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Foreword

Pelton turbines are classical hydraulic machines to convert stream flow energy into

electricity for medium to high heads. Although invented already in the 1870s by the

American Lester Allan Pelton, his runner design is still largely used today in the

hydroelectric power industry. Compared to Francis turbines, Pelton wheels offer

particularly favourable partial load efficiency degrees and are preferred for low

flow rates. They are unrivalled for very high heads above some 700 m, so that their

application is mainly in the high mountain regions all over the world. Pelton runners

exist in all size classes, from very small Pico hydro applications, e.g. to use tap

water from water delivery systems, to the largest units with capacities of more than

400 MW like in the Swiss Bieudron hydropower scheme with a current world-

record head of 1883 m.

Despite the importance of these hydraulic impulse turbines in the hydropower

domain, there is only marginal fundamental literature on their theory and design.

This textbook of Dr. Zh. Zhang fills this gap, containing a broad analytical treat-

ment of flow processes in real-world Pelton turbines, which renders it so unique and

valuable for both the scientific and professional communities. Dr. Zhang not only

has a sound scientific background in this topic, stemming from laser-based instru-

mentation to small and large-scale experimental investigations, but also success-

fully integrates his professional experience originating from decades of work in the

hydraulic machinery or related industry into this textbook.

While the design of turbines is traditionally part of mechanical engineering,

Dr. Zhang also demonstrates that it cannot stand alone without considering the

solids contained in the power water in many Pelton turbine applications. Because

often run-off from mountain streams is used, the fluid at Pelton wheels is a water–

sediment mixture rather than a monophase liquid, despite significant efforts on the

civil engineering side to exclude the solids from the water using desilting schemes

and new types of flushing systems. At relative velocities of up to some hundreds of

kilometres per hour between jet and runner, depending on the head, the impact

energy of the flow is so enormous that even the most sophisticated coatings using

tungsten carbide, for instance, cannot resist these loads on the long term. An
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optimized turbine design is thus also needed to counter hydroabrasive wear phe-

nomena, which grow in extent due to increased sediment production as a result of

climate change.

I am convinced that this up-to-date textbook will have a great success among

researchers and engineering professionals in the fields of hydroelectricity and

hydromechanics, not least against the background of the growing worldwide need

for sustainable energy production from hydropower.

Zurich, Switzerland Robert M. Boes

January 2016
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Preface

Pelton turbines have been used for over 100 years to convert hydraulic energy into

mechanical work, as well as to generate electricity. The experiences achieved

during this long period have enabled Pelton turbines nowadays to be designed

and built with high hydraulic and mechanical performances. Nevertheless, there

had been until the end of the last century a noticeable lack of fundamental

explanations to the hydromechanics of this type of turbines.

To extend the general knowledge of Pelton turbines, the author started his

experimental research on jet flows in Pelton turbines at the beginning of the

twenty-first century within an R&D project of the company Andritz Hydro (former

VA TECHHydro) in Switzerland. Extended studies with the entire hydromechanics

of Pelton turbines as a part of research and development activities were carried out

at the Oberhasli Hydroelectric Power Company (KWO AG) from 2004 to 2007.

The results achieved through these research works have already been published in

both journals and conference proceedings and later summarized in German in the

textbook “Freistrahlturbinen”, Springer-Verlag, 2009. The current book originates

from that German version and is extended with new knowledge, partly obtained at

the Laboratory of Hydraulics, Hydrology and Glaciology (VAW) of ETH Zurich.

In this textbook, the foundations of hydromechanics of Pelton turbines are

presented from an engineering viewpoint of hydraulic designs and optimizations.

In terms of reference, the content thus concentrates on the detailed flow processes

and their quantitative descriptions regarding all relevant hydro-mechanical aspects.

This includes the computational methods for determining the interaction between

the jet and the rotating buckets, quantifying diverse flow losses in the system and

specifying flow phenomena like the frictional effect and load shedding, which leads

to the acceleration of the Pelton wheel rotation towards its runaway speed. The

book also reveals the possible potential for further enhancing the system efficiency

by indicating the most significant sources causing the greatest efficiency drops. It,

thus, provides a useful reference with design and operational criteria for practical

applications.
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For all these reasons, this textbook is suitable for development and design

engineers of Pelton turbines, as well as for those working in the field of fluid

machinery. The examples presented in this book generally apply to students in

advanced “fluid mechanics”. The author would especially welcome a lot of

mechanical laws and rules presented in the textbook to be implemented in the

context of Computational Fluid Dynamics (CFD). This should greatly contribute to

the simplification of the CFD simulations without having always to start from the

basic foundations, i.e. the Navier–Stokes equations.

The author wishes to thank the company Andritz Hydro for initiating the project

with the experimental investigation of jet flows. He again thanks the company

KWO for generously supporting the entire research works during that time. The text

was proofread for the correctness of English by Prof. K. Hutter, Ph.D. I thank him a

lot for his help. Finally, the author highly esteems and particularly thanks his lovely

wife Nan for her great spiritual support in the author’s research activities since

decades and especially for the great patience she has shown in the last difficult year.

Zurich, Switzerland Zhengji Zhang

January 2016
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Chapter 1

Introduction

In nature, hydraulic energy is a type of usable energy which can be directly

converted into mechanical energy. It has since more than one hundred years mainly

been utilized for the production of electricity. As a most important type of the

renewable energy, hydraulic energy shows its very broad perspective in the future.

More and more hydropower plants will be built or refurbished worldwide. In many

countries, hydraulic energy will be the main source for producing electrical energy.

In Norway, for example, almost the entire production of electricity is from the

hydropower. According to the Swiss Federal Office of Energy (BFE 2004), the

hydropower provides about 60% of the total electricity production in Switzerland.

The hydraulic energy in our nature exists in two main forms: the flowing water in

rivers and the stored water in reservoirs. Accordingly, different types of hydraulic

turbines are used for generating electricity.

Among various types of hydraulic turbines, the Pelton turbine (Fig. 1.1), which

is also called the constant-pressure turbine, represents an important and probably

also the most widely applied turbine type. The first Pelton turbine was invented by

Lester Allan Pelton in 1879 and tested successfully. The turbine is mainly used in

mountainous areas where the available water, for example, is stored in a lake or

reservoir which lies a few hundred to 1800 m above the turbine machines. The

turbine power ranges from several kilowatts to 400 MW (Angehrn 2000). In

Switzerland and Austria, Pelton turbines are predominantly installed in the Alpine

regions, most of them since more than 80 years ago.

A Pelton turbine essentially consists of a Pelton wheel with blades of the bucket

form and one or more injectors that generate the high-speed jets when leaving the

nozzle. The energy transfer from the high-speed jet onto the Pelton wheel is

performed through the interaction between the jet and the rotating buckets. Based

on this kind of hydraulic and mechanical interactions, the Pelton turbine technology

is divided into hydromechanics and structural mechanics. Both categories represent

a broad spectrum of state-of-the-art technologies and comprise the entire technical

and engineering aspects like the efficiency, reliability, and lifetime. Thus, on the

one hand, maximum hydraulic efficiency should be achieved in the design of the
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bucket profile, while on the other hand, the material safety and the expected lifetime

must be assured.

1.1 Hydromechanics of the Pelton Turbine

1.1.1 General Developments

For Pelton turbines, hydromechanics serves as the core technology which describes

the form and the extent of the exploitation of the hydraulic energy. This includes the

generation of the high-speed jet and the power exchange between the jet and the

Pelton wheel, aiming to achieve the maximum exploitation of the available hydrau-

lic energy. Based on the present state-of the-art technologies, hydraulic efficiencies

of about 90% can be commonly achieved in both the new constructions and the

refurbishment of existing Pelton turbines. This achievement is mainly attributed to

the significant improvement of the jet quality as well as to the experimental and the

Fig. 1.1 Two-injector Pelton turbine installed at the Oberhasli Hydroelectric Power Company

(KWO). Pressure head H ¼ 670m, flow rate _Q ¼ 8:25m3=s, rotational speed n ¼ 428:6rpm,

power output P ¼ 48:6MW
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operational optimizations of the interaction between the jet and the Pelton buckets.

In a great number of literature on fluid machines, such as Thomann (1931),

Pfleiderer and Petermann (1986), Quantz and Meerwarth (1963), Bohl (2004,

2005), Menny (2005), Giesecke and Mosonyi (2005), and Sigloch (2006), general

operation conditions and design rules for Pelton turbines can be found.

Despite the importance and the long history of Pelton turbines, nearly no

advanced hydromechanical applications can be found in this engineering design

specialty. At least physical flow processes in a Pelton turbine have not yet been as

well understood as in other fluid machines such as pumps and Francis turbines. In

hydraulic design of a Pelton turbine, the related practical experiences have thus

always played a major role besides applying general design rules. Even the opti-

mum bucket number of a Pelton wheel, for instance, is determined only by

experience or model tests without relying on any hydromechanical background.

The main reasons for the noticeable lack of knowledge regarding basic hydrome-

chanics of Pelton turbines are, according to Zhang and Casey (2007), the complex

flow conditions in both the high-speed jet and the unsteady interaction between the

high-speed jet and the rotating Pelton buckets. These flow characteristics are

fundamentally different from those in other types of fluid machines and also

show the difficulty in the analytical descriptions of the entire flow processes,

especially when the average shaft power needs to be determined from the unsteady

flow and thus unsteady power exchange.

1.1.2 Development of Experimental Methods

The hydromechanical optimization of Pelton turbines is primarily aiming to

achieve the maximum hydraulic efficiency. Owing to the difficulties in the calcu-

lation of unsteady flow processes, previous studies of Pelton turbines are almost

exclusively confined to experimental methods and model tests. The experimental

investigations have been primarily related to the measurements of the jet and the

water flow both in fixed and rotating buckets, while the model tests are mainly

conducted for flow visualization and measurement of the system efficiency.

In the experimental studies of high-speed jets, conventional methods of using

Pitot tubes and techniques of flow visualizations have for a long time played an

important role. The Pitot tubes were used for measurements of the flow distribution

within the jets. In this regard, we refer to the research applications, among others,

by Berntsen et al. (2001) and Brekke (2005). Photography and similar methods of

flow visualizations have often been used to mainly view the surface structure and

the stability of the jet. In the field test of a Pelton turbine, for instance, Staubli and

Hauser (2004) applied the photography for direct determination of the jet expansion

after leaving the injector nozzle. The measurements based on Pitot tubes and

photography indeed could hardly provide any accurate information about the

structure and dynamics of the jet. New advanced knowledge on the structure and

dynamics of real jet flow has been achieved by Zhang et al. (2000a, b, 2003)
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through flow field measurements by means of laser Doppler anemometry (LDA),

which allows nonintrusive optical access in the high-speed jet. In particular, the

secondary flow structure in high-speed jets, even very weak, can be exactly

measured by the dual measurement method (DMM) developed by Zhang (2005).

Existence of secondary flow in the jet, as confirmed by measurements, basically

explains the observations of the jet instability and the disturbance on the jet surface.

Essential characteristics of the jet flows and experimental investigations by means

of the LDA measurement technique have been summarized by Zhang and

Casey (2007).

Experimental measurements of flows in Pelton buckets are associated with great

hindrance because of the difficult access to the flow there. Therefore, only flow

visualization on the interaction between the jet and the rotating buckets as well as

on the exit flow out of the buckets could be accomplished in most earlier investi-

gations. The nonstationary spreading of water in the rotating buckets could not yet

be reliably captured by experimental measurements. Very often, therefore, the

water velocity relative to the rotating buckets has been assumed to be constant.

However, this assumption, in fact, is realistic only for inviscid fluids and, addition-

ally, when the effect of the centrifugal force is neglected. In many cases, neverthe-

less, the assumption is acceptable if only a qualitative flow and flow distribution in

the rotating bucket is sought. Else, one must clearly specify when and for what

purposes exact quantitative knowledge of the water flow in the rotating bucket

would be required. To determine the hydraulic power exchange between the water

and the rotating buckets, it is basically sufficient to only consider the flows at the

bucket entry and exit, without scrutinizing the exact flow process in the bucket.

Since the beginning of this century, measurements have been widely extended to

the pressure distributions on the bucket surface in the model turbine. Corresponding

pressure measurements in the rotating Pelton buckets were published, for example,

by Angehrn (2000), Kvicinsky et al. (2002), and Perrig et al. (2006). The pressure

measurements in a Pelton bucket which is fixed on the ground of the laboratory

were carried out by Zoppé et al. (2006). Strictly speaking, the measurement result

from a fixed bucket should not and cannot be applied to a rotating bucket, because

the available volume forces that determine the flow in the bucket are not the same. It

should also be mentioned here that most pressure measurements were carried out

with the aim to validate the numerical simulation of the flow in the rotating bucket.

The pressure distribution itself on the bucket surface is not of practical significance,

except for the simulation of the abrasive particle motion in the flow towards the

bucket surface (see Chap. 22).

Most hydraulic measurements up to now have been carried out in the laboratory

with model turbines. Since no reliable analyses of the flow in the Pelton turbines

have been conducted, model tests remain the only way to verify and optimize the

hydraulic design of a prototype Pelton turbine. As a matter of fact, there is always a

discrepancy in the hydraulic efficiency between model and prototype Pelton tur-

bines. One of the many reasons for this hydraulic discrepancy is the significant

difference in the Reynolds number between the model and the prototype turbines.

For this reason, the hydraulic efficiency, which is measured at a model turbine, has
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always to be scaled up to the prototype turbine. Such a calculation was worked out

by Grein et al. (1986) based on a great number of measurements. It was improved

and simplified later by Zhang (2006).

Based on experimental studies of various Pelton wheels, Taygun (1946) could,

e.g., optimize the number of buckets of a Pelton wheel as a function of the ratio of

the Pelton wheel diameter to the jet diameter. In fact, this diameter ratio also

represents the hydraulic specification of a Pelton turbine, i.e., the specific speed.

Continuous model tests of Pelton turbines in the past have been leading to an

achievement of the hydraulic efficiency of over 90%. Further optimization and

enhancement of turbine efficiencies through model tests, however, seem to be

difficult to achieve, because the potential for further improvement cannot be

accurately revealed, identified, and quantified, neither by flow visualization nor

by measurements of the system efficiency. Because of the related high costs in the

model tests and mainly because of the advanced achievements in both the analytical

calculations and the numerical simulations based on computational fluid dynamics

(CFD), the model tests increasingly lose their original significance.

1.1.3 Development by Numerical CFD Methods

Another method for investigating the flows in Pelton turbines is numerical simula-

tion based on computational fluid dynamics (CFD). Application of the CFD method

to the hydromechanics of Pelton turbines began in the late 1990s of the last century

and is becoming increasingly significant. Mention should be made of investigations

carried out, for instance, by Kubota et al. (1998), Parkinson et al. (2002, 2005),

Muggli et al. (2000), as well as Mack and Moser (2002). The main topic of

investigations by the CFD method has focused on the interactions between the jet

and the rotating buckets as well as the relative flows within the buckets. These are

the flows that are so far not easily accessible by experimental measurements. CFD

simulations are therefore likely considered as an available way for investigating

complex flows in Pelton turbines, provided that they are reliable and able to reveal

the possibility of improving the system efficiency. Until the fulfillment of these

requirements, however, there is still a long way to go. Since there is hardly any

available direct measurement of the flow in the rotating buckets, the numerical

simulations can yet hardly be validated in most cases. The aforementioned pressure

measurements on the inside of a Pelton bucket, as carried out by Kvicinsky

et al. (2002), Perrig et al. (2006) and Zoppé et al. (2006), have all been conducted

for validation purposes of the CFD simulations.

The necessity of validation of CFD simulations has its background in the fact

that the CFD simulations are based on the use of particular and different turbulence

models in solving the Navier-Stokes equations. So the computational results might

first have to be validated. In implementations of the flow in Pelton turbines, the

computational accuracy of the results of the CFD method is further endangered by

the fact that in addition to the assumed turbulence model, the free surfaces of both
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the water jet and water sheet in the bucket must be always assumed as a finite fluid

domain of a two-phase flow. Furthermore, although the flows, e.g., in the rotating

bucket, can be simulated by CFD methods, the physical basis of the related flow

phenomena usually cannot be satisfactorily explained. With other words, it could

not be made clear, for instance, how the centrifugal and Coriolis forces will,

respectively, influence the flow. Because of these facts, it so happens that each

time when the operation or design parameters change, a new expensive and

complex CFD simulation must in general be performed.

1.1.4 Developments of the Analysis Methods

Based on the long history, continuous design, and operation optimizations in the

past, primarily through model tests, Pelton turbines actually have already reached a

very high technical level of their system efficiency. Further improvement of the

system efficiency is almost only possible if the related improvement potential can

be demonstrated by thorough analyses of all relevant flow mechanical processes

taking place in the Pelton turbine. This actually means nothing else than to track

first all the possible sources of the system’s efficiency losses and then to accurately

estimate their respective magnitudes. The second step is clearly based on the

detailed hydromechanical analyses, even under certain assumptions. In other

words, the outcomes and conclusions from such analyses do serve as guidance for

further and purposeful hydromechanical optimizations.

To describe the dynamical flow processes in a Pelton turbine, basically the

Eulerian and the Lagrangian methods should be combined and applied. This is

justified by the fact that the unsteady motion of the water sheet in the rotating

bucket can be described in a first approximation by tracking the representative

water particles. In fact, the Lagrangian method behaves in this case similarly as a

method in analytical mechanics. This is so, because the movement of the water

sheet in the rotating bucket takes place under nearly constant pressure. As for a

solid particle only the centrifugal, Coriolis and inertial forces are active. The

corresponding equations of motion could long be derived; however, they have not

been treated further for deriving any useful conclusions. Kishioka and Osawa

(1972) are among few research groups, who tried in their analytical studies to

describe the flow in a rotating Pelton bucket and to determine the losses associated

with various flow patterns. Apparently, the analyses were not further pursued

because of the complex fluid mechanical relations and the related difficulties in

the emergent inferences.

Advanced analyses of the fluid mechanics in the rotating buckets were carried

out by Zhang and M€uller (2005, 2006, 2007) and Zhang (2007a, b, 2009a, b, c). The
derived jet layer method in connection with the so-called invariance equation
procedure highly contributes to the simplifications of calculating the unsteady

flow in the rotating Pelton buckets. Especially, a sophisticated analysis shows that

the viscous friction between the water sheet and the bucket surface represents the
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most significant cause for the efficiency loss in a Pelton turbine. The corresponding

relation to the viscous flow friction has been referred to as flow friction theorem
(FFT). It provides for the first time the physical and the mechanical confirmation

that in favor of the hydraulic efficiency the inner surface of Pelton buckets should

be designed as smoothly as possible. It thus indicates that reducing the friction loss

in the bucket flows is the most effective way for enhancing the system’s efficiency.

1.1.5 Further Hydraulic Aspects

Other hydraulic aspects of Pelton turbines are confirmed as follows:

– Regulation of the flow rate through the injector concerning the water hammer in

the system

– Determination of the hydraulic forces exerted on the servomotor of the injector

– Interaction between the high-speed jet and the rotating buckets at the bucket

entry

– Hydraulic force arising from the momentum exchange

– Exit flow conditions for the flows out of the buckets

– Minimum offset angle between two adjacent injectors at a multi-jet Pelton

turbine

– Bucket shape

– Water spray

– Design of the turbine casing

– Runaway speed of the Pelton wheel after the load rejection on the side of the

generator

All these points are worth mentioning and highly relevant for the hydraulic

design of a Pelton turbine. Some of them can be easily examined; some are still

relying on empirical estimations. Worth mentioning is that among all these points,

the exact determination of the runaway speed of the Pelton wheel for the load

rejection was derived by Zhang and M€uller (2007). The method also applies to

accurately calculating the entire acceleration process of the Pelton wheel rotation

after the load rejection and before reaching the maximum runaway speed.

1.2 Structural Mechanics of Pelton Turbines

Besides the hydromechanical specification of Pelton turbines, the structural

mechanical design represents another important aspect of Pelton turbine technol-

ogy. It pertains to the functionality and reliability of all elementary components,

including the distributor, injector, wheel, turbine casing, and so on. In particular, the

periodic mechanical loading of the Pelton buckets requires safe mechanical design

and the selection of proper materials. All other mechanical components such as the
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servomotor and the deflector must be designed in accordance with the maximum

possible loads in terms of hydraulic forces.

One of the biggest problems in the operation of Pelton turbines is fatigue of the

material and cracking of the Pelton buckets in the root region, where the greatest

material stress is recorded as a result of the largest periodic bending moment. About

the material strength of Pelton buckets, numerous studies have been conducted.

These include, e.g., investigations carried out by Grein et al. (1984) and Grein and

Angehrn (1986). From experience gained in the operation of Pelton turbines, the

upper stress limit of materials under periodic loads has become reliably well

known. It apparently depends on the material properties and is distinguished

between the manufacturing processes. While earlier Pelton wheels were almost

all made of cast steel or the Pelton buckets were screwed on a wheel disk, Pelton

wheels nowadays are often directly machined from a forged stainless steel disk. A

significant increase in the resistance capability of Pelton buckets against fatigue

cracking and therefore in lifetime has, thus, been achieved.

In accordance with the state-of-the-art development of the finite element method

(FEM), the material stress and thus the bucket strengths under each dynamic load

can accurately be calculated. FEM calculations, therefore, become to be indispens-

able already in the design phase of a Pelton turbine, aiming to predict the bucket

load capacity.

Of utmost significance of Pelton turbines in operation is sand abrasion of the

Pelton buckets. The latter mostly occurs at the power station to which there is no

reservoir available or this reservoir is too small for effective sand sedimentation. In

the worst case, the season-depending flooding water directly flows to the Pelton

turbines. The sand abrasion often leads to a significant decrease of the system

efficiency as well as a shortening of the maintenance period of Pelton buckets

(Maldet 2008). As a passive method against sand abrasion, one must shut down the

Pelton turbine during the period of high particle concentration in the flow. As highly

effective against wear and abrasion, the thermal spray coating of the inner surface

of Pelton buckets with hard materials has been validated and increasingly applied in

the praxis (Winkler and Dekumbis 2010). We mention that the coating of the bucket

surface often leaves the rough surface texture which, if possible, should be

smoothed for reducing the friction effect. The coating method against wear and

abrasion has also been extended to the needle surface and the surface of injector

nozzles, as these are also very likely to be worn out by sand abrasion.

1.3 Objectives of This Reference Book

This monograph summarizes all available relevant knowledge in Pelton turbine

hydraulics and provides an overview of the related technology as of the year 2015.

As a reference book, it thus provides useful operation and design criteria of Pelton

turbines on a wide range of hydromechanics. On the hydromechanical side, all flow

processes from the generation of the high-speed jet to the power output will
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systematically be described. The detailed mathematical descriptions of all flow

processes serve on the one side to quantitatively reveal the influences of different

operation and design parameters on the operation performance of a Pelton turbine

and on the other side to demonstrate the relations between different physical

processes in a Pelton turbine. Since quite a lot of flow processes in a Pelton turbine

and their effects on the power exchange can be represented explicitly and exactly,

the knowledge can be utilized to further and more accurately specify all the

empirical data in the hydraulic design of Pelton turbines. In particular, some

computational results under certain conditions can be directly used to validate the

numerical simulations. From the viewpoint of the author as well as from the

author’s previous successful applications, the knowledge and the associated flow

mechanical laws can be directly implemented for instance in the CFD code. This

will provide the prospective possibility of further improving the numerical simula-

tion methods. It would then no longer be necessary, to start the numerical simula-

tion each time from the Navier-Stokes equations. Since both the inaccurate

turbulence model and the unrealistic assumption of the two-phase model on the

free surface of the flow (water jet and water sheet) are not required, high-quality

computational results should be obtained.

The present book originates from the German version of the book

Freistrahlturbinen (Zhang 2009d), however with some extensions added to it.
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Chapter 2

Working Principle of Pelton Turbines

2.1 Conversion of Hydraulic Energy into Mechanical

Energy

In hydropower plants with Pelton turbines, the available hydraulic energy exists as

potential energy, which is measured in the form of the geodetic height difference

between the upper level of water in the reservoir and the turbines in the machine

house of a lower altitude. This height difference is denoted as hydraulic head in the

terminology of hydropower. The conversion of the potential energy into the usable

mechanical energy is completed by first converting the potential energy into kinetic

energy in the form of high-speed jets at the altitude of the turbine wheel. For the

energy conversion, one or many injectors can be used. By neglecting the friction

losses in the injector, the jet speed is calculated according to the Bernoulli equation

by

C0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
; ð2:1Þ

with H as the net pressure head at the inlet of the injector. This equation is generally

called the Torricelli formula.

As second step, the conversion of the kinetic energy of the jet into the mechan-

ical energy is accomplished by the interaction between the jet and the rotating

buckets of the Pelton turbine. As a working principle for simplicity, a straight

translating bucket of constant speedU is first considered (Fig. 2.1). This assumption

of straight movement means that during the interaction between the jet and the

bucket, only the impulsive force is effective.
The interaction between the water jet and the bucket is considered directly in the

relative moving system. For the flow at the bucket entry (index 1) and with

C1 ¼ C0, the relative velocity between the jet and moving bucket is given by
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W1 ¼ C1 � U: ð2:2Þ

With this relative velocity, the jet flow spreads in the bucket, forming a water sheet.

The change in the direction of the flow along the bucket surface is coupled with a

pressure increase below the water sheet as related to the impulsive force and

determined by the law of momentum. On the surface of the water sheet where the

atmospheric pressure is constant, the flow velocity is equal to W1 provided that

frictionless flow is assumed. The pressure as well as the velocity distribution across

the thickness of the water sheet will be considered in more details in Sects. 6.1.2 and

7.3 by considering the relative flow in a rotating Pelton bucket.

Once the water flow reaches and then leaves the bucket exit (index 2) at an angle

β2, it is again subjected to atmospheric pressure. The relative velocity of the total

water flow is then reset to its initial value according to Eq. (2.2), i.e.,

W2 ¼ W1 ¼ W. The absolute velocity is thus given by

C2
2 ¼ U2 þW2 þ 2UW cos β2: ð2:3Þ

According to the balance law of momentum, the change of the flow direction is

always related to an external impulsive force which acts perpendicular to the flow

direction. This force is nothing else than the pressure below the water sheet. For its

determination the momentum flux difference between the entry and the exit of the

moving bucket must be evaluated. The component of the total force in the direction

of the bucket motion is calculated by the following momentum balance equation:

Fbucket ¼ _m w W1 �W2 cos β2ð Þ ¼ _m wW 1� cos β2ð Þ: ð2:4Þ

C2

β2

U
C1=C0

Fig. 2.1 Flow interaction

and energy conversion

between the jet and a

straight-moving bucket
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Fbucket denotes the force exerted by the water on the bucket. Moreover, _m w ¼ ρW
Ajet is the total mass flow of water in the relative frame of the moving bucket. It is

related to the mass flow rate _m c ¼ ρC0Ajet in the absolute frame by the relation

_m w ¼ W

C0

� _m c: ð2:5Þ

This equation states that because of κ ¼ C0=W > 1, a jet piece leaving the injector

nozzle within one second will need κ seconds in order to completely reach and enter

the moving bucket. The factor κ can therefore also be understood as a time factor.

For this reason, the impulsive force exerted on the bucket, as given in Eq. (2.4), may

be rewritten as

Fbucket ¼ _m c

W2

C0

1� cos β2ð Þ: ð2:6Þ

The power, received by the bucket, is thus calculated as

P ¼ FbucketU ¼ _m c

W2

C0

1� cos β2ð Þ � U: ð2:7Þ

Although the condition for maximum power output can be calculated from dP=dU
¼ 0 leading to U=C0 ¼ 1=3, this condition, however, does not represent the

condition for the maximum conversion of the kinetic energy stored in the jet into

mechanical energy of the moving bucket. To reveal the energy conversion process,

the specific energy (J/kg) of the jet must be taken into consideration. Therefore, a

unit mass of water (1 kg) is assumed to flow out of the injector nozzle within the

time tc ¼ 1= _m c. This mass of fluid will then need a time of tcκ to completely reach

and enter the moving bucket. The specific work, done by its interaction with the

moving bucket, is given by

e ¼ P � tcκ: ð2:8Þ

With Eq. (2.7) as well as κ ¼ C0=W and _m ctc ¼ 1 one thus obtains

e ¼ UW 1� cos β2ð Þ: ð2:9Þ

The maximum specific work done by a unit mass of the fluid is then obtained by

setting de=dU ¼ 0. With W ¼ C0 � U it follows

U

C0

¼ 0:5: ð2:10Þ
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Such a speed ratio represents the condition under which Pelton turbine operations

theoretically should always be configured. The specific work done by the unit mass

of the jet flow is then obtained from Eq. (2.9) to

e ¼ 1

4
C2
0 1� cos β2ð Þ: ð2:11Þ

The exit velocity of water out of the bucket results from Eq. (2.3) as

C2
2 ¼

1

2
C2
0 1þ cos β2ð Þ: ð2:12Þ

From Eq. (2.11) it is evident that the maximum specific work is obtained when the

flow angle at the bucket exit is configured to β2 ¼ 180�. It then follows

e ¼ 1

2
C2
0: ð2:13Þ

It is obviously equal to the specific kinetic energy which is available in the jet. The

exit velocity is obtained from Eq. (2.12) as

C2 ¼ 0: ð2:14Þ

This means that the total energy stored in the jet is entirely transferred to the moving

bucket.

In practical design of Pelton turbines, the exit velocity C2 cannot be zero because

water, after leaving the bucket, has to fly away from the bucket to make the way free

for the following buckets. As a consequence, the flow angle for the exit flow has

usually been configured to be β2 � 170�. The kinetic energy corresponding to the

exit velocityC2 6¼ 0and thus remains unexploited and must be regarded as a loss. In

practice, it is often referred to as the exit or the swirling loss.
The model shown in Fig. 2.1 is a hydraulic model at which for inviscid fluids the

exit loss represents the only loss in the model system. The hydraulic efficiency is

then defined as the ratio of the specific work to the specific kinetic energy in the jet.

From Eq. (2.9), with W ¼ C0 � U, this is calculated to be

ηh ¼
e

C2
0=2

¼ 2 � 1� U

C0

� �
U

C0

1� cos β2ð Þ; ð2:15Þ

or, with k ¼ U=C0,

ηh ¼ 2k 1� kð Þ 1� cos β2ð Þ: ð2:16Þ

In Fig. 2.2, this hydraulic efficiency is illustrated as a function of the velocity ratio

k and for the exit angle β2 ¼ 180�. The maximum hydraulic efficiency is obviously

obtained at k ¼ 0:5,
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ηh,max ¼ 0:5 1� cos β2ð Þ: ð2:17Þ

When the viscous friction loss in the flow of the water sheet cannot be neglected, the

calculation of the hydraulic efficiency then has to be modified accordingly. This

will be described in detail in Chaps. 10, 11, and 15.

2.2 Pelton Turbines and Specifications

A Pelton turbine essentially consists of one or more injectors for generating the

high-speed jet and a wheel with buckets for receiving the jet energy (Fig. 2.3). An

injector must primarily perform two tasks. Firstly, the injector nozzle converts the

pressure energy of the water into the kinetic energy of the high-speed jet. Secondly,

the injector regulates the flow rate via a built-in needle which is driven by a

servomotor. The power exchange is finally achieved by the interaction between

the jet and the Pelton buckets. Because of the rotation of the Pelton wheel, both the

centrifugal and Coriolis forces are influencing the flow. The form of the flow and its

distribution within the bucket therefore differ fundamentally from those in the

straight-moving bucket. The basic principle of energy conversion, as described in

Sect. 2.1, also applies to the Pelton turbines. For Pelton turbines, however, both the

design and the flow parameters need to be specially specified as described in the

following sections.

2.2.1 Geometric Specification of the Pelton Wheel

According to Fig. 2.4, a Pelton wheel is mainly configured by the following

parameters:

Jet circle (also called pitch circle) diameter Dm ¼ 2Rm

Wheel bucket inner diameter Db ¼ 2Rb

0

0.2

0.4

0.6

0.8

0 0.2 0.4 0.6 0.8 k 

β2=180° ηh
Fig. 2.2 Efficiency

characteristic of the flow

interaction system

according to Fig. 2.1 with

β2 ¼ 180�
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Fig. 2.3 Pelton turbine with two injectors at a hydropower plant in Kleintal
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Wheel diameter Da ¼ 2Ra

Tip circle diameter of the main splitter Ds ¼ 2Rs

Circle diameter of the bucket cutout edge Dc ¼ 2Rc

Number of buckets N
Bucket inner width B
Bucket exit angle β2
Base circle radius of the main splitter rs

The basic design of a Pelton wheel relies on the flow specification in the turbine

system. The dimensioning of the Pelton wheel additionally depends on the permis-

sible rotational speed of the generator. Additional details can be found in Chap. 18.

The bucket exit angle β2 is determined under certain circumstances by the required

exit flow conditions (Chap. 8), while the optimum bucket number will be derived

from coincidence and symmetry conditions (Chap. 5).

Rc

ω
Rs

rs

Ra

Rb

Rm

d 0

β2

BB B cB a

cutout

Fig. 2.4 Geometric parameter specification of a Pelton wheel
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2.2.2 Characteristic Hydromechanical Parameters

In the field of turbomachinery, diverse dimensionless numbers function as para-

metric quantities which are often used to specify the size of the machines and to

quantify the flow performances. For Pelton turbines, however, only few of them are

relevant for the geometric and hydraulic design as well as for the turbine operations.

The most important parametric quantities are summarized in this section.

2.2.2.1 Peripheral Speed Coefficient km

The peripheral speed coefficient is defined as the ratio of the peripheral speed Um of

the Pelton wheel on the jet circle (Rm in Fig. 2.4) to the jet speed C0

km ¼ Um

C0

¼ Umffiffiffiffiffiffiffiffiffi
2gH

p : ð2:18Þ

The peripheral speed coefficient is one of the most important parameters in the

design of Pelton turbines. It has the same meaning as the parameter k in Eq. (2.16)

and represents the hydraulic efficiency in a similar form as that in Fig. 2.2. In

practice, the peripheral speed coefficient has so far always been set in the range

0.45–0.48, at which the maximum possible hydraulic efficiency can be achieved.

In general considerations of turbomachinery, the pressure head coefficient,

defined as ψ ¼ Y= U2
m=2

� �
, is often used, where Y ¼ gH is the specific work of

water sources per unit mass. It can be shown that there exists the following relation

between the peripheral speed coefficient and the pressure head coefficient

km ¼
ffiffiffiffiffi
1

ψ
:

s
ð2:19Þ

For this reason, the head coefficient in Pelton turbine flows will not be used.

2.2.2.2 Bucket Volumetric Load φB

The jet thickness relative to the bucket width represents the dimensionless bucket
volumetric load.1 Because the flow rate is proportional to the square of the jet

thickness, the bucket volumetric load can also be represented by the flow rate of a

single injector ( _Q jet). It is thus defined by

1 In Chap. 23, the bucket mechanical load will be evaluated with respect to the jet impact force and

the material strength of the bucket.
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φB ¼
_Q jet

π=4 � B2
ffiffiffiffiffiffiffiffiffi
2gH

p ; ð2:20Þ

with B as the bucket inner width.

The flow rate of a single injector is given by _Q jet ¼ π=4 � d20
ffiffiffiffiffiffiffiffiffi
2gH

p
, with d0 as the

jet diameter. Consequently, the bucket volumetric load is given by

φB ¼ d0
B

� �2

: ð2:21Þ

It is simply expressed by the ratio of the jet thickness to the bucket width. Because

of its geometric feature, the bucket volumetric load expressed by Eq. (2.21) is much

more comprehensible than that of Eq. (2.20). For this reason, Eq. (2.21) will be

preferably used in this book.

The bucket volumetric load is used on the one hand to represent the flow rate in a

dimensionless form and on the other hand to determine the necessary width of the

Pelton buckets. The bucket width is usually designed so that at nominal or maxi-

mum flow rate, the jet diameter d0 does not exceed one-third of the bucket width B.
This yields φB ¼ 0:09 to 0.11 as design criterion for the bucket width.

2.2.2.3 Specific Speed nq

The specific speed is a parametric quantity which has been widely used in all types

of rotating fluid machinery. In the specification of Pelton wheels, the specific speed

has a special explicit meaning. As directly taken over from the technical literature,

for instance Pfleiderer and Petermann (1986), the specific speed is defined by

nq ¼ n

ffiffiffiffiffiffiffiffi
_Q jet

q
H3=4

: ð2:22Þ

It is obviously not dimensionless, nor does it have the same dimension as the

rotational speed n. To avoid confusion in applications, _Q jet and H in the above

equation can be considered to be normalized by the unit flow rate _Q jet ¼ 1m3=s and

the unit pressure head H ¼ 1m, respectively. Then n and nq have the same unit,

either 1/s or 1/min. In the present work, the specific speed nq is mainly used with the

unit 1/s.

As an alternative to the specific speed defined in Eq. (2.22), the following

definition can also be found in the literature:
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ny ¼ n

ffiffiffiffiffiffiffiffi
_Q jet

q
gHð Þ3=4

¼ n

ffiffiffiffiffiffiffiffi
_Q jet

q
Y3=4

: ð2:23Þ

In this definition, the unit of the rotational speed is 1/s.

Between the two definitions of the specific speed, the following relation exists:

nq ¼ g3=4ny ¼ 5:54ny 1=sð Þ: ð2:24Þ

One obtains further by using the unit 1/min for the speed,

nq ¼ 333ny 1=minð Þ: ð2:25Þ

The specific speed is primarily used when for a given flow rate and a given pressure

head, a Pelton turbine should be defined by specifying the injector number, the

rotational speed, and the wheel dimension. The exact computational algorithm for

the design of a Pelton turbine by using the specific speed is presented in detail in

Chap. 18. For practical engineering applications, only the specific speed according

to Eq. (2.22) is used in this book.

It should also be noted that the specific speed indeed represents the diameter

ratio δ ¼ Dm=d0 which is a dimensionless quantity and called the diameter number

(Sigloch 2006). This can be confirmed using Eq. (2.22) by considering the flow rate
_Q jet ¼ 1

4
πd20

ffiffiffiffiffiffiffiffiffi
2gH

p
and the peripheral speed coefficient according to Eq. (2.18). One

obtains

nq ¼ g3=4
km

21=4
ffiffiffi
π

p d0
Dm

¼ 2:63km
d0
Dm

1=sð Þ: ð2:26Þ

Here, the significance of the specific speed is clearly explained. Since the peripheral

speed coefficient km of Pelton turbines is practically a constant, the specific speed

represents exclusively the diameter ratio d0/Dm and is therefore essentially a

geometric parameter. With respect to the bucket volumetric load according to

Eq. (2.21), the specific speed is also interpreted as

nq ¼ 2gð Þ3=4
2

ffiffiffi
π

p km
ffiffiffiffiffiffi
φB

p B

Dm

¼ 2:63km
ffiffiffiffiffiffi
φB

p B

Dm

: ð2:27Þ

According to this equation and under nominal operations, at which φB � 0:11, the
specific speed also specifies the geometric design parameter (B/Dm) of the Pelton

wheel.

As the specific speed is, according to its definition in Eq. (2.22), directly

determinable from the flow rate and the pressure head, it is a particularly convenient

parameter for the design of a Pelton turbine from the given _Q jet and H. For this

reason, the diameter number δ ¼ Dm=d0 will not be used in this book.
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2.2.2.4 Characteristic Bucket Position Angle αo

The bucket position angle αo as shown in Fig. 2.5 represents an angle at which the

cutout of the bucket just intersects the jet layer on the jet axis. This angle has a

special meaning because it directly determines the so-called runaway speed of the

Pelton turbine. Whereas the computation of the runaway speed will be treated in

Chap. 17, the properties of this special bucket position angle and its connection with

the specific speed should be explained here.

The Pelton bucket geometries are usually similar from turbine to turbine.

Especially, the ratio of the bucket length to the bucket width is between 0.8 and

0.9. If, on this basis, the difference Dc � Dm ¼ 0:85B is applied, it follows from

Fig. 2.5 that

cos αo ¼ Rm

Rc

¼ 1

1þ 0:85B=Dm

: ð2:28Þ

To replace the term B/Dm, Eq. (2.27) is used. This results in

cos αo ¼
km

ffiffiffiffiffiffi
φB

p
km

ffiffiffiffiffiffi
φB

p þ 0:32nq
: ð2:29Þ

For nominal operations (index N) on average with km,N ¼ 0:47 and φB,N ¼ 0:11, it

follows further that

cos αo ¼ 1

1þ 2nq
: ð2:30Þ

The application of this characteristic bucket position angle αo will be demonstrated

in detail in Chap. 16 for calculating the real efficiency curve and in Chap. 17 for

determining the runaway speed of the Pelton wheel.

Rc

R
m

o

αo

jet

Fig. 2.5 Geometric

relation of the bucket

position angle αo
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2.2.2.5 Peripheral Speed of the Bucket Cutout Edge

Another frequently used reference speed in flow calculations is the peripheral speed
of the cutting edge of the bucket cutout. From Eqs. (2.28) and (2.30), one first

obtains the diameter ratio

Dc

Dm

¼ 1þ 2nq: ð2:31Þ

The ratio of the corresponding peripheral speed to the jet speed is, in view of

Eq. (2.18), given by

Uc

C0

¼ Um

C0

Uc

Um

¼ km
Dc

Dm

: ð2:32Þ

With Eq. (2.31) it follows further that

Uc

C0

¼ km 1þ 2nq
� �

: ð2:33Þ

2.2.3 Hydromechanical Specification of the Pelton Turbine

The main operating parameters of a Pelton turbine are the peripheral speed
coefficient km and the bucket volumetric load φB, while the specific speed only

determines the shape of the Pelton wheel and is thus related to the nominal

operation. On the one hand, both parameters, km and φB, describe the hydraulic

similarity between two Pelton wheels with similar geometric designs and therefore

the same specific speed (see Chap. 20). On the other hand, they together determine

the flow mechanical efficiency of a Pelton turbine. With regard to the maximum

efficiency, the operation point of a Pelton turbine is commonly configured by the

peripheral speed coefficient km ¼ 0:45�0:48 and the bucket volumetric load

φB ¼ 0:09�0:11.
To describe the flow mechanical interaction between the jet and the rotating

buckets of a Pelton turbine, basically the same calculation is used as described in

Sect. 2.1 for the straight-moving bucket. The relative flow velocity at the bucket

entry is assumed to beW1 ¼ C0 � Um. Analogous to Eq. (2.6), the interaction, i.e.,

the impulsive force exerted on a bucket, is obtained as

Fbucket ¼ _m cC0 1� kmð Þ2 1� cos β2ð Þ: ð2:34Þ
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Contrary to the case of the straight-moving bucket, each jet in a Pelton turbine with

rotating buckets simultaneously interacts with about two buckets. More accurately,

the number of buckets interacting with one jet is given by

2λ ¼ _m c

_m w

¼ C0

W1

: ð2:35Þ

Here, λ denotes the multi-bucket factor. Its application will be explained in detail in
Chap. 5. Accordingly, the total impulsive force resulting from one jet is given by

Fjet ¼ 2λFbucket ¼ _m c

C2
0

W1

1� kmð Þ2 1� cos β2ð Þ: ð2:36Þ

Because W1 ¼ C0 � Umð Þ ¼ C0 1� kmð Þ, there follows

Fjet ¼ _m cC0 1� kmð Þ 1� cos β2ð Þ: ð2:37Þ

The power exchange achieved by one jet flow is thus

P ¼ FjetUm ¼ _m cC
2
0km 1� kmð Þ 1� cos β2ð Þ: ð2:38Þ

The maximum power achieved is given at km,max which is obtained by the condition

dP=dkm ¼ 0 and obtains

km,max ¼ 0:5: ð2:39Þ

From Eq. (2.38) the hydraulic efficiency thus results as

ηh ¼
P

1
2
_m cC

2
0

¼ 2km 1� kmð Þ 1� cos β2ð Þ: ð2:40Þ

Formally this expression agrees with Eq. (2.16). The reason for this agreement is

that perpendicular entry of the jet into the bucket was assumed and thus the relation

W1 ¼ C0 � Um was used. Therefore, Eq. (2.40) can be considered to be directly

taken over from Eq. (2.16). Because of the assumptionW1 ¼ C0 � Um, it, therefore,

only applies to illustrate the working principle of a Pelton turbine and to

roughly estimate the hydraulic efficiency. In particular, the speed ratio

κ ¼ C0=W1, which in Eq. (2.5) was referred to as a time factor, stands here for

the number of buckets that simultaneously interact with a jet. In Chaps. 5 and 7, this

factor will be replaced by the multi-bucket factor λ ¼ κ=2 that is computed using

other, different reasoning.

In fact, all equations derived so far for Fjet, P, and ηh only represent the

operational principle of a Pelton turbine. Both the jet impact force and the power

exchange in a Pelton turbine with rotating buckets behave somewhat differently

than those in a nonrotating, i.e., linearly translating bucket. The interaction between
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the jet and the rotating buckets is no longer constant but varies with time. The

consideration of a linearly translating bucket in Sect. 2.1 has led to the speed ratio

U=C0 ¼ 0:5 at which the maximum hydromechanical performance is achieved. In

practical operations of Pelton turbines, however, the nominal peripheral speed

coefficient km,N for maximum efficiency is found to be between 0.45 and 0.48.

Here, particular attention should be focused on the fact that the water, after the

energy exchange with the rotating buckets, still possesses sufficient kinetic energy

to be able to leave the buckets in time. The associated loss is called the exit or
swirling loss. The full term of the hydraulic efficiency will be presented in Chap. 15

once all individual hydromechanical losses, including the viscous friction effect,

have been treated.

The hydraulic efficiency according to Eq. (2.40) has been shown to be a function

of the peripheral speed coefficient and theoretically reaches its maximum at

km,max ¼ 0:5. On the other hand, the hydraulic efficiency of a Pelton turbine also

depends on the bucket volumetric load φB. Figure 2.6 shows such a dependence of a

Pelton turbine obtained by measurements. Usually, the nominal flow rate of a

Pelton turbine is designed with a bucket load of about φB,N ¼ 0:1. Most Pelton

turbines, however, show maximum efficiencies at the flow rate below that value, as

this is also confirmed in Fig. 2.6. The basic reason for this intention is that nearly all

Pelton turbines also operate at partial loads. As can be recognized, the hydraulic

efficiency of a Pelton turbine only insignificantly changes with bucket load when

compared with other types of turbines. This is the reason why the Pelton turbines

are often used to balance the load of the network. The perceptible decrease of the

hydraulic efficiency at a partial load is ascribed to friction effects; see Sect. 10.4 as

well as Sect. 11.4.

Fig. 2.6 Hydraulic efficiency of a Pelton turbine (KWO) plotted against the bucket volumetric

load

26 2 Working Principle of Pelton Turbines

http://dx.doi.org/10.1007/978-3-319-31909-4_15
http://dx.doi.org/10.1007/978-3-319-31909-4_10
http://dx.doi.org/10.1007/978-3-319-31909-4_11


2.2.4 Installation Form of Pelton Turbines

The practical installation forms of Pelton turbines have been categorized by the

orientation of the turbine axis. The turbines with horizontal axes are denoted

horizontal turbines (Fig. 2.7a) and those with vertical axes are called vertical

(a) Horizontal

(b) Vertical

Fig. 2.7 Different installation forms of Pelton turbines at the Oberhasli Hydroelectric Power

Company (KWO). (a) Horizontal, (b) vertical
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turbines (Fig. 2.7b), respectively. The horizontal installation is only suitable for

turbines with at most two injectors. Vertical turbines can be designed with up to six

injectors. The significant advantage of the vertical installation is that the injectors

can be and are distributed symmetrically around the wheel. For Pelton turbines with

one injector or in all cases of turbines of horizontal installation, the destructive

one-sided bearing load is inevitable. For turbines with two or more injectors, care

should be taken that no collisions between two jets could occur in the same bucket.

The offset angle between two adjacent injectors must be sufficiently large to ensure

trouble-free interaction between the jet and the rotating buckets, as well as trouble-

free exit flow of water out of the buckets. The relevant criterion will be elaborated

in Chap. 19. In the design of vertical turbines, one has to ensure that water after

leaving the upper bucket halves should not fall back on the wheel. The relevant

criterion is explained in Chap. 8.

2.2.5 Parameter Notations

In addition to the geometric parameters of a Pelton wheel that have already been

shown in Fig. 2.4, complete geometric and hydraulic parameters of both the injector

and the Pelton wheel are summarized in Appendix A. Other derived parametric and

dimensionless quantities are summarized in Appendix B.
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Chapter 3

Injector Characteristics

One of the most important components in a Pelton turbine is the injector which is

used on the one hand to entirely convert the pressure energy of water into the kinetic

energy of the high quality jet and, on the other hand, to regulate the flow rate.

Figure 3.1 shows the basic construction of an injector, which is mainly composed of

a nozzle and a regulation needle connected to a servomotor. In most injector

designs, the servomotor is found outside the pressure pipe. Based on the hydraulic

optimization, the injector nozzle is frequently constructed with a contraction angle

αnozzle of about 42� to 45�. The regulation needle typically has a half vertex angle

αN of about 25�. The pressure drop due to flow friction and other disturbances in the

injector is usually of the order of 1% and will only be considered if the system

efficiency is going to be estimated.

The conversion of the pressure energy into kinetic energy is governed by the

Bernoulli equation from which the speed of the jet is a function of the net head at

the inlet of the injector, explicitly:

C0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
: ð3:1Þ

An ideal jet has a uniform velocity distribution in each cross section and a constant

cross-sectional area without any jet expansion. The real jet in a Pelton turbine

generally deviates from this perfect form. This can be confirmed simply by photo-

graphic observation of the jet. The in-depth investigations and the detailed charac-

terization of the jet flows have been systematically carried out under the application

of laser methods as summarized by Zhang and Casey (2007). The main features of a

real jet will be described in Chap. 4.
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3.1 Flow Acceleration in the Injector Nozzle

The injector nozzle of a Pelton turbine is used to accelerate the flow and to convert

the pressure energy into kinetic energy. From the constant flow rate _Q ¼ cmA
¼ const through the injector nozzle, the acceleration of the mean flow velocity

along the nozzle flow is calculated as a function of the nozzle geometry and the flow

velocity itself:

dcm
dx

¼ �cm
A

dA

dx
: ð3:2Þ

In fact, the flow acceleration within the nozzle according to Fig. 3.2 is not uniform.

This will give rise to streamline curvature. For verifying this circumstance, the flow

at the cross section A is assumed to be uniform and therefore a potential flow. At the

nozzle exit in the region close to the nozzle casing surface B, where the ambient air

pressure is present, the flow speed reaches its maximum value ofC0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
if the

boundary layer effect is neglected. Since the flow along the needle surface still

undergoes further acceleration and thus the velocity is less than C0, the velocity

distribution at the nozzle exit is nonuniform. The acceleration of the flow from

section A to section B is thus inhomogeneous. Along the needle surface, the flow

acceleration is smaller than that on the casing side of the nozzle. By using the local

coordinate system in Fig. 3.2, the streamline equation is given by

dy

dx
¼ cy

cx
: ð3:3Þ

Consider first the general case for which the velocity ratio cy/cx in the flow varies

from location to location, i.e., cy=cx ¼ f x; yð Þ. Under this assumption Eq. (3.3)

implies

αN

d SD
0

αD

c 

D
D

D
P

Relief piston 

Compression spring 
D

N
Injector nozzle 

Fig. 3.1 Dimensioning and parameter specification of a Pelton turbine injector with the external

servomotor
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d2y

dx2
¼ 1

c2x
cx

∂cy
∂x

þ cx
∂cy
∂y

dy

dx
� cy

∂cx
∂x

� cy
∂cx
∂y

dy

dx

� �
: ð3:4Þ

Consider next a streamline, for which Eq. (3.3) applies again. If in addition

potential flow is assumed, then one has ∂cy=∂x ¼ ∂cx=∂y. Under this condition
and with the continuity equation ∂cx=∂xþ ∂cy=∂y ¼ 0, Eq. (3.4) is simplified to

cx
d2y

dx2
¼ 1� c2y

c2x

 !
∂cx
∂y

� 2
cy
cx

∂cx
∂x

: ð3:5Þ

A new coordinate system ξ� η will be defined, in which the ξ-axis coincides with
the tangent of the streamline. This is equivalent to a moving coordinate system

along the streamline. Because cη ¼ cy ¼ 0 and cξ ¼ cx ¼ c, Eq. (3.5) takes the new
form

d2η

dξ2
¼ 1

c

dc

dη
: ð3:6Þ

This equation is valid only for viewing along a streamline, because it is obtained

from Eq. (3.4) by simultaneously using Eq. (3.3) for a streamline, along which

cη ¼ 0 has been assumed.

Because of the nonuniform flow distribution in the nozzle, i.e., dc=dη 6¼ 0, it can

be concluded that in the space between sections A and B, all streamlines are curved:

(d2η=dξ2 6¼ 0).

The above consideration may be extended to calculate the flow under the

influence of the viscous friction on the nozzle casing wall. Detailed calculations

have been performed (Zhang 2003), where the so-called head effect was

investigated.

B

A 
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αN

Nozzle casing Needle 

B 

αD

D0

x y 

Fig. 3.2 Flow acceleration

and the streamline curvature

in the injector nozzle
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3.2 Discharge Coefficient φD0 and the Injector
Characteristics

The injector of a Pelton turbine is used to generate a high-speed jet in accordance

with Eq. (3.1) on the one hand and to regulate the flow rate on the other hand. The

regulation of the flow rate is performed by adjusting the needle stroke in the nozzle

(Fig. 3.1). In order to calculate the flow rate ( _Q jet) through an injector nozzle as a

function of the needle stroke, the discharge coefficient is commonly defined as

follows:

φD0 ¼
4 _Q jet

π � D2
0

ffiffiffiffiffiffiffiffiffi
2gH

p : ð3:7Þ

Here, D0 is the constant aperture diameter of the nozzle. The net head at the injector

entrance is designated by H.
The meaning of the discharge coefficient as defined in Eq. (3.7) should be

illustrated here. The jet has its most narrow section (waist) where all streamlines

run parallel and thus are found under constant pressure. The jet speed in the jet waist

section, which is also referred to as the contraction section of the jet, can be

calculated by using the Bernoulli equation. The related flow rate is obtained as

_Q jet ¼
1

4
πd20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g H � hvð Þ

p
: ð3:8Þ

Here, the pressure head drop in the injector is assumed to be hv. The jet diameter at

the jet waist is denoted by d0.
The drop of the pressure head in the injector is usually very small if compared

with the net head, i.e., hv=H � 1. Under this condition Taylor expansion of the

square root function in Eq. (3.8) leads to

_Q jet ¼
1

4
πd20 1� 1

2

hv
H

� � ffiffiffiffiffiffiffiffiffi
2gH

p
: ð3:9Þ

Substituting this into Eq. (3.7) then yields

φD0 ¼
d20
D2

0

1� 1

2

hv
H

� �
: ð3:10Þ

When neglecting the head drop hv in the injector, the discharge coefficient of an
injector indeed represents the ratio of the jet diameter to the diameter of the nozzle

aperture. It is therefore also called the contraction factor of the nozzle in some other

applications. As a specific flow rate, the discharge coefficient is obviously a

function of the needle stroke which determines the jet diameter. It is further
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expected that the discharge coefficient depends on the nozzle geometry as shown in

Fig. 3.3a. It is obtained from the calibration measurements of an injector with three

needles of different geometries. For equal needle strokes, the use of an obtuse

needle (large vertex angle) enables a larger flow rate to be generated (curve 1). This

is due to the fact that for equal needle strokes, the effective opening area at the

nozzle exit is correspondingly larger for the obtuse needle angle. According to

Fig. 3.3b, the opening area is calculated as follows:

AD ¼ π 1� s

2D0

� sin 2αN
� �

D0s � sin αN: ð3:11Þ

This equation combines the needle stroke and the needle vertex angles. If the

discharge coefficients shown in Fig. 3.3a are plotted against the nozzle opening

area (AD/AD0), then a unified discharge curve is obtained as illustrated in Fig. 3.4.

The influences of the needle vertex angle 2αN and the needle stroke s on the flow

rate have been unified as the influence of the nozzle opening area. This
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Fig. 3.3 Discharge

coefficient of the injector

plotted as a function of the

needle stroke. Comparison

between different needle

vertex angles according to

Zhang (2003)
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demonstrates that such an opening area is a characteristic parameter for the effec-

tive flow rate, i.e., the discharge coefficientφD0 ¼ f ADð Þ. In other words, this means

that only the opening area but not the needle geometry determines the flow through

the injector. The prerequisite of this conclusion is that the nozzle contraction angle

remains constant.

Generally, in nozzle flows, the jet section and, thus, the discharge coefficient are,

according to Eq. (3.7), practically independent of the effective pressure head at the

injector. In practical operations of Pelton turbines, however, a small dependence of

the discharge coefficient on the pressure head has been recognized which is referred

to as the head effect. As will be shown in Sect. 3.4, this is a Reynolds number effect.
For a concrete injector, the discharge coefficient defined above depends only on

the needle stroke s. As already shown in Fig. 3.3a, this dependence can be

determined by measurements. With sufficient accuracy its functional dependence

can be represented as a quadratic polynomial of the needle stroke:

φD0 ¼ a
s

D0

þ b
s

D0

� �2

: ð3:12Þ

Here, D0 is the constant diameter of the nozzle aperture. The constants a and

b usually have to be determined by calibration measurements. Equation (3.12) is

called the injector characteristic.
Sometimes the injector characteristic of a prototype Pelton turbine is directly

given by the related flow rate

_Q jet

_Q jet,N

¼ s

smax

k1 þ k2
s

smax

� � ffiffiffiffiffiffiffiffi
H

HN

;

r
ð3:13Þ

in which both HN and _Q jet,N are referred to the nominal operation point.

Fig. 3.4 Redrawing of the

discharge coefficients as a

function of the effective

opening area of the injector

nozzle according to Zhang

(2003)
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Equations (3.12) and (3.13) are related to one another by the constants a, b, k1,
and k2 in the following form:

k1 ¼ 1

φD0,N

smax

D0

a; ð3:14Þ

k2 ¼ 1

φD0,N

smax

D0

� �2

b: ð3:15Þ

Indeed, the nominal discharge coefficient φD0,N is calculated by Eq. (3.7). Obvi-

ously both constants, k1 and k2, depend on the nominal discharge coefficient and

hence on the nominal flow rate. They also depend on the setting of the maximum

needle stroke (smax) which is indeed only a virtual value and will in most applica-

tions never be reached.

Another form of expressing the injector characteristic is given by

_Q 1 ¼
_Q jetffiffiffiffi
H

p ¼ m1

s

smax

þ m2

s

smax

� �2

: ð3:16Þ

Comparing it with Eq. (3.13) implies the following relations:

m1 ¼ k1
_Q jet,Nffiffiffiffiffiffiffi
HN

p ; ð3:17Þ

m2 ¼ k2
_Q jet,Nffiffiffiffiffiffiffi
HN

p : ð3:18Þ

The definition of the injector characteristic by Eq. (3.16) has the significant

disadvantage that both coefficients, m1 and m2, will not remain constant for

geometrically similar nozzles. This is simply so because both m1 and m2 are not

dimensionless constants.

3.3 Discharge Coefficient φD Referred to the Effective
Nozzle Opening Area

As can be inferred from the example shown in Fig. 3.4, the discharge coefficient is

in effect a function of the opening area at the nozzle exit. In other words, the

opening area combines the functional effects of the needle vertex angle and the

needle stroke. For this reason, the discharge coefficient can also be defined by

relating the flow rate to the opening area of the injector nozzle:
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φD ¼
_Q jet

AD

ffiffiffiffiffiffiffiffiffi
2gH

p : ð3:19Þ

Assuming a small head loss in the injector, i.e., hv=H � 1, and analogously to

Eq. (3.10), Eq. (3.19) can be rewritten as

φD ¼ πd20
4AD

1� 1

2

hv
H

� �
: ð3:20Þ

It represents the ratio of the jet section area to the opening area of the injector

nozzle.

Comparison with Eq. (3.10) yields a relation between the two definitions of the

discharge coefficient, namely:

φD0

φD

¼ 4AD

π � D2
0

¼ AD

AD0

: ð3:21Þ

It represents a geometric conversion factor. Practical significance of this conversion

calculation should be explained here in more details. First, an injector with a

regulation needle of vertex angle αN1 is assumed to be known with its characteristic

φD0,1 ¼ f s=D0, αN1ð Þ from calibration measurements. Second, one calculates the

characteristic φD0,2 ¼ f s=D0, αN2ð Þ of the same injector, however, with another

regulation needle of vertex angle αN2. The known characteristic φD0,1 of the first

injector configuration is first converted, according to Eq. (3.21), to

φD ¼ φD0,1

AD0

AD,1
: ð3:22Þ

Because the injector characteristic in this form is independent of the vertex angle of

the used needle, it also applies to the injector configuration with the needle of the

vertex angle αN2. Thus one obtains

φD0,2 ¼ φD

AD,2

AD0

¼ φD0,1

AD,2

AD,1
: ð3:23Þ

This equation represents the conversion law of the injector characteristics. The
conversion factor is simply a geometric quantity that can be easily determined with

the aid of Eq. (3.11).
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3.4 Reynolds Number Effect

The flow through an injector is determined by the discharge coefficient according to

Eq. (3.7) or by using diagrams like that in Fig. 3.3a. Theoretically, the discharge

coefficient and its graphic representation apply to both model turbines at low heads

and prototypes at high heads. In practical operations of Pelton turbines, however, a

difference of up to 5% in the injector characteristics between the model turbine and

the analogous prototype was observed (Keck et al. 2000). This means in fact that for

the same injector opening ratio, the discharge coefficient decreases with an increase

of the hydraulic heads. This phenomenon has been previously referred to as the

head effect. Its cause has been unknown for a long time. According to Eq. (3.10),

the difference in the discharge coefficient is certainly not simply due to the head

loss in the injector, because this head loss is of the order of only about 1%. The

difference must be in the jet cross section. This means that the ratio of the jet section

to the nozzle opening area must depend on the hydraulic head when this head is

provisionally considered as the only variable. This in turn means that the stream-

lines between the nozzle exit and the jet waist are not of similar look. The cause of

these dissimilar streamlines, thus, lies in the inside of the nozzle. According to

Zhang et al. (2000), the boundary layer on the side of the nozzle casing is

responsible for such a dissimilarity in the streamlines. The detailed analysis of

the related phenomenon was completed later by Zhang (2003). The analysis shows

that not only the hydraulic head at a given nozzle alone acts as the cause for the

head effect but also the dimensional difference between the model injector and the

prototype exerts an influence on the dissimilarity in the streamlines. For this reason,

the so-called head effect should be interpreted as a Reynolds number effect.
The analysis made by Zhang (2003) could experimentally be confirmed by

measurements1 by using laser Doppler anemometry (LDA).

3.5 Flow Dynamic Forces and the Force Balance
in the Injector

The regulation needle in the injector serves to control the opening of the nozzle and

thus the flow rate. Because the needle is surrounded by the water flow, each needle

stroke regulation operates against the hydraulic force, which is formed by the

pressure distribution on the needle surface. Depending on the needle stroke, this

force may have a closing or opening trend. The unfavorable opening trend, which is

found at large injector strokes, must be overbalanced commonly with the aid of a

compression spring. This aims to create a closing trend, i.e., to ensure the automatic

closing of the injector nozzle in case of emergency conditions. The adjustment of

1 The measurements were carried out at the hydraulic laboratory of the company Andritz Hydro

(former VA TECH Hydro) in Zurich in 2002.
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the needle position in the nozzle is commonly performed with the help of a

hydraulic servomotor that usually operates with oil pressure. To specify the design

of the servomotor, thus, the force status of the needle at each needle position must

be known.

The force generated by the flow and acting on the needle equals the integrated

pressure force on the entire needle surface. The exact calculation of this flow-

induced force is computationally quite expensive. On the one hand, the flow

acceleration in the nozzle is coupled with the reduction of the static pressure

along the flow in the direction of the nozzle exit. On the other hand, the static

pressure in each cross section of the flow between the nozzle casing and the needle

surface varies due to the streamline curvature. For simplicity, the mean pressure as

determined by the Bernoulli equation can be applied at each cross section of the

flow. The use of the Bernoulli equation, however, presumes that for each needle

position, the cross section along the flow channel is known.

The total force exerted by the fluid on the needle consists of several contributions

that have to be considered individually. For the calculations a distinction between

the internal and external supports of the servomotor must also be made.

3.5.1 Injectors with External Servomotor

Most injectors of Pelton turbines are configured with servomotors outside the

pressure pipe (Fig. 3.1). This design is advantageous because it provides easier

access for repair and maintenance work on the servomotor. However, the pressure

pipe must be curved ahead of each injector. As will be shown in Chap. 4, such a

configuration of the pressure pipe with the bending curvature greatly influences the

jet quality.

The flow-induced force acting on the needle surface is called needle force. At
each nozzle opening or to each given needle stroke, diverse forces such as the

needle force, the force on the relief piston, and the spring force and the force at the

support of the servomotor must be in equilibrium. The objective of calculating the

force balance in a Pelton injector is to determine the necessary support force which

must be provided by the servomotor.

3.5.1.1 Needle Force

The needle force arises from the integration of the pressure distributed over the

needle head. The integration of static pressures can easily be performed by numer-

ical methods, for which the needle surface is divided into about 50 to 100 segments

along the flow channel.

38 3 Injector Characteristics

http://dx.doi.org/10.1007/978-3-319-31909-4_4


Needle Force from the Internal Pressure

The static pressure which acts on the needle surface depends on the local velocity

distribution and thus on the cross section in the nozzle. To determine the cross

section and its variation along the flow, the section perpendicular to the centerline

(in fact, the mean lateral surface) of the flow channel according to Fig. 3.5 is

considered. As centerline the line that divides the annular section into the inner and

outer parts with the same content is meant. For simplicity, the centerline is

considered to be that line which has the same distance to the needle surface and

the nozzle casing at each position along the flow. According to Fig. 3.5, it is the

distance oc ¼ od. With the slope angle φ of the centerline, the flow cross-section

area at point o is calculated to be

A ¼ π y2c � y2d
� �
cosφ

: ð3:24Þ

The origin of the y-coordinate is located on the nozzle axis.

The mean static pressure in this flow section is calculated in accordance with the

Bernoulli equation to

p ¼ ptot þ p0 �
1

2
ρ

_Q jet

A

 !2

; ð3:25Þ

where ptot is the total pressure above the atmospheric pressure p0. It corresponds to
the net pressure head at the inlet of the injector. It should be noted that the

atmospheric pressure p0 should be included, because in the application of the

momentum law, the existing atmospheric pressure will not automatically cancel

out. The flow rate _Q jet is a function of the nozzle opening, i.e., the needle stroke. For

the calculation of the needle force, to each needle stroke, the corresponding flow

rate must be known from the injector characteristics (Sects. 3.2 and 3.3).
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static pressure in the

injector nozzle
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The static pressure evaluated by Eq. (3.25), however, applies at point d rather

than point a on the needle surface; see Fig. 3.5. The corresponding position shift is

given by

Δx ¼ od � sinφ: ð3:26Þ

The calculation of the static pressure can be gradually carried out along the needle

surface. Figure 3.6 shows an example of the static pressure distribution in the

injector nozzle for a particular needle position. The section with the maximum

diameter of the needle is at the focus. Upstream of this section, the flow and the

static pressure force the needle to have a closing trend. Downstream of this section,

the static pressure results in an opening trend. For purposes of calculation, it is

agreed here that the resulting force is positive if it is directed to the nozzle exit

(causing the closing trend).

The total pressure force acting on the needle surface inside the nozzle is

calculated as the sum of all the elementary forces:

FNeedle, In ¼ �
Xm
i¼1

piAi sin αi: ð3:27Þ

In this summation, it has been assumed that the needle surface along the needle axis

is divided into m elementary annular surfaces Ai. The slope angle of the respective

elementary area is αi. Because, according to Fig. 3.5, a positive angle αi is related to
an elementary force with an opening trend and this force is negative according to

the agreement, there appears in Eq. (3.27) a minus sign ahead of the summation.

The calculation, according to Eq. (3.27), applies to one needle position. For the

full range of the nozzle opening, that is, for the needle stroke from zero to its

maximum, the calculation must be repeated each time for a new needle position.

The calculations may be easily performed, for instance, by using the tabular

(spreadsheet) method. In Fig. 3.7, an example is shown (curve 1) as a function of

the needle stroke. Throughout the entire opening range, the needle force is positive

and thus acts as a closing force. It becomes, however, significantly smaller at large

needle strokes.

Recoil Force Outside of the Injector

Another part of active forces acting on the needle is the force which arises from the

overpressure around the outer part, i.e., the vertex of the needle as a result of the

flow contraction. The fact that this force does really exist can be demonstrated by

using the law of momentum. To this end, according to Fig. 3.8, a closed control

volume between the section at the nozzle exit (index 1) and the section of the jet

waist (index 0) is considered. The area of the annular section for the exit flow is

calculated according to Eq. (3.11) to
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A1 ¼ π 1� s

2D0

� sin 2αN
� �

D0s � sin αN: ð3:28Þ

Between sections 0 and 1, the law of momentum is applied. As shown in Fig. 3.8, a

positive force acting on the fluid is directed in the positive flow direction. Its

reaction on the solid needle represents the force exerted backwards on the needle;

this is why it is called the recoil force. From the law of momentum, it is calculated

to be

FRecoil ¼ p0AD0 þ ρA0C
2
0 � p1A1 cos αN � ρ _Q DC1 cos αN; ð3:29Þ

where the jet section A0 is referred to the jet waist at which all streamlines are

parallel.

With the mean velocity in section 1, given by C1 ¼ _Q jet=A1, the static pressure

there is calculated from Eq. (3.25) as

p1 ¼ ptot þ p0 �
1

2
ρC2

1: ð3:30Þ

At the waist section, the jet speed is given by the Bernoulli equation as

C2
0 ¼

2

ρ
ptot: ð3:31Þ

Inserting Eqs. (3.30) and (3.31) into Eq. (3.29) yields

FRecoil ¼ 2A0 � A1 cos αNð Þptot þ AD0 � A1 cos αNð Þp0 �
1

2
ρ
_Q 2
jet

A1

cos αN: ð3:32Þ

Because the cross section A1 and the flow rate _Q jet and thus the jet section A0

¼ _Q jet=C0 change with the needle stroke, the recoil force FRecoil is a function of the

needle position in the injector. It acts backwards on needles with opening trends. In

the considered example, shown in Fig. 3.7, this force is represented by curve 2. At a

large opening of the nozzle, it is even comparable to the needle force from the

internal pressure (curve 1).

When the nozzle gets closed ( _Q jet ¼ 0, A1 ¼ 0, A0 ¼ 0), the recoil force reduces

to

FRecoil, 0 ¼ p0AD0: ð3:33Þ

From both equations, (3.32) and (3.33), it can be seen that the effect of the ambient

atmospheric pressure does not automatically disappear. It contributes to the recoil

force even in the closed state of the nozzle.
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When ptot � p0 the effect of the ambient atmospheric pressure is

negligible. In this case, there hold the proportionalities _Q 2
jet � ptot for the total

pressure and pi � _Q 2
jet for the static pressure along the needle surface, simply

because ofC2
0 � ptot and pi ¼ ptot � k _Q 2

jet with k as a proportional constant. Thus, it

follows from Eqs. (3.27) and (3.32) for a given injector configuration that

FRecoil

FNeedle, In
¼ f

s

D0

� �
: ð3:34Þ

The ratio of the recoil force to the internal needle force is only a function of the

needle stroke and in particular independent of the pressure head.

Total Needle Force

The entire needle force is made up of the integrated needle force inside the nozzle

(closing trend) and the recoil force at the nozzle exit (opening trend):

FNeedle ¼ FNeedle, In � FRecoil: ð3:35Þ

The corresponding needle force in the closed state of the nozzle can be obtained

straightforwardly. The pressure in the nozzle is simply equal to the total pressure

ptot, from which a force of the closing trend results. According to Fig. 3.9 and with

R0 ¼ D0=2, this force is calculated to

FNeedle, 0 ¼ π R2
0 � r2S

� �
ptot þ p0ð Þ � πR2

0p0 ¼ π R2
0 � r2S

� �
ptot � πr2Sp0: ð3:36Þ

Although the second term on the right-hand side of the equation, if compared with

the first term, is negligible, the formula again indicates that even here the effect of

the atmospheric pressure does not automatically disappear. This is why for the total

pressure (the net head) in the nozzle, the atmospheric pressure should theoretically

always be accounted for. Because the pressure head in a Pelton turbine is usually of

several hundred up to over one thousand meters of water column, the effect of the

atmospheric pressure on the needle force can be neglected.

The force that is calculated from Eq. (3.36) also applies as the asymptote of the

summation calculations of Eq. (3.27), when the needle gradually moves to the

closed position of the nozzle. They can therefore be used to verify the accuracy of

the summation calculations.

Similar to Eq. (3.34) with ptot � p0 as well as owing to the proportionalities

ptot � H and pi � H, the following dependence can be confirmed:
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FNeedle ¼ f
s

D0

� �
� H: ð3:37Þ

To a given needle stroke (s), the needle force is directly proportional to the available
pressure head.

To estimate the needle force which is basically calculated by the use of

Eq. (3.35), i.e., (3.37), the following empirical approach has been quoted in Bohl

(2005):

FNeedle ¼ KD D2
0 � d2S

� �
gH: ð3:38Þ

In this formula, KD is a geometric constant and ds the diameter of the needle shaft as

indicated in Fig. 3.9 (dS ¼ 2rS). Obviously, this empirical equation has its back-

ground in Eq. (3.37). Calculations with Eq. (3.35), which includes both parts of the

total needle force, were used to determine the constant KD as a function of the

needle stroke as shown in Fig. 3.10.

3.5.1.2 Force at the Relief Piston

According to Fig. 3.1, the pressure in the flow acts directly on one side of the relief

piston with diameter DP. The effective pressure is the static pressure. The force

acting on the relief piston, thus, acts as an opening force on the needle shaft and is

obtained as

FPiston ¼ π

4
D2

P � d2S
� �

ptot �
1

2
ρc2

� �
; ð3:39Þ

where 1/2ρc2 is the dynamic pressure in the flow. It directly depends on the flow

rate and therefore on the magnitude of the needle stroke. Because this dynamic

pressure is negligibly small compared to the total pressure, the force FPiston in the

above equation is almost independent of the needle position. This is clearly

evidenced by curve 3 in Fig. 3.7.

F 

ptot

rs

D
0

Fig. 3.9 Closed nozzle
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3.5.1.3 Spring Force

From the foregoing considerations and in connection with Fig. 3.7, it can be seen

that the sum of the needle force (1, closing trend), recoil force (2, opening trend),

and balancing force at the relief piston (3, opening trend) does not always represent

the closing trend, especially at the large nozzle openings, at which the needle force

with a closing trend is even significantly smaller than the balancing force at the

relief piston with an opening trend. In order to safely close the nozzle under all

operation conditions of the injector, an appropriate compression spring is installed

in almost all servomotors of Pelton turbines. Depending on the required spring

force, the compression spring has often been prestressed at a closed nozzle by a

length s0. According to Hooke’s law, the spring force in function of the needle

stroke s is then given by

FSpring ¼ R s0 þ sð Þ; ð3:40Þ

where the spring constant is designated by R (N/mm).

The spring force, calculated in this way for the considered injector example, is

shown in Fig. 3.7 as a function of the needle stroke s/D0 (curve 4).

3.5.1.4 Regulation Force of the Servomotor

The force composed of the sum of the needle force, the relief piston force, and the

spring force must exercise a closing tendency throughout the opening of the nozzle

so that the latter can close in any situation by itself. For a given needle stroke, the

total closing force has to be balanced by the support force which is provided by the

servomotor and calculated as
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KDFig. 3.10 KD values of the

needle force in the injector

with an external servomotor
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FMotor ¼ FNeedle, In � FRecoil � FPiston þ FSpring: ð3:41Þ

In Fig. 3.7, this force is shown as curve 5. It represents a balancing force against the

closing force in the whole range of the needle stroke. For large openings of the

nozzle, the total closing force becomes significantly smaller. If this force is nega-

tive, then a stronger compression spring must be used.

3.5.2 Injectors with an Internal Servomotor

In the configuration of Pelton turbine injectors, the servomotor is sometimes

installed in the pressure pipe. The advantage of such a configuration is that the

pressure pipe ahead of the injector does not have to be bent. The approaching flow

to the injector thus remains undisturbed. However, the associated disadvantage is

the poor accessibility for maintenance and inspections.

An injector with an internal servomotor is sketched in Fig. 3.11. To determine

the required support force from the servomotor, the needle force as well as the

spring force must be known. The condition that the nozzle in each situation is able

to close automatically also applies here. The needle force mainly consists of an

integrated force which exercises an opening trend and a pressure force on the rear

side of the needle, causing a closing trend. The determination of the opening force

from the integration of the static pressure over the needle head can be carried out by

the same computational procedure as described in Sect. 3.5.1 for the injector with

the external servomotor. For a second example, the calculated needle force has been

shown in Fig. 3.12 by curve 1 (opening trend). The recoil force is calculated again

by Eq. (3.32) and is shown in Fig. 3.12 by curve 2. The constant static pressure force

(p) on the rear side of the needle results in a force with a closing trend; it is given by

FRear P ¼ ptot þ p0 �
1

2
ρc2

� �
π

4
D2

N � D2
S

� �
: ð3:42Þ

The flow velocity c is calculated from the flow rate and the constant flow section at

the corresponding position. In Fig. 3.12, this force is denoted by curve 3. It is almost

independent of the needle stroke and thus of the flow rate.

The spring force is calculated with Eq. (3.40) on account of a prestress length s0
at the closed nozzle. In Fig. 3.12, it is shown by curve 4 for s0 ¼ 0.

The total force with a closing trend represents the support force which has to be

provided by the servomotor for balancing the needle at each given position. It is

calculated as

FMotor ¼ �FNeedle, In � FRecoil þ FRear,P þ FSpring: ð3:43Þ

In Fig. 3.12 this force is shown by curve 5.
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In general, the support force provided by the servomotor must be ensured at any

time of operation. Otherwise, it could happen that the injector needle under the

flow-induced forces would abruptly close the injector, which thus leads to a rapid

pressure increase (water hammer) in the pipe system. This also means that each

closing of the injector must follow predefined steps as outlined in the next section.

3.6 Closing Law of the Injector Nozzle

The injector of a Pelton turbine is used to convert the pressure energy of water into

the kinetic energy of the high-speed jet on the one hand and to regulate the flow rate

on the other hand. Because Pelton turbines are highly flexible in balancing the load

of the network, they are frequently started and shut off even within hours. When

shutting off the turbine, the injector has to be closed within a given time by

D
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p 

αN

D
0

αD

Fig. 3.11 Injector with internal servomotor regulation
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Fig. 3.12 Calculation example for the forces in an injector with internal servomotor regulation.

1 Internal needle force (opening trend), 2 recoil force (opening trend), 3 rear side force (closing

trend), 4 spring force (closing trend, without prestressing), 5 support force of the servomotor
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prescribed steps. Such a predefined closing law is generally based on the analysis of

the system response in terms of a water hammer. Rapid closing of the injector will

always cause a rapid increase of the system pressure and may lead to damage of

system components.

Linear closing of the injector through linear changing of the needle stroke is

practically not recommended. As shown in Fig. 3.13, which is calculated with the

aid of Eq. (3.12), linear closing of the injector (solid line) leads to a nonlinear

change of the flow rate. A rapid change in the flow rate, while reaching the needle

stroke s¼ 0, will certainly cause a rapid increase in the system pressure and should,

thus, most possibly be avoided. One effective method is to define the closing

process by two steps. The outcome in the flow rate for the calculation example is

shown in Fig. 3.13 by the dashed line.

In practice, a nonlinear closing law is often utilized for achieving a better

pressure response in the system. Figure 3.14 shows such a pressure response in a

common hydraulic system, both from measurements and calculations. Within the

closing time ( t < 47s ), the increase of the pressure at the injector could be

successfully damped. For reasons of comparison, the possible pressure response

at the injector to a linear closing law of the injector should be considered. This is

shown in Fig. 3.15 based on the transient flow calculations with the same algorithm

which has already been satisfactorily validated in Fig. 3.14. Obviously, the pressure

response during the closing time strongly depends on the closing law of the injector.

The above results suggest the question of how the closing law of the injector

should look like in order to minimize the pressure increase in the system. In general,

the closing law can be approximated by a parabolic equation. For the nominal flow

rate, i.e., the nominal opening (s0,N) of the injector nozzle and for a closing time t0,
N, the closing law can be defined by

s ¼ s0,N � s0,N 2� t

t0,N

� �
t

t0,N
: ð3:44Þ

This equation satisfies the condition that for t ¼ t0,N one has s ¼ 0 and ds=dt ¼ 0.

Fig. 3.13 Linear regulation

of the injector and nonlinear

response of the flow rate
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The definition of the closing law at the nominal flow is basically determined by

the choice of the closing time t0,N. For this reason the changing rate of the needle

stroke at t ¼ 0, i.e., ds=dtð Þt¼0, should be kept below a permissible value:

2210.7

φ1.4, 
L167 φ1.65, L1442 φ2.6, L4566

2300Surge tank φ2.3

1770.5Pelton

Schema 

Fig. 3.14 Response of the pressure head at the injector to a nonlinear closing law. Comparison

between calculations and measurements in the hydraulic system Gr.1 of the company KWO

(transient flow calculation carried out by the author)

Fig. 3.15 Response of the pressure head at the injector to a linear closing law for the same

hydraulic system as in Fig. 3.14
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2
s0,N
t0,N

<
ds

dt

� �
max

: ð3:45Þ

For partial nozzle opening (s0) at partial load operation, the same closing law should

be followed, however, with a correspondingly shorter closing time as sketched in

Fig. 3.16. The closing law 2 is exactly a shifting to the left of the nominal closing

law 1. Corresponding to the nozzle opening s0, the new closing time is calculated as

t0
t0,N

¼
ffiffiffiffiffiffiffiffiffi
s0
s0,N

:

r
ð3:46Þ

Based on the coordinate translation for obtaining the shifting of the curve towards

the left, the new closing law is obtained as

s ¼ s0,N
t� t0
t0,N

� �2

ð3:47Þ

or because of Eq. (3.46) as

s ¼ s0,N
t

t0,N
�

ffiffiffiffiffiffiffiffi
s0
s0,N

r� �2

: ð3:48Þ

The time needed to reach a given needle stroke is given by

Fig. 3.16 Parabolic closing law of the injector nozzle
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t

t0,N
¼ t0

t0,N
�

ffiffiffiffiffiffiffiffiffi
s

s0,N
:

r
ð3:49Þ

When the injector nozzle is intended to regulate the flow by changing the needle

position from s0,N (for the nominal flow rate) to sP (for the partial flow rate), then the

closing time is calculated from Eq. (3.44) as

tP
t0,N

¼ 1�
ffiffiffiffiffiffiffiffiffi
sP
s0,N

:

r
ð3:50Þ

For complete closing of the injector nozzle (sP ¼ 0), the closing time is equal to t0,N.
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Chapter 4

Jet Characteristics and Measurements

A jet formed by the injector nozzle is highly dynamic and thus subject to an

intensive turbulent exchange with the ambient air. Most available knowledge of

the dynamics of water jets has been obtained almost exclusively by experimental

measurements and is generally restricted to photographic observation of the jet

form and the axial velocity distribution within the jet. In principle, by neglecting the

fluid friction loss at the injector, the overall jet speed is directly obtained from the

Bernoulli equation and equals
ffiffiffiffiffiffiffiffiffi
2gH

p
where H is the pressure head at the injector

inlet. The measurement of the velocity distribution in the jet was almost exclusively

conducted by the use of Pitot tubes (Berntsen et al. 2001; Brekke 2005). The

accuracy of this measurement technique is very limited. So one was, for example,

unable to measure the velocity distribution where the streamlines are curved. The

photographic method was mainly used to investigate the jet expansion and insta-

bility. Both the velocity measurements by means of Pitot tubes and photographic

flow visualizations are unable to fully capture the hydrodynamic features of high-

speed jets.

A decisive advance in experimental measurements of the jets in Pelton turbines

could be achieved by applying laser measurement methods, i.e., the laser Doppler

anemometry (LDA); see Zhang et al. (2000a, b, 2003) and Zhang and Parkinson

(2001). A summary of important knowledge from measurements can be found in

Zhang and Casey (2007). These investigations have helped to systematically

understand the jet mechanics and the stability behaviors.

The following sections discuss, after a brief explanation of the LDA technique,

the general characterization of jet flows based on experimental measurements at a

model injector. For the purpose of considering the common features of the jet flow,

there is no need to distinguish between model turbines and their prototypes.

© Springer International Publishing Switzerland 2016
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4.1 Laser Doppler Anemometry

The LDA method is a widely used method for flow investigations. It is highly

accurate and nonintrusive and shows the high time-resolution capability. Detailed

descriptions of the working principles and the applications of the LDA method can

be found, for example, in Durst et al. (1987), Albrecht et al. (2003), Ruck (1987),

and Zhang (2010). The development of the LDA method in the past three decades

includes both hardware and software development on the one hand and the devel-

opment that are directed to application methods (Zhang 2004a, b, 2005) on the other

hand. To measure the jet under water, Richter and Leder (2006) as well as H€uttmann

et al. (2007) directly used a submergible LDA system. For measurements of jets in

Pelton turbines, the applicability of the LDA method has been demonstrated by

attaching a small wedge of Plexiglas on the jet according to Fig. 4.1. Such a window

method aims to smooth the rough and turbulent jet surface, so that the laser beams

are enabled to be transmitted into the jet. The disturbance in the flow, as caused by

the wedge, is limited to the turbulent boundary layer of a thickness less than 0.1 mm

on the surface of the wedge. The LDA method has been demonstrated to be highly

accurate for high-speed jet measurements, even in areas of the jet with curved

streamlines. Especially, the LDA method has been confirmed as the only effective

method to precisely measure the secondary flows in the jet. For this purpose the dual

measurement method (DMM) was developed (Zhang and Parkinson 2001, 2002)

and has also been generally extended (Zhang 2005).

For more about the LDA application methods under many other measurement

conditions, see Zhang (2010).

Based on LDA measurements at a model injector, the most important features of

the jet flow are discussed and summarized below.

4.2 Axially Symmetric Jet Flow

Although the jet flow property strongly depends on the flow form at the injector

inlet, the simplest case is considered first, as the inlet flow is fully developed in a

straight circular pipe. The flow before entering the injector is therefore axially

symmetric. Correspondingly, one expects an axially symmetric jet flow. Figure 4.2

shows such expected velocity distributions that are measured at various cross

sections along the jet. They represent axial velocity components and have been

normalized by the theoretical value of
ffiffiffiffiffiffiffiffiffi
2gH

p
. Based on these first measurements,

the following general properties of the jet flow can be observed:

1. In the center of the jet, a clearly separated jet core with a velocity deficit can be

recognized. It is simply due to the boundary layer development on the needle

surface and is partly equalized along the jet flow. The energy loss associated

with the velocity deficit can be determined from measurements on the second
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measurement section (2D0), where all streamlines are straight and parallel. The

calculation shows that the related overall head loss is about 0.3%. Since the

nozzle opening in this case corresponds to the nominal operation point, the head

loss of about 0.3% can be considered to be general in all injectors under the

nominal flow rate.

The nonuniform velocity distribution in a jet section also means that for calcu-

lations of the overall mass, momentum, and energy flow rates each time the

different mean velocities have to be applied according to the following

definitions:

CM ¼ 8

d20

Z d0=2

0

c � r � dr; ð4:1Þ

CI ¼ 8

d20CM

Z d0=2

0

c2 � r � dr; ð4:2Þ

C2
E ¼ 8

d20CM

Z d0=2

0

c3 � r � dr: ð4:3Þ

LDA

Fig. 4.1 Water jet and

optical configuration of

LDA measurements (Zhang

et al. 2000b)
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Corresponding calculations on the second measurement section according to

Fig. 4.2 show that the difference between the three mean velocities is negligibly

small (CI=CM ¼ 1:0001, C2
E=C

2

M ¼ 1:0004). For this reason, it is practically not

necessary to distinguish between three mean velocities.

2. In the first measurement section, the axial velocity increases linearly from the jet

core to the jet surface. This nonconstant velocity profile indicates that the jet

contracting has not yet completed up to here. Since as a consequence all

streamlines are curved, there is a pressure increase towards the jet core. Accord-

ingly, the flow velocity decreases, while the total pressure remains constant. This

is also the reason why the normalized mean velocity at this jet section is

obviously smaller than unity. It should be mentioned here that such a velocity

distribution at the section with curved streamlines cannot be measured with a

Pitot tube. The use of a Pitot tube requires that all streamlines there are straight

and parallel. Obviously the accurate LDA measurements also enable the jet

waist section to be located and identified.

3. According to the above points, the flow in the first measurement section of the jet

is still found to operate under acceleration. The nonuniform velocity profile in

the area outside the jet core is indicative of curved streamlines in the jet. It must

be noted here that the corresponding streamline curvature can be calculated from

the measured velocity profile.

For this purpose the jet is considered in a cylindrical coordinate system. Since it

does not possess any circumferential velocity component, the streamline is

described simply by

0.8D0 2D0 4D0 7D

Axial velocities normalized to C0

Fig. 4.2 Axial velocity distributions in a jet generated by an injector with straight inlet flow
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r
0 ¼ dr

dz
¼ cr

cz
: ð4:4Þ

Taking into account that the velocity components cr and cz in general are

functions of the spatial coordinates, i.e., r
0 ¼ f r, zð Þ, it further follows from

Eq. (4.4) that

r
00 ¼ d2r

dz2
¼ 1

c2z
cz

∂cr
∂z

þ ∂cr
∂r

dr

dz

� �
� cr

∂cz
∂z

þ ∂cz
∂r

dr

dz

� �� �
: ð4:5Þ

Restricting ourselves to the streamlines in further considerations, the streamline

equation dr=dz ¼ cr=cz, according to Eq. (4.4), is inserted into the above

equation. In addition, potential flow is also assumed so that ∂cr=∂z ¼ ∂cz=∂r.
With the assumption cr=cz � 1, Eq. (4.5) is then simplified to

r
00 ¼ 1

cz

∂cz
∂r

; ð4:6Þ

and the curvature of the streamlines is given by

1

R
¼ r

00

1þ r0
2

� �3=2
� r

00 ¼ 1

cz

∂cz
∂r

: ð4:7Þ

Since the velocity gradient ∂cz=∂r can be obtained from the measured velocity

profile that has been shown in Fig. 4.2, the radius of curvature of the streamlines

can be directly calculated. Table 4.1 shows some results of the exploited

measurements at three pressure heads of 10, 20, and 30 m.

It can be confirmed that due to the almost equal radii of curvature of the

streamlines at the measurement sections, all streamlines remain unchanged for

different pressure heads. The jet flows are therefore similar.

The curvature of streamlines in the jet has the additional consequence that the

pressure increases towards the jet axis. The corresponding pressure gradient can

be determined from the momentum equation. The Euler equation for the radial

velocity component is given in this case by

�1

ρ

dp

dr
¼ cr

∂cr
∂r

þ cz
∂cr
∂z

: ð4:8Þ

Assuming potential flow, which is free of rotation, one has ∂cr
∂z � ∂cz

∂r ¼ 0. Due to
∂cz
∂r ¼ cz

R from Eq. (4.7), one obtains
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∂cr
∂z

¼ cz
R
: ð4:9Þ

The pressure gradient in the jet at the considered measurement section is

calculated from Eq. (4.8) with cr � 0; the result is

1

ρ

dp

dr
¼ �cz

∂cz
∂r

¼ � c2z
R
: ð4:10Þ

Such an expression of the pressure gradient is analogous to that of a potential
vortex (see Sect. 6.1.2).

4. Except for the flow velocity in the surface region of the jet, the jet speed remains

constant up to a distance 7D0. From the mass conservation law, it can be

concluded that the jet diameter should remain unchanged as well. That this is

realistic will be demonstrated in the next section.

Based on measurements of high-speed jet flows under the simplest flow condi-

tions in the injector, the most important properties of the jet flow could be revealed

in this section.

4.3 Jet Expansion

In the measurements shown in Fig. 4.2, it has been confirmed that the jet speed and

thus the jet diameter remain almost unchanged over a distance of about 7D0. This

property is a corroboration of the high quality of the jet flow with negligible energy

loss. Based on the observations as well as the photographic recordings, however, it

has often been reported that the jet usually suffers from an expansion of about 0.2�

to 0.5�. Such an excessive jet expansion in reality cannot be correct. For this reason,
the jet is assumed to have an expansion angle α (Fig. 4.3). Because of the constant

flow rate _Q ¼ AC, the change in the mean speed along the jet is calculated to be

Table 4.1 Radii of curvature of streamlines while passing through the first measurement section

according to Fig. 4.2 (Zhang and Casey 2007)

Hydraulic head Needle stroke s¼ 16 mm
R∂cz=∂r Curvature radius R (m)

10 m 37.7 0.37

20 m 54.0 0.37

30 m 61.1 0.39
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dC

dz
¼ �C

A

dA

dz
: ð4:11Þ

The jet section is given by A ¼ πr2 from which it follows that

dA

dz
¼ 2πr

dr

dz
¼ 2πr tan α: ð4:12Þ

The specific kinetic energy of the jet flow is given bye ¼ C
2
=2. Its change along the

jet is then obtained as

de

edz
¼ 2

dC

Cdz
: ð4:13Þ

By substituting Eqs. (4.11) and (4.12) into Eq. (4.13) and with d0 ¼ 2r0 for the jet
diameter, one, finally, obtains the change in the specific kinetic energy along the jet

in the form

Δe
e

¼ � 8 tan αð ÞΔz
d0

: ð4:14Þ

For a typical distance of the jet flow path, sayΔz=d0 ¼ 4, and a jet expansion angle

of 0.2�, the energy loss according to Eq. (4.14) is estimated to be 11%. Such an

extent of the energy loss is actually by no means realistic. According to Eq. (4.14), a

loss in kinetic energy of about 1% within a distance ofΔz=d0 ¼ 4 corresponds to a

jet expansion of only 0.02�. From this assessment it can be concluded that the

apparent jet expansion observed in practice is obviously only limited to the jet

surface and is, therefore, insignificant in terms of the energy loss. The apparent jet

expansion arises most likely only from the turbulent momentum exchange with the

ambient air.

r 

z
r

α

Fig. 4.3 Definition of the

jet expansion
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4.4 Secondary Flows in the Jet and the Jet Stability

In practice, the injector of a Pelton turbine is usually found downstream of a bend of

a pipe (Fig. 2.3) which may be part of the distributor. A fully developed turbulent

flow in a long straight pipe is no longer available. This is always the case at a

vertical turbine with more than two injectors which are distributed around the

Pelton wheel. The inflow to each injector is strongly influenced by the distributor

design and is no longer axially symmetric but possesses secondary flow structure. In

principle, all axial irregularities or disturbances in the flow can be effectively

diminished when the flow is accelerated while passing through the injector. This

could be confirmed by an arranged measurement of the jet flow. Despite the

interferences of the needle supporting ribs or artificially enhanced disturbances in

the injector, no notable change in the jet flow could be identified (Zhang et al.

2000b). However, the existing vortex cells in the flow behave differently.

According to the conservation law of angular momentum for frictionless flow, the

rotation retains undiminished in the jet. Figure 4.4 shows the corresponding sec-

ondary flows which were measured in two sections: downstream of a 90� bend of

the pipe and in the jet, respectively. The same model injector as in Fig. 4.2 was

used. The high measurement resolution for very small secondary flow velocities in

the considered jet section was achieved by means of the dual measurement method

(DMM) which was developed by Zhang (2005).

In Fig. 4.4, two well-structured rotating flow zones within the jet section can be

confirmed. They are similar to the structure of the secondary flow at the injector

inlet. Although such a secondary flow in the jet is sufficiently low against the axial

flow, it can influence the jet nature decisively. The secondary flow in the jet takes a

form so that two streams meet together on that jet side which corresponds to the

inside of the pipe bend. Due to the free surface of the jet, the merger of two streams

brings about the water to locally escape from the jet. The direct visible outcome is

the formation of a string of longitudinal water droplets on the surface of the jet.

Such water droplets behave as a disruptive factor for the mechanical parts of the

turbine. By reaching the Pelton bucket, they could cause local damage to the bucket

material. In a multi-jet Pelton turbine, the next injector must be protected against

the impingement of such water droplets. The protection shelter which is commonly

used in practice directly suffers from the strong droplet impingement and thus

damage (Fig. 4.5).

In order to improve the jet quality in Pelton turbines, the formation of the water-

droplet string on the jet surface has to be effectively suppressed. Since the cause of

such an undesirable phenomenon is located upstream of the injector inlet, i.e.,

downstream of the pipe bend, the application of sharp pipe bends should be avoided

if possible. The installation of a flow-straightening grid before or within the injector

to break down the secondary flow structure is not always realistic, as this could

cause additional head losses and enhance the risk of nozzle clogging. For this

reason, it is rather difficult to reduce the swirling flow structure in the jet.
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Fig. 4.4 Secondary flow structures in the flow after a 90� bend and in the jet, respectively, and the
formation of the water-droplet string on the jet surface, from Zhang and Casey (2007)

Fig. 4.5 Protection shelter in the form of a washbasin and the material damage because of the

impingement of water-droplet strings
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Chapter 5

Interaction Between the Jet and PeltonWheel

5.1 Jet Impingement on a Flat Plate

The impingement of a round jet on a flat plate at an angle θ represents a basic model

of jet mechanics (Fig. 5.1). To calculate the spreading of the water sheet on the plate

surface, the mass, momentum, and energy conservation laws need to be used. Under

the assumptions of frictionless deflection of the jet and frictionless spreading of the

water sheet, it can be deduced from the conservation law of energy that the

spreading speed of the water sheet on the plate surface is equal to the jet speed.

The flow distribution along a periphery circle as well as in the radial extent can then

be calculated by means of the law of momentum. The mass conservation law

determines that the integrated mass flow along each periphery circle should reflect

the mass flow of the jet. The first accurate calculation of such a flow distribution

was conducted by Hasson and Peck (1964). The distribution of the water-sheet

height along the periphery of an arbitrary circle is given by

2r � h
R2

¼ sin 3θ

1� cos θ cosφð Þ2 : ð5:1Þ

The center of the arbitrary circle coincides with the stagnation point of the round jet

on the flat plate and is eccentric to the jet axis at a distance s which is given by

s

R
¼ cos θ: ð5:2Þ

The interaction force between the jet at a speed C and the flat plate can be

determined again by the law of momentum. Since the flow is assumed to be free

of friction and hence no force component in the plane of the plate exists, the

resulting interaction force is perpendicular to the flat plate. Using the momentum

law in the normal direction of the flat plate, then it is calculated as
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Fjet ¼ πR2 � ρC2 sin θ: ð5:3Þ

This force is referred to as jet impact force. Near the stagnation point beneath the

water sheet, some overpressure exists. Its integration over the plate must be equal to

the jet impact force from Eq. (5.3). The pressure distribution in the immediate

vicinity of the stagnation point has been determined in a study by G.I. Taylor

(1960), among others.

5.2 Minimum Number of Pelton Buckets

A basic concept in the design of a Pelton turbine is the determination of the

minimum number of Pelton buckets so that no water in the jet will bypass unused

the Pelton wheel. The precondition for determining the minimum number of

buckets is that the turbine is operating under the nominal flow rate. According to

θ 

2R 

h 

s 

φ 

r 

Fig. 5.1 Impact of a round

jet on a flat plate and the

spreading of the water sheet

on the plate surface
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Fig. 5.2, the outermost jet layer has the greatest probability, partly to bypass the

rotating buckets. It should be, thus, accounted for to determine the minimum bucket

number of a given Pelton wheel.

The last droplet of water (at point b) which might escape from the bucket B must

reach the leading bucket A at the latest at position A0. The necessary time is given

by

2t ¼ 2 � Rc � sin αb
C0

: ð5:4Þ

Since this is the maximum time allowed, the corresponding rotation of the bucket A

must meet the condition

2t � ω < 2αb � αs: ð5:5Þ

With αs ¼ 2π=N as the bucket distribution angle, this condition is also expressible

as

2t � ω < 2αb � 2π

N
: ð5:6Þ

Together with Eq. (5.4) and forωRc ¼ Uc, the minimum required number of Pelton

buckets is determined by

Rc

B 

A 

A’ 

C0t 0C t 

ω

αb

αb

αs

b 

C0

Fig. 5.2 Determination of

the smallest bucket number

by considering the

outermost jet layer
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Nmin ¼ π

αb � Uc

C0
sin αb:

ð5:7Þ

With the condition that 2Uc � C0 under nominal operation, this last equation is

further simplified to

Nmin � 2π

2αb � sin αb
: ð5:8Þ

A similar calculation can also be found in Raabe (1989). In practice, the number of

employed buckets is much higher than the necessary minimum according to

Eq. (5.8). If the minimum bucket number, for instance, is calculated from the

above equation to be Nmin ¼ 14, the number of buckets realistically used is often

20 or 21. The optimum number of buckets of a Pelton turbine has always been

selected for the maximum efficiency and thus depends also on many other operation

parameters, not just simply that from condition of Eq. (5.6). A well-proven criterion

to practically determining the optimum number of Pelton buckets will be described

in Sect. 5.5.

5.3 Water-Jet-Bucket Interaction and Its Specification

Rotating buckets of a Pelton turbine are subjected to the periodic impingement by

the jet. For the design of the bucket profiles and the optimization of the turbine

operations, the jet piece which interacts with a bucket each time should be deter-

mined. To this end and according to Fig. 5.3, the leading edge of the bucket cutout

is approximated by a straight edge on the periphery of the diameter Dc. It starts

cutting the jet at point a on the upper side of the jet. The corresponding bucket

position is marked by αa and calculated as

cos αa ¼ Rm � d0=2

Rc

¼ Dm � d0
Dc

: ð5:9Þ

Analogously to Eq. (2.30), the bucket-position angel αa in the above equation can

also be expressed as a function of the specific speed. Under nominal operation

conditions given on average by km,N ¼ 0:47 andφB,N ¼ 0:11, it can be expressed in

terms of the specific speed, viz.,

cos αa ¼ 1� 0:81nq
1þ 2nq

: ð5:10Þ

Subsequently and at time tb, the same bucket cuts off the jet at point b on its lower

side (Fig. 5.3). This means that the water particle which at the time t ¼ 0 is located
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at position b will at time t ¼ tb reach the bucket. The corresponding bucket position
is calculated as

cos αb ¼ Dm þ d0
Dc

: ð5:11Þ

For nominal operation conditions and following the same calculation as above, one

obtains

cos αb ¼ 1þ 0:81nq
1þ 2nq

: ð5:12Þ

The bucket position αo1 at which the bucket intersects the jet axis has already been

given in Chap. 2 as a special case; see Eq. (2.30).

Figure 5.4 shows computational results of the bucket positions αa, αo1, and αb as
functions of the specific speed. At Pelton turbines with higher specific speeds, the

bucket cuts off the jet significantly earlier than at Pelton turbines with lower specific

speeds. The related operation problems in the initiation of the jet-bucket interaction

will be treated in Sects. 5.7 and 5.8.

The jet piece, which enters a bucket each time, is specified by the parallelogram

abcd in Fig. 5.3. The cutting line ab can be regarded as a straight line (Appendix D),
while the size of the jet piece is specified by the geometric lengths s1 and s2.
According to the detailed calculations in Appendix D, these lengths are, respec-

tively, given by

Rc

o1

Rc

At time  tb

ω

s2

b 

c 

d 

Rm

d 0

αa

αb

a

C0

s1

o2

At time ta

Fig. 5.3 Definition of the jet piece abcd and particular bucket positions
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s1
Dm

¼ d0
Dm

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dc=Dmð Þ2 � 1

q 1

km
� 1

� �
ð5:13Þ

and

s2
Dm

¼ 1

km
� π
N
: ð5:14Þ

The aspect ratio s1/s2 is accordingly approximately given by

s1
s2

� 0:5

1þ nq
: ð5:15Þ

It lies normally between 0.43 and 0.46.

The last water particles at c and d on the jet piece abcd reach the bucket at the

bucket positions which are described by the angles αc and αd, respectively. As
shown in Appendix E, these two position angles are given by

αc ¼ αa � km tan αo1 � αo1ð Þ þ 2π=N

1� km
ð5:16Þ

and

αd ¼ αb � km tan αo1 � αo1ð Þ þ 2π=N

1� km
: ð5:17Þ

Figure 5.5 shows four calculated bucket positions for a Pelton turbine (nq ¼ 0:11=s).

Whereas the angle αa varies between 30� and 45� as shown in Fig. 5.4, the last two

bucket positions (αc and αd) are practically found symmetrically to the 0-position

(α ¼ 0). This indicates that the last water particle in the middle jet layer (on the jet
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α (°) Fig. 5.4 Special bucket-

position angles plotted

against the specific speed of

the Pelton turbine

(km ¼ 0:47, φB ¼ 0:11)
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axis) will reach the bucket approximately at the vertical position (α ¼ 0) of the

bucket. This knowledge will be utilized to determine the appropriate number of

buckets of a Pelton wheel as a function of the specific speed (Sect. 5.5).

When a specified jet piece approaches and enters the bucket, the bucket sweeps

over an angular range of Δα ¼ αd � αa. This angular range must be given special

attention when a Pelton turbine with two or more injectors is designed. To avoid

interference between two jets in the same bucket, the offset angle between two

injectors must be larger than Δα. For safe operations it normally measures at least

40� to 55�. For Pelton turbines with six injectors, therefore, precaution should

always be observed. The mutual interference between two jets will not only cause

additional loss in the hydraulic efficiency but also lead to local mechanical damage

of materials. Criteria for determining the smallest offset angle between two injec-

tors will be discussed in detail in Chap. 19.

According to Figs. 5.3 and 5.5, each bucket undergoes the full impingement of

the jet only in the angular range from αb to αc. The average angle αb þ αcð Þ=2can be
used when the interaction between the jet and the rotating buckets must be esti-

mated. The ideal jet-bucket interaction is achieved when the main part of the jet

enters approximately perpendicularly to the bucket (Fig. 5.6). This ensures ideal

spreading of the water in the rotating bucket. The flow then passes along the bucket

surface with almost constant circumferential speed. This corresponds to the condi-

tion for obtaining the maximum hydraulic efficiency.

Fig. 5.5 Special bucket

positions, at which water

particles at positions a, b, c,

and d on the jet (see

Fig. 5.3), respectively, enter

the bucket for nq ¼ 0:11=s
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5.4 Coincidence and Symmetry Conditions

In practical applications of Pelton turbines, the peripheral speed coefficient km has

been selected in the range between 0.45 and 0.48 at which maximum efficiencies

can be achieved. To illustrate the possible background of this practical procedure, a

thin jet layer is considered which is found at the height of the jet axis, as shown in

Fig. 5.7. In Appendix E, the bucket-position angles αo1 and αo2 as well as their

difference are derived. According to Eq. (E.9), the following relation holds:

αo1 � αo2 ¼ 2π

N
þ km tan αo1 � tan αo2ð Þ: ð5:18Þ

In order to achieve stable interaction between the jet and the rotating buckets, on

average two buckets should simultaneously react with a full jet (Fig. 5.7). In other

words, when a bucket begins to cut off a certain jet layer, another bucket, which is

in advance of two buckets, should be relieved from the impingement of water of the

same jet layer. The corresponding impingement and relief points are assumed to be

found on the line which connects the tip of the main splitter and the wheel axis

according to Fig. 5.7. For the jet layer on the jet axis, these points are denoted by o1
and o2, respectively. By observing this middle jet layer, the condition of two

buckets subjected on average to the load of a full jet implies that the angle Δαo
¼ αo1 � αo2 must be twice the bucket distribution angle. This requirement can be

formulated by the following equation with λ ¼ 1:

αo1 � αo2 ¼ 2λ � 2π
N

: ð5:19Þ

The factor λ is provisionally used as a placeholder, in order to later be able to

consider real operation conditions at which not exactly two buckets are simulta-

neously found under the impingement of a full jet.

Fig. 5.6 Spreading of

water in the bucket
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Now Eq. (5.19) is inserted into Eq. (5.18), from which the peripheral speed

coefficient km is resolved to be

km ¼ 2π

N

2λ� 1

tan αo1 � tan αo2
: ð5:20Þ

The angle αo2 in the equation is again replaced by Eq. (5.19). This finally results in

km ¼ 2π

N

2λ� 1

tan αo1 � tan αo1 � 4λπ=Nð Þ : ð5:21Þ

The selection λ ¼ 1 means that, on average, two buckets are simultaneously under

the impingement of a full jet, as has already been illustrated in Fig. 5.7. By applying

this condition which is called coincidence condition to a concrete Pelton turbine, for
instance, with 21 buckets and αo1 ¼ 33:5� (for nq ¼ 0:1), the operation point of the

turbine is expected to have the value km ¼ 0:44. In most applications of Pelton

turbines, the peripheral speed coefficient km is known to be within 0.45 to 0.48. The

derivation presented above thus explains the mechanical connection to the practical

operation point with km < 0:5. Because of the values of km that in actual turbines

are practically larger than that expected above, more than two buckets on average

actually take part in the exchange with a full jet. This fact can be confirmed, for

instance, with the aid of Eq. (5.21). By assuming λ ¼ 1:05, a peripheral speed

coefficient of km ¼ 0:47 is obtained which agrees well with an actual operation

4π/N 

o2o1

αo1

Fig. 5.7 Coincidence

condition for the interaction

between the jet and the

rotating buckets
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point of a Pelton turbine. The factor λ is therefore referred to as multi-bucket factor
and can be assumed to be λ ¼ 1:05 for Pelton wheels with a middle specific speed

nq ¼ 0:1. As will be shown in the next section, the multi-bucket factor is a function

of both the peripheral speed coefficient and the specific speed of a Pelton wheel.

It has been mentioned in connection with Fig. 5.5 that the middle bucket position

of αc and αd should be approximately zero. This simply means that

αo2 ¼ 0: ð5:22Þ

This condition is referred to as symmetry condition. It enables, for example, the

bucket number of a Pelton wheel to be determined as a function of the specific

speed of the turbine.

5.5 Number of Buckets of a Pelton Wheel

The symmetry condition introduced in the last section can be applied for the

determination of the bucket number. To this end, Eq. (5.22) is applied to

Eq. (5.19). The number of buckets is then obtained as

N ¼ 4πλ

αo1
: ð5:23Þ

On the other hand, Eq. (5.20) implies with αo2 ¼ 0

km ¼ 2π

N

2λ� 1

tan αo1
: ð5:24Þ

From these two equations, the multi-bucket factor λ can be eliminated. The bucket

number is then obtained as

N ¼ 2π

αo1 � km tan αo1
¼ f km, nq
� �

; ð5:25Þ

in which for the identification of the function f(km, nq), Eq. (2.30) has been

employed. Comparison with Eq. (5.8) for the minimum number of buckets con-

firmed the similar structure of the two calculations. The number of buckets

according to Eq. (5.25) shows its clear dependence on the peripheral speed coeffi-

cient and the specific speed of the Pelton wheel.

The multi-bucket factor is determined from Eqs. (5.23) to (5.25) as
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λ ¼ 1

2

1

1� km
tan αo1
αo1

¼ f km, nq
� �

: ð5:26Þ

With this multi-bucket factor, the bucket number can also be directly determined

from Eq. (5.23). Furthermore, from the expression cos αo1 in Eq. (2.30), the

expression tan αo1 can be formulated and then inserted into Eq. (5.24). This results

in another formula for calculating the number of buckets, as given by

N ¼ π

km

2λ� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq 1þ nq
� �q : ð5:27Þ

The number of buckets in this form connects the peripheral speed coefficient, the

specific speed, and the multi-bucket factor. For each given Pelton wheel (N, nq)
under nominal operation conditions (km,N), the real multi-bucket factor can thus be

determined and used to evaluate the interaction between the jet and the rotating

buckets.

Figures 5.8 and 5.9, respectively, show the multi-bucket factor and the number

of buckets as functions of the specific speed for different peripheral speed coeffi-

cients. For a specific speed of nq ¼ 0:11 on average and a peripheral speed

coefficient of km ¼ 0:47, for instance, the bucket number of N ¼ 22 is obtained,

which agrees quite well with practical realities. The multi-bucket factor is found to

be λ ¼ 1:08. For Pelton wheels with low specific speeds and operation point km
close to 0.5, the multi-bucket factor tends to unity. In particular, for nq ! 0 and

km ¼ 0:5, there follows λ ¼ 1. The coincidence condition is then completely

fulfilled, and the interaction between the jet and the rotating buckets is comparable

to the interaction between the jet and a linearly translating bucket.

The above calculations were carried out under the symmetry condition αo2 ¼ 0.

Under certain circumstances, the use of the calculated bucket number for a Pelton

wheel with high specific speeds may cause problems in the mechanical manufactur-

ing when the clearance between two adjacent buckets is a bit too narrow. In such

cases, a lower bucket number is usually selected than calculated. For instance, if

from nq ¼ 0:13 and km ¼ 0:47, the number of buckets is calculated as N ¼ 21, one

will select in practice N ¼ 19. According to Eq. (5.21), this implies a small change

of the multi-bucket factor from λ ¼ 1:11 to λ ¼ 1:10. The bucket-position angle αo2
changes according to Eq. (5.19) from αo2 ¼ 0� to αo2 ¼ �4�. Since this angle

change is not particularly large, the number of buckets,N ¼ 19 instead ofN ¼ 21, is

anyhow acceptable. The slightly lower numbers of buckets found in practical

applications can always be justified with the maximization of the system efficiency.

In so doing other influence factors, in particular the friction effect according to

Chaps. 10–12, may play a far larger role. Based on experimental studies, an

empirical equation for determining the number of Pelton buckets was proposed

by Taygun (1946); it reads

5.5 Number of Buckets of a Pelton Wheel 73

http://dx.doi.org/10.1007/978-3-319-31909-4_10
http://dx.doi.org/10.1007/978-3-319-31909-4_12


N ¼ 15þ 1

2

Dm

d0
: ð5:28Þ

In connection with Eq. (2.26), this empirical equation can be further represented as

a function of the peripheral speed coefficient and the specific speed:

N ¼ 15þ 1:3
km
nq

: ð5:29Þ

It can further be demonstrated that the rounded bucket number only very slightly

depends on the peripheral speed coefficient. Thus, for a mean peripheral speed

coefficient of km ¼ 0:47, one obtains
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N ¼ 15þ 0:62

nq
; ð5:30Þ

which is of purely geometric nature because of the specific speed nq. For compar-

ison reasons, the bucket number, calculated in this way, has also been shown in

Fig. 5.9 as a function of the specific speed. It confirms a very good similarity

between the high empirical and theoretical values. The relevant equation (5.27),

which is derived by the use of the coincidence and symmetry conditions, clearly

reveals the mechanical connection of these conditions to the optimum number of

buckets of a Pelton wheel. With it, it is now also clarified why the peripheral speed

coefficient of a Pelton turbine is always found in the range 0.45 to 0.48, i.e., less

than 0.5.

5.6 Relative Track of the Jet

The real interaction between the jet and a Pelton bucket can be well illustrated when

the relative velocity of the jet before and at the entrance of the bucket is considered.

For this purpose, the relative track of a water particle that enters a rotating bucket

should be considered first. The water particle is found on its trajectory on the jet

layer which, according to Fig. 5.10, is a distance h away from the wheel axis. With

respect to the coordinate system in the figure, the components of the relative flow

velocity ~W0 of a water particle before entering the bucket are given by

W0x ¼ C0x � Ux ¼ C0 � ω � h; ð5:31Þ
W0y ¼ 0� Uy ¼ �ω � R � sin α: ð5:32Þ

The water particle is assumed to enter at time t ¼ 0 the bucket at the bucket position

αe, i.e., at the radial positionRe ¼ h= cos αe with x ¼ xe and y ¼ h. The relative track
of the water particle before entering the bucket will thus be characterized by

negative times.

Since the water particle before entering the bucket is found at h ¼ const, i.e.,

R � cos α ¼ const, one also has in steady rotation W0x ¼ const according to

Eq. (5.31). The relative track of the water particle in the relative system is then

described by

x ¼ xe þ
Z t

0

W0xdt ¼ xe þ C0 � ω � hð Þ � t; ð5:33Þ

y ¼ hþ
Z t

0

W0ydt ¼ h� ω

Z t

0

R � sin αdt: ð5:34Þ

Because R � sin α ¼ �xe � C0 � t, Eq. (5.34) may also be written as
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y ¼ hþ ω

Z t

0

xe þ C0 � tð Þdt ¼ hþ ω xetþ 1

2
C0t

2

� �
: ð5:35Þ

Eliminating the time between Eqs. (5.33) and (5.35), the relative track of the

observed water particle is expressible as

y ¼ hþ ω
x� xe

C0 � ω � h xe þ 1

2
� x� xe
1� ω � h=C0

� �
: ð5:36Þ

This relative track relation only applies to water particles that enter the bucket at the

position with x ¼ xe and y ¼ h. There, the tangent of the relative track coincides

with the slope of the relative velocity W0, as shown in Fig. 5.10. The angle γ, at
which the observed water particle enters the bucket, is calculated from the relation

tan γ ¼ � W0y

W0x

� �
e

¼ ωxe
C0 � ωh

: ð5:37Þ

For water particles on the jet axis, one has ωh ¼ Um. Moreover, because of

km ¼ Um=C0, it further follows from the above equation that

tan γo ¼
km

1� km

xo
h
¼ km

1� km
tan αo � 0:9 tan αo; ð5:38Þ

in which the subscript “e” has been altered to “o.” For small values of αo and γo, this
can be approximated by

γo � 0:9αo: ð5:39Þ
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The connection between tan γo and tan αo by the parameter km can also be directly

obtained by applying the velocity triangle. The approximation in the above equa-

tion is made only for km ¼ 0:475.
If the relative motion of the water particle is further considered for the period

t > 0 and supposed to be unaffected by the bucket, then the water particle will reach

the peak of the relative track (Fig. 5.10), at which there is Wy ¼ 0. In the absolute

system, the water particle is found on the y-axis because, according to Eq. (5.32),

there is α ¼ 0.

5.7 Flow Detachment at the Cutting Edge of Bucket Cutout

It has already been shown in Sect. 5.3, and was illustrated in Fig. 5.4, that for Pelton

turbines with high specific speeds, the bucket starts to cut off the jet relatively early.

This has as a consequence that the relative flow velocity in the velocity triangle,

according to Fig. 5.11, may be too “steeply” oriented towards the bucket; the flow

will then get separated at the cutout edge. The water that passes the bucket cutout

edge follows the relative track that has already been calculated in Sect. 5.6 and

subsequently quickly strikes the inner surface of the bucket. The impact position,

denoted by a, can be determined from Fig. 5.11 by following the water particle

within a short time, during which the bucket sweeps over an angleΔα ¼ ωt, and the
water particle moves a distance Δx ¼ C0t.

The immediate consequence of this impulsive action is abrasion damage on the

bucket surface. Such damages have already been observed in practice for Pelton

turbines with high specific speeds. Figure 5.12 shows the systematic breakdown of

the wear coating on the bucket surface, just in the zone where the separated flow

gets reattached and strikes with a hammer effect. The high periodic beating, in the

illustrated example at 30 Hz, deteriorates the adhesion of the wear coating and leads

to its breakdown after a short operation time. For this reason, the bucket profile in

the region of bucket cutout must be carefully designed, especially for Pelton wheels

with high specific speeds.

5.8 Shockless Condition on the Bucket Rear Side

At the instance of cutting off the jet by the bucket cutout, the jet is split into two

parts. One part enters the bucket; the other part bypasses it. In the case of unfavor-

able design of the bucket cutout, the second part of the jet may partly impinge on the

rear side of the bucket. The situation becomes worse particularly for a Pelton wheel

with high specific speeds at which the slope of the relative velocity at the bucket

cutout is relatively “steep,” as already shown in Fig. 5.11. The impingement of the
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jet on the rear side of the bucket will primarily cause an efficiency drop and thus

should be avoided whenever possible. To this end, a criterion should be worked out.

The criterion of designing the profile of the bucket cutout is the velocity relation

in the rotating frame. It has already been shown in the last section that the steepest

relative velocity and therefore the most critical flow angle are found at the
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beginning of cutting off the jet. The corresponding bucket position is given by αa,
and the corresponding velocity relation is shown in Fig. 5.13. The relative velocity

points in the direction that is given by the angle φa. The surface profile on the rear

side of the bucket is indicated by S which has a fixed inclination angle ψ relative to

the radial direction. The condition of the jet flow without touching the bucket rear

side is simply given by ψ < φa.

The flow angle φa of the relative flow is calculated from the velocity triangle at

the bucket entry. After Fig. 5.13 by employing the law of sines, it is determined by

cosφa ¼
C0 � sin αa

W0

: ð5:40Þ

In this equation, the relation sin π � βað Þ ¼ sin βa ¼ cosφa has been applied.

The relative flow velocity is calculated according to the law of cosines:
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W0 

Fig. 5.13 Condition for

flows avoiding jet

impingement on the rear

side of the bucket at the

bucket cutout zone, ψ < φa

with φa ¼ π=2� βa
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W2
0 ¼ U2

c þ C2
0 � 2UcC0 cos αa; ð5:41Þ

which can also be given in the form

W2
0

C2
0

¼ U2
c

C2
0

þ 1� 2
Uc cos αa

C0

: ð5:42Þ

Inserting this relation into Eq. (5.40) yields

cos 2φa ¼
sin 2αa

Uc=C0ð Þ2 þ 1� 2 Uc=C0ð Þ � cos αa
: ð5:43Þ

This equation may also be represented as a function of the specific speed. To this

end Eq. (5.10) for αa and Eq. (2.33) with km ¼ 0:47 are taken into account. Then

there follows from Eq. (5.43)

cos 2φa ¼
1� 1�0:81nq

1þ2nq

� �2
0:22 1þ 2nq

� �2 þ 0:76nq þ 0:06
: ð5:44Þ

The dependence of the relative flow angle φa on the specific speed nq has thus been
derived. A graphical relation is shown in Fig. 5.14. Obviously, the relative flow

angle φa decreases rapidly with the increase of the specific speed of the Pelton

wheel. This circumstance highly complicates the design of the rear side profile of

the bucket cutout for being free of impingement (ψ < φa). Since almost inevitable

jet impingement on the rear side of Pelton buckets is always associated with a

counterforce to the bucket rotation, an additional loss in the system efficiency must

be expected. Furthermore, increasing material abrasion will occur. It also shows

that the flow angle φa is practically independent of the peripheral speed coefficient

km.
For practical applications, the flow angle φa as a function of the specific speed

can be approximated by fitting the curve in Fig. 5.14 to a quadratic polynomial. The

result is

φa ¼ 1500n2q � 610nq þ 63: ð5:45Þ

A reference criterion for designing Pelton buckets with ψ < φa is thus available.
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5.9 Shock Load Force and Related Power at Bucket Entries

The high-speed jet enters a bucket both at the bucket cutout and along the main

splitter. For Pelton wheels of high specific speeds, the flow separation at the bucket

cutout edge often occurs, as has already been revealed in Sect. 5.7. Apart from this

undesirable flow, the entering of the jet both at the bucket cutout and along the main

splitter is always related with a “sudden” deflection of the flow and thus with a

shock load. While in closed channel flows, the flow separation due to a sudden

change in the flow state always generates a shock loss, the shock effect in the

current case at entries of Pelton buckets can be regarded to be free of any losses.

The related flow mechanism is quite simple. During the quasi-sudden deflection of

the flow at the bucket edges, the kinetic energy of the high-speed jet is partially

converted into the pressure energy which shortly thereafter is converted back again.

The energy conversion in this form occurs without any spatial restriction and is thus

not related to any flow separation. The comparable flow deflection has already been

shown in Sect. 5.1 (see Fig. 5.1).

In the following, the shock effects at both the main splitter and the cutout edge of

Pelton turbines will be separately considered.

5.9.1 Deflection of the Flow at the Bucket Main Splitter

The bucket main splitter of Pelton turbines is mostly configured to have an angle 2ε
of 25� to 40� (Fig. 5.15). It receives the jet generally at a non-perpendicular angle to
the jet axis as well as to the relative flow velocity (Sect. 5.6). For simplicity, here

only the case is considered in which the bucket main splitter is just perpendicular to

the jet axis. The sudden deflection of the flow by the angle ε results in a shock load

of the bucket. The associated shock load force acts on the moving bucket and
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therefore contributes to the shaft power. Its determination is simply based on the

law of momentum. For this reason, an x-y-z coordinate system, as shown in

Fig. 5.15, is introduced. The x-y plane is found in the plane which is spanned by

the jet axis and the bucket main splitter. The x- and y-axes are parallel to the jet axis
and the bucket main splitter. In addition, the relative velocity is found at an

inclination angle γ to the jet axis.

For the use of the momentum law, the flow in the upper half of the bucket

(Fig. 5.15a) is considered. The relative flow rate and the shock load force are given

by _Q w=2 and Fshock/2, respectively. In the relative frame, the momentum flow rate

before the jet deflection is a vector quantity having three components as

~I0 ¼ 1

2
ρ _Q wW0 cos γ,

1

2
ρ _Q wW0 sin γ, 0

� �
: ð5:46Þ

The relative velocity in this equation is found in the x-y plane.
After the deflection of the jet, the momentum flow rate is given by the momen-

tum vector~I1 ¼ I1x, I1y, I1z
� �

.

The shock load force is restricted to the x-z plane. This is so because at the jet

impact point and along the y-axis, the velocity componentWy remains constant, and

thus the corresponding force component disappears. The shock load force on the

main splitter is then given in vector form by

1

2
~Fshock ¼ �1

2
Fshock sin

ε

2
, 0,

1

2
Fshock cos

ε

2

� �
: ð5:47Þ

Consequently, from the law of momentum in the form 1
2
~Fshock ¼~I1 �~I0, the

following component relations for the momentum after the shock load incident

can be obtained:

I1x ¼ 1

2
ρ _Q wW0 cos γ � Fshock sin

ε

2

� �
; ð5:48Þ

I1y ¼ 1

2
ρ _Q wW0 sin γ; ð5:49Þ

I1z ¼ 1

2
Fshock cos

ε

2
: ð5:50Þ

In order to resolve the shock load force from these relations, the energy law must

also be applied. Because the flow deflection is free of loss, the kinetic energy in the

flow must remain constant; it is represented by

I21x þ I21y þ I21z ¼ I20x þ I20y þ I20z: ð5:51Þ

Substituting all the related expressions derived above, the magnitude of the shock

load force Fshock/2 is deducible as
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Fshock

2
¼ ρ _Q wW0 cos γ � sin ε

2
: ð5:52Þ

It is directed perpendicular to the flow (Fig. 5.15a). The force which is directed

towards the bucket is given by the same value.

The circumferential speed of the bucket is expressible as
~U ¼ U cos α, � U sin α, 0ð Þ. With respect to the flow deflection at two bucket

halves, the total power of working provided by the shock load force at a full bucket

is calculated to

Pshock ¼ �~U � ~Fshock ¼ 2ρ _Q wW0U cos α cos γ � sin 2 ε

2

� �
; ð5:53Þ

or, since sin 2 ε=2ð Þ ¼ 1� cos εð Þ=2,

Pshock ¼ ρ _Q wW0U cos α cos γ � 1� cos εð Þ: ð5:54Þ

The specific work that is done by the shock load force is, from its definition, given

by

eshock ¼ Pshock

ρ _Q w

¼ W0U cos α cos γ � 1� cos εð Þ: ð5:55Þ

If related to the specific kinetic energy C2
0/2 of the jet, one obtains

ηshock ¼
eshock
1
2
C2
0

¼ 2
W0

C0

U

C0

cos α cos γ � 1� cos εð Þ: ð5:56Þ

This is called the partial efficiency of the shock load force. A special case is given

for α ¼ 0 which also means γ ¼ 0 and W0 ¼ C0 � Um. This corresponds to the

vertical alignment of the relative flow to the bucket main splitter and is therefore

equivalent to the case of a linearly translating bucket. With km ¼ Um=C0, Eq. (5.56)

leads to

ηshock ¼ 2km 1� kmð Þ 1� cos εð Þ: ð5:57Þ

This result is formally identical to Eq. (2.16) or Eq. (2.40). Numerically, for

instance, for km ¼ 0:5 and ε ¼ 15�, the related partial efficiency is given by

ηshock ¼ 1:7%. Recall that this partial efficiency is solely due to the sudden change

of the flow direction at the main splitter of the bucket and not due to the flow

process.

The exclusive analysis of the shock load force and its effect aids to divide the

power conversion between the jet and the rotating buckets into two mechanical

forms: (1) the shock form at the bucket main splitter and (2) the continuous form of
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the flow inside the rotating bucket towards the bucket exit. The hydraulic efficiency

achieved by the continuous flow process is determinable by

ηcontinuity ¼ 2km 1� kmð Þ � cos ε� cos β2ð Þ: ð5:58Þ

Together with the partial efficiency ηshock, the overall efficiency can be obtained; it

agrees exactly with Eq. (2.40).

The separation of the entire power conversion process into two subforms has the

practical significance when the conversion performances like the power, efficiency,

etc. have to be determined from the integration of the flow along the bucket surface.

In so doing, the lower bound of the integration must obviously be located at the

bucket entry with the real flow angle ε which is nonzero. A comparable computa-

tional example which concerns a similar flow will be shown in Chap. 12. There, the

flow friction effect in the relative flow within a rotating bucket has also been

considered by integration.

5.9.2 Deflection of the Flow at the Bucket Cutout Edge

To calculate the shock load force at the bucket cutout edge, the cutting edge is

assumed to be straight in the z direction, as shown in Fig. 5.16. The x-coordinate is
selected to be parallel to the jet axis. Since the case with γ > γc implies flow

separation, which, according to Sect. 5.7, should not occur, only the case of γ < γc
will be considered here.

Apart from the singularity of the flow at the cutting edge, the shock load force

associated with the sudden change of the flow direction is perpendicular to the

bucket surface. This implies that that part of the water which depends on the angle

difference Δγ ¼ γc � γ will flow backwards. For calculating the flow within the

bucket, one is tempted to take into account only the forward moving flow rate.

Indeed, since the angle difference Δγ in effect is very small, the back flow can be

neglected. This, however, has the consequence that, according to the law of

momentum, the direction of the shock load force will slightly deviate from the

normal direction of the bucket surface. Instead of being perpendicular to the bucket

surface, it is then in line with the bisector of the deflection angle. Such a situation

has already been encountered in Fig. 5.15 where the shock load force deviated from

the normal of the bucket surface by ε/2.
In the rotating frame, the momentum flow rate of the jet before deflection (index

0) is represented by its components:

I0x ¼ ρ _Q wW0 cos γ; ð5:59Þ
I0y ¼ ρ _Q wW0 sin γ: ð5:60Þ

Here, the relative flow rate can be determined from calculations in Sect. 7.1.
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After deflection of the jet, the momentum flow rate is given by (withW1 ¼ W0)

I1x ¼ ρ _Q wW0 cos γc; ð5:61Þ
I1y ¼ ρ _Q wW0 sin γc: ð5:62Þ

According to the balance law of momentum, the shock load force acting on the flow

is given by

Fshock,x ¼ I1x � I0x; ð5:63Þ
Fshock,y ¼ I1y � I0y: ð5:64Þ

The jet deflection at the bucket cutout edge happens at the bucket-position angle αb,
which has already been clearly defined in Figs. 5.2 and 5.3. The related components

of the peripheral speed of the bucket cutout edge are thus given by

Ux ¼ Uc cos αb; ð5:65Þ
Uy ¼ �Uc sin αb: ð5:66Þ

The power provided by the shock load force is calculated from the corresponding

scalar product:

Pshock ¼ �~Fshock � ~Uc ¼ � Fshock,xUx þ Fshock,yUy

� �
: ð5:67Þ
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With reference to Eqs. (5.59) to (5.66) and becauseαb þ γ ¼ β0, the above equation
is also representable in the form

Pshock ¼ ρ _Q wW0Uc cos β0 � cos αb þ γcð Þ½ �: ð5:68Þ

The related specific work is then obtained in the form

eshock ¼ Pshock

ρ _Q w

¼ W0Uc cos β0 � cos αb þ γcð Þ½ �: ð5:69Þ

According to Fig. 5.16, the angle αb þ γc represents a geometric angle at the bucket

cutout and will be referred to β1. By relating Eq. (5.69) to the specific kinetic energy
C2
0/2 of the jet, the related partial efficiency is then obtained in the form

ηshock ¼
eshock

C2
0=2

¼ 2
W0Uc

C2
0

cos β0 � cos β1ð Þ: ð5:70Þ

With km ¼ Um=C0, one further obtains

ηshock ¼ 2k2m
W0

Um

Rc

Rm

cos β0 � cos β1ð Þ: ð5:71Þ

For β1 ¼ β0, both the shock load force and the related partial efficiency are zero.

As already indicated in Sect. 5.9.1, the exclusive analysis of the shock load force

at the bucket entry is necessary, because its contribution to the shaft power cannot

be detected by performing the integration of the flow from the bucket entry to the

exit. A sample calculation will be shown in Chap. 12.

5.10 Effect of Eroded Main Splitters on Turbine Efficiency

In Sect. 5.9, when calculating the shock load force, it has been assumed that the

quasi-sudden deflection of the jet flow does not lead to any efficiency loss. This is

true as long as the main splitters keep their initial form or are kept sufficiently sharp.

In practice, however, it is common that main splitters of Pelton buckets are eroded

after a period of operation (Fig. 5.17). The period may be significantly shorter,

when the water is highly loaded with suspended sediment particles. This phenom-

enon is called hydroabrasive wear or hydroabrasive erosion. It often occurs when

the water from glaciers or river water during/after floods, for instance, is routed to

Pelton turbines without passing a lake, where particles could settle (Boes

et al. 2013; Felix et al. 2012, 2013). Further information about the sand erosion

problems in Pelton turbines and related investigations will be presented in Chap. 22

for special consideration of the motion of particles in the water-sheet flow within

the bucket.
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In general, the increase of splitter width due to erosion has been related to

suspended sediment load (e.g., Boes 2009). The wear on main splitters leads to

significant efficiency drops in Pelton turbines, as reported, e.g., by Brekke

et al. (2002), Maldet (2008), and Abgottspon et al. (2013). According to Brekke

et al. (2002), an increase in the splitter width by 1% of the inner bucket width

B causes approximately a 1% efficiency drop at full load. Although this statement is

based on practical measurements, the dependence of efficiency drop on the eroded

splitter width, however, has not yet been generalized. There exists still no expla-

nation to the related dependence and generating mechanism.

As will be presented in this section, a model of the mechanism causing efficiency

losses at eroded splitters has been proposed, quantified, and verified by available

measurements. The method is basically restricted to the plane form of eroded

splitters. Nevertheless, it provides a possibility to predict the order and tendency

of efficiency losses as a function of the relative width of eroded main splitters.

5.10.1 Basic Model and Mechanism of Losses

The hydraulic mechanism of efficiency loss caused by eroded splitters of Pelton

buckets is flow detachment. The occurrence and extent of such local flow detach-

ment depend on the ratio of the eroded splitter width to the jet diameter. For

simplicity, the approaching flow of the jet is assumed to be perpendicular to the

two-dimensional splitter crest profile, as shown in Fig. 5.18. A jet layer of a distance

y to the jet axis is considered. For a small value of y, the jet layer width s is

significantly larger than the width b of the eroded splitter. The jet layer, after

reaching the bucket splitter, flows attached along the bucket surface (Fig. 5.18a).

For a jet layer at a large distance of y (approaching half jet diameter), substantial

flow detachment occurs at the splitter because of the relatively small ratio s/b
(Fig. 5.18b). The detached jet layer then hits the bottom of the bucket or even

Fig. 5.17 Wear of main

splitters and inner surface of

Pelton buckets (photo:

TIWAG)
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flows towards the bucket exit. In this case, the amount of water involved in the jet

layer is assumed to be lost for the momentum and energy transfer.

For flow detachments at small angle, the detached fluid reattaches to the flanks of

the splitter (Fig. 5.19). The related flow disturbance is minute and can be neglected.

Obviously, the amount of water loss and thus the efficiency drop depend on the

relative width of the splitter to the jet thickness. The critical width ratio s/b is

defined as that at which the deflection angle εcr of the flow (Fig. 5.19) is just equal to

or slightly greater than the geometrical splitter angle. Thus the critical deflection

angle of the jet flow is given by εcr ¼ εs þ Δε, typically withΔε � 5�. For common

designs of Pelton buckets, the angle of main splitters is about 2εs ¼ 25� � 40�.
Corresponding to each splitter angle, i.e., the critical angle εcr, there exists a

critical width ratio (s/b)cr and thus a critical ycr-value according to Fig. 5.19. All

water in the jet that lies beyond ycr on both sides (�ycr ) must be considered

ineffective for the energy conversion. This consideration is actually only an

approximation. At large deflection angle, the detached fluid hits the bucket bottom.

The contribution of the associated impact force to the energy conversion may be

elsewhere accounted for, for instance, by selecting an appropriate excessive angle

Δε for εcr. This means that the critical deflection angle εcr, as a variable, has to be

selected so that the estimated efficiency loss approximately agrees with the mea-

surements. The point to be emphasized here is that the current calculation aims to

physically model the mechanism of splitter width causing the efficiency drop rather

than to accurately quantify the drop of the turbine efficiency.
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Fig. 5.18 Model of the flow at an eroded splitter of width b with (a) attached flow and (b)

detached flow
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5.10.2 Critical Width Ratio for Flow Detachment

The critical width ratio s/b at the main splitter of a Pelton bucket corresponds to the

determination of the dependence of the deflection angle ε on the width ratio s/b. For
this purpose, a flow model according to Fig. 5.20 is considered. A two-dimensional

jet of a thickness s is split by a central block of width b into two partial flows. The

deflection angle of each partial flow from the approaching flow, ε, is a function of

the size ratio s/b. This function can be obtained by applying the conservation law of

linear momentum in the direction of the approaching jet. The unique force exerted

on the flow is the pressure force on the block surface. At the center point of the

block face, i.e., the stagnation point of the jet flow, the pressure is equal to the

dynamic pressure 1
2
ρc2 of the approaching flow. The pressure at the edges of the

block corresponds to the ambient pressure p0. The pressure distribution on the block
surface is not linear. Strictly speaking, it depends on the size ratio s/b. For not too
small size ratios s/b, say s=b > 1, the mean pressure on the block surface is

approximated as one third of the dynamic pressure

p � 1

3

1

2
ρc2

� �
: ð5:72Þ

For a unit length of the block, the z-component of the pressure force exerted on the

fluid is given by

Fz ¼ pb ¼ 1

6
bρc2: ð5:73Þ

The deflection of the flow caused by this force component is considered to be free of

energy losses. This implies that the deflected flow has the same speed as the

approaching flow. The z-component of the velocity of the deflected flows is thus

c cos ε. The conservation law of momentum then implies

ycr

εs
εcr=ε+Δε 

s c
r

d0

Fig. 5.19 Reattachment of

slightly detached fluid at

splitters of a Pelton bucket;

definition of the critical

deflection angle εcr
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Fz ¼ sρc2 � sρc2 cos ε: ð5:74Þ

By considering the force component given in Eq. (5.73), the deflection angle ε of
the flow is obtainable from

cos ε ¼ 1� 1

6

b

s
: ð5:75Þ

As mentioned before, this equation generally applies with s=b > 1.

The relation of Eq. (5.75) is applied to the eroded splitter of Pelton buckets. With

respect to the reattachment of the detached fluid according to Fig. 5.19 and to the

selected critical deflection angle εcr ¼ εs þ Δε, the critical width ratio (s/b)cr is then
deducible from Eq. (5.75) as

s

b

� �
cr
¼ 1

6 1� cos εcrð Þ : ð5:76Þ

For a given angle εs (or εcr) and a width b of eroded bucket splitters, the critical

width scr of the approaching flow (see Fig. 5.19 for a round jet) can be determined.

The water outside this chord flows detached from the splitter and must be consid-

ered to be ineffective for torque generation. For a typical splitter angleεcr ¼ 15�, for
instance, the critical value of s/b according to Eq. (5.76) is calculated as

s=bð Þ15� ¼ 5. The meaning of this critical length ratio is evident. If the jet layer

width s is less than five times the width of the eroded splitter, fluid detachment with

efficiency losses occurs. To determine the related reduction in turbine efficiency,

thus, one must only consider the jet part with s=b < 5.

The width of the eroded splitter is often given in terms of the ratio b/B, where
B denotes bucket inner width. When related to the jet diameter d0, Eq. (5.76) is
rewritten as

b 

s 

c 
ε 

p 

c 

z 
c c 

Fig. 5.20 Symmetrical

splitting and deflection of a

two-dimensional jet

5.10 Effect of Eroded Main Splitters on Turbine Efficiency 91



scr
d0

¼ 1

6 1� cos εcrð Þ
d0,N
d0

B

d0,N

b

B
: ð5:77Þ

The jet diameter at the nominal flow rate is denoted by d0,N. According to

Eq. (2.21), with φB varying between 0.09 and 0.11, there is B=d0,N � 3. The

diameter ratio d0/d0,N in the above equation, indeed, implies the partial load of

injectors, as given by d0=d0,N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Q = _Q N

q
for constant jet speed. Eq. (5.77) can

then further be written as

scr
d0

¼ 0:5

1� cos εcr

b

B

ffiffiffiffiffiffiffi
_Q N

_Q

s
: ð5:78Þ

To more accurately model the flow at the eroded splitters of the Pelton buckets, the

critical deflection angle εcr in the above equation must be considered to depend on

the relative splitter width b/B. This is evident, when considering Fig. 5.19. With

increased wear of the bucket splitter, both the relative splitter width b/B and the

geometrical splitter angle εs increase. The corresponding relation can be formulated

as

εcr ¼ εcr0 þ k
b

B
: ð5:79Þ

Here, εcr0 is related to the critical angle based on the initial design of the bucket

splitter ( b ¼ 0 ). The constant k, as will be shown below, can be set equal to

k ¼ 100�.

5.10.3 Water Loss Related to Flow Deflection at Bucket
Splitters

It was shown that the critical chord length scr of the approaching jet is a function of
the width b and the angle εcr of the eroded main splitters. Since all water in the

segment outside the critical chord (scr) is considered to be ineffective, its ratio to the
total jet flow rate represents the dependent efficiency drop. For a jet of thickness d0
and by considering two segments lying symmetrically (�y ) to the center line

(Fig. 5.21), the associated efficiency drop amounts to

Δηsplitter ¼
Acr

A0

¼ 2

π
arccos

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2cr

d20

s
� scr

d0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2cr

d20

s !
: ð5:80Þ

Because the incorporation of Eq. (5.79) into Eq. (5.78) results in scr ¼ f b=Bð Þ, it
follows from Eq. (5.80) the following general functional relation:
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Δηsplitter ¼ f
b

B
;
_Q
_QN

 !
: ð5:81Þ

At partial load operation ( _Q = _Q N < 1), one has d0=scr < d0,N=scr, as obtained from
Eq. (5.78) for a given width of the eroded splitter and thus a given critical chord

length scr. Equation (5.80) then implies, because of the area ratio Acr/A0, that the

associated efficiency loss at partial load is higher than at full, i.e., nominal load.

Figure 5.22 shows the computational results from Eq. (5.81) for a given initial

splitter angle ( εcr0 ¼ 13� ) at full and 75% partial load. The efficiency drop

progressively increases with the relative width of eroded splitters.

5.10.4 Comparison with Measurements

The analyses completed in the above sections are based on the flow model

according to Figs. 5.19 and 5.20. To show the applicability of the constructed

flow model, calculations as shown in Fig. 5.22 are compared with field measure-

ments, which were reported by Maldet (2008). This comparison is displayed in

Fig. 5.23 with the splitter width b as the abscissa. A quite satisfactory agreement

between the calculations and the measurements has been achieved. As for the

measurements displayed in the figure, the operation condition of the Pelton turbines

should be mentioned. At each Pelton wheel, the flow-rate range from 50 to 100% of

the nominal flow rate was effective. In addition, the geometric form of the eroded

splitters is certainly not exactly of plane form as supposed in the applied compu-

tational model (Fig. 5.20).
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s c
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Fig. 5.21 Portion of water

jet suffering from deflection

at the eroded bucket

splitters
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5.10.5 Negligible Impact Force on the Eroded Splitter Plane

In the above considerations, the detached flow with large detachment angle at the

bucket splitters has been assumed to be ineffective for the energy conversion. The

amount of the related water, as a portion of the total jet flow, increases with the

increase of the eroded splitter width. This implies, according to Eq. (5.73), that the

impact force Fz, which acts as a positive driving force for the bucket rotation, also

increases. It, thus, positively contributes to the energy conversion. In the frame of

b 

B d 0jet 
ε 

Fig. 5.22 Calculated efficiency drops caused by eroded main splitters of Pelton buckets

Fig. 5.23 Comparison of calculated efficiency drops caused by eroded main splitters of Pelton

buckets (dashed lines copied from Fig. 5.22) and measurements (solid lines) reported by Maldet

(2008)
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evaluating the constructed model for the flow at the eroded bucket splitters, it seems

to be significant that this contribution is negligible.

To this end, Eq. (5.73) is applied to the interaction between the jet and the eroded

bucket splitter. Instead of the unit length assumed in that equation, the jet diameter

d0 must be applied as length scale. In addition, the relative velocity between the jet

and the moving bucket must be used. For simplicity, the operation condition km
¼ 0:5 is assumed, which implies that the relative velocity is equal to half of the jet

speed (C0). Thus, it follows from Eq. (5.73) that

Fz ¼ 1

6
bd0ρ

C0

2

� �2

: ð5:82Þ

The operation condition of km ¼ 0:5 also means that the peripheral speed of the

pitch circle of the bucket (Um) also equals the half of the jet speed. The power

provided by the impact force Fz is then given by

Pb=B ¼ Fz

C0

2
¼ 1

6
bd0ρ

C0

2

� �3

: ð5:83Þ

This power is normalized by the power of the jet; this yields the effective contri-

bution of the impact force Fz to the turbine efficiency. With B � 3d0, one obtains

ηb=B ¼ Pb=B

1
4
πd20C0

1
2
ρC2

0

¼ 1

6π

b

d0
¼ 1

2π

b

B
: ð5:84Þ

For b=B ¼ 0:04, one obtains ηb=B ¼ 0:6%. Obviously, this value is negligibly small

against the efficiency loss Δηsplitter ¼ 4:4%, which can directly be read from

Fig. 5.22.
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Chapter 6

Fluid Mechanics in the Rotating Bucket

6.1 Basic Equations

Water flow in rotating buckets is a complex hydro-mechanical process, which is

characterized by the presence of a free surface and the influences of centrifugal and

Coriolis forces as well as of friction, inertial, and pressure forces in the flow. These

forces affect the spreading of water in the bucket and, finally, the hydraulic

efficiency of the turbine system. For simplicity, frictionless flow is considered

first. The frictional flow and the influence of friction on the hydraulic efficiency

will be discussed in Chaps. 10–12.

6.1.1 Equation of Motion

Both the centrifugal and Coriolis forces associated with the rotation of the Pelton

wheel affect the spreading of water flow in Pelton buckets. They are given for the

unit mass of flow, respectively, by

~Fct ¼ �~ω� ~ω� ~R
� � ð6:1Þ

and

~FCo ¼ �2~ω� ~W: ð6:2Þ

In further calculations, the unit mass is interpreted as the mass which has a height

equal to the height of the water sheet in the Pelton bucket (Fig. 6.1). This treatment

has the advantage that the unit mass is found under constant atmospheric pressure

and can therefore be regarded as a free solid particle. The calculation of the particle

motion can then be carried out simply by applying the laws of solid mechanics.
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The movement of the unit mass of the flow in the rotating bucket is three-

dimensional and subjected to the influences of centrifugal and Coriolis forces as

well as the force exerted from the bucket surface towards the flow (supporting

force). According to the law of momentum, the temporal change in the momentum

flow rate is equal to the sum of all external active forces. For the unit mass, this is

expressed as

d~W

dt
¼ dWt

dt
~tþW2

rb
~n ¼ ~Fct þ ~FCo þ ~Fn: ð6:3Þ

Here, ~t and ~n are unit vectors parallel and orthogonal to the bucket surface. The

supporting force ~Fn that is directed from the bucket surface onto the flow is

perpendicular to the bucket surface. According to Eq. (6.3), the time rate of change

of the relative flow velocity, or the flow acceleration, comprises the flow acceler-

ation along the bucket surface in the direction of the flow (tangential) and the

acceleration normal to the bucket surface. The latter occurs as a result of the change

in the flow direction by following the bucket inner surface. According to Fig. 6.1,

the unit normal vector of the bucket surface is represented by the vector ~n which is

directed towards the center of surface curvature. The corresponding radius of

curvature is designated by rb.
Equation (6.3) is the fundamental equation of fluid dynamics in a rotating

bucket. On this basis, both the relative motion of the water sheet in the rotating

bucket and the power of respective forces can be calculated.

ϕ 

ω 

ε 

n

R

U

W

nF
t

s 

ctF

CoF

Fig. 6.1 Flow forces and

the coordinate system for

the motion of a water

particle in a rotating bucket
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6.1.2 Water Film Rotation and Pressure Distribution
Through the Sheet Height

In Eq. (6.3), the normal component of acceleration of a water particle due to the

surface curvature is expressed byW2/rb. The relative motion of the water sheet in a

Pelton bucket is congruent to the bucket form and, thus, continuously undergoes a

change in the flow direction. According to the law of momentum, a force must

result from such a direction change which acts perpendicular to the flow direction. It

is indeed nothing else than the pressure force below the water sheet. To illustrate the

pressure force and flow conditions in such flows, a two-dimensional rotating flow as

shown in Fig. 6.2a is considered. The water sheet of height h circles on the inside of
the circular tube with a radius rb. The flow is characterized by the fact that the

circulation velocity at the surface of the water sheet is Wo and the flow does not

have any radial velocity components.

According to the Euler equation for frictionless flow in cylindrical coordinates,

the pressure gradient beneath the water sheet is given by

∂p
∂r

¼ ρ
W2

r
: ð6:4Þ

Additionally, the total pressure in the water sheet is assumed to be constant. The

Bernoulli equation is then written as

p

ρ
þ 1

2
W2 ¼ const: ð6:5Þ

By eliminating the pressure term from the last two equations, one obtains the

differential equation of the related flow field:

W

r
þ dW

dr
¼ 0: ð6:6Þ

The velocity distribution in the water sheet is then obtained from the integration

F/2

F/2

(a) r

r0

rb

W0
h

(b)Fig. 6.2 Potential flow and

the pressure distribution

beneath the water sheet
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W ¼ W0

r0
r
: ð6:7Þ

It corresponds to the velocity field of a potential vortex which satisfies the irrota-

tional flow condition. In reality, this result is also expected when the Bernoulli

equation (6.5) is applied to the whole flow field rather than merely along the

streamlines.

The flow velocity on the surface of the circular pipe is given by r ¼ rb. With

r0 ¼ rb � h, thus, one obtains from Eq. (6.7)

Wb ¼ W0 1� h

rb

� �
; ð6:8Þ

or with h=rb � 1 by Taylor series expansion truncated at the linear terms,

W2
b � W2

0 1� 2h

rb

� �
: ð6:9Þ

When the pressure in the pipe is assumed to be p0, then, according to Eq. (6.5), the

overpressure on the pipe surface is given by

pb � p0 ¼
1

2
ρ W2

0 �W2
b

� � ¼ ρW2
0

h

rb
: ð6:10Þ

The total pressure force acting on half of a pipe of unit length, as shown in Fig. 6.2b,

is obtained as

F ¼ 2pbrb ¼ 2rb p0 þ ρW2
0

h

rb

� �
: ð6:11Þ

The present consideration of the pressure force acting on the half perimeter of a

pipe corresponds to the case in a Pelton bucket at which the flow is deflected by

approximately 180�.

6.2 Relative Fluid Flow and Invariance Equation

To track the motion of water in a rotating bucket, Eq. (6.3) must be solved. From

Sect. 6.1 it is known that the Coriolis force always acts perpendicular to the flow

direction. This means that this force affects only the flow direction but not the

velocity values of water particles or the water sheet. If the equation of motion, i.e.,

Eq. (6.3), is multiplied by the tangential unit vector~t (shown in Fig. 6.1 along the

streamline), then the terms for both Coriolis and supporting forces will fall off this

momentum balance, and it follows that
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dWt

dt
¼ ~Fct �~t: ð6:12Þ

This equation indicates that the relative velocity of a water particle in the rotating

bucket is affected only by the centrifugal force.

Both sides of the above equation are multiplied by Wtdt ¼ d~s �~t which is

obtained from the relative velocity ~W ¼ d~s=dt. This then results in

Wt � dWt ¼ ~Fct �~t
� �

d~s �~tð Þ ¼ ~Fct � d~s: ð6:13Þ

Here, d~s is the infinitesimal movement of the water particle in the rotating bucket.

Due to W2
t ¼ W2, the above equation is reformulated as

d
1

2
W2

� �
¼ ~Fct � d~s: ð6:14Þ

This equation shows that the change in kinetic energy of the flow along the bucket

surface is equal to the work which is done by the centrifugal force. This is self-

evident because the centrifugal force is the only one that affects the value of the

flow velocity in the rotating frame.

The vector product ~Fct � d~s in the above equation can be calculated by taking

account of the angle ε between the vectors ~Fct and d~s as shown in Fig. 6.1. From

Eq. (6.14) one obtains

d
1

2
W2

� �
¼ Fctds cos ε: ð6:15Þ

From Fig. 6.1 it can be seen that ds cos ε ¼ dR is the projection of the infinitesimal

movement d~s of the particle in the radial direction ~R. Thus, Eq. (6.15) becomes

d
1

2
W2

� �
¼ Rω2dR: ð6:16Þ

In this equation, the modulus of the centrifugal force, Fct ¼ Rω2, obtained from

Eq. (6.1) has been applied.

Integration of the above equation from R1 to R2 results in

W2
2 �W2

1 ¼ ω2 R2
2 � R2

1

� �
: ð6:17Þ

WithU ¼ ωR, as the local peripheral speed of the bucket, it finally follows from the

above equation
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W2 � U2 ¼ W2
1 � U2

1 ¼ W2
2 � U2

2 ¼ E: ð6:18Þ

This equation has been referred by Zhang (2007) as the invariance equation, with
E as the energy invariance. According to Eq. (6.18), the relative velocity of a water
particle in the rotating bucket will only change when along the streamlines the local

peripheral speed (U ) of the bucket changes. The practical significance of the

invariance equation is obvious: when the flow (W and U ) at the bucket entry

(index 1) is known, then the flow both within the rotating bucket and at the bucket

exit (index 2) can be immediately calculated, when the corresponding peripheral

speed is known.

The invariance equation (6.18) has been obtained from the assumption of

constant pressure in the water sheet. This assumption is justified if the invariance

equation is applied to the flow at the bucket exit where all streamlines are straight.

Otherwise, the assumption of constant pressure is not entirely correct. Due to the

curvature of the bucket inner surface and, thus, of the streamlines, a pressure

increase normal to the bucket surface is present according to Eq. (6.4). The relative

velocity decreases according to Eq. (6.7). Taking into account this pressure effect,

Eq. (6.18) is generalized to

p

ρ
þ 1

2
W2 � U2
� � ¼ const: ð6:19Þ

In the field of turbomachinery, this equation is called Bernoulli equation in the

relative system or occasionally as the rothalpy equation. For Pelton turbines which

are also called “impulse turbines” and operate under constant pressure, Eq. (6.19) is

reduced to Eq. (6.18).

At this point it should be noted that the water-sheet flow in a rotating Pelton

bucket is a type of open channel flow. Such a sheet flow of depth h is a type of the

shooting flow as the Froude number is much greater than one according to the

definitionFr ¼ W=
ffiffiffiffiffi
gh

p
. With respect to the invariance equation, i.e., Eq. (6.18), the

condition Fr > 1 and, thus, W2 > gh can be expressed by

E1 þ Rωð Þ2 > gh: ð6:20Þ

For flows in a rotating bucket, this condition should only be checked when E1 < 0.

This is a quite realistic case in Pelton turbines, as will be shown in Chap. 8.

6.2.1 Influence of the Pressure Gradient Due to the Surface
Curvature

The invariance equation, i.e., Eq. (6.18), was derived under the assumption of

constant pressure in the flow. However, overpressure below the free surface of the
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water sheet is actually present because of the curved streamlines; see Eq. (6.4) for

the pressure gradient. The influence of the pressure gradient within the water sheet

on the corresponding velocity distribution is greatest at the lowest point of the

bucket (Fig. 6.3) because, there, the largest streamline curvature is present. To

estimate the curvature effect, Eq. (6.19) is considered, which completely accounts

for the streamline curvature effects. If the maximum overpressure on the bucket

surface is estimated with Eq. (6.10) and the result is inserted into Eq. (6.19), then

1

2
W2 � U2
� �þW2

0

h

rb
¼ const: ð6:21Þ

is obtained. As long as the depth of the water sheet is sufficiently small compared to

the radius of curvature of the bucket inner surface, the second term on the left side

in the above equation (6.21) is negligible. The flow in the entire bucket, from entry

to exit, can then be easily calculated by using the invariance equation, i.e.,

Eq. (6.18).

More details on the streamline curvatures and the thickness of the water sheet

can be found in Chap. 22, where, based on a concrete computational example,

accurate calculations have been completed.

6.2.2 Jet Layer Method

The interaction between the jet and rotating buckets is unsteady. This means that

the invariance equation, i.e., Eq. (6.18), is only applicable for tracking each

individual water particle with its own velocity values U and W. For a full jet of

length s2 (Fig. 5.3), large computational efforts would be needed. Extensions of the

applicability of the invariance equation have been derived by Zhang (2007). They

concern the so-called jet layer method, as presented below.

rb

Fig. 6.3 Radius of

curvature of the bucket

inner surface at the lowest

point of the bucket
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According to Fig. 6.4, the jet is divided into n thin layers. In a certain jet layer

which has a distance hs from the axis of the Pelton wheel, each water particle will

reach the bucket at its particular time. This also means that each water particle has

its individual entry point at the bucket and, therefore, individual velocity triangle

with individual circumferential and relative velocities. In considering the velocity

triangle at the main splitter of the bucket and by applying the cosine law, one has

W2
0 ¼ C2

0 þ U2 � 2C0U cos α: ð6:22Þ

WithU cos α ¼ ωRu cos α ¼ ωhs, the invariance equation is formulated with the aid

of the above equation as

E ¼ W2
0 � U2 ¼ C2

0 � 2ωhsC0: ð6:23Þ

This equation states that all water particles in a same jet layer with hs ¼ const

(geometric constant) possess a unique constant value E ¼ W2
0 � U2, even though

W0 and U are not constant. For this reason, a small number (equal to the jet layer

number) of constant E will, finally, suffice in order to completely describe the flows

both in and out of a rotating bucket. The energy invariance E, as from Eq. (6.23), is

only restricted to a jet layer. It varies in reality from layer to layer owing to the

variation of the distance hs. This can be determined with the aid of Fig. 6.4. For the

jet layer at distance y from the jet axis, the invariance equation, i.e., Eq. (6.23), is

formulated in the form1

o

U
W0

Rm

h s

Ru

d 0

α

ω

C0

y

Fig. 6.4 Jet layer method

to extend the applicability

of the invariance equation

(6.18)

1 The subscript y in Eq. (6.24) is to identify the y-coordinate, so thatWy, for instance, indicates the

relative flow velocity W at y. It should not be considered to be the y-component of the velocity W.

104 6 Fluid Mechanics in the Rotating Bucket



Ey ¼ W2
y � U2

y ¼ C2
0 � 2ω Rm þ yð ÞC0: ð6:24Þ

Taking into consideration the peripheral speed coefficient km ¼ ωRm=C0, already

defined in Eq. (2.18), one obtains from Eq. (6.24)

Ey

C2
0

¼ 1� 2km 1þ y

Rm

� �
: ð6:25Þ

The energy invariance (only for a given layer), thus, varies linearly from layer to

layer. On the jet axis at y ¼ 0, one has

Eo

C2
0

¼ 1� 2km: ð6:26Þ

In the lowest, i.e., the outermost jet layer (y � d0=2 ), the energy invariance is

calculated to be

Eb

C2
0

¼ 1� 2km 1þ d0
2Rm

� �
: ð6:27Þ

Since the expression in parentheses represents a value which is clearly greater than

unity, it will often happen that the energy invariance Eb may be smaller than zero.

This negative value then remains constant till the bucket exit.

Under the application of Eq. (2.26), for replacing the term d0/2Rm, the energy

invariance in the above equation can also be represented as a function of the specific

speed:

Eb

C2
0

¼ 1� 2kmð Þ � 0:76nq: ð6:28Þ

The possible negative values of the energy invariance, which means that W < U,

are given at large peripheral speed coefficients and high specific speeds. This

condition may cause problems in some cases associated with the exit flow out of

the bucket, as will be discussed in detail in Chap. 8.

It should be noted that on the intersection line ab (Fig. 5.3), one simply has

Uc ¼ Rcω ¼ const. With this condition the following difference is formed from

Eq. (6.24):

Ey � Eo1 ¼ W2
y �W2

o1 ¼ �2ωC0y: ð6:29Þ

Therefore, the relative velocity is given by
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W2
y ¼ W2

o1 � 2ωC0y ð6:30Þ

or, when normalized by the jet velocity,

W2
y

C2
0

¼ W2
o1

C2
0

� 2km
y

Rm

: ð6:31Þ

This relation shows that starting from the relative velocity at location o1 on the jet

axis (Fig. 5.3), the relative velocities of all water particles on the cutting line ab can
be calculated. For water particles at the point a (y ¼ �d0=2) and b (y ¼ d0=2),
respectively, the corresponding relative velocities can be expressed as

W2
a

C2
0

¼ W2
o1

C2
0

þ km
d0
Rm

ð6:32Þ

and

W2
b

C2
0

¼ W2
o1

C2
0

� km
d0
Rm

: ð6:33Þ

The previous analyses concerning the invariance equation are based on the conser-

vation law of energy by assuming frictionless flows. Since viscous friction between

the water sheet and the bucket surface does not cause any significant change in the

relative flow velocity, the reliability of all derived relations can be mathematically

verified.

6.2.3 Invariance Equation and Euler Equation

The invariance equation describes the relative flow of the water sheet in a rotating

system, i.e., in a rotating bucket of a Pelton turbine. On the other hand, the well-

known Euler equation is generally used to calculate the specific work in all types of
turbomachinery. It is expected that between the invariance equation and the Euler

equation, a relation may exist, with the aid of which one equation can be derived

from the other. For assumed frictionless flows in a Pelton turbine, the converted

specific hydraulic energy is calculated as the difference of the specific kinetic

energies evaluated at the entry and the exit, viz.,

e ¼ 1

2
C2
1 � C2

2

� �
: ð6:34Þ

The Euler equation, which applies to all types of turbomachinery for calculating the

specific work, is given by
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e ¼ U1C1u � U2C2u: ð6:35Þ

Here, C1u and C2u are circumferential components of the absolute velocity C,
respectively, at the bucket entry and exit (Fig. 6.5). With Cu ¼ C cos α, it follows
from Eq. (6.35) that

e ¼ U1C1 cos α1 � U2C2 cos α2: ð6:36Þ

Equalizing Eqs. (6.34) and (6.36) leads to

C2
2 � 2U2C2 cos α2 ¼ C2

1 � 2U1C1 cos α1: ð6:37Þ

Subsequently, the cosine law in the formW2 ¼ C2 þ U2 � 2CU cos α (see Fig. 6.5)
is used in the above equation, yielding

W2
2 � U2

2 ¼ W2
1 � U2

1; ð6:38Þ

which corresponds to the invariance equation given by Eq. (6.18), as derived

before.

At this point, the specific work in Pelton turbines should be considered in more

details. The greater part of the jet enters the Pelton bucket approximately perpen-

dicular to the main splitter (Fig. 5.6). Under this condition, water particles spread

along the bucket surface with constant circumferential speed (U ). According to the

invariance equation, the relative velocity W must remain constant during the whole

flow process in the bucket. Because UCu ¼ U U þW cos βð Þ, as obtained from

Fig. 6.5, Eq. (6.35) is converted for β1 ¼ 0 into the following form:

e ¼ U1W1 1� cos β2ð Þ: ð6:39Þ

This equation is equivalent to Eq. (2.9). The specific energy that is transferred from

the jet to the rotating buckets is, finally, only a function of the exit flow angle β2 of
the relative velocity and is independent of the path traversed by the water. In the

practical design of Pelton buckets, the exit flow angle β2 has usually been set to

C

W

U

α

β

Cu

Fig. 6.5 Velocity triangle

to explain the relation

between the invariance and

Euler equations
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about 170�. The criterion for determining this angle will be explained in detail in

Sect. 8.2.

6.2.4 Example: Relative Flow in a Semicircular Bucket

The invariance equation indicates that the relative flow velocity of a water particle

in a rotating bucket depends on the particle position. When a water particle is found

on a trajectory of constant circumferential speed, then the relative velocity also

remains constant. This simplest case does not require any further consideration.

Therefore, the general case of variable relative velocity of a water particle in the

rotating bucket should be considered in more details by a concrete calculation of an

example. For simplicity a two-dimensional semicircular bucket according to

Fig. 6.6 is looked at. The motion of the water particle in the bucket as shown in

Fig. 6.6a corresponds approximately to the flow form in a Pelton bucket, at which

the jet is intercepted by the bucket cutout edge and subsequently flows towards the

bucket root (see Fig. 5.16). In order to show that the relative motion of water

particles in a rotating bucket also depends on the direction of the particle motion,

the case illustrated in Fig. 6.6b is also considered for comparison.

The relative velocity of a water particle in the rotating bucket is calculated,

according to Eq. (6.18), from the known constant E ¼ E1 at the bucket entry; it is

given by

W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ U2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ ωRð Þ2

q
: ð6:40Þ

The radial position of the water particle in the bucket is designated by R. By

applying the cosine law in the form R2 ¼ R2
o þ r2b � 2rbRo cos τ to both flow

forms in Fig. 6.6, one obtains from Eq. (6.40)

(b) 

1 

2 

ω

Ro
R 

U 

W 

rb

ϕ 

τ

tC0

(a) ω

Ro

R 

U 

W 

rb
ϕ 

τ 

t2 

1 C0

Fig. 6.6 Examples of flows

in a semicircle bucket. Case

(a): water particle motion

along the positive t-
direction. Case (b): water

particle motion along the

negative t-direction
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W

ωRo

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1

ω2R2
o

þ 1þ r2b
R2
o

� 2
rb
Ro

cos τ

� �
:

s
ð6:41Þ

In this equation, the upper (lower) sign is for the motion of the water particle in the

positive (negative)~t-direction (Fig. 6.6a). The angle τ ¼ 0 is agreed to denote the

initial position of the water particle when the particle enters the bucket.

Insertion of the relative velocity in the form W ¼ rbdτ=dt into Eq. (6.41) yields

rbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ ω2 R2

o þ r2b � 2rbRo cos τ
� �q dτ ¼ dt: ð6:42Þ

Integration of this equation leads to

rb

Z τ

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ ω2 R2

o þ r2b � 2rbRo cos τ
� �q dτ ¼ t: ð6:43Þ

This equation describes t as a function of τ or τ as a function of t. The function

τ ¼ f tð Þ represents the time-dependent motion of a water particle in the rotating

bucket. For a given flow at the bucket entry (E1), the integration can be converted

into summation form and then computed numerically.

To show a comparison between the two cases in Fig. 6.6, the same entry

condition is assumed for the two water particles: the jet speed is twice as high as

the local peripheral speed Uo of the bucket center, that is, C0 ¼ 2ωRo. Under these

conditions the energy invariance at the bucket entry is given by

E1 ¼ W2
1 � U2

1 ¼ C0 � ωR1ð Þ2 � ωR1ð Þ2 ¼ C0 C0 � 2ωR1ð Þ: ð6:44Þ

For the given condition, C0 ¼ 2ωRo, Eq. (6.44) is simplified for both cases with

R1 ¼ Ro þ rb and R1 ¼ Ro � rb, respectively, to

E1 ¼ 4ω2Ro Ro � R1ð Þ ¼ 	4ω2Rorb: ð6:45Þ

This equation is now inserted into Eq. (6.43). One obtains

Z τ

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ro

rb

� �2
þ 1� 2Ro

rb
cos τ � 2ð Þ

r dτ ¼ ωt: ð6:46Þ

The position of the water particle (τ) in the bucket has, thus, been represented as a

function of the time or of the bucket rotation angle ωt. Under the specified condition
ofωRo=C0 ¼ 0:5, the position angle τ together with the respective relative velocity
as calculated from Eq. (6.41) is shown in Fig. 6.7. Obviously the time required for a

water particle passing through the bucket is quite different in the two cases. The
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water particle that travels through the bucket from a small to a large radius

possesses already at the beginning a relatively greater relative velocity W(b) than
in the reverse flow case. According to the invariance equation, this particle will be

further accelerated during its motion in the bucket, as can be well seen in Fig. 6.7.

In the mentioned example of the flow according to Fig. 6.6a, the energy

invariance at the bucket entry is negative, as confirmed from Eq. (6.45). Since the

water particle in the bucket should not come to a standstill (hydraulic jump), the

condition stated in Eq. (6.20) for the flow at the bucket exit must be satisfied.

Accordingly, it follows with h � 0

R2
2 > 4rbRo: ð6:47Þ

Moreover, with R2 ¼ Ro � rb, this implies

rb
Ro

< 3� 2
ffiffiffi
2

p
� 0:17: ð6:48Þ

In the example shown in Fig. 6.7, rb=Ro ¼ 0:1 has been applied.

6.3 Effective Driving Forces and Related Powers

Apart from viscous friction, the interaction force between the water flow and the

rotating bucket is the pressure force ~Fn which is directed normal to the bucket

surface; see Fig. 6.1. It is indeed equal to the sum of normal components of all

volume forces in the rotating system and therefore represents the effective driving

force for the rotation of the Pelton wheel. For estimating the contribution of each

volume force to the power of the shaft, only the force components normal to the

bucket surface should be considered. Scalar multiplication of the force expression,

Eq. (6.3), with ~n results in
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Fig. 6.7 Different motions

of water particles in the

rotating buckets according

to Fig. 6.6 with C0 ¼ 2ωRo

and rb=Ro ¼ 0:1
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Fn ¼ W2

rb
� ~Fct � ~n� ~FCo � ~n: ð6:49Þ

It represents the force that exists in the form of the overpressure below the water

sheet. The pressure force is hence deemed to be the interaction force between the

flow and the rotating buckets. Since this force is always perpendicular to the bucket

surface and generally does not agree with the direction of the motion of the bucket,

i.e., the direction of the peripheral speed, only its component in the circumferential

direction of the bucket rotation is effective for the power generation. For unit mass

of water, the power of the pressure force is accordingly given by

_e ¼ de

dt
¼ Fn �~nð Þ � ~U ¼ �W2

rb
~n � ~U þ ~Fct � ~n

� �
~n � ~U þ ~FCo � ~n

� �
~n � ~U: ð6:50Þ

It is composed of three contributions which will individually be considered below.

The expression of the partial power provided by each volume force (centrifugal and

Coriolis) in the above equation is easily comprehensible if one recognizes that the

bucket only supports the normal component of that volume force of the flow. This

normal force component contributes to the shaft power only through its component

in the direction of the bucket motion (U ).

The work that is done by the pressure force Fn over time is calculated from the

following integration:

e ¼
Z t

0

_e dt: ð6:51Þ

The total specific work done by the water particles of unit mass while passing

through the bucket is calculated by the above integration; with t ¼ t2, then e ¼ e2 is
obtained, in which the subscript 2 refers to the bucket exit. For a mass flow rate _m jet

of a jet, measured in the absolute system, the contribution to the shaft power is

Pjet ¼ _m jete2.

6.3.1 Centrifugal Force

The centrifugal force per unit mass has been given in Eq. (6.1). Its component in the

�~n direction (towards the bucket surface) is considered to be effective for the

bucket motion and calculated as follows:

Fct,�n ¼ �~ω� ~ω� ~R
� � � �~nð Þ: ð6:52Þ

The power provided by this force component is calculated according to Eq. (6.50)

to
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_e ct ¼ �~ω� ~ω� ~R
� � � ~n ~n � ~U� �

: ð6:53Þ

For simplicity and to show the mechanism of power generation in a rotating system,

the centrifugal force and its effects are considered here only in a two-dimensional

bucket with two-dimensional flow, which lies in the drawing plane of Fig. 6.1. The

third coordinate coincides with the axis of the wheel.

For calculating vector products, a local coordinate system (t, n, z) according to

Fig. 6.1 is applied. The z-axis is perpendicular to the drawing plane. In this

coordinate system, the respective vectors in Eqs. (6.52) and (6.53) are represented

as

~n ¼ 0; 1; 0ð Þ,
~R ¼ �R sinφ, � R cosφ, 0ð Þ,
~ω ¼ 0; 0;ωð Þ,
~U ¼ ωR cosφ, � ωR sinφ, 0ð Þ,
~W ¼ Wt; 0; 0ð Þ:

ð6:54Þ

Here, φ is the angle between ~U and~t. It is independent of the flow direction.

From corresponding vector expressions, Eqs. (6.52) and (6.53) are calculated,

respectively, to

Fct,�n ¼ Rω2 cosφ ð6:55Þ

and

_e ct ¼ R2ω3 sinφ cosφ: ð6:56Þ

These results indeed may also be obtained directly from Fig. 6.1, when the

centrifugal force Fct ¼ Rω2 is directly applied there.

In the bucket area where φ < 90� is given, one has _e ct > 0. This indicates that

the centrifugal force contributes to a positive power. The work done by the

centrifugal force between time t ¼ 0 and t > 0 is, in view of Eqs. (6.51) and

(6.56), given by

ect ¼ ω3

Z t

0

R2 sinφ cosφdt: ð6:57Þ

The influence of the relative flow velocity on the calculations is not explicitly given

in this equation, however, remains present because of the dependence φ ¼ f W; tð Þ.
With ds ¼ Wdt as the infinitesimal motion of the water particle in the flow,

Eq. (6.57) takes the form
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ect ¼ ω3

Z s

0

R2 sinφ cosφ
1

W
ds: ð6:58Þ

The relative velocity W in the rotating bucket is determined by the invariance

equation. Starting from the energy invariance E1 ¼ W2
1 � U2

1 at the bucket entry,

the relative velocity at other times is calculated with the local circumferential speed

U ¼ Rω to W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ Rωð Þ2

q
. Accordingly, Eq. (6.58) becomes

ect ¼ ω3

Z s

0

R2 sinφ cosφ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 þ Rωð Þ2
q ds: ð6:59Þ

For further evaluation of the integral, it should be distinguished between the flows

in the positive and negative~t-directions. After Fig. 6.1 sinφds ¼ 	dR applies with

the upper sign for the flow in the positive~t-direction (see also Fig. 6.6a). Thus, it

follows from Eq. (6.59) that

ect ¼ 	ω3

Z R

R1

R2 cosφ
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 þ Rωð Þ2
q dR: ð6:60Þ

The integration can be performed analytically, when the angle φ is given as a

function of the coordinate R, else, the integration must be performed numerically.

6.3.1.1 Special Case 1: Semicircular Bucket

To simplify the calculation in Eq. (6.60), the flow in a semicircular rotating bucket

displayed in Fig. 6.6 is again considered. According to the cosine law for the

triangle in Fig. 6.6a, one has

R2
o ¼ R2 þ r2b � 2Rrb cosφ: ð6:61Þ

This may be rewritten as

R cosφ ¼ 1

2rb
R2 þ 1

2
rb � R2

o

rb

� �
: ð6:62Þ

Substitution into Eq. (6.60) yields

6.3 Effective Driving Forces and Related Powers 113



ect ¼ 	1

2
ω3

Z R

R1

R3

rb
þ rb � R2

o

rb

� �
R

	 

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 þ Rωð Þ2
q dR: ð6:63Þ

The integration can explicitly be performed which leads to

ect

¼�1

2
ω

r2b�R2
o

rb
þω2R2

1�2E1

3rbω2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þω2R2

1

q
� r2b�R2

o

rb
þω2R2�2E1

3rbω2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þω2R2

p	 

:

ð6:64Þ

If the flow at the bucket entry (R1) is known (E1), the specific work of the

centrifugal force can be calculated; it depends on the position R of the unit mass

in the bucket. It should also be noted that E1 and ω
2R2

1 in this equation should not be

considered as two independent variables. According to its definition, the energy

invariance at the bucket entry can be expressed as

E1 ¼ W2
1 � U2

1 ¼ W1 � U1ð Þ W1 þ U1ð Þ ¼ C0 � 2U1ð ÞC0

¼ 1� 2ωR1

C0

� �
C2
0: ð6:65Þ

To non-dimensionalize Eq. (6.64), the following abbreviations are introduced:

rb ¼ rb
Ro

,R ¼ R

Ro

,R1 ¼ R1

Ro

, ko ¼ ωRo

C0

, e* ¼ e

C2
0=2

,E1 ¼ E1

ω2R2
o

: ð6:66Þ

In these expressions, the specific work (e) is scaled with the kinetic energy of water
particles at the bucket entry, i.e., in the jet. It can therefore be interpreted as the

partial efficiency of the centrifugal force.

To avoid confusion in the use of symbols, the peripheral speed coefficient ωRo/

C0 is denoted here by ko instead of km because according to Eq. (2.18), the symbol

km has a clearly defined meaning in Pelton turbines.

With Eq. (6.66), then Eqs. (6.64) and (6.65) are simplified to

e*ct

¼�k2o
1

rb
r2b�1þ1

3
R
2

1�2E1

� �	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þR

2

1

q
� r2b�1þ1

3
R
2�2E1

� �	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þR

2
q� �

;

ð6:67Þ

with
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E1 ¼ 1

k2o
1� 2koR1

� �
: ð6:68Þ

In general form, it is expressible as

e*ct ¼ f rb; ko;R1;R
� �

: ð6:69Þ

For given values of rb, ko, and R1, the work e
ct done by the centrifugal force can be

calculated as a function of R. Because of the relationship R2 ¼ R2
o þ r2b � 2rbRo cos

τ from Fig. 6.6, the work done can also be represented as a function of the particle

position angle τ, which is again associated with the time by Eq. (6.43). ForE1 ¼ 0, a

computational example will be given below.

The specific work which is done by the centrifugal force during the flow

throughout the rotating bucket is calculated by simply setting R ¼ R2 ¼ 1	 rb.

6.3.1.2 Special Case 2: Semicircular Bucket for E1 ¼ 0

A further simplification is considered here for E1 ¼ 0 which means that at the

bucket entry (subscript 1), the relative flow velocity W1 is equal to the local

peripheral speed U1 of the bucket. According to the invariance equation with

E ¼ E1 ¼ 0, the relative flow velocity must be equal to the local circumferential

speed W ¼ Rω also to other times.

With E1 ¼ 0, Eq. (6.68) implies ko ¼ 1= 2R1

� �
. Accordingly, Eq. (6.67) can be

simplified to

e*ct ¼ � 1

4R
2

1

1

rb
r2b � 1
� �

R1 � R
� �þ 1

3
R
3

1 � R
3

� �	 

: ð6:70Þ

As a result of the relation R2 ¼ R2
o þ r2b � 2rbRo cos τ and thus R

2 ¼ 1þ r2b � 2rb
cos τ (Fig. 6.6), the normalized specific work according to Eq. (6.70) can be

represented as a function of the position angle τ of a water particle in the rotating

bucket and, because of Eq. (6.43), also as a function of time. Figure 6.8 shows a

computational example for the motion of a water particle in the positive~t-direction
in a semicircular bucket of rb=Ro ¼ 0:1. At the time of a rotation angleωt � 9�, the
water particle is found at the position τm � 96�. Beyond this position, the work done
again decreases. This is explained by the fact that beyond τm � 96� the angle φ will

beφ > 90�; furthermore, _e ct < 0according to Eq. (6.56). This can be determined by

de*ct
dτ

¼ de*ct
dR

dR

dτ
¼ 0: ð6:71Þ

It follows then from Eq. (6.70) with R
2 ¼ 1þ r2b þ 2rb cos τ that
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cos τm ¼ �rb: ð6:72Þ

For rb ¼ 0:1, thus τm ¼ 96� arises.
The flow of a water particle throughout the semicircular bucket should be

considered now. The work done by the centrifugal force is determined by setting

R ¼ R2 ¼ 1� rb. From Eq. (6.70) with R1 ¼ 1þ rb, it then accordingly follows

e*ct,2 ¼
2

3

rb

R1

� �2

¼ 2

3

rb
R1

� �2

ð6:73Þ

and with C0 ¼ 2ωR1 (from E1 ¼ 0) in explicit form

ect, 2 ¼ 4

3
ω2r2b: ð6:74Þ

Equation (6.73) represents the specific work normalized by the specific kinetic

energy of the jet. It is evident that the specific work done by the centrifugal force

ect,2 has a very small value compared to the kinetic energy of the jet, C2
0/2, since rb/

R1 is generally very small for a Pelton turbine.

It can be demonstrated that the same result as Eq. (6.74) can be obtained for the

flow according to Fig. 6.6b. In this case, the negative sign in Eq. (6.70) has to be

applied. Correspondingly, one now has R1 ¼ 1� rb. With the entry condition E1

¼ 0 in this case, C0 ¼ 2ωR1 is still applicable, but with R1 ¼ Ro � rb.
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Fig. 6.8 Movement of a water particle in a rotating semicircular bucket and the work done by the

centrifugal force, normalized by the kinetic energy of the inlet flow, rb=Ro ¼ 0:1 and E1 ¼ 0
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6.3.2 Coriolis Force

The Coriolis force per unit mass has been defined in Eq. (6.2). Analogously to

Eq. (6.52), the force component in the�~n-direction (towards the bucket surface) is

given by

FCo,�n ¼ �2 ~ω� ~W
� � � �~nð Þ: ð6:75Þ

The power provided by this force component is calculated according to Eq. (6.50)

by

_e Co ¼ �2 ~ω� ~W
� � � ~n ~n � ~U� �

: ð6:76Þ

Two-dimensional flow in a two-dimensional bucket is again considered here. The

flow lies in the drawing plane of Fig. 6.1. In the coordinate system (t, n, z) as shown
in Fig. 6.1 and with corresponding vector expressions in Eq. (6.54), the above two

equations are easily evaluated as

FCo,�n ¼ 2ωWt ð6:77Þ

and

_e Co ¼ 2Rω2Wt sinφ ¼ �2Rω2Wr: ð6:78Þ

Here Wt sinφ ¼ �Wr represents the component of the velocity vector ~W in the

radial direction (~R).
Equation (6.78) also establishes the link with the centrifugal force (Rω2).

The work done by the Coriolis force per unit mass is obtained as follows:

eCo ¼
Z t

0

_e Codt ¼ �2ω2

Z t

0

R �Wrdt: ð6:79Þ

With Wr ¼ dR=dt, it can, finally, easily be evaluated as

eCo ¼ �2ω2

Z R

R1

R � dR ¼ ω2 R2
1 � R2

� � ¼ U2
1 � U2: ð6:80Þ

With the variables of Eq. (6.66), one obtains its dimensionless form:

e*Co ¼ 2k2o R
2

1 � R
2

� �
: ð6:81Þ

Eq. (6.80) or Eq. (6.81) shows that the Coriolis force for radial flows towards the

wheel axis (R < R1 ) performs positive work. This result will be needed later to
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completely understand the fluid mechanics of a special flow model which will be

presented in Sect. 6.3.5.

By contrast to Eq. (6.60) for the work done by the centrifugal force, the work

done by the Coriolis force only depends on the initial and the current radial

positions of the flow in the rotating bucket, but not on the traveled path. Further-

more, it is independent of the flow velocity.

For the through flow through the bucket (not necessarily of circular form), one

sets R ¼ R2 in Eq. (6.80) and obtains

eCo,2 ¼ ω2 R2
1 � R2

2

� � ¼ U2
1 � U2

2: ð6:82Þ

It should be noted that computational results of Eq. (6.80) to Eq. (6.82) only apply

for the simplified flows in the drawing plane of Fig. 6.1, where the bucket is

assumed to be two-dimensional. This condition has already been specified by the

normal vector ~n ¼ 0, 1, 0ð Þ in the local coordinate system (t, n, z). Therefore, no
conclusion for the case U1 ¼ U2 can be generally made from Eq. (6.82), because

this is not possible in the two-dimensional flow according to Fig. 6.1.

6.3.2.1 Special Case 1: Semicircular Bucket

The semicircular bucket shown in Fig. 6.6 is considered again. Water particles are

assumed to move again in two different directions with the entry at R1 ¼ Ro � rb
and the exit at R2 ¼ Ro 	 rb. Equation (6.82) is then simplified to

eCo,2 ¼ �4rbRoω
2: ð6:83Þ

If this is normalized with the initial kinetic energy of the jet flow, one obtains

e*Co,2 ¼
eCo,2
1
2
C2
0

¼ �8k2o
rb
Ro

: ð6:84Þ

6.3.2.2 Special Case 2: Semicircular Bucket for E1 ¼ 0

A further simplification is possible for E1 ¼ 0, from which W1 ¼ U1 ¼ C0=2 and

ko ¼ Uo=C0 ¼ 0:5Ro=R1 are obtained. Equation (6.81) then implies

e*Co ¼
1

2
1� R

2

R
2

1

 !
: ð6:85Þ

Similarly for Eq. (6.84),
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e*Co,2 ¼ �2
Ro

R1

rb
R1

: ð6:86Þ

For positive work and by the comparison with Eq. (6.73), it is noticeable that the

work done by the Coriolis force is significantly larger than the work done by the

centrifugal force. From Eq. (6.73) and Eq. (6.86), one obtains, for instance,

e*ct,2
e*Co,2

¼ ect, 2
eCo,2

¼ �1

3

rb
Ro

: ð6:87Þ

For comparison between the centrifugal and Coriolis forces, see also Sect. 6.3.5 for

computational examples.

6.3.3 Impulsive Force Inferred from Streamline Curvature

Water flow along the bucket surface continuously changes its direction. The related

streamline curvature then leads to the change in the momentum flow rate (as a

vector quantity) and thus to an impulsive force which is perpendicular to the

streamlines and acts on the bucket surface. According to Eq. (6.49), such an

impulsive force per unit mass is formulated as

FI ¼ W2

rb
: ð6:88Þ

Here, rb is referred to as the radius of curvature of the local streamlines which are

congruent with the bucket surface.

The power provided by the impulsive force is calculated according to Eq. (6.50)

by

_e I ¼ �W2

rb
~n � ~U: ð6:89Þ

Next, consider again the two-dimensional flow in a two-dimensional bucket

according to Fig. 6.1. With respect to relation ~n � ~U ¼ �ωR sinφ, it then follows

from Eq. (6.89)

_e I ¼ W2

rb
ωR sinφ: ð6:90Þ

The specific work done during the flow is accordingly
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eI ¼
Z t

0

_e Idt ¼
Z t

0

W2

rb
ωR sinφdt: ð6:91Þ

To perform the integration, again Eq. (6.12) is considered. Taking into account the

centrifugal force ~Fct

  ¼ Rω2, one obtains by considering Fig. 6.1

dWt

dt
¼ ~Fct �~t ¼ Rω2 cos

π

2
þ φ

� �
¼ �Rω2 sinφ: ð6:92Þ

This equation is inserted into Eq. (6.91) to eliminate dt. WithW2 ¼ W2
t , this results

in

eI ¼ �1

ω

Z Wt

Wt1

1

rb
W2

t dWt: ð6:93Þ

In this equation,Wt is positive if the flow direction agrees with the orientation of the

tangent vector~t in Fig. 6.1, else Wt is negative.

6.3.3.1 Special Case 1: Bucket of Circular Form

A bucket of circular form with rb ¼ const is considered. From Eq. (6.93) it follows

straightforwardly that

eI ¼ 1

3ωrb
W3

t1 �W3
t

� �
: ð6:94Þ

To determine the relative flow velocity, again the invariance equation is applied.

One obtains Wt ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 þ ωRð Þ2

q
. Then Eq. (6.94) takes the form

eI ¼ � 1

3ωrb
E1 þ R1ωð Þ2
h i3=2

� E1 þ Rωð Þ2
h i3=2� �

ð6:95Þ

and, when non-dimensionalized,

e*I ¼ � 2k2o
3rb

E1 þ R
2

1

� �3=2
� E1 þ R

2
� �3=2	 


: ð6:96Þ

According to the flow models shown in Fig. 6.6a, the positive sign in this equation

is for a motion of water particles co-parallel to the tangent vector ~t. It should be

noted that �E1 and R1 are not independent of each other, but are linked by Eq. (6.68).
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6.3.3.2 Special Case 2: Semicircular Bucket for E1 ¼ 0

Under the entry condition E1 ¼ 0, Eq. (6.95) is simplified to

eI ¼ � ω2

3rb
R3
1 � R3

� �
: ð6:97Þ

Because of the condition E1 ¼ 0, which also means W1 ¼ U1 ¼ C0=2 and

ωR1 ¼ C0=2, the above equation takes the dimensionless form

e*I ¼ � 1

6rbR
2

1

R
3

1 � R
3

� �
: ð6:98Þ

For the flow through the bucket (R ¼ R2), the specific work done by the impulsive

force due to the streamline curvature is obtained as

eI, 2 ¼ � 1

3rb
ω2 R3

1 � R3
2

� �
: ð6:99Þ

According to Fig. 6.6b for the flow model of a semicircular bucket, the flow is

directed in the negative~t-direction. Both the entry and exit positions are given by

R1 ¼ Ro � rb and R2 ¼ Ro þ rb, respectively. With the negative sign in Eq. (6.99),

one obtains

eI, 2 ¼ 2ω2 R2
o þ

1

3
r2b

� �
: ð6:100Þ

It can be shown that the same result will be obtained if the flow as shown in

Fig. 6.6a follows the positive~t-direction. Equation (6.100) is therefore independent
of the flow direction in the assumed semicircular bucket. It should be noted that the

conditionE1 ¼ 0which has led to Eq. (6.100) for both flow arrangements requires a

different jet speed. Although in both cases the condition C0 ¼ 2ωR1 holds, the

relations R1 ¼ Ro þ rb and R1 ¼ Ro � rb, respectively, must separately be applied.

6.3.4 Total Effect of Impulsive, Centrifugal, and Coriolis
Forces

All volume forces in the frictionless flow in a rotating bucket, as shown in

Sect. 6.1.1, include centrifugal and Coriolis forces as well as the impulsive force

due to changes of streamline curvatures. All these forces, with their respective

components perpendicular to the bucket surface, are united to a pressure force on

the bucket surface. The contribution of each single force performing the mechanical

6.3 Effective Driving Forces and Related Powers 121



work has all been scrutinized in previous sections. The current section describes the

overall effect in more details. For obtaining the explicit and simple results, the

following assumptions will be again applied:

• Semicircular bucket

• Entry condition E1 ¼ 0

First, all three partial works that have been given in Eqs. (6.70), (6.85), and

(6.98), respectively, can be summarized in a single formula, namely,

e* ¼ e*ct þ e*Co þ e*I

¼ � 1

4R
2

1

1

rb
r2b � 1
� �

R1 � R
� �þ R

3

1 � R
3

� �h i
þ 1

2R
2

1

R
2

1 � R
2

� �
: ð6:101Þ

To simplify this equation further, the positive sign is first considered. This corre-

sponds to the case shown in Fig. 6.6a withR1 ¼ 1þ rb. From the above equation, it

then follows

e*þ ¼ 1� 1

4 1þ rbð Þ2
R

rb
rb þ R
� �2 � 1
h i

: ð6:102Þ

Similarly, Eq. (6.101) with the negative sign for the case of Fig. 6.6b with R1 ¼ 1

�rb implies

e*� ¼ 1� 1

4 1� rbð Þ2
R

rb
1� rb � R

� �2h i
: ð6:103Þ

For the flow throughout the semicircular bucket, one has R ¼ R2 ¼ 1� rb for the

case of Fig. 6.6a and R ¼ R2 ¼ 1þ rb for the case of Fig. 6.6b. From Eqs. (6.102)

and (6.103), one obtains equally

e*þ ¼ e*� ¼ 1 ð6:104Þ

or

eþ ¼ e� ¼ 1

2
C2
0: ð6:105Þ

This result fully agrees with the expectation. For the entry condition E1 ¼ 0, the

kinetic energy in the jet has been completely transferred to the rotating buckets, and

the hydraulic efficiency in both cases is 100%. The conversion of kinetic into

mechanical energy is thus in both cases perfect. This statement can also be obtained

directly from the invariance equation. Because of the equalityE2 ¼ E1 ¼ 0, there is

U
*

2 ¼ �~W2 and, thus, ~C2 ¼ 0 at the exit of the semicircular bucket. The absolute
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velocity and, therefore, the kinetic energy of the flow after leaving the bucket are

zero in both cases. The energy conversion is complete.

6.3.5 Examples

After the relative flow in the rotating bucket has been analyzed in detail, two

examples will be shown to illustrate calculations and computational results of

such a combined flow.

Example 1: Individual Forces and Specific Works

In the above sections, significances of both the centrifugal and Coriolis forces as

well as the impulsive force due to the streamline curvature have been examined.

The specific works done by each individual force in a two-dimensional semicircular

bucket and under the general entry condition E1 6¼ 0 are given, respectively, by

Eqs. (6.67), (6.81), and (6.96). For ease of use, these equations are again summa-

rized here as follows:

e*ct

¼�k2o
1

rb
r2b�1þ1

3
R
2

1�2E1

� �	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þR

2

1

q
� r2b�1þ1

3
R
2�2E1

� �	 
 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1þR

2
q� �

;

ð6:67Þ
e*Co ¼ 2k2o R

2

1 � R
2

� �
; ð6:81Þ

e*I ¼ � 2k2o
3rb

E1 þ R
2

1

� �3=2
� E1 þ R

2
� �3=2	 


: ð6:96Þ

The entry condition according to Eq. (6.68) is also rewritten here:

E1 ¼ 1

k2o
1� 2koR1

� �
: ð6:68Þ

The positive sign in the above equations is for positive flow according to Fig. 6.6a

and the negative sign for negative flow according to Fig. 6.6b. The overall specific

work per unit mass for the general case E1 6¼ 0 is given by

e* ¼ e*ct þ e*Co þ e*I : ð6:106Þ

Apart from this overall work, one is also interested in a comparison between the

three individual specific works. Obviously one has to distinguish between two flow

models in Fig. 6.6. For simplicity the two-dimensional jet speed is twice as high as

the peripheral speed of the bucket center point, i.e., C0 ¼ 2ωRo or ko ¼ 0:5.
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According to Eq. (6.68), this condition simply means for both flow models in

Fig. 6.6 that

E1þ ¼ 4 1� R1

� � ¼ �4rb; ð6:107Þ
E1� ¼ 4 1� R1

� � ¼ 4rb: ð6:108Þ

Figure 6.9 shows the computational results regarding the respective specific works

as functions of the bucket-position angle. The overall work has also been shown in

the figure. This type of the presentation with ωt as the variable has already been

applied in Figs. 6.7 and 6.8.

As can be seen, the contribution of the impulsive force arising from the stream-

line curvature to the total power exchange dominates. While the effect of the

centrifugal force in both cases is negligible, the Coriolis force makes a significant

contribution in either a positive or a negative sense, depending on the flow direc-

tion. By reaching the exit of semicircular buckets, the flows perform the overall

work e*þ ¼ 0:983 for the positive flow and e*� ¼ 0:993 for the negative flow,

respectively. Both values in reality represent the hydraulic efficiencies of the

energy conversion in the respective flow processes.

Example 2: KWO Gedanken Model, a Technical Conundrum

To show the significance of the invariance equation, a conceptual flow model has

been designed by the author during his time at the Oberhasli Hydroelectric Power

Company (KWO). It deals with a fictitious turbine with two-dimensional buckets as

shown in Fig. 6.10. For a two-dimensional jet of a speed ratio U1=C0 ¼ 0:5 at the

bucket entry, the question arises as to whether both bucket halves A and B have the

same energy exchange with the jet and thus the same efficiency when the jet is

deflected to 180� and the flow is frictionless.

The given condition ofU1=C0 ¼ 0:5 in reality implies the conditionU1 ¼ W1 at

the bucket entry. According to the invariance equationW2 � U2 ¼ const, which in

the current case simply meansW2 � U2 ¼ 0, there has to beU2 ¼ W2 at the bucket
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Fig. 6.9 Effectiveness of the centrifugal, Coriolis, and impulsive forces in a rotating semicircular

bucket with parameter settings C0 ¼ 2ωRo and rb=Ro ¼ 0:1. The overall effect is

e ¼ ect þ eCo þ eI. (a) Positive flow according to Fig. 6.6a. (b) Negative flow according to

Fig. 6.6b
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exit for both bucket halves A and B. This means, in turn, that the absolute velocity

at the bucket exit must be equal to zero C2 ¼ 0 in both cases with the jet deflection

of 180�. With other words, the kinetic energy of the jet is completely transferred to

the rotating bucket. The conversion rate of the energy in both bucket halves is

therefore equal. In fact, this result has already been demonstrated in Sect. 6.3.4 by

Eq. (6.104) for the flow in a semicircular bucket.

The conclusion of equal power exchange in the presented flow model with two

bucket halves can be proved by yet another calculation, as shown in Fig. 6.11. It

demonstrates that at the bucket half A, the work done by the flow gently increases

over the time with the bucket rotation. Because of the low value of the relative

velocity, the flow reaches the bucket exit only after a bucket rotation of about 45�.
By contrast, the flow at the bucket half B has almost no reaction with the bucket at

C0 U1

A

B

ω

Fig. 6.10 KWO fictitious Pelton turbine flow model with two-dimensional inviscid flow

0.0
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0 10 20 30 40 α=ωt (°) 

e* 
    Bucket B Bucket A 

Fig. 6.11 Specific work done in the buckets A and B in the flow model shown in Fig. 6.10 with

E1 ¼ 0 and rb=R1 ¼ 0:2
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the beginning. After the flow has reached the bucket bottom, the work done by the

flow rapidly increases. Since the relative flow velocity here is higher than that in the

bucket half A, the flow reached the bucket exit already after a bucket rotation of

about 30�.
For a better understanding of such flows in the rotating bucket, the effect of the

Coriolis force needs to be considered in more details. In the bucket half A, the

Coriolis force is directed to the bucket surface so that this force performs a positive

work. In contrast, the Coriolis force in the bucket half B is directed away from the

bucket surface and therefore does a negative work (see also Fig. 6.9b). Taking into

account the different impulsive forces due to the different relative flow velocities,

the same power exchange in two bucket halves has been finally obtained.

The flow model shown in Fig. 6.10 can be extended to the general mechanics

when two solid balls of equal mass are considered in place of the jet flow. The

model can be further extended to two buckets of different size under the same

condition.
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Chapter 7

Water Spreading in the Rotating Bucket

7.1 Relative Flow Rate

Water spreading in Pelton buckets is three-dimensional and obeys Newton’s second
law of motion. As it has already been derived in Sect. 6.2 by applying this law, the

relative flow of water in a rotating bucket can be described by the invariance
equation. According to Eq. (6.23), all water particles in a given jet layer retain

the same value of energy invariance. This so-called jet layer method will be applied

here to determine the relative flow rate in the rotating system.

Consider first the peripheral speeds and velocity triangles at the bucket entry

(main splitter) for three different water particles in a given jet layer, as shown in

Fig. 7.1 with three positions of an idealized bucket at consecutive time slices. The

particle speed is equal to C0. Because the particles will reach the bucket at different

times, their entry points at the bucket must have different circumferential velocities

U. The x-components of these velocities, however, are equal to each other, i.e.,

independent of the particle entry point, as given by Ux ¼ U cos α ¼ ωhs ¼ const;

see also Eq. (6.23). Because of this relation, the x-components of the relative

velocities of all particles are obtained as

W0x ¼ C0 � Ux ¼ const: ð7:1Þ

This equation states that all water particles in a given jet layer before entering the

bucket (subscript 0) have the same constant velocity component W0x (Fig. 7.1b).

Since each jet layer has its own constant cross section ΔA, as shown in Fig. 7.2, the
related flow rate in the relative system has its own value proportional to ΔA during

the interaction between the jet layer and the rotating buckets. This is given by

Δ _Q w ¼ W0xΔA ¼ const: ð7:2Þ
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Moreover, the value of the constant also depends on the position hs of the jet layer
within the jet. The flow rate specified in this equation also remains constant in the

rotating bucket. Since the relevant flow parameter in a rotating bucket is always the

relative flow velocity, the flow rate in a half of the bucket is accordingly given by

Δ _Q w=2 ¼ ΔdhW. Thus, the elementary section of the water sheet is calculated as

the product of the water-sheet thickness h and the elementary water-sheet widthΔd,
according to Fig. 7.2 given by

Δdh ¼ 1

2
ΔA

W0x

W
: ð7:3Þ
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Fig. 7.1 Consecutive time slices for water particles in the same jet layer when entering the bucket.

(a) Circumferential velocities and (b) velocity triangles with constant components of the circum-

ferential velocities
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It should be noted that the relative flow velocityW in the rotating bucket depends on

the varying relative flow velocity W0 before entering the bucket (see Fig. 7.1b). It

further changes, according to the invariance equation, with the local peripheral

speed and is therefore generally not constant.

According to Eq. (7.2), the relative flow rate varies from layer to layer of the jet,

not only because of the change of the cross section ΔA but also because of the

variation of the velocity component W0x. The relative flow rate related to a half jet

is obtained from the integration of Eq. (7.2) to

_Q w

2
¼ 1

2

Z A0

0

W0xdA ¼ 1

2

Z d0=2

�d0=2

C0 � ωhsð Þ dA
dy

dy: ð7:4Þ

With hs ¼ Rm þ y and dA ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0=2ð Þ2 � y2

q
� dy as the cross section of an

infinitesimally thin jet layer, shown in Fig. 7.2, the overall relative flow rate in

the rotating system can be calculated; the result of the integration is

_Q w

2
¼ 1

8
πd20 C0 � ωRmð Þ ¼ 1

8
πd20W0x,o; ð7:5Þ

in whichW0x,o is the x-component of the relative velocity of particles at the jet axis.

Because this unique representative velocity is independent of the bucket position,

the relative flow rate given in Eq. (7.5) is constant and thus valid for all positions of

the bucket when intersecting the jet. At this point the reader should be alerted that

the relative flow rate is not simply the product of the relative velocity (W ) and the

jet section, but according to Eq. (7.5), it is the product of the velocity component

W0x,o and the jet section.

The relative flow rate, according to Eq. (7.5), also maintains its value in the

rotating bucket. As in Eq. (7.3), the flow in a Pelton bucket is always considered by

Δd

y

d 0

Rm

ΔA

W
Fig. 7.2 General spreading

form of the jet in the Pelton

bucket. Δd is the width of

the contribution of the jet

layer, and W the depth

averaged velocity as it

spreads in the bucket
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the relative flow velocity which is obtained by averaging velocities over all jet

layers. The mean section of the water-sheet flow is then given by the product of the

water-sheet width d and the sheet height h:

h � d ¼
_Q w

2W
¼ 1

8
πd20

W0x,o

W
: ð7:6Þ

As mentioned before, the relative flow velocity W changes with the relative flow

velocityW0 of the jet before entering the bucket (Fig. 7.1b). It also changes with the

local peripheral speed according to the invariance equation. This change becomes

more sensible, the greater the specific speed of a Pelton turbine is. This is justified

by the fact that according to Fig. 5.4 the first full jet cutoff at the bucket position αb
begins rather early. Large variation of the bucket-position angle α then leads to a

large variation of the angle γ in Fig. 7.1b and thus to a large variation of the relative
flow velocity W0.

If the ratio _Q c= _Q w of the absolute flow rate in the jet to the relative flow rate in a

rotating bucket is formed, then with _Q c ¼ πd20=4 � C0 and _Q w from Eq. (7.5), one

obtains

2λ ¼
_Q c

_Q w

¼ C0

C0 � ωRm

¼ 1

1� km
: ð7:7Þ

This can be considered as the number of buckets that simultaneously react with a

jet. It is just of the same form as the flow-rate ratio κ in Eq. (2.8) for the linearly

translating bucket. The factor λ is, as in Chap. 5, likewise denoted multi-bucket
factor. It is calculated according to Eq. (7.7) from the ratio of two volume flow

rates, while the multi-bucket factor according to Eq. (5.26) was derived from the

geometric relation between the jet and the rotating bucket. Since the peripheral

speed coefficient under the nominal operation point of a Pelton turbine is smaller

than 0.5 i.e., km < 0:5, the value for λ must be smaller than 1. For Pelton wheels

with very low specific speed, the bucket-position angle αo1 tends to zero according

to Eq. (2.30). Then Eq. (5.26) is equal to Eq. (7.7). The interaction between the jet

and the bucket is then equivalent to the case of a linearly translating bucket.

7.2 Width and Height of the Water Sheet in the Bucket

For the purpose of computing the energy exchange in the relative flow in a rotating

bucket (see Chap. 10), most part of the water in the jet can be considered as

vertically entering into the bucket according to Fig. 7.3. In a first approximation,

the water-sheet width in the bucket can be assumed to linearly increase with the

distance covered by the flow, that is,
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d ¼ d0 þ d2 � d0
S

s; ð7:8Þ

where d2 and S are thewater-sheet width at the bucket exit and the trajectory length of
the flow from the bucket entry to its exit. At the bucket entry, the water-sheet width is

equal to the jet diameter d0. At the bucket exit, it can be assumed to be 85% of the

bucket width B at the nominal flow rate (d0,N � B=3). This assumption results in

d2,N ¼ 0:85B ¼ 0:85� 3d0,N � 2:5d0,N: ð7:9Þ

The water-sheet height h along the sheet width d, as outlined in Fig. 7.3, can be

assumed to be uniform and thus constant. From Eq. (7.6) it follows then that

h ¼ 1

8
πd20

1

d

W0x,o

W
: ð7:10Þ

By assuming perpendicular entry flow, the flow in the bucket approximately

follows the path of constant peripheral speed toward the bucket exit. According

to the invariance equation and by assuming frictionless flow (Chap. 6), the relative

flow velocity W in the rotating bucket remains unchanged, so that W ¼ W0x,o.

Equation (7.10) is then simplified as

h ¼ 1

8
πd20

1

d
: ð7:11Þ

For the nominal flow rate with d2,N � 2:5d0, the water-sheet height at the bucket

exit is obtained as

h2,N ¼ π

20
d0: ð7:12Þ

Rm

d
Δd

Fig. 7.3 Cross spreading of

the jet in a Pelton bucket
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Because the nominal flow rate is also interpreted by d0=B ¼ ffiffiffiffiffiffi
φB

p ¼ ffiffiffiffiffiffiffiffiffi
0:11

p
, see

Eq. (2.21), the height of the water sheet at the bucket exit can be expressed as

h2,N � 0:05B: ð7:13Þ

In reality, the water sheet in the center along the sheet width is the thickest. Due to

viscous friction, the relative flow velocity along the bucket surface is additionally

slowed down by up to 10% (Chap. 11), so that the water-sheet height correspond-

ingly increases. The real height of the water sheet must be taken into account in

order to ensure sound exit flows out of rotating buckets by correctly setting the

bucket exit angle. Details about such exit flow conditions will be discussed in

Chap. 8.

7.3 Overpressure in the Water Sheet

It has often been indicated that curved streamlines in the bucket flow lead to a

pressure increase beneath the water sheet and on the bucket surface. Such a pressure

increase can be estimated if the local radius of curvature (rb) of the bucket surface is
known. The pressure pb on the bucket surface is then calculated according to

Eq. (6.10). With respect to the peripheral speed coefficient, as defined in

Eq. (2.18), the overpressure coefficient of the related overpressure is introduced as

cp ¼ pb
1
2
ρC2

0

¼ 2 1� kmð Þ2 h
rb
: ð7:14Þ

For the derivation of this formula, the assumption W ¼ C0 � Um has been

employed, which, basically, only applies for a perpendicular entry of the middle

jet layer into the bucket. With the water-sheet height, which has been estimated by

Eq. (7.11), the overpressure coefficient then takes the form

cp ¼ 1� kmð Þ2π
4

d20
rbd

: ð7:15Þ

The orders of magnitude of cp-values can be estimated in a bucket flow. The bucket

form is initially designed for the nominal flow rate, which is given by the jet

diameter d0,N. At the bottom of the bucket surface, the radius of curvature of the

surface profile can be assumed to be about rb ¼ 0:55d0,N (Fig. 6.3). The water-sheet
width d is determined from Eq. (7.8). With d2,N � 2:5d0,N and s � S=2, it then
follows d ¼ 1:75d0,N. Moreover, with km ¼ 0:47, the overpressure coefficient on

the bucket surface at the bucket bottom is calculated as
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cp,N � 0:23: ð7:16Þ

This value corresponds very closely to the measured value by Angehrn (2000) and

also to the value recalculated from the measurements of Perrig et al. (2006).
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Chapter 8

Exit Flow Conditions

In the design of Pelton turbines, it is extremely important to arrange the flow out of

the bucket to freely leave the buckets and the Pelton wheel. The exit flow thus

contains the kinetic energy which cannot be further exploited and thus will be lost.

This type of flow loss is called swirling loss (see Chap. 9). The associated exit flow
conditions depend on the installation form, geometries, and the operation point of

the turbine. They are, for instance, differently specified for horizontal and vertical

Pelton turbines. At Pelton turbines with vertical axes, the water out of the upper

bucket halves should not drop back onto the Pelton wheel. For this installation form

of Pelton turbines, therefore, special exit conditions are required. Before this is

discussed in detail, it should first be shown how the exit flow velocity and its

distribution generally look like along the trailing edge of a bucket. This serves to

derive the general exit flow condition.

8.1 Velocity Distribution at the Bucket Exit

Water flow across the bucket exit is considered here according to Fig. 8.1, where the

flow is primarily assumed to laterally traverse the bucket. According to Eq. (6.25),

the distribution of the energy invariance across the jet is given by

Ey

C2
0

¼ 1� 2km 1þ y

Rm

� �
; ð6:25Þ

in which km is the peripheral speed coefficient. Depending on the geometry of the

wheel and the operation point, it is possible that jet layers with large y-values have
negative energy invariance (E < 0). Because, according to the invariance equation

given in Eq. (6.18), this negative value must prevail up to the bucket exit, the local

relative velocity at the bucket exit is smaller than the local peripheral speed (W2
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< U2). The corresponding velocity triangle is shown in Fig. 8.1 (upper left). The

negative energy invariance simply corresponds to a forward sloping exit flow (C1u

> 0). Only if the peripheral speed coefficient km is sufficiently small, one has Ey

> 0 for all jet layers. Uniquely, backward sloping exit flow (C2u < 0 ) is then

guaranteed along the entire trailing edge of the bucket. That such an exit condition

is necessary for Pelton turbines with vertical axes will be shown in Sect. 8.3.

8.2 General Exit Flow Condition

In order to ensure sound and free exit flows out of each bucket without disturbing

other buckets, the exit flow velocity C2 must possess a lateral, i.e., x-component

according to Fig. 8.2. Within a limited time interval Δt, a water particle on the free

surface of the water sheet then must travel to the side at least the distance of ha,
which is the sum of the water-sheet height and the bucket wall thickness. The exit
flow condition can therefore be formulated as

C2xΔt > ha: ð8:1Þ

Since the water sheet is thickest when the turbine is operated at the point of

maximum flow rate, the thickness ha should always be referred to the full load.

Within the time interval Δt, the next bucket moves a distance Tu, whereas the
considered water particle travels a distance Tc in the opposite direction. In the

critical case, the time Δt in Eq. (8.1) has to be so large that the sum of these two

distances is equal to the pitch length between two buckets, that is,

Rm

E < 0 

U2

W2C2

C2u

y 

C2
E > 0 

U2

W2

C2u

d0

B 

d 

Fig. 8.1 General form of

velocity distribution at the

bucket exit. At sufficiently

low peripheral speed

coefficient, the condition E
> 0 and thusC2u < 0 can be

achieved throughout the

bucket exit area
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TP ¼ Tu þ Tc ¼ U2 þ C2y

� �
Δt; ð8:2Þ

which means

Δt ¼ TP

U2 þ C2y

: ð8:3Þ

According to the velocity triangle shown in Fig. 8.2, one obtains C2y ¼ W2y � U2.

Thus, one obtains from Eq. (8.3)

Δt ¼ TP

W2y

: ð8:4Þ

Inserting this result into Eq. (8.1) with C2x ¼ W2x leads to

ha
TP

W2y

W2x

< 1 ð8:5Þ

and because tan β2 ¼ �W2x=W2y this, finally, yields

β2

W2

ha

C2

U2 

U2

x

y

water sheet 

T u
T c

T P

Fig. 8.2 Determination of

the flow conditions at the

bucket exit
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�ha
TP

1

tan β2
< 1: ð8:6Þ

This is the exit flow condition, which ensures the free flow of water out of each

bucket. It can be demonstrated that this condition also applies when the exit flow is

forward directed, i.e., C2y < 0, according to Fig. 8.2.

The exit flow angle which can be determined from Eq. (8.6) depends on the

specific speed of the Pelton turbine. For Pelton turbines of high specific speed (nq),
i.e., with relatively tight bucket distribution, the ratio ha/TP is correspondingly

large. The exit flow angle β2 must be so configured that the water flow out of the

bucket is deflected more to the sides. Quantitatively, this dependence is derived as

follows.

Equation (5.30) provides a formula for the number N of Pelton buckets. Based on

this, the bucket pitch length TP in Eq. (8.6) is calculated by

TP ¼ πDm

N
¼ πDm

15þ 0:62=nq
: ð8:7Þ

The height of the water sheet at the nominal operation point has already been

determined by Eq. (7.13). With the assumption that the height of the water sheet is

approximately equal to the bucket thickness, so that ha ¼ 2h2,N ¼ 0:1B, one may

deduce from Eq. (8.6)

tan β2 > �0:1

π

B

Dm

15þ 0:62

nq

� �
: ð8:8Þ

For further calculations, Eq. (2.27) is used to replace B/Dm by the specific speed nq.
Since the nominal flow rate is considered, one has again φB ¼ 0:11. Moreover, for

km ¼ 0:47, one obtains

tan β2 > � 1:2nq þ 0:05
� � ð8:9Þ

or

β2 < π � arctan 1:2nq þ 0:05
� �

: ð8:10Þ

The calculated limits of the bucket exit angle as a function of the specific speed nq
are shown in Fig. 8.3. It is evident that for Pelton turbines with large specific speeds,

the flow at the bucket exit needs to be more deflected than for Pelton turbines with

small specific speeds. It should be noted that both the calculation according to

Eq. (8.10) and the graphical presentation in Fig. 8.3 only apply to the bucket

thickness which is approximately equal to the height of the water sheet. Thus,

Eq. (8.10) only represents an approximation in the practical design of Pelton

buckets. To accurately determine the bucket exit angle β2, the condition of
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inequality (8.6) should be directly applied. For the height of the water sheet, the

approximation h2,N ¼ 0:06B should be used instead of the average value of

Eq. (7.13). This is simply so, because the water sheet in the middle along the bucket

trailing edge is thickest and the height of the water sheet will additionally get larger

owing to the flow deceleration caused by viscous friction. On the other hand, the

water leaves the bucket with a so-called exaggeration angle of about 5� to

8� (known as “Übertreibungswinkel” by Raabe 1989),1 as compared to the geo-

metric discharge angle (180� � β2). Such an exaggeration angle corresponds to an

additional outward deflection of the exit flow and should be taken into account

geometrically in the design process of Pelton buckets.

In the above calculations, β2 is the exit flow angle that should always be

measured from the direction of the peripheral speed. Under this condition, the

calculations also hold for estimation of the exit flow angle in both the bucket root

area and the area at the bucket cutout. According to Eq. (8.6), one must each time

use the corresponding bucket pitch length TP. It is obviously advantageous to show
the exit angle relative to the bucket exit edge. For convenience, as shown in

Fig. 8.4, the bucket exit edge is represented by a reference line which has a base

circle of radius ra. In this approach, the applied velocity triangles at the bucket

cutout, as well as in the root zone, are significantly different from the velocity

triangle in the bucket middle section (at Dm). If the inclination of the bucket trailing

edge is denoted by δ, then the flow angle β
0
2 in the region of the bucket cutout is

calculated to be

β
0
2 ¼ 270� � δ� β2: ð8:11Þ

For example, with β2 ¼ 173� and δ ¼ 7�, it follows β
0
2 ¼ 90�. The exit flow in this

case is approximately perpendicular to the bucket trailing edge.

In the bucket root area, the exit flow angle β
0
2 is obtained as

166

168

170

172

174

0.04 0.06 0.08 0.1 0.12 nq (1/s) 

β2 (°) Fig. 8.3 Bucket exit angle

as a function of the specific

speed, calculated under the

assumption that the bucket

thickness equals to the

height of the water sheet

1 This seems to be too large. An exaggeration angle up to 3� would be realistic.
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β
0
2 ¼ 270� þ δ� β2: ð8:12Þ

For β2 ¼ 165� and δ ¼ 10�, one obtains β
0
2 ¼ 115�. Relative to the bucket trailing

edge, the exit flow is less steep.

8.3 Exit Flow Condition for Vertical Turbines

For vertical Pelton turbines, water in the upper bucket halves exits upwards. In the

design and operation of turbines of such an installation form, one must ensure that

the exit flow, after leaving the upper bucket halves, still owns sufficient energy to

finally leave the Pelton wheel, as shown in Fig. 8.5. A minimum kinetic energy of

the exit flow is required for a track distance T against the force of gravity. Two

aspects need to be considered:

• Water from the root zone of the buckets has the greatest distance to be covered.

This represents the most critical case.

• The exit flow in the vicinity of the bucket cutout must be reverse, i.e., directed

against the direction of bucket rotation. This ensures rearward exit flows across

the entire field along the bucket trailing edge.

Obviously, both aspects are connected with the peripheral speed coefficient (km)
of the Pelton turbine. To ensure safe operation of a Pelton turbine, i.e., to fulfill the

related exit flow conditions, the peripheral speed coefficient must be set sufficiently

low (according to Sect. 8.1). Quantitatively, this will be outlined in the following

sections.

8.3.1 Exit Flow Condition at the Bucket Root Zone

To ensure the exit flow to be able to fly over a track distance T, the minimum exit

flow velocity C2 out of a bucket must be determined. The free flight of water after

leaving the bucket shall be calculated by taking into account the influence of

β2
β2

U 

W2 
W2 

β'2

ra

exit edge  

U 

β'2

δ
δ 

base circle  

Fig. 8.4 Determination of

the bucket exit angle

relative to the bucket

trailing edge
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gravity. With respect to the specified coordinate system in Fig. 8.5, the two velocity

components of the free flow are given by

C2x ¼ C2x,0; ð8:13Þ
C2y ¼ C2y,0 � gt; ð8:14Þ

with C2x,0 and C2y,0 as the respective velocity components initially at the

bucket exit.

The trajectory, i.e., the flight path of free flow as a function of time t, is obtained
by integrating the above equations to

x 

y C2

T

π−α2

U2

W2

C2
α2

β2

s 

T

h a

C2

C2

Fig. 8.5 Determination of

the minimum exit flow

velocity at the bucket exit,

for a Pelton turbine with

vertical rotation axis

8.3 Exit Flow Condition for Vertical Turbines 141



x ¼ C2x,0t; ð8:15Þ

y ¼ C2y,0t� 1

2
gt2: ð8:16Þ

The trajectory is then given in the formy ¼ f xð Þ. For the free flight of water over the
distance x ¼ T, the following condition must be fulfilled:

y ¼ f Tð Þ > ha: ð8:17Þ

Here, according to Fig. 8.5, ha represents the sum of the water-sheet height and the

bucket wall thickness.

The condition specified in Eq. (8.17) is applied to Eqs. (8.15) and (8.16). It

follows then that

T ¼ C2x,0t; ð8:18Þ

ha ¼ C2y,0t� 1

2
gt2: ð8:19Þ

Eliminating the time t, and with tan α2 ¼ �C2y,0=C2x,0, the velocity component

C2x,0 is determined by

C2
2x,0 ¼ �1

2

gT
ha
T þ tan α2

: ð8:20Þ

It represents the minimum velocity component of the exit flow and should be

applied to the bucket root zone because there, the maximum flight distance has to

be covered.

On the other hand, one may raise the question how, according to Eq. (8.20), the

smallest exit velocity can be reached at all. According to Sect. 8.1, the peripheral

speed coefficient km has to be set sufficiently small. The actual exit velocity at the

bucket root zone should then be compared with the required minimum value in

Eq. (8.20). For this reason, the law of sines for the velocity triangle according to

Fig. 8.5 is applied, so that

C2 ¼ sin β2
sin α2

W2 ð8:21Þ

or in the form of velocity component as

C2x,0 ¼ �C2 cos α2 ¼ � sin β2
tan α2

W2: ð8:22Þ

The related task is to determine the relative velocity in the region of the bucket root

(W2) as well as the flow angle α2, both in Eq. (8.20) and Eq. (8.22) as functions of

the peripheral speed coefficient. For this purpose, the invariance equation is again
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applied. For the real flow, according to Fig. 8.1, it is assumed that the water in the

jet layer y ¼ �d0=2 will reach the bucket root. The energy invariance of this jet

layer is given, according to Eq. (6.25) with Dm ¼ 2Rm, by

E�d0=2

C2
0

¼ 1� 2km 1� d0
Dm

� �
: ð8:23Þ

Since the energy invariance E�d0=2 holds up to the bucket exit (subscript 2), one

obtains from Eq. (8.23)

W2
2 � U2

2

C2
0

¼ 1� 2km 1� d0
Dm

� �
: ð8:24Þ

The corresponding relative flow velocity is then given by

W2
2

C2
0

¼ U2
2

C2
0

þ 1� 2km 1� d0
Dm

� �
: ð8:25Þ

With the peripheral diameter D2 at the bucket root and further because of
U2

C0
¼ Um

C0
� U2

Um
¼ km

D2

Dm
, this implies

W2
2

C2
0

¼ k2m
D2

Dm

� �2

þ 1� 2km 1� d0
Dm

� �
: ð8:26Þ

Inserting this equation into Eq. (8.22), one obtains

C2x,0

C0

¼ � sin β2
tan α2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2m

D2

Dm

� �2

þ 1� 2km 1� d0
Dm

� �s
: ð8:27Þ

This is the determining equation for the exit velocity at the bucket root zone, where

only the flow in the jet layer y ¼ �d0=2 arrives (Fig. 8.1). It is shown above as a

function of the peripheral speed coefficient. On the other hand, in order to deter-

mine the required peripheral speed coefficient under the condition of Eq. (8.20), the

exit flow angle α2, both in Eq. (8.20) and Eq. (8.27), should also be shown as a

function of the peripheral speed coefficient. For this purpose, the law of sines is

applied to the velocity triangle in Fig. 8.5:

W2

sin α2
¼ U2

sin β2 � α2ð Þ ¼
U2

sin β2 cos α2 � cos β2 sin α2
: ð8:28Þ

Thus, one obtains

8.3 Exit Flow Condition for Vertical Turbines 143



tan α2 ¼ sin β2
U2

W2
þ cos β2

ð8:29Þ

or with U2

C0
¼ km

D2

Dm
:

tan α2 ¼ sin β2
km

D2

Dm

C0

W2
þ cos β2:

ð8:30Þ

In this equation, W2/C0 has already been given by Eq. (8.26), so that the relation

α2 ¼ f kmð Þ is principally also known.

The above calculations clearly form a system of closure equations which enables

the upper limit of the peripheral speed coefficient to be determined. They can be

easily performed in the tabulated numerical form, as presented in the following

example. The example clearly shows that the exit condition, given by Eq. (8.20), is

commonly well satisfied at all Pelton turbines.

Example

A Pelton turbine is considered as follows:

• Bucket width ratio B=Dm ¼ 0:25,
• Bucket root diameter ratio D2=Dm ¼ 0:65,
• Exit flow angle in the bucket root zone β2 ¼ 170�,
• Distance to be covered by the exit flow T ¼ 1:5m,

• Thickness ratio ha=T ¼ 0:025,
• Hydraulic head H ¼ 300m.

Let us consider nominal flow rate, which is given by the jet diameter d0 ¼ B=3.
The terms of d0/Dm in Eqs. (8.26) and (8.27) will then be replaced by 1

3
B=Dm.

Table 8.1 shows the related computational process and comparison with the

required exit flow velocity. In the last line, the relevant applied equations are given.

When calculating the angle α2 in Table 8.1, it must be observed that for

tan α2 < 0, the angle α2 must be larger than 90�. Accordingly, it follows from

Eq. (8.29) that

α2 ¼ π þ arctan
sin β2

U2=W2 þ cos β2

� �
: ð8:31Þ

Furthermore, the velocity ratio U2/W2 is calculated from

U2

W2

¼ C0

W2

Um

C0

D2

Dm

¼ km
D2

Dm

C0

W2

: ð8:32Þ

Corresponding computational results are illustrated in Fig. 8.6. Obviously, the

condition for free flight of water from the bucket root zone is satisfied by far for

all values of km. Although this is only an example, the corresponding condition is

expected to be fulfilled also at all other Pelton turbines. This can be easily and
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quickly confirmed by changing all relevant parameters in the executed tabular

calculations. For this reason, it can be concluded that the exit flow in the bucket

root zone is always sufficiently energetic to cover the distance T. The influence of
the thickness ratio ha/T in Eq. (8.20) is actually negligible.

The above consideration applies for the safe exit flow of water from the upper

bucket halves. When the exit flow condition is very unfavorable, the upper and the

lower bucket halves can be designed differently, as the lower bucket halves are free

from any restrictions. Such a design of Pelton buckets, however, has not yet been

implemented practically. The reason for this is evidently that spray water actually

only slightly affects the hydraulic performance of a Pelton turbine, as will be shown

in Sect. 8.3.3.

8.3.2 Exit Flow Condition at the Bucket Cutout

According to Fig. 8.5, it is, in particular, indispensable that the absolute exit flow

velocity in the region of bucket cutout is also directed backwards. Quantitatively,

this means that the energy invariance of the outermost jet layer (y ¼ d0=2, see also
Fig. 8.1) must be positive. This means, in turn, that the energy invariance of the

entire jet has to be greater than zero. For the outermost jet layer with y ¼ d0=2, one
then obtains from Eq. (6.28) a new condition, namely,

Table 8.1 Actual exit flow velocity in the bucket root zone in comparison with the desired values

km W2/C0 U2/W2 α2(�) (C2x/C0)real (C2x/C0)desired

0.44 0.52 0.55 158.4 0.231 0.058

0.45 0.51 0.57 157.1 0.210 0.056

0.46 0.50 0.60 155.6 0.190 0.054

0.47 0.48 0.63 153.6 0.169 0.052

Eqs. (8.26) (8.32) (8.31) (8.27) (8.20)
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Fig. 8.6 Real and

minimum required exit flow

velocity in the root zone of

the bucket
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Eb

C2
0

¼ 1� 2kmð Þ � nq
1:32

> 0: ð8:33Þ

From this, the maximum peripheral speed coefficient is obtained as

km,max ¼ 0:5� 0:38nq: ð8:34Þ

This condition indicates that for Pelton turbines of high specific speeds, the

peripheral speed coefficient km should be significantly reduced (Fig. 8.7). For a

moderate specific speed of nq ¼ 0:1, for instance, the peripheral speed coefficient

ought to be reduced approximately to km ¼ 0:46. This value exactly corresponds to
the real operation point of a Pelton turbine and thus has been successfully validated

in practice.

Since the required peripheral speed coefficient, according to Eq. (8.34), is

significantly smaller than 0.5, the former condition for safe flight of water from

the bucket root over the Pelton wheel (Sect. 8.3.1) has been automatically satisfied.

The peripheral speed coefficient, according to Eq. (8.34), thus ensures safe flight of

all water, after leaving the bucket, over the Pelton wheel. Equation (8.34), there-

fore, can be considered as the design criterion for vertical Pelton turbines.

The requirement of the peripheral speed coefficient km < 0:5, as confirmed here

by regarding the free flight of exit flow, is likely the second reason why the

peripheral speed coefficient has always been confirmed to be smaller than 0.5.

This is true, at least for vertical Pelton turbines. The first reason for choosing km
< 0:5 arises from the coincidence and symmetry conditions (Sect. 5.4).

8.3.3 Impact of Spray Water When km> km,max

It has been shown that for free flight of exit flow, the conditionkm � km,max has to be

fulfilled. When km > km,max, part of the exit flows from the upper bucket halves will

fall back on the Pelton wheel and get accelerated maximally to the circumferential

0.44
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0.48
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km,maxFig. 8.7 Maximum

peripheral speed coefficient

for the safe flight of exit

flow in the area of the
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with vertical axes
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speed of the wheel Um. The connected specific energy cost is 1
2
U2

m. When related to

the specific energy 1
2
C2
0 of the jet, the corresponding hydraulic loss is calculated to be

Δηi ¼ k2m. Furthermore, it is assumed that about 5% of all water from the upper

bucket halves, i.e., 2.5% of the total water flow in a turbine, leaves the Pelton wheel

incorrectly and thus causes a loss of Δηi ¼ k2m. The total loss in the system

efficiency will for km ¼ 0:5 be at most

Δη ¼ 0:025 � Δηi ¼ 0:025 � k2m � 0:6%: ð8:35Þ

This loss is quite negligible. The method presented here can also be used to estimate

the efficiency loss due to violent splashing water, which could at most again be

accelerated to Um by the Pelton wheel. It applies not only to vertical but also to

horizontal turbines. In conclusion, the efficiency loss due to violent splashing water

is usually no more than 1%.

Since a small amount of water which drops back to the Pelton wheel has no

severe consequences, the real peripheral speed coefficient may slightly exceed the

maximum value given by Eq. (8.34). This will lead to a bit increase in the hydraulic

efficiency because of reduction of exit swirling losses.
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Chapter 9

Exit Flows and Hydraulic Losses

In order to calculate and enhance the system efficiency of a Pelton turbine, it is

essential to know which hydraulic and mechanical losses exist and how they can be

estimated and above all successfully reduced. The efficiency of a Pelton turbine has

so far been almost exclusively determined through measurements which are either

restricted to thermodynamic measurements directly taken in a power plant

according to the standard IEC60041 or by model tests according to IEC60193.

From such measurements, however, it is not readily possible to obtain detailed

information on the effectiveness of each individual flow process in a Pelton turbine

and to make statements about individual losses like swirling and exit losses, flow

friction losses, mechanical windage, bearing friction losses, etc. Except for a few

empirical equations pertinent to the mechanical losses, there has been hardly any

available and reliable method to determine all relevant hydro-mechanical losses.

It is, therefore, significant to be able to separately quantify each individual loss

in each flow process in a Pelton turbine. As the first step to assess all possible partial

losses, both the swirling loss involved in exit flow out of the rotating buckets and

the loss resulting from the disturbance of the exit flow will be calculated in this

chapter. Other types of losses enumerated above will be treated in the subsequent

chapters.

9.1 Swirling Losses

Swirling loss is related to the exit flow out of the rotating buckets and around the

Pelton wheel. It arises because of the existence of rest kinetic energy which is still

found in the exit flow. For a linearly translating bucket as a special case, such an

exit loss has already been accounted for in efficiency calculations according to

Eq. (2.16). To estimate the analogous loss in a Pelton turbine, Eq. (2.40) is applied

which was simply taken over directly from the computational model of a linearly

translating bucket. It implies the percentage of conversion of energy which exists in

© Springer International Publishing Switzerland 2016
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a jet in the form of kinetic energy. For frictionless flows the hydraulic efficiency

would be 100% if the swirling loss were zero.

In Pelton turbines, the exit flow out of each rotating bucket is so arranged that it

frees the way for the next bucket. The related criteria have already been worked out

in Sects. 8.2 and 8.3. The swirling loss, thus, represents the unexploited kinetic

energy which is present in the exit flow. The characteristic parameters for this sort

of losses is the peripheral speed coefficient km.
Compared with the flow model of a linearly translating bucket at which all water

particles have equal speed ratio (k ¼ U=C0), the flow model of a Pelton turbine is

quite different. Because of the bucket rotation, each water particle in the jet has

assigned its individual entry (time and position) at the bucket and therefore an

individual ratio of velocities U/C0 as well as its individual exit flow out of the

bucket. Consequently, the overall power as well as the efficiency of the jet must be

determined from summation of the individual contributions of all water particles. It

is quite possible that the resulting hydraulic efficiency more or less differs from that

calculated based on Eq. (2.40).

In order to determine the swirling losses, let the velocity triangle of the exit flow

out of a bucket be considered as in Fig. 9.1. With the aid of cosine law, the absolute

velocity is calculated as

C2
2 ¼ W2

2 þ U2
2 þ 2W2U2 cos β2: ð9:1Þ

The associated kinetic energy, as said above, is referred to as the swirling loss and

expressed in terms of the efficiency loss as

Δηswirl ¼
C2
2

C2
0

: ð9:2Þ

For the swirling loss and according to Eq. (9.1), the water particles in a jet, finally,

differ from each other in the exit flow (U2 and β2). In this respect, the flow property

of a water particle is first considered under the application of the invariance

equation. For a water particle in the jet layer which is located by hs, according to

Fig. 6.4, the invariance equation is obtained from Eq. (6.23) as

E ¼ W2
2 � U2

2 ¼ C2
0 � 2hsωC0: ð9:3Þ

From this equation, the termW2
2 and, therefore, the velocityW2 can be resolved and

then inserted into Eq. (9.1). The absolute velocity at the bucket exit is, thus, given

by

C2
2 ¼ C2

0 þ 2U2
2 � 2hsωC0 þ 2U2 cos β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
0 � 2hsωC0 þ U2

2

q
; ð9:4Þ

and the swirling loss of the considered particle is then calculable from Eq. (9.2) and

yields
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Δηswirl ¼ 1� 2

C2
0

hsωC0 � U2
2 � U2 cos β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
0 � 2hsωC0 þ U2

2

q� �
: ð9:5Þ

If the peripheral speed U2 in this equation is in the following replaced by U2

¼ R2=Rmð ÞUm and the peripheral speed coefficient km ¼ Um=C0 is used, then

Δηswirl ¼ 1� 2km
hs
Rm

� km
R2
2

R2
m

� R2

Rm

cos β2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2km

hs
Rm

þ k2m
R2
2

R2
m

s !
ð9:6Þ

is obtained. Thanks to the use of the invariance equation, the swirling loss is

independent of the location and time when water particles enter the bucket. Only

the site hs of the jet layer is relevant. As soon as a jet layer and the peripheral speed
coefficient km of a Pelton turbine are specified, then in accordance with Eq. (9.6),

the swirling loss is only a function of the particle exit position and the

corresponding exit flow angle, viz.,

Δηswirl ¼ f
R2

Rm

; β2

� �
: ð9:7Þ

More on this dependence will be said below.

9.1.1 Influence of Exit Positions of Water Particles

The impact of exit positions (R2) of water particles on the swirling loss according to

Eq. (9.6) is shown in Fig. 9.2 for the case of an exit flow angleβ2 ¼ 170�. Evidently,
the influence of the particle exit positions on the swirling loss is rather insignificant

compared with the influence of jet layer positions. For efficiency calculations,

therefore, it is sufficient to only consider the mean value R2=Rm ¼ 1.

U2
W2

C2

β2Fig. 9.1 Exit velocity

triangle
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9.1.2 Influence of the Exit Flow Angle

Figure 9.3 shows the influence of the exit flow angle β2 on the swirling loss. When

changing the exit flow angle from β2 ¼ 172� to β2 ¼ 168�, the swirling loss

increases by approximately 0.6 %. In the practical design of Pelton buckets, the

exit flow angle along the main trailing edge of buckets only changes insignificantly

(Δβ2 < 2�). Thus, it is reasonable to use the exit flow angle at the periphery R2=
Rm ¼ 1 to calculate the swirling losses. This is also justified because from required

exit flow conditions, which have been depicted by Eq. (8.6) or (8.10) in Sect. 8.2,

the calculated exit angle β2 can be applied for the entire area along the main trailing

edge of the bucket (β2 ¼ const).

Calculations show that swirling losses in a Pelton turbine are only of the order of

about 1% of the total generated energy.

If only the jet layer in the vicinity hs=Rm � 1 is considered and the exit position

R2=Rm � 1 is assumed, then Eq. (9.6) is simplified to

Δηswirl ¼ 1� 2km 1� kmð Þ 1� cos β2ð Þ: ð9:8Þ

The second term on the right-hand side of this equation is formally identical to

Eq. (2.40), which as the hydraulic efficiency applies to the entire jet.

The influence of the exit flow angle on the swirling loss can also be represented

as the influence of the discrepancy of the exit flow angle from β2 ¼ 180�. Because
Δβ2 ¼ 180� � β2 and, thus, cos β2 ¼ � cosΔβ2 � � 1� 1

2
Δβ22

� �
for small values of

Δβ2, Eq. (9.8) is reformulated for km ¼ 0:5 to

Δηswirl �
1

4
Δβ22: ð9:9Þ
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For Δβ2 ¼ 8�, for instance, one obtains a swirling loss of approximately 0.5%. If

Δβ2 ¼ 10� is accepted, the swirling loss changes to 0.75%. Obviously, a change in

the exit flow angle by 2� thus will cause a change in the efficiency by about 0.25%.

9.1.3 Influence of Jet Layer Positions

From the above considerations, it can be concluded that all water particles in the

same jet layer are subjected to the same swirling loss. According to Eq. (9.6), the

difference from one jet layer to another is solely due to the difference in kmhs/Rm.

Among all jet layers, the one that minimally contributes to the swirling loss may be

found by setting d Δηswirlð Þ=dhs ¼ 0. It then follows from Eq. (9.6) that

km
hs
Rm

¼ 0:5þ 1

2
k2m

R2
2

R2
m

sin 2β2: ð9:10Þ

Since the second term on the right-hand side of this equation is negligibly small,

there follows immediately

km
hs
Rm

¼ 0:5: ð9:11Þ

This relation has indeed already been confirmed in Figs. 9.2 and 9.3, where for km
¼ 0:47 the minimum swirling loss is found at the jet layer hs=Rm ¼ 1:06.
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9.1.4 Swirling Loss of the Entire Jet

The swirling loss of an individual jet layer has been calculated by Eq. (9.6), where a

mean exit flow angle β2 and R2=Rm ¼ 1 can be assumed. The swirling loss of a

complete jet is determined by means of the following integration with an area-

weighting factor according to Fig. 9.4 of

Δηswirl ¼
8

πd20

Z d0=2

�d0=2

Δη

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0
2

� �2

� r2

s
� dr: ð9:12Þ

By dividing the jet into n layers, the above equation is simply converted to a

summation form as follows:

Δηswirl ¼
8Δr
πd20

Xn
i¼1

Δηi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0
2

� �2

� r2i

s
: ð9:13Þ

In this calculation, considering the area fraction of each jet layer, the term

8Δr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0=2ð Þ2�r2

i

p
πd20

behaves as a weighting factor.

Comparison between the swirling loss which is calculated by Eq. (9.13) and that

from Eq. (2.40) shows a difference of about 0.2%, as illustrated in Fig. 9.5 for a

computational example.

9.2 Friction Effect on the Bucket Rear Side

In Chap. 8, exit flow conditions have been worked out for conditions of the free

flight of the exit flows. According to Eq. (8.6), the geometric exit flow angle β2, for
instance, must be sufficiently smaller than 180�. On the other hand, the swirling

d0/2 
r Δr 

Jet 

Fig. 9.4 Scheme for

integrating the hydraulic

efficiency of a jet
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loss, according to Eq. (9.9), increases with an increase of the deviation angle

180� � β2. In practical designs, the geometric deviation angle 180� � β2 has

often been chosen about 2� smaller than that obtained from Eq. (8.6). The possible

consequence is the deterioration of the free flight of the exit flows. Because traces of

wear have sometimes been observed on the bucket back side, it is necessary to

quantify the effect of the exit flow impingement on the rear side of the next bucket

(Fig. 9.6). On the one hand, water impingement slows down the bucket motion due

to viscous friction on the grinding area. On the other hand, the flight path of exit

flows will be deflected by the back side of the subsequent bucket. Both actions

cause additional losses and, thus, reduce the overall efficiency of the Pelton turbine.

The friction effect is analyzed in this section, and the deflection effect will be

treated in the next section.

The relative water velocities between the exit flows and the rotating buckets are

assumed to be W2 ¼ C0 � Um. With the friction coefficient cf, the shear stress on
the grinding area is obtained as

τ ¼ cf
1

2
ρW2

2 ¼ cf
1

2
ρ C0 � Umð Þ2; ð9:14Þ

which, owing to km ¼ Um=C0, can further be expressed as

τ ¼ cf
1

2
ρC2

0 1� kmð Þ2: ð9:15Þ

The grinding area on the bucket rear side is supposed to be Af, as shown in Fig. 9.6.

According to Eq. (7.7), the number of buckets which simultaneously undergo the

interaction with one jet is given by 2λ ¼ 1= 1� kmð Þ (with λ as multi-bucket factor).

With respect to two grinding areas at each bucket, the total friction force under a

full jet is, thus, obtained as
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Ff ¼ 2τAf � 2λð Þ ¼ cf 1� kmð ÞρC2
0Af : ð9:16Þ

Taking into account the angle between the friction force and the bucket speed, the

power required to overcome this friction force is given by

Pf ¼ FfUm cos π � β2ð Þ ¼ cf 1� kmð ÞρC2
0AfUm cos π � β2ð Þ: ð9:17Þ

When related to the jet power P0 ¼ 1
2
ρC2

0 � A0C0, the resulting efficiency loss is

obtained. With cos π � β2ð Þ � 1, it takes the form

Δηf ¼
Pf

P0

¼ 2cfkm 1� kmð ÞAf

A0

: ð9:18Þ

For making a quantitative evaluation of this type of friction effects, the friction

coefficient is assumed to be cf ¼ 0:02. With km ¼ 0:5, as well as an area ratio

Af=A0 ¼ 0:5, the associated efficiency drop is obtained as

Δηf ¼ 0:005: ð9:19Þ

It amounts to approximately 0.5%.
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Fig. 9.6 Exit flow out of

the bucket and impingement

on the bucket behind

156 9 Exit Flows and Hydraulic Losses



9.3 Deflection Effect on the Bucket Rear Side

The impingement of the exit flow on the rear side of the following bucket exerts

additionally a deflection effect as illustrated in Fig. 9.7. The deflection of the flow is

always associated with a force directed against the flow. This means that the bucket

receives an opposite force which tends to retard the bucket motion. To determine

the associated efficiency loss, the law of momentum is applied in the coordinate

system ξ� η which rotates, according to Fig. 9.7, with the rotating buckets. The

impingement of exit flow on the subsequent bucket rear side is considered in the

rotating system. With the relative flow velocity W2, the momentum flow rate of the

exit flow before deflection is given by I ¼ ρ _Q w=2
� � �W2, where the flow rate _Q w

=2 is referred to a half of the bucket. The force acting on the flow and, thus, causing

the flow to be deflected is represented by the force components Fξ and Fη. The

deflection of the flow is denoted by the deflection angle δ. Then, both force

components can be calculated by applying the law of momentum as

Fξ ¼ 1

2
ρ _Q wW2 sin δ; ð9:20Þ

Fη ¼ 1

2
ρ _Q wW2 cos δ� 1ð Þ: ð9:21Þ

The component of the force, which is oriented towards the bucket-motion direction,

i.e., the direction of peripheral speed, is given by a coordinate transformation

Fu ¼ �Fy ¼ � Fη cos θ � Fξ sin θ
� �

; ð9:22Þ

with θ ¼ π � β2. This is an opposite obstacle force which the bucket motion has to

overcome. The required power is given by multiplying this resistance force by the

peripheral speed of the Pelton wheel as

ξ

y

x

Fξ

θ

Um

β2

QW/2

η Fη

δ

W2

Fig. 9.7 Deflection of the
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Pdeflect ¼ FuUm ¼ 1

2
ρ _Q wUmW2 cos θ � cos θ þ δð Þ½ �: ð9:23Þ

The corresponding specific work is then given by

edeflect ¼ Pdeflect

ρ _Q w=2
¼ W2Um cos θ � cos θ þ δð Þ½ �: ð9:24Þ

Referring to the specific energy of the jet and with the assumption that

W2 ¼ C0 � Um, the efficiency loss associated with the flow deflection takes the

form

Δηdeflect ¼
edeflect

C2
0=2

¼ 2km 1� kmð Þ cos θ � cos θ þ δð Þ½ �: ð9:25Þ

Here, km ¼ Um=C0 has again been used.

In order to make a quantitative estimation of the associated efficiency loss, two

angles θ ¼ 10� and δ ¼ 4�, as well as the peripheral speed coefficient km ¼ 0:5, are
assumed. It then follows from Eq. (9.25) that

Δηdeflect ¼ 0:7%: ð9:26Þ

At this point, it is worth mentioning the swirling loss, which has been considered in

Sect. 9.1 and is given by Eq. (9.8) in its simplest form. If Eq. (9.25) is added to

Eq. (9.8), there follows, with β2 ¼ π � θ,

Δηswirl þ Δηdeflect ¼ 1� 2km 1� kmð Þ 1þ cos θ þ δð Þ½ �: ð9:27Þ

This may be considered to be the total swirling loss existing in the exit flow. It is

just equal to that value which is obtained by directly using the flow angle θ þ δð Þ at
the bucket exit.

In the above analysis, it has been tacitly assumed that the entire exit flow is

deflected by an angle δ. If the amount of water being deflected on the rear side of the

buckets is 50% of the total amount of water, the associated partial efficiency loss

will be reduced by 50%.

The efficiency loss associated with the described flow deflection has been

considered here as a partial loss. Another partial loss has already been discussed

in Sect. 9.2. Since the sum of these two losses is not vanishingly small compared to

the swirling loss, flow impingement on the bucket rear side should be avoided as

much as possible. This means that the exit flow angle θ, i.e., β2 ¼ π � θ according

to Fig. 9.7, should be designed without causing any flow impingement at the

following bucket. For this reason it will be likely acceptable at the angle θ, i.e.,
β2 to have a tolerance of about 1� to 2�, so that, for instance, β2 ¼ 170� rather than
β2 ¼ 172� can be applied. The resulting increase in the swirling loss, according to

Eq. (9.9), is only about 0.25%.
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Chapter 10

Friction Effects and FFT Theorem

Water in nature is a viscous fluid and adheres to solid surfaces when coming in

contact with another material. In Pelton turbines, this viscous adhesion occurs in the

form of frictional shear stresses between the moving water and the bucket surface. It

has a direct consequence of slowing down the relative flow in the rotating bucket.

The friction in the bucket flow additionally acts as both a positive driving and

negative braking force on the rotation of Pelton wheel.

The friction effect on hydraulic efficiencies of Pelton turbines happens,

according to Zhang and M€uller (2006) and Zhang (2007), by the following

mechanisms:

1. The friction force in the frontal part of the flow path of the bucket acts as a

positive driving and afterward as a negative braking force. Correspondingly, the

mechanical work done by the friction forces is first positive and then negative. In

practical applications, however, there is no need to distinguish between them.

2. The friction on the surface of the bucket slows down the relative flow velocity

along the bucket surface. This in turn reduces the intensity of the energy

exchange between the flow and the Pelton buckets. Consequently, the hydraulic

efficiency will be affected.

3. The overall effect of the friction forces on the reduction of the system efficiency

consists of a direct friction effect (1) and an indirect effect via the reduction of

the relative flow velocity (2).

These three aspects cover all hydraulic friction effects in a Pelton turbine and are

described below in detail.

© Springer International Publishing Switzerland 2016
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10.1 Friction Number

Since the friction is directly perceptible only in the Pelton buckets, it will be

considered first in the relative flow in a rotating bucket. The spreading of the

water sheet in the bucket is characterized, according to Fig. 10.1, by the fact that

both the water-sheet width d and height h change along the flow path s. For
establishing the equation of motion, an infinitesimal track ds is considered, at

which in the direction of the flow, only the friction force and centrifugal force (
~Fct) are available. According to the law of momentum, the change in the momen-

tum flow rate is equal to the sum of all forces acting on the flow, so that one obtains

in steady state

ρdhð ÞWdW ¼ ρdhð Þ~Fct � d~s� cf
1

2
ρW2dds ð10:1Þ

or in a simplified form

d
1

2
W2

� �
¼ ~Fct � d~s� cf

1

2h
W2ds: ð10:2Þ

This equation can also be interpreted as the energy equation. The change in the

kinetic energy of the flow is, thus, equal to the works being done by all forces.

In the above equations, cf is the friction coefficient which can be assumed to be

constant for large Reynolds numbers as well as for Reynolds numbers with limited

variations. This is automatically satisfied for Pelton turbines for which the Reynolds

number as a function of the hydraulic head really only varies in a very limited

range. It is, however, worth noting that one deals here with the flow of a water sheet

with free surface. Since the Froude number in such a water-sheet flow is always

greater than unity, i.e., Fr ¼ W=
ffiffiffiffiffi
gh

p
> 1, the flow is of shooting type or supercrit-

ical. The corresponding friction coefficient is fundamentally different from those in

boundary layers of pipe flows or in flumes and sheet flows with Fr < 1.
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Fig. 10.1 Cross-flow through the bucket and parameter definitions
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For frictionless flows, Eq. (10.2) is reduced to Eq. (6.14), from which the

invariance equation has been derived. Assuming that most part of the water flows

transversely through the bucket (Fig. 10.1) and that, therefore,U ¼ Um ¼ const, the

component of the centrifugal force in the flow direction, i.e., along the streamlines

is negligible. This simply means ~Fct � d~s ¼ 0, so that Eq. (10.2) reduces to

d
1

2
W2

� �
¼ �cf

1

2h
W2ds: ð10:3Þ

It should be noted here that two terms on the right-hand side of Eq. (10.2) are

independent of one another and only slightly affect the relative velocity. This

allows that the effects of the centrifugal force and the effects of the viscous friction

can be separately considered and analyzed when both effects are present at the same

time. To obtain the result for the total effect, two partial results need to be added.

For further calculations, the friction number is introduced, which is defined by

cw ¼
Z s

0

cf
h
ds: ð10:4Þ

In connection with spreading of the water sheet in the bucket, the friction number is

a function of the height and position of the moving water sheet.

Integration of Eq. (10.3) is straightforward and implies

W ¼ W1e
�cw=2 � W1 1� 1

2
cw

� �
: ð10:5Þ

Here, W1 is the relative flow velocity at the bucket inlet. The approximation

considers the linear part of Taylor expansion of the exponential function with

cw � 1.

For further calculations, a second approximation based on Eq. (10.5) is used:

cfW ¼ cfW1 � 1

2
cfcwW1 � cfW1: ð10:6Þ

The term 1
2
cfcwW1, which is less than cfW1 by one order of magnitude, is neglected.

It should, however, be noted that this approximation may not be simply interpreted

as W � W1. The approximation should only be used in the given form to estimate

the friction effect as a given order of magnitude.

On the other hand, the friction shear stress in the form τ ¼ cf 12ρW
2 leads to a drop

of power, which is found in hydraulic dissipation during the water-sheet spreading,

_E diss ¼
Z s

0

cf
1

2
ρW2Wdds: ð10:7Þ
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It is called the dissipation rate. The integration path s is defined for the time being

as a variable, just like the case in defining the friction number, according to

Eq. (10.4).

With _Q w=2 ¼ Whd as the volume flow rate in a half of the bucket and regarding

the approximation in Eq. (10.6), one obtains from Eq. (10.7)

_E diss ¼ 1

2
ρW2

1

_Q w

2

Z s

0

cf
1

h
ds ð10:8Þ

or with the friction number as defined above

_E diss ¼ 1

2
cwρW

2
1

_Q w

2
: ð10:9Þ

Since the dissipation rate is directly proportional to the friction number in the flow,

this equation can also be regarded as the defining equation of the friction number.

From hydraulic dissipation in the relative flow, there follow the reduction of the

relative flow velocity and, in turn, the change in kinetic energy Δ _E ¼ ρ _Q w=2
� � � 1

2

W2
1 �W2

� �
which holds for a half of the bucket. This change in kinetic energy is

equalized to Eq. (10.9), so that

W2 ¼ W2
1 1� cwð Þ: ð10:10Þ

Because cw � 1, the relative flow velocity is resolved to approximately

W ¼ W1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cw

p
� W1 1� 1

2
cw

� �
: ð10:11Þ

This result, as obtained from the energy law, agrees with Eq. (10.5) which is the

result from the law of momentum.

By considering the entire friction from bucket entry to exit, the overall friction
number is obtained from Eq. (10.4) as

cw2 ¼
Z s

0

cf
1

h
ds: ð10:12Þ

Consequently, the relative flow velocity at the bucket exit is given by

W2
2 ¼ W2

1 1� cw2ð Þ: ð10:13Þ

In Chap. 7, the spreading of the water sheet in a Pelton bucket has been approxi-

mated by Eq. (7.8). The height of the water sheet is then determined from the

conservation law of mass as follows:
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1

h
¼ Wd

_Q w=2
¼ W

_Q w=2
d0 þ d2 � d0

S
s

� �
: ð10:14Þ

The flow rate _Q w=2 is referred to a half of the bucket and corresponds to the half of

the jet flow as given by _Q w=2 ¼ 1
8
πd20W0x,o from Eq. (7.5). Since in the present

consideration, according to Fig. 10.1, perpendicular entry of the jet into the bucket

has been assumed, one has W0x,o ¼ W1. Equation (10.14) is now inserted into

Eq. (10.12). With the aid of Eq. (10.6), the overall friction number is then obtained

by integration, thus yielding

cw2 ¼ 4cf
d0 þ d2

πd20
� S: ð10:15Þ

The friction number in this form combines the friction coefficient, the bucket

geometry which is specified by the bucket parameter S, and the flow rate, which

is given by the jet thickness d0. However, it is independent of the rotation of the

buckets. On the numerical value, the magnitude of the friction number can be

estimated. At nominal flow rate, d2,N=d0,N ¼ 2:5, according to Eq. (7.9). For a

length of the flow path in the bucket, S=d0,N ¼ 3, and a friction coefficient of

cf ¼ 0:015, the friction number is calculated from Eq. (10.15) to cw2,N ¼ 0:2. For
partial load operations with a partial flow rate (d0 < d0,N), the friction number is

correspondingly larger.

It should be noted that the thin water-sheet flow in Pelton buckets is a kind of

shooting flows with the Froude number greater than one (Fr > 1 ). The friction

coefficients of such flows are generally unknown. The assumed friction coefficient

of cf ¼ 0:015 is quite high if compared with common friction coefficients, e.g., in

turbulent boundary layer flows. As is clear from Eq. (10.13), a friction number of

cw2,N ¼ 0:2 results in a loss of the kinetic energy of 20% or a reduction in the flow

velocity of about 10%. Such a value of velocity reduction in rotating buckets of a

Pelton turbine has already been applied in practice [see, for instance, Dixon

(2005)]. To complete the knowledge in the hydromechanics of Pelton turbines,

the viscous effect in the boundary layer of shooting flows should be systematically

investigated by experiments.

10.2 Direct Friction Effects

By the direct friction effect, one understands the viscous shear stress in the form of

positive but also negative driving forces acting on the bucket. In the foremost part

of the bucket (β < π=2 as shown in Fig. 10.1), the shear stress has a positive effect

on the bucket motion. In the backmost part of the bucket (β > π=2), however, it
counteracts and, thus, retards the bucket motion. In both cases, effective compo-

nents of shear stresses are those in the direction of the bucket motion as given by
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cf 12ρW
2 cos β. The power generated by friction shear stress on an infinitesimal area

dds is calculated according to Fig. 10.1 by

dPw,d ¼ cf
1

2
ρW2 cos βUmdds: ð10:16Þ

With this notation, it is agreed that the positive value of dPw,d depicts the positive

friction power, i.e., the friction shear stress contributes to the power of the shaft.

Because of the mass flow rate _m w=2 ¼ ρWdh in a half of the bucket, it follows from
Eq. (10.16) that

dPw,d ¼ _m w

2
WUmcf

1

2h
cos βds: ð10:17Þ

From calculations in Chap. 7, or according to Eq. (7.7), it is known that the average

number of buckets, which are involved in power exchange with each jet, is equal to

2λ ¼ _m c= _m w (with λ as the multi-bucket factor). If both sides of Eq. (10.17) are

multiplied with _m c= _m w, then the power related to 2λ bucket halves is given by

dPd ¼ _m c

2
WUmcf

1

2h
cos β ds: ð10:18Þ

This power is directly detectable in the shaft power of a Pelton turbine. This also

means that the power from direct friction forces in the rotating system is detected in

the stationary system. Considering the approximation in Eq. (10.6), one obtains

through integration of Eq. (10.18)

Pd ¼ _m c

2
UmW1

1

2

Z S

0

cf
1

h
cos β ds: ð10:19Þ

This power is referred to as the direct friction power. By relating it to the power

0:5 _m c
1
2
C2
0

� �
of a half jet, its direct contribution to efficiency is given by

ηd ¼
Pd

0:5 _m c
1
2
C2
0

� � ¼ km 1� kmð Þ
Z S

0

cf
1

h
cos β ds: ð10:20Þ

In this equation, W1 ¼ C0 � Um and the peripheral speed coefficient km ¼ Um=C0

have been used. For Pelton buckets with complex geometries and consequently a

complex function for β ¼ f sð Þ, the above integration can be transformed into a

summation algorithm and then easily computed numerically.

A quantitative assessment of direct friction effect on turbine efficiencies should

be made. The height of the water sheet in the Pelton bucket has already been

specified by Eq. (7.10). For the case of a perpendicular entry of the jet into the

bucket, one simply has W0x,o ¼ W1. Thus, one obtains

164 10 Friction Effects and FFT Theorem

http://dx.doi.org/10.1007/978-3-319-31909-4_7


h ¼ 1

8
πd20

1

d

W1

W
: ð10:21Þ

Together with Eq. (7.8) for the water-sheet width, it follows from Eq. (10.20) that

ηd ¼
8

πd20
km 1� kmð Þ

Z S

0

cf d0 þ d2 � d0
S

s

� �
cos βds: ð10:22Þ

In this equation, the approximation cfW � cfW1, according to Eq. (10.6), has again

been applied.

Here, a semicircular bucket is considered with a constant radius rb and straight

exit geometry (β2 ¼ 180�) as a special case. In this case, then, s ¼ βrb and S ¼ πrb.
For cf ¼ const, Eq. (10.22) becomes

ηd ¼ 8
cf
π
km 1� kmð Þ � rb

d20

Z π

0

d0 þ d2 � d0
π

β

� �
cos βdβ: ð10:23Þ

The integration can be easily performed; the result is

ηd ¼ �16km 1� kmð Þcf
π2

rb
d0

d2
d0

� 1

� �
: ð10:24Þ

The efficiency resulting from the direct friction force is negative. This exactly

corresponds to the expectation. In the hindmost part of the bucket (β > π=2) where
the friction force retards the bucket motion, the friction area and, thus, the friction

force are greater than that in the foremost part of the bucket.

A numerical example on ηd will be given in Sect. 11.4.

10.3 Friction Effects via Changing the Pressure

Distribution

Another direct consequence of viscous friction between the water sheet and the

bucket surface is the deceleration of the relative flow while passing through the

bucket. The reduction of the relative flow velocity, in turn, leads to the reduction of

the pressure as the driving force on the bucket surface. This can be confirmed when

Eq. (6.10) for the overpressure below the water sheet is concerned,

pb ¼
h

rb
ρW2; ð10:25Þ

where rb is the local radius of curvature of the bucket inner surface.

10.3 Friction Effects via Changing the Pressure Distribution 165

http://dx.doi.org/10.1007/978-3-319-31909-4_11


The pressure force associated with this overpressure acts perpendicular to the

bucket surface. Its effective component for driving the bucket is, however, the

component in the direction of the bucket motion. The power provided by the

pressure force in an infinitesimal bucket surface dds can thus be calculated

according to Fig. 10.1 from

dPw,p ¼ pb sin βUmdds ¼ h

rb
ρW2Um sin β dds: ð10:26Þ

With the mass flow rate _m w=2 ¼ ρhdW in the rotating system and ds ¼ rbdβ,
Eq. (10.26) is rewritten as

dPw,p ¼ _m w

2
WUm sin β dβ: ð10:27Þ

As in Eq. (10.18), this expression for the flow in a half bucket is extended to the

flow in 2λ bucket halves:

dPp ¼ _m c

2
WUm sin β dβ: ð10:28Þ

The integration over the entire flow path (from the entry to the exit) yields the

overall power provided by the pressure force

Pp ¼ _m c

2
Um

Z β2

0

W sin β dβ: ð10:29Þ

This is the power which is related to the flow of a half jet and is detectable directly

in the shaft power of a Pelton turbine.

For further calculations, the flow velocity W has to be regarded as a variable.

This means, according to Eq. (10.11), that the overall power is a function of the

local friction number, so that

Pp ¼ _m c

2
UmW1

Z β2

0

1� 1

2
cw

� �
sin β dβ: ð10:30Þ

For later comparison (Sect. 10.5), the integration in this equation is further

performed. Using the integration by parts in the form
R
udv ¼ uv� R

vdu, and

substituting u ¼ 1� 1
2
cw and v ¼ cos β, the above equation is rewritten as

Pp

_m c=2ð ÞUmW1

¼ 1� 1� 1

2
cw2

� �
cos β2 �

1

2

Z cw2

0

cos βdcw; ð10:31Þ

in which at the lower bound of the integration s ¼ 0, i.e., β ¼ 0 with cw ¼ 0, has

been implemented.
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The integrand on the rhs of the above equation is nothing else than the integrand

in Eq. (10.20), simply because dcw ¼ cf=hð Þds according to Eq. (10.4).

Accordingly, the efficiency contributed by the pressure force is obtained by

relating the power Pp from Eq. (10.31) to the power of a half jet,

ηp ¼
Pp

0:5 1
2
_m cC

2
0

� � ¼ 2km 1� kmð Þ 1� 1� 1

2
cw2

� �
cos β2 �

1

2

Z cw2

0

cos βdcw

� �
:

ð10:32Þ

The effects of the friction via the pressure reduction in the water sheet on the shaft

power as well as on the turbine efficiency are presented in the last two equations.

The special case of frictionless flow is obtained immediately by simplifying

Eq. (10.32) to

ηp,0 ¼ 2km 1� kmð Þ 1� cos β2ð Þ: ð10:33Þ

It is identical to Eq. (2.40). This identity clearly points out that the power exchange

between the water flow and the rotating buckets in a Pelton turbine ultimately

happens through the pressure force below the water sheet. It can also be seen that

the efficiency, according to Eq. (10.32), is a type of hydraulic efficiency.

The efficiency loss caused by the viscous friction via the pressure reduction is

then given by

Δηp ¼ ηp,0 � ηp ¼ 2km 1� kmð Þ �1

2
cw2 cos β2 þ

1

2

Z cw2

0

cos βdcw

� �
: ð10:34Þ

A semicircular bucket with a constant radius rb and the straight exit angle β2 ¼ π is
considered again. The integration in Eq. (10.32) is then calculated by applying dcw
¼ cf=hð Þds and h ¼ 1

8
πd20W1= Wdð Þ, from Eq. (10.21), as well as substitution of the

water-sheet width from Eq. (7.8),

ηp
2km 1� kmð Þ ¼ 2� 1

2
cw2 � 4cf

πd20

Z S

0

cos β d0 þ d2 � d0
S

s

� �
ds: ð10:35Þ

Moreover, the substitutions s ¼ rbβ and ds ¼ rbdβ are applied. The integration can

then be easily performed. Thus, with the friction number cw2, given by Eq. (10.15),
and with S ¼ π � rb, it finally follows from Eq. (10.35):

ηp ¼ 4km 1� kmð Þ 1� cf
d2
d0

1� 4

π2

� �
þ 1þ 4

π2

� �� �
rb
d0

	 

: ð10:36Þ

In this equation, the viscous friction between the water sheet and the Pelton buckets

is considered directly by the friction coefficient cf. As in Eq. (10.24), the effect of

the viscous friction in the relative flow system on the turbine efficiency in the
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absolute system has now been revealed. A quantitative computational example will

be presented in Chap. 11.

10.4 Total Friction Effects

The hydraulic power of a Pelton turbine, including the influence of viscous friction,

can be obtained, on the other hand, directly from the law of momentum. For this

reason, the entry angle of the jet flow, while entering the rotating buckets, is

assumed to be β1 ¼ 0. The entire hydraulic power of a Pelton turbine is calculated

to be

Ph ¼ _m c W1 �W2 cos β2ð ÞUm: ð10:37Þ

The background of this equation goes back to Sect. 2.2, where the hydraulic power

was calculated from the law of momentum. In fact, the impulsive force arising from

the change of the relative velocity in one bucket is given by _m w W1 �W2 cos β2ð Þ
with _m w as the mass flow rate in the rotating system. With respect to the number of

buckets (2λ ¼ _Q c= _Q w ¼ _m c= _m w), which interact with one jet, the total impulsive

force related to one jet is then given by _m c W1 �W2 cos β2ð Þ. Its multiplication with

the peripheral speed yields the hydraulic power.

For frictionless flow, the relative flow velocity remains constant (W2 ¼ W1 ¼ W).

The above equation is then reduced to Eq. (2.38).

Since frictional flows are considered, the varying relative flow velocity has to be

assumed according to Eq. (10.11). Then, it follows from Eq. (10.37) that

Ph ¼ Um _m cW1 1� 1� 1

2
cw2

� �
cos β2

� �
: ð10:38Þ

Relating this power to the jet power results in the hydraulic efficiency given by

ηh ¼
Ph

1
2
_m cC

2
0

¼ 2km 1� kmð Þ 1� 1� 1

2
cw2

� �
cos β2

� �
: ð10:39Þ

As reference power, the frictionless power Ph,0 is used, which is obtained from

Eq. (10.38) by setting cw2 ¼ 0. The efficiency drop caused by the fluid friction is,

thus, obtained as

Δημ ¼
Ph,0 � Ph

1
2
_m cC

2
0

¼ �cw2km 1� kmð Þ cos β2: ð10:40Þ

From this calculation, the following understandings can be concluded:
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1. A virtual bucket is considered, which has an exit angle β2 < π=2. Since the flow
in the bucket is in the same direction as the bucket motion and is slowed down by

the viscous friction, an intensified power exchange between the viscous flow and

the moving bucket takes place. The friction acts as a positive driving force and

generates an additional amount of power (Ph > Ph,0). According to the defini-

tion, the hydraulic loss in this case is negative, Δημ < 0.

2. By assuming the bucket exit angle to be β2 ¼ π=2, Eq. (10.40) impliesΔημ ¼ 0.

This result implies that the exit flow leaving the bucket perpendicular to the

bucket motion has no effect on the bucket motion. Therefore, it is immaterial

whether and how the flow in the bucket is affected by viscous friction. In other

words, the friction does not affect the power output, although it acts as a driving

agent. The positive driving effect is completely compensated by the negative

effect because of the pressure reduction according to Eq. (10.31). In fact, it

follows from Eqs. (10.20) and (10.31) for β2 ¼ π=2, immediately

Pp,0 � Pp ¼ Pd, with Pp,0 as the power for frictionless flows (cf ¼ 0).

3. In the hindmost part of the Pelton bucket, the exit flow angle is β2 > π=2 which
implies Δημ > 0. This result points out that the viscous friction force on the

bucket surface affects the hydraulic efficiency always negatively, although the

friction in the foremost area of the bucket β < π=2 appears to have a positive

influence.

4. For km ¼ 0:5 and β2 � π, as an approximation of real design and operation of

Pelton turbines, Eq. (10.39) leads to

ηh ¼ 1� 1

4
cw2 ð10:41Þ

or, in the form of efficiency loss,

Δημ ¼
1

4
cw2 ¼ cf

d0 þ d2

πd20
S: ð10:42Þ

This relation represents the mechanism of the friction effects in the rotating

system on the real hydraulic efficiency of a Pelton turbine in a fixed system. The

quality of the bucket surface is described by the friction coefficient. The length

of the flow path is given by S. Finally, the impact of the flow rate has been

represented by the jet diameter.

Under nominal operation conditions, i.e., nominal flow rates, a friction number

of cw2,N ¼ 0:2 has been estimated in relation to Eq. (10.15). With this value, a

drop in hydraulic efficiency of about Δημ ¼ 5% has to be expected. An

efficiency drop of such a magnitude must be considered as very high, especially

when compared to the efficiency losses from other sources which have already

been described in detail in Chap. 9. At partial load, which is given by closing the

injector nozzle, the drop in hydraulic efficiency, according to Eq. (10.42), will be
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greater due to the reduction of the jet diameter. This is logical because the almost

constant friction power is now related to a smaller jet power.

From Eq. (10.42), a significant measure to improve the system efficiency can be

confirmed. It lies simply in the reduction of the friction coefficient between the

flow and the Pelton buckets. This is likely to be very effective, because the

viscous friction on the bucket surface seems to be confirmed as the most

significant source causing the efficiency drop in a Pelton turbine. Such a

statement has been pointed out by Zhang and M€uller (2006) and Zhang

(2007), as this will be shown in Chap. 11 in more details.

10.5 Flow Friction Theorem

In the foregoing sections, the direct friction effect, the friction effect via the

pressure reduction, and the total friction effect from the law of momentum have

been described in detail. One point to be demonstrated here is the lucid connection

between the three terms of the friction effect. By comparing Eqs. (10.20), (10.32),

and (10.39), the following relation has been found:

ηh ¼ ηd þ ηp: ð10:43Þ

Here, the integration parts in Eqs. (10.20) and (10.32) cancel out because

dcw ¼ cf=hð Þds.
The relation shown in Eq. (10.43) can also be represented by the respective

efficiency drops. The power from the direct friction effect calculated in Sect. 10.2 is

always negative in a Pelton turbine. This means that the friction force causes a

direct efficiency drop that can be expressed by Δηd ¼ �ηd. From Eqs. (10.20),

(10.34), and (10.40), the following relation is also obtained as

Δημ ¼ Δηd þ Δηp: ð10:44Þ

The relations presented in Eqs. (10.43) and (10.44), respectively, are, according to

Zhang (2007), called flow friction theorem (FFT) of Pelton turbine hydraulics.

Further considerations of the friction effects and computational examples will be

shown in the next chapter.
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Chapter 11

Viscous Cross-Flow Through the Bucket

In Pelton turbines, the water jets enter the buckets in large parts perpendicular to the

bucket, more precisely perpendicular to the bucket main splitters. This form of

entrance configuration ensures that the water in the bucket follows the path of

constant peripheral speed and thus laterally across the bucket. Since approximately

neither the centrifugal nor the Coriolis forces affect the relative flow, the friction

effect could be separately treated in the last chapter. Under the same flow condi-

tions, calculations in the last chapter will be further considered and quantified in

greater detail in this chapter.

11.1 Combined Hydraulic Losses

The hydraulic efficiency of a Pelton turbine subjected to friction effects has been

calculated by Eq. (10.39). The total loss of hydraulic efficiency is then obtained as

Δηh ¼ 1� ηh ¼ 1� 2km 1� kmð Þ 1� cos β2ð Þ � cw2km 1� kmð Þ cos β2: ð11:1Þ

It is rewritten as the sum of two parts:

Δηh ¼ ΔηDr,0 þ Δημ; ð11:2Þ

in which the partial losses are expressed, respectively, by

ΔηDr,0 ¼ 1� 2km 1� kmð Þ 1� cos β2ð Þ ð11:3Þ

and
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Δημ ¼ �cw2km 1� kmð Þ cos β2: ð11:4Þ

The first part corresponds to the frictionless swirling loss which has been given by

Eq. (9.8). The second part is friction dependent and has already been revealed by

Eq. (10.40). Because for friction-affected flows the exit velocity is also affected by

the viscous friction in the bucket, Eq. (11.3) does not represent the real swirling

loss. In actual reality, it is not absolutely necessary to calculate the real swirling loss

when the combined hydraulic loss in the system efficiency can be easily determined

from Eq. (11.2). Nevertheless, in order to gain insight into the real swirling loss,

explicit estimation will be presented in Sect. 11.2.

Based on Eq. (10.39), optimal hydraulic efficiency is found at km ¼ 0:5.
According to Fig. 11.1, which graphically represents the loss contributions of

Eqs. (11.2), (11.3), and (11.4), only insignificant dependencies on the peripheral

speed coefficient km in the near vicinity of km ¼ 0:5 are effective. In particular, the

loss Δημ is virtually independent of km. Practical operation designs of the peripheral
speed coefficient in the range km ¼ 0:45� 0:48, thus, do have their background

mainly in the coincidence and symmetry conditions given in Chap. 5 as well as in

the exit flow condition discussed in Chap. 8.

The partial and total hydraulic losses shown in Fig. 11.1 are valid for a friction

number cw2 ¼ 0:2. This friction number is calculated in accordance with Sect. 10.1

for a friction coefficient cf ¼ 0:015. As mentioned already there, no information on

the friction effect in the shooting flowwithFr > 1is known.With the assumed friction

number of cw2 ¼ 0:2 one concludes from Fig. 11.1 that the partial loss Δημ � 0:05

dominates in the combined efficiency loss in Eq. (11.2). Such a dominant friction

effect is surprising and will be frequently encountered in the following chapters.

11.2 Real Swirling Losses

Although the determination of the real swirling loss, according to the statement in

Sect. 11.1, seems to be unnecessary for efficiency considerations, a brief look into

the real swirling loss would help to better understand the friction effect. The real
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Fig. 11.1 Efficiency losses

in a Pelton turbine with

viscous cross-flow through

a rotating bucket,

β2 ¼ 170�, cw2 ¼ 0:2
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swirling loss may be determined by accounting for the change in relative flow

velocity in a rotating bucket. According to Eq. (10.3), the integration over the entire

flow path is given by

1

2
W2

1 �W2
2

� � ¼ 1

2

ðS

0

cf
1

h
W2ds: ð11:5Þ

Because of the insignificant change of the flow velocity along the flow path in the

current case of the cross-flow, the mean value theorem of integration is used for

further calculations; it yields

W2
1 �W2

2 ¼
W2

1 þW2
2

2

ðS

0

cf
1

h
ds ¼ W2

1 þW2
2

2
cw2: ð11:6Þ

The friction number in this equation refers to the definition in Eq. (10.12).

For the exit velocity W2, one obtains then

W2
2 ¼

1� cw2=2

1þ cw2=2
W2

1 ¼ ΦW2
1: ð11:7Þ

For small friction numbers, cw2=2 � 1, there is Φ � 1� cw2. This result has

already been discussed in Sect. 10.1 and was used in Eq. (10.13).

The absolute flow velocity at the bucket exit is then calculated according to

Fig. 9.1 by

C2
2 ¼ W2

2 þ U2
2 þ 2U2W2 cos β2: ð11:8Þ

Together with Eq. (11.7), this is further transformed into

C2
2 ¼ ΦW2

1 þ U2
2 þ 2U2W1

ffiffiffiffi
Φ

p
cos β2: ð11:9Þ

Because U2 ¼ U1 ¼ Um and W1 ¼ C0 � Um as well as km ¼ Um=C0, the real

swirling loss in the exit flow is finally obtained as

Δηswirl ¼
C2
2

C2
0

¼ Φ 1� kmð Þ2 þ k2m þ 2km
ffiffiffiffi
Φ

p
1� kmð Þ cos β2: ð11:10Þ

For frictionless flows, we have Φ ¼ 1. Obviously, swirling losses in real frictional

flows differ from those in frictionless flows. Figure 11.2 shows computational

results, according to Eq. (11.10) for an example. For comparison, cw2 ¼ 0 and cw2
¼ 0:2 (see Sect. 11.1) have been assumed. Obviously, the friction effect in the flow

leads to a downshift of the peripheral speed coefficient for a minimum swirling loss.

Such a shift indeed can also be confirmed by Eq. (11.10). For the same friction
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number cw2 ¼ 0:2 from which a value Φ ¼ 0:818 is obtained, the peripheral speed

coefficient for obtaining minimum swirling loss is found from Eq. (11.10) by

setting d Δηswirlð Þ=dkm ¼ 0

km,min ¼
ffiffiffiffi
Φ

p

1þ ffiffiffiffi
Φ

p ¼ 0:475: ð11:11Þ

Although this result closely agrees with practical operation settings of Pelton

turbines, it should not be concluded that practical operation settings for

km � 0:475 simply aim to reduce swirling losses. As already indicated in

Sect. 11.1, the combined hydraulic loss with its minimum is still found at

km ¼ 0:5. This condition, in turn, corresponds to the flow configuration of a linearly

translating bucket. This is quite self-evident, since, according to Fig. 10.1 for

approximated two-dimensional cross-flows, neither the centrifugal nor the Coriolis

forces do affect the flows. In addition, km,min ¼ 0:475 in Fig. 11.2 is only related to a
mathematical extreme value. As a matter of fact, the mathematically detected

dependency of swirling losses on the peripheral speed coefficient in the range of

km,min ¼ 0:475 is so weak that it cannot be perceived in practical operations of

Pelton turbines.

Swirling loss calculations according to Eq. (11.10) can be simplified for

cw2=2 � 1. Due to the consequent approximations Φ � 1� cw2 andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� cw2

p � 1� cw2=2, one obtains from Eqs. (11.10) and (11.11), respectively,

Δηswirl ¼ 1� 2km 1� kmð Þ 1� cos β2ð Þ
� cw2 1� kmð Þ 1� km 1� cos β2ð Þ½ � ð11:12Þ

and

km,min ¼ 1� cw2=2

2� cw2=2
: ð11:13Þ

For β2 � π Eq. (11.12) implies

0
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0.4 0.45 0.5 0.55 0.6km

frictionless 

swirlηΔ

viscous flow cw2=0.2 

Fig. 11.2 Swirling loss

comparison between the

frictionless and viscous

cross-flow through a

circular Pelton bucket,

β2 ¼ 170�, cw2 ¼ 0:2
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Δηswirl ¼ 1� 1� kmð Þ 4km þ cw2 1� 2kmð Þ½ �: ð11:14Þ

Since for Pelton turbines the peripheral speed coefficient km is always close to 0.47

and the friction number is of a small value (e.g., cw2 ¼ 0:2 ), it applies

cw2 1� 2kmð Þ � 4km. Thus, one obtains

Δηswirl � 1� 4km 1� kmð Þ: ð11:15Þ

This equation corresponds to Eq. (11.3) for β2 � π. It clearly points out that the

influence of flow friction on the swirling loss in the exit flow is negligible.

At this point, the significance of Eq. (11.13) in terms of minimum swirling losses

should be discussed in detail. The minimum swirling losses are obviously expected

according to Fig. 8.5, when the condition α2 � π=2 for exit flows is fulfilled.

Accordingly, it follows from Eq. (8.30) with tan α2 ¼ 1

km
D2

Dm

� �
C0

W2

� �
þ cos β2 ¼ 0: ð11:16Þ

The relative flow velocity W2 at the bucket exit is replaced by W2 ¼ W1 1� 1
2
cw2ð Þ

according to Eq. (10.13). With W1 ¼ C0 1� kmð Þ and for β2 � π as well as D2

¼ Dm one obtains from Eq. (11.16)

km ¼ 1� cw2=2

2� cw2=2
: ð11:17Þ

This equation agrees exactly with Eq. (11.13). It clearly signifies that minimum

swirling losses in the exit flow are always related to the exit flow at right angle

α2 � π=2. For cw2 ¼ 0:2, one obtains km,min ¼ 0:474.

11.3 Hydraulic Dissipation and Energy Balance

Friction-dependent hydraulic losses in Pelton turbines will now be explained in

more details based on the energy conservation law. In the considered lateral cross-

flows in each rotating bucket, the change of the relative flow velocity is caused by

viscous frictions only. The change in the specific kinetic energy, thus, directly

reflects the specific dissipation in the flow owing to the viscous friction, as

expressed by

ediss ¼ 1

2
W2

1 �W2
2

� �
: ð11:18Þ

With the aid of Eq. (10.13) one obtains
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ediss ¼ cw2
1

2
W2

1: ð11:19Þ

This value is then scaled with the specific kinetic energy of the jet, yielding an

efficiency loss given by

Δηdiss ¼
ediss

C2
0=2

¼ cw2
W2

1

C2
0

: ð11:20Þ

BecauseW1 ¼ C0 � Um ¼ C0 1� kmð Þ, it is further represented as a function of the
peripheral speed coefficient

Δηdiss ¼ cw2 1� kmð Þ2: ð11:21Þ

As it is directly related to the dissipation in the flow, this type of efficiency loss is

called hydraulic dissipation.
From Eq. (11.1) and (11.12), the following equilibrium equation can be

established

Δηswirl þ Δηdiss ¼ 1� ηh: ð11:22Þ

In Sect. 11.2 and with Eq. (11.15), the approximationΔηswirl � Δηswirl, 0 has already
been shown. By comparing Eqs. (11.21) and (11.4) one obtains for β2 � π and km
� 0:5 also the approximation

Δημ � Δηdiss ¼
cw2
4

: ð11:23Þ

This relation of friction-dependent losses has already been given in Chap. 10 by

Eq. (10.42). Since for conditionsβ2 � π and km � 0:5 the swirling loss, according to
Eq. (11.15), is practically zero, Eq. (11.23), thus, dominantly represents the total

hydraulic loss. One needs only to determine the friction number cw2 according to

Eq. (10.15). This has already been shortly explained in connection with Eq. (10.15)

for the case of nominal operations and will be further illustrated in the next section

on the basis of a calculation example.

11.4 Example of Friction Effects on the Hydraulic

Efficiency

The extent of friction effects on the hydraulic efficiency of a Pelton turbine will

now be demonstrated by an example. For simplicity a semicircular bucket with a

constant radius rb is considered. The relative flow angles at the bucket entry and exit

are set equal to β1 ¼ 0 and β2 ¼ π, respectively. The spreading path length of the
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water sheet through the bucket is given by S ¼ πrb. Following the conventions in

the hydraulic design of Pelton turbines, the bucket volumetric load according to

Eq. (2.21) is used. It is formulated for the present semicircular bucket as

φB ¼ d0
B

� �2

¼ d0
4rb

� �2

: ð11:24Þ

Using this parameter allows the friction number, according to Eq. (10.15), to be

rewritten as

cw2 ¼ cf 1þ d2
B

ffiffiffiffiffiffi
φB

p
� �

� 1ffiffiffiffiffiffi
φB

p : ð11:25Þ

For reference, the hydraulic efficiency for frictionless flows is considered. From

Eq. (10.39) with β2 ¼ π it immediately follows that

ηh,0 ¼ 4km 1� kmð Þ: ð11:26Þ

Under the application of the parameter φB according to Eq. (11.24), Eqs. (10.24),

(10.36), and (10.39) are converted, respectively, to

ηd ¼ �ηh,0
cf
π2

d2
B

ffiffiffiffiffiffi
φB

p � 1

� �
1ffiffiffiffiffiffi
φB

p ; ð11:27Þ

ηp ¼ ηh,0 1� cf
4

ffiffiffiffiffiffi
φB

p d2
B

ffiffiffiffiffiffi
φB

p 1� 4

π2

� �
þ 1þ 4

π2

� �� �	 

; ð11:28Þ

ηh ¼ ηh,0 1� cf
4

ffiffiffiffiffiffi
φB

p 1þ d2
B

ffiffiffiffiffiffi
φB

p
� �� �

: ð11:29Þ

It can be verified that the conditions of the FFT theorem, according to Eq. (10.43),

are fulfilled.

For the hydraulic losses in the system efficiency, one obtains accordingly

Δηd ¼ �ηd ¼ ηh,0
cf
π2

d2
B

ffiffiffiffiffiffi
φB

p � 1

� �
1ffiffiffiffiffiffi
φB

p ; ð11:30Þ

Δηp ¼ ηh,0 � ηp ¼ ηh,0
cf

4
ffiffiffiffiffiffi
φB

p d2
B

ffiffiffiffiffiffi
φB

p 1� 4

π2

� �
þ 1þ 4

π2

� �� �
ð11:31Þ

and
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Δηh ¼ ηh,0 � ηh ¼ ηh,0
cf

4
ffiffiffiffiffiffi
φB

p 1þ d2
B

ffiffiffiffiffiffi
φB

p
� �

: ð11:32Þ

They are all shown as functions of the bucket volumetric load which is directly

related to the flow rate in the jet.

A concrete example will be considered here in which the water-sheet width at

the bucket exit is assumed to be d2 ¼ 0:8B and the friction coefficient is cf ¼ 0:015
(see Sect. 10.1). Figure 11.3 shows corresponding hydraulic losses as functions of

the bucket volumetric load. Because of the additional assumption km ¼ 0:5, it
applies for frictionless flows with ηh,0 ¼ 1.

It is evident that the direct friction effect on the system efficiency is very small

against the friction effect via the pressure reduction beneath the water sheet. In

addition, all losses noticeably increase with reduction of the bucket volumetric

load. This can be explained by the fact that the almost constant friction power at

partial load is related to a small value of the jet power, see also Sect. 10.4.

The combined total loss in the hydraulic efficiency, as caused by viscous

frictions, has been confirmed to be considerable. In particular, it doubles if the

friction coefficient rises to cf ¼ 0:03. At Pelton buckets with eroded surfaces,

because of sand abrasion, for instance, the friction coefficient and hence hydraulic

losses will excessively increase. From these results, it can be concluded that the

friction-dependent hydraulic loss in the system efficiency is the most significant

loss in a Pelton turbine. For comparison, the swirling loss in the exit flow is only

about 1% (Fig. 9.5), see Chap. 9. As will be described and shown in Chap. 13, air

friction and windage losses at Pelton wheels are simply in the order of less than 1%.
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Fig. 11.3 Efficiency losses arising from the flow friction in a circular Pelton bucket
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Chapter 12

Viscous Longitudinal Flow Through

the Bucket

The longitudinal flow in a rotating bucket is encountered when the jet according to

Fig. 5.16 is intersected by the bucket cutout and the water then spreads toward the

bucket root. In actual situations, the water does not purely radially move to the

bucket root. This is basically because of the three-dimensional geometric bucket

design. To simplify the calculations and especially to reveal the fluid mechanics in

such cases with dominant radial flows, purely radial flows are supposed and

considered in this chapter. Because the Coriolis force, which always acts perpen-

dicular to the flow direction, does not lead to any change in the flow velocity, the

motion of water in the rotating bucket is determined only by centrifugal and friction

forces. This, however, does not mean that the Coriolis force would not provide any

power. In fact, the Coriolis force always retains a force component perpendicular to

the bucket inner surface and thus contributes to the bucket motion; see also Fig. 6.1

and the computational example in Fig. 6.9.

12.1 Kinematic Equation of Flow in a Rotating Bucket

Taking into account the influences of centrifugal and friction forces, the energy

equation for the motion of a water sheet in a rotating bucket has already been given

by Eq. (10.2) in general form as

d
1

2
W2

� �
¼ ~Fct � d~s� cf

1

2h
W2ds: ð10:2Þ

The first term on the right-hand side of the equation corresponds to Eq. (6.14), from

which Eq. (6.17) has been obtained. Thus, the above equation is integrated to
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1

2
W2 �W2

1

� � ¼ 1

2
ω2 R2 � R2

1

� �� ð
s

0

cf
1

2h
W2ds: ð12:1Þ

This equation explicitly shows that the relative flow velocity in the rotating bucket

depends on both the local peripheral speed of the bucket and the flow friction

between the flow and the bucket surface. For frictionless flows (cf ¼ 0), it leads to

Eq. (6.18). On the other hand, for a flow laterally across the bucket (U ¼ const), the

computation in Eq. (12.1) reduces to the calculation that has already been fully

treated in Chaps. 10 and 11.

Equation (12.1) represents a purely kinematic equation and can be used to

calculate the radial flow in a rotating bucket. To this end some intermediate

calculations for the radial position R of the flow in the bucket are required. For

simplicity, a bucket of circular form is again assumed which has a radius of

curvature rb referring to Fig. 12.1. The assumption of a circular bucket is justified

because the longitudinal, i.e., radial profile of a Pelton bucket, can be well approx-

imated by a circular shape.

As starting point a water particle is considered whose height, according to

Fig. 12.1a, is equal to the height of the water sheet. The position angle of the

particle at the bucket entry is specified by τ ¼ 0. The related time is set to zero. The

time-dependent position of the particle in the rotating bucket is then calculated from

rbdτ ¼ Wdt by

Fig. 12.1 (a, b) Parameter notation for longitudinal movement of a water particle through a Pelton

bucket of circular form
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t ¼
ðτ
0

rb
W
dτ: ð12:2Þ

The integration shall be calculated over the position angle τ. The reason for such an
integration form is that the upper limit of the integration, as a geometric quantity, is

usually predefined. In particular, from the above integration, the rotation angle of

the bucket is directly coupled with the position angle of the particle in the bucket:

Δα ¼ ωt ¼ rbω

ðτ
0

1

W
dτ: ð12:3Þ

According to Fig. 12.1b, the radial position of the water particle in the bucket is

determinable by the law of cosines:

R2 ¼ r2b þ R2
o � 2rbRo cos ψ � τð Þ: ð12:4Þ

The angle ψ is a fixed value and can be calculated from the condition of R ¼ Rc at

τ ¼ 0 as

cosψ ¼ R2
o þ r2b � R2

c

2rbRo

: ð12:5Þ

The angle β for the relative flow velocity is calculated in a similar way by the use of

the cosine law, viz.,

cos β ¼ R2 þ r2b � R2
o

2rbR
: ð12:6Þ

At the time t ¼ 0, the particle is located at the bucket entry, as specified by

cos β1 ¼
R2
c þ r2b � R2

o

2rbRc

: ð12:7Þ

The angle β1 denotes the direction of relative velocity of a particle at the bucket

entry and along the bucket surface. The relative flow angle of the particle before

entering the bucket is denoted by β0. Because there is usually β1 6¼ β0, there occurs
a shock load along the cutout edge of the bucket. The related flow mechanism and

the power contribution of the shock load have already been calculated in Sect. 5.9.

To calculate the overall hydraulic performance of a Pelton turbine, the outcome of

this shock load must be included.

The above equations show only the geometric relations between the geometric

parameters such as R, τ, Δα, ψ , and β. The time- or position-dependent relative

velocity of the particle in the bucket is determined by Eq. (12.1). Taking into

account the relation sin βds ¼ �dR along the flow path s, it yields
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1

2
W2 �W2

1

� � ¼ 1

2
ω2 R2 � R2

1

� �þ ðR
R1

cf
W2

2h sin β
dR: ð12:8Þ

The water-sheet height h can be determined just as in Chap. 7. The relative flow rate

of the entire jet, according to Eq. (7.5), is given by

_Q w ¼ 1

4
πd20W0x,o: ð12:9Þ

Here, the velocity component W0x,o is referred to the jet layer on the jet axis. It is,

therefore, given by W0x,o ¼ C0 � Um and remains constant for all particles in the

same jet layer.

In Fig. 12.2, the width of the water sheet comprises two bucket halves which

together are denoted by d. Since the flow rate is given by _Q w ¼ hdW, by equalizing

it with Eq. (12.9), the water-sheet height is obtained as

h ¼ π

4

d20
d

W0x,o

W
: ð12:10Þ

At the bucket entry (s ¼ 0), d � d0 holds. Comparison with Eq. (7.6) shows a

difference in the water-sheet height by a factor of two. This is because in the current

case, the jet at the bucket cutout has a width d0 for both bucket halves, while in

Eq. (7.6), according to Fig. 7.3, the jet width d0 applies for each half of the bucket.

This difference must be taken into account particularly when the flow in the bucket

is significantly different from a purely radial flow.

Fig. 12.2 Longitudinal

flow of water through a

Pelton bucket
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For simplicity, linear spreading of the water sheet is again assumed in two

bucket halves as follows:

d ¼ d0 þ d2 � d0
S

s: ð12:11Þ

Here, d2 denotes the total water-sheet width in both bucket halves at the bucket exit.
With the assumption of a constant friction coefficient, Eq. (12.8) is further

simplified to

1

2
W2 �W2

1

� � ¼ 1

2
ω2 R2 � R2

1

� �þ 2cf

πd20W0x,o

ðR
R1

W3d

sin β
dR: ð12:12Þ

The integration can first be converted to a summation form and then numerically

determined. This will be shown in Sect. 12.4 based on a computational example.

12.2 Dynamic Equations and Calculations of Hydraulic

Powers

In order to represent the dynamic behavior of the flow in a rotating bucket,

contributions of respective volume forces as well as the friction force should be

quantified. As volume forces, both the centrifugal and Coriolis forces simulta-

neously act on the bucket with their components perpendicular to the bucket

surface. The definitions of the centrifugal and Coriolis forces are found in

Eqs. (6.1) and (6.2), respectively. Another volume force is the impulsive force in

connection with the change of flow direction along the bucket surface. It has already

been encountered in Eqs. (6.10) and (10.25), where it was the only effective force

opposite to the pressure force below the water sheet.

In Fig. 12.3, all available force vectors as well as the bucket unit normal vector (

~n) are shown. The sum of all force components perpendicular to the bucket surface

represents the force acting on a fluid particle. Its magnitude is equal to the force

exerted on the bucket. Thus, for a unit mass of fluid, the specific bucket driving

force is given by

Fn ¼ W2

rb
� ~Fct � ~n� ~FCo � ~n: ð12:13Þ

Here, rb is referred to as the local radius of curvature of the bucket inner surface.

The friction force that arises from the shear stress directly acts on the bucket

surface tangentially in the direction of the flow. The direct friction force found in an

infinitesimal area is obtained by
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dFd ¼ cf
1

2
ρW2dds: ð12:14Þ

Since the bucket rotates, both the normal driving force and the friction force on the

bucket surface perform the mechanical work. It should be noted that the effective

force for performing mechanical work is always the force component in the

circumferential direction of the rotating bucket. The specific power provided by

all specific volume forces is, thus, calculated to

_e ¼ de

dt
¼ Fn �~nð Þ � ~U ¼ �W2

rb
~n � ~U þ ~Fct � ~n

� �
~n � ~U þ ~FCo � ~n

� �
~n � ~U: ð12:15Þ

It is actually the same as Eq. (6.50).

The power contribution of the direct friction force within an infinitesimal flow

path is given by

dPd ¼ dFd cos βU ¼ cf
1

2
ρW2 cos βUdds: ð12:16Þ

This equation is comparable to Eq. (10.16).

To further process the above equations and calculations, the system of equations

must be supplemented by the kinematic equation, which is given by Eq. (12.12).

Fig. 12.3 Force

equilibrium on a water

particle with longitudinal

movement in a circular

Pelton bucket. Fct, FCo, and

Fn act on the water particle;

Fd acts on the bucket
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Respective mechanical powers can be obtained by integrating Eqs. (12.15) and

(12.16) from the bucket entry to the exit. As mentioned in the previous section, the

shock load force which is related to the sudden change of flow direction at the

bucket cutout also contributes to the mechanical work. This contribution has to be

additionally counted to the shaft power of a Pelton turbine.

12.3 Contributions of Flow Forces and Hydraulic

Dissipation

In order to perform the vector analysis in Eq. (12.15), an orthogonal coordinate

system (t, n, z), according to Fig. 12.3, is implemented. The z-coordinate agrees

with the rotation axis of the Pelton wheel. Corresponding geometry and flow

parameters have already been shown in Chap. 6 and are listed here again:

~n ¼ 0, 1, 0ð Þ,
~R ¼ �R sin β, � R cos β, 0ð Þ,
~ω ¼ 0, 0, ωð Þ,
~U ¼ ωR cos β, � ωR sin β, 0ð Þ,
~W ¼ W, 0, 0ð Þ:

ð12:17Þ

The contributions of diverse flow forces are considered below.

12.3.1 Shock Load at the Bucket Entry

While entering the bucket at the bucket cutout, the jet flow usually undergoes a

sudden change in flow direction. Associated with it is the formation of the shock
load, as already discussed in Chap. 5. The corresponding power contribution and

partial efficiency have been calculated by Eqs. (5.68) and (5.71), respectively. For

completeness of these computations in the current chapter, the related partial

efficiency, according to Eq. (5.71) and Fig. 5.16, is written here again as

ηshock ¼ 2k2m
W0

Um

Rc

Rm

cos β0 � cos β1ð Þ: ð12:18Þ

This partial efficiency arising from the shock load is regarded as an incident

quantity in contrast to other process quantities that can only be calculated through

integrations.
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12.3.2 Impulsive Force in the Bucket

The force associated with the continuous deflection of the flow in the bucket

(congruent flow) has been described in Sect. 12.2 as an impulsive force. The specific
work, which is done by this force over the time, can be calculated from the

corresponding term in Eq. (12.15), based on Fig. 12.3, as follows:

eI ¼ �
ðt
0

W2

rb
~n � ~Udt ¼

ðt
0

W2

rb
ωR sin βdt: ð12:19Þ

Because Wdt ¼ ds with s as the coordinate along the flow path and with relation

sin βds ¼ �dR, as shown in Fig. 12.3, Eq. (12.19) is converted to

eI ¼ �ω

ðR
R1

W

rb
RdR: ð12:20Þ

This specific mechanical work should be related to the specific kinetic energy 1
2
C2
0 of

the jet. With the definition of km according to Eq. (2.18), one obtains the

corresponding partial efficiency as

ηI ¼
eI

C2
0=2

¼ �2k2m

ðR
R1

1

rb

W

Um

R

Rm

dR: ð12:21Þ

As identifiable in Fig. 12.1, R1 ¼ Rc is the lower bound of integration. Since the

corresponding upper bound is specified by the variable R, the above equation shows
the time-dependent efficiency of the flow while passing through the bucket. This

will be again illustrated below by means of a computational example.

The integral in Eq. (12.21) can be calculated when it is first converted to a

summation form and then numerically solved in connection with the kinematic
equation, i.e., Eq. (12.12). For frictionless flows in a circular bucket, the above

equation reduces to Eq. (6.94).

12.3.3 Centrifugal Force

The specific centrifugal force is given by Eq. (6.1) and is equal to Rω2. Between the

centrifugal force and the normal of the bucket surface, according to Fig. 12.3, an

angle of π � β is measured, so that the scalar product of ~Fct with ~n is given by
~Fct � ~n ¼ �Rω2 cos β. The specific work which is done by the centrifugal force is

calculated from the corresponding term in Eq. (12.15); the result is
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ect ¼
ðt
0

~Fct � ~n
� �

~n � ~Udt ¼ �ω3

ðR
R1

R2 cos β
1

W
dR: ð12:22Þ

Here, relations Wdt ¼ ds and sin βds ¼ �dR have been used.

The specific work given in Eq. (12.22) should be normalized by the specific

kinetic energy of the jet. With respect to the definition of the peripheral speed

coefficient km, one then obtains the related efficiency in the form

ηct ¼ �2k2m

ðR
R1

R2

R3
m

Um

W
cos βdR: ð12:23Þ

As in Eq. (12.21), this partial efficiency is a process quantity.

12.3.4 Coriolis Force

The Coriolis force is given by Eq. (6.2) and its modulus equals to 2ωW. The

corresponding vector product ~FCo � ~n is calculated, according to Fig. 12.3, to

�2ωW. The negative sign is due to the fact that ~FCo and ~n are antiparallel. By

applying Eq. (12.17), the work which is done by the Coriolis force can be calculated

from the corresponding term in Eq. (12.15), as given by

eCo ¼
ðt
0

~FCo � ~n
� �

~n � ~Udt ¼ 2ω2

ðt
0

WR sin βdt: ð12:24Þ

Now, since W sin β ¼ �Wr ¼ �dR=dt, the above calculation is simplified to

eCo ¼ �2ω2

ðR
R1

RdR: ð12:25Þ

The integration then leads to

eCo ¼ ω2 R2
1 � R2

� � ¼ U2
1 � U2: ð12:26Þ

If related to the specific kinetic energy of the jet, as in Eq. (12.23), and with

R1 ¼ Rc, the corresponding partial efficiency is then obtained as
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ηCo ¼ 2k2m
R2
c

R2
m

� R2

R2
m

� �
: ð12:27Þ

It is independent of the path followed by the fluid particles. Because it is also

independent of fluid viscosity, Eq. (12.27) is the same as Eq. (6.81) for frictionless

flows.

12.3.5 Direct Friction Force

Viscous friction has also a direct effect on the mechanical power. This can be

determined from Eq. (12.16) as

Pd ¼ cf
1

2
ρ

ðs
0

W2Ud cos βds: ð12:28Þ

Substituting relation sin βds ¼ �dR leads to

Pd ¼ �cf
1

2
ρ

ðR
R1

W2U
d

tan β
dR: ð12:29Þ

Since according to Fig. 12.2 the water-sheet width d is referred to both bucket

halves, the above calculation applies to a complete Pelton bucket. Furthermore, the

number of buckets undergoing impingement of one jet has been given by 2λ; see
Chap. 7 and Eq. (7.7). Under these circumstances, the partial efficiency from direct

viscous friction is obtained by relating the corresponding power to the jet power P0

as follows:

ηd ¼
2λPd

1
4
πd20C0

1
2
ρC2

0

¼ � 4cf

πd20

k3m
1� km

1

U3
m

ðR
R1

dW2U

tan β
dR: ð12:30Þ

As will be shown, this partial efficiency is expected to be negative and is also

negligible when computing the integral forR ¼ R2 (until the bucket exit). A similar

result has already been obtained in Chap. 11 for cross-flows with U ¼ const.
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12.3.6 Hydraulic Dissipation

The viscous friction force in an infinitesimal area on the bucket surface is given by

Eq. (12.14). The related infinitesimal dissipation rate is then calculated by

d _E diss ¼ WdFd ¼ cf
1

2
ρW3dds: ð12:31Þ

The cumulative dissipation rate can be calculated as a function of the path length of

the flow in the rotating bucket, as given by the following integration:

_E diss ¼ cf
1

2
ρ

ðs
0

W3dds: ð12:32Þ

Since according to Fig. 12.2 the water-sheet width d is referred to both bucket

halves, the above calculation is in effect for a complete Pelton bucket. In addition,

there are always 2λ buckets simultaneously undergoing impingement of each jet, as

this has been revealed in Sect. 7.1; see Eq. (7.7). The total dissipation rate in 2λ
buckets is then related to the jet power. This results in the dissipative efficiency loss

Δηdiss sð Þ ¼ 2λ _E diss

P0

¼ 4cf

πd20

1

1� km

1

C3
0

ðs
0

W3dds: ð12:33Þ

Because sin βds ¼ �dR from Fig. 12.3, the above equation is also written as

Δηdiss Rð Þ ¼ � 4cf

πd20

1

1� km

1

C3
0

ðR
R1

W3d

sin β
dR: ð12:34Þ

It represents here again a process quantity with starting point at the bucket entry,

i.e., the bucket cutout edge. For water flow throughout the bucket, the upper bound

of integration in the above equations is replaced by s ¼ S and R ¼ R2, respectively.

Combining Eq. (12.34) with the kinematic equation, i.e., Eq. (12.12), yields for

R ¼ R2 and thus U ¼ U2 (for through flow)

Δηdiss ¼
1

1� km

W0x,o

C3
0

W2
1 � U2

1

� �� W2
2 � U2

2

� �� �
: ð12:35Þ

WithW0x,o ¼ C0 � Um and km ¼ Um=C0 as well as the energy invariance E1 ¼ W2
1

�U2
1 and E2 ¼ W2

2 � U2
2, it finally follows

12.3 Contributions of Flow Forces and Hydraulic Dissipation 189

http://dx.doi.org/10.1007/978-3-319-31909-4_7


Δηdiss ¼
E1 � E2

C2
0

: ð12:36Þ

The viscous friction effect in this case can be evidenced in the difference E1 � E2.

When the energy invariance E2 ¼ W2
2 � U2

2 is replaced by E2 ¼ W2
2 �W2

20

� �þ
W2

20 � U2
2

� � ¼ W2
2 �W2

20

� �þ E20 with E20 for the case of frictionless flow, then,

because of E20 ¼ E1, i.e., energy invariance, Eq. (12.36) becomes

Δηdiss ¼
W2

20 �W2
2

C2
0

: ð12:37Þ

This equation combines the dissipation rate in the bucket flow with the exit flow

velocity W2 out of the bucket. It exactly agrees with one’s expectation.
Consider next again Eq. (12.33). The water-sheet width d in the equation will be

replaced by Eq. (12.10). With W0x,o ¼ C0 � Um and km ¼ Um=C0, it follows then

Δηdiss sð Þ ¼ 1

C2
0

ðs
0

cf
1

h
W2ds: ð12:38Þ

For s ¼ S and equalizing this with Eq. (12.37), one obtains

W2
2 ¼ W2

20 �
ðS
0

cf
1

h
W2ds: ð12:39Þ

Sometimes it may be convenient to introduce a dissipation coefficient cw2 as defined
by

W2
2

W2
20

¼ 1� 1

W2
20

ðS
0

cf
1

h
W2ds ¼ 1� cw2: ð12:40Þ

This dissipation coefficient is comparable to the friction number which has been

defined in Eq. (10.12) for lateral cross-flows. For this reason the dissipation

coefficient can also be denoted as friction number.

12.3.7 Overall Efficiency

The sum of all partial efficiencies provides the overall hydraulic efficiency of the

supposed model with purely radial flow according to Fig. 12.1, as given by
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ηh ¼ ηshock þ ηI þ ηct þ ηCo þ ηd: ð12:41Þ

The difference of this hydraulic efficiency to the value of 100% has to be equal to

the sum of friction-dependent hydraulic dissipation and the swirling loss which is

connected to the exit flow:

Δηdiss þ Δηswirl ¼ 1� ηh: ð12:42Þ

As will be shown in the concrete computational example below, the friction-

dependent hydraulic dissipation Δηdiss again represents the dominant part in the

total efficiency loss in the considered flow model.

12.4 Computations for a Concrete Realistic Example

In order to show the computational process of determining all force effects and

respective contributions to partial efficiencies, a flow model of a longitudinally

circular bucket form is considered. This flow model approaches the flow in a real

Pelton turbine when the jet is cut off by the bucket cutout. Parameter specifications

of a used reference Pelton turbine are summarized in Table 12.1.

Computations can be performed by the numerical method of using the tabular

algorithms, at which, for instance, 20 computational steps are defined from bucket

entry to exit. Table 12.2 shows the corresponding computational scheme. The jet

circle radius (Rm) and the corresponding peripheral speed (Um) are used as

references.

The absolute flow velocity C/C0 in each computational step is obtained by

considering velocity triangles. Calculations of W/Um go back to Eq. (12.8) which

is differentiated to yield

Table 12.1 Parameter specification of a reference Pelton turbine

Specific speed nq 1/s 0.10

Peripheral speed coefficient km – 0.47

Bucket volumetric load φB ¼ d0=Bð Þ2 – 0.11

Bucket width B/Dm – 0.24

Jet diameter d0/Dm – 0.08

Cutout circle diameter Dc/Dm – 1.21

Radius of curvature of bucket inner surface rb/B – 0.50

Position of the center of curvature of bucket inner surface Ro/Rm – 1.10

Entry flow angle β1 � 56.0

Exit flow angle β2
� 173.0

Angle ψ according to Eq. (12.5) � 113.0

Friction coefficient cf – 0.015
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d
W2

U2
m

� �
¼ 2

R

Rm

þ cf
sin β

Rm

2h

W2

U2
m

� �
d

R

Rm

� �
: ð12:43Þ

For numerical solution this equation is then digitized as

W2

U2
m

� �
i

¼ W2

U2
m

� �
i�1

þ 2
R

Rm

þ cf
sin β

Rm

2h

W2

U2
m

 !
Ri

Rm

� Ri�1

Rm

� �
: ð12:44Þ

Computational results for the radial flow in a rotating bucket of the considered

Pelton turbine are shown in Fig. 12.4. In the diagram, the partial efficiency due to

the shock load at the bucket entry is confirmed at τ ¼ 0 to ηshock ¼ ηh ¼ 2:0%.

Obviously, the centrifugal force in the flow by reaching the bucket exit only

contributes to a very small but negative value of the mechanical power. The direct

friction effect on the hydraulic efficiency is less than 0.5%. Both the Coriolis and

impulsive forces dominate contributions to the overall hydraulic efficiency. While

the flow reaches the bucket exit (τ ¼ 107�), the overall hydraulic efficiency reaches
a value of 98.1%. Accordingly, the total hydraulic loss is approximately 1.9%. It

includes the viscous dissipation during the flow through the bucket and the swirling

loss at the bucket exit.

In the performed tabular calculations, both the viscous dissipation and the

swirling loss have also been determined. Figure 12.5 shows the corresponding

numerical results as functions of the rotation angle Δα of the bucket. The flow

reaches the bucket exit, after the bucket has rotated by an angle of approximately

28�. The hydraulic efficiency is the same as that shown in Fig. 12.4. The square of

the velocity ratio (C/C0)
2 at the bucket exit represents the swirling loss in the

considered hydraulic system. As can be confirmed from the calculations, the

swirling loss is only of about 0.37%, while the efficiency loss arising from the

viscous dissipation measures 1.5%. The total efficiency loss is thus 1.9%. This

result straightforwardly confirms the given relation in Eq. (12.42).
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Fig. 12.4 Calculation

example of the partial and

overall efficiencies in a flow

system according to

Fig. 12.3. Parameter

specification according to

Table 12.1
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In accordance with Δηdiss ¼ 1:5% from the viscous dissipation, the dissipation

coefficient has been obtained as cw2 ¼ 0:1 (not shown in Table 12.2) The real flow

velocity at the bucket exit, if related to that for frictionless flow, is obtained from

Eq. (12.40) to W2=W20 ¼ 0:95.
The current computational example again indicates that the viscous friction on

the bucket surface is a source causing the main loss in hydraulic efficiencies of a

Pelton turbine, although it only takes 1.5% in the current example.

In performing presented tabular calculations, influences of all other parameters

such as km, cf, and β2 on the flow as well as on the hydraulic efficiency can be

visualized and evaluated in a very simple way. In the conducted calculations, it has

been confirmed, for instance, that swirling losses at the bucket exit are hardly

affected by viscous friction. Such a flow property has already been indicated in

Chap. 11 by Eq. (11.15).
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Chapter 13

Friction and Windage Losses in Pelton

Wheels

Friction and windage losses in Pelton wheels arise because the air around the Pelton

wheel is continuously entrained to circulate and the rotation of Pelton wheels is

persistently resisted by air friction on the wheel surface. These effects are therefore

referred to as internal mechanical losses, and in practical applications, these two

types of losses depend on designs of the turbine casing, wheel size, and rotational

speed of the wheel. They are strongly coupled so that they cannot be separated from

each other, neither in calculations nor from measurements. In particular, air mixture

as enriched by water sprays plays a special role because of its specific density.

The simplest model with friction and windage losses is a disk which rotates in

the open air. According to Dubs (1954) based on past experiences and also

according to the IEC60041 standard (1991), friction and windage losses are calcu-

lated by the formula

Pwi ¼ 75:6n3D5 1þ 1:8
B

D

� �
� 10�3 Wð Þ: ð13:1Þ

The parameters B andD represent the disk thickness and diameter, respectively. For

the rotational speed n, the unit 1/s must be used. The expression in parentheses takes

into account the total exposed surface of the disk. It is noticeable that friction and

windage losses depend on the 3rd power of the rotational speed and the 5th power of

the wheel diameter. The above law reveals, from dimensional analysis, that the

numerical factor in Eq. (13.1) simply possesses the dimension of the specific mass

density (kg/m3). It, thus, clearly implies that, strictly speaking, it is only valid for a

mean specific density of the ambient air.

The law given in Eq. (13.1) as a function of the speed and the wheel diameter has

been generally validated in practice. It has also been applied, for instance, to

determine the friction loss in the side room of impellers in other types of turboma-

chinery (Pfleiderer and Petermann 1986).

For a Pelton turbine, the object to be considered is the Pelton wheel with buckets

in a closed casing. Because of bucket effects, the friction and windage losses are
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significantly higher than at a simple disk in open air. In addition, the friction and

windage losses depend on the casing design of Pelton turbines, so that one has to

distinguish between the horizontal and the vertical installations of Pelton wheels

(Gerber 1956). Furthermore, for Pelton turbines always wet air is involved, which is

actually a mixture of air and spray water and, thus, may be of quite different specific

densities from case to case.

13.1 Pelton Turbines with Horizontal Axes

For Pelton turbines with horizontal rotation axes, all relevant geometric design

parameters are shown in Fig. 13.1. The power that is required to compensate for the

friction and windage losses is calculated using IEC60041 standard (1991) as

follows:

Pwi ¼ 15n3D5 Ba

D

� �1=4 Bio

D

� �3=4 Biu

D

� �5=4 Rio

D

� �7=4

Wð Þ: ð13:2Þ

Dimensionally, this is the same law as in Eq. (13.1), but influences of all casing

parameters on the windage power are taken into account. The unit of rotational

speed n is again 1/s. For a given Pelton turbine, Eq. (13.2) is rewritten in the

following abbreviated form:

D 

Dm

D
m

Ba

Bio

Biu

D
 

R
io

Fig. 13.1 Parameter definition for calculations of friction and windage losses in a horizontal

Pelton turbine according to IEC60041 (1991)
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Pwi ¼ a � n3D5 Wð Þ: ð13:3Þ

Here, a is a constant which combines the air property and design parameters of the

turbine casing. Its dimension is kg/m3, i.e., the same as the dimension of the specific

density.

For comparison with Eq. (13.1), a particular Pelton turbine is considered here as

an example. The turbine casing is given by Ba=D ¼ 0:2, Bio=D ¼ 0:3, Biu=D ¼ 1,

and Rio=D ¼ 0:6, for which one obtains from Eq. (13.2)

Pwi ¼ 1:7n3D5 Wð Þ: ð13:4Þ

The friction and windage losses at the Pelton turbine in this example are about

16 times greater than at a comparable disk in open air. This is not only because of

the presence of the turbine casing, but mainly because of the presence of Pelton

buckets and also of comparably high specific density of the air-water mixture. It

should be noted that Eq. (13.2) is valid only for a mean specific density of wet air in

the turbine casing and is therefore expected to have a limited accuracy of �50% in

practical applications. This statement is again based on the fact that the constant

a in Eq. (13.3) has the same dimension as the specific density. Exact friction and

windage losses depend on the design of turbine casings and can be directly

determined, for instance, by so-called retardation tests. They will be considered

in Sect. 13.3 in more details.

The magnitude of the friction and windage losses should somewhat further be

treated. To this end, the nominal power of the Pelton turbine, as given by P0,N

¼ ZjetρgH _Q jet with Zjet as the number of installed injectors (jets), is then used as a

scaling, so that

Δηwi ¼
Pwi

P0,N
¼ a

ρZjet

� n3D5

gH _Q jet

: ð13:5Þ

The second fraction term on the right-hand side of this equation should be further

represented as a function of the specific speed nq. For this purpose, D � Dc is

assumed (forDc see Figs. 2.4 and 2.5). Then for the nominal rotational speed nN, the
second fraction term in the above equation is extended as

n3ND
5

gH _Q jet

¼ 22:5g1:5

π5
πnNDmffiffiffiffiffiffiffiffiffi
2gH

p
� �5 H3=4

nN

ffiffiffiffiffiffiffiffi
_Q jet

q
0
B@

1
CA

2

D5
c

D5
m

: ð13:6Þ

With the aid of Eq. (2.31) for Dc/Dm and the definitions for km and nq, according to

Eq. (2.18) and Eq. (2.22), respectively, the above equation is rewritten as
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n3ND
5

gH _Q jet

¼ 0:57k5m,N 1þ 2nq
� �5 1

n2q
: ð13:7Þ

Accordingly, for the specific density of water ρ ¼ 1000kg=m3 and the rotational

speed n as a variable, the friction and windage losses as given in Eq. (13.5) are

represented as

Δηwi ¼ 0:57� 10�3 a

Zjet

k5m,N 1þ 2nq
� �5 1

n2q

n3

n3N
; ð13:8Þ

or, commonly, for km,N ¼ 0:47, as

Δηwi ¼ 1:3� 10�5 a

Zjet

1þ 2nq
� �5 1

n2q

n3

n3N
: ð13:9Þ

A new dimensionless number called windage number is introduced and defined as

Wi ¼ g1:5
1þ 2nq
� �5

n2q
: ð13:10Þ

Like the specific speed nq, according to Eq. (2.26), the windage number is also a

geometrical parameter.

With the windage number, the friction and windage losses are then expressed as

Δηwi ¼ 4:2� 10�7Wi
a

Zjet

n3

n3N
: ð13:11Þ

For the nominal rotational speed and single-jet turbines, there is

Δηwi,N ¼ 4:2� 10�7aWi: ð13:12Þ

In accordance with its definition, the windage number is in effect a function of the

specific speed, as shown in Fig. 13.2. It should be noted, however, that in

Eq. (13.11) the full dependence of the friction and windage losses on the specific

speed is not only due to the windage number but equally also because of the design

parameter a. In reality, the design parameter a depends on the design of the turbine
casing and, therefore, on the specific speed of the turbine wheel.

For a single-jet Pelton turbine, for instance, with a specific speed of nq ¼ 0:1 and

a design constant of a ¼ 1:7, according to Eq. (13.4), the total friction and windage
loss are calculated as
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Δηwi ¼ 0:0055
n

nN

� �3

: ð13:13Þ

Under the nominal rotational speed, it is about 0.55%. In multi-jet Pelton turbines,

the friction and windage losses will be even smaller because of Eq. (13.11).

In the above considerations, the dependence on the specific speed has been

derived. Since the specific speed is only defined for the nominal flow rate, calcu-

lations of Eqs. (13.8)–(13.13), therefore, only apply for operations of Pelton

turbines under nominal flow rate. The corresponding power loss is thus calculated

as

Pwi ¼ ΔηwiP0,N: ð13:14Þ

It only depends on the rotational speed of the Pelton wheel, but not on the flow rate.

13.2 Pelton Turbines with Vertical Axes

For Pelton turbines with vertical rotation axes, all relevant geometric design

parameters are shown in Fig. 13.3. The power required to compensate for the

friction and windage losses is structurally the same as Eq. (13.2) and will be

estimated by the following equation according to the IEC60041 standard (1991):

Pwi ¼ 22 � n3D5 Ba

D

� �2=3 Bi

D

� �4=3 Ri

D

� �
¼ a � n3D5: ð13:15Þ

For the same reason as in Sect. 13.1, this estimation basically applies only for a

mean specific density of wet air in the turbine casing. For the case of a geometric

configuration with Ba=D ¼ 0:2, Bi=D ¼ 0:3, and Ri=D ¼ 1, one obtains from the

above equation
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Pwi ¼ 1:5 � n3D5: ð13:16Þ

This equation is similar to Eq. (13.4) which applies to Pelton turbines with

horizontal rotation axes. To calculate efficiency losses, Eqs. (13.9) and (13.11)

can directly be used. One needs only to use the respective constant a.
The method of retardation test for accurately determining the friction and

windage losses is described in the next section.

13.3 Retardation Test Method

As is apparent from the above considerations, friction and windage losses depend

on both the design of the turbine casings and the geometries of the Pelton wheels.

Since the specific density of wet air is not taken into account as a variable in

calculations, the friction and windage losses can in no case be exactly calculated.

To accurately estimate the friction and windage losses, the so-called retardation
test or running down test has been found to be particularly convenient. The method

also enables the determination of the mechanical loss due to friction in the bearing.

In fact, the friction and windage losses together with friction from the bearing

constitute the total mechanical loss of a Pelton turbine. Since the friction loss due to

the bearing against the rotational speed behaves differently (Chap. 14) from the

friction and windage losses, it can be separately resolved from a retardation test. In

this chapter, the principle of a retardation test for the experimental determination of

the total mechanical losses will be shown, while the bearing friction loss will be

discussed in more details in Chap. 14.

The retardation of a Pelton wheel rotation begins when all jets of a Pelton turbine

are deflected and the load on the side of the generator is rejected. The rotation of the

Ri

B i
B a

Dm

D

Fig. 13.3 Parameter

definition for calculations of

friction and windage losses

in a vertical Pelton turbine

according to IEC60041

(1991)
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Pelton wheel is slowing down purely due to the total mechanical braking effects

both at the Pelton wheel and in the shaft bearings. During the retardation test, the

time-dependent rotational speed of the Pelton wheel in the form n ¼ f tð Þ should be

measured. By knowing the moment of inertia J of the entirety of the rotating parts

(Pelton wheel, shaft, rotor of the generator), the attenuation of the Pelton turbine

rotation is described by the angular momentum equation:

J
dω

dt
¼ Mwi þMbe: ð13:17Þ

Here, Mwi and Mbe denote the windage torque at the Pelton wheel and the friction
torque at the shaft bearings, respectively. According to Eqs. (13.4) and (13.16), the
windage torqueMwi at the Pelton wheel can be considered to be proportional to the

square of the rotational speed, so that

Mwi ¼ Kwi

2π
n2: ð13:18Þ

For the determination of the bearing friction torque Mbe, hydrodynamic plain

bearings are assumed which are often used for Pelton turbines. According to

Chap. 14, for instance, the following approach for heavy-loaded plain bearings

can be applied:

Mbe ¼ Kbe

2π
n0:5: ð13:19Þ

From Eq. (13.17) one obtains with ω ¼ 2πn

dn

dt
¼ 1

4π2J
Kwin

2 þ Kben
0:5

� � ¼ kwin
2 þ kben

0:5: ð13:20Þ

Once the rotational speed of the rotating system during the retardation test is

measured, the function dn=dt ¼ f nð Þ can be calculated and displayed. The curve

is then approximated by the function shown in Eq. (13.20) to find out the constants

kwi and kbe. It actually deals with a curve-fitting calculation (nonlinear least-squares
method). From the constants kwi and kbe, other constants Kwi and Kbe can then be

further determined by knowing J. Such a test has already been carried out by

Taygun (1946). A solution of the differential equation, i.e., Eq. (13.20), was also

indicated there.

In case that due to the type of used plain bearings or due to other operational

behaviors of fluid dynamic bearings, the exponent in Eq. (13.19) cannot simply be

assumed to be 0.5, it is then advisable to determine the most appropriate exponent

by precisely evaluating the retardation test curve. If necessary, the retardation curve

n ¼ f tð Þ for bearing friction losses can be approached by partial curves with

different exponential functions.
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Scheiben. Bulletin des Schweizerischen Elektrotechnischen Vereins, Nr. 20.

Gerber, H. (1956). Ventilationsverluste von Freistrahlturbinen-Laufrädern, Bulletin des
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Chapter 14

Power Loss Due to Bearing Frictions

For Pelton turbines hydrodynamic plain bearings of various constructions are

almost exclusively applied. Depending on the type of Pelton turbines, either radial

bearings for turbines with horizontal axes or axial bearings for vertical turbines are

used. These bearings are all hydrodynamically lubricated. Hydrodynamic plain

bearings operate on the principle of lubricating wedges which are formed by

themselves between the sliding surfaces. The load-bearing capacity of the lubricat-

ing wedges is reached by the pressure buildup in them. Both the friction and the

wear rate can, thus, be reduced to the minimum. In contrast to the rolling bearings,

hydrodynamically lubricated plain bearings are used even for heavy loads. They

have a long service life and run silently. The load capacity of hydrodynamic

bearings depends on the pressure buildup in the lubricating film and, thus, strongly

on the rotational speed of the bearing. For the detailed descriptions of the hydro-

dynamic lubrication theory, the reader is referred to the literatures for the design of

machine elements, e.g., by Decker (2007) and Haberhauer and Bodenstein (2007).

In connection with the present intention, only the friction losses in hydrodynam-

ically lubricated plain bearings are considered in more details. The friction force in

a plain bearing is, after Coulomb’s law, proportional to the loading force:

Fbe ¼ μFN: ð14:1Þ

Accordingly, the friction power is given by multiplying the friction force with the

sliding speed to

Pbe ¼ μFNu: ð14:2Þ

Here, μ is referred to as friction coefficient. The total power required to resist the

bearing frictions, thus, depends not only on the bearing types, the bearing surface

texture, the properties of the lubricant, and the bearing temperature but also on the

radial and axial loads and the bearing rotational speed. The dependence of the

friction coefficient on the rotational speed is described by the Stribeck curve as
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shown in Fig. 14.1. If no relative movement is available, then static, i.e., solid,

friction prevails. During a starting-up or running-down phase of the machine, the

hydrodynamic bearings inevitably fall into the operation range of mixed friction.

Because of the direct touch between two solid surfaces, large friction and excessive

wear could happen. Only beyond a certain sliding speed, i.e., an operating shaft

speed, a lubricating film between the sliding surfaces can be formed. The hydro-

dynamic lubrication in plain bearings is, thus, achieved. It represents a lubrication

condition to which the operation of the machine has to be matched with respect to

the rotational speed.

Friction existing in the lubricant film is called sliding or fluid friction. Basically,

the wear in the range of liquid friction is lowest. The re-increase of the friction

coefficient with the speed is due to internal friction of the liquid, as with the

increasing speed, the shear rate of the lubricant increases. Because of this hydro-

dynamic lubrication behavior, the bearing friction power in the range of fluid

friction is expressed, according to Eq. (14.2), to

Pbe ¼ Kben
q: ð14:3Þ

Accordingly, the bearing friction torque is calculated with ω ¼ 2πn to

Mbe ¼ Kbe

2π
nq�1: ð14:4Þ

Here, Kbe is the bearing friction coefficient. It is a function of the type of bearing,

bearing load, dynamic viscosity of the lubricant, and bearing temperature. In order to

achieve the fluid friction at high bearing loads, the lubricant with the higher dynamic

viscosity should be used. The transition from mixed friction into fluid friction takes

place at a speed which is higher, the greater the bearing load is. The relevant relation

is given by the Sommerfeld number (So), see Decker (2007) and Haberhauer and

Bodenstein (2007). The exponent q in Eq. (14.3) also depends on the geometrical

and the operational characteristics of the plain bearings and lies between 1.5 and 2.

According to Vogelpohl (1967), see also Haberhauer and Bodenstein (2007), the

Solid friction 

Fluid friction 

Mixed friction 

n 
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nN
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exponent q ¼ 1:5 is used for the high load cases (So> 1) and q ¼ 2 for the low load

cases (So < 1).

The bearing friction constant in Eq. (14.3) can be determined by experiments. A

well-proven method in practice is the retardation test method which has been

described in the last chapter (Sect. 13.3). One needs only to specify the exponent

q. In the experiment of Taygun (1946), for instance, q ¼ 1:5 has been applied.

The dependence of the friction power on the shaft rotational speed, as

represented in Eq. (14.3), will be used in Chap. 17 to determine the real runaway

speed of the Pelton turbines.

Other comparable mechanical losses are the friction losses existing at all shaft

seals. Since shaft seals are not loaded and also have very small slide surface area,

the friction loss at each shaft seal is negligible compared to the losses at the loaded

bearings. For this reason no further discussion will be given in the context of this

book. Through the retardation test which has already been described in Chap. 13,

the shaft seal losses will be recorded together with the bearing friction losses

because of the similar friction laws.
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Chapter 15

Hydraulic and Mechanical Efficiency

15.1 Hydraulic Efficiency

The basic formula for determining the hydraulic efficiency of a Pelton turbine is

Eq. (2.40). This equation has been taken over directly from the equation of

frictionless flow in a linearly translating bucket. It only takes into consideration

the exit swirling loss. Since the efficiency is calculated there for a constant

peripheral speed coefficient (km) and in effect each water particle has its individual

form in the interaction with the bucket, the calculation for a constant peripheral

speed coefficient is only an approximation. Its comparison with the computational

results from the so-called jet layer method (Sect. 6.2.2) showed a small difference

of only about 0.2% (Fig. 9.5).

The most significant aspect in Pelton turbines is that the best system efficiency is

found for a peripheral speed coefficient km ¼ 0:45 to 0.48 instead of km ¼ 0:5.
Obviously, the equation for the system efficiency computation, i.e., Eq. (2.40),

requires a modification. If the best efficiency of a Pelton turbine is found at the

nominal operation condition with the peripheral speed coefficient km,N, then

Eq. (2.40) should be modified for the variation of the peripheral speed coefficient,

for instance, as a result of head variations. According to Zhang (2007), this

modification is given by

ηh ¼
Ph

P0

¼ km
km,N

1� 0:5
km
km,N

� �
1� cos β2ð Þ: ð15:1Þ

The dependence of the efficiency on the peripheral speed coefficient as in Eq. (2.40)

is preserved. The hydraulic efficiency in this form only applies to the frictionless

flow and considers only the swirling loss (Chap. 9). The influence of viscous

friction on the hydraulic efficiency has been investigated in detail in Chaps. 10–

12. Analogous to Eq. (15.1), now Eq. (10.39) is correspondingly modified to
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ηh ¼
km
km,N

1� 0:5
km
km,N

� �
1� cos β2 þ

1

2
cw2 cos β2

� �
: ð15:2Þ

The hydraulic efficiency in this form is basically complete. Besides the exit swirling

loss, the friction loss has also been taken into account. In addition and as expected,

the maximum efficiency is found at the peripheral speed coefficient km,N,

corresponding to the real operation of a Pelton turbine. It should be noted that the

relation in Eq. (15.2), i.e., the dependence on the peripheral speed coefficient (km),
is valid only for a limited range of km. Effectively, this means km < 0:55. The real
efficiency curve as a function of the peripheral speed coefficient in the whole range

of the speed variation up to the runaway speed will be calculated in Chap. 16.

The hydraulic efficiency in Eq. (15.2) refers to the conversion rate of the jet

power. If the efficiency is intended to refer to the net head in front of the injector,

then Eq. (15.2) must be multiplied by the injector efficiency.

15.2 Mechanical Efficiency

Themechanical efficiency describes the power transfer from the turbine to the shaft,

at the end of which the rotor of the electric generator is positioned. The possible

mechanical resistances and the resulting efficiency losses in the power transmission

are friction and windage losses in the turbine casing and the frictions in the shaft

bearings and seals. The corresponding losses have been dealt with in Chaps. 13 and

14. The shaft bearings considered are hydrodynamic plain bearings which are

commonly applied in Pelton turbines. A general property of the mechanical losses

is the dependence on the rotational speed of the shaft. According to Chap. 13, it

applies for the friction and windage losses in the Pelton wheel, viz.,

Δηwi ¼
Kwin

3

P0

: ð15:3Þ

For the bearing friction loss, there is, from Chap. 14, the formula

Δηbe ¼
Kben

q

P0

: ð15:4Þ

Here, P0 is the hydraulic power of the total number of water jets. The exponent q in
Eq. (15.4) lies, according to Chap. 14, between 1.5 and 2, depending on the

geometrical and operational characteristics of the hydrodynamic plain bearings.

With the rotational speed as a variable, the two equations represent the character-

istics of the respective mechanical losses. Obviously, the related efficiency losses

increase when the turbine operates at partial load (P0 < P0,N). For this reason, it is

often advantageous to speak of the mechanical power loss which is determined by
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the rotational speed but not by the operation settings like the hydraulic loads of the

turbine.

From Eqs. (15.3) and (15.4), the mechanical efficiency of a Pelton turbine is

given by

ηmech ¼ 1� Δηwi � Δηbe: ð15:5Þ
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Chapter 16

Real Hydraulic Efficiency Characteristics

The hydraulic efficiency which is calculated according to Eq. (15.1) or (15.2) is a

function of the peripheral speed coefficient km. It is mathematically of symmetrical

form about the nominal value km,N at which the maximum efficiency is found. In

reality, such a symmetrical function only applies for a limited variation of the

independent peripheral speed coefficient around the nominal value. Under certain

circumstances, the calculation can also be used and regarded as reliable for periph-

eral speed coefficients down to zero value when some inaccuracy is acceptable and

a qualitative statement on the influence of the peripheral speed coefficient should be

made. The validity of the calculations is, however, limited for values of km not

higher than km ¼ 0:55 by the fact that beyond this value a part of the jet will bypass
the Pelton wheel without making any energy exchange with the rotating buckets.

Such occurrences will considerably distort the efficiency curve away from its

symmetrical form according to Eq. (15.2). The peripheral speed coefficient at

which any water particle in the jet bypasses the rotating buckets for the first time

is referred to as the lower critical peripheral speed coefficient. Beyond this speed

Eq. (15.2) is no longer applicable. The upper critical peripheral speed coefficient is

reached when the bypass of water particles occurs for the first time in all jet layers

simultaneously. Taking into account the partial bypass of the jet flow, the real

hydraulic characteristics of a Pelton turbine in the upper range of the peripheral

speed coefficient will be calculated in this chapter.

16.1 Critical Peripheral Speed Coefficient

Because of the periodic interaction between the jet and the rotating Pelton buckets,

only one bucket is considered here. The bucket cutout edge is located on the radius

Rc. As illustrated in Fig. 5.3, the bucket at position αa begins to cut off the jet. The

amount of water that gets into the bucket has been identified by the jet piece abcd.
According to Eq. (5.14), the length of this jet piece is given by
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s ¼ 1

km
� 2π
N

Rm; ð16:1Þ

in which N refers to the number of buckets of the Pelton wheel.

After Fig. 16.1 a jet layer of thickness dy at the distance y from the jet axis is

considered. This jet layer reaches the bucket at the bucket position αy (position 1)

and begins to enter the bucket. Under normal operating conditions, this jet layer can

fully get into the bucket before the bucket changes to position 2. When the Pelton

wheel rotates at a speed which is sufficiently higher than the nominal value, then it

could happen that part of the water in the considered jet layer evades entering the

rotating bucket. The critical rotational speed of the Pelton wheel is designated as

such, when the last droplet of water in a jet layer will just reach the bucket at bucket

position 2. For the jet layer at y, the corresponding condition is formulated with

sþ 2Rc sin αy ¼ C0ty: ð16:2Þ

The interaction time is given by ty ¼ 2αy=ωcr, with ωcr as the critical angular speed

of the Pelton wheel. Together with Eqs. (2.18) and (16.1), the critical peripheral

speed coefficient for the considered jet layer is evaluated from Eq. (16.2) to yield

km,cr ¼ αy � π=N

sin αy

Rm

Rc

: ð16:3Þ

This critical peripheral speed coefficient varies from layer to layer across the jet.

Because of the relation Rm þ y ¼ Rc cos αy, which means αy ¼ f yð Þ, the critical

peripheral speed coefficient in the above equation is a function of y which specifies
a certain jet layer. The corresponding dependence for a concrete Pelton wheel has

been shown in Fig. 16.2. Obviously, the lower critical peripheral speed coefficient

is found at the jet layer y=d0 ¼ 0:5. With the corresponding bucket position αb, this
lower critical value is evaluated as
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km,cr ¼ αb � π=N

sin αb

Rm

Rc

: ð16:4Þ

In this regard, the critical peripheral speed coefficient is also a function of the

number of buckets. The equation can therefore be used to determine the minimum

number of buckets of a Pelton wheel, if for the Pelton wheel the peripheral speed

coefficient is given. From Eq. (16.4) it follows accordingly that

Nmin ¼ π

αb � km
Rc

Rm
sin αb

¼ π

αb � Uc

C0
sin αb

: ð16:5Þ

This equation for determining the minimum number of buckets has already been

shown in Sect. 5.2 by Eq. (5.7). Since in practical designs of Pelton turbines the

bucket number is significantly higher than necessarily minimal (see Sect. 5.5), the

jet will never bypass the Pelton wheel which rotates under nominal speed.

The upper critical peripheral speed coefficient is obtained when the jet layer at

y=d0 ¼ �0:5 is viewed from Fig. 16.2. The range between the lower and the upper

speed is referred to as the critical or the transition speed range and has to be

especially considered if the real efficiency curve will be calculated for the upper

range of the speed.

While the bypass of water begins at the outermost jet layery=d0 ¼ 0:5, the extent
of the happening is still low because this jet layer has only a small segment in the jet

cross section. For this reason and for the practical applications, the critical value

that refers to the jet layer on the jet axis is called the critical peripheral speed
coefficient of the entire jet. Thus, from Eq. (16.3) with y ¼ 0 and under consider-

ation of cos αo ¼ Rm=Rc, one obtains

km,cr ¼ αo � π=N

tan αo
: ð16:6Þ

Here, αo denotes the bucket position at which the bucket cutout edge on the radius

Rc just cuts off the jet layer on the jet axis (y ¼ 0). It corresponds to the bucket

position αo1 in Fig. 5.7.
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Since the bucket-position angle αo, according to Eq. (2.30), is a function of the

specific speed, Eq. (16.6) can be accordingly shown as a function of such a

parameter:

km,cr ¼ 1

2
arccos

1

1þ 2nq
� π

N

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nq 1þ nq
� �q : ð16:7Þ

Because km,cr ¼ πDmncr=C0 and since the nominal peripheral speed coefficient

equals km,N ¼ πDmnN=C0, the corresponding critical speed of the Pelton wheel is

obtained as

ncr ¼ km,cr
km,N

nN: ð16:8Þ

16.2 Reaction Degree of the Jet

If the rotational speed of the Pelton wheel increases so that the critical speed is

reached, then a part of the jet will evade, i.e., bypass the rotating buckets without

doing mechanical work. In order to quantitatively describe this situation, the jet

layer of thickness dy at position y, as shown in Fig. 16.1, is considered. The amount

of water that enters the bucket is determined by

dQþ ¼ C0ty � 2Rc sin αy
� �

bdy: ð16:9Þ

The jet layer width is given by b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0=2ð Þ2 � y2

q
. With ty ¼ 2αy=ω as the

duration of the bucket movement from position 1 to position 2, the above equation

is transformed into

dQþ ¼ 4 C0

αy
ω

� Rc sin αy
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d0
2

� �2

� y2

s
� dy: ð16:10Þ

Furthermore, the jet speed C0 is replaced by the peripheral speed coefficient

according to Eq. (2.18). The result of this transformation is

dQþ ¼ 2Rm

αy
km

� Rc

Rm

sin αy

� �
d20

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

y

d0

� �2
s

� d y

d0

� �
: ð16:11Þ
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In this calculation, sin αy itself is a function of the jet layer position y. In order to

represent the amount of water dQþ directly as a function of y, the following relation,
according to Fig. 16.1, is used:

Rm þ y ¼ Rc cos αy; ð16:12Þ

which is further rewritten as

αy ¼ arccos
Rm

Rc

þ y

Rc

� �
: ð16:13Þ

Because y=Rc � Rm=Rc, this equation is linearized to

αy � arccos
Rm

Rc

� �
� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos 2αo
p y

Rc

¼ αo � 1

sin αo

y

Rc

; ð16:14Þ

as well as to

sin αy ¼ sin αo � 1

sin αo

y

Rc

� �
� sin αo � 1

tan αo

y

Rc

: ð16:15Þ

Equations (16.14) and (16.15) are inserted into Eq. (16.11). It then follows with

cos αo ¼ Rm=Rc

dQþ ¼ 2Rm

αo
km

� tan αo

� �
� 1

sin αo

d0
Rc

1

km
� 1

� �
y

d0

	 

� d20

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

y

d0

� �2
s

� d y

d0

� �
: ð16:16Þ

To determine the total amount of water that is intercepted by the bucket, the above

equation must be integrated over the jet thickness. Here, both the transition speed

range and the following upper speed range must be treated separately.

16.2.1 Reaction Degree in the Transition Speed Range

The critical, i.e., the transition, speed range has been specified in Fig. 16.2. Within

this range each speed is arranged to a jet layer which is given by ycr. For a given

speed to which the jet layer ycr belongs, all jet layers with y > ycr suffer from a

partial bypass of the Pelton wheel. Of all these jet layers, the amount of water which

effectively exchanges power with a rotating bucket can be determined through

integration of Eq. (16.16) from ycr to y ¼ 0:5d0. The result of this integration is
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Qþ ycrð Þ ¼ Rm � d20
αo
km

� tan αo

� �
π

4
� ycr

d0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

ycr
d0

� �2
s

� 1

2
arcsin 2

ycr
d0

� �2
4

3
5

�1

6

d30
tan αo

1

km
� 1

� �
1� 2

ycr
d0

� �2
" #3=2

: ð16:17Þ

In this equation, ycr and km are related together by Eq. (16.3) because αy ¼ f yð Þ.
The total amount of water in all jet layers y > ycr, as summarized in a segment

section according to Fig. 16.3, is obtained as

Q ycrð Þ ¼ sAcr ¼ 1

km

2π

N
Rm arccos

ycr
d0=2

� ycr
d0=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ycr

d0=2

� �2
s0

@
1
A d20

4
: ð16:18Þ

The volume of water which bypasses a rotating bucket is accordingly

ΔQ ycrð Þ ¼ Q ycrð Þ � Qþ ycrð Þ: ð16:19Þ

On the other hand, the total amount of water in the jet of length s is given by

ycrd0/2 

Acr

Fig. 16.3 Area of a

segment in the jet cross

section
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Q ¼ π

4
d20s ¼

π

4
d20

1

km

2π

N
Rm: ð16:20Þ

In order to specify the amount of water, which effectively reacts with the rotating

bucket in the percentage term, the reaction degree of the jet is introduced. After
Zhang and M€uller (2007), this is defined by

RQ ¼ Qþ
Q

¼ 1� ΔQ ycrð Þ
Q

: ð16:21Þ

The reaction degree of this definition will be used to calculate the real efficiency

curve in the transition speed range.

16.2.2 Reaction Degree in the Upper Range

If the rotational speed of the Pelton wheel further increases until the upper critical

speed is reached as shown in Fig. 16.2, then from this speed all the jet layers

undergo a partial bypass at the Pelton wheel. The effective amount of water which

exchanges the power with a rotating bucket can be obtained through integration of

Eq. (16.16) from ycr=d0 ¼ �0:5 to ycr=d0 ¼ 0:5 or directly from Eq. (16.17) with

ycr=d0 ¼ �0:5:

Qþ ¼ 1

2
πRm � d20

αo
km

� tan αo

� �
: ð16:22Þ

Correspondingly, the reaction degree of the entire jet is then obtained as

RQ ¼ Qþ
Q

¼ Nαo
π

1� km
tan αo
αo

� �
: ð16:23Þ

As will be shown, because of its simple form, this reaction degree can also be

applied as an approximation for the transition speed range which has just been

treated in the last section.

16.2.3 Example for Reaction Degree of the Jet

Based on the above considerations and the introduction of the reaction degree, it has

been indicated that the real efficiency curve of a Pelton turbine has to be divided

into the lower, transition, and upper speed ranges. A concrete Pelton turbine has

been considered in Sect. 16.1 in connection with Fig. 16.2. For this turbine the
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reaction degrees of the jet in the mentioned three speed ranges will now be

calculated and shown. While in the lower speed range the reaction degree is

equal to 1, in the transition and the upper speed ranges, they need to be calculated

by Eqs. (16.21) and (16.23), respectively. Figure 16.4 shows the calculated results

of the jet reaction degrees in all three speed ranges. In the first approximation, the

transition speed range can be replaced by extending the lower and the upper speed

ranges.

16.3 Real Hydraulic Efficiency Characteristics

The hydraulic efficiency given in Eq. (15.2) applies in principle only to the lower

range of the peripheral speed coefficient. Both in the transition and the upper speed

ranges, the reaction degrees of the jet must be considered in the calculation of the

turbine efficiency. The partial amount of water which interacts with the rotating

buckets provides only a partial power. For this amount of water, it can be assumed

that the corresponding efficiency is still given by Eq. (15.2). The overall efficiency

of the total water in the jet is then calculated by taking into account the jet reaction

degree, yielding

ηh ¼
km
km,N

1� 0:5
km
km,N

� �
1� cos β2 þ

1

2
cw2 cos β2

� �
RQ: ð16:24Þ

From the structure of this equation, it can be seen that in the calculation of the

hydraulic efficiency, all three losses participate:

• Swirling loss

• Friction loss

• Water loss

A large water loss also leads to the change in the flow within the bucket, for

instance, in the form of reduction in the water-sheet thickness. Then, according to

0.0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1

1 Lower range 
2 Transition range 
3 Upper range 

1 2 3

km

RQFig. 16.4 Reaction degree

of the jet in three speed

ranges. The transition range

may be optionally replaced

by extending the lower and

the upper speed ranges
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Eq. (10.12), the friction number cw2 and, in turn, the friction loss will also change.

This change, however, is negligible if compared to the water loss which can be up to

100% in the upper speed range. This signifies that the influence of the water loss

dominates in Eq. (16.24), as soon as it occurs.

Equation (16.24) can also be directly displayed as a function of the rotational

speed. According to Eq. (2.18), the peripheral speed coefficient depends on the

rotational speed and the jet speed (thus on the hydraulic head). It is now assumed

that the turbine operates under the nominal hydraulic head. Then one has

km
km,N

¼ n

nN
: ð16:25Þ

With β2 � π, Eq. (16.24) is rewritten to

ηh ¼ 2 1� 1

4
cw2

� �
n

nN
1� 0:5

n

nN

� �
� RQ: ð16:26Þ

Figure 16.5 shows a calculation example of the real efficiency curve of a Pelton

turbine. For simplicity cw2 ¼ 0 and β2 ¼ π have been assumed. It is about the same

Pelton turbine which has already been considered in Figs. 16.2 and 16.4. The

peripheral speed coefficient for the nominal operation point is km,N ¼ 0:47. From
the diagram it is evident that the efficiency characteristic of the Pelton turbine is

considerably deformed for km > 0:687 compared to the symmetrical fictitious

characteristic, which only applies for the linearly translating bucket. The figure

also shows how closely the efficiency curve in the transition speed range can be

approximated by extrapolating the reaction degree of Eq. (16.23). It must be

mentioned that in practical applications of Pelton turbines, the requirement of the

precise characteristic in this transition speed range is rarely available. For this

reason, the reaction degree, given by Eq. (16.23), may also be applied for the

transition speed range.

Fig. 16.5 Real efficiency

curve of a Pelton turbine

(KWA) with km,N ¼ 0:470.
The transition range is given

at km,cr ¼ 0:547 to 0.687.

The runaway speed constant

is kR0 ¼ 0:848
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Chapter 17

Runaway Speed and Acceleration Profile

Under normal operating conditions, the Pelton turbine is loaded by the electric

generator which provides a mechanical counter-torque on the turbine shaft and in so

doing ensures the dynamic balance of the rotating system. If this counter-torque

falls out by load shedding of the generator, the rotation of the Pelton wheel under

the full load of water jet begins to accelerate. The maximum speed that can be

reached at the Pelton wheel is called the runaway speed, at which the jet almost

completely bypasses the Pelton wheel, without transferring its energy to the rotating

buckets. The runaway speed is about twice the nominal speed of the Pelton wheel.

Regarding the mechanical safety and the construction costs primarily of the gener-

ator and occasionally of the gearbox, the runaway speed is an important factor that

must be taken into account already in the design phase of a Pelton turbine.

From the nominal speed towards the runaway speed with full escape of the jet at

the Pelton wheel, the efficiency and power curves tend to rapidly decrease. If such a

characteristic, as shown in Fig. 16.5, is known, the maximum runaway speed can be

directly read out. The related calculation method will be explained in this chapter.

17.1 Theoretical Runaway Speed

The runaway speed of a Pelton wheel is a rotational speed at which almost no power

exchange between the jet and the rotating buckets takes place. This condition can

also be so expressed that, at the instance when the runaway speed is reached, the

reaction degree of the jet (see Chap. 16) vanishes. Such a relation between the

runaway speed and the reaction degree of the jet enables the theoretical runaway

speed to be immediately determined. From Eq. (16.23) with RQ ¼ 0, the peripheral

speed coefficient at the runaway speed is obtained as
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kR0 ¼ αo
tan αo

: ð17:1Þ

According to Zhang and M€uller (2007), this value is called the runaway speed
coefficient. As can be confirmed from a comparison with Eq. (16.11), the runaway

speed coefficient of the entire jet is equal to the runaway speed coefficient of the

middle jet layer on the jet axis. This means that from Eq. (16.11) for dQþ ¼ 0 and

y ¼ 0, the same result as Eq. (17.1) are obtained.

The runaway speed coefficient, according to Eq. (17.1), represents a geometric

parameter of the Pelton wheel. It is independent of the flow rate ( _Q ) and the bucket

number (N ) of the Pelton wheel. Since the characteristic bucket-position angle αo,
according to Eq. (2.30), is a function of the specific speed, so must also be the

runaway speed coefficient. By using Eq. (2.30), the runaway speed coefficient given

in Eq. (17.1) may then be written as

kR0 ¼ 1

2

arccos 1
1þ2nqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nq 1þ nq
� �q : ð17:2Þ

Figure 17.1 shows the computed results of the runaway speed coefficient as a

function of the specific speed nq. At Pelton turbines with low specific speeds, the

runaway speed coefficient is close to 1. In practice, most Pelton turbines are

designed with a specific speed between 0.6 and 1.3. For this reason, Eq. (17.2)

can be well approximated by

kR0 � 1� 1:15nq: ð17:3Þ

With the aid of the definition of the peripheral speed coefficient, according to

Eq. (2.18), the theoretical runaway speed is determined from the runaway speed

coefficient as
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Fig. 17.1 Runaway speed
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nR0 ¼ kR0
C0

πDm

: ð17:4Þ

It is proportional to the jet speed which in turn depends only on the hydraulic head.

Under the nominal operation condition, given by km,N ¼ πDmnN=C0, the runaway

speed can also be expressed as

nR0 ¼ kR0
nN
km,N

: ð17:5Þ

The computational runaway speed given here must be interpreted as the theoretical

or frictionless runaway speed. It, thus, represents the maximum reachable speed of

a Pelton wheel. The real runaway speed is slightly below this maximum value,

because the Pelton wheel needs to receive a small amount of energy from the jet to

compensate for all possible mechanical losses, including the friction and windage

losses at the Pelton wheel. The computational method for the determination of the

real runaway speed will be described in the next section.

On the Pelton wheel, the associated peripheral speed of the pitch circle, i.e., the

jet circle of diameter Dm, is determinable as

Um,R0 ¼ kR0C0: ð17:6Þ

This equation shows that by reaching the runaway speed, the peripheral speed of the

Pelton wheel is not equal to the jet speed. This also explains why the runaway speed

according to Eq. (17.5) is not simply equal to the ratio nN/km,N, but this quantity

multiplied with a factor kR0 < 1.

An example of computing the complete efficiency curve has already been shown

in Fig. 16.5. The friction-free runaway speed coefficient ofkR0 ¼ 0:848was directly
confirmed there. The ratio to the nominal operation at km,N ¼ 0:47 is 1.80, i.e.,

nR0=nN ¼ 1:80.
By applying the runaway speed coefficient according to Eq. (17.1), the reaction

degree of the jet, according to Eq. (16.23) for the upper range of the speed, is also

expressible as

RQ ¼ Nαo
π

1� km
kR0

� �
¼ Nαo

π
1� n

nR0

� �
: ð17:7Þ

The reaction degree is, thus, a linear function of the rotational speed of the Pelton

wheel.
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17.2 Real Runaway Speed

The runaway speed, which has been calculated in the foregoing section, applies for

the turbine operations without mechanical losses and is therefore referred to as the

theoretical runaway speed. In reality, the friction forces at the Pelton wheel and at

the shaft bearings behave as braking forces and always cause mechanical losses.

The real runaway speed of a Pelton wheel, thus, represents a speed, at which the

dynamical balance between the active torque from the hydraulic force and the

counter-torque from all the mechanical braking forces is reached. In other words,

the hydraulic power, which is transferred from the jet to the Pelton buckets, must be

equal to the total mechanical losses. From such a dynamical balance, the real

runaway speed can be determined which is slightly below the theoretical runaway

speed.

17.2.1 Mechanical Power Loss

The mechanical losses in a Pelton turbine include the friction and windage losses at

the Pelton wheel and the friction losses at the bearings and the shaft seals. These

have already been treated in Chaps. 13 and 14 and summarized in Chap. 15. Mostly,

such losses are given together with the efficiency specifications at the nominal

operation point, i.e., at the nominal rotational speed. Since the mechanical losses

only depend on the rotational speed of the shaft, they can be well determined for

any other speeds based on the data at the nominal speed.

According to Eq. (15.3), the friction and windage losses depend on the third

power of the speed. This applies to both vertical and horizontal turbines. Under

nominal operation conditions with the speed nN and the flow rate _Q N, the resulting

loss of efficiency is given by

Δηwi,N ¼ Kwin
3
N

ρgHN
_Q N

: ð17:8Þ

In this equation, the constant Kwi represents the ratio of the dissipated mechanical

power to the third power of the speed.

In the same way, the bearing friction loss is calculated from Eq. (15.4). For

hydrodynamic plain bearings with q ¼ 2, this yields

Δηbe,N ¼ Kben
2
N

ρgHN
_Q N

: ð17:9Þ

The ratio of the mechanical friction loss to the second power of the speed is referred

to as the coefficient Kbe.
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Provided that the corresponding mechanical losses at the nominal operation

point are known, the coefficients Kwi and Kbe can be obtained from the above

equations. They are then applied to represent the total mechanical loss, i.e., the

mechanical characteristics, as follows:

ΔPmech ¼ Kwin
3 þ Kben

2: ð17:10Þ

Together with the hydraulic power curve, it will be used to determine the real

runaway speed of the Pelton turbine.

17.2.2 Effective Hydraulic Power

The operation of a Pelton turbine is defined by the hydraulic head H and the total

flow rate _Q . Thus, the input hydraulic power is given by P0 ¼ ρgH _Q . From

Eqs. (16.26) and (17.7), the converted hydraulic power, also called shaft power,

is determined by

Ph ¼ 2 1� 1

4
cw2

� �
N

π
αoP0 1� 0:5

n

nN

� �
1� n

nR0

� �
n

nN
; ð17:11Þ

or in abbreviated form as

Ph ¼ eP 1� 0:5
n

nN

� �
1� n

nR0

� �
n

nN
; ð17:12Þ

with

eP ¼ 2 1� 1

4
cw2

� �
N

π
αoP0: ð17:13Þ

The term eP is a constant parameter. It combines the wheel parameters and the jet

power. For the purpose of determining the realistic runaway speed, the friction

number cw2 can be assumed to be practically zero without reasonably affecting the

calculations (Zhang and M€uller 2007).

17.2.3 Realistic Runaway Speed

The realistic runaway speed results from the dynamic balance between the total

mechanical power losses and the effective hydraulic power from the jet. From

Eqs. (17.10) and (17.12), one obtains with n ¼ nR straight away
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KwinN � 0:5eP
nNnR0

 !
n2R þ KbenN þ

eP
nR0

þ 0:5eP
nN

 !
nR � eP ¼ 0: ð17:14Þ

From this quadratic equation, the real runaway speed nR can be determined imme-

diately. The graphical determination method is shown in Fig. 17.2 and applied to

the known example that has already been considered in Chap. 16. The crossing

point of the hydraulic power curve and the mechanical loss curve represents the

realistic runaway speed. As can be seen from the diagram, the real runaway speed is

only slightly smaller than the frictionless runaway speed. From the viewpoint that

the runaway speed should never be underestimated, the frictionless runaway speed,

according to Eq. (17.4) or (17.5), should always be used. This is furthermore

particularly advantageous since the calculation is extremely simple.

As has been demonstrated by Zhang and M€uller (2007), the inaccuracy of the

presented method to determine the runaway speed of a Pelton turbine is generally

less than 1%. This corresponds to the lower limit of the general measurement

inaccuracy and can, thus, be well accepted.

For the application of Eq. (17.14), the following points should be considered:

• In the calculation of the parameter eP, according to Eq. (17.13), _Q is considered to

be the total flow rate corresponding to the actual operation (full- or part-load and

multi-jet operation).

• If the ordinate in Fig. 17.2 is normalized by P0 to unity, then it deals with the

efficiency characteristic; see Zhang and M€uller (2007).
• The quadratic equation (17.14) has been obtained from Eqs. (17.10) and (17.12).

In Eq. (17.10), the speed appears in the second and the third power, respectively.

If the bearing friction takes place in the form of n1.5, for instance, then n0:5R will

appear in Eq. (17.14). In this case and because of nR0 � nRð Þ � nR0, the

expression n0:5R can be linearized at nR0 as

Po
w

er
 (k

W
) 

2 1 
1: theoretical runaway speed 
2: real runaway speed 

Speed (rpm) 

real fictitious

Fig. 17.2 Determination of

the real runaway speed on

the Pelton turbine in the

power plant Amsteg
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n0:5R ¼ nR0 � nR0 � nRð Þ½ �0:5 ¼ 0:5n0:5R0 1þ nR
nR0

� �
: ð17:15Þ

In this way, Eq. (17.14) with n0:5R is again reconverted to a quadratic equation.

17.3 Acceleration Process to the Runaway Speed

In the case of load shedding of the generator, the rotation of the Pelton wheel under

the impingement of the jets begins to accelerate until the stable runaway speed is

reached. The acceleration process depends not only on the active torque transmitted

by the jet but also on the total moment of inertia of the Pelton wheel, the shaft, and

the generator rotor. As a system parameter, the total moment of inertia is usually

known. Else it can be easily calculated. To calculate the acceleration process of the

Pelton wheel, the jet impact force must be known which changes with the acceler-

ation process, i.e., as a function of the speed of the Pelton wheel. To this end, the

reaction degree of the jet flow needs to be considered, just like that in the calcula-

tion of the hydraulic power curve. Obviously the lower and the upper speed ranges

have to be handled differently. For simplicity, the transition speed range can be

neglected by extending the lower and the upper ranges according to Fig. 16.4.

The dynamical acceleration of the entire rotating unit (Pelton wheel, shaft, and

rotor of the generator) is subject to the conservation law of angular momentum.

Neglecting the mechanical losses, the rotation of the rotor system is described by

J
dω

dt
¼ Fwheel

Dm

2
: ð17:16Þ

Here, the total moment of inertia of the rotating system is denoted by J. The total
hydraulic force received by the Pelton wheel is given by Fwheel. In effect, it is the

force component acting tangentially to the jet circle of the diameter Dm. The

hydraulic force referred to one jet has been given by Eq. (2.37). Taking into account

the total flow rate and the reaction degree of the jet, the effective hydraulic force

exerted on the Pelton wheel is calculated to

Fwheel ¼ ρ _QC0 1� kmð Þ 1� cos β2ð ÞRQ; ð17:17Þ

in which the total mass flow at a Pelton turbine is denoted by ρ _Q .

If Eq. (17.17) is inserted into Eq. (17.16), one obtains with β2 � π

dn

dt
¼ ρ _QC0Dm

2πJ
1� πDmn

C0

� �
RQ: ð17:18Þ
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For further calculations the lower and the upper speed ranges must be treated

separately.

17.3.1 Lower Speed Range: n < ncr

The lower speed range is specified by the rotational speed which varies from nN up

to ncr as well as by the jet reaction degree RQ ¼ 1. Accordingly, it follows from

Eq. (17.18) that ð n
nN

dn

1� πDm=C0n
¼ ρ _QC0Dm

2πJ
t: ð17:19Þ

The integration yields

ln
1� πDm=C0 � nN
1� πDm=C0 � n ¼ ρ _QD2

m

2J
t: ð17:20Þ

To simplify the calculation and the presentation, the reciprocal of the coefficient is

defined as the first time constant

τ1 ¼ 2J

ρ _QD2
m

: ð17:21Þ

Using km,N ¼ πDmnN=C0 as the initial parameter at the nominal speed and km ¼ π
Dmn=C0 as the process parameter, Eq. (17.20) is finally rewritten as

km ¼ 1� 1� km,Nð Þe�t=τ1 ; ð17:22Þ

or in the form of the rotational speed

n ¼ nN
km,N

1� 1� km,Nð Þe�t=τ1
h i

: ð17:23Þ

It represents the acceleration of the Pelton wheel rotation. The time for reaching the

critical speed (n ¼ ncr) is calculated from Eq. (17.22) as

tcr ¼ τ1ln
1� km,N
1� km,cr

: ð17:24Þ
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17.3.2 Upper Speed Range: n > ncr

In the upper speed range, a partial escape of the jet at the Pelton wheel occurs.

Taking into account the reaction degree of the jet, given by Eq. (17.7), there follows

from Eq. (17.18) the time-dependent change in the rotational speed:

dn

dt
¼ ρ _QC0DmNαo

2π2J
1� πDmn

C0

� �
1� n

nR0

� �
; ð17:25Þ

or in integration formð n
ncr

dn

1� πDm

C0
n

� �
1� n

nR0

� � ¼ ρ _QC0DmNαo
2π2J

t� tcrð Þ: ð17:26Þ

The integration can be performed analytically. Indeed one easily obtains

ln
1� πDm

C0
n

1� πDm

C0
ncr

� 1�
ncr
nR0

1� n
nR0

 !
¼ t� tcr

τ2
; ð17:27Þ

in which τ2 is a second time constant which applies to the upper speed range and is

defined as

1

τ2
¼ 1

nR0
� πDm

C0

� �
ρ _QC0DmNαo

2π2J
: ð17:28Þ

In order to calculate the time-dependent rotational speed from Eq. (17.27), a further

constant is introduced and defined as

K ¼ 1� πDmncr=C0

1� ncr=nR0
¼ 1� km,cr

1� ncr=nR0
¼ 1� km,cr

1� km,cr=kR0
: ð17:29Þ

The time-dependent rotational speed of the Pelton wheel in the upper speed range is

then obtained from Eq. (17.27). With kR0 ¼ πDmnR0=C0 as the runaway speed

coefficient, one finds

n

nR0
¼

1� Kexp t�tcr
τ2

� �
kR0 � Kexp t�tcr

τ2

� � : ð17:30Þ

Theoretically, this implies n ¼ nR0 when t ! 1.
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17.3.3 Entire Acceleration Curve

The above calculations show that the entire process of rotation acceleration of the

Pelton wheel after load shedding comprises the lower and upper ranges. Figure 17.3

shows the calculated acceleration curve for the exemplary Pelton turbine that has

already been considered in Figs. 16.5 and 17.2. The moment of inertia of the entire

rotating system has been assumed to be J ¼ 105 kgm2. For comparison, the

fictitious acceleration curve has also been shown, which is calculated under the

assumption that the reaction degree is equal to unity in the whole acceleration curve

until reaching the runaway speed. The fictitious acceleration profile is indeed the

extension of the acceleration profile of the lower speed range up to the entire upper

speed range. The resulting stable end speed corresponds to the end speed which

results from the symmetrical efficiency curve according to Fig. 17.2.

It is evident that the real acceleration curve is significantly different from the

fictitious acceleration curve.
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Chapter 18

Hydraulic Design of Pelton Turbines

18.1 Dimensioning of the Pelton Wheel

For the hydraulic design of a Pelton turbine, the net head on the pressure side and

the desired flow rate are two fundamental parameters. They determine the available

hydraulic power supply and therefore the size of the turbine. The design of a Pelton

turbine starts with the dimensioning of the Pelton wheel, the choice of the rotational

speed, and the determination of the number of injectors. To this end the following

indications arising from the practical operations of Pelton turbines aid in

establishing the design procedure:

• The peripheral speed coefficient km is in the range of 0.45 to 0.48.

• The bucket width is approximately three times of the jet diameter at full load,

characterized by B � 3d0 or φB � 0:11, respectively.
• The specific speed, which is referred to the nominal flow rate at an injector, is

usually confined to nq < 0:13. This criterion is based on the fact that no

significant flow separation at the bucket cutout edge should take place, as

described in Sects. 5.7 and 5.8. According to Eq. (2.27), the wheel form is

given by Dm=B > 3. If a small specific speed is preferred, a relatively larger

Pelton wheel must be expected according to Eq. (2.27).

All these points have to be combined, in order to define the wheel size, the

number of injectors, and the rotational speed of the Pelton wheel at the beginning of

the first design stage of each Pelton turbine. For this purpose, the specific speed

should be applied, which in effect represents the shape of the Pelton wheel

(Chap. 2). Considering the total flow rate and the number of injectors, Eq. (2.22)

is rewritten as
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nq ¼ n

ffiffiffiffiffi
_Q

q

ffiffiffiffiffiffiffi
Zjet

p � H3=4
: ð18:1Þ

For a given specific speed nq < 0:13, the combined injector number and rotational

speed of the Pelton turbine in the form n=
ffiffiffiffiffiffiffi
Zjet

p
are obtainable. To determine the

rotational speed, the power line frequency ( f ) and the pole pair number ( p) of the
generator must be additionally taken into account. The speed then has to be rounded

to the nearest synchronous speed of the generator:

n ¼ f

p
1=sð Þ: ð18:2Þ

The line frequency is usually standardized at 50 Hz. In the USA and Canada, the

line frequency is partly found at 60 Hz.

For the generator the minimum number of pole pairs is limited to 2. The

synchronous speed is thus 25 in 1/s, i.e., 1500 in 1/min. Under certain circum-

stances, for instance, for large generators, this speed may be too high. Then, the

pole pair number of the generator should be raised, until an appropriate synchro-

nous speed from the view of the hydraulic and mechanical design is reached.

With consideration of Eq. (18.2), diverse combinations of the injector number

and the speed of the Pelton turbine can be estimated for choice by the use of

Eq. (18.1). To each combination, the wheel size is fixed and can be calculated from

the definition of the peripheral speed coefficient according to Eq. (2.18), viz.,

Dm ¼ km
ffiffiffiffiffiffiffiffiffi
2gH

p
π � n : ð18:3Þ

The bucket size, which is represented by the bucket width B, is determined from

Eq. (2.27) as

B

Dm

¼ nq
2:63km

ffiffiffiffiffiffi
φB

p : ð18:4Þ

For nominal operation, with φB ¼ 0:11 and km ¼ 0:47, it finally follows that

B ¼ 2:5nqDm: ð18:5Þ

The above calculations mainly apply to determine the number of injectors and the

speed of the turbine with respect to the wheel size. To illustrate the calculation

process of this first design step of a Pelton turbine, an example is shown here.

Task

A Pelton turbine is to be designed for a hydraulic head H ¼ 750m and a flow rate
_Q ¼ 8m3=s. The specific speed of the turbine should be below 0.12.
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Solution

• With an assumed number of injectors, the rotational speed is calculated from

Eq. (18.1):

n ¼ nq � H3=4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Q =Zjet

q : ðaÞ

• Upward rounded number of pole pairs:

p > 50=n: ðbÞ

• The rotational speed is synchronized to

n ¼ 50=p: ðcÞ

• Specific speed according to Eq. (18.1) is recalculated as

nq ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_Q =Zjet

q

H3=4
: ðdÞ

• The peripheral speed coefficient is assumed to be km ¼ 0:475. The pitch circle

diameter is then calculated as

Dm ¼ 0:475
ffiffiffiffiffiffiffiffiffi
2gH

p
= πnð Þ: ðeÞ

• The bucket width is determined by Eq. (18.5) to

B ¼ 2:5nqDm: ðfÞ

• The bucket number is obtained from Eq. (5.30) to

N ¼ 15þ 0:62=nq: ðgÞ

The following table shows the corresponding calculations for the use of one,

two, and three injectors, respectively. The parameter design begins with a specific

speed of nq ¼ 0:12. After synchronizing the rotational speed, the specific speed is

recalculated according to step (d) (Table 18.1).

In the last two rows of the table, both the theoretical jet diameter and the

runaway speed have also been given. They are calculated from the conservation

law of mass with the jet velocity C0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
and from Eq. (17.4), respectively.

The calculations in the two columns for the case of using three injectors serve to

illustrate what would happen if the pole pair number of the generator is selected by

one larger than necessary. The speed of the generator is reduced from 600 to
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500 rpm. Correspondingly the jet circle diameter Dm has to increase from 1.83 m to

2.2 m, which will result in higher construction costs. However, the smaller specific

speed (nq ¼ 0:095) proves to be advantageous regarding the interaction between the

jet and the Pelton buckets as well as the entry condition, as already discussed in

Chap. 5 (see Sects. 5.7 and 5.8).

According to the calculations in the above table concerning the dimension and

the type of the turbine, the Pelton turbine can be well built with two injectors. The

specific speed of the Pelton wheel is then 0.116 with which the sound entry flow at

the buckets can be ensured. The advantage of the design with two instead of three

injectors is that the Pelton turbine can also be built with horizontal axis. The Pelton

wheel has a diameter ofDm ¼ 2:2m. The bucket width isB ¼ 0:64m. The runaway

speed is calculated to be nR0 ¼ 9121=min.

The example shows the method of determining the number of injectors and the

speed of the Pelton turbine. By changing the specific speed which is given as a

predefined parameter, one can easily compare the different design options. To a

new design selection, both the jet circle diameter Dm and the bucket width B must

be again optimized. This can be done by means of the detailed analyses in terms of

both the hydraulic and the mechanical aspects. If, for instance, the Pelton turbine

mainly operates in the partial load range, the bucket width B can be reduced

accordingly.

18.2 Elliptical Bucket Form

The inside profile of the Pelton buckets must be configured so that water in it

spreads as smoothly and steadily as possible. The profile should have no disconti-

nuity. This is so required not only because of hydraulic aspects but equally also by

concerns of mechanical manufacture of the buckets, for instance, by milling

machines. Perfect smoothness of the bucket profile is achieved if the profile in

each cross section can be outlined by a smooth mathematical curve without kinks.

Table 18.1 Computational

example of designing a Pelton

turbine with H ¼ 750m and
_Q ¼ 8m3=s

nq¼ 0.12

Zjet 1 2 3 3 Equations

n (1/s) 6.1 8.6 10.5 10.5 (a)

Pole pairs 9 6 5 6 (b)

n (1/s) 5.56 8.3 10.0 8.3 (c)

n (1/min) 333 500 600 500

nq (1/s) 0.110 0.116 0.114 0.095 (d)

Dm (m) 3.30 2.20 1.83 2.20 (e)

B 0.90 0.64 0.52 0.52 (f)

N 21 20 20 22 (g)

d0 (m) 0.290 0.205 0.167 0.167

nR0 (1/min) 613 912 1100 935 (17.4)
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Among various mathematical functions, an ellipse model is obviously of very

suitable form. When using such a model, one must determine how the ellipse

parameters can be determined and with which section of the ellipse the bucket

profile should be approximated. The ellipse or the elliptic section must meet those

necessary conditions that have been defined by parameter studies in the bucket

design. According to Fig. 18.1 with the given coordinate system, the geometric

boundary conditions can be formulated as follows:

• At the bucket entry: x1 ¼ 0, y1 ¼ 0, and entry angle ε1
• At the bucket exit: x ¼ x2, y ¼ y2, and exit angle ε2
• Bucket depth: hb

To meet these geometric boundary conditions by a section of an ellipse in the

same coordinate system as in Fig. 18.1, the ellipse in its basic form needs a suitable

coordinate transformation which is composed of a translation and a rotation of the

coordinates. According to Fig. 18.2a, the basic form of the ellipse is described by

x
02

a2
þ y

02

b2
¼ 1: ð18:6Þ

The ellipse is first transformed into the coordinate system (x00, y00) by a coordinate

translation (u, v). With the origin of the new coordinate system on the ellipse, the

ellipse equation is now given by

x
00 � u

� �2

a2
þ y

00 � v
� �2

b2
¼ 1: ð18:7Þ

ε1 x 

y 

ε2

hb 

1 

2 

h2 

Fig. 18.1 Geometric

boundary conditions at the

entry and exit of a Pelton

bucket. Bucket width

B ¼ 2x2
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Furthermore, the ellipse model together with the coordinate axes x00 and y00 is rotated
for an angle φ against the fixed coordinate system (x, y) (Fig. 18.2b). In the fixed

coordinate system, the ellipse is then described by

x cosφþ y sinφ� uð Þ2
a2

þ �x sinφþ y cosφ� vð Þ2
b2

¼ 1: ð18:8Þ

The bucket profile as a portion of the transformed ellipse is schematically shown in

Fig. 18.2c in which the significant geometric boundary conditions are also

illustrated.

The above equation contains five variables (a, b, u, v, and φ) which must be able

to ensure the prescribed conditions. To specify all five variables, five equations

need to be created from the given boundary conditions. To this end, it is agreed that

the coordinate origin is located on the bucket inlet as shown in Fig. 18.1 and also in

Fig. 18.2c:

Boundary Condition 1

The origin of the two coordinates is located on the ellipse, so that with x1 ¼ y1 ¼ 0

at the bucket entry, one has

u2

a2
þ v2

b2
¼ 1: ð18:9Þ

Boundary Condition 2

At the bucket entry with x1 ¼ y1 ¼ 0, the entry angle, as shown in Fig. 18.1 and

Fig. 18.2c, is given by dy=dx ¼ tan ε1. From Eq. (18.8) it then follows

x’ 

y’ 

x’’ 

y’’ 

u 

v 

x 

y 

x’’ y’’ 

u 

v 

ϕ 

(b))a(

ε1

x 

y 

1 
ε2

2 
hb

xb, yb

(c) 

Fig. 18.2 Coordinate transformation of an ellipse to create a bucket profile
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u

v
� cosφþ tan ε1 sinφ

� sinφþ tan ε1 cosφ
¼ � a2

b2
: ð18:10Þ

Boundary Condition 3

At the bucket exit, x ¼ x2 and y ¼ y2. Accordingly, one obtains from Eq. (18.8)

x2 cosφþ y2 sinφ� uð Þ2
a2

þ �x2 sinφþ y2 cosφ� vð Þ2
b2

¼ 1: ð18:11Þ

Boundary Condition 4

At the bucket exit with x ¼ x2 and y ¼ y2, the exit angle is given by dy=dx ¼ tan ε2.
One then obtains

x2 cosφþ y2 sinφ� uð Þ cosφþ tan ε2 sinφð Þ
�x2 sinφþ y2 cosφ� vð Þ � sinφþ tan ε2 cos αð Þ ¼ � a2

b2
: ð18:12Þ

Boundary Condition 5

The bucket depth as shown in Fig. 18.2c is given byhb ¼ �yb. The exact position of
the lower vertex point can be determined by computing xb. In a first step, the

appropriate geometric boundary condition can be derived from dy=dx ¼ 0. From

Eq. (18.8) it then follows that

xb cosφþ yb sinφ� uð Þ cosφ
�xb sinφþ yb cosφ� vð Þ sinφ ¼ a2

b2
: ð18:13Þ

Because the vertex point (xb, yb) is on the ellipse, Eq. (18.8) implies in addition the

condition

xb cosφþ yb sinφ� uð Þ2
a2

þ �xb sinφþ yb cosφ� vð Þ2
b2

¼ 1: ð18:14Þ

By introducing the fifth boundary condition for the bucket depth, an additional

unknown, namely, the coordinate xb, appears. From the boundary conditions 1–5,

totally six equations have been established. They represent a closed system of

equations for the solution of six unknown parameters (a, b, u, v, φ, and xb). Because
a direct solution of all unknown parameters is difficult, the fifth boundary condition

is first disregarded. In the equation system implied by the boundary conditions 1–4,

the rotation angle φ of the ellipse is considered as predetermined. The reduced

equation system, consisting of four equations, is then for four unknown parameters

(a, b, u, v). The presetting of the rotation angle φ simply means that this angle
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behaves as a control parameter. As will be shown, this angle finally determines the

bucket depth.

To solve the equations with the boundary conditions 1–4, the following substi-

tution parameters are introduced:

A ¼ a2, B ¼ b2

M ¼ x2 cosφþ y2 sinφ, N ¼ �x2 sinφþ y2 cosφ,
D1 ¼ cosφþ tan ε1 sinφ, E1 ¼ � sinφþ tan ε1 cosφ,
D2 ¼ cosφþ tan ε2 sinφ, E2 ¼ � sinφþ tan ε2 cosφ:

Equations (18.9)–(18.12) then become

u2

A
þ v2

B
¼ 1; ð18:15Þ

M � uð Þ2
A

þ N � vð Þ2
B

¼ 1; ð18:16Þ
uD1

vE1

¼ �A

B
; ð18:17Þ

M � uð ÞD2

N � vð ÞE2

¼ �A

B
: ð18:18Þ

The unknowns are the variables A, B, u, and v. From Eqs. (18.15) and (18.16), one

obtains

AN

BM
¼ �M � 2u

N � 2v
: ð18:19Þ

Because of Eq. (18.17), one then deduces from Eq. (18.19)

D1N � u
E1M � v ¼

M � 2u

N � 2v
: ð18:20Þ

Combining Eqs. (18.17) and (18.18) leads to

D1u

D2v
¼ M � uð ÞE1

N � vð ÞE2

: ð18:21Þ

These last two equations represent a new equation system for the determination of

the unknown parameters u and v. The unknown parameter v is solved from

Eq. (18.21) with the result
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v ¼ D1E2N � u
D2E1M � D2E1 � uþ D1E2 � u : ð18:22Þ

This expression is again inserted into Eq. (18.20) from which one finally obtains

u ¼ E1M E2M � D2Nð Þ
2E1E2M � D2E1 þ D1E2ð ÞN : ð18:23Þ

Substituting this result into Eq. (18.22) leads to the determination of the unknown

parameter v as

v ¼ D1N E2M � D2Nð Þ
D2E1 þ D1E2ð ÞM � 2D1D2N

: ð18:24Þ

Finally, Eqs. (18.15) and (18.17) are combined to solve for the unknowns A and B,
leading to

A ¼ a2 ¼ u2 � uv
D1

E1

ð18:25Þ

and

B ¼ b2 ¼ v2 � uv
E1

D1

: ð18:26Þ

The elliptical bucket profile so found meets the specified entry and exit conditions.

In this case, the rotation angle φ of the ellipse still behaves as a free variable, i.e., as

a control parameter. The role played by it is demonstrated in Fig. 18.3. As can be

confirmed, the control parameter actually only determines the bucket depth, while

all entry and exit conditions remain unchanged. If the bucket depth is specified, then

the rotation angle φ is also fixed. At the same time, the vertex point (xb, yb) can be

determined. To this end, the equations of the fifth boundary condition are further

considered. For simplicity the following substitutions are introduced for the

calculation:

T1 ¼ xb cosφþ yb sinφ� u; ð18:27Þ
T2 ¼ �xb sinφþ yb cosφ� v: ð18:28Þ

Then, it follows from Eqs. (18.13) and (18.14) that

T1

T2

¼ a2

b2
tanφ ð18:29Þ

and
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T2
1

a2
þ T2

2

b2
¼ 1; ð18:30Þ

respectively. The parameter T2 obtained from the first equation is inserted into the

second equation from which T1 is then solved as

T1 ¼ � a2 tanφ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 tan 2φþ b2

p : ð18:31Þ

Two solutions are expected here, since the condition dy=dx ¼ 0 is met at two

locations on an ellipse. To uniquely determine the solution T1, Eq. (18.27) is

considered. Because in most bucket designs, the effective bucket entry angle

ε1 � 90�, see Fig. 18.2, is greater than the effective exit angle 90� � ε2, one has

φ > 0. Due to yb < 0 and u > 0, it is then often the case that T1 < 0.

For the same reason, one obtains from Eq. (18.29)

T2 ¼ � b2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 tan 2φþ b2

p : ð18:32Þ

From Eqs. (18.27) and (18.28), the coordinates of the vertex point are then calcu-

lated as

xb ¼ T1 þ uð Þ cosφ� T2 þ vð Þ sinφ; ð18:33Þ
yb ¼ T1 þ uð Þ sinφþ T2 þ vð Þ cosφ: ð18:34Þ

As mentioned earlier, the rotation angle φ of the ellipse behaves as a control

parameter, with which the bucket depth is controlled. In other words, the rotation

ε1

ε2

ϕ3

ϕ2

ϕ1

real profile 

Fig. 18.3 Functionality of

the inclination angle as a

control parameter to adjust

the appropriate bucket

depth
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angle must be accordingly adjusted to meet the given bucket depth. In general, the

bucket depth in the bucket section on the pitch circle (of diameter Dm) represents a

reference depth of the bucket. This depth is referred to as h2, measured from the

bucket trailing edge as shown in Fig. 18.1. The ratio of the bucket depth to the

bucket width at the cross section on the bucket pitch circle lies usually in the range

h2
B

¼ 0:275� 0:285: ð18:35Þ

Once the rotation angle of the ellipse is determined by considering the bucket depth,

the elliptical bucket profile is fixed that meets all the prescribed conditions

according to Figs. 18.1 and 18.2c. The radius of curvature of the bucket inner

profile at the bucket bottom is obtained as

R ¼ a2

b
: ð18:36Þ

One example has already been shown in Fig. 18.3 where it is very close to a real

bucket profile of a Pelton turbine which is installed at the Oberhasli Hydroelectric

Power Company (KWO). The calculated elliptical bucket profile for the rotation

angle φ1 exactly matches the existing bucket profile. This comparison indicates that

the application of the elliptical bucket profile has already been accepted in practice.

Figure 18.4 shows another example, at which the longitudinal section of the

considered bucket can also be well approximated by an elliptical profile.

calculated 

x

y

real profile 

Fig. 18.4 Longitudinal

section of an elliptical

bucket profile
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Chapter 19

Multi-jet Pelton Turbines

19.1 Minimum Offset Angle Between Injectors

In mountain areas where plenty of water is available, Pelton turbines are often

designed with two to maximum six injectors (Fig. 19.1). Of concern in the design is

the minimum displacement, i.e., the offset angle between two adjacent injectors.

The jet is allowed to enter the bucket only when the bucket is relieved from the

loading by the upstream jet.

The minimum necessary offset angle between two adjacent injectors can be

determined based on the analyses in Chap. 5. According to Fig. 5.3, the jet piece

abcd entering a bucket uniquely specifies two special bucket positions αa and αd at
which the first and the last water particle on the jet surface will get into the bucket.

During the interaction with the jet piece abcd, the bucket turns an angle Δα equal to

Δα ¼ αa � αd: ð19:1Þ

For undisturbed operation the offset angle between two injectors must be at least

Δα. The time that the last water particle requires for leaving the bucket does not

need to be considered for the time being, since the last particle at point d will leave
the bucket elsewhere than at the bucket cutout.

According to Fig. 5.3 and by assuming αb � αd ¼ αo1 � αo2, Eq. (19.1) is also
written as

Δα ¼ αo1 � αo2ð Þ þ αa � αbð Þ: ð19:2Þ

In Sect. 5.4, it has been pointed out that owing to the symmetry condition, one has

αo2 � 0. Thus, the above equation becomes

Δα ¼ αo1 þ αa � αb: ð19:3Þ
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The aim of further calculations is that the angle differenceΔα should be represented
as a function of the peripheral speed coefficient and the specific speed. The present

consideration is focused on the nominal operation so that the bucket volumetric

load is set equal to φB ¼ 0:11. From Eq. (2.29), to which the approach Dc � Dm

¼ 0:85B applies, one obtains with αo ¼ αo1

cos αo1 ¼ km
km þ nq

: ð19:4Þ

With the same approximation and from Eqs. (5.9) and (2.27), there follows

Fig. 19.1 Pelton turbine with five injectors in hydropower plant Bieudron. Hydraulic head

H ¼ 1883m, nominal flow rate _Q ¼ 25m3=s, rotational speed n ¼ 428rpm, nq ¼ 0:0561=s, and
power output P ¼ 423MW
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cos αa ¼ km � 0:38nq
km þ nq

: ð19:5Þ

Similarly, from Eqs. (5.11) and (2.27), one may deduce

cos αb ¼ km þ 0:38nq
km þ nq

: ð19:6Þ

Because of Eqs. (19.4), (19.5), and (19.6), the angle difference Δα in Eq. (19.3) is a

function of the peripheral speed coefficient and the specific speed. The computa-

tional results for three different peripheral speed coefficients are shown in Fig. 19.2.

At the Pelton wheels with large specific speeds, the angle difference is large too.

This circumstance must be taken into account when a two- or multi-jet Pelton

turbine is being designed. The offset angle between two adjacent injectors must be

greater than the angle given in Fig. 19.2 to prevent the interference between the two

jets in the same bucket. Since αo2 ¼ 0 has been assumed in the above calculations,

the calculated angle difference Δα is about 1� to 3� smaller than actually required.

In the specification of the offset angle between two injectors, such a small angle

discrepancy should be considered accordingly. It can also be seen from the calcu-

lations that the peripheral speed coefficient only slightly influences the angle

difference Δα. If the peripheral speed coefficient km ¼ 0:47 is generally used, the

above equations accordingly reduce to Eqs. (2.30), (5.10), and (5.12).

19.2 Injector Protection Shelter

In the case of a multi-jet Pelton turbine, it often occurs that the water droplets found

on the jet surface at an injector may severely damage the next injector downstream.

The formation of the water-droplet string is illustrated already in Fig. 4.4. Its direct

km=0.45

km=0.47

km=0.49

nq (1/s)

ΔαFig. 19.2 Minimum offset

angle between two injectors

in multi-jet Pelton turbines
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fluid dynamic cause is secondary swirling flow in the jet. The initial source,

however, is found to be in the swirling flow ahead of the injector, as caused by

the bend of the pressure pipeline. Thus, it is almost impossible to avoid the

formation of the water-droplet string on the jet surface. The insertion of a flow

straightener downstream of the pipe bend, to attenuate the swirl in the flow, is rather

difficult to realize. This is because otherwise it would result not only in an

undesirable pressure drop in the flow but also in a blockage of the injector.

To protect the downstream injector from the droplet impingement, a well-

designed protection shelter is often used. At high hydraulic heads, the droplet

impingement is so powerful that the material of the protection shelter only resists

for a short period of time. In practice under certain condition, the installation of a

water basin on the top of the injector has been proved to be effective. The

persistently filled water basin serves to absorb the kinetic energy of the high-

speed water droplets. Such an application has already been shown in Fig. 4.5.

Because of the inaccurate positioning of the water basin, the material damage has

clearly arisen on the basin edge. In some other applications of such water basins,

high-level noises in the operation have been reported.
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Chapter 20

Geometric and Hydraulic Similarities

In the previous chapters, most relevant hydraulic aspects of Pelton turbines have

been analyzed in detail. The analyses and the results contribute to the hydraulic

design of Pelton turbines. They serve, on the one hand, to detect the possible

potential of further increasing the hydraulic efficiency and, on the other hand, as

guidelines for the hydraulic design. From the analyses it emerged, for instance, that

viscous friction in the bucket flow causes the biggest loss in hydraulic efficiency of

a Pelton turbine. To its minimization, the bucket surface should be kept as smoothly

as possible. By contrast, the swirling loss in the exit flow only plays a subordinate

role and can effectively not be further reduced.

In the long history of Pelton turbines, developments concerning the hydraulic

aspects and efficiencies have been mainly conducted by experimental investiga-

tions. Particularly, the flow optimization has been primarily achieved through

model tests. In compliance with the general laws of similitude in fluid mechanics,

the results of the model tests can be directly applied to the prototypes. For this

purpose, therefore, basically both geometric and hydraulic similarities between the

model and the prototype are required. However, it is also known that in contrast to

the geometric similarity, the hydraulic similarity cannot be fully achieved. For

Pelton turbines this fact primarily lies in the Reynolds number because of the

viscous effects. On the other hand, however, the high-degree hydraulic similarity

in Pelton turbines is rather achieved by other flow parameters like the peripheral

speed coefficient and the bucket volumetric load. The discrepancy of the Reynolds

numbers between the model and prototype has a weakly perceptible effect on the

hydraulic efficiency only. This is mainly due to the fact that friction in Pelton

turbines represents the most significant source of hydromechanical losses, and its

ratio to other forces depends on the Reynolds number. For this reason, the appro-

priate conditions for the hydraulic similarity in Pelton turbines should be agreed to

without involving the Reynolds number. The resulting deviation in hydraulic

efficiency between the model and prototype turbines must be separately estimated.

In the terminology of Pelton turbines, for instance, the related method is known as

the scale-up method, with which the efficiency of the model turbine is scaled up to
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the prototype. In the following two sections, both the geometric and hydraulic

similarities between two turbines are defined, while the scale-up method and the

computational procedure will be explained in the next chapter.

20.1 Geometric Similarity

It has already been concluded in Chap. 2 that the geometric form of a Pelton wheel

is basically determined by the specific speed nq. This is mainly based on Eq. (2.27)

in which the ratio of the bucket width to the wheel diameter is determined by the

specific speed. The determining equations of other geometric parameters as func-

tions of the specific speed are summarized in Appendix C. On the other hand,

however, the specific speed, for instance, does not exactly define the bucket number

despite Eqs. (5.27) and (5.30). Therefore, two Pelton wheels of equal specific speed

cannot be simply said to be exactly of geometric similarity.

The geometric similarity of two Pelton wheels is only available if the two wheels

have equal bucket number and, with respect to all the geometric length scales, also

equal aspect ratio. Such a geometric similarity is always required when the hydrau-

lic behavior of a Pelton turbine should be determined by experimental tests with a

geometrically similar model. The complete geometric similarity between two

Pelton turbines also includes the geometric similarities of the distributors, the

injectors, and the turbine casings. Sometimes, this appears to demand too much.

From Chaps. 10–12, one knows that for system efficiency the viscous friction in the

bucket flow, i.e., on the bucket surface, is most crucial and, thus, decisive. Both the

injector and the turbine casing do not exercise a significant impact on the system’s
efficiency. The hydraulic efficiencies of the injectors, for instance, all remain at

about 99%. For this reason, the geometric similarity between two Pelton turbines

could be presumed, if simply the specific speed and the bucket number of two

Pelton wheels are equal.

20.2 Hydraulic Similarity

In Chap. 3, the restricted similarity of injector flows has been demonstrated. Except

for the head effect on the flow rate, which has been identified in Sect. 3.4 to be a

Reynolds number effect, the flows in the injector nozzles of similar geometries are

similar. This can be observed by the fact that the dimensionless discharge coeffi-

cients as well as their computational formulas according to Eq. (3.12), for instance,

all apply to both the model and the prototype Pelton turbines. In particular, there

exists also an extended similarity: an injector nozzle with built-in needles of

different vertex angles follows the same approach of computing the flow rate

when the effective opening area of the nozzle is used as reference area (see

Eq. (3.19) and Fig. 3.4). Another point to the hydraulic similarity of the jet is
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found in the jet itself. Within a relevant traveling path, the jet expansion can

generally be neglected (see Sect. 4.3).

From the viewpoint of fluid mechanics, the flows in geometrically similar

buckets also behave similar when all the volume forces in the flow are of the

same proportion. Generally, this implies the same differential equations of motion

and the same boundary conditions for prototype and model. To meet such similarity

conditions, as will be demonstrated, two dimensionless parameters will be applied.

For simplicity, the following discussion is limited to frictionless fluids.

First, the flow in a rotating bucket and at the point which is located by the radial

position R is considered, as shown in Fig. 20.1. A local cylindrical coordinate

system (with r as the radial coordinate) is implemented. Its origin is situated at the

center of curvature of the bucket inner surface. Since the stream surface is congru-

ent to the bucket surface, the r-component of the relative flow velocity vanishes.

The Euler equation of motion is applicable here; the radial component is given by

FR � 1

ρ

∂p
∂r

¼ �W2

r
; ð20:1Þ

in which FR represents the sum of radial components of all existing volume forces.

In the rotating system, apart from the neglected gravity force, only the centrifugal

and Coriolis forces are effective, which are given by Rω2 and 2ωW, respectively.

Thus, the force component FR in Eq. (20.1) can be replaced by the corresponding

components of the centrifugal and Coriolis forces as follows:

G1Rω
2 þ G22ωW � 1

ρ

∂p
∂r

¼ �W2

r
: ð20:2Þ

In this equation, G1 and G2 are the geometric factors for the correction of both force

effects. For pure longitudinal flows in the bucket, for instance, according to

(a) 

Rm

α 

R 

(b) 

U C0

r 
rbr0

Fig. 20.1 Spreading of the flow in the rotating bucket
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Fig. 12.3, the two factors are correspondingly determined as G1 ¼ cos β and

G2 ¼ 1. Equation (20.2) is then equivalent to Eq. (12.13). For approximately

two-dimensional cross-flows according to Fig. 5.6, both the centrifugal and Coriolis

forces are in the direction parallel to the bucket surface, so that in this situation G1

¼ 0 and G2 ¼ 0.

For the considered flow at the given position in the bucket according to

Fig. 20.1b, Eq. (20.2) is integrated over the height h ¼ rb � r0 of the water sheet.
The overpressure beneath the water sheet is then obtained as

pb
ρ
¼

ðrb
ro

G1Rω
2 þ 2G2ωW þW2

r

� �
dr: ð20:3Þ

The first term in the integration is independent of the integration variable r, while
the integration of the second term gives the average relative flow velocity. Thus,

from Eq. (20.3) one obtains

pb
ρ
¼ G1Rω

2hþ 2G2ωWhþ
ðrb
ro

W2

r
dr: ð20:4Þ

For the remaining integration, the mean value theorem of integration is used, so that

ðrb
ro

W2

r
dr ¼ W2

ðrb
ro

1

r
dr ¼ W2 ln

rb
ro

¼ W2 ln
rb

rb � h
� W2 h

rb
: ð20:5Þ

The approximation made in this equation is based on the assumption h � rb.

With the additional assumption,W2 � W
2
, also because of h � rb, Eq. (20.4) is

then scaled with the specific kinetic energy, i.e., dynamic pressure, of the jet. One

obtains

pb
ρC2

0=2
¼ 2h

R

W
2

C2
0

G1

R2ω2

W
2

þ 2G2

Rω

W
þ R

rb

� �
: ð20:6Þ

Obviously, there is a hydraulic similarity between the flows in two geometrically

similar systems if respective flow-related proportions h/R, W=C0, and Rω=W are

equal in both systems. Based on this circumstance, the known peripheral speed

coefficient and the bucket volumetric load can be derived and demonstrated as the

most relevant parameters for the hydraulic similarity.

At first, the reciprocal of Rω=W, i.e., W=U, is considered, with U as the local

circumferential speed of the bucket. From the invariance equation, according to

Eq. (6.18), one obtains
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W
2

U2
¼ W

2

1 � U2
1 þ U2

U2
¼ W

2

1

U2
1

R2
1

R2
� R2

1

R2
þ 1: ð20:7Þ

The speed ratioW1=U1 at the bucket entry can be generally represented by the speed

ratio Um/C0 in applying the velocity triangle. Thus, the speed ratio W=U in

Eq. (20.7) is ultimately a function of the speed ratio Um/C0, which was referred

to in previous considerations as the peripheral speed coefficient km. Therefore, one

has W=U ¼ f kmð Þ. Analogously, the speed ratio W=C0 in Eq. (20.6) can also be

shown to be a function of the peripheral speed coefficient.

For the parameter h/R in Eq. (20.6), the volume flow rate in the bucket is

considered. As indicated in Chap. 12 in association with Eq. (12.10), the water-

sheet thickness changes with the spreading of the water in the bucket. In general,

this can be formulated as

h

R
¼ G

π

8

1

R

d20
d

W0x,o

W
; ð20:8Þ

with G as another geometric parameter. For the longitudinal flow through the

bucket, the value of G is G ¼ 2. Equation (20.8) is then reduced to Eq. (12.10).

For the flow transversely across the bucket, G ¼ 1 is available; then one obtains

Eq. (7.6).

Equation (20.8) connects the flow to the bucket size. Since the relative velocity

W0x,o can be expressed as W0x,o ¼ C0 � Um (Chap. 7) and, thus, the speed ratio

W0x,o/W is a function of the peripheral speed coefficient, Eq. (20.8) is transformed to

h

R
¼ G

π

8

B

R

B

d

d20
B2

� f kmð Þ: ð20:9Þ

The water-sheet width d can be obtained from Eq. (12.11); it is a function of the jet

diameter. Thus, the right-hand side of the above equation, except for the function f
(km), simply represents the geometrical property of a Pelton wheel and the jet

diameter. The ratio d20/B
2 is referred to as the bucket volumetric load φB, so that

Eq. (20.6) is expressible in the general form

cp ¼ pb
ρC2

0=2
¼ f Geometry, φB, kmð Þ: ð20:10Þ

From this relation, it can be concluded that between two Pelton turbines with

geometric similarity, the hydraulic similarity only exists when the respective periph-

eral speed coefficients and the bucket volumetric loads are equal. The derived relation

also represents the power ratio in a Pelton turbine, as the power exchange between the

jet and the rotating buckets ultimately results from the pressure distribution below the

water sheet, i.e., on the bucket surface. In Sect. 7.3, the corresponding ratio was

designated as the overpressure coefficient; see also Eq. (7.14).
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Chapter 21

Model Turbine Tests and Efficiency Scale-Up

Due to the complex flow relations in Pelton turbines, the efforts to improve the flow

conditions and to increase the hydraulic efficiency have been limited for a long time

mostly to model tests. The transfer of the observation and the measurement results

from the model tests to the prototype presumes geometric and hydraulic similari-

ties. From the last chapter, it is known that under the given geometric similarity, the

entire similarity between two hydraulic turbines is only achieved when the periph-

eral speed coefficients and the bucket volumetric loads, both, are equal in both

turbines. The condition for the hydraulic similarity, however, is only valid by

ignoring the effects of both the gravity and the viscous friction in the flow. The

effect of gravity, strictly speaking, is expressed by the fact that the jet, on the one

hand and after the injector, is no longer straight-aligned. On the other hand, the

gravity of the water in the bucket performs the extra mechanical work owing to the

geodetic height difference of the water at the bucket entry and exit, respectively.

This influence must be taken into consideration or eliminated when the system

efficiency is in focus, which should often be known within an inaccuracy of no more

than 0.2%. The effect of gravity is negligible if the pressure head at the injector is

sufficiently high. The jet, after leaving the injector and within the path before

reaching the bucket, can be considered to be straight-aligned. For this reason the

minimum pressure head for the model tests is prescribed. According to the code

IEC60193 (1999) for Pelton turbines, it is about 50 m.

A direct effect of the viscous friction between the flow and the bucket inner

surface is the slowdown of the relative flow in the bucket. According to Chaps. 11

and 12, this has negligible impact on the exit swirling loss, so that the flow pattern in

the bucket remains nearly unaffected. By contrast and according to Chaps. 10–12,

the efficiency of a Pelton turbine is considerably affected by friction because of the

related energy dissipation. According to Eq. (15.2), the friction effect is represented

by the friction number cw2, i.e., the friction coefficient cf, and, thus, the Reynolds
number. If a model test is conducted, aiming at measuring the turbine efficiency,

then different hydraulic efficiencies in the model turbine and its prototype must be

expected.
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Obviously, in addition to the conditions of both the equal peripheral speed

coefficient (km) and the equal bucket volumetric load (φB), according to

Chap. 20, two additional conditions are needed to specify the influences of gravity

and the viscous friction on the turbine efficiencies (model and prototype). While the

influence of gravity can be eliminated by keeping the minimum pressure head in the

model tests sufficiently high, the influence of the viscous friction on the efficiency

obviously must be represented as a function of the Reynolds number. The efficiency

conversion from the model turbine to the prototype under consideration of the

Reynolds number and other influence factors is called the efficiency scale-up.

21.1 Efficiency Scale-Up

To convert the hydraulic efficiencies of a model turbine to the prototype scale, the

computational method reported by Grein et al. (1986) has been used for a long time.

This is an empirical computational method, which has been developed based on

practical operations of Pelton turbines from parameter analyses using the

Buckingham Π theorem in dimensional analysis. The computational method has

also been stipulated by the IEC standard (1999). In this method, the scale-up

calculation of the hydraulic efficiency from the model turbine to the prototype

was given by using diverse dimensionless numbers and operation parameters.

Besides the bucket volumetric load φB, especially the Reynolds, Froude, and

Weber numbers have been considered as the decisive influence parameters. It has

obviously been supposed that these three dimensionless Π-products independently

affect the turbine efficiencies. This assumption was refuted by Zhang (2006) on the

fact that, for instance, the Weber number can be precisely interpreted by the

Reynolds and the Froude numbers. For this reason, Grein et al.’s computational

method was reevaluated by Zhang (2006). The deduced revaluation method as a

simplification of the old scale-up method will be presented below. The Weber

number is of negligible influence and no longer used.

In the simplified calculations, only the Reynolds and the Froude numbers have

been used, as defined by

Fr ¼
ffiffiffiffiffiffiffiffiffi
2gH

gB

s
; ð21:1Þ

Re ¼
ffiffiffiffiffiffiffiffiffi
2gH

p � B
ν

: ð21:2Þ

Here, H and B are the net pressure head and the bucket width, respectively.

The corresponding proportion parameters between the model turbine and its

prototype are denoted as
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CFr ¼ FrP

FrM
; ð21:3Þ

CRe ¼ ReP

ReM
: ð21:4Þ

The scale-up calculation of the turbine efficiencies is conducted by considering the

difference in the efficiencies between the model and the prototype turbines:

ηP ¼ ηM þ Δη; ð21:5Þ

with

Δη ¼ 8:5� 10�7

φ2
B

C0:3
Fr CRe � 1

� �þ 5:7 � φ2
B 1� C0:3

Fr

� �
: ð21:6Þ

The corresponding diagrams are shown in Fig. 21.1. It should be noted that from the

present calculations with only Reynolds and Froude numbers, highly equal scale-up

results are obtained as with the method of Grein et al. (1986) or according to the

code IEC60193 (1999).

21.2 Reynolds Number and Jet Impact Force

In this section, the physical meaning of the Reynolds number, defined in Eq. (21.2),

will be revealed. According to Eq. (2.34), with β2 ¼ 180�, the jet impact force

exerted on the bucket is given by

Fbucket ¼ 2 _m cC0 1� kmð Þ2: ð21:7Þ

The flow rate of the jet is given by _m c ¼ ρ1
4
πd20 �

ffiffiffiffiffiffiffiffiffi
2gH

p
. Its substitution into the

above equation, with C0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
, yields
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Fbucket ¼ πgρ � d20 1� kmð Þ2H: ð21:8Þ

With respect to the bucket volumetric load φB ¼ d20=B
2, this equation can also be

written as

Fbucket ¼ πgρ � φB 1� kmð Þ2HB2; ð21:9Þ

and, when compared with Eq. (21.2),

Fbucket ¼ πρν2

2
φB 1� kmð Þ2Re2: ð21:10Þ

The Reynolds number in effect represents nothing more than the jet impact force

acting on the bucket. Especially for water at 20 �C and for the operation atφ ¼ 0:11
and km ¼ 0:47, it becomes

Fbucket ¼ 50
Re

106

� �2

Nð Þ: ð21:11Þ

From Eq. (21.10), a dimensionless parameter, equivalent to the Reynolds number,

can be defined, referred herein as the force coefficient:

kforce ¼ Fbucket

ρν2
¼ π

2
φB 1� kmð Þ2Re2: ð21:12Þ

For φ ¼ 0:11 and km ¼ 0:47, one obtains

kforce � 0:05Re2: ð21:13Þ

Although the jet impact force acting on the bucket can be determined from the force

coefficient, i.e., from the Reynolds number, it should still be calculated directly

from Eq. (21.7) or (21.8).
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Chapter 22

Sand Abrasion and Particle Motion

in the Bucket Flow

One important issue in the operation of Pelton turbines is the sand abrasion in the

rotating buckets, which is often called hydroabrasive wear or hydroabrasive
erosion. The problem becomes serious, when the water is richly loaded with

suspended sediment particles. This is always encountered where the water from

glaciers or river water during/after floods, for instance, is guided to Pelton turbines

without previously passing a lake. The sand abrasion often leads to serious mechan-

ical damages on components of Pelton turbines, including the injector nozzles and

the buckets. Figure 22.1 shows the sand abrasion on the surface of an injector

needle. The sand erosions at the bucket main splitters and on the inner surface of the

buckets have been shown in Fig. 5.17. In Chap. 5 (see Sect. 5.10), the effect of

eroded main splitters of Pelton buckets on the efficiency drop has been evaluated.

Significant such efficiency drops could occur, especially at large relative widths of

the eroded bucket splitters (see Figs. 5.22 and 5.23).

The hydroabrasive erosion on the injector needle surface results from both the

rapid flow acceleration around the needle vertex and the pressure increase toward

the needle surface, which is caused by the streamline curvature (Fig. 3.2). The

increased roughness of the needle surface leads to a rise of the frictional shear stress

and further to a reduction of the water speed in the jet core. This, in turn, leads to the

deterioration of the jet core structure and hence to the increase of turbulence

intensities.

For the same reason, the outcomes of the hydroabrasive erosion in the inner

surface of Pelton buckets are increases of the surface roughness and the associated

fluid friction. This may have serious consequence, because, according to Chaps. 10

and 11, the flow friction between the water and the bucket surface is most effective

in downrating the system efficiency. Simply for this reason, a Pelton wheel must be

repeatedly dismantled and repaired after a short operation time.

In general, the hydroabrasive erosion on the bucket surface at Pelton turbines

must be ascribed to the high speed of flows if compared with the flow, for instance,

in a “high-head” Francis turbine. The related hydraulics can be confirmed by

making a quantitative comparison between the two types of turbines. The jet

© Springer International Publishing Switzerland 2016

Zh. Zhang, Pelton Turbines, DOI 10.1007/978-3-319-31909-4_22
257

http://dx.doi.org/10.1007/978-3-319-31909-4_5
http://dx.doi.org/10.1007/978-3-319-31909-4_5
http://dx.doi.org/10.1007/978-3-319-31909-4_5
http://dx.doi.org/10.1007/978-3-319-31909-4_5
http://dx.doi.org/10.1007/978-3-319-31909-4_5
http://dx.doi.org/10.1007/978-3-319-31909-4_3
http://dx.doi.org/10.1007/978-3-319-31909-4_10
http://dx.doi.org/10.1007/978-3-319-31909-4_11


speed of a Pelton turbine at a headH ¼ 800m, for instance, is aboutC0 ¼ 125m=s.
The relative velocity in the Pelton bucket, when the peripheral speed coefficient is

assumed to bekm ¼ 0:48, is obtained to be 65 m/s. For comparison reason, a Francis

turbine1 is considered which operates at a head H ¼ 400m. The nominal discharge

flow is _Q ¼ 20m3=s. For the sake of simplicity, the pressure head coefficient of the

turbine is assumed to be ψ ¼ 2; this concerns the perpendicular inlet flow into the

impeller (Fig. 22.2 with β1 ¼ 90� ). According to the Euler equation, we have

U1C1u ¼ C2
1u ¼ gH, which alternatively means W2

1=gH ¼ tan 2α1 because

W1 ¼ C1r, with C1r as the radial velocity component. With the guide vane angle

α1 ¼ 15� for the nominal flow rate, the relative velocity at the impeller inlet is

obtained as W1 ¼
ffiffiffiffiffiffi
gH

p
tan α1 ¼ 17m=s.

Fig. 22.1 Sand abrasion on

the surface of an injector

needle after 165 operating

hours (Photo KWO)

1 The Francis turbine in the hydropower station Gr. 2 of the company KWO at a head ofH¼ 400 m

and the nominal discharge flow rate Q¼ 20 m3/s is considered here in the example with a small

modification.
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Obviously, the relative velocity in the considered Pelton turbine atW1 ¼ 65m=s
is about four times greater than that in the Francis turbine. In other words, a particle

in the flow within the buckets of the considered Pelton turbine possesses a kinetic

energy which is about 16 times larger than a particle of equal size encountered in

the considered Francis turbine. Such a hydraulic performance of particles in Pelton

turbines clearly explains why the hydroabrasive erosion in Pelton turbines is a big

and serious problem, if compared with other types of turbines. At this point, it is

worth additionally mentioning that the power loss due to viscous friction in the

considered Pelton turbine is 16 times as high as that in the considered Francis

turbine, if equal frictional surfaces are assumed. This is simply because the friction

force is proportional to the square of the relative flow velocities.

The primitive and available measure to avoid sand abrasion in Pelton turbines is

to shut off the turbines during the flooding flow period. This essentially requires

online measurements of sediment particle load in the flooding flow, including the

particle concentration and sizes. Corresponding investigations with online mea-

surements of sediment particles can be found, for instance, in Boes (2009), Felix

et al. (2012, 2013, 2015), and Gruber et al. (2011).

Sand abrasion in Pelton turbines depends on flow velocity, particle size and

concentration, particle hardness, and bucket material. A great number of investiga-

tions have been completed about this topic, e.g., Grein and Krause (1994) and

Winkler (2014), mainly aiming to describe the phenomena and the related depen-

dences. To protect the bucket surface, a well-improved method against sand

abrasion is the coating of the inner surface of the Pelton buckets. The coating

technique is based on the thermal spray of hard materials like Stellite and tungsten

carbide.

Concerning the hydroabrasive wear in Pelton buckets, one is basically interested

how a sand particle in the flow will move across the water sheet toward the bucket

surface. Such a cross-motion of particles is mainly determined by the impulsive

α1

U1, C1u

C1

W
1 

 C
1r β1

Fig. 22.2 Velocity triangle at the impeller inlet of a Francis turbine with a pressure head

coefficient ψ ¼ 2:0
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force because of the curved streamlines. Besides some qualitative indications as

given in Thapa and Brekke (2004), a rough quantitative estimation of the cross-

motion of particles was given by Blaser and B€uhler (2001) by assuming circular

bucket form and constant particle velocity, i.e., a velocity component toward the

bucket surface. Because such assumptions are quite far from reality, the conclusion

found in Blaser and B€uhler (2001) is not quite convincing and often causing

disputations. For this reason, a much more accurate estimation of the motion of

particles in the water sheet will be presented in this chapter.2 The analyses and

numerical computations presume known bucket profile and flow distribution in the

bucket.

22.1 Jet Spreading and Water-Sheet Flow in the Bucket

For simplicity, the jet is assumed to perpendicularly enter the bucket, i.e., perpen-

dicular to the bucket main splitter, as shown in Fig. 22.3. The lateral spreading of

the water sheet toward the bucket exit can be approximated by the linear increase of

the water sheet width along the bucket surface. Such a flow simplification has

already been applied in Chap. 7 [see Eq. (7.8)]. Because of the almost constant

relative velocity, the water-sheet thickness is then given by Eq. (7.11). At the

bucket exit, the water-sheet width and thickness are d2,N ¼ 2:5d0 and

h2,N ¼ 0:05B, respectively [see Eqs. (7.9) and (7.13)].

Although the water spreading in the bucket is generally three dimensional, for

the determination of the relative motions of sand particles in the water sheet,

(b) 

Rm

B 

d 

h2,N

d0

(a) 

C0

Um

rb
s 

h 
r0

r

sb

Fig. 22.3 Lateral cross-flow and spreading of the jet in the bucket; modeling of the lateral motion

(Rm ¼ const) of a sand particle in the water sheet

2 The result was obtained during the research activities at ETH Z€urich, Laboratory of Hydraulics,

Hydrology and Glaciology (VAW), 2015.
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however, the lateral motion of the particle along the path of constant radius (Rm

¼ const) should be considered, as illustrated in Fig. 22.3. With this restriction, both

the velocity and pressure distributions within the height of the water sheet are most

relevant flow parameters which determine the particle motion in the flow. Because

of the presence of the free surface of the water sheet, the interested distributions of

velocity and pressure (above the ambient pressure) within the height of the water

sheet can be approximated by Eqs. (6.7) and (6.5), respectively, as rewritten here

for further considerations:

W ¼ W0

r0
r
; ð22:1Þ

p

ρ
þ 1

2
W2 ¼ const: ð22:2Þ

The velocity distribution according to Eq. (22.1) supposes, when considered locally

within the height of the water sheet, that all curved streamlines are concentric and

thus have the same center of curvature. The local radius of curvature of the free

surface of the water sheet is denoted by r0. The radial coordinate r also behaves as

the radius of curvature of respective curved streamlines. Such a flow is a potential

flow because its initial form, i.e., the jet flow itself, is irrotational.

On the free surface of the water sheet, from bucket inlet to exit, the velocity W0

remains constant. On the solid surface of the bucket, the flow velocity and the

pressure are therefore obtained as

Wb ¼ r0
rb
W0 ¼ 1� h

rb

� �
W0; ð22:3Þ

pb ¼ p0 þ
1

2
ρ W2

0 �W2
b

� �
: ð22:4Þ

For thin water-sheet flows, say h=rb � 1 with rb as the radius of curvature of the

bucket surface, Eq. (22.4) can be approximated to be a function of the height of the

water sheet h ¼ rb � r0, as found in Eq. (6.10). Because of the concentric stream-

lines across the height of the water sheet, the radial component of the flow velocity,

i.e., perpendicular to the bucket surface, disappears (Wr ¼ 0).

22.2 Motion Equation of Sand Particles

The motion of a sand particle within the water sheet is subjected to Newton’s
second law of motion. By assuming lateral flow through the bucket (Fig. 22.3), the

effects of both the centrifugal and Coriolis forces on the particle motion can be

neglected. The deviation of the particle track from the streamlines, as sketched in

Fig. 22.3a, is then purely due to the streamline curvatures and the difference in the
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specific densities of the water and the particles. While the geometrical pattern and

the flow properties of the water sheet are fully representable according to Sect. 22.1,

Eqs. (22.1) and (22.2), the particle motion is governed by diverse forces which

impose the particle to move across the streamlines and toward the bucket surface.

The active external forces, which balance the inertial force of the particle, are

mainly the impulsive force owing to the curved flow path of the particle, the

pressure force (also known as buoyancy force) because of the pressure gradient in
the flow, and the viscous force because of the difference in velocities between the

flow and the particle. In addition, as a result of nonconstant relative motion of the

particle in the water flow, there exists also a force due to the added mass. All these

forces must be taken into account, in order to trace the particle in the flow within the

bucket.

In general, the relative motion of the particles in the water sheet is unsteady and

two-dimensional. As for the first, the particles travel across the streamlines and,

thus, do have a nontrivial radial velocity component (Wp, r 6¼ 0). As for the second,

the carrier flow velocity itself along each streamline, except for that on the free

surface of the water sheet under the constant ambient pressure, changes from

position to position. This implies that along the streamline the particle will also

be accelerated or decelerated. The difference in the stream-wise components of

velocities between the water flow and the particle motion, however, can be

neglected for small particles, as demonstrated in Appendix F. This approximation

will significantly contribute to the computational simplicity.

Therefore, only the radial motion of particles across the streamlines needs to be

considered. This implies that only the radial components of all external forces

exerted on the particle need to be accounted for.

(a) Impulsive force: The impulsive force is caused by the curved track of the

particles. Because the particle motion does not coincide with the streamline of

the flow, both the curvature of the track of the particle and the particle velocity

actually differ from those of the streamlines. For a given particle of diameter dp
and specific density ρp, the impulsive force exerted on the particle is calculated

as

FI, r ¼ ρp
1

6
πd3p

W2
p

rp
; ð22:5Þ

with rp as the radius of curvature of the curved track of the particle. For the sake
of clearness, the subscript r in the impulsive force is used to denote the radial

component, although the impulsive force is actually always radial, i.e., perpen-

dicular to the curved track lines of the particle.

For small particles, however, the tangential, i.e., stream-wise component

of the particle velocity, is nearby equal to the velocity of the streamline of the

flow (Wp, t � Wf , see Appendix F). Moreover, the radial velocity component

(perpendicular to the streamline) of the particle is much smaller than the

stream-wise component. For this reason, the curvature of the particle track
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can be assumed to be equal to the local curvature of the streamlines (rp � r).
This further implies that the particle velocity in Eq. (22.5) can be approximated

by its stream-wise component and thus by the flow velocity along the stream-

lines of the flow (Wp � Wf ).

(b) Pressure force: According to Eq. (6.4), for the pressure gradient in the flow, the

radial component of the pressure force exerted on the particle is given by

FP, r ¼ �1

6
πd3p

∂p
∂r

¼ �1

6
πd3pρf

W2
f

r
: ð22:6Þ

Because of ∂p=∂r > 0, the pressure force is oriented in the negative direction

of the r-coordinate.
(c) Viscous drag force: The drag force exerted on the particle is proportional to the

projection area of the particle and the square of the relative velocity between the

particle and the flow. For the radial component, i.e., the component perpendic-

ular to the streamlines (Wf, r ¼ 0), this is formulated as follows:

FD, r ¼ �1

4
πd2pcD

1

2
ρfW

2
p, r: ð22:7Þ

For a velocity componentWp, r > 0, the drag force is in the negative r-direction.
The viscous drag coefficient is actually a function of the particle Reynolds

number and can, for Rep < 1000, be approximated by

cD ¼ 24

Rep
1þ 0:15Re0:687p

� �
: ð22:8Þ

For small spherical particles and small velocities relative to the flow, implying

Rep < 1, the Stokes drag law, cD ¼ 24=Rep, applies. In the real case of Pelton

turbines with sand abrasion in the Pelton buckets, the condition Rep < 1 is

usually not fulfilled. For a sand particle of the size dp ¼ 0:04mm and a relative

velocity with Wp, r ¼ 2m=s, for instance, the Reynolds number is calculated to

be about Rep ¼ 80. In the numerical computations, the expression in parenthe-

ses in Eq. (22.8), however, can be assumed to be quasi-constant, so that it

follows from Eq. (22.7) that

FD,r ¼ �3πμdpWp, r 1þ 0:15Re0:687p

� �
: ð22:9Þ

(d) Force arising from the added mass: This force is related to the relative

acceleration between the particle and the fluid flow. Owing to Wf, r ¼ 0 and,

thus,Wp, r �Wf, r ¼ Wp, r for the radial velocity component, it can be calculated

as
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Fadd, r ¼ �1

2
� 1
6
πd3pρf

∂Wp, r

∂t
: ð22:10Þ

The particle motion in the fluid flow is governed by Newton’s second law of

motion. For the flow of the particles across the streamlines, i.e., in the radial

direction, we, thus, obtain

ρp
1

6
πd3p

dWp, r

dt
¼ FI, r þ FP, r þ FD, r þ Fadd, r: ð22:11Þ

By inserting all the effective external forces with respect to rp � r and Wp � Wf ,

one obtains

1þ ρf
2ρp

 !
dWp, r

dt
¼ 1� ρf

ρp

 !
W2

f

r
� 1þ 0:15Re0:687p

τ
Wp, r; ð22:12Þ

in which the time constant τ is defined by

τ ¼ ρpd
2
p

18μ
: ð22:13Þ

Because the velocity distribution in the water sheet is given by Eq. (22.1),

Eq. (22.12) is altered to

1þ 1

2

ρf
ρp

 !
dWp, r

dt
¼ W2

0

r20
r3

1� ρf
ρp

 !
� 1þ 0:15Re0:687p

τ
Wp, r: ð22:14Þ

This differential equation can be digitized into finite difference form and then

numerically solved. The Reynolds number can be assumed to be quasi-constant.

With A ¼ 1þ 1
2
ρf=ρp and 1=τRe ¼ 1þ 0:15Re0:687p

� �
=τ as well as ΔWp, r ¼ Wp, r, i

�Wp, r, i�1 and Wp, r ¼ Wp, r, i�1 þWp, r, i

� �
=2, it then follows from the above

equation:

Wp, r, i ¼ Wp, r, i�1

þ W2
0

2A
1� ρf

ρp

 !
r20, i
r3i

þ r20, i�1

r3i�1

� �
� 1

2τRe, i�1A
Wp, r, i þWp, r, i�1

� �" #
Δt:

ð22:15Þ

The particle velocity, i.e., its radial component Wp,r,i at the ith step of time (ti), is
then resolved as
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Wp, r, i ¼ 1

1þ Δt
τRe, i�1

1

2A

1� Δt
τRe, i�1

1

2A

� �
Wp, r, i�1 þW2

0

2A
1� ρf

ρp

 !
r20, i
r3i

þ r20, i�1

r3i�1

� �
Δt

" #
:

ð22:16Þ

It represents a function ofWp, r, i ¼ f rið Þ orWp, r, i ¼ f tið Þ because of ri ¼ f tið Þ. The
numerical solution of this digitized equation will be shown in the next section.

It should be mentioned that in the estimation of Blaser and B€uhler (2001), the
force balance only involved the impulsive, pressure, and Stokes drag (for Re< 1)

forces. The radial velocity component Wp,r was also assumed to be constant, when

applied to the flow along a surface of circular form. For this reason, the results and

statements caused vital discussions.

22.3 Application Example

In order to calculate the particle motion in the water sheets of Pelton buckets, as

from Eq. (22.16), a concrete flow must be considered. This means that the flow

distribution in a given bucket must first be calculated. This includes not only the

spreading form of the water sheet in the bucket but also the velocity and pressure

distributions within the height of the water sheet as well as along the streamlines.

The related numerical computational algorithms will be presented in this section.

22.3.1 Pelton Turbine and Bucket Form

For the computational purpose, a Pelton turbine is considered which is operated by

a hydraulic head H ¼ 650 m and a flow rate _Q ¼ 4m3=s through an injector. The

design parameters of the Pelton turbine are given by

Dm ¼ 2300mm, B ¼ 656mm, n ¼ 428:6rpm, km ¼ 0:46.

With the jet speed C0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p ¼ 113m=s, the jet diameter is obtained from
_Q ¼ 1

4
πd20C0, leading to d0 ¼ 212mm. As can be confirmed, it is about one third of

the bucket width (d0=B � 1=3). With the given circumferential speed coefficient

km ¼ 0:46, the relative velocity in the bucket flow is calculated to

W0 ¼ C0 � kmC0 ¼ 61m=s. For the assumed lateral flow across the bucket (see

Fig. 22.3) with Rm ¼ const, this relative velocity remains unchanged on the free

surface of the water sheet from the bucket inlet to the exit.

As to the form of the Pelton bucket, the elliptical profile is prescribed according

to Fig. 18.3, by Eq. (18.8). The profile on the pitch circle of radius Rm ¼ Dm=2 (see
Fig. 2.5) is specified by the following parameters (lengths in mm):
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a ¼ 165, b ¼ 288, u ¼ 165:2, v ¼ 9:6,φ ¼ 12�:

Such a bucket profile is shown in Fig. 22.4a.

Since the pressure distribution within the height of the water sheet depends on

the curvature of streamlines [see Eqs. (22.1) and (22.2)], the curvature of the

surface profile of the Pelton bucket will be applied in further computations. First,

one obtains from Eq. (18.8) for the derivatives,

y
0 ¼

a2

b2
x sinφ� y cosφþ vð Þ sinφþ x cosφþ y sinφ� uð Þ cosφ

a2

b2
x sinφ� y cosφþ vð Þ cosφ� x cosφþ y sinφ� uð Þ sinφ ; ð22:17Þ

y
0 0 ¼

a2

b2
sinφ� y

0
cosφ

� �2 þ cosφþ y
0
sinφ

� �2
a2

b2
x sinφ� y cosφþ vð Þ cosφ� x cosφþ y sinφ� uð Þ sinφ : ð22:18Þ

The curvature of the basic profile of the bucket surface is then given by

1

rb
¼ y

0 0

1þ y02
� �3=2 ¼ f x; yð Þ: ð22:19Þ

The curvature of the curved free surface of the water sheet is diminished by the

height of the water sheet. This concern is based on the prerequisite that all the

streamlines are assumed to be locally concentric, as stated in connection with

Eq. (22.1) and illustrated in Fig. 22.4a. Thus, one has

r0 ¼ rb � h: ð22:20Þ

Figure 22.4b shows the computed radii of curvature of both the basic profile of the

bucket surface and the free surface of the water sheet, respectively. The difference

(b) (a) 

Water sheet surface 

r0
rb

ε1

y=f(x) 

Begin of computations 

s 

Bucket width B=656 

sb

h 

Jet 

Fig. 22.4 Radii of curvature of the solid surface of the bucket and the free surface of the water

sheet
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between them, from the inlet to the exit of the bucket, is equal to the height of the

water sheet for the given flow with _Q ¼ 4m3=s.
At this point, the relation between the curvature of the streamlines and the

pressure gradient is in focus. As in Fig. 22.4a, when assuming the straight stream-

lines in the jet before entering the bucket, the abrupt deflection of the jet at the

bucket inlet to an angle ε1 leads computationally to an abrupt change in the

curvature of all streamlines. This, in turn, leads to a discontinuity in the pressure

distribution at the bucket entrance. To avoid such a computational unsteady dis-

continuity, the beginning of the flow calculations should, thus, lie some steps ahead

of the bucket entrance. This means that the bucket inlet profile should be prolonged

to a fictitious entry where dy=dx ¼ tan π=2ð Þ ¼ 1 is valid and the curvatures of all

streamlines can be simply set equal to zero. From this fictitious point to the bucket

inlet, a linear increase of the curvature of the fictitious profile can be assumed.

22.3.2 Flow Distribution in the Bucket

For the purpose of computing the particle motion in the flow, the flow distribution

in the bucket must be more precisely described than up to now by simply giving the

height and width of the water sheet. On the free surface of the water sheet, the

relative velocity remains constant and is equal to W0 ¼ 61m=s for the considered
Pelton turbine in the last section. The flow velocity and the pressure distribution on

the bucket surface can be calculated by Eqs. (22.3) and (22.4). The calculation

procedure is shown in Table 22.1, in which the coordinate along the bucket surface

is computed by sb ¼ ΣΔsb with Δsb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δxð Þ2 þ Δyð Þ2

q
. The velocity along the

streamline at half height of the water sheet is denoted by W1/2. It is simply

calculated by Eq. (22.1) with r1=2 ¼ r0 þ rbð Þ=2. The computational results are

displayed in Fig. 22.5 as a function of the path sb along the bucket surface. The

pressure is shown in terms of the pressure head (meter of water column). The time

which is used by the flow along the bucket surface from entry to exit is about

0.012 s.

From the results, shown in Fig. 22.4 as well as in Fig. 22.5, the velocity gradients

dW/dr on both the solid surface of the bucket and the free surface of the water sheet
can be calculated, as obtained from Eq. (22.1) and given bydW=dr ¼ �W=r. Based
on the numerical data in Table 22.1, the velocity gradients on the bucket surface, at

the half height and on the free surface of the water sheet, respectively, are shown in

Fig. 22.6 as functions of the path length along the bucket surface. Obviously, the

water-sheet flow in the Pelton bucket is a kind of strong shear flow and surely

causes the large dissipation and further great losses in the hydraulic efficiency.

About the hydraulic aspects of the viscous friction effects, the readers are referred

to Chaps. 10–12.

On the other hand, the velocity gradient along an arbitrary streamline appears to

be highly significant, when evaluating the capability of particles of tracking the
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flow with curved streamlines. On the bucket surface, (dW/ds)b can be directly

obtained from the velocity distribution Wb(sb), which is involved in Table 22.1

and was also shown in Fig. 22.5. For the velocity gradient along other streamlines,

which have their own flow path coordinate unlike that on the bucket surface, the

following calculations must be performed:

Fig. 22.5 Flow velocities and pressure head along the streamlines on the bucket surface (Wb, Hb),

and at the half height of the water sheet (W1/2)

Fig. 22.6 Velocity gradient in the carrier flow transverse to the streamlines on the bucket surface,

at the half height and on the free surface of the water sheet, respectively
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A streamline at a distance xh from the bucket surface is considered, with h as the
local height of the water sheet and x, varying from 0 to 1, as the percentage of h. The
flow velocity on the considered streamline is based on Eq. (22.1) and given by

Wx ¼ W0

r0
rx
: ð22:21Þ

The velocity gradient along the given streamline is calculated as

∂Wx

∂sx
¼ W0

∂
∂sb

r0
rx

� �
dsb
dsx

: ð22:22Þ

The chain rule of differentiation is here needed, because in the tabular calculation,

the stream-wise coordinate is uniquely given by sb along the solid surface of the

bucket. Thus, the finite change of Δsb in Table 22.1 can be directly applied. To

evaluate the derivative dsb/dsx, the relation of dsb=dsx ¼ rb=rx, according to

Fig. 22.7a, is applied. It then follows from the above equation with rx ¼ rb � xh
¼ rb � x rb � r0ð Þ that

∂Wx

∂sx
¼ W0

rb
rb � xh

∂
∂sb

r0=rb
1� x 1� r0=rbð Þ
� �

: ð22:23Þ

Finally, one obtains

∂Wx

∂sx
¼ W0

1� xð Þr3b
rb � xhð Þ3

∂
∂sb

r0
rb

� �
: ð22:24Þ

This is the equation from which the stream-wise velocity gradient at the given

height xh from the bucket surface can be calculated. The derivative on the right-

hand side of the equation can be computed in Table 22.1 by means of Δ(r0/rb) and
Δsb.

At the half height of the water sheet, the velocity gradient along the streamline is

obtained with x ¼ 0:5. It follows then from Eq. (22.24), with h ¼ rb � r0, that

∂W1=2

∂s1=2
¼ 4W0

1þ r0=rbð Þ3
∂
∂sb

r0
rb

� �
: ð22:25Þ

On the bucket surface, it follows, from Eq. (22.24) with x ¼ 0,

∂Wb

∂sb
¼ W0

∂
∂sb

r0
rb

� �
; ð22:26Þ

which represents an alternative way to the evaluation of dW=dsð Þb ¼ ΔW=Δsð Þb in
Table 22.1.
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Figure 22.7b shows four curves representing the velocity gradients along the

streamlines, respectively, on the bucket surface, at 0.5, 0.75, and 0.9 times the

height of the water sheet. The maximum magnitude of the stream-wise velocity

gradient is about ∂Wb=∂sb ¼ 150m=s=m on the bucket surface. This value will be

used to confirm the capability of particles in tracking the flow (see the next section).

The calculations in this section are based on the condition that the considered

flow in the Pelton bucket is only a function of spatial coordinates but independent of

the time. The method applied is actually the Eulerian method. In contrast, the

Lagrangian method will be applied in the next section to track the particle motion

in the flow.

sb

sx

Δsb

Δsx

rb

rx

(a) 

1  bucket surface 
2  height 0.5 h 
3  height 0.75 h 
4  height 0.9 h 

1 

2 
3 
4 

(b) 

Fig. 22.7 Stream-wise velocity gradient at different heights of the water sheet
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22.3.3 Particle Motion in the Bucket

The basic equation for the determination of the relative motion of particles in the

water sheet is Eq. (22.16). As it states, the calculation presumes knowledge of the

actual position ri of the particle in the flow. This can be obtained, when assuming

that the particle, for instance, is initially found on the free surface of the water sheet,

by

ri ¼ r0, i þ
Xi
j¼1

Δrj ¼ r0, i þ
Xi
j¼1

Wp, r, jΔtj: ð22:27Þ

In this equation, the radius of curvature r0,i of the free surface of the water sheet

changes with time, i.e., the coordinate sb along the bucket surface. The time and the

time interval Δt are referred to the particle motion. It should be mentioned that in

further tabular calculations, the time intervalΔt is generally not a constant and must

be calculated in each numerical step. This is because the numerical step in

Table 22.1 is initially determined by x and y values in the first and second column,

respectively. Note even the length step Δsb along the bucket surface is not constant.
For computing the time stepΔt, the relation ds=dsb ¼ r=rb, which was applied in

deriving Eq. (22.23) from Eq. (22.22) and is also illustrated in Fig. 22.7a, can be

again implemented, in the finite form of Δs=Δsb � r=rb, in the following calcula-

tion estimation:

Δti ¼ Δsi
Wf, i

� Δsb, i
Wf, i

ri
rb, i

: ð22:28Þ

With the aid of Eqs. (22.27) and (22.28), the radial velocity componentWp,r,i of the

particle can be calculated from Eq. (22.16). The corresponding radial traveling

length of the particle within the time interval Δt is then given byΔr ¼ Wp, rΔt. The
cumulative radial length ΣΔri has to be considered to be measured from its initial

position on the free surface of the water sheet. After a time ΣΔt and a stream-wise

traveling length ΣΔsb, the particle is found at a new position which is given by ΣΔr
beneath the free surface or at a distancehp ¼ h� ΣΔr from the bucket surface (with

h as the water-sheet height).

The procedure of the numerical computations is shown in Table 22.2, which, in

reality, is a continuation of the calculations in Table 22.1. The local flow velocity

Wf is computed by Eq. (22.1) with given r0 of the free surface and the particle

position rp.
Figure 22.8 shows the stream-wise and the radial velocity components of two

particles of different diameters (specific density ρp ¼ 2650kg=m3) as functions of

the coordinate sb along the bucket surface. The lower stream-wise velocity of the

large particle against that of the small particle is ascribed to the fact that the large
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particle penetrates toward the bucket surface rather more than the small particle and

toward the bucket surface the flow velocity decreases. The radial velocity compo-

nent of the large particle is remarkably larger than that of the small particle, mainly

because of the difference in the impulsive forces. With certain limitations, the radial

velocity component is linearly proportional to the particle size.

Table 22.2 Numerical solution and computational steps of the particle motion in the water sheet,

continuous calculation of Table 22.1

rp wf Δtp tp wp,r Δr ΣΔr τRe hp FI �FP �FD �Fadd

mm m/s

10�3

s

10�3

s m/s mm mm

10�3

s mm

10�6

N

10�6

N

10�6

N

10�6

N

9916 61.0 0.00 0.00 0.00 0.00 0.00 0.13

1927 61.0 0.23 0.23 0.08 0.01 0.01 0.10

1038 61.0 0.22 0.45 0.17 0.03 0.04 0.09

697 61.0 0.22 0.67 0.25 0.05 0.08 0.08

518 61.0 0.21 0.88 0.32 0.06 0.14 0.08

431 61.0 0.21 1.09 0.38 0.07 0.21 0.07

432 61.0 0.10 1.19 0.39 0.04 0.25 0.07 69.8 0.32 0.12 0.20 0.00

432 61.0 0.10 1.30 0.39 0.04 0.30 0.07 68.8 0.32 0.12 0.20 0.00

431 61.0 0.10 1.40 0.39 0.04 0.34 0.07 67.8 0.32 0.12 0.20 0.00

429 61.0 0.10 1.51 0.39 0.04 0.38 0.07 66.8 0.32 0.12 0.20 0.00

: : : : : : : : : : : : :

Fig. 22.8 Velocity components of the particles while passing through the bucket (particle initially

on the free surface of the water sheet)
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While the tangential velocity components of the particles are determined by the

flow velocity which changes with the streamlines, the radial velocity components

are governed by all external forces exerted on the particles. As the external forces,

according to Sect. 22.2, the impulsive force, the pressure force (buoyancy force),

the viscous drag force, and the force due to the added mass are considered. While

performing the tabular computations in Table 22.2, all these forces are also calcu-

lated for a given particle size, as shown in Fig. 22.9 for comparison.

As can be confirmed, the effect of the added mass, which is related to the

acceleration or deceleration of the particle relative to the carrier flow, is negligibly

small. Because the inertial force of the particle, according to Eq. (22.11), is 2ρp/ρf
times of the force due to the added mass after Eq. (22.10), the inertial force of the

particle basically is also negligibly small. This implies that the impulsive force is

mainly balanced by the pressure and viscous drag forces, as this can also be

confirmed in Fig. 22.9.

The position of the particle in the flow is calculated in Table 22.2 by the

parameter hp as the distance from the solid surface of the bucket. For the current

example of the Pelton turbine, three particles of different sizes and initially on the

free surface of the water sheet are considered. Figure 22.10 shows the computa-

tional results. All three particles have not reached the bucket surface.

Figure 22.11 shows the paths of three particles which are again of different sizes

but are initially found at the half height of the water sheet. Even in this case, no

particle will reach the bucket surface.

Fig. 22.9 Active forces exerted on the particle, including the impulsive (FI), viscous drag (FD)

and pressure forces (FP), as well as the negligible force due to the added mass (Fadd)

274 22 Sand Abrasion and Particle Motion in the Bucket Flow



22.3.4 Extended Example

The computational results that have been shown in Fig. 22.11 are related to the

operation of a Pelton turbine with a head H ¼ 650m, _Q ¼ 4m3=s, and a rotational

speed n ¼ 428:6rpm (see Sect. 22.3.1). The same Pelton turbine can also be applied

Fig. 22.11 Radial position of the sand particle being initially found at the half height of the water

sheet (relative velocity W0¼ 61 m/s)

Fig. 22.10 Radial position of the sand particle being initially found on the free surface of the

water sheet (relative velocity W0¼ 61 m/s)
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to another hydraulic head, for instance,H ¼ 1200m. The jet speed in this case takes

C0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p ¼ 153m=s. For keeping the same circumferential speed coefficient

km ¼ 0:46, the Pelton turbine has to run at a rotational speed of n ¼ 600rpm. The

relative velocity in the bucket flow is then calculated to be

W0 ¼ C0 � kmC0 ¼ 81m=s. For getting the same jet thickness of d0 ¼ 212mm,

the flow rate is then set to _Q ¼ 5:4m3=s.
For such an operation of the Pelton turbine and flow in the Pelton bucket, similar

computations (flow distributions and particle track in the flow) as in the forgoing

sections can be easily performed. Three particles of different sizes are again

assumed to be initially found at the half height of the water sheet. Figure 22.12

shows the computed particle tracks in the flow from the bucket inlet to exit. Against

the computational results presented in Fig. 22.11 for the flow velocityW0 ¼ 61m=s,
the particles considered in this extended example move only slightly more toward

the bucket surface. This indicates that all volume forces exerted on the particles

remain at about the same ratio and are therefore almost independent of the relative

flow velocity in the Pelton buckets.

22.4 Simplification of Calculations

In relation with the computational results which are shown in Fig. 22.9, it has been

confirmed that the effect of both the volume force due to added mass and the inertial

force are all negligibly small. This implies that by neglecting these two forces, the

calculations can be significantly simplified. In place of Eq. (22.14), then one has

Fig. 22.12 Radial position of the sand particle being initially found at the half height of the water

sheet (relative velocity W0¼ 81 m/s)
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Wp, r ¼ τ

1þ 0:15Re0:687p

W2
0 1� ρf

ρp

 !
r20
r3
: ð22:29Þ

For numerical solution, this equation is then written as

Wp, r, i ¼ τ

1þ 0:15Re0:687p

W2
0 1� ρf

ρp

 !
r20, i
r3i

: ð22:30Þ

In this equation, r0,i is still determined by the water-sheet flow. The calculations in

Table 22.1 remain the same. To calculate the radial position ri of the particle in the

flow, Eqs. (22.27) and (22.28) must be again considered and likewise implemented

in the numerical calculation in Table 22.2. This represents an easy way to numer-

ically track the particle motion in the water-sheet flow within the Pelton bucket.

A special case is encountered when the carrier flow is a quasi-stationary flow

within a bucket of circular form and additionally the water sheet is sufficiently thin

against the radius of curvature of the bucket surface ( h=rb � 1 ). Because of

r=r0 � 1, or equivalently r=rb � 1, Eq. (22.29) is simplified to

Wp, r ¼ τ

1þ 0:15Re0:687
W2

0 1� ρf
ρp

 !
1

rb
: ð22:31Þ

When the Stokes drag force for Rep < 1 is again applied [see Eq. (22.8)], then one

obtains

Wp, r � τW2
0 1� ρf

ρp

 !
1

rb
: ð22:32Þ

It simply represents a constant particle velocity in the carrier flow. Such a simpli-

fication was already applied by Blaser and B€uhler (2001). The radial velocity

component Wp,r is a function of the time constant τ which in turn is a function of

the particle size [see Eq. (22.13)]. When two particles of a size ratio dp2=dp1 ¼ 2

and, thus, of a ratio of the time constants τp2=τp1 ¼ 4 are considered, then the ratio

between two velocities should be of the same factor and equal to 4. This feature of

the particle flow in the Pelton buckets, however, could not be validated, when the

radial velocities in Fig. 22.8 for two particle sizes are considered. In Fig. 22.8, the

radial velocity of the particle dp ¼ 0:04 mm is approximately only twice the radial

velocity of the particle dp ¼ 0:02.

Obviously, the simplification of Eq. (22.32) is not applicable for flows in Pelton

buckets. First, the Stokes drag force coefficient is valid only for Re< 1. In the flow

within the Pelton buckets with sediment particles of common size, the Reynolds

number of the particles is much higher than 1. Second, the assumption h=rb � 1
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leading to Eq. (22.31) is neither fulfilled, especially, at the bucket bottom where the

maximum curvature of the bucket surface is measured. For the considered example,

as from Fig. 22.4b, a ratio of h=rb � 1=3 at sb ¼ 350mm can be read off.
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Chapter 23

Bucket Mechanical Strength

and Similarity Laws

23.1 Dynamic Tension in the Bucket Root Area

The buckets of a Pelton turbine are subject to strong dynamic and periodic loads of

the jet and therefore highly stressed possibly affecting their material strength. The

greatest material stress occurs in the bucket root area. When designing the bucket

geometry, great care must always be devoted to ensure that the maximum stress in

the bucket root area does not exceed a predetermined threshold value. The forces

acting on a bucket are the periodic jet impact force and the constant centrifugal

force due to the bucket’s own mass. In the prediction of the bucket strength, the

maximum jet impact force under full load must always be applied. As derived in

Sect. 2.2.3, given by Eq. (2.34), the largest jet impact force occurs for an exit angle

β2 ¼ 180�. It follows then that

Fbucket ¼ 2 _m cCjet � 1� kmð Þ2: ð23:1Þ

A direct estimation of the jet impact force on the rotating bucket is available from

Eq. (21.9) for φ ¼ 0:11 and km ¼ 0:47; it is given by

Fbucket

B2
¼ πgρ � φB 1� kmð Þ2H � 900H ð23:2Þ

and is directly proportional to the pressure head.

In a Pelton bucket, such a jet impact force causes a bending moment, which leads

to the greatest mechanical stresses within the bucket section at the bucket root.

Because of the complex bucket geometry, the stresses and the stress distribution in

the interested bucket section basically can be only accurately computed by means

of the finite element methods (FEMs). However, there is often the need to estimate

the maximum mechanical stress in the root area of the bucket in a simple way,

before a complex FEM computation is undertaken. To this end, the dynamic bucket
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load of Eq. (23.1) should first be considered. The force is assumed to be exerted

tangentially on the pitch circle with diameter Dm ¼ 2Rm. According to Fig. 23.1,

the considered cross section is assumed to have a distance L to the pitch circle of the

wheel, so that the bending moment at the interested section can be calculated as

M ¼ FbucketL ¼ 2 _m cCjet � 1� kmð Þ2L: ð23:3Þ

This bending moment causes tensile and compressive stresses in the considered

bucket section. To estimate such mechanical stresses, their linear distribution is

assumed within the cross section. This means, according to Fig. 23.2 with the given

coordinate system, that the normal stresses are linearly distributed perpendicular to

the neutral bending line B-B, viz.,

Rm

Fbucket
L 

Jet 

Fig. 23.1 Jet impact force

on a Pelton bucket

B B

x 

y 

b 
y1

y2

s 
σ 

−σ 

Fig. 23.2 Bucket cross

section for calculating the

mechanical stresses
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σ ¼ a y� bð Þ: ð23:4Þ

The distance of the neutral bending line from the reference x-axis is denoted by

b which remains for the time being unknown. Also unknown is the constant a in the
above equation. It is comprehensible that above the bending axis (y > b), tensile
stresses are acting, and below it (y < b) compressive stresses are present. This stress

distribution applies only if the stresses are not yet superimposed by the static stress

from the centrifugal force due to the bucket’s own mass.

For determining the stress distribution in the bucket cross section, i.e., to

determine the unknown constants a and b in Eq. (23.4), the cross section under

study is divided into N vertical strips of constant width s. The positions of the lower
and upper edges of each strip are denoted by y1 and y2, respectively. Since only the

bending moment at the observed cross section is present, the sum of all tensile and

compressive stresses must be equal to zero. The corresponding condition is thus

formulated by

XN

i¼1

ðy2

y1

σ � s � dy
" #

i

¼ a � s
XN

i¼1

ðy2

y1

y� bð Þidy
" #

¼ 0: ð23:5Þ

After performing the integration in this equation, one obtains

XN

i¼1

y2 � bð Þ2i � y1 � bð Þ2i
h i

¼ 0: ð23:6Þ

The unknown constant b is then solved to be

b ¼ 1

2

XN

i¼1

y22 � y21
� �

i

XN

i¼1

y2 � y1ð Þi
: ð23:7Þ

The neutral bending line B-B has been thus fixed.

The determination of the unknown constant a in Eq. (23.4) arises from the

condition that the bending moment obtained from the integration over the bucket

section must be equal to the bending moment from Eq. (23.3). The corresponding

equilibrium is given by

XN

i¼1

ðy2

y1

σ � s y� bð Þ � dy
" #

i

¼ M: ð23:8Þ

The stress distribution of Eq. (23.4) is used. After performing the integration in the

above equation, one obtains the determining equation for the unknown constant a:
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a
1

3
s
XN

i¼1

y2 � bð Þ3i � y1 � bð Þ3i
h i

¼ M: ð23:9Þ

The expression on the left side, without the constant a, represents the area moment

of inertia J of the considered section area to the reference axis B-B in Fig. 23.2.

Thus, Eq. (23.9) takes the form

aJ ¼ M: ð23:10Þ

The constant a is, thus, also obtainable.

The greatest tensile and compressive stresses in the observed bucket section

occur where the maximum and minimum y values among all elemental strips are

found. Accordingly, from Eq. (23.4), one follows

σmax, tensile ¼ a ymax � bð Þ; ð23:11Þ
σmax, compr ¼ a ymin � bð Þ: ð23:12Þ

Since these stresses are always found on the free surface of the bucket, where no

shear stress exists, they may be regarded as the main stresses. They represent, thus,

the maximum amplitude of the dynamic alternation of the stresses caused by the jet

impingement.

For estimating the bucket strength, the constant centrifugal force due to the

rotation of the bucket’s own mass must be additionally taken into account. To this

end the bucket massmbucket is assumed to be approximately lying on the pitch circle

(R ¼ Dm=2) or just below it at R ¼ Dm � 0:2Bð Þ=2. Thus, the static centrifugal

force is calculated to be

FB,mass ¼ mbucketRω
2: ð23:13Þ

The mass of a Pelton bucket can be calculated when the bucket design is put

forward in detail. However, for estimating the bucket mass, it can be assumed

that the volume of the material of a bucket is about a tenth of the volume which is

given by B3 with B as the bucket inner width. The mass of a Pelton bucket is then

estimated as

mbucket ¼ 0:1 � ρB3; ð23:14Þ

where ρ is the specific density of the bucket material, e.g., for steel,

ρ � 7850kg=m3.

Over the considered bucket section (A), the tensile stress, resulting from the

centrifugal force, is constant, i.e., of uniform distribution:
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σB,mass ¼ FB,mass

A
: ð23:15Þ

This mechanical stress should be added to Eq. (23.11) in order to obtain the

maximum tensile stress in the bucket section at the bucket root. The composition

of both stresses (σmax,tensile and σB,mass) has a qualitative form as shown in Fig. 23.3.

Turbine manufacturers usually require values of both the average stress σm and the

dynamic stress amplitude σa. These are calculated by

σa ¼ σmax, tensile

2
ð23:16Þ

and

σm ¼ σa þ σB,mass: ð23:17Þ

23.2 Similarity Laws in the Bucket Mechanical Loading

The static and dynamic loadings of Pelton buckets are basic data for the determi-

nation of the mechanical stress states in the considered buckets. To calculate such

mechanical stresses, as revealed by the above considerations, only the bucket

geometry and the jet impact force are relevant. Although each Pelton turbine is

specifically designed with respect to the wheel geometry and the specific speed, the

bucket geometries are always more or less similar. In other words, the ratios of the

bucket width, length, and depth do not significantly vary from case to case. This

property in the bucket geometry can be exploited to considerably simplify the

mechanical stress calculations. When, for instance, the mechanical stress state

under a given condition is known, then the stress state of Pelton buckets of other

dimensions and under any other hydraulic loads can be estimated straightforwardly.

This calculation method is based on the similarity laws in the mechanical loadings,

as presented below.

Two Pelton wheels with buckets of similar geometries but different bucket sizes

(B1 and B2) are considered. From Eqs. (23.9) and (23.10), it is known that the area

t 

σa

σB,mass

σm

σ

σ m
ax

, t
en

si
le

Fig. 23.3 Schematic

drawing of the static and

dynamic stresses in the

bucket section at the

bucket root
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moment of inertia J has a dimension (m4). This mechanical property directly leads

to

J2
J1

¼ B4
2

B4
1

: ð23:18Þ

On the other hand, one obtains from Eq. (23.3) with L2=L1 ¼ B2=B1 the ratio of the

bending moments as

M2

M1

¼ _m c, 2Cjet, 2 1� km,2ð Þ2B2

_m c, 1Cjet, 1 1� km,1ð Þ2B1

: ð23:19Þ

From Eq. (23.10) the ratio a2/a1 is formed. Taking account of Eqs. (23.18) and

(23.19) yields

a2
a1

¼ M2

M1

J1
J2

¼ B3
1

B3
2

_m c,2Cjet, 2 1� km,2ð Þ2
_m c,1Cjet, 1 1� km,1ð Þ2 : ð23:20Þ

Accordingly, it follows from Eq. (23.11) with
ymax�bð Þ2
ymax�bð Þ1 ¼

B2

B1
that

σmax,2

σmax,1
¼ B2

1

B2
2

_m c, 2Cjet, 2 1� km,2ð Þ2
_m c, 1Cjet, 1 1� km,1ð Þ2 : ð23:21Þ

Starting with the mechanical stress state for a reference bucket (index 1), the stress

state for another geometrically similar bucket (index 2) can directly be calculated.

The operation conditions, including the pressure head and the peripheral speed

coefficient, do not need to be the same. Compared with Eq. (23.1), it is evident that

Eq. (23.21) is actually about the ratio of the jet impact forces, given by

σmax,2

σmax,1
¼ B2

1

B2
2

Fbucket, 2

Fbucket, 1
: ð23:22Þ

This relation is called the first law of mechanical similarities. Its applicability can

be easily verified by carrying out the FEM calculations on two similar Pelton

buckets of different sizes. When the jet impact forces relative to the square of the

bucket width are kept to be the same, then equal maximum stresses must arise at

both buckets. As an example, corresponding calculations have been performed as

shown in Fig. 23.4 for comparison. A scale factor B2=B1 ¼ 2:6 between two CAD

design models of the Pelton wheel was applied. The almost exactly equal stress

distributions in the notch area of the two buckets confirm with convincing satisfac-

tion the reliability of the similarity law, i.e., Eq. (23.22).

Equation (23.21) is further simplified for special operation conditions, as con-

sidered below for two cases.
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Case 1

km,2 ¼ km,1 and φB,2 ¼ φB,1:

Both turbines operate with the same peripheral speed coefficient and the same

bucket volumetric load. The operation condition φB,2 ¼ φB,1 means, according to

Eq. (2.21) with d0 as the jet diameter, the equality of d0,2=d0,1 ¼ B2=B1. As a result

the ratio of the mass flow is calculated to be

_m c,2

_m c,1
¼ π=4 � d20,2Cjet, 2

π=4 � d20,1Cjet, 1

¼ B2
2Cjet, 2

B2
1Cjet, 1

: ð23:23Þ

Then, Eq. (23.21) with Cjet ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
is simplified to

σmax,2

σmax,1
¼ H2

H1

: ð23:24Þ

This relation is called the second law of mechanical similarity. It shows that the
maximum stress in a bucket cross section is primarily linearly dependent on the

(a) (b) 

(c) 

Fig. 23.4 (a–c) Stress state and distributions on the bucket surface in the root area obtained with

FEM calculations. Comparison between two models of similar geometries and different sizes

under similar mechanical loads (Fbucket=B
2 ¼ const). (a) Original model. (b) Model of reduced size

by a scale factor 2.6. (c) View of the calculation area
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pressure head. At Pelton turbines with high heads (up to 1800 m), special attention

must be paid to the material strength of the buckets.

Case 2

km ¼ const, H ¼ const, and B ¼ const:
When a Pelton turbine operates under the constant-pressure head, then for

variable flow rate, Eq. (23.21) implies

σmax,2

σmax,1
¼ _m c,2

_m c,1
: ð23:25Þ

Under consideration of _m c ¼ ρW1
4
πd20

ffiffiffiffiffiffiffiffiffi
2gH

p
, as well as H1 ¼ H2 and B ¼ const, it

follows further that

σmax,2

σmax,1
¼ d20,2

d20,1
¼ φB,2

φB,1

: ð23:26Þ

This relation is called the third law of mechanical similarity. It links the stress in the
bucket section directly to the hydraulic load of the buckets.

The derived similarity laws have been demonstrated for estimating the maxi-

mum stresses occurring at the outside edge (ymax) of the cross section of a bucket. In

fact, they also apply to calculate the mechanical stresses at any proportional points

in the bucket cross section.
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Appendix A: Nomenclature

Symbols

Symbol Unit Meaning

A m2 Area

A0 m2 Cross-sectional area of the jet

AD0 m2 Aperture area of the injector nozzle

AD m2 Opening area of the injector nozzle

b m Width of eroded main splitter of the bucket

B m Bucket inner width

C0 m/s Jet speed

CRe Reynolds number ratio

CFr Froude number ratio

cf Friction coefficient

cw, cw2 Friction numbers

cp Overpressure coefficient

d m Water-sheet width in the bucket

d0 m Jet diameter

d2 m Water-sheet width at the bucket exit

D0 m Aperture diameter of the injector nozzle

Da m Outside diameter of the Pelton wheel

Db m Inner diameter of the Pelton wheel

Dc m Diameter of the bucket cutout edge circle

Dm m Pitch circle diameter of the Pelton wheel

DN m Injector needle diameter

DP m Relief piston diameter

Ds m Tip circle diameter (main splitter)

e J/kg Specific energy, specific work

_e W/kg Specific power

E m2/s2 Energy invariance

(continued)
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Symbol Unit Meaning

_E J/s Energy flow rate

F N Force

Fbucket N Jet impact force at a Pelton bucket

Fjet N Jet impact force at 2λ Pelton buckets (one jet)

Fwheel N Jet impact force at a Pelton wheel (jet number Zjet)

Fshock N Shock load force at bucket entry

Fct N/kg Specific centrifugal force

FB, mass N Centrifugal force caused by the mass of the bucket

FCo N/kg Specific Coriolis force

g m/s2 Gravitational acceleration

h m Water-sheet height in the bucket

h2 m Bucket depth, measured at the bucket exit

hb m Bucket depth, measured at the bucket bottom

hs m Jet layer distance to the wheel axis

hv m Head loss in the injector flow

H m Head

I N Momentum flow rate

J kgm2 Moment of inertia

J m4 Area moment of inertia

km Peripheral speed coefficient

km,cr Critical peripheral speed coefficient

km,N Nominal peripheral speed coefficient

kR0 Runaway speed coefficient

_m c kg/s Mass flow in the stationary coordinate system

_m w kg/s Mass flow in the rotating system

M Nm Torque

n 1/s Rotational speed

ncr 1/s Critical speed

nq 1/s Specific speed

nR0 1/s Frictionless runaway speed

nR 1/s Runaway speed

N Number of bucket

p Pa Static pressure

P W Power

_Q m3/s Flow rate in a Pelton turbine

_Q jet
m3/s Flow rate of a jet from an injector

ra m Base circle radius of the bucket trailing edge

rb m Curvature radius of the bucket inner surface

rs m Base circle radius of the bucket main splitter

r, R m Radial coordinate

R m Radius

RQ Reaction degree of the jet

s m Needle stroke

(continued)
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Symbol Unit Meaning

s m Coordinate along the flow path

s1 m Jet cutting line length

s2 m Jet length

S m Length of the flow path from bucket entry to exit

t s Time

U m/s Peripheral speed

Um m/s Circumferential speed of the pitch circle

W m/s Relative flow velocity

x, y, z m Coordinate

Y m2/s2 Specific work

Zjet Number of injectors (jets)

Symbol Unit Meaning

α � Bucket position angle

αD � Contraction angle of the injector nozzle

αN � Needle vertex angle

αs � Bucket distribution angle

β � Relative flow angle

γ � Angle in the velocity plan

ε � Wedge angle of the main splitter

εb � Geometric angle at the bucket cutout

η Ordinate in ξ�η coordinate system

ηh Hydraulic efficiency

ηm Mechanical efficiency

ηM Efficiency of the model turbine

ηP Efficiency of the prototype turbine

ηCo Partial efficiency from the Coriolis force

ηct Partial efficiency from the centrifugal force

ηd Partial efficiency from direct friction in the bucket

ηshock Partial efficiency from the shock load force

κ Time factor

λ Multi-bucket factor

μ Friction coefficient in the hydraulic plain bearing

μ kg/ms Dynamic viscosity

ν m2/s Kinematic viscosity

ξ Abscissa in ξ�η coordinate system

ρ kg/m3 Specific density

σ Pa Normal stress

τ Pa Shear stress

τ Position angle of the water particle in the bucket

τ1, τ2 s Time constant

φ Angle

φB Bucket volumetric load

(continued)
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Symbol Unit Meaning

φDo Discharge coefficient with the reference area AD0

φD Discharge coefficient with the reference area AD

ψ Pressure coefficient

ω 1/s Angular speed

Δηdiss Efficiency loss due to the hydraulic dissipation

Δηswirl Swirling loss

Δηwi Friction and windage losses

Δηbe Bearing loss

Δημ Frictional hydraulic loss

Indices

0 Ambient pressure

1 Entry

2 Exit

b Bucket

be Bearing friction

Co Coriolis force

ct Centrifugal force

d Direct friction

diss Dissipation

D Viscous Drag force

F Fluid

h Hydraulic

I Impulsive force

m Mechanic/mean value

max Maximum

n Normal direction of the surface

N Nominal operation (speed, flow rate, head)

N Needle

p Particle

P Pressure and Pressure force

r Radial

R Runaway speed

t Tangential

tot Total

wi Friction and windage

x, y, z Coordinates
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Appendix B: Definition of Derived Parameters

Parameter terms Definition References

Jet speed C0 ¼
ffiffiffiffiffiffiffiffiffi
2gH

p
Eq. (2.1)

Peripheral speed coefficient km ¼ Um

C0
¼ nπDm

C0
Eq. (2.18)

Discharge coefficient φD0 ¼
_Q D

π=4�D2
0C0

Eq. (3.7)

Bucket volumetric load φB ¼ _Q D

π=4�B2C0
¼ d0

B

� �2 Eq. (2.21)

Specific speed
nq ¼ n

ffiffiffiffiffiffi
_Q D

p
H3=4 ¼ 333ny

Eq. (2.22)

Overpressure coefficient cp ¼ pb
1
2
ρC2

0

¼ 2 1� kmð Þ2 h
rb

Eq. (7.14)

Force coefficient kforce ¼ Fbucket

ρν2
Eq. (21.12)

Reaction degree of the jet RQ ¼ N
π 1� n

nR0

� �
αo

Eq. (17.7)

Runaway speed coefficient kR0 ¼ αo
tan αo

Eq. (17.1)

Max. runaway speed nR0 ¼ kR0
nN

km,Be
Eq. (17.5)

Froude number Fr ¼
ffiffiffiffiffiffi
2gH
gB

q
Eq. (21.1)

Reynolds number
Re ¼

ffiffiffiffiffiffi
2gH

p
�B

ν

Eq. (21.2)

Windage number
Wi ¼ g1:5

1þ2nqð Þ5
n2q

Eq. (13.10)
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Appendix C: Specific Speed and Application

in Pelton Turbines

1. Basic Definitions and Equivalent Representations (1/s)

Basic definition Equivalent 1 Equivalent 2

nq ¼ n

ffiffiffiffiffiffi
_Q D

p
H3=4

Eq. (2.22)

nq ¼ 2:63km
d0
Dm

Eq. (2.26)

nq ¼ 2:63km
ffiffiffiffiffiffi
φB

p B
Dm

Eq. (2.27)

Because the specific speed clearly reflects the geometric shape of Pelton wheels,

they should always be calculated in the basic definition with the nominal flow rate.

Correspondingly, both the jet diameter d0 and the bucket volumetric load φB in the

equivalent expressions always refer to the nominal operation point.

2. Application for km ¼ 0:47, φB ¼ 0:11 and Dc � Dm ¼ 0:85B

Application Calculations References

Jet diameter d0 d0
Dm

¼ 0:81nq Eq. (2.26)

Bucket width B B
Dm

¼ 2:44nq Eq. (2.27)

Bucket position a cos αa ¼ 1�0:81nq
1þ2nq

Eq. (5.10)

Bucket position o cos αo ¼ 1
1þ2nq

Eq. (2.30)

Bucket position b cos αb ¼ 1þ0:81nq
1þ2nq

Eq. (5.12)

Cutout edge Dc
Dc

Dm
¼ 1þ 2nq Eq. (2.31)

Speed Uc
Uc

C0
¼ km 1þ 2nq

� �
Eq. (2.33)

Max. peripheral speed coefficient km,max ¼ 0:5� 0:38nq Eq. (8.34)

Critical peripheral speed coefficient km,cr ¼ 1
2

arccos 1
1þ2nq

� π
N

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nq 1þnqð Þp Eq. (16.7)

Energy invariance Eo

C2
0

¼ 1� 2km Eq. (6.26)

Energy invariance Eb

C2
0

¼ 1� 2kmð Þ � 0:76nq Eq. (6.28)

(continued)
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Application Calculations References

Runaway speed coefficient
kR0 ¼ 1

2

arccos 1
1þ2nqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nq 1þnqð Þp
kR0 � 1� 1:15nq

Eq. (17.2)

Eq. (17.3)

Jet piece length s1 s1
Dm

¼ 0:46
ffiffiffiffiffiffiffiffi
nq

1þnq

q
Eq. (D.10)

Jet piece length ratio s1
s2
� 0:5

1þnq
Eq. (D.14)

Bucket number (theoretical) N ¼ π
km

2λ�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq 1þnqð Þp Eq. (5.27)

Bucket number (practical) N ¼ 15þ 1:3kmnq � 15þ 0:62
nq

Eq. (5.29)

Reference angle for the bucket rear side φa ¼ 1500n2q � 610nq þ 63 Eq. (5.45)

Windage number
Wi ¼ g1:5

1þ2nqð Þ5
n2q

Eq. (13.10)
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Appendix D: Specification of the Jet Piece

for a Bucket

To calculate the interaction between the jet and the rotating buckets, it is necessary

to quantify the jet piece that enters a single bucket. Such a jet piece is outlined in

Fig. D1 by abcd. For simplicity, the bucket is assumed to have a plane cutout edge

on the circle of radius Rc. This plane edge begins (ta ¼ 0) to cut off the jet on the jet

upper side at the point a. The corresponding bucket position is given by angle αa
which is calculated from

cos αa ¼ Rm � d0=2

Rc

: ðD:1Þ

To calculate the intersection line ab, a temporal local (x, y) coordinate system is set

at the point a. At time t > 0, the bucket cutout edge is found within the jet and

receives the water particle which lays on the intersection line ab at the time ta ¼ 0.

By considering this, the following relations are established:

xþ Rc sin αa � sin αtð Þ ¼ C0 � t; ðD:2Þ
y ¼ Rc cos αt � cos αað Þ; ðD:3Þ

with αt ¼ αa � ωt. The jet speed is denoted by C0.

Eliminating the time t from these two equations yields

y

Rc

þ cos αa

� �2

þ x

Rc

þ sin αa � C0

ωRc

αa þ C0

ωRc

arccos
y

Rc

þ cos αa

� �	 
2
¼ 1: ðD:4Þ

This equation basically describes the intersection line ab in the form of the function

y ¼ f xð Þ. To simplify this equation, the relation cos αa ¼ Rm � d0=2ð Þ=Rc is

applied. Because of
d0=2
Rc

� Rm

Rc
and

y�d0=2j j
Rc

� Rm

Rc
, Eq. (D.4) is finally linearized to
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x

Rc

¼ C0

ωRc

� Rm

Rc

� �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Rm=Rcð Þ2
q y

Rc

; ðD:5Þ

or with km ¼ ωRm=C0

x

Rm

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc=Rmð Þ2 � 1

q 1

km
� 1

� �
y

Rm

: ðD:6Þ

For y ¼ d0, one has x ¼ s1 according to Fig. D1. It then follows from Eq. (D.6)

s1
Rm

¼ d0
Rm

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rc=Rmð Þ2 � 1

q 1

km
� 1

� �
: ðD:7Þ

The jet piece length s2 is calculated from the condition

Δt ¼ s2
C0

¼ 2π

ω � N ; ðD:8Þ

so that

s2
Rm

¼ 1

km
� 2π
N

; ðD:9Þ

where N is the number of buckets of the Pelton wheel.

o1

Rc

C0t

x

s2

ta=0

b

c

d

Rm

d 0

a

t

a
y

s1

o2

ω

α

α

Fig. D1 Determination of the jet piece abcd
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Taking account of Eqs. (2.26) and (2.31) and for the common operation setting,

km ¼ 0:47, the partial length of the jet, given in Eq. (D.7), is also shown as a

function of the specific speed

s1
Dm

¼ 0:46

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq

1þ nq
:

r
ðD:10Þ

The aspect ratio s1/s2 is calculated from Eqs. (D.9) and (D.10) to

s1
s2

¼ 0:068N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq

1þ nq
:

r
ðD:11Þ

In Sects. 5.4 and 5.5, the number of buckets has been derived in accordance with

Eq. (5.27) as functions of the specific speed as follows:

N ¼ π

km

2λ� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nq 1þ nq
� �q : ðD:12Þ

Here, λ is called the multi-bucket factor; see Sect. 5.4 and 5.5.

This last equation is inserted into Eq. (D.11). For km � 0:47, the result is

s1
s2

¼ 0:45 2λ� 1ð Þ
1þ nq

ðD:13Þ

and for λ � 1:05

s1
s2

� 0:5

1þ nq
: ðD:14Þ

In general, the value of the length ratio s1/s2 lies between 0.43 and 0.46.
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Appendix E: Specification of the Bucket Positions

In Appendix D, the jet piece abcd that enters a single bucket has been calculated. To
assess the interaction between the jet and the rotating buckets, it is further signif-

icant to calculate the corresponding position angles of the bucket for each water

particle in the depicted jet piece when entering the bucket. According to Fig. E1, the

bucket begins (t ¼ 0) at the position angle αa to cut off the jet on the upper surface at
point a. Subsequently, the particle at point b on the lower side of the jet reaches the
bucket at the bucket position angle αb (not shown in the figure). These two special

bucket positions are directly obtained from Fig. E1 as

cos αa ¼ Rm � d0=2

Rc

; ðE:1Þ

cos αb ¼ Rm þ d0=2

Rc

: ðE:2Þ

The water particle at the middle point o1 on the intersection line ab reaches the

bucket at the bucket position angle αo1, which is given by

cos αo1 ¼ Rm

Rc

: ðE:3Þ

The time at which any other water particle in the jet reaches the bucket can be

calculated accordingly. To mark the bucket entry, the connection line between the

tip of the main splitter and the axis of the Pelton wheel according to Fig. E1 is

considered. While this is somewhat arbitrary, it can be regarded as close to reality.

In addition, this agreement considerably simplifies the further calculations.

A water particle at an arbitrary point p(x, y) in the jet reaches the bucket at the

time t. The corresponding bucket position is given by αt ¼ αa � ωt. On the basis of
the distance relations shown in Fig. E1, the following relation in the implicit form

of αt ¼ f x; yð Þ is obtained:
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C0t ¼ xþ Rm � d0
2

� �
� tan αa � Rm � d0

2
þ y

� �
� tan αt: ðE:4Þ

Considering km ¼ ωRm=C0 and αa � αt ¼ ωt, the above equation is again

represented as

x

Rm

¼ αa � αt
km

� 1� d0
2Rm

� �
� tan αa þ 1� d0

2Rm

þ y

Rm

� �
� tan αt: ðE:5Þ

Obviously, for a water particle which is initially given at p(x, y) in the jet, the

corresponding bucket position αt for receiving this particle has to be iteratively

calculated. For two water particles on the jet axis (y ¼ d0=2), respectively, at the
points o1 and o2, the corresponding bucket position angles are calculated from

s1=2

Rm

¼ αa � αo1
km

� 1� d0
2Rm

� �
� tan αa þ tan αo1 ðE:6Þ

and

s1=2þ s2
Rm

¼ αa � αo2
km

� 1� d0
2Rm

� �
� tan αa þ tan αo2: ðE:7Þ

From these two equations, one obtains

s2
Rm

¼ αo1 � αo2
km

þ tan αo2 � tan αo1: ðE:8Þ

With the jet length s2/Rm, which was calculated in Appendix D by Eq. (D.9),

Eq. (E.8) implies

o1

Rc

C0t 

x

ω

s2

ta=0 

b 

c 

d 

Rm

d 0

αa

αt

a

y 

s1

o2
p 

Fig. E1 Jet piece abcdwith
respective bucket positions
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αo1 � αo2 ¼ 2π

N
þ km tan αo1 � tan αo2ð Þ: ðE:9Þ

With this angle difference, the so-called coincidence condition for describing the

interaction between the jet and the rotating bucket was derived (see Sect. 5.4).

Since the bucket position angle αo2 normally tends to zero, the approximation

tan αo2 � αo2 can be applied. Thus, from Eq. (E.9) one obtains

αo2 ¼ αo1 � km tan αo1 � 2π=N

1� km
: ðE:10Þ

The angle difference αo1 � αo2 is then given by

αo1 � αo2 ¼ km tan αo1 � αo1ð Þ þ 2π=N

1� km
: ðE:11Þ

The bucket position angles αc and αd, at which the initial water particles at c and

d on the jet will reach the bucket, are obtained as

αc ¼ αa � αa � αcð Þ ¼ αa � αo1 � αo2ð Þ ðE:12Þ

and

αd ¼ αb � αb � αdð Þ ¼ αb � αo1 � αo2ð Þ: ðE:13Þ

Here, the approximation αa � αcð Þ � αb � αdð Þ � αo1 � αo2ð Þ was applied. The

angle difference αo1 � αo2ð Þ can be obtained from Eq. (E.11).
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Appendix F: Particle Motion Along

the Streamlines in the Pelton Bucket

The purpose of this appendix is to demonstrate that the difference in the stream-

wise, i.e., tangential velocity components between the water flow and the particles

is generally negligibly small and, thus, insignificant for small particles. According

to Fig. F1, the flow in the first part of the bucket is decelerated because of the

increase of the curvature of all streamlines and the resulted pressure gradient

towards the bucket surface. For such a deceleration flow, it is generally required

to known, how far a spherical sand particle could track the flow. For this purpose,

the stream-wise components of all external forces exerted on the particles must be

taken into account. These are Stokes drag force, the pressure force, and the force

due to added mass.

1. Viscous Drag force:

With the difference in the tangential velocity componentWp, t �Wf between the

particle and the flow, the viscous drag force exerted on the particle of diameter dp
is computed as

FD, t ¼ �1

4
πd2pcD

1

2
ρf Wp, t �Wf

� �
Wp, t �Wf

�� ��: ðF:1Þ

For a great variation range of Reynolds number (1<Re< 1000), the viscous

drag coefficient can be approximated by

cD ¼ 24

Rep
1þ 0:15Re0:687p

� �
: ðF:2Þ

The Reynolds number is calculated with the velocity difference Wp, t �Wf

�� ��.
With respect to Wp, t �Wf

� �
> 0 in the decelerated flow, Eq. (F.1) is written as
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FD, t ¼ � 3πρf
Rep

d2p 1þ 0:15Re0:687p

� �
Wp, t �Wf

� �2
: ðF:3Þ

2. Pressure force (buoyancy force):

The pressure force exerted on the particle in the direction along the streamlines

is related with the velocity gradient and given by

FP, t ¼ �1

6
πd3p

dp

ds
¼ 1

6
πd3pρfWf

dWf

ds
: ðF:4Þ

3. Force due to the added mass

The force due to the added mass is given by

Fadd, t ¼ �1

2

1

6
πd3pρf

d Wp, t �Wf

� �
dt

: ðF:5Þ

The motion of the particle in the flow is described by Newton’s second law. One
obtains

ρp
1

6
πd3p

dWp, t

dt
¼ FP, t þ FD, t þ Fadd, t: ðF:6Þ

Inserting the respective force expressions and with ds=dt ¼ Wp � Wf we obtain

dWp, t

ds
¼ ρf

ρp

dWf

ds
� 1þ 0:15Re0:687p

τ

Wp, t

Wf

� 1

� �
� 1

2

ρf
ρp

d Wp, t �Wf

� �
ds

: ðF:7Þ

In this equation, the time constant is defined by

τ ¼ ρpd
2
p

18μ
: ðF:8Þ

Free surface with W0=const 

Deceleration flow 

s 

Acceleration flow 

Fig. F1 Water-sheet flow

in the Pelton bucket
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Due to the flow deceleration in the first half of the bucket, the particle in the flow

gets less decelerated than the carrier flow. The flow deceleration in the current case

is comparable with the flow in a diffuser. Equation (F.7) is thus equal to the general

differential equation for the particle motion in the diffuser or nozzle flow, as given

in Zhang (2010). The Reynolds number in Eq. (F.7) may be considered to be quasi-

constant. The corresponding solution of Eq. (F.7) has been given in Zhang (2010).

The maximum possible ratio of velocities between the particle and the carrier fluid

is accordingly found as

Wp, t

Wf

� �
max

¼ 1� 1� ρf
ρp

 !
τ

1þ 0:15Re0:687p

dWf

ds
: ðF:9Þ

In Sect. 22.3.2, the flow distribution in a concrete Pelton turbine has been analyzed.

As can be read out from Fig. 22.7b, the maximum velocity deceleration along the

bucket surface is about �150 m=s=mð Þ. The velocity ratio given in the above

equation is additionally a function of the density ratio ρp/ρf and the particle size

which is involved in both the time constant τ and the Reynolds number. For a

quantitative estimation of the particle behaviors in the decelerated flow, a particle

of a diameter dp ¼ 0:04mm and the density ρp ¼ 2650kg=m3 for instance is

considered. When the flow velocity is assumed to beWf ¼ 60m=s and the particle

velocity is 1% more, then the Reynolds number takes Rep ¼ 24. For the velocity

gradient dWf=ds ¼ �150m=s=m, one obtains from Eq. (F.9) Wp, t=Wf

� �
max

¼ 1:01.

The particle velocity is only slightly higher than the fluid velocity. The particle can

thus be considered to be able to well follow the flows along the streamlines.

Figure F2, based on Eq. (F.9), shows more about the tracing capability of the

particle along the streamlines, as the functions of both the deceleration rate of the

Fig. F2 Maximum velocity ratio of particles to the flow velocity in the water sheet in a Pelton

bucket as a function of the velocity deceleration along the streamlines
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flow � dWf=dsð Þ and the particle size. The Reynolds number in Eq. (F.9) is

calculated each time from the calculated velocity Wf by means of the iterative

algorithms. In general, it can be confirmed that the particles in the water sheet in the

Pelton bucket do well follow the stream-wise flow. The difference in the stream-

wise velocity components between the flow and the particles can thus be neglected.

With respect to the small ratio of the radial to the stream-wise components of the

particle velocity (see Fig. 22.8), the curvature of the particle path can be approx-

imated to be equal to the curvature of the streamlines of the carrier flow.

Reference

Zhang, Zh. (2010). LDA Application Methods. Berlin, Heidelberg: Springer.
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