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Abstract Complex robot applications or the cooperation of multiple mobile robots
are use cases of increasing popularitywhere software distribution becomes important.
When developing mobile robot systems and applications, software structure and
distribution has to be considered on various levels, with effects on the organization
and exchange of data. With respect to structure and distribution, this work proposes
to distinguish between real-time level, system level and application level. Ways of
structuring the software, as well as advantages and disadvantages of distribution
on each level are analyzed. Moreover, examples are given how this structure and
distribution can be realized in the robotics frameworks OROCOS, ROS and the
Robotics API. The results are demonstrated using a case study of two cooperating
KUKA youBots handing over a work-piece while in motion, which is shown both in
simulation and in a real world setup.
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1 Introduction

With service robotics getting more and more important, robot demand has extended
from factory automation towards mobile robot systems. Thus, the topic of mobile
robotics has become important, and a lot of research has been performed. However,
in some cases a single mobile robot is not sufficient to execute a task or deal with
all problems [1]. For example, Knepper et al. [2] introduced the IkeaBot which is a
coordinated furniture assembly system with multiple KUKA youBots. Based on that
work, a flexible assembly systemwith cooperative robots was suggested in [3].When
multiple robots work together, cooperative mobile manipulation becomes important
and poses new challenges—especially to the software structure.

Already in the 1990s, Dudek et al. [4] and Cao et al. [5] described a classification
for cooperative mobile robotics. Dudek et al. [4] defined a taxonomy for multi-agent
mobile robotics, where such a system can be e.g. differentiated by the number of
agents, the communication range, topology and bandwidth as well as the reconfig-
urability and the composition of homogeneous or heterogeneous agents. Similarly,
Cao et al. [5] defined research axes such as the differentiation, the communication
structure or different types of modeling other agents. Moreover, they made a dis-
tinction between centralized and decentralized control in the software for mobile
robots. Later, Farinelli et al. [6] added a classification based on coordination, where
they compared cooperation, knowledge, coordination and organization of agents in
multi-agent systems. This classification defines aware multi-robot systems where
each robot knows that it is cooperating with other robots.

Concentrating on aware systems, this work analyzes which software structure
and distribution can be used. However, there is not only one software structure and
distribution that is possible in cooperative mobile robotics. From our point of view,
there are different levels and aspects in the software architecture of a multi-robot
system that can be distributed, ranging from the application level to low-level real-
time device control. Typical early software architectures such as 3T [7] include
reactive behavior as well as planning and execution, but are limited to single robot
systems. The decision to distribute the software solution on one of the mentioned
levels may affect the other levels and the complexity of the solution. Every possible
solution, i.e. the chosen distributed software architecture, has its advantages but also
its shortcomings that must be considered. For example, in current robotics systems
component-based software frameworks which facilitate transparent distribution (e.g.
ROS) are commonly used (cf. [8]). However, although communication between dis-
tributed components is easy using these frameworks, the decision about distribution
as well as the assignment of responsibilities to certain components affects the overall
capabilities of the solution (e.g. support for hard real-time).

In this work, we introduce a taxonomy for distributed software architectures in
cooperative mobile robotics. However, the concepts are not specific to mobile robots,
but also apply to other cooperating robots such as teamsof industrial robots in automa-
tion systems. Hence, we are interested in finding a generalized representation and
description of distributed robotics systems that can be used to classify and compare
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Fig. 1 Case study of two cooperating youBots: a Simulated scenario. b Real world scenario

software architectures of distributed robots. Additionally, we give advantages and
disadvantages of applying distribution on different levels. It is important to be able
to compare distributed robotics systems as the chosen software architecture often
influences or sometimes even determines the complexity of the solution.

For experimental results, a case study is used where two KUKA youBots [9]
physically interact with each other to transfer a work piece from one robot to
the other. This scenario is inspected in different levels of difficulty. In simulation
(cf. Fig. 1a), both robots can be coordinated in real-time, exact position informa-
tion is available and all control inputs and trajectories are exactly followed. Initially,
workpiece transfer happens while the first robot is standing still, and then while both
robots are moving. As some of the assumptions made for simulation are not valid
for real robots, a second scenario with real youBots is analyzed (cf. Fig. 1b). There,
a youBot platform (left, without arm) is initially carrying a workpiece, which is then
picked up by the second youBot (right) while both youBots are moving. The youBots
and the workpiece are tracked externally using a Vicon optical tracking system, so
precise position information is available.

In Sect. 2, the different levels for structuring and distribution of software for
(mobile) robots is introduced. Subsequently, the identified levels (i.e. the real-time,
system, and application level) are discussed in Sects. 3–5. Implications on the world
model of robotics software are addressed in Sect. 6. To show the general validity
of the suggested taxonomy, the possibilities of structuring and distribution on each
level are explained using three different robotic frameworks in Sect. 7. Experimental
results with different possible solutions of the case study are presented in Sect. 8.
Finally, Sect. 9 concludes this work and gives an outlook.

2 Different Levels of Structuring Robotics Software

When designing a software architecture for a distributed robot scenario, we propose
to group the software components into different layers as illustrated in Fig. 2. Each
of the hardware devices present in the robot solution is represented and controlled
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Fig. 2 Software structure
for distributed robots

by a device driver which is defined as the component that communicates with the
hardware device through the vendor-specific interface.Additionally, the device driver
is responsible for exchanging data with the surrounding software components. It has
to derive control inputs and forward them to the device, as well as receive feedback
from the device and make it available to other software components.

Each device driver can belong to a real-time context where data transfer and
coordination between components occur with given timing guarantees. Depending
on the implementation, the real-time context can contain only one device or span over
multiple devices. Within a real-time context, reactions to events or the processing of
sensor data can be guaranteed to happen before a given time limit. This allows to
handle safety-critical situations that require timing guarantees (e.g. to stop the robot
if an obstacle occurs), or to execute precise behaviors (such as actions that happen
at a given point on a trajectory).

Above the real-time level, one or multiple real-time contexts belong to a sys-
tem where all knowledge is shared between the components. Hence, all components
within one system are allowed to access each other’s data, as well as to communicate
with and send commands to each other. This allows components to directly include
other components’ data into planning or computation, however no real-time guaran-
tees are given unless the communication is handled within one real-time context.

To perform a desired task, systems can be controlled from applications that coor-
dinate the work flow. Within an application, data is read and commands are sent
to the controlled systems, so that the corresponding devices execute the task. How-
ever, if data from one system is required for an action in another system, it is the
responsibility of the application or the deployment to facilitate the data transfer, as
there is no concept of implicit shared data between systems. The overall behavior of
cooperating robots results from the interplay of all applications that coordinate the
robots.
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Each application performs its work based on its world model, i.e. the knowledge
about the controlled devices and systems, as well as about the environment including
other (cooperating) devices. This includes geometric information such as positions
and orientations of the relevant objects, as well as also physical data (such as mass
and friction), shape data (such as 3D models for visualization or collision checks),
semantics andontologies. Information from theworldmodel can be stored andused in
applications, systems or real-time contexts, and can also be shared between different
applications and systems. Structurally, the world model data can be differentiated
into dynamic and static knowledge, with static knowledge (e.g. maps, shapes and
ontologies) being valid everywhere, while dynamic knowledge (such as positions and
sensor data) may be known in only one system or be different in different systems.

Depending on the requirements and technical limitations of the robot solution,
the size and distribution of real-time contexts, systems and applications and thus the
structure of the software can vary. The following sections discuss different design
decisions concerning this structure based on the examples of the case study and
using the three popular frameworks OROCOS, ROS and the Robotics API. ORO-
COS as a component framework mainly targets control systems with real-time guar-
antees [10]. Themain focus of ROS is to be a component framework with transparent
distribution, which over time has collected a large amount of algorithms as reusable
components [11]. The Robotics API focuses on high-level robot programming using
modern programming languages (such as Java) while still providing real-time guar-
antees [12].

3 Real-Time Level

First, the existing hardware devices and device drivers have to be grouped into one
or more real-time contexts. Within a real-time context, reactions to events or the
processing of sensor data can be guaranteed to happen before a given time limit.
Having hard real-time guarantees allows to control precise behaviors or to handle
safety-critical situations that need strict timing. In themobilemanipulator example of
the case study, the available device drivers have to be grouped into real-time contexts,
especially focusing on the two youBot platforms and one or two arms.

3.1 Software Structure on the Real-Time Level

Generally speaking, there are five different choices to structure these devices
(and their device drivers) into real-time contexts. In the first case (i.e. the real-time
context in Fig. 3a), the device driver software is written without real-time in mind.
Here, the real-time context only spans the (possibly real-time capable) firmware or
controller present in the device itself. For the youBot arm, this could mean that only
the position control mode of the arm motor controllers is used. Thus, it is sufficient
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(a) (b) (c)

(d) (e)

Fig. 3 Variants of real-time contexts: a No real-time. b One device. c One device incl. logic.
d Two devices. e All used devices, together with logic

to give one joint configuration that the robot is expected to move to. While easy
to implement, no synchronization between the joints or support for precise Carte-
sian space motions is possible. Moreover, no guarantees can be given regarding the
interpolation quality of user-defined trajectories or the timing of reactions to events
(unless supported directly by the device).

In the next case (cf. Fig. 3b), the device driver and the communication with the
device is implemented in a real-time capable fashion. This requires to use a real-time
operating system (RTOS) and more care when implementing the device driver, but
allows to execute precise custom trajectories and handle sensor events with timing
guarantees. Besides the device driver, additional real-time logic (cf. Fig. 3c) can be
present that implements control, trajectory tracking or coordination of the device.
For example, a real-time capable driver running at 250Hz can be implemented for
the youBot Platform on a RTOS such as VxWorks or Xenomai. It provides the motor
controllers with smooth control set points for velocity or torque control, which allows
precise user-defined trajectories or custom feed-forward or feedback control laws.
However, as a drawback only information that is provided by the device itself can be
included in the control law. For example, only the wheel position can be controlled
exactly, but the position of the entire robot in Cartesian space is inaccurate (due to
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wheel slip and other factors limiting odometry precision), and the platform motion
cannot be synchronized with the arm motion.

Increasing the real-time context, multiple devices can be combined up to all
devices that are physically connected to the controlling computer (cf. Fig. 3d).
Both the youBot arm and the platform—connected to the onboard computer via
EtherCAT—can be controlled from a real-time capable software on a RTOS. In this
way, coordinated motions between platform and arm are possible by combining
the five joints of the arm and the three degrees of freedom provided by the omni-
directional platform. This allows, for example, to execute Cartesian space motions of
the end-effector relative to a point in Cartesian space known to the youBot (such as
the position where the youBot started assuming that odometry exactly provides the
current position relative to this origin based on wheel rotations). Additionally, one
device can react to events that occur at other devices or are detected by other sensors.
However, in order to be able to specify these reactions, either this part of the real-time
logic has to be changed for a specific application, or a flexible specification language
is required in the real-time logic [13]. To enable easy cooperation between multi-
ple robots, the devices of all robots could be combined into one real-time context
(cf. Fig. 3e). However, if the corresponding devices are connected to different PCs,
real-time distribution becomes important to establish this kind of real-time context.

3.2 Distribution of Real-Time Contexts

In the simplest cases, all devices structured into one real-time context are connected
to the same computer (cf. Fig. 4a), which requires no distribution. Regarding our case
study where both youBot platforms are not connected to one computer using a single
(wired) EtherCAT bus, the real-time context has to be distributed in order to achieve

(a) (b)

Fig. 4 Examples for distributing real-time contexts: a No distribution. b Distribution over two
computers



216 A. Schierl et al.

this structure (cf. Fig. 4b).However, to distribute a real-time context, special real-time
capable communication is required. For stationary robots such as manipulators or
automation systems, as well as for complexmobile robots where different devices are
connected to the different on-board computers (such as the PR2 or DLR’s Justin),
this is possible through Ethernet or a field bus like EtherCAT. In the automation
domain, standard equipment such as PLCs are used, while in robot research software
frameworks such as aRDx [14] or OROCOS [10] are preferred. But between mobile
robots, using a wired connection usually is no option, and standards for general
purpose real-time capable wireless connections are not yet common, so providing a
single real-time context is not yetwidely usable. In summary,while distributing a real-
time context overmultiple computers can improve the scalability of the solution (w.r.t.
processing power or device connectivity), the need for deterministic communication
implies special requirements (such as field bus hardware or dedicated networks) that
make the solution more complex or expensive.

4 System Level

Proceeding to the system level, one or more real-time contexts can be grouped into
one system.Within a system, all components are allowed to access each other’s data,
and to communicate with and send commands to each other. This allows components
to directly include other components’ data into planning or computation, though no
real-time guarantees are given (unless handled within one real-time context).

4.1 Software Structure on the System Level

Working with the two youBots, three different structures of systems are possible: As
shown in Fig. 5a, each youBot can work in its own system optionally together with
further logic used in the system. Then, no implicit data transfer occurs between both
youBots. The second option is to group both real-time contexts for the two youBots
into one system (cf. Fig. 5b), in addition with further computation logic. Then, the
system introduces communication between both real-time contexts that however
does not provide real-time guarantees. Finally, one real-time context spanning both
youBots can be used in a system (cf. Fig. 5c), which allows real-time cooperation of
the youBots. However, this may require a distribution of the real-time context.

Using a big system spanning all robots (cf. Fig. 5b, c) has the advantage of sim-
plifying application programming or deployment: All the data that any component
might need is made available everywhere in the system. Hence, no manual data
transfer is required. This especially covers the world model. Within one system, a
consistent world model is possible, because the best knowledge about the world is
available to every component. Moreover, every change to the common world model
is available to every component immediately.
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(a) (b) (c)

Fig. 5 Variants of system structure: a Two separate systems. b Two real-time contexts. c One
real-time context

However, there can be various reasons to use multiple systems: The sheer amount
of data present in a big (multi) robot system can be a technical reason. Scalability
can be limited by the management overhead induced by the data transfer between a
great amount of components, and the addressing or mapping of data to components
can become problematic. Furthermore, network bandwidth or reliability can be a
limiting factor. In particular, this can be a problem when multiple robots are used
that cooperate in varying teams. While for constant teams the corresponding robots
could be joined into one system, varying teams quickly increase the required system
size as all robots that might work together in a team at any time have to be within
the same system.

But also more political reasons can opt for the separation into multiple systems,
if cooperating robots belong to different people or parties. In this situation, not
everyone might want to provide access to all of the robot’s data, or allow everyone
else to control the robot. Then, matters of trust or access control become important
that do not fit into the share-everything theme of a system. However, these reasons
do not occur between the different devices within one robot (such as the arm and
the platform of one youBot), so grouping them into two different systems does not
really make sense and has been omitted in the figure.

4.2 Distribution of Systems

Looking at the distribution aspect of a system, some constraints are given by the real-
time contexts: As the real-time contexts have to communicate with the corresponding
hardware devices, the assignment to a certain computer is usually given. Depending
on the devices and their connectivity, this can lead to a solution without distribution
(cf. Fig. 6a), if all devices are connected to the same computer. In this case however,
further logic components can be moved to a different computer as shown in Fig. 6b,
based on performance deliberations. When the devices are connected to different
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(a) (b) (c)

Fig. 6 Examples for distributing systems: aNo distribution. b Separate logic. cDistributed devices

computers and are not handled within a distributed real-time context, distribution
of the system is required. Here, each real-time context’s assignment is given, while
the further logic components can be assigned to the different computers based on
further requirements (cf. Fig. 6c). For communication between the different com-
ponents and real-time contexts, no timing guarantees are required. When data is
to be exchanged between components on the same computer, communication can
be performed locally, while otherwise network connections can be used to transfer
the corresponding data and make necessary information available. Therefore, stan-
dard communication methods including wireless ones such as WiFi are applicable,
however reliability or bandwidth can be limiting factors.

5 Application Level

To perform a requested task, one or multiple systems have to execute actions that are
controlled and coordinated by one or multiple applications. There are various ways
to specify applications: Mainly sequential workflows can well be expressed as a
programming language control flow. For reactive behavior, model-based approaches
such as statecharts (e.g. [12, 15, 16]) or Petri nets (e.g. [17]) can bemore appropriate.
Solutions offered by different robotics frameworks are discussed in Sect. 7.

5.1 Software Structure on the Application Level

Figure7 gives the different possibilities to structure the application(s) for controlling
twoyouBots.Oneway is to control all robots fromone application as shown inFig. 7a.
This defines all the interaction present in the solution in one place and thus makes
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(a) (b) (c)

(d) (e) (f)

Fig. 7 Variants of application structure: a One app. b Two apps. c Three apps. d Two systems, like
(a). e Two systems, like (b). f Two system, like (c)

it easier to understand. However, if varying teams are needed in a certain scenario,
the corresponding application has to coordinate all robots at the same time. This can
become confusing if the concurrent execution of multiple subtasks is encoded in one
control flow or sequential state machine. Thus, separating concerns into subtasks,
one for each team, should be considered within the application.

Another way is to use multiple applications, e.g. one for each controlled robot
(cf. Fig. 7b). In this way, team behavior can be implemented by only locally and
independently describing the behavior of each robot. However, the applications have
to coordinate, either through explicit communication or through observation of the
environment or other robots. As a third way, a further application coordinating both
applications is a possible solution (cf. Fig. 7c), which however leads to a coordination
application similar to the one in Fig. 7a. Using separate applications can also be
required for political reasons, as described in Sect. 4.

In a multi-application cooperation scheme, however, the resulting behavior is not
easily understandable by looking at one place, but only by examining the interaction
of all different applications involved. In multi-agent robot systems (e.g. [18, 19])
every agent is controlled by one application. The overall behavior is given by the
agents’ interaction. As shown byHoffmann et al. [20], this can lead to self-organizing
properties making the overall solution more robust. It is even possible that the appli-
cation for each robot only implements low-level behaviors, and the resulting behavior
completely emerges from the interaction [21].

Another structuring approach looks at the relation between applications and sys-
tems. It is possible to control (different devices of) one system from multiple appli-
cations (cf. Fig. 7b, c), one system from one application (cf. Fig. 7a, e) or multiple
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systems from one application (cf. Fig. 7d). The software framework should allow an
application that was intended for use withmultiple systems (e.g. Fig. 7d) to also work
when all corresponding devices exist in one system, while the distribution aspect on
the system and real-time level is handled by deployment (e.g. through configuration).
This may however not be possible the other way round, if the application relies on
having one system (or even real-time context).

5.2 Distribution of Applications

When looking at the application level, different possible variants of distribution can
occur. An application can run on another computer than the controlled system(s).
In this case, network communication is required to transfer data between the sys-
tem(s) and the application. However, this kind of distribution is equivalent to dis-
tribution on the system level, when seeing the application as a component in the
system.When multiple applications are used, they can be executed on different com-
puters. Then, coordination between the applications has to be implemented in a way
supporting remote communication. Finally, a single application can be distributed
ontomultiple computers. Therefore, programming language concepts such as remote
procedure calls or service-oriented architectures can be used, which can however be
used in a standard fashion and do not require any special, robotics-related treatment.

6 World Model

If a robot is expected to cooperate with another robot, it needs the relevant data
about that other robot. In the easiest case, both robots belong to the same system,
thus the required information is already accessible. Then we refer to both robots
as controlled robots within this system. Once robots from multiple systems are to
be coordinated from one application, the world model becomes more complex. The
information about robots in other systems can originate either fromcommunication or
observation. If the other systemprovides (maybe read-only) access to the information,
then we term the other robot a remote robot. However, if the information is only
available through observation, we define the other robot as an observed robot. Thus,
the world model has to keep (a descending amount of) information about controlled,
remote and observed robots.

When working with two youBots, each of which belongs to its own system, some
information (e.g. the robot positions) is available in different systems with varying
precision, and has to be organized. One way is to keep one world model per system.
Figure8a shows an example of two resulting world models. The figure concentrates
on geometric information, with coordinate systems (frames) indicating positions
of objects in Cartesian space, while arrows represent positions or transformations
between these frames. Solid arrows indicate controllable positions, while dashed
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(a)

(b) (c)

Fig. 8 Different options to represent theworldmodel ofmultiple systems: a Separateworldmodels.
b Global world model. c Mixed world model

arrows indicate positions retrieved through measurement or communication. Orange
arrows (i.e. L1–L3) belong to the system of the left youBot, while blue arrows
(i.e. R1–R3) belong to the right youBot system. The frames could be augmented by
additional information such as shape data, which is omitted here for clarity. In this
case, the system of the left youBot knows information about the left youBot’s start
position together with the distance traveled, as well as current position information
about the right youBot. On the right youBot system, the opposite situation occurs.

Using separate models has the advantage that multiple systems can just use differ-
ent instances of the same world model, which allows to re-use models designed for
single systems to a large extent. However, for cooperation a lot of information has
to be duplicated, such as robot models of robots that occur as controlled robot in one
and as a remote robot in another system. Additionally, the different world models
have to be kept consistent. For example, a workpiece that is grasped and moved in
one system also has to appear as grasped and moved in the other system.

The second way is to keep one global world model with all the objects and rela-
tions, and to provide access to the different transformations or sensor values for each
system (cf. Fig. 8b). This has the advantage that the world model is always consistent
(as far as topology and static information is concerned, however different systems
can still disagree about object transformations), and structural changes performed in
one system are automatically present in other systems. However, this scheme lacks
flexibility when dealing with observed robots: While a mobile robot can keep track
of its movement since the start through odometry measurements, an observer has no
way to achieve this information from outside. Thus, the frame graph contains two
transformations for controlled and remote robots (cf. R1 and R2 in Fig. 8a), while
for observed robots only one transformation is available (cf. R3 in Fig. 8a).
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To solve this problem, we propose a mixed world model scheme (cf. Fig. 8c). In a
mixed world model, the static data is shared between all systems, while dynamic data
can be different for each system. For example, information about physical objects
(such as youBot geometry) as well as static connections (such as the position of the
youBot arm relative to the youBot platform) are shared. Dynamic connections (such
as the position of the youBot relative to the origin, or the fact that the youBot is
positioned relative to the world origin or youBot origin) can be different for each
system. Still, in both systems it should be possible to compute the transformation
of the left youBot to the right youBot, using the data and topology present in each
system (and to use it for planning and execution). This combines the advantages of
a shared world model with the flexibility to include limited observations, while still
allowing the application to address one youBot in a uniform way.

7 Support in Software Frameworks

When looking at the different software frameworks, a different focus becomes obvi-
ous. ROS itself puts no emphasis on real-time guarantees, so typically a real-time
context only spans one device (cf. Fig. 3a–c), where a single device is encapsulated
into a ROS node, providing an interface to execute the required local commands.
Sometimes multiple devices (such as a youBot arm and platform) are combined into
one node, however this leads to higher coupling. On the system level, all nodes that
run using the same ROSmaster are seen as a system. In this situation, all these nodes
can subscribe to any data published by other nodes, and post messages or actions,
thus providing the transparent data exchange required for a system.

To implement applications in ROS, Python scripts can be used for sequential
workflows, while SMACH state machines introduced by Bohren and Cousins [22]
allow reactive behavior. However, communication with multiple ROS masters from
one application is not natively supported. To share data between different systems
(i.e. ROS masters), concepts like multimaster or foreign_relay [23] can be used to
forward topics betweenmultiplemasters. The forwarded topics have to be configured
during deployment. Additionally, working with multiple masters is one of the new
use cases motivating ROS 2.1 Within one ROS system, the world model is managed
through data periodically published by different nodes. It includes transformation
data as provided by the tf service, as well as robot models and data (e.g. sensor
values) from other nodes.

In OROCOS usually most devices are combined into one real-time context
(cf. Fig. 3b–e), because the framework targets real-time capable component sys-
tems with device drivers implemented in C++ on a RTOS. When using multiple
robots, wired connections are used to ensure one real-time context, sometimes even
for mobile systems [24]. Looking at the system level, OROCOS as a framework does
not contain features for non-real-time communication, however often ROS is used

1http://design.ros2.org/articles/why_ros2.html.

http://design.ros2.org/articles/why_ros2.html
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to combine multiple real-time contexts into one common system [25] that allows for
non-real-time communication and data sharing. Consequently, OROCOS does not
provide direct support for access to multiple systems. Control flow can be expressed
in LUA scripts, while complex coordination is possible using rFSM statecharts as
suggested by Klotzbücher and Bruyninckx [15]. World models are usually imple-
mented as components in an application dependent manner within the real-time
context, which can include geometry, semantics and history [26].

Using theRoboticsAPI, the underlyingRobotControlCore [27] is implemented in
C++ for Xenomai and includes real-time capable drivers for devices connected to the
corresponding computer. Additionally, the Realtime Primitives Interface [27] allows
for the flexible definition of real-time logic to execute user-defined tasks. In this
way, all devices physically connected to the computer can form a real-time context
(cf. Fig. 3c–e). The system term here refers to the concept of a RoboticsRuntime,
which represents one real-time context and makes the data available to applications
in a non-real-time way as well as to other devices in the same context for real-time
reactions. Control flow can be expressed directly in Java applications, as well as
through statecharts, e.g. by using Java libraries for SCXML. It is easily possible to
use multiple systems in one application (as in the Factory2020 case study [12]) and
to share limited amount of data between different systems or applications—either
through common data sources (such as a Vicon system connected to both youBots
through WiFi) or through explicit direct transfer. The frame graph [28] contains
semantic information such as the relation between frames (e.g. if they are static,
temporary or have a transformation that can change during execution). With further
information about physical objects (e.g. their physical properties or shape), it serves
as a world model in an application and can be used for planning as well as task
execution.

8 Experimental Results

The simulation experiments described in the case study have been performed using
the Robotics API as a framework and its corresponding simulation and visualization
engine. A single application as shown in Fig. 9a was used to control one system
(cf. Fig. 5c) containing a single real-time context (cf. Fig. 3e). In this real-time con-
text, both youBot arms and platforms were simulated, as well as the youBot grip-
pers. The application was programmed in an object-oriented fashion, referring to the
robots and work pieces as software objects. Moreover, the application used a sin-
gle world model and expressed all interaction in the control flow of a Java method.
Its initial version, where the first robot was not moving during transfer, was easily
extended into the second version where both platforms were moving. This extension
mainly consisted of adding commands to move the first platform, and to make the
second platform synchronize itsmotion to the position andmovement of the first plat-
form. This showed the simplicity of programming and synchronizing robots in the
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(a) (b)

Fig. 9 Software structure for the example application: a Simulation application. bReal application

idealized simulation case where every device belongs to the same real-time context
and can be synchronized, and where exact positioning is available.

Transferring the results from simulation to reality, various changes had to be done.
The tests were conducted on two KUKA youBots using a Vicon optical tracking sys-
tem for external localization. A straightforward approach would be to combine both
youBots into one real-time context. Then, the same distribution scheme as in simula-
tion could be re-used, as well as large parts of the implementation. However, lacking
real-time communication over wireless networks (cf. Sect. 3.2), this was not easily
possible. On the other hand, while for stationarymanipulators adding a common real-
time context greatly simplifies and improves the precision of physical cooperation, in
the mobile case the gains are less clear. This is because precise cooperation does not
only require exact timing synchronization, but also exact spatial synchronization. For
stationary manipulators, this can be achieved by appropriate calibration procedures.
For mobile systems, this is in general more problematic due to sensor inaccura-
cies. External positioning systems—e.g. the Vicon system used here—can mitigate
this problem. However, wireless real-time communication becomes a problem again
when it comes to transmitting the position information to the youBots.

Thus, we decided to choose an alternative distribution approach as shown in
Fig. 9b. On each internal computer an instance of the Robot Control Core was run-
ning, which formed the real-time context (cf. Fig. 3d) as well as the system for
the corresponding youBot. On the system level, this structure corresponds to Fig. 5a.
Vicon tracking data for both youBots and theworkpiecewas streamed to both youBot
systems through aWiFi connection from an external PC running the Vicon software.
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Looking at the application level, each youBot was controlled from a separate applica-
tion (cf. Fig. 7e). The motion of the platform carrying the workpiece was controlled
through teleoperation. The other youBot was controlled by a Java method similar to
the one in the simulation case.

However, both applications used separate world models (cf. Fig. 8a). The work-
piece and the other youBot platform were not modeled as Java objects, but only the
Vicon position data was used to synchronize the motion and find the grasp position.
The youBot arm used joint impedance control to mitigate position inaccuracies. Still,
the experiment succeeded and the work piece could be transferred. Instead of sepa-
rate world models, a single application with a mixed world model could have been
used, which would be closer to the (single) world model in the simulation case. This
way, changes to the world model topology (e.g. the information that the object has
been grasped) would have automatically been transferred to the second youBot’s
system and static position data would be known to both youBots.

9 Conclusion and Outlook

In this paper,we introduced different levels for structuring the software for distributed
robot applications: real-time, system, application level. Moreover, implications on
theworldmodel have been discussed. The structure on the different levels can be used
and combined independently, motivated by technical as well as political constraints.
The different options for structuring and distribution have been explained based on
a case study of cooperating mobile manipulators and various robot frameworks, and
evaluated both in simulation and in real world setup with two KUKA youBots. In
the example applications, different ways to distribute the software on different levels
have been introduced, and the advantages and drawbacks for the given scenario have
been shown.

Overall, it became clear that there is not a single optimal way of structuring and
distributing the software. The levels presented in thisworkwill hopefully be a starting
point that can help developers in designing and discussing their software architecture.
Based on non-functional requirements to the developed solution (e.g. reactiveness,
synchronization quality, data privacy, trust), the choice of the appropriate distribution
scheme and framework(s) for implementation should become easier. As next steps,
we plan to implement the mentioned other ways of distribution and to evaluate
the gains for the given scenario. This especially includes the use of a mixed world
model, as well as ways to share a world model between multiple applications or to
synchronize relevant structural changes.
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