New
approaches, such as the one proposed by Brandt, were considered, but the exclamation
by Heinz Jung (Berlin) (“Nothing seems to hold!”) seems appropriate for the toughness
concept. In fact people wondered whether the concept was all that fundamental. The reader
may make up his own opinion by reading this report.

My comments? It is worth your time to read the report!

In 2000, about four years after the workshop, three of the participants, D. Bauer,
H. J. Broersma, and H. J. Veldman [3], produced the graph G of Figure 9.3, which
is the join of F and K. They showed that G is 2-tough but not hamiltonian.

To see that G is not hamiltonian, assume to the contrary that C is a hamiltonian
cycle of G. At least one of the five pairs {s;, #;} of vertices, 1 < i < 5, contains no
vertex that is adjacent to either p or g on C, say {sy, t; }. Then, sjuy, sywy, tjvy, t1x1 €
E(C). Necessarily, ujwy, uyxy, vix;, viw; ¢ E(C). This, however, implies that
v1y1, Wiy, 4121, X121 € E(C), which is impossible.

To see that G is 2-tough, the interested reader is referred to [3].

Furthermore, Bauer, Broersma, and Veldman [3] showed that for every ¢ > 0,
there exists a (9/4 — €)-tough graph with no hamiltonian path. It follows that if
Chvatal’s tp-tough conjecture is true, that is, there exists #y such that every f-graph
is hamiltonian, then 7y > 9/4.
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K

Fig. 9.3 The Bauer-Broersma-Veldman graph, a 2-tough nonhamiltonian graph

The fy-tough conjecture is still open. However, we now know that it is true for a
number of well-studied classes of graphs. We turn to these results in Section 9.4.

9.4 Toughness and Hamiltonicity in Special
Classes of Graphs

In this section, we consider sufficient toughness in various classes of graphs that
ensures hamiltonicity. Our first such result follows from the well-known theorem of
Tutte [23] that 4-connected planar graphs are hamiltonian and the fact that «(G) >
2t(G) for every graph G.

Theorem 11. Let G be a planar graph with t(G) > 3/2. Then G is hamiltonian.

Chvatal’s #p-tough conjecture has been established for many other classes of
graphs including, for example, the well-known interval and chordal graphs. The
results in this section are presented, with one exception, in chronological order.
We also discuss the additional problem of minimizing #y once it is known to exist.
Since every hamiltonian graph is 1-tough, it follows that in all of these results,
to > 1.

Interval graphs are the intersection graphs of intervals on a line, that is, a graph G
is an interval graph if there exists a family of intervals that correspond to the vertices
of G in such a way that two intervals intersect if and only if the corresponding
vertices are adjacent in G. In 1985, Kiel [18] (implicitly) established the following
result for interval graphs.
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Theorem 12. Every 1-tough interval graph is hamiltonian.

A graph G is a chordal graph if G contains no induced cycle of length four or
more. The next result follows from the fact that 1(G) = "(26) if G is claw-free and
the 1986 result of Balikrishnam and Paulraja [1] that 2-connected claw-free chordal
graphs are hamiltonian.

Theorem 13. Every 1-tough claw-free chordal graph is hamiltonian.

A split graph is a graph whose vertex set can be partitioned into a clique and an
independent set. In 1996, Kratsch, Lehel, and Miiller [19] established the minimum
toughness guaranteeing hamiltonicity in split graphs.

Theorem 14. Every 3/2-tough split graph is hamiltonian.

Since Chvatal [12] showed that there exists a (3/2 — €)-tough split graph that is
not hamiltonian for every € > 0, Theorem 14 is best possible.

Our next result, due to Deogen, Kratsch, and Steiner [13] in 1997, established
sufficient toughness in cocomparability graphs for hamiltonicity. In order to state
this result, we first describe the class of cocomparability graphs. A transitive
orientation of a graph G is an assignment of directions to the edges of G so that
the resulting directed graph D is transitive, that is, whenever («, v) and (v, w) are
directed edges of G, then so too is (&, w). A graph that has a transitive orientation is
often called a comparability graph. A cocomparability graph is then a graph whose
complement is a comparability graph.

Theorem 15. Every 1-tough cocomparability graph is hamiltonian.

Theorem 13 addresses sufficient toughness for a claw-free chordal graph to be
hamiltonian. The more general problem for chordal graphs was considered by Chen,
Jacobson, Kézdy, and Lehel [11] in 1998.

Theorem 16. Every 18-tough chordal graph is hamiltonian.

It is unlikely that Theorem 16 is best possible. However, Bauer, Broersma, and
Veldman [3] showed that for every € > 0, there exists a (7/4 — €)-tough chordal
graph with no hamiltonian path. Thus, #t, > 7/4 for chordal graphs. In the case
of planar chordal graphs, however, Bohme, Harant, and Tkac¢ [6] established the
following 1999 result.

Theorem 17. Let G be a planar chordal graph with t(G) > 1. Then G is
hamiltonian

Bohme, Harant, and Tkac also showed that for planar chordal graphs,
1-toughness does not ensure hamiltonicity.

Theorems 12, 14, and 16 deal with interval graphs, split graphs, and chordal
graphs, respectively. These three classes of graphs have nice characterizations as
intersection graphs of connected subgraphs of special classes of trees. A graph G of
order n is the intersection graph of subgraphs Hy, . . ., H, of a graph H if the vertices
of G can be put into a one-to-one correspondence with the subgraphs Hy, ..., H, so
that two vertices of G are adjacent if and only if the corresponding subgraphs have
a common vertex.
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It can be shown (see, e.g., [8]) that a graph is an interval graph if and only if it is
an intersection graph of subpaths of a path. Similarly, a graph is a split graph if and
only if it is an intersection graph of subtrees of a star, that is, a complete bipartite
graph K ;. Finally, a graph is a chordal graph if and only if it is an intersection graph
of subtrees of a tree. It is clear from these characterizations that all interval graphs
and all split graphs are chordal graphs.

In 2007, Kaiser, Kral, and Stacho [16] defined a subclass of chordal graphs that
is a proper superclass of interval and split graphs. A graph is a spider if it is a
subdivision of a star. A graph is a spider graph if it is an intersection graph of
subtrees of a spider. It follows that every interval graph and every split graph is a
spider graph, and spider graphs are chordal.

Theorem 18. Every (3/2)-tough spider graph is hamiltonian.

Since every split graph is a spider graph, Theorem 14 is a corollary of Theo-
rem 18, and Theorem 18 is sharp.

In [9], Broersma, Xiong, and Yoshimoto studied another subclass of chordal
graphs called k-trees. In order to present their 2007 result, we define k-trees as
follows. If the neighborhood of a vertex v in a graph G induces a complete graph of
order k, then v is called a k-simplicial vertex of G. Let k be a positive integer. The
complete graph K is the smallest (with respect to order) k-tree, and a graph G of
order at least k 4 1 is a k-tree if and only if G contains a k-simplicial vertex v such
that G — v is a k-tree. Clearly, 1-trees are just trees.

Theorem 19. Every (k 4 1)/3-tough k-tree is hamiltonian for k > 2.

Broersma, Xiong, and Yoshimoto provided infinite classes of nonhamiltonian
1-tough k-trees for each k > 3. So an open question is to determine the minimum
to = ty(k) for which every ty-tough k-tree is hamiltonian.

Our next result concerns a superclass of split graphs called 2K,-free graphs.
These are the graphs containing no induced copy of 2K5, the graph on four vertices
consisting of two independent edges. Clearly, every split graph is 2K,-free. Another
class of 2K,-free graphs consists of the complements of chordal graphs. The
2014 result of Broersma, Patel, and Pyatin [10] gave a sufficient toughness for
hamiltonicity in 2K,-free graphs.

Theorem 20. Every 25-tough 2K,-free graph is hamiltonian.

Since the proof of Theorem 20 relied on the restrictive structure of triangle-free
2K,-free graphs, the condition of being 25-tough is likely far from best possible.

To close this section, we return to Conjectures 8 and 9. Recall that in 1984,
Matthews and Sumner conjectured that every 4-connected claw-free graph is hamil-
tonian. About the same time, Thomassen [22] conjectured that every 4-connected
line graph is hamiltonian. These two conjectures were shown to be equivalent by
Ryjacek [21] using the closure concept that came to be known as the Ryjacek
closure.

Since every line graph is claw-free and, for a claw-free graph G, we know that
k(G) = 2t(G), both Conjectures 8 and 9 can be stated in terms of toughness
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instead of connectivity. This is true of the remaining results in this section. Since
these results were originally presented in terms of connectivity, this is how we shall
proceed.

Matthews and Sumner’s conjecture, as well as Thomassen’s conjecture, remains
open. For many years, the best general result related to Thomassen’s conjecture was
due to Zhan [24] and Jackson (unpublished).

Theorem 21. Every 7-connected line graph is hamiltonian.

In fact, the result in [24] showed that every 7-connected line graph G is
hamiltonian-connected, that is, for each pair u, v of distinct vertices of G, there
is a hamiltonian # — v path in G.

In 2012, Kaiser and Vrana [17] improved Theorem 21 as follows:

Theorem 22. Every 5-connected line graph with minimum degree at least 6 is
hamiltonian.

Furthermore, using the Ryjacek closure concept, they extended Theorem 22 to
claw-free graphs.

Theorem 23. Every 5-connected claw-free graph with minimum degree 6 is hamil-
tonian.

The final result of Kaiser and Vrana [17] included both Theorems 22 and 23 as
corollaries.

Theorem 24. Every 5-connected claw-free graph with minimum degree at least 6
is hamiltonian-connected.

We close this section by restating Theorem 24 in terms of toughness and an
immediate corollary.

Theorem 25. Every (5/2)-tough claw-free graph with minimum degree at least 6
is hamiltonian-connected.

Corollary 26. Every 3-tough claw-free graph is hamiltonian.

9.5 Conclusion

Chvital’s 1973 paper [12] “Tough graphs and hamiltonian circuits” introduced the
concept of toughness and posed some intriguing conjectures. As we have seen,
the most challenging is still open: there exists #y such that every f-tough graph is
hamiltonian. The conjecture has been shown to be true for many special classes of
graphs such as planar graphs, interval graphs, chordal graphs, and claw-free graphs.
The most glaring open questions here, in my opinion, are (1) to determine the
minimum # that guarantees hamiltonicity in chordal graphs and (2) to determine
the minimum ¢, that guarantees hamiltonicity in claw-free graphs. In (1), we know
that 7/4 <ty < 18.1In (2), we have 2 <1, < 3.
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But there is more to the toughness story than the fy-tough conjecture. For
example, toughness has been combined with various degree conditions to determine
bounds on the length of a longest cycle in a graph. Similar results have been obtained
for the existence of factors in a graph. Computational complexity issues have been
investigated. For example, it is known that it is NP-hard to calculate the toughness of
a graph [2]. The beautiful 2006 survey paper [4] “Toughness in Graphs - A Survey”
is a must-read for those who are interested in the bigger toughness picture.

Acknowledgment: Many thanks to Shelley Speiss whose many helpful mathe-
matical comments and superb IATEX’ing truly made this “our” paper. L?

References

—

. Balakrishnan, R., Paulraja, P.: Chordal graphs and some of their derived graphs. Congr. Numer.

53, 71-74 (1986)

2. Bauer, D., Hakimi, S.L., Schmeichel, E.: Recognizing tough graphs is NP-hard. Discret. Appl.
Math. 28, 191-195 (1990)

3. Bauer, D., Broersma, H.J., Veldman, H.J.: Not every 2-tough graph is Hamiltonian. Discret.
Appl. Math. 99, 317-321 (2000)

4. Bauer, D., Broersma, H., Schmeichel, E.: Toughness in graphs - a survey. Graphs Comb. 22,
1-35 (2006)

5. Bermond, J.C.: Hamiltonian graphs. In: Beineke, L., Wilson, R.J. (eds.) Selected Topics in
Graph Theory, pp. 127-167. Academic, London (1978)

6. Bohme, T., Harant, J., Tka¢, M.: More than one tough chordal planar graphs are Hamiltonian.
J. Graph Theory 32, 405410 (1999)

7. Bondy, J.A., Broersma, H.J., Hoede, C., Veldman, H.J. (eds.): EIDMA Workshop on Hamil-
tonicity of 2-tough graphs. Memorandum 1325, University of Twente, Enschede (1996)

8. Brandstidt, A., Le, V., Spinrad, J.: Graph Classes: A Survey. Monographs on Discrete
Mathematics and Applications. Society for Industrial and Applied Mathematics, Philadelphia
(1999)

9. Broersma, H.J., Xiong, L., Yoshimoto, K.: Toughness and Hamiltonicity in k-trees. Discret.
Math. 307, 832-838 (2007)

10. Broersma, H., Patel, V., Pyatkin, A.: On toughness and hamiltonicity of 2K,-free graphs.
J. Graph Theory 75, 244-255 (2014)

11. Chen, G., Jacobson, M.S., Kézdy, A., Lehel, J.: Tough enough chordal graphs are Hamiltonian.
Networks 31, 29-38 (1998)

12. Chvital, V.: Tough graphs and hamiltonian circuits. Discret. Math. §, 215-228 (1973)

13. Deogun, J.S., Kratsch, D., Steiner, G.: 1-Tough cocomparability graphs are hamiltonian.
Discret. Math. 170, 99-106 (1997)

14. Enomoto, H., Jackson, B., Katerinis, P., Saito, A.: Toughness and the existence of factors.
J. Graph Theory 9, 87-95 (1985)

15. Fleischner, H.: The square of every two-connected graph is Hamiltonian. J. Comb. Theory 16B,
29-34 (1974)

16. Kaiser, T., Kral, D., Stacho, L.: Tough spiders. J. Graph Theory 56, 23—40 (2007)

17. Kaiser, T., Vrana, P.: Hamilton cycles in 5-connected line graphs. Eur. J. Comb. 33, 924-947
(2012)

18. Kiel, J.: Finding Hamiltonian circuits in interval graphs. Inf. Process. Lett. 20, 201-206 (1985)

19. Kratsch, D., Lehel, J., Miiller, H.: Toughness, hamiltonicity and split graphs. Discret. Math.

150, 231-245 (1996)



9 Chvatal’s fp-Tough Conjecture 147

20. Matthews, M., Sumner, D.: Hamiltonian results in Kj3-free graphs. J. Graph Theory 8,
139-146 (1984)

21. Ryjacek, Z.: On a closure concept in claw-free graphs. J. Comb. Theory 70B, 217-224 (1997)

22. Thomassen, C.: Reflections on graph theory. J. Graph Theory 10, 309-324 (1986)

23. Tutte, W.T.: A theorem on planar graphs. Trans. Am. Math. Soc. 82, 99-116 (1956)

24. Zhan, S.: On hamiltonian line graphs and connectivity. Discret. Math. 89, 89-95 (1991)



Chapter 10
What Do Trees and Hypercubes Have
in Common?

Henry Martyn Mulder

Abstract At first sight, trees and hypercubes do not have much in common. They
are both connected and bipartite, but these properties are not very distinctive.
A closer inspection reveals an interesting common feature. Trees and hypercubes
can be constructed using a similar sort of expansion procedure. Now, we can
introduce a class of graphs that forms a common generalization of trees and
hypercubes: it consists of all those graphs that can be constructed by this expansion
procedure. With this generalization in hand, many questions arise. Are there other
common properties of trees and hypercubes? And, if so, are these shared by this
common generalization? This chapter discusses a very interesting instance of this
approach, the case of median graphs.

Mathematics Subject Classification : 05C75, 05C12, 05C05

10.1 Introduction

The following story is historically incorrect. It is a work of fiction. Names and
characters in this story all exist in the author’s imagination, but any resemblance to
existing persons is entirely intentional.

The story tells the adventures of the Meta-conjectures that I proposed in 1990.
But the origins date back to 1976. Then I had just started as a PhD student in the
Math Department at the Vrije Universiteit in Amsterdam. Some time in the spring
of 1976, my roommate and fellow PhD student Jan van Mill (yes, the topologist)
asked me to work with him on some questions about finite topologies. One of these
regarded maximal subbases for a finite topology. A subbase is a family of subsets
such that the sets in the basis for the topology of open sets can be obtained by taking
intersections of subbase elements. For instance, the open half lines form a subbase
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for the open intervals on the real line, since each open interval is the intersection of
two open half lines. Note that, since the complement of an open half line is a closed
half line, such a complement is not a subbase element. In the finite case, a subbase
can contain two complementary sets. The question was what the maximal subbases
are that consist of complementary pairs of subsets and satisfy the so-called Helly
property: any subfamily of the subbase that consists of pairwise intersecting subbase
elements has a nonempty intersection. I called these subbases maximal Helly copair
hypergraphs.

During the Fifth Hungarian Combinatorial Colloquium in Keszthely, Hungary,
June 1976, I took a break and made a walk to see the railway crossing downtown.
During that walk, an idea struck me how to construct such a maximal Helly copair
hypergraph from a smaller one by an expansion construction. Later, I discussed this
with another fellow PhD student Lex Schrijver (yes, the discrete mathematician),
and he suggested looking at the underlying graphs. I combined the two ideas and
put my result in the technical report series of the Math Department of the Vrije
Universiteit [21]. In the spring of 1977, I got rid of the hypergraphs and rewrote
the result purely in graph theory terminology [22]. This is the Expansion Theorem
below. Although the proof is nontrivial, it is quite natural. The crucial point here
is, of course, to get to the idea of expansion. My first proof from Keszthely in
hypergraph terminology (without using any graphs) was far from natural and needed
thrice as many pages. With hindsight, I am still amazed that I came up with that
proof at all; it was nota bene the first theorem that I ever proved in my life. This first
proof was never published. I even lost my original notes and cannot reconstruct it
anymore, so it is disappearing in the mist of time.

For me, it has always been a fascinating experience: to be struck by an idea or to
get an idea. We do not say “I made an idea,” but we say “I got an idea,” like it is as a
gift from elsewhere. And indeed it is; it comes from our subconscious. I always tell
my students the following parable. If you want to solve a problem, then you work on
it, you work hard on it, but often the problem resists your efforts. Maybe you have to
put it aside, then later work on it again without finding a solution, and so on and so
forth. After some time (and in some cases a long time), while you are taking a break,
something important happens: your conscious mind is somewhere else, but your
subconscious is still at work. And, while you are relaxing, doing something else,
like having a drink in the sun at an outdoor cafe or maybe while taking a shower,
an idea for a solution pops into your consciousness from your subconscious. And
then we can make real progress toward the solution. So I have learned that my most
important tool in doing math is my subconscious. But I also warn my students. Your
subconscious does not do the necessary work if your consciousness has not put in
a big effort. So, if you get your ideas while taking a shower, it won’t work to do
nothing and just shower 24 hours per day hoping to get productive ideas.

This Expansion Theorem is the basis for the Meta-conjectures that are the focus
of this story. Note that I call these meta-conjectures. They are not conjectures in
the sense that they can be proved or disproved. The statements are on another level
and, by applying these to a specific instance, may lead to a “regular” conjecture
in the usual sense. It is about a nice and surprising common feature of trees and
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hypercubes that has led to many new results and may still be quite fruitful in the
future to produce new problems and results. It is interesting to note here that, when
I was visiting Clemson in 2014 and had given a talk on this topic, Steve Hedetniemi
(2014, private communication, Clemson) told me that he had met a conjecture while
walking on campus.

10.2 Setting the Stage

Throughout this chapter, G = (V, E) is a finite, simple, connected graph with vertex
set V and edge set E. The order of G is the number | V| of vertices of G. The distance
d(u, v) between two vertices u and v of G is the length of a shortest u, v-path, or
u, v-geodesic. The interval between u and v is the set

Ig(u,v) = {x | d(u,x) + d(x,v) =d(u,v) },

that is, the set of vertices lying on u, v-geodesics. When no confusion arises, we
write [ instead of /. Loosely speaking, it is the set of all vertices between u and v
in G. In the sequel, we also need the following notation:

I(u,v,w) = I(u,v) N I(v,w) N I(w, u).

Anything can happen here, as can be seen in Figure 10.1.

A subset W of V is convex if, for any two vertices x and y in W, we have
I(x,y) € W. The empty set and V are trivially convex. Note that the intersection
of two convex sets is again convex. In abstract convexity theory, a convexity on a
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I(u,0,w) =< [ I(1,0,w)| =2 [ I(u,0,w) =1
Med(u,v,w) = {v,w} Med(x,y,z) = {x,y,z}

Fig. 10.1 I(u,v,w) and Med(u, v, w)



152 H.M. Mulder

finite set V is a family of subsets that contains the empty set and V and is closed
under intersection (see [33]). So the convex sets in a connected graph as defined
above form a convexity in the sense of abstract convexity theory. A subgraph H of
G is convex if it is induced by a convex set in G.

A profile & on G of length k is a nonempty sequence 7 = (x|,x3, ... ,X;) of
vertices of V with repetitions allowed. We denote its length by k = |r|. A subprofile
of m is just a subsequence of . For convenience, we allow a subprofile p to be
empty and then with length |p| = 0. The set of all profiles on G is denoted by V*.

A consensus function on G is a function L: V* — 2V — {@}, where 2" — {@} is

the family of nonempty subsets of V. For convenience, we write L(x},x2, ... ,Xg)
instead of L((x1,x2, ..., xx)), for any function L defined on profiles. A median
of a profile 7 = (x1,x2, ... ,x;) is a vertex x in V minimizing the distance sum

Zf;l d(x, x;). The median set Med () of 7 is the set of all medians of 7. Note that,
since G is connected, this defines a consensus function, namely, the median function
Med: V* — 2V — {@}. Trivially, we have Med(x) = {x} and Med(x,y) = I(x.y).
Moreover, if I(u, v) NI(v, w) NI(w, u) # @, then Med(u, v,w) = I(u,v) NI(v,w)N
I(w, u). Note that Med () is by definition nonempty, G being connected. So in case
I(u,v,w) = 0, we have Med(u,v,w) # I(u,v,w). See Figure 10.1 for various
possibilities.

10.3 Trees and Hypercubes

Trees and hypercubes are well-studied classes in graph theory. They are the main
characters in this story. Therefore, we want to make sure that it is clear what they are.
To avoid any confusion of what a tree is, we depict in Figure 10.2 a graph that is a
tree and one that is not a tree.

Fig. 10.2 A tree and a non-tree
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Fig. 10.3 The 4-cube

The n-dimensional hypercube, or n-cube for short, has the 0,1-vectors of length
n as vertices. Two vertices are adjacent if, as vectors, they differ in exactly one
coordinate. In Figure 10.3, we see the 4-cube. The vertices having 0 as fourth
coordinate form a 3-cube, as well as those having a 1 as fourth coordinate. These
two 3-cubes are joined by a matching between corresponding vertices of the two
3-cubes.

Equivalently, the n-cube can be defined as having the subsets of an n-set as
vertices, where two vertices are adjacent if their symmetric difference is a singleton.
Thus, a hypercube is the Hasse diagram of a Boolean lattice.

In the following observations, the complete graphs K; and K are the exceptions:
these two graphs are the only graphs that are a tree as well as a hypercube. We
call these the trivial trees, because on at most two vertices, one cannot have a cycle
anyway. But one could say that, for higher orders, trees and hypercubes are almost
opposites of each other.

A nontrivial tree of order k is cycle-free, irregular, and often even highly
irregular: all degrees between 1 and k — 1 may occur. The automorphism group
is “small.” Each automorphism fixes the center as well as the centroid of the tree
but usually not much more. The center, as well as the centroid, is either a single
vertex or an edge, that is, a K; or a K;. This must be understood in the following
sense: the center is mapped on the center and the centroid on the centroid. So, if the
center consists of two adjacent vertices, then neither of the vertices needs to be a
fixed point, but the “edge” is fixed. This result on automorphism groups is actually
one of the oldest results on trees. It was already proved by Camille Jordan in 1869,
although for him a “tree” was still an assemblage of curves in the plane (see [15]).
The vertex and edge connectivity of any tree is 1. For each value of k, there is a
tree of order k. There is more than one tree of order k > 3, and the number of trees
grows exponentially as k grows.
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On the other hand, the order of a hypercube is necessarily a power of 2. For each
n, there is a unique n-cube of order 2". The 2-cube is a 4-cycle. For larger n, there
are many even cycles in the n-cube of many different lengths. The n-cube is regular
of degree n. It has a “large” automorphism group; it is even distance transitive. The
vertex and edge connectivity is # and hence grows with n. We could go on like this
exhibiting even more differences between these two classes of graphs.

Of course trees and hypercubes also share some trivial properties, such as being
connected and being bipartite, but these properties are not very distinctive, since
they share these with many other classes of graphs. A close inspection of the two
classes yields another very interesting and nontrivial property that they also share.
As this property needs some explication, we devote the next section to it.

10.4 A Common Construction for Trees and Hypercubes

The simplest way to obtain a tree from a smaller one is by adding a pendant vertex
(a vertex of degree 1). We could describe this construction in an elaborate way, and
then it becomes an instance of a more general construction to get a tree from a
smaller one. We depict this construction in Figure 10.4.

What we do is cover the tree on the left with two subtrees 7} and 75 that have
exactly one vertex in common. To obtain the larger tree, we take two disjoint copies
of these subtrees, respectively, 77 and T3, as in the tree on the right, and then join
the vertices in these subtrees that correspond to the common vertex in 77} and T5.
We call this an expansion with respect to the covering subtrees 7} and T . Each tree
can be obtained by a succession of such expansions from the one vertex graph K;.

Fig. 10.4 A tree by expansion
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Fig. 10.5 A hypercube by expansion

Note that adding a pendant vertex amounts to taking the expansion with respect to a
pair of subtrees with one being the whole tree and the other being the single vertex,
where the pendant vertex is to be attached.

Hypercubes can be obtained in a similar manner by expansion, as depicted in
Figure 10.5. We cover the n-cube on the left by two subcubes, both of which equal
the whole n-cube. We take two disjoint copies of these two subcubes and join
respective vertices in the two copies. These new edges form a matching between the
two disjoint copies. Thus, we get a hypercube of dimension n + 1. Every hypercube
can be obtained by a finite sequence of such expansions, starting from the one vertex
graph K.

This construction is a common property of trees and hypercubes. In both cases,
we cover the graph with two subgraphs having something in common. We then take
disjoint copies of the two covering subgraphs and join corresponding vertices in
these two copies by new edges. At first sight, this might look a bit farfetched as an
interesting common feature, but we will see otherwise.

Let us have a closer look at the idea of expansion. In [25], I proposed a broad
master plan for expansions. The basic idea is depicted in Figure 10.6.

We need a formal definition. For two graphs Gy = (Vi, Ey) and G, = (V3, E»),
the union G U G, is the graph with vertex set V; U V, and edge set E; U E;, and the
intersection G1 N G is the graph with vertex set V| N V, and edge set E; N E,. We
write Gy N Gy # @ when V| NV, # @. The graph G| — G is the subgraph of G;
induced by the vertices in G; but not in G, and similarly for G, —G,. A proper cover
of a connected graph G consists of two subgraphs G, and G, such that G; N G, # @
and G = G; U G,. Note that this implies that there are no edges between G| — G,
and Gz — Gl.

Now let G’ be a connected graph, and let G|, G} be a proper cover of G’ with
G, = G| N G). Assume that G| and G, share some property P and that G| has
some property Py. For i = 1, 2, let G; be an isomorphic copy of G/, and let A; be the

i’
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Fig. 10.6 Expansion procedure

isomorphism from G’ to G;. We write Go; = A;[G}] and u; = A;('), for v’ in Gj,.
Let R be some rule for inserting edges between the subgraphs Gy; and Gg,. The
P, Py, R-expansion of G’ with respect to the proper cover G}, G5, is the graph G
obtained as follows: take the disjoint union of G| and G, and insert edges between
Gy and Gy, according to rule R. By varying the properties P, Py, and rule R, we get
different kinds of expansions, some of which might be interesting for further study.
Note that the choice of property Py might be restricted by the choice of property P.

Actually, the notion of expansion in [25] was even broader: there a cover with k
subgraphs was considered, with k > 2, and the expansion was defined accordingly.
Such an expansion could be called a k-ary expansion, where the above type is
then a binary expansion. For our purposes, here we will restrict ourselves to the
binary case. We observe that the well-studied case of quasi-median graphs uses
k-ary expansions for arbitrary values of k (see [6, 23]).

What type of expansion would catch the constructions for trees and hypercubes
above? For rule R, it seems that we need the following: insert an edge between the
vertex in Go; and that in Gy, corresponding to the vertex ', for each vertex u’ in Gj,.
This amounts to inserting a matching between Gy and G, that forms the obvious
isomorphism between these two subgraphs. But what to choose for the properties
P and Py is not so obvious. There are several possibilities, each of which gives a
different type of expansion. Each type of expansion could be used to define a class
of graphs: those graphs that can be obtained from K; using expansions only of the
chosen type. We focus on one type of expansion that yields a nice class of graphs
(see the next section). We invite the reader to study other types of expansions.
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10.5 The Meta-conjecture and the Strong Meta-conjecture

The expansion that we have in mind is the following. The property P is that
of “being convex,” so both G| and G, are convex subgraphs of G’, such that
G, G), forms a proper cover of G’. We call such a cover a convex cover. Since the
intersection of convex subgraphs is a convex subgraph, the property Py is also that
of “being convex.” The rule R of inserting edges is the rule of inserting a matching
between corresponding vertices of Gy, and Gy,. We call this type of expansion a
convex expansion. Clearly, trees and hypercubes can be obtained by a succession of
convex expansions from K.

Now we define a new class of graphs. Recall that this story is historically
incorrect. A median graph is any graph that can be obtained by a finite sequence
of convex expansions from K;. We will see below why we call such a graph a
median graph. Clearly, there are more median graphs than trees and hypercubes
(see Figure 10.7 for some small median graphs).

For reasons that are at this point historically obscure, I proposed in 1990 the
following “meta-conjectures.”

Meta-conjecture: Any (sensible) property that is shared by trees and hypercubes
is shared by all median graphs.

Strong Meta-conjecture: Any (sensible) property that is shared by trees and
hypercubes characterizes median graphs.

Fig. 10.7 A sequence of convex expansions from K
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The keyword here is of course “sensible.” For instance, in the case of the Meta-
conjecture, the property of “being a tree or a hypercube” is trivially shared by trees
and hypercubes but not by all median graphs. And in the case of the Strong Meta-
conjecture, “being connected” is shared by trees and hypercubes but by no means
characterizes median graphs. The focus of this chapter is on “sensible” properties,
where the Meta-conjectures actually give us a “real” conjecture and the possibility
of a new result. We list the instances chronologically and give some explanation in
each case.

10.6 The Expansion Theorem

The first instance dates back to where it all began in 1976 (see the Introduc-
tion). Take any three vertices u, v, w in a tree or a hypercube. We always have
[I(u,v,w)| = 1.

In a tree, the single vertex in /(u, v, w) is the unique vertex lying on the three
paths between the pairs among u, v, w. In a hypercube, we take the three 0, 1-vectors
and determine the vertex x in the three intervals as follows. For each coordinate,
the three vectors vote according to their value in that coordinate. The majority
determines the value of the respective coordinate of x. Hence, this property is shared
by trees and hypercubes (see Figure 10.8). It turns out that this is a “sensible”
property for the Strong Meta-conjecture.

Theorem 1'. A graph G is a median graph if and only if |I(u,v,w)| = 1 for any
three vertices u, v, w of G.

Note that, if I(u, v, w) is nonempty, then it is precisely the median set Med ()
of the profile # = (u, v, w). When |I(u, v,w)| = 1, we call the unique vertex in the
intersection of the three intervals the median of u,v,w. In view of Theorem 1’,
we prefer from now on to call a graph with |I(#,v,w)| = 1, for all u,v,w, a

¥ &

Fig. 10.8 The intersection of three intervals in a tree and a hypercube
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median graph. So we switch terminology, and then Theorem 1’ should be rephrased
as follows (this represents the factual history better; see [22, 24]).

Theorem 1 (Expansion Theorem [1978]). A graph G is a median graph if and
only if it can be obtained form K by a finite sequence of convex expansions.

Median graphs as the graphs having the property |I(u, v, w)| = 1, for all u, v, w,
were introduced independently several times. Avann [2] introduced them as unique
ternary distance graphs in 1961 relative to distributive semi-lattices. Later Nebesky
[32] introduced them again in 1971 relative to ternary algebras. Finally, Mulder and
Schrijver [22, 31] introduced them in 1978-1979 as underlying graphs of certain
hypergraphs (see the Introduction). From the historical point of view, we would like
to refer the reader to the very interesting application of median graphs in [7].

At first sight, one might think that median graphs are quite esoteric. But in [12]
Imrich, Klavzar and Mulder established a one-to-one correspondence between the
class of connected triangle-free graphs and a special subclass of the class of median
graphs. Since median graphs are triangle-free and connected, this implies that, in
the universe of all graphs, there are as many median graphs as there are connected,
triangle-free graphs.

It is straightforward to prove that the convex expansion of a median graph is
again a median graph. The hard part of the proof of the Expansion Theorem is to
show that a median graph is always the convex expansion of a smaller one. In order
to do this, we need some of the ideas and notation used in this proof. See Figure 10.9
for clarification.

G
GQ :Guzul :Gv2vl
; __________________ - convex -,
1
1 ) E—
; 1
i |
AN VAV A (P
v 1
G02| 2
I Uy !
R O O A ___1F12
! 1
Goni o
Uy I
1

1 G =G,, =G

Uty V10,

Fig. 10.9 Expansion Theorem
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Let G be a median graph as the graph on the right in Figure 10.9. Take an arbitrary
edge uju, in G. Let G be the subgraph consisting of all vertices closer to u; than to
uy, and let G, be the subgraph consisting of all vertices closer to u, than u;. Since
G is bipartite, these two subgraphs partition the vertex set of G. We can prove that
these two subgraphs are convex. Let Gy, be the subgraph of G| consisting of the
vertices having a neighbor in G,, and let Gy, be the subgraph of G, consisting of
the vertices having a neighbor in G,. Let Fj, be the set of edges between Gy, and
Go,. We next prove that Fy; is a matching that induces an isomorphism between Gy,
and Gy, as depicted in Figure 10.9. Moreover, Gy, and G, are convex subgraphs
as well. We call G, G, a split of G with split sides G| and G,. We will call G| and
G, opposides of each other. For the origin of this neologism, see [28].

We next prove that any other edge of F,, say v, v,, defines the same split Gy, G,
that is, G; consists of all vertices closer to v, than to v, and G, consists of all
vertices closer to v, than to v;. Note, therefore, that we do not have to refer to a
specific edge when we consider a split G|, G,. We now contract the edges in F;
and identify the corresponding vertices in Go; and Gy;, thus producing the graph G’
on the left. We can state this more formally by defining the mapping ¥ : G — G’ by
setting k|G, = A7! and k|G, = A5!. We call « is the contraction map, and we call
G’ the contraction of G with respect to the split Gy, G.

The last step of the proof is to show that G’ is a median graph with convex cover
G . G,.Itis clear then that G is the convex expansion of G’ with respect to this cover.
Hence, any median graph can be obtained this way. It turns out that, in constructing
G from K, by convex expansions, we may take the expansions in any order.

Note that the hypergraph obtained by taking the vertex set of a split side as a
hyper-edge, for all splits, gives us exactly a maximal Helly copair hypergraph in
the sense of [21, 31]. The underlying graph is obtained by taking uv as an edge
whenever the intersection of all hyper-edges containing # and v is exactly {u, v}, for
distinct « and v.

The Expansion Theorem gives us a very strong tool: on median graphs we can
use induction on the number of expansions or, equivalently, the number of splits. In
economics (and philosophy), the concept of armchair theorizing exists (see [35]):
by sitting in their armchairs and looking at the world, economists can come up
with new theories and insights about economics. Buck McMorris introduced me to
this concept in mathematics: sitting in our armchair, after proving some heavy-duty
theorems, we can let these do the work and come up with nice and new results.
This approach is much more solid than that within economics. Most of the results
below are an example of the use of armchair theorizing. We use the Expansion
Theorem, and the ideas and notation developed in its proof, in combination with the
Meta-conjectures. This gives us results that we can prove simply by sitting in our
armchair.
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10.7 More Applications of the Meta-conjectures

Median graphs appear in different guises in other areas than graph theory. For
instance, a median graph is precisely the covering graph of a distributive semi-lattice
[23, 28]. Also it is the underlying graph of so-called median algebras [13, 23, 32].
It is also the graph of certain conflict models [8]. Above we have seen that median
graphs are the underlying graphs of certain Helly hypergraphs. A survey can be
found in [17, 27, 28]. Because these other guises require more details from these
other areas, we skip this here. We only observe that also in these cases the Meta-
conjectures have shown their value.

In this section, we present more applications of the Meta-conjectures in chrono-
logical order.

10.7.1 Isometric Embedding in Hypercubes

An isometric embedding of a graph G into a graph H is a one-to-one mapping ¢ of
the vertex set of G into that of H such that, for any two vertices u# and v in G, the
distance between u and v in G equals the distance between ¢ («) and ¢ (v) in H.

Trivially, any hypercube Q, can be isometrically embedded into a Q,, with
m > n. It is also an easy exercise to show that a tree 7 with n vertices can
be isometrically embedded into any Q, with m > n — 1. Applying the Meta-
conjecture, we conjecture that any median graph can be embedded isometrically
into a hypercube of sufficiently large dimension. And indeed it can (see [23]). The
proof is by induction on the number of splits in the median graph.

Theorem 2 ([1980]). Let G be a median graph with m splits. Then G can be
isometrically embedded in any n-cube with n > m.

For the Strong Meta-conjecture, this property is not yet a sensible property. The
connected graphs that can be isometrically embedded in a hypercube are precisely
the partial cubes (see [10, 16]). All even cycles belong trivially to this class. So
what “makes sense” in this case? A closer look tells us that we can embed a tree T
in a hypercube Q such that the median of any three vertices u, v, w in T is mapped
onto the median in Q of the three images in Q of u, v, w. And, yes, this property is
sensible for the Strong Meta-conjecture, and we have our second characterization
of median graphs after Theorem 1.

Theorem 3 (1980). A graph G is a median graph if and only if it can be embedded
as an isometric subgraph of a hypercube Q such that the median of any three vertices
of this embedding is also a vertex of the embedding.

Otherwise stated, the embedding of G preserves medians. These results were first
published in [23] (see also [24]), and [14] for an algorithmic result.
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10.7.2 Median Sets

Let G be a connected graph, and let ¥ = (u, v, w) be a profile of length 3. By the
definition of a median set, we have Med(x) # @. And if I(u,v,w) # 0, we also
have Med(r) = I(u, v, w). In Figure 10.1, we have seen that /(, v, w) can be empty.
So Med(w) and I(u,v,w) do not coincide for all profiles # = (u, v, w). In trees
and hypercubes, they always coincide, but here we have the additional property that
these sets are always singleton sets. Combining these two properties into one, we get
the following application of the Strong Meta-conjecture of Bandelt and Barthelemy
[4]. A proof of this result was already implicit in [24].

Theorem 4 ([1984]). A graph G is a median graph if and only if |Med ()| = 1 for
all profiles w of length 3 on G.

10.7.3 The Majority Counts

Next we focus on the median sets Med () of profiles 7w on a connected graph G. For
any edge uv, we denote by m,, the subprofile of 7 of the elements that are closer to
u than to v. Recall that a subprofile may be empty. If G is bipartite, then we have

|| + |70u] = |7].

It is straightforward to check that for trees, as well as hypercubes, we have the
following property. For any profile , a vertex x is in Med(x) if and only if |my,| >
|7y« | for each neighbor y of x. Loosely speaking, the median set of a profile is always
on the majority side of each split. So, by the Meta-conjecture, we get the following
result of Bandelt and Barthelemy [4]. This result is an immediate consequence of
the Expansion Theorem, although this was not mentioned in [4].

Theorem 5 ([1984]). Let G be a median graph, and let 7w be a profile on G. Then x
is in Med(r) if and only if || > |7yy| for each neighbory of x.

We can use this idea of the median set being on the majority side even better. In
a tree, as well as in a hypercube, we can find the median set of a profile 7 easily
using the following strategy. We start at an arbitrary vertex z and move along edges
through the graph. The rule for moving is: when at v and w is a neighbor of v with
|7y | = |7Tyw ], then we move to w. That is, we move to a majority. Two possibilities
arise. At some point we cannot move toward another vertex (so there is a strict
minority in each direction). In this case, the vertex that we have reached is the unique
median of . Or we are at a vertex v that has a neighbor u such that |m,,| = |7y,
Now we are allowed to move back and forth between u and v. Again we are in the
median set, and it turns out that we can still move freely within the median set, but
we cannot get out of it. In order to formulate our results as precisely as possible, we
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give a formal description of this majority strategy. Note that the way we describe
the output reflects the actual origins of this algorithm (see the last paragraph of this
section).

Majority Strategy
Input: A connected graph G, a profile & on G, and an initial vertex in V.
Output: The set of vertices where signs have been erected.

 Start at the initial vertex.

 If we are at v and w is a neighbor of v with |7,,,| > ; |7 |, then we move to
w.

*  We move only to a vertex already visited if there is no alternative.

*  We stop when:

(i) we are stuck at a vertex v or
(ii) we have visited vertices at least twice, and, for each vertex v visited

at least twice and each neighbor w of v, either |7, | < é || or wis
also visited at least twice.

e We park and erect a sign at the vertex where we get stuck or at each vertex
visited at least twice.

Do we always find the median set using the majority strategy? The answer is no,
a simple example suffices. Take the complete graph K3 with vertices u, v, w and let
w = (u,v,w). Now, for each edge xy, there is only one vertex closer to y than to x,
viz., y itself. So we do not move from x to y. This means that, being at x, we are stuck
at x and only find x, whereas Med (i) is the whole vertex set. We find one median
vertex but not all. With the Strong Meta-conjecture at hand, the first equivalence in
the following theorem does not come as a surprise (see [26]).

Theorem 6 ([1997]). Let G be a graph. Then the following statements are equiva-
lent:

(i) G is a median graph.
(ii) The majority strategy produces Med(w) in G, for each profile m.
(iii) The majority strategy produces the same set from any initial position v in G,
for each profile.

Statement (iif) in the theorem came as a bonus and was not foreseen in any way.

The idea for the majority strategy arose in Louisville, Kentucky, while I was
visiting Buck McMorris. We were driving to the University of Louisville along
Eastern Parkway. At some stretch, there is a beautiful median on Eastern Parkway,
with green grass and large trees. At that time, there were traffic signs along this
median that read: “Tow away zone. No parking on the median at any time.” I was
not working on this problem at all at that time. So again this was a gift from the
subconscious.
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10.7.4 Retracts of Hypercubes

Let G be a connected graph, and let H be an isometric subgraph of G. We call H a
retract of G if there exists a retraction of G onto H. A retraction is a mapping that
maps the vertices of G onto those of H such that restricted to H, this mapping is the
identity, and adjacent vertices of G are mapped to a single vertex of H or to adjacent
vertices of H. So a retraction fixes every vertex of H and may shrink distances for
vertices not in H. Clearly, not every isometric subgraph is a retract.

The identity mapping shows trivially that each hypercube is a retract of the
hypercube itself. It is an exercise to show that trees are retracts of hypercubes.
Applying the Strong Meta-conjecture, we get the following result of Bandelt [3].

Theorem 7 (1984). A graph G is a median graph if and only if it is a retract of a
hypercube.

The simplest proof of this theorem uses the Peripheral Expansion Theorem from
Section 10.7.6, which is a special case of the Expansion Theorem.

10.7.5 A Fixed Subcube

As stated earlier, Jordan already proved in 1869 that any automorphism of a tree
fixes the center and the centroid. The center as well as the centroid of a tree is either
a K; or a K;. For hypercubes, the situation is different: the only subgraph that is
fixed by all automorphisms (a subgraph that is mapped onto itself) is the hypercube
itself. But, looking at it in another way, we see a common feature. Trivially, K; and
K, are subcubes of a tree. So in all cases, a subcube is fixed. It is simple to construct
a graph that is not a median graph, where a subcube is fixed by all automorphisms,
so the Strong Meta-conjecture is not applicable. But the weaker Meta-conjecture
still works, as we see in the following theorem by Bandelt and Van de Vel [5].

Theorem 8 (1987). Let G be a median graph. Any automorphism of G fixes a
subcube of G.

10.7.6 Peripheral Expansions

Adding a pendant vertex to a tree is the simplest and most obvious way to get a larger
tree from a smaller one. This can be phrased as a convex expansion with respect
to the convex cover consisting of the smaller tree itself and the single vertex to which
the new vertex is to be attached. A little bit more sophisticated, we could also say
that the convex cover consists of the whole graph and a convex subgraph. Of course
we can formulate the expansion that creates an (n + 1)-dimensional cube from an
n-cube (see Figure 10.5) in the same more sophisticated manner: the cover consists
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of the whole graph and a convex subgraph (the whole graph being trivially a convex
subgraph). We call such a convex expansion a peripheral expansion, following the
custom that the set of the pendant vertices of a tree is called the periphery of the
tree. Now we have a property that is certainly sensible in the sense of the Strong
Meta-conjecture (see [25]).

Theorem 9 (Peripheral Expansion Theorem [1990]). A graph G is a median
graph if and only if it can be obtained from K, by successive peripheral expansions.

This theorem is also quite useful for proving results on median graphs by
induction. In the expansion, the side that corresponds to the convex subgraph of
the cover is called a peripheral side. To find a peripheral side in a median graph, we
basically need the Expansion Theorem.

10.7.7 Amalgamation of Hypercubes

Another way to construct a tree is as follows. We start with a finite set of edges
or K;’s. Now we glue these together along vertices or K, ’s such that no cycle arises.
We call this gluing amalgamation. The graphs K| and K, are hypercubes. So we
could rephrase this construction: we start with a finite set of hypercubes (in this
case all of dimension 1) and amalgamate these along subcubes such that no cycle
arises.

Now we have a construction that also applies to hypercubes, even trivially. To get
the n-cube, we start with a finite set of hypercubes, viz., a single n-cube. Applying
zero amalgamations along subcubes, we get the n-cube. Ah, the Strong Meta-
conjecture comes into the picture. But we have to be careful here. In Figure 10.10,
we see on the right the 3 by 3 grid, which is a median graph. For the amalgamation
construction, we need four 2-cubes. But in the last step, we do not amalgamate along
a subcube but along a path that happens to be a convex subgraph. So we rephrase
the construction. Instead of amalgamating along a subcube, we amalgamate along

[ =[]
[ -] ]

Fig. 10.10 Amalgamation
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a convex subgraph. Doing this stepwise, we get for free that the graph is cycle-free
in the tree case. So in this case, it took some work to get a sensible property, but
it was worth the effort and gives us the next result from [6]. We make a formal
definition. Let G|, G, be a convex cover of a graph G. Then we say that G is the
convex amalgamation of G| and G».

Theorem 10 (1994). A graph G is a median graph if and only if it can be obtained
from a set of hypercubes by convex amalgamations.

10.8 Axiomatics of Consensus Problems

Finding the median set of a profile is a so-called location problem. Such a problem
can sometimes be phrased as a consensus problem. One wants to reach consensus
among agents or clients in a rational way. This is modeled using a consensus
function (see [9]). The input of the function consists of certain information about
the agents, and the output concerns the issue about which a consensus should be
reached. The rationality of the process is guaranteed by the fact that the consensus
function satisfies certain “rational” rules or consensus axioms. Such axioms should
be appealing and simple. Of course this depends on the consensus function at hand.
A function that has nice properties might indeed be characterized by such axioms,
but a function that behaves badly might need more complicated or less appealing
axioms. The study of the axiomatics of consensus functions was initiated by the
economist K. Arrow in his seminal paper [1] of 1951. In a location problem, the
input is the location of the clients: a profile consisting of vertices. Holzman [11] was
the first to study location problems as a consensus problem. The median function
was first characterized axiomatically by Vohra [34] on tree networks (the continuous
variant of a tree). The discrete case was first dealt with by McMorris, Mulder, and
Roberts [18]. They rephrased Vohra’s axioms as follows. In these axioms, L is a
consensus function on a connected graph G = (V, E).

(A) Anonymity: For any profile 7 = (x1,x;, ... ,x) on V and any permutation o
of {1,2, ... .k}, we have L(xr) = L(r?), where n° = (X5(1), X5(2)» - -- > Xo(k))-
The consensus function cannot distinguish among the group of clients.

(B) Betweenness: L(u,v) = I(u,v), foru,v € V.

All locations between exactly two preferred locations are equally good.

(C) Consistency: If L(xr) N L(p) # @ for profiles 7 and p, then
L(zp) = L(w) N L(p).

Loosely speaking, if two profiles agree on some output x, then x is in the output
of the concatenation as well.

It is straightforward to check that the median function satisfies these axioms
on all connected graphs. So the question arises what extra axioms are needed to
characterize the median function on any class of graphs. A cube-free median graph
is a median graph that does not contain a 3-cube. Trivially, any tree is a cube-free
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median graph. In [18], it was proved that on cube-free median graphs, a location
function L: V* — 2V —{@} is the median function if and only if it satisfies (A), (B),
and (C). In particular this holds on trees. In [18] it was suggested, between the lines,
that on arbitrary median graphs, a fourth axiom was needed, and a result involving
an extra axiom was given. But basically, it was an open problem whether such a
fourth axiom was actually necessary. In 2011 Mulder and Novick [29] were able
to show that on hypercubes, the median function is characterized by the three basic
axioms (A), (B), and (C). Their proof used techniques that were very specific for
hypercubes. But, with the Meta-conjecture at hand, it became a necessity to search
for a proof that on all median graphs, the median function is the unique function
L: V* — 2V — {0} satisfying the three basic axioms (A), (B), and (C). And again
the Meta-conjecture showed its worth: this result was proved in [30], but the proof
was nontrivial.

Theorem 11 (2013). Let L be a consensus function on a median graph G. Then
L = Med if and only if L satisfies (A), (B), and (C).

In the literature, simple examples are available to show that (A) and (B) do not
imply (C) and that (A) and (C) do not imply (B). But, surprisingly, it turns out to
be far from trivial to show that (A) is independent from (B) and (C). Using the rich
structure of median graphs, a heavy-duty example is constructed in [20] that shows
independence on any median graph with at least two vertices.

In [19], another axiomatic characterization of the median function on median
graphs was given. It involves the next two axioms and consistency.

(F) Faithfulness: L(x) = {x}, forallx € V.
If there is only one client, then the preferred location of this client is returned by
the consensus function.

(Cond) é-Condorcet: u € L(m) if and only if v € L(ir), for each profile # on G
and any edge uv of G with |7, | = |7y,
The consensus function does not make a distinction between neighbors that are
equally preferred.

Theorem 12 (2000). Let L be a consensus function on the median graph G. Then
L = Med if and only if L satisfies (F), (C), and (Cond).

One consequence of Theorems 11 and 12 is that the three axioms (C), (Cond),
and (F) imply (A) and (B) on median graphs. In [20], all possible dependencies and
independencies on median graphs between the above five axioms are determined.
There is one rather surprising result. On hypercubes, axioms (C) and (Cond)
already imply (A), so axiom (F) is not needed for anonymity. With the Meta-
conjecture in hand, the next question immediately forces itself upon us: do axioms
(C) and (Cond) imply (A) on trees as well? And consequently, what on median
graphs? Another heavy-duty example in [20] shows that (A) is independent from
(C) and (Cond) on all nontrivial trees (with at least three vertices), hence on all
median graphs that are not a hypercube. So in this case, we really need (F) as an
additional axiom to force anonymity. Although this is a negative example, it still
underscores the Meta-conjecture.
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10.9 Concluding Remarks

It seems to me that we have shown that the two Meta-conjectures are rather powerful
tools for obtaining interesting and nontrivial results about median graphs. In all
cases, the Expansion Theorem turned out to play a crucial role in the proofs, another
fact that underscores the Meta-conjectures. And the story does not end here. The
reader is invited to find new applications of one of the two Meta-conjectures.

There is another interesting type of expansion that gives a nice common
generalization of trees and hypercubes. If we take as properties P and Py the
property of “being an isometric subgraph,” then we get the class of partial cubes
when again starting with K (see [10, 16]). But so far there are no Meta-conjectures
in this case. Other avenues of research might present themselves when we try to find
another type of expansion that gives a productive common generalization of trees
and hypercubes.

10.10 Where I Began

This section is historically correct. As I said in the Introduction, this story began
in 1976. The Expansion Theorem was published in 1978 [22], and median graphs
were first studied extensively in my PhD thesis [24]. On the cover of my thesis,
I had a picture of a beautiful windmill called “De Herder” (see Figure 10.11). So
it plays a role in the origins of the Meta-conjectures. The photograph I used for it
has yellowed by age as you can see. When you go by train from Schiphol Airport
to Leiden, you will see the mill on your right shortly before you arrive at Leiden
Station. This windmill plays a crucial role in my life. The old Dutch word for miller
is mulder. During the French and Napoleontic occupation (1795-1813), French laws
were introduced that necessitated every Dutch family to take a family name. Until
that time, many people did not have one and usually were just called by their first
name or their profession. My great-great-great-great-grandfather was a miller and
owned the windmill in the picture. When he had to take a family name, he took
his profession as his name, so he became Mulder (as many other people did, who
were not family at all, the windmill being the main source of industrial power in
the Netherlands at that time). So, in a sense, I “began” at this windmill, and thus
this windmill is part of the prehistory as well as the actual history of the Meta-
conjectures and therefore deserves its place here.
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Fig. 10.11 Windmill “De Herder”
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Chapter 11
Two Chromatic Conjectures: One for Vertices
and One for Edges

P. Mark Kayll

Abstract Erdds, Faber, and Lovasz conjectured that a pairwise edge-disjoint union
of n copies of the complete graph K, has chromatic number #. This seeming parlour
puzzle has eluded proof for more than four decades, despite the attack by a few of
this era’s more powerful combinatorial minds. Regarding edges, the list-colouring
conjecture asserts, loosely, that list colouring is no more difficult than ordinary edge
colouring. Probably first proposed by Vizing, this notorious conjecture—also having
garnered the attention of leading combinatorialists—has itself defied proof for forty
years. Like any good mature conjecture, both of these have spawned interesting
mathematics vainly threatening their resolution. This chapter considers some of the
related partial results in concert with the conjectures themselves.

Mathematics Subject Classification 2010: Primary 05-02,05C15; Secondary
05C65, 05-03, 01A65, 01A70

Introduction

When I prepared the lecture [58] on which this chapter is based—and later as I
produced this written account—I remembered a belief that Alan Mekler (1947-
1992) once shared with me. A prodigious and gregarious young professor at Simon
Fraser University, Alan forever shaped my thinking about early mathematical influ-
ences. We got to know each other even though I never had the privilege of taking
one of his courses. Later when I was a graduate student at Rutgers University, Alan
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occasionally visited New Brunswick. Once we enjoyed dinner together talking math
and reminiscing over SFU days. During those years, Alan played several roles in my
life: mathematical exemplar, personal connection to my hometown and SFU, and
friend.

He believed in a sort of mathematical cycle of life. As Alan described it,
we’re especially impressionable while in graduate school. The open problems we
learn then are the ones that endure most strongly as our professional lives unfold.
Incrementally, these problems morph into theorems, bringing us contentment and
closure later in our careers, regardless of the solvers.

I could see the truth of Alan’s belief through his eyes, in part because of
his excitement about the imminent appearance of his monograph [24] with Paul
Eklof. But as a grad student hearing these ideas, I didn’t have the experience to
measure them myself. Now in mid-career, I think they help explain my choices
of ‘favourite conjectures’, both of which I learned at Rutgers. Initially, I resisted
hearkening back to those student days, but Alan’s axiom gave me permission—even
encouragement—for doing exactly this.

Sadly, Alan died before I had another opportunity to dine with him. Because his
long-ago shared observation influenced my choices for this piece, I remember and
acknowledge him here.

A Word on Definitions Two of my favourite graph theory conjectures concern
colouring, both the vertex and edge variants. Readers who know the definitions
of chromatic number y, list-chromatic number y,, chromatic index y’, and list-
chromatic index y/ can skip the Appendix, where these terms and others used in
this chapter are catalogued. Mirroring the lecture, I’ll dive right in here, too.

11.1 The List-Colouring Conjecture

The Acknowledgements by Erdds et al. [31] begin:

It got started when we tried to solve Jeff Dinitz’s problem.

“It” means their introduction and seminal study of the graph invariant y,, which
was begun independently by Vizing [84]. Mildly paraphrased, [31] continues by
posing the following question raised by Dinitz at the Southeastern Conference on
Combinatorics, Graph Theory, and Computing in Boca Raton, April 1979:

Given an n X n array of n-sets, is it always possible to choose one element from each set,
keeping the chosen elements distinct in every row and distinct in every column?

The Dinitz conjecture—the assertion that his question has an affirmative answer—
had been circulating since the late 1970s; see [48, p.202] or [51, p.320]. On
his home page [22], Dinitz indicates that he posed it to Erdés in 1979. Now a
consequence of a theorem of Galvin [33], it can be stated as Xi (Kyn) = n. During
1978-1994, Dinitz’ conjecture stood as perhaps the highest-profile unproved case
of the List-Colouring Conjecture 1.2, to which we turn shortly. First we consider
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Fig. 11.1 List assignment to V(K7 10) exhausting ([gl) on both parts (from [31])

ww b

vertex list colouring because the conjectured general behaviour of Xi contrasts so
strikingly with the actual behaviour of y, .

Figure 11.1, copied from [31], depicts a list assignment to the vertices of Kjg 1o.
In both the top (X) and bottom (Y) parts, each 3-set in ([2'33_1]) = ([i]) appears as
the list on some vertex. Let us suppose that Kjo 190 admits a proper list colouring
0:V — [5] respecting this assignment. By symmetry between X and Y, we may
assume that ¢ assigns at most 2 (= 3 — 1) colours £ and ¢’ to X; for if o assigns
at least 3 colours to both of X and Y, then some colour is used on both parts of the
bipartition, so ¢ is improper. But now some vertex x € X has the list [5] ~ {£, £},
which implies that x failed to receive a legal colour under o. This contradiction
shows that there can exist no such proper list colouring of V(Kjg,10), with the given
assignment of 3-sets, and hence that y, (Kjo,10) > 3.

Erd6s et al. [31] observed that x, can be forced above every prescribed integer
t > 1 for a sufficiently large complete bipartite graph. Given ¢, let n := (Ztt_l) and
set a colour palette S := {1,2,...,2t — 1}. If {X, Y} is a bipartition of K, ,, then,
as a colour list, assign each #-set in (f) to a vertex of X and a vertex of Y. Using ‘¥
here in the role of ‘3’ in the preceding paragraph gives the following result.

Theorem 1.1 ([31]). Ifn = (*]"), then x,(Ky,) > t.

Of course, for the ordinary chromatic number, we have y(K,,) = 2, so even as
commonplace a family as complete bipartite graphs may witness

X1 — oo (asn — 00). (11.1)

But perhaps not for line graphs. The list-colouring conjecture says that for them, the
trivial inequality y, > x holds with equality:

Conjecture 1.2 (LCC). If G is a multigraph, then x| (G) = x'(G).
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Though Conjecture 1.2 is not an Erdés prize problem, resolving it would no doubt
bring fame and glory beyond all conceivable bounds, at least within some circles.
The basic relations

A<y <y <2A-1 (11.2)

show that the ratio )(2 /x' is sandwiched between 1 and 2, so the divergence
phenomenon (11.1) cannot occur when colouring edges. When pondering Conjec-
ture 1.2, it’s worthwhile keeping in mind the two seminal bounds on y’ in terms
of A. These are

3A(G
Y (G) < \‘ 2( )J for multigraphs G (11.3)

(due to Shannon [80]) and
¥ (G) < A(G) + 1 for simple graphs G (11.4)

(due to Vizing [83]). Both bounds are sharp. For (11.3), this is seen by taking G
to have three vertices, each pair joined by either |A /2| or [A/2] parallel edges
(as needed to achieve maximum degree A). Now each pair of these |3A /2] edges
shares a common endpoint, so the edges must all receive distinct colours. For (11.4),
this is seen by taking G to be any nonempty regular simple graph of odd order. If G
is A-regular and has 2k + 1 vertices, then it has A(2k 4+ 1)/2 edges. Each colour
class of an edge colouring has size at most k, so with G being nonempty, we have
X = AQRk+1)/2k > A.

Conjecture 1.2 has been attributed to numerous mathematicians, including
Vizing [84], Gupta, Erd6s [28], Albertson and Tucker, and Albertson and Collins.
I pieced this list together from [1, 18, 19, 37, 48, 51] and refer readers to these
sources for more details. In 1985, Bollobas and Harris [8] were the first authors
to state the conjecture in print. However, Vizing should probably be credited for
its earliest public formulation, in September 1975, during a conference problem
session in Odessa, Ukraine; see reference [11] in [60]. Albertson (on the list above)
also shared this information with Kahn (see [51]).

11.1.1 Progress Towards the List-Colouring Conjecture

Results shedding light on the LCC fall into (at least) three categories: those
producing upper bounds on y) —typically in terms of A—for either multigraphs or
simple graphs, those obtaining an asymptotic estimate y/ ~ ' as these invariants
grow large, and those achieving y, = ' exactly for specific classes of graphs. We
tabulate a sample of theorems of the last type in Table 11.1 on the following page.
Considering (11.16) in this chapter’s Appendix, it should come as no surprise that
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Table 11.1 A sample of graph classes satisfying Xi = y/, 1995-2014

Graph class (brief description) Reference | Publication year
Bipartite multigraphs [33] 1995
A-regular A-edge chromatic planar multigraphs [25] 1996
Complete graphs of odd order [39] 1997
Planar simple graphs with A > 12 [12] 1997
Multigraphs with perfect line graphs [70] 1999
(Correction to preceding) [71] 2003
Multicircuits [90] 1999
Series-parallel (aka K;-minor free) simple graphs [49] 1999
Outerplanar (aka K5 3- and K4-minor free) simple graphs [89] 2001
Near-outerplanar (aka K 3- or K4-minor free) simple graphs | [41] 2006
Planar, simple, contains no C4, and A > 7 [44] 2006
Euler char ¢ > 0, simple, contains no Cs, and A > 11 [88] 2007
& > 0, simple, contains neither C4 nor Cs, and A > 7 [88] 2007
Planar, simple, contains neither C4 nor Cg, and A > 6 [63] 2008
e <0, simple, and A > /25 —24¢ + 10 [91] 2008
& > 0, simple, no two 3-cycles sharing edge, and A > 9 [21] 2009
Planar, simple, no two 4-cycles sharing vertex, and A > 8 [64] 2009
Planar, simple, no C; sharing edge with a Cy, and A > 8 [61] 2011
1-planar simple graphs with A > 21 [92] 2012
Pseudo-outerplanar simple graphs with A > 5 [82] 2014
Complete graphs of even, successor of a prime, order [78] 2014

the LCC is often studied in conjunction with conjectures about x” or x/; see, e.g.,
[12, 21, 23, 37, 41, 44, 60, 61, 63, 64, 89, 91, 92]. To limit our scope, we shall not
discuss total colouring as we weave together the three sorts of results on the LCC,
mostly chronologically.

The survey [1] points out that when A > 2, the trivial upper bound for )(/L
in (11.2) can be dropped to 2A — 2 using a Brooks-type theorem for x,, proved
independently in [31] and [84]. The first significant improvement was made by
Bollobds and Harris [8], who showed that simple graphs satisfy y, < 11A/6 +
o(A). Hind [42]—a subsequent student of Bollobds—proved that y; < 9A/5 for
multigraphs and )(/L < 5A/3 for triangle-free multigraphs. About the same time,
Chetwynd and Héggkvist [18] established the bound )(/L < 9A/5 for triangle-
free simple graphs. Although their article followed Hind’s stronger results, these
appeared exclusively in his doctoral dissertation and were not widely known at
the time. Soon thereafter, he and Bollobds [9] published a further improvement for
simple graphs: y <7A /4 + o(A).

Next, Kostochka [60] showed that (necessarily simple) graphs of sufficiently
large girth (roughly, girth at least Q(A log A)) satisfy

X <A+ (11.5)
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As in [8, 9, 18], Kostochka used a clever recolouring procedure along the lines of
the proof of Vizing’s theorem [83]. That all simple graphs satisfy (11.5) has come
to be called Vizing’s conjecture, from [84]. Vizing’s theorem (11.4) shows that this
conjecture would follow from the LCC. Besides Kostochka, several other authors
(e.g. [11, 17,23, 85]) have established the intermediate (11.5) for various classes of
graphs, but we make no attempt to survey this line of inquiry towards the LCC.

In a separate but concurrent advance, Kahn applied powerful probabilistic
arguments—including the so-called ‘incremental random’ method—first to obtain

X <A+o(A)as A — oo (11.6)

for simple graphs. This was announced in [51] as part of the proceedings of
a 1991 meeting and presented in full detail in [52]. Together with (11.2), the
conclusion (11.6) shows that simple graphs satisfy

10~ (11.7)

as either of these parameters (or A) grows large; i.e., simple graphs satisfy Conjec-
ture 1.2 asymptotically. Kahn [55] later proved (11.7) for multigraphs as well. This
oversimplifies these two Kahn articles because we’re viewing the results through
an ‘LCC lens’. In [52], he actually proved a hypergraph result that specializes to
give (11.6) for simple graphs. And in [55], he actually proved that

X~ " as )* — o0 (11.8)

for multigraphs, which, together with his intermediate theorem [53] that such graphs
satisfy ' ~ y'* as y’* — oo, yields (11.7). Kahn’s results in [53, 55] both rely on
the (approximate) stochastic independence properties of ‘hard-core’ distributions on
the set of matchings of a graph—first proved in [56]—in passing from fractional to
ordinary edge or list-edge colourings.

Let us rewind to the early 1990s. Alon [1], Haggkvist and Chetwynd [37], and
Kostochka [60] noted the state of the LCC art at that time. The conjecture had been
proven only for forests, graphs with A < 2, snarks [40], graphs with no cycles of
length exceeding three [34], complete bipartite graphs K, ; with 7r < 2s [36], planar
graphs with A > 14 [11], and a few small cases (viz. K4, K> 5, K33, K4.4, and Ke ).
As it turns out, some important new cases of Conjecture 1.2 were about to fall.
First, using tools in [3], Janssen [47] established that )(2 = x/ for complete bipartite
graphs K,_;, with unequal parts. Quickly on the heels of Janssen’s breakthrough,
Galvin [33] proved Conjecture 1.2 for all bipartite multigraphs, which, in particular,
settled the Dinitz conjecture in the affirmative. Perhaps surprisingly, Galvin’s attack
did not pick up where Janssen’s left off. He combined the ‘Bondy-Boppana-Siegel
lemma’ (observed in [3]) with a result of Maffray [65] to give an unexpectedly
simple and elementary proof.

These developments provided both exhilaration and frustration to combinatorics
grad students, especially those who’d wrestled with Conjecture 1.2. I remember
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having proved some simple cases, c. 1990, eventually becoming stuck and changing
research direction. Then came Janssen’s result, followed closely by a photocopied
manuscript in Galvin’s hand—see Figure 11.2—making the rounds at Hill Center,
Rutgers. My friend and fellow student Paul O’Donnell gave me a copy, and within
the week, I was presenting it in Mike Saks’ office. This was early 1994, my final
year as a student.

Almost concurrently with Galvin’s announcement, Haggkvist and Janssen circu-
lated a manuscript [38] of their own, in which they applied Janssen’s methods in
[47] to prove that

= A+0<A2/3\/IogA) (11.9)

for simple bipartite graphs. Though Galvin’s result eclipsed this before it would be
published, the authors had already announced that their ideas could be extended to
achieve (11.9) for all simple graphs and hence to establish another, now explicit,
upper bound for X; as in (11.6). Higgkvist and Janssen also proved that complete
graphs of order n satisfy

1, (Ky) < n, (11.10)

which yields Conjecture 1.2 when 7 is odd. Their results eventually appeared in [39].

The ‘incomplete survey’ segment of my lecture [58] ended here, but I take the
opportunity next to present the highlights from [39] to the present. Table 11.1 on
p. 175 gives the highlights of the highlights during 1995-2014.

11.1.2 A Miscellany of LCC-related Results

Though we aren’t trying for complete or detailed coverage, our sample in this
section should paint a representative picture of the LCC landscape from the mid-
1990s until this writing.

As it served Janssen [38, 39, 47], the main tool in [3] served Ellingham and
Goddyn [25] in their LCC investigation. They used it to relate the edge choosability
of a multigraph G to certain coefficients in the ‘graph monomial’ of G’s line graph.
They verified the LCC for various families of 1-factorable graphs, including A-
regular A-edge chromatic planar multigraphs. Eventually, Schauz [77] developed
an algebraic framework—even more general than Alon and Tarsi’s—from which
Ellingham and Goddyn’s results also follow; see the end of this section for a more
striking consequence of Schauz’s machinery.

Galvin’s method in [33] ignited a spark that led Borodin et al. [12] to generalize
both Galvin’s theorem and Shannon’s theorem (11.3). They proved that if edges
e = {x,y} of certain multigraphs G are assigned lists L,, then G admits an L-
edge colouring under either of the following sets of hypotheses: (i) G is bipartite
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Fig. 11.2 Excerpts from Galvin’s handwritten manuscript [1994]
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with each |L,| > max{deg(x),deg(y)}; or (ii) G is arbitrary and each |L,| >
max{deg(x), deg(y)} + [min{deg(x), deg(y)}/2]. In particular, (i) implies that y/ <
A in the bipartite case (Galvin’s theorem), while (ii) implies that x| < [3A/2] in
general (a list analogue of (11.3)). These authors also settled the LCC for simple
planar graphs (indeed, those with nonnegative Euler characteristic) with A > 12.
In addition, they gave other sufficient conditions in terms of A and the ‘maximum
average degree’ of G in order that )(2 = A.

Another generalization of Galvin’s theorem was obtained by Peterson and
Woodall, who in [70] (and [71]) established that multigraphs with perfect line graphs
satisfy the LCC. Galvin’s result follows because bipartite multigraphs have this
property. A multicircuit is a multigraph whose underlying simple graph is a cycle.
In [90], Woodall proved the LCC first for multicircuits and, then, building on his
results with Peterson [70], for any multigraph in which every block has one of four
properties: (i) is bipartite, (ii) is a multicircuit, (iii) has at most four vertices, or
(iv) has its underlying simple graph of the form K7 1 .

The same year (1999), Juvan et al. [49] confirmed the LCC for simple series-
parallel graphs, i.e., for (simple) Ks-minor-free graphs. Precisely stated, their result
asserts that for every integer k > 3, for every such graph G with A < k, and for every
list assignment {L,: e € E(G)} with each |L,| > k, there exists an L-edge colouring
of G. This implies a later result of Wang and Lih [89], who proved, among other
related theorems, the LCC for simple outerplanar graphs. The implication is perhaps
most easily seen by recalling the well-known characterization of outerplanar graphs
as those that are both K> 3- and K4-minor free.

In a pair [86, 87] of papers from 2005 and 2007, Wang and Huang investigated
the LCC for Cartesian products of n-cycles C, and order-m paths P,,. In the first
article, they confirmed the conjecture for products C, 0 C,, with both of n, m odd.
As Galvin’s theorem handles the case with both of n, m even, we see that the LCC
holds for these products whenever n and m have the same parity. In the second, they
confirmed the LCC for products C, O P,, when m > 3; indeed, they showed that the
latter graphs all satisfy x| = ¥’ = 4.

A graph is near outerplanar if it is either K, 3- or K4-minor free. Hetherington
and Woodall [41] used an efficient approach to proving the LCC for simple near-
outerplanar graphs; viz., they proved it for (simple) (K, V (K; U K3))-minor-free
graphs. To see that this takes care of near-outerplanar graphs, notice that the join
K, v (K; U K3) can be viewed both as K5 3 plus an edge connecting two degree-
two vertices and as K4 with one subdivided edge. We should point out that the LCC
verification is a straightforward consequence of the main results of this paper, whose
larger scope included total list-colouring near-outerplanar graphs.

Starting in the mid-2000s, numerous authors discovered combinations of for-
bidden cycle and minimum-A conditions sufficient for simple graphs to satisfy the
LCC. These account for eight entries in Table 11.1; we cover them in slightly more
detail here. Graphs in this paragraph are always simple. Hou et al. [44] considered
planar graphs containing no cycle with length between 4 and k (inclusive). They
confirmed the LCC whenever the pair (k, A) is entrywise at least any member of the
set {(4,7),(5,6),(8,5),(14,4)}. Using [12] together with their own tools, Wang
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and Lih [88] proved several results of a similar flavour, now for graphs embedded in
any surface of nonnegative Euler characteristic €. (Aside from the Euclidean plane,
this adds the projective plane, the Klein bottle, and the torus to the allowable host
surfaces.) For these graphs G, they showed that

L=x (=4 (11.11)

under any one of the following conditions: (i) G contains neither 4- nor 5-cycles
and A > 7; (ii) G contains no 4-cycle and A > 9; (iii) G contains no two
3-cycles sharing a vertex and A > 9; (iv) G contains no two 3-cycles sharing
an edge and A > 11; or (v) G contains no 5-cycle and A > 11. For planar
graphs, again, Liu et al. [63] also established (11.11) and so confirmed the LCC
for graphs containing neither 4- nor 6-cycles and satisfying A > 6 or containing
neither 5- nor 6-cycles and satisfying A > 7. Next we mention a result of Wu
and Wang [91], who considered graphs embeddable on a surface with & negative.
For such graphs, they extended a result from [12] by proving that (11.11) holds
whenever A > /25 —24¢ + 10. The next two articles return to the case of
nonnegative €. For these graphs G, Cranston [21] obtained (11.11) whenever G
does not contain two 3-cycles sharing an edge and A > 9; this covers just one
theorem among several in his paper concerning both total and edge list colouring.
Liu et al. [64] reached the same conclusion (also among other results) for graphs
with ¢ > 0, not containing two 4-cycles sharing a vertex and having A > 8. Li
and Xu [61] published the most recent result of this flavour chosen for this chapter.
They established (11.11) for planar graphs not containing a 3-cycle sharing an edge
with a 4-cycle and satisfying A > 8. Like many of the theorems mentioned in this
paragraph, this result was proved using ‘discharging’, a technique renowned for its
effectiveness on the 4-colour problem.

The LCC has also been verified for certain graphs enjoying one of a couple of
other variations of planarity. A graph is 1-planar if it can be drawn in the plane so
that each edge is crossed by at most one other edge. Zhang et al. [92] proved that
simple 1-planar graphs with A > 16 satisfy Vizing’s conjecture (11.5), while those
with A > 21 satisty X; < A, hence (11.11). A graph is pseudo-outerplanar if each
of its blocks has a plane embedding so that its vertices lie on a fixed circle and its
edges lie inside the disc of this circle, with each of them crossing at most one of
the others. Tian and Zhang [82] confirmed the LCC for simple pseudo-outerplanar
graphs with A > 5.

In light of the early progress [39] on the LCC for complete graphs (see (11.10)), it
is vexing that the conjecture remains open for most of the even-order cases. Perhaps
it’s not surprising because the full even-order case implies the odd: just notice that
due to K»,,,—1 C K>, if the LCC holds for K>,,, then

XZ(KZVn—l) = XZ(KZm) = X/(KZm) =2m—1,

which gives the LCC for odd n. For even order, the first nontrivial case is K4, which
satisfies the LCC by a result in [25] (because K} is 3-regular, 3-edge chromatic, and
planar). An elementary proof of this case was also given by Cariolaro and Lih [14].
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A few years later, in [15], Cariolaro collaborated with three others (including his
father) to prove the LCC for Kg. Similar tools and a more sophisticated approach
eventually led to the next result by one of those three, Schauz, who in [78] showed
that )(2 (Kp+1) = p for all odd primes p (hence confirming the LCC for these
graphs). Schauz’s proof uses a version of the ‘Combinatorial Nullstellensatz’ (see
[2]) introduced by himself in [77]. His beautiful theorem offers a perfect point to
conclude our discussion of the LCC.

11.2 The Erdos-Faber-Lovasz Conjecture

Now we turn to a well-known Erd&s prize problem, for which he” offered $500
for either a proof or a counterexample. For the last twenty years of his life, Erdds
considered it one of his favourite combinatorial problems—see, e.g., [27, 29, 30].
One appealing formulation, due to Haddad and Tardif [35], supposes n commit-
tees, no two sharing more than one common member and each with n members.
They hold their meetings in a common boardroom containing n distinguishable
chairs. The Erd6s-Faber-Lovasz (EFL) conjecture asserts that it is possible for each
person to select a ‘persistent’ chair, that is, one to be used during each meeting
of every committee to which she/he belongs. Looking back, years after its original
formulation (not the one above), Faber [32] restated the problem succinctly:

given n sets, no two of which meet more than once and each with n elements,
color the elements with n colors so that each set contains all the colors. (11.12)

As Erdds [26] remarked following one of the earliest published statements of the
EFL conjecture: “It clearly fails if we have n + 1 sets.” (Thanks to Alex Soifer [81,
p. 363] for pointing out this reference.)

The conjecture’s genesis provides a quintessential example of Pdlya’s adage
(from [72]): “If you can’t solve a problem, then there is an easier problem you can’t
solve: find it.” During a 1972 meeting [6] at the Ohio State University (Columbus),
Vance Faber, together with Paul Erd6s and Lasz1l6 Lovész, began discussing a variety
of linear hypergraph problems. A few weeks later, they reconvened at a tea party in
Faber’s apartment in Boulder, CO, where he was a postdoc at the National Center
for Atmospheric Research. The difficulties posed by these problems led the three
mathematicians to create the more elementary ‘n sets problem’ (11.12). In [32],
Faber relates that the three initially figured the conjecture would be easy to resolve
and planned to gather the next day to write the proof. Instead, in the spirit espoused
by Pdlya, the new problem itself became a source for numerous ‘easier problems’,
continuing to this day.

OErdés’ tradition of offering cash rewards for certain of his favourite problems lives on, now
underwritten by Chung and Graham [19] in his honour.
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Fig. 11.3 An EFL graph with n = 4 (Public domain image by David Eppstein, from http://en.
wikipedia.org/wiki/File:Erdds-Faber-Lovasz_conjecture.svg; usage permission is granted under
the GNU Free Documentation License.)

We present a sample of EFL-related results. More thorough treatments can be
found, e.g., in the surveys [51] (up to 1994) and [75] (to 2007).

Another natural formulation casts the EFL assertion in terms of graphs (with a
moniker borrowed from [75]):

Conjecture 2.1 (EFL: graphical). If for 1 <i < n, the n-cliques K, (i) on vertex
sets V; satisfy |V;NV; | < 1 fori # j, then the union G := | J/_, K, (i) has x(G) = n.

Graphs G appearing in the statement of Conjecture 2.1 are called EFL graphs. It’s
worth noting that these graphs may contain n-cliques besides the obvious ones. In
Figure 11.3, the upper yellow, leftmost (magenta), rightmost (green), and lowest
(red) vertices form a 4-clique that is not one of the building block K,’s. Noticing
this phenomenon, one might wonder whether G can contain cliques even larger than
the K, (i)’s.

To settle this question, consider a clique H in G. Such an H gives rise to a
hypergraph J{ with vertex set {K,(i)}/_, by a construction called dualizing: for
each vertex x of H, we introduce an edge A, of H{ via A, := {K,(i): x € V;}.
(Viewed as vertices in H, some of the K,(i)’s may lie in none of J{’s edges, but
this doesn’t interfere with our discussion.) As H is a clique in G, the hypergraph H
is intersecting, but because the original cliques K, (i) are pairwise edge-disjoint, we
have |[A, N A,| = 1 whenever x and y are distinct vertices of H. This is exactly the
set-up for a 1948 result of de Bruijn and Erdds:


http://en.wikipedia.org/wiki/File:Erd�s-Faber-Lov�sz_conjecture.svg
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Theorem 2.2 ([13]). If 3 is a hypergraph of order n, with |A N B| = 1 for all
distinct A,B € H, then |H| < n (with equality only when 3 is a [possibly
degenerate] projective plane or is a star with a loop at the central vertex).

Let us correct a propagating bibliographic error that crept in to the lecture
version [58] of this chapter; cf. [51, 54, 75]. The citation for Theorem 2.2 is indeed
[13] and not a 1946 de Bruijn solo article where he gave us the ‘universal cycles’
now carrying his name.

Back to the H dualizing H. As a consequence of Theorem 2.2, we have |H| < n,
whence |V(H)| < n, which shows that the clique number w(G) is at most n. Of
course, now w(G) = n.

The device used to explore the cliques in G also leads to a more commonly
studied version of the EFL conjecture. First notice that vertices lying in exactly one
of the K, (i)’s defining G play no essential role in determining y(G): if G’ is obtained
from G by deleting these vertices, then y(G) < n if and only if y(G’) < n. Because
the former relation here is equivalent to y(G) = n, confirming Conjecture 2.1
amounts to proving the latter. If we dualize G’, as we did for cliques H above,
then we obtain a hypergraph J{, again with vertex set {K, (i) }'_,. Now H may fail
to be intersecting, but at least it’s simple. By construction, vertex-colouring G’ is
equivalent to edge-colouring J, so we arrive at a hypergraph colouring variant of
Conjecture 2.1:

Conjecture 2.3 (EFL: hypergraphical). If J is a simple hypergraph of order n,
then y'(H) < n.

Hindman [43] first noticed the reduction just described and the equivalence of
Conjectures 2.1 and 2.3.

Theorem 2.2 not only reveals the clique number of the EFL graphs but also
settles the EFL conjecture for intersecting hypergraphs. For if J{ is both simple
and intersecting, then it satisfies the de Bruijn-ErdGs hypothesis, and so y'(H) <
|H| < n.

We’ve already encountered several instances where Conjecture 2.3 is sharp; to
wit, (i) J{ is a (possibly degenerate) projective plane, or (ii) J{ is a complete graph
of odd order n > 3. The cases (i) here align with the sharp cases in Theorem 2.2,
from which we omit the looped star example only because it is not simple. The cases
(i1) here are among the sharp cases in Vizing’s theorem (11.4) because K¢+ is a
regular simple graph of odd order with A = 2£. Other authors (e.g. [51, 75]) have
noted that minor modifications in case (ii) also yield equality in Conjecture 2.3; we
add some flesh to this observation with just one example. If £ > 1, then any graph
G obtained from K,y by deletion of fewer than £ edges is a sharp EFL instance.
For suppose that D (< £) counts the deleted edges. With G of odd order, it satisfies
v < (n—1)/2 = £, and because of the universal bound

!

‘= (11.13)
v
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we obtain

L(G) > L2¢+1)—-D :2€+1—D )
14 L
so that y'(G) > 2£ + 1. Of course, Vizing’s theorem gives the reverse bound,
confirming our claim about G.

While we’re on the topic of Vizing’s theorem, we ought to point out that it implies
Conjecture 2.3 when J{ = G is a (simple) graph. In fact, it gives a stronger bound
unless A(G) = n — 1. But in this case, we may as well view G as a subgraph of K,
and colour all of E(K,,) with at most n colours (which possibility is well known and
easier to prove than Vizing’s theorem; cf. [5]). Restricting this colouring to E(G)
gives the required EFL bound, y'(G) < n, without having to resort to the full power
of Vizing’s theorem. See [54] for a generalization of Conjecture 2.3 which, in the
case of graphs, specializes to Vizing’s theorem exactly.

11.2.1 Progress Towards the EFL Conjecture

Basic counting shows that in a simple hypergraph H, an edge A of size k(> 2)
intersects at most

k(n—k)

11.14
r—1 ( )

other edges of size at least k. Indeed, since J{ is simple, each such edge has a
single vertex in common with A, and for each of the k vertices x in A, each of
the n — k vertices not in A appears in at most one edge with x. When k > 2,
the expression (11.14) is at most 2n — 4, so y'(H) < 2n — 3 follows by greedily
edge-colouring J in nonincreasing order of edge sizes. If the minimum such size
is at least three, then (11.14) yields an upper bound on y'(J) of roughly 3n/2.
Independently, Mitchem [66] and Chang and Lawler [16] established the same
bound, namely, y'(3) < [3n/2 — 2], for all simple hypergraphs. Much more
recently, Sdnchez-Arroyo [76] used the upper bound (11.14), in its dual form, to
prove Conjecture 2.3 under the added hypothesis that J{’s minimum edge size
exceeds /n (more on this after Theorem 2.7).

Ten years after the EFL conjecture’s first appearance, Seymour [79] published
the following significant result.

Theorem 2.4. If 3 is a simple hypergraph of order n, then v(H) > |H|/n, with
equality only if 3 is either (i) a (possibly degenerate) projective plane or (ii) a
complete graph of odd order.

Because of (11.13), Theorem 2.4 follows from the hypergraphical EFL conjecture.

In the same paper where he proved this theorem, Seymour conjectured a fractional
analogue of Conjecture 2.3 which he later confirmed in an article [57] with Kahn:
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Theorem 2.5 (EFL: fractional). If H is a simple hypergraph of order n, then
X (H) =n.

Coincidentally, I took Paul Seymour’s structural graph theory course the autumn
preceding their submission of the manuscript [57]. Because he used Jeff Kahn’s
office during that semester, office hours would interrupt their collaboration. Once or
twice I wondered about their chalkboard hieroglyphics—now I think I know what
they were about.

By LP duality, Theorem 2.5 is equivalent to the statement that for a simple
hypergraph JH, every function w: H — R™ that is feasible for problem (11.18)
(in this chapter’s Appendix) satisfies

> w(a) <n.

AeH

Noticing the feasibility of w = 1/v(3H), we see that Theorem 2.4 follows from
Theorem 2.5, which (because of y* < x’) places the latter result between the
former and the EFL conjecture itself. In proving Theorem 2.5, Kahn and Seymour
used Motzkin’s lemma (from [68]), which contributed to a simpler argument than
the one originally used by Seymour in proving Theorem 2.4. Though these are
no doubt beautiful theorems, 20 plus years ago, Kahn [51] lamented that “there
is presently little reason to think that these results are tending toward a proof of
[Conjecture 2.3].”

In a contemporaneous article [50], Kahn proved that the EFL conjecture is
asymptotically correct:

Theorem 2.6 (EFL: asymptotic). Simple hypergraphs 3 of order n satisfy
X (H) < n+ o(n).

In ‘epsilontics’, this means that for every ¢ > 0, if 3 is a simple hypergraph with
sufficiently large order n, then y'(H) < n + en. For this outstanding result, ErdGs
“immediately gave him [Kahn] a consolation prize of $100”, a snippet of folklore
believed widely among Rutgers combinatorics students at the time and confirmed in
this quote from [30]. In [51], Kahn sketches a second proof of Theorem 2.6 using
(a weak version of) the main result in [52].

Faber himself made one of the more recent contributions to the EFL literature.

Theorem 2.7 ([32]). Every simple, A-regular, r-uniform hypergraph H of order n
satisfies the following: (i) if A < r+1, then y'(H) < n, and (ii) for some (universal)
constant C, if r > C and n > Cr?, then y'(H) < n.

The proof relies on a theorem of Alon et al. [4].

Sanchez-Arroyo’s result mentioned at the start of this section shows that we may
assume here that n > r2. Combining this with Theorem 2.7 narrows the range of
values of n, relative to a finite set of choices for r, for which EFL counterexamples
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Photo courtesy of

Fig. 11.4 Vance Faber (January 2014) investigating his ‘Faber-Gator conjecture’

can still exist when J is uniform and regular. Given A, potential counterexamples
are restricted by r < A — 1, and a choice with r > C bounds n within the finite
‘Goldilocks’ range > < n < Cr2.

Approaching the 2014 Joint Meetings, I figured that the audience of my
lecture [58] might appreciate a recent photograph of Professor Faber. After he
graciously supplied the one in Figure 11.4—taken on vacation in the Florida
Everglades—I used the photo to mark the lecture’s endpoint. Here it signals this
chapter’s wind-down.

11.2.2 A Mini-Miscellany of EFL-Related Results

Augmented by the excellent surveys [51, 75] mentioned before Conjecture 2.1, the
preceding section contributes to a reasonably complete catalogue of EFL-related
results to 2007. Here we cite a few newer articles together with an earlier one that
slipped through the surveys’ cracks. Again we make no completeness claim; the
point is to highlight some recent EFL progress.
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Perhaps because it didn’t appear in a combinatorics journal, the article [7]
somehow evaded coverage in either of the EFL surveys. Beutelspacher et al. proved
the EFL conjecture for projective geometries. In this case, Conjecture 2.3 asserts
that y'(PG(d,q)) < ¢ + ¢*' +--- + g+ 1 =: ©,4. These authors established
a more stringent bound for such set systems, namely, for d > 3, that (®,_;
<) ¥’ (PG(d,q)) < 2041 + 20,_,. They also showed that the lower bound here
is sharp when ¢ = 2 or d = 2/ — 1 for an integer i > 2 and provided a table of
best-known values of y'(PG(d, q)) whend < 11.

Using MathSciNet®, we found only a little more than a handful of EFL-related
articles since 2007: [46, 74, 59, 67, 69, 62, 73]. Preprints of both [46] and [59] were
cited and discussed in the latest survey [75]; we include them here only to update
the citations.

Romero and Sanchez-Arroyo [74] proved the EFL conjecture (in the n sets
formulation (11.12)) for the cases when the edges of J{ can be labelled with the
integers 1,2, ..., n so that for every vertex x of J{, the labels of the edges containing
x can be split into at most two discrete intervals of the form {i,i 4+ 1,...,i + k}. As
singletons take this form, their result extends the case in which every vertex is in at
most two edges; in dual form, this is the case settled by Vizing’s theorem (11.4) (cf.
the paragraph preceding Sect. 11.2.1).

Mitchem and Schmidt [67] revisited an early result of the first author [66]
and confirmed Conjecture 2.1 for two new classes of EFL graphs. For such a
graph G with a vertex x, they call the number of K,,(i)’s containing x the special
degree of x. Then G is r-uniform if every one of its vertices has special degree
1 or r (corresponding, if G were dualized, to an r-uniform hypergraph J{ in
Conjecture 2.3). The theorem from [66]—proved more simply by Mitchem and
Schmidt—uverifies Conjecture 2.1 for EFL graphs in which each K, (i) contains at
most one vertex of special degree exceeding two. Their newly verified classes are
both r-uniform EFL graphs, the first satisfying3 <r <n < r(r—1)(r—2) + 1 and
the second with r > 3 and carrying additional structure inherited from a ‘resolvable
transversal design’ associated with a certain subgraph of G.

Paul and Germina [69] confirmed Conjecture 2.3 when A(H) < \/ n+./n+1.
By counting, it follows from Sdnchez-Arroyo’s [76] minimum edge-size hypothesis
(noted in the first paragraph of Sect. 11.2.1) that the hypergraphs considered by him
satisfy the Paul-Germina hypothesis on A(J{) and consequently that their result
generalizes [76].

A b-colouring of a graph G is a proper colouring of V(G) in every colour
class of which there is a vertex having neighbours in all the other colour classes;
the b-chromatic number y,(G) is the maximum integer k for which G admits a
b-colouring using k colours. These concepts were introduced in [45], and Lin and
Chang [62] recently discovered a connection between them and the EFL conjecture.
They constructed a family B,, of bipartite graphs with the following property: if
Conjecture 2.1 holds, then every H € B, satisfies y,(H) € {n,n — 1}. Based
on this theorem, they proposed a weakening of Conjecture 2.1: if H € B, then
x»(H) € {n,n — 1}. They confirmed this conjecture for a certain class of graphs.
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The most recent article on the EFL conjecture appeared in 2014, the year before
this writing. Extending Hindman’s study in [43] of small cases (up to n = 10),
Romero and Alonso-Pecina [73] have now confirmed Conjecture 2.1 for n < 12.
Luckily, for ending our EFL discussion and starters on new research, that leaves 13.

Appendix: Notation and Terminology

Our purpose here is to fix the notation and terminology appearing in this chapter
and not to provide an exhaustive definition list for related nomenclature. Omissions
of a combinatorial or graph-theoretic nature may be found in [10], while linear
programming omissions can be rectified using [20].

Sets We denote the sets of real and nonnegative real numbers by R and R,
respectively. If n is a positive integer, then [n] means the set {1,2,...,n}. If S is
a set and k a nonnegative integer, then (i) denotes the set of all k-element subsets
of §.

Hypergraphs and Graphs A hypergraph consists of a finite set V of vertices,
together with a finite multiset J{ of subsets of V; elements of J{ are called edges.
We follow a common practice and use H{ to refer both to a hypergraph and its edge
set. The order of a hypergraph is the cardinality of V and is usually denoted by
n, while m is reserved for the size |H| of J{. Most hypergraphs here are simple,
meaning they contain no singleton edges and any two distinct edges intersect in at
most one vertex. The degree of a vertex is the number of edges containing it, and
A(3) denotes the maximum degree in J{. A hypergraph is regular if every vertex
has degree A and in this event is called A-regular. (We generally omit the argument
from a hypergraph invariant when there’s no danger of ambiguity.) A hypergraph J{
is uniform if every edge A € J{ contains the same number r of vertices and in this
event is called r-uniform. We call H intersecting when A N B # & for every pair
A, B of edges in H{. One natural example of a hypergraph enjoying all of these last
three properties is a projective plane P of ‘order’ ¢ (for an integer ¢ > 2). Of course,
as a hypergraph, such a P has order and size ¢> + ¢ + 1 and is (¢ + 1)-regular and
(g + 1)-uniform, and pairwise edge intersections are all singletons. A degenerate
projective plane (sometimes called a ‘near pencil’ in the literature) is a hypergraph
on the vertex set [n] with edge set {{1,n},{2,n},...,{n—1,n},{1,2,....,n—1}}.

A multigraph G = (V, E) is a 2-uniform hypergraph with vertex set V and edge
set E; this definition, though not quite standard, conveniently disallows G to contain
loops, which get in the way of careful definitions of both vertex and edge colouring.
A simple graph is a multigraph that is simple in the hypergraph sense. We sometimes
use the generic ‘graph’ when there is no reason to be specific regarding multigraph
or simple graph. The maximum number of vertices in a clique of G is denoted by
w(G).
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Colouring For a graph G = (V, E) and a positive integer k, a k-colouring of G is a
function o : V — [k] such that

0(x) # o(y) whenever {x,y} € E. (11.15)

Such functions are usually called ‘proper colourings’, but we never consider
improper colourings and thus dispense with the adjective. The least k for which
G admits a k-colouring is G’s chromatic number x(G). A k-list assignment L is a
function that assigns to each vertex x of G a k-set (or ‘list’) L, (of natural numbers,

say). Given such an L, an L-colouring of G is a functiono: V — U L, such that

X€V
o(x) € L, for each x € V and the usual colouring condition (11.15) is satisfied. The
list-chromatic number y, (G) is the least integer k for which G admits an L-colouring
for every k-list assignment L. Because one such L has each L, = [k], we always
have y, > y.

Both of y, y, have edge and ‘total’ analogues. The chromatic index y'(G) of G
can be defined as the chromatic number of the line graph of G and likewise for the
list-chromatic index x| (G). The total graph of G = (V, E) has vertex set V U E and
an edge joining every pair of its vertices corresponding to an incident or adjacent
pair of objects (vertices or edges) in G. The total chromatic number x"(G) is the
chromatic number of the total graph of G, while the total list-chromatic number
1 (G) is defined analogously to x! (G). It’s an exercise to prove that these invariants
always satisfy

A+1) )" =)/ <x +2(s2A0+1). (11.16)

When we consider y’ for hypergraphs H, it’s useful to have in mind the
connection with matchings. A matching in J{ is a set of pairwise disjoint edges of
H, and we write M for the set of matchings of H. We denote by v () the maximum
size of a matching in K, i.e., max{|M|: M € M}. Now y'(H) is the least size of a
subset of M whose union is H. This formulation may be cast in linear programming
terms. First we define the fractional chromatic index y'* (H) as the optimal value of
the LP (in the nonnegative orthant of RM):

min Z x(M)
MeM (11.17)
subject to Z x(M) > 1 foreach A € X.
AeMeM

Notice that any optimal solution x € R to the LP (11.17), under the extra
constraint that x have integer entries, must have {0, 1}-entries. Thus y'(H) is the
optimal value of this integer LP, whose linear relaxation (11.17) defines y"™*(3).
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We also have one occasion to refer to the LP dual of problem (11.17) (in the
nonnegative orthant of R¥?):

max Z w(A)

AeH

subject to Z w(A) < 1 foreach M € M.
AeM

(11.18)

In (11.8)—see Sect. 11.1.1—it would have been natural to write )(2 * in place of y'*,
and indeed, we could have done so because these two invariants turn out to be the
same; see, e.g., [55].
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Chapter 12
Some Conjectures and Questions in Chromatic
Topological Graph Theory

Joan P. Hutchinson

Abstract We present a conjecture and eight open questions in areas of coloring
graphs on the plane, on nonplanar surfaces, and on multiple planes. These unsolved
problems relate to classical graph coloring and to list coloring for general embedded
graphs and also for planar great-circle graphs and for locally planar graphs.

Mathematics Subject Classification 2010: Primary 05C15; Secondary 05C10

12.1 Introduction

Much of chromatic graph theory was first stimulated by the four-color conjecture;
much of recent research in this area has been further stimulated by the proof of the
four-color theorem. The conjecture, posed in 1852 by a student, Francis Guthrie,
asks if the regions of every planar map can be colored with four colors, one color
assigned to each region, so that every pair of regions that share a border receives
different colors. See Jensen and Toft’s comprehensive book on graph coloring
problems [35, §1.2] for the early history of this conjecture (Figure 12.1).

In the dual, graph theory version, the conjecture asks if every planar graph
can have one of four colors assigned to each vertex so that adjacent vertices
receive different colors. After many false attempts, the four-color theorem was first
proved in 1976 by Appel and Haken [6] with a computer-assisted proof, which was
revolutionary in its computer technique and monumental in its length and depth.

The four-color theorem has since been reproven at least twice, first by Robertson,
Sanders, Seymour, and Thomas in 1996 [51] and later by Gonthier in 2008 [27],
both proofs assisted by computer searches. Needless to say, a more elementary
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Fig. 12.1 A 4-coloring of all the 3,093 counties in the contiguous US states [58]

(straightforward, purely theoretical) proof without the use of a computer would be
most desirable, but the search for such a proof is not a task to be undertaken lightly.

In other words, beware of the “four-color disease.” On the other hand, the four-
color problem has created many colorful and engaging related conjectures, whose
solutions are likely more tractable and for which partial results are possibly more
easily obtained.

12.2 Some Challenging Open Problems

Here are four direct offspring of the four-color problem that lead to one solved
and three unsolved chromatic problems, Conjecture 1 and Questions 2 and 3.
Questions 4-9, in subsequent sections, pose newer variations.

First, since a (finite) graph can be drawn without edge crossings in the plane if
and only if it can be so drawn on the surface of a sphere, one can consider other
objects on which to draw graphs; classically these are the closed and bounded, two-
dimensional surfaces without boundary. These surfaces are classified for orientable
surfaces as the sphere plus handles or, more descriptively, as the sphere, the torus,
the double torus, ..., the k-holed torus, or equivalently the sphere plus k handles,
for some nonnegative integer k.

For nonorientable surfaces these are the sphere plus crosscaps (each crosscap
being a disk with opposite boundary points identified; see Figure 12.6) or the
projective plane, the Klein bottle, . . ., and the sphere plus j crosscaps for somej > 0.
For an excellent, comprehensive book, consult Mohar and Thomassen’s Graphs on
Surfaces [42], where a completely combinatorial explanation is given of surfaces,
handles, crosscaps, and the graphs that embed on surfaces.

For some beautiful depictions of nonorientable surfaces, consult Ferguson [21].

Definition 1. The Euler genus g of a surface S is defined to be g = 2k if S is
orientable and is (homeomorphic to) the sphere plus k > 0 handles and g = jif Sis
nonorientable and is the sphere plus j > 0 crosscaps.
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Definition 2. A graph embeds on a surface if it can be drawn on that surface without
edge crossings. The genus of a graph is the least genus of a surface on which the
graph embeds. A graph of genus 0 is called a planar graph.

Theorem 1 (Euler-Poincaré Formula). If G embeds on a surface of Euler genus
g > 0 with every face a 2-cell (i.e., contractible to a point on the surface), then

v—e+f=2-g,

where v is the number of vertices and e is the number of edges of G, which is
embedded with f faces.

Definition 3. For k > 0, a graph is said to be k-colored if one of k colors is
assigned to each vertex so that every pair of adjacent vertices receives different
colors. A graph is k-chromatic if k is the least integer for which the graph can be
k-colored. A graph is said to be k-critical if it is k-chromatic, but every subgraph
can be (k — 1)-colored.

In part because of frustration with the four-color conjecture, Heawood in 1890,
using the Euler—Poincaré formula, determined an upper bound on the number of
colors needed for graphs that embed on a surface of Euler genus g > 0.

Theorem 2 (Heawood [30]). If G embeds on a surface of Euler genus g > 0, then

T+4/24g+1 J
2

it can be colored in at most L colors.

Thus a graph on the projective plane (g = 1) needs at most six colors, a graph on
the torus or on the Klein bottle (¢ = 2) needs at most seven colors, a graph on the
double torus (g = 4) needs at most eight colors, and a graph on the 17-holed torus

7+4/817
2

or on the sphere plus 34 crosscaps needs at most L J = 17 colors.

Are so many colors ever needed? Figure 12.2 shows two maps where seven and
eight colors are needed. The dual graphs are the complete graphs K7 and Kg (see
Definition 5), which need seven and eight colors, respectively. Leading a band of
graph colorers, in 1968 Ringel and Youngs [49] proved that Heawood’s upper bound
can always be achieved except on the Klein bottle, for which Franklin [22] had
proved earlier that only six colors are ever needed (Figure 12.3).

Fig. 12.2 Seven mutually adjacent countries on the torus (left) and eight mutually adjacent
countries on the double torus (right, with both sides shown)
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A B C D E F A

Fig. 12.3 K; embedded on the torus, represented as a rectangle with top and bottom identified and
left and right identified

Definition 4. The chromatic number of a surface is the maximum chromatic
number among all graphs that embed on that surface. (In other words, it is the least
k for which every graph on that surface can be k-colored.)

Theorem 3 (Ringel-Youngs Map-Color Theorem [49]). The chromatic number

of a surface of Euler genus g > 0 is given by H(g) = L7+“/§4g+lJ except for the
Klein bottle, where only six colors are needed. In particular, for every g > 0, the

complete graph on H(g) vertices, Kp(g), embeds on the surface of Euler genus g.

The map-color theorem was proved without the use of a computer and is
comprehensively and clearly written up by Ringel in [48]; see also Gross and Tucker
[28] for an alternative approach and proof. Note also that although the substitution
g = 0 into the Heawood bound enticingly gives the answer 4, the Ringel-Youngs
proof is valid for all surfaces except the sphere since it requires g > 0. Much
work and many conjectures have been developed from this remarkable result; see
Section 12.4 below. After this pioneering result, the search for a solution to the
four-color problem continued.

A second direction was developed from the four-color problem in 1943 by
Hadwiger [29], in part to develop the chromatic theory of graphs and to escape
the topological constraints of the plane or sphere.

Definition 5. A graph G is said to contract to a graph H if by a sequence of vertex
deletions, edge deletions, and edge contractions, in which two adjacent vertices are
identified, G can be transformed to H. The complete graph on k vertices, Ky, consists
of k vertices with every pair adjacent. A graph that does not contract to K is said to
be K -minor-free (Figure 12.4).

CONJECTURE 1 (Hadwiger’s Conjecture or HC). Every k-chromatic graph
contracts to K. Equivalently a graph that is K;-minor-free can be (k — 1)-colored.
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Fig. 12.4 The Petersen graph (left) contracts to K5 (right) with five edge contractions

One can easily check that the Petersen graph can be 3-colored and is 3-chromatic
even though it contracts to Ks. This conjecture does not give a necessary and
sufficient condition for being k-chromatic.

For a history of work on this conjecture, see [35, Ch. 6]. For some expository
write-ups of recent research, see Toft [54], Chudnovsky [14], and Bondy [9].
Hadwiger’s conjecture was first proven for k < 4; see [35, §6.1]. In 1937 Wagner
[57] proved that the case of k = 5 is equivalent to the four-color conjecture and
so was validated in 1976. The strongest result to date is the proof that HC holds
for k = 6 by Robertson et al. [50] with a computer-assisted proof that reduces the
problem to the four-color theorem. In a different approach, Bollobas, Catlin, and
Erdé6s [8] used a probabilistic proof to prove the striking result that “almost all”
graphs satisfy HC.

There are many recent results on special cases and variations on this conjecture,
and many, many people have been, and are, working on these problems. We suggest
a deeper study of related, recent work before tackling this problem; for example, see
the recently published Topics in Chromatic Graph Theory [7, Ch.4]. In summary,
despite assaults on many fronts of HC, it has resisted full solution so far. Stay tuned.

A third direction concerns the coloring of graphs on the disjoint union of spheres
(or planes), known as Ringel’s Earth—-Moon problem and also as the problem of the
chromatic number of graphs of thickness #; see [35, pp. 36-37] and Ringel [47].

In the former problem, suppose the Moon were colonized. How many colors
would be needed to properly color the countries of the Earth and of the Moon so that
every country and its lunar colony receive the same color? The maximum number of
colors needed lies between 9 and 12, inclusively (see below), but despite many years
of interest, no further progress has been made on narrowing these bounds. Some
have suggested that this problem is as hard as two or three four-color theorems!

Stated in dual, graph theory terms, what is the maximum number of colors needed
for a graph that is the edge union of two planar graphs? Or the edge union of more
than two planar graphs? Here is the precise definition.
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Fig. 12.5 Kjg shown to have thickness 2

Definition 6. A graph that is the edge union of #, but no fewer, planar graphs, each
on the same set of vertices, is said to have thickness t. Let y, denote the chromatic
number of thickness ¢ graphs; that is, y, is the maximum number of colors needed
for a graph of thickness ¢.

Another way to explain the thickness parameter is, given a graph G with
n vertices, to make ¢ copies of the n-vertex set of G and then assign each edge of G
to one of the 7 copies so that ¢ planar graphs are created. G has thickness ¢ if 7 is the
smallest for which this assignment can be made.

In Figure 12.5 let each black rectangle represent a vertex and each horizontal or
vertical line an edge. The resulting graph is Kg with its edges divided into two planar
subgraphs, formed from the horizontal and the vertical edges.

Ringel’s initial work [47] on the Earth-Moon problem showed that 8 < y, < 12.
Since Kg has thickness 2, it follows that 8 < y,, but Sulanke [24] brought to light
the graph K;; — Cs (where C,, denotes a simple cycle of n vertices). Kj; — Cs is the
same as the Cartesian product of K¢ with Cs (the disjoint union of these two graphs
with all possible edges joining the two). It is an interesting challenge to divide this
graph into two planar subgraphs, as Sulanke did. Its chromatic number is easier
to determine: Kg needs six colors, Cs needs three, and thus the product of these
graphs needs nine. Sulanke’s graph shows that nine colors are sometimes needed
for thickness-2 graphs and thus that 9 < y, < 12.

Euler’s formula arguments (for planar graphs) show that for ¢ > 2,
6t — 2 < y, < 6t. For these bounds also, no tightening has been found.

For example, K;; — Cs is a 9-critical (see Definition 3) thickness-2 graph and
was the only known graph with these two properties for many years. In Boutin et al.
[11] and Gethner and Sulanke [26], many more 9-critical, thickness-2 graphs are
determined; these lead to an infinite family of such graphs. In these papers bounds
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Fig. 12.6 K, embedded on the projective plane, represented as a disk with antipodal points
identified

on the chromatic number of some families of thickness-2 graphs are obtained, and
the authors propose some areas in which to search for a 10-chromatic thickness-2
graph. In summary the ranges for y,, > 2, remain stubbornly open.

QUESTION 2. Can the known bounds on y; be improved? And ultimately, what
is the value of y, fort > 2?

For this section’s final open question, we mention Albertson’s four-color prob-
lem [2]; see [35, §3.3].

QUESTION 3. Given g > 0, is there a constant M(g) such that for every graph G
that embeds on a surface of Euler genus g, all but at most M(g) vertices of G can be
4-colored? In particular for the torus, is M(2) = 3?

There is evidence for an affirmative answer. For example, every 6-chromatic
graph on the projective plane contains K¢, proved by Albertson and Hutchinson [3],
and every 7-chromatic graph on the torus contains K7, proved by Ungar and Dirac
[17]; see [35, §1.2]. In addition both K¢ and K7 embed with all faces three sided
on their respective surfaces; see Figures 12.3 and 12.6. For i = 1,2, a coloring of
Ks4; with colors {1,2,...,5 + i}, embedded as in Figures 12.6 and 12.3, extends
to a coloring of the interior of each three-sided face with colors {1, 2, 3, 4} (by the
four-color theorem!) so that except for i + 1 vertices, the graph can be 4-colored.

A list of all unavoidable graphs in 6-chromatic graphs on the Klein bottle has
also been obtained with more complex proofs by Kawarabayashi et al. [36] and by
Chenette et al. [13].

Note that an affirmative solution to Albertson’s problem would imply the four-
color theorem, for if G were a 5-chromatic planar graph, then an infinite number of
copies of G would embed on the torus, contradicting the existence of M(2). Again
do not undertake the full scope of this problem lightly! But some variations are
approachable, and one such has recently been solved by Nakamoto and Ozeki [43].
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12.3 Some More Recent Open Problems on Coloring
and “List Coloring” of Planar Graphs

We move now to some (possibly) more tractable problems, which either have
received less scrutiny or are more recently conjectured.

Definition 7. A plane graph is a planar graph embedded in the plane. An outerpla-
nar graph is a plane graph drawn with all vertices on one (typically the outer) face.
A triangulation is an embedded graph with all faces three sided (recall Definition 2).
A face of an embedded graph is said to be even sided if it is bounded by an even
number of edges. (An edge with both sides lying on one face contributes two to the
count of edges of that face.)

The “easiest” coloring result on embedded graphs is the result that every plane
graph can be 2-colored if and only if every face is even sided (because an even-faced
graph is necessarily bipartite).

No characterization of 3-colorable or 3-chromatic plane graphs is known; even
the recognition problem for the latter class of graphs is NP-complete; see Garey and
Johnson [25]. But some classes of 3-colorable graphs have been studied; see [35,
Ch. 2]. Here are two sample results, the first from 1898.

Theorem 4 (Heawood [31]). A plane triangulation can be 3-colored if and only if
every vertex has even degree.

Theorem 5 (Krol [37]). A planar graph can be 3-colored if and only if it is a
subgraph of a plane triangulation with all vertices of even degree.

Though Kroél’s condition sounds like a characterization, it can be very hard to
determine whether it holds for a given planar graph.
Here is a not-so-well-known 3-color problem.

Definition 8. Imagine a sphere on which are drawn some great circles, no three
meeting at a point. From this drawing the great-circle graph is the 4-regular plane
graph with a vertex for each intersection point of two great circles and an edge for
each subarc of a great circle that joins two intersection points (Figure 12.7).

Theorem 6 (Brooks [12]). Ifa connected graph G has maximum degree A, then it
can be A-colored unless G is Ka4+1 or A =2 and G is an odd cycle.

By Brooks’ theorem, great-circle graphs can be 4-colored.
QUESTION 4 (Felsner et al. [20]). Is every great-circle graph 3-colorable?

It’s “easy” to show that any hemisphere of a great-circle graph can be 3-colored
by considering a projection of the arcs on a hemisphere onto straight lines in
the plane and using a sweep-line proof since the plane graph and every subgraph
have a vertex of degree at most 2; see §17.7 of [58]. But can two hemispheres
so 3-colored be meshed to obtain one 3-coloring of the whole graph? Though
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Fig. 12.7 A great-circle graph on the sphere with its vertices 3-colored [58]

ubed cd ubed abe acd abe
ab ab aef aef
abcd abcd cde abd
cd cd acd acd
abed ab abed abe aes abc

Fig. 12.8 A non-list-colorable planar graph (left) and a list-colorable variation (right)

this question is not well known among graph colorers, it has intrigued a number
of combinatorial geometers; see (www.openproblemgarden.org/category/graph_
theory) for this problem and many others too.

Many variations on graph coloring have been introduced over the years. Here we
focus on the powerful concept of “list coloring” with first a look at its relevance to
planar graphs; this concept was first introduced by Vizing [55] and by Erd6s, Rubin,
and Taylor [19].

Definition 9. Suppose each vertex v of a graph G has been given a nonempty list
of colors L(v). When G has a proper coloring with each vertex receiving a color
from its list, G is said to be L-list colorable (or just list colorable when the lists
L are clear). If G is list colorable whenever each vertex receives a list of size at
least k > 0, G is said to be k-list colorable (or k-choosable). G is said to be k-list
chromatic if k is the least integer for which G is k-list colorable (Figure 12.8).
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(To convince yourself that the left graph of Figure 12.8 cannot be list colored,
pick a color for a vertex of degree 6. If you picked a or b, try extending the coloring
counterclockwise; if ¢ or d, try extending clockwise.)

When all lists are the same, say L(v) = {1,2,...,k} for each vertex v, then G
is L-list colorable if and only if it is k-colorable. Thus the k-list-chromatic number
is at least as large as the chromatic number. Perhaps surprisingly the former can
be strictly larger than the latter. For an example with a wonderful proof, see the
following theorem; in fact the proof is so wonderful that it is included in a book of
exemplary proofs by Aigner and Ziegler [1].

Theorem 7 (Thomassen [53]). Every planar graph is 5-list colorable.

Voigt [56] and others have found planar graphs that cannot be 4-list colored. In
[19] 2-list-colorable graphs are characterized. See also [35, §2.13] for work in this
area.

QUESTION 5 (Meta). What can be said about planar graphs that are 4-list
colorable? What can be said that distinguishes 3-, 4-, and 5-list-colorable planar
graphs?

Mahdian and Mahmoodian [39] have introduced ideas and results on graphs that
are uniquely list colorable.

Definition 10. A graph G is uniquely k-list colorable, for k > 2, when there exists
a collection of lists with |L(v)| = k for each vertex v of G for which there is a
unique L-list coloring. G has property M (k) if whenever L gives lists of size k to the
vertices of G and G has an L-list coloring, then G has more than one L-coloring. Let
m(G) denote the least k for which M (k) holds for G.

Thus G is uniquely k-list colorable if and only if it does not have the property
M (k). In [39] the authors characterize all graphs that can be uniquely 2-list colored;
an example, which can be generalized to more, is shown in Figure 12.9. From
Theorem 7, it follows (from the proof) that m(G) < 5 for each planar graph G.
The authors ask the next question.

QUESTION 6. [40]Is there a planar graph G for which m(G) = 5? QUESTION 6
has now been answered in the negative; see [18].

We pose one final question about list-coloring planar graphs, one of many that are
open, even though we know the best-possible list-coloring bound for planar graphs.

Definition 11. A Gallai tree [23] is a graph whose every block (a maximal
2-connected subgraph) is an odd cycle or a complete graph (Figures 12.10).

Theorem 8 (Vizing [55], Borodin [10], Erdés et al. [19]). A graph G can be L-list
colored when |L(v)| > deg(v) for every v in G provided that G is not a Gallai tree.

Since we also know that planar graphs are 5-list colorable, the following seems
quite reasonable.
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1,3

1,2

Fig. 12.9 A uniquely 2-list-colorable graph

Fig. 12.10 Three examples of Gallai trees: a 5-cycle, Ks, and a 5-cycle with a copy of K attached
at each vertex

QUESTION 7. A.B. Richter (personal communication). If G # K4 is planar, 3-
connected, and, for each vertex v, |[L(v)| > min{deg(v), k}, is G L-list colorable
when k = 6?

Notice that by the first example in Figure 12.8, for 2-connected, planar graphs,
the answer is “no” when k = 4. The answer is shown to be “yes” for outerplanar
graphs G # K; (see Definition 7) that are merely 2-connected when k£ = 5 by
Hutchinson [33]. Since K5 is not planar, no planar graph can contract to K5 and so
is Ks-minor-free (see Definition 5). The best-known (partial) results on Question 7
appear in Cranston et al. [15]. There they ask for which pairs {r, k} is a graph G L-
list colorable when G is K5-minor-free, r-connected, not a Gallai tree, and |L(v)| >
min{deg(v), k} for each vertex v of G. Before working on this, be sure to consult
their paper.

There is a large and growing body of research on list coloring of general graphs;
for a start see [35, §§1.9, 7.1, 7.2] and [7, Ch. 6]. Then do some Internet searches to
look for the latest papers—this is a popular area!
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12.4 The Power of Locally Planar Graphs
on Nonplanar Surfaces

Returning to coloring graphs on surfaces, a very fruitful point of view is the follow-
ing. Let P be a graph property. Suppose there is a constant k > 3 such that every
graph that is embedded on a nonplanar surface with every noncontractible cycle of
length at least k satisfies P. (A noncontractible cycle is one that cannot be contracted
to a point on the surface.) Then we say that locally planar graphs satisfy P.
Informally, we call an embedded graph locally planar if all noncontractible cycles
are “suitably long,” depending on the problem at hand (Figures 12.11 and 12.12).

Locally planar graphs are also said to have large edge width (see [42]). The
concept of local planarity was introduced by Albertson and Stromquist [5]. The
central problem studies the extent to which these embedded graphs act like planar
graphs.

The next three results illustrate the planar-like properties of locally planar graphs.

Theorem 9 (Thomassen [52]). On all nonplanar, orientable surfaces, locally
planar graphs are 5-colorable.

Fig. 12.12 A locally planar graph on the torus with all faces even sided [58]
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In this proof, a graph embedded on a surface of Euler genus g with all
noncontractible cycles of length at least 64 (27¢) is shown to be 5-colorable; the
cycle-length bound is not claimed to be optimal. Another proof of Thm. 9 is given
by Albertson and Hutchinson [4]. Whereas Thomassen does not assume the four-
color theorem in [52], with that assumption the authors in [4] supply an easier proof
provided all noncontractible cycles have length at least 64 (2% — 1).

Theorem 10 (Hutchinson [32]). On all nonplanar, orientable surfaces, locally
planar graphs with all faces even sided are 3-colorable.

The same result does not hold on nonorientable surfaces, but the maximum
chromatic numbers for locally planar graphs, embedded with all faces even sided,
have been determined in Mohar and Seymour [41] and in Nakamoto, Negami, and
Ota [44].

QUESTION 8 (Meta). What can be said about which locally planar graphs can
be 4-colored? Or what can be said to distinguish the 3-, 4-, and 5-colorable locally
planar graphs?

By the map-color theorem, Theorem 3, we know that K () embeds on a surface
of genus g for g > 0. There are infinitely many cases when Ky, embeds as a
triangulation; we see two such examples in Figures 12.3 and 12.6. When H(g) is
odd, these embedded graphs have all vertices of even degree, namely, H(g) — 1.
Thus Heawood’s theorem of Theorem 4 does not hold on surfaces. Instead we asked
to what extent that theorem holds for locally planar graphs and found the following
answer.

Theorem 11 (Hutchinson, Richter and Seymour [34]). On all nonplanar ori-
entable surfaces, locally planar triangulations with all vertices of even degree are
4-colorable.

The more general problem about properties of embedded 4-chromatic graphs is
asked in [42, Prob. 8.4.10] and studied in Kiindgen and Thomassen [38].

What happens when you ask about list-coloring graphs on surfaces and in
particular about list-coloring locally planar graphs? First, for all nonplanar surfaces,
it is not hard to see that the Heawood bound of Theorem 2 gives the best-possible
list-coloring bound for graphs on surfaces of Euler genus g > 0 [35, §1.9]; thus not
much changes with the introduction of list coloring. However, there is an important
strengthening of Theorem 9.

Theorem 12 (DeVos et al. [16], Postle and Thomas [46]). Locally planar graphs
on every nonplanar surface can be 5-list colored.

Recall that a locally planar graph embedded on an orientable surface with all
faces even sided can be 3-colored.

QUESTION 9. Kawarabayashi (personal communication) has asked whether a
locally planar graph, embedded with all faces even sided on an orientable surface,
can be 4-list colored or even 3-list colored.
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Since the proofs for 5-list-coloring locally planar graphs on surfaces are quite
hard, a solution to this final question may also be very challenging.

In conclusion, graph coloring is a very popular subject. This article is in no way
intended to be comprehensive; instead I have included my favorite open problems
and questions. Another comprehensive list of topological problems that were the
favorites of Dan Archdeacon can be found at (www.cems.uvm.edu/~darchdea/
problems/problems.html), but note that this was last updated in 2003. For one of the
latest collections of open problems, see [7, Ch. 15]. Albert Nijenhuis, together with
Herbert S. Wilf, did pioneering work on combinatorial algorithms [45], an approach
that has developed into a fruitful area of chromatic and in topological graph theory.
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Chapter 13
Turan’s Brick Factory Problem: The Status
of the Conjectures of Zarankiewicz and Hill

Laszlé A. Székely

Abstract In this chapter, we explore the history and the status of the Zarankiewicz
crossing number conjecture and the Hill crossing number conjecture, on drawing
complete bipartite and complete graphs in the plane with a minimum number of
edge crossings. We discuss analogous problems on other surfaces and in different
models of drawing.

Mathematics Subject Classification 2010: 05C10, 52C10

13.1 Origins

The concept of plane graphs (graphs embedded into the plane without edge
crossings) goes well back into the nineteenth century, even to Cauchy [16], as
flattening the skeleton of polyhedra. It turns out that K5 and K3 3 cannot be drawn as
plane graphs as they have too many edges (see formula (13.6)). In 1934, Hanani
(then Chojnacki) [17] proved a stronger statement: if either of these graphs is
reasonably drawn in the plane (see Section 13.2), then two edges will cross an
odd number of times. It turns out that these two graphs essentially exhibit all the
obstacles for a plane drawing: in 1930, Kuratowski [44] showed that if a graph
cannot be drawn crossing-free in the plane, then it contains a subdivision of K5 or
K33, and in 1937, Wagner [75] showed that such a graph has K5 or K3 3 as minor.
The impossibility of drawing K33 without a crossing has been well known in
recreational mathematics. In 1917, Dudeney’s book [24] contained the following
Problem 251: “WATER, GAS, AND ELECTRICITY. There are some half-dozen
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puzzles, as old as the hills, that are perpetually cropping up, and there is hardly a
month in the year that does not bring inquiries as to their solution. Occasionally
one of these, that one had thought was an extinct volcano, bursts into eruption in a
surprising manner. I have received an extraordinary number of letters respecting the
ancient puzzle that I have called “Water, Gas, and Electricity.” It is much older than
electric lighting, or even gas, but the new dress brings it up to date. The puzzle is to
lay on water, gas, and electricity, from W, G, and E, to each of the three houses, A, B,
and C, without any pipe crossing another. Take your pencil and draw lines showing
how this should be done. You will soon find yourself landed in difficulties.” Kullman
[43] cites versions of this problem as the houses and wells problem, the Corsican
vendetta problem, or the Persian caliph’s problem. In 1970, I heard the problem as
three doghouses and three wells from my polytechnics teacher, who was unlikely to
have any background in graph theory.

At this point, Paul Turdn changed the question from whether crossings must
happen in any drawing of the graph to what is the minimum number of crossings
over all drawings. This happened while he was in a forced labor camp in WWIL.
He describes the moment in his foreword to the first issue of the Journal of Graph
Theory [72]: “There were some kilns where the bricks were made and some open
storage yards where the bricks were stored. All the kilns were connected by rail with
all storage yards. ...the trouble was only at crossings. The trucks generally jumped
the rails there, and the bricks fell out of them; in short this caused a lot of trouble
and loss of time ...the idea occurred to me that this loss of time could have been
minimized if the number of crossings of the rails had been minimized. But what is
the minimum number of crossings?” In modern terminology, he asked what is the
crossing number of the complete bipartite graph K,, ,,. This problem has been known
as Turdn’s Brick Factory Problem.

Independently, in 1934, sociologists started drawing graphs in the plane as
sociograms, see Moreno’s book [51]. In 1944, Bronfenbrenner [14] recommended
drawing sociograms with the least amount of crossings and so did Moreno in 1953
the second edition of [51]. (David Eppstein and Marcus Schaefer [64] discovered
these relevant references.) To give more credit to sociology, I mention here that
Sandor Szalai, who is often called the “father of Hungarian sociology,” recognized
the graph Ramsey theorem from his sociogram data: many people exhibit large
cliques or large anti-cliques and asked Paul Turdn whether mathematicians know
about this.

The most thorough account on crossing numbers is the encyclopedic survey of
Schaefer [64]. I follow the notation in [64] for different kinds of crossing numbers.
The online bibliography of crossing numbers [74] is another useful resource. This
paper does not discuss the general lower bound techniques (see [66]) for crossing
numbers as Leighton’s Lemma (or Crossing Lemma), bisection width, and graph
embedding, since these do not yield the best known results for the conjectures
of Zarankiewicz and Hill. The paper does not get into the relevance of crossing
numbers for VLSI (i.e., chip design for computers), although this research direction
led to the general lower bound techniques above in Leighton’s work [46]. We also
avoid the applications of the crossing number method to discrete geometry [68]
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that resulted in considerable progress in several fields, from incidence geometry to
number theory. I am indebted to [10] and [64] for using the results of their thorough
research on the origins of Turdn’s Brick Factory Problem. I also use ideas from my
earlier surveys on crossing numbers [66, 69-71].

13.2 Conjectures

In this paper, the term graph means a finite simple graph, that is, an undirected graph
having no loops or multiple edges. A drawing of a graph G on the plane places the
vertices of G into distinct points on the plane and then, for every edge uv in G, draws
a continuous simple curve in the plane connecting the two points corresponding to
1 and v, in such a way that no curve has a vertex point as an internal point.

The crossing number cr(G) of a graph G is the minimum number of intersection
points among the interiors of the curves representing edges, over all possible
drawings of the graph, where no three edges have a common interior point. (It is
easy to see that the latter condition can be dropped without changing the value of
the crossing number, if we change the objective to minimize ) (efyedges ef lint(e) N
int(f)|, where int(e) denotes the interior of the curve corresponding to edge e. This
alternative approach is necessary if we do not want to give up otherwise beautiful
straight-line drawings, where multiple edges have common internal points.) It is
also easy to see that a drawing of a graph G realizing the crossing number cr(G)
must have the following two properties, otherwise G can be redrawn with fewer
crossings:

(i)  Pairs of edges sharing the same endpoint do not cross,
(il)) Any two edges intersect at most once.

If crossing number problems are posed similarly for the sphere instead of the plane,
stereographic projection shows that the corresponding planar and spheric crossing
numbers are equal, and so is the crossing number on any oriented surface of genus 0,
using continuous deformation.

In order to draw the complete bipartite graph K, ,, with a minimum number of
crossings, Zarankiewicz placed |n/2] vertices to positive positions on the x-axis,
[n/2] vertices to negative positions on the x-axis, |m/2]| vertices to positive
positions on the y-axis, and [m/2] vertices to negative positions on the y-axis
and drew nm edges in straight-line segments to obtain a drawing of K, ,, (see
Figure 13.1). It is not hard to check that the following formula gives the number
of crossings in the Zarankiewicz drawing:

e S

Zarankiewicz [77] and Urbanik [73] independently claimed and published that
cr(Kym) was equal to (13.1), their result was cited and used in follow-up papers,
and even the proof was reprinted in the book by Busacker and Saaty [15]. In 1965
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Fig. 13.1 The Zarankiewicz drawing of K5 5
A tétel bizonyitdsa.* A bizonyitdst ismét teljes indukcidval végezziik

* A bizonyitds itt hiinyos, hiszen semmi sem biztositja, hogy a metszéspontok
két csoportianak nincs kozos eleme. Legjobb tudomidsom szerint 111:_'ug sines a tétel
hidnytalanul bizonyitva, annak ellenére, hogy tobb kisérlet tortént a hiba kijavitasira.
( Lektor.)

Fig. 13.2 The footnote from the publisher’s reader—one of the earliest references in print to the
problems with the Zarankiewicz theorem. “There is a gap in the proof, as nothing guarantees
that the two sets of intersection points are disjoint. As far as I know, the gap has not been fixed,
notwithstanding several attempts. (The publisher’s reader)”

Kainen and in 1966 Ringel discovered a gap in the argument. Richard Guy deserves
much credit for clarifying the situation in [29] and [30]. (As a high school student in
the mathematics program of Fazekas Gimnédzium in Budapest, I read the Hungarian
translation of [15], which still reprinted the incorrect proof, with a footnote added by
the publisher’s reader, Katona: this proof has a gap (Figure 13.2). I was wondering
how this can happen.) The still open Zarankiewicz crossing number conjecture
postulates that

cr(Knm) = Z(n, m). (13.2)

As Z(n,1) = Z(n,2) = 0, the first instance of (13.2) that requires a proofis n > 3
m = 3. The original induction proof of Zarankiewicz actually works in this instance.
The base case is n = 3: cr(Kz3) = 1 = Z(3, 3), as K33 is nonplanar. Assume that
u and v are two distinct vertices from the n-element partite set. Consider and fix
a drawing of K, 3. Assume first that in this drawing edges with endvertex u never
cross edges with endvertex v. If w is a third vertex from the n-element partite set,
all edges going out from u, v, w make a drawing of a K33 and a crossing in it. For
different w’s it is a different crossing, a total of n — 2 crossings. After the removal of
u and v from the drawing, we must see at least cr(K,,— 3) crossings, and those differ
from the previous n — 2 crossings. Using the hypothesis and doing some algebra we
observe at least

Zn—2,3)+n—-2=12(n,3)
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crossings in the drawing. If the assumption above fails, then for every u and v, there
are two edges with endvertices u and v that cross, providing (;) > Z(n, 3) crossings.

In 1970, Kleitman [39] showed that (13.2) holds for m < 6 (the last proof to
an instance of the conjecture without computer). He also proved that the smallest
counterexample to the Zarankiewicz’s conjecture must occur for odd n and m, using
the counting argument to be discussed in Section 13.4. Furthermore, he showed
that any two drawings of K,+1.2,+1 With no two tangential edges and no pairs of
crossing adjacent edges have the same number of crossings modulo 2. This allows
computing the parity of cr(Ka,+1.2m+1). Namely, cr(Kzy+1.4m+1) is even, while
cr(Kan+3.4m+3) is odd. The argument behind this observation follows the crossing
number, when an edge is pulled over a vertex, a generic step to move from one
drawing to another.

In 1993, Woodall [76] used elaborate computer search to show that (13.2) holds
for K77 and K79, leaving K7, and Ko9 the smallest unsettled instances of the
conjecture (13.2). The best bounds for them are as follows. We know cr(K7.19) =
Z(7,10) = 180. The counting argument (see Section 13.4) for copies of K71 in
K711 yields 220 < cr(K7.11)- As cr(K711) is odd, we conclude

221 < cr(K7y) < Z(7,11) = 225.

Even the result (13.14) did not improve on this lower bound. On the other hand, the
bound (13.15) provides

242 < cr(Koo) < Z(9,9) = 256.

From 1958, Anthony Hill, a British artist and amateur mathematician, looked for
the crossing number of K,, and formulated a conjecture based on his drawings. His
conjecture, which postulates that

cr(Ky) = H(n), (13.3)

S H ] U

was subsequently published in a paper by Guy [27] in 1960 and by Harary and Hill
[33]in 1962-1963. A drawing with H(n) crossings can be achieved by the soup can
drawing as follows. The surface of the soup can consists of the top lid, the bottom
lid, and the mantle. Take a soup can and place |n/2] vertices equidistantly on the
perimeter of the bottom lid and [n/2] vertices on the perimeter of the top lid. Join
the vertices on the top lid to each other and the vertices on the bottom lid to each
other, respectively, in straight-line segments. Join on the mantle top and bottom
vertices along the shortest geodesic, making a choice if needed for the geodesic (see
Figure 13.3, where the drawing is distorted by a rotation of the upper lid to improve
visibility).

where
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Fig. 13.3 Place a rotated copy of the five red upward edges to every vertex on the bottom lid to
obtain the soup can drawing of Ky. The right side shows a corresponding cylindrical drawing of
K in the plane

Positive slopes in one
hemisphere

Negative slopes in
other hemisphere

Fig. 13.4 The Blazek—Koman slope drawing of K5

In previous papers, I incorrectly attributed Hill’s conjecture to Guy. The reason
is that I have never had a chance to see the paper of Guy [27] that first published the
conjecture. In 1964, Blazek and Koman [12] came up with a very different drawing
of K, with H(n) crossings, the slope drawing. Consider a regular n-gon in a circle,
such that no line segment connecting any two vertices is parallel with the x-axis.
Draw first all edges and diagonals of the regular n-gon in straight-line segments
to represent K,,. Make the circle the equator of a sphere, and project edges with
positive slopes to the upper hemisphere, and edges with negative slopes to the lower
hemisphere. This is the Blazek—Koman slope drawing of K, (see Figure 13.4). This
spheric drawing can be deformed into a plane drawing with the same number of
crossings, in such a way that the drawing falls into the class of two-page drawings
[64]: all vertices live on a straight line, and no points of edges other than the
endpoints are on this line.
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Kleitman’s cited results [39] on the parity of the partite classes for a smallest
counterexample to Zarankiewicz conjecture (13.2) and on the parity of the crossing
number of that extend to the smallest counterexample to Hill conjecture (13.3) and
on the parity of the crossing number of that. More precisely, if cr(Kz,—1) = H(2n—
1), then cr(K>,) = H(2n), again by using the counting argument to be discussed in
Section 13.4. Hence the smallest possible counterexample for Hill’s conjecture has
an odd number of vertices. Any two drawings of K,,—; with no two tangential edges
and no pairs of crossing adjacent edges have the same number of crossings modulo
2. This result allows computing the parity of cr(Kj,—1): it must have the same parity
as (2"4_1), the number of crossings when 2n — 1 vertices are placed in a circle and
are connected with straight-line segments. Consequently, cr(Kgi+1) and cr(Kgi+3)
are even, while cr(Kg+5) and cr(Kgi+7) are odd.

Pan and Richter [57] proved, in part using computer, that cr(Kj;) = H(11)
= 100. This result extends the verified cases of the Hill conjecture for all n < 12.
McQuillan, Pan, and Richter [48] showed that cr(Ky3) € {219,221,223,225}, the
best result so far on Kj5.

Schaefer [64] cites further early papers of Saaty, who independently arrived at
the Hill conjecture, and of Harary and Guy on the conjectures. Abrego et al. [4]
states “all general constructions (for arbitrary values of n) known with exactly
H(n) crossings are obtained from insubstantial alterations of either the Harary-
Hill or the BlaZzek-Koman constructions (a few exceptions are known, but only for
some small values of n).” Moon [50], likely looking for a better drawing, placed n
points randomly, uniformly, and independently on the sphere and joined the points
along the shorter arc of their main circle, to obtain a random drawing of K, on a
sphere. He computed the expected number of crossings in this random drawing as
614n(n — 1)(n — 2)(n — 3), which is just marginally bigger than H(n).

13.3 Euler’s Formula

Euler’s Polyhedral Formula states that a connected graph drawn crossing-free in the
plane with n vertices, m edges and f faces, satisfies

n—m+f=2. (13.5)
Formula (13.5) immediately implies that a connected planar graph with n > 3
vertices has at most 3n — 6 edges, and if it has no cycle shorter than s, then it has at

most ij (n—2)edges,ifn>1+ ; An easy induction shows that for a connected
graph or a connected graph with no cycle shorter than s,

cr(G)>m—-3n+6 or cr(G)>m— Sz(n—2). (13.6)
§—
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Formula (13.6) immediately implies the nonplanarity of K5 and K3 3. Formula (13.6)
is usually called the Euler bound for the crossing number, and it is one of the few
general methods available from the first days of crossing number research [36],
including analogues of (13.6) for other surfaces. The shortcoming of (13.6) is,
however, that this lower bound is always below m, although the crossing number
can go up Q(n).

13.4 Analogy with the Turan Hypergraph Problem

A hypergraph is £-uniform, if all of its edges have exactly £ vertices. The size of
a hypergraph is the number of its edges. The Turdn number T'(n, k, £) denotes the
minimum size of an £-uniform hypergraph on n vertices, such that any k-element
subset of vertices contains at least one edge from the hypergraph. An example with
relevant k and £ is 7(7, 5,4) = 7 ([19] p. 649, Example 61.3). The complements of
the seven lines of the Fano plane form the required 4-uniform hypergraph. In 1964,
Katona, Nemetz, and Simonovits [38] found a counting argument showing

(n+1-0Tn+ 1,k ) > (n+ D)T(n.k ). (13.7)

Let .27 be an £-uniform hypergraph on n + 1 vertices and T'(n + 1, k, £) edges, such
that any k-element subset of vertices contains at least one edge from the hypergraph.
Then observe that

‘{(U,H) v € V() H € E(A), v ¢H|}‘ — (i +1=OTn+ 1,k ).

Indeed, in the (v, H) ordered pairs T'(n + 1, k, £) different H’s may occur. For every
H, there are exactly n + 1 — £ vertices v not in H. To justify the formula (13.7),
count the ordered pairs in the other way: n 4 1 possible v’s are present. Removing
any v and the edges containing v, any k of the remaining n vertices must contain
an edge that was not removed. Hence the number of the remaining edges is at least
T(n, k, £) by the definition of these numbers.

Now observe that (13.7) is equivalent to the inequality

T(n+ 1,k,0) - T(n, k,2)

\ > , , (13.8)
("t ()
which in turn immediately implies that
T(n,k,
lim ("n & (13.9)
n—00 (z)

exists. The limit is finite, as 1 is an upper bound for the terms in the increasing
sequence.
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An almost identical argument applies to crossing numbers. Assume now that
G is a vertex-labeled graph drawn in the plane with cr(G) crossings. (Recall that
any two crossing edges in this drawing have four distinct endvertices.) Let H be
a graph. Assume that #(H, G) subgraphs of G are isomorphic to H. They will be
called copies of H. Assume further that no more than M copies of H contain any
fixed pair of crossing edges of G in its drawing. Then

#(H,G)-cr(H) <M - cr(G). (13.10)
We refer to (13.10) as the counting argument. Observe that #(H, G) - cr(H) <

‘{(H’, {e.f}) : H copy of H;e,f € E(H');e,f cross in the drawing of G}

)

as we can select H' exactly #(H, G) ways, and the induced drawing of every H’
contains at least cr(H) crossing edge pairs. Counting the set of ordered pairs on the
other way, exactly cr(G) crossing edge pairs {e,f} are in the drawing of G, and by
our assumption no more than M copies of H can contain them. This proves (13.10).

Applying (13.10) for an optimal drawing of G = K, and for all n 4 1 copies
of H = K,, in it, we can take M = n — 3. Indeed, apart from the four endpoints of
some two crossing edges, there are exactly (n + 1) — 4 vertices that can be deleted
to obtain a H containing this pair of edges. One obtains

Cr(Kn) < Cr(Kn+l)
n - n+1
@ = %)
Similarly, applying the counting argument for an optimal drawing of G = K41 n+1

and for all (n + 1)2 copies of H = K, , in it,

(n+ Der(K,) < (n—3)cr(K,+1), or equivalently (13.11)

CI"(K,”,) < Cr(Kn-i-l,n-i-l)

D2cr(Knn) < (0 — D*cr(Kut1.041)» ivalentl
(n+ 1)cr(Kupn) < (n— 1) cr(Ky41.4+1), or equivalently (;)2 < (n_gl)z

(13.12)
Formulas (13.11) and (13.12) imply that the limits
Kn . Kn n
lim cr(n )~ 24¢; and tim €' : ) 4y (13.13)
n—00 (4) n—00 (g)

exist and are finite, but the values of ¢; and ¢, are not known. The constructions in
Section 13.2 imply ¢; < 614, o < 116, with equalities, if the conjectures (13.3) resp.
(13.2) hold. Furthermore, we have the asymptotic formulae cr(K,) = (c; + o(1))n*
and cr(K,,) = (c2 + o(1))n*, with unknown constants [28]!

Kainen [35] and Moon [50] discovered using the counting argument that if (13.2)
holds (or holds even just asymptotically), then (13.3) holds asymptotically. Richter

and Thomassen [62] refined this argument showing that ¢; > ¢;/4, in particular
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¢y = 1/16 implies ¢; = 1/64. In other words, if we know that a certain fraction
of (13.2) holds as a lower bound asymptotically, then we know that the same fraction
of (13.3) holds as a lower bound asymptotically. This is why the Hill conjecture has
a natural place in any discussion on the Zarankiewicz conjecture. Kleitman’s result
[39] that the smallest counterexample to the Zarankiewicz’s conjecture must occur
for odd n and m, is another consequence of the counting argument.

Ringel [63] was the first to note the connection between Turdn numbers and
crossing numbers. He noticed that 7'(n, 5,4) < cr(K,). Indeed, for a drawing of K,
with cr(K,) crossings, define a 4-uniform hypergraph on the n-element vertex set,
where the hyperedges are composed of the four vertices of a pair of crossing edges.
There is a hyperedge contained by the set of any five vertices, as a K5 is drawn with
these five vertices, and it exhibits a crossing. This 4-uniform hypergraph is in the
domain of the minimization problem defining 7'(n, 5, 4).

Further analogies between crossing number problems and the Turdn hypergraph
problem include the multiple maxima (if the conjectures hold), the fact that an
improved lower bound on a particular problem induces improved lower bounds for
larger problems and the corresponding results on limits.

Razborov [60] introduced the theory of flag algebras to prove results in asymp-
totic extremal combinatorics. After chess and proving combinatorial identities [58],
this is another field where humans rarely can beat computers. Turdn numbers are
among the paradigmatic applications of this theory [61].

13.5 Success on the Conjectures Expressed in Fractions

In 1970, Kleitman [39] used H = K, ¢ as a sample graph in G = K, ,, for a counting
argument to obtain cr(K,,,) > (0.8 — o(1))Z(n,m) for n,m — oo, and in turn
obtained cr(K,,) > (0.8 —o(1))H(n).

In 2003 Nahas [52] showed cr(K,,,) > 0.8001Z(n, m) for large n, m, which in
turn implies that cr(K,) > 0.8001H (n) for large n.

In 2006, a breakthrough paper of de Klerk, Maharry, Pasechnik, Richter, and
Salazar [21], used cutting edge quadratic programming and computer work to prove
the inequality

cr(K7,) = 2.1796n* — 4.5n. (13.14)

To place this result in context, make a comparison. For simplicity assume n > 23.
The best previous lower bound was cr(K7,,) > 2.1n>—4.2n, while the Zarankiewicz
conjecture (13.2) can be rewritten as

2.25n2 —4.5n+2.25 ifnodd

Z(7,n) =
2.25n% —4.5n if n even.
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Formula (13.14), through a counting argument for copies of H = K7, in G = K, »,
gives cr(K,,,) = (0.83 — o(1))Z(n, m) for n,m — oo, which in turn implies that
cr(K,) = (0.83 —o(1))H(n).

In 2007, de Klerk, Pasechnik, and Schrijver [22] strengthened the optimization
techniques further to prove

cr(Ko,) = 3.8676063n — 8n. (13.15)

By a counting argument this gives cr(K,,) > (0.8594 — o(1))Z(n,m) for
n,m — 00, which in turn implies that cr(K,) > (0.8594 — o(1))H(n).

In a work not yet published, Norin and Zwols [53] applied the flag algebra
method to the Zarankiewicz conjecture—no surprise, as paradigmatic applications
of the flag algebra method include Turdn numbers! They proved cr(K,,,) >
(0.905 — 0(1))Z(n, m), which in turn implies that cr(K,) > (0.905 — o(1))H(n).
These are the state-of-the-art lower bounds regarding the Zarankiewicz (13.2) and
Hill (13.3) conjectures.

13.6 Complete and Complete Bipartite Graphs Drawn
on Other Surfaces

The investigation of crossing numbers was extended to other surfaces almost
immediately as their study started. Let crs, (G) (crw, (G)) denote the crossing number
of the graph G, if drawn on the orientable (non-orientable) surface of genus g.
(The usual terminology for crs, is the toroidal crossing number.) The counterparts
of (13.6) are

s s
crs, (G) = m—s B 2(n—2—i—2g) and  cry, (G) > m—s B 2(n—2—i—g), (13.16)

due to Kainen [36] and Kainen and White [37]. The counting argument works on
any surface and counterparts of the limits in (13.13) follow. Guy and Jenkyns [31]
showed that

1 1{n—1 —1 2
15 (Z) (';) < crs, (Knm) = 6(” ; )(mz ) < JZn.m), (13.17)

where the lower bound holds for n, m sufficiently large. Guy, Jenkyns and Schaer
[32] showed that for all n > 15,

1 59 59
< K,) < —1)s ~ H(n), 13.18
210(”)4 <crs (Ky) < 5184(n )4 81 () ( )
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where the lower bound holds for n > 16 and the upper bound holds for n > 6. The
notation (x)4 means the falling factorial x(x — 1) (x — 2)(x — 3).
Koman [40] and [42] obtained

41 13
6552(”)4 < cry (Ky) < 16H("), and (13.19)
1 59 59
< K, < — 1)y~ ~H(n), 13.2
336(’1)4 < ey, (Ky) < 5184(n )4 81 () (13.20)

where in (13.19) the lower bound holds for n > 16, and the upper bound holds for
n > 6, while in (13.20) the lower bound holds for n > 16 and the upper bound
always holds. Koman [41] showed that the lower bound in (13.17) also holds for
cry, (Kn.m) in the place of crs, (K, ), and that the upper bound in (13.17) also holds
for cry,(Knm) in the place of crs, (K,,,,) for infinitely many values of n and m.

There is surprisingly little published on cry, (K,,), so we derive some results
2

here. Pak Tung Ho [34] showed cry, (K,4) = [51(2n — 3(1 + [51) ~ 5.

This implies through a counting argument that cry, (K n) > (316 —o()’m? =

(g —o0o(1))Z(n,m) as n,m — oo. We are going to show that cry, (Kym) <
}g + 0(1))Z(n,m) if n,m — oo.

An analogue of the formula (13.13) holds for cry, (K,), ¢}, cry, (Ky), ¢, and
¢} = c,/4 holds as well. From here, cry, (K,) < }gH (n) in (13.19) implies
cry (Knp) < (}g + 0(1))Z(n, n). Now take a drawing of K, , on N; with so few
crossings. For m < n, pick randomly and independently m vertices from one partite
set, and consider the subdrawing of K, ,, that it induces. In expectation, this random
drawing of K, ,, has (}g + 0(1))Z(n, m) crossings if n,m — oo.

For arbitrary genus, Shahrokhi, Székely, Sykora, and Vrt'o [65] showed that
cry, (Ky) and crs,(K,) are both upper bounded by O(k’g:g n*) as n — oo, while
g > 2; and they are both lower bounded by Q(n*/g) as faras 1 < g < (;) /64 and
n — oo. Similar results hold for K, ,,.

In 1971, motivated by circuit design, Owens [54] defined biplanar and k-planar
crossing numbers. For a graph G on vertex set V, partition the edges into the
edge sets of k graphs G; (i = 1,2,...,k) on the same vertex set, to minimize
Zf=1 cr(G;). The minimum is the k-planar crossing number cr(G). The biplanar
case k = 2 can be explained that a plate has two sides, vertices are incident to both,
and we want to minimize the sum of crossings on the two sides as we draw edges of
G on either side. Owens [54] showed cry(K,) < (15736 +o(1))n* ~ 274H(n). Owens’
drawing starts with the soup can drawing of K, and then puts certain edges—as they
are drawn on the soup can— to the inner surface of the soup can. The two half-sized
complete graphs drawn on the lids are then partitioned into an outer and an inner
drawing according to the slope drawing, and edges on the mantle are partitioned
into two sets, evenly at every vertex.

If a biplanar drawing of the graph G shows two isomorphic graphs in the two
planes, it is called self-complementary [20]. Self-complementary drawings are very
convenient, as a single copy of the two isomorphic drawings can be used to represent
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Fig. 13.6 Self-complementary optimal biplanar drawing of K7 1, [20]

it. Just label the nodes of the drawing with an ordered pair of vertices, using the
first entry of the ordered pair as label describing the drawing on the first plane and
using the second entry of the ordered pair as label describing the drawing on the
second plane. To illustrate, Figure 13.5 shows in a single drawing Beineke’s [9]
self-complementary biplanar drawing of Ks. It is easy to make the Owens drawing
self-complementary, if n is even.

Czabarka, Székely, Sykora, and Vrt'o [20] looked at several particular instances
of the optimal biplanar drawing of K, ,,. They made a number of specific conjectures
for small values of m, but did not find a clear general conjecture for K, ,,. They
conjectured, however, that if K, ,, has an even number of edges, it has a self-
complementary optimal biplanar drawing. Figure 13.6 shows a self-complementary
optimal biplanar drawing of K7 1> from [20].
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De Klerk, Pasechnik, and Salazar [23] studied the k-page crossing numbers of
complete bipartite graphs. Shahrokhi, Székely, Sykora and Vrt'o [67] determined
cri(Ka41,4) exactly, and gave bounds for the k-planar crossing numbers of complete
and complete bipartite graphs.

The minor crossing number mcr(G) is the least crossing number of any graph,
of which G is a minor. This is a natural definition for a minor-monotone version of
the crossing number, as the crossing number is not minor monotone. Bokal, FijavZ,
and Mohar [13] found the bounds for the minor crossing number é(m —2)(n—2) <
mer(Ky ) < (m— 3)(n — 3) + 5, where the lower bound requires 3 < m < n,
and the upper bound requires 4 < m < n; and | i(n —3)n—4)] < mer(K,) <
Lé (n — 5)*] + 4, where the lower bound is for n > 3, the upper bound is for n > 9.

13.7 Foundational Problems

Pach and Téth [55] were the first to write down that there is a possibility that
papers on crossing numbers operate with different definitions, the equivalence of
which are not known, though the issue was also raised in a 1995 conference talk
by Mohar [49]. In both [49] and [55], the pair crossing number pcr(G) of a graph
G is defined as the minimum number of edge pairs crossing in a drawing of G.
Clearly pcr(G) < cr(G) but we do not know of any instance where this inequality is
strict nor a proof is known that these definitions are equivalent. As we noted in (ii),
a drawing realizing cr(G) has no edge pairs with multiple crossings, but we have
no evidence that for reducing the number of crossing edge pairs allowing multiple
crossings of edges do not help! Pach and Téth [56] scrutinized crossings of adjacent
edges, i.e., edges sharing an endpoint. They defined a “—” version of ¢r(G) and
pcr(G), where crossings of adjacent edges are allowed in the drawing, but they do
not contribute to the count. Clearly cr(G)— < c¢r(G) and pcr(G)— < pcr(G) but
we do not know of any instance where these inequalities are strict, nor is a proof
known that these definitions are equivalent. As we noted in (i), a drawing realizing
cr(G) has no adjacent edge pairs that crosses, but perhaps allowing crossings of
adjacent edge pairs without counting them can help at reducing the number of
crossings among nonadjacent edge pairs. This possibility is hard to imagine, but
we cannot exclude it. Schaefer [64], after carefully reading a number of research
papers and textbooks, pointed out many instances where the arguments shifted from
one concept of crossing number to another.

In [70] I asked “How is it possible that decades in research of crossing numbers
passed by and no major confusion resulted from these foundational problems?” Part
of the reason is that cr(G)— = cr(G) = pcr(G)— = pcr(G) is possible for all
graphs. Even if they are not, finding counterexamples is hard, as computing many—
if not all—variants of the crossing number is NP-hard [26, 55]. In addition, the
conjectured optimal drawings often use straight lines or geodesics and hence satisfy
(i) and (ii).
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Sir Karl Popper [59] solved the age-old problem of induction in philosophy:
how can we correctly infer laws of nature from a finite number of observations and
experiments. Sir Karl’s program is both descriptive and prescriptive for science:
make a bold hypothesis and try to refute it. If a hypothesis is not refuted,
notwithstanding substantial effort, then it may be corroborated—but it is never
proven. Imre Lakatos, who applied the Popperian epistemology to mathematics [45],
carried out his arguments on two paradigmatic examples: one is Euler’s polyhedral
formula and the other is the concept of a real function. He points to a sequence
of refutations of the polyhedral formula (holes, tunnels, crested cube) that required
adjustment of the definitions, to avoid issues of which nobody thought before, to
keep the formula. As the most basic lower bounds for crossing numbers are based
on Euler’s polyhedral formula (13.6), (13.16), it is no surprise that we run into
complexities of drawings that nobody suspected a few decades ago. The rise and
fall of the Zarankiewicz conjecture discussed in Section 13.2 also can be viewed
as Popper’s program at work. Guy [30] also pointed out “much more sweeping
assumptions than the overt hypotheses of the theorem” in some crossing number
papers.

Surprisingly, I have never even heard the name of Lakatos during my studies
in Hungary. I see the explanation from complementary reasons. One is political:
Lakatos was a high-ranking party official before the 1956 revolution, after which
he left the country. (For a biography showing his different lives, see Bandy [8].)
The other is that many mathematicians are uncomfortable with the fact that what
we know may require correction in the future. (They have no problem at admitting
that such corrections happened in the past.) And an unexpected but perhaps not
accidental connection: Beineke and Wilson [10] points out that Anthony Hill took
classes with Lakatos!

13.8 Rectilinear Crossing Numbers

Note that the Zarankiewicz drawing brings a big bonus for free: the edges are
drawn in straight-line segments instead of curves! This bonus is also there for
planar graphs, i.e., graphs with crossing number zero, as a theorem of Fary [25]
states that planar graphs always can be drawn in straight-line segments. This bonus,
however, is not available for drawings of arbitrary graphs or in particular of the
complete graphs. Bienstock and Dean [11] showed that as long as the crossing
number of a graph is at most three, then the graph admits a straight-line drawing
realizing its crossing number, but there exists graphs with crossing number four
that require arbitrarily large number of crossings in any straight-line drawing. Let
cr(G), the rectilinear crossing number of the graph G, denote the variant of the
crossing number, where only straight-line segments are allowed for drawing the
edges. Clearly ¢r(G) > cr(G), and, for example, 19 = cr(Ks) > cr(Kg) = 18.
(cr(K,) has been computed for all n < 27 [5].) For a long time, the same lower and
upper bounds were the best for both cr(K,) and cr(K,) for large values of n. This
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started to change only in 2005, when Abrego and Ferndndez-Merchant [1] made a
breakthrough by showing

cr(K,) = H(n).

Lovasz, Vesztergombi, Wagner and Welzl [47] strengthened this lower bound to
cr(Ky) = ( 614 + 1(;5 + o(1))n*, the first to separate the crossing number and
rectilinear crossing number of complete graphs. This lower bound was further
improved to 0.37962(2) +0(n?) > (1.012340(1))H(n) by Aichholzer et al. [7] and
a subsequent small further improvement was done 0.379688 (Z) + ©(n’) by Abrego
et al. [2].

In another terminology, the rectilinear crossing number of the complete graph is
the least number of convex quadrilaterals determined by n points in the plane, no
three of which are collinear. All the lower bounds above are based on lower bounds
on the number of planar k-sets. The k-set problem asks what is the largest possible
number of k-element subsets of a set of n points in general position in the plane,
which can be separated from the remaining n — k points by a straight line. A k-edge
is a pair of points such that there are exactly k and n — k — 2 points on the two sides
of their connecting line.

Aichholzer, Aurenhammer, and Krasser [6] developed a combinatorial descrip-
tion of relative point locations in the plane, called order types, which is used in
computer work on rectilinear crossing numbers. The currently known values of
cr(K,) and combinatorially different optimal drawings can be downloaded from [5].
It is an interesting contrast with ordinary crossing numbers of complete graphs, that
many more rectilinear crossing numbers are known exactly, but still no conjecture
has emerged for the rectilinear crossing number of K.

13.9 Progress Giving Hope

In 2013, Christian, Richter, and Salazar [18] showed that for all m, there is an
no(m), such that if (13.2) holds for all n < ny, then (13.2) holds for all n
with this m. This, in turn, allows for every fixed m to check with an algorithm
whether for all n (13.2) is true or false. To be explicit, set Z(m) = [ | L’";lj and

no(m) = ((2Z(m))™ (m!) !)4. This algorithm will never run on a computer. However,
the theoretical result is important and stunning. For any particular m, there is no need
for an infinite sequence of improved bounds to reach the Zarankiewicz conjecture,
although Section 13.4 would be well compatible with such a need.

In 2013, Abrego, Aichholzer, Fernandez-Merchant, Ramos, and Salazar [3]
proved the Hill conjecture for two-page drawings. In a very recent work [4], they
extended this result to s-shellable drawings of K, if s > n/2. Although s-shellable
drawings of K, are a minority, they include the Hill drawing and the Blazek-Koman
slope drawing.
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Let a drawing of K,, be given. Let R be a connected component of R? \ D, where
D is the set of points consisting of points and curves representing the vertices and

edges of a drawing of K,. Let S = {vy, v, ..., vy} be a sequence of distinct vertices.
The set S is an s-shelling of D witnessed by R, if forall 1 < i < j < s, removing
the vertices vi,vs,..., Vi1, Vj+1, Vjit2,..., Vs and their incident edges from the

drawing, the vertices v; and v; are on the boundary of the connected component
of the resulting drawing that contains R.

Such s-shellable drawings include two-page and cylindrical drawings (see
Section 13.2) and monotone and x-bounded drawings. A drawing is called monotone
if every vertical line contains at most one vertex and every vertical line intersects
each edge at most once. A drawing is called x-bounded if different vertices have
different x-coordinates, and if the vertices u and v are joined by an edge, then
the points of the curve representing this edge have their x-coordinates between the
x-coordinates of u and v.

The proof goes back to the ideas of the proof ¢r(K,) > H(n) in [1].

The paper generalizes the concept of a k-edge from a point configuration in the
plane to a crossing minimal but not necessarily rectilinear drawing of K, and then
shows that for an s-shellable drawing (s > n/2) the argument generalizes. The
papers [3] and [4] are the first to prove the Hill conjecture (13.3) for some classes
of drawings.
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Chapter 14
It Is All Labeling

Peter J. Slater

14.1 Introduction

The spirit of these papers is that the topics should be presented in an historical
context with emphasis on unsolved problems/conjectures. My personal background
is a mixture of mathematics and computer science, with a year as a National
Research Council/National Bureau of Standards postdoctoral fellow, working in the
Operations Research Division of NBS headed by Alan Goldman. To put this in
context, the mathematician asks if a graph is graceful, the computer scientist asks
how efficiently one can find a graceful labeling, and the operations researcher asks if
it is not graceful, then how close to graceful is it? I believe the latter outlook actually
provides a great source of interesting mathematics/computer science questions.

Somewhat surprisingly, I did not (as most researchers in the area do) initially
enter the realm of graph numberings and labelings through the Graceful Tree
Conjecture of Ringel, Kotzig, and Rosa. My first considerations involved infinite
graphs, which will be discussed in Sect. 14.2. Section 14.3 will consider variations
and generalizations of gracefulness. Section 14.4 will consider some of the various
forms of magic labeling (with an amazing connection to fractional domination).
A brief discussion of “It is all labeling” will follow.

Completeness is not the goal here, but rather the presentation of some problems
that I have personally found to be interesting and the placing of labeling problems in
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Fig. 14.1 Graceful numberings of C4 and K¢

a general graph theory setting. A complete, ever-expanding bibliography of graceful
labeling/numbering papers is available from Gallian [18].

For a graph G = (V,E), the order is the number of vertices, n = |[V(G)|, and the
size is the number of edges, m = |E(G)|. In general, for a given set W = {w, wa,
..., Wi}, a vertex labeling is an assignment of elements in W to each vertex v ¢
V(G). In 1963, Ringel [33] conjectured that if T is any tree with m edges, then the
complete graph Ky, 41 can be decomposed into 2m + 1 subgraphs isomorphic to
T. Kotzig later introduced a strengthened form of this conjecture, as noted by Rosa
[35], who was the first to study various ways of numbering the vertices of T. In
1968, Golomb [21] helped to popularize this question, and he introduced the more
general problem of determining which of all graphs are “graceful.” (If tree T with
m edges is graceful, then Ky, + 1 can be decomposed into 2m + 1 copies of T.)

Given G and W, for a labeling f: V(G) — W, the induced edge labeling f of
E(G) is defined for each edge e = uv ¢ E(G) by f(uv) = |f(u)—f(v)|. A 1-1 labeling
f: V(G) - W, I will call a numbering if the induced labeling f: E(G) — W is also
1-1. A graceful numbering of graph G is an injection f: V(G) — {0, 1, 2, ..., m},
such that f: E(G)— {1, 2, 3, ..., m} is a bijection. That is, each of the m edges
receives a distinct label in {1, 2, ..., m}. A graph that has a graceful numbering is
called a graceful graph. For cycle C4, we have m =4, and for complete graph Ky,
we have m = 6. Graceful numberings of C4 and K4 are shown in Fig. 14.1.

Conjecture 1 (Ringel, Kotzig, Rosa). All trees are graceful.
Theorem 1 (Rosa [35]). Cycle C, is graceful if and only if n =0, 3 (mod 4).

Think of the proof of Theorem 1 as a warm-up problem for the labeling novices!

14.2 Countably Infinite Graphs

Let N={1, 2, 3, ...} denote the set of positive integers. A permutation of N
is a sequence A = {aglk ¢ N} =(a;, a3, a3, ...) in which every element of N
appears exactly once. The difference sequence of A is D =(d, d,, d3, ...) where
di = |ai+1—ai|. One of the questions asked by Roger Entringer is the following.
Does there exist a permutation A of N such that the difference sequence D is also a
permutation of N?
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Theorem 2 (Slater and Velez [48]). Given any sequence (m;, mp, m3, ...) of
positive integers, there is a permutation A of N for which the difference sequence D
satisfies |{i|d; = j}| = m;. In particular (with every m; = 1), there is a permutation A
of N whose difference sequence D is a permutation of N.

For the case where D is to be a permutation, we leta; =1 and a, =2, sod; =1,
and then, given aj, ap, ..., ay—j, ay, we define ay+; and ay4, as follows. Let ay
be 1+ 2M where M is the largest element in Ay ={aj, ap, ..., ay}. If r is the
smallest element of N not yet in Ay and s is the smallest element not yet in {d,
ds, ..., dy}, then ayyp =1 if r<s, and otherwise a4, = ay+1—s (which makes
day1=5s).So0A=(1,2,5,3, 11,4, 23,19,47,42, 95, 6, 191, 185, 383, ...) and
D=(1,3,2,8,7,19,4, 28,5, 53, 89, 185, 6, 197, 375, ...). Letting f(n) = a,, we
have f(2t + 1)>2"1, so A grows exponentially.

Problem 2 How small a growth rate can permutation A have if its difference
sequence D is a permutation?

Consider the following greedy procedure for keeping the a;’s small, as described
in [41]. Leta; =1 and a, = 2. Given A, =(ay, az, ..., ay), let a,+| be the smallest
positive integer t not in A, such that |a,—t| is not in D,y =(dy, dp, ..., dy—1).
This produces A* =(1,2,4,7,3,8,14,5,12,20,6,16,27,9,21,34,10,25,41,11,...) and
D*=(1,2,3,4,5,6,9,7,8,14,10,11,18,12,13,24,15,16,30, . . .). See the On-Line Ency-
clopedia of Integer Sequences.

Theorem 3 (Slater and Velez [48]). The sequence A* so produced by this
procedure is a permutation of N.

Seemingly easy to resolve is the next problem/conjecture.

Conjecture 3 (Slater and Velez [48]). The sequence D* so produced is a
permutation of N.

There are many interesting questions involving permutation A*. Observe that in
A* (skipping a;) we have ascending consecutive terms 2<4 <7 and 3<8 <14 and
5<12<20, .... There are cases in which we have only two consecutive ascending
terms, that is, a; > aj4] <aj4+2 > aj+3.

Problem 4 Other than 1,2,4,7, does A* ever contain four consecutive ascending
numbers?

Problem 5 Allowing me some imprecision, for each ascending triple in A*, we
have “small, medium, and large” values. Consider the growth rates of the smalls,
the mediums, and the larges.

In a later paper (Slater and Velez [49]), we considered a “bandwidth” type of
problem for permutations A, where difference sequence D will contain only a small
set of values. (See also [6, 7].)
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Conjecture 6 ([49]). For a subset S={s;, s, ..., sy} of N, there exists a
permutation A of N with difference sequence D, such that {dj|d; € D} =S if and
only if the greatest common divisor satisfies (si, Sz, ..., Sp) = 1.

Theorem 4 (Slater and Velez [49]). Let S={sy, s2, ..., sp}, where (s1, s2, ...,

sp) = 1 and for each r there exists a t such that (s, s;) = 1. Then there exists a
permutation {ay : k ¢ N} such that the difference sequence D satisfies {dx : k €
N} =S, and each element in S occurs infinitely often in D.

Having seen the results of [48, 49], Paul Erd6s asked me if it would be possible to
construct a permutation B of N so that its difference sequence D and all succeeding
difference sequences would also be permutations.

Theorem 5 (Slater [42]). There exists a permutation of N for which each of its
successive difference sequences is also a permutation of N.

To put it mildly, the growth rate of the permutation B that I constructed for this
problem is rather large.

Problem 7 How small a growth rate can permutation B of N have if all of its
difference sequences are also permutations of N?

As indicated in Fig. 14.2, for the permutation A*, we can label the infinite path
P with f(vj) = a;. The difference d; is then simply the induced edge labeling.
That is, Entringer’s question is then equivalent to asking if infinite path Py, is
graceful. If we ask for a subset A of N such that every element of N is the
difference of precisely one pair of numbers of the set A, then we are equivalently
asking for a graceful numbering of countably infinite graph K. Sierpinski [38]
reports this as a problem solved by M. Hall. A solution by J. Browkin appears
in [14]. Technically, for a graceful labeling, the smallest vertex label is 0, so, for
A* as a graph labeling, we should consider reducing each value by 1 to obtain
(0,1,3,6,2,7,13,4,11,19,5,15,26,8,20,33, . . .), obviously leaving D* unchanged.

In the next section, k-graceful (and k-sequential) graphs will be considered. The
definitions are given here for finite and countably infinite graphs. For finite graph
G with V(G) = {vy, v2, ..., vy} and edge set E(G) = {e, 2, ... en}, a k-graceful
numbering is an injection f: V(G) — {0, 1, 2, ..., k + m—1} for which the induced
function f:E(G) - {k,k+ 1,k + 2, ...,k +m—1} is a bijection. Such a numbering
f is also called a Bg-valuation. An ag-valuation of G is a fx-valuation for which there
issome Lin {0, 1, ..., k 4+ m—1}, such that for an arbitrary edge uv in E(G), either
f(u) <L <f(v) or f(v) <L <f(u). Note that the 1-graceful numberings are precisely
the graceful numberings. As indicated in Fig. 14.3, a finite graph G can have an
infinite number of values k for which G is k-graceful.

OO0+ OO+

Fig. 14.2 Permutations A* and D* as a labeling of the infinite path
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Fig. 14.3 k-Graceful numberings of cycle C4

Theorem 6 (Maheo and Thuillier [26] and Slater [41]). If (bipartite) graph G has
an aj-valuation, then G is k-graceful for all k > j.

In contrast, we have the following theorem:

Theorem 7 (Slater [41]). If G contains an odd cycle on 2t + 1 vertices and G is
k-graceful, then k < t (m—t—1). In particular, G can be k-graceful for at most a finite
number of values of k.

Let B(G) = {k : G is k-graceful}. We have B(C4) =N.

Conjecture 8 (Slater [41]). For any set S of natural numbers, there is a graph Gg
where B(Gg) = S.

Let G be a graph with V(G) and E(G) countably infinite. Let No =N U {0}
be the set of nonnegative integers. A k-graceful numbering of G is an injection
f: V(G)— Ny such that the induced labeling f: E(G) —>{k, k+ 1, k+2,...}
is a bijection. If f: V(G)— Ny is also a bijection, then call f a bijectively-
k-graceful numbering, and G is called bijectively-k-graceful. For a generalized
Hall’s problem, complete graph K is k-graceful for all k>1 (but clearly not
bijectively-k-graceful), and for a generalized Entringer’s problem, path P, is
bijectively-k-graceful for all k >1 (see Theorem 10).

Making use of an observation of Bloom [13] concerning the adjacency matrix of
a graceful graph, Grace proved the following:

Theorem 8 (Grace [22]). If T is a countably infinite, locally finite tree, then T can
be 1-gracefully labeled.

Much more generally, we have the following:

Theorem 9 (Slater [43]). If G is a locally finite graph (each vertex has finite
degree) with V(G) and E(G) countably infinite, then G is bijectively-k-graceful.

While the countably infinite version of the Ringel-Kotzig-Rosa Conjecture 1 is
true in the sense that all countably infinite trees (even allowing vertices of infinite
degree) are graceful, not all countably infinite trees are bijectively-k-graceful. Let
B1(G) denote the maximum cardinality of an independent set of edges.
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Theorem 10 (Slater [45]). 1) All countably infinite trees are k-graceful for each
k>1.

2) Any countably infinite tree T with B (T) = oo is bijectively-k-graceful for each
k>1.

3) A countably infinite tree T with 1 (T) < oo is bijectively-k-graceful if and only
if the number of vertices of infinite degree is one and k = 1.

Problem 9 Some results about countably infinite graphs appear in Slater [44].
Which countably infinite graphs are not graceful? Not k-graceful? Can we char-
acterize the countably infinite, bijectively-k-graceful graphs?

Likewise, k-sequential numberings will be discussed in Sect. 14.3 for finite
graphs. Numbering f: V(G) — Ny with induced function f: E(G) — N is a toral
numbering if : V(G) U E(G) — Ny is one to one. When graph G is finite of order
n and size m, a total numbering f is called k-sequential if f: V(G) U E(G) — {k,
k+1,k+2, ..., n+m+k—1} is a bijection. A 1-sequential total numbering is
also called simply sequential. A graph G with a k-sequential numbering is called
a k-sequential graph. For countably infinite graph G, a k-sequential numbering f:
V(G) U E(G) — Ny is a total numbering for which f: V(G) U E(G) — {k, k+ 1,
k+2,k+3,...} is a bijection.

Theorem 11 (Slater [44]). All countably infinite trees are k-sequential for each
k>1.

Problem 10 Which countably infinite graphs are not simply sequential? Not
k-sequential?

Observe that if f: V(T)—{0,1,2, ..., n} is a graceful numbering of tree T,
then one vertex v has f(v) =0, and f(V(T)—v) =f(E(T))={1,2,3, ..., m=n—1}.
For the tree T in Fig. 14.4, note that v is the only vertex of infinite degree.
Deleting the endpoints adjacent to v leaves a tree T# of order 6, and we have
f(V(T*)—v) = f(B(T*)) = {1,3,4,5,6}. This makes it easy to gracefully number the
infinite graph T.

Fig. 14.4 A graceful numbering of an infinite tree
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Theorem 12 (Slater [45]). For any (finite) tree T and any vertex v ¢ V(T), there
is a numbering f: V(T) — Ny such that f(v) =0 and f(E(T)) = f(V(T)—v). That is,
except for zero on vertex v, the set of vertex labels is the same as the set of edge
labels.

There is, in fact, no graceful numbering of tree T# with f(v) = 0. For vertex v
in tree T, call numbering f a v-numbering of T if f(v) = 0 and f(E(T)) = f(V(T)—v).
Let LT (f) = max{f(x) : x ¢ V(T)}, and let LT (T;v) be the minimum value of LT (f)
where f is a v-numbering. Let L™ (T) = max{v ¢ V(T) : LT (v)—(n—1)}.

Proposition 12 L*(T) =0 if and only if for every v ¢ V(T) there is a graceful
numbering f of T with f(v) =0.

Note that we can state Conjecture 1 as follows:

Conjecture (Ringel, Kotzig, Rosa) For any tree T, there is at least one v ¢ V(T)
such that LT (T; v) = 0.

Let me note that I defined the parameter LG(T;v) in [47] with LT (Tyv) =
LG(T;v)—(n—1). It seems better to normalize and use L*. Problem 2a in [47] is
the following:

Problem 11 Characterize the trees T with LT(T) =0.

Problem 12 Investigate L™ (T). In particular, determine the maximum value of
L*(T,) over all trees T,, of order n.

Let L(G) = {v € V(G) |, there exists a graceful numbering f:V(G) — {0,1,2, ...,
m} with f(v) = 0}.

Problem 13 Investigate L(n) = {L(T,) : T, is a tree of order n}.

14.3 k-Graceful and K-Sequential Graphs

14.3.1 k-Graceful Graphs

In this section, only finite graphs are considered. To make it self-contained and to
facilitate the exposition, there is some repetition.

As noted, the definition of graceful graphs began as a problem involving
decomposing the edge set of complete graphs. Graph G of order n = |V(G)|and
size m = |[E(G)| has a graceful numbering (also called a B-valuation, as in Rosa
[35]) f: V(G)—{0, 1,2, ..., m} if the function f is 1-1 and the induced function
f: E(G) — {1, 2, ..., m} is a bijection.

Assume that graph G with graceful numbering f has a cycle C = (wg,w,wa, ...,
wi—1). Since the sum of the edge weights with f(wj41) > f(w;) (mod t) must equal the
sum of the edge weights with f(wit) <f(w;) (mod t), the sum of the t edge weights
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in C must be even. In general, if G is Eulerian, then the sum of all the edge weights
1+2434 ... 4+m=m(m+ 1)/2 must be even, showing the following theorem:

Theorem 13 (Rosa [35]). If Eulerian graph G is graceful, then |[E(G)|=0,3
(mod 4).

The next result is easy to see.
Theorem 14 Complete graph K, is graceful if and only if n <4.

The vertex labels in S4 = {0,1,4,6} for K4 have the property that each element of
{1,2,3,4,5,6} is the difference of exactly one pair of elements from S4. By Theorem
14, we cannot find a 5-element set Ss in {0, 1, 2, ..., 10} so that each element
of {1, 2, ..., 10} appears exactly once as the difference of pairs of elements in
Ss. However, for the set S5 = {0,1,4,9,11}, the ten pairwise differences are all
different (only 6 is missing). In one sense, one measure of the non-gracefulness
of K5 is 11-10= 1. For a Golomb ruler, we have k integral values {n; =0, ny, ...,
ng} (with n; <nj4;} where all C(k,2) differences are distinct. The Golomb number
f(k) is the minimum length of a Golomb ruler with k entries. We have (f(1), f(2),
....)=(0,1,3,6,11,17,25,34,44,55,72,85,106, ...).

Problem 14 Determine (bound, approximate) the Golomb ruler values f(k). For a
more general problem that involves labelings of K, with m-tuples and its association
with “distinct distance sets” in m-dimensional grids, see Gibbs and Slater [19].

By Theorem 12, cycle Cs is not graceful. As in Fig. 14.5, we can label V(Cs)
as (0,6,3,1,5) so that we get five different edge labels. In fact, we can make the
edge labels be consecutive. So, Cs is not graceful, but it is close! For a graph G
with V(G) ={vy, v2, ...,vy} and edge set E(G)={ey, €2, ..., em}, a k-graceful
numbering is an injection f: V(G) — {0, 1, 2, ..., k+ m—1} for which the induced
function f:E(G) — {k,k+ 1, k+2, ..., k+ m—1} is a bijection. Such a numbering
fis also called a Bx-valuation. An a-valuation of G is a f-valuation for which there
is some L in {0, 1, ..., k+ m—1} such that for an arbitrary edge uv in E(G) either
f(u)<L <f(v) or f(v) <L <f(u). Note that the 1-graceful numberings are precisely

Fig. 14.5 A 2-graceful numbering of cycle Cs
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the graceful numberings. As in Fig. 14.3, cycle C4 has an ag-valuation for all k > 1.
Given an og-valuation fy of G, let S = {v ¢ V(G) : fx(v) <L}. Letting fi4+(v) = f(v)
if veS and fyy1(v) =fi(v) + 1 if fi(v) > L, fxy is an ax4-valuation, and we have
the next theorem.

Theorem 15 (Maheo and Thuillier [26] and Slater [41]). If (bipartite) graph G is
k-graceful by an ay-valuation, then G is j-graceful for all j > k.

Using the fact that the sum of the induced edge weights in a cycle must be even,
we have the next generalization of Rosa’s Theorem 13.

Theorem 16 (Slater [34]). If Eulerian graph G is k-graceful, then (1) if k is odd,
then |E(G)| =0,3 (mod 4), and (2) if k is even, then |E(G)| = 0,1 (mod 4).

Example 1 Cycle Cs is k-graceful if and only if k = 2.

Proof. Figure 14.5 shows how to 2-gracefully label Cs. By Theorem 16, Cs cannot
be k-graceful if k is odd. Let Cs be the cycle (vi, v, V3, V4, vs). For a k-graceful
numbering f, we can assume that f(vi4+;)>f(vj) (mod 5) at least three times. The
smallest sum of these three weights is k+ (k+ 1)+ (k+2) <(k+3 + (k+4), so
k <4.1If 4 is a 4-graceful numbering, without loss of generality, we can assume
f4(v1) =0 and f4(v,) = 8. To achieve an edge weight of 7, we must have f4(vy) =1
or f4(vs)=7. In either case, going clockwise, the ascending edge labels and
descending edge labels cannot both sum to 15.

Theorem 17 (Slater [41]). If a k-graceful graph G has an odd cycle Cy4, then
k+&k+1D+ ... +k+0)<(k+m—-t)+(k+m—-t+1)+ ... +(k+m—1), and
s0 k <t(m—t—1). Thus, a graph with an odd cycle can be k-graceful for at most
finitely many values of k.

Historically the study of the k-gracefulness of certain graphs began as a problem
in radio-astronomy. (See Biraud et al. [11, 12]}.) Their equivalent graph theory
problem is to k-gracefully number the graph consisting of m K,’s which have
exactly one vertex in common. (See Bermond, Brouwer, and Germa [9] and
Bermond, Kotzig, and Turgeon [10].) The idea of k-gracefulness is formally defined
in Slater [41] and in Maheo and Thuillier [26]. The next theorem is stated in [41]
and [26], with a proof in [26].

Theorem 18 (Slater [41] and Maheo and Thuillier [26]). Cycle C, is k-graceful
if and only if either (1) n =0 (mod 4), (2) n=1 (mod 4), k is even and k < (n—1)/2,
or (3) n=3 (mod 4), k is odd and k < (n—1)/2.

Conjecture 15 For every set S = {ny, ny, ..., n}, there is a graph Gg such that Gg
is k-graceful if and only if k € S.
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14.3.2 k-Sequential Graphs

Simply sequential and k-sequential graphs were introduced in Bange, Barkauskas,
and Slater [3] and Slater [40]. As illustrated below, the study began from an attempt
to prove that all wheels are graceful, a result that had already been proven by Hoede
and Kupier [23] and by Frucht [17].

A function f: V(G) U E(G) — N, the set of positive integers, is a total numbering
if (1) on E(G) we have the induced values f(uv) = |f(u)—f(v)| and (2) f is a one-
to-one function (i.e., the range of f consists of n + m distinct values). Call a total
numbering a k-sequential numbering if f{(V(G) U E(G))={k, k+1, k+2, ...,
k+n+m—1}. A 1-sequential numbering is called simply sequential. If such an f
exists, then the graph G is called a k-sequential graph (simply sequential if k = 1).
For example, the graph G, in Fig. 14.6 is 2-sequential (and, as shown later, is not
simply sequential), and the wheels W5, Wg, and W5 are simply sequential.

The graph G + v is the graph obtained from G by adding a new vertex v and
making v adjacent to every vertex in V(G). As illustrated in Fig. 14.7, the cycle Cy4
is 1-sequential, and the wheel Ws = C4 + v is graceful with f(v) = 0. In general, we
have the next theorem.

8

@ 1

9
10
—
@Q

Fig. 14.6 Sequential numberings
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OO

Fig. 14.7 1-sequential C4 and graceful W

Fig. 14.8 Graceful and simply sequential numberings of tree T1

Theorem 19 (Bange, Barkauskas, and Slater [3]). If graph G is 1-sequential, then
G + v is graceful with a graceful numbering f with f(v) = 0.

We showed that every cycle is 1-sequential, from which the result in Hoede and
Kupier [23] and Frucht [17] that the wheels are graceful follows.

Theorem 20 (Bange, Barkauskas, and Slater [3]). If every vertex in G has odd
degree, and if |V(G)| 4 |E(G)| = 1,2 (mod 4), then G is not 1-sequential.

Proof. Simply note that G + v would be Eulerian and |[E(G + v)| = |[E(G)| + |V(G)|
s = 1,2 (mod 4) and apply Theorem 13.

The tree T1 in Fig. 14.8 has n+m= 124 11 =23. The simply sequential
numbering f*: V(T1) U E(T1)— {1, 2, 3, ..., 23} is obtained from the indicated
graceful numbering f: V(T1)— {0, 1, 2, ..., 11} by letting f*(v) = 2f(v) + 1. This
illustrates the following theorem:

Theorem 21 (Bange, Barkauskas, and Slater [3]). A tree T is graceful if and only
if T is simply sequential via a function f* such that f*(v) is odd for each vertex v &
V(T).

For example, labeling the vertices of path P, as (0, 3, 1, 2) produces edge labels
3,2,1),and (1, 7, 3, 5) yields edge labels (6, 4, 2). Another way to label V(Py4) 1-
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sequentially is (4, 7, 5, 6), again producing edge labels (3, 2, 1). In general, simply
consider f*(v) = f(v) + n, and we have the following result:

Theorem 22 (Bange, Barkauskas, and Slater [3]). A tree T is graceful if and
only if T is simply sequential via a function f': V(T) — {n,n+1,n+2, ...,
n+m=2n—1}.

In general, there are many more ways to simply sequentially number a tree T
than there are to gracefully number T. For example, the star K; 3 has two (comple-
mentary) different graceful numberings and 11 different 1-sequential numberings.
Given that the Ringel-Kotzig-Rosa Graceful Tree Conjecture has remained open for
50 years, the following weaker conjecture should be of interest:

Conjecture 16 (Slater [40]). All trees are simply sequential.

Theorem 23 (Slater [40]). If G is a k-sequential graph on n vertices and m > 1
edges, then k <n—1.

Proof. Assume G is k-sequential via a k-sequential numbering f: V(G) U
E(G)—{k, k+1, ..., n+m+k—1}, with f(V(G))={a;, a;, ..., a,}, where
a; <aj+1. Note that the highest possible value of f(uv) is (n+m+k—1)—k=n+
m—1, and, since there are m edges, some edge uv satisfies f(uv) <n. Thus
k <n. If, however, k =n, then some edge uv satisfies f(uv)>n+ m—1, which
is the highest possible value of f(uv). Hence f(E(G))={n, n+1, ..., n+m—1}
and a; =n+ m. But by considering a vertex incident with the edge numbered
n+m—1,onehasa,>a;+(n+m—1)=m+m)+ (m+m—1)=2n+ 2m—1. But
a,=n+m+k—1=2n+ m—1 when k = n, and so m = 0, a contradiction.

One can see that the star K ,—; is (n—1)-sequential. In fact, K, ,—; is k-sequential
if and only if k|n. For example, K, ¢ is k-sequential if and only if k ¢ {1, 2, 3, 6}.

Conjecture 17 (Slater [40]). For any finite set S of natural numbers, there is a
(connected) graph Gg such that Gy is k-sequential if and only if k € S.

14.3.3 Additivity

Let me briefly note that one does not have to use differences for the edge labels.
As in Bange, Barkauskas, and Slater [4], for h: V(G) — N, let h(uv) =h(u) + h(v)
for each edge uv € E(G). Then h: V(G) U E(G) > {k, k+ 1, ..., k+n+m—1}is
a k-sequentially additive numbering if it is a bijection. In support of our following
conjecture, all trees on nine or fewer vertices are 1-sequentially additive.

Conjecture 18 (Bange, Barkauskas, and Slater [4]). All trees are 1-sequentially
additive.
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Fig. 14.9 A 3-by-3 magic square

14.4 Now for Some Magic

Over the years in many of my mathematics and computer science classes, I have
frequently used a phrase like “Get ready for some magic” to prep students when
something particularly interesting was about to be presented. Occasionally in a
graph theory class, this has, unfortunately, become ambiguous. But I cannot really
complain about the growth of interest in magic labelings of graphs. The use of
the phrase “magic” in this context stems, of course, from “magic square” as, for
example, in Fig. 14.9 where the numbers 1, 2, ..., 9 are used and each set of row
and column (and diagonal) values sums to the same value, in this case 15. There
will be more about this square later.

14.4.1 Edge-Magic Graphs

In 1996, Ringel and Llado [34] defined an edge-magic graph and asked if all cycles
are edge magic. This was previously shown to be the case by Kotzig and Rosa
[25] in 1970. Our unawareness of this previous result led Richard Godbold and I to
what I think is another interesting problem/conjecture about cycles. An edge-magic
labeling of a graph G is a bijection f: V(G) U E(G) — {1,2,3, ..., n+ m} with the
property that for all of the edges uv in E(G) the value g(uv) = f(uv) + f(u) + f(v) is
fixed, this constant g(uv) being called a magic constant g(uv) = M.

Note that, as in Fig. 14.10, cycle Cs has two edge-magic labelings with magic
constants M; = 14 and M, = 19. Simply by noting that when we sum all of the
values of g(uv) for all uv ¢ E(G) that each vertex label gets counted twice and each
edge label once, we get the following observation:

Observation 24 (Godbold and Slater [20]). A magic constant M for a cycle
C, satisfies (1) if n=2k+ 1, then Sk+4 <M <7k+5 and (2) if n =2k, then
Sk+2<M<T7k +1.

Letting N(n) denote the number of edge-magic labelings of C,, we have (N(3),
N@4), N(5), N(6), N(7), N(8), N(9), N(10), ... =(4,6, 6,20, 118, 282, 1540, 7092,
...). There are four edge-magic labelings of Cs, one for each M =9,10,11,12.
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M, =14 M,y =19

Fig. 14.11 Edge-magic labelings of cycle C4

For the six edge-magic labelings of Cs, one produces M = 14, two produce M = 16,
two produce M = 17, and one produces M = 19. There are none with M =15 or
M=18.

Conjecture 19 (Godbold and Slater [20]). For n=2k+1>7 and 5k+4 <j<
7k + 5, there is an edge-magic labeling of C, with magic constant M =j. For
n=2k>4 and 5k+2<j<7k+ 1, there is an edge-magic labeling of C, with
magic constant M =j.

Problem 20 Some further studies of edge-magic graphs have been done. In a
manner similar to what is done next for vertex neighborhoods, for all graphs G, one
can consider the minimax, maximin, and minimum spread edge-incidence values.
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Fig. 14.12 GI1 has {0, 1}-magic constant 21; G2 has {1}-magic constant 14

14.4.2 Neighborhood Sums

In the following, just vertex labelings will be considered. Given a weight set (or
possibly a multiset) W = {wy, wy, ..., Wy}, we consider bijections f:V(G) > W
that, in some sense, balance the distribution of the weights over the graph. The
weight of W is wgt(W) =Y | <j<n Wj, with the base case W=[n]={1,2,3, ...,
n} and wgt([n]) = n(n + 1)/2. For subset S of V(G), the weight of Sis f(S)= vs
f(v). Vilfred [51] considers the case where W = [n] and the set of resulting open
neighborhood sums are all equal. Such a labeling is called a ) labeling, and any
graph for which such a labeling exists is called a > graph. Miller et al. [27] referred
to such a labeling as a 1-vertex magic labeling. More recently, Sugeng et al. [50]
have referred to such a labeling as a distance magic labeling. When the closed
neighborhood sums are all equal, Beena [5] has referred to the labeling as a )
labeling and the graph as a " graph. See Fig. 14.12 for graphs with Y " and )
labelings, respectively, where the closed neighborhood constant in Fig. 14.12a is
21 and the open neighborhood constant in Fig. 14.12b is 14. In her presentation at
the 2010 IWOGL Conference, Simanjutak [39] introduced the notion of distance
magic labelings for a fixed distance other than one. Recall from above that a graph
can have two different edge-magic constants. At the same conference, Arumugam
[2] asked if there exists a graph G with two different magic constants for »_’
(i.e., closed neighborhood) labelings f,g:V(G) — [n]. As described later, even for
a general weight set W and arbitrary distance set D, the answer is shown to be “no”
in O’Neal and Slater [32].

First, we should consider three optimization problems defined for all graphs
(not just the magic ones). Starting from the problem that involves minimizing the
maximum sum of three consecutive vertex labels for the cycle C, labeled with
{1,2, ..., n}, Schneider and Slater [36, 37] generalized this problem to minimizing
the maximum weight of a closed neighborhood for an arbitrary graph G. (Anstee,
Ferguson, and Griggs [1] considered k consecutive values on C,.) As in O’Neal
and Slater [29, 31], one can also consider maximizing the minimum closed/open
neighborhood weight or minimizing the “spread” of these values.
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Fig. 14.13 House graph H

For any subset D of {0, 1, 2,...}, the D-neighborhood of v in G is
Np(v) ={x ¢ V(G): dist(v,x) ¢ D}. The open neighborhood is Ny3(v) =N(v),
and the closed neighborhood is Ny ;3(v) =N[v]. Graph G is said to be (D,
r)-regular if every |Np(v) | =r. The D-neighborhood sum of f: V(G) > W is
NS(f;D) = max{f(Np(v)); v ¢ V(G)}. The W-valued D-neighborhood sum of G is
NSw(G;D) = min{NS(f;D)|f:V(G) — W is a bijection}. The lower D-neighborhood
sum of £:V(G)—> W is NST(f;D) = min{f(Np(v) | v ¢ V(G), and the lower W-
valued D-neighborhood sum of G is NS™w(G; D) = max{NS~(f; D) | f:V(G) > W
is a bijection}. Let NS[G] = NS,(G; {0,1}) be the closed neighborhood sum of
G and NS(G) =NSp,1(G;{1}) be the open neighborhood sum of G. The lower
closed neighborhood sum of G is NST[G] = NS~ (G; {0, 1}), and the lower open
neighborhood sum of G is NS™(G) = NS~ (G; {1}). In addition to minimizing the
maximum D-neighborhood weight or maximizing the minimum D-neighborhood
weight, we can consider the spread. Let NS*P(f; D) = NS(f; D)—NS™(f; D). The
W-valued D-neighborhood spread of G is NS*Pw(G; D) = min {NS(f; D)—NS~ (f;
D) | f: V(G)— W is a bijection}. The closed (respectively, open) neighborhood
spread of G denoted NS*P[G] (respectively, NS*(G)) has W = [n] and D ={0,1}
(respectively, D ={1}).

For the house graph H in Fig. 14.13, NS[H] =11 (Fig. 14.13c), NST[H] =9
(Fig. 14.13b), NS(H) = 8 (Fig. 14.13b), NS™(H) = 7 (Fig. 14.13b), NS**[H] = 13—
9 =4 (Fig. 14.13d), and NS**(H) = 8—7 = 1 (Fig. 14.13b). For distance set D = {2},
we have NS(H; {2}) = 6 (Fig. 14.13b), NS™(H; {2}) =4 (Fig. 14.13c), and NS*°(H;
{2}) =4 (Fig. 14.13b). Note that NS**[H]>NS[H]-NS~[H], that is, no single
bijection simultaneously achieves both NS[H] and NS™[H].

As in O’Neal and Slater [30], graph G is said to be (D,W)-vertex magic (or
(D,W)-distance magic) if there is a bijection f: V — W such that the D-neighborhood
weights of the vertices are all a constant, that is, NS*w(G; D) =0. The common
value of each f(Np(v)) is called the distance-D magic constant. The distance-D
adjacency matrix Ap(G) = [a;;] is the n x n binary matrix with a;; = 1 if and only if
dist(v;,vj) € D.

Theorem 25 (O’Neal and Slater [30]). If G is (D, r)-regular and Ap~! exists, then
G is not D-vertex magic.

Corollary 26 For adjacency matrix A=Ay and closed neighborhood matrix
N = Ao, 1}, if graph G is regular, then A~ exists implies G is not {1}-vertex magic
(G cannot be ) labeled) and N~! exists implies that G is not {0,1}-vertex magic (G
cannot be )" labeled).
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2938 3%, 2% 4

Fig. 14.14 Labelings achieving open neighborhood values NS(C,) for 3 <n <7

@, ®» © W @ ®
Fig. 14.15 NS*(3 C4) =0. In general, k Cy4 is {1}-magic

Theorem 27 (O’Neal and Slater [30]). No graph of even order can be both {1}-
vertex magic and {0,1}-vertex magic.

Cycles

The open neighborhood sum problems were easier to solve than those for closed
neighborhoods. Figure 14.14 shows some solutions for NS(C,).

Theorem 28 (Schneider and Slater [37]). NS(C3) =5, NS(C4) =5, and forn>5,
we have NS(C,)=n+2 if n=0,1,3(mod 4) and NS(C,) =n+ 3 if n=2(mod 4)
(Fig. 14.15).

There is actually a single bijection f:V(C,) — [n] that simultaneously achieves
NS(C,), NST(C,), and NS*®(C,). More generally, we considered graphs G that are
unions of cycles of the same length. Note that the only such graph that is {1}-
distance magic is the union of 4-cycles.

Theorem 29 (O’Neal and Slater [29]). If G is a union of k C;’s, then:

1.) If t=1,3(mod 4), then NS™ (G) =kt—k+ 1 =n-k+ 1, NS(G) =kt +k + 1=
n+k+ 1, and NS*P(G) = 2k.

2.) Ift=2(mod4),then NS™(G) =kt—2k + 1 =n—2k+ 1, NS(G) =kt + 2k + 1 =
n+ 2k + 1, and NS*P(G) = 4k.

3.) If t>4 and t=0(mod 4), then NS™(G) =kt=n, NS(G) =kt +2=n+2, and
NS*(G) =2.

4) Ift=4, then NST(G) =NS(G) =4k + 1 =n+ 1 and NS**(G) =0.

Problem 21 Determine NS(G), NS™(G), and NS*?(G) when G is 2-regular and
contains cycles of different lengths (Fig. 14.16).
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Fig. 14.16 Closed neighborhood sums NS™[3 Cg] = 28, NS[3 C¢] =29, and NS*P[3 C¢] =1

Some results about the closed neighborhood sum parameters for 2-regular graphs
are presented in Allen O’Neal’s Ph.D. dissertation.

Theorem 30 (O’Neal [28]). If k is odd, then NST[k C¢] =9k +4, NS[k C¢]
=9k + 2, and NS*P[k Cs] = 1.

The known results for cycles are summarized next.
Theorem 31 (O’Neal [28]). For cycle Cy;:

1. NST[C3] = NS[C3] = 6 and NS**[C3] =0.
2. If n g {5, 9, 15}, then NST[C,] =3(n+ 1)/2—1, NS[C,] =3(n+ 1)/2+ 1, and
NS*P[C,] =2.

. NS7[C¢] =10, NS[Cs] =11, and NS*P[Cg] = 1.

. If n# 6 and n is even, NS™[C,] = 3n/2, NS[C,] = (3n + 6)/2, and NS**[C,] = 3.

5. Ifn>7andn = 1,5(mod 6), then NST[C,] =3(n+ 1)/2—2,NS[C,]=3(n+ 1)/2
+ 2, and NS*P[C,] =4.

6. If n>21 and n=3(mod 6), then 3(n+ 1)/2—2 <NST[C,]<3(n+ 1)/2—1,
3(n+ 1)/2+ 1 <NS[C,] <3(n+ 1)/2 + 2, and NS*P[C,] € {2,3,4}.

[ NN

Problem 22 Determine the closed neighborhood sum parameters NS[G], NST[G],
and NS*P[G] for C,, with n = 3(mod 6), for kC; and for arbitrary 2-regular graphs.

Rooks Graphs and Magic Squares

The k x j rooks graph Ry has kj vertices, V(Rij) ={vap | ] <a<k, 1 <b <j}, and
distinct vertices v, and v. 4 are adjacent when a=c or b =d, that is, when they
correspond to squares in a k x j chessboard that are in the same row or same column.

Note that for any magic square labeling f: V(Rgy)— {1, 2, 3, ..., kz},
as in Fig. 14.17, the row and column sums are all k(k*> + 1)/2, so that
f(N[vap]) = k(k? 4+ 1)—f(vap). For such a labeling f, NS™(f)=k(k> + 1)-k>2,
NS(f) =k(k*> + 1)—1, and NS**(f) = k?>—1 (Fig. 14.18).

Theorem 32 (O’Neal and Slater [31]). NST[R3] =22, NS[R3]=28, and
NS*P[R3] = 8. In particular, no labeling f: V(R3) — {1, 2, ..., 9} simultaneously
attains NS™[R3] and NS[R3].
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4 9 2 26 21 28
3 57 27 25 23
8 16 22 29 24

Fig. 14.17 A 3 x 3 magic square and the closed neighborhood sum values

91 6 21 28 28
25 8 27 23 25
37 4 25 20 28

Fig. 14.18 NS[R33] <28

Fig. 14.19 T((T2)=3/2

Problem 23 Determine the values of NS™[Ry], NS[Rg], and NS*’[Ri]. One can
also investigate the open neighborhood sum parameters NS (Ry), NS(Ry), and
NS*P(Rg).

14.4.3 The Magic Constant and Fractional Domination

Seemingly unrelated to labeling problems is the theory of domination in graphs.
A vertex set D in V(G) is a dominating set if each vertex v ¢ V(Q) is either in the
set D or is adjacent to a vertex in D. Equivalently, each closed neighborhood has a
nonempty intersection with D, N[v] N D # ¢. The domination number Y(G) is the
minimum cardinality of a dominating set.

We can define domination as a labeling problem as follows. For any real valued
function f:V(G) — R, the weight of fis wgt(f) = Y v v(g) f(v). Then the domination
number is the minimum weight of a binary labeling f of V(G) with minimum
closed neighborhood sum at least 1, YT(G)=min{wgt(f)|f:V(G)— {0, 1}} and
NS~ (f; {0, 1}) > 1}. For the graph T2 in Fig. 14.19, let f(v;) = f(v4) = f(v¢) = 0 and
f(vy) = f(v3) =f(vs) = 1/2. Then each f(N[v])>1 and wgt(f) =3/2. As in Farber
[16], the fractional domination number Y¢(G) is the minimum weight of a function
2:V(G)— [0, 1] with NS~ (g; [0, 1])> 1. More generally, the D-neighborhood
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fractional domination number Y¢(G; D) is the minimum weight of a function
2:V(G) — [0, 1] with every g(Np(v)) > 1 (i.e., every D-neighborhood has a weight
of at least one). Expressed as a linear programming problem, we have the following:

Tf (G, D) = MINZIsIani (14 1)

Subject to ApX > 1, and X; >0, where 1, is the all 1’s n-vector '
The uniqueness of vertex magic constants applies very generally, namely, not only
for arbitrary D-neighborhoods but also for arbitrary weight sets W. Not only is the
magic constant unique, but it is determined by the D-fractional domination number.

Theorem 33 (O’Neal and Slater [32]). If graph G is (D, W) vertex magic, then its
(D, W)-vertex magic constant is ¢ = wgt(W)/Y¢(G; D).

Let me conclude this section with a generic problem.

Problem 23 Many graph theoretic results can be derived from linear algebraic
observations. As indicated by Theorem 33 (and, e.g., Slater [46]), a linear/integer
programming approach can be particularly fruitful in deriving graph theoretic results
and, as in [46], in defining new parameters.

14.5 It Is All Labeling

I'hope to have illustrated two themes. The first is that so much of graph theory can be
viewed as forms of labeling problems. As above, this is clear for many subset-type
problems like domination, packing, independence, and covering. Likewise structural
problems are also. Graph labeling began as a study of packing trees into complete
graphs. For another basic example, a Hamiltonian cycle is a labeling f:V(G) — [n]
such that all pairs of consecutive numbers (mod n) appear on adjacent vertices.

The second is that there are many interesting problems derivable from the
question “How close?.” For example, when G is not graceful, how close is it?

Finally, let me illustrate the inherent difficulty of labeling problems (as if the
Graceful Tree Conjecture alone would not do this). It is an NP-complete problem
to decide, when given a weight set W with |W| =2k, if W can be partitioned into
two subsets X and Y of size k with wgt(X) = wgt(Y). This is simply the problem of
deciding if NS*Pw(2K; {0, 1}) =0.
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Chapter 15
My Favorite Domination Conjectures in Graph
Theory Are Bounded

Michael A. Henning

Abstract For a graph G of order n and a parameter ¥(G), if #(G) < }n for some
rational number §, where 0 < 7 < 1, then we refer to this upper bound on #(G) as
an §-bound on #(G). In this chapter, we present over twenty }-bound conjectures

on domination type parameters.

Mathematics Subject Classification : 05C69

15.1 Introduction

I was first introduced to graph theory in 1982 by Professor Henda Swart, when I
started my undergraduate studies at the Durban campus of the University of Natal.
Her passion for graph theory was contagious, and she instilled in me a love for
the subject at an early age. In January 1986, I started my graduate work under
her supervision. After attending the South African Mathematics Congress later that
year, I was exposed to talks on domination theory in graphs by Professors Ernie
Cockayne and Kieka Mynhardt. I was immediately captivated by the concept, and
my graph theory research interests shifted to the topic of domination theory in
graphs.

Of my early papers, one which I treasure fondly is a paper with Professor
Paul Erdos. We met at the Sixth International Conference on Graph Theory,
Combinatorics, Algorithms and Applications, held at Western Michigan University
in June 1988. During the week of the “Kalamazoo conference,” we had several
discussions on domination-related problems. Professor Erdés posed to me the

Research supported in part by the South African National Research Foundation and the University
of Johannesburg

M.A. Henning (P<)

Department of Pure and Applied Mathematics, University of Johannesburg,
Auckland Park, Johannesburg 2006, South Africa

e-mail: mahenning @uj.ac.za

© Springer International Publishing Switzerland 2016 253
R. Gera et al. (eds.), Graph Theory, Problem Books in Mathematics,
DOI 10.1007/978-3-319-31940-7_15


mailto:mahenning@uj.ac.za

254 M.A. Henning

problem of determining the smallest order of a graph with domination number equal
to two and with every vertex contained in a clique K),. The following year our joint
research endeavors were interrupted by a compulsory 2-year stint that I had to serve
in the South African Defence Force (thankfully shortened to 15 months). However,
it was while digging a trench around our army tent during my “bush phase” that
the key ideas needed to prove our bound became clear to me. Fortunately, I had a
“weekend pass” the following weekend and met with Professor Swart to check the
finer details of our proof. Our subsequent paper [16] with Professor Erdos resulted in
us becoming the proud owners of an Erdés number 1 and served to further motivate
us to attack the many open problems and conjectures at the time in domination
theory in graphs.

In this chapter, I will discuss some of my favorite domination-related conjectures.
All the conjectures I have selected relate to upper bounds on domination parameters
in terms of the order of the graph. For a graph G of order n and a parameter ¥ (G),
if #(G) < Zn for some rational number ¢, where 0 < Z < 1, then we refer to this
upper bound on #(G) as an ;-bound on #(G). In this chapter, I present my current
favorite ;-bound conjectures on domination-type parameters, in no particular order
of preference.

Before presenting these conjectures, we give some basic graph theory terminol-
ogy. We in general follow [40]. Specifically, let G be a graph with vertex set V(G)
and edge set E(G). The open neighborhood of a vertex v € V(G) is Ng(v) = {u €
V(G) |uv € E(G)}, and its closed neighborhood is the set Ng[v] = Ng(v) U {v}.
The degree of a vertex v in G, denoted dg(v), is the number of neighbors, |[Ng(v)|,
of v in G. The minimum degree among all the vertices of G is denoted by §(G).
The graph G is k-regular if dg(v) = k for every vertex v € V(G). A 3-regular
graph is also called a cubic graph. The girth of G is the length of a shortest cycle
in G. A graph is connected when there is a path between every pair of vertices. Two
distinct vertices u and v of a graph G are open twins if N(u) = N(v) and closed
twins if N[u] = N[v]. Further, u and v are twins in G if they are open twins or closed
twins in G, that is, pairs of vertices with the same closed or open neighborhood.
A graph is twin-free if it has no twins, and open twin-free if it has no open twins.

15.2 ;-Conjectures

15.2.1 The Domination Number

A dominating set in a graph G is a set § of vertices of G such that every vertex in
V(G)\ S is adjacent to atleast one vertex in S. The domination number of G, denoted
by y(G), is the minimum cardinality of a dominating set in G. The literature on the
subject of domination parameters in graphs up to the year 1997 has been surveyed
and detailed in the two so-called domination books [30, 31].
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a b

Fig. 15.1 The two non-planar cubic graphs, shown in (a) and (b), of order eight

Using ingenious counting arguments, Reed [52] proved that if G is a graph of
order n with §(G) > 3, then y(G) < gn As a special case of this result, we note
that if G is a cubic graph of order n, then y(G) < gn The two non-planar cubic
graphs of order n = 8 (shown in Figure 15.1(a) and 15.1(b)) both have domination
number 3 and achieve Reed’s g-bound.

Kostochka and Stodolsky [47] proved that these two non-planar, connected, cubic
graphs of order 8 are the only connected, cubic graphs that achieve the g-bound, by
proving that if G is a connected cubic graph of order n > 10, then y(G) < 141 n.
Kostochka and Stocker [47] subsequently improved the 141 -bound, by proving that
if G is a connected, cubic graph of order n > 10, then y(G) < 154n. Reed [52]
conjectured that a tight upper bound on the domination number of a connected,
cubic graph of order n is [n/3]. However, Kostochka and Stodolsky [48] disproved
this conjecture by constructing a connected, cubic graph G on 60 vertices with
y(G) = 21 and presented a sequence {Gi}ge, of connected, cubic graphs with
limy— 00 “’;Egg > 283 = i + 619. Kelmans [45] constructed a smaller counterexample
(with 54 vertices) to Reed’s conjecture and an infinite series of 2-connected, cubic
graphs Hj with lim;— @Z& = é + - Let G2 denote the family of all
connected, cubic graphs of order n. As a consequence of the above results, we
have that

1 1
= _+ ~ 0.35714285.
3 42

1 1
0.35 = < li
+ < sup ( m =14

3 Gegn n—oo n

)/(G)) _ 9
cubic

It remains, however, an open problem to determine what this supremum is.
Indeed, this problem of determining a sharp upper bound on the domination number
of a connected, cubic graph, of sufficiently large order, in terms of its order, is one
of the major outstanding problems in domination theory.

The following conjecture, posed independently by Kelmans [45] and Kostochka
and Stodolsky [48], claims that Reed’s conjecture is true for 3-connected cubic
graphs.

Conjecture 1 ([45, 48]). If G is a cubic 3-connected graph of order n, then
y(G) = [%].

The sequence of counterexamples, provided by both Kostochka and Stodol-
sky [48] and Kelmans [45], all contain induced cycles of length 4. A graph is Cy-free
if it contains no induced 4-cycle. I pose the following conjecture:
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Conjecture 2. If G is a cubic, connected, Cy-free graph of order n, then
y(G) = [5].

The following conjecture was first posed as a question by Kostochka and
Stodolsky [48]. However, I wish to pose their question as a conjecture.

Conjecture 3. If G is a cubic, bipartite graph of order n, then y(G) < _l)n

I had the privilege of discussing the above conjecture with Professor Kostochka
at the Third International Conference on Combinatorics, Graph Theory and Applica-
tions, held at Elgersburg, Germany, March 2009. During our discussions, Professor
Kostochka posed to me the following, most intriguing question: Is it true that the
vertex set of every cubic, bipartite graph can be partitioned into three dominating
sets? I pose this wonderful question as a conjecture.

Conjecture 4. The vertex set of every cubic, bipartite graph can be partitioned into
three dominating sets.

Conjecture 4, if true, immediately implies Conjecture 3. We remark that the
bipartite requirement in Conjecture 4 is essential. For example, the two cubic graphs
in Figure 15.1(a) and 15.1(b) of order 8 are not bipartite, and their vertex sets cannot
be partitioned into three dominating sets (since each dominating set requires at
least three vertices). More generally, every connected, cubic graph with domination
number greater than one-third its order cannot be partitioned into three dominating
sets. Such graphs include the infinite sequence of connected, cubic graphs provided
by both Kostochka and Stodolsky [48] and Kelmans [45] which are not bipartite and
have domination number greater than one-third their order.

If the girth is sufficiently large, then the ;-bound of Conjecture 3 holds.
Lowenstein and Rautenbach [50] showed that if G is a connected, cubic graph of
order n with girth at least 83, then y(G) < ;n While this is a very pleasing result
indeed, we conjecture that the girth condition can be lowered considerably in order
to guarantee that the ;-bound will hold.

Conjecture 5. If G is a connected, cubic graph of order n with girth at least 6, then
y(G) < in.

We remark that the girth requirement in Conjecture 5 is essential, since the
generalized Petersen graph G4 shown in Figure 15.2, of order n = 14 and girth 5,

satisfies y(G) = 5 > !

311.

Fig. 15.2 The generalized Petersen Graph G4
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15.2.2 The Independent Domination Number

A set of vertices is independent if no two vertices in it are adjacent. An independent
dominating set of a graph G is a set of vertices that is both dominating and
independent in G, and the independent domination number of G, denoted by i(G),
is the minimum cardinality of an independent dominating set in G. A survey of
independent dominating sets in graphs can be found in [26]. Over lunch at the Nel-
son Mandela Square in Sandton City, Jacques Verstraete (Personal communication,
2010) posed to me the following conjecture:

Conjecture 6 (Personal communication, 2010). If G is a connected, cubic graph
on n vertices with girth at least 6, then i(G) < ;n

As before, the girth requirement in Conjecture 6 is essential, since the generalized
Petersen graph G4, of order n = 14 and girth 5, satisfies i(G) = 5 > ;n
Perhaps the graph G4 is the only exception when relaxing the girth condition in
Conjectures 5 and 6. For every graph G, y(G) < i(G). Thus, Conjecture 6 is a

stronger conjecture than Conjecture 5.

15.2.3 The Total Domination Number

My favorite domination-type parameter remains the total domination number.
A total dominating set of a graph G with no isolated vertex is a set S of vertices
of G such that every vertex in V(G) is adjacent to at least one vertex in S. The
total domination number of G, denoted by y;(G), is the minimum cardinality of a
total dominating set in G. Total domination in graphs was introduced by Cockayne,
Dawes, and Hedetniemi [12] and is now well studied in graph theory. The literature
on the subject of total domination in graphs has been surveyed and detailed in
the book [40]. My favorite ;-bound conjecture for the total domination number
is the following conjecture. A graph is quadrilateral-free if it contains no 4-cycles
not necessarily induced.

Conjecture 7. If G is a quadrilateral-free graph of order n with §(G) > 5, then

The quadrilateral-free requirement in Conjecture 7 is essential. Consider, for
example, the 5-uniform hypergraph, H;;, constructed by Thomassé and Yeo [57] as
follows. Let H; be the hypergraph with vertex set V(H) = {0, 1,..., 10} and edge
set E(H) = {eo, e1,...,e10}, where the hyperedgee; = Q +ifori =0,1,...,10
and where Q = {1, 3,4, 5,9} is the set of nonzero quadratic residues modulo 11.
Let G, be the incidence bipartite graph of the hypergraph H;;. The 5-regular graph
G = Gp, shown in Figure 15.3, has order n = 22, minimum degree 6(G) = 5,
and total domination number y,(G) = 8 = *n > ;n However, every vertex of G

11
belongs to an induced 4-cycle, and so G is certainly not quadrilateral-free.
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Fig. 15.3 The graph Gy,

15.3 }-Conjectures

I have always felt that the simplest upper bounds to prove on a graph parameter
should be ;-bounds. For example, a classic result due to Ore [51] states that if
G is a graph of order n without isolated vertices, then y(G) < ;n The proof is
elementary but nonetheless a fundamental result in domination theory. Since every
bipartite graph is the union of two independent sets, each of which dominates the
other, the following ;-bound is immediate: If G is a bipartite graph on n vertices,
then i(G) < ;n

However, it is not always the case that é-bounds are the simplest to prove.
My experience is that ;-bounds can be as stubborn to prove as other seemingly
more complicated bounds! A beautiful and important result in the theory of total
domination in graphs is that if G is a graph of order n with §(G) > 3, then
y(G) < ;n Archdeacon et al. [1] provided an elegant graph theoretic proof of
this ;-bound result on the total domination number that, surprisingly, uses Brooks’
Coloring Theorem and clever counting arguments. This é-bound result also follows
readily from a result, independently established by Chvétal and McDiarmid [11] and
Tuza [58], about transversals in hypergraphs. In this section, I have selected my two
favorite é-bound conjectures.

15.3.1 The Locating Domination Number

Among the existing variations of domination, the one of location-domination
is widely studied. A locating-dominating set is a dominating set D that
locates/distinguishes all the vertices, in the sense that every vertex not in D is
uniquely determined by its neighborhood in D. Hence, two distinct vertices u
and v in V(G) \ D are located by D if they have distinct neighbors in D; that is,
N@u) N D # N(v) N D. The location-domination number of G, denoted y.(G),
is the minimum cardinality of a locating-dominating set in G. The concept of a
locating-dominating set was introduced and first studied by Slater [55, 56]. Recall
that if G is a graph of order n without isolated vertices, then y(G) < én, as first
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proven by Ore [51]. While there are many graphs (without isolated vertices) which
have location-domination number much larger than half their order, the only such
graphs that are known contain twins. Garijo, Gonzélez, and Marquez [24] therefore
posed the conjecture that in the absence of twins, the classic bound of one-half the
order for the domination number also holds for the location-domination number.

Conjecture 8 ([24]). If G is a twin-free graph of order n without isolated vertices,
then y.(G) < én

Conjecture 8 remains open, although it is true for several important classes of
graphs. Conjecture 8 is true if the twin-free graph G of order n (without isolated
vertices) satisfies any of the following conditions: (a) ([24]) G has no 4-cycles. (b)
([24]) G has (vertex) independence number at least ;. (¢) ([24]) G has clique number
atleast [5] + 1. (d) ([23]) G is a split graph. (e) ([23]) G is a co-bipartite graph. (f)
([20]) G is a cubic graph. (g) ([22]) G is a line graph.

15.3.2 The Paired-Domination Number

A set of edges in a graph G is independent if no two edges in it are adjacent in G; that
is, an independent edge set is a set of edges without common vertices. A matching
in a graph G is a set of independent edges in G. A perfect matching M is a matching
such that every vertex of G is incident to an edge of M. A paired-dominating set
of G is a dominating set S of G with the additional property that the subgraph
G[S] induced by S contains a perfect matching M (not necessarily induced). The
paired-domination number of G, denoted by Y, (G), is the minimum cardinality
of a paired-dominating set in G. Paired-domination was introduced by Haynes and
Slater [28, 29] as a model for assigning backups to guards for security purposes and
studied in [10, 13, 18, 33] inter alia.

Chen, Sun, and Xing [9] proved that if G is a cubic graph of order n, then
Ypr(G) < gn In June 2008, I attended the SIAM Conference on Discrete
Mathematics held at the University of Vermont. During the conference, I held
several discussions on this g-bound with my good friend, Wayne Goddard (who,
incidentally, attended the same high school as I did and played on the same chess
and field hockey teams as I did). We [25] provided a simpler proof of this bound
and used our new proof to characterize the cubic graphs that achieve equality in the
g-bound. Surprisingly, equality is only achieved by the Petersen graph. Throughout
our proof of the g-bound, the challenging part was the existence of 5-cycles which
seemed to force up the paired-domination number. The following two conjectures
of mine have stubbornly resisted a solution for some time now, but surely, if true,
simple proofs abound. A graph is Cs-free if it contains no induced 5-cycle.

Conjecture 9. If G is a bipartite, cubic graph of order n, then yp(G) < ;n
Conjecture 10. If G is a cubic, Cs-free graph of order n, then vy (G) < ;n
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154 g-Conjectures

15.4.1 The Total Domination Number

A cage is a regular graph that has as few vertices as possible for its girth. An
(r, g)-cage is an r-regular graph with the fewest possible number of vertices having
girth g. The Heawood graph, shown in Figure 15.4(a), is the smallest cubic graph of
girth 6; that is, the Heawood graph is the unique 6-cage. The bipartite complement
of the Heawood graph is the bipartite graph formed by taking the two partite sets
of the Heawood graph and joining a vertex from one partite set to a vertex from
the other partite set by an edge whenever they are not joined in the Heawood
graph. The bipartite complement of the Heawood graph can also be seen as the
incidence bipartite graph of the complement of the Fano plane which is shown in
Figure 15.4(b).

Thomasse and Yeo [57] proved that if G is a graph of order n with §(G) > 4,
then y;:(G) < ;n It is known [40, 42] that the bipartite complement of the Heawood
Graph is the only connected graph of order n with §(G) > 4 achieving the
Thomassé-Yeo 3-upper bound. The following conjecture appears as Conjecture 18.4
in [40].

Conjecture 11. If G is connected graph of order n with §(G) > 4 that is not the
bipartite complement of the Heawood graph, then y,(G) < gn

Every vertex in the bipartite complement of the Heawood graph belongs to a
4-cycle. I visited Anders Yeo at the Singapore University of Technology and Design
in April 2014 and January 2015, and we believe the Thomassé-Yeo %-upper bound

can be improved to a g-upper bound if we restrict the graph to contain no 4-cycles.

Conjecture 12. If G is quadrilateral-free graph of order n with §(G) > 4, then

Fig. 15.4 (a) The Heawood graph and (b) the Fano plane
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15.5 g-Conjectures

15.5.1 The Location-Total Domination Number

Among the existing variations of total domination, the one of location-total dom-
ination is widely studied. Recall that a set D of vertices locates a vertex v if the
neighborhood of v within D is unique among all vertices in V(G) \ D. A locating-
total dominating set is a total dominating set D that locates all the vertices, and the
location-total domination number of G, denoted y*(G), is the minimum cardinality
of a locating-total dominating set in G. The concept of a locating-total dominating
set was first considered in [32] and studied, for example, in [8, 37, 38].

A classic result in total domination theory due to Cockayne et al. [12] states
that if G is a connected graph of order n > 3, then y,(G) < §n This §-b0und is
tight, and the extremal examples have been classified (see [6]). As observed in [21],
while there are many such graphs which have location-total domination number
much larger than two-thirds their order, the only such graphs that are known contain
many twins. Together with Florent Foucaud, my postdoctoral student at the time,
we conjectured [21] that in the absence of twins, the classic bound of two-thirds the
order for the total domination number also holds for the locating-total domination
number.

Conjecture 13 ([21]). If G is a twin-free graph of order n without isolated vertices,
then yF(G) < gn

Conjecture 13 remains open, although it was proved for graphs with no 4-cycles
and also shown to hold asymptotically for large minimum degree (see [21]).
Conjecture 13 is also known [22] to hold for line graphs.

15.6 g-Conjectures

15.6.1 The Total Domination Number

As remarked earlier, if G is a graph of order n with §(G) > 3, then y,(G) < én The
generalized Petersen graph Gy¢ of order 16 shown in Figure 15.5 achieves equality
in this é-bound for the total domination number.

Two infinite families G and H of connected cubic graphs (described below) with
total domination number one-half their orders are constructed in [19] as follows. For
k > 1, let Gy be the graph obtained from two copies of the path P,; with respective

vertex sequences arbiaxb, . .. apby and c1dicad, . .. crdy. Let A = {Cll, ay,..., ak},
B = {bl,bz, . ,bk}, C = {Cl, Crynn ,Ck}, and D = {dl,dz, . ,dk}. For each
ie{l,2,...,k},join g; to d; and b; to ¢;. To complete the construction of the graph

Gy, join aj to ¢y and by to di. Let G = {Gy | k > 1}. For k > 2, let H; be obtained
from Gy, by deleting the two edges a;c; and b;d; and adding the two edges a; by and
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Fig. 15.5 The Generalized Petersen graph Gi¢

=]
=]

Fig. 15.6 Cubic graphs (a) G4 € Gand (b) Hy € H

ci1dp. Let H = {H; | k > 2}. We note that G, and H; are cubic graphs of order 4k.
Further, we note that G; = Kj. The graphs G4 € G and Hy € H, for example, are
illustrated in Figure 15.9.

In [39], it is shown that these two infinite families, G and H, of connected,
cubic graphs, as well as the generalized Petersen graph of order 16, are precisely
the extremal connected graphs that achieve equality in the é-bound for the total
domination number of a connected graph with minimum degree at least three. Every
vertex that belongs to a graph in the family G U #H belongs to a 4-cycle. Anders
Yeo and I conjectured that the é-bound on the total domination can be improved
to a 187 -bound if the graph is quadrilateral-free and different from the generalized
Petersen graph, Gi¢. This is stated as Conjecture 18.3 in [40], which remains open
(Figure 15.6).

Conjecture 14. If G # G is a connected, quadrilateral-free graph of order n with
8(G) = 3, then y,(G) < 187}1.

We remark that the quadrilateral-free requirement in Conjecture 14 cannot be
replaced with a C4-free requirement. For example, the two graphs G| and G in the
family G are Cy-free and have total domination numbers one-half their orders.

However, I believe that it is the existence of induced 6-cycles that is the crucial
property of the graph G¢ and of all graphs in the family G U H, except for the
graph Ky = G| € G, that account for their large total domination number. Every
vertex in every graph in the family {G¢} U G U H (that achieves the ;-bound for the
total domination number), except for Ks € G, belongs to an induced 6-cycle. Recall
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< PP

Fig. 15.7 A cubic Cs-free graph G with y,(G) = 3n

that a graph is Cg-free if it contains no induced 6-cycle. I believe that the é-bound

decreases significantly to a 3-bound if we impose the structural requirement that the
graph is Cg-free.

Conjecture 15. If G is a Cg-free graph of order n > 6 with §(G) > 3, then y,(G)
< 4}1
N

If Conjecture 15 is true, then the bound is achieved, for example, by the cubic
Ce-free graph G of order n = 18 with y,(G) = 8 = gn shown in Figure 15.7.

15.7 3-Conjectures

15.7.1 The Independent Domination Number

As remarked earlier, Reed [52] proved that if G is a cubic graph of order n, then
y(G) < gn Lam, Shiu, and Sun [49] proved that if G is a connected cubic graph G
of order n other than K3 3, then i(G) < gn Goddard and Henning [26] conjecture
that the graphs K3 3 and the prism Cs [ K, are the only exception for an upper bound
of gn on i(G). The graphs K3 3 and Cs [0 K, are depicted in Figure 15.8.

Conjecture 16 ([26]). If G ¢ {K33,CsOK,} is a connected, cubic graph of
order n, then i(G) < gn

Two infinite families Geypic and Hegvic Of connected, cubic graphs, with inde-
pendent domination number three-eighths their orders, are constructed in [26]
as follows. We first construct graphs in Geywic. For k& > 1, consider two
copies of the cycle C4 with respective vertex sequences abicid ...arbycidy
and wix;y12; . .. wiXgyr2x- For each 1 < i < k, join a; to w;, b; to x;, ¢; to z;, and d;
to y;.

Graphs in Hcypic are constructed as follows. For £ > 1, consider a copy of the
cycle Cs; with vertex sequence ajbicy ...agbgce. For each 1 < i < {, add the
vertices {w;, xi, i, z}, 22}, and join @; to wy, b; to x;, and ¢; to y;. Finally, for each
1 <i<{andje {1,2}, join zi to each of the vertices w;, x;, and y;.

Graphs in the families Geypic and Heypic are illustrated in Figure 15.9.
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K 3 Cs 0K,

Fig. 15.8 The graphs K33 and C5; 0 K,

G H

Fig. 15.9 Graphs G € Geupic and H € Hypic of order n with i(G) = i(H) = 3n

It was shown in [27] that if G € Geupic U Heuvic has order n, then i(G) = gn It
is remarked in [26] that “perhaps it is even true that for n > 10, i(G) < gn with
equality if and only if G € Geypic U Heuvic- We remark that computer search has
confirmed this is true when n < 20.”

Dorbec, Henning, Montassier, and Southey [14] have shown that Conjecture 16
is true if G does not have a subgraph isomorphic to K, 3. However, Conjecture 16
remains open for connected cubic graphs that do have K5 3 as a subgraph.

15.8 >-Conjectures

15.8.1 The Independent Domination Number

The following conjecture was first posed as a question by Goddard and Hen-
ning [26].

. . . 3
Conjecture 17. If G is a 4-regular graph of order n, then i(G) < ;n.

As observed in [26], if G is the 4-regular graph shown in Figure 15.10, then G
has order n = 14 and i(G) = 6 = gn Hence, if Conjecture 17 is true, then the
bound is achievable.
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Fig. 15.10 A 4-regular graph G with i(G) = 6

Fig. 15.11 The bipartite cubic graph By, with i(By,) = 141 n

15.9 +-Conjectures

15.9.1 The Independent Domination Number

Goddard and Henning [26] posed the following conjecture:

Conjecture 18 ([26]). IfG # K33 is a connected, bipartite, cubic graph of order n,
then i(G) < 141 n.

It is remarked in [26] that Conjecture 18 is true when n < 26, as confirmed by
computer search (see [27]). If Conjecture 18 is true, then the bound is achieved by
the bipartite, cubic graph By, of order n = 22, with i(By;) = 8 = 141 n, shown in
Figure 15.11.

Henning, Lowenstein, and Rautenbach [43] have shown that Conjecture 18 is true
if G is Cy-free; that is, if G is a bipartite, cubic graph of girth at least six. However,
Conjecture 18 remains open for connected, cubic graphs that do contain a 4-cycle.

15.9.2 The Total Domination Number

Thomasse and Yeo [57] posed the following 141 -conjecture.

Conjecture 19 ([571). If G is a graph of order n with §(G) > 5, then y;(G) < 141 n.
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If Conjecture 19 is true, then the bound is achievable. For example, the graph
G2, shown in Figure 15.3, has order n = 22, minimum degree §(G») = 5, and
Y:(Gp) = 8 = fln. Dorfling and Henning [15] showed that if G is a graph of
order n with §(G) > 5, then y,(G) < ﬂn = (141 + 414)}1. The best upper bound to
date on the total domination number of a graph with minimum degree at least five
is due to Eustis, Henning, and Yeo [17] who showed that if G is a graph of order n

with §(G) > 5, then y,(G) < (|} + ,)n.

15.10 g-Conjectures

15.10.1 Open Locating-Domination Number

An open locating-dominating set (also called an identifying open code or a
differentiating total dominating set in the literature) is similar to a locating-total
dominating set, defined in Section 15.5.1, except that in this case we impose the
stricter requirement that distinct vertices, even vertices that belong to the total
dominating set, are totally dominated by distinct subsets of the total dominating
set. Hence, a set S is an open locating-dominating set in a graph G if § is a total
dominating set in G, with the additional property that N(u) NS # N(v) N S for all
distinct vertices # and v in G. A graph with no isolated vertex has an open locating-
dominating set if and only if it is open twin-free (i.e., if it has no open twins). If G
is open twin-free and G has no isolated vertex, we denote by yoLp(G) the minimum
cardinality of an open locating-dominating set in G. The problem of open locating-
dominating sets was introduced by Honkala et al. [44] in the context of coding
theory for binary hypercubes. Recent papers on open locating-dominating sets can
be found, for example, in [41, 53, 54].

Henning and Yeo [41] showed that if G is a connected, twin-free, cubic graph of
order n, then yoLp(G) < in. This i-bound on YoLp(G) is achieved, for example,
by the complete graph K4 and the hypercube O3, shown in Figure 15.12, that satisfy
voLp(Ks) = 3 and yorp(Q3) = 6.

However, Henning and Yeo [41] conjecture that if G is a twin-free, connected,
cubic graph of sufficiently large order n, then the i-bound on yoLp(G) can be

improved to a g-bound.

Fig. 15.12 The hypercube Q3
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Conjecture 20. If G is an open twin-free, connected, cubic graph of sufficiently
large order n, then yorp(G) < 2;1

15.10.2 The Game Domination Number

The domination game in graphs was introduced by BreSar, KlavZar, and Rall in [2]
and extensively studied afterward in [2-5, 34, 46]. The domination game on a graph
G consists of two players, Dominator and Staller, who take turns choosing a vertex
from G. Each vertex chosen must dominate at least one vertex not dominated by
the vertices previously chosen, where a vertex dominates itself and its neighbors.
The game ends when the set of vertices chosen becomes a dominating set in G.
Dominator wishes to end the game with a minimum number of vertices chosen,
and Staller wishes to end the game with as many vertices chosen as possible.
The game domination number (resp. Staller-start game domination number), y,(G)
(resp. yé(G)), of G is the minimum possible number of vertices chosen when
Dominator (resp. Staller) starts the game and both players play according to the
rules. Kinnersley, West, and Zamani in [46] proved a Continuation Principle lemma,
which leads to the fundamental property that |y, (G)—yé (G)| < 1, for every graph G.

In May 2012, Douglas Rall hosted a workshop on game domination at Furman
University attended by experts on the game, including Bill Kinnersley and the
Slovenian graph theorists BoStjan BreSar, Sandi KlavZar, and GaSper KoSmrlj. Our
energies focused on proving the following 3/5-Conjecture posted by Kinnersley,
West, and Zamani in [46].

Conjecture 21 ([46]). If G is an isolate-free graph of order n, then y,(G) < gn

Although we were unable to accomplish our goal, large families of trees were
constructed that attain the conjectured g-bound, and all extremal trees on up to 20
vertices were found in [4]. In [7] Bujtas proved Conjecture 21 for forests in which no
two leaves are at distance 4 apart. Further progress toward Conjecture 21 was made
in [34], where the conjecture is established over the class of graphs with minimum
degree at least 2. However, Conjecture 21 remains open for graphs that contain
vertices of degree one.

15.11 i-Conjectures

15.11.1 The Game Total Domination Number

Recently, the total version of the domination game was investigated in [35]. A vertex
totally dominates another vertex if they are neighbors. The total domination game
consists of two players called Dominator and Staller, who take turns choosing a
vertex from G. In this version of the game, each vertex chosen must totally dominate
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at least one vertex not totally dominated by the set of vertices previously chosen. The
game ends when the set of vertices chosen is a total dominating set in G. Dominator
wishes to end the game with a minimum number of vertices chosen, and Staller
wishes to end the game with as many vertices chosen as possible.

The game total domination number, y,(G), of G is the minimum possible
number of vertices chosen when Dominator (resp. Staller) starts the game and both
players play according to the rules. The Staller-start game total domination number,
yr’g (G), of G is the number of vertices chosen when Staller starts the game and both
players play optimally. In [35], the authors prove a Total Continuation Principle
lemma from which one can readily deduce that |y;,(G) — yr’g(G)| < 1 for every
graph G (with no isolated vertex). In [36] we pose the following i-Game Total
Domination Conjecture.

Conjecture 22 ([36]). If G is a graph on n vertices in which every component
contains at least three vertices, then y,4(G) < in.

We remark that the requirement in Conjecture 22 that every component contains
at least three vertices is essential. For example, if G is the disjoint union of copies
of K>, then y,,(G) = n > zn.

Suppose the total domination game is started on a connected graph. As the
game progresses, at least one new vertex becomes totally dominated on each move.
However, once a vertex and all its neighbors are totally dominated, it plays no role in
the remainder of the game. Such a vertex can be deleted from the so-called partially
total dominated graph, which is a graph together with a declaration that some
vertices are already totally dominated; that is, they need not be totally dominated
in the rest of the game. Once such vertices are deleted, the resulting game may
well become disconnected. Therefore, it is best to study the total domination game
in a general setting where the game is started on a graph that may possibly be
disconnected.

If the 3/4-Conjecture is true, then the upper bound on the Dominator-start game
total domination number is tight, as shown in [36]. In 2013, I had the opportunity
to visit Sandi KlavZar at the University of Ljubljana and, subsequently, Douglas
Rall at Furman University in 2014. Our efforts culminated in proving that if G is
a graph on n vertices in which every component contains at least three vertices,
then y,(G) < gn and yt’g(G) < 4”5+ 2. Our proof strategy modified an ingenious
approach adopted by Csilla Bujtds [7] in order to attack the 3/5-Game Domination
Conjecture. Bujtds’s approach is to color the vertices of a forest with three colors that
reflect three different types of vertices and to associate a weight with each vertex. We
modify Bujtds’s approach in the total version of the game by coloring the vertices of
a graph with four colors that reflect four different types of vertices. We then assign
weights to colored vertices and study the decrease of total weight of the graph as a
consequence of playing vertices in the course of the game. Three different phases
of the game are studied and a strategy formulated for Dominator that comprises
an opening-game strategy, a middle-game strategy, and an end-game strategy. An
analysis of Dominator’s strategy based on the three phases produced the g-bound
on the game total domination number. However, Conjecture 22 remains open.
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15.12 Concluding Remarks

In this chapter, for a graph G of order n and for some domination parameter,
call it 9(G), we ask if for some rational number Z, where 0 < jj < 1, 1is
P(G) < ;jn? In most cases, we qualify the classes of graphs, G, for which we are
asking the question, for example, restricted to bipartite, cubic graphs or restricted to
quadrilateral-free graphs with minimum degree at least five, and so on. For certain
conjectures posed in the chapter, it may be interesting to answer them for special
subclasses of graphs. For example, is Conjecture 5 true for the class of graphs with
girth at least 8? Is Conjecture 15 true for the class of graphs with girth at least 7?
Is Conjecture 17 true for the class of bipartite graphs? Is Conjecture 22 true for the
class of graphs with minimum degree at least two?

There are several parameters that are known to be less than or equal to the
domination number of a graph, such as the 2-packing number, the distance-2
domination number, and the fractional domination number. For each of these
parameters, it would be informative to ask, is their value less than or equal to the
same value jn conjectured for the domination number restricted to the class of
graphs under consideration? More generally, for a known parameter, call it n(G),
for which n(G) < ¥(G), and a given conjecture of the type #(G) < jn, can we
prove that n(G) < {n?
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Chapter 16
Circuit Double Covers of Graphs

Cun-Quan Zhang

Abstract The circuit double cover conjecture (CDC conjecture) is easy to state:
For every 2-connected graph, there is a family .7 of circuits such that every edge
of the graph is covered by precisely two members of %. The CDC conjecture (and
its numerous variants) is considered by most graph theorists as one of the major
open problems in the field. The CDC conjecture, Tutte’s 5-flow conjecture, and the
Berge-Fulkerson conjecture are three major snark family conjectures since they are
all trivial for 3-edge-colorable cubic graphs and remain widely open for snarks. This
chapter is a brief survey of the progress on this famous open problem.

16.1 Introduction

The circuit (cycle) double cover conjecture (CDC conjecture) is easy to state: For
every 2-connected graph, there is a family F of circuits such that every edge of the
graph is covered by precisely two members of F. As an example, if a 2-connected
graph is properly embedded on a surface (without crossing edges) in such a way that
all faces are bounded by circuits, then the collection of the boundary circuits will
“double cover” the graph.

The CDC conjecture (and its numerous variants) is considered by most graph
theorists as one of the major open problems in the field. One reason for this is its
close relationship with topological graph theory, integer flow theory, graph coloring,
and the structure of snarks.

The CDC conjecture was presented as an “open question” by Szekeres [66] for
cubic graphs (as we will see soon in Theorem 1, it is equivalent for all bridgeless
graphs). The conjecture was also independently stated by Seymour in [62] for all
bridgeless graphs. An equivalent version of the CDC conjecture was proposed by
Itai and Rodeh [36] that every bridgeless graph has a family F of circuits such that
every edge is contained in one or two members of F.

For the origin of the conjecture, some mathematicians gave the credit to Tutte.
According to a personal letter from Tutte to Fleischner [73], he said, “I too have
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been puzzled to find an original reference. I think the conjecture is one that was well
established in mathematical conversation long before anyone thought of publishing
it.” It was also pointed out in the survey paper by Jaeger [41] that “it seems difficult
to attribute the paternity of this conjecture” and also pointed out in some early
literature (such as [23]) that “its origin is uncertain.” This may explain why the
CDC conjecture is considered as “folklore” in [7] (Unsolved problem 10). Some
early investigations related to the conjecture can be traced back to publications by
Tutte in 1949 [70, 73].

Most material presented in this chapter follows the pioneering survey papers by
Jaeger (1985 [41]), and Jackson (1993 [37]), and the monographs Integer Flows and
Cycle Covers of Graphs (1997 [78]) Circuit Double Covers of Graphs (2007 [79])
by the author.

The circuit double cover conjecture is obviously true for 2-connected planar
graphs since the boundary of every face is a circuit and the set of the boundaries
of all faces forms a circuit double cover of an embedded graph. One might attempt
to extend this observation further to all 2-connected graphs embedded on some
surfaces. However, it is not true that any embedding of a 2-connected graph is free
of a handle bridge. That is, the boundary of some face may not be a circuit. This
leads to an even stronger open problem in topology known as the strong embedding
conjecture: Can we find an embedding of a 2-connected graph G on some surface
3 such that the boundary of every face is a circuit? See [27, 50] or Conjecture 3.10
in [7] for more information.

The following theorem summarizes some structure of a minimal counterexample
to the circuit double cover conjecture (see [41]).

Theorem 1. If G is a minimum counterexample to the circuit double cover conjec-
ture, then:

(1) G is simple, 3-connected, and cubic,
(2) G has no nontrivial 2 or 3-edge cut;
(3) G is not 3-edge colorable; and

(4) G is not planar.

Thus, most graphs considered in this chapter are cubic and bridgeless.

For a 3-edge-colorable cubic graph, we have an even stronger result for even
subgraph double cover. The following theorem was formulated by Jaeger [41]. (The
equivalence of (1) and (2) was also applied in [62].)

Theorem 2. Let G be a cubic graph. Then the following statements are equiva-
lent:

(1) G is 3-edge colorable;
(2) G has a 3-even subgraph double cover; and
(3) G has a 4-even subgraph double cover.
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16.2 Faithful Circuit Cover and Petersen Minor-Free Graphs

The concept of faithful circuit cover is not only a generalization of the circuit double
cover problem but also an inductive approach to the CDC conjecture in a very
natural way.

Let 27" be the set of all positive integers and 2°* be the set of all nonnegative
integers.

Definition 1. Let G be a graph and w : E(G) — Zt. A family .# of circuits
(or even subgraphs) of G is a faithful circuit cover (or faithful even subgraph cover,
respectively) with respect to w if each edge e is contained in precisely w(e) members
of #.

Figure 16.1 shows an example of a faithful circuit cover of (K4, w) where w :
E(Ky) — {1,2}. Here w™!(1) induces a Hamilton circuit and w™!(2) induces a
perfect matching (a pair of diagonals).

It is obvious that the circuit double cover is a special case of the faithful circuit
cover problem by choosing the weight w to be 2 for every edge.

Definition 2. Let G be a graph. A weight w : E(G) — 2 is Eulerian if the total
weight of every edge cut is even. And (G, w) is called an Eulerian weighted graph.

Definition 3. Let G be a graph. An Eulerian weight w : E(G) — 2T is admissible
if, for every edge-cut 7" and every e € T,

w(T)
5

w(e) <

And (G, w) is called an admissible Eulerian weighted graph if w is Eulerian and
admissible.

If G has a faithful circuit cover .# with respect to a weight w : E(G) — Z'T,
then the total weight of every edge cut must be even since, for every circuit C of .%#
and every edge-cut 7, the circuit C must use an even number of distinct edges of the
cut 7. With this observation, the requirements of being Eulerian and admissible are
necessary for faithful circuit covers.

Problem 1. Let G be a bridgeless graph with w : E(G) — 2. If w is admissible
and Eulerian, does G have a faithful circuit cover with respect to w?

I
+

Fig. 16.1 Faithful circuit cover — an example
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Fig. 16.2 (Pl(), W]o)

Unfortunately, Problem 1 is not always true. The Petersen graph Py with an
Eulerian weight wy( (see Figure 16.2) does not have a faithful circuit cover: where
the set of weight 2 edges induces a perfect matching of Py and the set of weight 1
edges induces two disjoint pentagons.

For a given weight w : E(G) — 2, denote

E,—; = {e€ E(G): w(e) = i}.

Like many mainstream research areas in graph theory, 3-edge coloring plays a
central role in the study of the faithful circuit cover problem. The following is one
of the most frequently used lemmas in this field.

Lemma 1 (Seymour [62]). Let G be a cubic graph and w : E(G) — {1,2} be an
Eulerian weight. Then the following statements are equivalent:

(1) G is 3-edge colorable; and
(2) G has a faithful 3-even subgraph cover with respect to w.

Since the 4-color theorem is equivalent to 3-edge colorings for all bridgeless
cubic planar graphs, an immediate corollary of Lemma 1 is the following early result
(Theorem 3) by Seymour. An alternative proof of Theorem 3 (slightly stronger) is
provided by Fleischner [15] without using the 4-color theorem.

Theorem 3 (Seymour [62], and Fleischner [15, 18]). If G is a planar, bridgeless
graph associated with an Eulerian weight w : E(G) — {1, 2}, then G has a faithful
circuit cover with respect to w.

Theorem 3 was further generalized for Petersen minor-free graphs as follows.

Theorem 4 (Alspach, Goddyn and Zhang [1, 3]). Let G be a graph without a
Petersen minor and w : E(G) — Z%+ be an admissible Eulerian weight. Then G has
a faithful circuit cover with respect to w.
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16.3 Integer Flows

The concept of integer flow was introduced by Tutte [70], [71] as a generalization
of the map coloring problems. This section is a brief survey of circuit covering
theorems arising from the integer flow theory. Readers are referred to [40, 65, 78]
of the comprehensive surveys in this area.

The following are some of classical results in flow theory.

Theorem 5 (Jaeger [38, 39]). Every 4-edge-connected graph admits a nowhere-
zero 4-flow.

Theorem 6 (Jaeger [39], Kilpatrick [44]). Every bridgeless graph admits a
nowhere-zero 8-flow.

Theorem 6 is further improved by Seymour in the following theorem.

Theorem 7 (Seymour [63]). Every bridgeless graph admits a nowhere-zero
6-flow.

With the application of the following lemma, the flow theorems can be stated as
even subgraph covering problems.

Lemma 2 (Matthews [52]). Let r be a positive integer. A graph G admits a
nowhere-zero 2"-flow if and only if G has an r-even subgraph cover.

Thus, the following are corollaries of Theorems 5 and 6.

Corollary 1 (Jaeger [40]). Every 4-edge-connected graph has a 2-even subgraph
cover, and every bridgeless graph has a 3-even subgraph cover.

With an elementary operation, symmetric difference, between even subgraphs,
one can further state the above corollary as theorems for even subgraph double
covers and 4-covers.

Corollary 2 (Jaeger [40]). Every 4-edge-connected graph has a 3-even subgraph
double cover.

Corollary 3 (Bermond, Jackson and Jaeger [5]). Every bridgeless graph has a
7-even subgraph 4-cover.

Applying Theorem 7, Fan proved the following even subgraph cover result.
Theorem 8 (Fan [13]). Every bridgeless graph has a 10-even subgraph 6-cover.
The following is a combination of Corollary 3 and Theorem 8.

Theorem 9 ([13]). For each even integer k greater than two, every bridgeless
graph has an even subgraph k-cover.

Theorem 9 is therefore a partial result for the following conjectures.
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Conjecture 1 (Seymour [62]). Let w : E(G) — 2T be an admissible Eulerian
weight of a bridgeless graph G such that w(e) = 0 mod 2 for each edge ¢ € E(G).
Then G has a faithful circuit cover of w.

Conjecture 2 (Goddyn [26]). Let w : E(G) — 2 be an admissible Eulerian
weight of a bridgeless graph G. If w(e) > 2 for every edge e of G, then (G, w)
has a faithful circuit cover.

Corollary 3 can also be considered as a partial result for the Berge-Fulkerson
conjecture. The following is an equivalent version of the conjecture.

Conjecture 3 (Berge and Fulkerson [22]). Every bridgeless cubic graph has a
6-even subgraph 4-cover.

16.4 Small Oddness

Definition 4. Let S be an even subgraph of a cubic graph G. A component C of S is
odd (or even) if C contains an odd (or even, respectively) number of vertices of G.

Definition 5. Let G be a bridgeless cubic graph. For a spanning even subgraph S of
G, the oddness of S, denoted by odd(S), is the number of odd components of S. For
the cubic graph G, the oddness of G, denoted by 0dd(G), is the minimum of odd(S)
for all spanning even subgraph S of G.

The following are some straightforward observations.
Fact. A cubic graph G is 3-edge colorable if and only if odd(G) = 0.
Fact. The oddness of every cubic graph must be even.

Note that determination of the oddness of a cubic graph is a hard problem
since determining the 3-edge colorability of a cubic graph is an NP-complete
problem [31].

Theorem 10 (Huck and Kochol [35] and [32, 45]). Let G be a bridgeless cubic
graph with oddness at most 2. Then G has a 5-even subgraph double cover.

Theorem 10 was further improved by Huck [34] (a computer-assisted proof) and
independently by Héggkvist and McGuinness [30], for oddness 4 graphs.

Theorem 11 (Huck [34], Higgkvist and McGuinness [30]). Ler G be a bridge-
less cubic graph with oddness at most 4. Then G has a circuit double cover.

For a 3-edge-colorable cubic graph G; and an edge e € E(G,), it is obvious that
the suppressed cubic graph G, = G| — e is of oddness at most 2. And, therefore,
a bridgeless cubic graph containing a Hamilton path is also of oddness at most 2.
The following is a corollary of Theorem 10.
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Corollary 4 (Tarsi [67]; Or see [25] for a simplified proof). Every bridgeless
graph containing a Hamilton path has a 6-even subgraph double cover.

Note that every 3-edge-colorable cubic graph (Theorem 2) has a 3-even subgraph
double cover, while every oddness 2 cubic graph has a 5-even subgraph double
cover. The following is a conjecture for all bridgeless graphs.

Conjecture 4 (Preissmann [58] and Celmins [9]). Every bridgeless graph has a
5-even subgraph double cover.

16.5 Strong Circuit Double Cover

Circuit Extension and Strong CDC

Note that in the Eulerian (1,2)-weighted Petersen graph (Pjo,wjo) (see Fig-
ure 16.2), E,,,=1 induces two disjoint circuits. How about an Eulerian (1,2)-
weighted graph (G, w) for which E,,—; induces a single circuit? The following is
an open problem that addresses possible faithful covers for such weighted graphs.

Conjecture 5 (Strong circuit double cover conjecture, Seymour, see [17] p. 237, and
[18], also see [24]). Let w be an Eulerian (1, 2)-weight for a 2-edge-connected,
cubic graph G. If the subgraph of G induced by weight 1 edges is a circuit, then
(G, w) has a faithful circuit cover.

Conjecture 5 has an equivalent statement.
Let G be a 2-edge-connected cubic graph and C be a circuit of G; then the graph
G has a circuit double cover F with C € F.

Definition 6. Let C be a circuit of a 2-edge-connected cubic graph G. A strong
circuit (even subgraph) double cover of G with respect to C is a circuit (even
subgraph) double cover .% of G with C € %. (As an abbreviation, .7 is called
a strong CDC of G with respect to C.)

Conjecture 5 is obviously stronger than the circuit double cover conjecture.
Conjecture 6 (Sabidussi Conjecture) is a special case of Conjecture 5 that the given
circuit is dominating.

Conjecture 6 (Sabidussi and Fleischner [16], and Conjecture 2.4 in [2]). Let G be
a cubic graph such that G has a dominating circuit C. Then G has a circuit double
cover .% such that the given circuit C is a member of .%.

The following is a general question for circuit extension.

Problem 2 (Seymour [64], also see [20, 47]). For a 2-edge-connected cubic graph
G and a given circuit C of G, does G contain a circuit C’ with V(C) € V(C’) and
E(C) # E(C)?



280 C.-Q. Zhang

Fig. 16.3 The circuit C (of length 16 = n — 2) is not extendable

Definition 7. A circuit C of a graph G is extendable if G contains another circuit
C’ such that V(C) € V(C’) and E(C) # E(C’). And the circuit C’ is an extension of
C (or simply a C-extension).

Problem 2 proposes a possible recursive approach to Conjecture 5.

Proposition 1 (Kahn, Robertson, Seymour [43], also see [10, 64], personal
communication, 2012). If Problem 2 is true for every circuit in every 2-edge-
connected cubic graph, then Conjecture 5 is true.

Note that not every circuit is extendable; the graph in Figure 16.3 is an example
discovered by Fleischner ([15, 17, 19, 20]) in which a circuit C does not have an
extension.

Definition 8. Let G be a 2-edge-connected, cubic graph and C be a circuit of G.
If C is not extendable, then C is called a stable circuit of G.

Note that the graph G illustrated in Figure 16.3 is a @3-sum of two copies
G/Pi,G/P, of the Petersen graphs (where P;, P, are two components of G —

{eo, e1, e2}).
Proposition 2 (Fleischner). The circuit C illustrated in Figure 16.3 is stable.

In [20] and [47], infinite families of stable circuits are constructed by Fleischner
and Kochol. Some of them are cyclically 4-edge-connected snarks [47].

Recently, a computer-aided search [8] discovered stable circuits for some cycli-
cally 4-edge-connected snarks of order n, for every even integer n € {22,...,36}.
However, the existence of stable circuits does not disprove the strong CDC
conjecture for those snarks: the computer-aided proof further verifies the strong
CDC conjecture for all of those small snarks (cyclically 4-edge-connected snarks
of order at most 36). Note that 3-edge-colorable graphs are not counterexamples to
any faithful cover problem (Lemma 1), and graphs with nontrivial 2- or 3-edge cut
can be reduced to graphs of smaller orders.
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Proposition 3 (Brinkmann, Goedgebeur, Higglund and Markstrom [8]). The
strong circuit double cover conjecture holds for all bridgeless cubic graphs of order
at most 36.

Note that, for the stable circuit C illustrated in Figure 16.3, |V(G) — V(C)| = 2.
Although it is not extendable, it is not a counterexample to the strong circuit double
cover conjecture. However, for all cubic graphs, the strong CDC conjecture remains
open if a circuit C is of length n — 2.

Extension-Inheritable Properties

Definition 9. A given property & is extension-inheritable, if for any pair (G, C)
with property &,

(1) The property & guarantees the existence of a C-extension C’, and
(2) The reduced pair (G — (E(C) — E(C")), C’) also has the same property 2.

Fleischner [19], by applying the lollipop method introduced in [68], discovered
the first extension-inheritable property: circuit of length at least n — 1.
With the same approach as for Proposition 1, we have the following lemma.

Lemma 3. If a pair (G, C) has some extension-inheritable property &, then the
graph G has a circuit double cover containing C.

In the remaining part of this section, following the approach in [21], some
extension-inheritable properties are summarized.

Definition 10. A spanning tree 7 of a graph H is called a Y-tree if T consists
of a path x;...x—; and an edge x;,—»x;. A Y-tree is called a small-end Y-tree if
dp(x1) < 2.

A Hamilton path x; . .. x; of H is called a small-end Hamilton path if dg(x;) < 2.

The following is a list of some known extension-inheritable properties where G
is a 2-edge-connected cubic graph and C is a circuit of G.

(1) Cis a Hamilton circuit of G (C. A. B. Smith; see [68, 69] or [72] p. 243).

(2) |V(G) —V(C)| < 1 (Fleischner [19]; also see [21]).

(3) [V(G) — V(C)| < 2 and, in the case of |V(G) — V(C)| = 2, the distance
between two vertices of V(G) — V(C) is 3 (Fleischner and Hiaggkvist [21]; see
Figure 16.4).

(4) |V(G)—V(C)| < 4and G—V(C) is connected (Fleischner and Higgkvist [21]).

(5) |V(G) — V(C)| < 6and G — V(C) is connected [54].

(6) H = G — V(C) has a small-end Hamilton path (see Figure 16.5). (Fleischner
and Higgkvist [28].)

(7) H= G—V(C) has either a small-end Hamilton path or a small-end Y-tree (see
Figures 16.5 and 16.6).

(8) H= G —V(C) is of order at most 13 and has a Hamilton path or a Y-tree [54].
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wyp w2
Fig. 16.4 An extendable circuit missing two vertices

C

X1 Xi—1 X
Fig. 16.5 An extendable circuit missing a small-end Hamilton path

C

Xr—1

Xt

Fig. 16.6 An extendable circuit missing a small-end Y-tree

Semi-Extension of Circuits

If a circuit C is not extendable, the graph G may still have a strong CDC
containing C. In this section, we present a relaxed definition for circuit extendibility
(introduced in [12]), by which the strong CDC conjecture (Conjecture 5) is true if
every circuit of 2-connected cubic graphs has a semi-extension (Theorem 12 and
Conjecture 7).

Before the introduction of the new concept of semi-extension, we first introduce
the definition of Tutte bridge.

Definition 11. Let H be a subgraph of G. A Tutte bridge of H is either a chord e
of H (e = xy ¢ E(H) with both x,y € V(H)) or a subgraph of G consisting of one
component Q of G—V(H) and all edges joining Q and H (and, of course, all vertices
of H adjacent to Q).

For a Tutte bridge B; of H, the vertex subset V(B;) NV (H) is called the attachment
of B; and is denoted by A(B;) (see Figure 16.7).

Definition 12. Let C and D be a pair of distinct circuits of a 2-connected cubic
graph G. Let Jy,...,J, be the components of CAD. The circuit D is a semi-
extension of C if, for every Tutte bridge B; of C U D,

(1) Either the attachment A(B;) € V(D), or
(2) A(B;) € V(J;) forsomej € {1,...,p}.
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B] BZ

Fig. 16.7 Two Tutte bridges B;, B, of a circuit C

Note that a semi-extension D of C may not contain all the vertices of C.

It is easy to see that the concept of circuit semi-extension is a generalization
of circuit extension: for a C-extension D, every Tutte bridge B; has its attachment
A(B;) € V(D) (since each J; contains no vertex of V(C) — V(D)).

Conjecture 7 (Esteva and Jensen [12]). For every 2-connected cubic graph G,
every circuit C of G has a semi-extension.

Theorem 12 (Esteva and Jensen [12]). If Conjecture 7 is true for every
2-connected cubic graph, then the strong circuit double cover conjecture is true.

Further Generalizations

Similar to Definition 12 and Theorem 12, the concept of semi-extension can be
further generalized as follows.

Definition 13. Let G be a 2-connected cubic graph, C be a circuit, and D be a
nonempty even subgraph of G with components Dy, ...,D,. Let Jy,...,J, be the
components of CAD. The even subgraph D is a weak semi-extension of C if, for
every Tutte bridge B; of C U D,

(1) Either the attachment A(B;) € V(J;) forsomej € {1,...,p}, or
(2) A(B;) C V(Dy) forsome h € {1,...,q}.

Conjecture 8. For every 2-connected cubic graph G, every circuit C of G has a weak
semi-extension.

With a similar proof to that of Theorem 12, we have the following result.

Proposition 4. If Conjecture 8 is true for every 2-connected cubic graph, then the
strong circuit double cover conjecture is true.
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16.6 Kotzig Frames
Spanning Kotzig Subgraphs

Definition 14. A cubic graph H is called a Kotzig graph if H has a 3-edge-coloring
¢ : E(H) — {1,2,3} such that ¢~ (i) U ¢™'(j) is a Hamilton circuit of H for every
pair i,j € {1,2,3}. (Equivalently, H is a Kotzig graph if it has a 3-circuit double
cover.) The coloring c is called a Kotzig coloring of H.

Obviously, 3K, K4, Mobius ladders My for every k > 0, the Heawood graph,
and the dodecahedron graph are examples of Kotzig graphs.

The study of CDC for graphs containing some spanning subgraphs that are
subdivisions of Kotzig graphs was initially started in [24]. Later, it was further
generalized in [29].

Definition 15. A graph H is a spanning minor of another graph G if G has a
spanning subgraph that is a subdivision of H. If H is a Kotzig graph, then we say G
has a spanning Kotzig minor.

Theorem 13 (Goddyn [24], also see [29]). If a graph G has a Kotzig graph as a
spanning minor, then G has a 6-even subgraph double cover.

The concept of spanning Kotzig minor is further generalized in [24] and [29].

Definition 16. Let H be a cubic graph with a 3-edge-coloring ¢ : E(H) — 25 such
that

(x¥) edgesin colors 0 and u(u € {1,2}) induce a Hamilton circuit.

Let F be the even 2-factor induced by edges in colors 1 and 2. If, for every even
subgraph S C F, switching colors 1 and 2 of the edges of § yields a new 3-edge
coloring having the same property (), then the 3-edge-coloring c is called a semi-
Kotzig coloring. A cubic graph H with a semi-Kotzig coloring is called a semi-
Kotzig graph.

Similar to semi-Kotzig graphs, various generalizations, variations, or relaxations
of Kotzig graphs have been introduced in [29], such as switchable-CDC graph,
iterated Kotzig graph, etc. Analogies and stronger versions of Theorem 13 have
been obtained for those generalizations or variations ([24, 29]).

Kotzig Frames: Disconnected Spanning Subgraphs

If a cubic graph G has an even 2-factor, then the graph G has many nice properties:
G is 3-edge colorable, G has a circuit double cover; etc. Inspired by the structure of
even 2-factors, Hiaggkvist and Markstrom [29] introduced the following concept
which extends the investigation of connected spanning minors to disconnected
cases.
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Definition 17. Let G be a cubic graph. A spanning subgraph H of G is called a
frame of G if G/H is an even graph.

Definition 18. Let G be a cubic graph. A frame H of G is called a Kotzig frame (or
semi-Kotzig frame) of G if, for each non-circuit component H; of H, the suppressed
graph H; is a Kotzig graph (or semi-Kotzig graph, respectively).

We have discussed cubic graphs with connected Kotzig frames (Theorem 13)
and some of its generalizations. Those are results about frames with only one
component. In this section, graphs with disconnected frames will be further studied.

The following is a generalization of Theorem 13.

Theorem 14 (Higgkvist and Markstrom [29]). If a cubic graph G has a Kotzig
frame that contains at most one non-circuit component, then G has a 6-even
subgraph double cover.

Similarly, Theorem 14 is further generalized for semi-Kotzig frames and other
frames ([29]).

Theorem 15 (Ye and Zhang [74]). If a cubic graph G contains a semi-Kotzig
[frame with at most one non-circuit component, then G has a 6-even subgraph double
cover.

The following conjecture about semi-Kotzig frames was originally proposed in
[29] for Kotzig frames, iterated Kotzig frames, and switchable-CDC frames.

Conjecture 9. Let G be a cubic graph with semi-Kotzig frame. Then G has a circuit
double cover.

Some partial results for Conjecture 9 can be found in [11, 29, 80], etc.

16.7 Orientable Cover

Attempts to prove the CDC conjecture have led to various conjectured strengthen-
ings, such as the faithful circuit cover problem (Problem 1), strong circuit double
cover problem (Conjecture 5), even covering problems (Conjectures 1 and 2), 5-
even subgraph double cover problem (Conjecture 4), etc. Verification of any of those
stronger problems will imply the CDC conjecture.

In this chapter, we present another type of variation of the double cover problem:
directed circuit double covering. These are, in general, much stronger than the CDC
problem. And some of them have already been completely characterized.

Historically, the paper by Tutte [70] on orientable circuit double cover is the
earliest published article related to the CDC problem.
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Fig. 16.8 An orientable 4-even subgraph double cover of Ky

Orientable Double Cover

Definition 19. Let G = (V,E) be a graph and D be an orientation of E(G).
A directed even subgraph H of the directed graph D(G) is a subgraph of D(G)
such that for each vertex v of H, the indegree of v equals the outdegree of v.

Definition 20. (1) Let # = {Cy,..., C,} be an even subgraph double cover of a
graph G. The set .% is an orientable even subgraph double cover if there is an
orientation D, on E(C,), foreach u = 1,...,r, such that

(i) D,(C,) is a directed even subgraph, and
(ii) For each edge e contained in two even subgraphs C, and Cp (o, €
{1,....r}), the directions of D,(C,) and Dg(Cg) are opposite on e.

(2) An orientable k-even subgraph double cover F is an orientable even subgraph
double cover consisting of k members. (See Figure 16.8.)

The following theorem was originally proved by Tutte [70] for cubic, bipartite
graphs and reformulated and generalized by Jaeger [40].

Theorem 16 (Tutte [70]). A graph G admits a nowhere-zero 3-flow if and only if
G has an orientable 3-even subgraph double cover.

Tutte proved the following theorem in [70] for cubic graphs, and later this was
generalized by Jaeger (see [39] or see [41]) and Archdeacon [4].

Theorem 17 (Tutte [70], Jaeger [39], Archdeacon [4]). A graph G admits a
nowhere-zero 4-flow if and only if G has an orientable 4-even subgraph double
cover.

The following conjecture is proposed for general graphs.

Conjecture 10 (Archdeacon [4] and Jaeger [40]). Every bridgeless graph has an
orientable 5-even subgraph double cover.
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16.8 Girth, Embedding, Small Cover

Girth

The girth of a smallest counterexample to the circuit double cover was first studied
by Goddyn [23], in which a lower bound 7 of girth was found. Later, this bound was
improved as follows: at least 8 by McGuinness [53] and at least 9 by Goddyn [24]
(a girth bound of 10 was also announced in [24]). The following theorem, proved
with a computer-aided search, remains the best bound up to today.

Theorem 18 (Huck [33]). The girth of a smallest counterexample to the circuit
double cover conjecture is at least 12.

It was conjectured in [42] that cyclically 4-edge-connected snarks have bounded
girth. If this conjecture were true, then the circuit double cover conjecture would
follow immediately by Theorem 18 (or an earlier result in [23] for girth 7). But this
is not the case: in [46], Kochol gave a construction of cyclically 5-edge-connected
snarks of arbitrarily large girths.

However, Theorem 18 (or its earlier results) remains useful in the studies of some
families of embedded graphs with small genus since the girth of such graphs is
bounded.

Small Genus Embedding

The circuit double cover conjecture is trivial if a bridgeless graph is planar: the
collection of face boundaries is a double cover. How about graphs embeddable on
surfaces other than a sphere? Although it is known that every bridgeless graph has
a 2-cell embedding on some surface, it is not guaranteed that face boundaries are
circuits.

The following early results verified the circuit double cover conjecture for graphs
embeddable on some surfaces with small genus.

Theorem 19 (Zha [75-77]). Let G be a bridgeless graph. If G has a 2-cell
embedding on a surface with at most 5 crosscaps, or at most 2 handles, then G
has a circuit double cover.

Theorem 19 was recently further generalized by Mohar to the following theorem
for surfaces with larger genus.

Theorem 20 (Mohar [55]). Let & be the family of all bridgeless graphs each of
which has a 2-cell embedding on some surface with Euler characteristic § > —31.
Then every member of 9 has a circuit double cover.
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Small Circuit Double Covers

The following conjectures were proposed by Bondy in [6].

Conjecture 11 (Bondy [6]). Every 2-edge-connected simple graph G of order n has
a circuit double cover .# such that |.#| <n— 1.

Conjecture 12 (Bondy [6]). Every 2-edge-connected simple cubic graph G (G #

K4) of order n has a circuit double cover % such that | 7| < 7.

The equivalent relation (Theorem 21) between the circuit double cover conjecture
and a small circuit double cover conjecture (Conjecture 12) is proved in [49].

Theorem 21 (Lai, Yu and Zhang [49]). If a simple cubic graph G (G # K4) has a

circuit double cover, then the graph G has a circuit double cover containing at most

V(G . .
| (2)‘ clrcuits.

Conjecture 11 has been verified for some families of graphs ([14, 48, 51, 56, 57,
59-61)).
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