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Abstract This work presents a method to analyse 3D flat objects and to measure
variations of its surface. The method represents of the objects using processsing
techniques based on point cloud. The proposed method is focused on the deformation
detection of elastic objects which are formed by flat faces. These deformations are
usually caused when two bodies, a solid and another elastic object, come in contact
and there are contact pressures among their faces. Our method describes an algorithm
to estimate the deformation shape. It is done by calculating its skeleton. Particularly,
the algorithm calculates the curvature values of the surface points on the object
using an analysis of eigenvectors and eigenvalues. Afterwards, the points of the
similar curvature are grouped in level curvatures. Finally, a set of the minimum path
among level curvatures are calculated to obtain the skeleton. The paper shows a set of
experiments which simulate the deformations caused by a robot hand in manipulation
tasks of flat objects.
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1 Introduction

Generally, researchers about robotic manipulation have been focused to recognize
rigid objects such as solids [1, 2]. But, in recent years, the manipulation process
has changed to recognize articulated objects [3], deformable objects [4] such as soft
objects [5] semi-solids such as organic material [6] or tissue [7]. Therefore, three
basic types of rigid objects can be considered solids, elastics and deformable objects.

The object rigidity can be mathematically measured with three different inter-
pretations: stiffness which is dependent on the force and the size of area where it
is applied, hardness which defines the forces required to penetrate the material and
toughness which is the amount of energy that a material can tolerate before it can be
fractured.

Using tactile and/or force control is usually to manage the grasping processes
[8]. Thus, a robot hand is able to do task manipulation of objects applying forces
that is not usually enough large to break the surface structure or to drill it. In a
rule, the forces never exceed a value which can cause a rupture or penetration.
Notwithstanding, this is a complex task in which just the tactile control does not
allow us to avoid deformations. More data are required to control the manipulation
process if the deformations wish be controlled and measured [9]. Sometimes, the
tactile and force information is poor, inconsistent or ambiguous to detect and analyse
deformations in an object which is being manipulated [10]. In contrast to [11], the
goal of this paper is to model and identify deformation in semi-solids with elastic
properties from contactless sensors. Thus, visual sensors can assist to other sensors
[1, 12, 13]. Firstly, they built a geometrically modeled object and secondly, they
identify the object deformation for comparison between points of surface with and
without deformation.

Consequently, the elastic object can be construed just as a stiff object because
there is not surface penetration or rupture of its structure. The elastic modulus has
often been used to measure the stiffness properties in the study of materials when they
are known. The elastic modulus measures the applied force per unit area to deform
an object surface. However, the elastic modulus cannot be used when the objects
were made with an unknown material. In this paper, the stiffness can be measured
by the curvature in surface points from the object geometry. The curvature features
are computed from mesh points which models the object surface.

The paper is structured as follows: the concept of curvature to measure curves by
means differential geometry is shown in Sect. 2. In Sect. 3, we present the method
based on surface variation to model surfaces, detect and measure deformation in
those. Experimental results of the deformations caused in virtual robot manipulation
tasks are shown in Sect. 4. Finally, Sect. 5, contains the conclusions.
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2 Mathematical Approach to Compute Curvature
of Surfaces

In this paper, the differential geometry of curves is used as a tool to propose a method
which allows us to analyse 3D surfaces. Generally, in computer vision, the 3D object
surface consists of an unstructured point cloud represented as P = {pi ∈ �3}. If a
plane object in the Euclidean space is deformed by pressing on its outside surface, the
geometric properties change and some smooth curves could appear. Here, the curves
are understood as a variation of surface, and they can be computed by measuring of
the orientation change of normal vector to the surface.

Generally, each pointpi satisfies a set of axioms in relation with its neighbourhood
environment. Thus, the computation of the geometric properties of the curves depends
on the k-nearest neighbour points to each pi j . Therefore, P can be sampled as a set of
patch N j and each one is a subset of points pi j . Both, the size (radius) and number of
points of a patch (dense) influence the accuracy to compute the geometric properties
of the curves. Few points cause inaccuracy. In contrast, many points distort the values
hindering the detection of orientation changes in the surface. In this last case, the
detection is smoothed.

An analysis of the eigenvalues computed from covariance matrix of points in
a neighbourhood environment according to (1) can be used to estimate the local
geometric properties of a patch of the surface [14]. To define the covariance matrix
is applied PCA (Principle Component Analysis) as follows:

CP = PPT =
⎡
⎣
pi1 − p

· · ·
pik − p

⎤
⎦

⎡
⎣
pi1 − p

· · ·
pik − p

⎤
⎦

T

(1)

where each pi j is a point of the neighbourhood environment N j and p is the centroid
of the patch. And k defines the number of points N j .

Equation (1) is solved by Turk and Pentland method [15] that allow us the compu-
tation of eigenvalues and eigenvectors ofCP with low computational cost by building
a matrix A = PPT and by applying singular value decomposition (SVD) to A as fol-
lows:

A · v′
j = λ′

j · v′
j → PTP · v′

j = λ′
j · v′

j (2)

where v′
j are the eigenvectors and λ′

j are the singular values of the matrix A. Multi-
plying by P is obtained:

PPTP · v′
j = λ′

j · Pv′
j → CPP · v′

j = λ′
j · Pv′

j (3)

Then, the eigenvalues and associated eigenvectors of CP can be obtained as:

λ j = λ′
j and v j = p · v′

j√
λ′
j

(4)



200 C.M. Mateo et al.

Fig. 1 Level curves set SP
computed from a surface P
with a deformation

The eigenvalues sum provides information about the surface variation between
each point of the patch N j and its centroid. In addition, the smallest eigenvalue pro-
vides a measure of the variation along the normal vector to the surface. Consequently,
the eigenvalues can help to classify the concavity of the surface at each point, and
the set of all defines the curvature parameter. Thus, the local maximum curvature
[16] of pi j within the patch N j can be computed by:

ci j = λ0

λ0 + λ1 + λ2
(5)

where λ0 ≤ λ1 ≤ λ2 are eigenvalues of CP. The associated eigenvector v0 is the
normal vector to the tangent plane of the patch surface P that define v1 and v2. The
set of level curves is defined as a function SP : �3 → � as follows:

SP(�) = {
(x, y, z) ∈ �3 : �(x, y, z) = l

}
(6)

where l is a constant value and it represents a level curve in the surface. Then, every
level curve is computed like a cluster with the same colour that represents the points
of P with a similar value of curvature (Fig. 1).

3 Our Method to Find Surface Variations

In this work, the surfaces are represented as a point clouds. It is worth nothing that
the data of P can be obtained from a structured or unstructured way. P is structured
whether it can be stored in a matrix PX×Y where X and Y are the number of rows and
columns, respectively. This occurs whether P is acquired from a sensor like a RGBD
or ToF, then each point corresponds with a position of the sensor. In contrast, P is
unstructured whether it can only be stored as a vector matrix PX×1 . In this last case,
P has no direct relationship with the data of range image. P is usually unstructured
when it is built from a virtual CAD model (Fig. 2a). Consequently, in order to find
the neighbor of each point of P is typically used either kdtree or octree data structure.
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Fig. 2 a CAD Model of a deformation caused in a planar surface by contacting of two differ-
ent geometric objects: Sphere and Cube. b Level curves set computed from the deformation and
represented with a different colour l. c Histogram

The proposed algorithm has two phases: Initialization and Extract-Curvatures. The
first step is only computed when P is unstructured because it needs to be structured
to get sorted points. The closest points in the Euclidean space must be stored as
neighbors withinP. Thereby, it is possible to search points with the same geometrical
properties and located in the same neighbourhood environment. This is essential to
calculate the level curves from the curvature parameter and to detect surface variations
given by the transversal paths to the level curves.

The proposed method detects deformations of any surface represented as P. It
is based on finding the critical points of P in which there are surface variations. In
this work, the critical points are points belonging to different level curves � of the
surface but also, they lie in the transversal path that goes across the level curves by
fitting of singular points. The singular points are defined as the points with maximum
curvature values, and whose curvature value is estimated like a curvature threshold
computed from a Histogram of curvature.

3.1 Histogram of Curvatures

Once the curvature parameter, according to (5), is calculated for all points within P
(Fig. 2b), a curvature histogram is built (Fig. 2c). It represents the distribution of the
surface variation and it can be computed as follows:
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HP = Number(ci j )

size(P)
(7)

where cij is the curvature value, and size(P) represents the density or number of points
used to sample the surface. HP changes depending on the size of the neighbourhood
environment N j used to compute each cij. The user must choose the radio according
to the accuracy for the detection of abrupt changes in the surface (Fig. 5).

The histogram HP is useful to find the singular points, that is to say both the points
with max(ci j ) and the boundary points which define the border where there is no
curvature variation in the surface. The boundary points split the curvature region and
the non-curvature region. They are computed from HP using the technique presented
in [17]. The histogram allows us to find the curvature threshold εotsu by minimizing
the standard deviation of the Gaussian distributions that represent the two zones
(Fig. 2c).

Algorithm. Finding curvatures
Begin
/ / Initialization:

O ←− P
For each leaf of O with points do:

For i = lea fx − 1 : lea fx + 1 do:
05 For j = lea fy − 1 : lea fy + 1 do:

For k = lea fz − 1 : lea fz + 1 do:

N
add←−−−−− pi jk

End For
End For

10 End For
Q

add←−−−− {p, N }
End For
/ / Extract-Curvatures:

R
curvature(p)≥εotsu←−−−−−−−−−−−−− Q

15 While R 	= {} do:

C
add←−−−− head(R) // Candidate list of point for def. D′

R
remove←−−−−−− head(R)

While C 	= {} do:

20 D′ add←−−−− head(D′)
If curvature(head(D′)) ≤ εotsu then:

C
addAdjacent Points←−−−−−−−−−−−−−−− head(C)

End If
C

remove←−−−−− head(C)

End while
25 D

add←−−− D′
WhileD′ 	= {} do:

If curvature(head(D′)) ≡ εotsuthen:
FindMinPath(head(tail(D)), head(D′))

End If
30 D′ remove←−−−−−− head(D′)
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End while

End while

3.2 Path of Critical Points to Measure the Surface Variations

We assume that the surface is always differentiable, then the surface gradient at a
point is either zero or perpendicular to the level curve which represents the surface
variation at that point. We inspect the critical points of the surface function along its
level curves. Our critical points are the curve points which follow the direction of
gradient.

The proposed algorithm is used to find the critical and boundary points and the
transversal path which define the deformation on the surface. The algorithm uses
an octree O like [18] in order to contain all points p of P as a sorted structured.
Later, we create a priority queue Q of pairs {p, N }, where p is each point of O
and N is its adjacency list. N represents the 26-connected neighbour points. Q puts
on the head, the points p with the greater curvature values. Later, Q is filtered to
only obtain the values of Q which are greater than εotsu then they are stored in R.
Subsequently, R is crossed according to algorithm from line 18 until 24 in order
to get a list with the deformations from the clusters D. Finally, we use Dijkstra’s
algorithm FindMinPath(v1, v2) to find the minimum paths. Let v1 be the point with
maximum curvature (the head into each D′) and let v2 be the target point (points into
the boundaries).

4 Experiments

Several experiments and tests have been done. We have modelled the movements
of a real robot hand considering both the kinematics and the virtual model (shape
and structure) of their fingers and palm without physical constraints and without
considering singularities, by using free software Blender. In particular, the model of
robot hand corresponds to a Shadow Hand Robot available in our research laboratory.

4.1 Experiments to Compute Curvatures Skeleton

The deformations are described by curvature skeletons. A curvature skeleton is a
set of minimum transversal paths. These path goes across the level curvatures, thus
they start in the same critical point (maximum curvature) and end over the bound-
ary points. An example of the skeleton is represented in the curvature map of the
Fig. 3. The chart of that figure shows the minimum transversal paths which define
the behaviour of the deformation. Thereby, if all paths have similar distances then
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Curvature map 
with deformation 
skeleton.

Fig. 3 Characterization of the transversal path variations computed from critical points

the deformations are homogeneus (in this case, the values are all close to 0.1 m and
then the deformation shape could be understand like a circle). In opposition, if the
paths represent different distances then the deformation is heterogeneous (in this
case, other irregular deformation shapes can be read). Furthermore, the chart shows
the deformation as a set of branches which represents several minimum transversal
paths. The number of branches and the value of slope of them determine how is the
deformation: steep, smooth, flat, etc. In Fig. 3, there are two groups of path (group 1:
path 1, 2, 4, 6, 8, 11; group 2: path 3, 5, 7, 9, 10, 12) and each one tends to curvature
values around to 0.03 (group 1) and 0.005 (group 2).

4.2 Experiments Applied to Grasping Tasks

Our experiments simulate several deformations which are caused by contact between
fingers of the virtual robot hand and a planar object. The deformations depend on
the orientation of the fingers, the trajectory used in the contact process, the shape of
the finger and the pressure produced by it when the contact occurs (Fig. 4).

Each experiment consists of a movement that shows an image sequences. Each
sequence is done from 60 images for testing. The algorithm computes the level
curves set from both the curvature parameter and the histogram of curvatures. They
allow us to obtain the evolution of the curvatures during a time sequence through the
formation process of the deformation (Figs. 4 and 6). Afterwards, we estimate the
path of critical points to measure the surface variation and the topographic profile of
the deformation (Figs. 5 and 6).
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(a) (b)

Fig. 4 Temporal evolution of the deformation of a planar surface caused by contact of a robot
finger from two movement sequence of the robot hand. a Test 1. b Test 2

Fig. 5 Evolution of the
curvature mean value
through the movement
sequences shown in Fig. 4
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the transversal path
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frame of the Test 2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 0.025 0.05 0.075 0.1 0.125

C
ur

va
tu

re
 v

al
ue

Euclidean Distance (meters)

Path 0
Path 1
Path 2
Path 3
Path 4
Path 5
Path 6



206 C.M. Mateo et al.

The algorithm is implemented with the C++ language and using the open source
libraries PCL, Boost and Eigen. It runs over a computer with a Core i7-4770k proces-
sor, equipped with 8GB of system memory and an nVidia GeForce 760GTX.

Figure 5 shows the dependence of the curvature measures when the radius of the
neighborhood is chosen in a proper way or not. If the radius is not enough large
then the smallest gaps on the surface are not detected by the algorithm. Also, Fig. 5
shows the evolution of the boundary points and how they grow quickly in the first
iterations. This fact indicates that the contact between robot hand and elastic surface
is occurring in that moment. Later, the growth is smoother and more progressive.
The curve slope indicates the deformation level generated during the grasping over
time. Figure 6 shows us how the minimum transversal paths retrieve us information
to determine the deformation in an instant time. In the test 2, there are two dominant
paths 2 and 3 because they are far from the rest of paths (those other are close and have
similar length). The paths 2 and 3 determine the shape of the deformation caused on
the surface. But also, the paths 0, 1, 4, 5 and 6 show a sharp slope which represents
an abrupt deformation. This is much variation among level curves located near on
the surface.

5 Conclusions

This paper has described a novel approach to analyse the deformation of flat surfaces.
The proposed method builds curvature variation maps to measure the local uneven-
ness in the surface by comparison among the points that lie on the same surface.
Also, the method uses a novel algorithm to characterize and to describe the curvature
variation caused by deformation. To do it, our algorithm identifies the level curves
and later, it finds the critical points which define transversal paths among those level
curves. Thus, we generate topographic profiles in the local maximum gradient direc-
tions. The gap, between the curvature value and the Euclidean distance of the critical
points, determines whether or not deformation and the degree of slope that defines
if the deformation is smooth or abrupt.

The results reveal that this surface analysis provides an empirical investigation
on the effect of the deformations about the surface of elastic objects when several
grasping tasks with robot hand are performed. And most importantly, an algorithm
to measure these deformations has been implemented and tested successfully. It is
programed in C++, and it can be integrated into robotic platforms.
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