
Chapter 3
Interacting Scalar Fields

Abstract The key concepts of a perturbative or weak-coupling expansion are
introduced in the context of evaluating the imaginary-time path integral repre-
sentation for the partition function of an interacting scalar field. The issues of
ultraviolet and infrared divergences are brought up. These problems are cured
through renormalization and resummation, respectively.
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3.1 Principles of the Weak-Coupling Expansion

In order to move from a free to an interacting theory, we now include a quartic term
in the potential in Eq. (2.4),

V.�/ � 1

2
m2�2 C 1

4
��4 ; (3.1)

where � > 0 is a dimensionless coupling constant. Thereby the Minkowskian and
Euclidean Lagrangians become

LM D 1

2
@�� @�� � 1

2
m2�2 � 1

4
��4 ; (3.2)

LE D 1

2
@�� @�� C 1

2
m2�2 C 1

4
��4 ; (3.3)

where repeated indices are summed over, irrespective of whether they are up and
down or all down. The case with all indices down implies the use of Euclidean
metric like in Eq. (2.7).

In the presence of � > 0, it is no longer possible to determine the partition
function of the system exactly, neither in the canonical formalism nor through a
path integral approach. We therefore need to develop approximation schemes, which
could in principle be either analytic or numerical. In the following we restrict our
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42 3 Interacting Scalar Fields

attention to the simplest analytic procedure which, as we will see, already teaches
us a lot about the nature of the system.

In a weak-coupling expansion, the theory is solved by formally assuming that
� � 1, and by expressing the result for the observable in question as a (generalized)
Taylor series in �. The physical observable that we are interested in is the partition
function defined according to Eq. (2.6). Denoting the free and interacting parts of
the Euclidean action by

S0 �
Z ˇ

0

d�

Z
x

�
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2
@�� @�� C 1
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m2�2

�
; (3.4)

SI � �

Z ˇ
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�
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4
�4

�
; (3.5)

the partition function can be written in the form

ZSFT.T/ D C
Z
D� exp

��S0 � SI

�

D C
Z
D� e�S0

�
1 � SI C 1

2
S2

I � 1

6
S3

I C : : :

�

D ZSFT
.0/

�
1 � hSIi0 C 1

2
hS2

I i0 � 1

6
hS3

I i0 C : : :

�
: (3.6)

Here,

ZSFT

.0/ � C
Z
D� e�S0 (3.7)

is the free partition function determined in Sect. 2, and the expectation value h� � � i0

is defined as

h� � � i0 �
RD� Œ� � � � exp.�S0/RD� exp.�S0/

: (3.8)

With this result, the free energy density reads

FSFT.T; V/
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(3.9)
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where we have Taylor-expanded the logarithm, ln.1�x/ D �x �x2=2�x3=3C : : : .
The first term, FSFT

.0/=V , is given in Eq. (2.26), whereas the subsequent terms

correspond to corrections of orders O.�/, O.�2/, and O.�3/, respectively. As we
will see, the combinations that appear within the square brackets in Eq. (3.10) have
a specific significance: Eq. (3.10) is simpler than Eq. (3.6)!

For future reference, let us denote

f .T/ � lim
V!1

F.T; V/

V
; (3.11)

where we have dropped the superscript “SFT” for simplicity. With this definition
Eq. (3.10) can be compactly represented by the formula f D f.0/ C f.�1/, where

f.�1/.T/ D � T

V

D
exp.�SI/ � 1

E
0;c

D
D
SI � 1

2
S2

I C : : :
E
0;c; drop overall

R
X

; (3.12)

where the subscript .: : :/c refers to “connected” contractions, the precise meaning of
which is discussed momentarily, and an “overall

R
X” is dropped because it cancels

against the prefactor T=V .
Inserting Eq. (3.5) into the various terms of Eq. (3.10), we are led to evaluate

expectation values of the type

h�.X1/�.X2/ : : : �.Xn/i0 : (3.13)

These can be reduced to products of free 2-point correlators, h�.Xk/�.Xl/i0, through
the Wick’s theorem, as we now discuss.

Wick’s Theorem

Wick’s theorem states that free (Gaussian) expectation values of any number of
integration variables can be reduced to products of 2-point correlators, according to

h�.X1/�.X2/ : : : �.Xn�1/�.Xn/i0 D
X

all combinations

h�.X1/�.X2/i0 � � � h�.Xn�1/�.Xn/i0 :

(3.14)

Before applying this to the terms of Eq. (3.10), we briefly recall how the theorem
can be derived with (path) integration techniques.

Let us assume that we can discretise spacetime such that the coordinates X only
take a finite number of values, which in particular requires the volume to be finite.
Then we can collect the values �.X/; 8X, into a single vector v, and subsequently
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write the free action in the form S0 D 1
2
vTA v, where A is a matrix. Here, we

assume that A�1 exists and that A is symmetric, i.e. AT D A; then it also follows
that .A�1/T D A�1.

The trick allowing us to evaluate integrals weighted by exp.�S0/ is to introduce a
source vector b, and to take derivatives with respect to its components. Specifically,
we define

exp
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� �
Z

dv exp
h
�1

2
viAijvj C bivi

i

vi!viCA�1
ij bjD exp

h1

2
biA

�1
ij bj

i Z
dv exp

h
�1

2
viAijvj

i
; (3.15)

where we made a substitution of integration variables at the second equality. We
then obtain

hvkvl : : : vni0 D
R

dv .vkvl : : : vn/ exp

� 1

2
viAijvj

�
R

dv exp

� 1

2
viAijvj

�

D
n

d
dbk

d
dbl

: : : d
dbn

exp


W.b/

�o
bD0

exp


W.0/

�

D
n d

dbk

d

dbl
: : :

d

dbn
exp

h1

2
biA

�1
ij bj

io
bD0

D
�

d

dbk

d

dbl
: : :

d

dbn

h
1 C 1

2
biA

�1
ij bj

C1

2

�1

2

�2

biA
�1
ij bj brA

�1
rs bs C : : :

i	
bD0

: (3.16)

Taking the derivatives in Eq. (3.16), we observe that:

• h1i0 D 1:

• If there is an odd number of components of v in the expectation value, the result
is zero.

• hvkvli0 D A�1
kl .

• hvkvlvmvni0 D A�1
kl A�1

mn C A�1
km A�1

ln C A�1
kn A�1

lm
D hvkvli0hvmvni0 C hvkvmi0hvlvni0 C hvkvni0hvlvmi0 .

• At higher orders, we obtain a discretized version of Eq. (3.14).
• Since all the operations were purely combinatorial, removing the discretization

does not modify the result, so that Eq. (3.14) holds also in the infinite volume and
continuum limits.

Let us now use Eq. (3.14) in connection with Eq. (3.10). From Eqs. (2.26), (2.50)
and (3.10), we read off the familiar leading-order result,

f.0/.T/ D J.m; T/ : (3.17)
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At the first order, linear in �, we on the other hand get

f.1/.T/ D lim
V!1

T

V
hSIi0 D lim

V!1
T

V

Z ˇ
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Z
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4
h�.X/�.X/�.X/�.X/i0 ; (3.18)

where we can now use Wick’s theorem. Noting that due to translational invariance,
h�.X/�.Y/i0 can only depend on X � Y, the spacetime integral becomes trivial, and
we obtain

f.1/.T/ D 3

4
� h�.0/�.0/i0h�.0/�.0/i0 : (3.19)

Finally, at the second order, we get

f.2/.T/ D lim
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�
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4
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�	
; (3.20)

where we have again denoted (cf. Eq. (2))

Z
X

�
Z ˇ

0

d�

Z
V

ddx : (3.21)

Upon carrying out the contractions in Eq. (3.20) according to Wick’s theorem,
the role of the “subtraction term”, i.e. the second one in Eq. (3.20), becomes clear:
it cancels all disconnected contractions where all fields at point X are contracted
with other fields at the same point. In other words, the combination in Eq. (3.20)
amounts to taking into account only the connected contractions; this is the meaning
of the subscript c in Eq. (3.12). This combinatorial effect is caused by the logarithm
in Eq. (3.10), i.e., by going from the partition function to the free energy.

As far as the connected contractions go, we obtain through a (repeated) use of
Wick’s theorem:

h�.X/�.X/�.X/�.X/ �.Y/�.Y/�.Y/�.Y/i0;c

D 4 h�.X/�.Y/i0 h�.X/�.X/�.X/ �.Y/�.Y/�.Y/i0;c

C 3 h�.X/�.X/i0 h�.X/�.X/ �.Y/�.Y/�.Y/�.Y/i0;c

D 4 � 3 h�.X/�.Y/i0 h�.X/�.Y/i0 h�.X/�.X/ �.Y/�.Y/i0;c

C 4 � 2 h�.X/�.Y/i0 h�.X/�.X/i0 h�.X/ �.Y/�.Y/�.Y/i0;c

C 3 � 4 h�.X/�.X/i0 h�.X/�.Y/i0 h�.X/ �.Y/�.Y/�.Y/i0;c
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D 4 � 3 � 2 h�.X/�.Y/i0 h�.X/�.Y/i0 h�.X/�.Y/i0 h�.X/�.Y/i0

C .4 � 3 C 4 � 2 � 3 C 3 � 4 � 3/h�.X/�.X/i0 h�.X/�.Y/i0

�h�.X/�.Y/i0 h�.Y/�.Y/i0 : (3.22)

Inspecting the 2-point correlators in this result, we note that they either depend on
X�Y, or on neither X nor Y, the latter case corresponding to the contraction of fields
at the same point. Thereby one of the spacetime integrals is trivial (just substitute
X ! X C Y, and note that h�.X C Y/�.Y/i0 D h�.X/�.0/i0), and cancels against
the factor T=V D 1=.ˇV/ in Eq. (3.20). In total, we then have

f.2/.T/ D �
��

4

�2
�
12

Z
X
fh�.X/�.0/i0g4 C 36 fh�.0/�.0/i0g2

Z
X
fh�.X/�.0/i0g2

�
:

(3.23)

Graphically this can be represented as

(3.24)

where solid lines denote propagators, and the vertices at which they cross denote
spacetime points, in this case X and 0.

We could in principle go on with the third-order terms in Eq. (3.10). Again, it
could be verified that the “subtraction terms” cancel all disconnected contractions,
so that only the connected ones contribute to f .T/, and that one spacetime integral
cancels against the explicit factor T=V . These features are of general nature, and
hold at any order in the weak-coupling expansion.

In summary, Wick’s theorem has allowed us to convert the terms in Eq. (3.10) to
various structures made of the 2-point correlator h�.X/�.0/i0. We now turn to the
properties of this function.

Propagator

The 2-point correlator h�.X/�.Y/i0 is usually called the free propagator. Denoting

Nı.P C Q/ �
Z

X
ei.PCQ/�X D ˇıpnCqn;0 .2�/dı.d/.p C q/ ; (3.25)
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where P � . pn; p/ and pn are bosonic Matsubara frequencies, and employing the
representation

�.X/ � PZ
P

Q�.P/eiP�X ; (3.26)

we recall from basic quantum field theory that the (Euclidean) propagator can be
written as

h Q�.P/ Q�.Q/i0 DNı.P C Q/
1

P2 C m2
; (3.27)

h�.X/�.Y/i0 D PZ
P

eiP�.X�Y/ 1

P2 C m2
: (3.28)

Before inserting these expressions into Eqs. (3.19) and (3.23), we briefly review
their derivation, working in a finite volume V and proceeding like in Sect. 2.1.

First, we insert Eq. (3.26) into the definition of the propagator,

h�.X/�.Y/i0 D PZ
P;Q

eiP�XCiQ�Yh Q�.P/ Q�.Q/i0 ; (3.29)

as well as to the free action, S0,

S0 D 1

2

PZ
P

Q�.�P/.P2 C m2/ Q�.P/ D 1

2

PZ
P

.P2 C m2/j Q�.P/j2 : (3.30)

Here, we may further write Q�.P/ D a.P/ C i b.P/, with a.�P/ D a.P/,
b.�P/ D �b.P/, and subsequently note that only half of the Fourier components
are independent. We may choose these according to Eq. (2.13).

Restricting the sum to the independent components, and making use of the
symmetry properties of a.P/ and b.P/, Eq. (3.30) becomes

S0 D T

V

X
Pindep.

.P2 C m2/Œa2.P/ C b2.P/� : (3.31)

The Gaussian integral,

R
dx x2 exp.�c x2/R
dx exp.�c x2/

D 1

2c
; (3.32)
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and the symmetries of a.P/ and b.P/ then imply the results

ha.P/ b.Q/i0 D 0 ; (3.33)

ha.P/ a.Q/i0 D .ıP;Q C ıP;�Q/
V

2T

1

P2 C m2
; (3.34)

hb.P/ b.Q/i0 D .ıP;Q � ıP;�Q/
V

2T

1

P2 C m2
; (3.35)

where the ı-functions are of the Kronecker-type. Using these, the momentum-space
propagator becomes

h Q�.P/ Q�.Q/i0 D ha.P/ a.Q/ C i a.P/ b.Q/ C i b.P/ a.Q/ � b.P/ b.Q/i0

D ıP;�Q
V

T

1

P2 C m2
D ˇıpnCqn;0VıpCq;0

1

P2 C m2
; (3.36)

which in the infinite-volume limit (cf. Eq. (2.10)), viz.

1

V

X
p

�!
Z

ddp
.2�/d

; Vıp;0 �! .2�/dı.d/.p/ ; (3.37)

becomes exactly Eq. (3.27). Inserting this into Eq. (3.29) we also recover Eq. (3.28).

It is useful to study the behaviour of the propagator h�.X/�.Y/i0 at small and
large separations X � Y. For this we may use the result of Eq. (1.70),

T
X

pn

eipn�

p2
n C E2

D 1

2E

cosh
h�

ˇ

2
� �

�
E

i

sinh
h

ˇE
2

i ; ˇ D 1

T
; 0 � � � ˇ : (3.38)

Even though this equation was derived for 0 � � � ˇ, it is clear from the left-hand
side that we can extend its validity to �ˇ � � � ˇ by replacing � by j� j. Thereby,
the propagator in Eq. (3.28) becomes

G0.X � Y/ � h�.X/�.Y/i0

D
Z

ddp
.2�/d

eip�.y�x/ 1

2Ep

cosh
h�

ˇ

2
� jx0 � y0j

�
Ep

i

sinh
h

ˇEp

2

i
ˇ̌
ˇ̌
ˇ̌
Ep�

p
p2Cm2

;

(3.39)

where we may set Y D 0 with no loss of generality.
Consider first short distances, jxj; jx0j � 1

T ; 1
m . We may expect the dominant

contribution in the Fourier transform of Eq. (3.39) to come from the regime
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jpjjxj � 1, so we assume jpj 	 T; m. Then Ep 
 p and ˇEp 
 p=T 	 1,
and consequently,
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2
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i
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Noting that

1

2p
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Z 1

�1
dp0
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p2
0 C p2

; (3.41)

this implies

G0.X/ 

Z

ddC1P

.2�/dC1

eiP�X

P2
; (3.42)

with P � . p0; p/. We recognize this as the coordinate space propagator of a
massless scalar field at zero temperature.

At this point we make use of the d C 1-dimensional rotational symmetry of
Euclidean spacetime, and choose X D .x0; x/ to point in the direction of the
component p0. Then,

Z
ddC1P

.2�/dC1

eiP�X

P2
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Z
ddp

.2�/d
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dp0

2�

eip0jXj
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D
Z

ddp
.2�/d

e�pjXj
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(2.61)D 1
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d
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�. d
2
/

Z 1

0

dp pd�2e�pjXj

D �.d � 1/

.4�/
d
2 �. d

2
/jXjd�1

; (3.43)

from which, inserting d D 3 and �. 3
2
/ D p

�=2, we find

G0.X/ 
 1

4�2jXj2 ; jXj � 1

T
;

1

m
: (3.44)

The result is independent of T and m, signifying that at short distances (in the
“ultraviolet” regime), temperature and masses do not play a role. We may further
note that the propagator rapidly diverges in this regime.
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Next, we consider the opposite limit of large distances, x D jxj 	 1=T, noting
that the periodic temporal coordinate x0 is always “small”, i.e. at most 1=T. We
expect that the Fourier transform of Eq. (3.39) is now dominated by small momenta,
p � T. If we simplify the situation further by assuming that we are also at very high
temperatures, m � T, then ˇEp � 1, and we can expand the hyperbolic functions
in Taylor series, approximating cosh.	/ 
 1, sinh.	/ 
 	. We then obtain from
Eq. (3.39)

G0.X/ 
 T
Z

ddp
.2�/d

e�ip�x

p2 C m2
: (3.45)

Note that the integrand here is also the pn D 0 contribution from the left-hand side
of Eq. (3.38). Setting d D 3,1 and denoting z � p � x=. px/, the remaining integral
can be worked out as

G0.X/ 
 T

.2�/2

Z C1

�1

dz
Z 1

0

dp p2 e�ipxz

p2 C m2

D T

.2�/2

Z 1
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dp p2

p2 C m2

eipx � e�ipx

ipx

D T

.2�/2ix

Z 1

�1
dp p eipx

p2 C m2

D T e�mx

4�x
; x 	 1

T
: (3.46)

In the last step the integration contour was closed in the upper half-plane (recalling
that x > 0).

We note from Eq. (3.46) that at large distances (in the “infrared” regime), thermal
effects modify the behaviour of the propagator in an essential way. In particular, if
we were to set the mass to zero, then Eq. (3.44) would be the exact behaviour at
zero temperature, both at small and at large distances, whereas Eq. (3.46) shows
that a finite temperature would “slow down” the long-distance decay to T=.4�jxj/.
In other words, we can say that at non-zero temperature the theory is more sensitive
to infrared physics than at zero temperature.

1For a general d,
R ddp

.2�/d
e�ip�x

p2
Cm2 D .2�/�

d
2 . m

x /
d
2 �1K d

2 �1.mx/, where K is a modified Bessel
function.
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3.2 Problems of the Naive Weak-Coupling Expansion

O.�/: Ultraviolet Divergences

We now proceed with the evaluation of the weak-coupling expansion for the free
energy density in a scalar field theory, the first three orders of which are given
by Eqs. (3.17), (3.19) and (3.23). Noting from Eqs. (2.54) and (3.28) that G0.0/ D
I.m; T/, we obtain

f .T/ D J.m; T/ C 3

4
� ŒI.m; T/�2 C O.�2/ : (3.47)

According to Eqs. (2.72) and (2.73), we have

J.m; T/ D �m4��2	

64�2

�
1

	
C ln

N�2

m2
C 3

2
C O.	/

�
C JT.m/ ; (3.48)

I.m; T/ D �m2��2	

16�2

�
1

	
C ln

N�2

m2
C 1 C O.	/

�
C IT.m/ ; (3.49)

where the finite functions JT.m/ and IT.m/ were evaluated in various limits in
Eqs. (2.79), (2.80), (2.82) and (2.93).

Inserting Eqs. (3.48) and (3.49) into Eq. (3.47), we note that the result is, in
general, ultraviolet divergent. For instance, restricting for simplicity to very high
temperatures, T 	 m, and making use of Eq. (2.93),

IT.m/ 
 T2

12
� mT

4�
C O.m2/ ; (3.50)

the dominant term at 	 ! 0 reads

f .T/ 
 � ��2	

64�2	

�
m4C�

�
1

2
T2m2� 3

2�
Tm3CO.m4/

�
CO.�2/

	
CO.1/ : (3.51)

This result is clearly non-sensical; in particular the divergences depend on the
temperature, i.e. cannot be removed by subtracting a T-independent “vacuum”
contribution. To properly handle this issue requires renormalization, to which we
return in Sect. 3.3.
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O.�2/: Infrared Divergences

Let us next consider the O.�2/ correction to Eq. (3.47), given by Eq. (3.23). With
the notation of Eq. (3.39), it can be written as

f.2/.T/ D �3

4
�2

Z
X
ŒG0.X/�4 � 9

4
�2ŒI.m; T/�2

Z
X
ŒG0.X/�2 : (3.52)

It is particularly interesting to inspect what happens if we take the particle mass m
to be very small in units of the temperature, m � T.

As Eqs. (3.47), (2.82) and (3.50) show, at O.�/ the small-mass limit is perfectly
well-defined. At the next order, we on the other hand must analyze the two terms of
Eq. (3.52). Starting with the first one, we know from Eq. (3.44) that the behaviour of
G0 is independent of m at small x, and thus nothing particular happens for x � T�1.
On the other hand, for large x, G0 is given by Eq. (3.46), and we may thus estimate
the contribution of this region as

Z
x >� ˇ

ŒG0.X/�4 �
Z ˇ

0

d�

Z
x >� ˇ

d3x
�

Te�mx

4�x

4

: (3.53)

This integral is convergent even for m ! 0.
Consider then the second term of Eq. (3.52). Repeating the previous argument,

we see that the long-distance contribution to the free energy density is proportional
to the integral

Z
x >� ˇ

ŒG0.X/�2 �
Z ˇ

0

d�

Z
x >� ˇ

d3x
�

Te�mx

4�x

2

: (3.54)

If we now attempt to set m ! 0, we run into a linearly divergent integral. Because
this problem emerges from large distances, we call this an infrared divergence.

In fact, it is easy to be more precise about the form of the divergence. We can
namely write

Z
X
ŒG0.X/�2 D

Z
X

PZ
P

eiP�X

P2 C m2

PZ
Q

eiQ�X

Q2 C m2

D PZ
PQ

Nı.P C Q/
1

.P2 C m2/.Q2 C m2/

D PZ
P

1

ŒP2 C m2�2

D � d

dm2
I.m; T/ : (3.55)
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Inserting Eq. (3.50), we get

Z
X
ŒG0.X/�2 D � 1

2m

d

dm
I.m; T/ D T

8�m
C O.1/ ; (3.56)

so that for m � T, Eq. (3.52) evaluates to

f.2/.T/ D �9

4
�2 T4

144

T

8�m
C O.m0/ : (3.57)

This indeed diverges for m ! 0.
It is clear that like the ultraviolet divergence in Eq. (3.51), the infrared divergence

in Eq. (3.57) must be an artifact of some sort: the pressure and other thermodynamic
properties of a plasma of weakly interacting massless scalar particles should be
finite, as we know to be the case for a plasma of massless photons. We return to the
resolution of this “paradox” in Sect. 3.4.

3.3 Proper Free Energy Density to O.�/:
Ultraviolet Renormalization

In Sect. 3.2 we attempted to compute the free energy density f .T/ of a scalar
field theory up to O.�/, but found a result which appeared to be ultraviolet (UV)
divergent. Let us now show that, as must be the case in a renormalizable theory, the
divergences disappear order-by-order in perturbation theory, if we re-express f .T/

in terms of renormalized parameters. Furthermore the renormalization procedure is
identical to that at zero temperature.

In order to proceed, we need to change the notation somewhat. The zero-
temperature parameters we employed before, i.e. m2; �, are now re-interpreted to
be bare parameters, m2

B; �B.2 The expansion in Eq. (3.47) can then be written in the
schematic form

f .T/ D �.0/.m2
B; T/ C �B �.1/.m2

B; T/ C O.�2
B/ : (3.58)

As a second step, we introduce the renormalized parameters m2
R; �R. These could

either be directly physical quantities (say, the mass of the scalar particle, and the
scattering amplitude with particular kinematics), or quantities which are not directly
physical, but are related to physical quantities by finite equations (say, so-called MS
scheme parameters). In any case, it is natural to choose the renormalized parameters
such that in the limit of an extremely weak interaction, �R � 1, they formally agree

2The temperature, in contrast, is a physical property of the system, and is not subject to any
modification.
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with the bare parameters. In other words, we may write

m2
B D m2

R C �R f .1/.m2
R/ C O.�2

R/ ; (3.59)

�B D �R C �2
R g.1/.m2

R/ C O.�3
R/ ; (3.60)

where it is important to note that the renormalized parameters are defined at zero
temperature (no T appears in these relations). The functions f .i/ and g.i/ are in
general divergent in the limit that the regularization is removed; for instance, in
dimensional regularization, they are expected to contain poles, such as 1=	 or higher.

The idea now is to convert the expansion in Eq. (3.58) into an expansion in �R by
inserting in it the expressions from Eqs. (3.59) and (3.60) and Taylor-expanding the
result in �R. This produces

f .T/ D �.0/.m2
R; T/C�R

�
�.1/.m2

R; T/C @�.0/.m2
R; T/

@m2
R

f .1/.m2
R/

�
CO.�2

R/ ; (3.61)

where we note that to O.�2
R/ only the mass parameter needs to be renormalized.

To carry out renormalization in practice, we need to choose a scheme. We adopt
here the so-called pole mass scheme, where m2

R is taken to be the physical mass
squared of the �-particle, denoted by m2

phys. In Minkowskian spacetime, this quantity
appears as an exponential time evolution,

e�iE0t � e�imphyst ; (3.62)

in the propagator of a particle at rest, p D 0. In Euclidean spacetime, it on the other
hand corresponds to an exponential fall-off, exp.�mphys�/, in the imaginary-time
propagator. Therefore, in order to determine m2

phys to O.�R/, we need to compute
the full propagator, G.X/, to O.�R/ at zero temperature.

The full propagator can be defined as the generalization of Eq. (3.39) to the
interacting case:

G.X/ � h�.X/�.0/ exp.�SI/i0

hexp.�SI/i0

D h�.X/�.0/i0 � h�.X/�.0/ SI i0 C O.�2
B/

1 � hSIi0 C O.�2
B/

D h�.X/�.0/i0 �
h
h�.X/�.0/SIi0 � h�.X/�.0/i0hSIi0

i
C O.�2

B/ : (3.63)

We note that just like the subtractions in Eq. (3.10), the second term inside the square
brackets serves to cancel disconnected contractions. Therefore, like in Eq. (3.12),
we can drop the second term, if we replace the expectation value in the first one by
h: : :i0;c.
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Let us now inspect the leading (zeroth order) term in Eq. (3.63), in order to learn
how mphys could most conveniently be extracted from the propagator. Introducing
the notation

Z
P

� lim
T!0

PZ
P

D
Z

ddC1P

.2�/dC1
; (3.64)

and working in the T D 0 limit for the time being, the free propagator reads (cf.
Eq. (3.28))

G0.X/ D h�.X/�.0/i0 D
Z

P

eiP�X

P2 C m2
: (3.65)

For Eq. (3.62), we need to project to zero spatial momentum, p D 0; evidently this
can be achieved by taking a spatial average of G0.X/ via

Z
x

h�.�; x/�.0/i0 D
Z

dp0

2�

eip0�

p2
0 C m2

: (3.66)

We see that we get an integral which can be evaluated with the help of the Cauchy
theorem and, in particular, that the exponential fall-off of the correlation function is
determined by the pole position of the momentum-space propagator:

Z
x

h�.�; x/�.0/i0 D 1

2�
2�i

e�m�

2im
; � � 0 : (3.67)

Hence,

m2
phys

ˇ̌
ˇ
�D0

D m2 : (3.68)

More generally, the physical mass can be extracted by determining the pole position
of the full propagator in momentum space, projected to p D 0.

We then proceed to the second term in Eq. (3.63), keeping still T D 0:

� h�.X/�.0/ SI i0;c D ��B

4

Z
Y
h�.X/�.0/ �.Y/�.Y/�.Y/�.Y/i0;c

D ��B

4

Z
Y

4 � 3 h�.X/�.Y/i0 h�.Y/�.0/i0 h�.Y/�.Y/i0

D �3�BG0.0/

Z
Y

G0.Y/G0.X � Y/

D �3�B

Z
P

1

P2 C m2
B

Z
Y

Z
Q;R

eiQ�YeiR�.X�Y/ 1

Q2 C m2
B

1

R2 C m2
B

D �3�B I0.mB/

Z
R

eiR�X

.R2 C m2
B/2

: (3.69)
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Summing this expression together with Eq. (3.65), the full propagator reads

G.X/ D
Z

P
eiP�X

�
1

P2 C m2
B

� 3�BI0.mB/
1

.P2 C m2
B/2

C O.�2
B/

�

D
Z

P

eiP�X

P2 C m2
B C 3�BI0.mB/

C O.�2
B/ ; (3.70)

where we have resummed a series of higher-order corrections in a way that is correct
to the indicated order of the weak-coupling expansion.

The same steps that led us from Eqs. (3.66) to (3.68) now produce

m2
phys D m2

B C 3�BI0.mB/ C O.�2
B/ : (3.71)

Recalling from Eq. (3.60) that m2
B D m2

R C O.�R/, �B D �R C O.�2
R/, this relation

can be inverted to give

m2
B D m2

phys � 3�RI0.mphys/ C O.�2
R/ ; (3.72)

which corresponds to Eq. (3.59). The function I0, given in Eq. (2.73), furthermore
diverges in the limit 	 ! 0,

I0.mphys/ D �m2
phys�

�2	

16�2

�
1

	
C ln

N�2

m2
phys

C 1 C O.	/

�
; (3.73)

and we may hope that this divergence cancels those we found in f .T/.
Indeed, let us repeat the steps from Eqs. (3.58) to (3.61) employing the explicit

expression for the free energy density from Eq. (3.47),

f .T/ D J.mB; T/ C 3

4
�BŒI.mB; T/�2 C O.�2

B/ : (3.74)

Recalling from Eq. (2.52) that

I.m; T/ D 1

m

d

dm
J.m; T/ D 2

d

dm2
J.m; T/ ; (3.75)

we can expand the two terms in Eq. (3.74) as a Taylor series around m2
phys, obtaining

J.mB; T/ D J.mphys; T/ C .m2
B � m2

phys/
@J.mphys; T/

@m2
phys

C O.�2
R/

D J.mphys; T/ � 3

2
�RI0.mphys/I.mphys; T/ C O.�2

R/ ; (3.76)



3.4 Proper Free Energy Density to O.�
3
2 /:Infrared Resummation 57

�BŒI.mB; T/�2 D �RŒI.mphys; T/�2 C O.�2
R/ ; (3.77)

where in Eq. (3.76) we inserted Eq. (3.72). With this input, Eq. (3.74) becomes

f .T/ D J.mphys; T/ C 3

4
�R

h
I2.mphys; T/ � 2I0.mphys/ I.mphys; T/

i
C O.�2

R/

D
�

J0.mphys/ � 3

4
�RI2

0.mphys/

	
„ ƒ‚ …

C
�

JT.mphys/ C 3

4
�RI2

T.mphys/

	
„ ƒ‚ …

CO.�2
R/ ;

T D 0 part T ¤ 0 part

(3.78)

where we inserted the definitions J.m; T/ D J0.m/ C JT.m/ and I.m; T/ D I0.m/ C
IT.m/.

Recalling Eqs. (2.72) and (2.73), we observe that the first term in Eq. (3.78),
the “T D 0 part”, is still divergent. However, this term is independent of the
temperature, and thus plays no role in thermodynamics. Rather, it corresponds to a
vacuum energy density that only plays a physical role in connection with gravity. If
we included gravity, however, we should also include a bare cosmological constant,
ƒB, in the bare Lagrangian; this would contribute additively to Eq. (3.78), and we
could simply identify the physical cosmological constant as

ƒphys � ƒB C J0.mphys/ � 3

4
�RI2

0.mphys/ C O.�2
R/ : (3.79)

The divergences would now be cancelled by ƒB, and ƒphys would be finite.
In contrast, the second term in Eq. (3.78), the “T ¤ 0 part”, is finite: it contains

the functions JT , IT for which we have analytically determined various limiting
values in Eqs. (2.79), (2.80), (2.82) and (2.93), as well as general integral represen-
tations in Eqs. (2.76) and (2.77). Therefore all thermodynamic quantities obtained
from derivatives of f .T/, such as the entropy density or specific heat, are manifestly
finite. In other words, the temperature-dependent ultraviolet divergences that we
found in Sect. 3.2 have disappeared through zero-temperature renormalization.

3.4 Proper Free Energy Density to O.�
3
2 /:

Infrared Resummation

We now move on to a topic which is in a sense maximally different from the UV
issues discussed in the previous section, and consider the limit where the physical
mass of the scalar field, mphys, tends to zero. With a few technical modifications,
this would be the case (in perturbation theory) for, say, gluons in QCD. According
to Eq. (3.72), this limit corresponds to mB ! 0, since I0.0/ D 0; then we are faced
with the infrared problem discussed in Sect. 3.2.
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In the limit of a small mass, we can employ high-temperature expansions for
the functions J.m; T/ and I.m; T/, given in Eqs. (2.92) and (2.95). Employing
Eqs. (3.47) and (3.57), we write the leading terms in the small-mB expansion as

O.�0
B/ W f.0/.T/ D J.mB; T/ D ��2T4

90
C m2

BT2

24
� m3

BT

12�
C O.m4

B/ ; (3.80)

O.�1
B/ W f.1/.T/ D 3

4
�BŒI.mB; T/�2

D 3

4
�B

�
T2

12
� mBT

4�
C O.m2

B/

�2

D 3

4
�B

�
T4

144
� mBT3

24�
C O.m2

BT2/

�
; (3.81)

O.�2
B/ W f.2/.T/ D �9

4
�2

B

T4

144

T

8�mB

C O.m0
B/ : (3.82)

Let us inspect, in particular, odd powers of mB, which according to Eqs. (3.80)–
(3.82) are becoming increasingly important as we go further in the expansion. We
remember from Sect. 2.3 that odd powers of mB are necessarily associated with
contributions from the Matsubara zero mode. In fact, the odd power in Eq. (3.80)
is directly the zero-mode contribution to Eq. (2.87),

ıoddf.0/ D J.nD0/ D �m3
BT

12�
: (3.83)

The odd power in Eq. (3.81) on the other hand originates from a cross-term between
the zero-mode contribution and the leading non-zero mode contribution to I.0; T/:

ıoddf.1/ D 3

2
�B � I0.0; T/ � I.nD0/ D ��BmBT3

32�
: (3.84)

Finally, the small-mB divergence in Eq. (3.82) comes from a product of two non-zero
mode contributions and a particularly infrared sensitive zero-mode contribution:

ıoddf.2/ D 9

4
�2

B � ŒI0.0; T/�2 � dI.nD0/

dm2
B

D � �2
BT5

83�mB

: (3.85)

Comparing these structures, we see that the “expansion parameter” related to odd
powers is

ıoddf.1/

ıoddf.0/

� ıoddf.2/

ıoddf.1/

� �BT2

8m2
B

: (3.86)
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Thus, if we try to set m2
B ! 0 (or even just m2

B � �BT2=8), the loop expansion
shows no convergence.

In order to cure the problem with the infrared (IR) sensitivity of the loop
expansion, our goal now becomes to identify and sum the divergent terms to all
orders. We may then expect that the complete sum obtains a form where we can
set m2

B ! 0 without meeting divergences. This procedure is often referred to as
resummation.

Fortunately, it is indeed possible to identify the problematic terms. Equa-
tions (3.83)–(3.85) already suggest that at order N in �B, they are associated
with terms containing N non-zero mode contributions I0.0; T/, and one zero-mode
contribution. Graphically, this corresponds to a single loop formed by a zero-mode
propagator, dressed with N non-zero mode “bubbles”. Such graphs are usually
called “ring” or “daisy” diagrams, and can be illustrated as follows (the dashed
line is a zero-mode propagator, solid lines are non-zero mode propagators):

(3.87)

To be more quantitative, we consider Eq. (3.12) at order �N
B . A straightforward

combinatorial analysis then gives

(3.88)

where we have indicated the contractions from which the various factors originate.
Let us compute the zero-mode part for the first few orders, omitting for simplicity
terms of O.	/:

N D 1 W
Z

p

1

p2 C m2
B

D � mB

4�
D d

dm2
B

�
� m3

B

6�


;
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N D 2 W
Z

p

1

. p2 C m2
B/2

D � d

dm2
B

�
� mB

4�


D � d

dm2
B

d

dm2
B

�
� m3

B

6�


;

generally W
Z

p

1

. p2 C m2
B/N

D � 1

N � 1

d

dm2
B

Z
p

1

. p2 C m2
B/N�1

D
� �1

N � 1

� �1

N � 2


� � �

��1

1

�
d

dm2
B

N�1 Z
p

1

p2 C m2
B

D .�1/N

.N � 1/Š

�
d

dm2
B

N�
m3

B

6�


: (3.89)

Combining Eqs. (3.88) and (3.89), we get

ıodd f.N/ D .�1/NC1

NŠ

�
3�B

2

N

2N�1.N � 1/Š

�
T2

12

N

T
.�1/N

.N � 1/Š

�
d

dm2
B

N�
m3

B

6�



D �T

2

1

NŠ

�
�BT2

4

N�
d

dm2
B

N�
m3

B

6�


: (3.90)

As a crosscheck, it can easily be verified that this expression reproduces Eqs. (3.83)–
(3.85).

Now, owing to the fact that Eq. (3.90) has precisely the right structure to
correspond to a Taylor expansion, we can sum the contributions in Eq. (3.90) to
all orders, obtaining

1X
ND0

1

NŠ

�
�BT2

4

N�
d

dm2
B

N�
�m3

BT

12�


D � T

12�

�
m2

B C �BT2

4

 3
2

: (3.91)

We observe that a “miracle” has happened: in Eq. (3.91) the limit m2
B ! 0 can be

taken without divergences. But there is a surprise: setting the mass parameter to
zero, we arrive at a contribution of O.�

3=2
B /, rather than O.�2

B/ as naively expected
in Sect. 3.2. In other words, infrared divergences modify qualitatively the structure
of the weak-coupling expansion.

Setting finally m2
B ! 0 everywhere, and collecting all finite terms from

Eqs. (3.80), (3.81) and (3.91), we find the correct expansion of f .T/ in the massless
limit,

f .T/ D ��2T4

90
C �BT4

4 � 48
� T

12�

�
�BT2

4

3=2

C O.�2
BT4/ (3.92)

D ��2T4

90

�
1 � 15

32

�R

�2
C 15

16

�
�R

�2

 3
2

C O.�2
R/

�
; (3.93)

where at the last stage we inserted �B D �R C O.�2
R/.
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It is appropriate to add that despite the complications we have found, higher-order
corrections can be computed to Eq. (3.93). In fact, as of today, the coefficients of
the seven subsequent terms, of orders O.�2

R/, O.�
5=2
R ln �R/, O.�

5=2
R /, O.�3

R ln �R/,
O.�3

R/, O.�
7=2
R /, and O.�8

R ln �R/, are known [1, 2]. This progress is possible due
to the fact that the resummation of higher-order contributions that we carried out
explicitly in this section can be implemented more elegantly and systematically
with so-called effective field theory methods. We return to this general procedure
in Sect. 6, but some flavour can be obtained by organizing the above computation in
yet another way, outlined in the appendix below.

Appendix: An Alternative Method for Resummation

In this appendix we show that the previous resummation can also be implemented
through the following steps:

(i) Following the computation of m2
phys in Eq. (3.71) but working now at finite

temperature, we determine a specific T-dependent pole mass in the mB ! 0

limit. The result can be called an effective thermal mass, m2
eff.

(ii) We argue that in the weak-coupling limit (�R � 1), the thermal mass is
important only for the Matsubara zero mode [3].

(iii) Writing the Lagrangian (for m2
B D 0) in the form

LE D 1

2
@�� @�� C 1

2
m2

eff �2
nD0„ ƒ‚ …

C 1

4
�B�

4 � 1

2
m2

eff �2
nD0„ ƒ‚ …

; (3.94)

L0 LI

we treat L0 as the free theory and LI as an interaction of order �R. With this
reorganization of the theory, we write down the contributions f.0/ and f.1/ to
the free energy density, and check that we obtain a well-behaved perturbative
expansion that produces a result agreeing with what we got in Eq. (3.92).

Starting with the effective mass parameter, the computation proceeds precisely
like the one leading to Eq. (3.71), with just the replacement

R
P ! †

R
P. Consequently,

m2
eff D lim

m2
B!0

h
m2

B C 3�BI.mB; T/
i

D 3�BI.0; T/ D �RT2

4
C O.�2

R/ : (3.95)

We note that for the non-zero Matsubara modes, with !n ¤ 0, we have m2
eff � !2

n in
the weak-coupling limit �R � .4�/2, so that the thermal mass plays a subdominant
role in the propagator. In contrast, for the Matsubara zero mode, m2

eff modifies the
propagator significantly for p2 � m2

eff, removing any infrared divergences. This
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observation justifies the fact that the thermal mass was only introduced for the n D 0

mode in Eq. (3.94).
With our new reorganization, the free propagators become different for the

Matsubara zero . Q�nD0/ and non-zero . Q�0/ modes:

h Q�0.P/ Q�0.Q/i0 DNı.P C Q/
1

!2
n C p2

; (3.96)

h Q�nD0.P/ Q�nD0.Q/i0 DNı.P C Q/
1

p2 C m2
eff

: (3.97)

Consequently, Eq. (3.17) gets replaced with

f.0/.T/ D PZ 0

P

1

2
ln.P2/ C T

Z
p

1

2
ln.p2 C m2

eff/ � const.

D J0.0; T/ C J.nD0/.meff; T/

D ��2T4

90
� m3

effT

12�
: (3.98)

In the massless first term, the omission of the zero mode made no difference.
Similarly, with f.1/ now coming from LI in Eq. (3.94), Eq. (3.19) is modified into

f.1/.T/ D 3

4
�Bh�.0/�.0/i0h�.0/�.0/i0 � 1

2
m2

effh�nD0.0/�nD0.0/i0

D 3

4
�B

h
I0.0; T/ C I.nD0/.meff; T/

i2 � 1

2
m2

eff I.nD0/.meff; T/

D 3

4
�B

�
T4

144
� meffT3

24�
C m2

effT
2

16�2

�
C 1

2
m2

eff
meffT

4�
: (3.99)

Inserting Eq. (3.95) into the last term of Eq. (3.99), we see that this contribution
precisely cancels against the linear term within the square brackets. As we recall
from Eq. (3.84), the linear term was part of the problematic series that needed to be
resummed. Combining Eqs. (3.98) and (3.99), we instead get

f .T/ D ��2T4

90
C 3

4
�R

T4

144
� m3

effT

12�
C O.�2

R/ ; (3.100)

which agrees with Eq. (3.93).
The cancellation that took place in Eq. (3.99) can also be verified at higher orders.

In particular, proceeding to O.�2
R/, it can be seen that the structure in Eq. (3.85) gets

cancelled as well. Indeed, the resummation of infrared divergences that we carried
out explicitly in Eq. (3.91) can be fully captured by the reorganization in Eq. (3.94).
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