
Chapter 6
Low-Energy Effective Field Theories

Abstract The existence of a so-called infrared (IR) problem in relativistic thermal
field theory is pointed out, both from a physical and a formal (imaginary-time)
point of view. The notion of effective field theories is introduced, and the main
issues related to their construction and use are illustrated with the help of a simple
example. Subsequently this methodology is applied to the imaginary-time path
integral representation for the partition function of non-Abelian gauge field theory.
This leads to the construction of a dimensionally reduced effective field theory for
capturing certain (so-called “static”, i.e. time-independent) properties of QCD (or
more generally Standard Model) thermodynamics in the high-temperature limit.

Keywords Bose enhancement • Effective theories • Electrostatic QCD • Hard
and soft modes • Infrared divergences • Linde problem • Magnetostatic QCD •
Matching • Matsubara zero mode • Power counting • Symmetries • Truncation

6.1 The Infrared Problem of Thermal Field Theory

Let us start by considering the types of integrals that appear in thermal perturbation
theory. According to Eqs. (2.34) and (4.59), each new loop order (corresponding to
an additional loop momentum) produces one of
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depending on whether the new line is bosonic or fermionic. The functions f
here contain propagators and additional structures emerging from vertices; in the
simplest case, f .!; p/ � 1=.!2 C E2

p/, where we denote Ep � p
p2 C m2.

Now, the structures which are the most important, or yield the largest contribu-
tions, are those where the functions f are largest. Let us inspect this question in
terms of the left and right-hand sides of Eqs. (6.1) and (6.2).
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114 6 Low-Energy Effective Field Theories

For bosons, the largest contribution on the left-hand side of Eq. (6.1) is clearly
associated with the Matsubara zero mode, !n D 0; in the case f .!; p/ � 1=.!2 C
E2

p/, this gives simply
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On the right-hand side, we on the other hand close the contour in the lower half-
plane, whereby the largest contribution is associated with Bose enhancement around
the pole ! D �iEp:
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On the second row, we performed an expansion in powers of Ep=T, which is valid
in the limit of high temperatures.

For fermions, there is no Matsubara zero mode on the left-hand side of Eq. (6.2),
so that the largest terms have at most (i.e. for Ep � �T) the magnitude
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Similarly, in terms of the right-hand side of Eq. (6.2), we can estimate
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Given the estimates above, let us construct a dimensionless expansion parameter
associated with the loop expansion. Apart from an additional propagator, each loop
order also brings in an additional vertex or vertices; we denote the corresponding
coupling by g2, as would be the case in gauge theory. Moreover, the Matsubara
summation involves a factor T, so we can assume that the expansion parameter
contains the combination g2T. We now have to use the other scales in the problem to
transform this into a dimensionless number. For the Matsubara zero modes, Eq. (6.3)
tells us that we are allowed to use inverse powers of Ep or, after integration over
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the spatial momenta, inverse powers of m. Therefore, we can assume that for large
temperatures, �T � m, the largest possible expansion parameter is

�b � g2T

�m
: (6.7)

For fermions, in contrast, Eq. (6.5) suggests that inverse powers of Ep or, after
integration over spatial momenta, m, cannot appear in the denominator, even if
m � �T; we are thus led to the estimate

�f � g2T

�2T
� g2

�2
: (6.8)

In these estimates most numerical factors have been omitted for simplicity.
Assuming that we work in the weak-coupling limit, g2 � �2, we can thus

conclude the following:

• Fermions appear to be purely perturbative in these computations concerning
“static” observables, with the corresponding weak-coupling expansion proceed-
ing in powers of g2=�2.

• Bosonic Matsubara zero modes appear to suffer from bad convergence in the
limit m ! 0.

• The resummations that we saw around Eq. (3.94) for scalar field theory and in
Sect. 5.3 for QCD produce an effective thermal mass, m2

eff � g2T2. Thus, we may
expect the expansion parameter in Eq. (6.7) to become � g2T=.�gT/ D g=� . In
other words, a small expansion parameter exists in principle if g � � , but the
structure of the weak-coupling series is peculiar, with odd powers of g appearing.

• As we found in Eq. (5.101), colour-magnetic fields do not develop a thermal
mass squared at O.g2T2/. This might still happen at higher orders, so we can
state that meff <� g2T=� for these modes. Thereby the expansion parameter in
Eq. (6.7) reads �b >� g2T=g2T D 1. In other words, colour-magnetic fields cannot
be treated perturbatively; this is known as the infrared problem (or “Linde
problem”) of thermal gauge theory [1].

The situation that we have encountered, namely that infrared problems exist but
that they are related to particular degrees of freedom, is common in (quantum) field
theory. Correspondingly, there is also a generic tool, called the effective field theory
approach, which allows us to isolate the infrared problems into a simple Lagrangian,
and treat them in this setting. The concept of effective field theories is not restricted
to finite-temperature physics, but applies also at zero temperature, if the system
possesses a scale hierarchy. In fact, the high-temperature case can be considered a
special case of this, with the corresponding hierarchy often expressed as g2T=� �
gT � �T, where the first scale refers to the non-perturbative one associated with
colour-magnetic fields. Given the generic nature of effective field theories, we first
discuss the basic idea in a zero-temperature setting, before moving on to finite-
temperature physics.
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A Simple Example of an Effective Field Theory

Let us consider a Lagrangian containing two different scalar fields, � and H, with
masses m and M, respectively1:

Lfull � 1
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We assume that there exists a hierarchy m � M or, to be more precise, mR � MR,
though we leave out the subscripts in the following. Our goal is to study to what
extent the physics described by this theory can be captured by a simpler effective
theory of the form
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4
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where infinitely many higher-dimensional operators have been dropped.2

The main statement concerning the effective description goes as follows. Let us
assume that m <� gM and that all couplings are parametrically of similar magnitude,
� � � � g2, and proceed to consider external momenta P <� gM. Then the one-
particle-irreducible Green’s functions N	n, computed within the effective theory,
reproduce those of the full theory, 	n, with a relative error

ı N	n

N	n
� j N	n � 	nj

N	n

<� O.gk/ ; k > 0 ; (6.11)

if the parameters Nm2 and N� of Eq. (6.10) are tuned suitably. The number k may
depend on the dimensionality of spacetime as well as on n, although a universal
lower bound should exist. This lower bound can furthermore be increased by adding
suitable higher-dimensional operators to Leff; in the limit of infinitely many such
operators the effective description should become exact.

A weaker form of the effective theory statement, although already sufficiently
strong for practical purposes, is that Green’s functions are matched only “on-
shell”, rather than for arbitrary external momenta. This form of the statement is
implemented, for instance, in the so-called non-perturbative Symanzik improvement
program of lattice QCD [3] (for a nice review, see [4]).

It has been fittingly said that the effective theory assertion is almost trivial yet
very difficult to prove. We will not attempt a formal proof here, but rather try to get
an impression on how it arises, by inspecting with some care the 2-point Green’s
function of the light field �. In the full theory, at 1-loop level, the inverse of this

1The discussion follows closely that in [2].
2If we also wanted to describe gravity with these theories, we could add a “fundamental”
cosmological constant ƒ in Lfull, and an “effective” cosmological constant Nƒ in Leff.
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(“amputated”) quantity reads

G�1 D C C

D P2 C m2 C …
.1/
l .0I m2/ C …

.1/
h .0I M2/ ; (6.12)

where the dashed line represents the light field and the solid one the heavy field,
while the subscripts l; h stand for light and heavy, respectively. The first argument
of the functions …

.1/
l , …

.1/
h is the external momentum; as the notation indicates,

closed bubbles contain no dependence on it.
Within the effective theory, the same computation yields

NG�1 D C

D P2 C Nm2 C N….1/
l .0I Nm2/ : (6.13)

The equivalence of all Green’s functions at the on-shell point should imply the
equivalence of pole masses, i.e. the locations of the on-shell points. By matching
Eqs. (6.12) and (6.13), we see that this can indeed be achieved provided that

Nm2 D m2 C …
.1/
h .0I M2/ C O.g4/ : (6.14)

Note that within perturbation theory the matching is carried out “order-by-order”:
N….1/

l .0I Nm2/ is already of 1-loop order, so inside it N� and Nm2 can be replaced by �

and m2, respectively, given that the difference between N� and � as well as Nm2 and
m2 is itself of 1-loop order.

The situation becomes considerably more complicated once we go to the 2-loop
level. To this end, let us analyze various types of graphs that exist in the full theory,
and try to understand how they could be matched onto the simpler contributions
within the effective theory.

First of all, there are graphs involving only light fields,

: (6.15)

These can directly be matched with the corresponding graphs within the effective
theory; as above, the fact that different parameters appear in the propagators (and
vertices) is a higher-order effect.

Second, there are graphs which account for the “insignificant higher-order
effects” that we omitted in the 1-loop matching, but that would play a role once
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we go to the 2-loop level:
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As indicated here, these two combine to reproduce (a part of) the 1-loop effective
theory expression N….1/

l .0I Nm2/ with 2-loop full theory accuracy.
Third, there are graphs only involving heavy fields in the loops:

: (6.18)

Obviously we can account for their effects by a 2-loop correction to Nm2.
Finally, there remain the most complicated graphs: structures involving both

heavy and light fields, in a way that the momenta flowing through the two sets of
lines do not get factorized:

D : (6.19)

Naively, the representation on the right-hand side might suggest that this graph
is simply part of the correction . N� � �/@…

.1/
l .0I m2/=@�, just like the graph in

Eq. (6.17). This, however, is not the case, because the substructure appearing,

; (6.20)

is momentum-dependent, unlike the effective vertex N�.
Nevertheless, it should be possible to split Eq. (6.19) into two parts, pictorially

represented by

D
b…

C
}…

(6.21)

, …
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The first part b…
.2/

is, by definition, characterized by the fact that it depends non-
analytically on the mass parameter m2 of the light field; therefore the internal � field
is soft in this part, i.e. gets a contribution from momenta Q � m. In this situation, the
momentum dependence of Eq. (6.20) is of subleading importance. In other words,
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this part of the graph does contribute simply to . N� � �/@…
.1/
l .0I m2/=@�, as we

naively expected.
The second part }….2/ is, by definition, analytic in the mass parameter m2. We

associate this with a situation where the internal � is hard: even though its mass
is small, it can have a large internal momentum Q � M, transmitted to it through
interactions with the heavy modes. In this situation, the momentum dependence of
Eq. (6.20) plays an essential role. At the same time, the fact that all internal momenta
are hard, permits for a Taylor expansion in the small external momentum:
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The first term here represents a 2-loop correction to Nm2, just like the graph in
Eq. (6.18), whereas the second term can be compensated for by a change of the
normalization of the field N�. Finally, the further terms have the appearance of
higher-order (derivative) operators, truncated from the structure shown explicitly
in Eq. (6.10). Comparing with the leading kinetic term, the magnitude of the third
term is very small,

g4 .P2/2

M2

P2
<� g6 ; (6.24)

for P <� gM, justifying the truncation of the effective action up to a certain relative
accuracy. The structures in Eq. (6.23) are collectively denoted by the 2-point “blob”
in Eq. (6.21).

To summarize, we see that the explicit construction of an effective field theory
becomes subtle at higher loop orders. Another illuminating example of the diffi-
culties met with “mixed graphs” is given around Eq. (6.45) below. Nevertheless, we
may formulate the following practical recipe for the effective field theory description
of a Euclidean theory with a scale hierarchy:

(1) Identify the “light” or “soft” degrees of freedom, i.e. the ones that are IR-
sensitive.

(2) Write down the most general Lagrangian for them, respecting all the symmetries
of the system, and including local operators of arbitrary order.

(3) The parameters of this Lagrangian can be determined by matching:

• Compute the same observable in the full and effective theories, applying the
same UV-regularization and IR-cutoff.

• Subtract the results.
• The IR-cutoff should now disappear, and the result of the subtraction be

analytic in P2. This allows for a matching of the parameters and field
normalizations of the effective theory.
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• If the IR-cutoff does not disappear, the degrees of freedom, or the form of
the effective theory, have not been correctly identified.

(4) Truncate the effective theory by dropping higher-dimensional operators sup-
pressed by 1=Mk, which can only give a relative contribution of order

�
� m

M

�k � gk ; (6.25)

where the dimensionless coefficient g parametrizes the scale hierarchy.

6.2 Dimensionally Reduced Effective Field Theory
for Hot QCD

We now apply the effective theory recipe to the problem outlined at the beginning
of Sect. 6.1, i.e. accounting for the soft contributions to the free energy density of
thermal QCD. In this process, we follow the numbering introduced at the end of
Sect. 6.1.

(1) Identification of the soft degrees of freedom. As discussed earlier, the soft
degrees of freedom in perturbative Euclidean thermal field theory are the
bosonic Matsubara zero modes. Since they do not depend on the coordinate

 , they live in d D 3 � 2� spatial dimensions; for this reason, the construction
of the effective theory is in this context called high-temperature dimensional
reduction [5, 6]. For simplicity, we concentrate on the dimensional reduction of
QCD in the present section, but within perturbation theory the same procedure
can also be (and indeed has been) applied to the full Standard Model [7], as well
as many extensions thereof.

(2) Symmetries. Since the heat bath breaks Lorentz invariance, the time direction
and the space directions are not interchangeable. Therefore, the spacetime
symmetries of the effective theory are merely invariances in spatial rotations
and translations.

In addition, the full theory possesses a number of discrete symmetries:
QCD is invariant in C, P and T separately. The effective theory inherits these
symmetries, and it turns out that Leff is symmetric in NA0 ! � NA0, where the
low-energy fields are denoted by NA� (the symmetry NA0 ! � NA0 is absent if the
C symmetry of QCD is broken by coupling the quarks to a chemical potential).

Finally, consider the gauge symmetry from Eq. (5.5):

A0
� D UA�U�1 C i

g
U@�U�1 : (6.26)
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Since we now restrict to static (i.e. 
-independent) fields, U should not depend
on 
 , either, and the effective theory should be invariant under

NA0
i D U NAiU

�1 C i

g
U@iU

�1 ; (6.27)

NA0
0 D U NA0U�1 : (6.28)

In other words, the spatial components NAi remain gauge fields, whereas the tem-
poral component NA0 has turned into a scalar field in the adjoint representation
(cf. Eq. (5.9)).

With these ingredients, we can postulate the general form of the effective
Lagrangian. It is illuminating to start by simply writing down the contribution
of the soft degrees of freedom to the full Yang-Mills Lagrangian, Eq. (5.34).
Noting from Eq. (5.32), viz.

Fa
0i � @
 Aa

i � Dab
i Ab

0 ; (6.29)

that in the static case Fa
i0 D Dab

i Ab
0, we end up with

LE D 1

4
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ijF
a
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.Dab

i Ab
0/.Dac

i Ac
0/ : (6.30)

At this point, it is convenient to note that

TaDab
i Ab

0 D @iA0 C g f acbTaAc
i Ab

0 D @iA0 � igŒAi; A0� D ŒDi; A0� ; (6.31)

where Di D @i � igAi is the covariant derivative in the fundamental represen-
tation. Thereby we obtain as the “tree-level” terms of our effective theory the
structure

L.0/
eff D 1

4
NFa

ij
NFa

ij C Tr fŒ NDi; NA0�Œ
NDi; NA0�g ; (6.32)

where we have now replaced A� ! NA�.
Next, we complete the tree-level structure by adding all mass and interaction

terms allowed by symmetries. In this process, it is useful to proceed in order of
increasing dimensionality, whereby we obtain in the three lowest orders:

dim = 2 W Tr Œ NA2
0� I (6.33)

dim = 4 W Tr Œ NA4
0� ; .Tr Œ NA2

0�/
2 I (6.34)

dim = 6 W Tr fŒ NDi; NFij�Œ NDk; NFkj�g ; : : : : (6.35)

In the last case, we have only shown one example operator, while many others
are listed in [8]. Note also that for Nc D 2 and 3, there exists a linear relation
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between the two operators of dimensionality 4, but from Nc D 4 onwards they
are fully independent.

Combining Eqs. (6.32)–(6.34), we can write the effective action in the form

Seff D 1

T

Z

x

�
1

4
NFa

ij
NFa

ij C Tr .Œ NDi; NA0�Œ
NDi; NA0�/ C Nm2Tr Œ NA2

0�

CN�.1/.Tr Œ NA2
0�/

2 C N�.2/Tr Œ NA4
0� C : : :

�

: (6.36)

The prefactor 1=T, appearing like in classical statistical physics, comes from
the integration

R ˇ

0 d
 , since none of the soft fields depend on 
 . This theory
is referred to as EQCD, for “Electrostatic QCD”. Note that in the presence of
a finite chemical potential, cf. Sect. 7, charge conjugation symmetry is broken
and the additional operator i N�Tr Œ NA3

0� appears in the effective action [9].

(3) Matching. If we restrict to 1-loop order, then the matching of the parameters
in Eq. (6.36) is rather simple, as explained around Eq. (6.14): we just need to
compute Green’s functions for the soft fields with vanishing external momenta,
with the heavy modes appearing in the internal propagators. For the parameter
Nm2, this is furthermore precisely the computation that we carried out in Sect. 5.3,
so the result can be directly read off from Eq. (5.102):

Nm2 D g2T2

�
Nc

3
C Nf

6

�

C O.g4T2/ : (6.37)

The parameters N�.1/, N�.2/ can, in turn, be obtained by considering 4-point
functions with soft modes of A0 on the external legs, and non-zero Matsubara
modes in the loop:

C C C C : (6.38)

These graphs are clearly of O.g4/ and, using the same notation as in Eq. (5.102),
the actual values of the two parameters read [10, 11]

N�.1/ D g4

4�2
C O.g6/ ; N�.2/ D g4

12�2
.Nc � Nf/ C O.g6/ : (6.39)

The gauge coupling Ng appearing in NDi and NFa
ij is of the form Ng2 D g2CO.g4/ and

needs to be matched as well [12, 13]. If there are non-zero chemical potentials
�i in the problem, the same is true for N� D PNf

iD1 �i g3=.3�2/ C O.g5/ [9].

(4) Truncation of higher-dimensional operators. The most non-trivial part of
any effective theory construction is the quantitative analysis of the error made,
when operators beyond a given dimensionality are dropped. In other words,
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the challenge is to determine the constant k in Eq. (6.11). We illustrate this by
considering the error made when dropping the operator in Eq. (6.35).

First of all, we need to know the parametric magnitude of the coefficient
with which the neglected operator would enter Leff, if it were kept. The operator
of Eq. (6.35) could be generated through the momentum dependence of graphs
like

n¤0

� g2

T2
.@i NFa

ij/
2 ; (6.40)

where the dashed lines now stand for the spatial components of the gauge
field, NAi. If we drop this term, the corresponding Green’s function will not be
computed correctly; however, it still has some value, namely that which would
be obtained within the effective theory via the graph

NA0

� g2.@i NFa
ij/

2T
Z

p

1

.p2 C Nm2/3
� g2T

Nm3
.@i NFa

ij/
2 : (6.41)

Here, we have noted that to account for the momentum dependence of the graph,
represented by the derivative @i in front of NFa

ij, one needs to Taylor-expand the
integral to the first non-trivial order in external momentum, explaining why
the propagator is raised to power three in Eq. (6.41). An explicit computation
further shows that the coefficient in Eq. (6.41) comes with a negative sign, but
this has no significance for our general discussion.

Next, we note that the value of the Green’s function within the (truncated)
effective theory, Eq. (6.41), is in fact larger than what the contribution of the
omitted operator would have been, cf. Eq. (6.40)! Therefore, the error made
through the omission of Eq. (6.40) is small:

ı N	
N	 � g2

T2

Nm3

g2T
�

� Nm
T

�3 � g3 : (6.42)

In other words, for the Green’s function considered and the dimensionally
reduced effective theory of hot QCD truncated beyond dimension 4, we can
expect that the relative accuracy exponent of Eq. (6.11) takes the value k D 3

[14].

Having now completed the construction of the effective theory of Eq. (6.36), we
can take a further step: the field NA0 is massive, and can thus be integrated out, should
we wish to study distance scales longer than 1= Nm. Thereby we arrive at an even
simpler effective theory,

S0
eff D 1

T

Z

x

�
1

4
NNFa

ij
NNFa

ij C : : :

�

; (6.43)

referred to as MQCD, for “Magnetostatic QCD”. It is important to realize that this
theory, i.e. three-dimensional Yang-Mills theory (up to higher-order operators such
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as the one in Eq. (6.35)), only has one parameter, the gauge coupling. Furthermore,
if the fields NNAa

i are rescaled by an appropriate power of T1=2, NNAa
i ! NNAa

i T1=2, then the
coefficient 1=T in Eq. (6.43) disappears. The coupling constant squared that appears
afterwards is NNg2T, and this is the only scale in the system. Therefore all dimensionful
quantities (correlation lengths, string tension, free energy density, : : :) must be
proportional to an appropriate power of NNg2T, with a non-perturbative coefficient.
This is the essence of the non-perturbative physics pointed out by Linde [1].3

The implication of the above setup for the properties of the weak-coupling
expansion is the following. Consider a generic observable O, with an expectation
value of the form

hOi � gmTnŒ1 C ˛ gr C : : :� : (6.44)

There are now four distinct possibilities:

(i) r is even, and ˛ is determined by the heavy scale � �T and is purely
perturbative. This is the case for instance for the leading correction to the free
energy density f .T/, cf. Eq. (5.118).

(ii) r is odd, and ˛ is determined by the intermediate scale � gT, being still purely
perturbative. This is the case for the next-to-leading order corrections to many
real-time quantities in thermal QCD, for instance to the heavy quark diffusion
coefficient [17].

(iii) m C r is even, and ˛ is non-perturbatively determined by the soft scale
� g2T=� . This is the case e.g. for the next-to-leading order correction to
the physical Debye screening length [8, 9] and for one of the subleading
corrections to f .T/ in a non-Abelian plasma [1, 18].

(iv) r > k, and ˛ can only be determined correctly by adding higher-dimensional
operators to the effective theory.

A few final remarks are in order:

• We have seen that the omission of higher-order operators in the construction of an
effective theory usually leads to a small error, since the same Green’s function is
produced with a larger coefficient within it. It could happen, however, that there
is some approximate symmetry in the full theory, which becomes exact within the
effective theory, if we truncate its derivation to a given order. For instance, many
Grand Unified Theories violate baryon minus lepton number (B � L), whereas in
the classic Standard Model this is an exact symmetry, to be broken only by some
higher-dimensional operator [19, 20]. Therefore, if such a Grand Unified Theory

3In contrast, topological configurations such as instantons, which play an important role for
certain non-perturbative phenomena in vacuum, only play a minor role at finite temperatures [15],
save for special observables where the anomalous UA(1) breaking dominates the signal (cf. [16]
and references therein). The reason is that the Euclidean topological susceptibility (measuring
topological “activity”) vanishes to all orders in perturbation theory, and is numerically small.
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represented a true description of Nature and we considered B�L violation within
the classic Standard Model, we would make an infinitely large relative error.

• There are several reasons why effective theories constitute a useful framework.
First of all, they allow us to justify and extend resummations such as those
discussed in Sect. 3.4 systematically to higher orders in the weak-coupling
expansion. As mentioned below Eqs. (3.93) and (5.118), this has led to the
determination of many subsequent terms in the weak-coupling series. Second,
effective theories permit for a simple non-perturbative study of the infrared sector
affected by the Linde problem; examples are provided by [9, 18, 21, 22], and
further ones will be encountered below.

• When proceeding to higher orders in the matching computations, they are often
most conveniently formulated in the so-called background field gauge [23], rather
than in the covariant gauge of Eq. (5.40), cf. e.g. [24].

Appendix: Subtleties Related to the Low-Energy Expansion

Let us consider the full theory

Lfull � 1

2
@�� @�� C 1

2
m2�2 C 1

2
@�H@�H C 1

2
M2H2 C 1

6
�H�3 : (6.45)

For simplicity (more precisely, in order to avoid ultraviolet divergences), we assume
that the dimensionality of spacetime is 3, i.e. d D 2 � 2� in our standard notation,
and moreover work at zero temperature, like in Sect. 6.1. We then take the following
steps:

(i) Integrating out H in order to construct an effective theory, we compute the
graph

: (6.46)

After Taylor-expanding the result in external momenta, we write down all the
corresponding operators.

(ii) We focus on the 4-point function of the N� field at vanishing external momenta,
and determine the contributions of the operators computed in step (i) to this
Green’s function.

(iii) Finally we consider directly the full theory graph

(6.47)
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at vanishing external momenta. Comparing with the Taylor-expanded result
obtained from step (ii), we demonstrate how a “careless” Taylor expansion can
lead to wrong results.

The construction of the effective theory proceeds essentially as in Eq. (3.12),
except that only the H-field is now integrated out. We get from here

Seff �
D
�1

2
S2
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E
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D ��2

72
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X;Y
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Z
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Z

P

eiP�.X�Y/

P2 C M2

D ��2
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Z
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Z

P
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� 1X

nD0

.�1/n.P2/n

.M2/nC1

	

D ��2

72
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� 1X
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.r2
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.M2/nC1

	

Nı.X � Y/

D ��2

72

Z

X

1X

nD0

�3.X/
.r2

X/n

.M2/nC1
�3.X/ ; (6.48)

where an expansion was carried out assuming P2 � M2, and partial integrations
were performed at the last step.

Using Eq. (6.48), we can extract the corresponding contribution to the 4-point
function at vanishing momenta:

D Q�.0/ Q�.0/ Q�.0/ Q�.0/e�Seff
E

) �2

72

D Q�.0/ Q�.0/ Q�.0/ Q�.0/

Z
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Nı.†iPi/ Q�.P1/ : : : Q�.P6/
E

�
1X

nD0

Œ�.P4 C P5 C P6/
2�n

.M2/nC1

D �2

72
� 6 � .2 � 3 � 2 C 3 � 4 � 2/

Z

P1;:::;P6

Nı.†iPi/

�
1X

nD0

Œ�.P4 C P5 C P6/
2�n

.M2/nC1
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�h Q�.0/ Q�.P1/i0 h Q�.0/ Q�.P2/i0 h Q�.0/ Q�.P5/i0 h Q�.0/ Q�.P6/i0 h Q�.P3/ Q�.P4/i0

D 3�2 Nı.0/

. Nm2/4

Z

P3

1

P2
3 C Nm2

1X

nD0

.�P2
3/

n

.M2/nC1
; (6.49)

where we denoted by Nm the mass of the effective-theory field N� and by Q� its Fourier
representation. Furthermore we noted that the result vanishes unless the fields Q�.Pi/

are contracted so that one of the momenta P4, P5 and P6 remains an integration
variable. The integrals appearing in the result can be carried out in dimensional
regularization; for instance, the two leading terms read

n D 0 W 1

M2

Z

P3

1

P2
3 C Nm2

D 1

M2

�

� Nm
4�

�

; (6.50)

n D 1 W � 1
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3 C Nm2
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; (6.51)

where we made use of Eq. (2.86) and of the vanishing of scale-free integrals in
dimensional regularization. We note that the terms get smaller with increasing n,
apparently justifying a posteriori the Taylor expansion we carried out above.

Let us finally carry out the integral corresponding to Eq. (6.47) exactly. The
contractions remain as above, and we simply need to replace the integral in
Eq. (6.49) by

Z
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3 C M2
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1
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D 1
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1 � Nm
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C Nm2

M2
� Nm3
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C : : :

�

: (6.52)

Comparing Eqs. (6.50) and (6.51) with Eq. (6.52), we note that by carrying out the
Taylor expansion, i.e. the naive matching of the effective theory parameters, we
missed the leading contribution in Eq. (6.52). The largest term we found, Eq. (6.50),
is only next-to-leading in Eq. (6.52). It furthermore appears that we missed all even
powers of Nm in the sum of Eq. (6.52).

The reason for the problem encountered is the same as in Eq. (6.21): it again has
to be taken into account that the light fields � can also carry large momenta P3 � M,
in which case a Taylor expansion of 1=.P2

3 C M2/ is not justified. Rather, we have
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to view Eq. (6.47) in analogy with Eq. (6.21),

D C ; (6.53)

where the first term corresponds to a naive replacement of Eq. (6.46) by a
momentum-independent 6-point vertex, and the second term to a contribution
from hard �-modes to an effective 4-point vertex. In accordance with our discussion
around Eq. (6.21), we see that the result of Eq. (6.50) (and more generally Eq. (6.49))
is indeed non-analytic in the parameter Nm2, whereas the supplementary terms in
Eq. (6.52) that the naive Taylor expansion missed are analytic in it.
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