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Abstract This chapter presents the kinematic analysis of a novel 10-degrees-of-
freedom serial-parallel redundant robot. The robot is designed for climbing and
exploring 3D truss structures to execute maintenance and inspection tasks. First, the
forward kinematic problem of the robot is solved. Then, since the general inverse
kinematic problem is complex due to the kinematic redundancy, a simplified problem
which assumes planar and symmetric postures is solved. Using a developed simulator,
it is shown that these planar and symmetric postures are sufficient to execute many
typical movements necessary to explore 3D structures, such as transitions between
different beams or between different faces of a beam. Finally, the workspace of the
robot when it adopts the planar and symmetric postures is analyzed for different
designs, demonstrating the flexibility of these postures.
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1 Introduction

Many human-made vertical structures require periodic maintenance and inspection
tasks. For example, the glass facades of skyscrapers must be cleaned, and the welded
unions in the metallic skeletons of the buildings must be checked. Tasks like these
are dangerous for human operators, who must work in environments difficult to
access and are exposed to risks such as falling from height, contamination (e.g.
inspections in nuclear or chemical facilities) or electrocution (e.g. maintenance of
power transmission lines). To eliminate these risks, during the last two decades many
researchers have been investigating the possibility of automating the execution of
these tasks using climbing robots. Reference [11] presents an exhaustive analysis of
the applications and design of climbing robots, as well as a comprehensive review
of the locomotion and adhesion technologies.

Three-dimensional (3D) truss structures are present in many vertical structures
such as bridges, towers and skeletons of buildings. These structures are typically
constituted by a network of beams connected at structural nodes, and a high degree of
mobility is required to explore them. Climbing robots for 3D trusses can be classified
into two main types [13]: continuous-motion and step-by-step robots. Continuous-
motion robots are faster, use wheels, and employ magnetism or friction to adhere
to the structure [3, 14]. However, they usually have more difficulties to negotiate
obstacles and their wheels may slip. Step-by-step robots have two grippers connected
by a kinematic chain which has some degrees of freedom (DOF). Their name reflects
their locomotion method: in each motion cycle, one gripper is fixed to the structure,
whereas the kinematic chain moves the other gripper to the next attachment point of
the structure, where it will be fixed. Then, the previously fixed gripper is released and
a new motion cycle begins. During each motion cycle, these robots are equivalent
to typical robot manipulators. Hence, they have a higher mobility that facilitates the
avoidance of obstacles, but they are heavier, slower, and more complex.

The architecture of the kinematic chain of step-by-step robots can be serial, par-
allel, or hybrid. Serial architectures have larger workspaces than parallel ones, but
they are less rigid and have a limited payload. The serial architectures have been
the most explored ones in step-by-step climbing robots, with many different designs
proposed by different authors. For example, [5] presents a 6-DOF robot to explore
3D metallic structures. Since the robot is powered by a battery, the movements are
optimized to reduce the energy consumption and increase its autonomy. Another 4-
DOF serial climbing robot is presented in [13]. Other authors propose robots inspired
by inchworms, with 5 and 8 DOF [8, 12]. Reference [10] presents a similar modular
robot whose number of DOF can be increased connecting more modules in series.
Finally, [16] presents 3-DOF robots that can individually explore 3D trusses or can be
combined with other robots to form more complex kinematic chains with increased
maneuverability.

Parallel climbing robots have also been studied. These architectures offer a higher
payload-to-weight ratio than serial robots, but their workspace is more limited. In [2],
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the authors propose using a Gough-Stewart platform for climbing truss structures,
pipelines and palm trees. The robot adheres to the structure using grippers or embrac-
ing it with its annular platforms.

Finally, hybrid climbing robots are composed of some serially connected paral-
lel mechanisms, and they have the advantages of both architectures: high payload,
maneuverability, and stiffness. A hybrid robot for climbing 3D structures is proposed
in [15], where the authors combine a 3-RPR parallel robot with a rotation module
connected in series. Another hybrid robot is proposed in [7]. In this case, the robot
is biped and each leg is the serial combination of two 3-RPS parallel robots. Hence,
the complete robot has 12 DOF.

This chapter presents a novel 10-DOF hybrid robot for climbing 3D truss struc-
tures. The robot is biped and each leg is the serial combination of two parallel
mechanisms. The design of the robot makes it especially suitable to maneuver in 3D
truss structures and perform transitions between planes with different orientations.
In this chapter, we solve the forward kinematic problem of this robot. Also, we ana-
lyze a simplified case of the inverse kinematic problem in which the robot adopts
planar and symmetric postures. As the simulations show, these postures suffice for
exploring 3D structures. Finally, we study the workspace of the robot to assess the
feasibility of exploring 3D structures using the planar and symmetric postures when
the conditions of the problem (design parameters of the robot, initial position, etc.)
change.

This chapter is organized as follows. The architecture of the robot is described in
Sect. 2. Next, the forward kinematic problem is solved in Sect. 3. In Sect. 4, a sim-
plified yet useful version of the inverse kinematic problem is solved. Then, Sect. 5
presents a tool that simulates the forward kinematics of the robot. This tool is used to
demonstrate the execution of some example trajectories in a 3D structure. Section 6
analyzes the workspace of the robot to further study the usefulness of the aforemen-
tioned simplified inverse kinematic problem. Finally, the conclusions are exposed
in Sect. 7.

2 Description of the Robot

Figure 1a shows a 3D model of the biped climbing robot. The robot has two identical
legs (A and B) connected to the hip through revolute joints driven by motors (angles
θA and θB). Each leg has three links: a core link and two platforms. The lower platform
is the foot of the leg and carries the gripper that fixes the robot to the structure (the
grippers are not considered in the kinematic analysis presented in this chapter). The
upper platform is connected to the hip through the aforementioned revolute joint.
Each platform is connected to the core link by means of two prismatic actuators in
parallel and a passive slider.

The mechanism composed of the core link, one platform, and the two prismatic
actuators that connect these two elements, is a closed-loop linkage that will be called
hereafter “parallel module”. The parallel modules are planar mechanisms that can
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be represented schematically as shown in Fig. 1b. Hence, each leg is the serial com-
bination of the parallel modules 1 (which is connected to the foot) and 2 (which is
connected to the hip). The prismatic actuators of each parallel module lie in opposite
sides of the plane Π j , which is one of the planes of symmetry of the core link of the
leg j (see the side view in Fig. 1a). This is indicated with dashed lines in Fig. 2.

Figure 1a also shows some reference frames attached to different parts of the
robot. In this chapter, the X , Y , and Z axes of reference frames will be represented
in red, green, and blue colors, respectively. The frames HA and HB are fixed to the
hip of the robot, whereas the frames A and B are respectively attached to the feet of
the legs A and B.
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The robot has 10 DOF: the rotation angles θA and θB , and the four prismatic
actuators of each leg. In the next sections, the forward and inverse kinematic problems
of the robot will be analyzed. After that, we will simulate the forward kinematics to
demonstrate its ability to explore 3D structures.

3 Forward Kinematics

In this section, the forward kinematic problem (FKP) of the robot is solved. The
problem considered here consists in calculating the position and orientation of one
foot with respect to the other foot when the joint coordinates are known: the angles
θA and θB and the lengths (lij, rij) of the linear actuators of the parallel modules
(i ∈ {1, 2}, j ∈ {A, B}). First, the forward kinematics of the parallel modules is
analyzed.

3.1 FKP of the Parallel Modules

Figure 1b shows the i-th parallel module of the leg j (i ∈ {1, 2}, j ∈ {A, B}). A
parallel module is a closed-loop planar mechanism composed of a mobile platform
connected to a base through two prismatic actuators with lengths lij and rij. The
platform is constrained to only translate vertically and rotate. The forward kinematics
consists in calculating the position yij and the orientation ϕij of the mobile platform
in terms of lij and rij. According to Fig. 1b, the relationship between (lij, rij) and
(yij,ϕij) is:

(p cos ϕij − b)2 + (yij + p sin ϕij)
2 = r2

ij (1)

(p cos ϕij − b)2 + (yij − p sin ϕij)
2 = l2

ij (2)

These equations can be combined to obtain an equivalent system. Adding together
Eqs. (1) and (2) yields Eq. (3), whereas subtracting Eqs. (2) from (1) results in Eq. (4):

4bp cos ϕij = 2y2
ij + 2b2 + 2p2 − l2

ij − r2
ij (3)

4yij p sin ϕij = r2
ij − l2

ij (4)

Solving cos ϕij from Eq. (3) gives:

cos ϕij = 2y2
ij + 2b2 + 2p2 − l2

ij − r2
ij

4bp
(5)

Squaring Eq. (4):
16y2

ij p
2(1 − cos2 ϕij) = (r2

ij − l2
ij)

2 (6)
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Finally, substituting Eqs. (5) into (6) yields a cubic equation in Υij = y2
ij:

Υ 3
ij + kij2 Υ 2

ij + kij1 Υij + kij0 = 0 (7)

where:

kij2 = 2b2 + 2p2 − l2
ij − r2

ij (8)

kij1 =
[
(b + p)2 − l2

ij + r2
ij

2

] [
(b − p)2 − l2

ij + r2
ij

2

]
(9)

kij0 = b2(lij + rij)
2(lij − rij)

2/4 (10)

Equation (7) always has three roots, two of which may be complex. For a given
strictly positive root Υij of Eq. (7), two solutions are obtained for yij = ±√

Υij. For
each of these two values of yij, cos ϕij is calculated from Eq. (5), whereas sin ϕij is
obtained from Eq. (4):

sin ϕij = r2
ij − l2

ij

4yij p
(11)

Once cos ϕij and sin ϕij are known, ϕij is unequivocally determined in (−π,π]. If
Υij = 0, then yij = 0 and cos ϕij is calculated using Eq. (5). However, sin ϕij cannot
be calculated from Eq. (11) since yij = 0. Instead, sin ϕij is calculated as follows:

sin ϕij = ±
√

1 − cos2 ϕij (12)

obtaining two solutions. It is shown in [9], using Sturm’s Theorem, that Eq. (7)
cannot have more than two non-negative roots. Since each non-negative root of
Eq. (7) yields two different pairs (yij,ϕij), the FKP of each parallel module has four
solutions at most.

Note that swapping the values of rij and lij neither affects Eq. (7) nor Eq. (5), but
it changes the sign of sin ϕij in Eq. (11). Hence, swapping rij and lij changes the sign
of ϕij, leaving yij unchanged. This can be observed in Fig. 1b, where swapping rij
and lij is equivalent to rotating the figure π rad about the vertical Y axis. This fact
will be exploited in Sect. 4 to analyze the inverse kinematics.

3.2 FKP of the Complete Robot

The forward kinematics of the complete robot consists in calculating the position and
orientation of one foot with respect to the other foot when the ten joint coordinates are
known. The problem will be solved using Homogeneous Transformation Matrices
(HTMs). An HTM has the following form [4]:
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Tm/n =
[

Rm/n tm/n

01×3 1

]
(13)

where 01×3 = [0, 0, 0]. The matrix Tm/n encodes the position and orientation of a
frame m with respect to another frame n. Indeed, Rm/n ∈ R

3×3 is a rotation matrix
whose columns are the vectors of the frame m expressed in the basis formed by the
vectors of the frame n, whereas tm/n ∈ R

3×1 is the position of the origin of the frame
m in coordinates of the frame n.

The forward kinematics of one leg can be easily solved using HTMs. Figure 2
represents a generic leg j ∈ {A, B}. Each leg has two parallel modules whose bases
are attached to the core link. The platform of the parallel module 1 is the foot of
the leg, whereas the platform of the parallel module 2 is connected to the hip of the
robot by means of a revolute joint. The variables (y1 j ,ϕ1 j , y2 j ,ϕ2 j ) are obtained
from (l1 j , r1 j , l2 j , r2 j ) as explained in Sect. 3.1. All the reference frames of Fig. 2 are
contained in the plane Π j , which is one of the planes of symmetry of the core link
of the leg j (see Fig. 1a). The transformation between the frame j (fixed to the foot)
and the frame Fj (fixed to the core link) is:

TFj/j =

⎡
⎢⎢⎣

cos ϕ1 j sin ϕ1 j 0 y1 j sin ϕ1 j

− sin ϕ1 j cos ϕ1 j 0 y1 j cos ϕ1 j

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (14)

Similarly, the transformation between the frame G j (attached to the platform of the
parallel module 2) and the frame Fj is:

TG j/Fj =

⎡
⎢⎢⎣

cos ϕ2 j − sin ϕ2 j 0 0
sin ϕ2 j cos ϕ2 j 0 y2 j − h

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (15)

where h is a geometric constant. Finally, a rotation θ j about the Y axis of the frame
G j transforms it into the frame Hj , which is attached to the hip:

THj/G j =

⎡
⎢⎢⎣

cos θ j 0 sin θ j 0
0 1 0 0

− sin θ j 0 cos θ j 0
0 0 0 1

⎤
⎥⎥⎦ (16)

The position and orientation of the frame Hj with respect to the frame j is obtained
as follows:

THj/j = TFj /jTG j/Fj THj/G j (17)

which completes the FKP of any generic leg j . Once the forward kinematics of each
leg is solved, it is straightforward to calculate the position and orientation of the foot
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of one leg k ∈ {A, B} \ { j} with respect to the foot of the other leg j :

Tk/j = THj/jTHk/Hj Tk/Hk (18)

where Tk/Hk = (
THk/k

)−1
and THk/Hj is the HTM that encodes the position and

orientation of the frame Hk with respect to the frame Hj :

THk/Hj =
[

I tHk/Hj

01×3 1

]
(19)

which is constant because both frames are attached to the same rigid body (the hip).
I is the 3 × 3 identity matrix. Moreover, according to Fig. 1a: tHB/HA = [t, 0, 0]T =
−tHA/HB , where t is the distance between the parallel axes of the revolute actuators.

Note that, in theory, there are 44 = 256 different solutions to the FKP of the
complete robot. This is because the kinematic chain between the feet has four parallel
modules connected in series and the FKP of each module has four real solutions
at most.

4 Inverse Kinematics

The inverse kinematic problem (IKP) consists in finding the values of the joint coor-
dinates necessary to attain a desired relative position and orientation between the
feet of the robot, and it is necessary for planning trajectories. In this robot, ten joint
coordinates are used to place and orient one foot with respect to the other foot, which
makes it redundant. Hence, the IKP is underconstrained and one should expect infi-
nitely many solutions. This redundancy makes it difficult to solve the general IKP
of this robot. Fortunately, many important movements necessary to explore a 3D
structure (e.g., walking in one dimension, changing between planes, etc.) can be
executed using the configuration analyzed in this section, which reduces the number
of variables and simplifies the IKP.

The configuration considered in this section is depicted in Fig. 3, where the foot j
is fixed to the structure and the foot k is mobile ( j, k ∈ {A, B}, j �= k). It is assumed
that the Z axes of the frames attached to the feet are parallel and point in the same
direction. Moreover, the origin of the frame attached to the foot k is contained in
the XY plane of the frame attached to the foot j . In this situation, any variation in
the length of the prismatic actuators of the parallel modules only produces planar
motions of the frame k in the XY plane of the frame j . In this case, the position and
orientation of the frame k relative to the frame j can be calculated as follows:

Tk/j = TG j/j

[
I [t, 0, 0]T

01×3 1

] (
TGk/k

)−1
(20)
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Fig. 3 The Planar
Symmetric Inverse
Kinematic (PSIK) problem
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where TG j/j = TFj/jTG j/Fj . Moreover, it is assumed that the joint coordinates of the
parallel modules of the two legs are related as follows:

lik = rij, rik = lij (i = 1, 2) (21)

This means that the joint coordinates of the parallel module i of the legs k and j are
swapped. According to Sect. 3.1, this translates into:

yik = yij, ϕik = −ϕij (i = 1, 2) (22)

It can be graphically checked that Eq. (22) implies that the legs k and j are symmetric
with respect to the line L , which is the axis of symmetry of the hip of the robot.
Substituting Eqs. (22) into (20), the matrix Tk/j can be written only in terms of the
variables of the leg j and has the following expression:

Tk/j =

⎡
⎢⎢⎣

−c(2ω) −s(2ω) 0 μ (1 − c(2ω))

s(2ω) −c(2ω) 0 μ · s(2ω)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (23)

where s(x) = sin x , c(x) = cos x and:

μ = [
t − 2(h − y1 j − y2 j ) sin ϕ2 j

]
/
[
2 cos(ϕ1 j − ϕ2 j )

]
(24)

ω = ϕ1 j − ϕ2 j + π/2 (25)

Thus, under the condition of planar and symmetric motion, the position and orienta-
tion of the foot k relative to the foot j can be defined by two parameters (μ,ω), which
are indicated in Fig. 3. We define the Planar Symmetric Inverse Kinematic (PSIK)
problem, which consists in calculating the joint coordinates (l1 j , r1 j , l2 j , r2 j ) needed
to achieve a desired position and orientation (μ,ω). Since the joint coordinates do
not appear explicitly in Eqs. (24) and (25), the kinematic equations of the parallel
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modules of the leg j must be included:

(p cos ϕ1 j − b)2 + (y1 j + p sin ϕ1 j )
2 = r2

1 j (26)

(p cos ϕ1 j − b)2 + (y1 j − p sin ϕ1 j )
2 = l2

1 j (27)

(p cos ϕ2 j − b)2 + (y2 j + p sin ϕ2 j )
2 = r2

2 j (28)

(p cos ϕ2 j − b)2 + (y2 j − p sin ϕ2 j )
2 = l2

2 j (29)

Hence, the PSIK problem requires calculating (l1 j , r1 j , l2 j , r2 j , y1 j ,ϕ1 j , y2 j ,ϕ2 j )

from Eqs. (24)–(29). Like the general inverse kinematic problem, the PSIK problem
is underconstrained since eight unknowns must be obtained from six equations.
However, the PSIK problem involves less variables and simpler equations. In the
following section, we will show that some postures necessary to negotiate obstacles
in a 3D structure can be analyzed solving the PSIK problem. Also, we will describe
a method to choose appropriate solutions to the PSIK problem assuming that the
lengths of the prismatic actuators of the parallel modules have upper and lower
limits: lij and rij must be in [ρ0, ρ0 + Δρ], where ρ0 > 0 is the minimum length of
the actuators and Δρ > 0 is their stroke.

5 Simulation

In this section, we will simulate the movements of the complete robot in an example
3D structure to validate the kinematic analyses of Sects. 3 and 4, and demonstrate the
ability of the robot to explore the structure. More specifically, we will show how the
robot can walk on a beam, perform transitions between different faces of the beams,
and negotiate structural nodes.

To demonstrate these movements, we have developed a Java simulation tool that
can be downloaded from http://arvc.umh.es/parola/climber.html (the latest version
of Java may be required). The simulator implements the equations derived in Sect. 3
to solve the forward kinematics. As shown in Fig. 4, the simulator has a graphical
window that shows the robot in the 3D test structure. The tool also has a window with
a control panel where the user can modify the values of the ten joint coordinates,
change the foot that is attached to the structure, or reset the simulation. It is important
to remark that the simulation tool only implements the kinematic equations, without
considering the dynamics of the robot (gravity is neglected) or the collisions between
the robot and the structure. These advanced topics will be analyzed in the future.

Three reference frames are shown in the graphical window of the simulator: the
world frameW (which is attached to one of the corners of the beam b1 of the structure)
and the frames A and B (which are attached to the feet of the legs). The fixed foot is
indicated in orange color. When the user modifies the value of a joint coordinate, the
forward kinematics is solved and the position and orientation of the free foot with
respect to the frame W is calculated as follows:

http://arvc.umh.es/parola/climber.html
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Fig. 4 Interface of the tool developed to simulate the forward kinematics of the robot

Tk/W = T j/WTk/j (30)

where Tk/j is defined in Sect. 3.2, j denotes the fixed leg, and k denotes the mobile leg
( j, k ∈ {A, B} , j �= k). As shown in Fig. 4, the translation and rotation submatrices
of TA/W and TB/W are indicated to the user in an output window of the tool. According
to Sect. 3.2, there are 256 solutions to the forward kinematics of the complete robot
since each parallel module can have up to four different solutions. However, it will
be shown next that only one solution is valid.

For the following simulations, we will assume that b = p = 4 cm, ρ0 = 19 cm,
and Δρ = 6 cm, which means that the prismatic actuators must satisfy: rij, lij ∈
[19, 25] cm. Solving the forward kinematics of a parallel module for these ranges of
the joint coordinates, and plotting the solution yij versus rij and lij, results in the four
surfaces shown in Fig. 5. Each surface is associated with one of the configurations
labeled as follows: H+, X+, H−, and X−. The solutions H+ and X+ are indicated
in Fig. 5; the solutions H− and X− are their respective mirror images with respect to
the base of the parallel module. According to the design of the robot (see Sect. 2), the
only valid solution is H+, since the other solutions are impossible due to mechanical
interferences between different links of the legs. Moreover, Fig. 5 also provides a
criterion for selecting the valid solution: the solution H+ always has the highest yij
coordinate.

Once the only valid solution to forward kinematics has been characterized, we will
simulate the execution of an example trajectory in the structure, which is composed
of the three beams b1, b2, and b3 indicated in Fig. 4. At the beginning of the trajectory,
the robot lies on the face f1 of the beam b1, and the objective is to move the robot to the
face f4 of the beamb3, negotiating the structural node where the three beams intersect.
Next, we will show that such a trajectory can be executed by a sequence of basic
movements that can be used to reach any other point of the structure. The values of
the remaining geometric parameters of the robot are: t = 15.6 cm, h = 16 cm, which
correspond to the design parameters of the prototype currently under development.
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Fig. 5 Solution surfaces of
the FKP of a parallel module
for b = p = 4 cm. The
surfaces H+ and H− are
almost parallel to the
surfaces X+ and X−,
respectively
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Moreover, the side of the square cross section of the beams measures 12 cm, and the
distance between the face f2 of the beam b2 and the origin of the frame W is 88 cm.

5.1 Phase 1: Walking Along a Beam

At the beginning of the trajectory (see Fig. 6a), the foot A is attached to the face f1
of the beam b1, and the frame A has the following position and orientation:

tA/W =
⎡
⎣ 6

−40
5

⎤
⎦ cm, RA/W =

⎡
⎣ 0 0 1

1 0 0
0 1 0

⎤
⎦ (31)

The number “6” in tA/W means that the frame A is centered in the beam, whereas the
number “5” is the size f of the feet, indicated in Fig. 1a. Initially, the joint coordinates
have the following values: θA = θB = 0, rij = lij = 21 cm (i ∈ {1, 2}, j ∈ {A, B}).
Starting from this configuration, Table 1 describes a simple sequence of movements
that allows the robot to reach the vertical beam b2. In each step of the given sequence,
we indicate only the joint coordinates that change with respect to the previous step.

5.2 Phase 2: Concave Change of Plane

Once the beam b2 has been reached, it can be climbed to negotiate the structural
node defined by the intersection of the three beams. The next objective is to perform
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(a)

(d) (e) (f)

(b) (c)

Fig. 6 Example trajectory where the robot moves along a beam of the structure

Table 1 Sequence of movements in the first phase of the simulated trajectory

Step Joint coordinates Description of the movements in each step

1 r1B = l1B = 19 cm Retract the actuators connected to the foot B to lift it (Fig. 6b)

2 θA = π rad Rotate the robot about the leg A (Fig. 6c)

3 r1B = l1B = 21 cm Extend the actuators connected to the foot B until it touches
the beam b1 (Fig. 6d)

4 r1A = l1A = 19 cm Attach the foot B to the face f1. Release and lift the foot A
retracting the actuators connected to it (Fig. 6e)

5 θB = π rad Rotate the robot about the leg B (Fig. 6f)

a concave transition between the faces f1 and f2. Note that at the end of the previous
phase (Fig. 6f), the Z axes of the frames attached to the two feet point in the same
direction. Hence, the postures needed to change between these faces can be obtained
solving the PSIK problem defined in Sect. 4.

Figure 7a indicates the input parameters needed to solve the PSIK problem:
μ = 27.4 cm, ω = π/4 rad, and j = B. Substituting these values and the geometric
parameters of the robot into Eqs. (24)–(29) yields:

15.6 − 2(16 − y1B − y2B) sin ϕ2B

2 cos(ϕ1B − ϕ2B)
= 27.4 (32)

ϕ2B − π/4 = ϕ1B (33)
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(a) (b) (c)

(d) (e) (f)

Fig. 7 A trajectory that includes a concave transition between different planes

(4 cos ϕ1B − 4)2 + (y1B + 4 sin ϕ1B)2 = r2
1B (34)

(4 cos ϕ1B − 4)2 + (y1B − 4 sin ϕ1B)2 = l2
1B (35)

(4 cos ϕ2B − 4)2 + (y2B + 4 sin ϕ2B)2 = r2
2B (36)

(4 cos ϕ2B − 4)2 + (y2B − 4 sin ϕ2B)2 = l2
2B (37)

As discussed in Sect. 4, infinitely many solutions exist since there are eight variables
to be solved from six equations. Next, we describe a way of choosing a proper
solution to this underconstrained problem. First, Eq. (33) is used to eliminate ϕ1B

from Eq. (32). Then, ϕ2B is solved from the resulting equation:

ϕ2B = sin−1

(
13.7

√
2 − 7.8

y1B + y2B − 16

)
(38)

This solution can be substituted into Eqs. (33)–(37) to express the joint coor-
dinates {l1B, r1B, l2B, r2B} in terms of {y1B, y2B}, which can be chosen so that
li B, ri B ∈ [19, 25] (i = 1, 2). Figure 8 represents the curves of the (y1B, y2B) plane
in which each joint coordinate equals 19 or 25; any point inside the shaded region
R enclosed by these curves is a valid solution to the PSIK problem. For example,
the solution y1B = y2B = 22 cm yields: r1B ≈ 20.59536194, l1B ≈ 23.40761347,
r2B ≈ 23.65623783, and l2B ≈ 20.34961301, all in cm (these accurate values are
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Fig. 8 Region of valid solutions to the PSIK problem

Table 2 Sequence of movements in the second phase of the simulated trajectory

Step Joint coordinates Description of the movements in each step

1 li A = ri A = 21 cm
l2B = r2B = 21 cm
l1B = r1B = 19 cm

Lift the foot B and place both legs perpendicular to the
face f2, leaving some distance between the foot B and
the face f2 (Fig. 7b)

2 θB = π/2 rad Rotate the leg B about its own axis (Fig. 7c)

3 r1B = l1B = 21 cm Extend the actuators connected to the foot B until it
touches the face f2 (Fig. 7d)

4 r1A = l1A = 19 cm Attach the foot B to the face f2. Release and lift the foot A
retracting the actuators connected to it (Fig. 7e)

5 θB = π rad Rotate the robot about the leg B (Fig. 7f)

valid only for the simulation; in a real implementation we will have to deal with
the finite precision of the sensors). This solution is used to perform a transition
between the faces f1 and f2 (see Fig. 7a). After performing this transition, the foot
A is attached to the beam b2, and the sequence of movements described in Table 2 is
used to complete this phase.

5.3 Phase 3: Convex Change of Plane

At the end of phase 2, the Z axes of the frames attached to the feet are paral-
lel to the beam b2 and point in the same direction. Hence, the PSIK problem
can be solved to determine the joint coordinates that permit performing a con-
vex transition from the face f2 to the face f3 (the face f3 is defined in Fig. 9).
Substituting μ = 11 cm, ω = 3π/4 rad, and j = B in Eqs. (24)–(29), and follow-
ing the procedure detailed in Sect. 5.2, we can obtain the region of the (y1B, y2B)

plane where li B, ri B ∈ [19, 25] cm (i = 1, 2). It can be checked that the solution
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(a) (b) (c)

(d) (e) (f)

Fig. 9 A trajectory that includes a convex transition between different planes

Table 3 Sequence of movements in the third phase of the simulated trajectory

Step Joint coordinates Description of the movements in each step

1 li A = ri A = 21 cm
l2B = r2B = 21 cm
l1B = r1B = 19 cm

Place both legs perpendicular to the face f3, leaving
some distance between the foot B and the face f3
(Fig. 9b)

2 θA = 3π/2 rad Rotate the robot about the leg A (Fig. 9c)

3 r1B = l1B = 21 cm Extend the actuators connected to the foot B until it touches
the face f3 (Fig. 9d)

4 r1A = l1A = 19 cm Attach the foot B to the face f3. Release and lift the foot A
retracting the actuators connected to it (Fig. 9e)

5 θA = π rad Rotate the leg A about its own axis (Fig. 9f)

adopted in the previous section (y1B = y2B = 22 cm) is also valid here, obtain-
ing in this case: r1B ≈ 24.85374622, l1B ≈ 19.20940403, r2B ≈ 21.99688208, and
l2B ≈ 22.00311791 (all in cm). For these values of the joint coordinates, the robot
can perform a transition between the faces f2 and f3 (see Fig. 9a). After that, the foot
A can be attached to the face f3.

After attaching the foot A to the face f3, the sequence of movements described
in Table 3 is executed. After executing this sequence, solving exactly the same PSIK
problem as in Sect. 5.2 permits the foot A of the robot to be attached to the face f4
of the beam b3, which completes the trajectory.
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6 Workspace of the PSIK Problem

In the previous section, it has been shown that the robot can explore orthogonal
3D structures combining the following three basic movements: (1) moving along a
beam using the rotations {θA, θB} of the hip (Fig. 6), (2) performing a concave tran-
sition between two beams (Fig. 7), and (3) performing a convex transition between
two faces of the same beam (Fig. 9). Moreover, the robot can perform the last two
movements adopting planar and symmetric postures, which simplifies the inverse
kinematic problem (PSIK problem defined in Sect. 4). However, this has been shown
using an example where the geometry of the robot and of the structure, as well as
the initial position of the robot, have particular values that guarantee the existence
of solutions to the problem of exploring the structure.

The objective of this section is to determine if the robot will be able to explore 3D
structures adopting planar and symmetric postures if its geometry deviates from the
design used in Sect. 5, if the robot starts at a different position, or if the geometry of
the structure is different. Regarding the geometry of the structure, we will analyze
what happens when the width of the cross section of the beams varies, assuming
that the structure is still orthogonal. To this end, we will study the workspace of the
PSIK problem, which is the set of pairs (ω,μ) (variables defined in Fig. 3) that can be
attained satisfying the joint limits. This workspace can be used to assess the ability
of the robot to execute the three basic movements defined in the previous paragraph
using the planar and symmetric postures of the PSIK problem, for different designs
of the robot.

Figure 10a–f show the PSIK workspaces for different choices of the geometric
design parameters of the robot, obtained using a Monte Carlo algorithm [1]. Each
subfigure of Fig. 10 shows the different PSIK workspaces that are obtained when
the corresponding geometric parameter of the robot is varied, keeping the remaining
parameters at the default values used in Sect. 5, which are: b = p = 4, t = 15.6,
h = 16, Δρ = 6, and ρ0 = 19 (all in cm). The curves that have the same color in each
subfigure of Fig. 10 enclose the PSIK workspace corresponding to each geometry,
i.e., these curves are the boundaries of the workspaces. This is illustrated in Fig. 10a,
where the PSIK workspace for the default geometry, denoted by WSd and enclosed
by the red curves, has been shaded. It is evident from Fig. 10 that the shape of the
PSIK workspace is most sensitive to the parameters p and Δρ, whereas the shape
changes little with b.

Figures 10a–f also show three vertical lines at ω = π/4, ω = π/2, and ω = 3π/4.
The lines ω = π/4 and ω = 3π/4 represent the concave (Fig. 7a) and convex (Fig. 9a)
transitions, respectively. The line ω = π/2 represents a posture that can be used to
move the robot along a beam like an inchworm, extending and retracting the legs as
shown in Fig. 11. This is an alternative gait to the one shown in Fig. 6, which uses the
rotations of the hip to move along a beam. The segment of these vertical lines that
lies within the PSIK workspace of a given geometry is the set of lengths μ that can be
achieved for the corresponding value of ω. For example, for the default workspace
WSd in Fig. 10a and ω = π/4, μ must be between μ1 and μ2. Next, we will analyze
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(a) (b) (c)

(d) (e) (f)

Fig. 10 PSIK workspaces for different values of the geometric design parameters of the robot.
In the axes, μ is in cm and ω is in rad. a Varying p. b Varying b. c Varying ρ0. d Varying Δρ.
e Varying t . f Varying h

Fig. 11 An inchworm-like gait to move along a beam

Fig. 10 to discuss if the robot can perform convex and concave transitions using the
planar and symmetric postures of the PSIK problem in three cases.

Case 1: The Geometry of the Robot is Modified. Can the robot perform convex
and concave transitions if its geometry is different from the default one? As Fig. 10
shows, the vertical lines ω = π/4 and ω = 3π/4 (which represent the concave and
convex transitions) intersect the PSIK workspace for most of the geometries, which
means that both transitions are possible. However, for some designs obtained by
increasing p or decreasing Δρ, the workspace is too small and does not intersect
these vertical lines. Thus, these designs should be avoided.

Case 2: The Initial Position of the Robot is Modified. Even if the PSIK workspace
intersects the vertical line ω = π/4, the robot may be unable to perform a concave
transition between two beams (e.g. to climb to the beam b2 in the example of Sect. 5.2)
if the distance between the robot and the new beam is not adequate. This is because,
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according to Fig. 10, for most of the geometries the feasible concave transitions
(those obtained intersecting the PSIK workspace and the line ω = π/4) require μ to
be between a minimum value μ1 and a maximum value μ2 (e.g. see the default PSIK
workspace WSd in Fig. 10a). As a result, if the robot is too close (μ < μ1) or too far
(μ > μ2) from the beam b2, the concave transition will be impossible.

This can be a problem if the distance between the robot and the new beam cannot
be adjusted continuously, but only by means of discrete increments, like when using
the gait shown in Fig. 6. With this gait, which uses the rotations {θA, θB} of the hip,
the robot can only travel a distance equal to an integer multiple of t . Thus, depending
on the initial position of the robot, approaching the beam b2 using this gait may
eventually place the robot at a point too close or too far from the beam, without the
possibility to finely adjust its position to make possible the execution of a concave
transition.

Nevertheless, this can be avoided if the inchworm-like gait of Fig. 11 is used to
approach the beam b2. With ω = π/2, the robot travels a distance equal to 2μ, where
μ can take any value from the line ω = π/2 which lies inside the PSIK workspace
for the considered geometry. Thus, using this gait permits the robot to continuously
adjust its position along the beam b1 to position itself at a proper distance from the
beam b2 to climb it performing a concave transition.

Case 3: The Width of the Beams is Modified. Even if the PSIK workspace intersects
the vertical line ω = 3π/4, the robot may be unable to perform a convex transition
between different faces of a beam if the distance μ necessary to execute this transition
(shown in Fig. 9a) is too large, since the point representing this transition in the (ω,μ)

plane may lie outside the PSIK workspace of the considered geometry. For example,
the convex transition of Fig. 9a, which is represented by the point P in Fig. 10d,
can be performed using the default geometry because P lies inside the default PSIK
workspace, but if the stroke of the linear actuators is decreased to Δρ = 5 cm, P will
lie outside the workspace and the transition will be infeasible.

As Fig. 9a shows, the distance μ necessary to perform a convex transition equals
the sum of the size f of the foot (indicated in Fig. 1a) and 0.5 times the width of
the cross section of the beam. This assumes that the fixed foot of the robot is placed
at the middle of the cross section of the beam, which will be the most typical case,
especially if grippers are used to adhere to the structure. Thus, if f is too large,
and/or the beam is sufficiently wide, the robot may be unable to perform a transition
between different faces of a beam.

In case the beams of a given structure are too wide to allow the robot to execute
convex transitions between different faces of the beams, the design of the robot should
be modified. One possibility is to reduce the size f of the feet. Another possibility is
to modify some of the design parameters of Fig. 10 to increase the maximum value
of μ that can be attained with ω = 3π/4. Note that this maximum value changes
little with the parameters {b, ρ0, h}, whereas it increases when increasing {t,Δρ} or
decreasing p.

To sum up, the analysis presented in this section reveals that by choosing an
appropriate design for the robot, the planar and symmetric postures of the PSIK
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problem provide a relatively high flexibility to explore 3D structures using the basic
movements defined in this section. This is partly thanks to the possibility of precisely
adjusting the position of the robot along a beam by means of the inchworm-like gait of
Fig. 11. This result suggests that the architecture of the robot studied in this chapter
may be modified to design a simpler robot based on the PSIK problem, with an
actuation scheme in which a single actuator may simultaneously drive various joints,
producing symmetric movements. This symmetry in the movements was previously
identified by Balaguer et al. [6] as one of the key criteria for designing climbing
robots, since this symmetry reduces the number of actuators and hence the overall
weight of the robot.

7 Conclusion

This chapter has presented the kinematic analysis of a novel biped climbing robot
with a hybrid serial-parallel architecture. The forward kinematic problem has been
solved, obtaining the relative position and orientation between the feet in terms of the
joint coordinates. The inverse problem is more difficult due to the redundancy of the
robot. Hence, a simplified inverse problem which considers planar and symmetric
postures has been analyzed. Using a developed simulation tool, it has been shown
that the simplified problem is sufficient to perform some important movements which
are necessary to explore 3D structures. Also, the workspace of this simplified inverse
kinematic problem has been analyzed in depth for different designs of the robot. This
analysis has shown that the planar and symmetric postures of the simplified problem
are also useful when the robot starts at other positions or when the width of the beams
varies, provided that the geometric parameters of the robot are chosen properly.

To exploit all the possibilities offered by the proposed kinematic architecture,
the general inverse kinematic problem of the robot will be solved in the future.
Other problems that will need to be addressed include the determination of the
workspace and singularities of the complete robot (not just the PSIK workspace),
the dynamic modeling, and the planning of trajectories avoiding collisions in more
complex structures. Also, considering the flexibility of the planar and symmetric
postures of the PSIK problem, we will optimize the architecture of the robot to obtain
a more lightweight robot able to perform these planar and symmetric movements
using less actuators, as discussed at the end of Sect. 6.
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