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Abstract Implementation issues related to evolving Takagi-Sugeno-Kang (TSK)
fuzzy models of a nonlinear process are offered. The nonlinear process is the pen-
dulum dynamics in the framework of the representative pendulum-crane systems,
where the pendulum angle is the output variable of the TSK fuzzy models. An online
identification algorithm (OIA) is given, which continuously evolves the rule bases
and the parameters of the TSK fuzzy models, adds new rules with more summa-
rization power and modifies the existing rules and parameters. The OIA includes
an input selection algorithm and a Gravitational Search Algorithm that updates the
parameters in the rule consequents. The evolving TSK fuzzy models are validated
by experiments conducted on pendulum-crane laboratory equipment.
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1 Introduction

The evolving Takagi-Sugeno-Kang (TSK) fuzzy models are characterized by the
continuous online learning for rule base learning according to [1–4]. An online
identification algorithm (OIA) continuously evolves the rule bases and the parameters
of the TSK fuzzy models, and the models are built online by the adding mechanism
(adding new or removing old local models). As shown in [5], the OIAs dedicated to
evolving TSK fuzzy models are divided in three categories. The OIA proposed as
follows belongs to the second category, namely the incremental algorithms, which
implement only adding mechanisms. Some representative incremental algorithms
are RAN, SONFIN, SCFNN, NeuroFAST, DENFIS, eTS, FLEXFIS and PANFIS.

Using the recent results related to evolving TSK fuzzy models reported in [6, 7],
a new OIA will be suggested in the sequel. This OIA is inspired from [8], and it
computes rule bases and parameters that continuously evolve by adding new rules
with more summarization power, the existing rules and parameters are modified in
terms of using the potentials of new data points. The new OIA is a modified version
of that proposed in [9], which includes an input selection, and it is characterized
by inserting a Gravitational Search Algorithm (GSA) [10, 11], that updates the
parameters in the rule consequents.

The proposed OIA is advantageous with respect to other OIAs by the fact that the
GSA replaces the recursive least squares algorithm, so there is no need to compute
the covariance matrices. Therefore, the computational effort is reduced.

The presentation is dedicated to the fuzzy modeling of the pendulum dynamics in
the framework of pendulum-crane systems. Some details concerning the implemen-
tation of evolving TSK fuzzy models of this process are given in the next sections.
Other fuzzy models dedicated to this nonlinear process have been recently discussed
in [12–17].

The following topics are treated as follows: the GSA-based OIA is presented
in the next section. The case study that leads to new TSK fuzzy models for the
pendulumdynamics and implementation issues are treated in Sect. 3. The conclusions
are pointed out in Sect. 4.

2 Gravitational Search Algorithm-Based Online
Identification Algorithm

The OIA is formulated using the details on the algorithms given in [7–9] and the
GSA described in [10, 11]. The OIA consists of the following steps:

Step 1 The rule base structure is initialized by initializing the parameters in the
rule antecedents. The initialization means that the initial TSK fuzzy model has a
single rule, i.e., nR = 1, where nR is the number of rules. The subtractive clustering
[18] is implemented to compute the parameters of the TSK fuzzy models using the
first data point p1, where the data point p at the discrete time step k is
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pk = [p1k p2k . . . pn+1
k ]T , (1)

where T indicates the matrix transposition, the data point in the input-output data
space Rn+1 is

p = [zT y]T = [z1 z2 . . . zn y]T = [p1 p2 . . . pn pn+1]T ∈ Rn+1, (2)

the rule base of the affine-type TSK fuzzy models that are identified is

Rule i : IF z1 IS LTi1 AND . . .AND zn IS LTin
THEN yi = ai0 + ai1z1 + · · · + ainzn, i = 1 . . . nR,

(3)

where z j , j = 1 . . . n, are the input variables, n is the number of input variables,
LTi j , i = 1 . . . nR, j = 1 . . . n, are the input linguistic terms, yi is the output of the
local affine model in the rule consequent of the rule i, i = 1 . . . nR, and ail , i =
1 . . . nR, l = 0 . . . n, are the parameters in the rule consequents.

The algebraic product t-norm tomodel theANDoperator and theweighted average
defuzzification method in the TSK fuzzy model structure lead to the output y of the
TSK fuzzy model

y =
[

nR∑
i=1

τi yi

]
/

[
nR∑
i=1

τi

]
=

nR∑
i=1

λi yi =
nR∑
i=1

λi [ 1 zT ]Tπi , (4)

where the firing degree and the normalized degree of the rule i are τi (z) and λi (z),
respectively:

τi (z) = AND(μi1(z1), μi2(z2), . . . , μin(zn)) = μi1(z1) · μi2(z2) · · · · · μin(zn), i = 1 . . . nR ,

λi (z) = τi (z)/

[
nR∑
i=1

τi (z)

]
, i = 1 . . . nR ,

(5)

and the vector πi , i = 1 . . . nR, in (4) is the parameter vector of the rule i

πi = [ai0 ai1 ai2 . . . ain ]T , i = 1 . . . nR . (6)

The parameters are initialized as a part of the parameters specific to the OIAs given
in [7–9]

θ̂1 = [ (πT
1 )1 (πT

2 )1 . . . (πT
nR

)1 ]T = [ 0 0 . . . 0 ]T , rs = 0.4, (7)

k = 1, nR = 1, z∗
1 = zk, P1(p∗

1) = 1,

and the parameters of the GSA [10, 11], related to the generation of the initial pop-
ulation of agents, namely the nR(n + 1)-dimensional search space of the parameters
in the rule consequents, the number of agents N , and initialize randomly the agents’
velocity vector Vi,0 ∈ RnR(n+1) of i th agent, i = 1 . . . N . θ̂k in (7) is an estimation of
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the parameter vector in the rule consequents at the discrete time step k, rs, rs > 0,
is the spread of all Gaussian input m.f.s μi j , i = 1 . . . nR, j = 1 . . . n, of the fuzzy
sets of the input linguistic terms LTi j

μi j (z j ) = exp[−(4/r2s )(z j − z∗
i j )

2], i = 1 . . . nR, j = 1 . . . n, (8)

and z∗
i j , i = 1 . . . nR, j = 1 . . . n, are the centers of these m.f.s. p∗

1 in (8) is the first
cluster centre, z∗

1 is the centre of the rule 1 and also a projection of p∗
1 on the axis z

defined in (2). P1(p∗
1) in (7) is the potential of p

∗
1.

The input selection algorithm proposed in [7] is next applied in order to select the
important input variables from all possible input variables. This algorithm ranks the
inputs according to their importance factors and is described in [9].

Step 2 At the next time step, k is set to k = k + 1, and the next data sample pk is
read.

Step 3 The potential of each new data sample is calculated as

Pk(pk) = (k − 1)/[(k − 1)(ϑk + 1) + σk − 2νk], ϑk =
n+1∑
j=1

(p j
k )

2,

σk =
n+1∑
j=1

k−1∑
l=1

(p j
l )

2, νk =
n+1∑
j=1

(p j
k

k−1∑
l=1

p j
l ).

(9)

Step 4 The potentials of the centers of existing rules (clusters) are recursively
updated in terms of

Pk(p∗
l ) = (k−1)Pk−1(p∗

l )/

⎡
⎣k − 2 + Pk−1(p∗

l ) + Pk−1(p∗
l )

n+1∑
j=1

(d j
k(k−1))

2

⎤
⎦ , (10)

where Pk(p∗
l ) is the potential at the discrete time step k of the cluster centre, which

is a prototype of the rule l.
Step 5 The possible modification or upgrade of the rule base structure is carried

out using the potential of the new data compared to the potential of existing rules’
centers. The rule base structure is modified if certain conditions specified in [7, 8]
are fulfilled.

Step 6 The parameters in the rule consequents are updated using the velocity and
position update equations specific to the GSA

Vi,k = ρiVi,k−1 + Ai,k−1,

θ̂i,k = θ̂i,k−1 + Vi,k, k = 2 . . . D, i = 1 . . . N ,
(11)

where ρi , 0 ≤ ρi ≤ 1, is a uniform random variable and Ai,k−1 ∈ RnR(n+1) is the
acceleration vector of i th agent. The fitness function used in the GSA is

fk = yk − ψT
k−1θ̂k−1, k = 2 . . . D. (12)
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The parameter vector θ̂k is obtained as

θ̂k = min
i=1...N

θ̂i,k . (13)

The output of the TSK fuzzy model given in (4) is expressed in the vector form

y = ψT θ, θ = [πT
1 πT

2 . . . πT
nR

]T ,

ψT = [λ1[1 zT ] λ2[1 zT ] . . . λnR [1 zT ] ]. (14)

Step 7Using (14), the output of the evolving TSK fuzzy model at the next discrete
time step k + 1 is predicted

ŷk+1 = ψT
k θ̂k . (15)

The algorithm continues with the step 2 until all data points from the set of input-
output data are used.

{pk |k = 1 . . . D} (16)

The step 1 of the OIA is conducted offline. The steps 2–7 are conducted online.

3 Case Study and Experimental Results

The laboratory setup built around the pendulum-cart system [19] has been used to
exemplify and validate the OIA and the evolving TSK fuzzy models. The laboratory
setup is illustrated in Fig. 1.

Fig. 1 Laboratory setup in the Intelligent Control SystemsLaboratory of the PolitehnicaUniversity
of Timisoara
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The expression of the state-space model of the process in the pendulum-cart
system is

ẋ1 = x3,

ẋ2 = x4,

ẋ3 =
{

Jp
(mc + mp)ld

[ p1u

(mc + mp)ld
− x24 sin x2 − ( fc − p2)x3

(mc + mp)ld
] + [g sin x2

− f px4
(mc + mp)ld

] cos x2
}

/[ Jp
(mc + mp)l2d

− cos2 x2],

ẋ4 =
{
[ p1u

(mc + mp)ld
− x24 sin x2 − ( fc − p2)x3

(mc + mp)ld
] cos x2 + 1

l
[g sin x2 (17)

− f px4
(mc + mp)ld

]
}

/[ Jp
(mc + mp)l2d

− cos2 x2],
y = x2,

where the variables are: x1—the cart position (the distance between the cart and the
centre of the rail), x2—the angle between the upward vertical and the ray pointing at
the centre ofmass cart, x3—the cart velocity, x4—the pendulum angular velocity, u—
the control signal represented by a constrained PWMvoltage signal, |u| ≤ umax > 0,
mc—the equivalent mass of the cart, mP—the mass of the pole and load, and ld—
the distance from the axis of rotation to the centre of mass. The parameters in (17)
are: Jp—the moment of inertia of the pendulum-cart system with respect to the axis
of rotation, p1—the ratio between the control force and the control signal, p2—the
ratio between the control force and x3, fc—the dynamic cart coefficient, and f p—the
rotational friction coefficient. The parameter values of the laboratory setup are [7, 9,
19]

umax = 0.5,mc = 0.76 kg, mp = 0.052 kg, ld = 0.011 m, Jp = 0.00292 kg · m2,

p1 = 9.4 N, p2 = −0.548 N s/m, fc = 0.5 N s/m, f p = 6.65 · 10−5 N m s/rad.
(18)

The OIA presented in the previous sections has been applied in order to obtain
evolving TSK fuzzy models of the process that can be characterized by the nonlinear
crisp model given in (17). The OIA has been implemented starting with the eFS Lab
code given in [20, 21] and adding the functionalities taken from [7–11].

The sampling period has been set to 0.01 s. The control signal u has been generated
as two weighted sums of pseudo-random binary signals (Fig. 2) to cover different
ranges of magnitudes and frequencies. This process input has been applied to the
laboratory setup to generate the input-output data points (zk, yk), k = 1 . . . D, and
a total number of 6000 data points has been used in the tests. The data points are
separated in training data and validation data. The first D = 2500 data points (the
time domain from 0 to 25s) in Fig. 2 belong to the validation data, and the rest of
D = 3500 data points (the time domain from 25 to 60s) in Fig. 2 belong to the
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Fig. 2 Control signal versus time, corresponding to training data (0–25s) and testing data (25–60s)

testing (validation) data. The process output y is not presented in Fig. 2, but it will
be illustrated as follows.

The input selection algorithm, which belongs to the step 1 of the OIA has been
applied for three values of the importance threshold, as in [9], λ = 0.4, 0.3 and 0.2,
and one value of the significance threshold, τ = 0.5. This has lead to three final TSK
fuzzy models with the following inputs: the TSK fuzzy model 1, with the input uk ,
the TSK fuzzy model 2 with the inputs uk and yk−1, and the TSK fuzzy model 3 with
the inputs uk , yk−1 and yk−2. The output of all these three TSK fuzzy models is yk .

The number of inputs of the TSK fuzzy models is variable during the iterations of
the OIA, and that is the reason why the considered fuzzy models are the final ones.
The inputs of the three TSK fuzzy models have been obtained from delayed system
inputs and/or outputs, which have been extracted from the training and validation data
sets. The values of the parameters of the GSA included in the step 6 of the GSA have
been set to: number of agents N = 100, zero initial velocity vectors, exponential type
depreciation law of the gravitational constant with the initial gravitational constant
G0 = 5.

The final results are similar to those obtained for the OIA given in [9], but with the
recursive least squares algorithm employed in the step 6. Therefore, the TSK fuzzy
model 1 has evolved to nR = 2 rules, the TSK fuzzy model 2 has evolved to nR = 7
rules, and the TSK fuzzy model 3 has evolved to nR = 9 rules.

The OIA and the TSK fuzzy model performance have been compared with other
OIAs that result in evolving TSK fuzzy models, ANFIS [22], DENFIS [23] and
FLEXFIS [24]. The comparison of all fuzzy models has been carried out using the
root mean square error (RMSE) as performance index:

RMSE =
√√√√(1/D)

D∑
k=1

(yk − x2,k)2, (19)
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Fig. 3 Evolution of output (blue) and potential of data points of TSK fuzzy model 3 on training
data

the same inputs, numbers and shapes of m.f.s as those of the three TSK fuzzymodels,
and the numbers of rules nR have been set such that to be very close. The variable yk
in (19) is the output (the pendulum angle) of the TSK fuzzy models and x2,k is the
output (the pendulum angle) of the laboratory setup at the discrete time moment k.
The RMSE has been computed and measured for the training data and for the testing
(validation) data as well.

Some of the results for the TSK fuzzy model 3 on the training data are presented
in Fig. 3 as clusters in the input space and in Fig. 4 as clusters in the input space. The
time responses of the system output versus time of the TSK fuzzy model 3 and of
the real-world process on the validation data are shown in Fig. 5.

TheRMSE can be used as an objective function in appropriately defined optimiza-
tion problems solved by several classical and nature-inspired optimization algorithms
[24–33]. These optimization problems can be inserted in the OIA, and they must be
accompanied by real-world constraints.

The comparison of results reads to the conclusion that the best performance on
the validation (testing) data is exhibited by the TSK fuzzy model 3 obtained by the
OIA presented in the previous section. In addition, the performance is very close to
that achieved by the TSK fuzzy model obtained by the OIA proposed in [9].

As shown in [9], the evolving TSK fuzzy models obtained by the OIA outperform
the evolving fuzzy models obtained by ANFIS, DENFIS and FLEXFIS. However,
the performance depends on the parameters of both the input selection algorithm and
the GSA.
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Fig. 4 Clusters in input
space of TSK fuzzy model 3
on training data

Fig. 5 Pendulum angle
versus time of TSK fuzzy
model 3 and real-world
process for validation data

4 Conclusions

An OIA for evolving TSK fuzzy models has been proposed. The new features of
this OIA are the inclusion of an input selection algorithm and of a nature-inspired
optimization algorithm represented by the GSA. This offers not only a more system-
atic approach but also the alleviation of the computational effort. But the random
parameters specific to the GSA and the parameters of the input selection algorithm
affect the results and the models are sensitive with respect to the choice of these
parameters.
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The real-time experimental results related to the fuzzy modeling of the pendulum
dynamics in pendulum-crane systems validate the OIA and the evolving TSK fuzzy
models as well. Future research will be focused on considering other fuzzy models
for several applications [34–44] accounting for the further simplification of the OIA.
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