
Chapter 1
Quantum Mechanics

Abstract After recalling some basic concepts of statistical physics and quantum
mechanics, the partition function of a harmonic oscillator is defined and evaluated
in the standard canonical formalism. An imaginary-time path integral representation
is subsequently developed for the partition function, the path integral is evaluated
in momentum space, and the earlier result is reproduced upon a careful treatment of
the zero-mode contribution. Finally, the concept of 2-point functions (propagators)
is introduced, and some of their key properties are derived in imaginary time.

Keywords Partition function • Euclidean path integral • Imaginary-time formal-
ism • Matsubara modes • 2-point function

1.1 Path Integral Representation of the Partition Function

Basic Structure

The properties of a quantum-mechanical system are defined by its Hamiltonian,
which for non-relativistic spin-0 particles in one dimension takes the form

OH D Op2
2m

C V.Ox/ ; (1.1)

where m is the particle mass. The dynamics of the states j i is governed by the
Schrödinger equation,

i„ @
@t

j i D OHj i ; (1.2)

which can formally be solved in terms of a time-evolution operator OU.tI t0/. This
operator satisfies the relation

j .t/i D OU.tI t0/j .t0/i ; (1.3)
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2 1 Quantum Mechanics

and for a time-independent Hamiltonian takes the explicit form

OU.tI t0/ D e� i
„

OH.t�t0/ : (1.4)

It is useful to note that in the classical limit, the system of Eq. (1.1) can be described
by the Lagrangian

L D LM D 1

2
mPx2 � V.x/ ; (1.5)

which is related to the classical version of the Hamiltonian via a simple Legendre
transform:

p � @LM

@Px ; H D Pxp � LM D p2

2m
C V.x/ : (1.6)

Returning to the quantum-mechanical setting, various bases can be chosen for
the state vectors. The so-called jxi-basis satisfies the relations

hxjOxjx0i D xhxjx0i D x ı.x � x0/ ; hxjOpjx0i D �i„ @xhxjx0i D �i„ @x ı.x � x0/ ;
(1.7)

whereas in the energy basis we simply have

OHjni D Enjni : (1.8)

An important concrete realization of a quantum-mechanical system is provided
by the harmonic oscillator, defined by the potential

V.Ox/ � 1

2
m!2 Ox2 : (1.9)

In this case the energy eigenstates jni can be found explicitly, with the corresponding
eigenvalues equalling

En D „!
�

n C 1

2

�
; n D 0; 1; 2; : : : : (1.10)

All the states are non-degenerate.
It turns out to be useful to view (quantum) mechanics formally as (1+0)-

dimensional (quantum) field theory: the operator Ox can be viewed as a field operator
O� at a certain point, implying the correspondence

Ox $ O�.0/ : (1.11)
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In quantum field theory operators are usually represented in the Heisenberg picture;
correspondingly, we then have

OxH.t/ $ O�H.t; 0/ : (1.12)

In the following we adopt an implicit notation whereby showing the time coordinate
t as an argument of a field automatically implies the use of the Heisenberg picture,
and the corresponding subscript is left out.

Canonical Partition Function

Taking our quantum-mechanical system to a finite temperature T, the most funda-
mental quantity of interest is the partition function, Z . We employ the canonical
ensemble, whereby Z is a function of T; introducing units in which kB D 1 (i.e.,
There � kBTSI-units), the partition function is defined by

Z.T/ � Tr Œe�ˇ OH � ; ˇ � 1

T
; (1.13)

where the trace is taken over the full Hilbert space. From this quantity, other
observables, such as the free energy F, entropy S, and average energy E can be
obtained via standard relations:

F D �T lnZ ; (1.14)

S D �@F

@T
D lnZ C 1

TZ Tr Œ OHe�ˇ OH � D �F

T
C E

T
; (1.15)

E D 1

Z Tr Œ OHe�ˇ OH� : (1.16)

Let us now explicitly compute these quantities for the harmonic oscillator. This
becomes a trivial exercise in the energy basis, given that we can immediately write

Z D
1X

nD0
hnje�ˇ OHjni D

1X
nD0

e�ˇ„!. 12Cn/ D e�ˇ„!=2

1 � e�ˇ„! D 1

2 sinh
�

„!
2T

� : (1.17)

Consequently,

F D T ln
�

e
„!
2T � e� „!

2T

�
D „!

2
C T ln

�
1 � e�ˇ„!�

(1.18)

�

8̂
<
:̂

„!
2
; T � „!

�T ln
� T

„!
�
; T � „!

; (1.19)
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S D � ln
�
1 � e�ˇ„!

�
C „!

T

1

eˇ„! � 1
(1.20)

�

8
<̂
:̂

„!
T

e� „!
T ; T � „!

1C ln
T

„! ; T � „!
; (1.21)

E D F C TS D „!
�
1

2
C 1

eˇ„! � 1

�
(1.22)

�
8<
:

„!
2
; T � „!

T ; T � „!
: (1.23)

Note how in most cases one can separate the contribution of the ground state,
dominating at low temperatures T � „!, from that of the thermally excited states,
characterized by the appearance of the Bose distribution nB.„!/ � 1=Œexp.ˇ„!/�
1�. Note also that E rises linearly with T at high temperatures; the coefficient is said
to count the number of degrees of freedom of the system.

Path Integral for the Partition Function

In the case of the harmonic oscillator, the energy eigenvalues are known in an
analytic form, and Z could be easily evaluated. In many other cases the En are,
however, difficult to compute. A more useful representation of Z is obtained by
writing it as a path integral.

In order to get started, let us recall some basic relations. First of all, it follows
from the form of the momentum operator in the jxi-basis that

hxjOpjpi D phxjpi D �i„ @xhxjpi ) hxjpi D A e
ipx
„ ; (1.24)

where A is some constant. Second, we need completeness relations in both jxi and
jpi-bases, which take the respective forms

Z
dx jxihxj D O� ;

Z
dp

B
jpihpj D O� ; (1.25)

where B is another constant. The choices of A and B are not independent; indeed,

O� D
Z

dx
Z

dp

B

Z
dp0
B

jpihpjxihxjp0 ihp0j D
Z

dx
Z

dp

B

Z
dp0
B

jpijAj2e
i.p0�p/x

„ hp0j

D
Z

dp

B

Z
dp0
B

jpijAj22�„ ı.p0 � p/hp0j D 2�„jAj2
B

Z
dp

B
jpihpj D 2�„jAj2

B
O� ; (1.26)
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implying that B D 2�„jAj2. We choose A � 1 in the following, so that B D 2�„.
Next, we move on to evaluate the partition function, which we do in the x-basis,

so that our starting point becomes

Z D Tr Œe�ˇ OH � D
Z

dx hxje�ˇ OHjxi D
Z

dx hxje� � OH
„ � � � e� � OH

„ jxi : (1.27)

Here we have split e�ˇ OH into a product of N � 1 different pieces, defining � �
ˇ„=N.

A crucial trick at this point is to insert

O� D
Z

dpi

2�„ jpiihpij ; i D 1; : : : ;N ; (1.28)

on the left side of each exponential, with i increasing from right to left; and

O� D
Z

dxi jxiihxij ; i D 1; : : : ;N ; (1.29)

on the right side of each exponential, with again i increasing from right to left.
Thereby we are left to consider matrix elements of the type

hxiC1jpiihpije�
�
„

OH.Op;Ox/jxii D e
ipixiC1

„ hpije�
�
„

H.pi;xi/CO.�2/jxii

D exp
�

� �„
�

p2i
2m

� ipi
xiC1 � xi

�
C V.xi/C O.�/

�	
: (1.30)

Moreover, we note that at the very right, we have

hx1jxi D ı.x1 � x/ ; (1.31)

which allows us to carry out the integral over x. Similarly, at the very left, the role of
hxiC1j is played by the state hxj D hx1j. Finally, we remark that the O.�/ correction
in Eq. (1.30) can be eliminated by sending N ! 1.

In total, we can thus write the partition function in the form

Z D lim
N!1

Z � NY
iD1

dxidpi

2�„
�

exp

�
� 1

„
NX

jD1

�

�
p2j
2m

� ipj
xjC1 � xj

�
C V.xj/

�	 ˇ̌
ˇ̌
ˇ̌
xNC1 � x1 ; ��ˇ„=N

;

(1.32)

which is often symbolically expressed as a “continuum” path integral

Z D
Z

x.ˇ„/Dx.0/

DxDp

2�„ exp

�
�1„

Z ˇ„

0

d�

�
Œ p.�/�2

2m
� ip.�/Px.�/C V.x.�//

�	
:

(1.33)
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The integration measure here is understood as the limit indicated in Eq. (1.32); the
discrete xi’s have been collected into a function x.�/; and the maximal value of the
�-coordinate has been obtained from �N D ˇ„.

Returning to the discrete form of the path integral, we note that the integral over
the momenta pi is Gaussian, and can thereby be carried out explicitly:

Z 1

�1
dpi

2�„ exp

�
� �„

�
p2i
2m

� ipi
xiC1 � xi

�

�	
D

r
m

2�„� exp

�
�m.xiC1 � xi/

2

2„�
�
:

(1.34)

Using this, Eq. (1.32) becomes

Z D lim
N!1

Z � NY
iD1

dxip
2�„�=m

�
exp

�
� 1

„
NX

jD1

�

�
m

2

�
xjC1 � xj

�

�2
C V.xj/

�	 ˇ̌
ˇ̌
ˇ̌
xNC1 � x1; ��ˇ„=N

;

(1.35)

which may also be written in a continuum form. Of course the measure then contains
a factor which appears quite divergent at large N,

C �
�

m

2�„�
�N=2

D exp

�
N

2
ln

�
mN

2�„2ˇ
��

: (1.36)

This factor is, however, independent of the properties of the potential V.xj/ and
thereby contains no dynamical information, so that we do not need to worry too
much about the apparent divergence. For the moment, then, we can simply write
down a continuum “functional integral”,

Z D C
Z

x.ˇ„/Dx.0/
Dx exp

�
�1„

Z ˇ„

0

d�

�
m

2

�
dx.�/

d�

�2
C V.x.�//

�	
: (1.37)

Let us end by giving an “interpretation” to the result in Eq. (1.37). We recall
that the usual quantum-mechanical path integral at zero temperature contains the
exponential

exp

�
i

„
Z

dtLM

�
; LM D m

2

�
dx

dt

�2
� V.x/ : (1.38)

We note that Eq. (1.37) can be obtained from its zero-temperature counterpart with
the following recipe [1]:

(i) Carry out a Wick rotation, denoting � � it.
(ii) Introduce

LE � �LM.� D it/ D m

2

�
dx

d�

�2
C V.x/ : (1.39)
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(iii) Restrict � to the interval .0; ˇ„/.
(iv) Require periodicity of x.�/, i.e. x.ˇ„/ D x.0/.

With these steps (and noting that idt D d�), the exponential becomes

exp

�
i

„
Z

dtLM

�
.i/�.iv/�! exp

�
�1„SE

�
� exp

�
�1„

Z ˇ„

0

d� LE

�
; (1.40)

where the subscript E stands for “Euclidean”. Because of step (i), the path integral
in Eq. (1.40) is also known as the imaginary-time formalism. It turns out that this
recipe works, with few modifications, also in quantum field theory, and even for
spin-1/2 and spin-1 particles, although the derivation of the path integral itself looks
quite different in those cases. We return to these issues in later chapters of the book.

1.2 Evaluation of the Path Integral for the Harmonic
Oscillator

As an independent crosscheck of the results of Sect. 1.1, we now explicitly evaluate
the path integral of Eq. (1.37) in the case of a harmonic oscillator, and compare
the result with Eq. (1.17). To make the exercise more interesting, we carry out the
evaluation in Fourier space with respect to the time coordinate � . Moreover we
would like to deduce the information contained in the divergent constant C without
making use of its actual value, given in Eq. (1.36).

Let us start by representing an arbitrary function x.�/, 0 < � < ˇ„, with the
property x..ˇ„/�/ D x.0C/ (referred to as “periodicity”) as a Fourier sum

x.�/ � T
1X

nD�1
xn ei!n� ; (1.41)

where the factor T is a convention. Imposing periodicity requires that

ei!nˇ„ D 1 ; i.e. !nˇ„ D 2�n ; n 2 Z ; (1.42)

where the values !n D 2�Tn=„ are called Matsubara frequencies. The correspond-
ing amplitudes xn are called Matsubara modes.

Apart from periodicity, we also impose reality on x.�/:

x.�/ 2 R ) x�.�/ D x.�/ ) x�
n D x�n : (1.43)
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If we write xn D an C ibn, it then follows that

x�
n D an � ibn D x�n D a�n C ib�n )

�
an D a�n

bn D �b�n
; (1.44)

and moreover that b0 D 0 and x�nxn D a2n C b2n. Thereby we now have the
representation

x.�/ D T

�
a0 C

1X
nD1

�
.an C ibn/e

i!n� C .an � ibn/e
�i!n�

�	
; (1.45)

where a0 is called (the amplitude of) the Matsubara zero mode.
With the representation of Eq. (1.41), general quadratic structures can be

expressed as

1

„
Z ˇ„

0

d� x.�/y.�/ D T2
X
m;n

xnym
1

„
Z ˇ„

0

d� ei.!nC!m/�

D T2
X
m;n

xnym
1

T
ın;�m D T

X
n

xny�n : (1.46)

In particular, the argument of the exponential in Eq. (1.37) becomes

�1„
Z ˇ„

0

d�
m

2

�
dx.�/

d�

dx.�/

d�
C !2 x.�/x.�/

�

(1.46)D �mT

2

1X
nD�1

xn

h
i!n i!�n C !2

i
x�n

!�nD�!nD �mT

2

1X
nD�1

.!2n C !2/.a2n C b2n/

(1.45)D �mT

2
!2a20 � mT

1X
nD1
.!2n C !2/.a2n C b2n/ : (1.47)

Next, we need to consider the integration measure. To this end, let us make a
change of variables from x.�/, � 2 .0; ˇ„/, to the Fourier components an; bn. As
we have seen, the independent variables are a0 and fan; bng, n � 1, whereby the
measure becomes

Dx.�/ D
ˇ̌
ˇ̌det

�
ıx.�/

ıxn

�ˇ̌
ˇ̌ da0

hY
n�1

dan dbn

i
: (1.48)
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The change of bases is purely kinematical and independent of the potential V.x/,
implying that we can define

C0 � C

ˇ̌
ˇ̌det

�
ıx.�/

ıxn

�ˇ̌
ˇ̌ ; (1.49)

and regard now C0 as an unknown coefficient.
Making use of the Gaussian integral

R 1
�1 dx exp.�cx2/ D p

�=c, c > 0, as well
as the above integration measure, the expression in Eq. (1.37) becomes

Z D C0

Z 1

�1

da0

Z 1

�1

hY
n�1

dan dbn

i
exp

�
�1
2

mT!2a20 � mT
X
n�1

.!2n C !2/.a2n C b2n/

�
(1.50)

D C0

r
2�

mT!2

1Y
nD1

�

mT.!2n C !2/
; !n D 2�Tn

„ : (1.51)

The remaining task is to determine C0. This can be achieved via the following
observations:

• Since C0 is independent of ! [which only appears in V.x/], we can determine it
in the limit ! D 0, whereby the system simplifies.

• The integral over the zero mode a0 in Eq. (1.50) is, however, divergent for! ! 0.
We may call such a divergence an infrared divergence: the zero mode is the
lowest-energy mode.

• We can still take the ! ! 0 limit, if we momentarily regulate the integration
over the zero mode in some way. Noting from Eq. (1.45) that

1

ˇ„
Z ˇ„

0

d� x.�/ D Ta0 ; (1.52)

we see that Ta0 represents the average value of x.�/ over the �-interval. We may
thus regulate the system by “putting it in a periodic box”, i.e. by restricting the
(average) value of x.�/ to some (large but finite) interval�x.

With this setup, we can now proceed to find C0 via matching.

“Effective theory computation”: In the ! ! 0 limit but in the presence of the
regulator, Eq. (1.50) becomes

lim
!!0

Zregulated D C0
Z

�x=T
da0

Z 1

�1

hY
n�1

dan dbn

i
exp

�
�mT

X
n�1

!2n.a
2
n C b2n/

�

D C0 �x

T

1Y
nD1

�

mT!2n
; !n D 2�Tn

„ : (1.53)
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“Full theory computation”: In the presence of the regulator, and in the absence
of V.x/ (implied by the ! ! 0 limit), Eq. (1.27) can be computed in a very
simple way:

lim
!!0

Zregulated D
Z

�x
dx hxje� Op2

2mT jxi

D
Z

�x
dx

Z 1

�1
dp

2�„hxje� Op2

2mT jpihpjxi

D
Z

�x
dx

Z 1

�1
dp

2�„e� p2

2mT hxjpihpjxi„ ƒ‚ …
1

D �x

2�„
p
2�mT : (1.54)

Matching the two sides: Equating Eqs. (1.53) and (1.54), we find the formal
expression

C0 D T

2�„
p
2�mT

1Y
nD1

mT!2n
�

: (1.55)

Since the regulator�x has dropped out, we may call C0 an “ultraviolet” matching
coefficient.

With C0 determined, we can now continue with Eq. (1.51), obtaining the finite
expression

Z D T

„!
1Y

nD1

!2n
!2n C !2

(1.56)

D T

„!
1

Q1
nD1

h
1C .„!=2�T/2

n2

i : (1.57)

Making use of the identity

sinh�x

�x
D

1Y
nD1

�
1C x2

n2

�
(1.58)

we directly reproduce our earlier result for the partition function, Eq. (1.17). Thus,
we have managed to correctly evaluate the path integral without ever making
recourse to Eq. (1.36) or, for that matter, to the discretization that was present in
Eqs. (1.32) and (1.35).
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Let us end with a few remarks:

• In quantum mechanics, the partition function Z as well as all other observables
are finite functions of the parameters T, m, and !, if computed properly. We saw
that with path integrals this is not obvious at every intermediate step, but at the
end it did work out. In quantum field theory, on the contrary, “ultraviolet” (UV)
divergences may remain in the results even if we compute everything correctly.
These are then taken care of by renormalization. However, as our quantum-
mechanical example demonstrated, the “ambiguity” of the functional integration
measure (through C0) is not in itself a source of UV divergences.

• It is appropriate to stress that in many physically relevant observables, the
coefficient C0 drops out completely, and the above procedure is thereby even
simpler. An example of such a quantity is given in Eq. (1.60) below.

• Finally, some of the concepts and techniques that were introduced with this
simple example—zero modes, infrared divergences, their regularization, match-
ing computations, etc.—also play a role in non-trivial quantum field theoretic
examples that we encounter later on.

Appendix: 2-Point Function

Defining a Heisenberg-like operator (with it ! �)

Ox.�/ � e
OH�
„ Ox e� OH�

„ ; 0 < � < ˇ„ ; (1.59)

we define a “2-point Green’s function” or a “propagator” through

G.�/ � 1

Z Tr
h
e�ˇ OH Ox.�/Ox.0/

i
: (1.60)

The corresponding path integral can be shown to read

G.�/ D
R

x.ˇ„/Dx.0/Dx x.�/x.0/ expŒ�SE=„�R
x.ˇ„/Dx.0/Dx expŒ�SE=„�

; (1.61)

whereby the normalization of Dx plays no role. In the following, we compute G.�/
explicitly for the harmonic oscillator, by making use of

(a) the canonical formalism, i.e. expressing OH and Ox in terms of the annihilation and
creation operators Oa and Oa�,

(b) the path integral formalism, working in Fourier space.
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Starting with the canonical formalism, we write all quantities in terms of Oa and
Oa�:

OH D „!
�

Oa� Oa C 1

2

�
; Ox D

r „
2m!

.Oa C Oa�/ ; ŒOa; Oa�� D 1 : (1.62)

In order to construct Ox.�/, we make use of the expansion

e OA OB e�OA D OB C Œ OA; OB�C 1

2Š
Œ OA; Œ OA; OB��C 1

3Š
Œ OA; Œ OA; Œ OA; OB���C : : : : (1.63)

Noting that

Œ OH; Oa� D „!ŒOa� Oa; Oa� D �„! Oa ;
Œ OH; Œ OH; Oa�� D .�„!/2 Oa ;
Œ OH; Oa�� D „!ŒOa� Oa; Oa�� D „! Oa� ;

Œ OH; Œ OH; Oa��� D .„!/2 Oa� ; (1.64)

and so forth, we can write

e
OH�
„ Ox e� OH�

„ D
r „
2m!

�
Oa
�
1 � !� C 1

2Š
.�!�/2 C : : :

�

COa�
�
1C !� C 1

2Š
.!�/2 C : : :

�	

D
r „
2m!

�
Oa e�!� C Oa�e!�

�
: (1.65)

Inserting now Z from Eq. (1.17), Eq. (1.60) becomes

G.�/ D 2 sinh
�ˇ„!
2

� 1X
nD0

hnje�ˇ„!.nC 1
2 /

„
2m!

�
Oa e�!� C Oa�e!�

�
Oa C Oa��jni :
(1.66)

With the relations Oa�jni D p
n C 1jn C 1i and Oajni D p

njn � 1i we can identify
the non-zero matrix elements,

hnjOaOa�jni D n C 1 ; hnjOa� Oajni D n : (1.67)

Thereby we obtain

G.�/ D „
m!

sinh
�ˇ„!
2

�
exp

�
�ˇ„!

2

� 1X
nD0

e�ˇ„!n
h
e�!� C n

�
e�!� C e!�

�i
;

(1.68)
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where the sums are quickly evaluated as geometric sums,

1X
nD0

e�ˇ„!n D 1

1 � e�ˇ„! ;

1X
nD0

ne�ˇ„!n D � 1

ˇ„
d

d!

1

1 � e�ˇ„! D e�ˇ„!

.1 � e�ˇ„!/2
: (1.69)

In total, we then have

G.�/ D „
2m!

�
1 � e�ˇ„!

��
e�!�

1 � e�ˇ„! C
�

e�!� C e!�
� e�ˇ„!

.1 � e�ˇ„!/2

�

D „
2m!

1

1 � e�ˇ„!
h
e�!� C e!.��ˇ„/i

D „
2m!

cosh
h�

ˇ„
2

� �
�
!

i

sinh
h
ˇ„!
2

i : (1.70)

As far as the path integral treatment goes, we employ the same representation as
in Eq. (1.50), noting that C0 drops out in the ratio of Eq. (1.61). Recalling the Fourier
representation of Eq. (1.45),

x.�/ D T

�
a0 C

1X
kD1

�
.ak C ibk/e

i!k� C .ak � ibk/e
�i!k�

�	
; (1.71)

x.0/ D T

�
a0 C

1X
lD1

2al

	
; (1.72)

the observable of our interest becomes

G.�/ D ˝
x.�/x.0/

˛ �
R

da0
R Q

n�1 dan dbn x.�/ x.0/ expŒ�SE=„�R
da0

R Q
n�1 dan dbn expŒ�SE=„�

: (1.73)

At this point, we employ the fact that the exponential is quadratic in a0; an; bn 2
R, which immediately implies

ha0aki D ha0bki D hakbli D 0 ; hakali D hbkbli / ıkl ; (1.74)

with the expectation values defined in the sense of Eq. (1.73). Thereby we obtain

G.�/ D T2
D
a20 C

1X
kD1

2a2k


ei!k� C e�i!k�

�E
; (1.75)
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where

ha20i D
R

da0 a20 exp

� 1

2
mT!2a20

�
R

da0 exp

� 1

2
mT!2a20

�

D � 2

m!2
d

dT

�
ln

Z
da0 exp

�
�1
2

mT!2a20

��
D � 2

m!2
d

dT

�
ln

r
2�

m!2T

�

D 1

m!2T
; (1.76)

ha2ki D
R

dak a2k exp
��mT.!2k C !2/a2k



R

dak exp
��mT.!2k C !2/a2k




D 1

2m.!2k C !2/T
: (1.77)

Inserting these into Eq. (1.75) we get

G.�/ D T

m

�
1

!2
C

1X
kD1

ei!k� C e�i!k�

!2k C !2

�
D T

m

1X
kD�1

ei!k�

!2k C !2
; (1.78)

where we recall that !k D 2�kT=„.
There are various ways to evaluate the sum in Eq. (1.78). We encounter a generic

method in Sect. 2.2, so let us present a different approach here. We start by noting
that

�
� d2

d�2
C !2

�
G.�/ D T

m

1X
kD�1

ei!k� D „
m
ı.� modˇ„/ ; (1.79)

where we made use of the standard summation formula
P1

kD�1 ei!k� D
ˇ„ ı.� modˇ„/.1

Next, we solve Eq. (1.79) for 0 < � < ˇ„, obtaining

�
� d2

d�2
C !2

�
G.�/ D 0 ) G.�/ D A e!� C B e�!� ; (1.80)

1 “Proof”:
P1

kD�1 ei!k� D 1C lim�!0

P1

kD1Œ.e
i 2��
ˇ„

��
/k C .e�i 2��

ˇ„
��
/k� D lim�!0

h
1

1�e
i 2��
ˇ„

��
�

1

1�e
i 2��
ˇ„

C�

i
. If � ¤ 0modˇ„, then the limit � ! 0 can be taken, and the two terms cancel

against each other. But if 2��
ˇ„

� 0, we can expand to leading order in a Taylor series, obtaining

lim�!0

h
i

2��
ˇ„

Ci�
� i

2��
ˇ„

�i�

i
D 2�ı. 2��

ˇ„
/ D ˇ„ ı.�/.
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where A;B are unknown constants. The solution can be further restricted by noting
that the definition of G.�/, Eq. (1.78), indicates that G.ˇ„ � �/ D G.�/. Using this
condition to obtain B, we then get

G.�/ D A
h
e!� C e!.ˇ„��/i : (1.81)

The remaining unknown A can be obtained by integrating Eq. (1.79) over the source
at � D 0 and making use of the periodicity of G.�/, G.�Cˇ„/ D G.�/. This finally
produces

G0..ˇ„/�/ � G0.0C/ D „
m

) 2!A
�

e!ˇ„ � 1
�

D „
m
; (1.82)

which together with Eq. (1.81) yields our earlier result, Eq. (1.70).
The agreement of the two different computations, Eqs. (1.60) and (1.61), once

again demonstrates the equivalence of the canonical and path integral approaches to
solving thermodynamic quantities in a quantum-mechanical setting.
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