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  Pref ace    

 When the fi rst edition of Clinical Decision Support Systems was published in 1999, 
I began the preface with the statement, “We are at the beginning of a new era in the 
application of computer-based decision support for medicine.” Usually such state-
ments in hindsight seem unduly optimistic, but if we look at the landscape of health-
care information technology today, that assessment appears to be surprisingly 
accurate. Shortly after the book was published, the fi rst of several landmark reports 
from the Institute of Medicine on the quality of health care led to greater awareness 
of the role these systems can play in improving patient safety and healthcare quality. 
The second edition was published in 2007, a time when there was increased govern-
mental, research and commercial interest in clinical decision support systems 
(CDSS), but predated the HITECH Act, which accelerated the use of electronic 
health records and incentivized the incorporation of CDSS into clinical practice in 
the US. This third edition of Clinical Decision Support Systems: Theory and 
Practice is being published at a time when electronic health records are being rou-
tinely used in clinical practice, and clinical decision support systems are seeing 
more use as well. 

 The purpose of this book is to provide an overview of the background and state- 
of- the-art of CDSS. Throughout this book we use CDSS to refer to both the singular 
and plural (system and systems). A persistent theme is that CDSS have enormous 
potential to transform health care, but developers, evaluators, and users of these 
tools need to be aware of the design and implementation issues that must be 
addressed for that potential to be realized as these systems continue to evolve. This 
book is designed to be (1) a resource on clinical decision support systems for infor-
matics specialists; (2) a textbook for teachers or students in health or medical infor-
matics training programs; and (3) a comprehensive introduction for clinicians, with 
or without expertise in the applications of computers in medicine, who are inter-
ested in learning about current developments in computer-based clinical decision 
support systems. 

 The book includes chapters by nationally recognized experts on the design, eval-
uation and application of these systems. This edition includes updates of chapters in 
the previous editions, as well as seven entirely new chapters. The fi rst chapter intro-
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duces the topics that are explored in depth in later chapters. Chapters   2     and   3     
describe the design foundations behind the decision support tools used today. While 
there is some overlap in the concepts addressed in these chapters, they each have 
unique foci. Chapter   2     focuses primarily on the mathematical foundations of the 
knowledge-based systems. Chapter   3     focuses on systems based on pattern recogni-
tion and advanced data mining approaches. Chapter   4     includes a detailed discussion 
of usability principles for CDSS. Chapter   5     discusses newer models for CDSS 
architecture and Chap.   6     addresses issues in the development and implementation of 
CDSS. Chapter   7     examines the impact of government regulations on the use of 
CDSS. Chapters   8     and   9     discuss the legal, ethical, and evaluation issues that must 
be addressed when these systems are actively used in health care. Chapters   10    ,   11    , 
and   12     provide examples of specifi c types of CDSS. CDSS for patients are described 
in Chap.   10    . Chapter   11     addresses diagnostic decision support systems and sets this 
development in the context of the process of physician, not just computer, diagnosis. 
Chapter   12     illustrates the application of CDSS to the growing fi eld of genomic 
medicine. The last three chapters focus on the applications of these systems in clini-
cal practice. The authors of these chapters are from institutions that not only have a 
strong history of deployment of these systems, but also have performed the research 
and evaluation studies that provide perspective for others who are considering the 
use of these tools within the commercial systems that are increasingly incorporating 
CDSS. 

 This book represents an effort, not just by the editor or the individual chapter 
authors, but by many others who have provided assistance to them. We are grateful 
for the support and encouragement of Grant Weston and Joni Fraser from Springer. 
The Agency for Healthcare Research and Quality, the National Library of Medicine, 
and other NIH institutes have provided much appreciated support for my own and 
many of the chapter authors’ research on CDSS. Finally, I want to express my grati-
tude to the many colleagues who have been collaborators on my research activities 
in clinical decision support systems over the past 30 years.  

  Birmingham, AL, USA     Eta     S.     Berner, Ed.D., F.A.C.M.I., F.H.I.M.S.S.      
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    Chapter 1   
 Overview of Clinical Decision Support 
Systems                     

     Eta     S.     Berner       and     Tonya     J.     La     Lande     

    Abstract     Clinical decision support systems (CDSS) are computer systems 
designed to impact clinician decision making about individual patients at the point 
in time that these decisions are made. With the increased focus on the prevention of 
medical errors that has occurred since the publication of the landmark Institute of 
Medicine report, To Err Is Human, CDSS have been a key element of systems’ 
approaches to improving patient safety and the quality of care and have been a key 
requirement for “meaningful use” of electronic health records (EHRs). This chapter 
will provide an overview of clinical decision support systems, summarize current 
data on the use and impact of clinical decision support systems in practice, and will 
provide guidelines for users to consider as these systems are incorporated in com-
mercial systems, and implemented outside the research and development settings. 
The other chapters in this book will explore these issues in more depth.  

  Keywords     Clinical decision support   •   Knowledge-based systems   •   Implementation   
•   Knowledge maintenance   •   Healthcare quality   •   Safety  

      Clinical decision support systems (CDSS)   are computer systems designed to impact 
clinician decision making about individual patients at the point in time that these 
decisions are made. With the increased focus on the prevention of medical  errors   
that has occurred since the publication of the landmark Institute of Medicine report, 
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To Err Is Human, computer-based physician order entry (CPOE)  systems  , coupled 
with CDSS, have been proposed as a key element of systems’ approaches to improv-
ing patient  safety   and the quality of care [ 1 – 4 ]. In addition, CDSS have been a key 
requirement for “meaningful use” of  electronic health records (EHRs)   as defi ned by 
the  Centers for Medicare and Medicaid Services (CMS)   [ 5 ] and will become even 
more important with the growth of new models of care that are arising as a result of 
the passage of the Affordable Care Act (see also Chap.   7    ) [ 6 ]. If used properly, 
CDSS have the potential to change the way medicine has been taught and practiced. 
This chapter will provide an overview of clinical decision support systems, sum-
marize current data on the use and impact of clinical decision support systems in 
practice, and will provide guidelines for users to consider as these systems are 
incorporated in commercial systems, and implemented outside the research and 
development settings. The other chapters in this book will explore these issues in 
more depth. 

1.1     Types of Clinical Decision Support Systems 

 There are a variety of systems that can potentially support clinical decisions. Even 
Medline and similar healthcare literature databases can support clinical decisions. 
Decision support systems have been incorporated in healthcare information systems 
for a long time, but in the past these systems usually have supported retrospective 
analyses of fi nancial and administrative data [ 7 ,  8 ]. Recently, sophisticated analytic 
approaches have been proposed for similar retrospective analyses of both administra-
tive and clinical data (see Chap.   3     for more details on  data mining   approaches to 
CDSS) [ 9 ,  10 ]. Although these retrospective approaches can be used to develop 
guidelines, critical pathways, or protocols to guide decision making at the point of 
care, such retrospective analyses are not usually considered to be CDSS. These dis-
tinctions are important because vendors often will advertise that their product includes 
 decision support   capabilities, but that may refer to the retrospective type of systems, 
not those designed to assist clinicians at the point of care. CDSS have been developed 
over the last 50 years and many of them have been used as stand-alone systems or part 
of noncommercial homegrown  EHR   systems (see Chaps.   13    ,   14    , and   15    ). However, 
as the interest has increased in CDSS, more EHR vendors have begun to incorporate 
these types of systems, or at least the capability to include them [ 11 ]. 

 Metzger and her colleagues [ 12 ,  13 ] have described CDSS using several dimen-
sions. According to their framework, CDSS differ among themselves in the timing 
at which they provide support (before, during, or after the clinical decision is made) 
and how active or passive the support is, that is, whether the CDSS actively provides 
alerts or passively responds to physician input or patient-specifi c information. 
Finally, CDSS vary in how easy they are for busy clinicians to access [ 12 ]. 

 Osheroff and colleagues have developed a taxonomy of different types of  clinical 
decision support   that broadens the defi nition to include  knowledge bases  , order sets, 
and other ways of supporting clinical care in addition to alerts and reminders [ 14 ]. 

E.S. Berner and T.J. La Lande
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 Another categorization scheme for CDSS is whether they are  knowledge-based 
systems  , or non-knowledge-based systems that employ machine learning and other 
 statistical pattern recognition   approaches. Chapter   2     discusses the mathematical 
foundations of the  knowledge-based systems  , and Chap.   3     addresses the founda-
tions of the statistical pattern recognition type of CDSS. In this overview, we will 
focus on the  knowledge-based systems  , and discuss some examples of other 
approaches, as well. 

1.1.1     Knowledge-Based Clinical Decision Support Systems 

 Many of today’s knowledge-based CDSS arose out of earlier expert systems 
research, where the aim was to build a computer program that could simulate human 
thinking [ 15 ,  16 ]. Medicine was considered a good domain in which these concepts 
could be applied. Beginning in the 1970s and 1980s, the developers of these systems 
began to adapt them so that they could be used more easily to support real-life 
patient care processes [ 17 ,  18 ]. Many of the earliest systems were diagnostic  deci-
sion support systems  , which are discussed in Chap.   11    . The intent of these CDSS 
was no longer to simulate an expert’s decision making, but to assist the clinician in 
his or her own decision making. The system was expected to provide information 
for the user, rather than to come up with “the answer,” as was the goal of earlier 
expert systems [ 19 ]. The user was expected to fi lter that information and to discard 
erroneous or useless information, also to be active and to interact with the system, 
rather than just be a passive recipient of the output. This focus on the interaction of 
the user with the system is important in setting appropriate expectations for the way 
the system will be used. 

 There are three parts to most CDSS. These parts are the  knowledge base  , the 
inference or reasoning engine, and a mechanism to communicate with the user [ 20 ]. 
As Spooner explains in Chap.   2,     the knowledge base consists of compiled informa-
tion that is often, but not always, in the form of if–then rules. An example of an if–
then rule might be, for instance, IF a new order is placed for a particular blood test 
that tends to change very slowly, AND IF that blood test was ordered within the 
previous 48 h, THEN alert the physician. In this case, the rule is designed to prevent 
duplicate test ordering. Other types of  knowledge bases   might include probabilistic 
associations of signs and symptoms with diagnoses, or known drug–drug, drug- 
allergy, or drug–food interactions. 

 The second part of the CDSS is called the inference engine or reasoning mecha-
nism, which contains the formulas for combining the rules or associations in the 
 knowledge base   with actual patient data. 

 Finally, there has to be a communication mechanism, a way of getting the patient 
data into the system and getting the output of the system to the user who will make 
the actual decision. In some stand-alone systems, the patient data need to be entered 
directly by the user. In most of the CDSS incorporated into electronic health  records  , 
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which is the majority of CDSS today, the data are already in electronic form in the 
EHR, where they were originally entered by the clinician, or they may have come 
from laboratory, pharmacy, or other systems. Output to the clinician may come in 
the form of a recommendation or alert at the time of order entry, or, if the alert was 
triggered after the initial order was entered, systems of email and wireless notifi ca-
tion have been employed [ 21 ,  22 ]. 

 CDSS have been developed to assist with a variety of decisions. The example of 
the IF-THEN rule described above was for a system designed to provide support for 
laboratory test ordering. Diagnostic  decision support systems   have been  developed   
to provide a suggested list of potential diagnoses to the users. The system might 
start with the patient’s signs and symptoms, entered either by the clinician directly 
or imported from the EHR.    The decision support system’s  knowledge base   contains 
information about diseases and their signs and symptoms. The inference engine 
maps the patient’s signs and symptoms to those diseases and might suggest some 
diagnoses for the clinicians to consider. These systems generally do not generate 
only a single  diagnosis  , but usually generate a set of diagnoses based on the avail-
able information. Because the clinician often knows more about the patient than can 
be put into the computer, the clinician will be able to eliminate some of the choices. 
Most of the diagnostic systems have been stand-alone systems, but researchers at 
 Vanderbilt   University incorporated a diagnostic system that runs in the background, 
taking its information from the data already in the  EHR   [ 23 ]. This system was incor-
porated into the McKesson Horizon Clinicals ™  system. The use of CDSS at 
 Vanderbilt   is described in detail in Chap.   15    . 

 Other systems can provide support for medication orders, a major cause of medi-
cal  errors   [ 1 ,  24 ]. The input for the system might be the patient’s laboratory test 
results for the blood level of a prescribed medication. The  knowledge base   might 
contain values for therapeutic and toxic blood concentrations of the medication and 
rules on what to do when a toxic level of the medication is reached. If the medica-
tion level was too high, the output might be an alert to the physician [ 24 ]. There are 
CDSS that are part of computerized provider order entry (CPOE)  systems   that take 
a new medication order and the patient’s current medications as input, the  knowl-
edge base   might include a drug database and the output would be an alert about drug 
interactions so that the physician could change the order. Similarly, input might be 
a physician’s therapy plan, where the knowledge base would contain local protocols 
or nationally accepted treatment guidelines, and the output might be a critique of the 
plan compared to the guidelines [ 25 ]. Some hospitals that have implemented these 
systems allow the user to override the critique or suggestions, but often the users are 
required to justify why they are overriding it. The structure of the CDSS  knowledge 
base   will differ depending on the source of the data and the uses to which the data 
are put. The design and  implementation   considerations, including  usability   and 
other implementation issues, are discussed in Chaps.   4     and   6    .  
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1.1.2     Nonknowledge-Based Clinical Decision Support Systems 

 Unlike knowledge-based  decision   support systems, some of the nonknowledge- 
based CDSS use a form of artifi cial intelligence called machine learning, which 
allows the computer to learn from past experiences and/or to recognize patterns in 
the clinical data [ 26 ]. This type of approach is described briefl y in Chap.   2     and in 
detail in Chap.   3    . Artifi cial  neural networks   and  genetic algorithms   are two types of 
nonknowledge-based systems. These types of systems will become more important 
in the future as data analytics and other “big data” applications become more widely 
used in healthcare [ 9 ,  27 ]. 

 Although, as Ozaydin et al. describe in Chap.   3,     research has shown that CDSS 
based on pattern recognition and machine learning approaches may be more accu-
rate than the average clinician in diagnosing the targeted diseases [ 28 – 30 ], many 
physicians are hesitant to use these CDSS in their practice because the reasoning 
behind them is not transparent [ 29 ]. Most of the systems that are available today 
involve  knowledge-based systems   with rules, guidelines, or other compiled knowl-
edge derived from the medical literature. The research on the effectiveness of CDSS 
has come largely from a few institutions where these systems were developed, 
although in recent years as commercial systems have become more widespread, 
there is a growing literature on their effectiveness in a variety of settings [ 31 ,  32 ].   

1.2     Effectiveness of Clinical Decision Support Systems 

  Clinical  decision support systems   have been shown to improve both patient out-
comes, as well as the cost of care. Many of the published studies have come out of 
a limited number of institutions including LDS Hospital,  Partners’ Healthcare  , 
Regenstrief Medical Institute and,  Vanderbilt   University [ 31 ]. Chapter   13     describes 
Partners’ system, Chap.   14     describes the CDSS deployed in the  HELP system   at 
LDS Hospital and Intermountain Health Care, and Chap.   15     describes the system at 
 Vanderbilt  . It is interesting that all three of these pioneering institutions are now 
moving to commercial  EHRs  , but the lessons they have learned over the years will 
also be useful for using CDSS in commercial systems. 

 In addition, systematic reviews include an increasing number of studies from 
other places that have shown positive impact [ 32 ,  33 ]. Chapter   9     by Lobach pro-
vides a framework for evaluating CDSS and discusses the  evaluation   data on CDSS 
in more detail. CDSS can minimize  errors   by alerting the physician to potentially 
dangerous drug interactions, and the diagnostic programs have also been shown to 
improve physician diagnoses [ 34 – 37 ]. The reminder and alerting programs can 
potentially minimize problem severity and prevent complications. They can warn of 
early  adverse drug events   that have an impact on both cost and quality of care [ 4 , 
 37 – 40 ]. These data have prompted the Leapfrog Group and others to advocate their 
use in promoting patient  safety   [ 3 ]. The Leapfrog Group also has developed an 
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 evaluation   tool to help hospitals check the safety of their systems [ 41 ]. Many of the 
studies that have shown the strongest impact on reducing medication  errors   have 
been done at institutions with very sophisticated, internally developed systems, and 
where use of an  EHR  , CPOE, and CDSS are a routine and accepted part of the work 
environment [ 31 ]. As more places that do not have that cultural milieu, or a good 
understanding of the strengths and limitations of the systems, begin to adopt CDSS, 
integration of these systems may prove more diffi cult [ 42 ]. 

 Several published reviews of CDSS have emphasized the dearth of evidence of 
similar effectiveness on a broader scale and have called for more research, espe-
cially qualitative research, that elucidates the factors which lead to success outside 
the development environment [ 43 ,  44 ]. More recent studies have examined some of 
these factors [ 45 ]. Studies of the Leeds University abdominal pain system, an early 
CDSS for  diagnosis   of the acute abdomen, showed success in the original environ-
ment and much more limited success when the system was implemented more 
broadly [ 46 ,  47 ]. As Chap.   9     shows, while the evidence is increasing, there are still 
limited systematic, broad-scale studies of the effectiveness of CDSS. In the future 
those data are likely to be more available. Not only is there a lack of studies on the 
impact of the diffusion of successful systems, but actual use of CDSS is variable 
[ 48 ]. However, use has clearly been increasing over the last decade. In 2003, for 
instance, there were few places utilizing CDSS [ 49 ,  50 ]. The KLAS research and 
consulting fi rm conducted an extensive survey of the sites that had implemented 
 CPOE systems   [ 50 ]. As KLAS defi ned these systems, CPOE systems usually 
included CDSS that were defi ned as, “. . . alerting, decision  logic   and knowledge 
tools to help eliminate  errors   during the ordering process”[ 50 ]. Although most of 
the CPOE systems provided for complex  decision support  , the results of the KLAS 
survey showed that most sites did not use more than ten alerts and that many sites 
did not use any of the alerting mechanisms at order entry [ 50 ]. By 2013, The Offi ce 
of the National Coordinator for Health Information Technology (ONC)    found that 
74 % of physicians were using CDSS that provided warnings of drug interactions or 
contraindications and 57 % had implemented at least one  clinical decision support   
rule that provided reminders for guideline-based interventions or screening tests 
[ 48 ]. 

 Metzger and McDonald report anecdotal case studies of successful  implementa-
tion   of CDSS in ambulatory practices [ 13 ]. While such descriptions can motivate 
others to adopt CDSS, they are not a substitute for systematic  evaluation   of imple-
mentation in a wide range of settings. Unfortunately, when such evaluations are 
done, the results have sometimes been disappointing. A study incorporating 
guideline- based  decision support systems   in 31 general practice settings in England 
found that, although care was not optimal before implementing the computer-based 
guidelines, there was little change in health outcomes after the system was imple-
mented. Further examination showed that, although the guideline was triggered 
appropriately, clinicians did not go past the fi rst page and essentially did not use it 
[ 25 ]. Alert overrides are also a frequent occurrence [ 51 ] and there are suggestions 
that physician characteristics infl uence the overrides [ 52 ]. Another study found that 
clinicians did not follow the guideline advice because they did not agree with it 
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[ 53 ]. Confi guring systems to avoid these problems is a challenge that  ONC   has tried 
to address [ 54 ]. In addition, Payne et al provided recommendations for improving 
the  usability   of CDSS for medication ordering [ 54 ]. 

 There is a body of research that has shown that physicians have many unan-
swered questions during the typical clinical encounter [ 55 ,  56 ]. This situation 
should provide an optimal opportunity for the use of CDSS, yet a study tracking the 
use of a diagnostic system by medical residents indicated very little use [ 57 ]. This 
is unusual given that this group of physicians in training should have even more 
“unanswered questions” than more experienced practitioners, but this may be par-
tially explained by the fact that the system was a stand-alone system not directly 
integrated into the workfl ow. Also, Teich et al. suggest that reminder systems and 
alerts usually work, but systems that challenge the physicians’ judgment, or require 
them to change their care plans, are much more diffi cult to implement [ 58 ]. A case 
study of a CDSS for notifi cation of  adverse drug events   supports this contention. 
The study showed that despite warnings of a dangerous drug level, the clinician in 
charge repeatedly ignored the advice. The article describes a mechanism of alerting 
a variety of clinicians, not just the patient’s primary physician, to assure that the 
alerts receive proper attention [ 24 ]. Bria made analogies to making some alerts 
impossible to ignore. He used the example of the shaking stick in an airplane to alert 
the pilots to really serious problems [ 59 ]. In addition to the individual studies, 
Kawamoto et al. [ 45 ] examined factors associated with CDSS success across a vari-
ety of studies. They found that four factors were the main correlates of successful 
CDSS  implementation  . The factors were:

    1.    Providing alerts/reminders automatically as part of the workfl ow;   
   2.    Providing the suggestions at a time and location where the decisions were being 

made;   
   3.    Providing actionable recommendations; and   
   4.    Computerizing the entire process.    

  Thus, although these systems can potentially infl uence the process of care, if 
they are not used, they obviously cannot have an impact. Integration into both the 
culture and the process of care is going to be necessary for these systems to be opti-
mally used. Institutions that have developed such a culture provide a glimpse of 
what is potentially possible (see Chaps.   13    ,   14    , and   15    ). However, Wong et al., in an 
article published in 2000, suggested that the incentives for use were not yet aligned 
to promote wide-scale adoption of CDSS [ 42 ]. With the availability of the incen-
tives for meaningful use of Health IT from 2010 onward, there has been more adop-
tion of  EHRs   in general, as well as CDSS, but there are also complaints about the 
 usability   of the systems. Chapter   4     explores the usability issues of CDSS and 
Chap.   6     describes strategies for optimal design and  implementation   of CDSS. 

 There are several reasons why  implementation   of CDSS is challenging. Some of 
the problems include issues of how the data are entered. Other issues include the 
development and maintenance of the  knowledge base   and issues around the vocabu-
lary and user interface. Finally, since these systems may represent a change in the 
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usual way patient care is conducted, there is a question of what will motivate their 
use, which also relates to how the systems are evaluated.   

1.3     Implementation Challenges 

  The fi rst  issue   concerns data entry, or how the data will actually get into the system. 
Some systems require the user to query the systems and/or enter some or all of the 
patient data manually. This is especially likely with the diagnostic  decision support 
systems   [ 34 ]. Not only is this “double data entry” disruptive to the patient care pro-
cess, it is also time consuming, and, especially in the ambulatory setting, time is 
scarce. It is even more time consuming if the system is not mobile and/or requires a 
lengthy logon. Much of this disruption can be mitigated by integrating the CDSS 
with the EHR. As mentioned above, today most  EHRs   have integrated  decision sup-
port   capabilities. What that means is if the data are already entered into the medical 
record, the data are there for the  decision support system   to act upon, and, in fact, 
many systems are potentially capable of drawing from multiple ancillary systems as 
well. This is a strength, but not all clinical decision support systems are well- 
integrated, and without technical standards assuring integration of ancillary sys-
tems, such linkages may be diffi cult. There are also a number of stand-alone 
systems, including some of the diagnostic systems and some drug interaction sys-
tems, for example. This means that patient data have to be entered twice—once into 
the medical record system, and again, into the  decision support system  . For many 
physicians, this double data entry can limit the usefulness of such systems. 

 A related question is who should enter the data in a stand-alone system or even 
in the integrated hospital systems. Physicians are usually the key decision makers, 
but they are not always the people who interact with the EHR.    In fact, in recent 
years, non-physician medical scribes are often the main people interacting with the 
EHR [ 60 ]. One of the reasons for linking CDSS with physician order entry is that it 
is much more effi cient for the physician to receive the alerts and reminders from 
 decision support systems  . The issue concerns not just order entry, but also mecha-
nisms of notifi cation. The case study mentioned earlier described a situation where 
the physician who received the alert ignored it [ 24 ]. These systems can be useful, 
but their full benefi ts cannot be gained without collaboration between the informa-
tion technology professionals and the clinicians. 

 Although it might not seem that vocabularies should be such a diffi cult issue, it 
is often only when clinicians actually try to use a system, either a  decision support 
system   or  electronic health record   or some other system with a controlled vocabu-
lary, that they realize either the system cannot understand what they are trying to say 
or, worse yet, that it uses the same words for totally different concepts or different 
words for the same concept. The problem is there are no standards that are univer-
sally agreed upon for clinical vocabulary and, since most of the  decision support 
systems   have a controlled vocabulary,  errors   can have a major impact.   
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1.4     Future Uses of Clinical Decision Support Systems 

  Despite the  challenges   in integrating CDSS, when properly used they have the 
potential to make signifi cant improvements in the quality of patient care. While 
more research still needs to be done evaluating the impact of CDSS outside the 
development settings and the factors that promote or impede integration, it is likely 
that increased commercialization will continue. CDSS for non-clinician users such 
as patients are likely to grow as well (see Chap.   10    ). There is increasing interest in 
clinical computing and, as mobile computing become more widely adopted, better 
integration into the process of care may be easier. 

 Similarly, trends in cloud  computing   and  service oriented architecture   are lead-
ing to new approaches for delivering CDSS to the user (see Chap.   5     for more details 
on service oriented architecture for CDSS) [ 61 ]. As discussed in Chap.   12,     genomic 
data will become increasingly available for use in clinical care and CDSS that can 
be used with decisions around genomic medicine will also be needed. Finally, as the 
data for  electronic health records   become more standardized and shareable, the use 
of  decision support   in the public health arena is likely to increase. 

 In addition, the concerns over medical  errors  , patient  safety  , and meaningful use 
of health IT (see Chap.   7    ) have prompted a variety of initiatives that will lead to 
increased incorporation of CDSS. Physicians are legally obligated to practice in 
accordance with the standard of care, which at this time does not mandate the use of 
CDSS. However, that may be changing. The issue of the use of information technol-
ogy in general, and clinical  decision support systems   in particular, to improve 
patient safety, has received a great deal of attention [ 1 ,  2 ]. Healthcare administra-
tors, payers, and patients, are concerned, now more than ever before, that clinicians 
use the available technology to reduce medical  errors  . The Leapfrog Group [ 3 ] early 
on advocated physician order entry (with an implicit coupling of CDSS to provide 
alerts to reduce medication errors) as one of their main quality criteria, and CPOE, 
e-prescribing and  clinical decision support   are required for meaningful use (see 
Chap.   7    ). 

 Even if the standard of care does not yet require the use of such systems, there 
are some legal and ethical issues that have not yet been well addressed (see Chap.   8     
for a fuller discussion of these issues). One interesting legal case that has been men-
tioned in relation to the use of technology in health care is the Hooper decision. This 
case involved two tugboats (the T.J. Hooper and its sister ship) that were pulling 
barges in the 1930s when radios (receiving sets) were available, but not widely used 
on tugboats. Because the boats did not have a radio, they missed storm warnings and 
their cargo sank. The barge owners sued the tugboat company, even though the tug-
boat captains were highly skilled and did the best they could under the circum-
stances to salvage their cargo. They were found liable for not having the radio, even 
though it was still not routinely used in boats. Parts of the following excerpt from 
the Hooper decision have been cited in other discussions of CDSS [ 62 ].

  . . . whole calling may have unduly lagged in the adoption of new and available devices. It 
never may set its own tests, however persuasive be its usages. Courts must in the end say 
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what is required; there are precautions so imperative that even their universal disregard will 
not excuse their omission. But here there was no custom at all as to receiving sets; some had 
them, some did not; the most that can be urged is that they had not yet become general. 
Certainly in such a case we need not pause; when some have thought a device necessary, at 
least we may say that they were right, and the others too slack. [ 63 ] 

   It has been suggested that as CDSS and other advanced computer systems 
become more available, the Hooper case may not only provide legal precedent for 
 liability   for failure to use available technology, but the legal standard of care may 
also change to include using available CDSS [ 64 ]. Since this area is still new, it is 
not clear what type of legal precedents will be invoked for hospitals or practices that 
choose to adopt, or avoid adopting, CDSS. It has been suggested that while the use 
of CDSS may lower a hospital’s risk of medical  errors  , healthcare systems may 
incur new risks if the systems either cause harm or are not implemented properly 
[ 65 ,  66 ]. In any case, there are some guidelines that users can follow that may help 
ensure more appropriate use of CDSS.   

1.5     Guidelines for Selecting and Implementing Clinical 
Decision Support Systems 1  

 Osheroff et al. offer  practical   suggestions for steps to be taken in the  implementa-
tion   of CDSS [ 14 ]. The “fi ve rights” of clinical  decision support   (right  information  
to the right  person  in the right  intervention format  through the right  channel  at the 
right  time  in workfl ow) that Osheroff et al. advocate are a good summary of what 
needs to be done. The guidelines below address other issues such as those involved 
in selecting CDSS, interacting with vendors, and assuring that user expectations for 
CDSS are appropriate. They also touch on legal and ethical issues that are discussed 
in more detail in Chap.   8    . 

1.5.1     Assuring That Users Understand the Limitations 

 In 1986, Brannigan and Dayhoff highlighted the often different philosophies of phy-
sicians and software developers [ 67 ]. Brannigan and Dayhoff mention that physi-
cians and software developers differ in regard to how “perfect” they expect their 
“product” to be when it is released to the public [ 67 ]. Physicians expect perfection 
from themselves and those around them. Physicians undergo rigorous training, have 
to pass multiple licensing examinations, and are held in high esteem by society for 

1   Signifi cant parts of this section and smaller parts of other sections were reprinted with permission 
from Berner ES. Ethical and  Legal Issues  in the Use of Clinical Decision Support Systems. 
J. Healthcare Information Management, 2002;16(4):34–37.  
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their knowledge and skills. In contrast, software developers often assume that initial 
products will be “buggy” and that eventually most  errors   will be fi xed, often as a 
result of user feedback and error reports. There is usually a version 1.01 of almost 
any system almost as soon as version 1.0 has reached most users. Because a CDSS 
is software that in some ways functions like a clinician consultant, these differing 
expectations can present problems, especially when the  knowledge base   and/or rea-
soning mechanism of the CDSS is not transparent to the user. The vendors of these 
systems have an obligation to inform the clinicians using the CDSS of its strengths 
and limitations.  

1.5.2     Assuring That the Knowledge Is from Reputable Sources 

 Users of CDSS need to know the source of the knowledge if they purchase a 
 knowledge- based system  . What rules are actually included in the system and what 
is the evidence behind the rules? How was the system tested before  implementa-
tion  ? This validation process should extend not just to testing whether the rules fi re 
appropriately in the face of specifi c patient data (a programming issue), but also to 
whether the rules themselves are appropriate (a knowledge-engineering issue). Sim 
et al. advocate the use of CDSS to promote evidence-based medical practice, but 
this can only occur if the  knowledge base   contains high quality information [ 68 ].  

1.5.3     Assuring That the System Is Appropriate 
for the Local Site 

 Vendors need to alert the client about idiosyncrasies that are either built into the 
system or that need to be added by the user. Does the clinical vocabulary in the 
system match that in the  EHR  ? What are the normal values assumed by a system 
alerting to abnormal laboratory tests, and do they match those at the client site? In 
fact, does the client have to defi ne the normal values as well as the thresholds for the 
alerts? The answers to the questions about what exactly the user is getting are not 
always easy to obtain. 

 When users ask questions about the sources of knowledge or its content, they 
may fi nd that the  decision support system   provided is really just an expert system 
shell and that local clinicians need to provide the “knowledge” that determines the 
rules. For some systems, an effort has been made to use standards that can be shared 
among different sites, for example, the Arden syntax for medical  logic   modules 
[ 69 ], but local clinicians must still review the logic in shared rules to assure that they 
are appropriate for the local situation. Using in-house clinicians to determine the 
rules in the CDSS can assure its applicability to the local environment, but that 
means extensive development and testing must be done locally to assure the CDSS 
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operates appropriately. Often a considerable amount of physician time is needed. 
Without adequate involvement by clinicians, there is a risk that the CDSS may 
include rules that are inappropriate for the local situation, or, if there are no built-in 
rules, that the CDSS may have only limited functionality. On the other hand, local 
development of the  logic   behind the rules may also mean that caution should be 
exercised if the rules are used at different sites. The important thing is for the user 
to learn at the outset what roles the vendor and the client will have to play in the 
development and maintenance of the systems. Although systems have  decision sup-
port   capabilities, the effort involved in customizing the CDSS for the local site may 
be considerable, and the result may be that CDSS capabilities are underutilized.  

1.5.4     Assuring That Users Are Properly Trained 

 Just as the vendor should inform the client how much work is needed to get the 
CDSS operational, the vendor should also inform the client how much technical 
support and/or clinician training is needed for physicians to use the system appro-
priately and/or understand the systems’ recommendations. As CDSS for genomic 
medicine (see Chap.   12    ) become available this new area may require even more 
training, since users may be unfamiliar with the medical content as well as the 
CDSS. It is not known whether the users of some CDSS need special clinical exper-
tise to be able to use it properly, in addition to the mechanics of training on the use 
of the CDSS. For instance, systems that base their recommendations on what the 
user enters directly or on what was entered into the medical record by clinicians 
have been shown to reach faulty conclusions or make inappropriate recommenda-
tions if the data on which the CDSS bases its recommendations are incomplete or 
inaccurate [ 70 ]. Also, part of the reason for integrating CDSS with physician order 
entry is that it is assumed the physician has the expertise to understand, react to, and 
determine whether to override the CDSS recommendation. Diagnostic systems, for 
instance, may make an appropriate diagnostic suggestion that the user fails to rec-
ognize [ 36 ,  71 ,  72 ]. Thus, vendors of CDSS need to be clear about what expertise is 
assumed in using the system, and those who implement the systems need to assure 
that only the appropriate users are allowed to respond to the CDSS advice. 

 As these systems mature and are more regularly integrated into the healthcare 
environment, another possible concern about user expertise arises. Will users lose 
their ability to determine when it is appropriate to override the CDSS? This “de- 
skilling” concern is similar to that reported when calculators became commonplace 
in elementary and secondary education, and children who made  errors   in using the 
calculator could not tell that the answers were obviously wrong. Galletta et al. report 
that when a computerized spell checker program provided incorrect advice, their 
research subjects made more errors than they did without the spell-checker [ 73 ]. 
Similar results were found in a study using the  decision support   programs that pro-
vide diagnostic interpretations for electrocardiograms [ 74 ]. The solution to the 
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problem is not to remove the technology, but to remain alert to both the positive and 
negative potential impact on clinician decision making.  

1.5.5     Monitoring Proper Utilization of the Installed Clinical 
Decision Support Systems 

 Simply having a CDSS installed  and   working does not guarantee that it will be used. 
Systems that are available for users if they need them, such as online guidelines or 
protocols, may not be used if the user has to choose to consult the system, and espe-
cially if the user has to enter additional data into the system. Automated alerting or 
reminder systems that prompt the user can address the issue of the user not recog-
nizing the need for the system, but another set of problems arises with the more 
automated systems. They must be calibrated to alert the user often enough to pre-
vent serious  errors  , but not so frequently that they will be ignored eventually. What 
this means is that testing the system with the users, and monitoring its use, is essen-
tial for the CDSS to operate effectively in practice as well as in theory.  

1.5.6     Assuring the Knowledge Base Is Monitored 
and Maintained 

  Once the CDSS  is   operational at the client site, a very important issue involves the 
 responsibility   for updating the knowledge base in a timely manner. New diseases 
are discovered, new medications come on the market, and issues like the threat of 
bioterrorist actions prompt a need for new information to be added to the CDSS. Does 
the vendor have an obligation to provide regular knowledge updates? Such mainte-
nance can be an expensive proposition given both rapidly changing knowledge and 
systems with complex rule sets. Who is at fault if the end user makes a decision 
based on outdated knowledge, or, conversely, if updating one set of rules inadver-
tently affects others, causing them to function improperly? Such questions were 
raised over 30 years ago [ 75 ], but because CDSS are still not in widespread use, the 
 legal issues   have not really been tested or clarifi ed. 

 The Food and Drug Administration (FDA) is charged with device  regulation   and 
has recently begun to reevaluate its previous policy on software regulation. Up until 
recently, many CDSS have been exempt from FDA device regulation because they 
required “competent human intervention” between the CDSS’ advice and anything 
being done to the patient [ 76 ]. In 2014, the FDA,  ONC   and the Federal 
Communications Commission (FCC), in the FDASIA Health IT Report, adopted a 
risk-based framework to clarify what types of software required more extensive 
oversight [ 77 ]. Even if the rules change and CDSS are required to pass a pre-market 
approval process, monitoring would need to be ongoing to ensure the knowledge 
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does not get out of date, and that what functioned well in the development process 
still functions properly at the client site. For this reason, local software review com-
mittees, which would have the  responsibility   to monitor local software installations 
for  problems, obsolete knowledge, and harm as a result of use, have been advocated 
[ 78 ].   

1.6     Conclusion 

 There is now growing interest in the use of CDSS. More vendors of information 
systems are incorporating them. As skepticism about the usefulness of computers 
for clinical practice decreases, the wariness about accepting the CDSS’ advice, that 
many clinicians currently exhibit, is likely to decrease. As research has shown, if 
CDSS are available and convenient, and if they provide what appears to be good 
information, they are likely to be heeded by clinicians. The remaining chapters in 
this book explore the issues raised here in more depth. Underlying all of them is the 
perspective that, as CDSS become widespread, we must continue to remember that 
the role of the computer should be to enhance and support the human who is ulti-
mately responsible for the clinical decisions.      
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Chapter 2
Mathematical Foundations of Decision 
Support Systems

S. Andrew Spooner

Abstract Health information technology can support decisions in a variety of 
ways, ranging from the passive display of information to intensive computation 
designed to model complex clinical reasoning. This chapter reviews the basics of 
the mathematics behind the methods that involve computation, including set theory, 
probability, Boolean logic, Bayesian reasoning, and nonknowledge-based systems.

Keywords  Bayes  theorem  •  Mathematics  •  Logic  •  Probability  •  Set  theory  • 
Electronic health records

Many computer applications may be considered to be clinical decision support sys-
tems. Programs that perform PubMed [1] searches do support decisions, but they 
are not “clinical decision support systems” in the usual sense. What we usually 
mean by a clinical decision support system (CDSS)  is a program that supports a 
reasoning task carried out behind the scenes and based on clinical data. For exam-
ple, a program that accepts thyroid panel results and generates a list of possible 
diagnoses is what we usually recognize as a diagnostic decision support system, a 
particular  type of CDSS. General-purpose programs  that  accept  clinical findings 
and generate diagnoses are typical diagnostic decision support systems. These pro-
grams employ numerical and logical techniques to convert clinical input into the 
kind of information that a physician might use in performing a diagnostic reasoning 
task. While one might suspect that such functionality might be useful within an 
electronic health record (EHR) system, this type of support is seldom found there; 
the usefulness of the EHR in decision support turns out to be less about sophisti-
cated expert systems and more about access to needed information [2, 3].

Forms of decision support that are commonly found in EHR systems include 
alerts for medication prescribing [4], order sets that guide clinicians to use the cor-
rect antibiotic [5] to diagnostic decision support that converts findings into a list of 
diagnoses worth considering [6–8]. While the latter is not in widespread use; sim-
pler methods like order sets, documentation templates, and drug alerts are practi-
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cally universal in EHRs today. Nonetheless, the mathematics of diagnostic decision 
support is worth reviewing. Essential to the understanding of CDSS is familiarity 
with the basic principles of logic and probability. A brief review of these areas, fol-
lowed by a description of a general model of CDSS, as well as exceptions to the 
model, will help in understanding how some CDSS perform reasoning tasks. We 
end with a discussion of the mathematical challenges in the evaluation of simple 
alerts as they are commonly deployed in EHRs today.

2.1  Review of Logic and Probability

2.1.1  Set Theory

A brief  review of  basic  concepts  in  set  theory  is  helpful  in  understanding  logic, 
probability, and many other branches of mathematics. A set is a collection of unique 
objects. For example, the major Jones criteria [9] for patients at low risk for rheu-
matic fever is a set:

 

JONES CRITERIA MAJOR

carditis migratory polyarthritis

eryth− − =
, ,

eema marginatum chorea

subcutaneous nodules

, ,











  

Likewise, the minor criteria make a set:

 
JONES CRITERIA MINOR

fever arthralgia elevated acute phase re
- - =

, , aactants

prolonged P R interval on electrocardiogram

,

-
ì
í
î

ü
ý
þ  

To complete our description of the Jones criteria, we need a third set:

 
GROUP A STREP EVIDENCE

rapid antipositive culture, positive
- - - =

ggen

antibody rise or elevation

,ì
í
î

ü
ý
þ  

To apply the Jones criteria, one compares the patient’s findings with the items in 
the various sets above. A patient is highly likely to have rheumatic fever if there is 
evidence of group A streptococcal infection and the patient has either two major 
criteria or one major and two minor criteria.

Each element or member of the set is distinguishable from the others. A subset is 
any collection of elements of a known set. Using the first of the criteria above, a 
patient must have a subset of clinical findings containing at least two of the elements 
of JONES-CRITERIA-MAJOR to meet the Jones criteria for rheumatic fever. If a 
patient has the clinical findings:
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FINDINGS migratory polyarthritis chorea subcutaneous nodules= , ,{{ }

 

then we say that FINDINGS is a subset of JONES-CRITERIA-MAJOR, or, in set 
terminology:

 FINDINGS JONES CRITERIA MAJORÍ - -  

The cardinality or size of a set is simply the number of elements in the set. For our 
two examples, the cardinalities (written by placing a vertical bar before and after the 
symbol for the set) are:

 

|FINDINGS

|JONES CRITERIA MAJOR|

|=
- - =

3

5  

The basic set operations are intersection and union. The intersection of two sets 
is the set of elements the two sets have in common. For example, if there is a patient 
with the following set of clinical findings:

 

CLINICAL FINDINGS

heart murmur

migratory polyarthritis

chore
− =

,

,

aa subcutaneous nodules

cough

, ,



















 

then the intersection of this set and JONES-CRITERIA-MAJOR is written:

 
CLINICAL FINDINGS JONES CRITERIA MAJOR- - -Ç

 

It  is  easy  to  see  that  the  intersection  of  these  two  sets  is  simply  the  set 
FINDINGS. The union of two sets is the set of all elements that belong to either set. 
Since, by definition, a set’s elements must be distinguishable from one another, the 
set resulting from the union of our patient’s findings and the Jones major criteria is 
written:

 

CLINICAL FINDINGS JONES CRITERIA MAJOR

heart murmur migrato

- - -

=

È
, rry polyarthritis chorea subcutaneous

nodules cough carditis

, ,

, , ,, ,erythema marginatum chorea

ì
í
î

ü
ý
þ  

Anyone who has done a PubMed search in which two sets of literature citations 
are combined has performed these set operations; the AND function in PubMed is 
like set intersection, and the OR function is like set union.

Diagnostic criteria like the Jones criteria are good examples of how sets can be 
used to represent diagnostic rules. The full low-risk Jones criteria, represented in set 
theoretical  terminology,  might  read  like  this  (assuming  we  have  sets  JONES- 
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CRITERIA- MINOR  and  GROUP-A-STREP-EVIDENCE  as  described  at  the 
beginning of this section):

If CLINICAL-FINDINGS is the set of a given patient’s symptoms, signs, and 
laboratory test results, then the patient is highly likely to have rheumatic fever if 
either of two conditions are met:

 |CLINICAL FINDINGS JONES CRITERIA MAJOR|- - - ³Ç 2  (2.1)

and

 
|CLINICAL FINDINGS GROUP A STREP EVIDENCE|- - - - ³Ç 1

 

 |CLINICAL FINDINGS JONES CRITERIA MAJOR- - - =Ç | 1  (2.2)

and

 
|CLINICAL FINDINGS JONES CRITERIA MINOR|- - - ³Ç 2

 

and

 
|CLINICAL FINDINGS GROUP A STREP EVIDENCE|- - - - ³Ç 1

 

There are other set operations besides union and intersection. For example, the 
phenomenon of set covering has applications in decision making [10]. A cover of a 
set is a set of subsets in which each element of the covered set appears at least once 
as a member of one of the sets in the cover set. An example makes this definition 
clearer. Suppose you were asked to recommend a list of antibiotics for your hospi-
tal’s emergency department. Your objective is to stock the minimum number of 
antibiotics that will be effective for 95 % of the pathogenic organisms you’ve found 
in cultures at your hospital. For the sake of simplicity, suppose that there are six 
pathogens, each designated by a letter, which account for 95 % of the infections 
seen in your hospital.

You might represent this set of pathogens as:

 
PATHOGENS A B C D E F= { }, , , , ,

 

You have the following set of antibiotics from which to choose:

 ANTIBIOTICS A Cillin B Cillin C Cillin D Cillin E Cillin= - - - - -{ , , , , , FF Cillin- }  

Each antibiotic is described by the set of pathogens for which that antibiotic is 
effective. Here is a list of your antibiotics, with their covered pathogen sets (each of 
which is a subset of PATHOGENS):
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A Cillin A C

B Cillin A B E

C Cillin C D E

D Cillin F

− = { }
− = { }
− = { }
− = { }

,

, ,

, ,

EE Cillin B D F

F Cillin E

− = { }
− = { }

, ,

 

What you seek is a set cover of the set PATHOGENS; in other words, you want 
to pick a set of antibiotics which contains at least one antibiotic that is effective for 
each pathogen. It’s clear that all six antibiotics taken together make a set cover, but 
your job is to find the minimum number of antibiotics that will get the job done. 
Casual inspection shows that the set {A-Cillin, E-Cillin, F-Cillin} does the job as a 
set cover, in that at least one antibiotic in that set is effective for each one of the 
pathogens in PATHOGENS.

There are many other set operations which can be applied to real-world decision 
problems, but the brief introduction presented here should suffice to illuminate the 
concepts presented in this book. Generally speaking, sets are used to formalize logi-
cal operations in a way that a machine—usually a computer—can understand.

Before we leave the topic of sets, fuzzy sets are worth a brief mention. Under 
conventional principles of set theory, an element is either a member of a set or it 
isn’t. Heart murmur,  for  example,  is definitely not  a member of  the  set  JONES- 
CRITERIA- MAJOR. Under fuzzy set theory, membership in a set is not an all or 
nothing phenomenon. In a fuzzy set, an element is a member of the set with a certain 
probability; e.g., cough is a member of the set COLD-SYMPTOMS with a proba-
bility of 80 % (a four out of five chance). Fuzzy set theory has created new ways of 
looking at sets and new methods for applying set theory to solve decision-making 
problems: fuzzy logic [11–13]. Fuzzy logic has been used to tackle decision- making 
problems in which uncertainty plays a role.

2.1.2  Boolean Logic

Anyone who has performed a search of  the medical  literature using  the PubMed 
system has used logic. When referring to common logical operations like combin-
ing two sets of literature citations using AND or OR, we often refer to these opera-
tions  as  “Boolean”  logic,  in  honor  of  George  Boole  (1815–1864),  a  British 
mathematician who published seminal works on formal logic. Indeed, PubMed is 
not a bad way to learn about Boolean algebra, since its connection to set theory is 
made so clear by the sets of literature citations that we manipulate in that system.

Suppose we have performed two literature searches. The result of one search, set 
A, represents all the literature citations in the PubMed database that relate to rheu-
matoid arthritis. Set B consists of all the literature citations on immune globulin. By 
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asking the PubMed program to give us a new set that is the result of combining A 
and B using the AND operator, we have a new set, C, that contains literature cita-
tions on the use of immune globulin in rheumatoid arthritis. When we combine two 
sets of citations using the AND function of our PubMed program, we are asking the 
computer to give us all citations that appear in both sets. This corresponds roughly 
to the English use of the word and.

The word OR in Boolean logic has a slightly different meaning than in English. 
In everyday usage, or usually has an exclusive meaning; the statement, “You may 
opt for chemotherapy or radiation therapy,” usually means that one may have one or 
the other therapy, but not both. The Boolean OR is different. If one were to perform 
another pair of PubMed searches,  this  time  for all articles  that have asthma as a 
keyword (set A) and those that mention “reactive airway disease” in the text of the 
abstract (set B), one could combine sets A and B with the OR function to get a com-
prehensive set of citations on asthma. Because the OR function takes all citations 
that appear in one or both of sets A and B, the OR function is said to be inclusive.

There are other Boolean operators, like XOR (exclusive OR: “either A or B but 
not both”) and NAND (“A and not B”), but AND and OR are the basic operators 
with which we are familiar.

How is Boolean logic used in CDSS? The mathematical subjects of statement 
logic and predicate logic give us formal definitions of how statements can be com-
bined to produce new conclusions. For example, consider the following 
statements:

 1.  Urine cultures with colony counts of 10,000 or more are considered positive if 
they are obtained by bladder catheterization.

 2.  This patient’s urine culture shows more than 10,000 colonies of E. coli.
 3.  All  patients  with  positive  urine  cultures  should  be  treated  for  urinary  tract 

infections.

The statements can be combined intuitively, without the use of formal mathemat-
ics, into the conclusion:

This patient needs to be treated for a UTI.
The logic that gave us the conclusion so easily, comes from our medical intu-

ition, but computers have no intuition. They must be programmed to generate even 
the most obvious conclusions. To understand logic as it is implemented on a com-
puter, one must understand the basics of predicate logic and deductive reasoning.

The above example about UTIs is a sloppy instance of a syllogism. A syllogism 
is a form of deductive reasoning consisting of a major premise, a minor premise, 
and a conclusion. The premises are combined, using rules of predicate logic, into a 
conclusion. For example, a syllogism in a ventilator management decision support 
system might be:

Major Premise: All blood gas determinations that show carbon dioxide to be abnor-
mally low indicate an over-ventilated patient.

Minor Premise: The current patient’s carbon dioxide is abnormally low.
Conclusion: Therefore, the current patient is over-ventilated.
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Again, this conclusion is obvious, but by representing the above syllogism using 
symbols, where the symbol Low-CO2 represents the state of abnormally low carbon 
dioxide  and  the  symbol  OVERVENTILATED  represents  the  state  of  an  over- 
ventilated patient, the syllogism looks more computer friendly:

 

Major Premise Low CO OVERVENTILATED

Minor Premise Low CO

C

:

:

− ⇒
−

2

2

oonclusion OVERVENTILATED:  

Extending this example, suppose we have another statement in our CDSS that 
over-ventilation should cause a High Rate alarm to sound (we can represent this by 
the symbol HIGH-RATE-ALARM), then we can construct the syllogism:

 

Major Premise Low CO OVERVENTILATED

Minor Premise OVERVENT

:

:

− ⇒2

IILATED HIGH RATE ALARM

Conclusion Low CO HIGH RATE ALARM

⇒ − −
− ⇒ − −: 2  

Thus, we have generated a new rule for the system, where the intermediate state 
of overventilation is bypassed. This simplification of two rules into a new one may 
or may not help our understanding of the system, but the results the system gives are 
the same: a low carbon dioxide value sets off the High Rate alarm. One can imagine 
how large sets of rules can be combined with each other to reduce complex reason-
ing tasks to simple ones.

The syllogism above is an example of rule chaining, where two rules are chained 
together to form a new conclusion. Specifically, the simple system outlined above is 
a forward-chaining deduction system, because the system starts with if statements 
and moves to a then statement. In real life, though, we often start with the “then” 
portion of a logical rule. For instance, consider the clinical rule:

If your patient has asthma, then give an influenza immunization each fall.

There are many other rules in real clinical practice with the same “then” portion 
(“give a flu vaccine”). The question a clinician might ask is not “Does this patient 
have asthma? If so, I should give a flu shot,” but more likely the question would be 
simply “Does this patient need a flu shot?” We start with the “then” portion of this 
set of flu shot rules. A backward-chaining deduction system does this—it starts with 
the “then” end of a set of rules and works backwards to answer questions based on 
its rule set. In the flu shot example, a backward-chaining system would start with the 
“Does this patient need a flu shot” question and immediately learn that the diagnosis 
of asthma would cause this rule to be satisfied. The system might then ask the user 
or query a clinical database about the presence of this diagnosis.

An  example  of  a  backward-chaining  deduction  system  in  medicine  was  the 
MYCIN system developed at Stanford [14], MYCIN’s domain was the selection of 
antibiotics for the treatment of bacterial infections based on clinical and microbio-
logical  information. An  example  of  a  forward-chaining  system  in medicine was 
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GermWatcher, developed at Barnes Hospital  in St. Louis,  [15, 16] GermWatcher 
used  as  its  rules  the  Centers  for  Disease  Control  and  Prevention’s  National 
Nosocomial Infections Surveillance System [17]. Using a forward-chaining reason-
ing  system  called  CLIPS  (C  Language  Integrated  Production  System,  Software 
Technology  Branch,  National  Aeronautics  and  Space  Administration,  Johnson 
Space Center, Houston, TX), expert system shell GermWatcher worked in a large 
hospital microbiology laboratory to identify hospital-acquired infections early from 
culture data.

CDSS  that  use  logic  like  the  simple management  system  above  have  limited 
application, since the range of truth encompassed by this logical system includes 
only true (e.g., the High Rate alarm needs to be sounded) or false (e.g., the High 
Rate alarm does not need to be sounded). Not many applications in medicine can be 
reduced to such simple truths. There may be situations where the High Rate alarm 
might not always have to be sounded for a low carbon dioxide reading (e.g., for a 
head injury patient who needs low carbon dioxide to preserve cerebral blood flow). 
To accommodate these situations, it would be helpful if the response from the sys-
tem were something like “the high rate alarm should probably be sounded.” Such a 
system would then need to be able to handle probabilities, as well as certainties, 
which most CDSS do. MYCIN, for example, reported its conclusions in terms of 
their likelihood. The next section covers basic concepts of probability.

2.1.3  Probability

Everyday medical practice contains many examples of probability. We often use 
words such as probably, unlikely, certainly, or almost certainly in all conversations 
with patients. We only rarely attach numbers to these terms, but computerized sys-
tems must use some numerical representation of likelihood in order to combine 
statements into conclusions.

Probability is represented numerically by a number between 0 and 1. Statements 
with a probability of 0 are false. Statements with a probability of 1 are true. Most 
statements from real life fall somewhere in the middle. A probability of 0.5 or 50 % 
is just as likely to be true as false. A round, opacified area seen in the lungs on a 
chest radiograph is probably pneumonia; one might assign a probability of 0.8, or 
80 %,  (a  four  in five chance)  to  this  statement. Based on  the high probability of 
pneumonia, one might elect to treat this condition without performing further test-
ing—a lung biopsy, perhaps—that would increase the probability of pneumonia to 
greater than 80 %. We are accustomed to accepting the fact that our diagnoses have 
a certain probability of being wrong, so we counsel patients about what to do in the 
event (we might use  the  term “unlikely event”)  that  things don’t work out  in  the 
expected way.

Probabilities can be combined to yield new probabilities. For example, the two 
statements:
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Pr( ) .

Pr( ) .

diabetes

hypertension

=
=

0 6

0 3  

mean that the probability of diabetes is 0.6, or 60 %, (three in five chance), and the 
probability of hypertension is 0.3, or 30 %, (three in ten chance). We have not speci-
fied the clinical context of these statements, but suppose these probabilities applied 
to a particular population. Suppose further that the two conditions are independent; 
that is, the likelihood of patients having one disease is unaffected by whether they 
have the other (not always a safe assumption!). If we then want to know what the 
probability is of finding a patient in our specified population with both diseases, we 
simply multiply the two probabilities (0.6 and 0.3) to get 0.18, or 18 %. If the two 
clinical conditions are not independent, (e.g., pulmonary emphysema and lung can-
cer) then we cannot combine the probabilities in such a simple, multiplicative man-
ner. This is much like the AND function in PubMed or the interaction function as 
applied to sets.

The familiar “OR” function from our PubMed program also has a mathematical 
meaning in combining probabilities. If we wanted to know how many patients in the 
above example had diabetes or hypertension (remember: this would also include 
those with both diseases in the usual mathematical sense of or),  we  would 
compute:

 

Pr( ) Pr( ) Pr( )

P

diabetesORhypertension diabetes hypertension= +
- rr( )diabetesANDhypertension  

The last term in the above equation we already know to be 0.6 × 0.3 = 0.18, so:

 Pr( ) . . . . .diabetesORhypertension = + − =0 6 0 3 0 18 0 72  

Conditional probability is another type of probability often used in medicine. A 
conditional probability is the probability of an event (or the probability of the truth 
of a statement) given the occurrence of another event (or the truth of another state-
ment). The most familiar case of conditional probability in medicine arises in the 
interpretation of diagnostic tests. For example, the probability of pneumonia given 
a round density on a chest radiograph is what we need to know in interpreting that 
diagnostic test if it is positive. In mathematical notation, this conditional probability 
is written this way:

 Pr( | ).Pneumonia RoundDensityonCXR  

One reads this notation, “The probability of pneumonia given a round density on 
chest radiograph.” This notation is convenient in the explanation of Bayes’ rule, 
which is the cornerstone of the logic in many decision support systems.
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2.1.4  Bayes’ Rule

If we have a patient with jaundice, how likely is  it  that he has hepatitis? Written 
another way, we seek to learn:

 Pr( | ),hepatitis jaundice  

which is read as “the probability of hepatitis given the presence of jaundice.” We 
may not have this probability at our fingertips, but we might be able to find a slightly 
different probability more easily:

 Pr( | ),jaundice hepatitis  

which is, simply, the probability of jaundice given the presence of hepatitis. The 
latter probability could be found by studying a series of patients with proven hepa-
titis (it would be easy to get this data by looking up diagnosis codes in the medical 
records department) and computing  the percentage of  these patients who present 
with jaundice. However, this does not directly answer our original question. Bayes’ 
rule allows us to compute the probability we really want—Pr(hepatitis | jaundice)—
with the help of the more readily available number Pr(jaundice | hepatitis). Bayes’ 
rule [18] is simply this:

 
Pr( | )

Pr( ) Pr( |
hepatitis jaundice

hepatitis jaundice hepatitis
=

× ))

Pr( )jaundice  

Notice that to solve this equation, we need not only Pr(jaundice | hepatitis), but 
Pr(hepatitis)—the probability of hepatitis independent of any given symptom—and 
Pr(jaundice)—the  probability  of  jaundice  independent  of  any  particular  disease. 
These two independent probabilities are called prior probabilities, since they are the 
probabilities prior to the consideration of other factors.

The derivation of Bayes’ rule is very simple. We already know that the probabil-
ity of any two events occurring simultaneously is simply the product of their indi-
vidual probabilities. For example, the joint probability we already computed of 
diabetes and hypertension in a hypothetical population was:

 

Pr( ) Pr( ) Pr( )diabetesANDhypertension diabetes hypertension= ×
= 00 6 0 3 0 18. . . .× =  

We were free to multiply these together, because in our hypothetical population, 
the likelihood of one disease occurring in an individual was independent of the 
other. In other words:
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Pr( ) Pr( | )

Pr( )

hypertension hypertension diabetes and

diabetes

=
= PPr( | ).diabetes hypertension  

In this population, one’s chance of having one disease is unaffected by the pres-
ence of the other disease.

In medicine, we are often faced with the question of the likelihood of two inter-
related events occurring simultaneously in a patient. The case of a diagnostic test 
and the disease it is supposed to test for is a good example: what is the probability 
of an abnormal chest radiograph and pneumonia occurring in the same patient 
simultaneously? The question asks for this probability:

 Pr( ).pneumoniaANDabnormalCXR  

Can’t we simply find out what the incidence of pneumonia in the population is, 
and multiply it by the incidence of abnormal chest radiographs in the population? A 
moment’s reflection should show that this simple calculation is not sufficient. For 
example, if the incidence of pneumonia is 1 in 1,000, and the incidence of abnormal 
chest radiograph is 1 in 100, then the erroneous probability would be computed:

 

WRONG: pneumonia AND abnormal CXRPr( ) / /

. .

= × =
=

1 1000 1 100

0 00001 0 0001%  

This does not fit with our clinical intuition very well, since we know that people 
with pneumonia tend to have abnormal chest films. Our intuition says that the prob-
ability of the two events occurring together should be pretty close to the probability 
of having pneumonia alone, since a majority of those patients will have abnormal 
chest films. What we really need to compute is this:

 

Pr( ) Pr( ) Pr
|

pneumoniaANDabnormalCXR pneumonia
abnormalCXR

pn
= ´

eeumonia

æ

è
ç

ö

ø
÷.

 

This is the probability of pneumonia multiplied by the probability of an abnor-
mal chest radiograph given that pneumonia exists. If we take Pr(abnormal CXR | 
pneumonia) to be 90 %, then the computation matches our intuition much better.

In general, for any two events A and B:

 

Pr( ) Pr( ) Pr( | )

Pr( ) Pr( ) Pr( | ).

A AND B A B A and

B AND A B A B

= ×
= ×  

But since Pr(A AND B) must surely equal Pr(B AND A), we can say that the 
right-hand sides of the equations above are equal to each other:

 
Pr( ) Pr( ) Pr( ) Pr( )A B A B A B× = ×
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Rearranging this equation, we have Bayes’ rule:

 
Pr( | )

Pr( ) Pr( | )

Pr( )
A B

A B A

B
=

×

 

At  an  intuitive  level, we  use Bayes’  rule when making  seat-of-the-pants  esti-
mates of disease probability in patients. For example, if we designate hepatitis by A 
and jaundice by B, and there were an ongoing epidemic of hepatitis (i.e., Pr(A) was 
high),  then  our  index  of  suspicion  for  hepatitis  in  a  jaundiced  person would  be 
increased. Likewise, if the likelihood of jaundice due to other causes was high (i.e., 
Pr(B) was high),  then our  estimation of  the probability of hepatitis  as  a  specific 
diagnosis would be lowered. Similarly, if jaundice were pathognomonic of hepatitis 
(i.e., Pr(A | B) was 1 or near to it), then our hepatitis diagnosis would be greatly 
increased. By using numerical estimates of the probability of diseases, findings, and 
conditional probabilities, Bayes’ rule can help make medical decisions.

One might imagine a simple CDSS in which one enters a single symptom and 
receives the probability of the presence of a disease given that symptom. A problem 
arises when one wishes to get disease probabilities given multiple symptoms. The 
number of data points needed to do Bayesian calculations on multiple simultaneous 
symptoms is huge. For example, in a system which handles only single symptoms, 
if one had a database of 1,000 symptoms and 200 diseases, one would need to create 
1,000 × 200 = 200,000 conditional probabilities, 1,000 symptom probabilities, and 
200 disease probabilities, for a total of about 200,000 numbers. Since most of these 
numbers are 0 (many symptoms are unrelated to many diseases), this may be a rea-
sonable amount of numbers to collect into a knowledge base. When one starts con-
sidering the probabilities needed to do computations on two simultaneous symptoms, 
this number climbs from 200,000 to about 200,000,000! If one wanted to design a 
system  that  could  handle  the  very  realistic  situation  of  five  or  six  simultaneous 
symptoms, estimating the number of numbers needed to support the calculation 
would be intractable. Modifying the system to handle multiple simultaneous “dis-
eases”  adds  even  more  to  the  complexity.  Only  after  making  the  simplifying 
 assumption that most disease findings are independent of one another [19] do many 
diagnostic CDSS use Bayesian approaches. One such system, Iliad [20], success-
fully employed this assumption.

2.1.5  Informal Logic

Even if we create a reasoning system that follows all the rules of logic and probabil-
ity, it would be difficult to come up with all the numbers that must be assigned to 
each event in even a small clinical database. Many successful CDSS have circum-
vented this difficulty by employing informal rules of logic to accomplish the reason-
ing task, without creating an intractable data gathering task. In the early development 
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of one of the most famous CDSS, MYCIN [14, 21, 22], the creators of the system 
developed their own logic system (heuristic) that made intuitive sense. This system 
employed “certainty factors” which ranged from −1 (false) to +1 (true). A certainty 
factor of 0 indicated no belief in either direction in the statement’s veracity. In com-
bining several statements with the AND function into a single combined statement 
in MYCIN, one simply takes the minimum certainty factor of all the statements as 
the certainty factor of the combined statement. This makes a certain intuitive sense: 
we cannot be any more certain of an AND statement than we are of the least certain 
part. Later development of the MYCIN project showed a sound probabilistic basis 
for the certainty factor rules, but the point here is that sometimes cutting mathemati-
cal  corners  can  still  yield  a useful  system.  In other  early CDSS  (QMR [23] and 
DXplain, [8, 24]), there is a knowledge base of diseases and findings (a finding is an 
item from the history, physical examination, laboratory data, or radiographic data). 
Each disease is defined by a particular set of findings. Each disease-finding relation-
ship is assigned a frequency (of the finding among people with the disease) and an 
evoking strength (of how strongly a finding would evoke the possibility of a disease) 
on an ordinal scale (1–5 for frequency; 0–5 for evoking strength). These two factors 
make intuitive sense, and the system works, but the manipulation of these factors 
within these systems is very different from the formal algebra of logic and 
probability.

2.2  The General Model of Knowledge-Based Decision 
Support Systems

There are similarities between physician and CDSS reasoning, although a CDSS 
might arrive at a similar conclusion to a physician without employing the same 
model of reasoning. Physicians do use some probabilistic information when they 
make decisions. For instance, a physician might make a diagnosis of influenza more 
often during the winter when influenza is more prevalent (probable) than in the sum-
mer. However, physicians use  this  information  in  informal ways;  in other words, 
they do not use precise numbers in formulas to make diagnostic decisions [25, 26]. 
Another feature of real-life clinical decision making is that physicians do not require 
complete  information  to make  a  decision. Most  doctors  are  comfortable making 
decisions based on incomplete or contradictory information [27]. In contrast, CDSS 
rely on well defined numerical techniques to do their reasoning, and they do require 
sufficient information to complete their formulae. While physicians can fall back on 
their knowledge of pathophysiology, CDSS are not well suited to situations in which 
hard data are unknown. To understand how these systems operate, and under what 
conditions they are best used, it is important to appreciate a general model of CDSS.

Figure 2.1 shows a general model of a CDSS. There is input to the system and 
output from it. The CDSS has a reasoning (inference) engine and a knowledge base. 
Understanding  these  basic  components  provides  a  useful  framework  for  under-
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standing most CDSS and their limitations. There are systems which do not follow 
this model which will be discussed briefly later in this chapter and in Chap. 3 in 
more detail.

The user supplies input appropriate to the system (i.e., terms from the system’s 
controlled  vocabulary  to  represent  clinical  data),  and  the  system  supplies  output 
(e.g., a differential diagnosis or a therapy suggestion). The reasoning engine applies 
formal or informal rules of logic to the input and often relies on additional facts 
encoded in the system’s knowledge base. The knowledge base is the compilation of 
the relationships between all of the diseases in the system and their associated mani-
festations (e.g., signs, symptoms,  laboratory and radiographic  tests). Maintaining 
the knowledge base is the most significant bottleneck in the maintenance of such 
systems, since the knowledge base needs to be expanded and updated as medical 
knowledge grows.

2.2.1  Input

The manner in which clinical information is entered into the CDSS (user interface) 
varies from system to system, but most diagnostic systems require the user to select 
terms from their specialized, controlled vocabulary. Comprehension of natural lan-
guage has been an elusive goal  in  the development of CDSS. While  it would be 
highly desirable to be able to speak or type the query “What are the diagnostic pos-
sibilities for a 4-year-old child with joint swelling and fever for a month,” most who 
have used such systems are accustomed to the task of reformatting this question in 
terms the particular CDSS can understand. We might, for example, break the above 
query into components:

•  Age: 4 years
•  Gender: unspecified
•  Symptom: joint swelling

Fig. 2.1  A general model of a clinical diagnostic decision support system
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•  Duration: 1 month
•  Time course: unknown

This breakdown of the original query might work on one system, but another 
system might demand that we break it down another way:

•  Age: less than 12 years
•  Finding: arthritis

Notice that the second description describes the age in vague terms, and it forces 
us to eschew joint swelling for the more specific term arthritis (usually defined as 
joint pain, redness, warmth, and swelling). In the vocabulary of the program, the age 
of 4 years (as opposed to 10 years) is unimportant, and joint swelling, without other 
signs of inflammation, is undefined.

Any physician who has assigned diagnostic and procedural codes in billing sys-
tems understands the limitations of controlled vocabularies. In a CDSS, it is com-
mon for the user’s input to be restricted to a finite set of terms and modifiers. How 
well the system works in a given clinical situation may depend on how well the 
system’s vocabulary matches the terms the clinician uses. CDSS take a variety of 
terms, called findings, which encompass items from the medical history, physical 
examination, laboratory results, and other pieces of clinical information. What con-
stitutes a valid finding in a given program is entirely up to the program; there is no 
“standard” set of findings for all CDSS. For general purpose CDSS, items from the 
history  and  physical  examination  are  going  to  be  the  findings.  In  specialized 
domains, e.g., an arterial–blood–gas expert system, the input vocabulary will be 
entirely different and much more restrictive.

Entering “chest pain” as a finding in a CDSS may be insufficient to capture the 
essence of the symptom. “Chest pain radiating to the left arm” may be sufficient, but 
usually there are pertinent temporal factors related to symptoms that are difficult to 
express  in  a  controlled  vocabulary.  For  example,  “sudden  onset,  20 min  ago,  of 
chest pain radiating to the left arm” has a very different meaning from “five-year 
history  of  continuous  chest  pain  radiating  to  the  left  arm.” While  CDSS  often 
include  a  vocabulary  of  severity  and  location modifiers,  temporal  modifiers  are 
more difficult to build into a system, since minute changes in the timing of onset and 
duration  can make  a  big  difference  in  the  conclusion  the  system  reaches.  Some 
CDSS make simplifying assumptions about broad categories of timing (acute, sub-
acute, chronic) to aid in the temporal description of findings. Although users may 
experience frustration in being unable to enter temporal information, the research is 
equivocal in its impact.

One solution to the problem of temporal modeling in CDSS is to use an explicit 
model of time, in which the user is asked to specify intervals and points in time, 
along with  temporal  relationships  between  events  (e.g.,  event A occurred  before 
event B), in order to drive a temporal reasoning process within the CDSS. Clearly, 
this complicates the matter of entering data (to say nothing of programming the 
system). A simpler approach is to model time implicitly. In implicit time [28], tem-
poral information is built into the data input elements of the CDSS; no special tem-
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poral reasoning procedures are required. For example, one input item could be 
“history of recent exposure to strep.” By joining the concept “history of” with the 
concept of a particular bacterial pathogen, one successfully abstracts the temporal 
nature of this finding, which would be pertinent in the diagnosis of rheumatic fever 
or post-streptococcal glomerulonephritis. Note that no explicit definition of “recent” 
is part of this representation; if for some reason one needed to distinguish infection 
2 weeks ago from infection 3 months ago, this abstraction would not suffice. Thus, 
there is a disadvantage to this simplification. Nonetheless, CDSS which use implicit 
temporal abstractions seem to perform well for time-sensitive clinical cases.

2.2.2  Inference Engine

There are many ways of programming an inference engine. The inference engine is 
the portion of the CDSS that combines the input and other data according to some 
logical scheme for output. Users of  the system do not usually know—or need  to 
know—how the engine works to achieve the results.

One such scheme for an inference engine is the Bayesian network. Recall that 
Bayes’ rule helps us express conditional probabilities—the likelihood of one event 
given that another has occurred. A Bayesian network is a way to put Bayes’ rule to 
work by laying out graphically which events influence the likelihood of occurrence 
of other events. Figure 2.2 shows a Bayesian network for the diagnosis of 
pneumonia.

The arrows in the diagram indicate all of the conditional relationships between 
findings and diagnoses. Note that the symptoms listed are not necessarily indepen-
dent; since febrile patients are often tachypneic, even in the absence of lung disease, 
one cannot say the two are as independent as Bayesian reasoning requires. 
Conceptually, this network simply states that the diagnosis of pneumonia is sup-
ported by the presence of three symptoms. The strength of association—that is, how 
strongly pneumonia is suggested by each of the three symptoms—varies with each 
symptom–disease pairing. By “activating” all three nodes (cough, fever, and tachy-
pnea) the probability of pneumonia is maximized. Of course, each of these three 
nodes might be tied to other disease states in the knowledge base (like lung cancer 
or upper respiratory infection).

Bayesian networks can be complex, but their usefulness comes from their ability 
to represent knowledge in an intuitively appealing way. Inference engines that oper-
ate on the basis of a network simply adjust probabilities based on simple mathemati-
cal relationships between nodes in the network. Iliad [20, 29], an early CDSS, was 
one such program that was built on Bayesian reasoning, and whose reasoning engine 
can be described as a Bayesian network. Bayesian network systems have been 
designed and validated for a variety of clinical situations, including tumor classifi-
cation, cancer prognosis, and ectopic pregnancy detection [30–33]. Inputs to these 
systems include data ordinarily found in the EHR, although none of these have 
found their way into commercial use.
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Production  rule  systems  are  another  method  of  programming  an  inference 
engine. The rules of predicate logic dictate the functioning of such an engine as it 
combines statements  to form new conclusions. MYCIN, described earlier, uses a 
production rule system. Production rules are an  intuitively attractive way  to start 
thinking about CDSS, since so much of the care physicians give in daily practice 
follows certain well known rules (e.g., giving patients with asthma an influenza vac-
cine each year). Other CDSS using production rules include Care Assistant, a gen-
eral purpose, rule-based tool developed at  the Childrens Hospital of Philadelphia 
that accepts input from an EHR via Web services and delivers decision support to 
the EHR user for immunizations and other treatment guidelines [34–37]. Chapter 5 
describes this type of CDS via Web services in more detail. While this system was 
a customized add-on to the EHR, today some of this functionality is available in 
commercial EHR products, especially on the domain of immunizations.

An appealing solution to the problem of constructing inference engines in a clini-
cal  setting  is  to  develop  a  cognitive model  of  actual  clinical  reasoning.  In  other 
words, one could study the reasoning that a physician uses and attempt to create a 
computerized version of that cognitive task. Workers in the field of artificial intel-
ligence, in modeling human cognition, have developed the notion of “frames” or 
schemes, as a reasonable cognitive model. A frame consists of a set of “slots” into 
which fit details of a particular kind of information. For example, a disease frame 
may have a slot for etiologic agent and time course. Frames can be used to construct 
a semantic network model of the world, which may then be searched for answers to 
questions based on a particular situation. One such application of frames in medi-
cine is the criterion-table method of diagnosing diseases like rheumatoid arthritis or 
Kawasaki disease. By applying a list of criteria, physicians can classify patients by 
diagnosis. The AI/Rheum system [38, 39] employed this familiar device in an infer-
ence engine that could have been used outside its original domain of rheumatologic 
diseases.

Cough

Fever

Tachypnea

Pneumonia

Fig. 2.2  A Bayesian network for the diagnosis of pneumonia
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2.2.3  Knowledge Base

For CDSS to work, they must possess some form of medical knowledge. Obviously, 
the method of encoding this knowledge must match the inference engine design. For 
example, a CDSS based on a Bayesian network must contain probabilities—prior, 
conditional,  and  posterior—of  diseases  and  findings. A  big  obstacle  to  building 
such a knowledge base is that many relevant probabilities are not known. While the 
medical literature can surely help with this task, and CDSS developers use the lit-
erature to varying degrees in building their knowledge bases, knowledge base devel-
opers must resort to estimates of probabilities, based on the clinical judgment of 
experts, to fill in the needed numbers. Unfortunately, physicians can exhibit mark-
edly variable behavior in supplying such numbers, and probabilities can vary from 
situation to situation, even with the same disease entities (e.g., variations in disease 
prevalence with different populations).

Once one creates a knowledge base and populates it with some amount of data, 
the next task is to create a way to maintain it. Since many CDSS begin as funded 
academic research projects, it is no wonder that development of their knowledge 
bases often halts after  the grant  funds cease. Since knowledge base maintenance 
takes a tremendous amount of time, and since the market for some CDSS is rather 
small, many CDSS become too expensive to maintain. The knowledge-acquisition 
bottleneck [40] has been recognized as a problem in CDSS research.

2.2.4  Output

The output of CDSS is usually in the form of a list of possibilities, ranked in some 
order of probability. Sometimes probability is not the only criterion on which results 
are evaluated; for example, in the DXplain output, diseases which are not necessar-
ily very likely, but whose misdiagnosis would be catastrophic, are flagged with a 
special disease-importance tag to call attention to the possibility [24]. Very often, 
physicians are not interested in the most likely diagnosis from a CDSS; for experi-
enced physicians, the most likely diagnosis is obvious. It is the less likely diagnosis 
that one might fail to consider that interests physicians in CDSS, yet clearly it is 
difficult to draw the line between the rare and the ultra-rare.

2.3  Nonknowledge-Based Systems

The systems discussed so far have been knowledge-based in the sense that an expert 
must expressly encode medical knowledge into numerical form for the systems to 
work. The knowledge-based systems cannot simply “learn” how to do the reasoning 
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task from modeling human experts; the human expert must put the knowledge into 
the system explicitly and directly.

2.3.1  Neural Networks

There are systems that can learn from examples. Neural networks are the most 
widely recognized of these types of systems, and there are regular reports in the 
medical literature on their use in diverse fields [41–47].

Artificial neural networks are constructed in a fashion similar to biological neu-
ral networks. Neuron bodies (“nodes”) are connected to one another by axons and 
dendrites (“links”). Nodes may be turned on or off, just as a biological neuron can 
be in an activated or inactivated state. Activation of a node causes activation of a 
signal on a link. The effect of that signal depends on the weight assigned to that link. 
In most learning neural networks, some nodes are input nodes and some are output 
nodes. In the CDSS context, the input nodes would be findings and the output nodes 
would be possible diseases. To understand how a neural network might work, con-
sider the problem of determining whether a person with a sore throat has streptococ-
cal infection (as opposed to a harmless viral infection). There are many input nodes 
to this decision, and perhaps two output nodes, strep infection and viral infection. 
By presenting to a neural network many thousands of cases of sore throat (where the 
outcome is known), the neural network would “learn,” for example, that the pres-
ence of cough decreases the likelihood of strep, and the height of fever increases this 
likelihood.

The appealing feature of neural networks—and what separates this technique 
from other methods of discovering relationships among data, like logistic regres-
sion—is the ability of the system to learn over time. A neural network changes its 
behavior based on previous patterns. In a domain where the relationship between 
findings and diseases might change, like infectious disease surveillance, this chang-
ing behavior can be desirable. Another desirable feature of neural networks is the 
lack of necessity to understand complex relationships between input variables; the 
network learns these relationships as it changes the links between its nodes. This is 
the principal difference between neural networks and Bayesian networks. In the lat-
ter, one explicitly constructs the network based on one’s knowledge of pathophysi-
ology and known probabilities. With neural networks, the links are established as 
the network is developed, often on the basis of a learning process, without regard to 
pathophysiologic facts. A disadvantage of neural networks, however, is that unlike 
the other systems discussed, the “rules” that the network uses do not follow a par-
ticular logic and are not explicitly understandable.

2 Mathematical Foundations of Decision Support Systems



38

2.3.2  Genetic Algorithms

Genetic algorithms represent another nonknowledge-based method for constructing 
CDSS. Genetic algorithms take their name from an analogy to the molecular rear-
rangements that take place in chromosomes. Genes rearrange themselves randomly; 
such rearrangements give rise to variations in an individual, which can affect the 
individual’s ability to pass on genetic material. Over time, the species as a whole 
incorporates  the most adaptive  features of  the “fittest”  individuals. Genetic algo-
rithms take a similar approach. To use a genetic algorithm, the problem to be solved 
must have many components (e.g., a complex cancer treatment protocol with mul-
tiple  drugs,  radiation  therapy,  and  so  on). By  selecting  components  randomly,  a 
population of possible solutions is created. The fittest of  these solutions (the one 
with  the  best  outcome)  is  selected,  and  this  subpopulation  undergoes  rearrange-
ment, producing another generation of solutions. By iteratively extracting the best 
solutions, an optimal solution can be reached. The main challenge in using genetic 
algorithms is in creating the criteria by which fitness is defined. Since the comput-
ing power required to use both genetic algorithms and neural networks is consider-
able, these techniques have had only limited use in medicine.

2.4  Model for Evaluating the Appropriateness of CDSS

In a technology environment dominated by electronic health record (EHR) systems 
[48–51] most of the decision support that clinicians today face comes in the form of 
alerts presented during the normal use of the EHR [52]. The mathematics behind 
these alerts is usually a straightforward application of conditional logic, e.g.:

If current order’s medication is in Nephrotoxic-Drug-Group,
And Creatinine-Clearance > Age-Specific-Threshold,
Then Display warning  “Use  caution when prescribing nephrotoxic drugs  in  this 

patient.”

Studies of this kind of decision support suggest that clinicians ignore such alerts 
at high rates [53, 54]. The usual explanation is “alert fatigue” [55] but more com-
plex sociotechnical factors affect the impact alerts have on quality of care [56, 57]. 
In any case, simple alerting as a form of decision support in EHRs has been shown 
to be of limited effectiveness, in contrast to other sources of information that clini-
cians use to make decisions. The ways laboratory tests are evaluated may help us 
formulate a way to develop metrics for quantifying the physician response to alerts. 
For example, in the case of laboratory test results, the classic method of evaluation 
of this kind of clinical data is the 2 × 2 table, shown in Fig. 2.3.

In this case, one can calculate several metrics that can inform the clinical user 
about the performance of the test:
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•  Sensitivity (true positive rate among those with disease) = a / (a + c)
•  Specificity (true negative rate among those without disease) = d / (b + d) 
•  Positive predictive value (PPV; true positive rate among positive tests) = a / (a + 

b)
•  Negative predictive value (NPV; true negative rate among negative tests) = d / (c 

+ d)

A highly sensitive test picks up a high proportion of those who have the disease. 
A highly specific test means there will be very few false positives. Using these met-
rics, one can judge the usefulness of a laboratory test as a decision support aid. For 
example, one could design guideline recommendations based on whether a test was 
highly sensitive (useful for ruling out disease) or highly specific (more useful for 
ruling in disease). There are other methods of using these metrics in the interpreta-
tion of laboratory test results that are beyond the scope of this chapter.

For EHR-based alerts, one might  like  to have a  similar 2 × 2  table  in order  to 
make judgments about the usefulness of the alert (Fig. 2.4).

If one could gather data from one’s EHR to fill in this table, one could gain an 
appreciation for the performance of an alert, and be able to make decisions about 
whether an alert was valuable. For example, one could deploy a highly sensitive 
alert to screen for a condition (in a manner similar to a lab test), but a more specific 
alert in a part of the workflow where condition confirmation is more important. In 

Strep throat

present

Strep throat

absent

Rapid strep test 

positive

a

True positive

b

False positive

Rapid strep test 

negative

c

False negative

d

True negative

Fig. 2.3  Typical 2 × 2 table 
for a common laboratory 
test, indicating the four 
possible outcomes of 
applying the test in a 
population of patients, 
some of whom have the 
disease in question. The 
letters serve as a 
convenient way to refer to 
each cell of the table (see 
text)

Condition

present

Condition

absent

Alert

fires

a

True positive

b

False positive

Alert

does not fire

c

False negative

d

True negative

Fig. 2.4  Possible 2 × 2 
table for an alert embedded 
in an electronic health 
record. The alert would fire 
under the circumstances 
for which it was 
programmed, but typically 
the programming would 
not detect the condition 
perfectly. Again, the letters 
serve as a convenient way 
to refer to cells of this table
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theory, it is possible to gather data to fill in this table, but given that the manual chart 
review and data collection is expensive, one usually uses data from a report in which 
the EHR system displays when the alert fired (boxes a and b in 2.4). The EHR can-
not report on box c (condition present but alert did not fire) since, had the EHR been 
able to detect the condition, those data would have gone to boxes a or b. In other 
words, it is a logical impossibility for a computer system to present a report on 
something it is not programmed to know. As a result, we are left with the ability to 
calculate only the true positive rate, and cannot obtain the other metrics without an 
infeasible amount of manual data collection. Reliance on true positive rate only—
what one might call the “tyranny of box a” generates false contentment that a given 
alert  is  effective. The question of  “how good  is  this  alert?” often  remains unan-
swered among the numerous safety-driven requests to add more alerts that must be 
accommodated in a typical EHR implementation.

2.5  Summary

Understanding clinical decision support systems requires a basic understanding of 
probability and logic. Set theory, familiar to most practitioners who have manipu-
lated  collections  of  literature  citations  in  PubMed,  provides  the  basis  for  under-
standing probability and other computational methods for reasoning. Probability—in 
particular, conditional probability—is the principle behind most modern CDSS, but 
non-probabilistic heuristic techniques have been used to good effect in the past.

Understanding CDSS can be facilitated by considering four basic components of 
the CDSS process: input, reasoning engine, knowledge base, and output. Input is 
often constrained by controlled vocabularies or limitations in temporal expression 
of clinical features. Reasoning engines take on different designs, but their operation 
is usually transparent to the user of a CDSS. Knowledge bases contain data from 
which the reasoning engine takes rules, probabilities, and other constructs required 
to convert the input into output. Output can take many forms, including a differen-
tial diagnosis list or simply a probability of a particular diagnosis. Nonknowledge- 
based systems use techniques of machine learning to generate methods of turning 
input into meaningful output, regardless of an explicit representation of expert 
knowledge. While very important to do, it is a challenge to develop appropriate 
metrics to judge the appropriateness of CDSS performance.
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Chapter 3
Data Mining and Clinical Decision Support 
Systems

Bunyamin Ozaydin, J. Michael Hardin, and David C. Chhieng

Abstract Data mining is a process of pattern and relationship discovery within 
large sets of data. Because of the large volume of data generated in healthcare set-
tings, it is not surprising that healthcare organizations have been interested in data 
mining to enhance physician practices, disease management, and resource utiliza-
tion. This chapter discusses a variety of data mining techniques that have been used 
to develop clinical decision support systems, including decision trees, neural net-
works, logistic regression, nearest neighbor classifiers. In addition, genetic algo-
rithms, biologic and quantum computing, and big data analytics as well as methods 
of evaluating and comparing the different approaches are also discussed.

Keywords Statistical pattern recognition • Data mining • Neural networks • 
Decision trees • Genetic algorithms • Big data analytics • Quantum computing

3.1  Introduction

Data miningis a process of pattern and relationship discovery within large sets of data. 
The context encompasses several fields, including pattern recognition, statistics, com-
puter science, and database management. Thus, the definition of data mining largely 
depends on the point of view of the writer giving the definitions. For example, from 
the perspective of pattern recognition, data mining is defined as the process of identi-
fying valid, novel, and easily understood patterns within the data set [1].
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In still broader terms, the main goal of data mining is to convert data into mean-
ingful information. More specifically, one major primary goal of data mining is to 
discover new patterns for the users. The discovery of new patterns can serve two 
purposes: description and prediction. The former focuses on finding patterns and 
presenting them to users in an interpretable and understandable form. Prediction 
involves identifying variables or fields in the database and using them to predict 
future values or behavior of some entities.

Data mining is well suited to provide decision support in healthcare settings. 
Healthcare organizations face increasing pressures to improve the quality of care 
while reducing costs. Because of the large volume of data generated in healthcare 
settings, it is not surprising that healthcare organizations have been interested in 
data mining to enhance physician practices, disease management, and resource 
utilization.

Example 3.1 One early application of data mining to health care was done in the 
early 1990s by United HealthCare Corporation. United HealthCare Corporation 
was a managed-care company, and developed its first data mining system, Quality 
Screening and Management (QSM), to analyze treatment records from its members 
[2]. QSM examined 15 measures for studying patients with chronic illness and com-
pared the care received by its members to that recommended by national standards 
and guidelines. Results of the analyses were then used to identify appropriate qual-
ity management improvement strategies, and to monitor the effectiveness of such 
actions. Although not providing direct support for decision making at the point of 
care, these data could be used to improve the way clinical guidelines are used.

3.2  Data Mining and Clinical Decision Support Systems

With the advent of computing power and medical technology, large data sets as well 
as diverse and elaborate methods for data classification have been developed and 
studied. As a result, data mining has attracted considerable attention during the past 
several decades, and has found its way into a large number of applications that have 
included both data mining and clinical decision support systems. Decision support 
systems refer to a class of computer-based systems that aids the process of decision 
making [3]. Table 3.1 lists some examples of decision support systems that utilize 
data mining tools in healthcare settings.

A typical decision support system consists of five components: the data manage-
ment, the model management, the knowledge engine, the user interface, and the 
user(s) [29]. One of the major differences between decision support systems 
employing data mining tools and those that employ rule-based expert systems rests 
in the knowledge engine. In the decision support systems that utilize rule-based 
expert systems, the inference engine must be supplied with the facts and the rules 
associated with them that, as described in Chap. 2, are often expressed in sets of 
“if–then” rules. In this sense, the decision support system requires a vast amount of 
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Table 3.1 Examples of clinical decision support systems and data mining tools

System (reference) Description

Medical imaging recognition and interpretation system
Monitoring tumor 
response to  
chemotherapy [4]

Computer-assisted texture analysis of ultrasound images aids 
monitoring of tumor response to chemotherapy

Diagnosis of 
neuromuscular  
disorder [5]

Classification of electromyographic (EMG) signals, based on the 
shapes and firing rates of motor unit

Detection of neonatal 
epileptic seizures [6]

Quantum neural networks are evaluated in detecting epileptic 
seizures in the neonatal electroencephalogram (EEG)

Gene and protein expression analysis
Screening for prostate 
cancer [7]

Early detection of prostate cancer based on serum protein patterns 
detected by surface enhanced laser description ionization 
time-of- flight mass spectometry (SELDI-TOF MS)

Educational system
Mining biomedical 
literature [8]

Automated system to mine MEDLINE for references to genes and 
proteins and to assess the relevance of each reference assignment

Laboratory system
ISPAHAN [9] Classification of immature and mature white blood cells 

(neutrophils series) using morphometrical parameters
Histologic diagnosis of 
Alzheimer’s disease [10]

Analysis of digital images of tissue sections to identify and 
quantify senile plagues for diagnosing and evaluating the severity 
of Alzheimer’s disease

Diagnosis of inherited 
metabolic diseases in 
newborns [11]

Identification of novel patterns in high-dimensional metabolic data 
for the construction of classification system to aid the diagnosis of 
inherited metabolic diseases

Acute care system
Identification of potential 
quality problems [12]

Using logistic regression models to compare hospitals based on 
risk-adjusted death within 30 days of non-cardiac surgery

Evaluation of fetal 
well-being [13]

Using support vector machines and genetic algorithms to classify 
normal vs pathological cardiotocograms (CTGs)

Pneumonia and 
readmission  
prediction [14]

Multiple machine learning techniques used to construct intelligible 
models to predict inpatient pneumonia risk and 30-day 
readmission

Expert selection for 
diagnosis [15]

Context-adaptive algorithms used to discover the best clinic and 
expert to use to give a diagnosis based on patient’s contexts using 
breast cancer data

Extensive pathology 
ordering [16]

CDSS combining data mining techniques with case-based 
reasoning to help general practitioners make more evidential 
informed decision in pathology ordering

Disease prediction, diagnosis, or progression system
Prevailing diseases [17] Decision support system to predict prevailing diseases to improve 

survivability using multiple data mining techniques
Disease progression [18] Unsupervised learning algorithm is used to model progression of 

slowly progressing chronic diseases

(continued)
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a priori knowledge on the part of the decision maker in order to provide the right 
answers to well-formed questions. On the contrary, the decision support systems 
employing data mining tools do not require a priori knowledge on the part of the 
decision maker. Instead, the system is designed to find new and unsuspected pat-
terns and relationships in a given set of data; the system then applies this newly 
discovered knowledge to a new set of data. This technique is most useful when a 
priori knowledge is limited or nonexistent.

Many successful clinical decision support systems using rule-based expert sys-
tems have been developed for very specialized areas in health care [30–36]. One 
early example of a rule-based expert system is MYCIN, which used its rules to 
identify micro-organisms that caused bacteremia and meningitis [36]. However, 
such systems can be challenging to maintain due to the fact that they often contain 
several thousand rules or more. In addition, these “if–then” rule systems have dif-
ficulty dealing with uncertainty. Bayesian systems (see Chap. 2) are one way of 
addressing uncertainty. Statistical pattern recognition approaches are another.

3.3  Data Mining and Statistical Pattern Recognition

Pattern recognition is a field within the area of data mining. It is the science that 
seeks analytical models with the ability to describe or classify data/measurements. 
The objective is to infer from a collection of data/measurements mechanisms to 
facilitate decision-making processes [37, 38]. With time, pattern recognition meth-
odologies have evolved into an interdisciplinary field that covers multiple areas, 
including statistics, engineering, computer science, and artificial intelligence. 
Because of cross-disciplinary interest and participation, it is not surprising that pat-
tern recognition is comprised of a variety of approaches. One approach to pattern 
recognition is called statistical pattern recognition.

Table 3.1 (continued)

System (reference) Description

Heart diseases [19–21] Various studies using data mining techniques and big data to 
predict heart disease risk levels and heart attack and provide 
personalized diagnosis and treatment

Glaucoma [22–24] Various studies using neural networks and comparing their 
performance to other methods in classifying glaucomatous and 
normal eyes using visual field analyzer and confocal scanning 
laser ophthalmoscopy and determining the effects of input data in 
neural network performance

Other diseases [25–28] Various studies using data mining and machine learning 
techniques to predict early childhood obesity, cerebrovascular 
disease, and type 2 diabetes risk factors and provide a decision 
support system to diagnose chronic renal failure

B. Ozaydin et al.

http://dx.doi.org/10.1007/978-3-319-31913-1_2


49

Statistical pattern recognition implies the use of a statistical approach to the 
modeling of measurements or data [39]. Briefly, each pattern is represented by a set 
of features or variables related to an object. The goal is to select features that enable 
the objects to be classified into one or more groups or classes.

3.4  Supervised Versus Unsupervised Learning

Data mining and predictive modeling can be understood as learning from data. In 
this context, data mining comes in two categories: supervised learning and unsuper-
vised learning.

3.4.1  Supervised Learning

Supervised learning, also called directed data mining, assumes that the user knows 
ahead of time what the classes are and that there are examples of each class avail-
able (Fig. 3.1a). This knowledge is transferred to the system through a process 
called training. The data set used in this process is called the training sample. The 
training sample is composed of dependent or target variables, and independent vari-
ables or input. The system is adjusted based on the training sample and the error 
signal (the difference between the desired response and the actual response of the 
system). In other words, a supervised learning system can be viewed as an operation 
that attempts to reduce the discrepancy between the expected and observed values 
as the training process progresses. With enough examples in the training data, the 
discrepancy will be minimized and the pattern recognition will be more accurate. 

Data

Data

Expert

Learning
system

Desired
Results

Actual
Results

Feedback
(error signal)

Learning
system

a

b

Fig. 3.1 (a) Supervised learning; (b) unsupervised learning
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The goal of this approach is to establish a relationship or predictive model between 
the dependent and independent variables. Predictive modeling falls into the cate-
gory of supervised learning because one variable is designated as the target that will 
be explained as a function of other variables. Predictive models are often built to 
predict the future values or behavior of an object or entity. The nature of the target/
dependent variable determines the type of model: a model is called a classification 
model if the target variable is discrete; and a regression model if the target variable 
is continuous.

Example 3.2 Goldman et al. described the construction of a clinical decision support 
system to predict the presence of myocardial infraction in a cohort of 4,770 patients 
presenting with acute chest pain at two university hospitals and four community hos-
pitals [40]. Based on the patient’s symptoms and signs, the clinical decision support 
system had similar sensitivity (88.0 % versus 87.8 %) but a significantly higher speci-
ficity (74 % versus 71 %) in predicting the absence of myocardial infarction when 
compared to physicians’ decisions if the patients were required to be admitted to the 
coronary care unit. If the decision to admit was based solely on the decision support 
system, the admission of patients without infarction to the coronary care unit would 
have been reduced by 11.5 % without adversely affecting patient outcomes or quality 
of care. The system was referred to as the Goldman algorithm and its performance 
was tested again by other researchers a decade later, confirming its success [41].

3.4.2  A Priori Probability

In supervised learning, the frequency distribution, or a priori probability, of the 
classes of a certain training set (or a sample taken from the general population) may 
be quite different from that of the general population to which the classifier is 
intended to be applied. In other words, the training set/sample may not represent the 
general population. For example, a particular training set may consist of 50 % of the 
subjects with disease and 50 % without the disease. In this case, a priori probabilities 
of the two classes in the training set are 0.5 for each class. However, the actual a 
priori probability or the actual prevalence of disease may be very different (less than 
or greater than 0.5) from that of the training set. In some instances, the actual a priori 
probability of the general population may be unknown to the researchers. This may 
have a negative effect on the performance of the classifier when applied to a real 
world data set. Therefore, it is necessary to adjust the output of a classifier with 
respect to the new condition to ensure the optimal performance of the classifier [42].

3.4.3  Unsupervised Learning

In unsupervised or undirected learning, the system is presented with a set of data but 
no information is available as to how to group the data into more meaningful classes 
(Fig. 3.1b). Based on perceived similarities that the learning system detects within 
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the data set, the system develops classes or clusters until a set of definable patterns 
begins to emerge. There are no target variables; all variables are treated the same 
way without the distinction between dependent and independent variables.

Example 3.3 Avanzolini et al. analyzed 13 commonly monitored physiological 
variables in a group of 200 patients in the six-hour period immediately following 
cardiac surgery in an attempt to identify patients who were at risk for developing 
postoperative complications [43]. Using an unsupervised learning (clustering) 
method, the investigators showed the existence of two well defined categories of 
patients: those with low risk of developing postoperative complications and those 
with high risk.

Example 3.4 In a more recent study, Mullins et al. investigated the potential value 
of searching a large cohort of 667,000 inpatient and outpatient electronic records 
from an academic medical system, using three unsupervised methods: CliniMiner®, 
Predictive Analysis, and Pattern Discovery from IBM’s HealthMiner®. The dataset 
included biological, clinical, and administrative data and they concluded that these 
approaches have the potential to expand research capabilities through identification 
of potentially novel clinical disease associations [44].

3.4.4  Classifiers for Supervised Learning

In supervised learning, classification refers to the mapping of data items into one of 
the predefined classes. In the development of data mining tools and clinical decision 
support systems that use statistical approaches like those described here, one of the 
critical tasks is to create a classification model, known as a classifier, which will 
predict the class of some entities or patterns based on the values of the input attri-
butes. Choosing the right classifier is a critical step in the pattern recognition pro-
cess. A variety of techniques have been used to obtain good classifiers. Some of the 
more widely used and well known techniques that are used in data mining include 
decision trees, logistic regression, neural networks, and nearest neighbor approach.

3.4.5  Decision Trees

The use of decision trees is perhaps the easiest to understand and the most widely 
used method that falls into the category of supervised learning. Figure 3.2 is the 
graphical representation of a simple decision tree using two attributes.

A typical decision tree system adopts a top-down strategy in searching for a solu-
tion. It consists of nodes where predictor attributes are tested. At each node, the 
algorithm examines all attributes and all values of each attribute with respect to 
determining the attribute and a value of the attribute that will “best” separate the 
data into more homogeneous subgroups with respect to the target variable. In other 
words, each node is a classification question and the branches of the tree are 
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 partitions of the data set into different classes. This process repeats itself in a recur-
sive, iterative manner until no further separation of the data is feasible or a single 
classification can be applied to each member of the derived subgroups. Therefore, 
the terminal nodes at the end of the branches of the decision tree represent the dif-
ferent classes.

Example 3.5 An example of a clinical decision support system using decision trees 
can be found in a study by Gerald et al. [45]. The authors developed a decision tree 
that assisted health workers in predicting which contacts of tuberculosis patients 
were most likely to have positive tuberculin skin tests. The model was developed 
based on 292 consecutive cases and close to 3,000 contacts and subsequently tested 
prospectively on 366 new cases and 3,162 contacts. Testing showed that the deci-
sion tree model had a sensitivity of 94 %, a specificity of 28 %, and a false negative 
rate of 7 %. The authors concluded that the use of decision trees would decrease the 
number of contacts investigated by 25 % while maintaining a false negative rate that 
was close to that of the presumed background rate of latent tuberculosis infection in 
the region.

3.4.6  Logistic Regression

Logistic regression is used to model data in which the target or dependent variable 
is binary, i.e., the dependent variable can take the value 1 with a probability of suc-
cess p, or the value 0 with the probability of failure 1 – p. The main objective is to 
develop a regression type model relating the binary variable to the independent 
variables. As such it is a form of supervised learning. It can also be used to examine 
the variation in the dependent variable that can be explained by the independent 
variables, to rank the independent variables based on their relative importance in 
predicting the target variable, and to determine the interaction effects among inde-
pendent variables. Rather than predicting the values of the dependent variable, 

Yes

Yes Yes

No

No No

Attribute A > 0

Attribute B = 1 Attribute B = 1

Class 1 Class 2 Class 3 Class 4

Fig. 3.2 A simple decision tree with the tests on attributes A and B
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logistic regression estimates the probability that a dependent variable will have a 
given value. For example, instead of predicting whether a patient is suffering from 
a certain disease, logistic regression tries to estimate the probability of the patient 
having the disease. If the estimated probability is greater than 0.5, then there is a 
higher probability of the patient having the disease than not having the disease. The 
function relating the probabilities to the independent variables is not a linear func-
tion and is represented by the following equation:

 
p y e a bx( ) / ( )= +{ }− −1 1

 

where p(y) is the probability that y, the dependent variable, occurs based on x, the 
value of an attribute/independent variable, a is the constant, and b is the coefficient 
of the independent variable. Figure 3.3 shows a graphical representation of the 
logistic regression model which fits the relationship between the value of the inde-
pendent variable, x and the probability of dependent variable, y occurring with a 
special S-shaped curve that is mathematically constrained to remain within the 
range of 0.0–1.0 on the Y axis. Logistic regression is a well-established and power-
ful statistical method and it is often recommended that more recent data mining 
techniques, like the ones mentioned in the remainder of this chapter be compared to 
logistic regression to measure their relative performance [46].

Example 3.6 The following is an example that applies logistic regression to deci-
sion making. In the earliest stage of the epidemic of severe acute respiratory syn-
drome (SARS) when reliable rapid confirmatory tests were lacking, a group of 
researchers from Taiwan attempted to establish a scoring system to improve accu-
racy in diagnosing SARS [47]. The scoring system was developed based on the 
clinical and laboratory findings of 175 suspected cases using a multivariate, step-
wise logistic regression model. The authors then applied the scoring system to 232 
patients and were able to achieve a sensitivity and specificity of 100 % and 93 %, 
respectively, in diagnosing SARS.
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Fig. 3.3 Logistic 
regression model
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Example 3.7 In another study, the authors applied texture analysis to images of 
breast tissue generated by magnetic resonance imaging (MRI) for differentiating 
between benign and malignant lesions [48]. Using logistic regression analysis, a 
diagnostic accuracy of 0.8 ± 0.07 was obtained with a model requiring only three 
parameters.

3.4.7  Neural Networks

The original development of the neural network programs was inspired by the way 
the brain recognizes patterns. A neural network is composed of a large number of 
processors known as neurons (after the brain cells that perform a similar function) 
that have a small amount of local memory and are connected unidirectionally (Fig. 
3.4).

Each neuron can have more than one input and operates only on the inputs it 
receives via the connections. Like some of the data mining tools, neural networks 
can be supervised or unsupervised. In supervised neural networks, examples in the 
form of the training data are provided to the network one at a time. For each  example, 
the network generates an output that is compared with the actual value as a form of 
feedback.

Once the output of the neural network is the same as the actual value, no further 
training is required. If the output differs from the actual value, the network adjusts 
those parameters that contributed to the incorrect output. Once adjustment is made, 
another example is presented to the network and the whole process is repeated. The 
process terminates when all parameters are stabilized. The size and representative-
ness of the training data are obviously very important, since a neural network could 
work fine on the training set, but not generalize to a broader sample.

This generalization problem led to the development of Support Vector Machines 
(SVMs). While neural networks try to minimize the error between the actual value 
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Input #2

Input #3
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Output #2

Fig. 3.4 Neural network
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and their output for the training data, SVMs use the Structural Risk Minimization 
(SRM) principle to minimize an upper bound on the expected error risk [49]. SVMs 
have been gaining popularity over traditional neural networks due to their empirical 
performance.

Example 3.8 One example of a neural network is the computer-aided diagnosis of 
solid breast nodules. In one study, ultrasonographic features were extracted from 
300 benign and 284 malignant biopsy-confirmed breast nodules [50]. The neural 
network was trained with a randomly selected data set consisting of half of the 
breast nodule ultrasonographic images. Using the trained neural network, surgery 
could be avoided in over half of the patients with benign nodules with a sensitivity 
of 99 %.

Example 3.9 In another example, a neural network was used to detect the disposi-
tion in children presenting to the emergency room with bronchiolitis (inflammation 
of small airways) [51]. The neural network correctly predicted the disposition in 
81 % of test cases.

Example 3.10 The performance of a support vector machine method was com-
pared to neural network, decision tree, and naïve Bayes methods in a study to 
develop a clinical decision support system for diagnosing patients with chronic 
renal failure. The data set included 102 patient records with 15 attributes. SVM was 
shown to be the most accurate with 93.1 %, compared to the other methods [25].

3.4.8  Nearest Neighbor Classifier

When a system uses the nearest neighbor (NN) classification, each attribute is 
assigned a dimension to form a multidimensional space. A training set of objects, 
whose classes are known, are analyzed for each attribute; each object is then plotted 
within the multidimensional space based on the values of all attributes. New objects, 
whose classes are yet to be determined, are then classified according to a simple 
rule; each new object is analyzed for the same set of attributes and is then plotted 
within the multidimensional space based on the value of each attribute. The new 
object is assigned to the same class of its closest neighbor based on appropriate 
metrics/measurements. In other words, the NN rule assumes that observations 
which are the closest together (based on some form of measurement) belong to the 
same category (Fig. 3.5). The NN rule is often used in situations where the user has 
no knowledge of the distribution of the categories.

One extension of this approach is the k-nearest neighbor approach (k- NN). 
Instead of comparing to a single nearest prototype, one can take into account 
k-neighboring points when classifying a data point, if the number of preclassified 
points is large. For each new pattern, the class is assigned by finding the most prom-
inent class among the k-nearest data points in the training set (Fig. 3.5). This 
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approach works very well in cases where a class does not form a single coherent 
group but is a collection of more than one separate group.

Example 3.11 By applying the k-NN classifier, Burroni et al. developed a decision 
support system to assist clinicians with distinguishing early melanoma from benign 
skin lesions, based on the analysis of digitized images obtained by epiluminescence 
microscopy [52]. Digital images of 201 melanomas and 449 benign nevi were 
included in the study and were separated into two groups, a learning set and a test 
set. A k-NN pattern recognition classifier was constructed using all available image 
features and trained for a sensitivity of 98 % with the learning set. Using an indepen-
dent test set of images, a mean specificity of 79 % was achieved with a sensitivity of 
98 %. The authors concluded that this approach might improve early diagnosis of 
melanoma and reduce unnecessary surgery.

3.5  Evaluation of Classifiers

3.5.1  ROC Graphs

In statistical pattern recognition, the goal is to map entities to classes. Therefore, the 
ultimate question is: which classifiers are more accurate in performing this classifi-
cation task? Suppose one wanted to identify which classifiers would be best to 
determine whether a patient has cancer or not based on the results of certain labora-
tory tests. Given a classifier and an instance, there are four possible outcomes. If the 
patient has cancer and is diagnosed with cancer, based on the classifier, it is consid-
ered a true positive; if the patient is declared healthy by the classifier, but really has 
cancer, it is considered a false negative. If the patient has no cancer and is declared 
healthy, it is considered a true negative; if he is diagnosed as having cancer when he 
is really healthy, it is considered a false positive.
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Fig. 3.5 Nearest neighbor (NN) classifier. There are two classes, A (triangles) and B (diamonds). 
The circle represents the unknown sample, X. For the NN rule the nearest neighbor of X comes 
from class A, so it would be labeled class A. Using the k-NN rule with k = 4, three of the nearest 
neighbors of sample X come from class B, so it would be labeled as B
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We can plot the true positive rate on the Y axis and the false positive rate on the 
X axis; a receiver operating characteristic (ROC) graph results (Fig. 3.6).

The true positive rate (also known as sensitivity) is obtained by dividing the 
number of true positives by the sum of true positives and false negatives. The false 
positive rate is obtained by dividing the number of false positives by the sum of true 
negatives and false positives; the false positive rate can also be expressed as “1 
minus specificity,” where specificity is equal to true negatives divided by the sum of 
true negatives and false positives. The ROC graph is a two-dimensional graph that 
depicts the tradeoffs between benefits (detecting cancer correctly, or true positive) 
and costs (false alarm or false positive). Each classifier generates a pair of true posi-
tive and false positive rates, which corresponds to a point on the ROC graph. The 
point (0, 1) represents perfect classification, i.e., 100 % true positive rate and 0 % 
false positive rate. One classifier is considered superior to another if it has a higher 
true positive rate and a lower false positive rate, corresponding to a more “north-
west” location relative to the other on the ROC graph. In general, the false alarm 
rates go up as one attempts to increase the true positive rate. Classifiers with points 
on the southwest corner of an ROC graph are more “conservative” since they make 
positive predictions only with strong evidence; therefore there is a low true positive 
rate, but also few false positive errors. On the other hand, classifiers on the northeast 
corner of an ROC graph are more “liberal” since they make positive prediction with 
weak evidence; therefore they have high true positive rates, but also high false posi-
tive rates.
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Fig. 3.6 ROC curve. Point A represents perfect performance. The performance of C is more con-
servative than B
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Some classifiers, such as neural networks, yield a numeric value which can be in 
the form of a numeric score or probability that represents the likelihood an object 
belongs to a certain class. These classifiers can be converted into discrete, binary 
(yes versus no) classifiers by setting a threshold, i.e., if the output score is above the 
threshold, the classifier produces a “Yes", else a "No”. By choosing a different 
threshold, a different point in the ROC graph is produced. As a result, varying the 
thresholds will produce a curve in the ROC graph for a particular classifier. Given 
an ROC curve, one can select the threshold corresponding to a particular point on 
the ROC that produces the desired binary classifier with the best true positive rate 
(correctly diagnosed cancer) within the constraints of an acceptable false positive 
rate (false alarm). This is chosen based on the relative costs of the two types of 
errors: missing a diagnosis of cancer (type I error) versus creating a false alarm 
(type II error).

The area under the ROC curve (AUC) provides a single statistic (the C- Statistic) 
for comparing classifiers. It measures the accuracy of the classifiers. Consider the 
situation in which a classifier attempts to separate patients into two groups; those 
with disease and those without. One can randomly pick a patient from the disease 
group and one from the non-disease group and apply the classifier on both. The area 
under the curve represents the percentage of randomly drawn pairs where the clas-
sifier correctly classifies the two patients in the random pair. The value of AUC 
ranges from 0.5 to 1. A classifier with an AUC of 0.5 would be a poor classifier, 
roughly equivalent to flipping a coin to decide the class membership. A classifier 
with an AUC close to 1 results in better classification of entities to classes. For 
example, in Example 3.8, the resulting trained neural network model yielded a nor-
malized area under the ROC curve of 0.95.

Computing the AUC is complex and beyond the scope of this chapter. Briefly, 
there are two commonly used methods. One method is based on the construction of 
trapezoids under the curve as an approximation of the area. The other method 
employs a maximum likelihood estimator to fit a smooth curve to the data points. 
Both methods are available as computer programs and give an estimate of area and 
standard error that can be used to compare different classifiers.

3.5.2  Kolmogorov-Smirnov Test

While the AUC provides a way of distinguishing groups overall, there are other 
statistical tests used to provide a more refined comparison of groups or subgroups. 
The Kolmogorov-Smirnov test, or KS test, is used to determine whether the distri-
butions of two samples differ from each other or whether the distribution of a sam-
ple differs from that of the general population. The KS test provides what is called 
the D-statistic for comparison of classifiers [53].
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3.6  Unsupervised Learning

3.6.1  Cluster Analysis

Unsupervised classification refers to situations where the goal is to classify a diverse 
collection of unlabeled data into different groups based on different features in a 
data set. Unsupervised classification, also known as cluster analysis or clustering, is 
a general term to describe methodologies that are designed to find natural groupings 
or clusters based on measured or perceived similarities among the items in the clus-
ters using a multidimensional data set (Fig. 3.7). There is no need to identify the 
groupings desired or the features that should be used to classify the data set. In addi-
tion, clustering offers a generalized description of each cluster, resulting in better 
understanding of the data set’s characteristics and providing a starting point for 
exploring further relationships.

Clustering techniques are very useful in data mining because of the speed, reli-
ability, and consistency with which they can organize a large amount of data into 
distinct groupings. Despite the availability of a vast collection of clustering algo-
rithms in the literature, they are based on two popular approaches: hierarchical clus-
tering and nonhierarchical clustering. The former, which is the most frequently used 
technique, organizes data in a nested sequence of groups that can be displayed in a 
tree-like structure, or dendrogram.

There are several problems that are associated with clustering. One problem is 
that data can be grouped into clusters with different shapes and sizes. Another prob-
lem is the resolution or granularity, i.e., fine versus coarse, with which the data are 
viewed. This problem is most obvious when one tries to delineate a region contain-
ing a high density of patterns compared to the background. Therefore, some authors 
define a cluster as one that consists of a relatively high density of points separated 
from other clusters by a relatively low density of points, whereas some define clus-
ters containing samples that share more similarities to each other than to samples of 
different clusters. As a result, the selection of an appropriate measure of similarity 
to define clusters is a major challenge in cluster analysis.

Fig. 3.7 Cluster analysis. 
Two clusters of data (left); 
three clusters (right) using 
the same set of data
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3.6.2  Gene Expression Data Analysis

One of the applications of cluster analysis in medicine is the analysis of gene expres-
sion. With the completion of the human genome project, which identified more than 
30,000 gene sequences, researchers have been able to examine the expression of 
several thousand genes from blood, body fluids, and tissue samples at the same 
time, in an attempt to identify gene subsets that are associated with various disease 
characteristics. The pace of gene expression data analysis has been further acceler-
ated by the “Precision Medicine” initiative that takes into account individual vari-
ability in genes, when approaching disease treatment and prevention [54]. Since 
information is obtained from hundreds and thousands of gene sequences, an astro-
nomical body of data is generated. Common research questions often fall under the 
following categories: class discovery, class prediction, and gene identification. 
Class prediction refers to the classification of samples based on certain behaviors or 
properties such as response to therapy, whereas gene identification involves the dis-
covery of genes that are differentially expressed among different disease groups.

Class discovery refers to the discovery of previously unknown categories or sub-
types based on some similarity measure calculated from the gene expression data. 
Cluster analysis is often the method of choice in accomplishing this task, because 
samples are clustered into groups based on the similarity of their gene expressions 
without utilizing any knowledge of any predefined classification schemes such as 
known histological tumor classification.

Example 3.12 Genomic data is already being incorporated into clinical decision 
support systems to refine both diagnosis and therapy. The following is an example 
that used clustering to explore breast cancer classification using genomic data. In 
this study, Perou et al. evaluated the pattern of gene expression of 8,102 human 
genes in 65 breast cancers obtained from 42 patients [55]. Using hierarchical cluster 
analysis, the authors were able to classify 65 breast cancer samples into three dis-
tinct subtypes. One subtype was cancers that overexpressed the oncogene erbB-2. 
The remaining two subtypes were unknown prior to this study; they were estrogen 
receptor-positive luminal-like cancers and basaloid cancers. Subsequent survival 
analyses on a group of patients with locally advanced breast cancer showed signifi-
cantly different outcomes for the patients belonging to different subtypes; patients 
with basaloid cancers had a poor survival rate [56]. In the same study by Perou 
et al., the samples contained 20 primary tumors that were biopsied twice, before and 
after the completion of chemotherapy. Using clustering, the authors demonstrated 
that gene expression patterns were similar among samples from the same patients 
taken at different time points but not between samples taken from different patients.

Example 3.13 A more comprehensive study of the use of genomic data for predict-
ing clinical outcomes compares several naïve Bayes methods, logistic regression, a 
version of linear regression, a faster version of a neural network, and a support vec-
tor machine. The researchers used a hundred 1,000-single nucleotide polymorphism 
(SNP) simulated datasets, ten 10,000-SNP datasets, six semi-synthetic sets, and two 
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real genome-wide association studies (GWAS) datasets and concluded that the sup-
port vector machine performed best on the 1,000-SNP dataset, while the Bayesian 
network-based methods performed best on the other datasets, with the efficient 
Bayesian multivariate classifier (EBMC) method showing the best overall perfor-
mance [57].

3.7  Other Techniques

The goal of any tool that is used for pattern recognition is to arrive at an optimal 
solution within a given set of complex constraints. The development of sophisti-
cated computer-based computation techniques has enabled analysts to attain better 
solutions than previous techniques. As improved techniques are developed to handle 
increasingly complex problems, there is a corresponding need for more innovative 
methods for arriving at optimal solutions. Genetic algorithms, biologic and quan-
tum computing, Big Data analytics, and hybrid methods are examples of innovative 
techniques that have gained increasing acceptance and application in the field of 
pattern recognition and data mining.

3.7.1  Genetic Algorithms

The fundamental concept of genetic algorithms has its roots in Darwin’s evolution-
ary theories of natural selection and adaptation. According to Darwin, organisms 
that come up with successful solutions to best support them and protect themselves 
from harm survive, whereas those organisms that fail to adapt to their environment 
become extinct. Based on the same idea of “survival of the fittest,” a genetic algo-
rithm initially tries to solve a given problem with random solutions. These solutions 
are often referred to as the genomes, or a collection of genes. The gene represents 
the smallest unit of information for the construction of possible solutions. The next 
step is to evaluate or quantify the fitness of all the available genomes or solutions 
based on a fitness function. The latter returns a value of goodness or fitness so that 
a particular genome or solution may be ranked against all other genomes or solu-
tions. Those solutions with better fit are ranked higher among others and are allowed 
to “breed.” Once the initial evaluation is completed, the genetic algorithms examine 
new solutions by letting all the current solutions “evolve” through mutual exchange 
of “genetic materials” among solutions to improve the genomes and/or mutation 
(i.e., randomly changing the genetic materials) to “create” new solutions. The new 
solutions are then evaluated using the same fitness functions to determine which 
solutions are good and which are not and need to be eliminated. Thus the process 
repeats itself until an “optimal” solution is attained.

There are many benefits of genetic algorithms. One major advantage is that a 
genetic algorithm almost always guarantees finding some reasonable solution to 
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problems, particularly those that we have no idea how to solve. Further, the final 
solution is often superior to the initial collection of possible solutions. Another ben-
efit is that genetic algorithms tend to arrive at a solution much faster than other 
optimization techniques. Also, the strength of the genetic algorithm does not depend 
upon complex algorithms but rather on relatively simple concepts. Despite the 
power of genetic algorithms, however, some parameters, such as the size of the solu-
tion population, the rate of mutation and crossover, and the selection methods and 
criteria, can significantly affect their performance. For example, if the solution pop-
ulation size is too small, the genetic algorithm may have exhausted all the available 
solutions before the process can identify an optimal solution. If the rate of genetic 
mutation is too high, the process may be changing too fast for the selection to ever 
bring about convergence, resulting in the failure of generating an optimal solution.

Example 3.14 Genetic algorithms have been used to construct clinical decision 
support systems. In a study by Zellner et al., the authors evaluated the performance 
of a logistic regression model in diagnosing brain tumors with magnetic resonance 
spectroscopy using the genetic algorithms approach [58]. The genetic algorithm 
approach was superior to the conventional approach in 14 out of 18 trials, and the 
genetic algorithm had fewer false negatives and false positives. In addition, the 
authors also pointed out that the genetic algorithm approach was less costly.

Example 3.15 Genetic algorithms have also been used as a data mining technique 
in healthcare operations. One study investigated whether genetic algorithms could 
be used to predict the risk of in-hospital mortality of cancer patients [59]. A total of 
201 cancer patients, over a 2-year period of time, was retrospectively evaluated. 
Compared to other methods, such as multivariate logistic regression, neural net-
works, and recursive partitioning analysis, genetic algorithms selected the least 
number of explanatory variables with a comparable proportion of the cases explained 
(79 %). The authors concluded that genetic algorithms reliably predicted in-hospital 
mortality of cancer patients and were as efficient as the other data mining tech-
niques examined.

Example 3.16 In a more recent study, an improved adaptive genetic algorithm 
method was used to create a decision support system to assess fetal well-being 
based on cardiotocogram (CTG) data. The classification resulted in a satisfactory 
accuracy rate of 94% [60].

3.7.2  Biological Computing

Biological computing is another discipline that has found its way into data mining 
applications. It cuts across two well established fields: computer science and biol-
ogy. While the genetic algorithm approach uses the analogy of natural selection to 
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develop computer algorithms, the idea of biological computing actually involves the 
use of living organisms or their components, e.g., DNA strands, to perform comput-
ing operations. The benefits include the ability to hold enormous amounts of infor-
mation, the capability of massive parallel processing, self-assembly, self-healing, 
self- adaptation, and energy efficiency. Scientists have already created genetic logic 
gates that prove the existence of what is called the transcriptor, which is a biological 
version of transistors used in computer processors [61]. For now, a biological com-
puter can only perform rudimentary functions, but its potential continues to emerge. 
For example, some scientists have been working on the development of tiny DNA 
computers that circulate in a person’s body to monitor his/her well-being and release 
the right drugs to repair damaged tissue or fight off infections and cancers [62].

3.7.3  Quantum Computing

Quantum computing is also a relatively new and exciting discipline that promises 
similar benefits listed for biological computing. It is a vast discipline that studies 
subjects beyond computing, such as coding, cryptography, communication channels 
and error correction, and data mining, under the umbrella of quantum information 
science. All these subjects are studies from the perspective of ideas and tools intro-
duced by the quantum mechanics. Entanglement and superposition are the two cru-
cial concepts of quantum mechanics that make the quantum perspective so powerful, 
compared to the traditional/classical perspective. Quantum computing research has 
been conducted at very cold temperatures closer to absolute zero (−460 °F), because 
it has not been possible for the subatomic particles to be captured at a certain quan-
tum state at higher temperatures. Because of this challenge, today’s quantum com-
puting capacity is very limited. However, experimental research has been promising: 
an international group of researchers have already been able to store data at room 
temperature for 39 min [63]. Most of the data mining methods inspired by tech-
niques of quantum information science do not require quantum computers; they are 
simply quantum inspired algorithms of the data mining techniques discussed in this 
chapter. For example, Lu et al. developed a quantum-based evolving artificial neural 
network with few connections and high classification performance by optimizing 
the network structure and connection weights simultaneously. They tested the model 
using problematic and normal sample data for breast cancer, iris and heart related 
diseases, and diabetes and concluded that the quantum-based model performed bet-
ter than traditional models included in the comparison [64].
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3.7.4  Incorporating Fuzzy Logic and Other Hybrid Methods

The idea of fuzzy logic originated from the fuzzy set theory developed to deal with 
problems in control systems [65]. In essence, fuzzy logic deals with the cognitive 
uncertainty expressed in human language [66]. For example, when humans say 
“hot”, there is a range of temperature measurements that would qualify as hot, 
depending on the context. On the other hand, computers are deterministic and 
unable to handle uncertainty. Fuzzy logic methods help data mining systems to 
incorporate cognitive uncertainty by allowing quantified partial membership of cat-
egories. For example, 30 °F could be considered only 2 % hot, where 95 °F is con-
sidered 90 % hot. Fuzzy logic supervised data mining systems allow degrees of 
membership to be determined during training. Although there is a lot of emphasis 
on codifying data in the era of electronic health records, there will always be situa-
tions where cognitive uncertainty cannot be avoided. Fuzzy logic methods are espe-
cially useful when mining such datasets. The fuzzy logic approach has been used 
with many of the data mining methods described in this chapter. For example, 
Nguyen et al. used a genetic fuzzy logic system and wavelets to classify breast can-
cer and heart disease datasets and found the proposed method to be superior to other 
classification methods [67].

The data mining methods described here are often used together to utilize par-
ticular strengths of each to address particular challenges a given project poses. In 
one such study, Seera and Lim compared the performance of a hybrid intelligent 
system (consisting of a fuzzy min-max neural network, a classification and regres-
sion tree, and a random forest model) in classifying breast cancer, diabetes, and liver 
disorder datasets. They found the hybrid system performed better than other sys-
tems reported in the literature [68].

3.7.5  Big Data Analytics

Although the unique challenges of health care led it to be slow in adopting Big Data 
analytics compared to other industries, the healthcare industry is now investing a lot 
of effort into large-scale integration and analysis of its challenging big data. This is 
especially apparent with the National Institutes of Health’s (NIH) Big Data to 
Knowledge (BD2K) initiative for biomedical big data [69]. The data science com-
munity at NIH describes biomedical big data as a very large amount of data from a 
large number of data sources that is complex and diverse with many challenges and 
opportunities. The BD2K initiative that approaches the biomedical big data strategi-
cally, basically includes all of the data mining methods for clinical decision support 
systems that are discussed in this chapter and much more. Together with the 
“Precision Medicine” initiative mentioned above in the gene expression data analy-
sis section, the BD2K initiative is likely to determine the path for data mining 
research for clinical decision support systems in the near future. Jensen et al. present 
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a nice review of current resources and initiatives, challenges, and the outlook for 
mining electronic health records[70].

3.8  Conclusions

Data mining refers to the process of pattern and relationship discovery within large 
data sets. It holds promise in many areas of health care and medical research, with 
applications ranging from medical diagnosis to quality assurance. The power of 
data mining lies in its ability to allow users to consider data from a variety of per-
spectives in order to discover apparent or hidden patterns. There are two main divi-
sions of classification: supervised learning or training and unsupervised learning. 
Supervised training requires training samples to be labeled with a known category 
or outcome to be applied to the classifier. There are many classifiers available and 
their performance can be assessed using an ROC curve. Unsupervised learning, also 
known as clustering, refers to methodologies that are designed to find natural group-
ings or clusters without the benefit of a training set. The goal is to discover hidden 
or new relationships within the data set. One application of clustering is the analysis 
of gene expression data. Genetic algorithms and biological and quantum comput-
ing, as well as Big Data analytics are newer disciplines that have found their way 
into data mining applications and clinical decision support systems.
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    Chapter 4   
 Usability and Clinical Decision Support                     

     Yang     Gong       and     Hong     Kang     

    Abstract     Clinical decision support systems (CDSS) link clinical observations with 
health knowledge to assist clinical decisions. The systems infl uence clinicians’ deci-
sions and consequently enhance healthcare quality. Unfortunately, widespread adop-
tion and user acceptance have not been achieved in most clinical settings since CDSS 
are not immune to common usability problems of health information technology. 
This chapter describes clinical and technical issues related to the usability of CDSS. 

 The clinical issues that affect usability are mainly associated with workfl ow inte-
gration and the growing body of knowledge that needs to be incorporated in clinical 
decision making. Technical issues include those related to knowledge representa-
tion, knowledge base construction and maintenance, and system implementation. 
The chapter also includes discussions on reducing alert fatigue and improving 
human-computer interaction in CDSS. It is expected that integrating CDSS with 
electronic health records will improve healthcare quality and patient safety and 
improve the timeliness of the adoption of research into practice.  

  Keywords     Usability   •   Ontology   •   Workfl ow integration   •   Alert fatigue   •   Knowledge 
base   •   Human-computer interaction   •   Knowledge representation  

4.1       CDSS Usability and Functionality 

 “    Clinical decision support systems (CDSS)    are      computer systems designed to assist 
clinicians in making decisions regarding individual patients at a specifi c point in 
time” [ 1 ]. By linking clinical observations with health knowledge, CDSS infl uence 
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clinical decisions and consequently enhance  healthcare quality  . Researchers have 
been striving to produce viable CDSS to support all aspects of clinical tasks. 
However, except for minor successes in the pharmacy and billing sectors [ 2 ], most 
CDSS suffer from common problems in usability, which have received signifi cant 
attention in the patient  safety   community [ 3 – 8 ]. 

 Usability is widely accepted as a crucial feature in industrial product design in 
industries such as aviation, nuclear power, automobile, consumer software, con-
sumer electronics, etc. In contrast, the use of usability principles in the design of 
 Electronic Health Records (EHR)   and CDSS has been sporadic and unsystematic, 
partly due to the lack of attention and effective design and assessment frameworks 
[ 9 ]. 

 “Usability refers to how useful, usable and satisfying a system is for the intended 
users to accomplish goals in the work domain by performing certain sequences of 
tasks [ 10 ].” “Useful” is described by Zhang and Walji as “how well a system sup-
ports the work domain where users accomplish goals for their work independent of 
how the system is implemented”; how “usable” a system is can be measured by 
learnability, effi ciency and  error   tolerance; “satisfaction” refers to the subjective 
impression of how useful, usable and likable a system is to a user [ 10 ]. 

 Usability is an emergent quality that refl ects the grasp and the reach of human- 
computer  interaction   (HCI). HCI is defi ned as “the study of how humans interact 
with computers, and how to design computer systems that are easy, quick and pro-
ductive for humans to use” [ 11 ]. It is crucial that  CDSS   incorporate a greatly 
improved  HCI   paradigm for the presentation of both solicited and unsolicited rec-
ommendations. Sittig et al., in discussing what they refer to as “grand challenges” 
of CDSS, emphasize that one of the usability challenges for  CDSS   is to make them 
operate unobtrusively, in the background, yet still be effective and specifi c in 
reminding the users of things that they may have forgotten, misinterpreted, or over-
looked or present new data prior to the decision, rather than correcting users after 
the fact [ 12 ]. Currently, a major concern has been the massive number of alerts 
presented to the user. When exposed to frequent and overwhelming alerts in daily 
practice, clinicians may become insensitive to the alerts and consequently may pay 
less attention, or even override them without offering meaningful reasons. This phe-
nomenon is called “ alert fatigue  ” and it refl ects how busy clinicians become desen-
sitized to  safety   alerts [ 13 ]. Alert fatigue can be extremely dangerous because the 
critical alerts that warn of impending or serious harm to the patient may be unheeded 
along with the bothersome or clinically meaningless alerts. Ironically, computer 
generated alerts intended to improve safety may result in increasing the chance of 
harm to the patient. Since  EHR   systems are being widely used in today’s healthcare 
environment,  alert fatigue   has been recognized as a major, unintended consequence 
as well as a signifi cant patient safety concern [ 14 ]. 

 Usability problems of  CDSS   involve both clinical and technical challenges. The 
challenges are summarized below with the hope that further discussion and research 
endeavors will be directed toward this important area. By solving these critical chal-
lenges, the full benefi ts of CDSS are more likely to be achieved. 
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4.1.1     Clinical Challenges 

    Disseminating Existing Knowledge About CDSS 

 Although studies consistently demonstrate successful CDSS, there has not been an 
easy way to organize the lessons learned in these  implementations   and disseminate 
them widely, so that others can learn from them [ 12 ]. Sittig et al. argue say that there 
is a need to build on initial efforts in developing more robust methods to identify, 
describe, evaluate, collect, catalog, synthesize and disseminate best practices for 
clinical decision support (CDS) design, development, implementation, mainte-
nance, and  evaluation    [ 12 ].  

    Clinical Workfl ow Integration 

 In the past,    many  CDSS   were not well integrated with computer-based physician 
order entry (CPOE), and physicians chose to ignore CDSS just because of the “dou-
ble data entry” requirement which is interruptive to the patient care process [ 1 ]. As 
more and more CDSS have been integrated into EHR systems, the double data entry 
issue is no longer a major problem for clinicians, although several diagnostic  deci-
sion support systems remain standalone  , not integrated into EHR systems. 

 A key success factor that is strongly supported by empirical studies and expert 
recommendations is that CDSS should be integrated into the clinical workfl ow [ 15 , 
 16 ].  CDSS   could be more effective when the support of workfl ow is integrated. For 
instance, if clinicians do not do their documentation while the patient is present, 
CDSS are unlikely to infl uence the clinician-patient interaction. Without feedback 
from users or observation of the care process,  CDSS   developers may not realize 
why their products are not being used effectively. Karsh describes a study where the 
researchers utilized rapid prototyping with iterative feedback in order to design a 
 CDSS   that would effi ciently integrate into the workfl ow of the users. However, 
Karsh also indicates that care processes themselves are not standardized, making it 
diffi cult to develop a set of universally applicable guidelines for CDSS integration. 
There is no single “workfl ow”; rather each clinician often has a unique way to 
approach the care process [ 16 ]. More efforts for collaboration are needed between 
health information technology (HIT) professionals who integrate  CDSS   into the 
care process and clinicians who use CDSS in practice to better understand and 
effectively integrate clinical workfl ow with CDSS.  
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    Keeping Abreast of New Clinical Research Developments 

 New clinical evidence is being published on an ongoing basis. Each year, tens of 
thousands of clinical trials are published [ 17 ], which means a large amount of new 
knowledge must be incorporated into the existing  knowledge bases  . Accordingly, 
reasoning modules in  CDSS   need to be re-evaluated or updated to refl ect the 
advances in science. In some situations, the updates may trigger unexpected con-
fl icts of rules between new knowledge and previous knowledge. Although compu-
tational power has been used to assist the updating and maintenance, labor-intensive 
manual work is still needed [ 18 ]. Most research groups cannot afford such an 
expense in the long run. As a result,  CDSS   projects that are initially grant funded 
may stop as soon as the funding ends. The vendors of commercial systems also suf-
fer from similar fi nancial challenges in providing the necessary, but costly, mainte-
nance teams for a long period to support their products. Financial issues may lead 
to less frequent updates of the  knowledge base  , which can seriously impact the 
usability of the systems.   

4.1.2     Technical Issues 

    Variety in Types of Data 

 A  CDSS   usually uses a wide range of relevant data, which may potentially increase 
the diffi culty of selecting algorithms for data integration. For example, a  CDSS   
might use data from an  EHR   such as a patient’s symptoms, medical history, family 
history and it would not be a surprise in the near future if the EHR included genetic 
information as well. These data might be used in conjunction with the historical and 
geographical trends of disease occurrence. Such a large database may consist of 
many types of data including, but not limited to, discrete, continuous, binary, matrix, 
or even natural language represented in a free text format. Therefore, it may be 
technically challenging to handle the variety of types of data. 

 The integration of these data could generate patient summaries, which would be 
a great help to clinicians since it is not easy for them to recall the important facts and 
conclusions based on such complicated patient data [ 12 ]. Moreover, it has been a 
challenge to automate the fi ltering and summarizing of all of the clinical data in 
 EHR systems   [ 12 ]. The primary diffi culty is that the data may be represented in both 
free text and coded formats, which are diffi cult to integrate. Furthermore, because 
of the different requirements of clinicians and their workfl ows, multiple versions of 
summaries may be needed to optimize the data output for better decision-making 
[ 19 ,  20 ]. 

 In order to model or organize the challenging textual data, researchers have 
applied ontologies to describe the data. However, the lack of a universally accepted 
standard for clinical vocabulary limits the development of ontologies for CDSS. For 
example,  CDSS   may use different words for the same concepts or an identical word 
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for totally different concepts. Although the Unifi ed Medical Language System 
(UMLS) makes connections among prevailing controlled vocabularies such as 
International Classifi cation of Diseases (ICD), Current Procedural Terminology 
(CPT), Logical Observation Identifi ers Names and Codes (LOINC) and SNOMED 
Clinical Terms (SNOMED CT), etc., the problems of ambiguity and redundancy in 
vocabulary still exist.  

    Synthesizing Clinical Knowledge 

 Another challenge is that a large amount of clinical knowledge is waiting to be fully 
synthesized, developed, and put into use in  CDSS  . To refl ect the clinical knowledge 
in a timely manner, there is a need for the creation, testing, and execution of the 
algorithms to make use of the data in  EHR systems   and other clinical repositories 
[ 12 ]. If clinical knowledge could be more easily synthesized and deployed in  CDSS  , 
the new clinical guidelines and CDS interventions would undoubtedly be helpful in 
promoting improved outcomes.    

4.2     Strategies to Improve the Usability of CDSS 

  The  implementations   of  CDSS often   suffer from usability issues, which have a 
direct impact on the adoption and effectiveness of CDSS [ 21 ]. Imagine that a physi-
cian is trying to prescribe a medication to his patient, and the physician keeps suf-
fering from all kinds of alerts in the process with the “help” of a CDSS. After 
carefully reading the fi rst several alerts which are meaningless, the physician may 
start to override the rest of the alerts in order to speed up the process. Unfortunately, 
he may have missed an important drug-drug interaction. The prescription is then 
sent to the pharmacy with unfortunate results. Therefore, in real-world clinical set-
tings, usability design and validation are some of the most important perspectives of 
successful CDSS  implementation  . 

 The most typical result due to poor usability is  alert fatigue  . This phenomenon 
has been regarded as a signifi cant factor in several high-profi le  errors  . For example, 
an article described an investigation where failure to attend to alarms in a patient 
monitoring system led to more than 200 deaths over 5 years [ 22 ]. Most  alert fatigue 
events   occur while using CPOE and  CDSS  , where a major class of alerts are those 
for drug-drug interactions or incorrect dosage of medications. Patient Safety 
Network (PSNet), an online journal and forum on patient safety and healthcare 
quality sponsored by the  Agency for Healthcare Research and Quality (AHRQ)   
provides several suggestions on how to minimize  alert fatigue   in CDSS [ 23 ] as 
shown in Table  4.1 .

   The proposed solutions for alert fatigue issues, once being fully implemented, 
may signifi cantly advance patient safety and healthcare quality. In addition, the 
patient safety community will also need to learn from other industries. For example, 
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in the aviation industry, the alerts in the cockpit are minimized so that only the most 
important ones are displayed to the pilots, thus allowing them to avoid the distrac-
tions of less important alerts. This approach can provide a useful model for  CDSS   
design [ 13 ]. Tiered alerts are recommended, where only the most signifi cant alerts 
require a hard stop [ 24 ]. 

 The effectiveness of CDSS highly depends on the  implementation   of  workfl ow 
integration   and usability in complex healthcare settings [ 25 ]. Most  CDSS   were gen-
erally designed for healthcare providers, but might not fully consider the diversity 
of providers and their requirements, as well as their expertise levels. When using 
CDSS, physician experts may expect to make decisions more precisely and quickly, 
while nurses may hope to take care of their patients in a better way [ 26 ]. Sometimes, 
even patients are encouraged to get engaged in  CDSS   in retirement living communi-
ties, such as TigerPlace in Columbia, Missouri. In TigerPlace, smart home technolo-
gies are installed within the private apartments of the residents. The technologies 
may include devices for emergency communication, falls detection, gait and move-
ment monitoring, cognitive reminder systems, and medication management. The 
devices are monitors, sensors, and even personal PDAs which need the residents to 
engage in the information collection [ 27 ,  28 ]. 

   Table 4.1    Solutions of  alert fatigue   in  CDSS     

 Potential solutions 

 1  Increase alert specifi city. Examples of ways to increase specifi city include classifying 
medications as individual agents (rather than by classes of medication) and specifying the 
route of administration. 

 2  Tier alerts according to severity. Presenting each alert level in a different way to users (e.g., 
different colors, different signal words) allows prescribers to identify important alerts quickly 
and may result in fewer important alerts being missed or overridden. This approach, although 
intuitive, is problematic due to the lack of widespread agreement regarding what constitutes 
a high-level or low-level alert. 

 3  Apply human factors principles when designing alerts (e.g., format, content, legibility, and 
color of alerts), and include only high-level (severe) alerts in an alert set. Low priority alerts 
have been shown to cause user frustration and slow down the medication ordering process. 
Low priority information could be presented in a non-interruptive way (e.g., as a hyperlink 
on the prescribing screen). 

 4  Tailor alerts to patient characteristics. As an example, integrate laboratory results into the 
alert system to ensure alerts are more patient-relevant. Other strategies include presenting 
pregnancy alerts only for patients who are pregnant, not all female patients in the hospital, 
and only presenting allergy alerts for patients in whom a complete list of allergies has been 
documented. 

 5  Customize alerts for physicians. Presenting specifi c alert types to specifi c specialties or skill 
levels would ensure that specialists with a high level of knowledge in an area do not receive 
alerts related to that area (e.g., nephrologists may not need to receive alerts about 
nephrotoxic drugs). This approach is sometimes viewed as problematic because 
computerized alerts are meant to serve as a safety net in times of forgetfulness or time 
pressure, even for experts. 

  From Baysari [ 23 ]. Available at:   https://psnet.ahrq.gov/webmm/case/310/      
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 The increasing amount of knowledge represented by diverse types of data and 
purposes of potential users have an effect on the usability, even though the algo-
rithms or reasoning approaches of  CDSS   may be well-designed and solid. For 
example, a multi-site study indicated that nurses routinely override CDSS 
 recommendations that do not fi t their local practice, leading to a potential increase 
in  errors   [ 29 ]. User-centered design can improve  HCI   by providing personalized 
and targeted support [ 30 ]. Improved HCI design may include individualized inter-
faces according to the user group and purpose, increased sensitivity to the needs of 
the current clinical scenario, or may even provide patient interfaces for some special 
CDSS such as those used for aging-in-place, in order to enhance the patients’ self- 
effi cacy and awareness to reduce patient  safety   events. Chapter   10     discusses patient- 
focused  CDSS   in more detail . 

4.2.1     Perform User-Centered Design 

 Norman proposed the term user-centered design (UCD) in his co-authored book 
published in 1986 [ 31 ]. The term has become widely used since then. Norman and 
Draper presented seven principles of design which are essential for facilitating the 
designer’s task [ 31 ]. Below we list and explain these principles (Norman and 
Draper’s principles are italicized):

    1.    “ Use both knowledge in the world and knowledge in the head. ” To assist the user 
in building conceptual models about how a system works, one should write easy- 
to- understand manuals prior to the design to assist the user in understanding the 
system and which can also be a good reference tool. Writing the manual prior to 
designing the system may also aid in the design of the system itself.   

   2.    “ Simplify the structure of tasks .” Designers should not overload either the short- 
term memory, or the long term memory of the system user. The user’s task should 
be consistent with mental aids, so that the user can easily retrieve information 
from long-term memory. Users should have control over the task.   

   3.    “ Make things visible. ” The visibility should help users to fi gure out the use of an 
object, for example, by seeing the right buttons or devices for executing an 
operation.   

   4.    “ Get the mappings right .” The user needs to understand the relationship between 
what the user wants to do and how the system works. One way to improve this 
understanding is to use effective graphics.   

   5.    “ Exploit the power of constraints ,  both natural and artifi cial. ” Design the system 
so the correct way to use it is obvious and make any incorrect ways of using the 
system impossible or diffi cult, so that the user is automatically guided to the cor-
rect way.   

   6.    “ Design for   error.   ” Assume that user will make errors and build in strategies to 
help recover from errors.   
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   7.    “ When all else fails ,  standardize. ” Standards are challenging to develop, but 
once the standards are agreed to, their use can make things much easier for the 
user.    

  Parallel design is an effective method in the UCD process. The design requires 
several people to create an initial design based on the same requirements. Before 
they complete their plans and share with the group, each designer should have 
worked independently. Then all the solutions will be considered by the design team, 
after which each designer will be allowed to further improve the ideas. The main 
tasks of designers include: (1) defi ne layouts, (2) clarify the expectations on design 
fi delity, (3) if using a team approach, make sure team members have equivalent 
skills, (4) set up the  evaluation   criteria [ 32 ]. 

 Prototyping is a widely used method, based on “a draft version of a product, 
allowing researchers to explore ideas and demonstrate the intention of a feature 
prior to the investment of time and money into real design” [ 33 ]. There is no limit 
for the prototype format which can be a paper draft or even a functional website. 
Using the prototyping method can signifi cantly reduce the cost when changes need 
to be made before the fi nal product is fi nished. Usability issues are already addressed 
since the feedback from users is gathered while researchers or companies are still 
planning and designing the product. 

 An individual interview is a direct way to gather information from users. This 
method allows researchers to probe the users’ attitudes, beliefs, desires, and experi-
ences to get a more comprehensive understanding about the requirements of poten-
tial users. Such an interview can be a face-to-face meeting, a phone call, or a video 
conference, or even a chat via instant messaging systems [ 34 ]. Surveys such as rat-
ing or ranking choices for the product content can also be processed during the 
interviews. During an individual talk, the interviewer can give the interviewee his 
full attention and adjust the interviewing style according to the interviewee’s needs 
without being worried about the group dynamics. Individual interviews typically 
involve fi ve to ten participants. Since the interviewers only talk to one person at a 
time, too many interviewees could extend the overall time, which may infl uence the 
quality of the discussion.  

4.2.2     Create Approaches for Sharing CDS Knowledge, 
Modules and Services 

 To improve CDS research and development, there is an urgent need to establish 
approaches for sharing the practices and experiences. The primary task is to stan-
dardize the taxonomy of CDS interventions and outcomes which allows different 
systems and organizations to display and compare their practices and outcomes. 
With a goal of providing a platform for such sharing purposes, Sittig et al. suggest 
that “a set of standards-based interfaces to externally maintained clinical decision 
support services that any EHR could “subscribe to”, in such a way that healthcare 
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organizations and practices can implement new state of the art clinical decision 
 support interventions with little or no extra effort on their part.” [ 12 ]. Imagine a 
system where CDS knowledge modules can be executed everywhere because the 
modules are designed to be compatible with the local clinical system based on the 
standardized interface. In the near future, all novel CDS applications could be pro-
posed collectively with standards-based, sharable CDS modules. It is also necessary 
to create Internet-accessible CDS repositories which could be easily shared by all 
the products using the standards-based interface [ 12 ]. Such a repository would pro-
vide an accurate source of knowledge and would allow individual healthcare facili-
ties to avoid the arduous task of creating their own rules.  

4.2.3     Enhance Quality of Knowledge Base to Support 
Multimorbidity Decisions 

  The multimorbidity issue  is   becoming a great challenge in healthcare [ 12 ]. 
Multimorbidity is defi ned as “any combination of chronic disease with at least one 
other acute or chronic disease, bio-psychosocial factor or somatic risk factor” [ 35 ]. 
Elderly patients almost always have multiple co-morbidities and a wide spectrum of 
medication prescriptions [ 36 ]. Studies have found that the following disease groups 
are likely to co-occur: cardiovascular diseases, diabetes mellitus, chronic kidney 
disease, chronic musculoskeletal disorders, chronic lung disorders, and mental 
health problems [ 37 – 39 ]. It is estimated that 84 % of total health expenditures 
involve patients with more than one condition in the United States [ 40 ]. The impact 
on public health and the economy of multimorbidity is signifi cantly increasing [ 41 ]. 

 To identify a technological approach for managing multimorbidity, evidence- 
based practice and involvement from both health professionals and patients are 
essential. As Sittig et al. argued, “the challenge is to create mechanisms to identify 
and eliminate redundant, contraindicated, potentially discordant, or mutually exclu-
sive guideline-based recommendations for patients presenting with co-morbid con-
ditions” [ 12 ]. Reviews on multimorbidity from the perspective of informatics 
indicate that  CDSS   can potentially improve patient  safety   for patients with multi-
morbidity [ 42 ,  43 ]. However, clinical guidelines are still far away from being fully 
utilized since they do not suffi ciently address the multimorbidity issue, which may 
lead to the requirement of developing new strategies using computer science meth-
ods, such as logical and semantic approaches. To date, the most effective solution 
for the combination of clinical practice guidelines is to create ontologies including 
the criteria provided by experts [ 44 ]. 

 As defi ned by Carter, “Knowledge bases are collections of facts about the real 
world, encoded in a manner that allows them to be used computationally” [ 45 ]. In 
fact, more sophisticated CDSS require a knowledge base for accessing facts and key 
concepts that underlie the domain. An  ontology   can provide structure to that 
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 knowledge. Communication, computational inference and reuse, and knowledge 
management are the three basic purposes when using ontologies [ 45 ]. In regard to 
communication, the information extracted and aggregated from different sources 
can be used to answer user queries or be regarded as input data to other applications, 
if all the terms are shared and published using the same underlying  ontology   [ 46 ]. 
The hierarchical structure of ontologies is helpful for functional and computational 
inference and data reuse in the investigated domains [ 47 ], which may consequently 
enhance the application value of the system. Ontologies are widely accepted in the 
next generation knowledge management systems focusing on conceptual models 
because they are an essential technology for activating semantic knowledge [ 48 ]. 
Thus, the use of ontologies can signifi cantly enhance the quality of  CDSS   knowledge 
bases  , especially in supporting multimorbidity decisions.   

4.2.4     Integrate CDSS with the EHR 

   In a review of the effectiveness of CDSS, Moja et al. cite studies that show that 
CDSS “increase the use of preventive care in hospitalized patients, facilitate com-
munication between providers and patients, enable faster and more accurate access 
to medical record data, improve the quality and  safety   of medication prescribing, 
and decrease the rate of prescription  errors  ” [ 49 ]. CDSS should be integrated 
with the EHR so as to further improve the effectiveness. 

 Although  EHR   adoption is gaining momentum in healthcare systems, issues 
related to usability, workfl ow, and cognitive support are barriers to EHR meaningful 
use. Some of these barriers can be addressed by integrating the CDSS with the hos-
pital information systems including but not limited to EHRs [ 1 ]. There are a number 
of commercial CDSS that are successful in narrowly defi ned domains, for instance, 
diagnostic  decision support systems   built into electrocardiograms (EKGs). However, 
they are still far from being well-integrated with the  EHR  . Similar to the process of 
knowledge standardization, EHRs also need uniform defi nitions prior to integrating 
 CDSS  . In addition, standardization is considered a priority to optimization. The 
Armed Forces Health Longitudinal Technology Application (AHLTA), the only 
EHR system used by healthcare providers of the U.S. Department of Defense (DoD) 
since 2004, allows central storage of standardized EHR data and shares patient 
information worldwide. Although this system is not immune to common issues 
shared with other  EHR systems  , AHLTA has been proven to be effective because of 
its standardization. Despite its strengths, the system is not as interoperable as it 
needs to be. In July 2015, the DoD announced that AHLTA will be replaced by a 
commercial system that is able to interact more effectively with civilian EHR sys-
tems [ 50 ]. This change refl ects the inexorable trend of EHR standardization. The 
impact and benefi t of  CDSS   linked to  EHR   will not be fully realized until the stan-
dardization of EHRs is further developed  .  
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4.2.5     Reduce Errors by Learning from Previous Experience 

  Each year  in   the United States, 650,000 cancer outpatients receiving chemotherapy 
are at high-risk of developing infections [ 51 ]. The infections may lead to hospital-
ization, disruptions in chemotherapy schedules, or even death. This is just a fraction 
of preventable patient  safety   events which are highly repetitive and could be reduced. 
To learn from the recurring events, an event reporting system is regarded as an 
effective way to analyze accumulated events and similarities at a collective level. An 
ideal reporting system would generate actionable knowledge based upon patient 
 safety   event repository, and even suggest common solutions for similar events under 
investigation. Unfortunately, current reporting systems still remain in the primary 
stage transitioning from paper forms, lacking a logic-based organizational knowl-
edge structure for comparison and analysis, and suffering from poor usability—all 
of which impede the development of the systems towards the ideal. Therefore, there 
is an urgent need for learning from patient  safety   event reporting systems. Based on 
structural knowledge, the learning mechanism can dynamically measure the simi-
larities of patient safety events and thus promote a learning effect. By integrating 
semantic searching algorithms into a patient safety event reporting system, the sys-
tem should have the ability to learn from previous events and provide hints or com-
mon solutions for current events. With this innovative idea, reporting systems will 
have more useful functions and potentially trigger a revolution for data management 
and analysis in the fi eld of patient  safety  , and then become an important approach to 
enhance the usability of  CDSS   [  52 ].   

4.3     Safety-Enhanced Design and Usability Assessment 

 CDSS have the potential to dramatically improve healthcare quality and  safety  . To 
reach this goal, systems must be designed, developed, and implemented with a 
focus on usability and safe use [ 53 ]. In the last decade, considerable attention from 
both researchers and vendors has been directed towards usability and integration 
into the clinical setting. Usability assessment aims to measure the satisfaction of 
users when they learn or use a product to achieve their goals. The degree of satisfac-
tion is based on user feedback which refl ects a combination of various factors 
including intuitive design, ease of learning, effi ciency of use, memorability,  error   
frequency and severity, subjective satisfaction, etc. In order to collect and assess 
such feedback, there are plenty of competent methods such as safety-enhanced 
design (SED), rapid usability assessment (RUA), usability testing, heuristic  evalua-
tion  , card sorting, fi rst click testing, individual interviews, online surveys, and sys-
tem usability scales (SUS), etc. Some of these methods can be used for both design 
and assessment. This section provides an overview of usability evaluation and pres-
ents several of these commonly used approaches. 
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4.3.1     Safety-Enhanced Design (SED) 

 Aiming at accommodating users rather than forcing users to adapt, there are six key 
principles of user-centered design (UCD) according to Usability.gov [ 54 ].

    1.    Design is based upon an explicit understanding of users, tasks and 
environments.   

   2.    Users are involved throughout design and development.   
   3.    Design is driven and refi ned by user-centered  evaluation  .   
   4.    The process is iterative.   
   5.    The design addresses the whole user experience.   
   6.    The design team includes multidisciplinary skills and perspectives.    

  Safety-enhanced design (SED) is a design process to reduce design-based  errors   
within  EHR   interfaces, thereby improving the quality and  safety   of EHR systems 
[ 55 ]. As part of the certifi cation criteria for meaningful use [ 26 ] vendors are required 
to use a formal, user-centered design (UCD) process during EHR system develop-
ment and perform summative usability testing for portions of their EHR products. 
The testing includes CPOE, drug-drug, drug-allergy interaction check, medication 
list, medication allergy list,  CDS  , electronic medication administration record, elec-
tronic prescribing, and clinical information reconciliation. To fulfi ll certifi cation 
requirements, vendors must submit documentation specifying the UCD processes 
used, which allows for signifi cant fl exibility in achieving SED. However, few sum-
mative tests or UCD experience reports are available at the current stage. Growing 
the literature on UCD  implementation   is considered necessary [ 56 ].  

4.3.2     Rapid Usability Assessment (RUA) 

 Rapid Usability Assessment (RUA) is a laboratory-based, analytical usability pro-
cess which was proposed to identify usability challenges and estimate the effi ciency 
in performing routine meaningful use related tasks [ 57 ]. As described by Walji 
et al., there are three main stages in RUA [ 57 ]:

    1.    Selection of meaningful use objectives. The National Institute of Standards and 
Technology (NIST) developed meaningful use test procedures which contain 
specifi c instructions and sample data to determine if a system has met a mean-
ingful use objective. The test specifi ed data must be recorded in a structured 
format using either ICD-10-CM or SNOMED-CT.   

   2.    Use of a modeling tool to predict task completion times as an indicator of pro-
ductivity. Specifi cally, predict an expert’s routine task completion times using a 
modeling tool, then use these results as performance benchmarks for laboratory 
 evaluations   [ 58 ]. There are several cognitively grounded approaches that can be 
used to predict task completion times, such as Goals, Operators, Methods and 
Selection (GOMS) technique [ 59 ].   
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   3.    Identifying usability challenges through expert review. Expert review can be 
conducted rapidly, and has been found to be effective in identifying gross usabil-
ity problems [ 60 ]. A typical type of expert review is Heuristic  Evaluation   which 
was initially proposed by Nielsen and modifi ed for use in clinical settings, and 
has been successfully applied to health IT, including practice management, 
 computerized provider order entry (CPOE), telemedicine, and medical devices 
[ 61 – 65 ]. It has also been successfully used for predicting usability issues that 
impact end user involvement [ 66 – 68 ].    

4.3.3       Usability Testing 

 “Usability testing refers to evaluating a product or service by testing it with repre-
sentative users” [ 69 ]. In the context of  CDSS  , usability testing refers to evaluating 
CDSS and the associated heath information system with clinicians or other types of 
users. During a typical usability test, participants will be asked to complete typical 
tasks (e.g. prescribe an order) while observers watch, listen with minimum interrup-
tion, and take notes or record the entire test session. The purpose of usability testing 
is to make sure the usability issues of products are identifi ed and fi xed before they 
go into production. The process of usability testing typically includes three main 
steps: develop a plan, recruit participants, choose a moderating technique and pro-
ceed to the testing. In order to make the whole schema more tangible, below is an 
example to further demonstrate the  implementation   of usability testing. The exam-
ples come from a description of the design of a voluntary patient  safety   reporting 
system [ 70 ].

    1.    Develop a plan. The plan should be made according to the purpose of the testing, 
such as what type of data you are going to collect. In the example, the research-
ers wanted to assess the usability of their user-centered voluntary patient  safety   
reporting system. The problem of patient falls, a major patient safety event, was 
selected as the research target. The data to be captured from testing was execu-
tion times on fi ve subtasks (answer initial questions, rate a harm score, enter 
patient related information, answer case-dependent multiple-choice questions, 
and document further comments). Further, the testing plan was designed to ask 
participants to report three patient fall events using the system and then complete 
the fi ve subtasks.   

   2.    Recruit participants. The participants should be a representative sample of the 
potential users of the product. The number of participants depends on the testing 
purpose. Although normally fi ve participants will be able to generate the major-
ity of the usability problems in most usability tests, ten subjects were recruited 
for the test in the example case because the tasks they needed to do were fairly 
complex.   
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   3.    Choose a moderating technique and proceed to the testing. A moderating tech-
nique should be chosen according to the goals once the plan and participants of 
the test are determined. Retrospective think aloud (RTA) was used in the study. 
This technique involved gathering the user’s verbalizations of attitudes when the 
reporting session was completed instead of during the session. The obtrusive 
disturbances to users’ cognition, which would happen when the thinking aloud 
were done concurrently with task performance, can be signifi cantly reduced or 
even completely eliminated when using RTA. There are also several other meth-
ods that could have been used, such as concurrent think aloud (CTA), concurrent 
probing (CP), and retrospective probing (RP).    

     Card Sorting 

 Card sorting is applied to help design or assess the information architecture of a 
product [ 71 ]. Topics are organized in the form of cards and provided to participants 
who may help researchers label the groups according to whether the topics make 
sense to them. Rather than the actual cards, researchers can also choose other forms 
such as pieces of paper or even online card-sorting tools. Open card sort and closed 
card sort are two widely used sorting strategies based on different requirements. The 
only difference is whether the categories of topics are pre-defi ned prior to sorting. 
The open and closed card sort can also be used in a combination way that initially 
implements an open card sort to identify content categories and then applies a closed 
card sort to see how well the category labels work.  

    Online Surveys 

 Online surveys provide researchers a more fl exible and low-cost way to learn from 
users’ feedback, such as the potential user group, the purpose of users when using 
the product, and what kind of information users expect to gain [ 72 ]. Online surveys 
can be used at any stage of the development process according to the goal. A study 
on identifying the user requirements of UCD demonstrated a successful example of 
using online surveys to screen interview candidates and train the follow-up inter-
view [ 34 ]. Aiming at fi guring out both benefi ts and barriers of a voluntary patient 
 safety   event reporting system toward UCD, the investigators organized an online 
survey in the form of a questionnaire including questions about participant’s role, 
assessment, and preference of the proposed UCD features in e-reporting. A Likert 
scale was used to measure the level of agreement for the questions. The online sur-
vey form and the easy-to-use scale made the survey more understandable and easy 
to complete [ 34 ].    
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4.4     Summary 

 While it is becoming increasingly clear that  CDSS   are effective in improving clini-
cal processes when integrated with the clinical workfl ow, it may take some time to 
fully realize CDSS’ potential in improving healthcare quality and outcomes. As 
Osheroff and colleagues state in the preface to their book,  Improving 
Outcomes  with   Clinical Decision Support   , “The challenge of improving healthcare 
has never been primarily due to a lack of innovations, but in failure to implement, 
evaluate, and disseminate the myriad promising innovations awaiting our attention” 
[ 73 ]. Fortunately, more researchers have been involved in this fi eld over the past 
decade, especially those from other disciplines   . As the researchers bring more inno-
vative ideas, we hope to witness the revolution of  CDSS   with enhanced usability in 
the near future.       
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    Chapter 5   
 Newer Architectures for Clinical Decision 
Support                     

     Salvador     Rodriguez-Loya       and     Kensaku     Kawamoto     

    Abstract     In recent years, the general IT community has been moving from a 
monolithic-type of software architecture to a service-oriented architecture that 
involves developing systems using independent, well-defi ned software services that 
are then coordinated to meet business needs. The main benefi t of a service-oriented 
architecture is the ability to more easily and more rapidly implement needed busi-
ness capabilities using independent software services. While lagging behind many 
industries, the healthcare industry has been moving towards a service-oriented 
architecture, including in the space of clinical decision support. In this chapter, we 
describe notable efforts in service-oriented clinical decision support and speculate 
on its potential evolution in the future.  

  Keywords     Clinical decision support systems   •   Service oriented architecture   • 
  Software architecture   •   Service-oriented design   •   Service oriented computing   • 
  Medical information systems  

     Clinical decision support Systems (CDSS)   were originally based on a stand-alone 
architecture, in which the system was fully self-contained and required direct user 
input for obtaining data. A number of early CDSS were built using this architectural 
style, for example MYCIN (1975). MYCIN provided advice on antimicrobial ther-
apy for patients with bacterial infections after the physician answered a set of yes-
 no questions [ 1 ]. Similarly, the INTERNIST-I (1982) [ 2 ] and DXplain (1987) [ 3 ] 
systems accepted a wide variety of patient fi ndings (e.g., history, physical, labora-
tory data) as the input and returned a ranked list of possible diagnoses, also known 
as a differential  diagnosis  . DXplain is still available and is in continuous develop-
ment [ 4 ]. Although this approach provides a straight-forward mechanism for obtain-
ing the required CDS functionality, it relies on manual entry of the input data to 
obtain the desired results. Using these systems can therefore be time consuming. 
For example, entering the relevant data for a complex patient case in the 
INTERNIST-I system can take about an hour [ 5 ]. 
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 As  electronic health record (EHR)   systems matured, CDS capabilities began to 
be integrated with EHR systems and other health information technology (IT) sys-
tems. This was typically done in a system-specifi c manner. One of the fi rst integra-
tions between clinical data and CDS capabilities was implemented in 1967 at the 
LDS Hospital in Salt Lake City, Utah. This EHR system was named HELP, and it 
was fi rst introduced in the cardiac catheterization laboratory. Since then, the  HELP 
system   has been extended to various other clinical areas such as respiratory therapy, 
intensive care, and pharmacy, to name a few [ 6 ]. Subsequently, other similar inte-
grated CDS systems have been developed by different research groups and hospitals 
[ 7 ,  8 ]. Chapters   13    ,   14    , and   15     describe the  HELP system   and some of the other 
systems. However, it soon became clear that a major challenge with these integrated 
CDS solutions was the diffi culty of sharing CDS content developed for one  EHR   
system with another EHR system. 

 Over the years, as the evidence of CDS effectiveness and the scope of CDS 
 implementations   increased, there was a desire to scale CDS across systems and 
institutions. However, stand-alone CDS architectures were limited by their need for 
extensive manual data entry, and integrated CDS architectures were limited in their 
ability to be scaled. At the same time, there was a growing trend in the general IT 
industry to move towards  software architectures   that allowed for more reusable 
components that could be scaled across institutions. In particular, of these so-called 
component-based architectures,  service-oriented architectures (SOA)   quickly 
became predominant. The CDS space has also started to adopt this approach. In this 
chapter, we aim to address some of the fundamental questions related to the use of 
Service Oriented Architecture for CDSS, namely:

•    What is a service-oriented architecture?  
•   Is SOA a preferred architecture for enabling scalable CDSS?  
•   What are notable efforts in the space of service-oriented CDS?    

5.1     Service-Oriented Architecture: Defi nition, Benefi ts, 
Challenges, History 

  Before  SOA   became the preferred approach for the design, development and inte-
gration of distributed systems, most distributed software solutions were based on 
Remote Procedure Calls (RPC). The most important RPC models were the Common 
Object Request Broker Architecture (CORBA) and the Distributed Computing 
Object Model (DCOM). For various reasons, the use of CORBA and DCOM over 
the Internet proved to be problematic, and none of these technologies took control 
of the market. With the widespread adoption of the Internet and more specifi cally 
the use of the Hypertext Transfer Protocol (HTTP), the notion of SOA started to 
materialize. In the fi eld of  software architecture  , the concept of SOA can be defi ned 
as a “paradigm for organizing and utilizing distributed capabilities that may be 
under control of different ownership domains” [ 9 ]. The needs of a distributed 
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computer program may be met by the capabilities of another program that is main-
tained by a different owner. These needs may be satisfi ed by combining multiple 
capabilities, and these capabilities may be designed to address various needs. In the 
context of SOA, services are the “mechanism by which needs and capabilities are 
brought together” [ 9 ]. The access to these capabilities is provided through well-
defi ned services interfaces. While not required, SOA is commonly implemented 
using Web services that are accessible over the Internet. 

 An important feature of SOA is that distributed capabilities can be used without 
having to know the  implementation   details. For example, a CDSS that exposes its 
functionality through a Web service can be used without the client system having to 
know which technology or platform is being used to implement the service. Figure 
 5.1  provides an overview of an example SOA-based CDS environment [ 10 ]. In this 
example, a CDS service is used by the point-of-care disease management compo-
nent of an  EHR   system and by a population health management system. Figure  5.1  
also shows other services that facilitate CDS [ 10 ]. A data service that retrieves rel-
evant clinical information from different databases, and other CDS services, such as 
commercial medication CDS services, are leveraged by the primary CDS service. A 
terminology service is also leveraged to map between vocabularies. For example, an 
 EHR   system may defi ne patient problems in terms of ICD-10 [ 11 ] whereas a CDS 
system may only accept concepts in terms of ICD-9 [ 11 ] and SNOMED-CT [ 12 ]. In 
this case, a terminology service can be used by the CDS service to translate the EHR 
system’s problem concepts from ICD-9 to SNOMED-CT to allow for processing.

   SOA is well-suited for the development of low cost, large scale systems, as it 
allows various business functionalities to be implemented and maintained indepen-
dently in a distributed manner. Additionally, SOA supports software component 
reusability, scalability and interoperability. Complex applications can be 
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  Fig. 5.1    Sample CDS system architecture [ 10 ]       
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 implemented by assembling reusable, self-contained units of functionality, thereby 
reducing the time and resources required for  implementation  . Applications scale as 
the computing infrastructure (e.g., Amazon Elastic Compute Cloud [ 13 ]) is grown 
or reduced according to the service demand. Usually, SOA applications are based 
on Web service standards (e.g., SOAP and REST), thereby enabling greater interop-
erability with other systems that use these standards. 

 SOA can present several challenges, however, with common challenges includ-
ing security and service discovery [ 14 ]. Validating the security of a SOA-based 
system can be challenging due of the multi-tenant and distributed nature of its com-
ponents. Discovering services that meet the requirements of the service consumer 
may also be challenging if there is limited support for the automatic discovery of 
service semantics. 

 A number of the key concepts of SOA are exercised at the Service Composition 
level, namely choreography and orchestration. In service choreography, each par-
ticipating service defi nes its part in the interaction, with the details typically 
described using choreography languages such as the Web Services Choreography 
Description Language (WS-CDL). In service orchestration, the  logic   is defi ned by 
a single participant, which is referred to as the orchestrator. Service orchestration 
resembles a process (i.e., sequence of tasks), and it is commonly achieved through 
the use of process execution languages such as Business Process Management and 
Notation (BPMN) and Business Process Execution Language (BPEL). Both 
approaches can have associated challenges. For example, in service orchestration, 
all data passes through a centralized point (i.e., the orchestrator), which may result 
in unnecessary data transfer and the orchestrator becoming a bottleneck. On the 
other hand, choreography models can be harder to design and implement than 
orchestration models. The decentralized control  logic   in choreography can bring 
signifi cant challenges resulting from issues such as control-fl ow (e.g., which inter-
action comes after another), time constraints, and asynchronous and concurrent 
interactions. In service choreography, it is necessary to design an agreement between 
a set of services in order to defi ne roles and how the collaboration should take place 
while maintaining SOA principles including service reusability.  

5.2     Benefi ts and Challenges of SOA for Health IT Systems 
in General and CDSS in Particular 

 The U.S. Department of Health and Human Services’ (HHS) Offi ce of the National 
Coordinator for Health IT (ONC)    defi nes health IT (HIT) as “the application of 
information processing involving both computer hardware and software that deals 
with the storage, retrieval, sharing, and use of health care information, data, and 
knowledge for communication and decision making” [ 15 ]. Using the ONC defi ni-
tion, a variety of applications can be considered health IT including  electronic 
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health records,   picture archiving and communication systems (PACS), laboratory 
information systems (LIS) as well as CDS systems [ 15 ]. 

 Because healthcare delivery is often fragmented across systems and providers, 
SOA has been proposed as a promising solution for the integration of healthcare 
related data across these various types of health IT systems. The decomposition of 
functionalities or capabilities into relatively autonomous units (i.e., services) sim-
plifi es the design and  implementation   of software solutions to complex problems in 
health care. SOA supports the strategic reuse of legacy applications, while allowing 
adoption of new technologies. This enables healthcare organizations to adapt more 
quickly to the complexity and constant evolution of medical knowledge and health 
care. Healthcare organizations are also subject to  regulations   and supervision by 
authorities and government agencies. In combination with other technologies such 
as Business Process Management and Business Rules, SOA can enable the  imple-
mentation   of audit controls that allow healthcare organizations to demonstrate that 
their processes comply with  regulations  . 

 For the reasons mentioned above, SOA promises a signifi cant reduction in the 
cost and time required for HIT implementation and maintenance. These advantages 
have been identifi ed by governments and organizations worldwide, which strongly 
promote the adoption of SOA-based health care systems. For example, Canada 
Health Infoway, a non-profi t organization funded by the Canadian government, 
defi nes an HIT  implementation   model based on SOA [ 16 ]. The Infoway model con-
nects provincial networks of health care systems to form a national network where 
electronic health care records can be accessed from different places. Another impor-
tant initiative is the Healthcare Services Specifi cation Project (HSSP), which is a 
collaborative effort between  Health Level 7 (HL7)   and the Object Management 
Group (OMG). The HSSP focuses on the specifi cation of HIT service standards 
based on SOA principles [ 17 ]. 

 Because health data relevant for CDS may exist in multiple physical locations, 
SOA can serve as a useful architectural approach for integrating disparate data 
sources. Additionally, SOA can enable CDSS to be implemented through the assem-
bly of various services providing required functionality, such as for data retrieval, 
terminology mapping, and patient data  evaluation  . For example, a SOA can be used 
to provide personalized care recommendations that combine whole genome 
sequence information with clinical data and a centralized knowledge repository 
[ 18 ]. 

 Despite the potential benefi ts of using the SOA paradigm to implement CDS 
capabilities, Kawamoto et al. describe several challenges to the adoption of this 
approach to enabling CDS [ 10 ]. One of the important challenges they identify is that 
developing and maintaining generalized CDS services that can be used by multiple 
applications require considerably more effort than doing so for similar CDS  services 
 designed   for specifi c systems [ 10 ]. There is also a need for CDS interfaces to be 
standardized in order to facilitate and encourage component reuse, and the CDS 
content may need to be customized to meet the unique needs of individual client 
organizations [ 10 ]. Furthermore, defi ning the optimal service granularity (i.e., scope 
of service function) can be challenging. Some of the problems that can arise 
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from inappropriate service granularity include service duplication (several services 
for similar functions), a proliferation of services, and services that cannot be easily 
reused in different contexts [ 10 ]. In addition, the black-box nature of a CDS service 
may not be acceptable for some organizations that want to know exactly how a clini-
cal decision has been reached [ 10 ]. Finally, healthcare organizations may insist on 
a CDS service to be locally hosted, which can make it more diffi cult to achieve 
economies of scale and enable real-time content updates [ 10 ].  

5.3     SOA Services and Capabilities Needed for CDS 

 The HL7 CDS Work Group has identifi ed and published key capabilities and 
requirements for a Clinical Information System (CIS) to provide SOA-based CDSS 
[ 19 ]. These capabilities and services are shown in Table  5.1 .

   An important requirement for interoperable, SOA-based CDSS is the develop-
ment of standard defi nitions for required services, so that services can be re- 
leveraged in a scalable manner across organizations. Also needed are resources to 
facilitate the  implementation   of such standards-based, SOA-enabled CDS. Described 
below are notable efforts in this area with regard to service standardization and 
resource development.   

5.4     Healthcare Services Specifi cation Project 

 The HSSP is a collaboration effort between  HL7   and OMG that addresses interoper-
ability challenges by developing SOA service specifi cations [ 20 ]. The specifi cations 
focus on the functionality, semantics and technology needed to support 

   Table 5.1    Services and capabilities desired for scalable, standards-based, service-oriented CDSS 
as described by the HL-7 CDS Work Group [ 19 ]   

 Services hosted by CIS that enable a  SOA   
for CDS 

 Capabilities provided by a CIS that enable a SOA 
for CDS 

 Event subscription and notifi cation service  Use of appropriate, standard information models 
and terminologies 

 Cohort identifi cation service  Ability to leverage a decision support service 
 Entity identifi cation service/identity 
cross-reference service 

 Ability to leverage a terminology service 

 Clinical data query service  Ability to leverage a unit conversion service 
 Resource query service  Ability to leverage a data transformation service 
 Data acquisition service  Ability to leverage a data presentation service 
 Data addition/update service  Ability to populate a data warehouse in real-time 
 Order placement service  Maintenance of audit logs 
 User communication service 
 Task management service 
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interoperability between systems. The goal is to reduce the complexity of 
  implementation  , promote effective integration and lower implementation costs. 
Specifi cations developed by HSSP include the Retrieve, Locate, Update Service 
(RLUS) for data retrieval and update, the Decision Support Service (DSS) for evalu-
ating patient data to generate patient-specifi c care assessments and recommenda-
tions, and the Common Terminology Services (CTS2) for providing commonly 
required terminology functions.  

5.5     OpenCDS 

 OpenCDS is “a multi-institutional, collaborative effort to develop open-source, 
standards-based CDS tools and resources that can be widely adopted to enable CDS 
at scale” [ 21 ]. An important resource developed by this effort is a knowledge author-
ing, management, and execution platform that supports relevant  HL7   standards 
including the HL7 Virtual Medical Record (vMR) and HL7 DSS standards. 
OpenCDS encapsulates knowledge into reusable components that can be shared 
with different medical systems. Some of the areas where OpenCDS has been lever-
aged include immunization forecasting, [ 22 ] CDS for whole genome sequence 
information, [ 18 ,  23 ] multimorbidity case management, [ 24 ] and CDS-based qual-
ity measurements, [ 25 ] among others.  

5.6     CDS Consortium 

 The CDS Consortium (CDSC) was established by researchers from  Brigham and 
Women’s Hospital,   Harvard Medical School, and  Partners HealthCare   Information 
System in partnership with the Regenstrief Institute, Kaiser Permanente Northwest 
Research Group, the Veterans Heath Administration, Masspro, GE Healthcare, 
Siemens Medical Solutions, and other organizations. The aim of the CDSC is “to 
asses, defi ne, demonstrate, and evaluate best practices for knowledge management 
and  clinical decision support   in healthcare information technology at scale – across 
multiple ambulatory care settings and  EHR   technology platforms” [ 26 ]. CDSC 
focuses on several CDS areas such as the development of standards for CDS  knowl-
edge representation   and demonstrations of CDS  implementations   at different sites 
across the United States.  

5.7     Health eDecisions and Clinical Quality Framework 

 The Health eDecisions (HeD) project and the Clinical Quality Framework (CQF) 
project are part of the Standards & Interoperability framework (S&I) framework 
sponsored by the U.S. Offi ce of the National Coordinator for Health Information 
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Technology (ONC)    [ 27 ]. The goal of HeD was to defi ne and validate standards that 
enable CDS sharing at scale [ 28 ]. The main achievements of HeD include the fur-
ther development, refi nement, and validation of the HL7 vMR data model standard 
for CDS; the development and validation of the HL7 CDS Knowledge Artifact 
Specifi cation for representing standard rules, order sets, and documentation tem-
plates; and the HL7 DSS Implementation Guide. The CQF project is based on the 
work accomplished by the HeD, with a focus on harmonizing the standards for CDS 
and electronic clinical quality measurement [ 29 ].  

5.8     Healthcare Services Platform Consortium 

 The Healthcare Services Platform Consortium (HSPC) is a nonprofi t community of 
healthcare providers, software vendors, educational institutions and individuals 
committed to increasing the quality and reducing the costs of health care [ 30 ]. The 
HSPC’s goal is to create a framework for, and facilitate the widespread adoption of, 
SOA-based architectures for health care that incorporate open data models and ter-
minology standards. Some of the functions of HSPC include the selection of stan-
dards for the development of interoperable SOA-based services, as well as the 
 evaluation  , testing and certifi cation of software solutions proposed by its members. 
Some of the standards that have been selected by HSPC include SNOMED CT, 
LOINC, and RxNorm for terminology; HL7 FHIR for data exchange; and SMART 
[ 31 ] for  EHR   integration.  

5.9     Other Individual Efforts 

 Beyond these specifi c efforts, there are a number of other efforts completed or 
underway. In a systematic review of  SOA   for CDS, we found 44 studies on this 
topic [ 32 ]. For example, a prominent  implementation   standard for SOA is Service 
Component Architecture (SCA). SCA is a set of OASIS specifi cations designed for 
building distributed applications based on SOA, and it is the result of the collabora-
tion of major software vendors such as IBM and Oracle [ 33 ]. SCA has been adopted 
by various industries in conjunction with Business Process Management tools and 
techniques, with a primary goal of addressing the complexity issues that arise with 
large scale  SOA   implementations. SCA has been successfully applied to provide 
guideline-based CDS to physicians within the context of  EHR   systems [ 34 ,  35 ]. 
Further details on this and other relevant individual efforts can be found in this 
aforementioned systematic review of  SOA   for CDS [ 32 ].  
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5.10     Future Directions 

 Here, we speculate on the future directions of CDS architectures based on previous 
and current efforts underway. First, we believe that the trend towards service- 
oriented CDS will continue. The pace at which it will do so is unclear, but keys to 
the facilitation of this movement include standardization and the availability of 
robust content and services to support the approach. Second, just as the general IT 
industry is moving towards more cutting-edge approaches to  SOA   and to approaches 
that go beyond SOA, we anticipate this trend will also start appearing in HIT and in 
CDS. An example of potential evolution includes movement towards use of SCAs 
and other advanced architectural approaches, such as the combination of SOA with 
event-driven and workfl ow-driven approaches such as Business Process 
Management. Finally, we anticipate that CDS architectures will also begin to incor-
porate other trends in the general industry, such as a focus on mobile devices (e.g., 
smart phones and tablets) and an increasing adoption of Cloud computing.  

5.11     Conclusions 

 CDS  implementations   have been moving towards  SOA  , similar to other fi elds, with 
a particular focus on standards-based scalability. We anticipate that this movement 
will continue to gain momentum. Moreover, we anticipate that  implementations   in 
this area will continue to follow general trends in HIT and the broader IT market-
place, such as a focus on mobile technologies and Cloud computing .     
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    Chapter 6   
 Best Practices for Implementation of Clinical 
Decision Support                     

     Richard     N.     Shiffman     

    Abstract     Implementation of clinical decision support (CDS) is the process by 
which knowledge about appropriate practice is integrated with systems that are 
designed to infl uence provider behavior. We describe a systematic and replicable 
approach to implementation of knowledge that proceeds from knowledge synthesis 
that defi nes ideal care through a knowledge formalization phase in which that 
knowledge is transformed so it can be processed by computers. Next the knowledge 
is fi tted to local needs, capabilities, and constraints. Finally, new knowledge gained 
from the implementation completes a feedback loop to inform future decision sup-
port activities.  

  Keywords     Decision support   •   Implementation   •   Knowledge synthesis   •   Knowledge 
formalization   •   Knowledge localization  

     Implementation of  clinical decision support (CDS)   is      the process by which knowl-
edge about appropriate practice is integrated with systems that are designed to infl u-
ence provider behavior. CDS design and implementation considerations are closely 
interrelated [ 1 ]. CDS implementation requires attention to the socio-technical and 
cognitive aspects of care delivery, as well as organizational function,  human- 
computer interaction  , and workfl ow analysis and reengineering. Implementation is 
increasingly regarded as a science in its own right that borrows from and contributes 
to these disciplines. 

 We describe three phases of CDS development and implementation— knowledge 
synthesis  ,  knowledge formalization  , and  knowledge localization  —in which knowl-
edge about best clinical practice is captured, transformed into computable format, 
and embedded in health care systems (Fig.  6.1 ) [ 2 ]. Clinicians and policy makers 
increasingly speak of a “learning healthcare system” in which a cycle is created by 
feeding back the results of using CDS to promote advances in patient care, health 
care delivery processes, and implementation science [ 3 ].
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6.1       Knowledge Synthesis 

  CDS is  intended   to improve the quality and  safety   of health care. Therefore, imple-
mentation begins with recognition and acknowledgement of a gap between current 
processes (and outcomes) of care and ideal care. Raw knowledge about appropriate 
care is derived from journal articles, monographs, book chapters, meta-analyses of 
individual studies, and the experience and expertise of subject matter experts. To be 
useful, this knowledge must be captured, organized, codifi ed, and represented in a 
manner that can be manipulated by computers. 

  Knowledge synthesis  is the process of combining the results of systematic review 
of the biomedical literature with the experience and expertise of experts to create 
recommendations about best practice [ 2 ].  Clinical practice guidelines  represent a 
particularly rich source of knowledge about best practice. Current, evidence-based 
practice guidelines are developed and sanctioned by trusted professional societies, 
government entities, and healthcare delivery organizations. Guideline authoring 
teams strive to identify and organize unstructured knowledge into a narrative format 
that includes recommendations about appropriate care. 

 The 2011 Institute of Medicine report  Clinical Practice Guidelines We Can Trust  
provides standards for development of guidelines [ 4 ]. According to the IOM, “trust-
worthy guidelines” should:

•    Be based on a systematic review of the existing evidence;  
•   Be developed by a knowledgeable, multidisciplinary panel of experts from key 

affected groups;  
•   Consider important patient sub-groups and  patient preferences  ;  
•   Be based on an explicit and transparent process that minimizes distortions, 

biases, and confl icts of interest;  
•   Be informed by an assessment of anticipated benefi ts and harms of alternative 

care options;  
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  Fig. 6.1    Phases of CDS development and  implementation   in a learning healthcare system       
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•   Provide a clear explanation of the logical relationships between alternative care 
options and health outcomes, and provide ratings of both the quality of evidence 
and the strength of recommendations; and  

•   Be reconsidered and revised as appropriate when important new evidence war-
rants modifi cation of recommendations [ 4 ].    

 To date, there has been considerable variability in the processes employed to 
develop practice guidelines. Some organizations apply consistent and rigorous 
methodologies to their development activities with careful  evaluation   of the 
evidence- base, while others rely on imprecise capture of expert opinion—some-
times referred to as GOBSAT (Good Old Boys Sitting Around the Table). In an 
effort to codify successful approaches and make the guideline development process 
more systematic and replicable, we developed BRIDGE-Wiz (Building 
Recommendations In a Developer’s Guideline Editor), a software application that 
leads guideline authors through a series of steps intended to improve the clarity and 
transparency of guidelines and help assure that the guidelines can be implemented 
[ 5 ]. BRIDGE-Wiz focuses fi rst on clearly specifying the recommended actions to 
be undertaken and the precise circumstances under which these actions are to occur. 
Next, it asks authors to document anticipated benefi ts, risks, harms, and costs that 
may be expected if the recommendation is executed. Finally, it standardizes the 
language of obligation in which the recommendations are articulated commensurate 
with the quality of evidence that supports each recommendation and the authors’ 
judgment about the balance of anticipated benefi ts and harms. Additional tools have 
been used to help measure guideline quality and implementability of guideline 
statements, including COGS, [ 6 ] AGREE II, [ 7 ] NEATS (personal communication, 
Jane Jue), and eGLIA [ 8 ]. The COGS (Conference on Guideline Standardization) 
and AGREE (Appraisal of Guidelines for Research and  Evaluation  ) are instruments 
intended to measure guideline quality based on longstanding indicators. The NEATS 
instrument (National Guideline Clearinghouse Extent Adherence to Trustworthy 
Standards) is more current and based on the IOM standards for trustworthy guide-
lines. eGLIA (Electronic Guidelines Implementability Appraisal) examines indi-
vidual guideline recommendations to highlight potential obstacles to successful 
implementation. 

 The product of the Knowledge Synthesis phase of CDS development is an 
unstructured narrative document containing recommendations about appropriate 
care and meta-information about how those recommendations were derived and 
how they should be applied .  

6.2     Knowledge Formalization 

    Knowledge formalization   is the process of translating narrative guidelines into struc-
tured knowledge that can be implemented consistently in CDS applications [ 2 ]. 
Early work in CDSS design showed that knowledge engineers tasked with 
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transforming guideline knowledge into CDSS developed idiosyncratic systems that 
provided different advice when tested against the same standardized patients [ 9 , 
 10 ]. This unfortunate fi nding emphasizes the importance of transparency of knowl-
edge transformation. Ideally an audit trail should be available to help assure fi delity 
of the  decision support   to the original knowledge source. 

 To help assure accuracy of knowledge translation and auditability of the formal-
ization process, we translate the narrative guideline documents into an intermediate 
 knowledge representation   expressed in the eXtensible Markup Language (XML). 
XML is a multiplatform, Web-based, open standard. Users parse the text of a docu-
ment (such as a guideline) into chunks delineated by meaningfully labeled “tags”, 
for example:

   <guidelineTitle>Hypertension Management</guidelineTitle>.   

XML is human-readable, yet can be processed by computers. The process of 
parsing guideline content into XML can be performed by non-programmers. 

 The Guideline Elements Model (GEM) schema is a standard model of the con-
tent of clinical practice guidelines in XML. It includes 167 tags to describe and 
characterize textual components of narrative guidelines. The model is hierarchical 
with the following top-level elements [ 11 ]:

•    Identity (containing information about title, release date, companion documents, 
status)  

•   Developer (including sponsoring organization, names of committee members, 
funding, confl ict of interest declarations)  

•   Purpose (including focus, objective, and rationale for creating a guideline)  
•   Intended audience (including users and care settings in which the guideline may 

be implemented)  
•   Target Population (including inclusion and exclusion criteria)  
•   Method of Development (including description of evidence collection and com-

bination, rating schemes for evidence quality and recommendation strength)  
•   Testing and Revision plans  
•   Implementation Plan  
•   Knowledge Components [ 11 ]   

GEM works well as a  knowledge representation   intermediate between a narrative 
guideline and a formally specifi ed CDSS. Most valuable to CDS implementers are 
the elements in the Knowledge Components hierarchy. In GEM, these elements 
include defi nitions of terms used in the guideline, algorithms (fl owchart representa-
tions of procedural  logic  ), and the guideline’s recommendations about appropriate 
care. The <recommendation> subtree of the GEM hierarchy includes the <condi-
tional> element, which, in turn, comprises:

•    <decisionVariable>: the condition(s) under which a recommendation is appro-
priate, and  

•   <action>: the appropriate activities to be carried out.   
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Decision variables and actions together can be used to create IF…THEN rules to 
represent guideline recommendations. 

 Other elements in the <KnowledgeComponents> subtree provide tags for the 
<reason> (why the recommendation was developed and what it is intended to 
accomplish), <evidenceQuality>, and <recommendationStrength>, among others. 

 GEM Cutter is an XML editor (available from   http://gem.med.yale.edu    ) that 
facilitates markup of guideline documents and their transformation from narrative 
text to a semi-structured format. The user interface provides three side-by-side pan-
els. A user imports the narrative guideline into the leftmost panel. The middle panel 
provides an expandable list view of the GEM hierarchy. The rightmost panel pro-
vides a window for editing and iterative refi nement of the guideline text. The user 
selects relevant text from the leftmost panel, determines where it belongs in the 
GEM hierarchy, and clicks a button that moves the text into the middle panel visu-
ally and adds the text to an evolving XML fi le. 

 In many cases, the decision variables and actions are stated in a vague and under-
specifi ed manner; occasionally they are frankly ambiguous. To achieve a semi- 
formal representation, relevant concepts are iteratively clarifi ed and appropriate 
codes are identifi ed in relevant standardized vocabularies, e.g.,  diagnosis   codes in 
SNOMED-CT or ICD-10, laboratory results codes in LOINC, drug codes in 
RxNorm. Further, the logical relationships between and among decision variables 
and actions are defi ned using ANDs, ORs, NOTs, and grouped with parentheses. As 
these refi nements are undertaken, the Guideline Elements Model maintains the 
original text of the recommendation statement to provide an audit trail against 
which the fi nal edited recommendation may be compared with the original knowl-
edge source. 

 Several proposals for a semi-formal representation are being developed by stan-
dards development organizations, which include Arden Syntax, HQMF, FHIR, and 
Health eDecisions. The product of  knowledge formalization   is one or more 
IF-THEN rules with decidable conditions and executable actions. In addition, con-
cepts are represented in a standardized vocabulary. 

 There is a limit to how far centralized guideline development teams, such as 
those supported by professional societies or healthcare delivery organizations, can 
go in implementing CDS. Ideally, one would wish that a transformed module could 
simply be plugged into a local  electronic health record   system and shared. 
Unfortunately, many site-specifi c considerations must be addressed before a recom-
mendation can be instantiated in a CDSS.   

6.3     Knowledge Localization 

 The next step  in   the development of a  decision support   rule is one of the more com-
plex ones. Once the recommendations have been expressed in statement  logic   (IF…
THEN format) using structured vocabulary, those statements need to be translated 
into actionable decision support [ 12 ]. 
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  Knowledge localization  encompasses the activities in which formalized knowl-
edge about appropriate care is introduced into the systems that infl uence care [ 2 ]. 
Knowledge localization takes into account local resource constraints, workfl ow 
analysis, functional capabilities of the  electronic health record  , and the choice of 
CDS modality. Localization, by its very nature, cannot be fully standardized. 
Nonetheless, many  implementation   considerations may be generalized. 

6.3.1     Resource Constraints 

 Implementation often takes a backseat to design and development of a CDSS. Failure 
to budget for implementation is common and in many cases, implementation makes 
use of resources that are left over, rather than allocated when the system is fi rst 
specifi ed. Clearly, early consideration of implementation needs is critical to project 
success. 

 A CDS governance structure that can assure the availability of necessary 
resources and help to prioritize an implementation plan is critical to CDSS success. 
Clinical leadership must provide support for introduction of all new technology, 
including CDS. In planning for adoption, implementers should consider incentives 
to use the systems, having champions on the ground, and integration of performance 
measurements. An example of an incentive includes having a form autopopulated 
that allows school and child care to administer medications when those medications 
are determined to be appropriate by the CDSS [ 12 ]. Likewise, a tablet-based device 
that collects information relevant to decision making in Spanish or Arabic and 
transmits its English equivalent into the CDSS facilitates use of the CDS and saves 
time for providers.  

6.3.2     Workfl ow 

 Effective deployment and integration of CDSS requires analysis and understanding 
of current and anticipated workfl ows. Personnel roles and responsibilities vary 
greatly from facility to facility. Also, the sequence of activities to achieve a goal is 
often site-specifi c as are the resources available. Optimal implementation of CDSS 
requires careful attention to how and by whom information is collected, processed, 
and acted upon. Often, reengineering of workfl ow results in enhanced CDS func-
tion. Likewise, failure to optimize workfl ow can result in project failure. 

 It is also important to use multiple methods to analyze workfl ow. Individuals 
may not always be aware of their own processes or may choose not to share “work-
arounds” when asked to describe their workfl ow. Direct observation of processes, 
though time-consuming, can often provide valuable information. For instance, 
when implementing CDS that was intended to be used at the point-of-care, we 
found that documentation necessary to trigger the CDS often did not occur until the 
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end of the clinic session when the patient had gone home. We addressed that prob-
lem by encouraging patients to directly enter relevant data into the CDS. In order to 
avoid having to repeat data gathering, the clinician would have to open the CDS 
while the patient was present.  

6.3.3     EHR Functionality 

 Wright et al.  have   demonstrated that the technical capability of commercial EHRs 
to deliver CDS varies widely [ 13 ]. Triggers to invoke  decision support   and the types 
of data that can be used to make inferences may work well in one system but may 
be unavailable in another. 

 Even though formalization represents critical CDS elements in standardized 
vocabularies, many EHR vendors maintain their own proprietary coding systems 
into which concepts must be re-coded. This recoding provides opportunities to sub-
vert the intent of the original knowledge sources.  

6.3.4     CDSS Design 

 Careful attention to human factors design principles can help to assure that informa-
tion is presented in a manner that optimizes information transfer and user accep-
tance. A set of best practices for CDS design is emerging [ 14 ,  15 ]. These standards 
call for design consistency, concise and unambiguous language, careful selection of 
modes for providing advice, and organization of information by problem and clini-
cal goal. Since access to appropriate data for  evaluation   is a key challenge, imple-
menters should plan to incorporate these elements during design. 

 In 2009 researchers analyzed more than one thousand randomly selected guide-
line recommendations and found that the actions could be reliably classifi ed into 
the following 13 categories: “test, inquire, examine, monitor, conclude, prescribe, 
perform procedure, refer/consult, educate/counsel, prevent, dispose, advocate, and 
prepare facility/modify structure of care” [ 16 ]. They described how these categories 
of action types for guideline statements can be used to provide design strategies for 
implementation. For example, design of systems to implement a “test” action might 
consider presentation of test options/alternatives, test costs, scheduling options, 
interpretation aids, patient education about the test, requirements for preparation 
for the test, and a “tickler” follow-up system. Likewise, a “prescribe” recommenda-
tion might be supported by presenting the clinician with drug information,  safety   
alerts (drug-allergy, drug-drug interaction), dosage calculation, pharmacy transmis-
sion, and corollary orders. Attention to these recurring themes can enhance CDSS 
design [ 16 ]. 

 Strategies for delivery of  decision support   differ. While primary care clinicians 
dealing with an unfamiliar problem may welcome a prescriptive approach to CDS 
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delivery (e.g., “The patient has moderate to severe Condition X for which Drug Y is 
indicated”), specialists managing a condition with which they are familiar often 
prefer a critiquing approach in which advice is only provided when a clinician’s 
proposed care differs from actions recommended by the CDSS.  

6.3.5     CDS Modalities 

 CDS can be provided by several modalities. Perhaps the most familiar modality is 
the  alert or reminder . If one or more conditions are satisfi ed, the alert fi res within 
the CDSS. Recent work has indicated that many alerts are perceived as distracting 
noise by busy clinicians and contribute to a condition known as “ alert fatigue  ” [ 17 ]. 
These users are liable to bypass alerts without heeding the information they contain 
which has the potential to compromise effective care or patient  safety  . Care should 
be taken in employing interruptive alerts and in display of reminders to maximize 
user acceptance and safe use. Implementers should avoid intrusive CDSS designs 
wherever possible. 

  Order sets  comprise another frequently used CDS modality. Order sets group 
information for display and facilitate appropriate choices as CDS users are formu-
lating plans and writing orders. This type of CDS can be highly interactive and 
display information conditionally based on the user’s actions. Order sets have been 
demonstrated in numerous studies to improve processes and outcomes of care [ 18 ]. 
There is usually a need to get agreement among clinician users as to what orders 
should be part of an order set. Although this can be time-consuming, it is worth the 
effort as the order sets can make subsequent use of the system more effi cient. For 
instance, in our GLIDES project, we chose highly respected guidelines published 
by the National Heart Lung and Blood Institute and in other work, we chose guide-
lines from trusted professional associations [ 12 ]. 

  Visual summaries of recent relevant fi ndings  help to organize complex data. 
Tierney et al. showed that simply presenting physicians with the results of previous 
tests reduced the ordering of those tests [ 19 ]. Likewise,  documentation templates  
cue the user to collect and record appropriate information.  Hypertext links  to addi-
tional information serve an educational purpose. The  Infobutton  is an  HL7   standard 
that facilitates user-initiated requests for additional information in a context- 
sensitive manner [ 20 ].  Calculators  can be used to promote accuracy of numeric 
operations, e.g., calculating a drug dosage in mg/kg or intravenous drip rate. 
Alternatively, calculators can calculate scores on survey instruments and categorize 
disease severity based on symptom scores.  
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6.3.6     Level of Enforcement 

 The level of enforcement of an alert should be tied to the importance of the informa-
tion being delivered. Guideline-specifi ed  recommendation strength  can be useful to 
implementers in determining appropriate levels of enforcement. For example, pre-
scribing a drug to a patient known to be allergic to that drug might result in an alert 
with a high level of enforcement—a hard stop in which further progress is not pos-
sible without burdensome data entry or communication with an authorizer. Hard 
stops should be reserved for uncommon and potentially serious situations. Lower 
levels of enforcement might simply require the user’s acknowledgement of the alert 
in order to move forward. Finally, some reminders might simply be informational 
not requiring any activity on the part of the user.  

6.3.7     Participatory Design 

 End users should participate in CDSS design and development activities from the 
outset. Importantly, they should recognize that they represent a class of users and 
should serve as a bilateral communication medium, bringing subject matter exper-
tise to the implementers and explanation of the evolving CDSS to stakeholders. 

 Providing users with a benefi t for using the CDS helps to gain their acceptance. 
For example, an asthma  decision support system   was designed to automatically cre-
ate and populate a permission form for the use of a rescue inhaler at school or camp. 
Likewise, we developed decision support for improving prescription of opioids for 
chronic pain. Once a provider indicates an intent to prescribe an opioid, s/he is 
reminded about non-pharmacologic interventions (e.g., physical therapy, acupunc-
ture, cognitive behavioral therapy, etc.) and referral is facilitated. In addition, the 
CDSS provides a link to the guidelines that provide the evidence base for the recom-
mendations and another to the state Prescription Drug Monitoring Program, 
“Making it easy to do it right” is a useful mantra for implementers to follow [ 21 ].   

6.4     Evaluation and Learning 

 CDSS  success   should be measured against the goals originally identifi ed during 
 Knowledge Synthesis  . Once tested and deployed, the implementation team should 
collect data regarding effectiveness, usefulness,and  usability   of the CDSS. Use of 
CDS to guide care results in the generation of new data about how adhering to exist-
ing recommendations affects health and healthcare. CDSS evaluation helps to shape 
new recommendations about appropriate care. 
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 Implementers also learn about the  usability   of the CDSS by planned evaluation 
activities. Evaluation can include formal or informal observation of users interact-
ing with the CDSS as well as user surveys to assess system usefulness, ease of use, 
ease of learning and general satisfaction. Chapter   9     discusses other strategies for 
CDSS evaluation. 

 A learning health system effectively captures this information and loops it back 
to be synthesized with indicators of effectiveness [ 3 ]. These new data inform future 
CDSS design and deployment decisions.  

6.5     Summary and Conclusions 

  Clinical decision support   has great promise to improve the health of individuals and 
to improve the delivery of healthcare across populations. In order to do so, CDSS 
must be based on the best knowledge available systematically and replicably trans-
formed into formats that computers can process. Careful consideration of local 
needs and resource constraints determines the ultimate success or failure of the 
system. Knowledge about best clinical practice must be combined with knowledge 
about effective implementation.       
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    Chapter 7   
 Impact of National Policies on the Use 
of Clinical Decision Support                     

     Jacob M.     Reider     

    Abstract     The United States federal government has contributed strategic guidance 
and funding toward the development of a mature national infrastructure for clinical 
quality improvement. These efforts, aligned with the National Quality Strategy, 
have created technical foundations, policy levers, and content artifacts that have 
accelerated the development of clinical decision support in the United States. 
Legislative and regulatory activities will continue to create opportunity for both 
technical and content experts in this domain. This chapter explores the major efforts 
of the US government to promote the effective use of clinical decision support.  

  Keywords     National Quality Strategy (NQS)   •   Federal health policy   •   Offi ce the 
National Coordinator (ONC)   •   Centers for Medicare and Medicaid Services (CMS)   
•   Agency for Healthcare Research and Quality (AHRQ)  

    Clinical decision support (CDS)   has long been a part of the United States federal 
government’s strategy toward reaching the Triple Aim of better health, better care 
and lower cost [ 1 ]. This chapter will review the federal contributions in this domain 
beginning in 2008, when a major CDS initiative was launched by the Agency for 
Healthcare Research and Quality ( AHRQ  ) [ 2 ]. As this chapter will describe, the 
 AHRQ   projects created a foundation for nearly all of the work that followed, and 
created both the technical and policy framework that would be required to reach the 
Triple Aim. While the United States Department of Defense (DoD), the Indian 
Health Service (IHS), and the Veterans Health Administration (VHA) are also fed-
eral entities, this chapter will not address their CDS work. Rather, the emphasis here 
is on AHRQ, the Centers for Disease Control and Prevention (CDC), the  Centers for 
Medicare and Medicaid Services (CMS)  , the Offi ce of the National Coordinator for 
Health Information Technology (ONC)    and the US Congress, organizations that 
have created programs or policies with broad national impact. While DoD, IHS and 
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VHA certainly have national impact, it is their impact as very large care delivery 
organizations rather than as defi ning or implementing policy with national down-
stream consequences. 

7.1     United States Federal Government  Clinical Decision 
Support   Initiatives 

 Today, the basis for federal engagement in CDS is the  National Quality Strategy 
(NQS)   which was mandated by the Affordable Care Act and updated annually [ 3 ]. 
First published in 2011, the  NQS   defi nes three aims, six priorities and nine levers 
that will be used to improve health quality in the United States [ 4 ]. The National 
Quality  Strategy   pursues three broad aims. These aims will be used to guide and 
assess local, state, and national efforts to improve health and the quality of health 
care. To advance these aims, the National Quality Strategy focuses on six priorities 
(see Table  7.1 ).

   Table 7.1    Summary of  NQS  ’s aims and priorities   

 Aims  Priorities 

 1.  Better care: improve the overall quality, by 
making health care more patient-centered, 
reliable, accessible, and safe 

 1.  Making care safer by reducing harm 
caused in the delivery of care 

 2.  Healthy people/healthy communities: 
improve the health of the U.S. population by 
supporting proven interventions to address 
behavioral, social and, environmental 
determinants of health in addition to 
delivering higher-quality care 

 2.  Ensuring that each person and family 
is engaged as partners in their care 

 3.  Affordable care: reduce the cost of quality 
health care for individuals, families, 
employers, and government 

 3.  Promoting effective communication 
and coordination of care 

 4.  Promoting the most effective 
prevention and treatment practices for 
the leading causes of mortality, starting 
with cardiovascular disease 

 5.  Working with communities to promote 
wide use of best practices to enable 
healthy living 

 6.  Making quality care more affordable 
for individuals, families, employers, 
and governments by developing and 
spreading new health care delivery 
models 

  Adapted from: Report to Congress, National Quality  Strategy  , March 2011. Available from 
  http://www.ahrq.gov/workingforquality/nqs/nqs2011annlrpt.pdf      
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   Each of the nine National Quality  Strategy   levers (see Table  7.2 ) represents a 
core business function, resource, and/or action that stakeholders can use to align to 
the Strategy. In many cases, stakeholders may already be using these levers but have 
not connected these activities to National Quality Strategy alignment.

   While CDS is not explicitly referenced in this guiding framework for the  NQS  , 
CDS is a powerful enabler of all three aims, most of the priorities, and many of the 
levers. Given this dependence, the federal government has made deep investments in 
both quality measurement and CDS, and has been working hard to converge these 
efforts – in both technical and policy domains – toward a unifi ed quality improvement 
work effort that forms an umbrella for both CDS and clinical quality measures (CQM)   .  

7.2     Technical Foundations 

 In August 2007,  AHRQ   solicited proposals for “the development,  implementation   
and  evaluation   of demonstration projects that advance understanding of how best to 
incorporate  clinical decision support   into the delivery of health care … with the 
overall goal of exploring how the translation of clinical knowledge into CDS can be 
routinized in practice and taken to scale in order to improve the quality of health 
care delivery in the U.S.” [ 5 ]. The successful grantees were Yale University’s 
Guidelines Into Decision Support (GLIDES) project, and Brigham and Women’s 
Hospital’s Clinical Decision Support Consortium (CDSC). 

   Table 7.2    Summary of  NQS’s   levers   

 Levers 

 1.  Measurement and feedback: provide 
performance feedback to plans and 
providers to improve care 

 6.  Payment: reward and incentivize providers 
to deliver high-quality, patient-centered 
care 

 2.  Public reporting: compare treatment 
results, costs and patient experience for 
consumers 

 7.  Health information technology: improve 
communication, transparency, and 
effi ciency for better coordinated health and 
health care 

 3.  Learning and technical assistance: foster 
learning environments that offer training, 
resources, tools, and guidance to help 
organizations achieve quality 
improvement goals 

 8.  Innovation and diffusion: foster innovation 
in health care quality improvement, and 
facilitate rapid adoption within and across 
organizations and communities 

 4.  Certifi cation, accreditation, and 
 regulation  : adopt or adhere to 
approaches to meet  safety   and quality 
standards 

 9.  Workforce development: investing in 
people to prepare the next generation of 
health care professionals and support 
lifelong learning for providers 

 5.  Consumer incentives and benefi t 
designs: help consumers adopt healthy 
behaviors and make informed decisions 

  Adapted from: Report to Congress, National Quality  Strategy  , March 2011. Available from 
  http://www.ahrq.gov/workingforquality/nqs/nqs2011annlrpt.pdf      
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 A four-level knowledge transformation process was used by both GLIDES and 
CDSC, with each initiative focusing on different levels of the process [ 2 ]. The four 
levels referenced are based on a taxonomy fi rst described in 2005 by the team at 
Brigham and Women’s Hospital [ 6 ]. Level 1 is the non-electronic information trans-
fer (mail, phone), level 2 is “machine transportable” but nonstandard information 
transfer, level 3 is “machine-organizable” – the transmission of structured informa-
tion that remains imperfect due to semantic mismatch between systems, and level 4 
is machine-interpretable information – computable by a “downstream” system 
without human interaction or correction. 

 Applied to CDS, Level 1 is represented by the clinical research in a paper or 
book, such as a written clinical guideline. This prose, written for people to read and 
assimilate with other knowledge, often includes ambiguous recommendations such 
as “one might consider” or “options for treatment include…” that are diffi cult for 
both clinicians and computers to parse logically and express as CDS. 

 Level 2 instances of CDS would be more evolved translations of prose into a set 
of logical expressions that are not yet fully expressed in computable form. The 
GLIDES initiative added a great deal to our understanding of how we must bridge 
the gap between Level 1 CDS guidance and Level 2. This work produced GEM, the 
Guidelines  Evaluation   Model [ 7 ] and its successor GEM II [ 8 ], and informed the 
development of the Clinical Practice Guideline development manual [ 9 ]. It empha-
sized to developers that ambiguous and vague terms would need to be eliminated 
from guidelines and that the terms needed to be refi ned into key action statements. 
The hypothesis, of course, is that with greater clarity of prose a more logical transla-
tion of that prose (level 2 CDS) could be developed. 

 Level 3 represents CDS that can be encoded and transmitted using a syntax that 
could be understood by a receiving system.  HL7   Arden Syntax is an example of 
level 3 CDS: it can be generated and internally computed, but due to the variability 
of vocabularies, domain models, and technical frameworks, Arden Medical Logic 
Modules (MLMs) are rarely shared across care delivery organizations, and cannot 
be used across vendor systems [ 10 ]. 

 Level 4 CDS is represented by the computable form of a CDS concept in a health 
IT system. While some describe this as “compiled” or “hard-coded,” these terms 
should not be taken literally. The best way to think about level 4 CDS is that it is – 
regardless of how it got there – the instantiation of clinical guidance in a health IT 
system. 

 The workfl ow of the majority of CDS in health IT systems involves the transla-
tion of Level 1 to Level 2 by clinical informaticians, and the subsequent coding of 
the product of Level 2 concepts into the system that will interact with users. 

 While GLIDES focused on Level 1 to Level 2, the CDSC project facilitated work 
towards the creation of a truly interoperable Level 3 format. Its goal was creating 
international libraries of Level 3 CDS that could be authored, shared, maintained, 
and consumed by any health IT system without the need for translation, localiza-
tion, or re-interpretation. Health IT companies, professional societies and hospital 
systems participated in pilot projects, and a draft XML format was created, bearing 
the functional title “CDSC Level 3 XML format” [ 11 ].  
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7.3     Workfl ow and Knowledge Management 

 The CDSC and GLIDES projects also worked on “last mile” challenges of CDS: 
management of knowledge within an IT system or care delivery organization, opti-
mal selection and  implementation   of CDS interventions, as well as legal challenges, 
and  liability   concerns. 

   Structuring Care Recommendations for  Clinical Decision 
Support   and Advancing CDS  

 As the CDSC and GLIDES projects entered their fi nal year,  ONC   and  AHRQ   
funded shorter-tem initiatives to carry forward some of GLIDES’ and CDSC’s 
work. Structuring Care Recommendations was an AHRQ funded 1-year project, 
creating a set of over 50 “eRecommendations” – level 3 instantiations of the US 
Preventive Services Task Force guidelines, and surfacing many of the challenges of 
deploying CDS in care delivery organizations [ 12 ]. 

 The Advancing CDS (ACDS) project carried forward the work of CDSC, and 
populated a repository of CDS artifacts that were publicly available in both human 
readable and XML forms. This repository was the fi rst instance of a publicly avail-
able resource of level 3 CDS artifacts [ 13 ]. 

 All of these projects provided good documentation of strong foundational work 
as methods of translating good guidance into good decisions and actions were 
found. However, the work had not yet resulted in widespread adoption of Level 3 
artifact libraries – nor were health IT systems capable of subscribing to these librar-
ies, nor was this model validated as the best path toward widespread improvements 
in care quality,  safety  , or cost reduction. In parallel, Congress passed the American 
Recovery and Reinvestment Act of 2009, which included the HITECH (the Health 
Information Technology for Economic and Clinical Health) Act, a comprehensive 
law that created the  CMS   EHR incentives programs (colloquially referred to as the 
“meaningful use” program) and the ONC EHR certifi cation program [ 14 ].   

7.4     Health eDecisions and the Clinical Quality Framework 

 In 2012,  ONC   launched the Health eDecisions (HeD) project under the Standards 
and Interoperability Framework [ 15 ]. This project leveraged the work of GLIDES, 
CDSC, and ACDS to begin the process of creating an HL7 standard that would sup-
port two primary use cases: expression of CDS knowledge artifacts (extending the 
ACDS Level 3 XML schema) and CDS content delivery through web services. The 
project successfully balloted two iterations of  HL7   Draft Standards for Trial Use 
(DSTU) standards for each use case, and facilitated successful pilots. Yet at the 
completion of the initiative, there remained a key challenge that exposed a division 
in health IT nationally and perhaps globally: despite a shared goal of better care, 
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better health, and lower cost, two parallel communities had formed to work toward 
this goal. One, the CDS community, developed methods of intervening in care deci-
sions toward improving them. The other, the quality measurement community, 
developed clinical quality measures or CQM, with the implicit prediction that mea-
surement will cause improvement. Within and beyond the federal government, 
CQM and CDS reference different domain models, different standards, and differ-
ent syntax – even though the majority of the  logic   is identical. The key difference is 
one of timeframe: with CDS, one focuses on decisions at the point-of-care and say 
“for THIS sort of individual, we should offer THAT sort of treatment,” while those 
who focus on CQM look at the same situation retrospectively and say: “for THIS 
sort of individual, did we offer THAT sort of treatment?” 

 As HeD evolved in parallel with the quality measures work and the evolution of 
the Health Quality Measures Format (HQMF), which is the  HL7   normative standard 
that defi nes an XML expression syntax for clinical quality measures, it became clear 
that the federal government needed to align these projects toward one domain model, 
one semantic framework, one services syntax, and one standards work stream. 
Toward such a unifi cation, the Clinical Quality Framework initiative was launched 
to converge the work of CDS and CQM into a clinical quality improvement (CQI) 
initiative. The activity is hosted by the  ONC   Standards and Interoperability frame-
work where readers can fi nd links to (a) pilot initiatives, (b) draft versions of QUICK, 
the Quality Improvement and Clinical Knowledge model, (c) the merged successor 
to the Virtual Medical Record (vMR), as well as (d) the domain model for HeD, (e) 
the Quality Data Model (QDM), and (f) HQMF [ 16 ]. As QUICK and its new syntax, 
CQL (Clinical Quality Language), evolve, the goal will be to unify artifacts pro-
vided by the federal government for both CDS and CQM into this common format. 
Just as the government currently provides CQMs in HQMF, the long-term goal is 
that the government will ultimately provide publicly available CDS knowledge arti-
facts and CQMs in CQF. Then this could be subscribed to by health IT systems and 
incorporated into workfl ow without human translation.  

7.5       Clinical Decision Support   and the HITECH Act 

 HITECH created the authority and funding for  ONC   and  CMS   to create policies and 
programs that were engineered to improve care and care quality in the United States. 
As initially designed by ONC and CMS, the programs were created to evolve in 
three stages: Stage 1 focused on adoption of health IT, Stage 2 focused on exchange 
of information, and Stage 3 focused on care quality improvement. Each iteration, 
initially planned to take 2 years, would provide incentives for care providers to 
adopt health information technology and incorporate it meaningfully into their prac-
tices. This is the genesis of the term “meaningful use,” as the goal was to incentivize 
the  use  of health IT, rather than just the purchase of it. The defi nition of “meaning-
ful” has been a matter of serious debate, as there remains a great deal of variability 
in how care delivery organizations operate. What may be meaningful to a pediatric 
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ophthalmologist may or may not be meaningful to a geriatrician and vice versa. The 
mirror image of the  CMS   incentive programs (separate programs for Medicare and 
Medicaid providers) is the ONC’s certifi cation program, formally called the 
Standards and Certifi cation Criteria for Health Information Technology. The fi rst 
iterations of these  regulations   were published in 2009, with an effective date of 
January, 2011. 

 The  regulations   for Stage 1 of the  EHR   incentive programs, as well as the 2011 
Standards and Certifi cation criteria, included a  clinical decision support   require-
ment. To satisfy the meaningful use expectations, providers and care delivery orga-
nizations were required to “[i]mplement one clinical  decision support   rule relevant 
to specialty or high clinical priority along with the ability to track compliance with 
that rule” [ 17 ]. HHS defi ned CDS as “HIT functionality that builds upon the foun-
dation of an  EHR   to provide persons involved in care processes with general and 
person-specifi c information, intelligently fi ltered and organized, at appropriate 
times, to enhance health and health care” [ 17 ]. The  regulations   also created certifi -
cation criteria that defi ned the functional capabilities that would need to be used in 
order for the meaningful use requirements to be met. For 2011 certifi cation, the 
certifi cation requirements were:

      (1)    Implement rules. Implement automated, electronic  clinical decision support   rules 
(in addition to drug-drug and drug-allergy contraindication checking) based on the data 
elements included in: problem list; medication list; demographics; and laboratory test 
results.   

   (2)    Notifi cations. Automatically and electronically generate and indicate in real-time, noti-
fi cations and care suggestions based upon  clinical decision support   rules.[ 18 ]     

   Unfortunately, many health IT developers and care delivery organizations inter-
preted this requirement to mean that programmatic rules would need to be devel-
oped that would always result in alerts – raising deep concern that  alert fatigue   
would eliminate the value of the CDS altogether. Furthermore, questions were 
raised about the defi nition of “real-time”: if a batch process were run overnight to 
identify patients eligible for a screening colonoscopy or infl uenza vaccine, would 
that violate the certifi cation requirement? What if a system provided enhancement 
of visual display to clearly indicate a patient’s need for a given intervention, and it 
was appropriately based on lab results, medications, and medical problems, but not 
demographics? Would the omission of demographics mean that the system could 
not be considered certifi ed CDS? And if a care provider used that capability would 
he/she be ineligible for meaningful use incentives? 

 Subsequently, the Stage 2 requirements/2014 certifi cation criteria (published in 
2012) and the Stage 3 requirements/2015 certifi cation criteria (published in 2015) 
addressed many of these questions. Both requirements/criteria expanded the mean-
ingful use requirement to the  implementation   of fi ve interventions from one, and 
emphasized that at least four interventions needed to be associated with clinical 
quality measures. The certifi cation criteria were also modifi ed and expanded, as 
demonstrated in Table  7.3  [ 19 ]. It is important to fully understand each of these 
requirements in detail, as they form the functional basis for all certifi ed health IT 
products in the US going forward .
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     Table 7.3    2015 Certifi cation criteria related to  clinical decision support   (CDS)   

 2015 Certifi cation criteria:  Clinical decision support   (CDS) 

 (i)  CDS intervention interaction . Interventions provided to a user must occur when a user is 
interacting with technology 
 (ii)  CDS 
confi guration  

 (A) Enable interventions and 
reference resources specifi ed 
in paragraphs (a)(9)(iii) and 
(iv) of this section to be 
confi gured by a limited set 
of identifi ed users (e.g., 
system administrator) based 
on a user’s role 

 (B) Enable interventions: 
 1. Based on the 
following data: 

 2. When a patient’s 
medications, 
medication allergies, 
and problems are 
incorporated from a 
transition of care/
referral summary 
received and pursuant 
to paragraph (b)(2)
(iii)(D) of this section 

   (i) Problem list; 
   (ii) Medication 

list; 
   (iii) Medication 

allergy list; 
   (iv) At least one 

demographic 
specifi ed in 
paragraph (a)(5)
(i) of this 
section; 

   (v) Laboratory 
tests; and 

   (vi) Vital signs 
 (iii)  Evidence - based decision support interventions . Enable a limited set of identifi ed users to 
select (i.e., activate) electronic CDS interventions (in addition to drug-drug and drug-allergy 
contraindication checking) based on each one and at least one combination of the data 
referenced in paragraphs (a)(9)(ii)(B)( 1 )( i ) through ( vi ) of this section 
 (iv)  Linked 
referential CDS  

 (A) Identify for a user 
diagnostic and therapeutic 
reference information in 
accordance at least one of 
the following standards and 
 implementation   
specifi cations: 

 (B) For paragraph (a)(9)(iv)(A) of this 
section, technology must be able to 
identify for a user diagnostic or 
therapeutic reference information based 
on each one and at least one 
combination of the data referenced in 
paragraphs (a)(9)(ii)(B)( 1 )( i ), ( ii ), and 
( iv ) of this section    1. The standard and 

implementation 
specifi cations specifi ed in § 
170.204(b)(3) 

   2. The standard and 
implementation 
specifi cations specifi ed in § 
170.204(b)(4) 

(continued)
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7.6        2015 CDS Certifi cation Criteria 

 Federal  regulations   are specifi ed by where in the code of federal regulations (CFR) 
they can be found. The 2015 certifi cation criteria are in section 170.315, and the 
CDS criterion is section 9. Therefore this section is referenced as CFR 170.314(9) 
and there are fi ve elements of this criterion, as shown in Table  7.3 . 

7.6.1     CDS Intervention Interaction 

 In the new criteria, CDS is no longer referenced as a “rule” but as an “intervention.” 
The selection of this term was deliberate as “rule” invokes notions of  logic  , pro-
gramming and algorithms, while the term “intervention” focuses on the  outcome  of 
such methods.  ONC   sought to direct focus on the activity rather than the method 
and to allow for innovation wherever possible. ONC also clarifi es that CDS inter-
ventions must be presented when the user is interacting with the technology. 

Table 7.3 (continued)

 2015 Certifi cation criteria:  Clinical decision support   (CDS) 

 (v)  Source 
attributes . Enable a 
user to review the 
attributes as 
indicated for all 
CDS resources: 

 (A) For evidence-based 
decision support 
interventions under 
paragraph (a)(9)(iii) of this 
section: 

 (B) For linked referential CDS in 
paragraph (a)(9)(iv) of this section and 
drug-drug, drug-allergy interaction 
checks in paragraph (a)(4) of this 
section, the developer of the 
intervention, and where clinically 
indicated, the bibliographic citation of 
the intervention (clinical research/
guideline) 

   1. Bibliographic citation of 
the intervention (clinical 
research/guideline); 

   2. Developer of the 
intervention (translation 
from clinical research/
guideline); 

   3. Funding source of the 
intervention development 
technical implementation; 
and 

   4. Release and, if 
applicable, revision 
date(s) of the intervention 
or reference source 

  Adapted from Federal Register [Internet]. 2015. 2015 Edition Health Information Technology 
(Health IT) Certifi cation Criteria, 2015 Edition Base  Electronic Health Record (EHR)   Defi nition, 
and  ONC   Health IT Certifi cation Program Modifi cations: 45 CFR 170.314.(9). 2015 [cited 2015 
Nov 14] Available from:   https://www.federalregister.gov/articles/2015/10/16/2015-
25597/2015-edition-health-information-technology-health-it-certifi cation-criteria-2015-edition-
base#p-277      
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The  regulation   therefore does not consider functional capabilities to be CDS unless 
these capabilities interact with an end user. It is important to note that for ONC’s 
certifi cation, it is not specifi ed that the user needs to be a clinician – just that some-
one needs to be interacting with the technology itself – presumably as part of an 
appropriate workfl ow. Paper byproducts of CDS interventions are therefore not 
acceptable, but  any  technology (e.g., smartphone, computer, watch, technically aug-
mented glasses, heads-up data displays, or tactile interfaces such as dynamic Braille) 
that is certifi ed to perform this capability, would be acceptable.  

7.6.2     CDS Confi guration 

 CDS capabilities require confi guration, maintenance, optimization, and in many 
cases, personalization. This criterion specifi es fi rst that a certifi ed system is required 
to include the capability of such confi guration by the user. The intent of this require-
ment is to clarify that some users may require different interventions, and that a 
system administrator must be able to apply/manage these interventions on the users’ 
behalf. 

 The section further clarifi es that the capabilities such an administrator can enable 
include interventions based on patient medications, problems, medication allergies, 
vital signs, lab tests and at least one demographic element: sex, race and ethnicity, 
preferred language, or sexual orientation and gender identity (SO/GI). Second, this 
criterion specifi es that a system needs to be capable of enabling CDS interventions 
to be based on medications, problems, or medication allergies that are incorporated 
into the patient’s record as a product of a user acting on a care summary record that 
is received from another care provider. For example, if a user has incorporated a 
care summary record that includes a new medication allergy, the system must be 
capable of informing the user of a potential contraindication to that medication.  

7.6.3     Evidence-Based Decision Support Interventions 

 This criterion dovetails with the “confi gure” requirement, and expresses that some 
users need to have the capability of activating CDS interventions, based on each of 
the “confi guration” elements (i.e. medications, problems, etc.)  and  at least one com-
bination of these elements. For example, a user needs to be able to turn on a CDS 
intervention that recommends breast cancer screening, based on gender and age, or 
diabetes screening, based on BMI and lab values. Furthermore, this criterion makes 
it clear that drug-drug and drug-allergy checking are not considered CDS for the 
purposes of this criterion, but are addressed in separate certifi cation criteria.  
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7.6.4     Linked Referential CDS 

 Linked referential CDS is a link, such as an HTML hypertext link, or other software 
connection, to a knowledge resource that uses the  HL7   Context Aware Knowledge 
Retrieval Application or “infobutton” standard. The certifi ed technology must be 
able to leverage the patient’s problems, medications, and demographics to connect 
the user to relevant diagnostic or therapeutic information. For example, based on a 
patient’s problem list, a system might use the infobutton standard to query a knowl-
edge repository for reference information about one of the patient’s problems, and 
offer references or information about that problem that may be of value toward 
more optimal management.  

7.6.5     Source Attributes 

 This criterion specifi es that for any CDS intervention, the science upon which the 
guidance is based must be made available to the end user in the form of a biblio-
graphic reference. Furthermore, the identity (person or organization) of the devel-
oper of the intervention and the funding source of the intervention should also be 
made available. In some cases, a bibliographic reference may not be available or 
necessary. For example, a self-evident CDS intervention, such as a suggestion to 
avoid prescribing a medication to which the patient is allergic, may not require a 
bibliographic reference. The developer and funding source are important because 
these may represent biases that the user may want to understand.  ONC   made no 
effort to regulate or even defi ne where or how bias may contribute to CDS that is 
incorporated into a health IT system. Rather,  ONC   worked to make sure that there 
would be ways that users could make judgments of bias on their own. For example, 
if drug company ABC were to pay health IT company XYZ $3,000,000 to include 
CDS interventions suggesting that every patient with a given condition be pre-
scribed ABC’s new medication for that condition, the developer of the intervention 
(XYZ) would be visible to the user, as would the funding source (ABC). The certi-
fi cation requirement is that the system must be capable of this functionality, and not 
that every CDS intervention in the system leverages it. This is an important distinc-
tion, because “home-grown” CDS interventions that a clinician may create for 
themselves would not need to incorporate these attributes. 

 These certifi cation criteria are important because every federal program that 
invokes the use of certifi ed health IT will reference these capabilities, defi nitions, 
and terminology. It is therefore important to understand that while CDS “rules,” 
“artifacts” and “interventions” may be used in some circles interchangeably, the 
federal programs will generally refer to “interventions” and will invoke iterations of 
the certifi cation criteria described above and in Table  7.3 .   
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7.7      Implementation   and Optimization Guidance 

 In addition to the policy and standards work, HHS has sought to provide guidance 
to care delivery organizations so that best practices in CDS implementation and 
optimization can be defi ned and leveraged nationwide. Presently,  ONC   hosts 
resources on a CDS web page (  https://www.healthit.gov/providers-professionals/
clinical-decision-support-cds    ) that provides users with both introductory and 
advanced resources. These resources include presentations, worksheets, and guid-
ance documents designed to help care delivery organizations capture the right infor-
mation about CDS opportunities, and then develop thoughtful, well documented 
CDS interventions.  

7.8     The Patient Protection and Affordable Care Act 

 The Patient Protection and Affordable Care Act, often referred to as “ACA” or 
“Obamacare,” had no explicit references to CDS, but it established the creation of 
the Patient Centered Outcomes Research Institute (PCORI), and the Patient Centered 
Outcomes Research (PCOR) Trust Fund [ 20 ]. The goal of these initiatives is to 
leverage health information technology to discover new opportunities for care 
improvement, and then to disseminate this new knowledge. To facilitate dissemina-
tion,  AHRQ   created the PCOR CDS Learning Network [ 21 ], which will:

•    Engage clinicians, patients, professional associations, health IT developers, and 
other stakeholders who can help promote the incorporation of PCOR fi ndings 
into clinical practice through CDS;  

•   Identify barriers and facilitators to the use of CDS as a means to disseminate and 
to implement PCOR fi ndings in clinical practice; and  

•   Provide consensus-based recommendations to the fi eld of CDS developers, CDS 
implementers, and other stakeholders about CDS design and  implementation   
best practices [ 21 ].    

 The PCOR CDS Learning Network was launched in Spring 2016, and will be 
funded through 2020.  

7.9     Protecting Access to Medicare Act of 2014 (PAMA) 

 PAMA, passed in 2014 as a temporary fi x to the Sustainable Growth Rate formula 
by which  CMS   pays physicians, included a requirement that providers who order 
advanced diagnostic imaging services consult with appropriate use criteria (AUC) 
via a  clinical decision support   mechanism [ 22 ]. The rationale for this provision is 
consensus that AUC would save money and diminish unnecessary patient exposure 
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to radiation by reducing inappropriate imaging services [ 23 ]. The law provides a 
good example of how congressional action imposes a solution on HHS, leaving 
HHS some (but not infi nite) fl exibility in making a determination of how, and when, 
to implement the law’s intent through  regulation  . This is the very fi rst law that 
explicitly requires ordering providers to use  clinical decision support  , and therefore 
may set a precedent for subsequent laws and regulations. An interesting facet of 
PAMA’s provision is that the penalty or ‘reimbursement withholding’ would be 
borne by the “furnishing professional” (a term that  CMS   defi nes for the purposes of 
implementing this  regulation   – meaning the professional that furnishes the services 
ordered by the ordering professional), while the burden of action, using AUC CDS, 
would be borne by the ordering provider. This nuance will then require health IT 
systems to capture which AUC CDS was used by the ordering provider, and have 
that information transmitted to the furnishing provider so that s/he can, as required 
by the law, include this information in their bill to CMS, and subsequently have 
confi dence that their services will be reimbursed. 

 PAMA required  CMS   to take the fi rst steps toward implementing an AUC CDS 
mandate in the 2016 Physician Fee Schedule  regulation  , which was published by 
CMS on October 20, 2015 [ 24 ]. The regulation fi rst describes  CMS  ’ experience 
with AUC, the Medicare Imaging Demonstration (MID) project [ 25 ]. It also sum-
marizes experiences from other care delivery organizations that have leveraged 
AUC and CDS in image ordering, while providing a sound overview of the timeline 
of how and when  CMS   will fully implement this program. 

 CMS appropriately states the CDS mechanisms through which providers access 
AUC: “…must be integrated into the clinical workfl ow and facilitate, not obstruct, 
evidence-based care delivery,” and that “the ideal AUC is an evidence-based guide 
that starts with a patient’s specifi c clinical condition or presentation (symptoms) and 
assists the provider in the overall patient workup, treatment and follow-up” [ 26 ]. 
The agency therefore set in motion the fi rst of a series of annual regulatory actions 
that will result in full  implementation   of this program by 2018. 

 The fi rst step addresses how  CMS   will assure that each AUC is evidence-based, 
but will avoid a framework that would have CMS approve of criteria one-by-one. 
Rather, they will approve “Provider Led Entities” (PLEs) who will apply to  CMS   
for qualifi cation. Once approved, these entities will develop or endorse AUCs. Only 
AUCs developed or endorsed by PLEs will be applicable under the program. 

 The second step of the program will be to certify CDS mechanisms for the deliv-
ery of AUCs. While  CMS   originally planned to begin this process in 2016, they 
have delayed this until at least 2017 [ 27 ]. There is therefore no guidance regarding 
the form or syntax in which AUCs are delivered, nor specifi cations for the technical 
 implementations   of the CDS that would be used to deliver AUCs. This regulatory 
process would ideally be aligned with the  ONC  / CMS   CQF standards activities so 
that when AUCs are created, the interventions are based on QUICK, and logic 
expressions expressed in CQL. Such a requirement could be incorporated into the 
PLE application process, such as an agreement to create AUCs in these forms and 
even an agreement to participate in the CQF initiative. Or it could be incorporated 
into the defi nition of the CDS standards that CMS will publish in the future. 
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 In the  regulation  ,  CMS   has been clear that this will not be in place by the January 
1, 2017 deadline that was defi ned by PAMA: “we fully anticipate that we will be 
able to fi nalize rules and requirements around the CDS mechanism and approve 
mechanisms through rulemaking in 2017. This timeline will signifi cantly impact 
when we would expect practitioners to begin using those CDS mechanisms to con-
sult AUC and report on those consultations. We do not anticipate that the consulta-
tion and reporting requirements will be in place by the January 1, 2017 deadline 
established in section 218(b) of the PAMA” [ 28 ]. 

 This program is important because AUC for imaging is just a category of knowl-
edge artifact. Once there is clarity regarding the specifi c technical and semantic 
requirements for the CDS, it is likely that CMS and others will take advantage of 
this delivery channel for other high priority knowledge artifacts such as immuniza-
tions, opioid abuse prevention, antibiotic stewardship, and infectious disease/bioter-
rorism emergencies.  

7.10     Medicare Access and CHIP Reauthorization Act of 2015 
(MACRA) 

 The 2015 passage of MACRA created sweeping changes in how  CMS   compensates 
providers and care delivery organizations [ 29 ]. Like PAMA, the law defi nes a broad 
framework that defi nes the “what” of the new payment framework, while CMS will, 
through rulemaking, defi ne the specifi cs of the program and how it will be imple-
mented. While a thorough review of MACRA is beyond the scope of this chapter, it 
is important to understand some of the basics, as this law opens the door to a great 
deal of motivation for care delivery organizations to accelerate their adoption of CDS. 

 MACRA evolves existing payment structures over several years from ones that 
are based on fee-for-service to ones that incentivize care quality, and the meaningful 
use of health IT. The program has two primary components:

•    The Merit-Based Incentive Payment System (MIPS), which coalesces the 
Physician Quality Reporting System (PQRS), the  EHR   incentive programs 
(“meaningful use”) and the value based modifi er program. MIPS will align the 
quality reporting measures, processes, and technical requirements, and will 
reward providers who perform well, while penalizing providers who choose not 
to participate or who perform poorly.  

•   Alternate Payment Models (APMs) such as ACOs, advanced PCMHs or other 
innovative value-based programs. Providers who participate in such programs 
will not have to participate in MIPS or any of its components, but will (after 
2020) be required to use certifi ed health IT [ 29 ].    

 These programs will all shift providers’ focus from volume and effi ciency toward 
the three aims of the National Quality  Strategy   (better care, healthy people and 
 communities, affordable care). MIPS incentivizes performance on clinical quality 
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measures and meaningful use of health IT. In order to be successful in achieving 
high quality scores, CDS will need to be implemented. So while there is no explicit 
expectation defi ned for the use of CDS, it is clearly a necessary component of suc-
cess in MIPS. In the same way, providers participating in APMs will need to lever-
age health IT and CDS in order to achieve the quality, cost and effi ciency goals of 
many of the APM programs.  

7.11     Impact of Federal Programs on CDS 

  Clinical Decision Support   is not the end-point of any of these federal programs, and 
it is therefore diffi cult to measure the causality of any federal program on one capa-
bility of health IT systems. CDS is a method that is employed toward the goals of 
the triple aim. Nonetheless, widespread adoption of health IT in the United States 
from 2009 to 2015 is a clear result of the HITECH act. We will certainly continue 
to see an expansion of our reliance on health IT as the maturity and  usability   of 
systems improve, in part due to the improved specifi city of CDS interventions in the 
context of integrated “big data,” machine learning, and genomic research. 

 The impact of PAMA on imaging facilities, furnishing professionals (and their 
systems’ interoperability with those of ordering providers) and ordering providers 
cannot be understated. The success or failure of this effort, the fi rst explicit legal 
requirement for CDS, will defi ne how or whether future CDS requirements will be 
shaped.  

7.12       FDA  Regulation   of Clinical  Decision   Support 

 The Food and Drug Administration has the authority to regulate medical devices in 
the United States. The 2012 Food and Drug Administration Safety and Innovation 
Act (FDASIA) required HHS to develop “a report that contains a proposed strategy 
and recommendations on an appropriate, risk-based regulatory framework pertain-
ing to health information technology, including mobile medical applications, that 
promotes innovation, protects patient  safety  , and avoids regulatory duplication” 
[ 30 ]. The report, published in April 2014 [ 31 ], outlined a regulatory framework that 
defi nes three broad categories, with escalating levels of regulatory oversight: (1) 
administrative health IT functions, (2) health management health IT functions, and 
(3) medical device health IT functions. The report proposes that administrative 
health IT functions would require no additional oversight. Health IT management 
functions, which includes “most clinical  decision support  ”, would require oversight 
by  ONC  . It would ultimately be incorporated into a regulatory process that expands 
beyond ONC’s current certifi cation program toward a more proactive engagement, 
perhaps through the creation of a patient  safety   center. Finally, medical device 
health IT functions would be regulated as medical devices by the FDA. 
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 Therefore the two key questions for CDS developers and implementers are: what 
characteristics defi ne CDS that belongs in the “health IT function” and what are the 
characteristics of CDS that belongs in the “medical device” category? The report 
states:

  Clinical decision support (CDS) provides health care providers and patients with knowl-
edge and person-specifi c information, intelligently fi ltered or presented at appropriate 
times, to enhance health and health care. Because its risks are generally low compared to 
the potential benefi ts, FDA does not intend to focus its oversight on most clinical decision 
support. FDA, instead, intends to focus its oversight on a limited set of software function-
alities that provide clinical  decision support   and pose higher risks to patients, such as com-
puter aided detection/diagnostic software and radiation therapy treatment planning 
software. [ 31 ] 

   Examples of CDSS that FDA would not regulate include order sets, drug-drug 
and drug-allergy alerts, most drug dosing calculations, duplicate testing alerts, or 
diagnostic suggestions based on information in the patient’s record. The report 
offers a few examples of higher-risk CDSS that would be regulated by the FDA, and 
commits to provide more detailed guidance in the future. Higher risk CDSS include:

•    Computer aided detection/diagnostic software,  
•   remote display or notifi cation of real-time alarms (physiological, technical, advi-

sory) from bedside monitors,  
•   radiation treatment planning,  
•   robotic surgical planning and control, and  
•   electrocardiography analytical software [ 31 ]    

 All of the example products share an attribute of autonomy: while lower risk 
CDSS offer information to a person, and the person will then take action, higher risk 
CDSS perform complex actions and may in fact represent the “last mile” between 
the care provider and the patient. For example, robotic surgery planning and control 
software carries forward the surgeon’s intent to cut, staple, or retract. A malfunction 
in this software could be deadly, and there is no human “ safety   net” between the 
software and the patient  .  

7.13      Clinical Decision Support   for Immunizations (CDSi) 

 The Centers for Disease Control and Prevention (CDC), in collaboration with the 
 ONC  , have developed a process that aims to (a) improve the speed with which new 
immunization recommendations are incorporated into practice, (b) reduce the 
redundant data entry that is currently required by care providers and health IT com-
panies, and (c) improve the accuracy of immunization forecasting. The project has 
created a set of knowledge resources including  logic   specifi cations (immunization 
schedule logic) and supporting data (XML representations of all currently available 
immunizations). The resources and overview information are available at CDC’s 
CDSi resource page [ 32 ]. 
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 Historically, bi-annual updates to the immunization schedules are published by 
the Advisory Committee on Immunization Policies (ACIP) in PDF documents and 
posted to the CDC website. These documents are reviewed, translated into logical 
expressions, and then implemented in health information technology. The process is 
slow, error-prone, and redundant. 

 The long-term goal of the CDSi project is that health IT systems will be capable 
of subscribing to updated immunization guidance and the moment that guidance is 
published, would incorporate it into appropriate workfl ow. Such a model could 
deliver the guidance to an EHR, a regional immunization information system (IIS), 
a department of public health, or any other appropriate endpoint.     

7.14     Challenges 

 When government or any authority defi nes  how  constituents reach a given goal, 
rather than just  that  the goal is reached, there is always a risk that the method pre-
scribed is not actually the best path to success. For example, early Peace Corps 
volunteers learned that “great ideas” hatched in Washington DC for solving malnu-
trition in rural African villages were dismal failures, while those who observed the 
“positive deviants” in the outlier families who seemed to be thriving, and then rep-
licated the methods those families used, were successful. “Healthy family” was 
therefore the goal. Had the Peace Corps volunteers rigidly maintained that all fami-
lies adopt imported ideas such as “grow rice” or “adopt a goat,” widespread success 
would have continued to be elusive. Another example: with the emergence of com-
pact fl uorescent light bulbs (CFLs), many municipalities outlawed the sale of incan-
descent bulbs and explicitly named CFLs as the mandatory alternative. Yet, only a 
few short years after the introduction of CFLs, light emitting diodes (LEDs) are now 
available. These bulbs are inexpensive, less polluting, and use less energy than 
CFLs. The  regulation   lags behind the technology, especially when the technology is 
explicitly prescribed. 

 In the same way, there is concern that the EHR incentive programs have been too 
prescriptive about (a) how care delivery organizations should use them, (b) how 
health IT developers should implement them, and (c) what should happen in the 
future. How do we allow for innovation, yet still provide suffi cient guidance on 
standards to allow a broad ecosystem to fl ourish? It is possible that the  usability   
challenges,  alert fatigue   complaints, and the slow pace of progress in the Clinical 
Quality Framework (CQF) will cause the “CDS baby to be thrown out with the 
bathwater.” Without continued focus, and the passionate work of leaders such as the 
authors of this book, combined with the continued and coordinated support from 
 CMS  ,  AHRQ  , CDC and  ONC  , the evolution of CDS in the United States could 
slow, and the near-term opportunities to improve health will not be realized. The key 
is that efforts are coordinated with CQF standards activities, as well as with the 
emerging  regulations   to support PAMA and its likely successors.  
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7.15     Future Initiatives 

 PAMA represents a model of congressional activism that could either go very well 
or very badly, depending on how smoothly the regulatory components integrate with 
existing programs. If it goes well, we will likely see more statutory activism like this 
from Congress, or similar initiatives as mentioned above in the domains of opioid 
abuse prevention, antibiotic stewardship, and infectious disease/bioterrorism emer-
gencies. Each of these domains represent a high priority for the U.S. Department of 
Health and Human Services, and therefore represents great opportunity for the pub-
lic funding of  clinical decision support   knowledge artifacts and delivery channels.  

7.16     Summary and Conclusion 

 The federal government’s National Quality  Strategy   has created a sound foundation 
for focused improvements in care, care quality, and cost. Best practices in health 
care delivery are discovered and implemented through a cyclic process of research, 
discovery, guideline development,  decision support  , care delivery, quality and effec-
tiveness measurement and (starting the cycle over again) research. As we follow a 
similar path toward the evolution of CDS, different federal agencies are responsible 
for different parts of the CDS lifecycle.  AHRQ   is responsible for foundational 
learning and experimentation, and therefore sponsored the CDSC and GLIDES 
projects.  ONC   is responsible for standards policy defi nition, and coordination of 
other agencies’ use of such standards. CDC and  CMS   are organizations that have 
“last mile” responsibilities in delivering content that serves a strategic purpose, and 
the National Library of Medicine (NLM) is responsible for collaborating with 
 AHRQ   and ONC to curate the proper semantic foundation for all of this to occur. 

 With the migration towards value-based care in the United States between 2015 
and 2020, we will see increasing pressure for care delivery organizations to deliver 
outcomes that align with the National Quality  Strategy  . Combined with maturing 
technical standards, improved  usability   and interoperability of health IT systems, 
we are approaching a “tipping point” where we will soon see CDS become an 
essential and expected component of every health IT product.     
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    Chapter 8   
 Ethical and Legal Issues in Decision Support                     

     Kenneth     W.     Goodman     

    Abstract     The use of computers to help humans make diagnoses and prognoses in 
the practice of medicine or nursing is an exciting and unsettling development in the 
evolution of clinical and hospital practice. Such use engenders ethical and legal 
challenges paralleling those challenges seen regularly to arise with the introduction 
of many new technologies in healthcare. In the case of computational decision sup-
port systems, the most salient ethical issues involve standards of care, appropriate 
uses and users and professional relationships. Balancing patient safety against 
opportunities to improve care constitutes a tension that mirrors the diffi culty 
encountered in debates about whether and how the government should regulate 
decision support systems. At ground are questions of accountability, responsibility 
and liability. In most cases, we lack adequate empirical data to arrive at uncontro-
versial conclusions. In the context of an exciting new technology, the reduction of 
that ignorance itself becomes an ethical imperative.  

  Keywords     Accountability   •   Bioethics   •   Decision support systems   •   Error   •   Ethics   • 
  Legal issues   •   Liability   •   Prognostic scoring systems   •   Regulation   •   Responsibility  

      Contemporary       bioethics   has evolved in part in response to new technology. 
Cardiopulmonary resuscitation has become so common that we often do not let 
patients die without trying it fi rst, but this is a comparatively recent development 
and it bedevils hospital  ethics   committees daily. The transplantation of organs was 
once front-page news, but now that it is quotidian, the greatest ethical challenges lie 
in fi nding enough organs. Health information technology is in many respects still in 
its adolescence, but it will touch more lives than any other technology in the history 
of the healing sciences. Health IT includes a rich vein of ethical issues, perhaps 
none so interesting as whether, when and by whom an intelligent machine should be 
used to render a  diagnosis   or prognosis. 

 Nature is generally consistent and dependable. In human biology, discrete mala-
dies or illnesses tend consistently to produce particular signs and symptoms. This 
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correlation makes possible the process of diagnosis and prognosis. In fact, so strong 
is our belief in the regularity of signs and symptoms that the process has long been 
regarded as straightforward, if not easy: “…there is nothing remarkable,” 
Hippocrates suggested some 2,400 years ago, “in being right in the great majority 
of cases in the same district, provided the physician knows the signs and can draw 
the correct conclusions from them” [ 1 ]. 

 To be sure, consistency, reliability and reproducibility do not always or even 
often entail simplicity, and accurate diagnoses and prognoses can be quite diffi cult, 
even given the regularity of many signs and symptoms. For one thing, “knowing the 
signs” requires a great deal of empirical knowledge and experience. For another, 
there is rarely a unique and isomorphic relationship between symptom and disease. 
Signifi cantly, Hippocrates smuggles into his account a presumption of the very 
thing being described. To say that being right is unremarkable when one can draw 
the “correct conclusions” is to say that it is easy to be right when you know how to 
be right. Or, making an accurate  diagnosis   or prognosis is easy if one knows how to 
make an accurate diagnosis or prognosis. 

 The need to make accurate diagnoses is not based merely on the personal satis-
faction that comes from being right, as gratifying as that is. It is based on the good 
effects that follow more frequently from accurate diagnoses than from inaccurate 
diagnoses. It is also based on the bad effects that  error   often entails. 

 In the context of trust and vulnerability that shape patient-physician and patient- 
nurse encounters, there emerges a suite of ethical imperatives: adhere to, or surpass, 
educational and professional standards; monitor changes in one’s domain; know 
when one is out of one’s depth.  Decision support systems   have great potential to 
assist clinicians, but their use also raises a number of ethical issues. In fact, this is 
evidence for the maturity of the science: new health technologies almost always 
elicit ethical issues, and it should come as no surprise that  clinical decision support   
would provide a number of challenges for those who use, or would use, computers 
to assist, guide or test clinical decisions. Any comprehensive treatment of computa-
tional decision support should include a review of ethical issues. In what follows, 
we identify a number of such issues that emerge when intelligent machines are used 
to perform or support clinical decisions, and we survey key legal and regulatory 
issues. 

8.1     Ethical Issues 

8.1.1     Background and Current Research 

 It has been clear for decades that health computing raises interesting and important 
ethical issues. In a crucial early contribution, a physician, a philosopher and a law-
yer identifi ed a series of ethical concerns, not the least of which are several sur-
rounding the questions of who should use a “medical computer program” and under 
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what circumstances [ 2 ]. Another early contribution emphasized the challenges 
raised by threats to physician autonomy [ 3 ]. 

 What has emerged since has been called the “Standard View” of computational 
decision support, including  diagnosis   [ 4 ]. Randolph A. Miller, M.D., a key fi gure 
both in the scientifi c evolution of computational decision support and in scholarship 
on correlate ethical issues, has argued that “Limitations in man-machine interfaces, 
and more importantly, in automated systems’ ability to represent the broad variety 
of concepts relevant to clinical medicine, will prevent ‘human-assisted computer 
 diagnosis  ’ from being feasible for decades, if it is at all possible.” [ 4 ] Another way 
of putting this is to say that computers cannot either in principle or at least for the 
foreseeable future supplant human decision makers. Here is how we put it 
elsewhere:

  [T]he practice of medicine or nursing has never been and never will be merely or exclu-
sively about the making of accurate inferences. The rendering of a  diagnosis   will, except in 
the simplest of cases, always be probabilistic in one degree or another, and induction alone 
cannot resolve all uncertainty, incorporate human values, or reveal causal relationships nec-
essary for successful clinical practice. [ 5 ] 

   These observations entail ethical obligations, namely that computers ought not 
be relied on to do what humans do best, and that a computer’s decisions cannot as a 
matter of course or policy be allowed to trump a human decision or  diagnosis  . 
Indeed, more than a quarter-century later, this is still the correct view, even as vari-
ous forms of decision support are routinely embedded in enterprise-wide  electronic 
health records  . 

 Happily, the Standard View was advanced not by those hostile to the develop-
ment and use of clinical diagnostic  decision support systems  , but by leading propo-
nents. The Standard View signals a conservative and cautious approach to application 
of a new technology, and as such captures important moral intuitions about techno-
logical change, risks and standards. 

 Interest in the three-way intersection of  ethics  , medicine and computing has 
increased steadily since initial efforts to explore these issues, and “ethics and infor-
matics” now may be regarded as a subfi eld deserving of its own research and litera-
ture [ 6 ]. Although the fi eld admits of many and varied topics, we may identify three 
core areas of ethical concern as having emerged in discussions of computer systems 
that are used to remind, provide consultation or advise clinicians: (1) care standards; 
(2) appropriate use and users; and (3) professional relationships.  

8.1.2     Care Standards 

 We know a great deal about  responsibility   in medicine and nursing. For instance, we 
know that practitioners should generally not deceive their patients. We know that 
patients can be especially vulnerable, and that such vulnerability should be 
respected. And we know that physicians and nurses have a  responsibility   to do their 

8 Ethical and Legal Issues in Decision Support



134

best, irrespective of economic (dis)incentives, and that they should not attempt 
treatments that are beyond their training or expertise. 

 Learning how to meet these and other responsibilities in the context of a broad 
variety of social problems is arguably the leading task in  bioethics  . We must ask fi rst 
whether computing tools help or hinder attempts to meet responsibilities, and sec-
ond whether the tools impose new or special responsibilities. The overarching ques-
tion may be put thus: does the new technology improve patient care? If the answer 
is affi rmative we may suppose we have met an important  responsibility  . If the 
answer is negative, it seems clear we should not use the new technology. The prob-
lem is, we often do not know how to answer the question. That is, we are sometimes 
unsure whether care will be improved by the use of new technologies. If we want to 
meet the responsibility to avoid harm, for instance, we are impotent until we can 
determine the effects of the technology (see Chap.   9     for a discussion of  evaluation  ). 
What follows from this is that empirical uncertainty magnifi es ethical issues and, in 
consequence,  error   avoidance emerges as an ethical imperative to maximize posi-
tive, short-term consequences and to ensure that, in the long run, informatics is not 
associated with error or carelessness or the kind of cavalier stance often associated 
with high-tech boosterism. 

 The concept of  error   avoidance is wed to that of a standard of care. Standards 
evolve in the health professions because they plot the kinds of actions that are most 
successful in achieving certain ends. To fail to adhere to a standard is thus to increase 
the risk of error, at least in a mature science. Because errors or their consequences 
are generally regarded as harms or evils, the obligation to hew to standards is an 
ethical one. 

 But standards are empirical constructs, and so are open to revision. New evi-
dence forces changes in standards. (This demonstrates why clinicians have an ethi-
cal obligation to monitor the scientifi c maturation of their disciplines by reading 
journals, attending conferences, etc.) To be sure, the precise content of any standard 
might be open to dispute. The “reasonable person” standard requires the postulation 
of a vague entity; this is particularly problematic when reasonable people disagree, 
as is often the case in medicine and nursing. A “community standard” similarly fails 
to identify a bright line between  error   and success in all circumstances in which it 
might be invoked. Note also that it is not always bad to forgo adherence to a practice 
standard—the standard will generally be invoked in ethical and legal contexts only 
when there is a bad outcome, or a fl agrant disregard for the risk of a bad outcome. 
Sometimes there are good reasons to violate a standard. This demonstrates how 
some clinical progress is possible: if everyone in all cases stuck to a rigid standard 
there would be no internal evidence to support modifi cations of the standard. In 
other cases, standards are modifi ed as a result of clinical trial fi ndings, observational 
studies and serendipitous discoveries. 

 In the case of computer-assisted decisions, the challenge is perhaps best put in 
the form of a question: Does use of a  decision support system   increase the risk of 
 error  ? Three considerations are noteworthy here. First, while accurate diagnoses 
and other decisions are often linked to optimal treatment, this is not always the case: 
some patients are treated appropriately despite an inaccurate diagnosis, and some 
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are treated incorrectly despite an accurate  diagnosis  . Second, one might still be able 
to provide an optimal treatment with a vague or imprecise diagnosis [ 7 ]. Third, 
computers can guide decisions (or perform diagnosis-like functions) outside of clin-
ical contexts, as for instance in a variety of laboratory tests and in alarm and alert 
systems. 

 To ask if a computer  diagnosis   increases or decreases the risk of diagnostic or 
other  error   is in part to ask whether it will improve patient care. If the answer is that, 
on balance, the tool increases (the risk of) error, then we should say it would be 
inappropriate to use it. Signifi cantly, though, what is sought here is an empirical 
fi nding or a reasoned judgment—where such a fi nding is often lacking or even 
methodologically hard to come by; or where such a judgment is based on inade-
quate empirical support, at least according to standards otherwise demanded to jus-
tify clinical decisions. 

 This means that we are pressed to answer an ethical question (Is it acceptable to 
use a  decision support system  ?) in a context of scientifi c uncertainty (How accurate 
is the system?). Many challenges in contemporary  bioethics   share this feature, 
namely, that moral uncertainty parallels scientifi c or clinical ignorance. 

 What we generally want in such cases is a way to stimulate the appropriate use 
of new technologies without increasing patient risk. One approach to doing this is 
given the nearly oxymoronic term “progressive caution.” The idea is this: “Medical 
informatics is, happily, here to stay, but users and society have extensive responsi-
bilities to ensure that we use our tools appropriately. This might cause us to move 
more deliberately or slowly than some would like. Ethically speaking, that is just 
too bad” [ 8 ]. Such a stance attempts the ethical optimization of decision-support use 
and development by encouraging expansion of the fi eld, but with appropriate levels 
of scrutiny, oversight and, indeed, caution. The moral imperative of  error   avoidance 
is, in other words, not anti-progressive. Rather, it is part of a large and public net-
work of checks and balances that seeks to optimize good outcomes by regulating 
confl icts between boosters and nay-sayers. The idea of progressive caution is just an 
attempt to capture the core values of that  regulation  . 

 It has been clear since the fi rst efforts to address ethical issues in medical infor-
matics that as computers help the sciences of medicine and nursing to progress, they 
will also contribute to changes in the standard of patient care. When that happens, 
however, it increases the likelihood that computer use will come to be required of 
clinicians. Put differently: In a comparatively short time, there has been a major 
shift in the availability and use of informatics tools. To the degree that informatics 
can improve the practice of the health professions, there is a requirement that its 
tools be used. 

 This point is often the most disturbing for practitioners. It is troublesome that one 
might have an obligation to use a tool that has been presented as controversial and 
in need of further validation. But there is no contradiction here. In fact, it appears 
that the evolution of health informatics parallels the emergence of other exciting and 
controversial tools, ranging from organ transplantation techniques and advanced 
life support to laparoscopic surgical procedures and genetic testing and therapy. It is 
often the case in history that progress invites this tension. What is wanted is evi-
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dence that people of good will can both advance science and safeguard against 
abuses. Research studies that examine not just the accuracy of the systems, but how 
they are used, are essential to the process of acquiring that evidence.  

8.1.3     Appropriate Use and Users 

 One way to abuse a tool is to use it for purposes for which it is not intended. Another 
is to use a tool without adequate training. A third way is to use a tool incorrectly 
(carelessly, sloppily, etc.) independently of other shortcomings. 

 There are a number of reasons why one should not use computer applications in 
unintended contexts. First, a tool designed for one purpose has a greater likelihood 
of not working, or not working well, for other purposes. To be sure, one might suc-
cessfully perform an appendectomy with a kitchen knife, or dice vegetables with a 
scalpel, but it is bizarre to suggest that one should try either, except in an emergency. 
A hospital computer system may be used inappropriately if, for instance, it was 
designed for educational purposes but relied on for  clinical decision support  ; or 
developed for modest decision support (identifying a number of differential diagno-
ses) but used in such a way as to cause a practitioner to abandon a  diagnosis   or other 
decision arrived at by sound clinical judgment. 

 In ethically optimizing the use of  clinical decision support systems  , it is perhaps 
reassuring to know that we have many models and precedents. From advanced life 
support and organ transplantation to developments in pharmacotherapy and genet-
ics, society regularly has had to cope with technological change in the health sci-
ences. Managing change requires that new tools are used appropriately and by 
adequately qualifi ed practitioners. Education is at the core of such management. 
Identifying qualifi cations and providing training must be key components of any 
initiative to expand the use of  clinical decision support   software. Ethical concerns 
arise when we are unsure of the appropriate or adequate qualifi cations and levels of 
training [ 2 ,  5 ]. 

 The fear is that a health care novice or professional ignorant of a system’s design 
or capacity will use a  decision support system   in patient care. The reason the former 
is worthy of concern is that, as above, the practice of medicine and nursing remain 
human activities. A nonphysician or non-nurse cannot practice medicine or nursing, 
no matter how much computational support is available. This is also a concern in the 
context of consumer health informatics, or the widespread availability of online 
health advice to the untrained (see Chap.   10    ). What this means is that the novice 
might not know when the system is in obvious  error   or has produced clearly fl awed 
output, when it is operating on insuffi cient information, when it is being used in a 
domain for which it was not designed, and so on. 

 There are also several reasons we must focus ethical attention on the use of  clini-
cal decision support   software by computationally naive health professionals: Such 
professionals might not use such software to good effect (either by over- or under- 
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estimating its abilities), might not be using it properly, or, like the novice, might not 
know when the system is being used in inappropriate contexts. Such fears can be 
addressed by requirements that decision-support users have appropriate qualifi ca-
tions and be adequately trained in the use of the systems. Unfortunately, it is not yet 
clear what those qualifi cations should be, or how extensive a training program 
would be adequate. It is clear, however, that the use of decision support software 
cannot in the long run advance ethically without a better sense of where to establish 
guideposts for qualifi cations and training. This remains an increasingly important 
area of research. 

 A further ethical concern about appropriate use and users emerges from the 
potential to deploy  decision support systems   in contexts of practice  evaluation  , 
quality assessment, reimbursement for professional services and the like. One can 
imagine an insurance company or managed care organization using decision sup-
port to evaluate, or even challenge, clinical decisions. What makes such use prob-
lematic is precisely the same ensemble of concerns that led us to disdain applications 
in other contexts: the primacy of human cognitive expertise, uncertainty about ade-
quate qualifi cations, and doubt about the consequences for improved patient care. 
This is not to say that a machine cannot give a correct answer in a particular case 
but, rather, that there are inadequate grounds to prefer machine decisions as a matter 
of general policy.  

8.1.4     Professional Relationships 

 Many patients believe, mistakenly, that their physicians are omniscient. Many phy-
sicians believe, mistakenly, that their patients are ignoramuses. Recognition of these 
mistakes has led in recent years to the development of the idea of “ shared decision 
making  ,” namely that patients and providers are most productively seen as partners 
[ 9 – 11 ]. If this is so, and there is much to recommend it in many (though not all) 
instances, then we need to assess the effect of a third partner—the computer. 

 There are two overriding areas of ethical concern here. The fi rst is that the com-
puter will create conceptual or interpersonal distance between provider and patient. 
Communicating about uncertainty, especially when the stakes are high, has long 
been a challenge for clinicians. That a computer might be used to (help) render a 
 diagnosis  , for instance, causes us to run the risk of what we will call the “computa-
tional fallacy.” This is the view that what comes out of a computer is somehow more 
valid, accurate, or reliable than human output. Providers and patients who take such 
a view introduce a potentially erosive, if not destructive, element into  shared 
 decision making contexts  . Anything that increases the likelihood that a patient deci-
sion or choice will be perceived as misguided or stupid adds to the problem that 
shared decision making was supposed to solve. 

 Now, it might be supposed that a physician or nurse can eliminate at least some 
of this tension by not disclosing to a patient that  clinical decision support   software 
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was used in his or her case. But this introduces our second area of ethical concern, 
namely, the question whether patients should be given this information. The answer 
to this question must be determined against a background shaped by (1) patient 
sophistication and understanding of medical and statistical information and (2) cli-
nician sophistication and understanding of communication approaches and strate-
gies. In any case, it is inappropriate to use computer data or inferences to trump 
hesitant patients, or bully them into agreeing with a health professional [ 12 ]. 

 This point has been made most clearly in the discussion of  prognostic scoring 
systems  , or software used in critical care medicine in part to predict patient mortal-
ity. On the one hand, patients with poor prognoses might still benefi t from extensive 
interventions, and these benefi ts might be important enough for the patient and/or 
family to seek them; on the other hand, patients with good survival odds might 
judge the prolongation of life to be of little value when weighed against the diffi -
culty or burden of extensive interventions [ 13 ,  14 ]. 

 A related issue has arisen with increased frequency as patients gain access to 
decision support software and use it either for self-diagnosis, treatment decisions or 
to make demands on physicians, perhaps even to challenge or second-guess them. 
The diffi culties raised by these demands and challenges will multiply as  decision- 
support systems   improve. As discussed in Chap.   10    , there is a sense in which one 
might regard such access as an important tool in the process of  shared decision mak-
ing  : it will not do to expect patients to become involved in their own care and simul-
taneously constrain their sources of information. Contrarily, a patient might 
constitute a paradigm case of an inappropriate system user, especially in those cases 
in which the system causes someone to forgo appropriate medical care. Additional 
research is required to gauge the use and effects of online “clinical calculators” and 
related decision-support tools. For all we know, they will emerge as sources of com-
fort to hypochondriacs—who then seek clinical attention—as foundations of infor-
mation with which to challenge clinicians. 

 We might compare patient use of  clinical decision support systems   to patient use 
of medical texts and journals. In years past, there was an inclination to regard such 
access as risky and hence inappropriate. While a little knowledge can be dangerous, 
a position that does not go beyond such a view seems to miss an opportunity to 
educate patients about their illnesses and the relation between health literature on 
the one hand and medical and nursing knowledge and practice on the other. Much 
the same point can be made about patient use of decision tools: a physician should 
respond to such use by making clear that computers are not surrogates for health 
professionals, and that the practice of medicine or nursing entails far more than 
statistical induction from signs, symptoms and lab values. To be sure, it would be 
well if actual practice embodied this insight. 

 As long as the healing professions are practiced in a matrix of scientifi c uncer-
tainty and patient values, we err if we appoint computational decision support as a 
surrogate for compassionate communication, shared decisions, and quality care by 
competent humans.  
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8.1.5     Decision Support in Genetics and Genomics 

  The  primacy   of human decision making in contemporary clinical practice should be 
extended to the emerging world of personalized or individualized medicine and 
 pharmacogenomics  . The idea that treatments might be customized, drugs titrated or 
therapies tailored to individual patients is compelling. Such treatments, drugs and 
therapies will, in principle, work accordingly as clinicians can make use of specifi c 
patients’ genomes to target interventions. This goal has sparked a new generation of 
research programs and no little excitement. As discussed in Chap.   12    , personalized 
medicine is an information-intensive affair, and some degree of decision support is 
already anticipated or under development [ 15 – 18 ]. 

 It might develop that the intersection of  clinical decision support systems   and 
 pharmacogenomics   will raise no new ethical issues, that the issues to appear will 
parallel those with which we are already familiar; or, conversely, this intersection 
will be a seeding ground for new and unexpected ethical challenges. Predictions 
supporting the former might appeal to the idea that many competent clinicians 
remain uncomfortable with genetic information and so might, at least initially, and 
until a new generation of gene-savvy clinicians emerges, rely more heavily on deci-
sion support. Furthermore, genetic and genomic data and information are less caus-
ally certain than more familiar kinds of clinical data and information, and this, too, 
might lead to greater reliance on intelligent machines that can guide a decision 
maker. So any new ethical challenges will be a matter of degree, not of kind. 
Contrarily, the prediction that personalized medicine will present us with novel ethi-
cal challenges fi nds support in the idea that it is not merely clinician ignorance or 
innocence that will drive genomic decision support but, rather, that there will be so 
much information and it will be so complex that good decision support will be  nec-
essary  to the new practice. We might, that is, cross a frontier if it becomes clear that 
in the face of such complexity it is irrational not to use computerized decision 
support. 

 Decision support is likely to evolve in any of several settings, for instance:

•    Reproductive medicine: Given high risk and uncertainty, exquisitely diffi cult 
decisions have long challenged us in the contexts of genetic counseling and pre-
implantation genetic  diagnosis   [ 19 ]. Automating the application of  decision trees   
for reproductive decisions and therapeutic options will entail the need for careful 
ethical analysis and policy development. We have not yet conducted adequate 
analysis to guide the use of computerized decision support tools for genetic 
counseling.  

•   Return of results: The management of complex and probabilistic information for 
the sake of patient education and disclosure is a source of extended debate. The 
use of decision support software linked to  electronic health records   presents sig-
nifi cant opportunities and challenges regarding the communication of complex 
and clinically signifi cant information to patients [ 20 ].  

•   Workfl ow: If, as predicted, the genomic tools of personalized medicine will be 
incorporated into quotidian medical practice, genomic decision support will 
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become embedded in that practice [ 21 ]. This has implications for privacy, 
informed consent and the scope of  shared decision making   by patients and 
clinicians.    

 The growth and evolution of  pharmacogenomics   and personalized medicine 
should be regarded as an opportunity to incorporate ethical analysis in the use of 
new technology at the outset—instead of after the fact as is, unfortunately, too often 
the practice.    

8.2     Regulation and the Law 

  Computers  and   software raise conceptually fascinating and important practical 
questions about  responsibility  , accountability and  liability  . Further, the question 
whether a  decision support system   is a medical device needing governmental regu-
lation is a source of tension and debate. Scientists, clinicians, philosophers, lawyers 
and government and policy offi cials must grapple with a variety of knotty 
problems. 

 The intersection of medicine, computational decision support and law has been 
addressed mostly in speculative terms. The use of  clinical decision support systems   
is not widespread enough to have stimulated legislation or illuminating precedent, 
and, indeed, such systems seem so far to have little infl uence on clinician practice 
[ 22 ]. Moreover, medicine and computing share little in the way of a common legal 
history. The following observation is as apt today as it was a quarter-century ago:

  The introduction of computerized decision-making will require the merger of computer 
science and medical care; two areas with fundamentally different legal traditions. The legal 
differences between the computer fi eld and medicine are striking. Medicine is tightly regu-
lated at all levels. Most health care providers are licensed, and a rigid hierarchical system is 
the norm. Yet, computer systems and companies are created in a totally unregulated com-
petitive environment in which “software piracy” is common, standardization is in its 
infancy, licensing is a method of transferring trade secret software, and companies begin in 
garages.  [ 23 ] 

8.2.1       Liability and Decision Support 

  The  overriding   legal issue related to computational decision support has been and 
remains liability for use, misuse—or even lack of use—of a computer to make or 
assist in rendering diagnoses and other decisions [ 24 – 28 ]. In the United States, tort 
law holds providers of goods and services accountable for injuries sustained by 
users. Because of legal and regulatory variation, there are similarities and differ-
ences in other countries [ 29 – 31 ]. Such accountability is generally addressed by 
either the negligence standard or the strict liability standard. 
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 The negligence standard applies to services, and strict liability applies to goods 
or products, although negligence can sometimes also apply to goods, as in cases of 
negligent product design. Signifi cantly, however, there is no consensus regarding 
whether  decision support systems   are services or products, in part because these 
systems have properties that resemble both services and products [ 2 ,  23 ,  24 ,  32 ,  33 ]. 
For instance, a physician’s diagnosis is clearly a service and any liability for errone-
ous diagnoses is judged by the negligence standard. If a human diagnosis is consid-
ered a service, then, it is argued, a computer  diagnosis   (or the task of writing the 
computer code that rendered the diagnosis) should have the same status. Contrarily, 
commercial  decision-support systems   are manufactured, mass-marketed, and sold 
like entities uncontroversially regarded to be products. 

 An additional complication is that these systems are sold to hospitals, physi-
cians, patients and others, and, indeed, are now available on the World Wide Web. 
If a patient is injured by a defective system, it remains to be determined who used 
the system (the physician? the patient?) and whether it was misused. Also, it can be 
exquisitely diffi cult to identify the defect in a computer program [ 24 ], as well as to 
answer the important question whether a physician could have intervened and pre-
vented the application of mistaken advice [ 2 ,  5 ]. 

 There has emerged an interesting attempt to make the case that if a clinician is 
adequately informed about a decision tool and its shortcomings and potential harms, 
then this clinician can be assigned accountability, blame and  liability  . The “learned 
intermediary” doctrine holds that a physician or nurse is a kind of conceptual or 
intellectual gate keeper such that if the machine were to malfunction, then the clini-
cian  ought  to be able to detect the malfunction. While it is probably true that a 
competent clinician ought to be able to detect any number of brute  errors   (by human 
or machine), it is not clear in a complex case—given the extraordinary intricacy of 
some software and the size of some databases—that a human in all cases may be 
assigned blame if something goes wrong. Such a level of accountability requires not 
a learned intermediary, but an infallible one [ 5 ]. 

 There is no clear standard for use of decision support software by clinicians. 
Physicians or nurses might someday be found negligent either for accepting a mis-
taken computer decision or, having erred themselves, for failing to have used a  deci-
sion support system   that might have proved corrective. In either case, the 
determination of negligence will have to be weighed against prevailing community 
or reasonable-person standards. As with other areas of practice,  errors   will increase 
 liability   accordingly as the practitioner is seen to have fallen behind, or moved too 
far ahead of, such standards. 

 There is an urgent need for additional conceptual analysis to assist the law in 
sorting out these puzzles. Local trial courts and juries will often be out of their depth 
if called on to adjudicate  liability   claims that challenge fundamental conceptions of 
 responsibility   and accountability. Similar diffi culties arise in other areas, such as in 
the intellectual property domain, when there is a need to determine whether com-
puter software is an invention or a work of art. In one interesting approach to these 
questions, Professor John Snapper attempted an account of responsibility that would 
not impede the future—and presumably salutary—development of mechanical 
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decision support. On this account, the attribution of  responsibility   and duty  to com-
puters  for certain actions will maximize the good that will result from increased use 
of improved  decision support systems  . [ 34 ] The idea is that use of conceptually 
inadequate legal tools to punish system designers, owners and users might have a 
chilling effect on the evolution of decision support technology. Spreading responsi-
bility around, and including computers as agents to which  responsibility   may be 
assigned, is said to offer the potential of stimulating system design and the benefi ts 
this would entail. 

 This much is clear: physicians and nurses who disdain computers will be igno-
rant of machines that can in principle improve their practice, and hence patient care. 
Zealots who take computers to constitute adequate or even superior human surro-
gates will have lost touch with the human foundations of their profession. At either 
extreme the risk is high of falling outside emerging standards. This is a mistake—in 
 ethics   and at law.   

8.2.2     Regulation of Clinical Decision Support Systems 

   Although  the      history of governmental regulation of health care products, at least in 
the United States, is traceable to the Pure Food and Drug Acts of 1906, the regula-
tion of medical devices was not formalized until the Federal Food, Drug, and 
Cosmetic Act of 1938. There, medical devices were defi ned as “instruments, appa-
ratus, and contrivances, including their components, parts and accessories, intended: 
(1) for use in  diagnosis  , cure, mitigation, treatment, or prevention of diseases in man 
or other animals; or (2) to affect the structure or any function of the body of man or 
other animals” [ 35 ,  36 ]. In 1976, motivated by the increased complexity of devices 
and by reports of some devices’ shortcomings and failures, Congress approved 
comprehensive Medical Device Amendments to the 1938 regulations; the amend-
ments were to “ensure that new devices were safe and effective before they were 
marketed” [ 37 ,  38 ]. In 1990, a new regulation replaced that emphasis on premarket 
approvals with an emphasis on post-market surveillance [ 39 ]. More recently:

  The term “device” … means an instrument, apparatus, implement, machine, contrivance, 
implant, in vitro reagent, or other similar or related article, including any component, part, 
or accessory, which is –

    (1)    recognized in the offi cial National Formulary, or the United States Pharmacopeia, or 
any supplement to them,   

   (2)    intended for use in the  diagnosis   of disease or other conditions, or in the cure, mitiga-
tion, treatment, or prevention of disease, in man or other animals, or   

   (3)    intended to affect the structure or any function of the body of man or other animals, and 
which does not achieve its primary intended purposes through chemical action within 
or on the body of man or other animals and which is not dependent upon being metabo-
lized for the achievement of its primary intended purposes. [ 40 ]     

   The question whether a clinical  decision support system   constitutes a device 
subject to government  regulation   remains tricky and controversial and, in conse-
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quence, remains an interesting and important policy—and conceptual—issue. In 
Chap.   11    , Miller examines some of the issues associated with FDA regulation. 

 Answering the question whether software in general or  clinical decision support 
systems   in particular should be subject to government  regulation   will require a deli-
cate policy balancing act between patient  safety   on the one hand and innovation on 
the other [ 41 ]. Several reasons are commonly offered in opposition to government 
 regulation  , including the following:

•    Software is most accurately regarded as a mental construct or abstract entity, i.e., 
the sort of thing not customarily falling within the FDA’s regulatory purview.  

•   Practitioners—not software—have traditionally been subjected to licensing 
requirements.  

•   Software evolves rapidly and locally, and any sort of national software monitor-
ing is likely to be ineffective or impossible.  

•   Software is imperfect, and so improvement and refi nement—not perfection—
must be the standard to be striven for and met.    

 Several of these points could be in line with an infl uential stance held by a former 
commissioner of the agency, namely that the FDA should “apply the least  regulation   
allowed to remain consistent with the requirements of public health and  safety  ” 
[ 42 ]. 

 At ground is the sometimes tacit assumption that government  regulation   (like 
faulty law, as above) will have a chilling effect on innovation. This is an empirical 
claim. To take it seriously, without adequate evidence, would require that its advo-
cates explain away the fact that most informatics tools as used in most hospitals are 
not innovative, and continue to suffer from poor quality—without any  regulation   
whatsoever. In the United States, even incentives, as under “meaningful use” 
requirements, have not yet produced compelling, peer-reviewed documentation of 
nontrivial improvements in  system  quality. Meanwhile, the putative and undemon-
strated benefi ts of innovation come at the expense of putting patients at unnecessary 
risk. 

 There might be a middle ground between hard regulation and laissez faire disin-
terest. The idea, some two decades old, of chartering “autonomous software over-
sight committees,” not unlike research  ethics   committees or the institutional review 
boards, to evaluate software has yet to enjoy testing or trial  implementation   [ 43 ,  44 ]. 
This is unfortunate. If we devoted as much effort to identifying creative and pro-
gressive ways of ensuring patient  safety   through responsible software use as we do 
to selling systems, we would perhaps spark a renaissance of safe and effective sys-
tem development. This would protect the legitimate interests of system developers 
while making it clear that, at ground, we are fi rst and properly concerned with the 
wellbeing of patients. 

 The debate over medical software  regulation   represents one of the most impor-
tant controversies of the Computer Age. The balancing of risks and benefi ts, as well 
as public  safety   and technological progress, means that scientists, clinicians and 
policy makers have one of civilization’s most interesting—and challenging—tasks.     
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8.3     Conclusion and Future Directions 

 Clinicians, philosophers, lawyers and policy makers have grappled for decades with 
social, ethical and  legal issues   raised by the growth of health informatics, perhaps 
especially by progress in development of tools for computational  diagnosis  . What 
has emerged is a recognition that future scientifi c growth must be guided by corre-
sponding attention to ethical issues. These issues address the role of  error   avoidance 
and standards; of appropriate use and users; and of professional relationships. 
Scientifi c programs and publications may be regarded as duty-bound to shape and 
contribute to environments in which further attention to ethical, legal and social 
issues is encouraged. Indeed, to the extent that morality guides the law, vigorous 
programs to identify and debate ethical issues will be of no small service to society 
as legislatures, courts and government regulators and policy makers attempt to 
apply the insights of  ethics   to practical problems in health informatics. 

 More research on ethical issues in computational decision support is essential for 
this process. We have, for instance, not yet adequately addressed issues that arise 
when clinical calculators, diagnostic tools and the like are made available on the 
World Wide Web; we are not yet clear about the level of  ethics   education that is 
appropriate for students in health informatics; and there remains much work to be 
done at the intersections of ethics and system  evaluation   and  ethics   and standards of 
care. 

 Elsewhere in the history of science and technology, such challenges are often 
taken to constitute evidence of the growth and maturation of an applied science. 
This is certainly the case for computational decision support and, indeed, for all of 
health informatics.       
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    Chapter 9   
 Evaluation of Clinical Decision Support                     

     David     F.     Lobach     

    Abstract     The value and fi nancial impact of clinical decision support systems need 
to be better understood. This understanding can be formulated through evaluations 
of decision support systems. This chapter discusses a framework for identifying an 
evaluation strategy and selecting an evaluation type in order to address important 
questions concerning clinical decision support systems (CDSS). The chapter also 
summarizes the existing literature regarding what is known about evaluations con-
ducted on CDSS and about the features of systems that are associated with success-
ful implementations. In order to assist the reader with framing an evaluative study 
of a CDSS, the chapter includes a multistep approach to formulating an evaluation 
illustrated by a parallel description of an actual CDSS evaluation study. Finally, the 
chapter concludes with the identifi cation of several challenges and pitfalls that can 
be specifi cally associated with CDSS evaluations.  

  Keywords     Clinical decision support systems   •   Summative evaluation   •   Formative 
evaluation   •   Randomized controlled trial   •   Clinical outcomes   •   Evaluation method-
ology   •   Study design  

     This  chapter      will explore three aspects of evaluating  clinical decision support sys-
tems (CDSS)  : a description of a framework for the evaluation of CDSS; a review of 
evaluations that have been done on CDSS; and an outline of an approach for con-
ducting an evaluation of a CDSS. The objectives of this chapter are: (1) to provide 
a context for the value of CDSS evaluation and expose the reader to the types of 
evaluations that can be performed as well as common outcomes from CDSS evalu-
ations; (2) to summarize fi ndings from  CDSS   evaluations particularly focusing on 
systematic reviews and meta-analyses looking at the effectiveness of CDSS and at 
features that are associated with successful CDSS; and fi nally, (3) to discuss issues 
related to performing an evaluation of a CDSS along with an example of a CDSS 
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evaluation study. The ultimate goal for this chapter is to help the reader to appreciate 
the scope of CDSS evaluation, the work that has already been done in evaluating 
 CDSS  , and the process of conducting an evaluation of a CDSS. 

9.1     Strategies for CDSS Evaluation 

  From the  most   simplistic vantage point, CDSS evaluation entails the systematic col-
lection of information about one or more specifi c aspects of a CDSS in order to gain 
further insight and understanding about the system. The ultimate intent of CDSS 
evaluation is to inform or infl uence decisions related to CDSS design, use,  imple-
mentation  , or effectiveness through the use of empirically collected data. Establishing 
a framework for CDSS evaluation depends on the question(s) the evaluation seeks 
to resolve. The process involves identifying a specifi c evaluation strategy model that 
defi nes the intent of the evaluation, and then selecting an appropriate  evaluation 
methodology  . Evaluation strategy models can focus on scientifi c/experimental 
questions, management issues, qualitative attributes, or user experience [ 1 ]. While 
these strategies are separated for the purposes of discussion, many evaluation proj-
ects will draw from multiple strategies in order to gain a full understanding of the 
impact of a CDSS. 

 The scientifi c or experimental models often tend to be most familiar. These mod-
els rely heavily on the collection of data that enables systematic comparisons 
through experimental and quasi-experimental research designs. This model strategy 
can address issues such as the effectiveness of CDSS to impact decision-making, 
the effect of CDSS on care process measures, the impact of CDSS on  clinical out-
comes  , or the determination of which system components are most effective. 

 Management-focused evaluation models seek to understand the impact and 
effects of a CDSS in the larger context of an overall organization. These contextually- 
oriented evaluations can generate insights related to workfl ow disruption, produc-
tivity impact, and/or process changes. Findings arising from a management-focused 
evaluation strategy provide awareness regarding the practical implications of CDSS 
 implementation   on work practices. Such fi ndings can be used to refi ne and modify 
workfl ow, to identify bottlenecks or disruptions in service, or highlight newly gained 
effi ciencies. 

 Qualitative strategies rely on observation and generate data through subjective 
human interpretation. For example, the qualitative strategy can be used to generate 
observations pertaining to the effect of  CDSS   on work processes, decision making, 
and care delivery. In many instances, qualitative data are systematically reviewed 
and categorized in order to discover recurring themes and identify trends or 
patterns. 

 Participant-oriented strategy models seek to gain understanding regarding the 
 CDSS   user experience. These strategies can rely on direct user input in the form of 
validated survey instruments or on interviews and discussions in order to obtain user 
feedback. For analysis, user feedback is often categorized in order to fi nd common 
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themes across multiple users. These studies are exceedingly valuable for refi ning 
 CDSS   so that they will be user-friendly and effective with the intended recipients of 
the technology.  

9.2     Types of CDSS Evaluations 

 At the highest level, CDSS evaluations can be divided into one of two categories: 
 formative evaluation   and  summative evaluation   [ 2 ]. The category selected depends 
on the ultimate purpose of the evaluation.  Formative evaluation   refi nes and improves 
attributes of the CDSS technology. As implied by its name, formative evaluation 
seeks to mold and shape a CDSS in most cases prior to its full  implementation  . 
Formative studies can follow several different approaches. Needs assessment deter-
mines what need or needs the CDSS should address, the extent of the needs, and 
what approaches could be used to meet the identifi ed needs. Evaluability assess-
ment explores the feasibility of a CDSS evaluation and how such an evaluation can 
be structured [ 1 ]. A structured conceptualization study establishes the most appro-
priate target population for the CDSS and can begin the process of identifying 
potential outcomes from system use. An  implementation   evaluation explores the 
fi delity of the CDSS in context and serves to identify potential barriers or pitfalls for 
actual system use. A process evaluation determines the impact of delivering the 
CDSS on work processes and procedures. These two latter study types are particu-
larly useful for identifying potential problems with a CDSS  implementation   before 
they become disruptive in a production environment. 

 The techniques used for  formative evaluations   depend in part on the types of 
questions that are being addressed. Commonly used techniques that could support 
several of the formative approaches include brainstorming, focus groups, think- 
aloud sessions, structured interviews, nominal group techniques, concept mapping, 
and Delphi polls [ 1 ]. With regard to techniques for specifi c approaches beyond the 
previously identifi ed general methodologies, needs assessment can be accomplished 
through surveys, interviews with stakeholders, and gap analysis;  implementation   
evaluation may benefi t from model creation or simulation studies; and process eval-
uation may be informed through qualitative and quantitative monitoring from infor-
mation systems. 

  Summative evaluations  , in contrast to  formative evaluations  , seek to assess 
effects or outcomes resulting from a CDSS. Often summative evaluations are the 
evaluation type that comes to mind when one thinks about evaluating a CDSS. The 
most familiar summative evaluations focus on the effect of CDSS on process mea-
sures or  clinical outcomes  . Several different  study designs   can be used to conduct 
summative outcome evaluations, including  randomized controlled trials   (parallel 
group, crossover, or cluster), quasi-experimental investigations (non-randomized 
trial, historical before – after trial, or time series trial), and observational studies 
(cohort, case-control, or case series) [ 3 ]. Other less familiar types of  summative 
evaluations   include impact evaluations, designed to assess intended or unintended 
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consequences of a CDSS in the production environment;  cost-effectiveness   or cost- 
benefi t analysis, focusing on the fi nancial consequences of a CDSS implementation; 
secondary analysis, using existing data to explore new research questions about a 
CDSS; and meta-analysis, integrating outcome results from multiple studies in 
order to assess an overall impact from CDSS as a whole.  

9.3      Types of Outcomes Assessed in CDSS Evaluations 

 An important aspect of any CDSS evaluation is the primary metric used to answer 
the question behind the evaluation. Formative and summative studies reporting eval-
uations of CDSS have looked at a wide variety of potential outcomes [ 4 ]. As Bright 
et al. indicate, the outcomes identifi ed in published CDSS studies can be grouped 
into the following seven primary categories: 

•    Clinical (Length of stay, morbidity, mortality, health-related quality of life, 
adverse events)  

•   Health care process (Adoption/ implementation   of CDS-recommended preven-
tive care/clinical study/treatment, patient adherence to CDSS recommendation, 
impact on user knowledge)  

•   Health care provider workload, effi ciency, and organization (Number of patients 
seen/unit time, clinician workload, effi ciency)  

•   Relationship-centered (Patient satisfaction)  
•   Economic (Cost,  cost-effectiveness  )  
•   Health care provider use and  implementation   (User acceptance, satisfaction, and 

use and implementation of CDS) [ 4 ].    

 Many studies report on more than one type of outcome, even though one particu-
lar outcome may be selected as primary for the purposes of determining the study 
sample size. Among the 311 CDSS evaluation studies included in a recent review, 
 clinical outcomes   were included in 20 % of randomized controlled trials, 35 % of 
quasi-experimental trials, and 45 % of observational studies. In contrast, healthcare 
process measures were included in 86 % of  randomized controlled trials  , 75 % of 
quasi-experimental studies, and 69 % of observational studies [ 4 ].  

9.4     Findings from Systematic Reviews of CDSS 

 Systematic reviews of evaluation studies of CDSS have explored both the effective-
ness of CDSS to impact process measures and  clinical outcomes   and the features of 
CDSS that are associated with a signifi cant clinical impact. Studies evaluating the 
effectiveness of CDSS have been reviewed through the Agency for Healthcare 
Research and  Quality  -sponsored Evidence-based Practice Center at Duke University 
[ 5 ]. For this review, a CDSS was defi ned as “any electronic system designed to aid 
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directly in clinical decision making, in which characteristics of individual patients 
are used to generate patient-specifi c assessments, recommendations that are then 
presented to clinicians for consideration.” Examples of CDSS included in the 
Lobach et al. review included the following: alerts, reminders, order sets, drug- 
dosage calculations, and care summary dashboards that provide performance feed-
back on quality indicators or benchmarks [ 5 ]. A total of 160 manuscripts representing 
148 unique studies were identifi ed and abstracted for inclusion in the systematic 
analysis. This review determined that CDSS evaluations demonstrate “strong evi-
dence that CDSS… are effective in improving health care process measures across 
diverse settings using both commercially and locally developed systems” [ 5 ]. 
Relatively little evidence was available to show the impact of CDSS on  clinical 
outcomes   and health care costs. The evaluative studies from this review showed that 
CDSS now have demonstrable effectiveness not just at academic medical centers 
with locally developed CDSS but also across diverse community healthcare settings 
using commercially developed CDSS tools [ 5 ]. 

 In addition to the  AHRQ  -sponsored review noted above, CDSS evaluation stud-
ies have been serially reviewed by Haynes and colleagues [ 6 – 8 ]. These reviews 
have demonstrated the historical evolution of CDSS and their impact. The initial 
review from 1994, a systematic analysis of CDSS evaluation studies that included 
only 28 controlled trials of CDSS evaluations showed that CDSS improved clinician 
performance through preventive care, reminders and computer-aided quality assur-
ance [ 6 ]. Only three of the ten studies that assessed patient outcomes showed sig-
nifi cant improvements. The next systematic review of CDSS evaluation studies was 
published in 1998 [ 7 ]. This review included 68 controlled trials. The use of CDSS 
was found to have benefi cial effects on clinician performance in 66 % (43 out of 65) 
of the studies. Benefi ts were shown for drug dosing  decision support   in 9 of 15 stud-
ies, diagnostic assistance in 1 of 5 studies, preventive care reminders in 14 of 19 
studies, and on general medical care issues in 19 of 26 studies. Benefi t of CDSS was 
found in 6 of 14 studies that assessed patient outcomes. Of the negative eight out-
come studies, Hunt et al. determined that only three had suffi cient power greater 
than 80 % to detect a clinically important effect [ 7 ]. The next serial review was 
published in 2005 [ 8 ]. This review of CDSS evaluation studies encompassed 100 
randomized and nonrandomized trials, including 97 controlled trials assessing clini-
cian performance. In 64 % of the studies, CDSS improved clinician performance for 
 diagnosis  , preventive care, disease management, drug dosing, or drug prescribing. 
Of the 52 trials that assessed patient outcomes, only 7 reported improved outcomes 
with CDSS and no reports showed benefi t on major outcomes such as mortality. 
Most of the studies focusing on  clinical outcomes   were insuffi ciently powered to 
detect a clinically important difference [ 8 ]. 

 Most recently, evaluation studies focusing on CDSS associated with  electronic 
health record   systems (EHRs) have been systematically reviewed by Moja et al. [ 9 ]. 
This review identifi ed 28  randomized controlled trials   in which rule-or algorithm- 
based  CDSS   were integrated with EHRs and outcome measures refl ecting  morbidity, 
mortality, or economic impact were assessed. Sixteen trials measured mortality 
rates, but found no statistically signifi cant impact. In the nine trials that assessed 
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morbidity, defi ned by the authors as occurrence of illness (such as pneumonia, myo-
cardial infarction, or stroke), progression of diseases, or hospitalizations, a small but 
statistically signifi cant effect was detected. In the 17 trials that reported economic 
outcomes, differences in costs and health service utilization were detected, but the 
magnitude of the effect was small. Across all economic outcomes, Moja et al. con-
cluded that there was no consistent advantage for  EHRs   with CDSS compared to 
those without CDSS [ 9 ]. 

 In summary, evaluations of the impact of CDSS to date have shown that these 
systems can improve care process measures using both locally developed or com-
mercial CDSS in academic and community-based care settings. More research is 
needed to determine the effect of CDSS on  clinical outcomes   and on the economic 
consequences of using these systems. 

 With regard to CDSS features that contribute to success, an initial systematic 
review of CDSS evaluation studies reporting on 71 comparisons of control versus 
CDSS and focusing on features of CDSS that are associated with a clinical impact 
was published by Kawamoto et al. [ 10 ]. This study showed that CDSS including 
fi ve specifi c features were more likely to improve clinical practice than systems 
without these features. Kawamoto et al. found that the features associated with an 
impact on clinical practice included the following: “(1) automatic provision of  deci-
sion support   as part of clinician workfl ow, (2) provision of decision support at the 
time and location of decision making, (3) provision of recommendations rather than 
just an assessment, (4) use of a computer to generate  decision support  , and (5) pro-
vision of decision support as part of clinician workfl ow” [ 10 ]. 

 CDSS evaluation studies that identifi ed features associated with successful 
CDSS  implementations   were also included in the  AHRQ  -sponsored review of 
CDSS evaluation studies [ 5 ]. This report confi rmed the effectiveness of three fea-
tures previously identifi ed by Kawamoto et al. namely automatic provision of  deci-
sion support   as part of clinician workfl ow, provision of decision support at the time 
and location of decision making, and provision of a recommendation and not just an 
assessment. The Lobach et al. review also identifi ed six additional features that cor-
related with successful  CDSS   systems. These features included:

•    Integration with charting or order entry system to support workfl ow integration,  
•   No need for additional clinician data entry,  
•   Promotion of action rather than inaction,  
•   Justifi cation of  decision support   via provision of research evidence,  
•   Local user involvement in the development process, and  
•   Provision of  decision support   results to patients as well as providers [ 5 ].   

Lobach et al. noted that many of the evaluation studies included  CDSS   with more 
than one feature, and thus it was diffi cult to determine the importance or impact of 
any one individual feature [ 5 ]. 

 A more extensive systematic review reporting on 148 CDSS evaluation studies 
was published by Roshanov et al. [ 11 ] This review found that  CDSS   were  associated 
with success when (1) the system was developed by the authors of the study, (2) the 
system provided advice to both patients and clinicians, and (3) the system required 
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a reason for overriding advice. Roshanov et al. also found that “advice presented in 
electronic charting or order entry systems showed a strong negative association with 
success” [ 11 ]. In contrast to the fi ndings reported by Kawamoto et al. [ 10 ], Roshanov 
et al. found that neither advice automatically provided in workfl ow nor advice pro-
vided at the time of care were associated with successful  CDSS   [ 11 ]. 

 To date, efforts to identify the most critical features associated with successful 
CDSS have been inconclusive in that the largest studies have reported confl icting 
results. The fi ndings do imply that features that integrate  CDSS   into existing work-
fl ows and justify the CDSS recommendations lead to greater success; however, 
more evaluations deliberately focusing on the impact of specifi c CDSS features are 
needed.  

9.5     Approach to Conducting an Evaluation of a CDSS 

  There  is   no “one-size fi ts all” approach for evaluating CDSS since each system has 
nuances about its operation and use, and every  implementation   environment has 
unique differences and challenges related to evaluation. Accordingly, the following 
section does not provide specifi cs for formulating a CDSS evaluation, but instead 
offers seven guiding questions to facilitate planning an evaluation that accommo-
dates the  implementation   environment. These guiding questions have been used 
over the years to assist informatics graduate students with developing thesis and 
dissertation projects as well as for the formulation of plans for several successful 
research grants for CDSS development and evaluation. One of the studies resulting 
from a research grant funded by the Agency for  Healthcare Quality   and Research 
will be used as an illustrative example [ 12 ]. This project assessed a CDSS that was 
in use for population health management among 20,000 Medicaid benefi ciaries in 
Durham County, North Carolina. This project was possible in part because every 
Medicaid enrollee was included in a care management network so that every patient 
had an assigned medical home and an assigned care manager. Care managers were 
allocated to a specifi c population by clinic site, patient age (i.e., pediatric or adult), 
and native language (i.e., English or Spanish). The  decision support   tool was 
designed to detect missing care services such as regular hemoglobin A1c assays for 
patients with diabetes and potentially inappropriate use of healthcare resources such 
as emergency department visits for low severity indications or ambulatory care- 
sensitive conditions. The CDSS tool received administrative claims and enrollment 
data from the North Carolina Medicaid offi ce monthly and daily admission, dis-
charge, and transfer (ADT) data through a  Health Level 7 (HL7)   interface from the 
hospitals and emergency departments in the region [ 13 ]. When sentinel events, 
defi ned in this context as notable activities that deviate from expected or optimal 
care pathways such as hospitalizations for ambulatory care sensitive conditions, low 
severity emergency department visits, missing recommended laboratory tests or ser-
vices, were detected by the system, notifi cations for each index patient were com-
municated to the appropriate care manager via secure email. Sentinel events were 
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prioritized and fi ltered so that each care manager would receive only the top 20 most 
important events each day for his/her patient population. 

  Question  # 1 :  What will be the impact if the CDSS is successful ? Since every 
CDSS is designed with an intended purpose, this fi rst question seeks to defi ne what 
the anticipated result would be if the CDSS worked optimally. After “success” is 
defi ned, the corollary question is whether or not this success can be measured 
directly. If direct measurement is not possible, what surrogate measures could be 
used to refl ect the desired success? In the example study, the goal of the CDSS was 
to increase the completion rates of recommended care services, and decrease 
potentially inappropriate emergency department (ED) use and hospitalizations 
[ 12 ]. In addition, success would also result in decreased overall medical costs 
because expensive ED visits and hospitalizations would be converted to primary 
care visits [ 12 ]. 

  Question  # 2 :  What data are needed to show / measure success or the surrogate 
outcome ? In order to determine whether or not success has been achieved, empirical 
data need to be collected and analyzed to assess whether or not the CDSS fulfi lled 
its intended purpose. The data for measuring success need to be defi ned and charac-
terized. As a reference, the types of outcomes that have been measured in published 
CDSS studies were summarized above in section  9.3 . For the example study, the 
primary measure was to be emergency department utilization rates. In addition, we 
also included secondary measures such as low severity ED rates, hospitalization 
rates, the completion of appropriate medical services, and medical costs in total and 
broken down across categories of emergency department services and ambulatory 
care [ 12 ]. 

  Question  # 3 :  How can these data be obtained ? One issue to decide is what the 
ideal dataset would be for measuring a desired outcome; however, obtaining the 
needed data for all potential study subjects can be challenging. It is important that 
the evaluation data be available from a common source across both intervention and 
control subjects. In many instances, supplemental data are collected for the inter-
vention group as part of the research protocol. These data, however, cannot be used 
to determine the primary study outcome since they are not available for the control 
group. If the data needed to measure the primary outcome are not available, a differ-
ent primary outcome or a surrogate for the primary outcome may need to be selected. 
For the example study, emergency department utilization rates could be readily cal-
culated from Medicaid claims data as could hospitalization rates, completion of 
medical services, and even medical costs. These data were available for both inter-
vention and control subjects in the target study population [ 12 ]. 

  Question  # 4 :  What type of evaluation is possible in the environment of the CDSS ? 
Now that the desired outcome for measuring the impact of the CDSS has been 
defi ned and the necessary data for calculating this metric have been identifi ed, sev-
eral pivotal issues need to be addressed that determine the type of study that can be 
performed in the CDSS environment. As discussed above, the likely study type 
would be a  summative evaluation   in order to quantitate the impact of the CDSS on 
the primary outcome. Within the summative evaluation type, a researcher needs to 
select an appropriate study design. As a general rule, the most rigorous  study design   
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possible is desirable. The next step is to defi ne precisely who the study participants 
should be. For CDSS evaluation studies, this step can be challenging in that the 
CDSS content is often delivered to a clinician, but the desired impact is assessed on 
patients. Whichever study subject group is selected, this group needs to serve as the 
unit of randomization if a  randomized controlled trial   design is selected. For the 
example study, a randomized controlled trial was selected as the study design since 
the research team had complete control over the distribution of the CDSS recom-
mendations [ 12 ]. We opted to use patients as our unit of randomization since the 
data from the study outcomes would be based on data pertaining to individual 
patients (i.e., ED utilization rates). As is common with  randomized controlled trials   
involving CDSS evaluations, we then needed to ascertain whether signifi cant con-
tamination would occur since the individuals receiving the CDSS notifi cations, the 
care managers, could have contact with patients assigned to both the control and 
intervention groups. The issue of contamination is addressed below in Question #6. 

  Question  # 5 :  How should the outcome data from the study groups be compared ? 
This question seeks to determine what type of data analysis will be necessary in 
order to ascertain whether or not the impact of the CDSS intervention was signifi -
cant. The answers to this question will defi ne the analytical approach for comparing 
the primary outcome measure between study groups. These answers will also dic-
tate what the study sample size and duration need to be in order to achieve an appro-
priate level of statistical power for the primary outcome. The sample size and study 
duration are ultimately dictated by the event rate of the primary outcome measure. 
At this juncture, the researcher needs to determine what a clinically signifi cant dif-
ference in the primary measure would be between the intervention and control 
groups. A suffi cient number of primary outcome events needs to occur in order to 
provide an opportunity to establish a statistically signifi cant difference. For the 
example project, [ 12 ] we were able to determine that the rate of ED utilization 
within the population was 42.7 visits per month per 1,000 Medicaid benefi ciaries. 
From preliminary studies, we concluded that a change in emergency utilization 
rates of 20 % would be feasible and would be clinically signifi cant. We estimated 
that we would be able to enroll approximately 80 % of the available study subjects 
in the trial. With this number of subjects, we determined that the study duration 
would need to be 9 months and the power to detect a signifi cant difference would 
exceed 80 % for an odds ratio for event reduction of 0.80 based on a two-sided test 
of proportions with a signifi cance level of 0.05. For making comparisons between 
study groups, estimates for intervention impact on study outcomes were based on 
generalized estimating equations with a working correlation matrix to account for 
clustering within families [ 12 ]. 

  Question  # 6 :  How can contamination be avoided or controlled ? As mentioned 
above, under Question #4, the challenge of contamination is prevalent in many  ran-
domized controlled trials   of CDSS since the patients are often the unit of random-
ization, but the CDSS intervention is conveyed to clinicians. Clinicians often have 
contact with patients who have been randomized to the intervention as well as with 
patients randomized to the control arm. In some instances, it is possible to random-
ize clinicians and assign all of the clinician’s patients to a particular study arm. The 
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challenge with this approach is that patients are sometimes seen by different clini-
cians and can then crossover between study groups, leading to a new type of con-
tamination. A cluster randomized trial design in which entire clinician groups or 
clinic sites are randomized as a unit can control for crossover contamination; how-
ever, this approach can signifi cantly limit sample size because the sample size lies 
somewhere between the number of clusters randomized and the number of patients 
for whom outcome measures will be determined. In the example study, [ 12 ] the 
contamination question was whether or not a care manager would have contact with 
subjects randomized to the intervention group and subjects randomized to the con-
trol group, and if so, whether this contact would have signifi cant effects on the study 
outcomes. We determined that the care managers could have contact with both 
intervention and control subjects; however, this contact with both groups was felt to 
invoke minimal contamination since the recommendations for intervention were 
highly patient specifi c (e.g., pediatric patient X had a low severity emergency 
department encounter for fever yesterday) and care managers would not know to 
initiate contact with control subjects without receiving the  CDSS   guidance. Of note, 
we did make one adjustment in our unit of randomization such that the randomiza-
tion was actually based on family units since receipt of an intervention for one fam-
ily member could potentially impact health behaviors of other family members [ 12 ]. 

  Question  # 7 :  What is the economic impact or return on investment  ( ROI )  from 
the CDSS ? With the increasing emphasis on controlling healthcare costs, inclusion 
of measures that will refl ect the economic impact of a  CDSS   intervention are 
becoming increasingly important [ 14 ]. In general, the economic measures can be 
tied to the changes anticipated in the primary outcome. Basically, if the desired 
impact is achieved, what are the cost implications? For the sample study, [ 12 ] we 
were seeking to decrease emergency department utilization rates. A decrease in 
emergency department utilization should contribute to signifi cant cost savings. For 
this study, we opted to look at total costs for patients in each study arm recognizing 
that saving costs in one area could lead to increased costs in a different area. For our 
study, we hypothesized that decreased emergency department utilization rates could 
lead to increased visits at primary care clinics. In addition, other hypothetical cost 
implications resulting from our  CDSS   interventions could be increased rates of test-
ing and potentially increased pharmaceutical costs because intervention subjects 
would be likely to have more contact with the healthcare system [ 12 ]. 

 As mentioned above, these seven questions are intended to assist with the formu-
lation of a  CDSS   evaluation study. They are not prescriptive with regard to how an 
evaluation should be conducted for a given CDSS and system environment. Table 
 9.1  summarizes the seven evaluation questions.

   As the “rest of the story” regarding the sample  CDSS   evaluation project, we did 
not show a decrease in total emergency department utilization rates or costs across 
the entire population as our primary study outcomes. However, when we drilled 
down and looked at the impact of the intervention on low severity ED utilization 
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rates, we found a statistically signifi cant reduction in the intervention group relative 
to the control subjects (8.1 vs. 10.6/100 enrollees, p < 0.001). In further sub-analysis 
focusing specifi cally on the pediatric population, we discovered a statistically sig-
nifi cant reduction in total ED utilization rates (18.3 vs. 23.5/100 enrollees, p < 0.001), 
translating to a reduction in utilization rate from 28 % to 23 % in the intervention 
arm. We also demonstrated a statistically signifi cant total cost savings of $500 per 
pediatric intervention subject during the 9-month study. When the cost saving 
results were extrapolated across the entire pediatric population, we determined that 
the annual cost savings for Medicaid would be the on the order of $1.5 million in a 
single county [  12 ].  

9.6     Challenges Associated with Evaluation of CDSS 

  While  evaluation   is critical for developing, implementing, assessing impact, and 
establishing ROI for CDSS, conducting studies of CDSS is fraught with unique 
challenges. To begin with, performing a rigorous study of CDSS with a simultane-
ous control arm is often diffi cult because CDSS tools tend to be components of 
larger systems. In many instances, it is diffi cult to allow access to CDSS for some 
users and not for others. This challenge has increased further with the integration of 
CDSS capabilities into  EHRs  . Rarely can an individual site or investigator control 
the access to CDSS resources within a commercial EHR product thus limiting 
opportunities for a simultaneous control arm. In almost no instances can the inter-
vention subject be blinded to the intervention. As a consequence, evaluators of 

   Table 9.1    Questions to guide the formulation of a CDSS evaluation   

 1. Defi ne result if system is successful 
   Can this success be measured directly? 
   If not, what surrogate measure can be used to refl ect success? 
 2. What data are needed to show/measure success or surrogate outcome? 
 3. Where can these data be obtained? 
 4. What type of evaluation is possible in system environment? 
   Defi ne  study design   (historical control,  randomized controlled trial  ) 
   Identify study participants 
 5. How should these data be compared? 
   Defi ne analytical approach 
   Estimate sample size 
   Determine statistical power 
 6. How can contamination be avoided or controlled? 
 7. What is the economic impact/ROI? 
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CDSS systems often need to settle for historical controls with a before-after clinical 
trial  study design  . 

 As a second challenge, even when the CDSS can be provided to one group of 
users, but not another, contamination becomes a problem as illustrated above. As 
already described, the direct user of CDSS advice is frequently the clinician, even 
though the impact of the CDSS is assessed on patient outcomes. In clinical settings, 
it is not unusual for patients to receive care from several clinicians within a practice 
and for clinicians to care for patients of their colleagues. As a result, non- intervention 
patients can be exposed to clinicians receiving a CDSS intervention and interven-
tion clinicians can have encounters with patients from both the intervention and 
control arms of the study. 

 A further consequence of the discordance between the clinician as the recipient 
of the CDSS intervention and the patient as the unit of randomization and focal 
point for the outcome measures is the challenges that arise for data analysis. Special 
analytic techniques are frequently needed in order to unravel the potential depen-
dencies and co-variation that can arise in these settings. Experienced statisticians 
are needed on the team in order to navigate the analytic quagmire. 

 An additional diffi culty is that defi nitive  randomized controlled trials   are often 
large studies and can be quite expensive and diffi cult to organize [ 15 ]. As a conse-
quence, many evaluations of CDSS rely on less rigorous  study designs   and thus tend 
not to supply the best evidence for CDSS impact. 

 Another challenge with CDSS evaluation is ensuring adequate exposure to the 
intervention. In many systems,  clinical decision support   is an adjunct to the primary 
workfl ow and can be easily overlooked or neglected by busy clinicians. In order to 
have a defi nitive study of a CDSS, high use rates of the CDSS are required. Over the 
years, many studies have failed to show impact because the “dose” of CDSS that 
was “consumed” by the target clinician study subjects was too low. Most of these 
studies are assessed with an intention-to-treat framework and show no impact for 
the overall effect. When sub-analyses are conducted and the results for substantive 
CDSS users are isolated, a positive impact is often detected. 

 A sixth challenge for evaluating CDSS also relates to problems concerning 
CDSS usage. In many studies the targeted outcome is a relatively infrequent event 
such as an  adverse drug event   for a specifi c pharmaceutical. In order to have suffi -
cient instances in which the CDSS intervention is activated, the CDSS needs to be 
regularly used by clinicians so that the CDSS is engaged when the infrequent event 
occurs [ 15 ]. 

 A fi nal and often unanticipated challenge is receiving institutional review board 
(IRB) approval for CDSS evaluation studies, especially  randomized controlled tri-
als  . Many CDSS evaluation studies are conducted using computerized information 
systems in clinical settings that may serve large populations of patients. At the out-
set, it is often unknown which patients will prompt a CDSS-driven recommenda-
tion. In many instances, all patients serviced by the information system need to be 
included in the study population and thus randomized in the event a CDSS recom-
mendation is generated (or, could be generated, but is withheld for control subjects) 
for one of these patients. It becomes unrealistic and impractical to consent all of the 
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patients who are receiving care through the information system associated with the 
 CDSS  . In these scenarios, IRB review boards may fi nd it diffi cult to allow a study 
to be performed on subjects who have been randomized into a clinical trial without 
the subjects’ consent. In such instances, a waiver of consent will need to be justifi ed 
in order to conduct the study. Such waivers can be justifi ed because these studies 
promote an evidence-based standard of care and involve minimal risk to the study 
subjects. As an illustration of this challenge, the example study described above 
[ 12 ] required 9 months in order to obtain Institutional Review Board approval. 
Many conversations and meetings were necessary to help the IRB understand the 
nature of a technology clinical trial. Ultimately, a waiver of consent was granted for 
the trial. Table  9.2  summarizes the challenges for evaluation of CDSS. 

9.7        Conclusions/Observations 

 The rapid expansion of biomedical knowledge and the desire to utilize this knowl-
edge expeditiously at the bedside necessitate the use of tools to support decision 
making in the delivery of healthcare. Evaluation of these decision supporting sys-
tems is becoming increasingly important in order to demonstrate the impact these 
systems have on the health care triple aim of increased quality, improved health, and 
lower costs [ 16 ].  CDSS   evaluations also provide insights regarding how to make 
systems more effective and effi cient for seamless integration into the care delivery 
process. 

 Multiple strategies exist for pursuing evaluation of CDSS depending on the par-
ticular issues that need to be explored. Strategies can focus on scientifi c or experi-
mental questions, management concerns, qualitative system attributes, or user 
experience. After an evaluation strategy has been identifi ed, the type of evaluation 
to be conducted needs to be determined. In general, evaluations can be formative, 
focusing on the development and refi nement of the CDSS, or summative, exploring 
the impact of the system on selected outcomes. The types of outcomes that have 
been reported in the biomedical literature include clinical parameters, healthcare 

   Table 9.2    Special challenges arising from evaluation studies on CDSS   

 Diffi culty conducting  randomized controlled trials   due to limited capacity to selectively turn 
the system on and off for subsets of users 
 Contamination in randomized controlled trials 
 Discordance between CDSS target users (e.g., clinicians) and the target for CDSS impact 
measurement (e.g., patients) 
 RCTs of CDSSs are expensive and diffi cult to conduct 
  CDSS   sometimes have limited use by clinicians mitigating their impact 
 Need for widespread use of CDSS to generate suffi cient power especially for relatively 
infrequent event outcomes such as  adverse drug events   
 Obtaining Institutional Review Board approval 

9 Evaluation of Clinical Decision Support



160

process measures, workload and effi ciency metrics, stakeholder satisfaction, eco-
nomic impact, and  implementation   factors. 

 Published evaluations of  CDSS   have shown that these tools can improve clini-
cian performance of care processes such as ordering appropriate tests, making cor-
rect diagnoses, selecting effective medications, and complying with preventive 
service recommendations. Initially these benefi ts were only seen with locally devel-
oped systems in academic medical centers. The research evidence now demon-
strates that commercial systems can also achieve these benefi ts and that the benefi ts 
can be obtained in community-based settings. The available data on  clinical out-
comes   such as morbidity and mortality is less compelling. A few studies have dem-
onstrated reduced morbidity and decreased length of stay with the use of  decision 
support  . Some studies have also shown economic benefi ts from the use of decision 
support, but in most instances, the benefi ts have been relatively small. 

 Direct evaluation of  CDSS   has led to the identifi cation of system features that are 
associated with a positive impact. While the fi ndings from these studies are some-
what inconsistent across studies, there is evidence to suggest that providing  decision 
support   for both clinicians and patients, integrating decision support into the clinical 
workfl ow, and requiring justifi cation when decision support recommendations are 
not followed, are all associated with system success. 

 Conducting an evaluation of a  decision support system   requires identifi cation of 
the most salient impact expected from the system, identifying a source of data from 
which to measure this impact, and designing a study that will generate these data 
empirically.  CDSS   evaluations present some unusual challenges in that the systems 
are often used by clinicians, but the system impact is assessed on patients. This dis-
sonance between the system user and the unit for measuring impact has ramifi ca-
tions for  study design  , sample size calculations, subject randomization, data 
analysis, and controlling contamination. In addition, conducting  randomized con-
trolled trials   to assess decision support is challenging because creating a study envi-
ronment in which a simultaneous control can be available is often impossible since 
systems are used across entire enterprises and cannot be selectively turned on and 
off for a subset of users or patients. 

 In spite of the challenges associated with evaluating  CDSS  , these evaluations are 
critical for the advancement of the fi eld. Multiple types of approaches can be used 
for evaluating CDSS. A growing body of evidence is becoming available that shows 
the value of these systems for impacting care processes. More evaluative studies are 
needed to assess the impact of CDSS on  clinical outcomes   and economic measures. 
In addition, evaluations are needed to determine how to create tools that can more 
effi ciently and effectively be integrated seamlessly into the clinical workfl ow.       
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    Chapter 10   
 Decision Support for Patients                     

     Holly     B.     Jimison       and     Christine     M.     Gordon     

    Abstract     Research studies have shown that access to health information and deci-
sion support can enable patients to be more active participants in the treatment pro-
cess, leading to better medical outcomes. Decision support may take the form of 
health risk appraisals, understanding symptoms and when to see a doctor, as well as 
support for treatment choices and health management in the home. Many systems 
are designed to improve shared decision making, blending the expertise of clini-
cians in areas of diagnosis and prognosis with patients’ knowledge of their prefer-
ences and values on potential health outcomes. Technologies designed to provide 
clarity and improved access to decision support tools for patients have the potential 
to improve the quality of health care decisions and health outcomes more 
generally.  

  Keywords     Decision aid   •   Empowerment   •   Shared decision making   •   Patient prefer-
ences   •   Usability  

10.1       Introduction 

  This  chapter   introduces the concept of technology-based  decision support systems   
for patients. With the rapid growth in smart phones, sensor technologies, and more 
ubiquitous Web access for patients of all demographics, we have an opportunity to 
empower patients to be active participants in their health management and decision 
making. The fi eld of consumer health informatics deals with “developing and evalu-
ating methods and applications to integrate consumer needs and preferences into 
information management systems in clinical practice, education, and research” [ 1 ]. 
This technology ranges from systems providing background information on well-
ness, symptoms, diseases, and possible treatments to more comprehensive and 
interactive systems that support the management of chronic diseases. There are also 
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systems that support a patient’s  shared decision making   with a clinician for impor-
tant medical issues. Today more than ever, consumers and patients are using infor-
mation technology as an important component of their medical care.  

10.2     Role of Consumer Health Informatics in Patient Care 

 Research studies have shown that access to health information can enable patients 
to be more active participants in the treatment process, leading to better medical 
outcomes [ 2 – 5 ]. Health education is an important aspect of doctor-patient commu-
nication. Patients report that they want to be informed about their medical condition 
[ 6 ,  7 ], and the process of sharing information enhances the doctor-patient relation-
ship. In Pew Internet’s Health Online 2013 Survey, they found that 72 % of U.S. 
adults reported having looked online for health information in the past year, and that 
35 % reported having looked online to determine what medical condition they or 
someone else might have [ 8 ]. Of those seeking health information online, 46 % said 
that it led them to think they needed to seek medical care, while 38 % found it was 
something they could take care of at home, and 11 % reported that it was both or 
in-between. Clearly, the Web is a common source of health information. However, 
many people still consult with family and friends in addition to seeing a clinician. 
In fact, the Pew Health Online Survey found that, for serious conditions, 70 % 
sought information, care, or support from) a health care professional, 60 % con-
sulted with family and friends, and 24 % discussed it with patients with a similar 
 diagnosis   [ 8 ]. 

 Materials for patients and consumers on the Web run the gamut from generic 
patient education materials and background information presented in an electronic 
format to interactive  decision aids  . Most consumers (77 %) begin looking online for 
health information using a search engine (e.g., Google, Bing, Yahoo). Others (13 %) 
limit their search to known specialty sites, such as WebMD.com or MayoClinic.org. 
Often, search engines will return links to these specialty sites or to a general refer-
ence site like Wikipedia. The vast majority of people looking online for health infor-
mation end up on these specialty sites [ 8 ]. 

 Websites that specialize in health information usually organize the material so 
that it is accessible by both symptoms and condition/ diagnosis  . Each condition or 
diagnosis will contain background information on causes and symptoms, informa-
tion on how the disease or condition is diagnosed, and possible treatment options. A 
key feature of these sites is letting the user know when and how soon to see a clini-
cian or if the condition can be managed at home. Many health websites offer well-
ness information and information on other health topics, such as aging. One of the 
clear advantages of being able to search for information on these sites is that photo-
graphs (especially useful for skin conditions), diagrams, and videos can be readily 
accessed and used both educationally and to help clarify symptoms. 

 Additionally, many health websites offer interactive tools for patients. These 
range from simple calculators of BMI (body mass index) to health risk appraisals 
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and checks for drug-drug interactions. The rapid growth of consumer health soft-
ware and materials on the Web, as well as new sensor developments and the rapid 
uptake of mobile communication devices have facilitated patient participation in 
their health care and decision making. These interactive systems have been devel-
oped to assist patients with informed consent [ 9 ,  10 ], health management [ 11 ], as 
well as coping and decision-making skills [ 9 – 11 ]. 

 Interactive tools for patient decision support or health management include the 
following:

•    Support algorithms for when to see a clinician or when to manage at home  
•   Health risk assessments, health metric calculators  
•   Interactive systems for health management (e.g., fi tness, weight loss, smoking 

cessation)  
•   Interactive systems for disease management (e.g., heart failure, diabetes, asthma)  
•   Online forums on health topics for social support and condition management 

advice  
•   Patients’ access to their  electronic health record  , patient/physician email, tai-

lored discharge summaries  
•   Decision support tools for patients to make treatment or care choices  
•   Decision support tools to prepare patients for  shared decision making   in a clini-

cal visit    

 Interactivity and tailoring of health materials has been shown to improve health 
outcomes [ 12 – 15 ] and is an important aspect of the more intensive tools for patients. 
The remaining topics in this chapter will relate to computer tools, sensors and com-
munication devices that interface with the patient directly with interactivity and 
tailoring to facilitate their decisions and management of their health. 

10.2.1     Empowerment and Self-effi cacy 

   Involvement   in one’s medical care also involves the concepts of patient 
empowerment and self-effi cacy. Empowerment and self-effi cacy are closely linked 
concepts. In general, empowerment can be thought of as the process that enables 
people to “own” their lives and have control over their destiny. It is closely related 
to health outcomes in that powerlessness has been shown to be a broad-based risk 
factor for disease. Studies demonstrate that patients who feel “in control” in a 
medical situation have better outcomes than those who feel “powerless” [ 16 – 18 ]. 

 Similarly, self-effi cacy is a patient’s level of confi dence that he or she can per-
form a specifi c task or health behavior in the future. Several clinical studies have 
shown self-effi cacy to be the variable most predictive of improvements in patients’ 
functional status [ 19 – 26 ]. For example, in a study of functional status after bypass 
surgery, self-effi cacy explained more variability in functional status outcomes than 
did measures of disease severity, functional capacity, comorbidity, or preoperative 
functioning [ 27 ]. Additionally, in a study on patients with rheumatoid arthritis, the 
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degree of perceived self-effi cacy was correlated with reduced pain and joint infl am-
mation and improved psychosocial functioning [ 21 ]. In cancer patients, a strong 
positive correlation was found between self-effi cacy and quality of life and mood 
[ 28 ]. In the prevention area, perceived self-effi cacy was shown to play a signifi cant 
role in smoking cessation relapse rate, control of eating and weight, and adherence 
to general preventive health programs [ 29 ]. 

 Given the strong infl uence of empowerment and self-effi cacy on health out-
comes, it is important to incorporate a focus on these concepts when designing 
systems for patient use. The feeling of empowerment and self-effi cacy can be 
enhanced, for instance, by online support groups where patients are able to connect, 
communicate, and engage in problem solving with others who have similar medical 
problems. This has been investigated and demonstrated with several life-changing 
health conditions, such as breast cancer and HIV/AIDS [ 12 ,  30 – 34 ]. An important 
measure of the success of health information systems is how well they promote 
empowerment and self-effi cacy for patients .  

10.2.2     Incorporating Patient Preferences 

  As medical  care   increasingly focuses on chronic disease, it is especially important 
that patient preferences regarding the long-term effects of their medical care be 
taken into account. For patients to be adequately informed to make decisions regard-
ing their medical care, it is important that they obtain information about the quality 
of life associated with the possible medical outcomes of these decisions. Yet the 
reliable assessment of a patient’s preferences and risk attitudes for  clinical out-
comes   is probably the weakest link in most clinical decision making. Efforts to 
explore the use of computers in communication about health outcomes, and in 
assessing patients’ preferences for various health outcomes, have addressed these 
issues [ 13 ,  14 ,  35 ]. Information on patient preferences is important for tailoring 
information to patients and for providing decision support [ 13 ]. Tailored informa-
tion has been found to be more effective in providing consumer information [ 36 ] 
and is preferred by patients [ 37 ]. In addition to differences in preferences for health 
outcomes, patients differ in the degree to which they choose to be involved in deci-
sion making. Research confi rms that age (younger), gender (females), and educa-
tion level (higher) are strong predictors of the desire to be involved in medical 
decisions. There is also a higher desire to be involved in medical decisions that 
appear to require less medical expertise, such as a knee injury, as opposed to a can-
cerous growth  [ 37 ].   
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10.3     Interactive Tools for Patient Decision Support 

 The number of commercial computer and Web-based products to support patients’ 
health information needs is growing rapidly. The information and  decision aids   
range from general home healthcare reference information to symptom manage-
ment and  diagnostic decision support  . There has been a dramatic surge in consum-
ers’ use of the Web to acquire health information [ 8 ]. Physicians, clinics, hospitals, 
and insurers are all redefi ning their business practices to incorporate the Internet and 
Web delivery systems. The following sections describe the various types of health 
information and decision support applications available for patients and their 
families. 

10.3.1     Patient Decision Support for Diagnosis 

   Some   of the health portals that offer general reference and drug information also 
offer interactive tools to assist patients in health assessment, symptom management, 
and limited diagnostic information (usually in preparation for  shared decision mak-
ing   in an offi ce visit). Health risk assessments usually take the form of a question-
naire with questions on family history and health behaviors. After completion, 
patients receive a tailored report with a summary of results that may help them pri-
oritize their health goals. There are many vendors providing health risk appraisal 
instruments [ 38 ] with most having certifi cation from the National Committee for 
Quality Assurance [ 39 ]. The tailored information identifi es an individual’s health 
risk factors and researchers have shown that this information alone may improve 
health behaviors and outcomes [ 40 ]. In some cases, the health risk assessment infor-
mation may then be linked to a personal health record and shared with one’s 
clinician. 

 Many health portals on the Web also offer various health screening tools. For 
example, several sites have depression screening self-assessments using a question-
naire style format (e.g., Web MD’s depression test embedded in a page with links to 
further information on depression) [ 41 ]. These types of assessments allow the 
patient to know when to pursue diagnostic advice from a health care professional 
and when to seek treatment. Other types of self-assessments include screening for 
childhood and adult attention disorder [ 42 ,  43 ], Alzheimer’s disease [ 44 ], eating 
disorders [ 45 ], etc. 

 Several health portals also offer calculator style tools to help patients manage 
their health. For example, after entering height and weight, patients can obtain their 
body mass index. Pregnancy calculations and target heart rate calculations are also 
amenable to this approach. Websites such as HealthStatus.com{healthstatus.com} 
additionally offer “calculators” to estimate blood alcohol level, basal metabolic rate, 
body fat, ideal weight, and recommended calories per day to achieve goal weight. 
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 Occasionally, the health websites will offer diagnostic aids for patients. However, 
there has been some reluctance to offer advice that is overly specifi c. The usual 
approach on the health sites that offer symptom-based  diagnosis   is to assess a symp-
tom or two and then present a list of possible causes, with links to further reading. 
As an example, WebMD [ 46 ] has an integrated Symptom Checker. The patient fi rst 
enters a symptom and then selects related factors, such as frequency or “triggered 
by.” Possible causes/diagnoses are then presented to the user with links to associ-
ated reading material. The next step for many individuals is to decide when to see a 
clinician. For symptoms like shortness-of-breath, rectal bleeding, or even cough, the 
sites will generally offer guidelines on “when to see a doctor,” distinguishing 
between emergency care, making an appointment, or self-care.   

10.3.2     Support for Patients’ Treatment Decisions 

 Most of the interactive  decision aids   that have been developed recently have focused 
on the patient’s role in participating in treatment decisions. As noted above, optimal 
decisions incorporate not only quality information about the  diagnosis   and progno-
sis (areas of a clinician’s expertise) but also information on a patient’s preferences 
with regard to the potential health and treatment outcomes. To varying degrees and 
depending on the condition, the process of  shared decision making  , whereby the 
patient and physician jointly contribute background information to generate a treat-
ment decision, becomes an important element of health care management. The 
Robert Wood Johnson Foundation report on Shared Decision-Making and Benefi t 
Design [ 47 ] points out that eight out of ten adults over the age of 40 make health 
decisions on a regular basis. This includes surgical decisions, whether to have 
screening tests, or what medication to take. Yet many patients report a lack of 
involvement in these decisions. Conditions such as breast cancer, early stage pros-
tate cancer, and chronic stable angina are examples of situations where various 
treatment options are available, including “watchful waiting”, but also where the 
decision on treatment choice is sensitive to patient values and preferences. 
Researchers have found that when patients discuss preferences with their physi-
cians, they are more likely to get the care they want [ 48 ], and that patients who are 
more engaged in their health and health care have better outcomes [ 49 ]. The 
Cochrane Review led by Stacey et al. looked at the effectiveness of  decision aids   for 
patients’ treatment decisions [ 49 ]. They found that these tools improved patients’ 
knowledge about their treatment options and reduced decisional confl ict related to 
feeling uninformed or unclear about their preferences and values. They also found 
moderate quality evidence that the  decision aids   promoted patients to take a more 
active role in decision making and have a better understanding of risk. 

 Many of these treatment  decision aids   can be found on health portals, such as 
WebMD.com or MayoClinic.org.  The Agency for Health Care Research and Quality 
  offers shareable decision aids [ 50 ] for a limited number of diseases and conditions. 

H.B. Jimison and C.M. Gordon



169

The guides consist of background material on the condition, how the condition is 
diagnosed, treatment options with thorough descriptions, and the pros and cons of 
each option. The background material is supplemented with video clips on the Web. 
The goal of this approach is not to provide the patient with a  diagnosis   or specifi c 
recommendation, but to prepare the patient to be an informed participant in making 
treatment decisions during the next visit to the clinician. Their tools often offer 
supplementary video education and patient testimonials, as well as questionnaires 
with printable results that refl ect the patient’s submitted values, questions and con-
cerns. These can then be taken to an offi ce visit with a clinician in preparation for 
shared decision making regarding a test or treatment. 

 The largest selection of links to patient treatment  decision aids   (at least 300) can 
be found at the Ottawa Hospital Research Institute (OHRI) Web page on decision 
aids for patients [ 51 ]. Most of the decision tools are produced and maintained by 
Healthwise, Inc. [ 52 ], which then serves as a provider of content for Web-based 
health portals, such as WebMD.com [ 53 ]. These  decision aids   typically list the rel-
evant treatment options, provide background information, and describe the various 
risks, benefi ts, and why a doctor might recommend a particular treatment or proce-
dure versus “watchful waiting”. Although available online, they are typically paper 
based and printable for the patient to take to a clinic visit. A key contribution with 
these is that the  probability   of success or risk associated with treatment is displayed 
in a graphical format for the patient. Assistance with understanding side effects and 
a method for describing patient values (using a scale from Not Important to Very 
Important) is provided. 

 Researchers associated with the International Patient Decision Aids Standards 
(IPDAS) Collaboration have created a framework [ 52 ,  53 ] for evaluating each of the 
identifi ed patient  decision aids   on the OHRI website [ 51 ]. They classify the decision 
aids according to health condition, options available, appropriate audience, devel-
oper, year of last update/review, format, language, and provide a link to the source. 
They then evaluate each decision  aid   on 11 content criteria, 9 development process 
criteria and 2 effectiveness criteria. Table  10.1  summarizes the guidelines and  evalu-
ation   criteria they developed using a two-stage Web-based Delphi process.

   The goal of having a process to defi ne the quality of  decision aids   for patients is 
to infl uence developers in creating more usable and effective tools for patients and 
to help providers and patients in fi nding, selecting, and using the best tools available 
to support  shared decision making  .  

10.3.3     Other Areas of Decision Support for Patients 

 In addition to decision support tools for health risk appraisal,  diagnosis  , screening 
tests and treatment decisions, support is required for many areas of patient self- 
management and decision support in the home environment. Self-management is 
important for a number of chronic conditions, including diabetes, heart failure, and 
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asthma. These conditions require vigilant monitoring and self-care on the part of 
patients and/or family members. For example, patients with diabetes must monitor 
blood glucose levels on a regular basis, as well as manage diet and exercise. For 
patients with heart failure, it is important to monitor weight and symptoms of short-
ness of breath or fatigue, along with careful medication management. Patients with 
asthma must also regulate medications with symptoms and environmental triggers. 
Especially for newly diagnosed patients, these care regimens can be quite daunting. 
There are many forms of technology support for patients with chronic conditions, 
ranging from mobile phone applications directly available to a patient to sophisti-
cated disease management interventions delivered by a clinic or health insurer. 

 Monitoring technologies include a variety of blood glucose meters, wireless 
weight scales, peak fl ow meters for asthma, wireless blood pressure cuffs, bed sen-
sors to measure sleep quality, wireless ECG leads for heart rate, heart rate variabil-
ity, and arrhythmia monitoring, as well as the new wrist-worn devices with 
accelerometers (activity), and measures of electrodermal activity (stress), and heart 
rate. Disease management systems typically share the data both with the patient and 

   Table 10.1    Criteria developed by the International Patient Decision Aids Standards Collaboration 
to judge the quality of patient decision aids [ 54 ,  55 ]   

 Information  Health condition 
 Decision 
 Options 
 Potential benefi ts 
 Potential harms 

 Probabilities  Potential outcomes – general 
 Potential outcomes – subpopulation 
 Ability to compare (e.g., same denominator) 
 Multiple ways to view probabilities (e.g., words and diagram) 

 Test interpretation  If test, description of false positive and false negative 
 Estimated chances of false positive and false negative 

 Values  Description of potential outcomes (positive and negative) 
 Method to clarify and state personal values for outcomes 

 Guidance  How to make the decision 
 Topics to discuss with a clinician 

 Development  Needs assessment with patients and professionals 
 Reviewed by patients and professionals 
 Field tested with patients and professionals 

 Evidence  Description of evidence from previous research 
 Description of quality of evidence 

 Disclosure  Author/developers’ credentials and affi liation 
 Plain language  Report of readability level from standard scale 
 Evaluation  Demonstrate improvement in patient’s knowledge 

 Correspondence between patient values and treatment choice 
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with a nurse care manager at a remote facility who can then respond to system 
 generated alerts (e.g., to change the diuretic medication dose for a patient who 
retained too much water weight in the past 3 days). 

 With the recent increase in popularity of wearable sensors and coaching tech-
nologies, many patients and consumers interested in wellness interventions are 
directly purchasing sensors and services to promote health behavior change. Many 
of the devices with accelerometers and heart rate detectors offer real time and sum-
mary feedback on activity levels and sleep. Many have accompanying goal setting 
modules and feedback to encourage users to achieve their health behavior change 
goals. 

 In some cases, decision support and advice on care management solutions comes 
from other patients who have similar conditions. There are a variety of online sup-
port groups or discussion boards available for nearly every disease imaginable. 
Some are formally organized through a health delivery system, such as Kaiser 
Permanente [ 56 ]. Others are accessible through health portals, such as WebMD 
[ 53 ]. Quite often, with chronic conditions where most of the health care actually 
happens in the home and environment and is related to self-care, patients become 
the experts in how best to manage and implement care plans. Sites such as WebMD 
[ 53 ] have also found it useful to have a separate section with information for newly 
diagnosed patients. More detailed information on specifi c diseases or conditions is 
often available from societies or groups specializing in a topic. Online medical dic-
tionaries, disease-specifi c discussion boards, and “ask-an-expert” services are also 
often found as components of health portal sites. The vast array of health resources 
available to patients’ mobile phone applications and on the Web that provide sup-
port in care management also include tools to educate patients about their medica-
tions, such as RxList [ 57 ], DrugInfoNet [ 58 ], and RxMed [ 59 ]. Systems available 
on websites such as Drugs.com [ 60 ] can be used to detect drug-drug interactions, 
similar to systems used in hospitals and clinics, but using pictures and lay 
language.   

10.4     Usability of Patient Decision Support Tools 

  One of  the   most important factors in the success of patient  decision aids   has to do 
with the usability of the interface and method in which the information is conveyed. 
General guidelines for developing useable and meaningful decision support for 
patients are listed below: 

10.4.1     Intuitive Interface 

•     Graphical metaphors easily understood by the general populace  
•   Designed for use by naïve, untrained users  
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•   Online help available at every stage  
•   Immediate word defi nitions available in every application     

10.4.2     Complete Coverage/Coordination 

•     Single location for information on disease and health concerns  
•   Coordinated with routine medical care     

10.4.3     Hierarchical Presentation 

•     Simple summary information presented fi rst  
•   More detail and complexity available as desired  
•   Guided movement through databases  
•   User requests anticipated, pre-searched to improved speed     

10.4.4     Presentation of Materials Tailored to the Individual 

•     Appropriate for the assessed reading level  
•   Appropriate for education and medical expertise  
•   Culturally sensitive  
•   In the appropriate language  
•   Tailored to history and assessed patient-specifi c health risks  
•    Patient preferences   incorporated     

10.4.5     Facilitate Quality Decision Making 

•     Health outcomes information included  
•   Patient preferences on health outcomes incorporated  
•   Summary of tailored decision support information    

 These guidelines are important for the developers of  decision aids  , as well as for 
patients and providers as they choose systems to use or recommend to others.   
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10.5     Helping Patients Judge the Quality of Health 
Information 

 Judging the quality of health materials on the Web or as part of decision tools is 
particularly challenging for patients/consumers. Not all sites are “peer reviewed,” 
published, or created by professionals with expertise in the covered topics. Because 
the quality of health information is so critical for consumers, several organizations 
have created guidelines for judging the quality of information on the Web for con-
sumers [ 61 – 63 ]. Some of the criteria included in all of these guidelines are topical 
relevance, currency of the information, accuracy, and authoritativeness or 
objectivity. 

 From the consumer’s point of view, topical relevance is certainly important when 
assessing the usefulness and quality of a website or computer application. The rel-
evance of a site is context-specifi c and depends on the particular question an indi-
vidual consumer has in mind. To fi nd appropriate materials, sites must be clearly 
organized and/or have intelligent search functions. In addition, the relevance of the 
material depends on the degree to which it is tailored to the individual and is appro-
priate to their specifi c needs. Most health material on the Web is generic and not 
interactively tailored to individuals, basically replicating what could be found in a 
textbook or brochure. The fi nal aspect of relevance to an individual has to do with 
whether the material is action-oriented and either helps the consumer make a health-
care decision that may lead to an action or promotes health behavior change. 

 The currency or timeliness of information is an important consideration. It is 
often diffi cult to have a generalized policy on how often health materials need to be 
updated. However, most professional sites ensure at least quarterly review of all 
materials. Consumers may judge the currency of website information by looking for 
date stamps or a notice of date of creation and/or update. It is important to note that 
some websites use algorithms to automatically update their time stamp even if the 
material has not been changed or even reviewed, giving the impression that the 
information is current. Responding to the diffi culty that consumers are likely to 
have in judging these aspects of website quality, the Health on the Net (HON) 
Foundation [ 63 ] has promoted an ethical code of conduct and a set of standards for 
website developers to ensure the reliability of medical and health information avail-
able on the Internet. Consumer health sites that display an HON certifi cate signify 
that they are in compliance with the HON code of conduct and standards. Providing 
health information and interventions over the Internet is becoming an increasingly 
important component of health care. Ensuring that the materials are unbiased, accu-
rate, relevant, and timely is fundamental to providing quality health care.  

10 Decision Support for Patients



174

10.6     Patient Access, Literacy and Numeracy 

 As the demand for more health information and decision support grows, the need 
for wider availability of these systems becomes even more important. Today, these 
systems can be found in a variety of settings and forms. In addition to consumers 
searching the Web at home, public access computer systems can be found in public 
libraries, health resource centers, worksites, schools, and community centers. 
Different systems may require quite different physical locations. For instance, many 
patients are uncomfortable exploring sensitive health information in a public space. 

 There are many factors that infl uence the health information seeking behavior of 
patients. As documented by several researchers, these factors include demographic 
divisions such as age, gender, disability, race and ethnicity, and socioeconomic sta-
tus [ 64 – 68 ]. Research indicates that these demographic variables can predict differ-
ences in the amount and type of health information that patients want. Whereas 
some patients may not seek much information, for many of those who desire infor-
mation, serious barriers to the use of these systems still exist. 

 A lack of reading ability is a functional barrier affecting use of computer sys-
tems. According to the U.S. Department of Education’s National Institute of 
Literacy’s 2015 survey [ 69 ], 32 million adults in the U.S. are unable to read – 14 % 
of the population. Surprisingly, 21 % of adults in the U.S. read below a fi fth grade 
level and 19 % of high school graduates are unable to read. Most studies on the 
comprehension of health education handouts typically show that only half of the 
patients are able to comprehend written health materials [ 70 – 72 ]. Studies confi rmed 
that patients’ reading levels were well below what was needed to understand stan-
dard health brochures [ 73 ]. In developing health information for patients, one can-
not assume that a patient who has completed a certain grade level in school can read 
at the corresponding level. Numerous studies on literacy and readability confi rm the 
widespread problem of low literacy skills [ 74 – 76 ]. Health materials should be writ-
ten at least three grade levels lower than the average educational level of the target 
population [ 77 ]. Text characteristics also play an important role in comprehension 
and retention of material. Organization and clarity need to be considered in creating 
educational materials [ 78 ]. Computers with multimedia capabilities can correct 
some of these problems by conveying information through video, audio and graph-
ics that would normally be presented as written text. These systems can also be 
adapted for multiple foreign languages. 

 In addition to language and literacy issues, an area that is often overlooked relates 
to the cultural issues associated with health information-seeking behavior and the 
willingness to use computers to access health information. Most developers have 
not invested the time to develop systems that are culturally and linguistically rele-
vant to diverse populations. Finally, the question of who will pay for the access and 
use of technologies for consumer health information is still an unresolved issue. 
Educational and socioeconomic factors still determine access to computers and 
information technologies. Younger, wealthier, and well-educated patients are more 
likely to have access to home computers, diagnostic software, and Internet services. 
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The poor and socioeconomically disadvantaged already have worse health out-
comes and worse access to medical care. Special effort is required to ensure ease of 
access and ease of use of health information systems so as to not further disadvan-
tage the very people who have the greatest need for these resources .  

10.7     The Future of Decision Support Systems for Patients 

  Advances  in   communications, sensors, data analytics and information processing 
technology are changing the way in which medicine is practiced, with dramatic 
impact on how patients are beginning to receive their health information and inter-
act with the medical care system. There has also been a shift toward consumers 
becoming empowered participants and assuming a more active role in their medical 
care decisions through increased and more effective access to healthcare informa-
tion and decision tools. The developers of computer applications for patients have 
pushed the fi eld of consumer health informatics forward with many innovative 
systems. 

 However, to achieve signifi cant improvements in the quality of care and health 
outcomes, researchers and system developers need to focus on bringing the knowl-
edge gained from previous work in health education and behavior change into the 
design of new systems. This is a rapidly developing fi eld, with signifi cant innova-
tions in the commercial sector, but research in several areas is still needed to move 
the fi eld forward in providing real benefi ts to patients’ health outcomes and in show-
ing the effectiveness of the systems to purchasers of health care. The criteria for 
evaluating computer-based decision support systems for patients are similar to the 
criteria for physician systems, namely accuracy and effectiveness [ 79 ]. However, 
the rapid deployment of these systems in an ever changing medical care environ-
ment makes critical  evaluation   of consumer health information systems extremely 
diffi cult. Websites and smart phone applications change daily, and access to one 
system usually means increased access to many others. It is important to understand 
the potential effectiveness of investments in this area. Careful needs assessment 
before system development,  usability   testing during development, clinical trials, 
and studies of use and outcomes in natural settings are all critical to our understand-
ing of how to best provide health information and decision assistance to patients .      
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    Abstract     Since primeval times, mankind has attempted to explain natural phenom-
ena using models. For the past fi ve decades, a new kind of modeler, the healthcare 
informatician, has developed and proliferated a new kind of model, the clinical 
Diagnostic Decision Support System (DDSS). This chapter presents a defi nition of 
clinical diagnosis and of DDSS; a discussion of how humans accomplish diagnosis; 
a survey of previous attempts to develop computer-based clinical diagnostic tools; a 
discussion of the problems encountered in developing, implementing, evaluating, 
and maintaining clinical diagnostic decision support systems; and a discussion of 
current and future systems.  
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     Since primeval  times  , mankind has attempted to explain natural phenomena using 
models. For the past fi ve decades, a new kind of modeler, the healthcare informati-
cian, has developed and proliferated a new kind of model, the clinical Diagnostic 
Decision Support System (DDSS). Modeling was historically, and still remains, an 
inexact science. Ptolemy, in the Almagest, placed the earth at the center of the uni-
verse and still could explain why the sun would rise in the east each morning. 
Newton’s nonrelativistic formulation of the laws of mechanics works well for earth-
bound engineering applications. Yet mankind, using imperfect models, has built 
machines that fl y, and has cured many diseases. Past and present DDSS incorporate 
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inexact models of the incompletely understood and exceptionally complex process 
of clinical  diagnosis  . Because DDSS augment the natural capabilities of human 
diagnosticians, they have the potential to be employed productively [ 1 ]. 

 This chapter presents a defi nition of clinical  diagnosis   and of DDSS; a discussion 
of how humans accomplish diagnosis; a survey of previous attempts to develop 
computer-based clinical diagnostic tools; a discussion of the problems encountered 
in developing, implementing, evaluating, and maintaining clinical diagnostic deci-
sion support systems; and a discussion of current and future systems. 

11.1     Defi nitions of Diagnosis 

  To understand  the   history of clinical diagnostic decision support systems and envi-
sion their future roles, one must fi rst defi ne clinical diagnosis and computer-assisted 
clinical diagnosis. A simple defi nition of diagnosis is: [ 2 ]

   the placing of an interpretive ,  higher level label on a set of raw ,  more primitive observa-
tions  [Defi nition 1]. 

   By this defi nition one form of diagnosis might consist of labeling as “abnormal” 
any laboratory test results falling outside 1.5 times the 95 % confi dence intervals for 
the “normal” values seen in the general population as measured by that laboratory. 
Another level of diagnosis under the same defi nition might consist of labeling the 
combination of a low serum bicarbonate level, a high serum chloride level, and an 
arterial blood pH of 7.3 as “metabolic acidosis.” A more involved defi nition of diag-
nosis, specifi c for clinical diagnosis, is: [ 2 ]

   a mapping from a patient ’ s data  ( normal and abnormal history ,  physical examination ,  and 
laboratory data )  to a nosology of disease states  [Defi nition 2]. 

   Both of these defi nitions treat diagnosis improperly as a single event, rather than 
as a process. A more accurate defi nition appeared in the Random House Collegiate 
Dictionary: [ 3 ]

   the process of determining by examination the nature and circumstances of a diseased con-
dition  [Defi nition 3]. 

   Skilled diagnosticians develop an understanding of what the patient’s life situa-
tion was like before the illness began, how the illness has manifested itself, and how 
it has affected the life situation [ 2 ]. The clinician must also determine the patient’s 
understanding of, and response to, an illness. The process of diagnosis entails a 
sequence of interdependent, often highly individualized tasks: evoking the patient’s 
initial history and physical examination fi ndings; integration of the data into plau-
sible scenarios regarding known disease processes; evaluating and refi ning diagnos-
tic hypotheses through selective elicitation of additional patient information, such 
as laboratory tests or serial examinations; initiating therapy at appropriate points in 
time (including before a diagnosis is established); and evaluating the effect of both 
the illness and the therapy, on the patient, over time [ 2 ]. 
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 Diagnosis is a process composed of individual steps. These steps go from a point 
of origin (a question and a set of “presenting fi ndings” and “previously established 
diagnoses”), to a point of destination (an answer, usually consisting of a set of “new 
established diagnoses” and/or “unresolved differential diagnoses”). While the 
beginning and end points may be identical, the steps one diagnostician follows may 
be very different from those taken by another diagnostician, and the same diagnosti-
cian may take different steps in two nearly identical cases. Because expertise varies 
among clinicians, different individuals will encounter different diagnostic problems 
in evaluating the same patient. For instance, they may experience dissimilar diffi cul-
ties at disparate steps in the diagnostic process, even if they follow exactly the same 
steps. 

 Studies of clinicians’ information needs help us to understand the variability in 
diagnostic problem solving among clinicians. Osheroff and colleagues [ 4 ,  5 ] used 
participant observation, a standard anthropological technique, to identify and clas-
sify information needs during the practice of medicine in an academic health center. 
They identifi ed three components of “comprehensive information needs:” (1) cur-
rently satisfi ed information needs (information recognized as relevant to a question 
and already known to the clinician); (2) consciously recognized information needs 
(information recognized by the clinician as important to know to solve the problem, 
but which is not known by the clinician); and (3) unrecognized information needs 
(information that is important for the clinician to know to solve a problem at hand, 
but is not recognized as being important by the clinician). Failure to detect a diag-
nostic problem at all would fall into the latter category. Different clinicians will 
experience different diagnostic problems within the same patient case, based on 
each clinician’s varying knowledge of the patient and unique personal store of gen-
eral medical knowledge. Osheroff et al. noted the diffi culty people and machines 
have in tailoring general medical knowledge to specifi c clinical cases. There may be 
a wealth of information in a patient’s inpatient and outpatient records, and also a 
large medical literature describing causes of the patient’s problems. The challenge 
is to quickly and effi ciently reconcile one body of information with the other [ 1 ,  4 ]. 

 A DDSS can potentially facilitate that reconciliation. A DDSS can be defi ned as:

   a computer - based algorithm that assists a clinician with one or more component steps of 
the diagnostic process  [Defi nition 4]. 

   While individual clinicians attach different meanings to “diagnosis”, users of 
DDSS are often slow to recognize that each system functionally defi nes diagnosis 
as the set of tasks that the DDSS can perform. Experienced users employ DDSS as 
tools to supplement, rather than replace, their own diagnostic capabilities. Naive 
users view diagnosis on their own terms, based on their own experiences, and expect 
DDSS to behave in accordance with their assumptions. Untrained DDSS users’ 
unrealistic, preconceived expectations can engender subsequent frustrations. For 
example, a DDSS cannot solve a vague problem with minimal input; nor is a DDSS 
likely to help in understanding how an illness has affected a patient’s lifestyle. 
Conversely, system developers sometimes create useful diagnostic tools that pro-
vide capabilities outside the experience of everyday clinical practice. For example, 
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the relationships function of R-QMR 1  (a DDSS), takes, as input, up to ten fi ndings 
that the clinician-user would like to explain as the key or “pivotal” fi ndings from a 
diagnostically challenging case, and produces, as output, a rank-ordered list of “dis-
ease complexes” that each explain all of the input fi ndings [ 7 ]. Each disease com-
plex is made up of from one to four interrelated disorders (e.g., disease A 
predisposing to disease B and causing disease C). Because busy clinicians can spare 
little free time for extraneous activities, user training for DDSS utilization is 
extremely critical and must address the potential cognitive mismatch between user 
expectations and system capabilities. 

 That the problem to be solved originates in the mind of the clinician-user is con-
ceptually critical for DDSS development,  implementation  , and  evaluation  . The 
diagnostic problem cannot be defi ned in an absolute sense, for example, by present-
ing an arbitrary set of input fi ndings selected from a case—i.e., if clinical fi ndings 
are extracted from a patient case in the absence of a query from a clinician caring 
for the patient, do those fi ndings comprise a diagnostic problem to be solved? In 
only one situation can the fi ndings of a case, in isolation, defi ne a diagnostic prob-
lem: when the diagnostic problem is the global one. In the global problem, the 
DDSS, through its own initiative, takes all the steps in the diagnostic process 
required to explain all patient fi ndings, by “concluding” new diagnoses (or listing 
unresolved differential diagnoses if no solution exists). Practicing clinicians rarely 
encounter the “global” diagnostic problem. Healthcare providers usually complete 
a portion of the diagnostic  evaluation   process before they encounter diffi culty in 
making a  diagnosis  , and, correspondingly, once they overcome the diffi culty (e.g., 
by consulting a colleague), they are usually capable of completing the  evaluation   
without further assistance. While early DDSS developers often assumed the only 
problem worth solving was the global diagnostic problem, emphasis over the last 
decades has shifted to helping clinicians with problems they encounter during indi-
vidual steps in the diagnostic process. This has led to the demise of the “Greek 
Oracle” model, wherein the DDSS was expected to take all of the patient’s fi ndings 
and come up with “the answer”[ 8 ]. Current DDSS models assume that the user will 
interact with the DDSS in an iterative fashion, selectively entering patient informa-
tion and using the DDSS output to assist with the problems that the user has encoun-
tered in the diagnostic process [ 9 ]. 

 To interact optimally with a DDSS, users must understand assumptions built into 
the system. Each DDSS functionally defi nes  diagnosis   as the tasks it can perform 
(or assist users in performing). The subtle nature of underlying assumptions 
 incorporated into DDSS can be deceptive. As an example, one of the most well-
known diagnostic systems is the Bayesian program for  diagnosis   of acute abdomi-

1   In this chapter, R-QMR refers to the noncommercial, research version of QMR, the DDSS devel-
oped by Miller et al. [ 6 ]. The commercial version of QMR, previously marketed by First DataBank, 
while initially identical to R-QMR in 1990, was developed independently of R-QMR after that 
time. The commercial version of QMR is no longer marketed. Since 2014 Miller and colleagues at 
Vanderbilt have been developing a third-generation non-commercial successor system, 
“AskVanderbilt”. 
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nal pain developed by de Dombal and colleagues [ 10 ,  11 ]. The system’s original 
goal, not stated explicitly, was to discriminate among surgical and nonsurgical 
causes of acute abdominal pain in an emergency room (or similar) setting. The sys-
tem supported a limited number of explicit diagnoses; all except “nonspecifi c 
abdominal pain,” were potentially surgical conditions (such as acute appendicitis, 
acute pancreatitis, and acute diverticulitis). The performance of the system was 
evaluated in multicenter studies [ 11 ] and shown to be exemplary with respect to the 
circumstances for which it was designed. Nevertheless, de Dombal’s system would 
most likely disappoint naive users relying on it to diagnose patients presenting with 
acute abdominal pain in more general settings. The system could not properly diag-
nose patients presenting with acute intermittent porphyria, lead poisoning, early 
T10 dermatome herpes zoster, or familial Mediterranean fever. The system would 
correctly label those conditions as “nonspecifi c abdominal pain,” even though some 
are potentially life threatening and treatable. Clinical users of DDSS in general 
should recognize the potential for  errors   when using DDSS. This mandates that 
clinicians supplement DDSS-based suggestions with their own expert knowledge. 

 The utility of making specifi c diagnoses lies in the selection of effective thera-
pies, making accurate prognoses, and providing detailed explanations [ 1 ]. In some 
situations, it is not necessary to arrive at an exact  diagnosis   in order to fulfi ll one or 
more of these objectives. Treatment is often initiated before an exact diagnosis is 
made (e.g., patients in the emergency room receive oxygen for shortness of breath, 
before the etiology is known). Furthermore, the utility of making certain diagnoses 
is debatable, especially if there is a small  probability   of effective treatment. 

 The cost of eliciting all possible patient data is potentially staggering—tempo-
rally, economically, and ethically—since there are real risks of morbidity and/or 
mortality associated with many diagnostic procedures such as liver biopsy or car-
diac catheterization. Given the impossibility and impracticality of gathering every 
conceivable piece of diagnostic information with respect to each patient, the “art” of 
 diagnosis   lies in the ability of the diagnostician to carefully evoke enough relevant 
information to justify all important and ultimately correct diagnoses in each case, as 
well as to initiate therapies at appropriate points during the  evaluation   [ 2 ]. 

 The knowledge of how to “work up” the patient depends critically on the ability 
to evoke history, symptoms, and physical examination fi ndings, concurrently with 
the ability to generate diagnostic hypotheses that suggest how to further refi ne or 
pursue the fi ndings already elicited, or to pursue completely different additional 
fi ndings. In addition, this must be done in a compassionate and cost-effective man-
ner  [ 2 ].  

11.2     Human Diagnostic Reasoning 

  Diagnostic  reasoning   involves diverse cognitive activities, including information 
gathering, pattern recognition, problem solving, decision-making, judgment under 
uncertainty, and empathy. Large amounts of highly organized knowledge are 
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necessary to function in this relatively unstructured cognitive domain. Our knowl-
edge of human diagnostic reasoning is based on generic psychological experiments 
about reasoning and on direct studies of the diagnostic process itself. Relevant prin-
ciples of human problem-solving behavior have been unveiled through focused 
studies examining constrained problem spaces such as chess-playing and crypta-
rithmetic [ 12 ]. Such studies have documented that experts recognize patterns of 
activity within a domain at an integrated, higher level (“chunking”) than novices. 
Additional psychological experiments about judgments made under uncertainty 
[ 13 ] have provided insights into individuals’ imperfect semi-quantitative reasoning 
skills. 

 To investigate the complex intellectual task of clinical  diagnosis  , many research-
ers [ 14 ,  15 ] have used behavioral methods that combine protocol analysis with 
introspection. Researchers record clinicians as they think aloud while performing 
specifi ed cognitive tasks related to  diagnosis   (including normal clinical activities). 
Post facto, the clinicians themselves, or others, are asked to interpret the motives, 
knowledge, diagnostic hypotheses, and strategies involved in the recorded sessions. 
However, there is no proof that the stories constructed by experts to explain their 
diagnostic reasoning correspond to the actual reasoning methods they use 
subconsciously. 

 Most models of diagnostic reasoning include the following elements: the activa-
tion of working hypotheses; the testing of these hypotheses; the acquisition and 
interpretation of additional information; and confi rming, rejecting, or adding of new 
hypotheses as information is gathered over time. Working hypotheses are generated 
early in the process of information gathering, at a time when only few facts are 
known about the patient [ 14 ,  15 ]. Only a limited number of these hypotheses, rarely 
more than fi ve, are entertained simultaneously, probably due to the limited capacity 
of human short term memory [ 16 ]. Early hypothesis generation is accomplished 
through some form of pattern recognition, with experts more capable of applying 
compiled knowledge and experiences than novices. Comparing clinical reasoning in 
novices and experts, Evans and Patel [ 17 ] showed that experts rarely rely directly on 
causal reasoning and knowledge of basic sciences, except when reasoning outside 
their domain of expertise. 

 As noted by Pople and others [ 8 ], clinical  diagnosis   fi ts Nobel Laureate Herbert 
Simon’s criteria for being an ill-structured problem [ 18 ]. Simon gave as an example 
of an ill-structured problem, the task an architect faces in creatively designing a new 
house “from scratch”—the realm of possible solutions encompasses a great variety 
of applicable methods and a broad set of alternative outcomes. As noted by Pople, 
Simon observed that one can solve ill-structured problems by splitting the problems 
into smaller, well defi ned subtasks that are each more easily accomplished [ 8 ]. 

 In clinical  diagnosis  , early hypothesis generation helps to constrain reasoning to 
“high yield” areas, and permits the use of heuristic methods to further elucidate a 
solution [ 19 ]. Studies have shown that most clinicians employ the hypothetico- 
deductive method after early hypothesis generation [ 14 ,  15 ]. Data are collected with 
a view to their usefulness in refi ning, rejecting, or substituting for the original set of 
hypotheses. In the setting of clinicopathological exercises, Eddy and Clanton [ 20 ] 
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showed that identifi cation of a pivotal fi nding is often used to simplify the diagnos-
tic problem and to narrow the focus to a limited set of hypotheses. Kassirer and 
Gorry [ 15 ] described the “process of case building,” where hypotheses are evaluated 
against the model of a disease entity using techniques that can be emulated in com-
puters using Bayes’ rule, Boolean algebra, or template matching (see Chap.   2     for an 
explanation of these terms). They also recognized that heuristic methods are com-
monly used to confi rm, eliminate, discriminate between, or explore hypotheses. 
Weed [ 21 ] and later Hurst and Walker [ 22 ] suggested that clinical problem solving 
can be approached by splitting complex, composite problems into relatively inde-
pendent, discrete “problem areas.” With respect to  diagnosis  , Pople (like Gorry ear-
lier) observed that separating complex differential diagnoses into problem areas 
allows diagnosticians to apply additional powerful reasoning heuristics. They can 
assume that the differential diagnosis list within a problem area that contains mutu-
ally exclusive hypotheses and that the list can be made to be exhaustive (i.e., com-
plete), so that it is assured that the correct diagnosis is on the list for the problem 
area, and that only one  diagnosis   on the list is the correct one [ 8 ]. 

 Kassirer identifi ed three abstract categories of human diagnostic reasoning: 
probabilistic, causal, and deterministic [ 23 ]. Formal models for each type of reason-
ing have been developed—at times independently of observational studies on how 
actual reasoning occurs. Approaches such as Brunswik’s lens model [ 24 ], Bayesian 
algorithms [ 25 ,  26 ], and decision analysis [ 27 ,  28 ] defi ne statistical associations 
between clinical variables and use formal mathematical models to derive “optimal” 
decisions. While diagnosticians clearly consider prevalence and other likelihood- 
related concepts during their reasoning [ 14 ,  15 ], observational and experimental 
studies show that clinicians do not calculate probabilities subconsciously during 
their own diagnostic reasoning [ 13 ,  29 ]. Human problem solvers tend to rely on 
judgmental heuristics. Experiments document that humans improperly evaluate 
subjective probabilities, misuse prior probabilities, and fail to recognize important 
phenomena, such as the regression towards the mean. 

 Evidence indicates that humans have more diffi culty reasoning with probabilities 
than they do understanding the concepts that underlie them [ 30 ]. Humans also fall 
prey to reasoning  errors   such as reluctance to revise opinions when new data do not 
fi t with working hypotheses, even when the data’s diagnostic signifi cance is prop-
erly understood [ 13 ,  29 ]. 

 Models of causal (pathophysiological) reasoning, such as those developed by 
Feinstein [ 31 ,  32 ] in the 1970s, establish cause-and-effect relations between clinical 
variables within anatomic, physiologic, cellular, molecular, and biochemical repre-
sentations of the reality. Although causal inferences (deductive reasoning from 
causes to consequences) can be viewed as the inverse of diagnostic inferences 
(abductive reasoning from consequences to causes), studies have shown that when 
making judgments under uncertainty, humans assign greater impact to causal rela-
tionships over other forms of diagnostic data of equal informative weight. Subjects 
commonly make overconfi dent predictions when dealing with highly uncertain 
models [ 13 ]. Causal (pathophysiological) reasoning uses shared, global, patient- 
independent knowledge [ 32 ] and provides an effi cient means of verifying and 
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explaining diagnostic hypotheses. Nevertheless, how much causal reasoning is actu-
ally used in early hypothesis generation and other stages of non-verbalized diagnos-
tic reasoning is unclear; simple pattern recognition is far more prevalent. Previous 
studies indicate that experts tend to employ causal, pathophysiological reasoning 
only when: (a) faced with problems outside the realm of their expertise; (b) solving 
highly atypical problems, or (c) when they are asked to explain their reasoning to 
others [ 5 ]. 

 In deterministic models, production rules, i.e., specifying appropriate actions in 
response to certain conditions, are used to represent the basic building blocks of 
human problem-solving. Such if—then rules representing compiled knowledge can 
also be expressed in the form of branching-logic fl owcharts and clinical algorithms 
for non-experts to follow. However, production rules do not deal effectively with 
uncertainty [ 33 ], which is a disadvantage in clinical practice, where uncertainty is a 
common feature. 

 The late M. Scott Blois, a great philosopher-informatician-clinician, used a fun-
nel to illustrate the spectrum of clinical judgment [ 34 ]. Consideration of patients’ 
ill-structured problems, including undifferentiated concerns and vague complaints, 
occurs at the wide end of the funnel. Focused decisions in response to specifi c clini-
cal questions (e.g., choosing an antibiotic to treat the exact bacterial species isolated 
as the cause of a pneumonia) were represented at the narrow end. This model is 
consistent with Simon’s view of how humans solve ill-structured problems [ 18 ]. 

 Blois noted that  decision support systems   were best applied toward the narrow 
end of the funnel, since circumscribed, well-structured problems are encountered 
there. Those problems are more amenable to solution through application of com-
putational models of cognitive skills, requiring only focused and specifi c knowl-
edge. On the other hand, at the open end of the funnel, one has to deal with 
common-sense knowledge and the general scope of ordinary human judgment in 
order to make meaningful progress, and few computer-based systems (other than 
those for record-keeping) are applicable.   

11.3     Historical Survey of Diagnostic Decision Support 
Systems 

 The literature prior to 1976 described a majority of the important concepts still rel-
evant to current DDSS development. In a comprehensive 1979 review of reasoning 
strategies employed by early DDSS, Shortliffe, Buchanan, and Feigenbaum identi-
fi ed the following classes of DDSS: clinical algorithms, clinical databanks that 
include analytical functions, mathematical pathophysiological models, pattern rec-
ognition systems, Bayesian statistical systems, decision-analytical systems, and 
symbolic reasoning (sometimes called “expert” systems) [ 35 ]. This section, without 
being comprehensive, will describe how some of the early pioneering efforts led to 
many classes of systems present today. 
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 The many types of DDSS result from the large number of clinical domains to 
which diagnostic reasoning can be applied, from the multiple steps of diagnostic 
reasoning described above, and from the variety of diffi culties that diagnosticians 
may encounter at each step. Health care informaticians encountering the term “clin-
ical diagnostic decision-support systems” think primarily of general-purpose, 
broad-spectrum consultation systems [ 1 ]. 

 A useful dichotomy separates DDSS into systems for general  diagnosis   (no mat-
ter how broad or narrow their application domains), and systems for diagnosis in 
specialized domains such as interpretation of ECG tracings [ 36 ]. The general notion 
of DDSS conveyed in the biomedical literature sometimes overlooks specialized, 
focused, yet highly successful medical device-associated diagnostic systems. Some 
simple DDSS help to interpret blood gas results, or assist in categorizing diagnostic 
possibilities based on the output of serum protein electrophoresis devices, or aid in 
the interpretation of standardized pulmonary function tests. DDSS for cytological 
recognition and classifi cation have found successful application in devices such as 
automated differential blood count analyzers and systems to analyze Papanicolaou 
smears [ 1 ]. Small, focused DDSS are the most widely used form of  diagnostic deci-
sion support   programs, and their use will grow as they are coupled with other auto-
mated medical devices [ 1 ]. 

 In their classic 1959 Science paper, Ledley and Lusted [ 25 ] observed that physi-
cians have an imperfect knowledge of how they solve diagnostic problems. Ledley 
and Lusted stated that both  logic   (as embodied in  set theory   and Boolean algebra) 
and probabilistic reasoning (as embodied in Bayes’ rule) were essential components 
of medical reasoning. They mentioned the importance of protocol analysis in under-
standing human diagnostic reasoning. They stated that they had examined how phy-
sicians solve New England Journal of Medicine CPC (clinicopathological 
conference) cases as the foundation for their work on diagnostic computer systems. 
Their insights provided the basis for work on Bayesian and decision-analytic diag-
nostic systems carried out over subsequent decades. Both for practical reasons and 
for philosophical reasons, much work on DDSS has focused on the differences 
between logical deductive systems and probabilistic systems. Chapter   2     describes 
these approaches in more detail. What follows is a description of how DDSS have 
embodied varied reasoning principles. 

 Logical systems, based on “discriminating questions” to distinguish among 
mutually exclusive alternatives, have played an important role since the pioneering 
work by Bleich and his colleagues [ 37 ] on acid base and electrolyte disorders. To 
this day, such systems are applicable to narrow domains, especially those where it 
is fairly certain that only one disorder is present. When users of a branching  logic   
system incorrectly answer one of the questions posed by the system, they may fi nd 
themselves “out on a limb” with no way to recover except by starting over from the 
beginning; the likelihood of such problems increases when multiple independent 
disease processes interact in the patient. Thus, ideal application areas are those 
where detailed knowledge of pathophysiology or extensive epidemiological data 
make it possible to identify parameters useful for dividing diagnostic sets into non-
intersecting subsets, based on specifi c characteristics. 
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 Bayes’ rule is applicable to many clinical domains. Following Ledley and 
Lusted’s 1959 publication [ 25 ], Warner and colleagues developed one of the fi rst 
medical application systems based on Bayes’ rule. In a 1961 JAMA paper [ 26 ], 
Warner et al. described a Bayesian DDSS for the  diagnosis   of congenital heart dis-
eases. It utilized probabilities obtained from literature review, from their own series 
of over 1,000 cases, and from experts’ estimates based on self-knowledge of patho-
physiology. They emphasized that straightforward application of  Bayes’ theorem   
requires independence among the diagnoses and among the fi ndings encompassed 
in the DDSS. They proposed a method for eliminating the infl uence of redundant 
fi ndings. Warner et al. observed how diagnostic systems can easily fail due to false 
positive case fi ndings and due to  errors   in the system’s database. In their  evaluation   
of their system’s performance, they pointed out the need for an independent “gold 
standard” against which evaluators can judge the performance of the system. For 
that purpose, they used cardiac catheterization data and/or anatomical (postmortem) 
data excluded from the inputted case descriptions to confi rm the actual patient diag-
noses. Warner et al. continued to develop and refi ne models for Bayesian diagnosis 
over the years [ 1 ]. In 1968, Gorry and Barnett developed a model for sequential 
Bayesian  diagnosis   that extended Warner’s earlier approach [ 38 ]. 

 Many regard the system for the diagnosis of acute abdominal pain developed by 
de Dombal and colleagues at the University of Leeds as the fi rst practical Bayesian 
system. It was utilized at widespread clinical sites [ 1 ,  10 ]. A large number of groups 
have subsequently developed, implemented, and refi ned Bayesian methods for diag-
nostic decision making. Ongoing enthusiasm surrounds current work on use of the 
more general Bayesian belief network approach for clinical  diagnosis   [ 1 ]. 
Probabilistic systems have played, and will continue to play, an important role in 
DDSS development. 

 An additional DDSS alternative exists to categorical (predicate calculus) [ 39 ] 
and probabilistic reasoning that combines features of both but retains a fundamental 
difference. That alternative is heuristic reasoning, reasoning based on empirical 
rules of thumb. The HEME program for  diagnosis   of hematological disorders was 
one of the earliest systems to employ heuristics and also one of the fi rst systems to 
use, in effect, criteria tables for diagnosis of disease states. Lipkin, Hardy, Engle, 
and their colleagues developed HEME in the late 1950s [ 1 ,  40 – 42 ]. Programs that 
heuristically match terminology from stored descriptions of disease states to lexical 
descriptions of patient cases are similar conceptually to HEME. The CONSIDER 
program developed by Lindberg et al. [ 43 ] and the RECONSIDER program devel-
oped by Blois and his colleagues [ 44 ] used heuristic lexical matching techniques to 
identify diseases detailed in the Current Medical Information and Terminology 
(CMIT), a manual of diseases previously compiled and maintained by the American 
Medical Association. The EXPERT system shell, developed by Weiss and 
Kulikowski [ 45 ], has been used extensively in developing systems that utilize crite-
ria tables, including AI/Rheum [ 46 ,  47 ], for  diagnosis   of rheumatic disorders, as 
well as other systems. 

 G. Anthony Gorry was an enlightened pioneer in the development of heuristic 
diagnostic systems that employ symbolic reasoning (artifi cial intelligence, or expert 
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systems). In a classic paper published in 1968, Gorry [ 48 ] outlined the general prin-
ciples underlying expert system approaches to medical  diagnosis   that have been 
incorporated into subsequent systems from the 1970s through the present time. 
Gorry proposed a formal defi nition of the diagnostic problem. In a visionary man-
ner, he analyzed the relationships among a generic inference function (used to gen-
erate diagnoses from observed fi ndings), a generic test-selection function that 
dynamically selects the best test to order (in terms of cost and information content), 
and a pattern-sorting function that is capable of determining if competing diagnoses 
are members of the same “problem area” (i.e., whether diagnostic hypotheses 
should be considered together because they are related to pathology in the same 
organ system). He pointed out the difference between the information value, the 
economic cost, and the morbidity or mortality risk of performing tests; discussed 
the cost of misdiagnosis of serious, life-threatening or disabling disorders; noted the 
potential infl uence of “red herring” fi ndings on diagnostic systems; described the 
“multiple  diagnosis  ” problem faced by systems when patients have more than one 
disease; and suggested that the  knowledge bases   underlying diagnostic systems 
could be used to generate simulated cases to test the diagnostic systems. 

 Gorry’s schemata represent the intellectual ancestors of a diverse group of medi-
cal diagnostic systems, including, among others: PIP (the Present Illness Program), 
developed by Pauker et al.; MEDITEL for adult illnesses, which was developed by 
Waxman and Worley from an earlier pediatric version; INTERNIST-1, developed 
by Pople, Myers, and Miller; QMR, developed by Miller, Masarie, and Myers; 
DXplain, developed by Barnett and colleagues; Iliad, developed by Warner and col-
leagues; the commercial system ISABEL; and a large number of other systems [ 1 , 
 49 – 61 ]. 

 Shortliffe introduced the clinical application of rule-based expert systems for 
 diagnosis   and therapy through his development of MYCIN [ 1 ,  62 ] in 1973–1976. 
MYCIN used backward chaining through its rule base to collect information to 
identify the organism(s) causing bacteremia or meningitis in patients (see discus-
sion of backward and forward chaining in Chap.   2    ). A large number of rule-based 
DDSS have been developed over the years, but most rule-based DDSS have been 
devoted to narrow application areas due to the extreme complexity of maintaining 
rule-based systems with more than a few thousand rules [ 1 ]. 

 With the advent of the microcomputer came a change in philosophy in regard to 
the development of DDSS. For example, the global style of diagnostic consultation 
in the original 1974 INTERNIST-1 program treated the physician-user as unable to 
solve a diagnostic case [ 61 ]. The model assumed that the physician would transfer 
all historical information, physical examination fi ndings, and laboratory and imag-
ing data to the INTERNIST-1 expert diagnostic consultant program. The  physician’s 
subsequent role was that of a passive observer, answering yes or no to questions 
generated by INTERNIST-1. Ultimately, the omniscient “Greek Oracle” (consultant 
program) was expected to provide the correct  diagnosis   and explain its reasoning. 

 By the late 1980s and early 1990s, DDSS developers abandoned this Greek 
Oracle mode [ 9 ] of  diagnostic decision support  . For example, the critiquing model 
developed by Perry Miller [ 1 ,  63 ] and his colleagues, embodied the goal of creating 
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a combined system that could take advantage of the strengths of both the user’s 
knowledge and the system’s abilities. 

 Several innovative models for computer-assisted medical  diagnosis   were devel-
oped in the 1980s and 1990s. These embodied more formal models that add math-
ematical rigor to the successful, but more arbitrary, heuristic explorations of the 
1970s and early 1980s. However, such models engender tradeoffs, often related to 
less than perfect underlying data quality, that in many ways make them heuristic as 
well [ 64 ]. Systems based on fuzzy  set theory   and Bayesian belief networks were 
developed to overcome limitations of heuristic and simple Bayesian models [ 1 ]. 
Reggia et al. [ 1 ,  65 ] developed set covering models as a formalization of ad hoc 
problem-area formation (partitioning) schemes, originally described by Gorry in 
1968, and later embodied in systems such as Pople’s diagnostic algorithms for 
INTERNIST-1 [ 66 ]. 

  Neural networks   presented an entirely new approach to medical  diagnosis  , 
although the weights learned by simple one-layer networks were analogous or iden-
tical to Bayesian probabilities [ 1 ]. While neural networks have found applicability 
in narrow, focused application domains, problems limited their applicability to gen-
eral  diagnosis   in broad clinical fi elds. The diffi culties involved selecting the best 
topology, preventing overtraining and undertraining, and determining what cases to 
use for training. The more complex a  neural network   is (number of input and output 
nodes, number of hidden layers), the greater the need for a large number of appro-
priate training cases. Often, one cannot obtain large epidemiologically representa-
tive data sets that have rigorously determined diagnostic labels. Some developers 
resort to simulation techniques to generate training cases, but use of artifi cial cases 
to train  neural networks   may lead to suboptimal performance on real cases. Chapters 
  2     and   3     provide additional detail on the models mentioned above.  

11.4     Developing, Implementing, Evaluating, 
and Maintaining Diagnostic Decision Support Systems 

 Any successful DDSS must complete a series of developmental stages [ 2 ,  67 ]. First, 
a new DDSS should meet well-studied and well-documented information needs [ 4 , 
 5 ,  68 ]. Developers must perform a clinical needs assessment to determine the utility 
of the proposed system and the frequency with which it might be used in various 
real-world settings. Clinical systems should not be developed simply because a sci-
entist wants to test an exciting new computational algorithm. The rule, “if it’s not 
broke, don’t fi x it” applies to the development of DDSS, as well as other aspects of 
technology. Developers must carefully defi ne the scope and nature of the process to 
be automated. They must also understand the process to be automated well enough 
to reduce it to an algorithm. All systems, especially DDSS, have boundaries (both 
in domain coverage and algorithm robustness) beyond which the systems often fail. 
Developers must understand these limits and make users aware of them—during 
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DDSS use, if possible. Developers must study DDSS algorithms to determine the 
ways in which they might fail, both due to inherent limitations and to fl aws that 
might occur during the processes of  implementation   and use [ 2 ]. 

  Evaluation   must fi rst occur carefully, initially “in vitro” (outside of the patient 
care arena, with no risks to patients), and, once warranted, in vivo (prospectively, on 
the front lines of actual patient care delivery) in order to determine if the DDSS 
improves or promotes important outcomes that are not possible with the pre- existing 
manual system [ 69 ]. Finally, developers and users must demonstrate the practical 
utility of the system by showing that clinicians can adopt it for productive daily use 
[ 2 ]. A potentially great system that is not used cannot have a benefi cial impact on 
 clinical outcomes  . Unfortunately, few existing DDSS have yet fulfi lled these 
criteria. 

 A number of problems have limited the ultimate success of DDSS to date. These 
include: diffi culties with domain selection and  knowledge base   construction and 
maintenance; problems with the diagnostic algorithms and user interfaces; the prob-
lem of system evolution, including  evaluation  , testing, and quality control; issues 
related to machine interfaces and clinical vocabularies; and legal and ethical issues. 
These issues are discussed below. 

11.4.1     Clinical Domain Selection 

 DDSS domain selection can pose problems. Substantial clinical domains require 
construction of corresponding, high-quality DDSS knowledge bases. Their con-
struction and maintenance can consume dozens of person-years of effort in broad 
domains such as general internal medicine. To date, most large DDSS  knowledge 
bases   have at least initially been created in the academic environment. Many proj-
ects do not have adequate funding to sustain such activity over time [ 70 ]. Availability 
of adequate domain expertise is also a problem. Clinical collaborators generally 
earn their wages through patient care or clinical research, and sustaining high-level 
input from individuals with adequate clinical expertise can be diffi cult in the face of 
real-world demands. Commercial vendors must hire an adequate and well qualifi ed 
staff of physicians in order to maintain medical  knowledge bases  . The number of 
users willing to purchase a DDSS program and its updates, as well as the price they 
are willing to pay, limit the income generated through the sale of the DDSS. Obtaining 
a critical volume of sales to support ongoing developments and updates is diffi cult. 

 Different types of problems affl ict DDSS that target narrow domains. One prob-
lem is garnering an adequate audience. The CASNET system was an exemplary 
prototypic system for reasoning pathophysiologically about the  diagnosis   and ther-
apy of glaucoma [ 71 ]. It typifi es a problem that can occur with successful focal 
experimental expert systems with limited scope—the persons most likely to require 
such a specialized system’s use in clinical medicine are the domain experts whose 
knowledge was used to develop the system. The persons who routinely diagnose 
and treat glaucoma are ophthalmologists, who are by defi nition board-certifi ed 
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 specialists in the domain of ophthalmology. Programs like CASNET, in effect, run 
the risk of preaching to the choir. It is more diffi cult for an automated system to 
provide useful expertise in a given narrow specialty; human subspecialists in that 
area may rightly or wrongly believe they need not use it. Conversely, generalists are 
also unlikely to use a system with very narrow range of function. Specialty-specifi c, 
focused DDSS programs like the CASNET system must be extremely robust and 
provide more than one kind of service (e.g., by providing integrated record manage-
ment and other functions in addition to DDSS functionality) in order to fi nd use in 
clinical practice.  

11.4.2     Knowledge Base Construction and Maintenance 

   Knowledge base   maintenance is critical to the clinical validity of a DDSS [ 1 ]. Yet it 
is hard to determine when new clinical information becomes established as “fact.” 
First reports of new clinical discoveries in highly regarded medical journals must 
await confi rmation by other groups over time before their content can be added to a 
medical knowledge base. The nosological labels used in  diagnosis   refl ect the cur-
rent level of scientifi c understanding of pathophysiology and disease. They may 
change over time without the patient or the patient’s illness, per se, changing [ 1 ]. 
For example, changes occur in how a label is applied when the “gold standard” for 
making a diagnosis shifts from a pathological biopsy result to an abnormal serologi-
cal or genetic test—patients with earlier, previously unrecognized forms of the ill-
ness may be labeled as having the disease. Corresponding changes must be made to 
keep a DDSS knowledge base up to date. 

 Knowledge base construction must become a scientifi cally reproducible process 
that qualifi ed individuals can successfully undertake at any site [ 72 ]. Knowledge 
base construction should be clinically grounded, based on objective, peer-reviewed 
information (e.g., literature-based) whenever possible. Attempts to “tune” a DDSS 
knowledge base to improve DDSS performance on a given case or group of cases 
should be strongly discouraged. A general system tuned in that manner lacks lasting 
calibration across all cases—changes improving performance for one specifi c case 
may degrade performance on other previously diagnosable cases. Any updates 
should have an objective basis, such as information culled from the medical 
literature. 

 If the process of knowledge base construction is highly dependent on a single 
individual, or can only be carried out at a single institution, then the survival of that 
system over time is in jeopardy. While much of the glamour of computer- based 
diagnostic systems lies in the computer algorithms and interfaces, the long-term 
value and viability of a system depends on the quality, accuracy, and timeliness of 
its knowledge base [ 1 ]. 

 Even initially successful DDSS cannot survive unless the medical knowledge 
bases supporting them are kept current. This can require Herculean efforts. 
Shortliffe’s MYCIN program [ 62 ] was developed as a research project to demon-
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strate the applicability of rule-based expert systems to clinical medicine. MYCIN 
was a brilliant, pioneering effort in this regard. The  evaluation   of MYCIN in the late 
1970s by Yu and colleagues demonstrated that the program could perform at the 
expert level on challenging cases [ 73 ]. But MYCIN was never put into routine clini-
cal use, nor was an effort made to update its knowledge base over time. After 1980, 
lack of maintenance led its antibiotic therapy knowledge base to become out of date.   

11.4.3     Diagnostic Algorithms and User Interfaces 

 Just as computer-based  implementation   of many complex algorithms involves mak-
ing trade-offs between space (memory) and time (CPU cycles), development of 
real-world diagnostic systems involves a constant balancing of theory (model com-
plexity) and practicality (ability to construct and maintain adequate medical data-
bases or  knowledge bases  , and ability to create systems which respond to users’ 
needs in an acceptably short time interval) [ 64 ]. We may understand, in theory, how 
to develop systems that take into account gradations of symptoms, the degree of 
uncertainty in the patient and/or physician-user regarding a fi nding, the severity of 
each illness under consideration, the pathophysiological mechanisms of disease, 
and/or the time course of illnesses. Such complexities may ultimately be required to 
make actual systems work reliably. Nevertheless, it is not yet practical to build such 
complex, broad-based systems for patient care. The effort required to build and 
maintain superfi cial  knowledge bases   is measured in dozens of person-years of 
effort, and more complex knowledge bases are likely to require an order of magni-
tude greater effort [ 1 ]. The evidence to support many fi ne-grained diagnostic  knowl-
edge representation   schemes may not yet exist in objective repositories such as the 
peer-reviewed literature. 

 Although some have posited that DDSS will eventually replace physicians as 
primary diagnosticians [ 74 ], that position seems untenable. A clinician cannot eas-
ily convey his or her complete understanding of a complex patient case to a com-
puter program. One should never assume that a computer program “knows” all that 
needs to be known about a patient case, no matter how much time and effort is spent 
on data input. As a result, the clinician-user who directly evaluated the patient must 
be considered to be the defi nitive source of information about the patient during the 
entire course of any computer-based consultation [ 2 ]. In addition, the highly skilled 
health care practitioner—who understands the patient as a person—possesses the 
most important intellect to be employed during a consultation. That user should 
control the intellectual process of computer-based consultation, determining the 
sequence of steps to take place, which questions to pose, and whether those ques-
tions have been addressed. Systems must provide fl exible environments that adapt 
to the user’s needs and problems, rather than providing an interface that is infl exible 
and which penalizes the user for deviating from the normal order of system 
operation.  
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11.4.4     Testing, Evaluation, and Quality Control 

  System  evaluation   in biomedical informatics should take place as an ongoing, stra-
tegically planned process, not as a single event or small number of episodes [ 67 , 
 69 ]. Complex software systems and accepted medical practices both evolve rapidly, 
so evaluators and readers of evaluations face moving targets. As previously noted, 
systems are of value only when they help users to solve users’ problems. Users, not 
systems, characterize and solve clinical diagnostic problems. In keeping with that 
observation—that the DDSS user defi nes the problem to be solved—the ultimate 
unit of evaluation should be whether the user plus the system is better than the 
unaided user with respect to a specifi ed task or problem (usually one generated by 
the user) [ 2 ,  69 ,  75 ]. 

 Extremely important during system development are lessons learned (and modi-
fi cations) based on informal  formative evaluations  . Developers of DDSS should 
analyze new DDSS cases on a regular (e.g., weekly) basis. After each failure of the 
DDSS to make a “correct”  diagnosis  , careful analysis of both the system’s knowl-
edge base and diagnostic algorithms must be carried out. Both the information in 
the knowledge base on the “correct” diagnosis, and the information on any diagno-
ses offered in  error  , must be reviewed and potentially updated. Updates should be 
evidence-based, not just arbitrary “tuning” of the system for a specifi c problematic 
case. In addition, periodic rerunning of all previous test cases, done on an annual (or 
similar) basis, can verify that no signifi cant “drift” in either the  knowledge base   or 
the diagnostic programs have occurred. 

 Formal  evaluations   of DDSS should take into account the following four per-
spectives: (1) appropriate evaluation design; (2) specifi cation of criteria for deter-
mining DDSS effi cacy in the evaluation; (3)  evaluation   of the boundaries or 
limitations of the DDSS; and (4) identifi cation of potential reasons for “lack of 
system effect” [ 69 ]. Each of these issues is discussed below.  

    Appropriate Evaluation Design 

   Evaluation   plans should be appropriate for the information needs being addressed, 
the level of system maturity, and users’ intended form of DDSS usage (or specifi c 
system function evaluated) [ 67 ,  69 ]. The same DDSS may serve as an electronic 
textbook for one user, a diagnostic checklist generator for another user, a consultant 
to determine the next useful step in a specifi c patient’s evaluation for a third user, 
and a tool to critique/reinforce the users’ own pre-existing hypotheses for a fourth 
user. Each system function would require a different form of evaluation whenever 
anticipated user benefi ts depend on which system function is used. Evaluations 
should clearly state which user objective is being studied and which of the available 
system functions are relevant to that objective. 

R.A. Miller



197

 In 1994, Berner and colleagues evaluated the ability of several systems to gener-
ate fi rst-pass differential diagnoses from a fi xed set of input fi ndings [ 76 ]. These 
fi ndings were not generated by everyday clinical users, but from written case sum-
maries of real patient data. That approach was dictated by the desire to standardize 
system inputs and outputs for purposes of multisystem use. The primary goal of 
Berner et al. was to develop methods and metrics that would characterize aspects of 
system performance in a manner useful for rationally comparing different systems 
and their functions. All of the systems in that study were capable of generating 
questions to further refi ne the initial differential diagnoses, which is the intended 
mode of clinical use for such systems. Because that study was not intended to pro-
duce a defi nitive rating or comparison of the systems themselves, the involved sys-
tems were not placed in the hands of end users, nor were the systems used in a 
manner to address common end-user needs. Even though the evaluation did not 
examine this capability, the methods used by Berner were sound. Generating a fi rst- 
pass differential  diagnosis   is a good initial step, but subsequent evidence gathering, 
refl ection, and refi nement are required. 

 There are important questions that must be answered in the evaluation. Are the 
problems ones that clinical users generate during clinical practice, or artifi cial prob-
lems generated by the  study design   team? Is the case material accurately based on 
actual patient cases? Note that there can be no truly verifi able  diagnosis   when arti-
fi cial, manually constructed or computer-generated cases are used. Are the evalua-
tion subjects clinical users whose participation occurs in the clinical context of 
caring for the patients used as “test cases?” Are clinical users evaluating abstracts of 
cases they have never seen, or are nonclinical personnel evaluating abstracted clini-
cal cases using computer systems? Are users free to use all system components in 
whatever manner they choose, or is it likely that the  study design   will constrain 
users to exercise only limited components of the system? The answers to these 
questions will determine the generalizability of the results of the  evaluation  .   

    Specifi cation of Criteria for Determining Effi cacy in the Evaluation 

   Evaluations   must identify criteria for “successful” system performance similar to 
what clinical practitioners would use during actual practice.  Diagnosis  , or more 
properly, “diagnostic benefi t,” must be defi ned in such contexts. Similarly, what it 
means to establish a diagnosis must be carefully defi ned. For example, it is not 
adequate to accept hospital discharge diagnoses at face value as a “gold standard” 
since discharge diagnoses are not of uniform quality—they have been documented 
to be infl uenced by physician competency, coding  errors  , and economic pressures. 
Furthermore, some discharge diagnoses may be “active” (undiagnosed at admission 
and related to the patient’s reason for hospitalization), while others may be relevant 
but inactive. Criteria for the establishment of a “gold standard”  diagnosis   should be 
stated prospectively, before beginning data collection.  
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    Evaluation of the Boundaries or Limitations 

 A system may fail when presented with cases outside its  knowledge base   domain, 
but if an evaluation uses only cases from within that domain, this failure may never 
be identifi ed. The limits of a system’s  knowledge base   are a concern because patients 
do not accurately triage themselves to present to the most appropriate specialists. 
For instance, as discussed earlier, de Dombal’s abdominal pain system performed 
very well when used by surgeons to determine if patients presenting with abdominal 
pain required surgery [ 10 ]. However, a patient with atypical appendicitis may pres-
ent to an internist, and a patient with abdominal pain due to lead poisoning may fi rst 
see a surgeon.   

    Identifi cation of Potential Reasons for “Lack of System Effect” 

 DDSS operate within a system that not only includes the DDSS itself, but also the 
user and the healthcare environment in which the user practices. A model of all of 
the possible infl uences on the evaluation outcomes would include DDSS-related 
factors ( knowledge base   inadequacies, inadequate synonyms within vocabularies, 
faulty algorithms, etc.), user-related factors (lack of training or experience with the 
system, failure to use or understand certain system functions, lack of medical 
knowledge or clinical expertise, etc.) and external variables (lack of available gold 
standards, failure of patients or clinicians to follow-up during study period). It is 
important to recognize that studies that focus on one aspect of system function may 
have to make compromises with respect to other system or user-related factors in 
order to have an interpretable result. Additionally, in any DDSS evaluation, the 
user’s ability to generate meaningful input into the system, and the system’s ability 
to respond to variable quality of input from different users, is an important 
concern. 

  Evaluations   of DDSS must each take a standard objective (which may be only 
one component of system function) and measure how effectively the system 
enhances users’ performances, using a  study design   that incorporates the most 
appropriate and rigorous methodology relative to the stage of system development. 
The ultimate clinical end user of a given DDSS must determine if published  evalu-
ation   studies examine the system’s function in the manner that the user intends to 
use it. This is analogous to a practitioner determining if a given clinical trial (of an 
intervention) is relevant to a specifi c patient by matching the given patient’s charac-
teristics to the study’s inclusion and exclusion criteria, population demographics, 
and the patient’s tolerance for the proposed forms of therapy as compared to alterna-
tives. The reporting of an individual “negative study” of system performance should 
not, as it often does now, carry the implication that the system is globally subopti-
mal. A negative result for one system function does not mean that, for the same 
system, some users cannot derive signifi cant benefi ts for other system functions. 
Similarly, complete  evaluation   of a system over time should examine basic compo-
nents (e.g., the  knowledge base  , ability to generate reasonable differential diagno-
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ses, ability to critique diagnoses, and so on), as well as clinical functionality (e.g., 
can novice users, after standard training, successfully employ the system to solve 
problems that they might not otherwise solve as effi ciently or completely?). The 
fi eld of DDSS evaluation will become mature only when clinical system users regu-
larly derive the same benefi t from published DDSS  evaluations   as they do from 
evaluations of standard clinical interventions.   

11.4.5     Interface and Vocabulary Issues 

 A critical issue for the success of large-scale, generic DDSS is their environment. 
Small, limited, “niche” systems may be adopted and used by the focused commu-
nity for which they are intended, while physicians in general medical practice, for 
whom the large-scale systems are intended, may not perceive the need for diagnos-
tic assistance on a frequent enough basis to justify purchase of one or more such 
systems. Therefore, it is common wisdom that DDSS are most likely to succeed if 
they can be integrated into a clinical environment so that patient data capture is 
already performed by automated laboratory and/or hospital information systems. In 
such an environment, the physician will not have to manually enter all of a patient’s 
data in order to obtain a diagnostic consultation. However, automated transfer of all 
the information about a patient from a hospital information system to a diagnostic 
consultation system is nontrivial. If 100 hematocrits were measured during a 
patient’s admission, which one(s) should be transferred to the consultation sys-
tem—the mean, the extremes, or the value typical for a given time in a patient’s 
illness? Should all fi ndings be transferred to the consultation system, or only those 
fi ndings relevant to the patient’s current illness? These questions must be resolved 
by careful study before one can expect to obtain patient consultations routinely and 
automatically within the context of a hospital information system. Another reason 
for providing an integrated environment is that users will not use a system unless it 
is suffi ciently convenient to do so. By integrating DDSS into healthcare provider 
results reporting and order entry systems, the usual computer-free workfl ow pro-
cesses of the clinician can be replaced with an environment conducive to accom-
plishing a number of computer-assisted clinical tasks, making it more likely that a 
DDSS will be used. 

 Interfaces between automated systems are, at times, as important as the man- 
machine interface [ 77 ,  78 ]. Fundamental questions, such as the defi nition of dis-
eases and of fi ndings, limit our ability to combine data from the literature, from 
clinical databanks, from hospital information systems, and from individual experts’ 
experiences in order to create DDSS. Similar problems exist when trying to match 
the records from a given case with a computer-based diagnostic system. A diagnos-
tic system may embody different defi nitions for patient descriptors than those of the 
physician who evaluated the patient, even though the words used by each may be 
identical. 

11 Diagnostic Decision Support Systems



200

 In order to facilitate data exchange among local and remote programs, it is man-
datory to have a lexicon or interlingua which facilitates accurate and reliable trans-
fer of information among systems that have different internal vocabularies (data 
dictionaries). The United States National Library of Medicine Unifi ed Medical 
Language System (UMLS) project, which started in 1987 and continues through the 
present time, represents one such effort [ 79 ].  

11.4.6     Legal and Ethical Issues 

 Proposals have suggested that governmental agencies, such as the United States 
Food and Drug Administration (FDA), which oversees medical devices, regulate 
use of clinical software programs such as DDSS. These proposals include a variety 
of recommendations that manufacturers of such systems would be required to per-
form to guarantee that the systems would function per specifi cations. 

 There is debate about whether these consultation systems are actually devices in 
the same sense as other regulatable devices. In the past, governmental  regulation   has 
not been considered necessary when a licensed practitioner is the user of a DDSS 
[ 80 ]. It would be both costly and diffi cult for the government to regulate DDSS 
more directly, even if a decision were made to do so. For general DDSS programs 
like Iliad, QMR, Meditel and DXplain, with hundreds to thousands of possible diag-
noses represented in their  knowledge bases   [ 76 ], conducting prospective clinical 
trials, to demonstrate that the system worked for all ranges of diagnostic diffi culty 
for a variety of patients with each  diagnosis  , would require enrollment of huge num-
bers of patients and would cost millions of dollars. 

 Other approaches, such as a “software quality audit” to determine, prospectively, 
if a given software product has fl aws would also be clinically impractical. The clini-
cian seeking help may have any of several dozen kinds of diagnostic problems in 
any given case. Unless it is known, for a given case, which kind of problem the 
practitioner will have, performing a software quality audit could not predict if the 
system would be useful. 

 Consider the dilemma the FDA or other responsible regulatory agency would 
face if it agreed to review situations when a user fi les a complaint. First, one must 
note that few patients undergo defi nitive enough diagnostic  evaluations   to make it 
possible to have a “gold standard” (certain)  diagnosis  . So if the doctor claims the 
program was wrong, a major question would be how governmental auditors would 
know what the actual “right” diagnosis was. Second, the reviewers would need to 
know all of the information that was knowable about the patient at the time the dis-
puted diagnosis was offered. This could potentially violate patient confi dentiality if 
the records were sent to outsiders for review. All sources of information about the 
patient would have to be audited, and this could become as diffi cult as evidence 
gathering in a malpractice trial. To complete the sort of audit described, the govern-
mental agency would have to determine if the user had been appropriately trained 
and if the user used the program correctly. Unless the program had an internally 
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stored complete audit trail of each session (down to the level of saving each key-
stroke the user typed), the auditors might never be able to recreate the session in 
question. Also, the auditors would have to study whether the program’s  knowledge 
base   was appropriate. Initial development of the R-QMR knowledge base at the 
University of Pittsburgh required an average of three person-weeks of a clinician’s 
time, which went into literature review of 50–150 primary articles about each dis-
ease, with additional time for synthesis and testing against cases of real patients 
with the disease. For an auditor to hire the required expertise to review this process 
for hundreds to thousands of diseases for each of the programs that it would have to 
review and subsequently monitor would be costly and cumbersome. The ultimate 
question, very diffi cult to answer, would be whether the original user in the case in 
question used the system in the best way possible for the given case. Making such a 
determination would require the governmental agency to become expert in the use 
of each DDSS program. This could take up to several months of training and prac-
tice for a single auditor to become facile in the use of a single system. It would be 
diffi cult for a governmental agency to muster the necessary resources for even a 
small number of such complaints, let alone nationwide for multiple products with 
thousands of users. The complexity of these issues makes it very diffi cult to formu-
late appropriate regulatory policy. In addition to  legal issues   concerning  regulation  , 
there are other legal and ethical issues relating to use of DDSS that are discussed in 
Chap.   8    .   

11.5     Diagnostic Decision Support Systems Circa 2015 

 Recent emphasis on preventable  errors   in clinical practice originated in the 1980s 
with published studies on adverse drug effects, and peaked with the Institute of 
Medicine’s more comprehensive report, To Err Is Human [ 81 ]. Many researchers 
neglected or downplayed the frequency and importance of diagnostic errors, espe-
cially in the outpatient setting, because little was known at the time. Recently, 
increased interest has focused on diagnostic  errors   and their prevention [ 82 – 92 ]. 
The Society to Improve Diagnosis In Medicine (SIDM) grew out of the momentum 
generated by post-2000 annual conferences on diagnostic errors. In 2014, SIDM 
began publishing a journal,  Diagnosis   [ 92 ]. In 2015, the  Agency for Healthcare 
Research and Quality (AHRQ)   emphasized the importance of diagnosis by issuing 
new RFAs for methods to reduce diagnostic  errors   in the outpatient setting. The 
Institute of Medicine (National Academy of Medicine) of the National Academy of 
Sciences published its summary of a multi-year study of diagnostic errors [ 93 ]. The 
potential for  implementation   of DDSS in clinical practice, and the ability to study 
their impact has never been greater. 

 Three general, non-focal DDSS available in 2015 merit mention as exemplars: 
VisualDx® [ 94 – 99 ], DXplain [ 54 ,  56 ,  57 ,  100 ], and ISABEL [ 60 ,  101 – 105 ]. 
VisualDx® and ISABEL are marketed commercially; DXplain is available via insti-
tutional licenses for an annual fee. The web-based DXplain DDSS represents the 
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current evolution of a system initially developed in 1984 by G. Octo Barnett and 
colleagues at the Massachusetts General Hospital [ 100 ]. Dr. Barnett, the primary 
developer of DXplain, often stated that the inspiration for the system grew out of his 
respect for INTERNIST-1 [ 58 ,  59 ]. According to the 2015 DXplain web site, “the 
current DXplain knowledge base (KB) includes over 2400 diseases and over 5000 
clinical fi ndings (symptoms, signs, epidemiologic data and laboratory, endoscopic 
and radiologic fi ndings)” [ 100 ]. The ISABEL DDSS was developed as a commercial 
application from the outset. It originally covered Pediatric  diagnosis   [ 101 – 104 ] and 
its  knowledge base   has grown to now include adult disorders. In 2003, the developers 
of ISABEL published an  evaluation   of ISABEL, proposing that previous rigorous 
standards for DDSS evaluation might be unnecessary [ 105 ]. Berner discussed the 
implications of evaluating DDSS using less than absolute gold standards, as was 
proposed by the ISABEL team, in a well-balanced perspective covering “correct-
ness” of  diagnosis  , “appropriateness” of management suggestions, end-user accep-
tance and satisfaction, degree of adoption and use of a DDSS, and issues related to 
human-computer system interfaces [ 106 ]. Like many heuristic systems before them, 
DXplain and ISABEL behaviorally follow Gorry’s 1968 DDSS template. 

 A current DDSS that satisfi es many of the previously discussed desiderata for a 
creating, maintaining, and distributing a successful system is VisualDx, developed 
by Dr. Art Papier and colleagues [ 94 – 99 ]. Dr. Papier is an academically-based der-
matologist who has developed an extensive consortium of collaborating institutions 
to construct and maintain the VisualDx  knowledge base  , consisting of dermatologi-
cal images, a standardized lexicon of text descriptions for each of the images, and 
summary characterizations of the disorders associated with each image and with 
each text description. The web site “visualdx.com” [ 94 ] states the following: 
“VisualDx is a diagnostic  clinical decision support   and reference tool that combines 
high-quality, peer-reviewed medical images and expert information to support 
today’s internists and infectious disease physicians in the accurate recognition and 
management of disease …over 1500 hospitals and large clinics … recognize 
VisualDx as a … quality and  safety   system.”  

11.6     The Future of Diagnostic Decision Support Systems 

 It is relatively safe to predict that specialized, focused DDSS will proliferate, and a 
sizable number of them will fi nd widespread application [ 1 ]. As new medical 
devices are developed and older devices automated, DDSS software that enhances 
the performance of the device, or helps users to interpret the output of the device, 
will become essential. 

 Computerized electrocardiogram (ECG) analysis, automated arterial blood gas 
interpretation, automated protein electrophoresis reports, and automated differential 
blood cell counters, are but a few examples of such success at the present time. 
Since Miller’s 1994 article summarizing past DDSS developmental activities [ 1 ], 
the great majority of new articles on “ diagnosis  , computer-assisted” indexed in 
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MEDLINE have described focused systems for the interpretation of images (radio-
logical studies and pathology cytology/sections/slides), signals (ECGs, electroen-
cephalograms (EEGs), and so on), and  diagnosis   of very narrowly defi ned clinical 
conditions. One by-product of the success of these systems is that users may be less 
vigilant in questioning system accuracy. In a 2003 article, Tsai and colleagues 
pointed out the potential clinical dangers of overreliance of inexpert clinicians on 
computer systems for advice—they tend to follow the advice even when it is wrong 
[ 107 ]. 

 For the foreseeable future, machine-learning approaches to DDSS will fi nd suc-
cess in the realm of specialized, focused systems. There, adequate training exem-
plars can be found, and the number of categories to discriminate is relatively small 
(typically dozens). A somewhat related example, IBM’s Watson™ analytic engine 
[ 108 ], is also more likely to fi nd success in DDSS applications in focal domains 
rather than general  diagnosis   for medicine or pediatrics. Watson uses natural lan-
guage processing to draw statistical relationships among terms extracted from tex-
tual documents [ 108 ], such as the biomedical literature or patients’ charts. In 
reviewing the literature for the INTERNIST-1 and QMR projects, project members 
noticed that human expertise at a high level must resolve among confl icting reports 
as to whether a given disorder causes a given fi nding. Furthermore, in a given case 
summary appearing in either the literature or an EMR, patients often have multiple 
conditions that can cause or, in combination, exacerbate a given fi nding—e.g., a 
patient with shortness of breath who has both emphysema and heart failure. Purely 
automated systems would likely experience more diffi culty than an expert clinician 
in sorting out which disorder caused the fi nding on an algorithmic basis. Furthermore, 
for extremely rare disorders, such as primary sarcoma of the heart, a suffi cient num-
ber of case reports may not exist for algorithmic extraction of fi ndings with cer-
tainty. The whole fi eld of meta-analysis, which attempts to determine from published 
 randomized controlled trials   the quality of evidence supporting various therapeutic 
approaches to a given disorder, indicates the complexity of decision-making 
involved in collating evidence. Machine learning and Watson-like attempts to sum-
marize the literature on  diagnosis  , which lacks the rigor of  randomized controlled 
trials  , will also encounter extreme diffi culty when attempting to derive evidence 
bases to support DDSS in broad fi elds such as medicine or pediatrics. 

 So manual, or quasi-manual approaches to DDSS knowledge base curation by 
qualifi ed clinical experts will remain the best method to construct and maintain 
DDSS  knowledge bases   in the near-term future. Watson-like systems may, however, 
provide useful assistance to humans or heuristic DDSS in general clinical domains 
by, upon request, searching for evidence supporting (or refuting) a given specifi c 
 diagnosis   within a single patient’s voluminous EMR record. 

 The future of large-scale, “generic” diagnostic systems is hopeful, although less 
certain. As discussed in this and other chapters, a small number of large-scale, 
generic DDSS are in limited use in clinical practice. Systems like VisualDx provide 
hope that a model for ongoing maintenance and distribution for DDSS can be fea-
sible. Nevertheless, it is well established that DDSS can play a valuable role in 
medical education [ 1 ]. The process of knowledge base construction, utilization of 
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such  knowledge bases   for medical education in the form of patient case simulations, 
and the use of DDSS have all been shown to be of educational value in a variety of 
institutional settings. 

 In summary, the future of DDSS appears to be promising. The number of 
researchers in the fi eld is growing. The diversity of DDSS is increasing. The number 
of commercial enterprises interested in DDSS is expanding. Rapid improvements in 
computer technology continue to be made. A growing demand for cost-effective 
clinical information management, and the desire for better health care, is sweeping 
the United States [ 109 ]. Evidence-based medicine is now in vogue. All these factors 
will insure that new and productive DDSS applications will be developed, evalu-
ated, and used .     
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    Chapter 12   
 Use of Clinical Decision Support to Tailor 
Drug Therapy Based on Genomics                     

     Joshua     C.     Denny      ,     Laura     K.     Wiley      , and     Josh     F.     Peterson     

    Abstract     Clinical decision support (CDS) has been an effective tool to improve 
prescribing to prevent errors, avoid adverse events, and optimize dosing. The immi-
nent adoption of inexpensive panel assays to generate dense molecular data offers 
new opportunities to improve prescribing. Yet realizing the potential of such data to 
improve care faces many challenges to clinical informatics. These ‘omic’ data are 
large, are frequently stored and presented within non-computable narrative reports, 
require maintenance of an updated interpretation, and lack widespread representa-
tion standards for interoperability. In this chapter, we focus on using genomic data 
to guide drug therapy as a prototypic class of omic data with the greatest evidence 
base to support its clinical use in routine clinical care. We provide an overview of 
the challenges and opportunities of using genomic information within CDSS, the 
evidence for clinical utility, the emergence of genomic data standards, and examples 
of systems of pharmacogenomic prescribing. We conclude that the opportunities for 
genomic-guided therapy will likely increase over time. Clinical informatics devel-
opment will be required to meet rapidly evolving needs, toward an outcome of 
improved patient care with the right drug at the right dose the fi rst time, decreasing 
“idiopathic” adverse events.  
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     One of the  visions      from the Human Genome Project was the ability to use genetic 
information to tailor therapeutic decisions for individuals. The scientifi c validity of 
this potential has been validated as numerous cases of common and rare genomic 
variations have been found to infl uence drug effects. Many prototypical rare “idio-
pathic”  adverse drug events   have been shown to have genetic infl uences, such as 
Stevens Johnson Syndrome with the antiepileptic carbamazepine [ 1 ] and drug 
induced liver injury with fl ucloxacillin [ 2 ]. The effi cacy of other drugs has been 
shown to be infl uenced by genetic variation [ 3 ]. Other types of medications that are 
infl uenced by genetic variation are oncology medications [ 4 ]. Two types of genetic 
variation, termed germline and somatic, have been recognized as contributing to 
drug response. Germline variants are present since conception essentially in all cells 
and can affect an enzyme’s activity, a receptor to which a drug binds, or alter the 
 probability   of an immune reaction to a drug. Somatic variations are mutations that 
have arisen after birth in a subpopulation of cells; typically they refer to neoplastic 
cells and allow a provider to target chemotherapy medications based on the specifi c 
genetic makeup of an individual’s cancer. Accordingly, the US Food and Drug 
Administration (FDA) now includes genetic biomarker data (germline or somatic) 
in drug labels for 167 medications [ 4 ], some of which have acquired “Black Box” 
status. 

 Genomic data are just one type of high dimensionality data that could potentially 
be incorporated into clinical care for purposes of drug prescribing. Other types of 
‘omic’ data being pursued in research settings include the proteome, transcriptome, 
microbiome, or even clinical phenome that could be considered; however, none of 
these have yet reached the necessary level of evidence to incorporate into actionable 
clinical testing. Genomic data also present many of the same challenges that are 
seen with using other forms of -omic testing (such as large scale and naming schema 
that may not make the actionability clear) were they to become clinically action-
able. For these reasons, we focus this chapter on the use of genomic information in 
building  Clinical decision support systems (CDSS)  , primarily in the context of drug 
prescribing. 

 Growth in available genomic testing and knowledge combined with reductions in 
costs have led to increasing availability of genetic testing and the possibility of inte-
gration of genomic information within the  EHR  . Indeed, during an interview in 
2009, Dr. Francis Collins, current Director of the National Institutes of Health 
(NIH), remarked on the potential of the inevitability of pharmacogenomic-based 
prescribing with genomic information embedded in the EHR [ 5 ]. However, translat-
ing the basic science knowledge of genetic variation’s infl uence on drug response 
into clinical action is not trivial. The nomenclature of genomic variants can be con-
fusing, the data are high dimensional, and the  knowledge base   changes frequently. 
Thus, it is an ideal application for  clinical decision support (CDS)  . In this chapter, 
we will review the evidence for incorporating genomic information into drug pre-
scribing and some of the challenges and successes in doing so. 
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12.1     Opportunities for Integration of -Omic Technologies 
into CDSS 

 Until recently, use of genetic and genomic information to guide care has largely 
been relegated to esoteric situations driven by experts in the fi eld. These include 
specialized genetic tests, often by clinical geneticists, to aid in  diagnosis   of sus-
pected conditions or prenatal screening. Arguably, because genetics experts usually 
interpret the results, CDSS may not be needed for diagnostic support (e.g., does the 
patient have cystic fi brosis) or prenatal screening. The types of interpretation and 
patient education needed require experts to interpret and relay the information, and 
the breadth of possible results and integration with clinical knowledge would go 
beyond the capabilities of most  CDSS   for many genetic disorders. 

 One of the earliest uses of genetics to guide drug therapy involves testing of 
thiopurine methyltransferase (TPMT) activity during thoipurine (e.g., azathioprine) 
therapy for cancers and autoimmune therapies. Since this medication is ordered by 
a select few types of physicians, there has arguably been less of a need for CDS to 
guide what to do for individuals with altered TPMT activity. However, it is interest-
ing to note that while this is a fairly widely-known  pharmacogenomics   trait and 
taught routinely in medical schools, TPMT activity or genotype testing is not always 
ordered routinely before prescribing azathioprine, which suggests a potential need 
for CDS to remind clinicians to order the appropriate tests. 

 Knowledge about genomic biomarkers affecting drug effi cacy or infl uencing 
drug response has increased dramatically in the last decade. Specifi c evidence is 
discussed more in the next section.  

12.2     How Is Genomic Decision Support Different 
from Other Types of CDS? 

 Use of genomic information has a number of unique challenges compared to typical 
use cases for CDS, such as for drug-drug interactions, dose or drug adjustment 
based on biologic factors such as body surface area, concomitant medications, or 
kidney function. One of the most common forms of variants is single nucleotide 
polymorphisms, or SNPs, which indicate variation (inserted, deletion, or variation) 
at a single base pair. SNPs are typically identifi ed by their “rsID” (e.g., rs2359612). 
The National Center for Biotechnology Information’s dbSNP lists nearly 150 mil-
lion human SNPs in build 144, points in which variation has been detected amongst 
the three billion base pairs in the human genome [ 6 ]. Other variations include copy 
number variants (CNVs), larger insertions or deletions, and translocations. The lat-
ter are arguably less commonly studied and less comprehensively understood. 
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Importantly, most common genomic studies have surveyed SNPs. Because evolu-
tionary history dictates that SNPs will statistically co-occur with other more com-
plex genetic variation in similar lineages, larger insertions/deletions or CNVs are 
also marked by SNPs during genetic studies. This statistical co-occurrence within 
populations is called linkage disequilibrium, and occurs between two SNPs as well 
as between SNPs and more complete genetic alterations. 

 Dense genomic interrogation of hundreds of thousands of SNPs costs less than 
$100, and the cost of whole genome sequencing continues to fall faster than Moore’s 
law, soon approaching the $1,000 genome [ 7 ]. Most of this genetic variation has 
little impact on disease or drug response; however the nomenclature is not straight-
forward for a provider to interpret. In contrast, providers are familiar with and can 
interpret the effects of decreasing kidney or liver function and interacting medica-
tions. The effects of genetic variants are not as self-evident, since they are named 
before their functionality is known. In addition to rsIDs, pharmacogenetic variants 
have typically also been identifi ed by the “star” nomenclature. For example, 
 CYP2C19 *2 indicated a specifi c allelic variant in  CYP2C19  which results in reduced 
activity of  CYP2C19 . The star-scheme, however, also includes non-SNP variation, 
such as CNVs, translocations, etc., unlike rsIDs. For both rsIDs and star-schema 
names, the effect of the variant (if any) on the enzyme’s activity is not clear. For 
instance,  CYP2C19 *2 decreases the  CYP2C19  activity, while  CYP2C19 *17 
increases the activity. In addition, variants discovered in one population may “tag” 
a causative variant but not be causative. For example, rs2359612 in  VKORC1  is 
highly predictive of warfarin sensitivity in individuals of European ancestry, but not 
in those of African ancestry, as it is only in linkage disequilibrium with the causative 
SNP [ 8 ]. Given each of these factors (and perhaps partially attributable to our early 
stage of use of genomic information to guide care), evidence can evolve rapidly, and 
a  CDSS   must be rapidly changeable and local institutions must be attuned to moni-
toring for changes in recommendations. For example, at  Vanderbilt   University 
Medical Center, in 2010 we started to use genetic information ( CYP2C19  variants) 
to identify individuals with decreased ability to metabolize clopidogrel. Evolving 
evidence caused us to revise our CDSS for clopidogrel based on  CYP2C19  variants 
fi ve times within its fi rst year of  implementation  . Table  12.1  presents some of the 
challenges and possible solutions to integration of genomic-guided therapy into 
practice.

12.3        State of the Evidence for Germline Pharmacogenomic 
Intervention 

 One of the barriers to clinical  implementation   of  pharmacogenomics   has been the 
lack of clear clinical care decisions that should be made based on genetic variant 
results. The two primary resources addressing this barrier for germline pharmacoge-
nomic variants are the Food and Drug Administration (FDA) [ 4 ] and the Clinical 
Pharmacogenetics  Implementation   Consortium (CPIC) [ 9 ]. Table  12.2  presents all 
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sources of pharmacogenomic recommendations and a summary of existing recom-
mendations as of the writing of this chapter. In general these guidelines evaluate two 
major criteria about the proposed recommendation: (1) the level of evidence sup-
porting the recommendation and (2) the strength of the recommendation. The evi-
dentiary criterion evaluates the strength of the literature surrounding the gene-drug 
interaction while the recommendation strength typically combines the level of sup-
porting evidence as well as the potential harm from the interaction and the avail-
ability of alternate therapies.

   Table 12.1    Challenges and approaches to translating genome-directed drug therapy into practice   

 Challenges  Possible solutions 

 Most practitioners lack 
specialized knowledge of 
gene-drug relationships 

 Generate passive and active decision support modules with 
clear interpretation and easy-to-understand 
recommendations. Build decision support modules that 
intercept relevant drug orders. Use consistent drug 
sensitivity nomenclature 

 Order requisitions for individual 
drug-genotype pairings are 
confusing 

 Simultaneously test for all pertinent drug sensitivity 
genotypes in one test. Automatically prompt provider to 
order tests 

 Knowing whom to test can be 
confusing 

 Build algorithm to identify high-risk patients to test 
preemptively, and/or CDSS to identify those who need 
testing based on indications or prescriptions ordered 

 Results may not always include 
interpretation and actionable 
guidance 

 Both lab results and decision support need to include 
drug-specifi c recommendations as well as genotype results 

 EHR systems have varying 
capabilities and implementations 

 Build variety of passive (annotated lab results) and active 
(interruptive) decision support mechanisms 
 Measure best way to provide recommendations and 
implement Plan-Do-Study-Act paradigms to adjust to best 
workfl ows 

 The clinical signifi cance of 
drug-gene relationships 
constantly evolves 

 Periodically review and update CDSS. Utilize central 
resources for decision support where possible 

 Information to help explain 
testing and test results to patients 
is needed 

 Provide patient-friendly informational material in patient 
portals 

 Practitioners need succinct, 
quickly accessed education 

 Develop and link to personalized, detailed information and 
evidence from lab results and CDSS 

 Genetic consultations may be 
important due to unfamiliarity or 
rare variants 

 Provide centralized resources (e.g., MyCancerGenome.org, 
warfarindosing.org, links to Clinical Pharmacogenetics 
Consortium recommendations, MyDrugGenome.org, 
Molecular Tumor Board, Pharmacists) 

 Patient’s clinical fi ndings are 
essential to interpretation and 
guidance, but may not always be 
available 

 Integrate clinical data from EHR into clinical decision 
supported genotype-guided prescribing 

 Gaining an understanding of 
provider opinions and knowledge 
barriers is needed 

 Survey providers. Measure what content they view and how 
often they follow recommendations. Be responsive in design 
of CDS to emerging needs 
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   The FDA issues pharmacogenomic guidance through affected drug product 
labels. The locations of these alerts indicate the type, severity of the interaction, and 
level of recommendation. The pharmacogenomic biomarkers in drug labeling cover 
genomic biomarkers that describe: (1) drug exposure and clinical response variabil-
ity, (2) risk for adverse events, (3) genotype-specifi c dosing, (4) mechanisms of 
drug action, and/or (5) polymorphic drug targets and disposition genes. Importantly, 
FDA pharmacogenomic guidance includes both germline and somatic variation. 
The most serious warnings are presented as “black box” warnings where: (1) the 
adverse reaction is so severe that the genetic variant must be considered to properly 
assess the risk or benefi t of the drug, (2) a serious adverse reaction can be reduced 
in frequency or severity based on use of the genetic variation, or (3) FDA approved 
the drug based on the pharmacogenomic restriction to ensure safe use. A recent 
study of the FDA Table of Pharmacogenomic Biomarkers reviewed the 158 drug- 
gene pairs present in the table as of June 2014. Of the 108 germline drug-gene pairs 
listed at that time, 6 were subject to black box warnings [ 10 ]. The study interpreted 
the FDA guidance as requiring genetic testing for nine germline drug-gene pairs and 
recommending genetic testing for a further four pairs. As of September 2015, the 
count had risen to a total of 167 drug-gene pairs, 111 of which included germline 
variants. Of these germline variants, eight had black box warnings. 

 Established in 2009 to address the lack of clear, curated guidelines for germline 
pharmacogenomic interventions, CPIC developed procedures to evaluate the levels 
of evidence needed to implement pharmacogenomic interventions [ 11 ]. Importantly, 
CPIC guidelines are based on the assumption that genetic test results are already 
available to the physician and the guidelines only provide guidance on how to inter-
pret those results to improve drug therapy. Thus, unlike certain FDA recommenda-
tions, guidelines produced by CPIC do not address whether a patient should be 
tested for the gene-drug interaction. Drug-gene interactions are chosen by CPIC for 
guideline development based on surveys of CPIC members, availability of clinical 
testing for the indicated genotype, the potential for alternate treatments, and/or the 
severity of consequences of ignoring the interaction. Once written, drug-gene inter-
action recommendations are subject to ongoing updates (typically every 2 years) 
consisting of literature review of newly published data as well as possible guideline 
modifi cations. Guidelines and their updates have been published in the journal 
 Clinical   Pharmacology    and Therapeutics , and are posted to the NIH Genetic Testing 

   Table 12.2    Summary of drug-gene guideline sources   

 Resource  Number of guidelines 

 Food and Drug Association   http://www.fda.
gov/drugs/scienceresearch/researchareas/
pharmacogenetics/ucm083378.htm     

 158 Drug-variant  pairs  (105 germline, 42 
somatic) 

 Clinical Pharmacogenetics Consortium 
(CPIC)   https://www.pharmgkb.org/page/cpic     

 34 Drug-variant pairs (16 guidelines, 5 updates) 

 Evaluation of Genomic Applications in 
Practice and Prevention (EGAPP) 
  http://www.egappreviews.org/     

 1 Drug class-gene pair 
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Registry, the  AHRQ   National Guideline Clearinghouse and the Pharmacogenomic 
 Knowledge Base   (PharmGKB) website (  www.pharmgkb.org    ). In addition to these 
human readable guidelines, there are efforts to translate all recommendations into 
computer readable formats for easier integration into clinical systems.  

12.4     Who, What, and When to Test 

 Clinical use of these markers can be considered in two broad contexts. The fi rst is 
“reactive” – genotyping for specifi c variants is undertaken in individual subjects at 
the point of care, and then acted on when the results become available. This is the 
most common type of testing pursued in medicine, including not just genomic inter-
rogation but any testing done in response to an individual’s changing clinical status 
(presentation of a new symptom, family member diagnosed with a new disease, 
etc.). In the case of genetic testing for drug response, the reactive approach is to test 
an individual when they are about to be prescribed a drug with a pharmacogenomic 
variant known to affect a drug’s effect, so a provider tests for the variant before or 
concomitant with prescribing the medication. Ideally the fi rst therapy prescribed 
would be the correct one, taking into account the results of genetic testing. However, 
this is not feasible in the case of medications needed acutely, such as following a 
myocardial infarction or anticoagulation for a thromboembolic event, given that 
genetic information generally takes at least a few days to return. Thus, in reactive 
testing, providers have three options: (1) wait to prescribe the medication until 
genetic test results are available, delaying therapy; (2) prescribe a standard of care 
therapy (exposing some fraction of the population to increased risk of harm) and 
then revise as necessary once genetic test results are returned; or (3) avoid the ther-
apy requiring genetic guidance and start with an alternate therapy that does not need 
genetic testing. While option 3 may seem ideal in many circumstances, it is impor-
tant to remember that the initial therapy was chosen for a reason – it may be cheaper, 
have better effi cacy, be better tolerated, or be generally more trusted by the provider 
or in the marketplace. In fact, as shown in Hong Kong, option 3 has been observed 
in practice, with negative outcomes. After requiring HLA testing to prevent Stevens 
Johnson Syndrome, or SJS, before prescribing carbamazepine for epilepsy, the pre-
scription rates of alternative antiepileptic drugs increased. However, since the 
adverse reactions to the alternative medications could not be averted via genetic 
testing, the overall population rate of SJS did not decrease despite eliminating SJS 
from carbamazepine, as cases of SJS from other antiepileptic drugs increased sig-
nifi cantly [ 12 ]. 

 An alternative testing strategy is preemptive, in which dense genotypic informa-
tion is routinely stored in advanced  electronic health record (EHR)   systems, allow-
ing genotype-based advice to be delivered to providers prior to or during prescribing. 
Preemptive genotyping is analogous to a screening test. Screening tests in medicine 
are performed for a wide variety of conditions in medicine that have high morbidity 
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or mortality in the absence of early treatment. These conditions are effectively 
 intervenable if diagnosed. When diagnostic screening tests perform well, they are 
cost- effi cient and cause little harm. Examples of screening tests commonly per-
formed in medicine include mammography for breast cancer, colonoscopy for colon 
cancer, and glucose testing for diabetes. These screening procedures have broadly 
established evidence bases and  cost-effectiveness   studies, unlike prospective phar-
macogenomic testing. However, it can be argued that pharmacogenomic testing has 
little toxicity, costs relatively little [several hundred dollars for Clinical Laboratory 
Improvement Act (CLIA)-compliant testing], and may need to be performed only 
once for an individual, unlike many other screening tests. 

 An advantage of preemptive genetic testing is that the genetic information can be 
embedded in the individual’s chart or  EHR   before such information is needed, so 
that the genotype-guided care can be the fi rst therapy initiated, theoretically leading 
to better outcomes. This approach is dependent on the fact that one’s genotype does 
not (generally) change over one’s lifetime, such that once genotyped, that informa-
tion can be used for many years. A disadvantage is that that genotypes needed for 
testing vary based on the drug one is to be prescribed. Fortunately, some pharma-
cogenomic variants infl uence multiple drugs, most commonly driven by cytochrome 
P450 and Human Leukocyte Antigen (HLA) variants. Thus, testing for a limited set 
of variants can cover many of the important variants determined by CPIC. 

 Another disadvantage of preemptive testing is the cost of testing. Schildcrout 
et al. studied 52,942 “medical home” patients (≥3 outpatient visits at  Vanderbilt   
within 2 years) and found that 64.8 % were exposed to at least 1 of 57 medications 
with FDA pharmacogenomic guidance within 5 years, including 14 % having expo-
sure to more than 4 of these medications over 5 years. Assuming reduction of risk 
of adverse events to baseline with alternative therapies, they estimated that, in this 
population over a 5-year period,  implementation   of pharmacogenomic testing could 
avert 383 serious adverse events such as myocardial infarction, warfarin-related 
bleeds, and myelosuppression [ 13 ].  

12.5     Types of CDS Useful for Genomic Medicine 

 The three major types of CDS  implementation   methods include active, passive, and 
surveillance methods. 

12.5.1     Passive Decision Support 

 Passive  decision support amounts   to providing education for providers and patients. 
Such efforts involve creation of human-readable documents and straightforward 
action steps for providers to follow when they prescribe medications where the 
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patients’ response is infl uenced by genetic factors. This process can be very effec-
tive for medications prescribed by a select group of providers knowledgeable about 
the drug-genome interactions, such as the TMPT/thiopurine example above, or for 
genetic tests done for diagnostic support. Chemotherapeutics for cancer are another 
example, in which often a provider (or team of providers) orders a complex battery 
of tests, which increasingly includes somatic variants in the cancer, before deciding 
on a therapy plan. A human-readable interpretation (e.g., as a static, non- computable 
document) of genetic testing can effectively guide therapy for such cases.  

12.5.2     Active Decision Support 

  Active  decision support   is a process that monitors provider activity and then actively 
advises the provider toward a path based on actionable information. It can be either 
synchronous or asynchronous. Synchronous CDS describes a workfl ow in which a 
clinician order, such as prescribing a medication, is monitored in real-time by rules 
embedded within the  EHR  , and clinician behavior is infl uenced when the rule is 
triggered. The most widely recognized approach is an alert window warning the 
user of a potentially risky order, such as an allergy or severe drug-drug interaction. 
Active decision support modules can contain both interpretation and advice (as 
would passive CDS) but active decision support has the added value of happening 
during the workfl ow and linking to actionable decisions, such as suggesting alterna-
tive therapies or doses. For genetic examples, this would involve taking into account 
the drug being prescribed, the genetic variants, and applying a rule to yield a recom-
mendation. Since most examples in pharmacogenetics known to date involve 
genetic variants present in a minority of the population yielding increased risk of an 
 ADE  , most individuals would not need altering from typical therapies based on 
genetics. Thus, in many cases, active synchronous CDS may be invisible to the 
provider during the ordering process, and would only intervene on those individuals 
with the genetic variant. 

 Active CDS can also be deployed asynchronously, though this is less common. 
An example could be a system that evaluates for possible drug-drug interactions or 
gene-drug interactions in batch (e.g., once nightly) and delivers a clinical commu-
nication to a provider of a possible interaction. It can also suggest alternatives and 
would have the potential to provide a direct, actionable alternative suggestion. This 
model, however, may be desirable for lab results that are delivered after the medica-
tion is prescribed. Such decision support has been successfully applied when a 
medication that should take into account renal function has been prescribed. The 
CDS may suggest dosing changes when the lab results documenting an individual’s 
kidney function are returned [ 14 ].  
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12.5.3     Surveillance Decision Support Mechanisms 

 In contrast to active decision support mechanisms, surveillance systems are designed 
to provide centrally-monitored “dashboards” for monitoring and managing some-
thing intervenable, such as drug dosing. One example of surveillance systems com-
monly used includes the anticoagulant warfarin, which can be implemented via a 
combination of human, workfl ow, and electronic means. In this chapter, we focus on 
electronic means for centralized decision support and surveillance of targeted 
drug-outcomes. 

 Surveillance systems have been used for germline genomic decision support at 
 Vanderbilt   University Medical Center [ 15 ]. Individuals with high-risk genotypes 
can be viewed as panels and their most recent medication lists searched for target 
medications to see if these individuals were still on these medications. These poten-
tial drug-genome interactions are reviewed by pharmacists, who contact each 
patient’s provider for possible change in drug therapy according to genomic guid-
ance. This type of CDS is important for individuals whose results are returned after 
an interacting medication is prescribed, especially so for tests ordered during acute 
events by non-primary providers (e.g., hospitalization for acute myocardial infarc-
tion for which  CYP2C19  testing was ordered to tailor antiplatelet therapy).    

12.6     Standardized Representation of Genetic Variation 

 For genomic data to be actionable as inputs into a CDSS, they must be represented 
in computable forms in the  EHR  . Genotyping patients on a multiplexed panel gen-
erates a large set of potentially actionable genomic results that have persistent rele-
vance over a patient’s lifetime. Currently, systems that are using genomic CDS have 
typically represented their genomic results in the  EHR   in a variety of locally- 
developed, locally-computable formats [ 16 – 19 ]. Creating a portable version of 
results that can be shared across electronic medical records is a high priority for 
 implementation   of genomic medicine or any health analytics task that relies on uni-
form specifi cation of genomic variation across  EHRs  . Standard representation of 
genetic results will also be important for broader adoption of genomic CDSS and to 
allow interaction of genomic data with a variety of systems. 

  Health Level Seven (HL7)   has created a specifi cation for genomic variation that 
leverages existing nomenclature standards for variant identifi cation such as the 
HUGO Gene Nomenclature Committee (HGNC;   http://www.genenames.org    ), 
Human Genome Variation Society (HGVS;   http://www.hgvs.org    ), and the RefSeq 
ID (  http://www.ncbi.nlm.nih.gov/refseq/    ). Additionally, it allows stipulation of 
brief coded interpretative phenotype text such as “poor metabolizer” using a con-
trolled set of descriptors from the Logical Observation Identifi ers Names and Codes 
(LOINC) vocabulary. The standard is focused on coding genetic test results from 
genotyping technologies where variants from a reference standard are defi ned as 
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opposed to raw sequence data. HL7 has released an  implementation   guide to gener-
ate messages on version 2.5.1 of the parent  HL7   messaging standard. The clinical 
genomics standard is suffi ciently robust to support interpretations at the allele (e.g., 
 CYP2C19 *2) and gene (e.g.,  CYP2C19 ) level, and can describe in a single message 
a phenotype based on the combined impact of multiple gene effects. Such is the case 
with warfarin sensitivity, which is based on both  CYP2C9  and  VKORC1  variation. 
However, some common pharmacogene interpretation terms are not currently pres-
ent in LOINC, such as the phenotypes of variants in  SLCO1B1 , which affect hepatic 
uptake of most statins and are known to be associated with simvastatin toxicity [ 20 ]. 
Additionally, momentum is building for newer standards to feature standard repre-
sentations of genetic variation, such as the Fast Healthcare Interoperability Resource 
(FHIR) [ 21 ]. 

 Direct support of clinical genomics standards from laboratory information sys-
tems and  EHR   vendors would accelerate the communication and interoperable use 
of interpreted genotype and sequencing results. Similar standards could be applied 
to family history and pedigree data as well. Currently, there are a number of systems 
that will structure family history/pedigree data in computable formats. The MyTree 
system, which is the focus of one of the grants in the Implementing Genomics in 
Practice (IGNITE) Network, [ 22 ] has been developed to be a consumer of FHIR 
information to receive  EHR   data in a standard format, though structured return of 
family history/pedigree data into the EHR has not yet been standardized.  

12.7     CDS Knowledge Bases 

  Traditionally,     clinical decision support   content is developed by institutions or 
knowledge vendors and delivered by  EHR   vendors after undergoing extensive local 
customization. The scale and complexity of genomic medicine highlights the diffi -
culty of recreating the rule set for every health system looking to implement across 
an enterprise. Several prior efforts within  clinical decision support   have aimed to 
publically standardize rule sets encouraging dissemination. A recent effort by two 
genomic medicine consortia, Electronic Medical Records and Genomics (eMERGE) 
and IGNITE, aims to collect local versions of genomic CDS and the design docu-
ments that were created during the course of  implementation  . The implementation 
‘artifacts’ generated by consortia members have traditionally not been published or 
shared and include algorithms or  logic  , genotype to phenotype maps, optimizations 
of clinical workfl ow, design of clinician and physician facing user interfaces, and 
design or presentation of patient and provider communications. 

 A working version of the Clinical Decision Support Knowledge Base (CDS-KB, 
hosted at   http://cdskb.org    ) has gathered a preliminary set of knowledge artifacts 
from academic medical centers and integrated health systems that have piloted 
genomic medicine programs. The site is supported through grants given by the 
National Human Genome Research Institute (NHGRI). The artifacts on the site are 
stored, indexed, and disseminated by the site. In addition, the site facilitates 
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exchanges and discussions between implementers across institutions and features a 
monthly educational webinar. While the majority of artifacts currently hosted repre-
sent a  pharmacogenomics   scenario given the accumulated years of experience 
within this domain, a few examples of CDS created for germline variation predict-
ing disease state are included as well (such as  BRCA1  mutations and breast cancer 
or  APOL1  variants and kidney disease). The site is part of a larger effort being 
pursued by IGNITE and eMERGE to develop tools to help implement genomic 
medicine.   

12.8     Examples of Genomic CDS in Practice 

 Pharmacogenomic testing to guide drug prescribing, often through use of complex 
CDS interfaces, has increased dramatically over the last 5 years. Sarkar identifi ed 
genomic medicine clinical  implementation   efforts as one of the major recent infor-
matics developments in his 2012 International Medical Informatics Association 
Yearbook Survey [ 23 ]. He noted only two clinical  pharmacogenomics   programs at 
that time: the  Vanderbilt   Pharmacogenomic Resource for Enhanced Decisions in 
Care & Treatment (PREDICT) [ 17 ] and a similar effort targeted for the pediatric 
cancer population at St. Jude Children’s Research Hospital [ 16 ]. Figure  12.1  shows 

  Fig. 12.1    Decision support for clopidogrel guidance as part of the Vanderbilt PREDICT 
program       
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a screenshot of a PREDICT CDS alert. Both of these efforts employed multiplexed 
genotyping assays to evaluate common pharmacokinetic and pharmacodynamic 
variants for germline variants affecting commonly prescribed drugs. To do so, both 
placed interpreted genetic results within the  EHR   in a structured format. A number 
of academic programs using genetic testing to guide care have since gotten under-
way. The University of Chicago is enrolling about 1,200 patients from 12 pre- 
selected physicians for prospective genetic testing [ 24 ]. Information on genetic 
variants is provided through a custom web interface that displays summarized phe-
notype information. The University of Florida/Shands Hospital’s Personalized 
Medicine Program is testing individuals undergoing cardiac catheterization to 
genetically-guide clopidogrel prescribing [ 18 ]. They have since expanded to include 
other drug-genome interactions.

   Each of the eMERGE Network sites developed systems to integrate genomic 
information within their  EHR   to guide prescribing. Specifi cally, the eMERGE-PGx 
project involved testing patients at pediatric and adult sites using a custom sequenc-
ing platform that investigated 84 pharmacogenes, with clinical validation and EHR 
implementation of select actionable variants. eMERGE sites have pursued a variety 
of genomic CDS  implementation   projects by leveraging either communicating with 
the EHR, infobutton technologies, or custom EHR solutions [ 25 ,  26 ]. In each of 
these solutions, a common theme of those with dense genomic information is a 
separate repository linked to the EHR, with actionable genomic information inserted 
into the  EHR   is computable formats (Fig.  12.2 ) [ 27 ,  28 ].

Patient selected for
preemptive or reactive
genotyping

Genotype
database

Actionable variants put into EHR
• Clinical decision support
• Genotype result and “human

language” interpretation

Multiplexed Genotyping Platform

Discard variants that
don’t work well

Variants not in EHR
Use for research into drug-
genome interaction
discovery

Variants of unknown
significance

New variants added to EHR
when sufficient evidence

Variants with clear
actionability
Pharmacy & Therapeutics
Committee oversight

  Fig. 12.2    Schematic for testing and storage of genetic variants in multiplexed testing (Adapted 
from Denny [ 27 ])       
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   Although the use cases for somatic variation driving precision cancer care are 
becoming increasingly common, fewer systems have integrated somatic variant 
testing into CDSS. Typically, cancer genetic testing is performed by reference labs, 
which return results as documents containing non-computable information. One 
such example of computable variant information returned into the  EHR   is the 
Personalized Cancer Medicine Initiative [ 29 ] project, which includes structured 
somatic mutation testing with links to the MyCancerGenome website. The website 
serves as a central repository of cancer genetic variants, their interpretation, and 
relevant clinical trials. Thus, a provider looking at a given patient’s cancer testing 
results can quickly discover the relevance of their genetic variants and can fi nd out 
if there were open clinical trials for which the patient might be eligible. This report 
structure is a type of passive CDS. The authors are not aware of active CDSS that 
have been implemented based on somatic mutations. 

 In 2012, NHGRI funded the IGNITE network to integrate genomic information 
into  EHRs   and develop genomic  clinical decision support   at sites beyond large aca-
demic hospitals [ 22 ]. IGNITE consists of six member projects. Three of these proj-
ects are pursing pharmacogenomics, two others genome-based disease care, and 
another a computable family history module. Many of these sites are implementing 
genomic medicine across many sites. Duke University’s Family History project is 
implementing within 28 primary care clinics across 5 different health systems. The 
Integrated, Individualized, and Intelligent Prescribing (I 3 P) Network will be imple-
menting germline and somatic  pharmacogenomics   in fi ve different health systems. 
The Sanford Health System in the Dakotas, part of IGNITE, represents a large non- 
academic health system that has implemented genomic CDSS for a variety of medi-
cations (Fig.  12.3 ) [ 30 ].

12.9        Direct-to-Consumer Genetic Testing 

 Direct-to-consumer (DTC) genetic testing provides an avenue for patients to pursue 
genetic testing without requiring a doctor’s order. Although initially there were sev-
eral companies offering DTC genomic testing, 23andMe (Mountain View, CA) is 
the only major company still offering dense genomic testing to the public without 
requiring physician orders. 23andMe has currently tested more than one million 
individuals, and provides information to consumers on a consumer-friendly website 
that allows individuals to explore traits and ancestry information based on their 
genetic testing, which is performed on a high-density genotyping array performed 
in a CLIA laboratory. These personalized results initially also included health infor-
mation, such as the individual’s genetic risk for a number of diseases and some 
advice on  pharmacogenomics  , including warfarin sensitivity and clopidogrel effi -
cacy. However, in November of 2013, the Food and Drug Administration ordered 
23andMe to stop providing clinical guidance for genetic test results, citing “poten-
tial health consequences that could result from false positive or false negative 
assessments” [ 31 ]. As a result, 23andMe stopped providing disease risk and drug 
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response information to new enrollees, though such information remains available 
to prior enrollees at the time of this writing. In February 2015, 23andMe obtained 
FDA approval to release clinical information on Bloom syndrome carrier status, a 
rare Mendelian disease, as a fi rst return to providing clinical data back to patients 
[ 32 ]. In addition, 23andMe offers the ability for customers to download, in bulk, 
their genome-wide genetic data, which include hundreds of thousands of variants. 
Thus, a particular savvy consumer (regardless of timing with respect to the FDA 
ruling) could go to 23andMe and download their genetic data and fi nd and use the 
genetic data relevant to particular drugs (e.g., specifi c alleles at rs9923231 and war-
farin sensitivity). 

  Fig. 12.3    Automated statin advisor implementing in an Epic environment. (Reprinted from 
Larson and Wilke [ 30 ], Copyright 2015, with permission from Elsevier)       
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 There is at least one published anecdote of DTC genetic testing being used to 
change care. Tenenbaum et al. described a model for how DTC genetic testing could 
be used to guide care with clinical input [ 33 ]. They reported the case of a woman 
with unremarkable personal and family history who learned through DTC testing 
about the presence of a prothrombin gene mutation, and as a result, underwent anti-
coagulation during pregnancy.  

12.10     Conclusions 

 From the early days of clinical informatics to support order entry, CDS has been an 
important mechanism to effect change in provider behavior toward avoidance of 
medical  errors  , adherence to standards of care, and faster adoption of best practices. 
Researchers have leveraged CDS to not only enhance provider prescribing and 
monitoring, but also to engage multidisciplinary teams and to monitor a patient’s 
changing conditions. Use of genomic information in CDS provides a new, but not 
altogether different, modality to enhance a provider’s ability to prescribe the right 
drug at the right dose, at the fi rst prescription. An exciting realization of  pharma-
cogenomics   is the shrinking of the domain of “idiopathic” reactions as some once 
unpredictable reactions become predictable. Much work remains to realize seam-
less genomic medicine through healthcare, but initial pilot projects are promising 
and provide guidance for broader  implementation  . 

 On January 20, 2015, President Obama announced a Precision Medicine Initiative 
(PMI), which has two major arms: precision cancer therapy and the creation of a 
natural, longitudinal cohort of more than one million individuals who will share 
their health data and biospecimens for research. One of the envisioned use cases for 
the PMI cohort initiative is study of  pharmacogenomics   and genetically-defi ned 
subtypes of disease, which may lead to targeted therapies, such as ivacaftor for the 
subset of cystic fi brosis patients with a particular CFTR mutation [ 34 ]. Individuals 
in the PMI cohort will receive genetic testing over time, which will include bio-
markers of disease response (including but not limited to dense genomic investiga-
tion). A goal of the resource is that individuals will have access to their own data, 
and if they have genetic testing on relevant biomarkers, participants in the initiative 
could become advocates for use of their genomic data in prescribing. Similarly, the 
precision cancer therapy initiative will seek new knowledge for genomically-driven 
(as opposed to histologically-driven) cancer therapy. Both of these initiatives fore-
shadow a future with potential for dramatic growth in the opportunities for 
genomically- tailored care. Patients may catalyze the growth in use of these new 
classes of information, such as genetics, to guide their care. In order to achieve these 
goals, we will need adoption of  EHRs   capable of genomic  decision support  , agreed- 
upon standards for genomic representation, processes to maintain and update 
 knowledge bases   and  CDSS  , and report interpretations that are easily understood by 
both providers and patients.       
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    Chapter 13   
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at Brigham and Women’s Hospital/Partners 
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and     David     W.     Bates     

    Abstract     In this chapter, we review clinical decision support systems (CDSS) at 
Brigham and Women’s Hospital (BWH), including design, implementation, and 
evaluation. BWH has over 40 years active experience in the development of clinical 
information systems. Here we focus specifi cally on BWH’s work in assessing the 
impact of CDSS in critical areas of patient safety, quality, and cost outcomes, and 
offer generalizable lessons for current and future applications of CDSS. CDSS 
examined include both inpatient and outpatient systems, medication related, labora-
tory and radiology decision support as well as documentation-related CDSS, clini-
cal reminders, and patient-centric applications. Also included are descriptions of 
studies on the impact on the user and cost-effectiveness of CDSS.  
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13.1       Background 

   Located in  Boston     , MA and with origins dating to 1832, BWH is a non-profi t 793- 
bed facility, providing clinical practice ranging from primary care to tertiary/quater-
nary care. In 2014, BWH had approximately 46,000 inpatient admissions, over 4.2 
million patient visits and 59,000 emergency department visits. In 1994, BWH joined 
with the Massachusetts General Hospital (MGH) to found  Partners HealthCare 
System  , which in 20 years has grown to include nine hospitals and fi ve community 
health centers as well as a managed care organization and physician network [ 1 ]. 

 A major teaching hospital for Harvard Medical School, BWH has done leading 
research in clinical medicine, population health, and health services research and 
this has directly shaped its approach in implementing and evaluating health infor-
mation technology (HIT), particularly with clinical information systems for com-
puterized provider order entry (CPOE) and Clinical Decision Support (CDS). 

 The key systems developed and deployed are the  Brigham Integrated Computing 
System  ( BICS ) and the  Longitudinal Medical Record  ( LMR ), both of which have 
been in use at BWH for close to 20 years. In this chapter, we review  clinical decision 
support systems (CDSS)   at BWH, including design,  implementation  , and 
 evaluation  . 

13.1.1     Brigham Integrated Computing System (BICS) 

 In 1984, BWH initiated development of its clinical information system, the Brigham 
Integrated Computing System (BICS). Richard Nesson, MD, CEO of BWH at the 
time, had previously been instrumental in one of the fi rst  implementations   of an 
automated medical record system (COSTAR) to support patient care, quality assur-
ance and billing at Harvard Community Health Plan [ 2 ]. With this formative infl u-
ence, BWH leadership moved to build upon technology developed at neighboring 
Boston hospitals to further improve quality of care and patient  safety  . 

 The predecessor to BICS began in 1976 as a direct port of the clinical informa-
tion system created by Howard Bleich, MD and Warner Slack, MD, at the then Beth 
Israel Hospital in Boston [ 3 ]. Based upon a MUMPS database (a development of the 
Laboratory of Computer Science at MGH) and utilizing client-server architecture, 
BICS initially provided review access to clinical reports including lab values, imag-
ing and pathology reports. However, the central vision of BICS was well- established 
from its inception: transition information systems from being a passive repository 
of clinical data to playing an active role contributing to improved quality of care and 
reduction of both adverse events and cost [ 1 ]. 

 To fulfi ll this objective, BICS was expanded to include sophisticated order entry, 
under the leadership of John Glaser, PhD, BWH’s chief information offi cer and 
Jonathan Teich, MD, PhD, the system’s lead architect. The BICS design philosophy 
emphasized: (1)  broad content  using coded/structured information (building the 
root data for alerts and recommendations); (2)  workfl ow support , where screens 
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display relevant contextual data useful to a particular clinical scenario; (3)   clinical 
decision support   , providing appropriate interventions to modify current processes 
of care; (4)  effi cient communication , to bring to disparate care team members urgent 
data refl ected in real-time display; (5)  education , so clinicians have context for CDS 
recommended interventions; and (6)  added value , where advanced services provide 
users with greater effi ciency and satisfaction [ 1 ]. 

 Later expansion of features included: alerts for panic-value labs (1991); auto-
matic email notifi cations of a patient’s emergency department visits to a primary 
care provider (1992); and a clinical reference system (“Handbook”) (1992). To 
improve transitions of care, BICS incorporated both cross-coverage lists (continu-
ously tracking relationship between provider coverage and patients) and automati-
cally generating sign-out communications (1993) [ 1 ]. 

 In 1993–1994, two signifi cant developments set the foundation for the long-term 
success of BICS: the introduction of CPOE within BICS, providing a substrate to 
infl uence treatment plans at the time of creation through  decision support  ; and 
deployment of a fl exible, confi gurable rule-based Event Engine, which provided a 
platform for monitoring data in real time and notifying physicians [ 1 ]. 

 CPOE used a text-mode interface with structured windows. Screens were 
designed specifi cally for each type of order, and were often enhanced with relevant 
clinical information. For example, a digoxin order screen presented the physician 
with the latest renal function values, serum potassium value and digoxin level; 
blood product orders displayed transfusion restrictions and results of last cross- 
match. In 1995, order sets, starting with chemotherapy, were deployed [ 1 ]. 

 The Event Engine system was created for the purpose of detecting important 
events, testing them for importance to the patient, and rapidly conveying enough 
information to the caregiver that swift action could be taken in response. This was 
made possible by the combination of a logic-triggering system which detected new 
clinical data which might trigger a rule, a dispatcher which directed the data to the 
proper logic, an inference engine which evaluates  logic   states defi ned using a col-
lection of standard logic primitives, a notifi cation system to quickly contact clini-
cians (by text page or alert), and an action-item processor which made taking action 
on alerts straightforward [ 1 ]. 

 With these functions in place, BICS had the essential elements as a platform for 
successful  CDSS  , allowing for the steady expansion of functionality and remaining 
in continuous use for over 20 years, with transitions from Visual Basic front end to 
a full Windows environment. BICS received Offi ce of the National Coordinator- 
Authorized Certifi cation Body (ONC-ACB) certifi cation in 2014. 

 Of note, BICS was designed for use in both the inpatient and ambulatory set-
tings, with BICS ambulatory record module (“MiniAmb”) implemented in 1990. 
MiniAmb contained problem lists, medications, allergies, vital signs and progress 
notes (free text entry or transcription from dictation), along with a health mainte-
nance section which organized key data, including cholesterol values and Pap smear 
results to support management [ 1 ]. 

 With the creation of  Partners HealthCare  , the founding hospitals of BWH and 
MGH confronted the challenge of unifying different clinical information systems. 
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Each hospital would continue with its own inpatient information systems, but would 
adopt a common ambulatory medical record, built upon the success of MiniAmb 
and called the Longitudinal Medical Record (LMR).  

13.1.2     Longitudinal Medical Record (LMR) 

 The Longitudinal Medical Record (LMR) was implemented in 1997 as a full- 
featured  electronic health record (EHR)   in all  Partners HealthCare   ambulatory set-
tings. The LMR includes notes for primary care and subspecialties, coded and 
uncoded problem lists, medication lists, coded allergies and results from laboratory 
tests and radiographic studies (drawn from a Partners-wide clinical data repository). 
The LMR provides facilities for e-prescribing and radiology ordering; however 
direct laboratory order entry is not supported. As described by Linder et al. the 
LMR implements a wide range of CDS, including “reminders for preventive ser-
vices and chronic care management; medication monitoring; medication dosing 
alerts and medication alerts for drug-drug, drug-lab, and drug-condition and drug- 
allergy interactions” [ 4 ]. The LMR also has a registry and quality management 
function, which provides panel management tools which draw from a data ware-
house [ 4 ]. 

 The LMR, now web-based, was fi rst certifi ed by the Certifi cation Commission 
for Healthcare Information Technology (CCHIT) as a complete ambulatory  EHR   in 
2007, with subsequent ONC-ACB certifi cations in 2014 (see Fig.  13.1  for a screen-
shot from the LMR).

   Since the initial  implementation   of BICS and the LMR, BWH has been moti-
vated by the belief that  CDSS   via  EHRs   are the means to improved performance in 
a wide range of patient care domains:  clinical outcomes  , utilization and perfor-
mance measures, and in particular, patient  safety  . What follows next are the salient 
observations from a series of studies evaluating CDSS impact in these areas, focused 
in the inpatient and ambulatory settings.   

13.2     Clinical Decision Support: Inpatient Applications 
and Assessment 

13.2.1     Medication-Related Decision Support 

    General Applications 

 BICS supports medication ordering and was designed to reduce  errors      and encour-
age appropriate and cost-effective ordering. Interventions at appropriate points dur-
ing the ordering process display warnings, reminders, and/or suggested alternatives 
related to the ordered medication [ 5 ]. 
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 When ordering a medication for a patient, the system suggests a patient-specifi c 
dose and frequency of medication to the prescriber. In addition, common CDS fea-
tures such as drug-allergy, drug-drug interactions, duplicate medications, and pos-
sible alternative medications for the given clinical situation are also presented. All 
of these CDS tools have been developed using a process of iterative refi nement [ 5 ]. 

 After an initial order, consequent order recommendations are triggered which 
alert the physician to possible additional orders that should follow. For example, 
after a patient is placed on bed rest, BICS checks for preexisting heparin orders and, 
if none are found, BICS will suggest that an order be placed for subcutaneous hepa-
rin to prevent deep vein thrombosis [ 5 ]. 

  Evaluation   of medication-related interventions showed positive impact on medi-
cation selection (improvement in the use of lower-cost histamine 2 -blocking agents); 
dosage guidance (reduction in dosages exceeding highest recommended dose for all 
medications); frequency recommendations (increase in ondansetron TID vs. QID 
dosing); and consequent orders (a doubling of heparin orders placed in conjunction 
with bed rest orders) [ 5 ].  

  Fig. 13.1    Screenshot of LMR       
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    Reduction of Adverse Drug Events 

 In 1995, BWH  produced   seminal studies in the systems analysis and epidemiology 
of actual and potential adverse drug events (ADEs) in hospitalized patients [ 6 , 7 ]. 
These studies determined that 42 % of serious or life-threatening ADEs were found 
to be preventable, with 52 % of these occurring at the ordering stage. A consequence 
of these results was a sharp focus on using and evaluating BICS as a means of 
reducing the frequency of ADEs. 

 An initial study established that BICS, with simple medication-ordering  decision 
support   (drug names from standard lists, default drug dosages, and limited checks 
for drug-allergy, drug-drug and drug-laboratory interactions), reduced serious 
ADEs by 55 % [ 8 ]. A follow-up study, which was performed after iterative improve-
ment of drug-allergy and drug-drug interaction checking, showed an 88 % reduction 
of serious ADEs and an 81 % reduction in the overall medication  error   rate [ 9 ].  

    Anticipatory Medication Decision Support 

  In 1996, BWH  implemented   a CDS module (Nephros) to provide dosing recom-
mendations for a subset of drugs which are renally cleared or nephrotoxic. In 
Nephros, when patients with decreased renal function (as estimated using the 
Cockcroft-Gault equation), are prescribed these potentially dangerous medications, 
a recommendation of a modifi ed dose list (dose and frequency) is triggered and/or a 
recommendation of an alternative medication. When studied in a controlled trial, 
this functionality was found to increase the rate of appropriate prescriptions (59 % 
vs. 35 %) in patients with impaired renal function, and to decrease a patient’s length 
of stay (4.3 vs. 4.5 days) [ 10 ]. 

 Subsequently, a companion CDS module (Gerios) was developed to deliver 
evidence- based prescribing recommendations for psychotropic medications in hos-
pitalized geriatric patients (age >65), with the goal of better drug selection and 
reduction in initial dosing where appropriate. For these medications, a modifi ed 
dose list (dose and frequency) is presented and/or an alternative medication is rec-
ommended. In addition, in elderly patients with decreased renal function, who are 
prescribed a medication listed in both  knowledge bases  , the Nephros and Gerios 
CDSS work together and will only present one recommendation to the user. 

 In a controlled trial, orders written for patients in the cohort receiving the recom-
mendations were (1) more likely to be at the recommended daily dose (29 % vs. 
19 %), (2) less likely to have a tenfold misdose (2.8 % vs. 5.0 %), and (3) less likely 
to be for non-recommended drugs (7.6 % vs. 10.8 % of total orders). Additionally, 
patients in the cohort who got the CDS intervention had fewer falls in the hospital 
(0.28 vs. 0.64 falls per 100 patient-days). The recommendations were not found to 
have any effect on hospital length of stay or days of altered mental status [ 11 ]. Since 
the study, the knowledge  base   continues to be updated using the Beers criteria.  
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    Medication-Specifi c Decision Support 

 BWH has evaluated the  implementation   of medication-specifi c recommendations as 
interventions. In a 1998 randomized control trial, vancomycin use guidelines based 
upon the Centers for Disease Control and Prevention’s (CDC) recommendations 
were incorporated into BICS, to examine the effect on Vancomycin overuse. 
Physicians receiving the intervention placed 32 % fewer orders than physicians in the 
control group. Vancomycin orders were initiated or renewed for 28 % fewer patients 
in the intervention group. Compared with the control group, patients of the interven-
tion physicians received courses of Vancomycin that were shorter by 36 % [ 12 ]. 

 In another study focusing on the high utilization of the high-cost medication 
human growth hormone in the surgical intensive care unit, a targeted guideline requir-
ing the indication and the tracking of the ordering provider was implemented. This 
seemingly small intervention reduced human growth hormone use by one-third [ 13 ].   

13.2.2     Laboratory-Related Decision Support 

 BWH has evaluated the impact of CDS interventions to improve utilization and 
effi cacy of clinical laboratory testing, with the studies showing a range of success.  

    Display of Charges at Test Ordering 

 In a randomized clinical trial, charges for 19 commonly ordered clinical laboratory 
tests and cumulative totals were displayed at the time the tests were ordered. This 
simple intervention had little or no impact on the number of tests ordered. Of note, 
although the results of the intervention were not statistically signifi cant, they did 
show a trend toward fewer tests, in particular for more expensive tests. Given pro-
jected cost savings for this trend, the display of charges was continued after the 
conclusion of the trial [ 14 ].  

    Reduction in Redundant Testing 

 A 1998 utilization study at BWH identifi ed that 9 % of ten common clinical labora-
tory tests were ordered in a redundant manner and potentially could be eliminated 
by  CDSS  , resulting in the projected reduction of $930,000 in charges [ 15 ]. 

 A subsequent follow-up intervention to reduce redundant testing was evaluated 
in a 1999 randomized control trial. Tests targeted included a serum chemistry panel, 
therapeutic medication level monitoring for six medications, and three microbiol-
ogy cultures. When a physician placed an order for a test that had previously been 
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ordered within a given, test-specifi c interval, an alert was shown stating that the test 
had been performed recently – including the result, if available – or was pending. 
The default response after a reminder was delivered was cancellation of the redun-
dant test order, but physicians could continue with the order if they so chose. With 
this intervention, the proportion of redundant tests that were performed was lowered 
from 51 % to 27 % [ 16 ]. 

 However, the overall effect on costs was smaller than expected for three reasons: 
(1) over half (56 %) of the redundant tests did not have an associated computer order 
(the laboratory system at BWH was not directly integrated with the order entry 
system, so tests could be performed without orders), (2) not all tests were screened 
for redundancy; approximately half of computer-ordered tests were ordered using 
order sets, which were omitted from the algorithm, and (3) almost one third (31 %) 
of reminders were overridden, while the original estimate assumed 100 % of 
detected redundant orders would be canceled [ 16 ]. 

 In a subsequent 2003 randomized clinical trial, BWH targeted potentially redun-
dant therapeutic monitoring of anti-epileptic medication levels, primarily focused 
on reducing orders for test of serum drug levels which were placed before the medi-
cation level was expected to have reached a steady state. Additionally, the CDS 
intervention provided education aimed at increasing the appropriateness of non- 
redundant monitoring of drug levels. Following  implementation   of the CDSS, 13 % 
of all anti-epileptic drug tests ordered were cancelled and inappropriate repeat test-
ing before steady state decreased from 54 % to 14.6 %. The total volume of anti- 
epileptic drug level testing decreased by 19.5 % [ 17 ].  

    Tests Pending at Discharge 

 Discharge from the hospital is a particularly dangerous time for communication 
failures and ambiguity about  responsibility  . In 2005, BWH research identifi ed that 
41 % of patients were discharged with tests pending at discharge (TPADs), but inpa-
tient/primary care providers were aware of only 38 % of these pending tests [ 18 ]. To 
better manage TPADs, BWH developed an automated email system to notify the 
both the responsible inpatient-attending physician at discharge and the patient’s pri-
mary care provider (PCP) of the fi nal results of TPADs [ 19 ,  20 ]. 

 The TPAD notifi cation system was evaluated using a cluster-randomized con-
trolled trial, investigating the impact on physician awareness of TPAD results and 
surveying physicians to assess overall satisfaction with the system. Attending phy-
sicians in the intervention group were signifi cantly more aware of TPAD results 
than those in the control group: 76 % vs. 38 %. Intervention PCPs showed a slightly 
less dramatic though still signifi cant increase in awareness of 57 % versus 33 % of 
control PCPs. Intervention attending physicians were more aware of actionable 
TPAD results, showing a level of awareness of these results of 59 % compared to 
29 % in control attending physicians [ 21 ].   
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13.2.3     Radiology-Related Decision Support 

    Appropriateness of Ordered Studies 

 Effectiveness of  CDSS   interventions to improve utilization of radiology tests at 
BWH has progressed iteratively: as the CDSS has added more feedback information 
(e.g. pretest probabilities) to the providers, there has been greater impact on the 
appropriateness of test ordering. 

 In the initial  implementation   of BICS, the  CDSS   for radiology functioned in a 
critiquing mode. Providers were required to input coded patient condition informa-
tion and test indications for radiology orders, which were used to provide feedback 
to providers on the appropriateness of the test ordered and suggested alternatives. 
An early study in 1997 showed limited acceptance of suggestions to cancel inap-
propriate abdominal radiographs (3–4 %). The addition of recommendations for 
alternative testing only resulted in 45 % compliance [ 22 ]. 

 However, more recent  evaluation   of radiology CDSS interventions for CT orders 
has shown signifi cant impact. By informing providers about the pretest  probability   
of pulmonary embolism (PE) (based on clinical suspicion level and D-dimer status), 
orders for pulmonary angiograms by CT decreased 20 % for emergency department 
(ED) patients and by 12.3 % for hospitalized patients [ 23 ,  24 ]. Including guidelines 
for appropriate use of head CT in ED patients with minor traumatic brain injury led 
to a 56 % increase in guideline adherence [ 25 ].  

    Notifi cation About Critical Radiology Results 

 In 2007, building on national patient  safety   initiatives to promote optimal commu-
nication of critical test results, BWH undertook a comprehensive effort to address 
timely delivery and assured receipt of critical radiology fi ndings in the inpatient 
setting [ 26 ]. The process identifi ed a need to develop an automated closed-loop 
notifi cation system for critical results, leading to the creation of the Alert Notifi cation 
of Critical Results (ANCR) tool, a web-based, open-source system which was inte-
grated within the BICS environment in 2010. 

 ANCR allowed radiologists to communicate critical results through synchronous 
(e.g. paging) and asynchronous (e.g. secure HIPAA-compliant email) mechanisms 
with secure, auditable, web-enabled acknowledgement by ordering providers. A 
4-year assessment of the ANCR system’s impact on adherence to BWH critical 
results policy revealed adherence increased from 91.3 to 95 %, with a ninefold 
increase in critical results communicated via the system. Sixty percent of less urgent 
but still critical results were delivered and acknowledged via the ANCR system’s 
non-interruptive communication (email) [ 27 ].   

13 Clinical Decision Support: The Experience at Brigham and Women’s…



236

13.2.4     Transition of Care Support 

 Early in its  implementation   (1992–1993), BICS functionality was extended to sup-
port physician cross-coverage hand-offs of patient responsibilities, via Coverage 
List and Sign-out applications. CDS applications that detect signifi cant clinical 
events can use the coverage list to route notifi cations to the responsible team mem-
ber. The Sign-out application provides residents with abstracted patient lists that 
include medications, notable recent laboratory tests, and code status, which can be 
printed out. A case-controlled study demonstrated that Sign-out served to eliminate 
the previously identifi ed sixfold increase in risk of adverse events associated with 
cross-coverage times [ 28 ,  29 ].  

13.2.5     Assessment of CPOE Impact on Users 

 CPOE  implementation   at BWH was evaluated for impact on providers’ satisfaction 
and time. A 1996 survey study of physicians and nurses (medical and surgical) 
showed good overall satisfaction with CPOE, including embedded CDS [ 30 ]. 
Formal assessment of CPOE’s impact on productivity involved a prospective time- 
motion study. The study found that interns using CPOE spent 9.0 % of their time 
entering orders, compared to 2.1 % of their time before adoption. However, other 
features of CPOE yielded a 2 % time savings, making the net difference only 5 %. 
The interns’ use of CPOE, however, saved time for other disciplines, including 
pharmacy and nursing [ 31 ].   

13.3     Clinical Decision Support: Ambulatory Applications 
and Assessment 

  Many of the successful  CDS   interventions developed in the inpatient setting are also 
used in the outpatient systems at BWH. 

13.3.1     Ambulatory Medication Decision Support 

 Medication-related CDSS in the LMR mirrors and extends the functionality of 
BICS in the inpatient setting. With iterative development, LMR offers alerts and 
recommendations for drug-allergy confl icts; drug-lab checks; drug-disease checks; 
drug-pregnancy checks; drug-drug interaction (DDI); drug and therapeutic 
 duplication checks; and drug utilization costs. LMR also incorporates the Nephros 
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(renal- based dosing) and Gerios (age-based dosing) systems previously described in 
this chapter. 

 BWH has evaluated the impact and utility of these types of alerts in the outpa-
tient setting. To reduce  alert fatigue  , BWH developed highly targeted  knowledge 
bases   which contain only the most clinically relevant drug contraindications in the 
ambulatory setting. Alerts are divided into three tiers: “fatal or life-threatening 
interactions” (Level 1), “undesirable interactions with the potential for serious 
injury” (Level 2) and possible undesirable interactions where drug should be used 
with caution (Level 3) [ 32 ]. 

 These tiers affect the presentation of DDI alerts in the system. Level 1 alerts are 
hard stops – clinicians cannot proceed without eliminating one of the interacting 
drugs. High severity alerts (Level 2) are interruptive, requiring clinicians to provide 
a reason before proceeding. The most common alerts, Level 3, are informational – a 
warning is shown on the ordering screen, but no reason for override is required, and 
no additional clicks are necessary [ 32 ]. 

 A 6-month study of this tiered DDI system demonstrated that only 29 % were in 
the higher categories (Levels 1 and 2), with a 67 % acceptance rate (order either 
cancelled or modifi ed) – a much higher acceptance rate than reported in other sys-
tems, suggesting that this high acceptance was due to limiting alert burden via selec-
tive  knowledge base   and minimizing workfl ow interruptions [ 33 ]. 

 This particular BWH experience (developing selective knowledge bases for 
high-severity/interruptive DDI and non-interruptive DDI classifi cations) has subse-
quently served as the basis for consensus-based recommendations for standardized 
lists of DDI for incorporation in  EHRs   [ 34 ,  35 ]. 

 Subsequent research to improve acceptance of alerts and reduce  alert fatigue   has 
better characterized the nature of outpatient alert overrides. A study of 157,483 
CDS alerts in a 3-year period found providers overrode 52.6 % of alerts. Formulary 
substitutions had an 85.0 % override rate, followed by age-based recommendations 
with an override rate of 79.0 %, renal dosage recommendations showing a 78.0 % 
override rate, and allergies at 77.4 % of alerts overridden. Half of the total overrides 
were evaluated as clinically appropriate – drug-allergy alerts, drug duplication and 
therapeutic class duplication warnings and formulary-related alerts were particu-
larly likely to be subject to appropriate overrides  [ 36 ].  

13.3.2     Laboratory-Related Decision Support 

 Although LMR does not support computerized laboratory ordering for ambulatory 
patients, a dedicated module within LMR, Results Manager (RM), provides CDS 
capabilities for laboratory result management. RM facilitates test result follow-up 
by collecting, organizing, and prioritizing these results. Functionality in RM 
includes sorting results by degree of abnormality, multi-lingual templates for 
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 sending letters to patients about lab results and guideline-based CDS about appro-
priate follow-up and management of abnormal results, along with reminders for 
repeat testing where indicated [ 37 ].  

13.3.3     Radiology-Related Decision Support 

 Ambulatory radiology CPOE was fi rst implemented at BWH in primary care offi ces 
in 2000, with the adoption of a web-enabled commercial product (Precipio) from 
Medicalis Corporation (San Francisco, CA) – the company was a joint venture 
between BWH and Harvard Medical School. The commercial product is fully inte-
grated as a module within the LMR [ 38 ]. 

 Orders are created from predetermined structured menus and controlled vocabu-
laries to specify a requested imaging procedure and clinical indications. Clinicians 
are provided recommendations on diagnostic strategy based on the patient’s clinical 
context and presentation data. For example, an order for an abdominal radiograph in 
a patient with suspected appendicitis triggers a “low-utility” message with a recom-
mendation for a higher yield examination. Clinicians may choose to cancel the 
request or proceed with the order [ 38 ]. 

 Targeted CDS interventions included alerting ordering providers to potentially 
redundant CT studies, resulting in 6 % cancellation of orders [ 39 ], and recommen-
dations against ordering MRI imaging for patients with low back pain, resulting in 
30 % reduction in orders [ 40 ].  

13.3.4     Clinical Reminders 

 The LMR has a  reminder   system to alert clinicians to guideline-based screening, 
and preventive interventions. While these are well received by physicians,  evalua-
tion   of the effi cacy of reminders in improving care has demonstrated mixed results. 

 A 2005 randomized trial of LMR reminders for diabetic care (fi ve total) and 
coronary artery disease care (four total) showed signifi cant improvements in overall 
compliance with recommended care when physicians were shown reminders; how-
ever, the effect of individual reminders was variable [ 41 ]. 

 A 2008 study provided suggestions for evidence-based laboratory monitoring for 
chronic medications, including testing for liver and kidney function and monitoring 
of drug levels. The study found no effect of the intervention, perhaps because the 
alerts were not actionable [ 42 ]. 

 In 2011, a study  investigated   a set of actionable reminders for screening and 
monitoring, which also showed no effect. The limited effect of these reminders was 
thought to be strongly related to adoption of the reminders – notably, 79 % of 
responding physicians were either unaware of the functionality or almost never used 
it [ 43 ].  
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13.3.5     Documentation-Related Decision Support 

 Researchers at BWH led the development of the Smart Form, a clinical workfl ow 
tool integrating condition specifi c templates and knowledge-based orders to facili-
tate simultaneous clinical documentation, structured data capture, and actionable 
 decision support   [ 44 ]. Pilot studies showed modest improvement in the manage-
ment and treatment of acute respiratory infection [ 45 ] and diabetes/coronary artery 
disease [ 46 ]; however, in both studies, overall physician use of the forms was low, 
and was likely impacted by the limited integration into LMR that required separate 
manual action by the users to initiate the form.  

13.3.6     Problem-List Decision Support 

 Primary care providers at BWH do the majority of problem list maintenance (despite 
a policy of shared  responsibility   with specialists) [ 47 ]. To support them in this work, 
BWH developed a series of inference rules which identify potentially undocu-
mented potential patient problems for 17 target conditions by evaluating a range of 
structured data, including laboratory results, medications, ICD-9  diagnosis   codes 
and vital signs [ 48 ]. A randomized trial of an intervention implementing these infer-
ence rules as alerts suggesting problems resulted in a threefold increase in problem 
documentation for study conditions – in fact, in the intervention arm, 70.4 % of all 
study problems were added to the list via alerts [ 49 ].  

13.3.7     Assessment of Ambulatory EHR Impact on Users 

 The incremental  implementation      of the LMR throughout the  Partners HealthCare   
ambulatory clinics provided opportunity to assess impact on productivity. A formal 
time-motion study found that using the LMR did not require additional physician 
time to complete a primary care session compared to a clinic’s existing paper-based 
system, nor were signifi cant increases in administrative duties for physicians 
observed [ 50 ].  

13.3.8     Patient-Centric Applications 

  In 2002,  LMR   incorporated a personal health record (PHR) called Patient Gateway 
(PG), which allowed patients web-based viewing of the contents of their medical 
record (medications, allergies, lab values) and on-line communication with their 
providers [ 51 ]. 
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 With the primary goal of improving patient experience and engagement, the PG 
was also intended to support quality of care improvements. A prospective, random-
ized trial of a PHR intervention including health screening questions, medication 
history documentation and diabetes management was carried out at BWH [ 52 ]. For 
the intervention arm, patients were given the opportunity to view/interact with com-
ponents of their  EHR   and create “e-Journals” of information to be updated and/or 
addressed with their primary care doctors. 

 The study demonstrated the intervention group patients had increased rates of 
diabetes-related medication adjustment [ 53 ]. Providing direct-to-patient health 
maintenance reminders increased the rates of some types of preventive care (mam-
mography and infl uenza vaccinations) [ 54 ]. Additionally, the intervention reduced 
potentially harmful medication discrepancies  [ 55 ].   

13.4     Clinical Decision Support: Cost-Effectiveness 

    Investigators      at BWH have undertaken  evaluation   of the cost-effectiveness of imple-
menting its EHR with CPOE/CDS, in both the inpatient and ambulatory settings. 
Between 1992 and 2003, BWH’s total cost for developing, implementing and main-
taining its inpatient  CPOE system   were $11.8 million, compared to savings of $28.5 
million (largely due to reduction in harm from the renal dosing system, as well as 
increased effi ciency for nurses and other drug-related CDS) [ 56 ]. 

 Cost-effectiveness  evaluation   of the LMR also found signifi cant fi nancial bene-
fi t, estimated at $86,400 per provider over a 5 year period, driven largely by savings 
in drug costs, reduction in unnecessary imaging and better billing   [ 57 ].  

13.5     Overarching Lessons 

 In 2003, Bates et al. published “The Ten Commandments of  Clinical Decision 
Support  ” and it remains a salient summary of the lessons learned during BWH 
experience with the  implementation   of  CDSS   [ 13 ]. The ‘Ten Commandments’ as 
identifi ed in the paper are:

    1.    Speed Is Everything   
   2.    Anticipate Needs and Deliver in Real Time   
   3.    Fit into the User’s Workfl ow   
   4.    Little Things Can Make a Big Difference   
   5.    Recognize that Physicians Will Strongly Resist Stopping   
   6.    Changing Direction Is Easier than Stopping   
   7.    Simple Interventions Work Best   
   8.    Ask for Additional Information Only When You Really Need It   
   9.    Monitor Impact, Get Feedback, and Respond   
   10.    Manage and Maintain Your  Knowledge-based Systems   [ 13 ].    
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13.6       Future Directions 

 In 2013, BWH charted a new direction for CDSS and the  EHR   when  Partners 
HealthCare   made the transformative decision to move away from its long-standing 
model of self-developing clinical information systems in favor of a commercial 
EHR, selecting the Epic system. A key goal of this program, dubbed Partners eCare, 
is better integration across the large  Partners HealthCare   delivery network. 

 In May 2015, BWH was the fi rst Partners site to go live on the Partners eCare 
Epic clinical system with a big-bang  implementation   in both inpatient and outpa-
tient settings. Although not all the previously developed  decision support   could be 
deployed initially, the  CDSS   have all been inventoried, and with the strong commit-
ment of BWH leadership, the intent is to implement additional CDSS as resources 
allow. Thus, BWH’s years of experience in developing clinical information systems 
will now be applied to developing/implementing CDS features within this new envi-
ronment. BWH researchers see new opportunities to innovate and to perform the 
rigorous systematic  evaluation   of  CDS    safety   and effi cacy they have practiced for 
the last 40 years.       
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    Chapter 14   
 Clinical Decision Support at Intermountain 
Healthcare                     

     Peter     J.     Haug      ,     Reed     M.     Gardner      ,     R.     Scott     Evans      ,     Beatriz     H.     Rocha      , 
and     Roberto     A.     Rocha     

    Abstract     The medical community within the United States is adopting Electronic 
Health Records (EHRs) at an accelerating pace. These systems are designed to sup-
port medical documentation, communication, and billing practices and can bring 
the effi ciencies of digital systems to these healthcare functions. However, one of the 
key advantages of an EHR is the availability of cognitive support provided during 
the care process in the form of embedded Clinical Decision Support Systems 
(CDSS). Historically, the initial exploration of CDS technologies occurred in a 
group of hospital- based EHRs. These pioneering institutions engaged in early 
experimentation with a variety of CDS interventions. In this chapter, we describe 
experience with a group of CDS applications developed and evaluated within the 
HELP Hospital Information System created and used by Intermountain Healthcare 
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of Utah. These CDS applications have employed several different approaches in 
their interactions with clinical users and their capture and processing of clinical 
data.  

  Keywords     Intermountain Healthcare   •   HELP System   •   Antibiotic Assistant   • 
  Nosocomial infections   •   Ventilator management   •   Adverse drug events  

     As  Electronic Health Records (EHRs)   have  become      common components of the 
medical workplace, so have  decision support   technologies become increasingly 
available to medical practitioners. A variety of programs designed to assist with 
drug dosing, health maintenance,  diagnosis  , and other clinically relevant healthcare 
decisions have been developed to support medical decision making. A key driver of 
this change has been the growing dependency on computers to maintain part or all 
of the medical record. This has led to an expanded interest in and, in some cases, 
dependency on, automated medical decision making to support the delivery of eco-
nomical, quality care. 

 The  Electronic Health Record (EHR)  , itself, may be seen as a response to the 
increasing complexity and volume of both the clinical data available for the indi-
vidual patient and the medical knowledge necessary to assimilate and respond to 
this data. Historical evidence emphasizes the cost of failures to properly integrate 
the patient’s fi ndings with the fruits of medical science. In 1999, the Institute of 
Medicine estimated that between 44,000 and 98,000 Americans die each year 
because of medical  errors   [ 1 ]. Computer-based systems have been proposed as a 
remedy for a large subset of these errors [ 2 – 5 ]. 

  Clinical Decision Support systems (CDSS)   are often described as a cure for these 
and other failings in traditional care delivery. A substantial part of the literature that 
has sparked this awareness comes from research done in early generations of  medi-
cal information systems  . These systems resided on large mainframe computing 
hardware. Many of them were designed to serve hospitals and have for decades 
supported the patient care given there [ 6 ,  7 ]. The applications and algorithms that 
were piloted in these systems provide the background for the modern  decision sup-
port   technologies which we see developing and evolving in client/server environ-
ments, on personal computers, on systems based in Internet technologies, and on 
personal devices. 

 Signifi cant early contributions to the science of applying computer systems to 
clinical practice have been provided by the several sites where hospital-based, med-
ical  decision support   has been implemented and studied. Among the leaders in these 
efforts have been groups at the Regenstrief Institute in Indianapolis[ 8 ], Columbia- 
Presbyterian Medical Center in New York [ 9 ], Beth Israel Hospital in Boston [ 10 ], 
 Partners Healthcare   in Boston, and the  HELP System   developed initially at the LDS 
Hospital in Salt Lake City and subsequently deployed across the 22 hospitals 
included in Intermountain Healthcare of Utah [ 11 ]. Efforts to incorporate decision 
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support into order entry systems at the  Brigham and Women’s Hospital   in Boston 
[ 12 ] and  Vanderbilt   University Medical Center in Nashville [ 13 ] have helped to 
provide further insight into this important healthcare computing function. 

 In this chapter, we will review the experience gained in 30 years of  CDS   deliv-
ered through Intermountain Healthcare’s  HELP System  . We will present a set of 
examples of CDS that illustrate specifi c characteristics of  decision support systems   
whose value has been confi rmed through experience and comparative research. 

 At present, Intermountain Healthcare is in the midst of a conversion to a new 
healthcare computing platform. After decades of focus on systems developed exclu-
sively for the use of Intermountain patients and clinicians, this integrated healthcare 
delivery system will install a commercially available  EHR   provided by Cerner 
Corporation (  http://www.cerner.com/    ). This new system represents a fresh approach 
for Intermountain. Rather than depending exclusively on platforms engineered 
internally, we expect to take advantage of the extensive work on standardization and 
on compliance with national healthcare requirements supplied by Cerner and to use 
the computing infrastructure provided as a foundation for another generation of 
healthcare computing applications. The CDS experience presented in this chapter 
represents the foundation upon which we expect to apply the existing  decision sup-
port   capabilities found within our new healthcare computing environment and to 
develop a next generation of novel CDS applications consistent with the increased 
capabilities that modern information management technologies afford us. 

 Thus, in this chapter, we will focus on the experience of Intermountain Healthcare, 
a provider of integrated medical services in the Intermountain West, as an example 
of two phenomena readily recognized in a variety of healthcare organizations as 
they adopt or extend medical computing systems. These phenomena are the con-
tinuing value of  decision support   applications and the effort to project and expand 
the use of these technologies across the entire gamut of clinical care. Modern-day 
 EHR   developers are required to embrace both new and old  CDS   agendas and to 
apply them in both the inpatient and outpatient setting. Thus, the target for the next 
generation of clinical systems will be a comprehensive longitudinal patient record 
instrumented with the best available  decision support   technologies. 

 The history of the  HELP system   reaches back to 1972. As we illustrate lessons 
in  decision support   from this  EHR  , we will not restrict ourselves to the latest incar-
nation of CDS delivered by the system. Instead, we will describe a mixture of old 
and new. We will include a set of classic applications that evolved in the early HELP 
Hospital Information System (HIS) and the original research that proved their 
worth. In addition, we will discuss several current CDS examples that illustrate 
more recent uses of  decision support   technologies. As a part of these descriptions, 
we will discuss the data used and the mechanism through which suggested deci-
sions are communicated to the user. 

 The applications described below were developed by teams from Intermountain 
Healthcare, the Department of Medical Informatics at the University of Utah, and 
commercial partners. They represent accumulated experience whose relevance is 
attested to by the continuing success of CDS solutions to comparable clinical 
problems. 
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14.1      The  HELP System   

 The overall setting for the  CDSS   examples described here is the HELP Hospital 
Information System (HIS). This system is a culmination of more than 40 years of 
development and testing [ 11 ]. It currently operates on high availability hardware 
supplied by the Hewlett-Packard, NonStop Enterprise Division. Software compo-
nents of the HELP system are provided to the 22 hospitals operated by Intermountain 
Healthcare over a proprietary wide area network from a single server located at the 
Lake Park Datacenter in Salt Lake City. The largest individual deployment is at the 
Intermountain Medical Center (IMC), which opened in 2007. IMC is Intermountain 
Healthcare’s tertiary care facility, replacing the LDS Hospital in which much of the 
work described below was accomplished. At IMC the information system commu-
nicates with users and developers through more than 4000 terminals and approxi-
mately 450 printers. The system is interfaced with a variety of other computer 
systems, including a billing system, a laboratory system, a medical records system, 
a digital radiology system, and a collection of local area networks (LANs) used by 
a variety of departments forresearch and departmental management functions. 

 The HELP System itself consists of an integrated clinical database, a frame- 
based, medical  decision support system  , programs to support hospital and depart-
mental clinical and administrative functions, and the software tools needed to 
maintain and expand these components. The integrated clinical database contains a 
variety of patient data (Table  14.1 ) kept online during the patient’s stay to allow 
review by health-care professionals at terminals throughout each hospital. These 
terminals allow the entry of pertinent clinical data into the HELP system by person-
nel who are involved in patient care. In addition, automated systems capture clinical 
information directly from monitors and other instruments in the hospitals’ ICUs.

   Table 14.1    Clinical data captured by the HELP hospital information system (partial list)   

 Chemistry  Hematology 

 Medications  X-ray fi ndings 
 Allergies  Dietary information 
 Blood gases  Surgical procedures 
 ED nursing assessment  ICU monitoring 
 Intake/output  Pulmonary function testing 
 Demographic information  Microbiology 
 Cardiac catheterization data  Respiratory therapy notes 
 Biopsy results  Nursing data 
 Select physical examination  Pathology department data 
 Admit/discharge information  History and physical exam reports 
 Consult reports  Intervenous fl uid therapy 
  Ventilator management    Procedure reports 
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   Use of the HELP System as a medical expert system has been a major focus of 
research since the system’s inception. The result has been a set of embedded expert 
system development tools. The HELP System contains a decision support  subsystem 
based on a modular representation of medical decision  logic   in frames [ 14 ]. These 
modules are used to: (1) identify the data used in making the target medical deci-
sion; and (2) encode the logic that converts the raw data into the proposed decision. 
Decisions encoded in these modules resemble small computer programs written in 
a Pascal-like language. They are each designed to represent a single simple decision 
capable of activation in a number of ways. The language supports either simple or 
multiple outputs from a frame. This fl exibility can be used to create more complex 
modules capable of deriving several distinct decisions from the same data. 

 This form for computerized medical decisions represented an evolution from an 
earlier decision language whose focus was a more declarative representation 
designed to be developed using a simple authoring system. CDS examples from the 
1970s are largely based on this older approach. 

 These sets of tools led to the successful development of expert systems in blood 
gas interpretation [ 15 ], intensive care settings [ 16 ], and medication monitoring [ 17 ], 
to name a few. The HELP System hardware and software environment has provided 
the setting for the  implementation   and testing of the  decision support   examples 
described below. 

 The history of  decision support   in the HELP System extends more than 40 years 
into the past. This classic hospital information system has been used to demonstrate 
two types of CDSS. The fi rst type focuses on narrowly circumscribed medical con-
ditions. The  logic   may be simple or complex and the data requirements are typically 
modest. The  computerized laboratory alerting ,  ventilator disconnect notifi cation , 
 early prediction of deterioration ,  blood ordering ,  and ventilator management sys-
tems  described below are examples of this type. 

 The second type of  CDSS   discussed here is less common. This type of tool 
attempts to discriminate among a group of important  diagnostic  entities using the 
raw medical data. Diagnostic systems often attempt the challenging task of manag-
ing large degrees of uncertainty using pattern matching algorithms. Several of these 
approaches have been tested in the HELP environment. Below, we will describe 
experience with four applications engaged in diagnostic behaviors. These are sys-
tems designed to diagnose   adverse drug events   ,   nosocomial infections   ,  pneumonia 
in the emergency department ,  and a variety of infectious diseases with a focus on 
the most relevant antibiotic regime to prescribe . 

 We will also describe the behavior of two experimental applications that leverage 
diagnostic  logic   to drive other,  peri - diagnostic  behaviors. These are systems that 
use underlying diagnostic models to simulate knowledge-driven behaviors of clini-
cians. Two behaviors, the collection of relevant patient history and the critiquing of 
diagnostic x-ray interpretations, have been explored .  
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14.2     Categories of Decision Support Technologies 

 Independent of the environment in which they are used, two elements of medical 
 decision support   applications are critical to their success. These are: 

 (1) The mechanism by which the systems acquire the data used in their decision 
algorithms; and (2) the interface through which they interact with clinicians to 
report their results. These considerations have led us to focus here on different  cat-
egories  of  decision support   [ 18 ]. Although somewhat arbitrary, this categorization 
captures the idea that different models of computerized assistance may be needed 
for different types of clinical problems. 

 Four categories of CDSS have routinely been used to support medical decision 
makers who use the  HELP system  . These are:

    1.    Processes which respond to clinical data by issuing an  alert ;   
   2.    Programs activated in response to recorded decisions (typically new orders) to 

alter care. These applications work by  critiquing  the decision and proposing 
alternative suggestions as appropriate;   

   3.    Applications that respond to a request by the decision maker by  suggesting  a set 
of diagnostic or therapeutic maneuvers fi tted to the patient’s needs;   

   4.     Retrospective  quality assurance applications where clinical data are abstracted 
from multiple patient records and summary  evaluations   concerning the quality of 
care are derived and fed back to caregivers.    

  The fi rst three types focus on individual patient decisions and center on a real- 
time CDS interaction with the clinical user while the fourth type provides global 
feedback refl ecting healthcare decision-making for a clinical population. In this 
chapter, we will focus on the fi rst three types.  

14.3     Alerting Systems 

 Alerting processes are programs that operate by monitoring select clinical data as it 
is collected and stored in the patient’s electronic record. They are designed to test 
specifi c types of data against predefi ned criteria. If the data meet the criteria, these 
systems alert medical personnel. The timing and character of the messages vary 
with the alerting goals. 

14.3.1     Computerized Laboratory Alerting System 

 A typical example is a subsystem implemented within the  HELP System   that moni-
tored common laboratory results and detected and alerted for potentially life- 
threatening abnormalities in the data acquired. This type of application is notable 
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for the simplicity of its decision  logic   as well as for the magnitude of its potential 
impact. 

 The  HELP System   captures results from the clinical laboratory through an inter-
face to a dedicated laboratory information system (LIS). The results are collected 
and returned to the HELP System for storage in the clinical record as soon as they 
are collected and validated in the LIS. 

 Laboratory results are reviewed by personnel engaged in patient care both 
through terminals connected to the HELP System and through a variety of special 
and general-purpose printouts, such as rounds reports generated by the  HELP 
System  . The “times” when the data are reviewed have only a loose relationship to 
the “times” when these data become available. Instead, the principal determinants 
of the review times are typically the work schedules of the physicians and nurses 
involved with the patient. A physician, for instance, may round on inpatients twice 
a day and review patient data only during those times unless some aspect of the 
patient’s condition prompts a more aggressive approach. 

 Under these circumstances, abnormalities in laboratory results, especially those 
that are unexpected, may not receive the prompt attention they deserve. In particu-
lar, unexpected laboratory abnormalities may go unseen for hours until a nurse or 
physician reviews them during their routine activities. Or, as some authors have 
noted, they may be missed entirely [ 19 ,  20 ]. 

 As a response to this disparity, researchers at LDS Hospital have described an 
experiment with a Computerized Laboratory Alerting System (CLAS) designed to 
bring potentially life-threatening conditions to the attention of caregivers [ 21 – 24 ]. 
This system was constructed by reducing a set of 60 alerts developed during a previ-
ous pilot system [ 25 ] to the 10 most important (Table  14.2 ).

   Six medical experts from the disciplines of surgery, cardiology, internal medi-
cine, and critical care participated in the development of these alerts and the system 
used to deliver them. The alerts chosen were translated into computer  logic   and 
tested to determine that the logic functioned properly. Data from previously admit-
ted patients were used to refi ne and test the logic. 

   Table 14.2    Alerts for which computerized alerting  logic   was created   

 Alerting condition  Criteria 

 Hyponatremia (NAL)  Na+ <120 mEq/l 
 Falling Sodium (NAF)  Na+ fallen 15+ mEq/l in 24 h and Na+ <130 mEq/l 
 Hypernatremia (NAH)  Na+ >155 mEq/l 
 Hypokalemia (KL)  K+ <2.7 mEq/l 
 Falling Potassium (KLF)  K+ fallen 1+ mEq/l in 24 h and K+ <3.2 mEq/l 
 Hypokalemia, patient on 
digoxin (KLD) 

 K+ <3.3 mEq/l and patient on digoxin 

 Hyperkalemia (KH)  K+ >6.0 mEq/l 
 Metabolic Acidosis (CO2L)  CO2 <15 and BUN <50 or CO2 <18 and BUN <50 or CO2 

<18 (BUN unknown) or CO2 fallen 10+ in 24 h. and CO2 <25 
 Hypoglycemia (GL)  Glucose <45 mg% 
 Hyperglycemia (GH)  Glucose >500 mg% 
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 Once the  logic   was deemed acceptable, an experiment was designed to evaluate 
the effect of the system on several intermediate outcome measures. Two approaches 
were tested for delivering the alerts. The fi rst of these techniques was tested on a 
single nursing division to determine its acceptability. A fl ashing yellow light was 
installed in the division, and whenever an alert was generated for a patient in that 
division, the light was activated. It continued to fl ash until the alert was reviewed 
and acknowledged on a computer terminal. 

 Responses from clinicians rapidly convinced the researchers that this approach 
was too aggressive. In a number of cases, the fl ashing light was disabled within 
hours of initial  implementation  . A second approach was found less intrusive by the 
division staff. Whenever anyone accessed the program used to review a patient’s 
laboratory results, any unacknowledged alerts for that patient were immediately 
displayed along with the data that had triggered them. 

 The results of this type of intervention were tested in three ways. First, appropri-
ateness of treatment was evaluated. The alerting system was shown to result in a 
signifi cant increase in appropriate therapy for conditions involving abnormalities of 
Na + , K + , and glucose (68.1–83.8 %). Second, time spent in the life-threatening con-
dition with and without the alerting system was examined. Length of time spent in 
“life-threatening” conditions decreased signifi cantly (30.4–15.7 h). Finally, the hos-
pital length of stay was examined. A signifi cant improvement in this parameter was 
also noted for the patients with abnormalities of Na + , K + , or glucose (350.6–211.9 h). 

 Alerting as a  decision support   intervention has become common as hospital 
information systems have evolved [ 26 ]. In the inpatient environment where the 
severity of illness is steadily increasing, the possibility of better alerting has the 
potential to improve the quality of patient care. 

 Interestingly, the original  HELP system   for alerting on critical laboratory values 
has been re-implemented since these initial studies. The Intermountain Healthcare 
laboratory that processes the inpatient laboratory values also serves a variety of 
locations into which the HELP System does not reach, notably a large number of 
outpatient clinics. Based upon the demonstrated value of this type of intervention, 
Intermountain’s Laboratory Services has instituted the process of identifying labo-
ratory abnormalities as the samples are processed and having personnel telephone 
ordering physicians or other caregivers whenever critical laboratory values are 
detected. Thus, the limitations of a model that was restricted to select inpatient loca-
tions have been circumvented.  

14.3.2     Unit-Wide Notifi cation of Ventilator Disconnections 

 Many of the most seriously ill patients in hospitals today require ventilatory assis-
tance during some part of their admission. This assistance is delivered using 
mechanical ventilators that support a patient’s breathing during periods when they 
cannot breathe for themselves. While mechanical ventilators are designed to detect 
disconnections, the alarms are only audible beeps that are often diffi cult to hear 
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outside of the patient’s room. Thus, some ventilator disconnection alarms go unno-
ticed for periods of time that result in permanent harm or death. This is a systems 
problem that is outside of the control of the ventilator and may be due to the physi-
cal layout of the ICU, staffi ng limitations, environmental acoustics and noise, or the 
patient being in isolation. Moreover, information concerning ventilator disconnec-
tions has been limited and was not included in our electronic medical record (EMR). 
Without this information, appropriate process changes to prevent future disconnec-
tions or improve patient  safety   were diffi cult to identify. 

 In response, Intermountain researchers determined to develop a method to notify 
medical personnel of critical ventilator events that was accurate, reliable, instantly 
recognizable, and would not report low-level ventilator alarms [ 27 ]. The ventilators 
used at LDS Hospital were connected to an external microcomputer that captures 
current alarm and ventilator settings every 5 s (Fig.  14.1 ). The microcomputer then 
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  Fig. 14.1    Diagram of the enhanced ventilator event alerting system. ( DCC  = Device communica-
tions controller)       
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sends the ventilator information to the bedside computer. Each bedside computer 
then transmits this information to a server. When this server receives a disconnec-
tion alarm, it identifi es all other computers in the same unit and runs a program 
loaded on those computers. This program takes control of each computer and begins 
managing the display. The result is that the background of each computers’ screen 
alternates between red and black every three seconds and a message indicates that 
there is a ventilator disconnection and identifi es the room (Fig.  14.2 ). An audio mes-
sage containing the “submarine dive horn” is also sent to the non-bedside computers 
in the unit. The program then logs pertinent information concerning the alert. Once 
the alarm is corrected on the ventilator, all the computers are restored to the pre-alert 
status or application.

    The respiratory therapy-charting program on the  HELP System   is also a part of 
this system. When they next sign-on, therapists are prompted to enter specifi c ven-
tilator disconnection information to document the disconnect. That information is 
loaded into the enterprise data warehouse each night. 

 The new system was initially tested in the shock/trauma ICU for 6 months. The 
new audio/video alerts were easily distinguished from any other alarms and impos-
sible to ignore. The approval of medical staff was so high that the alerting tool was 
requested to be installed in three other ICUs (medical/surgical, coronary care, tho-
racic). During a 4-month pilot study, 152 ventilator disconnections were identifi ed 
in the four ICUs (2.5 per bed). Forty-two were for unintended disconnections, self- 
extubations or tube occlusions, all potential life threatening events. Other discon-
nections were due to ventilator asynchrony or occurred during patient procedures, 
which can result in patient discomfort and suggest a need for additional education 

  Fig. 14.2    Display found 
on every computer 
terminal in the same unit 
as the patient who 
generated the critical 
ventilator alarm. Screen 
color alternates between 
 red  and  black  every 3 s.       
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on ventilator adjustment. Average disconnection time from the ventilator was 19.8 
s. Ventilator disconnection information including the duration time is now stored in 
the patient’s EMR and log fi les. Monthly and ad hoc reports now permit respiratory 
care management to identify each event and perform root cause analyses. 

 While the prevention of all ventilator disconnections is not possible, this alerting 
system improves patient  safety   through early notifi cation of medical staff. We 
have reduced disconnection times to a level where patient harm does not occur. 
The system also facilitates root cause analyses and the development of new safety 
strategies.  

14.3.3     Early Prediction of Deterioration (ePOD) 

 The average age of the US population is increasing as is the complexity of their 
medical care. As a result, up to 5 % of patients experience physiologic deterioration 
(PD) during their hospital stay resulting in admission to the intensive care unit 
(ICU) or death [ 28 ,  29 ]. Studies reveal that many of these adverse events are pre-
ceded by indicators of PD [ 30 – 38 ]. In many institutions, Medical emergency teams 
(MET) have been developed to prevent patient crises leading to a cardiopulmonary 
arrest [ 39 ]. However, delayed MET calls are common and patients who are attended 
to within 30–60 min of PD have signifi cantly lower mortality rates [ 35 ,  40 ,  41 ]. 
Therefore, to be effective, MET must have an afferent limb (case detection and 
timely alerting) in addition to an efferent limb (medical response) [ 42 ]. 

 We created a MET Risk committee comprised of critical care nurses from the 
MET and its nursing and medical directors, intensive care physicians, an infec-
tious disease physician, and medical informaticists. A  decision support   tool was 
developed which monitored hospitalized patients every 5 min and used vital sign 
and neurologic data in our electronic medical record (EMR) to identify patients 
with early PD [ 43 ]. Once the positive predictive value (PPV) of our PD alert model 
was acceptable, we went live on a 33-bed medical and oncology fl oor (A) and a 
33-bed non-ICU surgical trauma fl oor (B). During the intervention year, pager 
alerts of early PD were sent automatically to charge nurses along with access to a 
graphical point-of-care web page to help facilitate patient  evaluation  . Nurses were 
requested to fi ll out a form describing the validity of the PD alerts and their 
response to the alerts. 

 Patients on unit A were signifi cantly older and had signifi cantly more comorbidi-
ties than unit B. During the intervention year, unit A patients had a signifi cant 
increase in length of stay and total hospital cost, a non-signifi cant increase in ICU 
transfers (163 (5.1 %) of 3,189 compared to 146 (4.3 %) of 3,423 (p = 0.1163)), and 
signifi cantly more MET calls (60 vs 29, p = 0.0004) while signifi cantly fewer 
patients died (84 (2.6 %) vs 125 (3.7 %), p = 0.022) compared to the pre-intervention 
year. No signifi cant differences in outcome were found on unit B and no differences 
between pre-intervention and intervention patient populations were found in either 
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unit. Nurses called a physician based on 51 % and 44 % of the PD alerts in units A 
and B and interventions were initiated based on 59 % and 52 % of the PD alerts. 

 The results of this 4 year effort to use the HELP EMR to develop, implement, 
and evaluate an automated case detection and alerting system for PD was designed 
to support nursing workfl ow and received nursing endorsement. Nurses on both 
study units reported an appreciated difference in their workfl ow based on the early 
identifi cation of patients with PD. 

 In this study computerized alerting provided a way to constantly monitor patients 
and alert nursing of early PD. This resulted in a signifi cant increase in appropriate 
MET calls and a signifi cant decrease in mortality in the nursing unit containing 
older patients with multiple comorbidities. Moreover, with the patient trending 
information contained in the graphical alerts, nurses reported that they had the 
information they needed to evaluate the patient status, felt more confi dent about 
their assessment, and were more at ease about requesting additional help.   

14.4     Critiquing Systems 

 In the alerting examples described above, the computer system responded to abnor-
malities in the data as they were captured by the  EHR   by prompting those caring for 
the patient to intervene. In contrast, critiquing processes begin functioning when an 
order for a medical intervention is entered into the information system. Such meth-
ods typically respond by evaluating the order and either pointing out disparities 
between the order and an internal defi nition of proper care or by proposing an alter-
native therapeutic approach. Below, we describe a computerized critiquing system 
that specifi cally targets orders for blood products. 

14.4.1     Blood Product Order Critiquing 

 Over the years, it has become apparent that the transfusion of blood products is an 
important, often life-saving, therapy and that these same blood products must be 
ordered and administered with care. Not only are there signifi cant reasons for anxi-
ety concerning diseases that can be transmitted during transfusions, but also the 
limited supply and shelf life of blood products make them a scarce resource to be 
used sparingly. The system described here is an older system since supplanted by 
newer ordering procedures, but it effectively illustrates the place of detailed guid-
ance in creating orders consistent with best practices. 

 In 1987, the Joint Commission [at that time, the Joint Commission for the 
Accreditation of Healthcare Organizations (JCAHO)] began to require healthcare 
institutions to develop criteria for the use of blood products and to carefully monitor 
compliance with these criteria. At the LDS Hospital, the response to these require-
ments was to develop a computer system designed specifi cally to manage the order-
ing of transfusions and to assist in ensuring compliance with criteria for proper use 
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of blood products [ 44 – 46 ]. A central premise of the system design was that all 
orders would be entered into the computer and that physicians or nurses would be 
responsible for the entry of all blood orders. 

 Embedded in the blood-ordering program was a critiquing tool designed to 
ascertain the reason for every transfusion and to compare the reason against strict 
criteria. The approach used provides information specifi c to the type of transfusion 
planned. For instance, when an order was made for packed red blood cells, the cri-
teria in Table  14.3  were used to critique the order.

   The process for entering an order into this system included several points at 
which information bearing on the propriety of giving blood products is displayed. 
As a fi rst step, the physician was shown the blood products ordered in the last 24 h. 
This was followed by a display of the applicable laboratory data. The user then 
chose the specifi c blood products required along with the number of units and the 
priority (stat, routine, etc.). At this point, the user was asked to document the reason 
for the order. A list of reasons, specifi c to the blood product chosen, was displayed, 
and the user chose the appropriate rationale for the intervention. The computer then 
applied the stored criteria and determined whether the order met the hospital’s 
guidelines. 

 If the guidelines were met, the order was logged and the blood bank and nursing 
division were informed electronically and via computer printout. If the criteria were 
not met, the user was presented with a message stating the applicable criteria and 
relevant patient data. The physician or nurse could optionally decide to place or 
cancel the order. If the order was made, he or she was required to enter the reasons 
for the decision to override the system. The criteria used were the result of a consen-
sus effort by the LDS Hospital medical staff. The criteria were developed using 
primarily published guidelines but with some adaptations for local conditions (alti-
tude of 4,500 ft). The criteria underwent several modifi cations based on experience 
as well as new defi nitions of standards for these therapies. 

 One way of measuring the effectiveness of the system’s various critiquing mes-
sages was to examine the frequency with which the process of ordering blood prod-
ucts was terminated as a result of the feedback. During one 6-month period, the 
ordering program was entered and then exited without an order 677 times. This was 
12.9 % of the total uses. We estimate that one-half of these exits represent decisions 
not to order blood products based on feedback from the program. 

 The program relied heavily on the integrated clinical database in the  HELP 
System  . It accessed data from: (1) the admitting department; (2) the clinical labora-
tory; (3) surgical scheduling; (4) the blood bank; and (5) the orders entered by 
nurses and physicians. 

   Table 14.3    Simplifi ed criteria for ordering red blood cells   

 Hemoglobin <12 g/dl or hematocrit <35 % if age ≥35 years Hemoglobin <10 g/dl or 
hematocrit <30 % if age <35 years Oxygen saturation (SaO2) <95 % 
 Active bleeding Blood loss >500 ml 
 Systolic blood pressure <100 mmHg or heart rate >100 bpm Adult respiratory distress 
syndrome (ARDS) 
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 The blood-ordering program described above demonstrates the character of pro-
cesses that support computerized critiquing. These programs respond to interven-
tions chosen by the physician by analyzing the order and, if appropriate, suggesting 
reasons to alter the therapeutic plan. 

 The process used by the blood-ordering program is different from that used in the 
alerting application in that it involves a dialogue with the user. As a result, the cri-
tique can provide a series of informational responses designed to assure that the user 
is fully aware of the status of the patient as well as of accepted guidelines governing 
blood product usage. 

 Historically, physician use of generalized computerized order entry programs 
has been limited. However, since the  Centers for Medicare and Medicaid Services 
(CMS)   have developed the Meaningful Use initiative to encourage  EHR   use, there 
has been increased interest in modern order entry programs. A part of the potential 
value of Computerized Physician Order Entry programs (CPOE)    is the ability of 
these programs to critique orders. Physicians often appreciate the ability of an auto-
mated ordering system to give feedback on proper dosing and accepted care proto-
cols as they make their interventional decisions. Opportunities for a constructive 
interaction between the computer and the clinician are clearly growing, and applica-
tions that critique medical decisions can contribute to this growth.   

14.5     Suggestion Systems 

 The third category of computer applications designed to support medical decision 
making is potentially the most interactive. This subgroup of CDS processes is 
designed to react to requests (either direct or implied) for assistance. These pro-
cesses respond by making concrete suggestions concerning which actions should be 
taken next. 

 Unlike alerts, action-oriented messages from these systems are expected. 
Clinicians would typically call up a computer screen, enter requested data, and wait 
for suggestions from these systems before instituting a new therapy. Unlike critiqu-
ing systems, the physician need not commit to an order before the program applies 
its stored medical  logic  . Instead, the program conducts an interactive session with 
the user during which a suggestion concerning a specifi c therapeutic decision is 
sought. The system then reviews relevant data, including data that has been requested 
from the user, and formulates a suggestion for an intervention based on the medical 
knowledge stored in its  knowledge base  . 

14.5.1      Ventilator Management 

 The  example   below is, in many ways, typical of suggestion systems. It functions in 
the realm of ventilator therapy and has been implemented in increasingly sophisti-
cated forms in intensive care settings at Intermountain’s tertiary care hospitals since 
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1987. A variety of ventilator management protocols continue to function in these 
settings to this day. 

 Tertiary care settings typically see large numbers of patients with respiratory 
failure. One of the more diffi cult of these problems is that of Adult Respiratory 
Distress Syndrome (ARDS). This disease can complicate a number of other condi-
tions, including trauma, infectious disease, and shock. The usual therapy includes 
respiratory support while the underlying pulmonary injury heals. Unfortunately, in 
the 1980s overall mortality for ARDS had remained at about 50 % for many years. 
For the subset of ARDS patients who manifest severe hypoxemia, the mortality had 
been approximately 90 %. 

 The study of computer protocols for delivering care to ARDS patients was a side 
effect of research into the effectiveness of a new therapeutic intervention for this 
diffi cult disease. In the early 1980s, research began to suggest that external mem-
brane devices that bypassed the lungs to remove carbon dioxide (CO 2 ) directly from 
a patient’s body might improve survival in the most severely ill ARDS patients. 
Physicians at the LDS Hospital wanted to study this new approach in a rigorously 
controlled clinical trial. They chose to do an experiment with a test group that 
received the external lung treatment and a control group that did not receive the 
treatment. However, the researchers were aware that the management of ARDS 
tended to differ from patient to patient, depending on the course the disease fol-
lowed, and the training and previous experience of the physicians and staff caring 
for the patient. For this reason, they decided to standardize care by strict adherence 
to predetermined treatment protocols. 

 At fi rst, they developed a set of paper protocols. As the protocols became more 
complex, it became clear that they would be diffi cult to follow manually. Therefore, it 
was decided to computerize them. The result was a set of computerized rules that were 
designed to direct, in detail, the management of patients in both the test and control 
branches of a study of extracorporeal CO 2  removal (ECCO 2 R) [ 47 – 50 ]. While the rules 
were designed initially for this research, they were soon made general enough that they 
could be used in the management of other patients requiring ventilator support. 

 These protocols were created by a group of physicians, nurses, respiratory thera-
pists, and specialists in medical informatics. The initial ECCO 2 R study period was 
to be 18 months. Subsequent development concentrated on fi rst eliminating  errors   
in protocol  logic  , second on extending the scope of these tools, and fi nally on 
reworking behavioral patterns in the intensive care setting so that the protocols 
could be effectively implemented. 

 The protocol system devised was used successfully during the ECCO 2 R study. 
The study was terminated after 40 patients were treated, 21 with ECCO 2 R and 19 
with conventional therapy. At that time, there were eight survivors in the conven-
tional therapy group (42 %) and seven in the ECCO 2 R group (33 %) [ 33 ]. The study 
team concluded that there was no signifi cant difference between ECCO 2 R and con-
ventional treatment of severe ARDS. However, the 42 % survival in the control 
group was unexpected. Reported survivals in these severely ill patients were less 
than 15 %. The results led the researchers to suspect that the quality and uniformity 
of care provided through the use of computerized protocols had resulted in an 
important improvement in patient outcomes. 
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 As a consequence, development and study of these protocols has continued. 
Figure  14.3  summarizes the results of their use in 111 LDS Hospital patients, and 
compares these results to those of two other groups, one from Massachusetts 
General Hospital (MGH) and a group in Europe (the European Collaborative Study), 
who have been interested in the problem of treating ARDS. As time went on, it 
became increasingly clear that the standardization of complex ventilator care 
decision- making using computers had a pronounced benefi t for patients.

   It should be noted that here we have focused the defi nition of systems for sug-
gesting therapeutic interventions quite narrowly. We have limited our example to 
systems that respond with a suggestion when the clinician has explicitly or implic-
itly requested one. This type of computerized  decision support   process represents 
an area in which we are continuing to explore better ways to interact with clinicians 
and better ways to capture and encode protocol knowledge .   

14.6        Diagnostic Decision Support   in the  HELP System   

 The examples above have stressed different approaches to the activation of medical 
 decision support    logic   and to the delivery of the resulting decisions to the computer 
user. Below, we change our focus to consider applications that “diagnose”. 

 One of the greatest challenges for a computerized medical decision support sys-
tem is to participate usefully in the diagnostic process. Diagnostic decision support 
systems (DDSS) differ from the  CDSS   described above. Typical  decision support 
systems   can draw attention to specifi c data elements and/or derive therapeutic sug-
gestions from these elements. Such applications offer assistance in the basic recog-
nition process and can identify patients based on data suggesting underlying 

  Fig. 14.3    Comparative results for groups managing ARDS patients       
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pathology. On the other hand, the diagnostic process is a preliminary step to sug-
gesting therapeutic interventions. Computerized diagnostic decisions are generally 
involved with different goals, interfaces, and decision algorithms than the applica-
tions previously described. 

 Two types of diagnostic applications are described below. They differ in the 
degree with which the developers have solved the problem of providing a clinically 
useful service. The fi rst type represents a group of applications that, using a set of 
raw clinical data, target key diagnostic categorizations that impact discrete thera-
peutic decisions. Four HELP System examples are discussed. 

 The second group of diagnostic processes described comes from the family of 
applications that attempt to simulate the more extensive and fl exible diagnostic 
behavior of physicians. Those discussed here represent research applications whose 
clinical applicability remains to be determined. The behavior of these applications 
in terms of preliminary data and of experience gleaned in a research and develop-
ment environment are described  .  

14.7     Diagnostic Applications 

 A number of applications residing in the HELP system can, through the use of vari-
ous diagnostic strategies, affect patient care. Below we describe four of these appli-
cations. The fi rst 3 are alerting systems that invoke a diagnostic process to detect 
clinical conditions; they intercede by alerting appropriate caregivers to the proposed 
 diagnosis  . They include an application that evaluates patient data to detect  adverse 
drug events  , a tool that recognizes  nosocomial infections  , and a diagnostic system 
running in the Emergency Department that encourages the enrollment of pneumo-
nia patients into a detailed therapeutic protocol. The fourth application described is 
a computerized assistant that informs and advises physicians as they undertake the 
complex task of determining how to treat a patient with a possible or proven infec-
tion. This CDSS interacts with its users to provide detailed clinical suggestions for 
antibiotic therapy in the context of the suspected infectious condition. 

14.7.1      Adverse Drug Events 

  Adverse drug events (ADEs)   are defi ned by the World Health Organization as “any 
response to a drug which is noxious, unintended, and which occurs at doses nor-
mally used in man for the prophylaxis,  diagnosis  , or therapy of disease” [ 51 ]. ADEs 
can range in severity from drowsiness or nausea to anaphylaxis and death. In 1995, 
it was estimated that in the United States drug-related morbidity and mortality cost 
more than $136 billion per year [ 52 ]. This cost has been shown to increase with time 
[ 53 ]. 
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 The process of recognizing  ADEs   differs from that of drug monitoring at the time 
of drug dispensing; this latter process has become a standard part of computerized 
pharmacy systems. The alerting systems embedded in modern-day pharmacy dis-
pensing systems typically evaluate ordered medications against a list of contraindi-
cations based on known allergies, expected reactions with other patient medications, 
or information from the clinical laboratory that can be expected to affect the drugs 
given or the dosage of those medications. In contrast, the goal of an ADE detection 
system is to diagnose the existence of a drug reaction from the patient data collected 
during the routine documentation of patient care. 

 An ADE recognition subsystem was implemented in the HELP system in the late 
1980s [ 54 ,  55 ]. This ADE subsystem continuously monitors patients for the occur-
rence of an ADE. The system does so by inspecting the patient data entered at the 
bedside for signs of rash, changes in respiratory rate, heart rate, hearing, mental 
status, seizure, anaphylaxis, diarrhea, and fever. In addition, data from the clinical 
lab, the pharmacy, and the medication charting applications are analyzed to deter-
mine possible ADEs. 

 The system evaluates all of the patients in the hospital and generates a daily 
computer report indicating which patients have possible ADEs. Clinical pharma-
cists can then follows up on these patients and complete the  evaluation   using a veri-
fi cation program. This program provides a consistent method of completing the 
diagnostic process. A scoring system (the Naranjo method) is used to score the 
ADEs as defi nite (score ≥9), probable (score 5–8), possible (score 1–4), or unlikely 
(score 0) [ 56 ]. The physicians caring for each patient are notifi ed of confi rmed 
ADEs by the pharmacist who does the  evaluation  . 

 The existence of an application for the  diagnosis   of ADEs substantially increased 
the frequency with which these events were recognized and documented in the hos-
pital setting. Using a voluntary reporting method, nine ADEs were recorded in the 
1-year period from May 1, 1988 to May 1, 1989. In the period from May 1, 1989 to 
May 1, 1990, while the program was initially used, 401 adverse drug events were 
identifi ed. 

 An additional effect of this program appears to be a reduction in the number of 
severe ADEs seen. During the year beginning in January of 1990, 41 ADEs occurred. 
In this time frame, physicians were notifi ed of verifi ed ADEs only if they were clas-
sifi ed as severe or life threatening. In two subsequent periods (the year of 1991 and 
the year of 1992) early notifi cation of physicians was practiced for all severities of 
ADE. Numbers of severe ADEs decreased to 12 and 15 during the follow-up time 
periods ( p  < 0.001). 

 In an effort to understand the impact of the drug reactions that were the target of 
this application, the costs of ADEs were examined. In studies that used the com-
puter tools described above, investigators found that length of hospital stay for 
patients with ADEs was increased by 1.91 days and that costs resulting from the 
increased stay were $2,262. The increased risk of death among patients experienc-
ing  ADEs   was 1.88 times [ 57 ]. Thus, the cost savings and impact on quality of care 
in reducing ADEs was substantial. 
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 These tools, with modest modifi cations, are used to this day. They leverage the 
fact that the majority of the data necessary for their function is available in the 
HELP system’s integrated database. They illustrate the potential for computerized 
diagnostic applications to impact patient care not just by assisting with the choice of 
interventions, but also by focusing clinical attention on those cases where the inter-
ventions chosen have put the patient at risk.   

14.7.2      Nosocomial Infections 

 In  the   previous example, a rule-based system was used to suggest the  diagnosis   of 
 adverse drug events   for a group of patients undergoing therapy in the hospital. 
Another application which originated at the LDS Hospital was designed to recog-
nize nosocomial, or hospital-acquired infections [ 58 ]. The program served a need 
recognized by the Joint Commission that required ongoing surveillance for hospital- 
acquired infections. 

 The process of detecting nosocomial hospital infections serves a recognized 
clinical purpose. Control measures based on this information are believed to be 
important in interrupting the spread of hospital-acquired infections. Evidence sug-
gests that intensive surveillance programs may be linked to reduced rates of infec-
tion. However, the process can be expensive. Traditional techniques require infection 
control personnel to manually screen all appropriate patients on a routine basis. 

 The computerized surveillance system described here relies on data from a vari-
ety of sources to diagnose nosocomial infections. Information from the microbiol-
ogy laboratory, nurse charting, the chemistry laboratory, the admitting offi ce, 
surgery, pharmacy, radiology, and respiratory therapy are used. Once each day, a 
report is produced detailing the computer’s fi ndings. This report can be used to fol-
low up on the patients for whom there is evidence of nosocomial infection. 

 In the initial studies done in 1986 to compare the computer-based surveillance of 
nosocomial infections to the traditional, manual approach, 217 patients were deter-
mined to be possible victims of hospital-acquired infection (out of 4,679 patients 
discharged in a 2-month period). This included 182 patients identifi ed by the com-
puter and an overlapping 145 patients recognized by traditional means. Of these 
patients, 155 were confi rmed to have nosocomial infections. 

 For the group of 155 patients, the computer’s sensitivity was 90 % with a false 
positive rate of 23 %; at the same time, the infection control practitioners demon-
strated a sensitivity of 76 % and a false positive rate of 19 %. When the hours 
required to use each approach were estimated, the computer-based approach was 
more than twice as effi cient as the entirely manual technique. 

 The  nosocomial infection   tool, like the  ADE   recognition system, uses Boolean 
 logic   in its diagnostic process (see Chap. 2). In an effort to extend the process of 
managing hospital-acquired infections, an extension to the infection control system 
has been developed. The goal of the enhancement was to predict which patients 
were likely to contract a  nosocomial infection   in the hospital in the future. The tool 
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is based on different decision algorithms. Data from patients with infections 
acquired in the hospital were combined with data from a control set of patients, and 
a group of statistical programs was used to identify risk factors. Logistic regression 
using these risk factors was used in the development of tools that could estimate the 
risk of hospital-acquired infection for inpatients. The resulting system has been 
shown capable of predicting these infections in 63 % of the population who are 
ultimately affected [ 59 ]. It has been maintained and updated for more than 20 years 
and continues to provide service in numerous clinical settings .   

14.8     Detecting Pneumonia in the Emergency Department 

 Pneumonia remains a common clinical problem seen in outpatient settings and 
emergency departments across the country. The disease is often divided into 
Community-Acquired Pneumonia (CAP) and Healthcare-Associated Pneumonia 
(HCAP). The latter illness may be associated with a higher risk of antibiotic- 
resistant bacteria and therefore, needs to be recognized and approached with an 
altered therapeutic plan. 

 In 2011 researchers at Intermountain Healthcare introduced a system for diag-
nosing pneumonia into four emergency departments (EDs) in the Salt Lake City 
area in Utah [ 60 ]. The diagnostic process in three other local emergency depart-
ments was unchanged. 

 The pneumonia detection system was coupled with an electronic protocol for 
treating both CAP and HCAP [ 61 ]. The goal of the diagnostic tool was to identify 
potential pneumonia patients and bring their condition to the attention of the emer-
gency department physicians in a timely fashion. By then enrolling the patient in the 
electronic protocol, the physician could take advantage of a  decision support   tool 
that (1) collected and displayed data relevant to the  diagnosis   and treatment of pneu-
monia, (2) calculated an individualized risk score for each patient (based on the 
30-day, all-cause mortality experienced by similar pneumonia patients), and (3) 
used this information to suggest a patient treatment strategy. For each patient, the 
strategy included a suggestion for disposition (treat at home, admit to acute care 
bed, or admit to ICU), suggestions for appropriate labs and cultures, and individual-
ized suggestions for antibiotic treatment. 

 The pneumonia detection system is implemented using a tool called the “screen-
ing framework”. This application is designed to function in the background. It 
watches the fl ow of data into the  EHR   and captures those data elements appropriate 
to the diagnostic process. In the case of pneumonia, these include vital signs, labo-
ratory results, elements from the patient history and physical examination, and 
information extracted from chest x-ray reports using a natural language processing 
application. This information is passed to a Bayesian network developed specifi -
cally to compute the  probability   of pneumonia for emergency department patients. 
For patients whose probability exceeds 40 %, a “P” is placed on the departmental 
tracking board to alert clinicians of the likelihood of pneumonia. Clicking on this 
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P takes a physician to the pneumonia protocol which provides evidence-based sug-
gestions for continued patient care. 

 The diagnostic tool’s accuracy was tuned with the goal of delivering a reasonable 
positive predictive value at an acceptable sensitivity. We believe that a system with 
too many false positives will invariably be ignored by busy clinicians. The resulting 
system had a sensitivity of 40.9 %, a specifi city of 96.6 %, and a positive predictive 
value of 50.9 %. 

 The premise behind using a diagnostic system in this way is that regular, reason-
ably accurate, pneumonia alerts will encourage use of the electronic protocol. This 
premise appears to be substantiated in that use of this electronic guideline increased 
steadily over the course of the study period. Moreover, an analysis of the effects of 
the protocol demonstrated a change in 30-day all-cause mortality. While there was 
no difference when considering all pneumonia patients, an analysis of the 
community- acquired pneumonia patients treated in the intervention EDs demon-
strated a signifi cantly lower mortality when the protocol was in use (Odds Ratio: 
0.53). 

 In this study, the diagnostic system functioned as a prompt and reminder to use 
an electronic treatment protocol. Physicians can use the protocol without the diag-
nostic reminder and can ignore the protocol even when reminded by the diagnostic 
alert. While the pneumonia diagnostic system may help to determine the  diagnosis   
for some patients, its clearest value is as a reminder for busy physicians of the avail-
ability of a tool that supports and standardizes therapeutic interventions. This may 
be a profi table way to think about the potential contribution of diagnostic systems to 
real-world, clinical workfl ows. 

14.8.1      Antibiotic Assistant 

 The  fourth   application in this group is an example of a multipronged approach to the 
task of supporting medical decision making. As a part of research into the use of 
computers in medical care, the Infectious Disease Department at LDS Hospital 
developed a tool to help clinicians make informed decisions concerning the admin-
istration of antibiotics [ 62 ,  63 ]. The “Antibiotic Assistant” application was designed 
to provide three basic services. First, it assembled relevant data for the physicians so 
they could determine whether a specifi c patient was infected and what sorts of inter-
ventions might be appropriate. Information such as the most recent temperature, 
renal function, and allergies were presented. Second, the system suggested a course 
of therapy appropriate to that patient’s condition. Finally, the program allowed the 
clinician to review hospital experience with infections for the past 6 months and the 
past 5 years. One of the options of the program allowed the clinician to review the 
 logic   behind the computer’s suggestions while another presented brief monographs 
on the appropriate use of each antibiotic in the hospital formulary. 

 The diagnostic processes embedded in this application were derived from data 
extracted from the  HELP system   and analyzed on a monthly basis. The goal of the 
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analysis was to defi ne the  probability   of each potential pathogen as a causative agent 
for a certain class of patient. Six clinical variables were used in this process. These 
variables were identifi ed through a statistical analysis of 23 proposed data elements. 
They included the site of infection, the patient’s status (inpatient or outpatient), the 
mode of transmission (community- or hospital-acquired), the patient’s hospital ser-
vice, the patient’s age, and the patient’s sex. 

 The result of this monthly analysis was an assessment of the likelihood of each 
pathogen for every combination of the patient-related variables. For example, once 
the analysis was complete, the percentage of hospital-acquired bacteremias due to 
 Escherichia coli  in male patients age 50 or less who were on the cardiovascular 
service would be stored in the program’s  knowledge base  . The analytic programs 
also evaluated susceptibility data to determine which antibiotics were likely to cover 
the most probable pathogens for each combination of patient variables. 

 This probabilistic knowledge was then fi ltered through a set of rules created by 
infectious disease experts. These rules adjust the output of the fi rst phase to include 
criteria representing basic tenets of antibacterial therapy. For example, the suscepti-
bility information garnered from the historical data would be updated to indicate 
that amikacin should be used only for infections due to gram-negative organisms. 

 The resulting  knowledge base   has been used by the  antibiotic assistant   program 
to make presumptive diagnoses of infectious organisms and to suggest treatments 
appropriate to these organisms. By offering the monographs and explanations men-
tioned above and by allowing the clinicians to browse its  knowledge base  , it pro-
vided large amounts of information in addition to its suggestions. 

 In recent years, antibiotic stewardship programs have become available that pro-
vide some of the functionality of the  Antibiotic Assistant  . However, a number of its 
capabilities remain unique and it continues to provide service in a variety of clinical 
settings .   

14.9     Research into Complex Peri-diagnostic Applications 

 The systems described above have had a measurable effect on improving health care 
provided in the hospital setting. The dream of even more sophisticated and inclusive 
systems was presented more than 50 years ago. In 1959, Ledley and Lusted described 
the application of methods from the realm of symbolic  logic   and  statistical pattern 
recognition   to problems in medicine [ 64 ]. They proposed that these tools be used to 
assist in the diagnostic process and in other problems involving medical decision 
making. Computer systems were the enabling technology that was predicted to 
bring these tools to the bedside. 

 A variety of researchers have accepted the challenge of Ledley and Lusted and 
produced experimental systems designed to diagnose a variety of illnesses. The 
pneumonia diagnostic system described above is one example. However, as 
researchers consider other ways to use the information embedded in these applica-
tions, a recurring question has to do with the activities that a diagnostic system can 
support  beyond    diagnosis   . 

P.J. Haug et al.



267

 An important portion of the value of computerized diagnostic tools lies in the 
development of well-designed models of the diagnostic process to assist in the com-
plex clinical decision-making tasks. Physicians clearly exercise their diagnostic 
knowledge not only when they assign a diagnostic label to a patient, but also during 
processes as diverse as reading medical reports and critiquing the clinical behavior 
of their peers. Below, we provide two examples of experimental systems that use 
diagnostic knowledge to support these types of cognitive processes. These examples 
illustrate systems that can (1) assist with data collection; and (2) help assess the 
quality of medical reports. 

 The applications described below benefi t from a long-standing interest in 
Bayesian techniques for  probability   revision among researchers using the  HELP 
system  . For more than 35 years, the HELP system has contained frame-based  deci-
sion support   subsystems capable of expressing and employing Bayes’ equation to 
assess probabilistically the support for diagnoses provided by various combinations 
of clinical data [ 14 ]. 

14.9.1     Assisting Data Collection 

 Efforts to use diagnostic models to direct data collection in the  HELP system   have 
concentrated on the patient history. The goal has been to identify tools that could 
effectively collect a medical history appropriate for use in  diagnostic decision sup-
port   applications. While earlier efforts focused on history appropriate to a wide 
variety of diseases [ 65 ], subsequent efforts have focused on acquiring data bearing 
principally on pulmonary diseases [ 66 ,  67 ]. 

 To conduct this experiment, three techniques for collecting the history were 
developed. The fi rst was a simple branching questionnaire. This approach takes full 
advantage of the hierarchical relationship between more and less specifi c questions. 
For instance, if the question “Have you had chest pain with this illness?” was 
answered “Yes,” then more specifi c questions such as “Is your chest pain brought on 
by exertion?” were asked. Alternately, if the answer to the fi rst question was “No”, 
the more specifi c questions would not be asked. 

 The second technique has been called decision-driven data acquisition (DDA). 
With this technique, a frame-based, Bayesian expert system analyzes all data avail-
able at any point in the patient interview. The individual disease frames determine 
which additional information is needed to evaluate the likelihood of the particular 
disease. Each frame proposes one or more questions. From this list, a supervisory 
program selects a group of fi ve questions, which are then presented to the patient. 
The system passes through this cycle multiple times until criteria are met indicating 
that no additional data are needed. 

 A third approach has also been tested. It is similar to the DDA method except 
that it was adapted for use in a setting where the patient was not present at a  computer 
terminal. The approach begins when a paper questionnaire containing screening 
questions is presented to a patient. Staff members enter the answers into the com-
puter, and the patient’s data are compared to the diagnostic frames. The questions 
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are scored in a fi ltering process, and then from 0 to 40 additional questions are 
printed for the patient to answer. After the patient answers these additional ques-
tions, the answers are entered into the computer and the process is completed. 

 The branching questionnaire mode of data collection and the DDA mode were 
tested on inpatients at the LDS Hospital. Fifty patients took a DDA managed history 
and 23 received a history managed by the branching questionnaire program. Figure 
 14.4  illustrates the results.

   On average, the DDA mode took a signifi cantly (p < 0.05) shorter time to run (8.2 
min) and asked signifi cantly fewer questions (48.8 questions) than did the branch-
ing questionnaire (19.2 min and 137 questions, respectively). The two-stage, paper 
questionnaire was tested separately on patients coming to the X-ray department for 
chest X-rays. It appeared to perform similarly to the interactive DDA mode. It 
should be noted that there was no signifi cant difference between the techniques in 
terms of diagnostic accuracy. Using history alone, all three succeeded in placing the 
patient’s correct disease in a fi ve-member differential diagnostic list from 70 to 
88 % of the time.  

14.9.2     Assessing the Quality of Medical Reports 

 A second example of an alternative use of diagnostic knowledge comes from a 
study of result reporting in the radiology department. The central goal of this project 
was to develop a technique for measuring the quality of X-ray reporting without 

  Fig. 14.4    A comparison of techniques for collecting the patient history       
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requiring the review of radiographs by multiple radiologists. This is in contradis-
tinction to typical approaches for evaluating the accuracy of radiologists. Historically, 
audit procedures in the radiology department require multiple readings of a select 
set of X-rays [ 68 – 72 ] . The results of the repeated readings are used to defi ne a 
“gold standard” for the fi lms. Then the individual radiologists are compared to the 
gold standard. 

 The technique developed as a part of this project was based on a simple premise. 
Each examination was a test of the radiologist’s accuracy. Instead of comparing the 
abnormalities reported to a standard formulated through multiple readings, the 
description in the report was evaluated in comparison to the patient’s overall diag-
nostic outcome. In the case of chest X-rays, the standard was the list of fi nal diag-
noses (ICD-9 codes) written into the patient’s record at the time of discharge. The 
report generated by the radiologist was successful to the extent that it supported the 
process that led to one of the discharge diagnoses. 

 While a variety of algorithms can be used to link the fi ndings represented in the 
X-ray report to the fi nal  diagnosis  , we have demonstrated the success of a variation 
on Shannon Information Content in discriminating among physicians reading chest 
X-rays. Shannon Information Content [ 73 ] is a mathematical formalism for assess-
ing the informational value of messages. For this project, we modifi ed it to provide 
a measure of the information produced by the radiologists as each of them interpret 
x-rays. The assumption inherent in this usage is that the information contained in an 
X-ray report can be expected to alter the likelihood of the various diseases that a 
patient might have. Information Content is calculated from the change in  probabil-
ity   of these diseases. 

 For this technique to work, a diagnostic system was required that was capable of 
discriminating among diseases producing abnormalities on the chest radiograph. 
The information content was calculated from the change in disease  probability   
induced by the fi ndings recorded in the chest X-ray report. A Bayesian system pro-
vided the required probabilities. 

 Our evidence for the success of this technique came from two studies. In the fi rst, 
we used expert systems technologies to demonstrate discrimination in a controlled 
experiment [ 74 ]. In this experiment, fi ve X-ray readers read an identical set of 100 
fi lms. The assessment produced by the diagnostic  logic   program gave results con-
sistent with the differing expertise of the readers and similar to the results of a more 
standard audit procedure. 

 In a second study of this audit technique, we tested a group of radiologists fol-
lowing their standard procedure for interpreting radiographs [ 75 ]. Each chest X-ray 
was reviewed, the report dictated and transcribed only once, as is typical with most 
radiologists’ daily work. The goal of the study was to test the ability of a knowledge- 
based approach to measure the quality of X-ray reporting, without requiring repeated 
reading of the radiographs. 

 This technique used a modifi ed version of the Shannon Information Content 
measure, and was designed to assess both the positive information contributed by 
X-ray fi ndings relevant to a patient’s disease, and the negative information contrib-
uted by fi ndings which do not apply to any of the patient’s illnesses. X-ray readers 
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were compared based on the  bits  of information produced. We used 651 chest X-ray 
reports, generated by a group of radiologists, which were compared to the patients’ 
discharge diagnoses using a measure of information content. The radiologists were 
grouped according to whether they had received additional (post residency) training 
in chest radiology. The “trained” radiologists produced 11 % more information than 
the “untrained” radiologists (0.664 bits as opposed to 0.589 bits, signifi cant at 
 p  < 0.005). 

 The average information content calculated successfully discriminated these 
groups. However, it is an overall measure. Examination of the interaction between 
the groups of radiologists and disease subgroups indicates that the score can also 
discriminate at the level of different diseases ( p  < 0.05). This suggests that the tech-
nique might not only discriminate overall quality of X-ray interpretation, but it 
might also be of use for pinpointing the specifi c diseases for which an individual 
radiologist may be failing to generate effective information.   

14.10     Summary 

 In this chapter, we have reviewed a collection of hospital-based applications that 
provide medical  decision support   at the patient bedside. These applications can be 
categorized in a variety of different ways. We have found it profi table to character-
ize these systems in terms of their relationship to the data, and of their approach to 
communicating with their users. These foci may be helpful to future system devel-
opers and implementers, as they refl ect on the environment required for the success 
of  decision support   applications. 

 We have also attempted to emphasize the range of sophistication that can be 
found in clinically operational  CDSS  . Applications using simple  logic   contribute a 
great deal to the quality of care provided in clinical settings. Programs that use more 
complex techniques and that strive to provide the more sophisticated decisions asso-
ciated with disease recognition can also contribute. Among the diagnostic applica-
tions currently functioning in hospital settings, those that focus on specifi c, limited, 
diagnostic goals with a recognizable target audience have been more successful. 
General-purpose diagnostic programs, while capable of producing interesting 
results, have yet to fi nd an audience for which they can routinely provide a valued 
support function. 

 The lessons learned from the information systems used in hospitals are diffusing 
rapidly into the outpatient setting. Less expensive hardware, more fl exible software, 
and an environment that increasingly values the effi ciencies that computers can 
offer are encouraging the development of systems for a wide range of clinical set-
tings. The federal government is actively encouraging this shift. As this process 
occurs, the lessons garnered by developers of  CDSS   in hospital settings provide a 
springboard for the  decision support applications   of the future. These systems will 
embody, in their behavior and approach, computing models derived from experi-
ments conducted in environments like the  HELP system  . 
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 As new  CDSS   incorporate the infrastructure and decision models developed in 
the past, these next-generation systems will also incorporate approaches to knowl-
edge engineering,  knowledge maintenance  , and system  implementation   that have 
evolved as a part of the research described above. The practices described refl ect a 
philosophy of development and critical review whose activities are shared by com-
munities of caregivers. Teams composed of informaticists, software developers, and 
clinicians are essential to an environment that can develop and iteratively refi ne 
sophisticated  decision support   applications. 

 A priority for these communities is the thoughtful  evaluation   of the success of 
CDS interventions. Assessment of the outcomes associated with these applications 
is important to their users. A key goal is to measure both the effect of these systems 
on the workfl ow of busy clinicians and the impact of these systems on quality, cost, 
and overall effi ciency. Adherence to this approach will do much to reduce the chal-
lenges associated with implementing potentially disruptive  CDS   technologies by 
involving the medical community in their creation,  evaluation  , and growth  .     
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    Chapter 15   
 Decision Support During Inpatient Care 
Provider Order Entry: Vanderbilt’s WizOrder 
Experience                     

     Randolph     A.     Miller      ,     Lemuel     Russell     Waitman      , and     S.     Trent     Rosenbloom     

    Abstract     In this chapter, the authors describe a pragmatic approach to the intro-
duction of clinical decision support at the point of care, based on more than a decade 
of experience in developing and evolving Vanderbilt’s inpatient “WizOrder” care 
provider order entry (CPOE) system. The authors have developed a generic model 
for decision support within inpatient CPOE systems. The model is based on charac-
teristics of end-user workfl ows and on decision support considerations that are com-
mon to a variety of inpatient settings and CPOE systems. The specifi c approach to 
implementing a given clinical decision support feature should involve evaluation 
along three axes: what type of intervention to create (four categories); when to 
 introduce the intervention into the user’s workfl ow (seven categories), and how 
 disruptive, during use of the system, the intervention might be to end-users’ work-
fl ows (six categories). Framing decision support in this manner may help both 
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developers and clinical end-users plan future alterations to their systems when 
needs for new decision support features arise.  

  Keywords     CPOE systems   •   Care provider order entry systems   •   Computerized 
physician order entry systems   •   Vanderbilt   •   Inpatient care  

        Practitioners         have yearned for  clinical decision support systems   for at least 2,500 
years. Hippocrates noted “Life is short, the art long, opportunity fl eeting, experi-
ence treacherous,  judgment diffi cult .” ( Aphorisms , sec. I, ca. 460–400 BC). While 
the basis for clinical decision support has been recognized throughout the ages, 
careful studies in the recent medical literature document those needs specifi cally 
[ 1 – 14 ]. 

 The pioneers developing early care provider order entry (CPOE)  systems   – e.g., 
McDonald, Tierney, and their colleagues at the Regenstrief Medical Institute [ 15 –
 25 ], Warner, Pryor, Gardner and their colleagues at LDS Hospital [ 26 – 28 ] (see 
Chap.   14    ), and many other groups – have confi rmed, through controlled studies, the 
initial report of Shakespeare in 1597: “If to do were as easy as to know what were 
good to do, chapels had been churches, and poor men’s cottages princes’ palaces. . 
. . I can easier teach twenty what were good to be done than to be one of the twenty 
to follow my own teaching” ( The Merchant of Venice , Act I, Scene ii). Busy health-
care providers have so many diverse tasks to perform that they are constantly dis-
tracted from being able to accomplish what they understand to be good medical 
practice. “Men are men; the best sometimes forget” (Shakespeare,  Othello , 1605; 
Act II, Scene iii). Reminding systems and other forms of  clinical decision support   
have been shown to be effective in overcoming such lapses of memory in a number 
of clinical situations [ 15 – 40 ]. However, the success of even the best-designed  CPOE 
systems   is not guaranteed. The socio-technical (people, workfl ows, and human fac-
tors) aspects of system  implementation   are critically important. Many clinical infor-
matics systems (not all documented in the literature) implemented with good 
intentions have been met with anger and resentment [ 41 – 44 ]. Providing decision- 
support capabilities in a timely and convenient manner can add value to otherwise 
lackluster or marginal systems, and improve quality of care and reduce costs 
[ 15 – 40 ]. 

 This chapter addresses the following questions: (1) What steps or stages in 
CPOE represent appropriate breakpoints (both computationally and with respect 
to end- user workfl ows) at which one can introduce  clinical decision support  ? (2) 
What categories of decision support are relevant during CPOE sessions? and (3) 
What methods for workfl ow interruption should one consider when implement-
ing decision- support interventions based on balancing end-user tolerance and 
clinical urgency? 

 The authors have used the Vanderbilt WizOrder  CPOE system   as the primary 
context for discussing decision support interventions, primarily because it provides 
a convenient example with which they are familiar. Through longstanding partner-
ships with clinician end-users, Vanderbilt Biomedical Informatics faculty members, 
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fellows, and Informatics Center staff developed a  CPOE system   (WizOrder) in 
1994–1995, implemented it on the wards of an academic teaching hospital, and 
evolved it in response to ongoing feedback (1995–2015) [ 45 – 55 ]. The approach to 
decision support described in this chapter was derived through generalization from 
that experience. While the authors have drawn heavily on their Vanderbilt past, the 
above questions and their answers are suffi ciently generic that other developers in 
both academic and commercial settings may fi nd value in the ensuing discussion. 
Further, the description of WizOrder functionality here serves as a historical refer-
ence as the landscape of order entry systems evolves in an increasingly vendor- 
based environment. 

 The authors describe herein the pre-commercial, academic version of WizOrder 
at Vanderbilt. The WizOrder  CPOE system   was commercialized in June of 2001. At 
that time, Vanderbilt University entered into a marketing agreement with McKesson 
to sell and distribute the WizOrder  Care Provider Order Entry System   commer-
cially. McKesson rewrote large portions of the WizOrder code, adapted it to run on 
their preferred computer platforms, to share a common database with their nurse 
charting system (Horizon Expert Documentation), and recast it as Horizon Expert 
Orders in McKesson’s product line. In early 2015, McKesson announced that it 
would discontinue the Horizon product line, including Horizon Expert Orders. The 
authors have herein refer to the system by its name at Vanderbilt, WizOrder. All 
descriptions are of system components developed at Vanderbilt University Medical 
Center and not by the commercial vendor. 

15.1     Basic Care Provider Order Entry System Functionality 

  Order entry within many  CPOE systems   was  initially   designed to parallel tradi-
tional, manual paper chart-based order creation. Manual ordering involves: (1) 
physically locating the patient’s chart; (2) fi nding the topmost blank order page; (3) 
handwriting a series of new orders as a block; (4) signing the orders to assert author-
ship and validation, thereby making them legal; (5) after setting a fl ag indicating 
presence of new orders, placing the chart where clerical unit staff expect to fi nd 
charts with new orders; and (6) fi nding and verbally informing unit staff (patient’s 
nurse, others) when life-critical or extremely urgent orders have been written. For 
the corresponding order entry performed in a typical  CPOE system  , the user, in 
some sequence: (1) authenticates with user name and password; (2) invokes the 
CPOE application; (3) selects a patient; (4) enters and modifi es orders, using an 
electronic scratchpad (buffer) that holds orders but does not deliver them to ancil-
lary departments (e.g., lab or pharmacy) for immediate action; (5) indicates when he 
or she is ready to fi nalize the set of orders on the scratchpad to send them out for 
processing; and (6) reviews and edits orders on the scratchpad before they are signed 
electronically and dispatched to be carried out. Unlike paper-based order entry, pro-
viders using CPOE can enter orders from sites remote from the patient location, 
without the need to have a physical chart. This may occur away from supporting 
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staff, such as nurses. As a result, electronic CPOE without manual, person-to- person 
follow up may impair communication of life-critical, or otherwise very urgent, 
orders and thereby introduce patient  safety   concerns. 

 The panes of Fig.  15.1  present the WizOrder approach to implementing key com-
ponents of an order entry interface. During initial WizOrder development, Vanderbilt 
beta-test users strongly recommended that the  CPOE system   interface should have 
“geographical consistency”- i.e., a given type of clinical information should always 
appear in the same location on the screen. This also implies that pop-up windows 
and pull-down menus that might obscure display of clinically important information 
should rarely appear. WizOrder’s left-sided window displays currently active orders 
(and those expired in the previous 24 h) for the current CPOE patient (PANE #1). 
The upper right window presents context-dependent pick lists of options available 
for order creation or modifi cation (PANE #2). The middle right window represents 
a context-sensitive help window that instructs the user on available next actions 
(PANE #3). The bottom right window contains a text input region (PANE #4). 

  Fig. 15.1    WizOrder primary user interface screen panes: PANE #1, current and recent orders 
display; PANE #2, selectable “pick list” display; PANE #3, in-context instructions; PANE #4, user 
input text entry area. User had previously typed “nitro” into completer in PANE #4; PANE #2 
shows results       
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15.1.1       Creating Orders 

 A key  CPOE system   design consideration involves how clinicians specify what they 
want to order. Many CPOE systems [ 56 – 59 ] use a hierarchical organization of 
orders, illustrated by the following example (bold font indicates hypothetical selec-
tion made at each level):

   . . .  Orderable Pick List Level 1 :  Pharmacy ,  Laboratory ,  Radiology ,  Dietary , 
 Nursing  [ orders ], . . .  

  . . .  Orderable Pick List Level 2 :  Hematology Tests ,  Serum Chemistry Tests , 
 Urinalysis , . . .  

  . . .  Orderable Pick List Level 3 :  Complete blood count  ( CBC ),  platelet count ,  blood 
Rh type , . . .    

  CPOE systems   also commonly have a “completer” or search engine function that 
allows the clinician-user to type shorthand word fragments derived from the desired 
order name (or its synonyms). The completer then searches for potentially matching 
orderable items from the system’s dictionary, and provides the user with a pick list 
of those that the user can select. For example, typing “nitro” into a CPOE completer 
(Fig.  15.1 , PANE #4) would result in the CPOE presenting a pick list (PANE #2) of 
orderable items’ names, with “nitroglycerin sublingual” at or near the top of the list, 
and lesser/partial/wordier matches (e.g., nitrogen mustard, urea nitrogen blood) far-
ther down the list. Vanderbilt users typically specify new orders using the completer 
function, and only rarely use WizOrder’s hierarchies for order entry, usually when 
they do not know the specifi c name for the item they want to order. Users can also 
select pre-confi gured “order sets” using the completer function to fi nd the grouping, 
and then clicking on individual orders within the group to select them. 

 After selecting the orderable item itself, users must then specify (enter) its com-
ponent information (e.g., dose, route, frequency, etc, for a medication order). Many 
 CPOE systems   formally defi ne orderables and their components using a data dic-
tionary with structured templates that specify necessary and optional fi elds required 
to fully create an individual order. Figure  15.2  illustrates WizOrder sequential 
prompts for building an order for sublingual nitroglycerin (based on stored tem-
plates), and Fig.  15.3  indicates how the order, once fully specifi ed for WizOrder, 
transfers to the left-sided active orders area (PANE #1). Another mechanism for 
generating new orders (used often, but less than half the time at Vanderbilt) is order 
sets – groupings of  diagnosis   or procedure-related selectable orders often with pre-
set component information (e.g., vital signs q4h) [ 60 ]. If the user selects an order set 
name from a completer pick list or from the WizOrder order set hierarchy, the order 
set’s component orders are retrieved and displayed as selectable items in the upper 
right pick list window (Fig.  15.4 , PANE #2).
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  Fig. 15.2    Frequency prompts (medication-specifi c) for “nitroglycerin sublingual” orderable, after 
dose already specifi ed by similar process       

  Fig. 15.3    Order for “nitroglycerin” moves to  left  window (PANE #1) once fully completed       
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15.1.2          Displaying Active Orders 

 Most CPOE user interfaces manage the display of currently active orders. In com-
plex patient cases, active order counts can exceed 100. Therefore, simply listing all 
such orders in a display panel (sorted, e.g., alphabetically by order name) will not 
be helpful to clinicians unfamiliar with the patient’s case, since locating an arbi-
trarily named specifi c order within a long list is diffi cult. Early during WizOrder 
development, end users requested that a display of active orders follow a grouping 
sequence based on the ADC VAAN DISML acronym that is familiar to physicians – 
 A dmission,   D iagnosis  ,  C ondition,  V ital signs,  A ctivity,  A llergies, and so on (Fig. 
 15.1 , PANE #1). Many  CPOE systems   use similar methods to segment the active 
orders display into clinically useful buckets, and some facilitate electronic rear-
rangements of the active orders display to accommodate different users’ typical 
workfl ows (e.g., nurses, attending physicians) as well as providing reverse chrono-
logical views to display the most recent new or changed orders. For example, 
Vanderbilt’s specialized intensive care units and the emergency department required 
location-specifi c specialized views of active orders. As WizOrder displays active 
orders, it also displays recently expired orders (within the past 24 h) with a special 
symbol in the left margin to indicate those orders that have expired; a different left- 
margin symbol indicates orders soon to expire.  

  Fig. 15.4    First six orders in the acute coronary syndrome order set       
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15.1.3     Modifying and Finalizing Orders 

 Figure  15.5  illustrates the result of a mouse click on an order in the left WizOrder 
pane. WizOrder displays a series of options listing what the user can do to the order 
at that point (modify, discontinue, renew, etc.) When the WizOrder user completes 
generating or modifying orders during a session, clicking a designated button on the 
CPOE screen transfers the user to a fi nal accept screen (see Fig.  15.6 ). This screen 
gives users a last chance to verify (or to change) their orders from the current order-
ing session. Once fi nal-accepted, the orders are sent to the appropriate ancillary 
systems for action and committed to a relational database for archiving. Similar 
features are available in most  CPOE systems  .

15.1.4         Displaying Information and Providing Complex 
Decision Support 

 A fi nal WizOrder component consists of an intermittently displayed, popup window 
that contains an internal HTML browser (labeled “PANE #5” in various fi gures). 
The WizOrder program uses this capability to display static Web documents with 
educational content or dynamically generated CPOE-related pages that provide 
complex, patient-specifi c decision support capabilities [ 49 ,  50 ].   

  Fig. 15.5    “Pop-up” options (PANE #5) after selecting nitroglycerin order from PANE #1       
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15.2     Philosophy Underlying Decision Support During Care 
Provider Order Entry 

 Use of a  CPOE system   during patient care provides a unique opportunity to interject 
decision support features that improve clinical workfl ows, provide focused relevant 
educational materials, and infl uence how healthcare providers make decisions about 
patient care. It is somewhat of an art to be able to provide  clinical decision support   
that is well accepted and used widely. Key considerations in the approach to provid-
ing decision support include: what content to provide; when to intervene in the 
clinical workfl ow process; and how to intervene, in terms of both degree of disrup-
tion of workfl ows and mechanism of interruption. A major goal of decision support 
is to guide healthcare providers’ decision-making as it takes place, rather than to 
identify  errors   after the fact. These considerations are addressed later in this 
chapter. 

 The nature of each clinical specialty determines what specifi c types of decision- 
support content to provide. In addition, the timing of each decision support 
 intervention in a user’s workfl ow is critical. For example, a  decision support system   
should not allow a clinician to spend 1–2 min constructing an intricate medication 
order, only to then inform the clinician that the medication is contraindicated due 

  Fig. 15.6    Final accept screen (PANE #5) allows user to verify orders at end of ordering session       
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to a known allergy. Allergy warnings should occur at the time the clinician fi rst 
indicates the name of a new medication order. Conversely, delivering an interruptive 
warning to order a partial thromboplastin time (PTT) monitoring test, immediately 
as the clinician completes an order for unfractionated heparin, would likely cause 
frustration and a lost sense of autonomy – especially when that is what the clinician 
intended to order next. Rather, during an order entry session in which the clinician 
ordered intravenous unfractionated heparin, the system should check whether PTT 
monitoring was ordered at the end of an order entry session, after the user has indi-
cated that all intended orders have been issued. Oppenheim et al. observed that per-
mitting the physician to enter an order with feedback provided only at the conclusion 
of order construction, and then only if the order is possibly incorrect, serves dual 
purposes [ 61 ]. First, delayed warnings make clinicians fi rst commit to a preferred 
course of action, thus discouraging reliance on  CPOE systems   to make clinical deci-
sions for the users. Second, delayed warnings give the clinician user the opportunity 
to correct problems they detect spontaneously, whereas early warnings may impart 
negative reinforcement by underscoring clinicians’  errors   [ 61 ]. 

 In the authors’ experience, busy clinical users value  CPOE system   accuracy, 
responsiveness and intuitiveness. A key aspect of responsiveness involves creating 
orders at an appropriate clinical level (both for users’ levels of training and for their 
knowledge of their patients). The physicians and nurses entering orders into a CPOE 
system typically have a different mindset than individuals who will carry out the 
orders in ancillary areas (e.g., pharmacy, radiology, and dietary departments). 
Problems in creating  CPOE system   orderable item names can occur when the tech-
nical terms used in ancillary departments are carried forward as the orderable items 
vocabulary for clinicians. So while radiology billing clerks might think in terms of 
“chest X-ray 2 views” and “knee X-ray 3 views”, clinicians are more comfortable 
ordering “chest X-ray PA and lateral” and “knee X-ray AP, lateral and oblique.” 
Similarly, if the CPOE system asks the physician ordering a chest X-ray how the 
patient should be transported to the radiology department, the physician is unlikely 
to give an optimal response because physicians are rarely involved in determining a 
patient’s transport. Thus,  CPOE systems   should not ask clinicians to perform tasks 
that fall outside of their usual job responsibilities, or about which they have little 
knowledge. Structuring orderable items with the clinician in mind helps to over-
come major barriers to adoption and can prevent  errors  . 

 Intelligent system interfaces can dramatically decrease the burden of ancillary 
departments in dealing with  CPOE system  -generated orders. For example, pharma-
cists use the pharmacy system to fi ll and dispense the clinical orders specifi ed within 
the CPOE system. When a physician issues a high-level clinical order, such as gen-
tamicin 70 mg IV, the pharmacist and pharmacy system convert the order into its 
dispensable form (e.g., one 80 mg ampule of injectable gentamicin) with 
 administration instructions – e.g., draw 7/8 of ampule (70 mg) into syringe for 
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administration. An intelligent decision support interface – provided within the 
CPOE or pharmacy system – can evaluate both the pharmacy’s electronic formulary 
and the database detailing the fl oor stock inventory on the patient’s unit, and then 
automatically determine the correct dispensable within the pharmacy system (done 
at the time of order transmission to the pharmacy, with no need for physician 
review). Currently, the intelligent pharmacy interface within WizOrder guesses the 
correct pharmacy-level dispensable item over 90 % of the time. This allows the 
pharmacist to devote more time to evaluating each order’s clinical validity,  safety  , 
and effi cacy. 

 An institution’s  CPOE system   determines the workfl ows that will capture pro-
viders’ intentions as they generate key clinical instructions. As a result, CPOE may 
become a target for administrators and researchers wishing to capture additional 
information from providers at the point of care. System administrators must avoid 
overburdening clinicians with requests that interrupt their workfl ows. In situations 
that require capturing extra information, the system should only ask clinicians for 
information about which they are the defi nitive source. For example, at Vanderbilt, 
upon patient admission, the name of the attending physician of record was origi-
nally entered into the admission, discharge, transfer (ADT) system by an admitting 
clerk. However, the admitting clerks were not always informed of the specifi cs of 
physician group coverage schedules, and often did not know the correct name to 
enter. The problem was addressed by fi nding a more defi nitive data source – the 
admitting house staff team, who must discuss each admission with the attending 
physician. Having the house staff enter the attending name into the  CPOE system   
improved accuracy. Conversely, if one wants to record whether a patient received 
aspirin in the emergency department just prior to admission, asking an intern who is 
entering discharge orders for the patient several days later (and who did not admit 
the patient) could be viewed as a nuisance, and cause lower-than-optimal data 
quality. 

 While some decision support functions not directly related to order entry can be 
delivered during an order entry session, they will not be discussed in this chapter: 
for example, a laboratory system that generates alerts whenever abnormal patient 
results occur might notify clinicians responsible for the patient’s care either by pag-
ing them or via e-mail or an asynchronous pop-up alarm that occurs when the clini-
cian is currently logged into the CPOE application [ 62 ]. Such alerts originate 
outside of the CPOE session context. Many  CPOE systems  , including WizOrder, 
display permanent taskbars, comprising an array of useful links, continuously dur-
ing the order entry session; [ 45 ,  59 ,  63 – 65 ] however, such taskbars rarely provide 
context-specifi c decision support of the sort described here. Instead, they allow the 
user to access common CPOE functions. For instance, the mid-1990s to early 2000s 
BICS (Brigham Integrated Computer System, in Boston) toolbar allowed the clini-
cian to quickly view orders and search for patients, among other functions [ 64 ,  66 ].  
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15.3     Roles for Decision Support Within Care Provider Order 
Entry: Categories of Interventions 

15.3.1     Creating Legible, Complete, Correct, Rapidly 
Actionable Orders 

 A  CPOE system   can avert problems previously associated with handwritten order 
creation [ 67 ], for example, illegibility, incompleteness, and incorrectness. Improved 
legibility not only reduces  errors  , but also saves staff time because nurses, pharma-
cists, and medical technicians need not spend time and energy as they decipher the 
meaning of ambiguous handwritten orders and they no longer make phone calls to 
clarify what was meant. Complete orders contain all the necessary parameters to 
make an order actionable (order name, start date and time, duration, frequency, 
etc.). Correct orders have parameter values that meet requirements for safe, prudent 
patient care (e.g., drug doses are appropriate for the patient’s age, weight, and renal 
function). Most  CPOE system   interfaces ensure completeness and promote correct-
ness of orders [ 67 – 69 ].  

15.3.2     Providing Patient-Specifi c Clinical Decision Support 

 An  important    CPOE system   capability is generation of decision support recommen-
dations customized to individual patients’ specifi c conditions. A CPOE system can 
provide a  safety   net through behind-the-scenes reconciliation of patient-specifi c 
information (laboratory results, age, allergies, current medications [ 70 ]) with stored 
best practice rules. For example, most  CPOE systems   screen patient orders against 
safe dosing rules and drug interaction references to reduce medication prescribing 
 errors   [ 53 ,  66 ,  71 – 74 ]. A CPOE system can also facilitate clinical care improvement 
by promoting use of evidence-based clinical practice guidelines [ 58 ,  75 ,  76 ] through 
end-user order generation via  diagnosis   or procedure-specifi c order sets [ 56 ,  59 ,  65 , 
 70 ,  76 ] or via computer-based advisors [ 58 ,  64 ,  73 ,  77 ,  78 ], as detailed below.  

15.3.3     Optimizing Clinical Care (Improved Workfl ow, More 
Cost-Effective and Regulatory-Compliant) 

 End-users of complex software systems learn to combine sequences of steps into a 
higher-level “programming language” to make the system do things that system 
developers neither foresaw nor intended. Clinicians regularly using a  CPOE system   
begin to make suggestions about how to modify it to make their work easier and 
more effective. For example, early CPOE users at Vanderbilt requested printed 
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rounding reports to facilitate patient care during work rounds and attending (teach-
ing) rounds. The rounding reports concisely summarize, on the front and back of an 
8.5 × 11 in. piece of paper, both the patient’s active orders and all laboratory results 
reported in the prior 72 h with highlight markers next to signifi cant (e.g., abnormal) 
results. In another instance, to improve workfl ows, several surgical services at 
Vanderbilt encouraged WizOrder developers to create “registry” orders. Such orders 
placed patients into a local, CPOE-associated registry database that allowed clini-
cians to track diagnoses and procedures performed on registry patients (e.g., patients 
on the neurosurgery service). At the same time, registries enabled effi cient transfer 
of appropriate information to the registry’s specialty-related billing offi ce, relieving 
physicians of that  responsibility  . 

 After several years of CPOE  implementation  , the institution’s administration 
began to view the system as a tool to implement quality of care, cost containment, 
and compliance initiatives [ 52 – 54 ]. Institution-wide CPOE interventions, if imple-
mented with the minimal degree of disruption required (see details below), can: 
discourage the ordering of inappropriate, recurring tests; [ 20 ,  52 ,  79 ] advise against 
costly tests or require further justifi cation before allowing them to proceed; [ 22 ,  55 , 
 80 ] display formulary information; [ 55 ,  57 ] and help the ordering clinician to enter 
requisite third party payer compliance codes (e.g., ICD-10 or CPT) for diagnostic 
tests. Clinicians are not always familiar with compliance rules, and they tend to 
write reasons for tests based on suspected diagnoses (e.g., “rule out MI” for an elec-
trocardiogram, or “possible pneumonia” for a chest X-ray) rather than indications 
for testing approved by third party payers. Orders that require specifi c reasons for 
compliance can be made to trigger the WizOrder internal Web browser to display 
and capture order-specifi c compliance-related reasons for testing. This can increase 
the rate of third party payer reimbursements for those tests due to more accurate, 
complete capture of compliant reasons. 

  Clinical decision support   features within  CPOE systems   can also promote  imple-
mentation   and enforcement of local hospital policies. The Regenstrief Medical 
Record System (RMRS), successfully used computer reminders circa 1997 to 
increase discussion about, and completion of, advanced directives (end-of-life, “do 
not resuscitate” related orders) [ 81 ]. Previous studies had indicated that too few 
patients completed advance directives [ 82 ]. In Boston in the mid-1990s, the BICS 
was modifi ed in order to prevent the appearance of vancomycin-resistant microor-
ganisms by requiring clinicians ordering vancomycin to enter a reason for using the 
antibiotic [ 83 ]. 

 The challenge for  CPOE system   developers is to honor the care improvement 
goals while keeping the system responsive and intuitive. Developers must strike a 
proper balance between clinical improvements versus cost containment. At times, 
both goals may be achieved in a single intervention – judiciously ordering fewer 
tests does not mandate a lower quality of care [ 52 ]. However, care improvement 
interventions may themselves have unintended consequences that require continu-
ous monitoring and feedback for optimal results [ 54 ].  
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15.3.4     Providing Just-in-Time, Focused Education Relevant 
to Patient Care 

 Many  CPOE systems   provide relevant prompts for educational materials targeting 
system users. Often, the materials are fairly terse, with hyperlinks to more detailed 
educational information resources [ 55 ]. Educational prompts can be introduced as 
in-line summaries that appear while prescribing a medication. Figure  15.7  shows in 
the upper right WizOrder panel in-line suggestions for vancomycin dosing adjust-
ments in neonates with meningitis or with renal impairment. An embedded CPOE 
Web browser content can also provide effective educational information, for exam-
ple, presenting a summary of disease-specifi c national guidelines, links to educa-
tional monographs, or a summary of indications and contra-indications for a specifi c 
therapy. Educational links can assist clinician users to perform complex ordering, 
such as for total parenteral nutrition (TPN) in a neonatal intensive care unit. The 
design of a  CPOE system   user interface can signifi cantly infl uence the rate at which 
users follow educational links and read the related materials. Simply having an 
option for decision support may not be suffi cient to command users’ attention, and 
stronger cues, such as different visual displays as to the relevance of the informa-
tion, may be needed [ 55 ].

  Fig. 15.7    In-line recommendations for dosing vancomycin in NICU include: ( a)  PANE #2, sug-
gested doses for regular use, for meningitis, and for renal impairment; ( b)  PANE #1, passive dis-
play of weight, dosing weight, and gestational age; and ( c)  PANE #2, display of renal function test 
results (not available for training patient in this example)       
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15.4         Critical Points at Which to Implement Decision Support 
Within Care Provider Order Entry 

 Each stage of use of a  CPOE system   permits a focused repertoire of decision sup-
port interventions, both in terms of user community affected, patients affected, and 
appropriateness of the intervention for the task the end user intends to perform. For 
example, as the CPOE system is launched from a clinical workstation desktop, 
system- wide messages may appear, but patient-specifi c advice should not (since, 
typically, the user has not yet selected a patient). Below, authors discuss the type of 
decision support that is appropriate and feasible for each stage of order entry. 

15.4.1     Stage of Care Provider Order Entry Session Initiation 

 Upon launching a typical CPOE application, the system will know the identity of 
the clinician user, but not of the patient. As a result, patient-specifi c decision sup-
port is inappropriate here. Rather, at this stage, the system can advise users about 
new  CPOE system   features, e.g., on a once-only basis for this user. Such interven-
tions should appear sparingly. One-time announcements of general interest to all 
users might appear, e.g., describing a new method to enter a specifi c group of com-
monly used orders. Once the alert is displayed, the system removes the current user 
from the list of users who still must see that message. At launch, the CPOE system 
can also inform users of information related to their personal use of the system, such 
as the number of old orders (and number of patients) requiring their countersigna-
ture, and provide a link to facilitate completing the task.  

15.4.2     Stage of Selecting Care Provider Order Entry Patient 
from Hospital Ward Census 

 After  CPOE system   launch, users typically select an individual patient for order 
entry. A number of alerts can occur at the stage of displaying the census of available 
patients for CPOE. Similar to the 1990s BICS system in Boston (and other CPOE 
systems), WizOrder provided, via the patient census screen, an inpatient, unit-wide 
view of the status of recently issued orders (see Fig.  15.8 ). A map view of the given 
hospital ward shows all beds and uses color coding to indicate which beds have new 
unacknowledged, urgent (i.e, STAT) orders and which beds have unacknowledged 
routine orders. A care provider wishing to enter new orders (or acknowledge recent 
orders) can click on a bed on the display screen to initiate an order entry session for 
that particular patient.
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   An alternative to the map view of a hospital unit census is a list view that includes 
patients on the unit, and that can be sorted by patient name or by ascending bed 
number. In WizOrder, icons located beside patients’ names in the list view provide 
useful information (Fig.  15.9 ). Using a similar list census screen, the 1990s BICS 
system presented a renewal reminder next to the patient’s name when a medication 
order for a given patient nears expiration [ 84 ].

15.4.3        Stage of Individual Patient Session Initiation 

 Once the user has selected an individual patient and the order entry session focuses 
on that patient, several additional types of decision-support related events become 
feasible. In WizOrder, once the patient is identifi ed, the system retrieves all rele-
vant past (active and inactive) orders for the patient, and previously stored patient-
specifi c information such as weight, height, coded allergies, and active protocols 
(with dates of each protocol initiation). As the user waits for the initial patient-
specifi c CPOE screen to appear, WizOrder queries the patient data repository. The 

  Fig. 15.8    CPOE “map” view of hospital ward.  Map  indicates beds ( circles ) with different shading 
to indicate new, urgent “stat” orders or those with new “routine” orders;  right border shading  
indicates highest priority of new orders not yet acknowledged (across all beds) by nursing staff       
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system, to prepare to assist with subsequent CPOE decision support requirements, 
uses this “delay” to obtain the patient’s recent laboratory results for common 
important tests. 

 Ability to recover from an interrupted CPOE session without loss of work (time 
and effort) is critical to busy clinicians’ acceptance of such systems. Lost sessions 
can occur due to system bugs (such as the users’ workstation crashing), environ-
mental factors (such as network outages or power failures), and user factors (such as 
abandoning a workstation during a medical emergency, with a subsequent session 
timeout). Figure  15.10  shows the alert that occurs upon initiation of a patient- 
specifi c CPOE session for a patient with a previously interrupted session. The user 
is then given the option to play back and recover the orders from the previously 
interrupted session.

   Among the many other types of alerts that can occur at the stage of initiating a 
patient-specifi c CPOE session are: presentation of a summary of past alerts and 
warnings related to the patient’s orders – e.g., allergies and drug interactions; 
 notifi cation of medications about to expire; display of the names of active protocols 
for the patient (e.g., “Deep Venous Thrombosis prophylaxis protocol”); and promo-
tion, via reminders, of new protocols for which the patient is eligible. Figure  15.11  

  Fig. 15.9    “Patient list” view of CPOE ward census. Several graphical “icon” alerts ( left  margin 
next to patient name) provide useful information regarding ward census at a glance. The  inverted 
triangles  provide duplicate last name warnings; “S” indicates patients for whom medical students 
have entered orders that must be reviewed by a licensed medical doctor to become “activated;” and 
pumpkins indicate patients who have been bedded as outpatients long enough that conversion to 
inpatient status (or discharge to home) should be considered       
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  Fig. 15.10    Interrupted/incomplete previous WizOrder CPOE session warning. Allows user to 
recover from previously interrupted ordering session       

  Fig. 15.11    Admission Wizard prompts user to select evidence-based protocol for patient when 
relevant to case       
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illustrates an admission wizard that indicates to the user, for the ward on which the 
patient is bedded (e.g., Cardiology), the commonly used, evidence-based best-of- 
care order sets that are available within the system (e.g., acute coronary syndrome), 
and it encourages the user to select one for use on the patient, if applicable. The 
structure of such an order set, once selected, is shown in Fig.  15.4  in the upper right 
window (acute coronary syndrome, PANE #2).

15.4.4        Stage of Individual (Single) Order Selection 

 Upon selecting a specifi c CPOE orderable item, and before the user specifi es the 
exact details of the order, certain types of decision support checks become appropri-
ate. For example, at the time the user indicates the next order is a drug, CPOE-based 
allergy and drug-drug interaction checking should display any relevant warnings. 
These alerts should appear before the user can specify any details of the drug order 
(dose, route, frequency, etc) – to avoid wasting the user’s time. Figure  15.12  illus-
trates the latter category of WizOrder warnings, after entry of a new medication 
name.

  Fig. 15.12    Drug-drug interaction warning after entry of new medication name       
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   Individual order selection can also trigger protocol-based interventions such as 
recommending drug substitutions (suggesting a less expensive or more effective 
medication than the one originally selected). Similarly, single order selection can 
initiate computer-based advisors related to the specifi c order (Fig.  15.13a, b ). An 
analogous mechanism to redirect physician workfl ow existed circa 2000 in the 
BloodLink-Guideline system in the Netherlands [ 58 ]. Many  CPOE systems   offer 
the capability to link order sets to individual selectable orders (i.e., to transfer the 
user to an order set when an individual order is selected) [ 56 ,  59 ,  65 ,  70 ,  76 ]. Order 
sets are described in detail below.

15.4.5        Stage of Individual (Single) Order Construction 

 Once the user selects an order name, the CPOE  system   assists the user in complet-
ing required steps for order construction (see Fig.  15.14  for an example of instruc-
tions during cyclosporine ordering). WizOrder guides medication order construction 
by highlighting recommended drug doses and common drug administration fre-
quencies; it also presents alerts for potentially incorrect decisions. This is similar to 
what is described in the literature for the BICS system implemented in Boston circa 
2000 [ 66 ,  73 ]. Many  CPOE systems   also provide computer-based advisors to 
enforce compliance with established, evidence-based guidelines [ 58 ,  77 ]. As 
described in Chap.   14    , the antibiotic assistant system at LDS Hospital in Salt Lake 
City recommends therapy options for critically ill patients based on patient vital 
signs and serology, microbiology, pathology, and radiology results [ 77 ].

   Based on their research, Bates et al. observed that clinicians generally take the 
path of least resistance when multiple options are available during decision-mak-
ing [ 73 ,  85 ,  86 ]. Providing effective decision support involves not only alerting the 
provider about a potential  error  , but providing a correct alternative option as well. 
For instance, in the BICS system, if meperidine hydrochloride is prescribed for a 
patient whose creatinine clearance (a measure of renal function), is signifi cantly 
impaired, an alert notifi es the user that the drug might possibly promote seizures in 
this patient, and suggests a substitute medication rather than stop the user outright. 
[ 84 ] Similar approaches have been used to guide geriatric medication dosing and 
substitutions.  

15.4.6     Stage of Individual Order Completion 

 Once an individual order’s components have been fully specifi ed (and any allergy or 
other alerts that might have prevented order construction have been dealt with), a 
number of decision-support functions related to the order as a whole become appro-
priate. Upon completed order construction, many  CPOE systems   suggest corollary 
orders – follow-up tasks clinically indicated after certain orders [ 73 ,  84 ,  87 ,  88 ]. For 
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  Fig. 15.13    ( a)  Clinician-user initially attempted to order “VQ scan” of lung for pulmonary embo-
lism, and WizOrder completer maps to offi cial name of test (item 1 in PANE #2), which user then 
selects by typing choice in PANE #4. ( b)  Selecting lung scan order from A launches anticoagula-
tion adviser in WizOrder, helps clinician select appropriate diagnostic workup, and therapy for 
suspected or confi rmed deep venous thrombosis (DVT) or pulmonary embolism (as well as DVT 
prophylaxis and therapy for other disorders such as acute coronary syndrome)       
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example, after ordering gentamicin, an antibiotic, it is often appropriate to order 
serum drug levels. Figure  15.15  illustrates this capability in WizOrder. In the 1990s 
the RMRS system similarly presented corollary orders for many drug-drug monitor-
ing test pairs (e.g., warfarin prescriptions and related INR/prothrombin time tests) 
and for drug-drug side effect pairs (e.g., prescription of class II narcotics and orders 
for stool softeners to treat/prevent the constipation caused by narcotics) [ 87 ]. 
Another example is offering clinicians the opportunity to order heparin (to prevent 
DVT) after a completed order for bed rest (which predisposes to DVT); however, 
this may be more appropriate at the stage of ordering session completion [ 84 ]. 
Research has shown more effective ordering and improved outcomes as a result of 
such systems [ 89 ].

15.4.7        Stage of Ordering Session Completion 

 Once the user has specifi ed all individual new (or modifi ed) orders and wishes to 
fi nalize the ordering session, various decision-support related exit checks are appro-
priate. As noted above, recurring reminders to do what the clinician user already 

  Fig. 15.14    “In-line”, patient-specifi c, interactive advice for clinician while attempting to pre-
scribe cyclosporine for patient; developed by experts in the pharmacy to guide clinician to best 
choice       
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intended to do are not well tolerated. Instead of using automatically generated 
(“corollary”) orders to prompt PTT and INR monitoring after orders for heparin and 
warfarin, respectively, WizOrder waits until the user indicates that the ordering ses-
sion is complete. At that point, it becomes fair game to issue warnings if appropriate 
monitoring tests have not been issued. Also at that point, if a recent monitoring test 
indicates that the prescribed anticoagulant dose is suboptimal or excessive with 
respect to national guidelines, the system can issue an alert. Conversely, if during a 
given ordering session, a clinician discontinues either the heparin infusion or the 
PTT monitoring tests but not the other item of the pair, it is appropriate to use an 
ordering session exit check that warns the clinician that parallel actions to discon-
tinue both are usually needed. Figures  15.16  and  15.17  illustrate the two-part 
WizOrder exit check for ordering or updating the Richmond Agitation and Sedation 
Scale (RASS) target score whenever pain medications or sedatives are ordered for a 
patient in an ICU.

  Fig. 15.15    After completing gentamicin order (seen in PANE #1), system offers selectable genta-
micin monitoring orders (in PANE #2) as “one click away” for convenience (suggesting best prac-
tice, but not requiring it)       
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  Fig. 15.16    WizOrder “exit check.” On completing admission orders on an ICU patient, if the 
clinician- user has not specifi ed a target RASS (Richmond Agitation Sedation Scale) score, the 
system uses a pop-up alert to remind the clinician that it is ICU policy to do so       

  Fig. 15.17    User (from Fig.  15.16 ) requests assistance in specifying RASS score; web-based advi-
sor assists user with data collection and score calculation       
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15.5          Care Provider Order Entry Intervention Approaches: 
From Subtle to Intrusive 

 While the interfaces of successful  CPOE systems   are rarely seamless, users adapt to 
their styles of workfl ow after training and repeated use. Once acclimated to the 
CPOE system workfl ows, users do not appreciate interruptions that deter them from 
the previously noted path of least resistance [ 86 ]. Determining whether, how, and 
when to disrupt clinician workfl ows to provide appropriate decision support is criti-
cal to end-user acceptance of both the decision support and the CPOE  system   over-
all. Below, we describe a number of approaches to introducing decision support, 
from non-disruptive to very disruptive, and give examples of where each may 
appropriate. The sections below describe how and when to interrupt workfl ows. 

15.5.1     Incidental Display of Relevant Information 

 Presentation of additional viewable text on a portion of the usual application screen 
allows the user direct access to relevant information with minimal interruption to 
workfl ow. Because no user input (e.g., acknowledgment of the information) is 
required, and no additional information is available (e.g., the user cannot click on or 
select the displayed information to learn more), the clinician is free to read or to 
ignore the displayed information. WizOrder displays the most recent results of 
serum electrolyte tests during ordering of intravenous fl uid therapy. WizOrder also 
displays relevant dosing information for prescribing medications, for example, on 
pediatric units, the patient’s actual weight, dosing weight, and pharmacy- 
recommended dosing guidelines (see Fig.  15.7 ). When relevant, the system may 
also display information related to the patient’s renal function, or to the medication 
costs.  

15.5.2     Incidental Display of Linked Educational Opportunities 

 A CPOE  system   may have order-related educational information that is too volumi-
nous to include in the usual order entry screen. Under such circumstances, the 
CPOE system can present links for users to select (click on). These lead to a sepa-
rate screen/window providing the relevant textual information. Examples include 
links to relevant drug guidelines and formulary information [ 59 ]. The Vanderbilt 
Patient Care Provider Order Entry with Integrated Tactical Support study, [ 55 ] pro-
vided links to pharmacotherapy-related information (illustrated by the “GenRx” 
and “WizRx” links on the right margin of PANE #3, Fig.  15.2 ), and reference mate-
rial for  diagnosis   in internal medicine. Figure  15.18  provides an example, in PANE 
#5, of displaying an evidence-based summary of what is known about a specifi c 
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drug interaction (selected by the user from the drug interaction warnings list of Fig. 
 15.18 , PANE #2). In other systems, as clinicians review recommended drug doses 
for patients with renal impairment, they can display the data used to calculate creati-
nine clearance using a keyboard shortcut link [ 64 ].

15.5.3        Interactive Sequential Advice for User-Directed Clinical 
Activity 

 By presenting stepwise instructions in context,  CPOE systems   help users to carry 
out discrete tasks. Figure  15.2  presents the default minimum type of advice that 
WizOrder provides for order construction; Fig.  15.14  provides a more complex 
example whereby the user is sequentially prompted, through questions and answers, 
to order the most appropriate form of cyclosporine for the patient. Another system, 
the circa 2000 BloodLink Guideline system [ 58 ] directed blood test ordering deci-
sions by fi rst having the clinician select the appropriate guideline, then presenting a 
menu of related indications, and, fi nally, presenting a menu of relevant tests for a 
selected indication.  

  Fig. 15.18    Clinician prescribed cyclosporine while a currently active order for gentamicin was in 
place. Following a drug interaction alert (PANE #2), user clicks on item 1 to request evidence basis 
for what is known about the drug interaction (displayed in pop-up window, PANE #5)       
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15.5.4     Recallable Best Practice Guidelines with Actionable 
Pre-formed Pick List Selections 

 Order sets are pick lists containing constituent individual pre-specifi ed full (or par-
tially complete) orders, often representing standardized protocols. Figure  15.4  illus-
trates a portion of the WizOrder order set for acute coronary syndrome. Hierarchies 
of order sets enable easier end-user access, organized by clinical department, [ 40 , 
 59 ] by organ system, or by clinical  diagnosis  , condition, or procedure [ 57 ,  76 ,  90 ]. 
While users may view picking orders from order sets as foreign to, or a diversion 
from, the usual manner of constructing individual orders, appropriate use of order 
sets can often increase users’ time-effi ciency and promote completeness and cor-
rectness of orders [ 58 ,  60 ,  91 ]. Order sets have become a commonly used mecha-
nism for organizations to distribute “actionable” evidence-based medicine practice 
guidelines across healthcare systems.  

15.5.5     Pop-Up Alerts That Interrupt Workfl ow and Require 
a Response for the User to Continue 

 Pop-up alerts can present clinically important information (in a separate user inter-
face window) that must be acknowledged by the user before resuming previous 
CPOE activity. Use of such interventions is typically viewed by users as disruptive, 
and should be reserved for only the most severe clinical indications. So called “pop-
 up alert fatigue” can occur when too many alerts of this type disrupt clinical work-
fl ows [ 92 ]. In WizOrder and other systems, pop-up windows alert physicians when 
excessive chemotherapy doses are ordered [ 48 ,  93 ]. Figure  15.19  illustrates how 
WizOrder notifi es the user that the most recent laboratory test ordered will be sent 
out to a reference laboratory for completion. It provides advice on how to optimize 
ordering with respect to institutional policies regarding reimbursement for testing. 
This mechanism is used to display hospital-approved drug substitution regimens. 
Figure  15.20  shows a WizOrder drug substitution pop-up (implemented as an advi-
sor, see section 15.5.6 below). Figure  15.16  shows how the RASS exit check was 
implemented as a pop-up alert in WizOrder. Figure  15.12  illustrates how WizOrder 
uses the pop-up method to present a drug interaction alert.

15.5.6         Complex, Computer-Based Protocols That Interact 
with the User to Make Patient-Specifi c Calculations 
and Recommendations 

 The most complex form of decision support is an interactive advisor that integrates 
patient-specifi c information (laboratory results, active orders, weight, allergies, 
etc.) with complex guidelines or protocols, and presents calculated/derived 
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information to the user for decision making, typically involving a two-way dialogue 
between the application and the user. Complex advisors may combine educational 
advice, calculators for patient-specifi c dosing, and other functionality in one screen 
(Fig.  15.20 ). For example, the Antibiotic Assistant system at LDS Hospital in Salt 
Lake City is described in Chap.   14    . The LDS Antibiotic Assistant analyzes patient 
data and laboratory results in order to determine likely pathogens, and then deter-
mines the optimal treatment for the patient, including factors such as patient aller-
gies and local patterns of antimicrobial functions into its assessment. Using a 
different but analogous mechanism, WizOrder employs locally scripted Web 
browser pop-up windows to dynamically generate patient-specifi c advisory content 
[ 49 ,  50 ]. Figure  15.21  illustrates the WizOrder TPN ordering advisor for the neona-
tal intensive care unit (NICU).

  Fig. 15.19    Clinician user begins to order “selenium blood” level (PANE #2), prompting a pop-up 
warning (PANE #5) that stops workfl ow and demands attention. The pop-up explains that the test 
is sent to a reference laboratory and takes 3 days to perform. User is notifi ed that reimbursement 
may be compromised if patient is discharged before result is known. Pop-up provides instructions 
for alternative ordering mechanisms (that can be selected directly from pop-up) if clinician believes 
that obtaining the result of the order is not urgent/emergent for the current patient       
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  Fig. 15.20    User ordered an antibiotic for which the Pharmaceuticals and Therapeutics (P&T) 
Committee had recommended a substitution. A variant pop-up, this educational advisor guides the 
clinician through ordering an alternative antibiotic. Links to “package inserts” (via buttons) detail 
how to prescribe the recommended drug under various circumstances. A physician who knows 
little about the recommended drug could learn enough to prescribe it appropriately       

  Fig. 15.21    NICU total parenteral nutrition (TPN) advisor provides complex interactive advice and 
performs various calculations       
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15.6         CPOE Systems Circa 2015 

  The foregoing  summary   discussing how one might approach embedding  clinical 
decision support   into a CPOE system remains relevant in 2015. What has changed 
in the past decade is the likely recipients of such advice. Two to three decades ago, 
over a dozen academic institutions were actively engaged in the development and/
or maintenance of home-grown CPOE systems [ 94 ]. Due to several factors such as 
Meaningful Use system certifi cation requirements, that number is less than a half- 
dozen in 2015 [ 95 ]. The relative demise of academic de novo CPOE and electronic 
medical record (EMR) system development has occurred in parallel with concurrent 
adoption of commercial vendor CPOE and EMR systems in both academic and non- 
academic settings. This suggests that the gap between more fl exible, state-of-the-art 
home-grown academic CPOE and EMR systems and commercial systems may have 
narrowed substantially. 

 With respect to CPOE and EMR systems the long-term effects of diminished 
academic innovation is uncertain. Up to the recent past, many commercial system 
technologies were patterned after, or licensed from, pioneering academic systems 
[ 94 ]. In the near-term future,  responsibility   for innovation will increasingly fall to 
the vendor community. If so, it is unclear if vendors can develop as nimbly and 
 fl exibly as previous academic developers. Academic innovation took place in the 
setting of a single medical center populated by clinician end-users who were faculty 
colleagues of the developers. In academic settings, the end-user community was 
immediately available to provide unabashed, frank feedback regarding proposed 
system changes and their effects once implemented. Academic settings also enabled 
rapid deployment cycles (new releases of the “live” system every few days or every 
few weeks). Whether vendors can develop at a similar rate and in a similar manner 
is yet to be determined. A more deliberate development process is to some extent 
necessary, as vendors must safely support broad customer bases and maintain mean-
ingful use certifi cation. Additionally, many current high-ranking offi cers of current 
CPOE vendor companies learned their trade in academic settings before being 
recruited to the vendor community. Similarly, the abilities of academic clinical 
informatics units to teach their trainees how to develop and socio-technically imple-
ment innovative clinical systems may diminish. Optimal decision support develop-
ment requires a deep understanding of clinical practice and of clinical workfl ows in 
myriads of care providing settings. Ready access to practicing clinicians who can 
quickly provide fi rst-hand knowledge about how healthcare providers think and 
what information they require to make decisions may become less accessible to 
future developers. The relative decline of academic development may diminish the 
pipelines that have historically provided innovative technologies and accomplished 
leaders to the vendor community. 

 If a small number of future vendors provide the majority of systems to the aca-
demic community, benefi ts not possible with home-grown, one-of-a-kind academic 
systems may accrue. To the extent that vendors provide open systems, consortia of 
academic end-user informatics groups using the same vendor system (or the same 
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open-source standards adopted by different systems) may be able to collaborate 
across institutions. They could develop sharable CPOE and EMR functionality, as 
well as data-sharing modules, which add capabilities to the base vendor systems. A 
current example of such activity is the i2b2 consortium work [ 96 – 98 ] pioneered by 
Kohane and colleagues at Boston Children’s Hospital and the emerging SMART 
and FHIR interoperability standards [ 99 ]. Similarly, vendor systems that incorpo-
rate programmable external decision support modules may also enable collabora-
tive decision support module development across academic sites. Whether such 
generic systems can tightly integrate physician-centric decision-making environ-
ments into the  CPOE systems   in the manner illustrated in the discussion and fi gures 
above is uncertain .  

15.7     Conclusion 

 System developers, the technologists maintaining the system, and clinical experts 
must collaborate in managing clinical systems development and  implementation  . 
Integrating decision-support capabilities within clinical systems requires an under-
standing of the clinical signifi cance of a proposed intervention, detailed knowledge 
of the intervention itself, and a good understanding of the workfl ows of the clini-
cians who will be affected by the intervention. The authors have described multiple 
mechanisms for delivering decision support within the context of  CPOE systems   
using Vanderbilt’s WizOrder system for illustration. There are three important axes 
to consider: the role of decision support, when to intervene, and the method of inter-
vention. Framing decision support in this manner may help both developers and 
clinical end users to understand how to tailor the system whenever new decision- 
support needs arise. This framework may also be useful when evaluating and 
reviewing decision support within CPOE systems. 

 Offering decision support within a  CPOE system   provides both clinical end users 
and institutional administrators with the opportunity to substantially change the way 
that an institution carries out its work, and to improve patient care processes in 
terms of quality and  safety  .        
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