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Abstract The key idea of the absolute nodal coordinate formulation (ANCF) is to
use slope vectors in order to describe the orientation of the cross-section of structural
mechanics components, such as beams, plates or shells. This formulation relaxes
the kinematical assumptions of Bernoulli–Euler and Timoshenko beam theories and
enables a deformation of the cross-sections. The present contribution shows how to
create 2D and 3D structural finite elements based on the ANCF by employing differ-
ent sets of slope vectors for approximating the cross-sections’ orientation. A specific
aim of this chapter is to present a unified notation for structural mechanics and
continuum mechanics ANC formulations. Particular focus is laid on enhanced for-
mulations for such finite elements that circumvent severe issues like Poisson or shear
locking. The performance of these elements is evaluated and a detailed assessment
comprising the convergence order, the number of iterations, and Jacobian updates
for large deformation benchmark problems is provided.

1 Introduction

In a world with an increasing amount of automation, mobility, adaptive structures,
and miniaturized systems, the modeling and simulation of flexible multibody systems
gains importance. Large deformation of some components can significantly influence
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the behavior of the flexible multibody system. Examples are the dynamics of thin
rotor blades, transportation of sheets or strips, various kinds of cables, wires, and
tires.

There are several possibilities to study the dynamic behavior of slender structures.
A convenient way to model large deformations of beam-like structures is to combine
several beams described by the floating frame of reference formulation with an indi-
vidual frame for each beam. As soon as the number of beams becomes larger, the
solution of geometrically nonlinear problems converges to the solution of nonlin-
ear beam formulations, see Gerstmayr and Irschik (2003) and Dibold et al. (2009).
The floating frame approach has drawbacks like inappropriate modeling of nonlin-
earities for geometric stiffening and slow convergence and it cannot be extended to
shells. Furthermore, the equations of motion as well as the constraint conditions for
pairwise interconnection of beams become tedious. In finite element codes, large
deformation structural finite elements based on the large rotation vector formulation
of Simo and Vu-Quoc (1988) are available for studying the dynamics of thin struc-
tures. These elements require special time integration methods for stable long-term
dynamic simulations.

In the present chapter, we focus on beam finite elements based on the absolute
nodal coordinate formulation. Specifically, the focus of this chapter lies on a class
of thin beam finite elements, based on the Bernoulli–Euler beam theory, and a class
of thick beam finite elements, which include shear and cross-section deformation.
This chapter provides a brief overview of existing absolute nodal coordinate (ANC)
formulations, relations to other modeling techniques for large deformation beam
finite elements, details on the formulation and implementation of the equations of
motion, and some representative numerical tests that show the order of convergence,
the performance and the stability of ANC beam finite elements.

1.1 ANCF—Basic Ideas

This section aims to highlight various basic ideas for ANC finite elements. For a
recent review article on ANCF, which provides important references, see Gerstmayr
et al. (2013b). We like to emphasize that some of the subsequent ideas do not apply
to every ANC finite element published in the literature. In addition to that, there is
no general definition whether to call a finite element ANC element, or not.

The first, and probably most widely accepted, idea is that ANC finite elements
are based on slope vectors1 rather than rotation parameters such as Euler angles
or Euler parameters. Rotational parameters can immediately lead to a numerically
induced blow up of the total energy in a conservative flexible multibody system, see
the examples section of this chapter as well as the classical literature on 3D nonlinear
beam formulations of the 1980s and 1990s, see Simo and Vu-Quoc (1988). As an
advantage of the ANCF, slope vectors can be interpolated in space and time in

1For an example of a slope vector, see x,ξ , x,η or x,ζ in Fig. 2.
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the same way as displacements, which does not lead to well-known problems of
interpolation of rotations. As a disadvantage, the slope vectors are stiffly constrained
to the nearly-rigid-body motion of the cross-section, which can cause high-frequency
dynamics behavior.

As a result of a pure displacement (or displacement gradient) interpolation in
space, ANC finite elements usually employ a constant mass matrix. This can lead to
simpler implementation and computational efficiency. The straightforward kinematic
description of the motion of each point of the beam makes an extension to advanced
kinematics descriptions (such as ALE) or to multi-physics coupling much easier, see
Pechstein and Gerstmayr (2013).

From the computational point of view, ANC finite elements are solved according
to a Total Lagrangian (TL) scheme. This means, that no incremental (or co-rotational)
formulation is utilized, which is sometimes applied in formulations based on rota-
tional parameters.

ANC finite elements shall be capable of large deformations (in comparison to
structural finite elements based on the floating frame of reference formulation) and
can even be applied to (moderately) large strains. Specifically, in some sort of ANC
finite elements, 3D continuum mechanics material laws can be directly applied,
which makes this formulation attractive, e.g., for rubber-like materials, see Irschik
and Gerstmayr (2009a).

The original shear and cross-section deformable ANC finite elements relax the
assumptions of the classical Bernoulli–Euler and the Timoshenko beam theory, in the
sense that the cross-section is not rigid any longer. As a consequence, the shrinkage
of parts of the cross-section due to elongation can be modeled, which has many
applications, e.g., in rolling processes.

In the case of so-called fully parametrized ANC finite elements, which use three
slope vectors for the definition of the orientation of the cross-section, an intercon-
nection of finite elements at any angle is possible without the need of constraint
conditions, see Sugiyama et al. (2003).

There is a general transformation of the NURBS-based geometry of slender struc-
tures to ANC finite elements, which allows the direct computation of CAD geometry
without the need for an intermediate discretization, see Lan and Shabana (2010a, b).

1.2 ANCF—Short Summary

There exist a vast amount of structural finite elements in the literature. Many of the
proposed structural finite elements have specific objectives and purposes. Among
other things, ANC finite elements have been designed for simulation of the dynamics
of flexible multibody systems consisting of structural components. In this context,
the term “structural” is used in order to distinguish such elements from conventional
solid finite elements.

In one of the earliest papers on ANCF, Escalona et al. (1998) proposed
a polynomial interpolation of the position of the beam axis for the computation
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of the deformation energy, the kinetic energy and the mass matrix. In the latter paper,
the authors used a planar Bernoulli–Euler beam theory, using a cubic interpolation
along the axis of the beam finite element. A co-rotational frame is defined, which
is spanned by the end points of the beam finite element, in order to compute the
strain energy. However, the mass matrix becomes constant and the formulation can
be implemented very efficiently. In order to extend the latter idea, it is possible to
use cross-section slope vectors, see Yakoub and Shabana (2001), and to use a similar
co-rotational linearization, see, e.g., Gerstmayr (2009).

The absolute nodal coordinate formulation facilitates the application of constitu-
tive relations on the continuum mechanics level, therefore, almost arbitrary material
laws as well as large strain formulations can be incorporated in a straightforward
manner. The classical large deformation beam finite elements, which have been pro-
posed by Simo (1985) and Simo and Vu-Quoc (1986c), are based on a strain energy
which is a quadratic function of generalized strain measures such as axial strain or
curvature. These strain measures can be interpreted in terms of continuum mechan-
ics quantities, see Irschik and Gerstmayr (2009b), however, the ANCF allows for a
much simpler realization of nonlinear, e.g., hyperelastic, material laws, see Irschik
and Gerstmayr (2009a).

There are other approaches than ANC finite elements for the combination of con-
tinuum mechanics with structural finite elements, see Frischkorn and Reese (2012)
for a recent work on beams modeled with hexahedrals. The slope vectors in the
ANCF can be directly related to well-known director based methods, if constraints
are applied to the length of the slopes vectors and for the orthogonality of the slope
vectors. Applying constraints on a fully parametrized ANC beam finite element is
in line with the approach proposed by Betsch and Steinmann (2003), see the cor-
responding chapter in this book. Furthermore, the latter approach is based on the
geometrically exact beam formulation of Simo (1985).

There is one important group of so-called fully parametrized ANC finite elements.
The term ‘fully parameterized’ indicates that all nine components of the spatial
deformation gradient (four in the planar case) are used as coordinates in each node.
Using these coordinates, it is possible to interconnect ANC finite elements with slope
discontinuities without any constraint equations, see Sugiyama et al. (2003). In this
chapter, a specific focus is laid on so-called gradient-deficient ANC finite elements,
which means that less slope vectors are used than in the fully parametrized case.

There are several issues concerning the ANCF, which are not discussed in detail
in the present chapter. The idea of using slopes as nodal degrees of freedom has been
extended to plates, see Mikkola and Shabana (2003), resp. shells and general 3D
solids, see Olshevskiy et al. (2013). In the present chapter, we only discuss planar
and spatial ANC beam finite elements. The continuum mechanics formulation, which
is frequently used for the computation of the elastic forces in ANCF, is well suited
for the modeling of nonlinear elastic material, see Irschik and Gerstmayr (2011), or
inelastic material behavior, see Sugiyama and Shabana (2004) and Gerstmayr and
Matikainen (2006). The latter topics are not addressed in the present chapter.
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2 General Formulation of ANC Beam Elements

2.1 Kinematics of ANC Beam Elements

In the present section, the kinematic preliminaries describing the deformation of
beams are introduced. Throughout the following sections, we employ a direct tensor
notation or tensor components where appropriate. Einstein’s notion of summation
over repeated indices is used for the sake of brevity. The scalar product of two vectors
is given as aTb = aibi . The composition of two tensors and the linear mapping of
a vector by a tensor read AA−1 = I and Ab = Ai jb j , respectively. The double
contraction of tensors is indicated by a colon, e.g., the inner product of second-order
tensors, i.e., A : B = tr(ATB) = Ai j Bi j ; the product of a fourth- and a second-order
tensor is defined as 4C : A = Ci jkl Akl . For the tensor product of two vectors, we use
the notation a ⊗ b = aib j .

Regardless of whether structural finite elements as beams and plates or con-
ventional solid elements are considered, large deformation problems in continuum
mechanics require an exact representation of the geometry of deformation. As is
customary in solid mechanics, a reference configuration is introduced which pri-
marily serves the purpose of identifying a body’s material points. In the material or
Lagrangian representation employed subsequently, the field variables are functions
of the material points, or rather, their positions in the reference configuration. In
order to avoid curvilinear coordinates, the reference configuration—not necessarily
occupied by the body in the course of deformation—is a straight beam whose axis is
aligned with the x-axis of some fixed Cartesian frame {ex , ey, ez}. Let (ξ, η, ζ) denote
the (straight) referential coordinates, see Fig. 1, such that the position of some point
P is identified by the vector ξ,

ξ = ξex + ηey + ζez . (1)

Fig. 1 Important
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In general, the undeformed beam can be curved and arbitrarily oriented relative to the
previously introduced fixed frame. The undeformed configuration, relative to which
the deformation is measured, therefore has to be distinguished from the reference
configuration. The position of the material point P in the undeformed configuration
is denoted by x̄, whose coordinates (x̄, ȳ, z̄) relative to the fixed frame are referred
to as material coordinates subsequently:

x̄ = x̄ex + ȳey + z̄ez . (2)

The position in the undeformed state is related to the current position in the deformed
configuration x by means of the displacement vector u, i.e.,

x = x̄ + u = xex + yey + zez . (3)

The position vector to a material point of the beam’s axis in undeformed configuration
is defined as r̄ whereas in deformed configuration it reads r.

Besides the idea of cross-sectional stress resultants, restrictions concerning the
deformation of the beam’s cross-section are a key ingredient enabling a reduction
of a 3D problem to a 1D problem of a beam. All the beam finite elements dis-
cussed subsequently can be considered as more or less special cases of a single set
of kinematic assumptions: Cross-sections, initially plane and perpendicular to the
beam’s axis in the undeformed configuration, remain plane in the course of defor-
mation. In contrast to conventional formulations, however, we want to allow the
cross-sections to change their size and shape, i.e., a constant in-plane stretch and
shearing. Timoshenko’s hypothesis would be recovered by prohibiting the latter; the
classical assumption for slender structures attributed to Bernoulli and Euler would
be obtained by further restricting that the cross-sections remain perpendicular to the
beam’s axis during deformation.

In the most general case considered herein, the position of the material point P
can therefore be expressed in terms of the axis’ initial and current position, i.e., r̄
and r, respectively, as

x = r + A (x̄ − r̄) + ucs, (4)

where ucs denotes the in-plane deformation of the cross-sections and the second-
order tensor A represents the rotation of the local frame in P from the undeformed
to the deformed configuration:

A = ei ⊗ ēi . (5)

The notions of bending and shear deformation in beam theories are intrinsically
related to body-local directions. In order to specify the strain measures the subse-
quent formulations are based on, we therefore need to specify local frames in the
beam’s configurations used in the analysis. As the beam is straight in the reference
configuration, we choose the associated local frame in the directions of the global
Cartesian frame {eref,1 = ex , eref,2 = ey, eref,3 = ez}. Expressing the position in
the undeformed configuration in terms of the referential coordinates, x̄ = x̄(ξ, η, ζ),
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the corresponding local (cross-section) frame may be defined in dependence of the
lateral slope vectors x̄,η and x̄,ζ . Under the convenient assumption that the unde-
formed configuration is chosen such that x̄,η and x̄,ζ are perpendicular at every x̄, the
definition of the local frame (ē1, ē2, ē3) reads

ē1 = x̄,η × x̄,ζ

‖x̄,η × x̄,ζ‖ , ē2 = x̄,η

‖x̄,η‖ , ē3 = x̄,ζ

‖x̄,ζ‖ . (6)

Apparently, ē1 is perpendicular to the undeformed cross-section, whereas ē2 and ē3

lie within and are perpendicular to each other. The local frame is orthonormal and
independent of the local position within the cross-section. Concerning the deformed
configuration we proceed in a similar way, but here the lateral slope vectors are, in
general, no more perpendicular. Let x = x(ξ, η, ζ), then the local frame (e1, e2, e3)

is given by

e1 = x,η × x,ζ

‖x,η × x,ζ‖ , e2 = x,ζ × (
x,η × x,ζ

)

‖x,ζ × (
x,η × x,ζ

) ‖ , e3 = x,ζ

‖x,ζ‖ . (7)

Note, that the definition of the local frame is chosen arbitrarily, regarding its rotation
about e1. Particularly, x,ζ defines the rotation of the cross-section around e1. Alter-
natively, x,η could define the rotation of the cross-section, or a symmetric definition
regarding the slope vectors could be built upon the polar decomposition—however,
at higher computational costs.

With the local basis in the undeformed and the deformed configuration introduced,
we can represent the respective rotation tensor from the reference to the undeformed
configuration as

Ā = ēi ⊗ eref,i , (8)

and that from the reference to the deformed configuration becomes

AĀ = ei ⊗ eref,i . (9)

2.1.1 Continuum Mechanics Formulation

Having provided the key ideas and assumptions concerning the geometry of deforma-
tion, the strain measures entering the constitutive equations are to be defined next. In
the continuum mechanics formulation, Green’s strain tensor is employed to measure
the deformation,

E = 1

2

(
FTF − I

)
, (10)

where F denotes the deformation gradient, which is expressed as
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F = ∂x
∂x̄

= ∂x
∂ξ

∂ξ

∂x̄
= ∂x

∂ξ

(
∂x̄
∂ξ

)−1

, (11)

since we want to use the referential coordinates for the sake of simplicity. Green’s
strain—the change of the metric represented in the reference configuration—is con-
sequently given by

E = 1

2

(
∂x̄
∂ξ

)−T
{(

∂x
∂ξ

)T ∂x
∂ξ

−
(

∂x̄
∂ξ

)T (
∂x̄
∂ξ

)}(
∂x̄
∂ξ

)−1

. (12)

In case of an initially straight beam, the undeformed configuration is typically chosen
as the reference configuration, i.e., ξ = x̄. Accordingly, Green’s strain tensor then
reduces to the well-known representation

E = 1

2

{(
∂x
∂ξ

)T ∂x
∂ξ

− I

}

, (13)

in which I = eref,i ⊗ eref,i denotes the identity tensor.
While the choice of the above strain measure is natural within continuum theory,

the structural mechanics formulation relies on the introduction of proper generalized
strain measures which originate in the Cosserat theory of solids, which is described
in what follows.

2.1.2 Structural Mechanics Formulation

Neglecting the in-plane deformation of cross-sections at first, a beam can be thought
of as an elastic line with cross-sections attached to it. In the nonlinear rod model,
the elastic line gets translated and stretched in the course of deformation; the cross-
sections, which are represented by the local frames introduced above, undergo a rigid
body rotation. The vector of generalized force strains describing both axial extension
and shear deformation is the change of the derivatives of the axis’s position vector
with respect to the undeformed arc-length S:

� = ∂r
∂S

− A
∂r̄
∂S

. (14)

In order to compute the difference, the derivative in the deformed configuration is
transformed into the local frame of the beam’s undeformed configuration. Recalling
that we want to express the involved field variables as functions of the referential
coordinates, we use the relationship

dS =
√(

∂ x̄

∂ξ

)2

+
(

∂ ȳ

∂ξ

)2

+
(

∂ z̄

∂ξ

)2

dξ =
∥
∥∥∥
∂r̄
∂ξ

∥
∥∥∥ dξ (15)
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for rewriting the generalized force strains as

� =
∥∥
∥∥
∂r̄
∂ξ

∥∥
∥∥

−1 (
∂r
∂ξ

− A
∂r̄
∂ξ

)
. (16)

The definition of the generalized moment strains relies on the fundamental prop-
erty of orthogonal tensors that

AAT = I ⇒ ∂A
∂S

AT = −A
∂AT

∂S
= −

(
∂A
∂S

AT

)T

. (17)

The vector of moment strains κ is the vector associated with the above skew-
symmetric tensor such that the following identity holds for any vector v,

κ × v =
(

∂A
∂S

AT

)
v. (18)

For an alternative representation of the generalized moment strains, the vector of
twist and curvature k is introduced,

k = 1

2
ei × ∂ei

∂S
, (19)

which describes the change of the local basis along a material line,

∂ei
∂S

= k × ei . (20)

Likewise, the vector of the curvature and twist in the undeformed configuration is
given by

k̄ = 1

2
ēi × ∂ēi

∂S
. (21)

In terms of these vectors, the change of the local basis along the beam’s axis can be
written as

∂A
∂S

= ∂ei
∂S

⊗ ēi + ei ⊗ ∂ēi
∂S

= (k × ei ) ⊗ ēi − ei ⊗ (ēi × k̄). (22)

The product with the AT yields

∂A
∂S

AT = (k× ei ) ⊗ ei − ei ⊗ (ēi × k̄)AT = (k× ei ) ⊗ ei − ei ⊗ (ei ×Ak̄), (23)
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where the identity a × b = (Aa × Ab)A has been utilized. The skew-symmetry of
the above tensor allows us to rewrite the product with some vector v as

(
∂A
∂S

AT

)
v = (k × v) − (Ak̄ × v) = (k − Ak̄) × v. (24)

Comparing this result with the previous definition (18), we can immediately identify
the simple representation of κ in terms of k and k̄ as

κ = k − Ak̄. (25)

2.2 Equations of Motion

Pursuing a finite element discretization, the equations of motion are discussed in
their weak form. According to d’Alembert’s principle in Lagrange’s representation,
the virtual work of the external forces is balanced by the sum of the virtual work of
the internal forces, i.e., the variation of the strain energy, and the virtual work of the
inertia forces

δW inert + δW int = δW ext. (26)

Similar to other beam formulations, the virtual work of external forces can be given
in terms of products of concentrated forces and torques times virtual displacements
and rotations, respectively. The virtual rotations need to be determined from the
rotation tensor A and consequently from the slope vectors involved, cf. (6)–(7). The
virtual work of surface tractions and body forces is obtained from surface and volume
integrals over their products with the corresponding virtual displacements.

The virtual work of the inertia forces is given by the volume integral over the
beam’s domain � in the following reference configuration:

δW inert =
∫

�

ρ0üT δu dV, (27)

where the variation of the displacement field is indicated by a δ and ρ0 denotes
the referential density. Regardless of the particular kinematic hypothesis employed,
the key idea of absolute displacements being interpolated results in a constant mass
matrix. This property underlies all ANC elements discussed subsequently, apart from
the ANC-like formulation concerning the thin spatial beam element with torsional
stiffness of Sect. 3.5.
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2.2.1 Continuum Mechanics Formulation

The virtual work of the internal forces in the continuum mechanics formulation
corresponds to what is known from the conventional continuum theory of solids.
Accordingly, the second Piola–Kirchhoff stress tensorT is work-conjugate to Green’s
strain tensor:

δW int =
∫

�

T : δE dV . (28)

In case of a linearly elastic material—in finite strain theory, such constitutive behavior
is referred to as St. Venant–Kirchhoff material—the stress tensor is given as

T = 4D : E, (29)

in which 4D is the fourth-order tensor of elastic moduli. In the isotropic case, e.g., it
contains two independent parameters, i.e., Young’s modulus E and Poisson’s ratio
ν. From a computational point of view, the distinction between vectors and tensors
and their components with respect to some particular basis has to be taken care of
at this point. In the numerical implementation, one often prefers to represent all
quantities in the common inertial frame of the reference configuration {ex , ey, ez}.
When evaluating Green’s strain tensor (12), the components are usually given with
respect to the inertial frame whereas the components of the tensor of elastic moduli
refer to the local frame in the undeformed configuration {ē1, ē2, ē3}. Therefore, one
must either represent the components of 4D in the inertial frame when evaluating
the stresses, or, alternatively, transform the components of the strain tensor into the
local frame of the undeformed configuration using the rotation tensor Ā:

[
Ē

] = [
Ā

]T [
E

][
Ā

]
. (30)

In the above relation, we have introduced brackets in order to clearly distinguish
between a tensor as an invariant object and its components relative to some ten-
sorial basis. Subsequently, the components of the stress tensor can be determined
from the constitutive equation (29), where a vector-matrix representation is typically
employed for the sake of simplicity. Collecting the six independent components of
both stress and strain tensor relative to the natural basis of the undeformed configu-
ration {ē1, ē2, ē3} in vectors,

τ̄ = [
T̄11, T̄22, T̄33, T̄23, T̄13, T̄12

]T
, (31)

ε̄ = [
Ē11, Ē22, Ē33, 2Ē23, 2Ē13, 2Ē12

]T
, (32)

Equation (29) can be equivalently rewritten in terms of the 6 × 6 matrix D̄CM as

τ̄ = D̄CMε̄, (33)
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where D̄CM gathers all relevant components of the fourth-order tensor 4D. In case of
a linearly elastic, isotropic material, for instance, the matrix is given by

D̄CM = Eν2

(1 + ν)(1 − 2ν)

⎡

⎢⎢⎢⎢
⎢⎢
⎣

1 − ν 1 1 0 0 0
1 1 − ν 1 0 0 0
1 1 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 k2 0
0 0 0 0 0 1−2ν

2 k3

⎤

⎥⎥⎥⎥
⎥⎥
⎦

, (34)

where k2 and k3 denote shear correction factors that account for the non-uniform
distribution of shear stresses within the beam’s cross-section. Note that these correc-
tion factors may be different from well-known structural mechanics shear correction
factors due to the specific integration over the cross-section in ANC finite elements.
While the shear correction factors provided above enable a correct transverse shear
stiffness, a correction for torsional stiffness is not accounted for in the present con-
tinuum mechanics formulation.

The components of the second Piola–Kirchhoff stress tensor T̄, which are col-
lected in the vector τ̄ , need to be transformed back into the reference frame afterwards

[
T

] = [
Ā

][
T̄

][
Ā

]T
. (35)

With the stress tensor given, the variation of Green’s strain tensor remains to be
determined when evaluating the virtual work of the internal forces (28):

δE = 1

2

(
∂x̄
∂ξ

)−T
{(

∂(δx)
∂ξ

)T ∂x
∂ξ

+
(

∂x
∂ξ

)T ∂(δx)
∂ξ

}(
∂x̄
∂ξ

)−1

. (36)

2.2.2 Structural Mechanics Formulation

As opposed to the continuum mechanics formulation, the question of rational stress
resultants that are conjugate to the previously introduced generalized strain measures
is raised on a structural level. The internal forces and moments f and m, respectively,
represent stress resultants that can be regarded as quantities obtained upon a static
condensation of the stress distribution within the cross-section relative to the beam’s
axis. The present variational formulation of the strain energy relies on the ideas
of Reissner (1972, 1973), Antman (1972) and Simo (1985) according to which the
internal forces are conjugate to the generalized force strains and the internal moments
to the generalized moment strains, respectively,

δW int =
∫

L
fT δ� + mT δκ dξ, (37)
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where L denotes the length of the beam in the undeformed configuration. In the case
of elastic material behavior, the constitutive equations for the cross-sectional forces
and moments can be expressed as

f = a� + cTκ, m = bκ + c�, (38)

with a, b and c denoting second-order tensors of cross-sectional stiffnesses. Once
again, the question of the respective basis of vectors and tensors involved needs to be
addressed. The components of � and κ are typically available in the inertial frame that
is used throughout the numerical analysis. The constitutive behavior (38), however,
represents a locally linear behavior with a constant tangent stiffness that rotates with
the beam in the course of deformation. Similar to the continuum mechanics approach,
we have two options: one is determining the components of the material tensors
relative to the inertial frame. Alternatively, the components of the generalized strains
in the local frame of either the beam’s undeformed or its deformed configuration
are computed using the respective rotation tensor. Choosing the local frame in the
undeformed configuration, the components of � and κ are transformed by means of

[
�̄

] = [
Ā

][
�

]
,

[
κ̄

] = [
Ā

][
κ

]
. (39)

Again, we can gather the stress resultants and the generalized strains in vectors
in order to represent the material behavior by means of a matrix equation:

τ̄ SM = DSMε̄SM (40)

with

τ̄ SM = [
f̄1, f̄2, f̄3, m̄1, m̄2, m̄3

]T
, ε̄SM = [

�̄1, �̄2, �̄3, κ̄1, κ̄2, κ̄3
]T

. (41)

where DSM is the 6 × 6 cross-sectional stiffness matrix. In case of simple symmetric
cross-sections, the coupling term disappears, i.e., c = 0, and DSM becomes diagonal,

DSM = diag (EA, k2GA2, k3GA3,GJ 1, EI 2, EI 3) , (42)

with commonly used beam properties, i.e., the axial stiffness EA, corrected shear
stiffnesses k2,3GA2,3, torsional rigidity GJ 1 and bending stiffnesses EI 2,3.

To this point, the deformation of the cross-sections ucs in Eq. (4) has not been
addressed within the structural mechanics formulation. In conventional beam theo-
ries, the cross-sections are usually assumed to be rigid, i.e., they only undergo a rota-
tion relative to the undeformed configuration. Although such restriction has proven
useful in many engineering applications, a significant change of the cross-sections
size is inherent to certain problems as, e.g., rolling processes in metal processing.
Among some of the ANC elements discussed subsequently, the parametrization facil-
itates including such deformation of the cross-sections’ from a numerical point of
view. For this purpose, the question of how to consistently augment the virtual work
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of the internal forces in terms of appropriate strain measures and conjugate forces
needs to be answered. A natural approach is to extend the structural mechanics
formulation by the corresponding terms in the continuum mechanics formulation.
Following Eq. (4), the deformation gradient is expressed as

F = ∂

∂x̄
{r + A (x̄ − r̄)} + Gcs, (43)

where the displacement gradient Gcs represents the additional contribution from the
deformation of the cross-sections given by

Gcs = ∂ucs

∂x̄
. (44)

The definition of Green’s strain (10) immediately reveals the coupling of the cross-
sections’ stretching and shearing with the conventional deformation allowed within
Timoshenko’s hypothesis. Subsequently, however, we introduce the key assumption
that the in-plane deformation of the cross-sections does not interfere with the original
structural mechanics formulation, or, in other words, the cross-section deformation
is decoupled from generalized strain measures introduced above. Accordingly, only
the in-plane components of the strain tensor (12), i.e.,

Ē22 = ēT2 (Eē2) , Ē33 = ēT3 (Eē3) , Ē23 = ēT3 (Eē2) , (45)

are regarded when augmenting the virtual work of the internal forces. The above
requirement further implies that the cross-sections’ deformation does not affect the
generalized forces and moments of the structural mechanics formulation, which—
from a continuum mechanics perspective—represent cross-sectional resultants of the
stresses. In case of an elastic material, for instance, we have to stipulate ν = 0 such
that the conjugate stresses are given by

T22 = E Ē22, T33 = E Ē33, T23 = 2GĒ23, (46)

where E and G denote the Young’s modulus and the shear modulus, respectively.
The additional term in the virtual work of the internal forces consequently reads

δW int
cs =

∫

�

E
(
Ē22δ Ē22 + Ē33δ Ē33

) + 2GĒ23δ Ē23dV . (47)

If the in-plane strains are distributed uniformly within the cross-sections, the above
relation simplifies to

δW int
cs =

∫

L
EA

(
Ē22δ Ē22 + Ē33δ Ē33

) + 2 GA Ē23δ Ē23dξ, (48)
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where the axial and shear stiffness have been introduced, which further connects
the cross-sections’ deformation to the structural mechanics formulation. The total
variation of the internal forces is obtained by adding the contribution from the cross-
sections (48) to the conventional expression for the virtual work of the internal
forces (37):

δW int
tot = δW int + δW int

cs . (49)

Before we proceed with the derivations, a few comments on the cross-sections’
deformation seem to be appropriate. The numerous assumptions needed to eventually
arrive at the simple expression (48) may appear restrictive to such an extent that the
general applicability of the proposed formulation is questionable at best. The answer
to that question is twofold: indeed but deliberately. The extension of the structural
mechanics formulation for beams is not meant to contain all features of deformation
a structure can be subjected to. It is specifically aimed at problems in which uniform
in-plane stretch and shearing are relevant—as in the examples mentioned above—but
the assumptions underlying the structural mechanics formulation are sufficient oth-
erwise. That is to say, including the cross-sectional deformation widens the scope of
applicability of the efficient structural mechanics formulation. In problems showing
a more complex state of deformation, for which the coupling of in-plane and out-of-
plane deformation cannot be neglected, the continuum mechanics formulation needs
to be resorted to.

From a numerical point of view, the expressions to be evaluated in the general
case of a beam that is arbitrarily curved in its undeformed configuration are rel-
atively complicated since both the generalized strains and conjugate forces of the
structural mechanics approach and the components of the strain tensor and the con-
jugate stresses of the continuum mechanics formulation are required. For an initially
straight beam, however, the terms related to the cross-sectional deformation sim-
plify significantly. In this case, the relevant components of Green’s strain tensor with
respect to the global frame are given by

Eηη = 1

2

(
∂x
∂η

∂x
∂η

− 1

)
, Eζζ = 1

2

(
∂x
∂ζ

∂x
∂ζ

− 1

)
, Eηζ = 1

2

∂x
∂η

∂x
∂ζ

. (50)

Some of the ANC elements discussed subsequently are based on the interpolation of
the derivatives contained in the above relations which greatly facilitates the evaluation
of the strains related to the cross-sectional deformation.

2.3 Numerical Interpolation

The fundamental idea of ANCF is the direct interpolation of positions and position
gradients with respect to the global frame—therefore, absolute—using positions and
position gradients of a finite number of points, i.e., the nodes. Accordingly, the
position vector—or rather, its components with respect to the global frame—of a



174 J. Gerstmayr et al.

beam’s material point is represented by a Ritz approach as

x(ξ, t) = S(ξ)q(t), x ∈ R
m (51)

where q denotes the vector of n generalized coordinates and S is the m×n matrix of
interpolation or shape functions, which is briefly referred to as shape function matrix.
Naturally, the same representation is used for the position field in the undeformed
configuration,

x̄(ξ) = S(ξ)q̄. (52)

Regarding both formulation and implementation, it should be mentioned that it is
more or less a matter of taste of whether absolute nodal positions or displacements are
utilized as generalized coordinates. Employing a Galerkin projection, the variation
of the position is contained in the same function space as the position vector itself,
i.e., we use the same shape function matrix

δx(ξ) = S(ξ)δq. (53)

2.4 Overview of Different ANC Finite Elements

In the absolute nodal coordinate formulation, the design of finite elements is based
on the choice of nodal degrees of freedom (coordinates).

In most ANC finite elements, the nodal coordinates consist of position or dis-
placement coordinates as well as the corresponding derivatives with respect to the
referential coordinates (ξ, η, ζ).

Figure 2 shows selected 2D and 3D ANC finite elements. As a minimum, one axial
slope vector is employed in order to create a Bernoulli–Euler beam finite elements,
see Fig. 2a, b. Another case is retrieved, if all components of the gradient at each
node are used to define shear and cross-section deformable ANC finite elements,
also denoted as fully parametrized, see Fig. 2c, d. The term ‘fully parametrized’ is
used, because all components of the gradient at the nodal positions are parametrized
by three nodal slope vectors.

The coordinates of two- and three-noded beam finite elements according to Eq.
(51) can be given in the general form,

q(2 node) =
[
q(1)T q(2)T

]T
, and

q(3 node) =
[
q(1)T q(2)T q(3)T

]T
. (54)
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(a)

(c)

(b)

(d)

Fig. 2 Overview of some basic ANC finite elements. a 8 DOF, planar ANC finite element, b 12
DOF, spatial ANC finite element, c 12 DOF, planar ANC finite element with shear and cross-section
deformation, d 24 DOF, spatial ANC finite element with shear and cross-section deformation

in whichq(i)T represents the nodal coordinates of the i-th node. Following the original
idea of the ANCF, a fully parametrized set of nodal position and slope vectors has
been utilized,

q( j)
fp =

[
x( j)T x( j)T

,ξ x( j)T
,η x( j)T

,ζ

]T
. (55)

The vectorx( j) represents the current position of the node j of the beam finite element.
Note that the nodal coordinates of Eq. (55) are comprised of the position and three
slope vectors which represent the deformation gradient.

In order to efficiently model ANC beam finite elements based on the Bernoulli–
Euler theory, so-called gradient-deficient nodal coordinates are utilized, which means
that not all components of the gradient are employed in the nodal coordinates,

q( j)
axial =

[
x( j)T x( j)T

,ξ

]T
. (56)

In case of ANC beam finite elements which cover the Timoshenko beam theory,
gradient-deficient nodal coordinate that which do not contain the axial slope vector
are frequently used

q( j)
cross−section =

[
x( j)T x( j)T

,η x( j)T

,ζ

]T
. (57)
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3 ANC Finite Elements Based on the Bernoulli-Euler
Condition

In this section, the 2D and 3D formulations of thin beam (or cable) finite elements
based on the ANCF are discussed. The original formulations of 2D Bernoulli–Euler
ANC beam finite elements have been developed by Shabana and Schwertassek (1997)
and later on by Berzeri and Shabana (2002). In the present section, an extended
formulation is presented for 2D and 3D thin beams, which follows the works of
Gerstmayr and Shabana (2006), Gerstmayr and Irschik (2008) and Gruber et al.
(2013).

3.1 Kinematics of Thin ANC Beam Finite Elements

For notational convenience, the derivative of a quantity with respect to the axial
coordinate ξ is subsequently abbreviated as

∂ ( )

∂ξ
= ( )′ . (58)

The two-noded planar element has eight degrees of freedom, see Fig. 2a. For such
beam element, the position (or displacement) of its axis can be interpolated by two
third-order polynomials in ξ,

x2D =
[
x2D

1
x2D

2

]
=

[
a0 + a1ξ + a2ξ

2 + a3ξ
3

b0 + b1ξ + b2ξ
2 + b3ξ

3

]
. (59)

The coefficients ai and bi are determined by requiring that the generalized degrees
of freedom q2D represent components of the nodal positions (or displacements) and
slope vectors. Using third-order polynomials also for the interpolation of the slope
vectors, we obtain the shape functions Si ,

S1 = 1

2
− 3

4
ξ + 1

4
ξ3, S2 = L

8

(
1 − ξ − ξ2 + ξ3

)
,

S3 = 1

2
+ 3

4
ξ − 1

4
ξ3, S4 = L

8

(−1 − ξ + ξ2 + ξ3) .

which are gathered in the shape function matrix Sm as

x2D = [S1I S2I S3I S4I]q2D = Smq2D, (60)

in which I2D is the 2 × 2 unit matrix.
In addition to the thin planar ANC beam element, two formulations for spatial

(3D) thin ANC finite elements exist. The simplest spatial element considers bending
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and axial stretch only, see Gerstmayr and Shabana (2006), and thus can only be used
to model cable problems, whereas an extended formulation for spatial beam elements
can also handle torsion. The latter extends the idea of Dmitrochenko and Pogorelov
(2003) in order to prevent from singularities, see Gruber et al. (2013) or Sect. 3.5.

For thin spatial beams, the polynomial interpolation of the position reads

x =
⎡

⎣
x1

x2

x3

⎤

⎦ =
⎡

⎣
a0 + a1ξ + a2ξ

2 + a3ξ
3

b0 + b1ξ + b2ξ
2 + b3ξ

3

c0 + c1ξ + c2ξ
2 + c3ξ

3

⎤

⎦ . (61)

Again, the coefficients ai , bi and ci are chosen such that the generalized coordinates
q correspond to the components of the position (or displacement) and slope vectors
at the nodes. For a compact representation of the relation between the position vector
and the element coordinates, the shape functions can be collected in the shape function
matrix,

x = [S1I S2I S3I S4I]q = Smq. (62)

Note that we will not distinguish between planar (2D) and spatial vectors in the
following since most mathematical operations are identical. In the planar case, the
vector product (×) is understood as the product of two spatial vectors that represent
the embedding of the planar ones in the 3D space.

3.2 Virtual Work of Elastic Forces for Thin Beams Without
Torsional Stiffness

In thin ANC beam finite elements, only a structural mechanics formulation exists
for the definition of the elastic forces, while in the thick ANC beam finite elements,
both a continuum mechanics and structural mechanics formulations are available for
the computation of the elastic forces.

3.2.1 Bending and Axial Strain

In the present section, the kinematics and the strain energy of a planar Bernoulli–Euler
beam undergoing large rigid body motions and large deformations (but small strains)
is investigated. In order to keep this section simple, the planar beam formulation is
written for an initially straight and undeformed beam, assuming that the undeformed
configuration is identical to the reference configuration (beam aligned along ex axis).

The kinematics of the beam element is according to Fig. 1. In a planar Bernoulli–
Euler beam, Eq. (4) reduces to

x(ξ, η) = r(ξ) + η e2(ξ). (63)
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The local basis, which is rigidly attached to the cross-section of the beam in current
configuration, is simply defined within the relations

e1 = 1

‖r′‖
∂r
∂ξ

, eT1 e2 = 0, eT2 ez = 0, and e3 = ez . (64)

The derivative of the position vector x with respect to ξ is given by

x′ = ∂x
∂ξ

= r′(ξ) + η e′
2(ξ). (65)

The derivative of the cross-section vector e2 with respect to ξ follows as

e′
2 = −θ′e1. (66)

Thus, the rate of change of the rotation of the cross-section ∂θ/∂S, also denoted as
material measure of curvature K , is given by

K = ∂θ

∂S
= ∂θ

∂ξ

∂ξ

∂S
= 1

‖r̄′‖
(
r′ × r′′

‖r′‖2

)T

e3. (67)

The latter result follows from the general definition of the moment strain mea-
sure (25). In the planar case, the only nontrivial component of the vector of twist and
curvature k reads

kT ez = 1

2

(
e1 × ∂e1

∂S
+ e2 × ∂e2

∂S

)T

ez =
(
e1 × ∂e1

∂S

)T

ez, (68)

where the identity e2 = ez × e1 has been utilized. Introducing Eq. (64) and using the
relation (15), the above equation yields

kT ez =
(

r′

‖r′‖ × r′′

‖r′‖
1

‖r̄′‖
)T

ez = 1

‖r̄′‖
(
r′ × r′′

‖r′‖2

)T

ez = K . (69)

Assuming that the beam’s axis may be curved but not stretched in the undeformed
configuration, i.e., ‖r̄′‖ = 1, we obtain the familiar relation

K =
(
r′ × r′′

‖r′‖2

)T

e3. (70)

Finally, the derivative of the position vector x reads

x′ = (∥∥r′(ξ)
∥∥ − ηK

)
e1. (71)
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Thus, the computation of the deformation gradient simply becomes

F = ∂x
∂ξ

⊗ e1 + ∂x
∂η

⊗ e2 + e3 ⊗ e3

= (∥∥r′(ξ)
∥∥ + ηK

)
e1 ⊗ ex + e2 ⊗ ey + e3 ⊗ ez . (72)

Note that the condition e3 = ez holds in the planar case. It immediately follows that
the only nonzero component of the Green strain tensor,

E = 1

2
(FTF − I), (73)

in the local frame {e1, e2, e3} is given as

E11 = 1

2

{(‖r′‖ + ηK
)2 − 1

}
. (74)

Usually, Green’s strain tensor is not used in beam theories. Its quadratic dependency
on the beam’s cross-section coordinate η leads to nonzero strain at the beam axis for
pure bending, see Gerstmayr and Irschik (2008).

Therefore, the strain components are usually linearized with respect to the cross-
section coordinates. In the planar case of Bernoulli–Euler beams, a more elegant
way to obtain geometrically linearized strain measures is shown subsequently. Biot’s
strain tensor is obtained from the polar decomposition of the deformation gradient,

F = RU, (75)

in which R denotes the rotational part of the deformation gradient and U represents
the stretch, which is related to Biot’s strain by H = U−I. Due to the simple structure
of the deformation gradient in the planar case, it follows that R = A, which results in

U = ATF = (‖r′‖ − ηK
)
e1 ⊗ ex + e2 ⊗ ey + e3 ⊗ ez . (76)

The work-conjugate stress to the Biot strainH is the Biot stressB. Under the assump-
tion of a linear elastic material, the following relation can be applied:

B11 = EH11, (77)

in which E represents the Young’s modulus.
In the beam theory, the strain component H11 = ε0 + εbend is split into a mean

value, the (sectional) axial strain ε0 and the bending strain proportional to the curva-
ture K ,

ε0 = ‖r′‖ − 1 and εbend = ηK . (78)
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Finally, the stress resultants are introduced as the normal force

N =
∫

A
B11d A =

∫

A
E(ε0 − ηK )d A = E Aε0, (79)

and the bending moment

M =
∫

A
η B̄11d A =

∫

A
E(η ε0 − η2K )d A = E I K , (80)

where the beam’s axis is chosen such that
∫

A
Eηd A = 0. (81)

In order to consider curved and pre-stretched beams, the curvature K̄ and stretch ε̄0

in the undeformed configuration need to be considered,

N = E A(ε0 − ε̄0), M = E I (K − K̄ ). (82)

The relations for the sectional strain measures (78) as well as the stress resultants
(82) represent the conventional linear elastic beam modeling for large deformation
beams, which has been used, e.g., for the extensible Euler elastica, Reissner’s shear
deformable beam Reissner (1972) or the geometrically exact beam model of Simo
and Vu-Quoc (1986a).

The virtual work of elastic forces for the sectional strain measures and stress
resultants based on Biot’s strain is provided as

δWS =
∫

L
Nδε0 − MδK dξ. (83)

In contrast, the St. Venant–Kirchhoff material model (29) can be used instead.
The sectional strain measures as well as the stress resultants can be computed in a
similar fashion from Eq. (74). For details of the derivation of the stress resultants,
see Gerstmayr and Irschik (2008) and Irschik and Gerstmayr (2009b) for shear-
deformable beams. The stress resultants for the St. Venant–Kirchhoff material model
can be computed from the first Piola–Kirchhoff stress tensor, see Appendix A of
Gerstmayr and Irschik (2008), and result in

N (P1) = ε0
11‖r′‖ + 3

2
E I K 2‖r′‖, (84)

and

M (P1) = −E I K‖r′‖2 + 1

2
E I4K

3. (85)
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Obviously, the fourth area moment of inertia E I4 enters the bending moment due
to the nonlinear distribution along the cross-section of the Green–Lagrange strain,
see Fig. 2 of Gerstmayr and Irschik (2008). Equations (84)–(85) provide insight into
what happens in a continuum mechanics based formulation of an ANC beam finite
element, which is usually based on the St. Venant–Kirchhoff material.

The virtual work of elastic forces results into the classical form

δWSV K
S =

∫

L
N (P1)δε(G)

0 + M (P1)δK (G) dξ, (86)

taking into account the cross-sectional strain measures based on Green’s strain, which
is indicated by a superscript ‘(G)’,

ε(G)
0 = ε0

11 + 1

2

E I

E A
K 2, (87)

and
K (G) = K‖r′‖. (88)

The quadratic dependency of the axial strain ε(G)
0 on the square of the curvature K

can be explained in terms of the quadratic distribution of Green’s strains, see Fig. 2
of Gerstmayr and Irschik (2008).

A comparison of Eqs. (83) and (86) reveals the difference of a continuum mechan-
ics and a structural mechanics model of a Bernoulli–Euler beam in the ANCF. This
idea can be extended to 3D and shear-deformable beams, as well. The most important
contribution, however, is due to axial strain and bending.

3.3 Linearized Axial and Bending Strain and Relation to
Floating Frame of Reference Formulation

The Biot’s strain component (78) corresponds to a linearization of the local strain
components with respect to the local frame of the cross-section.

In the case of the Biot’s strain and Bernoulli–Euler beam theory, the polar decom-
position exactly gives the rotation of the cross-section as the rotational part of the
deformation gradient, cf. Eq. (76). In order to further simplify the beam finite ele-
ment, it is possible to use a linearization about an average rotation of the whole beam
element. Early development of the ANCF, see Shabana and Schwertassek (1997) and
Escalona et al. (1998), discussed the stiffness matrix of the ANC finite element for
such element-wise linearization.

A planar co-rotational coordinate system i and j has been introduced,

i = r(2) − r(1)

‖r(2) − r(1)‖ , (89)
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in which r(1), r(2) are the positions of the left and the right node of the finite element.
The second local axis is perpendicular to i, i.e.,

j =
[−i2

i1

]
, (90)

In this way, the vector u is introduced

u = r(ξ) − r(1), (91)

and the projection of u into the local element frame leads to the relations for the local
beam deformation quantities

ud =
[
u
v

]
=

[
uT i − ξ
uT j

]
. (92)

Thus, the strain energy can be written as

U = 1

2

∫

L
E Au′2 + E Iv′′2 dξ = 1

2

∫

L
E A

{(
u′)T i − 1

}2 + E I
{(
u′′)T j

}2
dξ.

(93)
The latter approach fully corresponds to the floating frame of reference formula-

tion, which assumes geometrically linearized relations in the body or element frame,
see Shabana and Schwertassek (1997). An extension of this idea to shear-deformable
3D ANC beams has been introduced by Gerstmayr (2009), in which the linearized
strains are computed in a co-rotational configuration of the large deformation beam
element.

In a further work, a comparison of the floating frame of reference formulation
based on geometrically linearized relations in each beam finite element to the ANC
beam finite element with fully geometrically nonlinear formulation has been per-
formed by Dibold et al. (2009). It turned out that co-rotationally linearized finite ele-
ments converge to exactly the same solution of large deformation static and dynamics
examples as compared to Bernoulli–Euler ANC beam finite elements as discussed
in the present section. The CPU performance of both formulations is similar and
mainly depends on the type of mechanical problem.

3.4 Thin 3D ANC Beam Finite Element Without Torsional
Stiffness

The planar Bernoulli–Euler ANC beam finite element can be extended to 3D straight-
forward, by adding a third component to the position and slope degrees of freedom,
see Gerstmayr and Shabana (2006). In this way, a specific cable finite element is
found, which has the following restrictions:
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(a) The bending stiffness must be symmetrical, E Iηη = E Iζζ , which applies to
homogeneous round or quadratic cables

(b) The torsional stiffness and the moment of inertia for a rotation of the cross-
section about the beam’s axis is neglected; thus, it must be guaranteed that the
physical problem which is modeled with the beam finite element does not show
a twist or rotation about the beam’s axis

If these restrictions are fulfilled, the 3D cable finite element becomes extremely
simple. The axial strain is identical to the planar case (78),

ε0 = ‖r′‖ − 1, (94)

the bending strain (material measure of curvature) is derived from Eq. (18). Due to
simplicity of the structure of the rotation matrix, the formula of the curvature reads

K = ‖r′ × r′′‖
‖r′‖2

. (95)

Note that in the original work of Gerstmayr and Shabana (2006), slightly different
strain measures have been used, which has been discussed and corrected in the work
of Gerstmayr and Irschik (2008).

The virtual work of elastic forces for the ANC cable finite element is given by
Eqs. (37) and (40), using only the axial stiffness and the bending stiffness.

The ANC cable finite element is superior to other finite elements because of
its simple structure and the resulting computational efficiency. If torsion plays an
important role, however, then it needs to be extended as described in the following
section.

3.5 Thin 3D ANC Beam Finite Element with Torsional
Stiffness

If torsional deformation is considered additionally to bending and axial deformation
of a spatial beam, then the correct representation of its configuration in space requires
additional information addressing the rotation of the cross-section about the beam
axis (at every point of the beam axis).

Particularly, let us choose a fixed ξ for which r̄(ξ) and r(ξ) denote the position
of an axial point in reference and actual configuration, respectively (see Fig. 1). The
straightforward way in the ANCF to describe the rotation of a beam’s cross-section
at this particular point would be to consider three more absolute nodal coordinates in
form of a slope vector in lateral direction, see Yakoub and Shabana (2001). However,
this vector would have to yield two more conditions: first, being perpendicular to the
beams axis (which is one of the basic assumptions in Bernoulli–Euler beam theory),
and second, remaining its length constant in order to avoid thickness deformation of
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Fig. 3 Geometrical
description of a thin beam
with torsional stiffness. The
orientation of the
cross-section at point r is
defined by the normalized
projection e30 of the director
d into the normal plane of
the beam axis, and a
subsequent rotation about the
beam axis by the torsional
angle θ, which gives e3

e1

e3

e2

deformed configuration

e30

d
r

the beam. Owing to that, only one degree of freedom remains to be chosen (addressing
the torsional rotation of the lateral slope vector about the beam axis) in order to fully
describe the beam’s configuration.

We express this single degree of freedom by the natural choice of a torsional angle
θ(ξ) (see Fig. 3). Note, that this angle is no more an absolute, but a relative quantity. It
is measured relative to the projection of a vector d(ξ), called director, into the normal
plane of the axial slope r′(ξ). The torsional angle of the cross-section in reference
configuration is denoted by θ̄(ξ) and measured also relative to the orientation of the
director d(ξ), i.e., its projection into the normal plane of r̄′(ξ). Note that the director
d(ξ), other than the axial position or slope vectors, basically represents a constant
vector in time t . Let us—for the moment, and the sake of simplicity—additionally
assume, that the director is constant in space, meaning d(ξ) = d for all ξ, and omit
the explicit notion of the variables ξ and t in the following formulas. The rotation of
the local frame at a particular axis point, see Eq. (6), may be defined as

e1 = r′

|r′| , (96)

e2 = e20 cos(θ) + e30 sin(θ) , (97)

e3 = e30 cos(θ) − e20 sin(θ) , (98)

in which e30 denotes the normalized projection of the director d into the normal plane
of the axial slope r′, i.e.,

e30 = ê30∣∣ê30

∣∣ , ê30 = d − (dT e1) e1 , (99)

and the bi-normal e20 is obtained by the cross product

e20 = e30 × e1. (100)
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Thereby, the curvature strain κ from Eq. (18) and the axial strain ε0 = � ex ,
utilizing� from Eq. (16), can be computed. Combining these strain measures together
with the assumption of vanishing shear strains, i.e.,

|�T ey | + |�T ez| = 0 ,

the variational formulation of the strain energy according to Eq. (37) is fully defined.
Note that a spatially non-constant director approach may be required combined with
a temporal director update (see Sect. 3.6) in order to guarantee the Gram–Schmidt
projection in Eq. (99) being well defined along the beam’s axis.

Let us turn to the spatial discretization by means of an ANC beam finite element
with two nodes. In addition to the cubic interpolation of the axial position r, see
Eq. (62), also the torsional angle at ξ is obtained by interpolation between nodal
degrees of freedom,

θ(ξ) = Smθ(ξ)qθ . (101)

The presented ANC beam finite element provides a linear interpolation of the tor-
sional angle

Smθ(ξ) = [S5(ξ) S6(ξ)] , S5(ξ) = 1

2
− ξ

L
, S6(ξ) = 1

2
+ ξ

L
, (102)

with the generalized coordinates qθ defined by the nodal values

qθ = [
θ|1 θ|2

]T
. (103)

To prevent the element from locking, a reduced numerical integration order of 5
(e.g., via 3 point Gauß’ integration) is recommended when integrating bending and
torsional stiffness terms over the beam’s axis in Eq. (37), whereas the axial stiffness
term shall be integrated exact, which means a numerical integration order of 9 or
higher.

3.6 Director Update

For small deformation problems it is sufficient to consider a director d, which is
constant in space and time. However, problems arise, if the beam’s axis, i.e., the
axial slope r′(ξ) becomes (numerically) collinear with the director for any ξ. In
this case the projection Eq. (99) becomes singular and the orientation of the beam’s
cross-section remains unknown. Note that the same holds not only for the deformed
configuration, but also for the undeformed configuration. As a remedy, the director
is chosen to vary
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1. in space, achieved, e.g., by a spatial interpolation of d(ξ) between the two neigh-
boring nodal directors d1 and d2, e.g., by a linear interpolation

d(ξ) = S5d1 + S6d2 ,

2. in time, by performing an update of the nodal directors d1 and d2 past each time
or load step, given as a function of the current orientation of the local frame at
the i th node, e.g.,

d1(t j ) = e30(ξ = − L

2
, t = t j−1),

d2(t j ) = e30(ξ = + L

2
, t = t j−1),

or optionally by the post-rotated update

d1(t j ) = e3(ξ = − L

2
, t = t j−1), θ1(t j ) = 0

d2(t j ) = e3(ξ = + L

2
, t = t j−1), θ2(t j ) = 0

for all time steps t j .

Let it be finally mentioned that the proposed Bernoulli–Euler beam finite element
provides C1-continuity along element borders only for the geometry of the beam
axis, whereas the torsion of the cross-section, i.e., angle θ, is just C0-continuous.
Hence, the element has fourth-order convergence in problems with insignificant
torsional effects, and a second-order convergence in all remaining problems. A fully
C1 continuous setting, requiring the rate of the torsional angle θ̇ to remain zero at the
FE-nodes (in order to serve as a generalized coordinate) together with a conforming
interpolation of the torsional angle θ (and the director d) along the beam axis, is left
for further investigation.

4 ANC Finite Elements with Shear and Cross-Section
Deformation

In this section, the 2D and 3D formulations of thick ANC beam finite elements which
include shear and cross-section deformation are discussed. In addition to the previous
sections, displacements and displacement gradients are utilized rather than position
and position gradients.
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4.1 Kinematics of Thick Gradient-Deficient ANC Beam
Finite Elements

Omar and Shabana (2001) presented an ANC finite element, in which a slope vector
is used for modeling the shear deformation. For the 2D gradient-deficient ANC finite
element, the latter finite element is modified by omitting the axial slope vector. The
element is parametrized by displacements and displacement gradients at the nodes
which form the degrees of freedom. Figure 2c shows a sketch of the fully parametrized
element. The gradient-deficient element is obtained, if the axial slope vector x,ξ is
eliminated. The interpolation for a two-noded resp. a three-noded beam element is
given with linear resp. quadratic shape functions. In case of the two-noded element,
the shape functions are chosen according to Matikainen et al. (2009),

S1 = 1

L

(
L

2
− ξ

)
, S2 = ηS1,

S3 = 1

L

(
L

2
+ ξ

)
, S4 = ηS3. (104)

In case of the three-noded element, the shape functions are chosen similar to those
given by Mikkola et al. (2007) as

S1 = − 2

L2
ξ

(
L

2
− ξ

)
, S2 = ηS1,

S3 = + 2

L2
ξ

(
L

2
+ ξ

)
, S4 = ηS3,

S5 = − 4

L2

(
ξ − L

2

) (
ξ + L

2

)
, S6 = ηS5. (105)

The 3D gradient deficient ANC beam elements can be defined as the generalization
of the 2D elements discussed above. Here, the two transverse slope vectors, which
are in the cross-section plane, are used as degrees of freedom, compare Fig. 2d. In
the spatial case, the shape functions of the linear (two-noded) element are given by

S1(ξ, η, ζ) = 1

2
− ξ

L
, S2(ξ, η, ζ) = ηS1, S3(ξ, η, ζ) = ζS1,

S4(ξ, η, ζ) = 1

2
+ ξ

L
, S5(ξ, η, ζ) = ηS4, S6(ξ, η, ζ) = ζS4. (106)

The shape functions for the quadratic (three-noded) ANC beam finite element are
given by

S1 = − 2

L2
ξ

(
L

2
− ξ

)
, S2 = ηS1, S3 = ζS1,
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S4 = + 2

L2
ξ

(
L

2
+ ξ

)
, S5 = ηS4, S6 = ζS4,

S7 = − 4

L2

(
ξ − L

2

) (
ξ + L

2

)
, S8 = ηS7, S9 = ζS7. (107)

4.2 Virtual Work of Elastic Forces for Thick Beams with
Shear and Cross-Section Deformation

In addition to the structural mechanics formulation, which is customary for thin
beams, a structural as well as a continuum mechanics based formulation is provided
for shear and cross-section deformable ANC finite elements. Following the work
of Gerstmayr et al. (2008), the work of elastic forces can be based on Reissner’s
nonlinear rod theory, see Reissner (1972), as implemented by Simo and Vu-Quoc
(1986a), and a continuum mechanics based formulation, using a St. Venant–Kirchhoff
material. For the 3D case, see Nachbagauer et al. (2011).

4.2.1 Continuum Mechanics Formulation

In the original shear-deformable ANC beam finite element by Omar and Shabana
(2001), the elastic strain energy is defined using the Green’s strain and the second
Piola–Kirchhoff stress, as provided in Eq. (28). The main problem of this original
continuum mechanics based formulation is the Poisson-locking phenomenon. In the
original approach, the strain energy of a beam element with a rectangular cross-
section is written in terms of the engineering strain vector ε̄ and the elasticity matrix
D̄CM as presented in Eq. (33). The main problem of the original continuum mechanics
based formulation arises since the Poisson ratio ν couples axial strains Ē11 and
transverse normal strains Ē22 in the stress-strain relation. For pure axial deformation,
the Poisson effect is modeled exactly. However, for bending deformation, the Poisson
effect would require a trapezoidal deformation of the cross-section, which is not
available in the original formulation. To avoid the locking effect, the strain energy is
modified based on the idea of Gerstmayr et al. (2008). The elasticity matrix is split
into two parts:

D̄CM = D̄0
CM + D̄ν

CM, (108)

in which D̄0
CM does not include the Poisson ratio ν, while Dν involves the Pois-

son effect only. Hereafter, the strain energy is integrated over the cross-section, see
Eq. (28), in which the part related to D̄0

CM is integrated over the cross-section and
the other part related to D̄ν

CM is integrated along the beam axis only using the cross-
sectional area.
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4.2.2 Structural Mechanics Formulation

The idea of the structural mechanics formulation is to incorporate the strain energy
of classical nonlinear rod theories into the ANCF, for details see Gerstmayr et al.
(2008) and Nachbagauer et al. (2011). The planar case of Eq. (37) reads

δW int =
∫

L
E A�̄1δ�̄1 + ksGA�̄2δ�̄2 + E I κ̄δκ̄ dξ, (109)

in which the axial stiffness E A, the shear stiffnessGAwith the shear correction factor
ks , and the bending stiffness E I are coupled to the generalized strain measures for
axial, shear, and bending strains, respectively. As proposed by Simo and Vu-Quoc
(1986a), shear locking is eliminated by means of reduced integration here.

An additional term in the strain energy is necessary regarding the degrees of
freedom of the cross-section deformation. Following Gerstmayr et al. (2008), the
additional thickness strain energy W int

cs in case of a 2D beam finite element can be
defined—in case of a rectangular cross-section—by

δW int
cs =

∫

L
EAĒ22 δ Ē22 dξ, (110)

which is defined similar to Eq. (48). The enhanced strain energy in the structural
mechanics based formulation is the sum of the conventional strain energy W int in
Eq. (109) and W int

cs in Eq. (110), see Eq. (37). In the 3D case, the structural mechanics
based formulation follows Simo (1985). For the case of simple symmetric cross-
sections, see Eqs. (42) and (37) can be given for the single components,

δW int =
∫

L
E A�̄1δ�̄1 + GAk2�̄2δ�̄2 + GAk3�̄3δ�̄3 (111)

+GJkt κ̄1δκ̄1 + E I2κ̄2δκ̄2 + E I3κ̄3δκ̄3 dξ.

In the 3D case, the virtual work of elastic forces covering cross-section deformation
follows from Eq. (48).

5 Evaluation of the Accuracy and Performance of ANC
Finite Elements

This section is dedicated to outline the numerical behavior of four of the proposed
ANC beam finite elements, all of which are implemented in the open-source flexible
multibody system dynamics code HOTINT,2 see Gerstmayr et al. (2013a). Hence-
forth, let us use abbreviations as in Table 1.

2http://www.hotint.org/.

http://www.hotint.org/
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The interested reader is referred to the works by Gerstmayr and Irschik (2008),
Gerstmayr et al. (2008), Nachbagauer et al. (2011), Nachbagauer et al. (2013) and
Gruber et al. (2013), in which each of the proposed ANC beam finite elements is
tested separately.

5.1 Static Example (Planar): Largely Deforming Cantilever

In this example we aim to compare the convergence and performance properties of
all proposed ANC beam finite elements (Table 1) at once, i.e., both thin and thick
elements are studied on behalf of the same setup.

A cantilever with length L and square cross-section with side-length a is subjected
to a point load F acting at the material point B (which is the tip of the beam axis, see
Fig. 4). The material parameters of the cantilever are defined by Young’s modulus E
and Poisson’s ratio ν as

E = 2.07 × 1011 N/m2 , ν = 0.3 ,

based on which the shear modulus G and the shear correction factor ks are given by

G = E

2(ν + 1)
N/m2 , ks = 10(1 + ν)

12 + 11 ν
. (112)

Table 1 Types of ANC beam finite elements tested in Sect. 5

Name Theory Description

BE2D Sect. 3 Thin beam in 2D (acc. to Bernoulli–Euler theory)

BE3D Sect. 3.5 Same in 3D

SQ2D Sect. 4 Shear deformable beam in 2D

SQ3D Sect. 4 Same in 3D

Throughout the whole section the shear-deformable ANC beam finite elements SQ2D and SQ3D
are considered to use quadratic shape functions, as defined in Eq. (105)

Fig. 4 Geometrical setup of
the cantilever of Sect. 5.1 in
reference configuration

L = 2.0 m
a = 0.1 m

Fy = 3EI/L2 N
F = Fy ey
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A reference solution to the problem has been computed in the mathematical soft-
ware framework Maple by solving an elliptic integral equation utilizing global poly-
nomial shape functions, see Gerstmayr and Irschik (2008). The respective polynomial
degree was chosen such that the first 12 digits of the displacement at material point
B, reading

uB
ref =

{
−0.50853730436 ex + 1.20723985455 ey , for BE2D and BE3D ,

−0.50946471774 ex + 1.20882282955 ey , for SQ2D and SQ3D ,

(113)
have been converged.

All of the four beams, cf. Table 1, were tested in a scenario with ten uniform load
steps, i.e.,

Fi = i

10
F .

At each of those load steps a nonlinear system is solved by means of Newton’s
method, utilizing the solution of the previous load step as initial guess at the current
load step. Newton’s method is terminated if the relative error (i.e., max-norm of the
actual residual over max-norm of the initial residual) becomes less than the bound
ε = 10−8. The overall performance and convergence behavior of the respective ANC
beam finite elements are documented in Table 2 as well as in the convergence plots
of Fig. 5 and a performance plot in Fig. 6.

Studying these tables and figures we arrive at the following conclusions:

1. All of the elements of Table 1 require roughly the same number of Newton itera-
tions, independently of the underlying spatial refinement level.

2. Comparing the error of tip deflection |uB
ref −uB

FE| versus number of elements (see
also the left plot in Fig. 2), a quantitatively slightly different, but asymptotically
equal behavior of all element types can be observed, namely a convergence order
of 4 (meaning a decrease of the error roughly by a factor of c−4 if the number of
elements is increased by a factor of c > 0.

3. The right plot in Fig. 2 seems to be a consequence from the left plot, owing to the
fact that thick (i.e., shear-deformable) beam elements naturally own more degrees
of freedom than their thin counterparts. The same holds of course with respect to
the dimensionality of the several beam types.

4. The final plot in Fig. 6 shows that thin and thick elements need roughly the same
computational time asymptotically, both in the planar and in the spatial case.

5.2 Free Beam Flying in Plane

By this planar dynamic benchmark example we aim to compare the computational
speed of all the ANC finite elements presented in Table 1, as well as their convergence
in terms of a displacement error, integrated over time.
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Table 2 Performance table for the example Largely deforming cantilever of Sect. 5.1

Spatial discretization Performance

#NEL #DOF Err. (m) CPU (s) #Its.

SQ2D

1 12 1.098e-001 0.109 51

2 20 1.516e-002 0.187 49

4 36 1.327e-003 0.297 49

8 68 9.159e-005 0.531 49

16 132 5.874e-006 0.952 49

32 260 3.695e-007 1.731 49

64 516 2.312e-008 3.244 50

BE2D

1 8 2.585e-001 0.094 49

2 12 3.755e-002 0.156 49

4 20 2.035e-003 0.265 49

8 36 5.060e-005 0.655 49

16 68 1.202e-006 0.827 49

32 132 3.876e-008 1.716 49

64 260 1.820e-009 3.136 49

SQ3D

1 27 1.098e-001 1.482 54

2 45 1.516e-002 2.324 55

4 81 1.327e-003 4.586 55

8 153 9.159e-005 8.471 55

16 297 5.874e-006 16.41 55

32 585 3.695e-007 32.6 55

64 1161 2.312e-008 70.86 55

BE3D

1 14 2.585e-001 0.905 49

2 21 3.755e-002 1.404 49

4 35 2.035e-003 2.652 49

8 63 5.060e-005 4.695 49

16 119 1.202e-006 9.002 49

32 231 3.876e-008 17.94 49

64 455 1.820e-009 35.47 49

CPU-time in seconds (CPU (s)) and number of Newton iterations (#Its.) for various levels of
spatial approximation including number of elements (#NEL), total degrees of freedom (#DOF), and
approximation error (Err. (m)), measured by the error of the tip deflection, i.e. Err. = |uB

ref − uB
FE|
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Fig. 5 Convergence plot of the example problem in Sect. 5.1 showing the error of tip deflection
|uB

ref − uB
FE| versus number of elements (left) and degrees of freedom (right)

Fig. 6 The performance of the ANC beam finite elements in the example problem of Sect. 5.1 is
compared in terms of CPU-time versus error of tip deflection |uB

ref − uB
FE|

Lx = 0.6 m
Ly = 0.8 m
a = 0.05 m

f(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 t t ∈ [0, 0.5[ ,
1 t ∈ [0.5, 2.5[ ,
2 (3 − t) t ∈ [2.5, 3[ ,
0 t ≥ 3

Fx = 0.3 N , F(t) = f(t)Fx ex
Mz = 0.3 Nm , M(t) = f(t)Mz ez

Fig. 7 Geometrical setup of the free beam of Sect. 5.2 in reference configuration
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A free beam with a square cross-section, as shown in Fig. 7, is subjected to a force
F(t) and a moment M(t), both acting over the time t ∈ [0, 10] at the beam axis
point B. The material parameters of the beam are defined by Young’s modulus E ,
Poisson’s ratio ν, and the material density ρ as

E = 1 × 105 N/m2 , ν = 0.3 , ρ = 2500 kg/m3 , (114)

based on which the shear modulus G and the shear correction factor ks are computed
up to double precision, utilizing Eq. (112).

Note that the problem setup is defined similar but not equal to the well-known
flying spaghetti problem of Simo and Vu-Quoc (1986b). The reason for considering
not the original but a modified problem setup is to end up with less differences in the
kinematic behavior of thin and shear-deformable beam elements.

Time integration is numerically performed by a uniform time step size �t =
0.001 s utilizing a two staged trapezoidal rule (Lobatto), which means three integra-
tion points per time step and a fourth-order global convergence in time. In difference
to the test example largely deforming cantilever of Sect. 5.1, where a classical New-
ton method was used per load step, we choose to update the Jacobian not at each
time step, but only if required, i.e., if the Newton residual is not converging fast
enough. Although generally resulting in much more iteration steps, such a modified
Newton method speeds up the simulation, particularly if the considered time steps
are comparatively small. Alike the classical Newton method, the modified Newton
method is terminated, if the relative error (i.e., max-norm of the actual residual over
max-norm of the initial residual) becomes less than the bound ε = 10−8.

Two convergence plots in Fig. 8 and a performance plot in Fig. 9 conclude this
example. In all of these plots, the integrated deflection error

εT =
(∫ T

0
|uB

ref − uB
FE|2dt

)1/2

(115)

Fig. 8 Convergence plot of the example problem in Sect. 5.2 showing the integrated tip deflection
error, as defined in Eq. (115), versus number of elements (left) or degrees of freedom (right)
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Fig. 9 The performance of
the ANC beam finite
elements in the example
problem of Sect. 5.2 is
compared in terms of
CPU-time versus integrated
tip deflection error, as
defined in Eq. (115)

at material point B (see Fig. 7) served as a measure of the finite element approximation
error. The reference solution uB

ref (which is different for thin and for shear deformable
beams) is computed by means of a highly refined FE-solution of 128 elements, also
at a time step size of �t = 0.001 s.

5.3 Free Beam Flying in Space

If a spatial beam formulation uses angular in addition to absolute coordinates (which
is the case in the beam class BE3D, but not so in the beam class SQ3D), the shape
function interpolation of those angular coordinates (evaluated at the integration points
along the beam’s axis) causes the total energy of the beam to be no more conserved,
and thus any time integration scheme becomes unstable and must fail to converge. To
demonstrate this effect in this third test example, we consider a similar problem setup
as in Sect. 5.2, however with slightly different material and geometrical parameters,
and with a different loading scenario causing the beam to move out of plane.

A free beam with a square cross-section, as shown in Fig. 10, is subjected to a
moment M(t) acting at the time t at the beam axis point B. The material parameters
of the beam are defined by Young’s modulus E , Poisson’s ratio ν, and the material
density ρ as in Eq. (114), based on which the shear modulusG and the shear correction
factor ks are computed up to double precision, utilizing Eq. (112).

Although the beam class BE3D shows better convergence compared to the beam
class SQ3D (as shown in Fig. 12) the simulation with type BE3D elements would
become unstable after a while. To be precise, an implicit time integration scheme
(of type Lobatto using 2 stages and a uniform time step size of 0.001 s) would fail
to converge after 8 s of simulation time when using a spatial discretization with 8
elements, after 9 s when using 16 elements, and after 12 s when using 32 elements
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Lx = 0.6 m
Ly = 0.8 m
a = 0.02 m

f(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2 t t ∈ [0, 0.5[ ,
1 t ∈ [0.5, 2.5[ ,
2 (3 − t) t ∈ [2.5, 3[ ,
0 t ≥ 3

Mx =
1
72

Nm , My =
1

100
Nm

M(t) = f(t) (Mx ex +My ey)

Fig. 10 Geometrical setup of the free beam of Sect. 5.3 in reference configuration
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er
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BE3D 32
BE3D 16
BE3D 08
SQ3D 64

Fig. 11 Sum of kinetic and potential energy of the beam computed with a uniform time step of
0.001 s and a spatial discretization of 8, 16, and 32 elements of type BE3D compared to 64 elements
of type SQ3D

of beam type BE3D, whereas simulations with the same type of integration scheme
but using SQ3D elements did not show instability effects at all (at least, in our tests
the simulation remained stable until 50 s of simulation time).

This issue becomes even more evident if we study the total (i.e., the sum of kinetic
and potential) energy, see Fig. 11. Analytically the total energy of the flying beam
must stay constant as soon as the outer forces, i.e., the tip moment, become zero
(which happens past 3 s of simulation time, see the definition of the time ramp f (t)
in Fig. 10). In case of simulations with BE3D elements, sudden energy blowups
occur whereas in simulations with SQ3D elements the total energy is conserved,
independently of the spatial refinement.
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Fig. 12 Displacement in x-, y-, and z-direction of the axial point B of the beam in Sect. 5.3
computed with 32, 64, and 128 elements of type SQ3D (left), and 8, 16, and 32 elements of type
BE3D (right)

6 Conclusions

In the present chapter, the absolute nodal coordinate formulation has been introduced
and some specific finite elements, which are based upon this formulation, have been
presented in a unified notation regarding kinematics and work of elastic forces. The
finite elements under investigation have been studied regarding its convergence as
well as the stability. It turned out that displacement-based finite elements, which do
not employ rotations as degrees of freedom, are not showing numerical instabilities
as compared to those which contain at least one rotational parameter. Finite elements
with rotational parameters, however, have other advantages. For those elements, it
is necessary to obtain stable numerical integration schemes, which are discussed in
detail in other chapters of this book.
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