
Chapter 8
Real-Time Observables

Abstract Various real-time correlation functions are defined (Wightman, retarded,
advanced, time-ordered, spectral). Their analytic properties are discussed, and
general relations between them are worked out for the case of a system in thermal
equilibrium. Examples are given for free scalar and fermion fields. A physically
relevant spectral function related to a composite operator is analyzed in detail. The
so-called real-time formalism is introduced, and it is shown how it can be used
to compute the same spectral function that was previously determined with the
imaginary-time formalism. The need for resummations in order to systematically
determine spectral functions in weakly coupled systems is stated. The concept
of Hard Thermal Loops (HTLs), which implement a particular resummation, is
introduced. HTL-resummed gauge field and fermion propagators are derived. The
main plasma physics phenomena that the HTL resummation captures are pointed
out. A warning is issued that although necessary HTL resummation is in general not
sufficient for obtaining a systematic weak-coupling expansion.

Keywords Wick rotation • Time ordering • Heisenberg operator • Wightman
function • Retarded and advanced correlators • Kubo-Martin-Schwinger relation •
Spectral representation • Sum rule • Analytic continuation • Density matrix •
Schwinger-Keldysh formalism • Hard Thermal Loops • Landau damping • Plas-
mon • Plasmino • Dispersion relation

8.1 Different Green’s Functions

We now move to a new class of observables including both a Minkowskian time t
and a temperature T. Examples are production rates of weakly interacting particles
from a thermal plasma; oscillation and damping rates of long-wavelength fields in a
plasma; as well as transport coefficients of a plasma such as its electric and thermal
conductivities and bulk and shear viscosities. We start by developing some aspects
of the general formalism, and return to specific applications later on. Let us stress
that we do remain in thermal equilibrium in the following, even though some of the
results also apply to an off-equilibrium ensemble.
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148 8 Real-Time Observables

Many observables of interest can be reduced to 2-point correlation functions of
elementary or composite operators. Let us therefore list some common definitions
and relations that apply to such correlation functions [1–4].

We denote Minkowskian spacetime coordinates by X D .t; xi/ and momenta
by K D .k0; ki/, whereas their Euclidean counterparts are denoted by X D .�; xi/,
K D .kn; ki/. Wick rotation is carried out by � $ it, kn $ �ik0. Scalar products are
defined as K�X D k0tCkixi D k0t�k�x, K�X D kn�Ckixi D kn��k�x. Arguments of
operators denote implicitly whether we are in Minkowskian or Euclidean spacetime.
In particular, Heisenberg-operators are defined as

OO.t; x/ � ei OHt OO.0; x/ e�i OHt ; OO.�; x/ � e OH� OO.0; x/ e� OH� : (8.1)

The thermal ensemble is normally defined by the density matrix O� D
Z�1 exp.�ˇ OH/, even though it is also possible to include a chemical potential,
as will be done in Eq. (8.37). Expectation values of (products of) operators are
defined through h� � � i � Tr

� O� .� � � /�.

Bosonic Case

We start by considering operators that are bosonic in nature, i.e. commuting (modulo
possible contact terms). We denote the operators by O�˛, O��ˇ . These may be either
elementary fields or composite operators built from them. In order to simplify the
notation, functions and their Fourier transforms are to be recognized through the
argument, X vs. K.

We can define various classes of correlation functions. The “physical” (the origin
of this terminology should become clear later on) correlators are defined as

…>
˛ˇ.K/ �

Z

X
eiK�X

D O�˛.X / O��ˇ.0/
E
; (8.2)

…<
˛ˇ.K/ �

Z

X
eiK�X D O��ˇ.0/ O�˛.X /

E
; (8.3)

�˛ˇ.K/ �
Z

X
eiK�X

D1
2

h O�˛.X /; O��ˇ.0/
iE
; (8.4)

�˛ˇ.K/ �
Z

X
eiK�X D1

2

n O�˛.X /; O��ˇ.0/
oE
; (8.5)

where …> and …< are called Wightman functions and � the spectral function,
whereas � is sometimes referred to as the statistical correlator. We are implicitly
assuming the presence of an UV regulator so that there are no short-distance
singularities in the Fourier transforms.
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The “retarded”/“advanced” correlators can be defined as

…R
˛ˇ.K/ � i

Z

X
eiK�X

Dh O�˛.X /; O��ˇ.0/
i
�.t/

E
; (8.6)

…A
˛ˇ.K/ � i

Z

X
eiK�X D�

h O�˛.X /; O��ˇ.0/
i
�.�t/

E
: (8.7)

Note that since …R involves positive times only, eik0t D eiŒRe k0Ci Im k0�t D
ei Re k0te� Im k0t is exponentially suppressed for Im k0 > 0. Therefore …R can be
considered an analytic function of k0 in the upper half of the complex k0-plane (it
can develop distribution-like singularities at the physical boundary Im k0 ! 0C).
Similarly, …A is an analytic function in the lower half of the complex k0-plane.
These turn out to be strong and useful properties, and do not apply to general
correlation functions.

On the other hand, from the computational point of view one is often faced with
“time-ordered” correlators,

…T
˛ˇ.K/ �

Z

X
eiK�X

D O�˛.X / O��ˇ.0/ �.t/C O��ˇ.0/ O�˛.X / �.�t/
E
; (8.8)

which appear in time-dependent perturbation theory at zero temperature, or with the
“Euclidean” correlator

…E
˛ˇ.K/ �

Z

X
eiK�X

D O�˛.X/ O��ˇ.0/
E
; (8.9)

which appears in non-perturbative formulations. Restricting to 0 � � � ˇ, the
Euclidean correlator is also time-ordered, and can be computed with standard
imaginary-time functional integrals. If the correlator is periodic [cf. text below
Eq. (8.10)], then kn is a bosonic Matsubara frequency.

It follows from Eq. (8.1), by using the cyclicity of the trace, that

˝ O�˛.t�iˇ; x/ O��ˇ.0; 0/
˛D 1

Z Tr
h
e�ˇ OHeˇ OH O�˛.t; x/e�ˇ OH O��ˇ.0; 0/

i
D ˝ O��ˇ.0; 0/ O�˛.t; x/

˛
:

(8.10)

This is a configuration-space version of the so-called Kubo-Martin-Schwinger
(KMS) relation, which relates …>

˛ˇ and …<
˛ˇ to each other, provided that we are

in thermal equilibrium. If we set t ! 0 and keep x ¤ 0, then O�˛.0; x/ and O��ˇ.0; 0/
commute with each other. In this case, the KMS relation implies that the integrand
in Eq. (8.9) is a periodic function of � , with periodicity defined in the same sense as
around Eq. (1.41).

It turns out that all of the correlation functions defined can be related to each other
in thermal equilibrium. In particular, all correlators can be expressed in terms of the
spectral function, which in turn can be determined as a certain analytic continuation
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of the Euclidean correlator. In order to show this, we may first insert sets of energy
eigenstates into the definitions of …>

˛ˇ and…<
˛ˇ:

…>
˛ˇ.K/ D 1

Z
Z

X
eiK�X Tr

h
e�ˇ OHCi OHt

�„ƒ‚…
P

m jmi hmj
O�˛.0; x/ e�i OHt

�„ƒ‚…
P

n jni hnj
O��
ˇ
.0; 0/

i

D 1

Z
X

m;n

Z

X
eiK�X e.�ˇCit/Em e�itEn hmj O�˛.0; x/jni hnj O��

ˇ
.0; 0/jmi

D 1

Z
Z

x
e�ik�x X

m;n

e�ˇEm 2	 ı.k0 C Em � En/hmj O�˛.0; x/jni hnj O��
ˇ
.0; 0/jmi ;

(8.11)

…<
˛ˇ.K/ D 1

Z
Z

X
eiK�X Tr

h
e�ˇ OH

�„ƒ‚…
P

n jni hnj
O��
ˇ
.0; 0/ ei OHt

�„ƒ‚…
P

m jmi hmj
O�˛.0; x/ e�i OHt

i

D 1

Z
X

m;n

Z

X
eiK�X e.�ˇ�it/En eitEmhnj O��

ˇ
.0; 0/jmi hmj O�˛.0; x/jni

D 1

Z
Z

x
e�ik�x X

m;n

e�ˇEn 2	 ı.k0 C Em � En/„ ƒ‚ …
EnDEmCk0

hmj O�˛.0; x/jni hnj O��
ˇ
.0; 0/jmi

D e�ˇk0 …>
˛ˇ.K/ : (8.12)

This is a Fourier-space version of the KMS relation. Consequently

�˛ˇ.K/ D 1

2
Œ…>

˛ˇ.K/ �…<
˛ˇ.K/� D 1

2
.eˇk0 � 1/…<

˛ˇ.K/ (8.13)

and, conversely,

…<
˛ˇ.K/ D 2nB.k

0/�˛ˇ.K/ ; (8.14)

…>
˛ˇ.K/ D 2

eˇk0

eˇk0 � 1�˛ˇ.K/ D 2Œ1C nB.k
0/� �˛ˇ.K/ ; (8.15)

where nB.k0/ � 1=Œexp.ˇk0/� 1� is the Bose distribution. Moreover,

�˛ˇ.K/ D 1

2

�
…>
˛ˇ.K/C…<

˛ˇ.K/
� D �

1C 2nB.k
0/
�
�˛ˇ.K/ : (8.16)

Note that 1C 2nB.�k0/ D �Œ1 C 2nB.k0/�, so that if � is odd in K ! �K, then �
is even.
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Inserting the representation

�.t/ D i
Z 1

�1
d!

2	

e�i!t

! C i0C (8.17)

into the definitions of…R,…A, in which the commutator is represented as an inverse
transformation of Eq. (8.4), we obtain

…R
˛ˇ.K/ D i

Z

X
eiK�X 2�.t/

Z

P
e�iP �X �˛ˇ.P/

D �2
Z

dt
Z

d!

2	

Z
dp0

2	

ei.k0�p0�!/t

! C i0C �˛ˇ. p0;k/

D �2
Z

d!

2	

Z
dp0

2	

2	ı.k0 � p0 � !/

! C i0C �˛ˇ. p0;k/

D
Z 1

�1
dp0

	

�˛ˇ. p0;k/
p0 � k0 � i0C ; (8.18)

and similarly

…A
˛ˇ.K/ D

Z 1

�1
dp0

	

�˛ˇ. p0;k/
p0 � k0 C i0C : (8.19)

Note that these can be considered to be limiting values from the upper half-plane
for…R (since it is the combination k0 C i0C that appears in the kernel) and from the
lower half-plane for…A (since it is the combination k0 � i0C that appears).

Making use of

1

�˙ i0C D �

� 1
�

�
� i	ı.�/ ; (8.20)

and assuming that �˛ˇ is real, we find

Im…R
˛ˇ.K/ D �˛ˇ.K/ ; Im…A

˛ˇ.K/ D ��˛ˇ.K/ : (8.21)

Furthermore, the real parts of …R and …A agree, so that �iŒ…R
˛ˇ �…A

˛ˇ� D 2�˛ˇ .

Moving on to …T
˛ˇ and making use of Eqs. (8.14) and (8.15) as well as of

Eq. (8.17), we find

…T
˛ˇ.K/ D

Z

X
eiK�X

Z

P
e�iP�X

h
�.t/2eˇp0nB. p0/C �.�t/2nB. p0/

i
�˛ˇ.P/

D 2i

Z
dt

Z
d!

2	

Z
dp0

2	

�
ei.k0�p0�!/t

! C i0C

eˇp0 C ei.k0�p0C!/t

! C i0C

�
nB. p0/�˛ˇ. p0;k/
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D 2i

Z
d!

2	

Z
dp0

2	

�
2	ı.k0 � p0 � !/

! C i0C

eˇp0 C 2	ı.k0 � p0 C !/

! C i0C

�
nB. p0/�˛ˇ. p0;k/

D i

Z
dp0

	

�
eˇp0

k0 � p0 C i0C

� 1

k0 � p0 � i0C

�
nB. p0/�˛ˇ. p0;k/

D
Z

1

�1

dp0

	

i�˛ˇ. p0;k/

k0 � p0 C i0C

C 2�˛ˇ.k
0;k/nB.k

0/

D �i…R
˛ˇ.K/C…<

˛ˇ.K/ ; (8.22)

where in the penultimate step we inserted the identity nB. p0/eˇp0 D 1 C nB. p0/
as well as Eq. (8.20). Note that Eq. (8.22) can be obtained also directly from the
definitions in Eqs. (8.3), (8.6) and (8.8), by inserting 1 D �.t/C�.�t/ into Eq. (8.3).
It can similarly be seen that …T

˛ˇ D �i…A
˛ˇ C…>

˛ˇ .
We note that both sums on the second row of Eq. (8.11) are exponentially

convergent for 0 < it < ˇ. Therefore we can formally relate the two functions

D O�˛.X / O��ˇ.0/
E

and
D O�˛.X/ O��ˇ.0/

E
(8.23)

by a direct analytic continuation t ! �i� , or it ! � , with 0 < � < ˇ. Thereby

…E
˛ˇ.K/ D

Z

X
eiK�X

�Z

P
e�iP �X…>

˛ˇ.P/
�

it!�

D
Z ˇ

0

d� eikn�

Z 1

�1
dp0

2	
e�p0� …>

˛ˇ. p0;k/

D
Z ˇ

0

d� eikn�

Z 1

�1
dp0

2	
e�p0� 2eˇp0

eˇp0 � 1
�˛ˇ. p0;k/

D
Z 1

�1
dp0

	

�˛ˇ. p0;k/

1 � e�ˇp0

�
e.ikn�p0/�

ikn � p0

�ˇ

0

D
Z 1

�1
dp0

	

�˛ˇ. p0;k/

1 � e�ˇp0

e�ˇp0 � 1

ikn � p0

p0!k0D
Z 1

�1
dk0

	

�˛ˇ.k0;k/
k0 � ikn

; (8.24)

where we inserted Eq. (8.15) for …>.K/, and changed orders of integration. This
relation is called the spectral representation of the Euclidean correlator.

It is useful to note that Eq. (8.24) implies the existence of a simple “sum rule”:

Z 1

�1
dk0

	

�˛ˇ.k0;k/
k0

D
Z ˇ

0

d� …E
˛ˇ.�;k/ : (8.25)
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Here we set kn D 0 and used the definition in Eq. (8.9) on the left-hand side
of Eq. (8.24). The usefulness of the sum rule is that it relates integrals over
Minkowskian and Euclidean correlators to each other. (Of course, we have implic-
itly assumed that both sides are integrable which, as already alluded to, necessitates
a suitable ultraviolet regularization in the spatial directions.)

Finally, the spectral representation in Eq. (8.24) can be inverted by making use
of Eq. (8.20),

�˛ˇ.K/ D 1

2i
Disc…E

˛ˇ.kn ! �ik0;k/ (8.26)

� 1

2i

h
…E
˛ˇ.�iŒk0 C i0C�;k/ �…E

˛ˇ.�iŒk0 � i0C�;k/
i
: (8.27)

Furthermore, a comparison of Eqs. (8.18) and (8.24) shows that

…R
˛ˇ.K/ D …E

˛ˇ.kn ! �iŒk0 C i0C�;k/ : (8.28)

This last relation, which can be justified also through a more rigorous mathematical
analysis [5], captures the essence of the analytic continuation from the imaginary-
time (Matsubara) formalism to physical Minkowskian spacetime.

In the context of the spectral representation, Eq. (8.24), it will often be useful to
note from Eq. (1.70), viz.

T
X

!n

ei!n�

!2n C !2
D nB.!/

2!

h
e.ˇ��/! C e�!

i
; (8.29)

that, for 0 < � < ˇ,

T
X

!n

1

k0 � i!n
ei!n� D T

X

!n

i!n C k0

!2n C .k0/2
ei!n�

D .@� C k0/T
X

!n

ei!n�

!2n C .k0/2

D nB.k0/

2 k0

h
.�k0 C k0/e.ˇ��/k0 C .k0 C k0/e�k0

i

D nB.k
0/e�k0 : (8.30)

This relation turns out to be valid both for k0 < 0 and k0 > 0 [to show this, substitute
!n ! �!n and use Eq. (8.31)]. We also note that, again for 0 < � < ˇ,

T
X

!n

1

k0 � i!n
e�i!n� D T

X

!n

1

k0 � i!n
ei!n.ˇ��/ D nB.k

0/e.ˇ��/k0 : (8.31)
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In particular, taking the inverse Fourier transform (T
P

kn
e�ikn� ) from the left-hand

side of Eq. (8.24), and employing Eq. (8.31), we get the relation

Z

x
e�ik�x

D O�˛.�; x/ O��ˇ.0; 0/
E

D
Z 1

�1
dk0

	
�˛ˇ.K/ nB.k

0/e.ˇ��/k0

D
Z 1

0

dk0

	

8
<

:
�˛ˇ.k0;k/C �˛ˇ.�k0;k/

2

sinh
h�

ˇ

2
� �

�
k0
i

sinh
�
ˇ

2
k0
�

C �˛ˇ.k0;k/ � �˛ˇ.�k0;k/
2

cosh
h�

ˇ

2
� �

�
k0
i

sinh
�
ˇ

2
k0
�

9
=

;
; (8.32)

where we symmetrized and anti-symmetrized the “kernel” nB.k0/e.ˇ��/k0 with
respect to k0. Normally (when O�˛ and O��ˇ are identical) the spectral function

is antisymmetric in k0 ! �k0, and only the second term on the last line of
Eq. (8.32) contributes. Thereby we obtain a useful identity: if the left-hand side of
Eq. (8.32) can be measured non-perturbatively on a Euclidean lattice with Monte
Carlo simulations as a function of � , then an “inversion” of Eq. (8.32) could lead to
a non-perturbative estimate of the Minkowskian spectral function. Issues related to
this inversion are discussed in [6].

Example: Free Boson

Let us illustrate the relations obtained with the example of a free propagator in scalar
field theory:

…E.K/ D 1

k2n C E2k
D 1

2Ek

�
1

ikn C Ek
C 1

�ikn C Ek

	
; (8.33)

where Ek D p
k2 C m2. According to Eq. (8.28),

…R.K/ D 1

�.k0 C i0C/2 C E2k

D � 1

K2 � m2 C i sign.k0/0C

D ��
�

1

.k0/2 � E2k

	
C i	

2Ek

h
ı.k0 � Ek/� ı.k0 C Ek/

i
; (8.34)
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and according to Eq. (8.21),

�.K/ D 	

2Ek

h
ı.k0 � Ek/� ı.k0 C Ek/

i
: (8.35)

Finally, according to Eqs. (8.14) and (8.22),

…T.K/ D �

�
i

.k0/2 � E2k

	
C 	

2Ek

n
ı.k0 � Ek/

�
1C 2nB.k

0/
�

�ı.k0 C Ek/
�
1C 2nB.k

0/
�o

D �

�
i

.k0/2 � E2k

	
C 	

2Ek

h
ı.k0 � Ek/C ı.k0 C Ek/

i�
1C 2nB.jk0j/

�

D �

�
i

.k0/2 � E2k

	
C 	ı

�
.k0/2 � E2k

��
1C 2nB.jk0j/

�

D i

.k0/2 � E2k C i0C C 2	ı
�
.k0/2 � E2k

�
nB.jk0j/

D i

K2 � m2 C i0C C 2	 ı.K2 � m2/ nB.jk0j/ ; (8.36)

where in the second step we made use of the identity 1C2nB.�Ek/ D �Œ1C2nB.Ek/�.
It is useful to note that Eq. (8.36) is closely related to Eq. (2.34). However,

Eq. (2.34) is true in general, whereas Eq. (8.36) was derived for the special case of
a free propagator; thus it is not always true that thermal effects can be obtained by
simply replacing the zero-temperature time-ordered propagator by Eq. (8.36), even
if surprisingly often such a simple recipe does function. We return to a discussion
of this point in Sect. 8.3.

Fermionic Case

Let us next consider 2-point correlation functions built out of fermionic opera-
tors [1–4]. In contrast to the bosonic case, we take for generality the density matrix
to be of the form

O� D 1

Z expŒ�ˇ. OH � 
 OQ/� ; (8.37)

where OQ is an operator commuting with OH and 
 is the associated chemical
potential.

We denote the operators appearing in the 2-point functions by Oj˛, ONjˇ . They could
be elementary field operators, in which case the indices ˛; ˇ label Dirac and/or
flavour components, but they could also be composite operators consisting of a
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product of elementary field operators. Nevertheless, we assume the validity of the
relation

Œ Oj˛.t; x/; OQ� D Oj˛.t; x/ : (8.38)

To motivate this, note that for Oj˛ � O ˛ , ONjˇ D ON ˇ , the canonical commutation
relation of Eq. (4.33),

f O ˛.x0; x/; O �ˇ.x0; y/g D ı.d/.x � y/ı˛ˇ ; (8.39)

and the expression for the conserved charge in Eq. (7.33),

OQ D
Z

x

ON �0 O D
Z

x

O �˛ O ˛ ; (8.40)

as well as the identity Œ OA; OB OC� D OA OB OC � OB OC OA D OA OB OC C OB OA OC � OB OA OC � OB OC OA D
f OA; OBg OC� OBf OA; OCg, indicate that Eq. (8.38) is indeed satisfied for O ˛ . Equation (8.38)
implies that

eˇ
 OQOj˛.t; x/ D
1X

nD0

1

nŠ
.ˇ
/n. OQ/nOj˛.t; x/ D

1X

nD0

1

nŠ
.ˇ
/nOj˛.t; x/. OQ � O�/n

D Oj˛.t; x/eˇ
 OQe�ˇ
 ; (8.41)

and consequently that

DOj˛.t � iˇ; x/ ONjˇ.0; 0/
E

D 1

Z Tr
h
e�ˇ. OH�
 OQ/eˇ OHOj˛.t; x/e�ˇ OH ONjˇ.0; 0/

i

D 1

Z Tr
hOj˛.t; x/e�ˇ
e�ˇ. OH�
 OQ/ ONjˇ.0; 0/

i

D 1

Z e�
ˇ Tr
hOj˛.t; x/e�ˇ. OH�
 OQ/ ONjˇ.0; 0/

i

D e�
ˇ
D ONjˇ.0; 0/ Oj˛.t; x/

E
: (8.42)

This is a fermionic version of the KMS relation.
With this setting, we can again define various classes of correlation functions.

The “physical” correlators are now set up as

…>
˛ˇ.K/ �

Z

X
eiK�X

D Oj˛.X / ONjˇ.0/
E
; (8.43)

…<
˛ˇ.K/ �

Z

X
eiK�X D� ONjˇ.0/ Oj˛.X /

E
; (8.44)
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�˛ˇ.K/ �
Z

X
eiK�X

D1
2

n Oj˛.X /; ONjˇ.0/
oE
; (8.45)

�˛ˇ.K/ �
Z

X
eiK�X D1

2

hOj˛.X /; ONjˇ.0/
iE
; (8.46)

where �˛ˇ is the spectral function. The retarded and advanced correlators can be
defined as

…R
˛ˇ.K/ � i

Z

X
eiK�X

Dn Oj˛.X /; ONjˇ.0/
o
�.t/

E
; (8.47)

…A
˛ˇ.K/ � i

Z

X
eiK�X

D
�
n Oj˛.X /; ONjˇ.0/

o
�.�t/

E
: (8.48)

On the other hand, the time-ordered correlation function reads

…T
˛ˇ.K/ �

Z

X
eiK�X D Oj˛.X / ONjˇ.0/ �.t/� ONjˇ.0/ Oj˛.X / �.�t/

E
; (8.49)

whereas the Euclidean correlator is

…E
˛ˇ.K/ �

Z ˇ

0

d�
Z

x
e.iknC
/��ik�x

D Oj˛.X/ ONjˇ.0/
E
: (8.50)

Note that the Euclidean correlator is time-ordered by definition (0 � � � ˇ), and
can be computed with standard imaginary-time functional integrals.

If the two operators in the integrand of Eq. (8.50) anticommute with each other

at t D 0, then the KMS relation in Eq. (8.42) asserts that
˝ Oj˛.�iˇ; x/ ONjˇ.0; 0/

˛ D
e�
ˇ ˝ ONjˇ.0; 0/ Oj˛.0; x/

˛ D �e�
ˇ ˝ Oj˛.0; x/ ONjˇ.0; 0/
˛
. The additional term in the

Fourier transform with respect to � in Eq. (8.50) cancels the multiplicative factor
e�
ˇ at � D ˇ, so that the �-integrand is antiperiodic. Therefore the Matsubara
frequencies kn are fermionic.

We can establish relations between the different Green’s functions just like in the
bosonic case:

…>
˛ˇ.K/D 1

Z

Z

X
eiK�X Tr

h
e�ˇ OHCi OHt

�„ƒ‚…
P

m jmi hmj

eˇ
 OQ Oj˛.0; x/ e�i OHt
�„ƒ‚…

P
n jni hnj

ONjˇ.0; 0/
i

D 1

Z
X

m;n

Z

X
eiK�X e.�ˇCit/Em e�itEn e�ˇ
hmj Oj˛.0; x/eˇ
 OQjni hnj ONjˇ.0; 0/jmi

D1

Z

Z

x
e�ik�x

X

m;n

e�ˇ.EmC
/ 2	 ı.k0 C Em � En/hmj Oj˛.0; x/eˇ
 OQjni hnj ONjˇ.0; 0/jmi ;

(8.51)
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…<
˛ˇ.K/ D � 1

Z

Z

X
eiK�X Tr

h
e�ˇ OHeˇ
 OQ

�„ƒ‚…
P

n jni hnj

ONjˇ.0; 0/ ei OHt
�„ƒ‚…

P
m jmi hmj

Oj˛.0; x/ e�i OHt
i

D � 1

Z
X

m;n

Z

X
eiK�X e.�ˇ�it/En eitEm hnj ONjˇ.0; 0/jmi hmj Oj˛.0; x/eˇ
 OQjni

D � 1

Z

Z

x
e�ik�x

X

m;n

e�ˇEn 2	 ı.k0 C Em � En/„ ƒ‚ …
EnDEmCk0

hmj Oj˛.0; x/eˇ
 OQjni hnj ONjˇ.0; 0/jmi

D �e�ˇ.k0�
/ …>
˛ˇ.K/ : (8.52)

Using the fact that �˛ˇ.K/ D Œ…>
˛ˇ.K/ �…<

˛ˇ.K/�=2, we subsequently obtain

…>
˛ˇ.K/ D 2Œ1�nF.k

0�
/��˛ˇ.K/ ; …<
˛ˇ.K/ D �2nF.k

0�
/�˛ˇ.K/ ; (8.53)

where nF.k0/ � 1=Œexp.ˇk0/C 1� is the Fermi distribution. Moreover, the statistical
correlator can be expressed as �˛ˇ.K/ D Œ1 � 2nF.k0 � 
/��˛ˇ.K/.

The relation of …R;…A and …T to the spectral function can be derived in
complete analogy with Eqs. (8.17)–(8.22). For brevity we only cite the final results:

…R
˛ˇ.K/D

Z 1

�1
d!

	

�˛ˇ.!;k/
! � k0 � i0C ; …A

˛ˇ.K/ D
Z 1

�1
d!

	

�˛ˇ.!;k/
! � k0 C i0C ; (8.54)

…T
˛ˇ.K/ D

Z 1

�1
d!

	

i�˛ˇ.!;k/
k0 � ! C i0C � 2nF.k

0 � 
/�˛ˇ.k0;k/

D �i…R
˛ˇ.K/C…<

˛ˇ.K/ : (8.55)

Note that when written in a “generic form”, where no distribution functions are
visible, the end results are identical to the bosonic ones. In addition, Eq. (8.55) can
again be crosschecked using the right-hand sides of Eqs. (8.44), (8.47) and (8.49),
and the alternative representation …T

˛ˇ D �i…A
˛ˇ C …>

˛ˇ also applies. The latter
derivation implies that these “operator relations” apply even in a non-thermal
situation, described by a generic density matrix (cf. Sect. 8.3).

Finally, writing the argument inside the �-integration in Eq. (8.50) as a Wick
rotation of the inverse Fourier transform of Eq. (8.43), inserting Eq. (8.53), and
changing orders of integration, we get a spectral representation analogous to
Eq. (8.24),

…E
˛ˇ.K/ D

Z ˇ

0

d� e.iknC
/�
Z 1

�1
dp0

2	
e�p0� …>

˛ˇ. p0;k/

D
Z ˇ

0

d� e.iknC
/�
Z 1

�1
dp0

2	
e�p0� 2eˇ. p0�
/

eˇ. p0�
/ C 1
�˛ˇ. p0;k/

D
Z 1

�1
dp0

	

eˇ. p0�
/

eˇ. p0�
/ C 1
�˛ˇ. p0;k/

Z ˇ

0

d� e.iknC
�p0/�
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D
Z 1

�1
dp0

	

eˇ. p0�
/

eˇ. p0�
/ C 1
�˛ˇ. p0;k/

�
e.iknC
�p0/�

ikn C 
 � p0

�ˇ

0

D
Z 1

�1
dp0

	

eˇ. p0�
/

eˇ. p0�
/ C 1
�˛ˇ. p0;k/

�e�ˇ. p0�
/ � 1

ikn C 
 � p0

p0!k0D
Z 1

�1
dk0

	

�˛ˇ.k0;k/
k0 � iŒkn � i
�

: (8.56)

Like in the bosonic case, this relation can be inverted by making use of Eq. (8.20),

�˛ˇ.K/ D 1

2i
Disc…E

˛ˇ.kn � i
 ! �ik0;k/ (8.57)

where the discontinuity is defined like in Eq. (8.27).
The fermionic Matsubara sum over the structure in Eq. (8.56) can be carried out

explicitly. This could be verified by making use of Eq. (4.77), in analogy with the
bosonic analysis in Eqs. (8.30) and (8.31), but let us proceed in another way for a
change. We may recall (cf. footnote on p. 14) that

T
X

!n

ei!n� D ı.� mod ˇ/ : (8.58)

According to Eq. (4.55), viz. �f.T/ D 2�b



T
2

� � �b.T/, we can thus write

T
X

f!ng
ei!n� D 2ı.� mod 2ˇ/ � ı.� mod ˇ/ : (8.59)

Let us assume for a moment that k0 � 
 > 0. Employing the representation

1

˛ C iˇ
D
Z 1

0

ds e�.˛Ciˇ/s ; ˛ > 0 ; (8.60)

and inserting subsequently Eq. (8.59), we get

T
X

f!ng

1

k0 � 
 � i!n
ei!n� D

Z 1

0

ds T
X

f!ng
ei!n��k0sC
sCi!ns

D
Z 1

0

ds e�.k0�
/s
h
2ı.� C s mod 2ˇ/� ı.� C s mod ˇ/

i

D 2

1X

nD1
e�.k0�
/.��C2ˇn/ �

1X

nD1
e�.k0�
/.��Cˇn/
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D e.k
0�
/�

�
2

1X

nD1
e�2ˇ.k0�
/n

„ ƒ‚ …
e�2ˇ.k0�
/

1�e�2ˇ.k0�
/

�
1X

nD1
e�ˇ.k0�
/n

„ ƒ‚ …
e�ˇ.k0�
/

1�e�ˇ.k0�
/

„ ƒ‚ …
2

.eˇ.k
0

�
/
�1/.eˇ.k

0
�
/

C1/
� 1

eˇ.k
0

�
/
�1

�

D �e.k
0�
/�nF.k

0 � 
/ ; (8.61)

where we assumed 0 < � < ˇ. As an immediate consequence,

T
X

f!ng

1

k0 � 
 � i!n
e�i!n� D �T

X

f!ng

1

k0 � 
 � i!n
ei!n.ˇ��/ D e.ˇ��/.k0�
/nF.k

0�
/:

(8.62)

Furthermore, it is not difficult to show (by substituting !n ! �!n) that these
relations continue to hold also for k0 � 
 < 0.

As a consequence of Eq. (8.61), we note that

T
X

f!ng

ei.!nCi
/�

.!n C i
/2 C !2
D e�
�T

X

f!ng
ei!n�

1

.! � i!n C 
/.! C i!n � 
/

D e�
�T
X

f!ng
ei!n�

1

2!

�
1

! � 
C i!n
C 1

! C 
 � i!n

�

D e�
�

2!

h
e�.!�
/�nF.�! C 
/� e.!C
/�nF.! C 
/

i

D e�
�

2!

h
e.ˇ��/.!�
/nF.! � 
/ � e�.!C
/nF.! C 
/

i

D 1

2!

h
nF.! � 
/e.ˇ��/!�ˇ
 � nF.! C 
/e�!

i
: (8.63)

This constitutes a generalization of Eq. (4.77) to the case of a finite chemical
potential.

Example: Free Fermion

We illustrate the relations obtained by considering the structure of the free fermion
propagator in the presence of a chemical potential. With fermions, one has to
be quite careful with definitions. Suppressing spatial coordinates and indices,
Eq. (5.47) and the presence of a chemical potential à la Eq. (7.35) imply that the free
propagator can be written in the schematic form (here A and B carry dependence on
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the spatial momentum and the Dirac matrices)

h O .�/ ON .0/i D T
X

fpng
ei. pnCi
/� �iA. pn C i
/C B

. pn C i
/2 C E2
; (8.64)

where an additional exponential has been inserted into the Fourier transform, in
order to respect the KMS property in Eq. (8.42). The correlator in Eq. (8.50) then
becomes

…E.kn/ D
Z ˇ

0

d� e.iknC
/�T
X

fpng
ei. pnCi
/� �iA. pn C i
/C B

. pn C i
/2 C E2

D iA.kn � i
/C B

.kn � i
/2 C E2
:

(8.65)

The analytic continuation in Eq. (8.57) yields the retarded correlator

…R.k0/ D A.k0 C i0C/C B

�.k0 C i0C/2 C E2
D � Ak0 C B

.k0/2 � E2 C i sign.k0/0C ; (8.66)

and its discontinuity gives

�.k0/ D 	.Ak0 C B/ sign.k0/ ı


.k0 � E/.k0 C E/

�

D 	.Ak0 C B/
sign.k0/

2E

h
ı.k0 � E/C ı.k0 C E/

i

D 	

2E
.Ak0 C B/

h
ı.k0 � E/� ı.k0 C E/

i
: (8.67)

Any dependence on temperature and chemical potential has disappeared here. Note
that (if B is odd in k) � is even in K ! �K. From Eqs. (8.53) and (8.55), the
time-ordered propagator can be determined after a few steps:

…T.k0/ D .Ak0 C B/

� �i

2E

�
1

E � k0 � i0C C 1

E C k0 C i0C

	

� 2	

2E
nF.k
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/
h
ı.k0 � E/ � ı.k0 C E/
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D Ak0 C B

2E

�
�i�

�
1
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� i�

�
1

E C k0

	

C	ı.k0 � E/
h
1 � 2nF.k

0 � 
/
i

� 	ı.k0 C E/
h
1 � 2nF.k

0 � 
/
i
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D Ak0 C B

2E
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C	ı.k0 � E/
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1 � 2nF.k

0 � 
/
i
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D Ak0 C B

2E
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�
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C 2E	ı

�
.k0/2 � E2

�

� 2	
h
ı.k0 � E/ nF.k

0 � 
/C ı.k0 C E/ nF.�k0 C 
/
i


D .Ak0 C B/

�
i

K2 � m2 C i0C � 2	 ı
K2 � m2
�

nF

�
jk0j � sign.k0/


�

:

(8.68)

Medium effects are seen to reside in the on-shell part and, to some extent, one
could hope to account for them simply by replacing free zero-temperature Feynman
propagators by Eq. (8.68). The proper procedure, however, is to carry out the
analytic continuation for the complete observable considered, and this may not
always amount to the simple replacement of vacuum time-ordered propagators
through Eq. (8.68), cf. Sect. 8.3.

8.2 From a Euclidean Correlator to a Spectral Function

As an application of the relations derived in Sect. 8.1, let us carry out an explicit 1-
loop computation illustrating the steps.1 The computation performed here will turn
out to be directly relevant in the context of particle production, discussed in more
detail in Sect. 9.3.

Our goal is to work out the leading non-trivial contribution to the spectral
function of a right-handed lepton (N) that originates from its Yukawa interaction
with Standard Model particles,

ıLM � �h NL Q� aRN � h� NN Q��aLL : (8.69)

Here Q� � i�2�� is a conjugated Higgs doublet, L is a lepton doublet, aL � .1��5/=2
and aR � .1C�5/=2 are chiral projectors, and h is a Yukawa coupling constant. The
Higgs and lepton doublets have the forms

Q� D 1p
2

�
�0 C i�3

��2 C i�1

	
; L D

�



e

	
�
�
`1
`2

	
; (8.70)

1A classic example of this kind of a computation can be found in [7]. It is straightforward to
generalize the techniques to the 2-loop level, cf. e.g. [8]; at that order the novelty arises that there
are infrared divergences in “real” and “virtual” parts of the result which only cancel in the sum.
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where �
, 
 2 f0; 1; 2; 3g, are real scalar fields. The neutral component �0 is the
physical Higgs field, whereas the �i represent Goldstone modes after electroweak
symmetry breaking.

Anticipating the results of Sect. 9.3, we consider the Euclidean correlator of the
operators coupling to the right-handed lepton through the interaction in Eq. (8.69),

…E.K/ �
Z

X
eiK�X aL

˝
. Q��L/.X/ . NL Q�/.0/ ˛ aR : (8.71)

This has the form of Eq. (8.50); the coupling constant jhj2 has been omitted for
simplicity. The four-momentum K is fermionic. The operators in Eq. (8.71) are of a
mixed “boson-fermion” type; similar computations will be carried out for “fermion-
fermion” and “boson-boson” cases below, cf. Eqs. (8.134) and (8.178), respectively.
The “boson-fermion” analysis is furthermore generalized to include a chemical
potential around Eq. (8.180).

Inserting Eq. (8.70) and carrying out the contractions, we can rewrite Eq. (8.71)
in the form

…E.K/ D 1

2

Z

X
eiK�X aL h`.X/ Ǹ.0/i0 h�.X/�.0/i0 aR

D 1

2

Z

X

P
Z

fPgR

ei.KCPCR/�X aL

�i =P C m`

P2 C m2
`

1

R2 C m2
�

aR

D 1

2

Z

p
T
X

fpng

�i =P aR

p2n C E21

1

. pn C kn/2 C E22
; (8.72)

where we inserted the free scalar and fermion propagators, and denoted

E1 �
q

p2 C m2
` ; E2 �

q
.p C k/2 C m2

� : (8.73)

Moreover the left and right projectors removed the mass term from the numerator.
We have been implicit about the assignment of the masses m`, m� to the correspond-
ing fields, as well as about the summation over the different field components, but
for now no details of this kind are needed.

The essential issue in handling Eq. (8.72) is the treatment of the Matsubara sum.
More generally, let us inspect the structure

F � T
X

fpng

f .ipn; ikn; v/

Œp2n C E21�Œ. pn C kn/2 C E22�
; (8.74)

where we assume that the book-keeping function f depends linearly on its arguments
(this assumption will become crucial below), and v is a dummy variable representing
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spatial momenta. We can write

F D T
X

fpng
T
X

rn

ˇ ı.rn � pn � kn/
f .ipn; ikn; v/

Œp2n C E21�Œr
2
n C E22�

D
Z ˇ

0

d� e�ikn�

�
T
X

fpng
e�ipn�

f .ipn; ikn; v/

p2n C E21


�
T
X

rn

eirn�

r2n C E22



; (8.75)

where we have used the relation

ˇ ı.rn � pn � kn/ D
Z ˇ

0

d� ei.rn�pn�kn/� : (8.76)

This way of handling the Matsubara sums is sometimes called the “Saclay method”,
cf. e.g. [9, 10]. Now we can make use of Eqs. (8.29) and (8.63) and time derivatives
thereof:

T
X

rn

eirn�

r2n C E22
D nB.E2/

2E2

h
e.ˇ��/E2 C e�E2

i
; (8.77)

T
X

fpng

e˙ipn�

p2n C E21
D nF.E1/

2E1

h
e.ˇ��/E1 � e�E1

i
; (8.78)

T
X

fpng

ipne�ipn�

p2n C E21
D nF.E1/

2E1

h
E1e

.ˇ��/E1 C E1e
�E1
i
: (8.79)

Accounting for the minus sign in Eq. (8.78) within the arguments of the linear
function, we then get

F D
Z ˇ

0

d� e�ikn�
nF.E1/nB.E2/

4E1E2

�
�

e.ˇ��/.E1CE2/f .E1; ikn; v/

Ce.ˇ��/E2C�E1 f .E1;�ikn;�v/

Ce.ˇ��/E1C�E2 f .E1; ikn; v/

Ce�.E1CE2/f .E1;�ikn;�v/


: (8.80)
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As an example, let us focus on the third structure in Eq. (8.80); the other three
follow in an analogous way. The �-integral can be carried out, noting that kn is
fermionic:

Z ˇ

0

d� eˇE1e�.�ikn�E1CE2/ D eˇE1

�ikn � E1 C E2

h
�eˇ.E2�E1/ � 1

i

D eˇE2 C eˇE1

ikn C E1 � E2

D 1

ikn C E1 � E2

h
n�1

B .E2/C n�1
F .E1/

i
: (8.81)

Thus

F j3rd D 1

4E1E2

h
nF.E1/C nB.E2/

i f .E1; ikn; v/
ikn C E1 � E2

: (8.82)

Finally we set kn ! �i.k0 C i0C/ and take the imaginary part according to
Eq. (8.57). Making use of Eq. (8.20), we note that

1

2i

h 1

k0 C�C i0C � 1

k0 C� � i0C
i

D �	ı.k0 C�/ : (8.83)

Thereby 1=.ikn C E1 � E2/ in Eq. (8.82) gets replaced with �	 ı.k0 C E1 � E2/.
Special attention needs to be paid to the possibility that kn could also appear in the
numerator in Eq. (8.82); however, we can then write

ikn D ikn C E1 � E2„ ƒ‚ …
no discontinuity

CE2 � E1 ; (8.84)

so that in total
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Œeˇ.E2�E1/ C 1�.eˇE1 C 1/.eˇE2 � 1/

D �2	ı.k
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8E1E2
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eˇE1 Œ1C eˇ.E2�E1/�
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8E1E2
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0; v/ n�1
F .k0/ nB.E2/Œ1 � nF.E1/� : (8.85)
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We have chosen to factor out n�1
F .k0/ because in typical applications it gets

cancelled against nF.k0/, cf. Eq. (9.137). Moreover, we remember that E2 Dq
m2
� C .p C k/2, and can therefore use the trivial identity

g.p C k/ D
Z

p2
.2	/dı.d/.k C p � p2/ g.p2/ (8.86)

to write the result in a somewhat more symmetric form (see below).
Let us now return to Eq. (8.72). We had there the object i =P , which plays the role

of the function f , and according to Eq. (8.85) becomes

i =P D ipn�0 C ipj�j ! E1�
0 C ipj.�i� j/ � =P ; (8.87)

where we made use of the definition of the Euclidean Dirac-matrices in Eq. (4.36)
(Eq. (8.85) shows that any possible i =K can also be replaced by =K ). Furthermore, two
factors of �1=2 in Eq. (8.72) and (8.85) combine into 1=4. Renaming also P ! P1
and inserting Eq. (8.86), the spectral function finally becomes

�.K/ D n�1
F .k0/

4

Z

p1 ;p2

=P1 aR

4E1E2

(8.88)

where the results of the other channels were added; D � d C 1; and we denoted
nFi � nF.Ei/, nBi � nB.Ei/. The graphs in Eq. (8.88) illustrate the various processes
that the energy-momentum constraints correspond to, with a dashed line for �, a
solid for L, and a dotted for N. One immediate implication of these constraints is
that for a positive k0, the last of the four structures in Eq. (8.88) does not contribute
at all. In general, depending on the particle masses, some of the other channels are
also kinematically forbidden.

The physics lesson to draw from Eq. (8.88) is that the spectral function, as
extracted here from an analytic continuation and cut of a Euclidean correlator,
represents real scatterings of on-shell particles, whose distribution functions are
given by the Bose and Fermi distributions. The Bose and Fermi distributions appear
in a form reminiscent of a Boltzmann equation, save for the “external” line carrying
the momentum K which appears differently (this is discussed in more detail in
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Sect. 9.3). If we went to the 2-loop level, then there would also be virtual corrections,
with the closed loops experiencing thermal modifications weighted by nB or �nF.

As a final remark we note that the spectral function � has the important property
that, in a CP-symmetric situation, it is even in K:

�.�K/ D �.K/ : (8.89)

(In contrast, bosonic spectral functions are odd in K.) Let us demonstrate this
explicitly with the 2nd channel in Eq. (8.88). Its energy-dependent part satisfies

n�1
F .k0/ı.E1 � E2 � k0/nF1.1C nB2/

K!�K�! n�1
F .�k0/ı.E1 � E2 C k0/nF1.1C nB2/

D ı.E1 � E2 C k0/
.e�ˇk0 C 1/eˇE2

.eˇE1 C 1/.eˇE2 � 1/

D ı.E1 � E2 C k0/.eˇk0 C 1/
eˇ.E2�k0/

.eˇE1 C 1/.eˇE2 � 1/

D ı.E1 � E2 C k0/ n�1
F .k0/

eˇE1

.eˇE1 C 1/.eˇE2 � 1/
D n�1

F .k0/ ı.E2 � E1 � k0/ nB2.1 � nF1/ ; (8.90)

which is exactly the structure of the 3rd channel. The spatial change k ! �k only
has an effect on the three-dimensional ı-function, turning it into that on the 3rd row
of Eq. (8.88). Similarly, it can be checked that the 4th term goes over into the 1st
term, and vice versa.

There are a number of general remarks to make about the determination of
spectral functions of the type that we have considered here; these have been deferred
to the end of Appendix A.

Appendix A: What If the Internal Lines Are Treated
Non-Perturbatively?

Above we made use of tree-level propagators, but in general the propagators need
to be resummed (cf. Sect. 8.4), and have a more complicated appearance. It is then
useful to express them as in the spectral representation of Eq. (8.24). In particular,
the scalar propagator can be written as

h Q�.K/ Q�.Q/i0 D Nı.K C Q/

k2n C k2 C…S.kn;k/
D Nı.K C Q/

Z 1

�1
dk0

	

�S.k
0;k/

k0 � ikn
; (8.91)
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whereas the fermion propagator contains two possible structures in the chirally
symmetric case of a vanishing mass (more general cases have been considered
in [11]):

h Q .K/ NQ .Q/i0 D Nı.K � Q/

� �ikn�0
k2n C k2 C…W.kn;k/

C
�ikj�j

k2n C k2 C…P.kn;k/

�

D Nı.K � Q/

�
ikn�0

Z 1

�1
dk0

	

�W.k
0; k/

k0 � ikn
C ikj�j

Z 1

�1
dk0

	

�P.k
0;k/

k0 � ikn

�
: (8.92)

Here minus signs have been incorporated into the definitions of the spectral
functions �W and �P for later convenience. Let us carry out the steps from Eq. (8.72)
to (8.88) in this situation.

The structure in Eq. (8.74) now has the form

F D T
X

fpng

X

F=W,P

Z 1

�1
d!1
	

Z 1

�1
d!2
	

fF.ipn; ikn; v/ �F.!1;p/ �S.!2;p C k/
Œ!1 � ipn�Œ!2 � i. pn C kn/�

;

(8.93)
where the book-keeping function fF is again assumed to depend linearly on its
arguments. We can write

F D
X

F=W,P

Z 1

�1
d!1 d!2
	2

�F.!1;p/�S.!2;p C k/

� T
X

fpng
T
X

rn

ˇ ı.rn � pn � kn/
fF.ipn; ikn; v/

Œ!1 � ipn�Œ!2 � irn�
: (8.94)

Employing Eqs. (8.76), (8.30) and (8.62), as well as the time derivative of the last
one,2

T
X

fpng

ipn

!1 � ipn
e�ipn� D � d

d�

h
nF.!1/e

.ˇ��/!1
i

D nF.!1/ !1 e.ˇ��/!1 ; 0 < � < ˇ ;

(8.95)
we get

F D
X

F=W,P

Z 1

�1
d!1 d!2
	2

�F.!1;p/�S.!2;p C k/

�
Z ˇ

0

d� e�ikn� nF.!1/ nB.!2/ fF.!1; ikn; v/ e.ˇ��/!1C�!2 : (8.96)

2 We are somewhat sloppy here: a part of the sums leads to Dirac-ı’s [cf. Eq. (8.59)], which can
give a contribution to F . That term is, however, independent of kn and thus drops out when taking
the discontinuity.
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The �-integral can now be carried out, noting that kn is fermionic:

Z ˇ

0

d� nF.!1/ nB.!2/ eˇ!1e�.�ikn�!1C!2/ D nF.!1/ nB.!2/eˇ!1

�ikn � !1 C !2

h
�eˇ.!2�!1/ � 1

i

D nF.!1/ nB.!2/

ikn C !1 � !2

h
eˇ!2 C eˇ!1

i

D nF.!1/ nB.!2/

ikn C !1 � !2

h
n�1

F .!1/C n�1
B .!2/

i

D 1

ikn C !1 � !2

h
nF.!1/C nB.!2/

i
:

(8.97)

Finally we set kn ! �i.k0Ci0C/ and take the discontinuity. The appearance of kn

inside fF can be handled like in Eq. (8.84). Making use of Eq. (8.83), the denominator
in Eq. (8.97) simply gets replaced with .�	/ times a Dirac ı-function, so that in total

Im
n
F.ikn ! k0 C i0C/

o
D �	

X

F=W,P

Z 1

�1
d!1 d!2
	2

�F.!1;p/�S.!2;p C k/

�
h
nF.!1/C nB.!2/

i
ı.k0 C !1 � !2/fF.!1; !2 � !1; v/

D �1
2

X

F=W,P

Z 1

�1
d!1 d!2
	2

�F.!1;p/�S.!2;p C k/

� 2	 ı.k0 C !1 � !2/ fF.!1; k
0; v/ n�1

F .k0/ nB.!2/Œ1 � nF.!1/� ; (8.98)

where we parallelled the steps in Eq. (8.85). Finally, making use of Eq. (8.86)
and defining P1 � .!1;p/ � .!1;p1/, P2 � .!2;p2/, the spectral function
corresponding to Eq. (8.88) becomes

(8.99)

where =p1 � p1j�
j, nFi � nF.!i/ and nBi � nB.!i/. If we insert here the free spectral

shape from Eq. (8.35), recalling the extra minus sign that was incorporated into �W

and �P in Eq. (8.92), then it can be shown that this result goes over into Eq. (8.88),
with the four channels originating from the on-shell points !i D ˙Ei, i D 1; 2.

A few concluding remarks are in order:

• Expressions such as Eq. (8.99) are useful particularly if the scalar and fermion
propagators are Hard Thermal Loop (HTL) resummed, cf. Sect. 8.4. In that case
�W and �P are given by Eqs. (8.201) and (8.202), respectively.
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• HTL resummed spectral functions contain in general two types of contributions.
First of all, there are “pole contributions”, represented by Dirac ı-functions. In
these contributions the pole locations are shifted from the free vacuum spectral
functions by thermal mass corrections. Consequently, kinematic channels which
would be forbidden in vacuum (such as a 1 ! 2 decay between three massless
particles) may open up.

• The second type of HTL corrections originates from a “cut contribution”. An
HTL resummed fermion or gauge field spectral function �.!; k/ has a non-zero
continuous part in the spacelike domain k > j!j. Physically, this originates
from real 2 $ 1 scatterings experienced by such off-shell fields. Inserted into
Eq. (8.99) this turns the full process into a real 2 ! 2 scattering, which tends
to play an important role for the physics of nearly massless particles, because
2 ! 2 processes are not kinematically suppressed even in the massless limit.

A classic example of an HTL computation in which both “pole” and “cut”
contributions play a role can be found in [12]. Further processes, contributing at the
same order even though not accounted for just by using HTL spectral functions, have
been discussed in [13]. A complete leading-order computation of the observable
considered in the present section, related to right-handed fermions interacting with
the Standard Model particles through Yukawa interactions, is presented in [14, 15],
and a similar analysis for the production rate of photons from a QCD plasma can be
found in [16, 17]. We return to some of these issues in Sect. 9.3.

8.3 Real-Time Formalism

In the previous section, we considered a particular spectral function, obtained from
the Euclidean correlator in Eq. (8.71) through the basic relation in Eq. (8.57). The
question may be posed, however, whether it really is necessary to go through
Euclidean considerations at all. It turns out that, within perturbation theory, the
answer is negative: in the so-called real-time formalism, real-time observables
can be directly expressed as Feynman diagrams containing real-time propagators.
The price to pay for this simplification is that the field content of the theory gets
effectively “doubled” and, in a general situation, every propagator turns into a 2� 2
matrix, and every vertex splits into multiple vertices.

A full-fledged formulation of the real-time formalism proceeds through the
Schwinger-Keldysh or closed time-path framework; reviews can be found in [18,
19]. A frequently appearing concept is that of Kadanoff-Baym equations, which are
analogues of Schwinger-Dyson equations within this formalism. In the following,
we only provide a short motivation for the field doubling, and then demonstrate how
the result of Eq. (8.88) can be obtained directly within the real-time formalism.
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Basic Definitions

One advantage of the real-time formalism is that it also applies to systems out of
equilibrium. In quantum statistical mechanics a general out-of-equilibrium situation
is described by a density matrix, denoted by O�.t/. The density matrix is assumed
normalized such that Tr . O�/ D 1, and statistical expectation values are defined as

˝ OO.t1; x1/ OO.t2; x2/ : : :
˛ � Tr

h
O�.t/ OO.t1; x1/ OO.t2; x2/ : : :

i
; (8.100)

where OO is a Heisenberg operator defined like in Eq. (8.1). The same 2-point
functions as in Sect. 8.1 can be considered in this general ensemble, and some of the
operator relations also continue to hold, such as…T D �i…R C…< D �i…A C…>.

An important difference between the out-of-equilibrium and equilibrium cases
is that in the former situation the considerations leading to the KMS relation, cf.
Eqs. (8.11) and (8.12) for the bosonic case, no longer go through. However, we can
still work out the trace in Eq. (8.100) in a given basis and learn something from the
outcome.

Consider the same Wightman function …> as in Eq. (8.11). With a view
of obtaining a perturbative expansion, we now choose as the basis not energy
eigenstates, but rather eigenstates of elementary field operators; for the moment we
denote these by j˛ii. Simplifying also the operator notation somewhat from that in
Sect. 8.1, we can write

…>.t/ � Tr
h

O�.t/ ei OHt OO.0/ e�i OHt OO.0/
i

D
Z
…5

iD1d˛i h˛1j O�.t/j˛2i h˛2jei OHtj˛3i h˛3j OO.0/j˛4i h˛4je�i OHtj˛5i h˛5j OO.0/j˛1i :

(8.101)

If the operators OO contain only the field operators Ǫ and no conjugate momenta, then
we can directly write h˛ij OOŒ Ǫ �j˛ji D OŒ˛j�ı˛i;˛j

. For the time evolution, we insert
the usual Feynman path integral,

h˛4je�i OHtj˛5i D
Z ˛.t/D˛4

˛.0/D˛5
D˛ eiSM ; (8.102)

while the “backward” time evolution h˛2jei OHtj˛3i is obtained from the Hermitian
(complex) conjugate of this relation. Denoting the “forward-propagating” field
interpolating between ˛5 and ˛4 now by �1, and that interpolating between ˛3 and
˛2 by �2, we thereby get

…>.t/ D
Z
D�1D�2 OŒ�2.t/�OŒ�1.0/�e

iSM Œ�1��iSM Œ�2� h�1.0/j O�.t/j�2.0/i :
(8.103)
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Note that �1.t/ D �2.t/ D ˛3 D ˛4 in this example because t is the largest time
value appearing; however �2.0/ ¤ �1.0/ and both are integrated over. It is helpful
to use �2.t/ rather than �1.t/ inside OŒ�2.t/� in Eq. (8.103), because this makes it
explicit that OŒ�2.t/� stands to the left of the operator OŒ�1.0/�, as is indeed implied
by the definition of the Wightman function …>.t/. One should think of the field �1
as corresponding to the operators positioned on the right and with time arguments
increasing to the left, followed by �2 for the operators positioned on the left.

A similar computation for the other Wightman function yields

…<.t/ D
Z
D�1D�2 OŒ�2.0/�OŒ�1.t/�e

iSM Œ�1��iSM Œ�2� h�1.0/j O�.t/j�2.0/i :
(8.104)

This time we have indicated the field with the largest time argument by �1.t/ rather
than �2.t/, because the corresponding operator stands to the utmost right, i.e. closest
to the origin of time flow. Note that within Eq. (8.104), OŒ�2.0/� and OŒ�1.t/� are
just complex numbers and ordering plays no role (in the bosonic case), so we could
also write …<.t/ D hOŒ�1.t/�OŒ�2.0/�i. Here h: : :i refers to an expectation value in
the sense of the Schwinger-Keldysh functional integral,

h: : :i �
Z
D�1D�2 .: : :/ e iSM Œ�1��iSM Œ�2� h�1.0/j O�.t/j�2.0/i : (8.105)

If O� happens to be a time-independent thermal density matrix, O� D e�ˇ OH=Z ,
then the remaining expectation value h�1.0/j O�.t/j�2.0/i can be represented as an
imaginary-time path integral as was discussed for a scalar field in Sect. 2.1. For
many formal considerations it is however not necessary to write down this part
explicitly.

The lesson to be drawn from Eqs. (8.103) and (8.104) is that the two Wightman
functions …> and …< are independent objects if O� is non-thermal, and that
representing them as path integrals necessitates a doubling of the field content of
the theory (� ! f�1; �2g).

If we specialize to the case in which the operators in Eqs. (8.103) and (8.104) are
directly elementary fields, rather than composite operators, then it is conventional to
assemble these propagators into a 2 � 2 matrix. If we add a time-ordered structure,

�.t2 � t1/ O�.t2/ O�.t1/C �.t1 � t2/ O�.t1/ O�.t2/
D �.t2 � t1/ ei OHt2 O�.0/ e�i OH.t2�t1/ O�.0/ e�i OHt1

C�.t1 � t2/ ei OHt1 O�.0/ e�i OH.t1�t2/ O�.0/ e�i OHt2 ; (8.106)

then we need to represent the time evolution along the forward-propagating branch,
denoted above by the field �1. Similarly, an anti-time-ordered propagator can be
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represented in terms of the �2-field. The general propagator is then

 
h�1.t/�1.0/i h�1.t/�2.0/i
h�2.t/�1.0/i h�2.t/�2.0/i

!

D
 
…T
�.t/ …

<
� .t/

…>
� .t/ …

NT
�.t/

!

; (8.107)

where NT denotes anti-time-ordering. The action SMŒ�1� � SMŒ�2� contains vertices
for both types of fields, and the non-diagonal matrix structure of Eq. (8.107) implies
that when interactions are included, both types of vertices indeed contribute to a
given observable.

In the literature, the field basis introduced above is referred to as the 1/2-basis.
There is another possible choice, referred to as the r=a-basis, which is beneficial for
some practical computations. It is obtained by the linear transformation

�r � 1

2
.�1 C �2/ ; �a � �1 � �2 : (8.108)

Consequently, inserting the 1/2 propagators from Eq. (8.107), we get

h�r.t/�r.0/i D 1

4

�
…T
� C…

NT
� C…>

� C…<
�

�
D 1

2



…>
� C…<

�

� D ��.t/ ; (8.109)

h�r.t/�a.0/i D 1

2

�
…T
� �… NT

� C…>
� �…<

�

�
D �.t/



…>
� �…<

�

� D �i…R
�.t/ ; (8.110)

and similarly h�a.t/�r.0/i D �i…A
�.t/ and h�a.t/�a.0/i D 0:

Among the advantages of the r=a-basis are that the aa propagator element
vanishes, and that closed loops containing only the advanced h�a.t/�r.0/i or the
retarded h�r.t/�a.0/i also vanish. In addition, the statistical function�� , containing
the Bose distribution in the bosonic case [cf. Eq. (8.16)], is the only element
surviving in the classical limit (because it is not proportional to a commutator),
and may thus dominate the dynamics if we consider a soft regime E � T such as in
the situation described in Sect. 6.1 (cf. [20] for a detailed discussion).

Let us conclude by remarking that at higher orders of perturbation theory, the
real-time formalism quickly becomes technically rather complicated, and for a long
time only leading-order results existed. The past few years have, however, witnessed
significant progress in the field, which is related in particular to the handling of soft
contributions in the computations, as alluded to above. Examples of next-to-leading
order computations can be found in [21, 22].

Practical Illustration

In order to illustrate how the real-time formalism works in practice, let us return
to the 1-loop spectral function of the operator coupling to a right-handed fermion
in the Standard Model, discussed in Sect. 8.2. According to Eq. (8.13), it suffices to
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consider the two Wightman functions, which by Eqs. (8.103) and (8.104) are related
to 21 and 12-type Green’s functions in the 1/2-basis. Starting with the latter, we are
led to inspect the 1-loop graph

…<.K/ D 2 1 ; (8.111)

where the notation for the propagators follows Sect. 8.2. The numbers 1 and 2
indicate that the two vertices are of the 1 and 2-type, respectively—implying most
importantly that both of the internal propagators in the graph must have the same
ordering. In momentum space, we can then immediately write down a result for the
graph,

…<.K/ D 1

2

Z

P
…<
` .P/…<

� .K � P/ ; (8.112)

where, in analogy with Eq. (8.72), we have inserted an overall factor from the
normalization of the fields and suppressed any coupling constants and sums over
field indices. Similarly, for …> we obtain

…>.K/ D 1 2 (8.113)

D 1

2

Z

P
…>
` .P/…>

� .K � P/ : (8.114)

The Wightman functions appearing here can be related to the corresponding
spectral functions via [cf. Eqs. (8.14), (8.15) and (8.53)]

…<
` D �2nF�` ; …>

` D 2.1� nF/�` ; …<
� D 2nB�� ; …>

� D 2.1C nB/�� :

(8.115)
Thereby the full spectral function under consideration obtains the form

�.K/ D 1

2

h
…>.K/ �…<.K/

i

D
Z

P1;P2
.2	/Dı.D/.P1 C P2 � K/

h
1 � nF.!1/C nB.!2/

i
�`.!1;p1/ ��.!2; p2/ ;

(8.116)

where we have introduced a second momentum integration variable by inserting the
relation

1 D
Z

P2
.2	/Dı.D/.P1 C P2 � K/ (8.117)

into the integral. We also denoted Pi � .!i;pi/ here.
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In order to make Eq. (8.116) more explicit, we insert the free spectral functions
[cf. Eqs. (8.35) and (8.67)],

��.!2;p2/ � 	

2E2

h
ı.!2 � E2/� ı.!2 C E2/

i
; (8.118)

�`.!1;p1/ � 	

2E1
aL =P1 aR

h
ı.!1 � E1/ � ı.!1 C E1/

i
; (8.119)

where E1 and E2 are defined in accordance with Eq. (8.73) (but with spatial momenta
adjusted as appropriate). Further re-organizing the phase space distributions in
analogy with Eq. (8.85),

ı.!1 C!2 � k0/
�
1� nF.!1/C nB.!2/

� D ı.!1 C!2 � k0/ n�1
F .k0/ nF.!1/ nB.!2/ ;

(8.120)
we arrive at the result

�.K/ D n�1
F .k0/

Z 1

�1
d!1
2	

Z 1

�1
d!2
2	

Z

p1;p2

.2	/Dı.D/.P1 C P2 � K/ nF.!1/ nB.!2/

� 	2

4E1E2
=P1 aR

h
ı.!1 � E1/� ı.!1 C E1/

ih
ı.!2 � E2/� ı.!2 C E2/

i
:

(8.121)

If we now integrate over !1 and !2, re-adjust the notation so that Pi � .Ei;pi/, and
in addition make the substitution pi ! �pi where necessary, we obtain

�.K/ D n�1
F .k0/

4

Z

p1;p2

=P1 aR

4E1E2

�
�
.2	/Dı.D/.P1 C P2 � K/ nF.E1/nB.E2/

�.2	/Dı.D/.P1 � P2 � K/ nF.E1/nB.�E2/

C.2	/Dı.D/.P1 � P2 C K/ nF.�E1/nB.E2/

�.2	/Dı.D/.P1 C P2 C K/ nF.�E1/nB.�E2/



: (8.122)

This becomes identical with Eq. (8.88) upon using the relations

nF.�E1/ D 1 � nF.E1/ ; nB.�E2/ D �1 � nB.E2/ : (8.123)

The above example confirms our expectation that with sufficient care
Minkowskian (real-time) quantities may indeed be determined through the real-
time formalism. The imaginary-time formalism is, however, equally valid for
problems in thermal equilibrium, and applicable on the non-perturbative level as
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well. Within perturbation theory, the main difference between the two formalisms is
that in the imaginary-time case Matsubara sums need to be carried out before taking
the discontinuity, but there is only one expression under evaluation, whereas in the
real-time case only integrations appear like in vacuum computations, with the price
that there are more diagrams.

8.4 Hard Thermal Loops

For “static” observables, we realized in Sect. 3.2 that the perturbative series suffers
from infrared divergences. However, as discussed in Sect. 6.1, in weakly-coupled
theories these divergences can only be associated with bosonic Matsubara zero
modes. They can therefore be isolated by constructing an effective field theory for
the bosonic Matsubara zero modes, as we did in Sect. 6.2.

The situation is more complicated in the case of real-time observables discussed
in the present chapter. Indeed, as Eq. (8.26) shows, the dependence on all Matsubara
modes is needed in order to carry out the analytic continuation leading to the spectral
function, even if we were only interested in its behaviour at small frequencies
jk0j � 	T. (The same holds also in the opposite direction: as the sum rule in
Eq. (8.25) shows, the information contained in the Matsubara zero mode is spread
out to all k0’s in the Minkowskian formulation.) Therefore, it is non-trivial to isolate
the soft/light degrees of freedom for which to write down the most general effective
Lagrangian.3

Nevertheless, it turns out that the dimensionally reduced effective field theory
of Sect. 6.2 can to some extent be generalized to real-time observables as well. In
the case of QCD, the generalization is known as the Hard Thermal Loop effective
theory. The effective theory dictates what kind of resummed propagators should
be used for instance in the computation of Sect. 8.2 in order to alleviate infrared
problems appearing in perturbative computations. An example of a computation
showing that (logarithmic) infrared divergences get cancelled this way can be found
in [23].

More precisely, Hard Thermal Loops (HTL) can operationally be defined via the
following steps that refer to the computation of 2 or higher-point functions [24–
27]:

• Consider “soft” external frequencies and momenta: jk0j; jkj 	 gT.
• Inside the loops, sum over all Matsubara frequencies pn.
• Subsequently, integrate over “hard” spatial loop momenta, jpj>		T, Taylor-

expanding the result to leading non-trivial order in jk0j=jpj, jkj=jpj.

3This continues to be so in the real-time formalism, introduced in Sect. 8.3; for a discussion
see [20].
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The soft momenta jk0j; jkj are the analogues of the small mass m considered in
Sect. 6.1, and the scale 	 	T plays the role of the heavy mass M. According to
Eq. (6.25), the parametric error made through a given truncation might be expected
to be 	 .g=	/k with some k > 0, however as will be discussed below this is
unfortunately not guaranteed to be the case in general.

In order to illustrate the procedure, let us compute the gluon self-energy in this
situation. The computation is much like that in Sect. 5.3, except that now we keep the
external momentum (K) non-zero while carrying out the Matsubara sum, because
the full dependence on kn is needed for the analytic continuation. It is crucial to take
k0;k soft only after the analytic continuation.

As a starting point, we take the gluon self-energy in Feynman gauge,…

.K/, as
defined in Eq. (5.64). This will be interpreted as being a part of an “effective action”,

Seff D P
Z

K

1

2
QAa

.K/

h
K2ı

�K
K
C1

�
K
K
C…

.K/

i QAa

.�K/C: : : : (8.124)

Summing together results from Eqs. (5.69), (5.74), (5.77), (5.89) and (5.96), setting
the fermion mass to zero for simplicity, and expressing the spacetime dimensionality
as D � d C 1, the 1-loop self-energy reads

…

.K/ D g2Nc

2

P
Z

P

ı


��4K2 C 2.D � 2/P2�C .D C 2/K
K
 � 4.D � 2/P
P


P2.K � P/2

�g2Nf
P
Z

fPg

ı


��K2 C 2P2

�C 2K
K
 � 4P
P

P2.K � P/2

: (8.125)

The bosonic part is discussed in Appendix A; here we focus on the fermionic part.
Consider first the spatial components,…ij. Shifting P ! K � P in one term, we

can write

…
.f/
ij .K/ D � g2Nf

Z

p
T
X

fpng

�
2ıij

P2
C �K2ıij C 2kikj � 4pipj

P2.K � P/2

�
: (8.126)

For generality we assume that, like in Eq. (8.64), the Matsubara frequency is of the
form

pn ! Qpn � !n C i
 ; !n D 2	T
�

n C 1

2

�
: (8.127)

The Matsubara sum can now be carried out, in analogy with the procedure
described in Sect. 8.2. Denoting

E1 � jpj ; E2 � jp � kj ; (8.128)
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we can read from Eq. (8.63) that

T
X

f!ng

1

.!n C i
/2 C E21
D 1

2E1

h
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/eˇ.E1�
/ � nF.E1 C 
/

i

D 1

2E1

h
1 � nF.E1 � 
/ � nF.E1 C 
/

i
: (8.129)

It is somewhat more tedious to carry out the other sum. Proceeding in analogy with
the analysis following Eq. (8.74) and denoting the result by G, we get

G D T
X

fpng

1

ŒQp2n C E21�Œ.kn � Qpn/2 C E22�
(8.130)
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eiQrn�
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; (8.131)

where we used the trick in Eq. (8.76). The sums can be carried out by making use
of Eq. (8.63),

T
X
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eiQrn�

Qr2n C E22
D 1
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h
nF.E2 � 
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; (8.132)
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where in the latter equation attention needed to be paid to the fact that Eq. (8.63)
only applies for 0 � � � ˇ and that there is a shift due to the chemical potential
in Qpn.

Inserting these expressions into Eq. (8.131) and carrying out the integral over � ,
we get

G D
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/
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: (8.134)

At this point we could carry out the analytic continuation ikn ! k0C i0C, but it will
be convenient to postpone it for a moment; we just need to keep in mind that after
the analytic continuation, ikn becomes a soft quantity.

The next step is to Taylor-expand to leading order in k0;k. To this end we can
write

E1 D p � jpj ; E2 D jp � kj 
 p � ki
@

@pi
jpj D p � kivi ; (8.135)

where

vi � pi

p
; i 2 f1; 2; 3g ; (8.136)

are referred to as the velocities of the hard particles.
It has to be realized that a Taylor expansion is sensible only in terms in

which there is a thermal distribution function providing an external scale T and
thereby guaranteeing that the integral obtains its dominant contributions from hard
momenta, p 	 	T. We cannot Taylor-expand in the vacuum part, which has no
scale with respect to which to expand. It can, however, be separately verified that
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the vacuum part vanishes as a power of k0;k, which is consistent with the fact that
there is no gluon mass in vacuum. Here we simply omit the temperature-independent
part.

With these approximations, the function G reads

G 
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Now we insert Eqs. (8.129) and (8.137) into Eq. (8.126). Through the substitution
p ! �p (whereby v ! �v), the 3rd row in Eq. (8.137) can be put in the same
form as the 2nd row. Furthermore, terms containing kn or k in the numerator in
Eq. (8.126) are seen to be of higher order. Thereby
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: (8.138)

The remaining integration can be factorized into a radial and an angular part,

Z

p
D
Z

p

Z
d�v ; (8.139)
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where the angular integration goes over the directions of v D p=p, and is
normalized to unity:

Z
d�v � 1 : (8.140)

Then, the following identities can be verified (for Eqs. (8.141) and (8.143) details
are given in Appendix C; Eq. (8.142) is a trivial consequence of rotational symmetry
and v2 D 1):
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and, for d D 3,
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The integration

Z
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(8.144)

can also be carried out (cf. Appendix C) but we do not need its value for the moment.
With these ingredients, Eq. (8.138) becomes
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Including also gluons and ghosts, the complete result reads

…ij.K/ D m2
E

Z
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vivj ikn
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C O.ikn;k/ ; (8.146)
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where mE is the generalization of the Debye mass in Eq. (5.102) to the case of a
fermionic chemical potential,

m2
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Equation (8.146), known for QED since a long time [28–30], is a remarkable
expression. Even though it is of O.1/ is we count ikn and k as quantities of the same
order, it depends non-trivially on the ratio ikn=jkj. In particular, for k0 D ikn ! 0,
i.e. in the static limit, …ij vanishes. This corresponds to the result in Eq. (5.100), i.e.
that spatial gauge field components do not develop a thermal mass at 1-loop order.
On the other hand, for 0 < jk0j < jkj, it contains both a real and an imaginary part,
cf. Eqs. (8.221) and (8.225). The imaginary part is related to the physics of Landau
damping: it means that spacelike gauge fields can lose energy to hard particles in
the plasma through real 2 $ 1 scatterings.

So far, we were only concerned with the spatial part…ij. An interesting question
is to generalize the computation to the full self-energy…

 . Fortunately, it turns out
that all the information needed can be extracted from Eq. (8.146), as we now show.

Indeed, the self-energy …

 , obtained by integrating out the hard modes, must
produce a structure which is gauge-invariant in “soft” gauge transformations, and
therefore it must obey a Slavnov-Taylor identity and be transverse with respect to
the external four-momentum. However, the meaning of transversality changes from
the case of zero temperature, because the heat bath introduces a preferred frame, and
thus breaks Lorentz invariance. More precisely, we can now introduce two different
projection operators,
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which both are four-dimensionally transverse,
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and of which �T


.K/ is in addition three-dimensionally transverse,
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The two projectors are also orthogonal to each other,�E

˛�

T
˛
 D 0.
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With the above projectors, we can write
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Note that this decomposition applies for .: : :/ij ! .: : :/

 as well. Contracting
Eq. (8.153) with ıij and with kikj leads to the equations
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The integral on the left-hand side of Eq. (8.155) can furthermore be written as
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where we have in the second step dropped a term that vanishes upon angular
integration. Solving for…T;…E and subsequently inserting the expression for L from
Eq. (8.213), we thus get
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Equations (8.159) and (8.161) have a number of interesting limiting values. For
ikn ! 0 but with k ¤ 0, …T ! 0, …E ! m2

E . This corresponds to the physics of
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Debye screening, familiar to us from Eq. (5.101). On the contrary, if we consider
homogeneous but time-dependent waves, i.e. take k ! 0 with ikn ¤ 0, it can be
seen that …T, …E ! m2

E=3. This genuinely Minkowskian structure in the resummed
self-energy corresponds to plasma oscillations, or plasmons.

We can also write down a resummed gluon propagator: in a general covariant
gauge, where the tree-level propagator has the form in Eq. (5.45) and the static
Feynman gauge propagator the form in Eq. (5.101), we get
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(8.162)
where � is the gauge parameter.

If the propagator of Eq. (8.162) is used in practical applications, it is often useful
to express it in terms of the spectral representation, cf. Eq. (8.24). The spectral
function appearing in the spectral representation can be obtained from Eq. (8.27),
where now 1=ŒK2 C …T(E).K/� plays the role of …E

˛ˇ . After analytic continuation,
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For jk0j > k, …T;…E are real, whereas for jk0j < k, they have an imaginary

part. Denoting � � k0

k , a straightforward computation (utilizing the fact that
ln z has a branch cut on the negative real axis) leads to the spectral functions
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Here we have introduced the well-known functions [28–30]
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�E.�/ � 	m2
E �

2
: (8.171)

The essential structure is that in each case there is a “plasmon” pole, i.e. a ı-function
analogous to the ı-functions in the free propagator of Eq. (8.35) but displaced by an
amount / m2

E , as well as a cut at jk0j < k, representing Landau damping.
So far, we have only computed the resummed gluon propagator. A very interest-

ing question is whether also an effective action can be written down, which would
then not only contain the inverse propagator like Eq. (8.124), but also new vertices,
in analogy with the dimensionally reduced effective theory of Eq. (6.36). Such
effective vertices are needed for properly describing how the soft modes interact
with each other. Note that since our observables are now non-static, the effective
action should be gauge-invariant also in time-dependent gauge transformations.

Most remarkably, such an effective action can indeed be found [31, 32]. We sim-
ply cite here the result for the gluonic case. Expressing everything in Minkowskian
notation (i.e. after setting ikn ! k0 and using the Minkowskian Aa

0), the effective
Lagrangian reads

LM D �1
2

Tr ŒF
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d�v Tr

��
1

V � D V˛F˛


	�
1

V � D VˇFˇ



	�
:

(8.172)

Here V � .1; v/ is a light-like four-velocity, and D represents the covariant
derivative in the adjoint representation.

Several remarks on Eq. (8.172) are in order:

• A somewhat tedious analysis, making use of the velocity integrals listed in
Eqs. (8.216)–(8.224) below, shows that in the static limit the second term in
Eq. (8.172) reduces to the mass term in Eq. (6.36) (modulo Wick rotation and
the Minkowskian vs. Euclidean convention for Aa

0).
• In the static limit, we found quarks to always be infrared-safe, but this situation

changes after the analytic continuation. Therefore a “dynamical” quark part
should be added to Eq. (8.172) [31, 32]; some details are given in Appendix B.

• Equation (8.172) has the unpleasant feature that it is non-local: derivatives appear
in the denominator. This we do not usually expect from effective theories. Indeed,
if non-local structures appear, it is difficult to analyze what kind of higher-
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order operators have been omitted and, hence, what the relative accuracy of the
effective description is.

In some sense, the appearance of non-local terms is a manifestation of the
fact that the proper infrared degrees of freedom have not been identified. It
turns out that the HTL theory can be reformulated by introducing additional
degrees of freedom, which gives the theory a local appearance [20, 33–35] (for
a pedagogic introduction see [36]). However the reformulation contains classical
on-shell particles rather than quantum fields, whereby it continues to be difficult
to analyze the accuracy of the effective description.

• We arrived at Eq. (8.172) by integrating out the hard modes, with momenta
p 	 	T. However, like in the static limit, the theory still has multiple dynamical
momentum scales, k 	 gT and k 	 g2T=	 . It can be asked what happens if the
momenta k 	 gT are also integrated out. This question has been analyzed in the
literature, and leads indeed to a simplified (local) effective description [37–41],
which can be used for non-perturbatively studying observables only sensitive to
“ultrasoft” momenta, k 	 g2T=	 .

• Remarkably, for certain light-cone observables, “sum rules” can be established
which allow to reduce gluonic HTL structures to the dimensionally reduced
theory [15, 42, 43].4 This is an important development, because the dimensionally
reduced theory can be studied with standard non-perturbative techniques [44].

Appendix A: Hard Gluon Loop

Here a few details are given concerning the handling of the gluonic part of
Eq. (8.125). We follow the steps from Eq. (8.126) onwards. The spatial part of the
self-energy can be written as
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4Picking out one spatial component and denoting it by k
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where �T, �E, �W and �P are the spectral functions from Eqs. (8.166), (8.167), (8.201) and (8.202),
respectively.
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where all terms containing ki in the numerator are subleading. The bosonic
counterpart of Eq. (8.129) [cf. Eq. (8.29)] reads

T
X

pn

1

p2n C E21
D 1

2E1

h
1C 2nB.E1/

i
; (8.176)

whereas Eqs. (8.130)–(8.134) get replaced with

G0 � T
X

pn

1

Œp2n C E21�Œ.kn � pn/2 C E22�
(8.177)

D 1

4E1E2

�
1

ikn � E1 � E2

h
�nB.E1/ � nB.E2/� 1

i

C 1

ikn C E2 � E1

h
nB.E1/ � nB.E2/

i

C 1

ikn C E1 � E2

h
nB.E2/ � nB.E1/

i

C 1

ikn C E1 C E2

h
1C nB.E1/C nB.E2/

i

: (8.178)

We observe that the bosonic results can be obtained from the fermionic ones simply
by setting nF ! �nB. The expansions of Eqs. (8.135)–(8.137) proceed as before,
although one must be careful in making sure that the IR behaviour of the Bose
distribution still permits a Taylor expansion in powers of the external momentum.
The partial integration identity in Eq. (8.141) can in addition be seen to retain its
form, so that, effectively,

G0 ! nB. p/

2p3

�
1 � .D � 2/

k � v
ikn � k � v

�
D nB. p/

2p3

�
D � 1 � .D � 2/

ikn

ikn � k � v

�
:

(8.179)

The final steps are like in Eq. (8.145) and lead to Eq. (8.146), with m2
E as given in

Eq. (8.147).

Appendix B: Fermion Self-Energy

Next, we consider a Dirac fermion at a finite temperature T and a finite chemical
potential 
, interacting with an Abelian gauge field (this is no restriction at the
current order: for a non-Abelian case simply replace e2 ! g2CF, where CF � .N2

c �
1/=.2Nc/). The action is of the form in Eq. (7.34) with D
 D @
 � ieA
. To second
order in e, the “effective action”, or generating functional, takes the form Seff D
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S0 C hSI � 1
2
S2I C O.e3/i1PI, where S0 is the quadratic part of the Euclidean action

and SI contains the interactions. Carrying out the Wick contractions, this yields

Seff D P
Z

fKg
QN . QK/

�
i =QK C m C e2

P
Z

fPg

�
.�i =QP C m/�

. QP2 C m2/. QP � QK/2 C O.eA
/

�
Q . QK/ ;

(8.180)
where we have for simplicity employed the Feynman gauge, and QP; QK are fermionic
Matsubara momenta where the zero component contains the chemical potential as
indicated in Eq. (8.127): Qkn � kn C i
. In the momentum QP � QK, carried by the
gluon, the chemical potential drops out.

The Dirac structures appearing in Eq. (8.180) can be simplified: �
�
 D D�4�4,
�
 =QP �
 D .2 � D/ =QP . Denoting

f .iQpn; v/ � i.D � 2/ =QP C D m�4�4 (8.181)

where v is a dummy variable for both p and m; as well as

E1 �
p

p2 C m2 ; E2 �
p
.p � k/2 ; (8.182)

we are led to consider the sum [a generalization of Eq. (8.74)]

F � T
X

fpng

f .iQpn; v/

ŒQp2n C E21�Œ.Qpn � Qkn/2 C E22�
: (8.183)

We can now write

F D T
X

fpng
T
X

rn

ˇ ı.Qpn � Qkn � rn/
f .iQpn; v/

ŒQp2n C E21�Œr
2
n C E22�

D
Z ˇ

0

d� e�iQkn�

�
T
X

fpng
eiQpn�

f .iQpn; v/

Qp2n C E21


�
T
X

rn

e�irn�

r2n C E22



; (8.184)

where we used a similar representation as before,

ˇ ı.Qpn � Qkn � rn/ D
Z ˇ

0

d� ei.Qpn�Qkn�rn/� : (8.185)

Subsequently Eqs. (8.29) and (8.63) and their time derivatives can be inserted:

T
X

rn

e�irn�

r2n C E22
D nB.E2/

2E2

h
e.ˇ��/E2 C e�E2

i
; (8.186)
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T
X

fpng

eiQpn�

Qp2n C E21
D 1

2E1

h
nF.E1 � 
/e.ˇ��/E1�ˇ
 � nF.E1 C 
/e�E1

i
; (8.187)

T
X

fpng

iQpneiQpn�

Qp2n C E21
D �1

2

h
nF.E1 � 
/e.ˇ��/E1�ˇ
 C nF.E1 C 
/e�E1

i
: (8.188)

Thereby we obtain

F D
Z ˇ

0

d� e�iQkn�
nB.E2/

4E1E2

n
nF.E1 � 
/e.ˇ��/.E1CE2/�ˇ
f .�E1; v/

CnF.E1 � 
/e.ˇ��/E1C�E2�ˇ
f .�E1; v/

CnF.E1 C 
/e.ˇ��/E2C�E1 f .�E1;�v/

CnF.E1 C 
/e�.E1CE2/f .�E1;�v/
o
: (8.189)

As an example, let us focus on the second structure in Eq. (8.189). The �-integral
can be carried out, noting that Qkn is fermionic:

Z ˇ

0

d� eˇ.E1�
/e�.�iQkn�E1CE2/ D eˇ.E1�
/

�iQkn � E1 C E2

h
�eˇ.E2�E1C
/ � 1

i

D eˇE2 C eˇ.E1�
/

iQkn C E1 � E2

D 1

iQkn C E1 � E2

h
n�1

B .E2/C n�1
F .E1 � 
/

i
: (8.190)

The inverse distribution functions nicely combine with those appearing explicitly in
Eq. (8.189):

F D 1

4E1E2

�
f .�E1; v/

iQkn C E1 C E2

h
1C nB.E2/� nF.E1 � 
/

i

C f .�E1; v/

iQkn C E1 � E2

h
nF.E1 � 
/C nB.E2/

i

C f .E1; v/

iQkn � E1 C E2

h
�nF.E1 C 
/ � nB.E2/

i

C f .E1; v/

iQkn � E1 � E2

h
�1 � nB.E2/C nF.E1 C 
/

i

: (8.191)

We now make the assumption, akin to that leading to Eq. (8.137), that all four
components of the (Minkowskian) external momentum K are small compared with



190 8 Real-Time Observables

the loop three-momentum p D jpj, whose scale is fixed by the temperature and
the chemical potential (this argument does not apply to the vacuum terms which
are omitted; they amount e.g. to a radiative correction to the mass parameter m).
Furthermore, in order to simplify the discussion, we assume that the (renormalized)
mass parameter is small compared with T and 
. Thereby the “energies” of
Eq. (8.182) become

E1 
 p C m2

2p
C O

�m4

p3

�
; E2 
 p � k � v C O

�k2

p

�
(8.192)

where again

v � p
p
: (8.193)

Combining Eqs. (8.181) and (8.191) with Eq. (8.192), and noting that (for m �
p)

f .˙E1; v/ 
 .D � 2/.˙�0 C vi�
i/p ; (8.194)

where we returned to Minkowskian conventions for the Dirac matrices [cf.
Eq. (4.36)], it is easy to see that the dominant contribution, of order 1=K, arises
from the 2nd and 3rd terms in Eq. (8.191) which contain the difference E1 � E2 in
the denominator. Writing �v � � � vi�

i and substituting v ! �v in the 3rd term,

Eq. (8.180) becomes S.0/eff D †
R

f
QKg

QN . QK/Œi =QK CmC†. QK/� Q . QK/, where the superscript
indicates that terms of O.eA
/ have been omitted, and

†. QK/ 
 �m2
F

Z
d�v

�0 C v � �

iQkn C k � v
: (8.195)

Here we have defined

m2
F � .D � 2/e2

4

Z

p

1

p

h
2nB. p/C nF. p C 
/C nF. p � 
/

i
(8.196)

DD4D e2
�

T2

8
C 
2

8	2

	
; (8.197)

and carried out the integrals for D D 4 (the bosonic part gives 2
R

p nB. p/=p D T2=6;
the fermionic part is worked out in Appendix C). The angular integrations can also
be carried out, cf. Eqs. (8.219) and (8.220) below.

Next, we want to determine the corresponding spectral representation. As
discussed in connection with the example following Eq. (8.64), sign conventions are
tricky with fermions. Our S.0/eff defines the inverse propagator, representing therefore
a generalization of the object in Eq. (8.64), with the frequency variable appearing as
Qkn D kn C i
. Aiming for a spectral representation directly in terms of this variable,
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needed in Eq. (8.92), we define the analytic continuation as iQkn ! ! where ! has
a small positive imaginary part. Carrying out the angular integrals in Eq. (8.195)
as explained in Appendix C, the analytically continued inverse propagator becomes
(we set m ! 0)

=K C†.�i!;k/ D !�0

�
1 � m2

F

2k!
ln
! C k

! � k

�
� k � �

�
1C m2

F

k2

�
1 � !

2k
ln
! C k

! � k

	�
:

(8.198)

Introducing the concept of an “asymptotic mass” m2
` � 2m2

F and denoting L �
1
2k ln !Ck

!�k , the corresponding spectral function reads

Im
n�
=K C†.�i!;k/

��1o D =� .!;k/ ; (8.199)

� � .!�W;k�P/ ; (8.200)

�W D Im

(
1 � m2`L

2!
�
! � m2`L

2

�2 � �
k C m2`.1�!L/

2k

�2

)

; (8.201)

�P D Im

(
1C m2`.1�!L/

2k2
�
! � m2`L

2

�2 � �
k C m2`.1�!L/

2k

�2

)

: (8.202)

These are well-known results [11, 29], generalized to the presence of a finite
chemical potential [45]; note that the chemical potential only appears “trivially”,
inside m`, without affecting the functional form of the momentum dependence.
The corresponding “dispersion relations”, relevant for computing the “pole con-
tributions” mentioned below Eq. (8.99), have been discussed in the literature [46]
and can be shown to comprise two branches. There is a novel branch, dubbed a
“plasmino” branch, with the peculiar property that

! 
 mF � k

3
C k2

3mF

< mF ; k � mF : (8.203)

If the zero-temperature mass m is larger than mF, the plasmino branch decou-
ples [47]. For large momenta, the dispersion relation of the normal branch is of
the form

! 
 k C m2
`

2k
; k � m` ; (8.204)

which explains why m` is called an asymptotic mass. A comprehensive discussion
of the dispersion relation in various limits can be found in [48].
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Appendix C: Radial and Angular Momentum Integrals

We compute here the radial and angular integrals defined in Eqs. (8.141)–(8.144).
For generality, and because this is necessary in loop computations, it is useful

to keep the space dimensionality open for as long as possible. Let us recall that the
dimensionally regularized integration measure can be written as

Z
ddp
.2	/d

! 4

.4	/
dC1
2 �. d�1

2
/

Z 1

0

dp pd�1
Z C1

�1
dz .1� z2/

d�3
2 ; (8.205)

where d � D � 1 and z D k � p=.kp/ parametrizes an angle with respect to some
external vector. An important use of Eq. (8.205) is that it allows us to carry out
partial integrations with respect to both p and z. If the integrand is independent of z,
the z-integral yields

Z C1

�1
dz .1� z2/

d�3
2 D �.1

2
/�. d�1

2
/

�. d
2
/

; (8.206)

and we then denote (cf. Eq. (2.61), now divided by .2	/d)

c.d/ � 2

.4	/
d
2 �. d

2
/
; (8.207)

so that
R

p D R
p � c.d/

R1
0 dp pd�1.

Now, Eq. (8.141) can be verified through partial integration as follows:

Z

p

1

p

h
nF. p C 
/C nF. p � 
/

i
D c.d/

Z 1

0
dp

dp

dp
pd�2 hnF. p C 
/C nF. p � 
/

i

D �.d � 2/ c.d/
Z 1

0

dp pd�2 hnF. p C 
/C nF. p � 
/
i

�c.d/
Z 1

0
dp pd�1 hn0

F. p C 
/C n0
F. p � 
/

i
:

(8.208)

Moving the first term to the left-hand side leads directly to Eq. (8.141).
In order to derive the explicit expression in Eq. (8.143), we set d D 3; then a

possible starting point is a combination of Eqs. (7.36) and (7.42):

� f .T; 
/ D 2

Z

p

�
p C T

�
ln
�
1C e� p�


T

�
C ln

�
1C e� pC


T

��


dD3D 7	2T4

180
C 
2T2

6
C 
4

12	2
: (8.209)
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Taking the second partial derivative with respect to 
, we get

� @2f .T; 
/

@
2
D 2T

Z
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@2

@
2

�
ln

�
1C e� p�


T
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D 2T
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1C e� pC


T
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1
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�
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�
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T

	
C ln

�
1C e� pC


T

	�
(8.210)

D T2

3
C 
2

	2
; (8.211)

where in the penultimate step we carried out one partial integration. On the other
hand, the integral in Eq. (8.210) can be rewritten as

�4T
Z

p

1

p

d

dp

�
ln

�
1C e� p�


T

	
C ln

�
1C e� pC
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	�
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1C e� p�
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C e� pC
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1C e� pC

T

��
� 1

T

	

D 4

Z

p

1

p

h
nF. p C 
/C nF. p � 
/

i
: (8.212)

Equations (8.211) and (8.212) combine into Eq. (8.143).
As far as angular integrals go [such as the one in Eq. (8.144)], we start with the

simplest structure, defined in Eq. (8.156):

L.K/ �
Z

d�v

1

ikn � k � v
dD3D 1

4	
2	

Z C1

�1
dz

1

ikn � kz

D � 1

2k

Z C1

�1
dz

d

dz
ln.ikn � kz/

D 1

2k
ln

ikn C k

ikn � k
: (8.213)

Further integrals can then be obtained by making use of rotational symmetry. For
instance,

Z
d�v

vi

ikn � k � v
D ki f .ikn; k/ ; (8.214)
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where, contracting both sides with k,

f .ikn; k/ D 1

k2

Z
d�v

k � v
ikn � k � v

D 1

k2

�
�1C ikn

Z
d�v

1

ikn � k � v

�
: (8.215)

Another trick, needed for having higher powers in the denominator, is to take
derivatives of Eq. (8.213) with respect to ikn.

Without detailing further steps, we list the results for a number of velocity
integrals that can be obtained this way. Let us change the notation at this point:
we replace ikn by k0 C i0C, as is relevant for retarded Green’s functions (i0C is not
shown explicitly), and introduce the light-like four-velocity V � .1; v/. Then the
integrals read (d D 3; i; j D 1; 2; 3)

Z
d�v D 1 ; (8.216)

Z
d�v vi D 0 ; (8.217)

Z
d�v v

ivj D 1

3
ıij ; (8.218)

Z
d�v

1

V � K D L.K/ ; (8.219)
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h
�1C k0L.K/

i
; (8.220)
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; (8.221)
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(8.224)

where V � K D k0 � v � k, and

L.K/ D 1

2k
ln

k0 C k C i0C

k0 � k C i0C
jk0j�k
 � i	

2k
C k0

k2
C .k0/3

3k4
C : : : : (8.225)
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