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Abstract Lie group integrators preserve by construction the Lie group structure
of a nonlinear configuration space. In multibody dynamics, they support a repre-
sentation of (large) rotations in a Lie group setting that is free of singularities. The
resulting equations of motion are differential equations on a manifold with tangent
spaces being parametrized by the corresponding Lie algebra. In the present paper,
we discuss the time discretization of these equations of motion by a generalized-α
Lie group integrator for constrained systems and show how to exploit in this context
the linear structure of the Lie algebra. This linear structure allows a very natural
definition of the generalized-α Lie group integrator, an efficient practical implemen-
tation and a very detailed error analysis. Furthermore, the Lie algebra approach may
be combined with analytical transformations that help to avoid an undesired order
reduction phenomenon in generalized-α time integration. After a tutorial-like step-
by-step introduction to the generalized-α Lie group integrator, we investigate its
convergence behaviour and develop a novel initialization scheme to achieve second-
order accuracy in the application to constrained systems. The theoretical results are
illustrated by a comprehensive set of numerical tests for two Lie group formulations
of a rotating heavy top.

1 Introduction

Structure-preserving integrators overcome limitations of classical time integration
methods from the fields of ordinary differential equations (ODEs) and differential-
algebraic equations (DAEs). They are known for their favourable nonlinear stability
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properties for the long-term integration of conservative systems, see, e.g., (Hairer
et al. 2006).

The focus of the present paper is slightly different since we consider a class
of time integration methods that is tailored to flexible multibody system models
with dissipative terms resulting, e.g., from friction forces or control structures. The
methods are applied to constrained systems with a nonlinear configuration space
with Lie group structure. They preserve this structural property of the equations
of motion in the sense that the numerical solution remains by construction in this
nonlinear configuration space.

The Lie group setting allows a representation of (large) rotations that is globally
free of singularities. Local parametrizations could be used to transform the system
in each time step in a linear configuration space such that classical time integration
methods could be used. As an alternative to such local parametrizations, Simo and
Vu-Quoc (1988) proposed a Newmark-type method that is directly based on the
equations of motion in a nonlinear configuration space with Lie group structure.

Starting with the work of Crouch and Grossman (1993) and Munthe-Kaas (1995,
1998), the time discretization of ordinary differential equations on Lie groups has
foundmuch interest in the numerical analysis community. Thisworkwas summarized
in the comprehensive survey paper by Iserles et al. (2000). In that time, the application
of Lie group time integration methods to multibody systemmodels was studied, e.g.,
by Bottasso and Borri (1998) and Celledoni and Owren (2003).

In 2010, the combination of Lie group time integration with the time dis-
cretization by generalized-α methods was proposed, see (Brüls and Cardona 2010).
Generalized-α methods are Newmark type methods that go back to the work of
Chung and Hulbert (1993). They may be considered as a generalization of Hilber–
Hughes–Taylor (HHT)methods, see (Hilber et al. 1977), and have found new interest
in industrial multibody system simulation since they avoid the very strong damping
of high-frequency solution components that is characteristic of other integrators in
this field, see, e.g., (Negrut et al. 2005; Lunk and Simeon 2006; Jay and Negrut 2007,
2008; Arnold and Brüls 2007).

Cardona and Géradin (1994) investigated systematically the stability and con-
vergence of HHT methods for constrained systems. This analysis may be extended
to generalized-α methods, see Géradin and Cardona (2001, Sect. 10.5), and shows
a risk of order reduction and large transient errors in the Lagrange multipliers and
constrained forces. Numerical test results for the generalized-α Lie group integrator
illustrate that this undesired numerical effect is strongly related to the specific Lie
group formulation of the equations of motion, see (Brüls et al. 2011).

Therefore, the error analysis for the Lie group integrator has to consider the global
errors in long-term integration as well as the transient behaviour of the numerical
solution. In a series of papers, we developed a strategy for defining, implementing
and analysing the Lie group integrator that is based on the observation that the
increments of the configuration variables in each time step are parametrized by
elements of the Lie algebra, i.e., by elements of a linear space, see (Arnold et al.
2011b, 2014, 2015) and (Brüls et al. 2011, 2012). In the present paper, we follow
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this Lie algebra approach and consider local and global discretization errors of the
Lie group integrator as elements of the corresponding Lie algebra.

We introduce theLie group setting in a tutorial like style and showhow todiscretize
the equations of motion by a generalized-α Lie group integrator. There is a specific
focus on practical aspects like corrector iteration and initialization of the integrator. In
a comprehensive numerical test series, we consider different Lie group formulations
of a heavy top benchmark problem. For the convergence analysis, we follow to a
large extent the presentation in the recently published paper (Arnold et al. 2015).

The remaining part of the paper is organized as follows: Basic aspects of Lie
group theory in the context of multibody dynamics and the equations of motion of
constrained systems are introduced in Sect. 2. Furthermore, we discuss two different
Lie group formulations of a rotating heavy top thatwill be used as benchmarkproblem
throughout the paper.

In Sect. 3, we consider the generalized-α Lie group DAE integrator and study
its asymptotic behaviour for time step sizes h → 0. Classical results of Hilber and
Hughes (1978) on “overshooting” ofNewmark typemethods in the application to lin-
ear problems with high-frequency solutions are shown to result in an order reduction
phenomenon for the constrained case, see (Cardona and Géradin 1994). In Sect. 3.3,
the large first-order error terms are illustrated by numerical tests for the heavy top
benchmark problem. They may be reduced drastically by index reduction and a
modification of the generalized-α Lie group integrator that is based on the so-called
stabilized index-2 formulation of the equations of motion, see Sect. 3.4. Implemen-
tation aspects and some technical details are discussed in Sects. 3.5 and 3.6.

For the convergence analysis, we discuss in Sect. 4.1 a one-step error recursion
of generalized-α methods for constrained systems. The coupled error propagation in
differential and algebraic solution components may be studied extending the conver-
gence analysis of ODE one-step methods to the Lie group DAE case, see Sect. 4.2.
The convergence theorem for the generalized-α Lie group DAE integrators is given
in Sect. 4.3. It provides the basis for an optimal initialization using perturbed starting
values that guarantee second-order convergence in all solution components such that
order reduction may be avoided.

2 Constrained Systems in a Configuration Space
with Lie Group Structure

Themain interest of this paper is in time integrationmethods for constrainedmechan-
ical systems that have a configuration space with Lie group structure. In the present
section, we introduce this Lie group setting by studying the configuration space of a
rigid body (Sect. 2.1). Lie groups are differentiablemanifolds that are in a very natural
way parametrized locally by elements of the corresponding Lie algebra (Sect. 2.2).

Lie groups may be used to represent large rotations in R
3 without singularities.

They are part of the mathematical framework for a generic finite element approach
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to flexible multibody dynamics that has been applied successfully for more than two
decades (Géradin and Cardona 1989, 2001). In Sect. 2.3, we consider constrained
systems and discuss the general structure of the equations of motion. As a typical
example, two different Lie group formulations of a heavy top benchmark problem
are introduced in Sect. 2.4. Finally, some technical details of the Lie group setting
are discussed in Sect. 2.5.

2.1 The Configuration Space of a Rigid Body in R
3

The position of a rigid body in an inertial frame is represented by a vector x ∈ R
3, i.e.,

by an element of a linear space. There are three additional degrees of freedom that
describe the orientation of this rigid body but these degrees of freedom may not be
represented globally by elements of a three-dimensional linear space. In engineering,
small deviations from a nominal state are often characterized by three angles of
rotation like Euler angles or Bryant angles (Géradin and Cardona 2001, Sect. 4.8)
that suffer, however, from singularities in the case of large rotations.

Alternative representations that are free of singularities are provided, e.g., by
Euler parameters that are also known as quaternions (Betsch and Siebert 2009 and
Géradin and Cardona 2001, Sect. 4.5) or by the rotation matrix

R ∈ SO(3) := { R ∈ R
3×3 : R�R = I3 , det R = +1 } .

The set SO(3) is a three-dimensional differentiable manifold in R
3×3 and may be

combined in two alternative ways with the linear space R
3 to describe the config-

uration of the rigid body by an element q := (R, x) of a six-dimensional group G
(Brüls et al. 2011; Müller and Terze 2014a): In the direct product G = SO(3) × R

3,
the group operation ◦ is defined by

(Ra, xa) ◦ (Rb, xb) = (RaRb, xa + xb)

and results in kinematic relations

Ṙ = R˜� , ẋ = u (1)

with u ∈ R
3 denoting the translation velocity in the inertial frame and a skew sym-

metric matrix

˜� :=
⎛

⎝

0 −�3 �2

�3 0 −�1

−�2 �1 0

⎞

⎠ ∈ R
3×3 (2)

that represents the angular velocity � = (�1, �2, �3 )� ∈ R
3. The semi-direct

product G = SO(3) � R
3 is known as the special Euclidean group SE(3) with the

group operation
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(Ra, xa) ◦ (Rb, xb) = (RaRb, Raxb + xa) ,

kinematic relations
Ṙ = R˜� , ẋ = RU (3)

and U ∈ R
3 denoting the translation velocity in the body-attached frame.

For group elements q = (R, x), the group operations in SO(3) × R
3 and in SE(3)

are equivalent to the matrix multiplication of non-singular block-structured matrices
in R

7×7 and in R
4×4, respectively, that are defined by

SO(3) × R
3 :

⎛

⎝

R 03×3 03×1

03×3 I3 x
01×3 01×3 1

⎞

⎠ , SE(3) :
(

R x
01×3 1

)

. (4)

Therefore, the groupsSO(3) × R
3 andSE(3) aswell as the groupSO(3)of all rotation

matricesR are isomorphic to a subset of a general linear groupGL(r) = { A ∈ R
r×r :

det A �= 0 } of suitable degree r > 0. The structure of the block matrices in (4) and
the orthogonality condition R�R = I3 imply that the groups SO(3) × R

3, SE(3)
and SO(3) are isomorphic to differentiable manifolds in GL(7), GL(4) and GL(3),
respectively.

2.2 Differential Equations on Manifolds: Matrix Lie Groups

A group G with group operation ◦ and neutral element e ∈ G is called a Lie group if
G is a differentiable manifold and the group operation ◦ : G × G → G as well as
the map q �→ q−1 are differentiable ( q ◦ q−1 = e ). Lie groups that are subgroups of
GL(r) for some r > 0 are called matrix Lie groups if the group operation ◦ is given
by the matrix multiplication. For a compact introduction to analytical and numerical
aspects of such matrix Lie groups, the interested reader is referred to (Hairer et al.
2006, Sect. IV.6).

It is a trivial observation that a continuously differentiable function q(t) with
q(t0) ∈ G will remain in a Lie group G if and only if its time derivative q̇(t) is in the
tangent space TqG at the point q = q(t): q̇(t) ∈ Tq(t)G, (t ≥ t0). The tangent space
at the neutral element e defines the Lie algebra g := TeG. As a linear space, it is
isomorphic to a finite dimensional linear space R

k with an invertible linear mapping
˜(•) : R

k → g, v �→ ṽ.
The group structure of G makes it possible to represent the elements of TqG at

any element q ∈ G by the elements ṽ of the Lie algebra: The left translation

Lq : G → G , y �→ Lq(y) := q ◦ y
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defines a bijection in G. Its derivative DLq(y) at y = e represents the corresponding
bijection between the tangent spaces g := TeG and TqG, i.e.,

TqG = { DLq(e) · ṽ : ṽ ∈ g } = { DLq(e) · ṽ : v ∈ R
k } . (5)

With these notations, kinematic relations like (1) and (3) may be summarized in
compact form:

q̇(t) = DLq(t)(e) · ṽ(t) (6)

with a velocity vector v(t) ∈ R
k . In (6), the left translation Lq as well as the tilde

operator ˜(•) depend on the specific Lie group setting.
For constant velocity v, the kinematic relation (6) yields locally

q(t) = q(t0) ◦ exp
(

(t − t0)̃v
) ∈ G (7)

with the exponential map exp : g → G. For matrix Lie groups, this exponential map
is given by

exp(̃v) =
∞

∑

i=0

1

i ! ṽi . (8)

It is a local diffeomorphism, i.e., for any qa ∈ G there are neighbourhoodsUqa ⊂ G
and Ṽ0 ⊂ g such that any q ∈ Uqa may be expressed by

q = qa ◦ exp(˜�q) (9)

with a uniquely defined element ˜�q ∈ Ṽ0.

Example 2.1 (a) Using the block matrix representation (4), the groups SO(3) × R
3,

SE(3) and SO(3) are seen to be matrix Lie groups. The Lie algebra corresponding
to Lie group G = SO(3) is given by the set

so(3) := { A ∈ R
3×3 : A + A� = 0 }

of all skew symmetric matrices in R
3×3. As a linear space, this Lie algebra is iso-

morphic to R
3 with the tilde operator being defined in (2). In SO(3), the exponential

map (8) may be evaluated very efficiently by Rodrigues’ formula

expSO(3)(
˜�) = I3 + sin�

�
˜� + 1 − cos�

�2
˜�

2
(10)

with � := ‖�‖2 since powers ˜�
i
with i ≥ 3 may be expressed in terms of I3, ˜�

and ˜�
2
because each matrix ˜� ∈ R

3×3 is a zero of its characteristic polynomial
χμ(˜�) = det(μI3 − ˜�) = μ3 + ‖�‖22 μ = μ3 + �2μ, i.e., ˜�

3 = −�2
˜� (Cayley-

Hamilton theorem).
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According to (1), (3) and (6), the Lie algebras of SO(3) × R
3 and SE(3) are

parametrized by vectors v = (��, u�)� and v = (��, U�)�, respectively. In block
matrix form, they are represented by (Brüls et al. 2011)

so(3) × R
3 : ṽ =

⎛

⎝

˜� 03×3 03×1

03×3 03×3 u
01×3 01×3 0

⎞

⎠ , se(3) : ṽ =
(

˜� U
01×3 0

)

with exponential maps

expSO(3)×R3 (̃v) =
⎛

⎝

expSO(3)(
˜�) 03×3 03×1

03×3 I3 u
01×3 01×3 1

⎞

⎠ , (11a)

expSE(3)(̃v) =
(

expSO(3)(
˜�) T�

SO(3)(�) U
01×3 1

)

(11b)

and the so-called tangent operator TSO(3) : R
3 → R

3×3, see (33), that will be dis-
cussed in more detail in Remark 2.8(b) below.

(b) The linear space R
k with vector addition + as group operation ◦ is a trivial

example of a matrix Lie group since x ∈ R
k may be identified with the non-singular

2 × 2 block matrix
(

Ik x
01×k 1

)

∈ GL(k + 1) . (12)

Substituting vector x by u ∈ R
k and the main diagonal blocks by 0k×k and by 0,

respectively, we get the block matrix representation of the corresponding Lie algebra
that is parametrized by u:

ũ =
(

0k×k u
01×k 0

)

, exp
Rk (̃u) =

(

Ik u
01×k 1

)

. (13)

Alternatively, the exponential map may be expressed directly in terms of u ∈ R
k

using exp
Rk = idRk , i.e., x ◦ exp

Rk (̃u) = x + u.
(c) The block matrix representation of (R, x)SO(3)×R3 in (4) is block-diagonal

with diagonal blocks for R ∈ SO(3) and x ∈ R
3, see (12). The same block-diagonal

structure is observed for the elements of the corresponding Lie algebra so(3) × R
3,

for the tilde operator and for expSO(3)×R3 , see (11a) and (13). It is typical for direct
products ofLie groups andmaybeused aswell forLie groupsGN = G × G × · · · ×
G that are direct products of N ≥ 2 factors G with G = SO(3) × R

3 or G = SE(3).
In particular, we have

expGN

(

(̃v1, ṽ2, . . . , ṽN )
) = blockdiag1≤i≤N expG (̃vi ) .
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Fig. 1 Interpolation in Lie
groups: qb = qa ◦ exp(˜�q )

G

TqaG

qa

qb

˜Δq

− ˜Δq

TqbG

Hence, the exponential map expGN : gN → GN in the direct product GN may be
evaluated as efficiently as the one in its factors G, see (10) and (11). In flexible
multibody dynamics, the configuration spaces (SO(3) × R

3)N and (SE(3))N are of
special interest since they allow to represent the configuration of an articulated system
of rigid and flexible bodies in the nonlinear finite element method by N ≥ 1 pairs of
absolute nodal translation and rotation variables, see (Brüls et al. 2012; Géradin and
Cardona 2001).

Remark 2.2 The parametrization (9) offers a generic way to interpolate between qa
and any point qb in a sufficiently small neighbourhood Uqa ⊂ G, see Fig. 1: If qb =
qa ◦ exp(˜�q)with a vector�q ∈ R

k of sufficiently small norm ‖�q‖, then exp(ϑ˜�q)

is well defined for any ϑ ∈ [0, 1] and qa, qb ∈ G are connected by the path

{ q(ϑ; qa,�q) = qa ◦ exp(ϑ˜�q) : ϑ ∈ [0, 1] } ⊂ G .

Because of qa = qb ◦ exp(−˜�q) the parametrization of this path by ϑ ∈ [0, 1] is
symmetric in the sense that q(ϑ; qa,�q) = q(1 − ϑ; qb,−�q). This expression is
the Lie group equivalent to the identity qa + ϑ�q = qb − (1 − ϑ)�q that is trivially
satisfied for a path that interpolates two points qa, qb ∈ R

k .

In the Lie group setting, the nonlinear structure of the configuration space G
makes it possible to represent large rotations globally without singularities. Under
reasonable smoothness assumptions, there are smooth functions q : [t0, tend] → G
solving the equations of motion on a time interval [t0, tend] of finite length, see
Sect. 2.3 below. Locally, for a fixed time t = t∗ ∈ [t0, tend], the configuration space
in a sufficiently small neighbourhood of q(t∗) may nevertheless be parametrized by
elements of the linear space g that is independent of t∗ and q(t∗), see (9).

The local parametrization of G by elements ṽ ∈ g provides the basis for an effi-
cient implementation of Lie group time integration methods and for the analysis
of discretization errors, see Sects. 3 and 4 below. Using the notation exp(·) we will
assume tacitly throughout the paper that the argument of the exponential map is in a
small neighbourhood of˜0 ∈ g on which exp is a diffeomorphism.

The basic concepts of time discretization and error analysis in Lie group time
integration are not limited to the specific parametrization by the exponential map,
see, e.g., (Kobilarov et al. 2009) for an analysis of variational Lie group integrators
that may be combined with the exponential map exp, with the Cayley transform
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cay(̃v/2) = (I − ṽ/2)−1(I + ṽ/2)orwith other local parametrizations. In the present
paper, we restrict ourselves, however, to the exponential map that reproduces the flow
exactly if the velocity ṽ ∈ g is constant, see (7).

2.3 Configuration Space with Lie Group Structure:
Equations of Motion

In a k-dimensional configuration space G with Lie group structure, the kinematic
relations are given by (6) with position coordinates q(t) ∈ G and the velocity vector
v(t) ∈ R

k .
We consider constrained systems with m ≤ k linearly independent holonomic

constraints �(q) = 0 that are coupled by constraint forces −B�(q)λ to the equi-
librium equations for forces and momenta. Here, λ(t) ∈ R

m denotes a vector of
Lagrange multipliers which is multiplied by the transposed of the constraint matrix
B(q) ∈ R

m×k with rank B(q) = m that represents the constraint gradients in the sense
that

D�(q) · (

DLq(e) · w̃
) = B(q)w , ( w ∈ R

k ) . (14)

The notation D�(q) · (

DLq(e) · w̃
)

is used for the directional derivative of � :
G → R

m at q ∈ G in the direction of DLq(e) · w̃ ∈ TqG.
Kinematic equations, equilibrium conditions and holonomic constraints are sum-

marized in the equations of motion

q̇ = DLq(e) · ṽ , (15a)

M(q)v̇ = −g(q, v, t) − B�(q)λ , (15b)

�(q) = 0 (15c)

that form a differential-algebraic equation (DAE) on Lie group G, see (Brüls and
Cardona 2010).MatrixM(q) denotes themassmatrix that is supposed to be symmet-
ric, positive definite. The force vector −g(q, v, t) summarizes external, internal and
complementary inertia forces. Throughout the present paper, we consider equations
of motion (15) with functions M(q), g(q, v, t) and �(q) being smooth in the sense
that they are as often continuously differentiable as required by the convergence
analysis.

Remark 2.3 (a) For linear configuration spaces, the equations of motion (15) are
well known from textbooks on DAE time integration, see, e.g., (Brenan et al. 1996,
Sect. 6.2 and Hairer and Wanner 1996, Sect. VII.1). Model equations of constrained
mechanical and mechatronic systems in industrial applications have often a more
complex structure with additional first-order differential equations ċ = hc(q, v, c, t)
or additional algebraic equations 0 = hs(q, s) that are locally uniquely solvable w.r.t.
s = s(q) if the Jacobian (∂hs/∂s)(q, s) is non-singular. Other useful generalizations
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of (15) are rheonomic, i.e., explicitly time-dependent constraints �(q, t) = 0 and
force vectors g = g(q, v,λ, t) that contain friction forces depending nonlinearly
on λ, see (Arnold et al. 2011c and Brüls and Golinval 2006) for a more detailed dis-
cussion.All these additionalmodel componentsmay be considered straightforwardly
in the convergence analysis of generalized-α Lie group integrators, see (Arnold et al.
2015).

(b) The full rank assumption on B(q) is essential for the analysis and numerical
solution of (15) since otherwise the Lagrange multipliersλ(t)would not be uniquely
defined, see (García de Jalón and Bayo 1994, Sect. 3.4) and the more recent material
in (García de Jalón and Gutiérrez-López 2013). On the other hand, the assumptions
on M(q)may be slightly relaxed considering symmetric, positive semi-definite mass
matrices that are positive definite on ker B(q), see (Géradin and Cardona 2001). The
extension of the convergence analysis to this more complex class of model equations
has recently been discussed in (Arnold et al. 2014).

The holonomic constraints (15c) imply hidden constraints at the level of velocity
coordinates and at the level of acceleration coordinates. The first ones are obtained
by differentiation of (15c) w.r.t. t :

0 = d

dt
�(q(t)) = D�(q(t)) · q̇(t) = D�(q) · (

DLq(e) · ṽ
) = B(q)v . (16)

For the second time derivative of (15c), we have to consider partial derivatives of
�(q, z) := B(q)z w.r.t. q ∈ G. Since � : G × R

k → R
m is by construction linear

in z we have

Dq�(q, z) · (

DLq(e) · w̃
) = Z(q)(z, w) , ( w ∈ R

k ) (17)

with a bilinear form Z(q) : R
k × R

k → R
m . Using these notations, the time deriv-

ative of (16) gets the form

0 = d

dt

(

B(q(t))v(t)
) = d

dt
�

(

q(t), v(t)
) = B(q)v̇ + Z(q)(v, v) . (18)

It defines the hidden constraints at the level of acceleration coordinates.
The dynamical equations (15b) and the hidden constraints (18) are linear in v̇(t)

and λ(t) and may formally be used to eliminate λ(t) and to express v̇(t) in terms of
t , q(t) and v(t), see (Hairer and Wanner 1996, Sect. VII.1):

(

M(q) B�(q)

B(q) 0

)(

v̇
λ

)

=
( −g(q, v, t)

−Z(q)(v, v)

)

. (19)

Initial value problems for the resulting analytically equivalent unconstrained sys-
tem for functions q : [t0, tend] → G and v : [t0, tend] → R

k are uniquely solvable
whenever its right-hand side satisfies a Lipschitz condition, see, e.g., (Walter 1998).
This proves unique solvability of initial value problems for the constrained system
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(15) if q(t0) and v(t0) are consistent with the (hidden) constraints (15c) and (16),
i.e., �

(

q(t0)
) = B

(

q(t0)
)

v(t0) = 0. The initial values v̇(t0) and λ(t0) are given by
(19) with t = t0, q = q(t0) and v = v(t0).

The index analysis of Lie group DAE (15) follows step by step the classical
index analysis for the equations of motion for constrained mechanical systems in
linear configuration spaces, see (Hairer and Wanner 1996, Sect. VII.1). The alge-
braic variables λ = λ(q, v, t) are defined by the system of linear equations (19) that
contains the second time derivative of (15c). A formal third differentiation step yields
λ̇ = λ̇(q, v, t) and illustrates that (15) is an index-3Lie groupDAE inG × R

k × R
m .

Therefore, Eq. (15) is called the index-3 formulation of the equations of motion.

Remark 2.4 Block-structured systems of linear equations

(

M B�
B 0

) (

xv̇

xλ

)

=
(

rv̇

rλ

)

(20)

with a symmetric, positive definite matrix M ∈ R
k×k and a rectangular matrix B ∈

R
m×k of full rank m ≤ k are uniquely solvable since left multiplication of the upper

block row by BM−1 yields equations

BM−1B�xλ = BM−1rv̇ − Bxv̇ = BM−1rv̇ − rλ

that may be solved w.r.t. xλ ∈ R
m since BM−1B� is symmetric, positive defi-

nite. Inserting this vector xλ in the upper block row, we get xv̇ ∈ R
k from Mxv̇ =

rv̇ − B�xλ. The most time-consuming parts of this block Gaussian elimination are
the Cholesky factorization of M ∈ R

k×k (to get M−1B� ∈ R
k×m and M−1rv̇ ∈ R

k)
the evaluation of the matrix-matrix product B(M−1B�) ∈ R

m×m and the Cholesky
factorization of this matrix.

Alternatively, we could follow a nullspace approach that separates the nullspace
of B ∈ R

m×k from a non-singular matrix R̄ ∈ R
m×m : For any non-singular matrix

Q ∈ R
k×k with BQ = (

R̄�, 0m×(k−m)

)

, system (20) is equivalent to

⎛

⎝

M̄11 M̄12 R̄
M̄21 M̄22 0
R̄� 0 0

⎞

⎠

⎛

⎝

x̄v̇,1

x̄v̇,2

xλ

⎞

⎠ =
⎛

⎝

r̄v̇,1

r̄v̇,2

rλ

⎞

⎠ with

(

M̄11 M̄12

M̄21 M̄22

)

= Q�MQ ,

x̄v̇ = Q−1xv̇ and r̄v̇ = Q�rv̇. This block-structured system may be solved in three
steps by block backward substitution to get x̄v̇,1, x̄v̇,2 and x̄λ since matrices R̄�,
M̄22 and R̄ are non-singular. Betsch and Leyendecker (2006) discussed analytical
nullspace representations of the constraint matrixB for typical types of constraints in
engineering systems. If such analytical expressions are not available, then matrices
Q and R̄ could be computed, e.g., by a QR-factorization of B� ∈ R

k×m , see (Golub
and van Loan 1996).
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Fig. 2 Benchmark problem
Heavy top (Brüls and
Cardona 2010), see also
(Géradin and Cardona 2001)

2.4 Benchmark Problem: Heavy Top

The Lie group formulation of the equations of motion is the backbone of a rather
general finite element framework for flexible multibody dynamics (Géradin and
Cardona 2001). In the present paper, we focus on basic aspects of Lie group time
integration in multibody dynamics and restrict the numerical tests to the simulation
of a single rigid body in a gravitation field. This heavy top has found much interest
in mechanics and serves as a benchmark problem for Lie group methods (Géradin
and Cardona 2001, Sect. 5.8). The simulation of more complex flexible structures by
Lie group time integration methods is discussed, e.g., in (Brüls et al. 2012).

Figure2 shows the configuration of the heavy top in R
3 with R(t) ∈ SO(3) char-

acterizing its orientation and the position vector x(t) ∈ R
3 of the centre of mass

in the inertial frame. In the body-attached frame, the centre of mass is given by
X = ( 0, 1, 0 )�. Here and in the following, we omit all physical units. We consider
a gravitation field with fixed acceleration vector γ = (0, 0,−9.81)�. Mass and iner-
tia tensor are given by m = 15.0 and J = diag (0.234375, 0.46875, 0.234375) with
J denoting the inertia tensor w.r.t. the centre of mass.

In the benchmark problem, the top rotates about a fixed point. Therefore, the
configuration variables (R, x) are subject to holonomic constraints x = RX. We
consider an initial configuration being defined by R(0) = I3 with an angular velocity
�(0) = (0, 150,−4.61538)�. All other initial values are supposed to be consistent
with 0 = �

(

(R, x)
) := X − R�x andwith the corresponding hidden constraints (16)

and (18) at the level of velocity and acceleration coordinates.
The equations ofmotion (15) of the rotating heavy top result from the principles of

classical mechanics. In (Brüls et al. 2011), theywere derived for configuration spaces
G = SO(3) × R

3 and G = SE(3) following an augmented Lagrangian method. In
SO(3) × R

3, we get hidden constraints

0 = d

dt
(X − R�x) = −Ṙ�x − R�ẋ = −˜�

�
R�x − R�u = −˜X� − R�u

and a constraint matrix B = (−˜X −R�). The equations of motion are given by

J�̇ + � × J� + X × λ = 0 , (21a)

mu̇ − Rλ = mγ , (21b)

X − R�x = 0 (21c)
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Fig. 3 Heavy top benchmark, G = SO(3) × R
3: Reference solution

with kinematic relations (1). Figure3 shows a reference solution that has been com-
puted with the very small time step size h = 2.5 × 10−5. The position x(t) ∈ R

3 of
the centre of mass varies slowly in the inertial frame. For the Lagrange multipliers
λ(t) ∈ R

3, we observe much higher frequencies that reflect the fast rotation of the
top being caused by the rather large initial velocity �(0). Note, that the time scale
in the right plot of Fig. 3 has been zoomed by a factor of 10.

In the configuration space SE(3), we have ẋ = RU resulting in hidden constraints
0 = −˜X� − U with a constraint matrix B = (−˜X −I3) that is constant and does
not depend on q ∈ G. The equations of motion are given by

J�̇ + � × J� + X × λ = 0 , (22a)

mU̇ + m� × U − λ = R�mγ , (22b)

X − R�x = 0 (22c)

with kinematic relations (3). The position coordinates q = (R, x) coincide for both
formulations (21) and (22) but there may be substantial differences between the
velocity coordinates u(t) in the inertial frame and their counterparts U(t) in the
body-attached frame. This is illustrated by the simulation results in Fig. 4 that have
been obtained again with time step size h = 2.5 × 10−5. In SO(3) × R

3, we observe
low frequency changes of u(t) that correspond to the solution behaviour of x(t) in
the left plot of Fig. 3. For the configuration space G = SE(3), we see in the right plot
of Fig. 4 the dominating influence of the large initial velocity �(0) on the qualitative
solution behaviour of U(t).

Throughout the paper, we will use the two different formulations (21) and (22) of
the heavy top benchmark problem for numerical tests to discuss various aspects of
the convergence analysis for the generalized-α Lie group integrator.
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Fig. 4 Heavy top benchmark: Velocity coordinates in the inertial frame (u(t), left plot) and in the
body-attached frame (U(t), right plot)

2.5 More on the Exponential Map

Equation (7) illustrates the crucial role of the exponential map for multibody system
models that have a configuration space with Lie group structure. Since the numerical
solution proceeds in time steps, we have to study the composition of exponential
maps with different arguments in more detail. Furthermore, the proposed Lie group
time integration methods are implicit and rely on a Newton–Raphson iteration that
requires the efficient evaluation of Jacobians (∂h/∂v)

(

q ◦ exp(̃v)
)

for vector-valued
functions h : G → R

l . In the present section, we follow the presentation in (Hairer
et al. 2006, Sect. III.4) to discuss these rather technical aspects of Lie group time
integration.

Formatrix Lie groups, the exponential map exp is given by thematrix exponential.
For s ∈ R and any matrices A, C ∈ R

r×r , the series expansion (8) shows

exp(sA) exp(sC) = (Ir + sA + s2

2
A2)(Ir + sC + s2

2
C2) + O(s3)

= Ir + s(A + C) + s2

2
(A2 + 2AC + C2) + O(s3)

= Ir + s(A + C) + s2

2
(A + C)2 + 1

2
[sA, sC] + O(s3)

= exp
(

sA + sC + 1

2
[sA, sC]) + O(s3) , ( s → 0 )

with the matrix commutator [A, C] := AC − CA that vanishes iff matrices A and C
commute. For a slightly more detailed analysis of the product of matrix exponentials,
we use the Baker–Campbell–Hausdorff formula, see (Hairer et al. 2006, Lemma
III.4.3), to get the following estimate:
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Lemma 2.5 For s → 0, the product of matrix exponentials exp(sA) and exp(sC)

satisfies

exp(sA) exp(sC) = exp
(

sA + sC + 1

2
[sA, sC] + O(s)‖[sA, sC]‖) . (23)

Proof The Baker–Campbell–Hausdorff formula defines the argument of the matrix
exponential at the right-hand side of (23) by the solution of an initial value problem
with zero initial values at s = 0. Solving this initial value problem by Picard iteration
with starting guess sA + sC + [sA, sC]/2, we may show that all higher order terms
result in a remainder term of size O(s)‖[sA, sC]‖, see (23). �

For fixed argument A, the matrix commutator defines a linear operator

adA : R
r×r → R

r×r , C �→ adA := [A, C] (24)

that is called the adjoint operator. By recursive application of adA we may represent
directional derivatives of the exponential map exp(A) = ∑

i Ai/ i ! in compact form:
We denote ad0A(C) := C and

ad j+1
A (C) := adA

(

ad j
A(C)

) = A ad j
A(C) − ad j

A(C) A , ( j ≥ 1 ) (25)

and consider powers (A + sC)i , ( i ≥ 0 ), in the limit case s → 0. For i = 2, we get

(A + sC)2 = A2 + s(AC + CA) + O(s2) = A2 + s
(

2AC + ad−A(C)
) + O(s2) .

Here, the term ad−A(C) results from the non-commutativity of matrix multipli-
cation and could be represented as well by the adjoint operator adA itself since
2AC + ad−A(C) = 2CA + adA(C), see (Hairer et al. 2006). The use of ad−A corre-
sponds, however, to the characterization of the tangent space TqG by left translations
Lq , see (5) and the discussion in (Iserles et al. 2000). In multibody dynamics, this
characterization implies that vector v in the kinematic relations (6) is a left-invariant
velocity vector. These left-invariant vectors are favourable since the associated rota-
tional inertia are defined in the body-attached frame and the body mass matrices
remain constant during motion (Brüls et al. 2011).

Lemma 2.6 For s → 0 and matrices A, C ∈ R
r×r , the asymptotic behaviour of

(A + sC)i and exp(A + sC) is characterized by

(A + sC)i = Ai + s
i−1
∑

j=0

(

i
j + 1

)

Ai− j−1 ad j
−A(C) + O(s2) , ( i ≥ 1 ) , (26)

and
exp(A + sC) = exp(A)

(

Ir + s dexp−A(C)
) + O(s2) (27)
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with the matrix-valued function

dexp−A(C) :=
∞

∑

j=0

1

( j + 1)! ad j
−A(C) (28)

that satisfies dexp−A(C) = C whenever A and C commute.

Proof To prove (26) by induction, we multiply this expression from the right by
(A + sC) and observe that Ai sC = sA(i+1)− j−1 ad j

−A(C) with j = 0. Taking into
account the identity

Ai− j−1 ad j
−A(C) A = A(i+1)−( j+1)−1 ad j+1

−A (C) + A(i+1)− j−1 ad j
−A(C) ,

see (25), we get (26) with i being substituted by i + 1 since

(

i
j

)

+
(

i
j + 1

)

=
(

i + 1
j + 1

)

, ( j = 0, 1, . . . , i − 1 ) .

For the proof of (27), we scale (26) by 1/i ! and use the series expansion (8) to get

exp(A + sC) =
∞

∑

i=0

1

i !Ai + s
∞

∑

i=0

1

i !
i−1
∑

j=0

(

i
j + 1

)

Ai− j−1 ad j
−A(C) + O(s2)

=
∞

∑

i=0

1

i !Ai + s
∞

∑

j=0

1

( j + 1)!
∞

∑

i= j+1

1

(i − j − 1)!Ai− j−1

︸ ︷︷ ︸

=
∞

∑

i=0

1

i !Ai = exp(A)

ad j
−A(C) + O(s2)

= exp(A)
(

Ir + s dexp−A(C)
) + O(s2) .

For commuting matrices A and C, the iterated adjoint operators ad j
−A(C) vanish for

all j > 0 resulting in dexp−A(C) = C, see (28). �

Lemma 2.6 shows that the directional derivative of the matrix exponential is
given by (∂/∂A) exp(A)C = exp(A) dexp−A(C). In the Lie group setting, we use
this expression to study the Jacobian of vector-valued functions h

(

q ◦ exp(̃v)
)

w.r.t.
v ∈ R

k . For elements ṽ, w̃ ∈ g, the terms ad−ṽ(w̃) and dexp−ṽ(w̃) are linear in w ∈
R

k and may be represented by matrix-vector products in R
k using the notation

̂(•) : R
k → R

k×k with ˜v̂w = adṽ(w̃) = [̃v, w̃] , (v, w ∈ R
k ) . (29)

With (29), the operators adṽ, ad−ṽ and ad
j
−ṽ correspond to k × k-matrices v̂, −v̂ and

(−v̂) j , respectively, and the counterpart to z̃ = dexp−ṽ(w̃) ∈ g, see (28), is given by
z = T(v)w ∈ R

k with the tangent operator
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T : R
k → R

k×k , T(v) =
∞

∑

i=0

(−1)i

(i + 1)! v̂i , (30)

see (Iserles et al. 2000). Using the chain rule, we obtain

Corollary 2.7 Consider a continuously differentiable function h : G → R
l and a

matrix-valued function H : G → R
l×k that represents the derivative of h in the sense

that
Dh(q) · (

DLq(e) · w̃
) = H(q)w , ( w ∈ R

k ) ,

see (14). The Jacobian of h
(

q ◦ exp(̃v)
)

w.r.t. v ∈ R
k is given by

∂h
∂v

(

q ◦ exp(̃v)
) = H

(

q ◦ exp(̃v)
)

T(v) . (31)

Remark 2.8 (a) For commuting elements of the Lie algebra (̃v, w̃ ∈ gwith [̃v, w̃] =
˜0), the adjoint operator vanishes resulting in v̂w = 0k and T(v)w = w. Therefore,
the tangent operator satisfies T(v)v = v, (v ∈ R

k), and Corollary 2.7 implies

dh
dϑ

(

q ◦ exp(ϑ̃v)
) = H

(

q ◦ exp(ϑ̃v)
)

v (32)

with ϑ ∈ R and any vector v ∈ R
k .

(b) The efficient evaluation of the tangent operator is essential for an efficient
implementation of implicit Lie group integrators. In the Lie group G = SO(3), the
hat operator maps � ∈ R

3 to ̂� := ˜� with the skew symmetric matrix ˜� being
defined in (2). Similar to Rodrigues’ formula (10), the tangent operator TSO(3) may
be evaluated in closed form (Brüls et al. 2011):

TSO(3)(�) = I3 + cos� − 1

�2
˜� +

1 − sin�

�

�2
˜�

2
. (33)

For G = SO(3) × R
3, the Lie algebra g = so(3) × R

3 is parametrized by vectors
v = (��, u�)� ∈ R

6 and we get

v̂ = blockdiag ( ˜�, 03×3 ) , TSO(3)×R3(v) = blockdiag
(

TSO(3)(�), I3
)

.

More complex expressions are obtained for the Lie group G = SE(3) and its Lie
algebra se(3) that is parametrized by vectors v = (��, U�)� ∈ R

6 with

v̂ =
(

˜� 03×3
˜U ˜�

)

. (34)
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Using the identities ˜�
3 = −�2

˜�, ˜U˜�= − (��U)I3 + �U�, ˜U˜�
2 + ˜�

2
˜U = −

�2
˜U − (��U)˜� and ˜�˜U˜� = −(��U)˜� with � := ‖�‖2, we prove by induction

v̂2l+1 =
(

(−�2)l ˜� 03×3

(−�2)l ˜U − 2l(−�2)l−1(��U)˜� (−�2)l ˜�

)

and

v̂2l+2 =
(

(−�2)l ˜�
2

03×3

(−�2)l (˜U˜� + ˜�˜U) − 2l(−�2)l−1(��U)˜�
2

(−�2)l ˜�
2

)

for all l ≥ 0 and get the tangent operator

TSE(3)(�) =
(

TSO(3)(�) 03×3

SSE(3)(�, U) TSO(3)(�)

)

(35)

with SSE(3)(0, U) = −˜U/2 and

SSE(3)(�, U) = 1

�2

(

−(1 − cos�)˜U + (

1 − sin�

�

)

(˜U˜� + ˜�˜U)+

+ (

2
1 − cos�

�2
− sin�

�

)

(��U)˜�+

+ 1

�2

(

1 − cos� − 3 (1 − sin�

�
)
)

(��U)˜�
2
)

if � �= 0, see (Brüls et al. 2011 and Sonneville et al. 2014, Appendix A).
(c) If R

k with the addition is considered as a Lie group, then we get v̂ = 0k×k and
TRk (v) = Ik for any vector v ∈ R

k since the group operation is commutative.
(d) Similar to the discussion in Example 2.1(c), we observe for direct products

like SO(3) × R
3 that the matrix v̂ and the tangent operator T(v) are block-diagonal.

In (SO(3) × R
3)N and (SE(3))N , the tangent operators are given by

TGN

(

(v1, v2, . . . , vN )
) = blockdiag1≤i≤N TG(vi ) ∈ R

6N×6N

with G = SO(3) × R
3 and G = SE(3), respectively.

3 Generalized-α Lie Group Time Integration

The time integration of the equations of motion (15) by Lie group methods is based
on the observation that (15a) implies

q(t + h) = q(t) ◦ exp
(

hṽ(t) + h2

2
˜v̇(t) + O(h3)

)

, ( h → 0 ) . (36)
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In Sect. 3.1, a generalized-α Lie group method for the index-3 formulation (15)
is introduced. In Sect. 3.2, we recall some well-known facts about order, stability
and “overshooting” of generalized-α methods in linear spaces. For the heavy top
benchmark problem, second-order convergence of the Lie group integrator and an
order reduction phenomenon in the transient phase may be observed numerically
(Sect. 3.3). In Sect. 3.4, we show that the error constant of the first-order error term
may be reduced drastically by an analytical index reduction before time discretiza-
tion. Implementation aspects and the discretization errors in hidden constraints are
studied in Sects. 3.5 and 3.6.

3.1 The Lie Group Time Integration Method

As proposed by Brüls and Cardona (2010), we consider a generalized-α method for
the index-3 formulation (15) of the equations of motion that updates the numerical
solution (qn, vn, an,λn) in a time step tn → tn + h of step size h according to

qn+1 = qn ◦ exp(h˜�qn) , (37a)

�qn = vn + (0.5 − β)han + βhan+1 , (37b)

vn+1 = vn + (1 − γ)han + γhan+1 , (37c)

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n (37d)

with vectors v̇n+1, λn+1 satisfying the equilibrium conditions

M(qn+1)v̇n+1 = −g(qn+1, vn+1, tn+1) − B�(qn+1)λn+1 , (37e)

�(qn+1) = 0 . (37f)

The term generalized-α method refers to the coefficients αm , α f in the update for-
mula (37d) for the acceleration like variables an . These auxiliary variables an were
introduced by Chung and Hulbert (1993) who studied the time integration of uncon-
strained linear systems in linear spaces and proposed a one-parametric set of algo-
rithmic parameters αm , α f , β and γ that may be considered as a quasi-standard for
this type of methods, see Sect. 3.2 below.

Method (37) is initialized with starting values q0 ∈ G and v0 ∈ R
k that approx-

imate the (consistent) initial values q(t0), v(t0) in (15). The starting values v̇0, a0
at acceleration level are approximations of v̇(t0) ∈ R

k , see (19). The convergence
analysis in Sect. 4 below will show that the starting values need to be selected care-
fully to guarantee second order convergence in all solution components and to avoid
spurious oscillations in the numerical solution λn .

In practical applications, variable step size implementations with error control
are expected to be superior to methods with fixed time step size h. For constrained
systems in linear configuration spaces, a step size control algorithm for generalized-
α methods with αm = 0 (HHT-methods, see Hilber et al. 1977) was developed in
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(Géradin andCardona 2001, Chap.11). For this problem class, Jay andNegrut (2007)
proposed a linear update formula for the auxiliary variables an to compensate a first-
order error term resulting from a step size change at t = tn .

An alternative approach is based on the elimination of these variables an in
the multi-step representation of generalized-α methods according to Erlicher et al.
(2002). Here, the algorithmic parameters αm , α f , β and γ have to be updated in each
time step considering the step size ratio hn+1/hn , see (Brüls and Arnold 2008).

There is no straightforward extension of the results of Erlicher et al. (2002) from
linear configuration spaces to the Lie group setting of the present paper. Furthermore,
the analysis of the error propagation in time integration is simplified substantially
if the time step size h is fixed for all time steps. For both reasons, the convergence
analysis for generalized-α Lie group integrators (37) with variable time step size hn
will be a topic of future research that is beyond the scope of the present paper.

3.2 The Generalized-α Method in Linear Spaces

For linear configuration spaces G = R
k and unconstrained systems (15) with con-

stant mass matrix M, the generalized-α Lie group method (37) coincides with the
“classical” generalized-α method that goes back to the work of Chung and Hulbert
(1993). Multiplying (37d) by the (constant) mass matrix M and eliminating vectors
�qn and v̇n+1, we get

qn+1 = qn + hvn + (0.5 − β)h2an + βh2an+1 , (38a)

vn+1 = vn + (1 − γ)han + γhan+1 , (38b)

0 = (1 − αm)Man+1 + αmMan + (1 − α f )gn+1 + α f gn (38c)

with gn := g(qn, vn, tn) and vectors qn, qn+1 ∈ R
k that are typeset in boldface font

to indicate the linear structure of the configuration space.
For a local error analysis, we suppose that an approximates v̇(tn + �αh) with a

fixed offset �α ∈ R, see (Jay and Negrut 2008, Sect. 2), and substitute in (38) the
numerical solution vectors qn , vn , an , gn by q(tn), v(tn), v̇(tn + �αh) and −Mv̇(tn),
respectively. The resulting residuals define local truncation errors lq

n , lv
n and la

n:

q(tn+1) = q(tn) + hv(tn) + (0.5 − β)h2v̇(tn + �αh)+
+ βh2v̇(tn+1 + �αh) + lq

n , (39a)

v(tn+1) = v(tn) + (1 − γ)hv̇(tn + �αh) + γhv̇(tn+1 + �αh) + lv
n , (39b)

Mla
n = (1 − αm)Mv̇(tn+1 + �αh) + αmMv̇(tn + �αh)−

− (1 − α f )Mv̇(tn+1) − α f Mv̇(tn) . (39c)

For sufficiently smooth solutions q(t), the local truncation errors in (39) may be
analysed by Taylor expansion of functions q(t), v(t) and v̇(t) at t = tn:
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lq
n = Cqh

3v̈(tn) + O(h4) with Cq := (1 − 6β − 3�α)/6 , (40a)

lv
n = (0.5 − �α − γ)h2v̈(tn) + O(h3) , (40b)

la
n = (

�α − (αm − α f )
)

hv̈(tn) + O(h2) . (40c)

We get local truncation errors lq
n = O(h3), lv

n = O(h3) and la
n = O(h2) if the algo-

rithmic parameters satisfy the order condition

γ = 0.5 − �α with �α := αm − α f . (41)

Chung and Hulbert (1993) studied the scalar test equation q̈ + ω2q = 0 with peri-
odic analytical solutions q(t) = c1 sinωt + c2 cosωt and observed that (38) results
in a frequency-dependent linear mapping (qn, vn, an) �→ (qn+1, vn+1, an+1). Scaling
the update formulae (38a, 38b) by factors 1/h2 and 1/h, respectively, we get

⎛

⎝

1
(hω)2

0 −β

0 1 −γ
1 − α f 0 1 − αm

⎞

⎠

︸ ︷︷ ︸

=: T+
hω

⎛

⎝

ω2qn+1
1
h vn+1

an+1

⎞

⎠

︸ ︷︷ ︸

= zn+1

=
⎛

⎝

1
(hω)2

1 0.5 − β

0 1 1 − γ
−α f 0 −αm

⎞

⎠

︸ ︷︷ ︸

=: T0
hω

⎛

⎝

ω2qn
1
h vn
an

⎞

⎠ .

︸ ︷︷ ︸

=: zn

Recursive application yields zn = Tn
hωz0 with Thω := (T+

hω)−1T0
hω. Therefore, the

stability and (numerical) damping properties of the generalized-α method (38)
applied to q̈ + ω2q = 0 may be characterized by an eigenvalue analysis of Thω ∈
R

3×3. Chung and Hulbert (1993) propose to choose a user-defined parameter ρ∞ ∈
[0, 1] to characterize the numerical damping properties in the limit case hω → ∞.
They show that the algorithmic parameters αm , α f , β and γ may be defined such that
the order condition (41) is satisfied and the spectral radius 
(Thω) is monotonically
decreasing for hω ∈ (0,+∞) with limhω→0 
(Thω) = 1 and 
(T∞) = ρ∞ :

αm = 2ρ∞ − 1

ρ∞ + 1
, α f = ρ∞

ρ∞ + 1
, γ = 1

2
+ α f − αm , β = 1

4
(γ + 1

2
)2 . (42)

For these parameters, all three eigenvalues of Thω = Thω(ρ∞) coincide in the limit
case hω → ∞ and the Jordan canonical form ofT∞(ρ∞) ∈ R

3×3 consists of a single
3 × 3 Jordan block for the eigenvalue μ := −ρ∞, i.e., T∞(ρ∞) = X(μ)J(μ)X−1(μ)

with

J(μ) :=
⎛

⎝

μ 1 0
0 μ 1
0 0 μ

⎞

⎠ , X(μ) :=
⎛

⎝

1 − μ2 −(2 + μ) 0
0 1

2
1+μ
1−μ

− 1
(1−μ)2

0 1 0

⎞

⎠ .

With algorithmic parameters αm , α f , β and γ according to (42) and a damping
parameter ρ∞ < 1, the linear stability of the generalized-α method (38) is always
guaranteed. For the test equation q̈ + ω2q = 0, the numerical solution (qn, vn, an)�
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will finally be damped out for any starting values q0, v0, a0 since zn = Tn
hω(ρ∞)z0

and limn→∞ Tn
hω(ρ∞) = 0 because 
(Thω(ρ∞)) < 1, ( hω ∈ (0,∞) ).

In a transient phase, however, ‖zn‖ may be much larger than ‖z0‖ since ‖Tn‖
may be much larger than (
(T))n for matrices that are not diagonalisable (non-
normal matrices). Typical values are maxn ‖Tn‖2 = ‖T3‖2 = 7.4 for T = T∞(ρ∞)

with ρ∞ = 0.6 and maxn ‖Tn‖2 = ‖T14‖2 = 34.3 for T = T∞(ρ∞) with ρ∞ = 0.9.
In structural dynamics, this phenomenon is called overshooting since |qn| may
grow rapidly in a transient phase before the numerical dissipation results finally
in limn→0 qn = 0. Overshooting is a well-known problem of unconditionally stable
Newmark-type methods with second-order accuracy (Hilber and Hughes 1978) and
may be a motivation to prefer first-order accurate Newmark integrators in industrial
multibody system simulation (Sanborn et al. 2014).

In the quantitative error analysis, we denote the global errors of the generalized-α
method in linear spaces by e(•)

n with (•)(tn) = (•)n + e(•)
n . For the auxiliary vectors

an that do not have a corresponding component of the analytical solution, we take
into account the offset parameter �α from (41) and define the global error ea

n by
v̇(tn + �αh) = an + ea

n . For the scalar test equation q̈ + ω2q = 0, these global errors
as well as the local errors lqn , lvn , l

a
n are scalar quantities and T+

hωzn+1 = T0
hωzn implies

T+
hω

⎛

⎜

⎝

ω2eqn+1
1

h
ev
n+1

ean+1

⎞

⎟

⎠
= T0

hω

⎛

⎜

⎝

ω2eqn
1

h
ev
n

ean

⎞

⎟

⎠
+

⎛

⎜

⎜

⎜

⎝

1

h2
lqn

1

h
lvn
lan

⎞

⎟

⎟

⎟

⎠

, (43)

see (39). As before, the first and second row are scaled by 1/h2 and 1/h, respectively.
The resulting first-order error term lqn /h2 = Cqhv̈(tn) + O(h2) may strongly affect
the result accuracy.

This order reduction phenomenon is known from the convergence analysis for the
application of Newmark-type methods to constrained mechanical systems in linear
configuration spaces, see (Cardona and Géradin 1994). In the limit case ω → ∞,
the transient solution behaviour is dominated by an oscillating first-order error term
that is finally damped out by numerical dissipation. To study this qualitative solution
behaviour in full detail, we introduce a new variable λ := ω2q and rewrite the test
equation as a singular singularly perturbed problem with perturbation parameter
ε := 1/ω, see (Lubich 1993):

q̈ + ω2q = 0 ⇔
q̈ = −λ

1

ω2
λ = q

}

(44)

The corresponding reduced system (ε = 0, i.e., ω → ∞) is a constrained system
(15) with G = R and k = m = 1:
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q̈ = −λ
0 = q

}

(45)

With the notation λn := ω2qn , the generalized-α method (38) for the singularly
perturbed system (44) converges for ω → ∞ to the generalized-α method (37) for
the constrained system (45) and we get in (43) both for finite frequencies ω and in
the limit case ω → ∞:

T+
hωer

n+1 = T0
hωer

n + lr
n (46)

with

er
n :=

⎛

⎝

eλ
n
rn
ean

⎞

⎠ , lr
n :=

⎛

⎜

⎜

⎝

0
1

h
lvn + lqn+1 − lqn

h2
lan

⎞

⎟

⎟

⎠

(47)

and

rn := 1

h

(

ev
n + 1

h
lqn

) = 1

h

(

ev
n + Cqh

2v̈(tn)
) + O(h2) . (48)

The error recursion in terms of eλ
n , rn and e

a
n provides the basis for a detailed conver-

gence analysis:

Theorem 3.1 Consider the time discretization of the linear test equations (44) and
(45) by a generalized-α method with parameters αm, α f , β and γ according to (42)
for some numerical damping parameter ρ∞ ∈ [0, 1).
(a) The discretization errors are bounded by

‖lr
n‖ = O(h2) , ‖er

n+1 − Thωer
n‖ = O(h2) , (49)

‖er
n − Tn

hωer
0‖ = O(h2) (50)

and
‖er

n‖ ≤ ‖Tn
hω‖ ‖er

0‖ + O(h2) . (51)

(b) For starting values λ0 = λ(t0) + O(h2), a0 = v̇(t0 + �αh) + O(h2), we have
‖er

0‖ = O(h) if v0 = v(t0) + O(h2). This error estimate may be improved by
one power of h perturbing the starting value v0 such that

v0 = v(t0) + Cqh
2v̈(t0) + O(h3) . (52)

In that case, we get ‖er
n‖ = O(h2), ( n ≥ 0 ).

Proof (a) Because of

lqn+1 − lqn = Cqh
3(v̈(tn+1) − v̈(tn)

) + O(h4) = O(h4) ,
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the local error term lr
n is of sizeO(h2), see (40), and (49) is a direct consequence of the

error recursion (46). The assumptions on parametersαm ,α f ,β and γ imply 
(Thω) <

1 and the existence of a norm ‖T‖ρ withκ := ‖Thω‖ρ < 1, see, e.g., (Quarteroni et al.
2000, Sect. 1.11.1). Therefore,

‖er
n − Tn

hωer
0‖ρ ≤ ‖er

n − Thωer
n−1‖ρ + ‖Thωer

n−1 − Tn
hωer

0‖ρ

≤ ‖er
n − Thωer

n−1‖ρ + ‖Thω‖ρ ‖er
n−1 − Tn−1

hω er
0‖ρ

≤ Ch2 + κ‖er
n−1 − Tn−1

hω er
0‖ρ

with an appropriate constant C > 0, see (49). Recursive application of this error
estimate results in

‖er
n − Tn

hωer
0‖ρ ≤

n−1
∑

i=0

κi Ch2 + κn‖er
0 − T0

hωer
0‖ρ <

1

1 − κ
Ch2

and (50) follows from the equivalence of all norms in the finite dimensional space
R

3. Error bound (51) is a straightforward consequence of the triangle inequality.
(b)We get ‖er

0‖ = |r0| + O(h2) and the estimates for ‖er
0‖ and for ‖er

n‖, ( n > 0 ),
follow from the definition of rn , see (48), and from part (a) of the theorem. �

The most natural choice of starting values λ0 := λ(t0), v0 := v(t0), a0 := v̇(t0 +
�αh) yields er

0 = ( 0, r0, 0 )� with r0 = Cqhv̈(t0) + O(h2), see (48). In error
estimate (50), we obtain for v̈(t0) �= 0 a first-order error term being amplified by
matrix-valued factors Tn

hω that are well known from the analysis of the “overshoot”
phenomenon by Hilber and Hughes (1978). In the limit case hω → ∞, this term
may be studied in more detail using the Jordan canonical form of T∞, see (Cardona
and Géradin 1989, 1994). We get

Tn
∞ er

0 = X(−ρ∞) Jn(−ρ∞) X−1(−ρ∞) er
0

with the Jordan block J(−ρ∞) ∈ R
3×3. It may be verified by induction that the

non-zero elements of Jn(−ρ∞) are given by (−ρ∞)n , n(−ρ∞)n−1 and n(n −
1)(−ρ∞)n−2/2. Straightforward computations show that the global error eλ

n (that
coincides up to a term of size O(h2) with the first component of Tn∞er

0 ) satisfies
eλ
n = cnhv̈(t0) + O(h2) with

cn := Cq(1 + ρ∞)2
(n

2
(n − 1)(ρ2∞ − 1)(−ρ∞)n−2 + n(2 − ρ∞)(−ρ∞)n−1

)

.

(53)
After a transient phase, the first-order error term cnhv̈(t0) is damped out since
limn→∞ cn = 0 for any ρ∞ ∈ [0, 1). In the transient phase, however, the error con-
stants cn may become very large with maximum absolute values of size |c3| = 6.8
for ρ∞ = 0.6, |c15| = 31.9 for ρ∞ = 0.9 and |c161| = 334.3 for ρ∞ = 0.99.

For the test equation (45) itself, this error analysis has notmuch practical relevance
since q(t) ≡ 0 implies v̈(t) ≡ 0 and er

0 = 0 for exact starting values λ0 = λ(t0) = 0,



A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems 115

v0 = v(t0) = 0, a0 = v̇(t0 + �αh) = 0. Substituting the trivial constraint q = 0 by
a rheonomic constraint q(t) = t3/6, we may construct, however, a slightly more
complex test problem with non-vanishing first-order error term r0 = Cqh since lqn =
Cqh3v̈(tn) = Cqh3 and the local truncation errors lvn , l

a
n vanish identically. For this

test problem, the global error in λ really suffers from order reduction since eλ
n = cnh.

The convergence analysis for generalized-α methods shows that this order reduc-
tion phenomenon is typical for the initialization of method (37) with exact starting
values λ0 = λ(t0), v0 = v(t0) and a0 = v̇(t0 + �αh), see (Arnold et al. 2015) and
Sect. 4 below. For linear configuration spaces (G = R

k), the global error in λ is
bounded by

[BM−1B�](q(tn)
)

eλ
n = cnh B

(

q(t0)
)

v̈(t0) + O(h2) (54)

with the error constants cn being defined in (53). The undesired first-order error term
is nicely illustrated by numerical test results for the mathematical pendulum, see
(Arnold et al. 2015, Sect. 2.3):

Example 3.2 Consider amathematical pendulumofmassm and length l in Cartesian
coordinates q = (x, y)� with constraint (x2 + y2 − l2)/2 = 0, see (15c). In (15), we
have M = mI2, g = ( 0 , g )� with m = l = 1, g = 9.81 (here and in the following,
all physical units are omitted). We fix the total energy E = m(ẋ20 + ẏ20 )/2 + mgy0
to E = m/2 − mgl and determine the consistent initial values x0, y0, ẋ0, ẏ0 and λ0

by the initial deviation x0 from the equilibrium position.
Method (37) is appliedwith algorithmic parameters according to (42) anddamping

parameter ρ∞ = 0.9. The starting values are set to q0 := (x0, y0)�, v0 := (ẋ0, ẏ0)�
and v̇0 := (ẍ0, ÿ0)� with accelerations ẍ0, ÿ0 that are obtained from evaluating
the equations of motion for the consistent initial values x0, y0, ẋ0, ẏ0, λ0. The
acceleration like variables an are initialized with a0 = v̇(t0) + �αhv̈(t0) + O(h2) =
v̇(t0 + �αh) + O(h2) using the starting value v̇0 = v̇(t0) and a difference approxi-
mation of v̈(t0).

Figure5 shows on a short time interval the global error inλ for initial values x0 = 0
(marked by dots) and x0 = 0.2 (marked by “+”) for two different step sizes h. If we
start in the equilibriumposition, the error is very small but for x0 = 0.2, the oscillating
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Fig. 5 Mathematical pendulum: Global error in λ for x0 = 0 (“·”) and x0 = 0.2 (“+”)
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error in λ reaches a maximum amplitude of 2.48 × 10−1 for h = 2.0 × 10−2 and
1.23 × 10−1 for h = 1.0 × 10−2. After about 100 time steps these transient errors
are damped out.

The numerical results in Fig. 5 show that in the transient phase the generalized-α
method (37) may suffer from spurious oscillations of amplitudeO(h). According to
(54), this first-order error term is given by cnh B

(

q(t0)
)

v̈(t0) with B
(

q(t0)
)

v̈(t0) =
−3gx0 ẋ0/y0. Therefore, the spurious oscillations and the order reduction disappear
if we start at the equilibrium position x0 = 0. Reducing the damping parameter ρ∞
in (42), the oscillations are damped out more rapidly but may still be observed.

3.3 Numerical Tests for the Heavy Top Benchmark Problem

In the present section, we study the convergence behaviour of the generalized-α Lie
group integrator (37) numerically. We use algorithmic parameters according to (42)
with the numerical damping parameter ρ∞ = 0.9 and apply (37) to the equations
of motion (21), (22) of the heavy top benchmark problem in configuration spaces
G = SO(3) × R

3 and G = SE(3), respectively. Initial values q(t0), v(t0) are given
in Sect. 2.4. In the numerical tests, the integrator was initialized with starting values
q0 := q(t0), v0 := v(t0), v̇0 := v̇(t0) and a0 := v̇(t0) with v̇(t0) denoting the consis-
tent acceleration vector being defined in (19).

In Fig. 6, the asymptotic behaviour of the global errors in qn , vn andλn for h → 0
is visualized in terms of the maximum maxn ‖e(•)

n ‖/‖(•)n‖ of the norm of relative
errors in the time interval [t0, tend] = [0, 1]. Here, the numerical solutions for h =
1.25 × 10−4, h = 2.5 × 10−4, h = 5.0 × 10−4, . . . , h = 4.0 × 10−3 are compared
to a reference solution that has been obtained numerically with the very small time
step size h = 2.5 × 10−5. In double logarithmic scale, the plots of global errors in qn
and vn are straight lines of slope+2 (for both configuration spaces). These numerical
test results indicate second-order convergence for components q and v.
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Fig. 6 Heavy top benchmark (index-3 formulation): Global error of integrator (37) versus h for
t ∈ [0, 1]. Left plot SO(3) × R

3, right plot SE(3)
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The error constants depend on model parameters, initial values and configuration
space. With the test setup of Sect. 2.4, the velocity components v(t) vary much more
rapidly for G = SE(3) than for G = SO(3) × R

3, see Fig. 4. This might explain the
substantially larger error constants for qn and vn in the right plot of Fig. 6. For other
setups, much smaller error constants have been observed for the configuration space
SE(3), see, e.g., the numerical test results of Brüls et al. (2011) for a slowly rotating
top with an initial angular velocity �(0) that has been reduced by a factor of 100.

Note, that Fig. 6 shows the norm of relative errors. The rather large nominal
values of v(t) with ‖�(0)‖ ≈ 150.0 result systematically in relative errors that have
a substantially smaller norm than the ones in the position coordinates q(t).

For the Lagrange multipliers λ(t), we observe order reduction since slope +1
of the curve for the global errors in λn in the left plot of Fig. 6 indicates first-order
convergence. The test results forG = SE(3) in the right plot of Fig. 6 are qualitatively
different from the ones in the left plot since they indicate second-order convergence
forall solution components.A formal proof of this numerically observed convergence
behaviour will be given in Theorem 4.18 and Example 4.19 below.

Guided by the test results for the mathematical pendulum in Example 3.2, we
expect that the order reduction phenomenon might affect the numerical solution
only in a transient phase and the first-order error terms in λn are finally damped out
by numerical dissipation. This is nicely illustrated by Fig. 7 that shows the numerical
solution λn,1 for t ∈ [0, 0.1] and two different time step sizes. In the configura-
tion space G = SO(3) × R

3 (solid lines), spurious oscillations are observed that are
damped out after about 50 time steps and have a maximum amplitude that depends
linearly on h. Beyond this transient phase, the results coincide up to plot accuracywith
the dashed lines showing simulation results for the configuration space G = SE(3)
that do not suffer from order reduction.

Neglecting the transient behaviour, we observe for both Lie group formulations
second-order convergence in all solution components, see Fig. 8 that shows the max-
imum of the norm of global errors in time interval [0.5, 1], i.e., beyond the transient
phase.
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Fig. 7 Heavy top benchmark (index-3 formulation, G = SO(3) × R
3 and G = SE(3)): Numerical

solution of Lagrange multiplier λn,1. Left plot h = 1.0 × 10−3, right plot h = 5.0 × 10−4
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Fig. 9 Heavy top benchmark (h = 1.0 × 10−3, index-3 formulation): Residuals in constraints
(15c). Left plot SO(3) × R
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By construction, the Lie group integrator (37) defines a numerical solution qn
that satisfies the holonomic constraints �(q) = 0. In a practical implementation, the
residuals remain in the size of the stopping bounds for theNewtonmethod that is used
to solve in each time step the system of nonlinear equations (37). For the numerical
tests we applied a combined absolute and relative error criterion with tolerances
ATOL = 10−10 for the absolute errors and RTOL = 10−8 for the relative errors and
observe constraint residuals of size ‖�(qn)‖ � 10−10, see Fig. 9.

Situation is different for the residuals in the hidden constraints (16) that are in
general of the size of global discretization errors since B

(

q(t)
)

v(t) = 0. The left
plot of Fig. 10 shows these non-vanishing residuals B(qn)vn for h = 1.0 × 10−3 and
G = SO(3) × R

3. They are of size ‖B(qn)vn‖ ≤ 0.025 and suffer from the transient
spurious oscillations being known from Fig. 7 above. For the configuration space
G = SE(3), the constraint residuals are smaller by eight orders of magnitude with
maxn ‖B(qn)vn‖ ≈ 1.0 × 10−10. This unexpected solution behaviour is visualized
in the right plot of Fig. 10. It is closely related to the fact that the constraint Jacobian
B(q) in (22) is constant along the analytical solution q(t), see Sect. 3.6 below for a
more detailed analysis.
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Fig. 10 Heavy top benchmark (h = 1.0 × 10−3, index-3 formulation): Residuals in hidden con-
straints (16). Left plot SO(3) × R
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In all numerical tests of the present section, the numerical damping parameter was
set to ρ∞ := 0.9. The qualitative behaviour of the numerical solution in configura-
tion spaces SO(3) × R

3 and SE(3) is, however, not sensitive w.r.t. this algorithmic
parameter, see, e.g., the results for ρ∞ = 0.8 and the test setup of Fig. 7 in (Brüls
et al. 2011) and the results for ρ∞ = 0.6 and the test setup of Fig. 20 below in (Arnold
et al. 2015).

3.4 Lie Group Time Integration and Index Reduction

The large amplitude of spurious oscillations in the numerical solution λn , see Fig. 7,
results from order reduction inNewmark-typemethods that are directly applied to the
index-3 formulation of the equations of motion for constrained mechanical systems,
see (Cardona and Géradin 1994) and (Arnold et al. 2015). As an alternative to this
direct time discretization of the index-3 Lie group DAE (15) we consider in the
present section an analytical index reduction before time integration. We follow the
approach of Gear et al. (1985) that is well known for equations of motion in linear
spaces and was extended to the Lie group setting of the present paper in (Arnold
et al. 2011a).

Gear et al. (1985) introduced an auxiliary vector η(t) ∈ R
m in the kinematic

equations to couple the hidden constraints at the level of velocity coordinates to the
equations of motion. In the Lie algebra approach to Lie group time integration, these
modified kinematic equations get the form q̇(t) = DLq(t)(e) · ˜�q(t) with ˜�q ∈ g
being defined by �q = v − B�(q)η, see (6). The resulting stabilized index-2 for-
mulation of the equations of motion is given by

q̇ = DLq(e) · ˜�q , (55a)

�q = v − B�(q)η , (55b)

M(q)v̇ = −g(q, v, t) − B�(q)λ , (55c)
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�(q) = 0 , (55d)

B(q)v = 0 . (55e)

For the modified kinematic equations (55a), the time derivative of the holonomic
constraints (55d) is given by 0 = B(q)�q, see (16). Therefore, Eqs. (55b) and (55e)
yield 0 = [BB�](q)η and η(t) ≡ 0 since the full rank assumption on the constraint
matrix B ∈ R

m×k implies that BB� ∈ R
m×m is non-singular. Hence, �q(t) = v(t)

and the stabilized index-2 formulation (55) is analytically equivalent to the original
equations of motion (15).

The index analysis of Gear et al. (1985) is extended straightforwardly from linear
spaces to the Lie group setting of the present paper and shows that the analytical
transformation from (15) to (55) reduces the DAE index of the equations of motion
from three to two.

The generalized-α method for the index-2 system (55) satisfies at t = tn+1 the
holonomic constraints (55d) as well as the hidden constraints (55e). An auxiliary
vector ηn ∈ R

m is added to the definition of the increment vector �qn , see (55b):

qn+1 = qn ◦ exp(h˜�qn) , (56a)

�qn = vn − B�(qn)ηn+ (56b)

+ (0.5 − β)han + βhan+1 ,

vn+1 = vn + (1 − γ)han + γhan+1 , (56c)

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n , (56d)

M(qn+1)v̇n+1 = −g(qn+1, vn+1, tn+1) − B�(qn+1)λn+1 , (56e)

�(qn+1) = 0 , (56f)

B(qn+1)vn+1 = 0 . (56g)

Following the test scenario of Sect. 3.3, we study the asymptotic behaviour of inte-
grator (56) for h → 0 by numerical tests for the heavy top benchmark in configuration
spaces G = SO(3) × R

3 and G = SE(3), respectively. As before, we scale the norm
of the (absolute) global errors by the norm of nominal values and consider the maxi-
mum of these relative errors in time interval [t0, tend] = [0, 1]. Figure11 shows these
maximum values of the norm of global errors in qn , vn andλn versus time step size h.
In double logarithmic scale, we get in the step size range h ≥ 2.5 × 10−4 curves of
slope +2 indicating second-order error terms in all solution components.

For the configuration space SO(3) × R
3 (left plot) and very small time step sizes

h < 2.5 × 10−4, the errors in λn are dominated by a first-order term. On the other
hand, the error constants of the second-order error terms are slightly smaller than
the ones in the corresponding plots for the index-3 integrator (37), see Figs. 6 and 8.
The results for configuration space SE(3) in the right plot of Fig. 11 coincide up to
plot accuracy with the ones in Figs. 6 and 8.
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Fig. 12 Heavy top benchmark (h = 1.0 × 10−3, stabilized index-2 formulation): Numerical solu-
tion λn . Left plot SO(3) × R

3, right plot SE(3)

The comparison of time histories for λn in Figs. 7 and 12 shows that the spurious
oscillations seem to disappear if hidden constraints are taken into account for time
integration, see (56g). For amore detailed analysis, we consider in Fig. 13 the relative
global error in λn,1 for G = SO(3) × R

3 and two different time step sizes. There is
an oscillating first-order error term of maximum amplitude 0.64 h that is rapidly
damped out. For time step sizes h ≥ 5.0 × 10−4, it does not contribute significantly
to the overall global error in λn on time interval [0, 1] that is approximately of size
3.0 × 103 h2, see Fig. 11.

The test results in the right plot of Fig. 10 indicate that the index-3 integrator
(37) yields for the heavy top benchmark in G = SE(3) a numerical solution qn , vn
that satisfies the hidden constraints (56g) up to (very) small residuals. Therefore, the
auxiliary variables ηn ∈ R

m that represent the differences between integrators (37)
and (56) vanish in that case identically, see also Sect. 3.6 below.

For the configuration space G = SO(3) × R
3, we observed in the left plot of

Fig. 10 non-vanishing constraint residuals B(qn)vn for the index-3 integrator (37).
In integrator (56), they are compensated by auxiliary variables ηn = O(h2) for the
stabilized index-2 formulation of the equations of motion. Figure14 shows ηn versus
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tn for two different time step sizes. The maximum amplitudes of ηn differ by a factor
of 4 if step sizes h and h/2 are considered, h = 1.0 × 10−3. Therefore, we expect
second-order convergence for solution components ηn .

Finally, we study the constraint residuals for a practical implementation of inte-
grator (56). As before, the residuals in the holonomic constraints (15c) at the level
of position coordinates are very small. For the hidden constraints (16) at the level of
velocity coordinates, the residuals for integrator (56) are shown in Fig. 15. For the
heavy top benchmark, they are of size 2.0 × 10−9 for G = SO(3) × R

3 and of size
2.0 × 10−15 for G = SE(3).

In all these numerical tests for integrator (56), the extra effort for considering the
hidden constraints (16) helps to reduce systematically shortcomings like spurious
oscillations that were observed for the index-3 integrator (37) in Sect. 3.3.

3.5 Implementation Aspects

In each time step, the generalized-α method (37) defines the numerical solution
(qn+1, vn+1, v̇n+1, an+1,λn+1) implicitly by a mixed system of linear and nonlinear
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equations inG × R
k × R

k × R
k × R

m . Despite the nonlinear structure of the config-
uration space G, these equations may be solved numerically by a Newton–Raphson
iteration in a linear space expressing qn+1 ∈ G in terms of ˜�qn ∈ g.

For the practical implementation of this Lie algebra approach, the Newton–
Raphson method has to be combined with an appropriate scaling of equations and
unknowns to guarantee that the condition number of the iteration matrix is bounded
independently of h, see (Petzold and Lötstedt 1986) and the more recent discussion
in (Bottasso et al. 2007). Denoting the scaled residual in the equilibrium conditions
(15b) by

rh(q, v, v̇, hλ, t) := h
(

M(q)v̇ + g(q, v, t)
) + B�(q) · hλ ,

we may rewrite the corrector equations (37) in the scaled and condensed form

0 = �n,h(ξn+1) :=
(

rh
(

q(�qn), v(�qn), v̇(�qn), hλn+1, tn+1
)

1

h
�

(

q(�qn)
)

)

(57)

with ξn+1 := (

(�qn)
�, hλ�

n+1)
� ∈ R

k+m and

qn+1 = q(�qn) := qn ◦ exp(h˜�qn) , (58a)

vn+1 = v(�qn) := γ

β
�qn + (1 − γ

β
)vn + h(1 − γ

2β
)an , (58b)

v̇n+1 = v̇(�qn) := 1 − αm

β(1 − α f )

(�qn − vn
h

− 0.5an
) + an − α f v̇n

1 − α f
. (58c)

The Newton–Raphson iteration

ξ(k+1)
n+1 = ξ(k)

n+1 + �ξ(k)
n+1 with

∂�n,h

∂ξ
(ξ(k)

n+1)�ξ(k)
n+1 = −�n,h(ξ

(k)
n+1) (59)
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may be started, e.g., with the initial guess ξ(0)
n+1 = (

v�
n + 0.5ha�

n , hλ�
n )�, see also

(Brüls et al. 2012, Table1) for an alternative definition of ξ(0)
n+1 and for amore detailed

description of the full algorithm. The iteration matrix ∂�n,h/∂ξ has a 2 × 2-block
structure

∂�n,h

∂ξ
=

⎛

⎝

1 − αm

β(1 − α f )
M + h

γ

β
D + h2 K T B�

B T 0

⎞

⎠ (60)

with mass matrix M = M
(

q(�qn)
) ∈ R

k×k , damping matrix

D = ∂g
∂v

(

q(�qn), v(�qn), tn+1
) ∈ R

k×k ,

constraint matrixB = B
(

q(�qn)
) ∈ R

m×k and the tangent operatorT = T(h�qn) ∈
R

k×k that results from the derivative of the exponential map in (58a), see Corollary
2.7. The stiffness matrix K = K(q, v, v̇,λ, t) ∈ R

k×k represents the partial deriva-
tives of the equilibrium equations (15b) w.r.t. q ∈ G in the sense that

Dq
(

M(q)v̇ + g(q, v, t) + B�(q)λ
) · (

DLq(e) · w̃
) = K(q, v, v̇,λ, t) w

for all w ∈ R
k . It is evaluated at q = q(�qn), v = v(�qn), v̇ = v̇(�qn), λ = λn+1

and t = tn+1.
The algorithmic parametersαm ,α f and β in (37) satisfyαm �= 1,α f �= 1 andβ �=

0 since otherwise qn+1 would be independent of v̇n+1 (and therefore also independent
of the equilibrium equations (37e) at t = tn+1). Hence, the iterationmatrix ∂�n,h/∂ξ
in (60) is non-singular for sufficiently small time step sizes h if the mass matrixM(q)

is symmetric, positive definite and the constraint matrix B(q) has full rank (note, that
T(h�qn) = Ik + O(h)).

For sufficiently small time step sizes h > 0, the convergence of the Newton–
Raphson iteration (59) may always be guaranteed under reasonable assumptions on
qn , vn:

Lemma 3.3 Ifαm �= 1,α f �= 1, β �= 0 and the numerical solution satisfies at t = tn
the (hidden) constraints with residuals ‖�(qn)‖ ≤ γ0h and ‖B(qn)vn‖ ≤ γ0 and a
sufficiently small constant γ0 > 0 then the generalized-α method (37) is well defined
since the Newton–Raphson iteration (59) with initial guess ξ(0)

n+1 = ( v�
n , 0�)� +

O(h) converges for all sufficiently small time step sizes h > 0 to a locally uniquely
defined solution of (57) with ξn+1 = ξ(0)

n+1 + O(h) + O(γ0).

Proof The assumptions on �(qn), B(qn)vn and ξ(0)
n+1 are sufficient to prove

�n,h(ξ
(0)
n+1) = O(h) + O(γ0) since rh = O(h)bydefinition andq(�q(0)

n ) = q(vn) +
O(h) = qn ◦ exp(hṽn) + O(h) resulting in
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1

h
‖�(

q(�q(0)
n )

)‖ = 1

h
‖�(qn) + h

d

dh
�

(

qn ◦ exp(hṽn)
) + O(h2)‖

≤ 1

h
‖�(qn)‖ + ‖B

(

qn ◦ exp(hṽn)
)

vn‖ + O(h)

= O(h) + O(γ0) ,

see (32). Therefore, the convergence of the Newton–Raphson iteration to a locally
uniquely defined solution ξn+1 = ξ(0)

n+1 + O(h) + O(γ0) of (57) is guaranteed when-
ever the constant γ0 > 0 and the time step size h > 0 are sufficiently small (Kelley
1995). �

The corrector equations (56) of the Lie group integrator for the stabilized index-2
formulation (55) may be condensed as well replacing the left equations in (58b, 58c)
by

vn+1 = v
(

�qn + B�(qn)ηn

)

, v̇n+1 = v̇
(

�qn + B�(qn)ηn

)

.

The resulting scaled system of nonlinear equations is given by

0 = �n,h(ξn+1) :=
⎛

⎜

⎝

�h(�qn, hλn+1,ηn)
1

h
�

(

q(�qn)
)

B
(

q(�qn)
)

v
(

�qn + B�(qn)ηn

)

⎞

⎟

⎠
(61)

with ξn+1 := (

(�qn)
�, hλ�

n+1, η�
n )� ∈ R

k+2m and

�h(�qn, hλn+1,ηn) :=
rh

(

q(�qn), v
(

�qn + B�(qn)ηn

)

, v̇
(

�qn + B�(qn)ηn

)

, hλn+1, tn+1
)

.

The scaling of equations and unknowns guarantees again that the condition number
of the iteration matrix ∂�n,h/∂ξ is bounded for h → 0. This iteration matrix has the
3 × 3-block structure

∂�n,h

∂ξ
=

⎛

⎜

⎝

M∗ + h2 K T B� M∗ B�(qn)
B T 0 0

γ

β
B + hZ 0

γ

β
BB�(qn)

⎞

⎟

⎠
(62)

with

M∗ := 1 − αm

β(1 − α f )
M + h

γ

β
D

and a matrix Z ∈ R
k×k that represents

(

∂/∂(�qn)
)

B
(

q(�qn)
)

v in the sense that

Zw = Z
(

q(�qn)
)(

v
(

�qn + B�(qn)ηn

)

, T(h�qn)w
)

, ( w ∈ R
k ) ,
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see (17). Using the formal decomposition

∂�n,h

∂ξ
=

⎛

⎜

⎝

Ik 0 M∗ B�(qn)
0 Im 0

0
γ

β
Im

γ

β
BB�(qn)

⎞

⎟

⎠

⎛

⎝

M∗ + O(h) B� 0
B T 0 0
O(h) 0 Im

⎞

⎠ ,

see (62), wemay verify that the iterationmatrix is non-singular if h > 0 is sufficiently
small. With the additional assumptions γ �= 0 and η(0)

n = O(h), Lemma 3.3 applies
also to the Lie group integrator (56) for the stabilized index-2 formulation. The
method is well defined and the corresponding condensed system (61) may be solved
by the Newton–Raphson method (59).

In the practical implementation of implicit ODE/DAE time integration methods,
the Jacobian (∂�n,h/∂ξ)(ξ(k)

n+1) in the Newton–Raphson step (59) is substituted by
an approximation that is kept constant during integration as long as possible, see,
e.g., (Brenan et al. 1996, Sect. 5.2.2). In (Brüls et al. 2011), the influence of different
Lie group formulations on the number of Jacobian updates was studied by numerical
tests for the Lie group integrator (37). A very small number of Jacobian evaluations
were observed for equations of motion like (22) that are characterized by a constant
mass matrix M and a constant constraint Jacobian B, see also Lemma 3.5 below.

If the generalized-α integrators (37) and (56) are applied to non-stiff systems
and the time step size h is sufficiently small, then we may neglect in (60) and (62)
the terms hγD/β, h2KT and hZ. For the numerical tests in Sects. 3.3 and 3.4, this
simplified Newton–Raphson method was combined with a damping strategy based
on Armijo line search, see (Kelley 1995). Convergence problems in the corrector
iteration were observed for just one simulation scenario (integrator (37) for the heavy
top benchmark,G = SO(3) × R

3, h = 4.0 × 10−3, see the left plots of Figs. 6 and 8).
Here, we had to take into account a difference approximation of the term hγD/β +
h2KT in (60).

3.6 Constraint Residuals

Both generalized-α integrators (37) and (56) satisfy by construction the holonomic
constraints (15c) at the level of position coordinates: �(qn) = 0, ( n > 0 ). For the
stabilized index-2 integrator (56), the hidden constraints (16) at velocity level are sat-
isfied as well:B(qn)vn = 0, ( n > 0 ), see (56g). For the index-3 integrator (37), these
residuals B(qn)vn remain in general in the size of global discretization errors since
B(q(t))v(t) ≡ 0. For some problem classes, the constraint residuals B(qn)vn vanish,
however, also for the index-3 integrator (37). Therefore, both integrators (37) and
(56) define in that case one and the same numerical solution (qn, vn, v̇n, an,λn)with
auxiliary variables ηn = 0, ( n ≥ 0 ). In a practical implementation, the numerical
solutions will coincide up to round-off errors and errors that are caused by stopping
the Newton–Raphson iteration after a finite number of iteration steps.
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In the present section,we show that the numerical solution of the index-3 integrator
(37) will always satisfy the hidden constraints (16) at the level of velocity coordinates
if the constraint Jacobian B is constant (Lemma 3.4). In Lemma 3.5, this result is
extended to a special problem class in SE(3) with B(q) = const on the constraint
manifold M = { q ∈ G : �(q) = 0 }. This analysis gives the formal proof for the
numerical test results in the right plot of Fig. 10 that were obtained for the heavy top
benchmark in configuration space G = SE(3).

Improved error estimates for certain configuration spaces are a topic of active cur-
rent research on Lie group time integration methods, see also the recently published
results of Müller and Terze (2014a, b).

Lemma 3.4 Consider equations of motion (15) with constant constraint Jacobian
B in the hidden constraints (16) at velocity level.

(a) For this problem class, the curvature term Z(q)
(

v, v
)

in the hidden constraints
(18) at acceleration level vanishes identically.

(b) If B = const and the starting values q0, v0, a0 are consistent ( 0 = �(q0) =
Bv0 = Ba0 ) then the numerical solution (qn, vn, v̇n, an,λn) of the generalized-
α method (37) satisfies for all n ≥ 0 both the holonomic constraints (15c) at
position level and the hidden constraints (16) at velocity level:�(qn)= Bvn = 0.

Proof (a) The time derivative of hidden constraints (16) with B = const is given
by 0 = Bv̇(t). Comparing this expression with the hidden constraints (18), we get
Z(q)

(

v, v
) = 0.

(b) Because of �(q0) = 0 and (37f), the numerical solution qn satisfies the holo-
nomic constraints (15c) for all n ≥ 0. To prove Bvn = Ban = 0 by induction, we
observe that �(qn+1) = �(qn) = 0 and qn+1 = qn ◦ exp(h˜�qn), see (37a), imply
�(1) = �(0) = 0 for the continuously differentiable function � : [0, 1] → R

m ,
ϑ �→ �

(

qn ◦ exp(ϑh˜�qn)
)

. Therefore,

0 = �(1) − �(0)

h
= 1

h

∫ 1

0

d�

dϑ

(

qn ◦ exp(ϑh˜�qn)
)

dϑ

=
∫ 1

0
B

(

qn ◦ exp(ϑh˜�qn)
)

�qn dϑ , (63)

see (14) and (32). IfB = const, then the integrand in (63) is constant as well resulting
inB�qn = 0.WegetBan+1 = 0 (ifBvn = Ban = 0) from leftmultiplicationof (37b)
by matrix B and obtain finally Bvn+1 = 0 multiplying also the velocity update (37c)
from the left by the (constant) constraint Jacobian B. �



128 M. Arnold et al.

Lemma 3.5 Consider a rigid body with configuration space SE(3) and holonomic
constraints (15c) of the form

0 = �(q) = �
(

(R, x)SE(3)
) = X − R�x (64)

with a constant vector X ∈ R
3.

(a) Along any solution q(t) of the constrained equations of motion (15) matrix
B

(

q(t)
)

is constant and the curvature term Z
(

q(t)
)(

v(t), v(t)
)

vanishes identi-
cally.

(b) If the generalized-α method (37) is applied with consistent starting values ( 0 =
�(q0) = B(q0)v0 = B(q0)a0) and with sufficiently small time step size h > 0
to equations of motion (15) in SE(3) with holonomic constraints (64) then the
numerical solution satisfies both the holonomic constraints at position level and
the hidden constraints at velocity level: �(qn) = B(qn)vn = 0, ( n ≥ 0 ).

Proof (a) Straightforward differentiation of constraint (64) shows

0 = d

dt
�(q(t)) = −Ṙ�x − R�ẋ = −(R˜�)�x − R�RU

= −˜�
�

R�x − U = ˜�R�x − U = − R̃�x � − U = B(q)v

with q = (R, x)SE(3) ∈ SE(3) and v = (��, U�)� ∈ R
6. On the constraint man-

ifold, we have R�x = X, see (64), and the constraint Jacobian B(q) is constant:
B

(

(R, x)SE(3)
) = BX := ( −˜X − I3 ). Therefore, the hidden constraints (16) and

(18) are given by BXv(t) = 0 and BXv̇(t) = 0 with Z
(

q(t)
)(

v(t), v(t)
) ≡ 0 along

any solution
(

q(t), v(t)
)

.
(b) This part of the proof is substantially more technical than the corresponding

proof of Lemma 3.4(b) since B(q) is not constant beyond the constraint manifold
M and there is no straightforward way to prove that in (63) the argument qn ◦
exp(ϑh˜�qn) of B will remain inM for ϑ ∈ (0, 1).

In SE(3), the position update formula qn+1 = qn ◦ exp(h˜�qn) gets the form

Rn+1 = Rn expSO(3)(h˜�Rn) , xn+1 = xn + hRnT�
SO(3)(h�Rn)�xn

with �qn = (�R�
n , �x�

n )�, see Example 2.1(a). Because of �(q0) = 0 and
�(qn+1) = 0, ( n ≥ 0 ), see (37f), we get R�

n xn − R�
n+1xn+1 = X − X = 0, see (64),

and
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0 = expSO(3)(h˜�Rn)
R�

n xn − R�
n+1xn+1

h

=
expSO(3)(h˜�Rn)R�

n xn − R�
n

(

xn + hRnT�
SO(3)(h�Rn)�xn

)

h

= expSO(3)(h˜�Rn) − I3
h

R�
n xn − T�

SO(3)(h�Rn)�xn (65)

with

expSO(3)(h˜�Rn) − I3 =
∞

∑

i=1

1

i !
(

h˜�Rn
)i = h

∞
∑

i=0

1

(i + 1)!
(

h˜�Rn
)i

˜�Rn

= h
∞

∑

i=0

(−1)i

(i + 1)!
(−h˜�Rn

)i
˜�Rn .

In SO(3), the ˜(•) operator maps �Rn ∈ R
3 to the skew symmetric matrix ˜�Rn , see

(2), and we have ̂�Rn = ˜�Rn , see Remark 2.8(b). Therefore, −˜�Rn = (˜�Rn)
� =

(̂�Rn)
� and the series expansion (30) proves

expSO(3)(h˜�Rn) − I3 = h
(

TSO(3)(h�Rn)
)�

˜�Rn .

Inserting this expression in (65), we get

0 = T�
SO(3)(h�Rn)

(

˜�Rn(R�
n xn) − �xn

)

and therefore also

0 = ˜�Rn(R�
n xn) − �xn = −R̃�

n xn �Rn − �xn = B(qn)�qn

since the tangent operatorTSO(3)(h�Rn) = I3 + O(h) is non-singular for sufficiently
small time step sizes h > 0. Now, the proof may be completed following line by line
the proof of Lemma 3.4(b) since qn ∈ M by construction and B(q) is constant on
the constraint manifold, i.e., B(qn) = BX = const. �

4 Convergence Analysis

The convergence of generalized-α time integration methods for nonlinear uncon-
strained systems in linear configuration spaces was studied by Erlicher et al. (2002)
using an equivalent multi-step representation. In the DAE Lie group case, this analy-
sis has to be extended to constrained systems in nonlinear configuration spaces with
Lie group structure, see (Brüls et al. 2012). In the present section, we follow the direct
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convergence analysis for the generalized-α method in one-step form (37) that was
developed in (Arnold et al. 2015) to study the convergence in long-term integration
as well as in the transient phase in full detail.

4.1 Local Truncation Errors, Global Errors
and Error Recursion

For unconstrained systems in linear spaces, the local truncation errors were intro-
duced in (39), see Sect. 3.2 above. Since there are no discretization errors in the
holonomic constraints (15c), see (37f), these definitions may be used as well in the
constrained case.

For configuration spaces with Lie group structure, the definition of the local trun-
cation error lq

n in (39a) has to be adapted to the Lie group setting. In the Lie algebra
approach to error analysis of Lie group time integration methods, we follow the
proposal of Wensch (2001) to define local and global errors by elements of the
corresponding Lie algebra, see also (Orel 2010):

Definition 4.1 For the solution components q ∈ G, the local truncation error˜lqn ∈ g
of the generalized-α Lie group method (37) is defined by

q(tn+1) = q(tn) ◦ exp(h˜�q(tn)) ◦ exp(˜lqn) (66)

with �q(tn) := v(tn) + (0.5 − β)hv̇(tn + �αh) + βhv̇(tn+1 + �αh).

To get an error estimate for˜lqn , we compare the asymptotic behaviour of q(tn+1) =
q(tn + h) and q(tn) ◦ exp(h˜�q(tn)) for h → 0. For any smooth function v(t),
the flow of q̇(t) = DLq(e) · ṽ(t) is locally represented by a smooth function
ν̃ : [−h0, h0] × R × G → g:

q(t + h) = q(t) ◦ exp
(

hν̃(h; t, q(t))
)

. (67)

The asymptotic behaviour of hν̃ is characterized by the Magnus expansion

hν̃(h; t, q(t)) = hṽ(t) + h2

2
˜v̇(t) + h3

6
˜v̈(t) + h3

12
[̃v(t),˜v̇(t)] + O(h4) , (68)

see (Hairer et al. 2006) and (Müller 2010). The matrix commutator [̃v,˜v̇] vanishes
identically in linear spaces, see Sect. 2.5. In the Lie group setting, it introduces an
additional local error term if the arguments ṽ(t) and˜v̇(t) do not commute, see Lemma
4.2 below.

Inserting (67) with t = tn into the (implicit) definition of˜lqn , see (66), we get
q(tn) ◦ exp

(

hν̃(h; tn, q(tn))
) = q(tn) ◦ exp(h˜�q(tn)) ◦ exp(˜lqn). Therefore, the term

exp(˜lqn) may be expressed as product of matrix exponentials:
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exp(˜lqn) = exp(−h˜�q(tn)) ◦ exp
(

hν̃(h; tn, q(tn))
)

.

In (Arnold et al. 2015, Lemma 1), we used the Baker–Campbell–Hausdorff formula
to show that˜lqn and h

(

ν̃(h; tn, q(tn)) − ˜�q(tn)
)

coincide up to higher order terms, see
also Lemma 2.5. Comparing the Magnus expansion (68) with the Taylor expansion
of ˜�q(tn), we get

Lemma 4.2 With �α := αm − α f and Cq := (1 − 6β − 3�α)/6, the local trunca-
tion error˜lqn is given by

˜lqn = Cqh
3̃v̈(tn) + h3[̃v(tn),˜v̇(tn)]/12 + O(h4) . (69)

If the parameters γ, αm, α f satisfy the order condition (41) then the local truncation
errors are bounded by

‖lqn‖ = O(h3) , ‖lqn+1 − lqn‖ = O(h4) , ‖lv
n‖ = O(h3) , ‖la

n‖ = O(h2) . (70)

The linear relations between vn , an and v̇n in (37) result in linear relations for the
corresponding global errors. Here and in the following we will always assume that
the algorithmic parameters γ, αm and α f satisfy the order condition (41) and the
local truncation errors are bounded by (70).

Lemma 4.3 Consider global errors ea
n with v̇(tn + �αh) = an + ea

n and use
(•)(tn) = (•)n + e(•)

n to define e(•)
n for all remaining solution components being ele-

ments of linear spaces. The order condition (41) implies

ev
n+1 = ev

n + (1 − γ)hea
n + γhea

n+1 + O(h3) , (71a)

(1 − αm)ea
n+1 + αmea

n = (1 − α f )ev̇
n+1 + α f ev̇

n + O(h2) . (71b)

For linear configuration spacesG, the global error inq is givenbyq(tn) = qn + eq
n .

In the nonlinear case, we take into account the Lie group structure of the configuration
space G and consider global errors ẽqn being elements of the corresponding Lie
algebra g:

q(tn) = qn ◦ exp(̃eqn) . (72)

This definition is compatible with the classical definition of eq
n ∈ R

k if the configu-
ration space G is linear.

The position update (37a) and the definition (66) of the local error˜lqn yield a global
error recursion for ẽqn in terms of matrix exponentials:

exp(̃eqn+1) = (qn+1)
−1 ◦ q(tn+1)

= exp(−h˜�qn) ◦ (qn)
−1 ◦ q(tn)

︸ ︷︷ ︸

= exp(̃eqn)

◦ exp(h˜�q(tn)) ◦ exp(˜lqn) .
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This product of matrix exponentials may be studied by repeated application of
the Baker–Campbell–Hausdorff formula using Lemma 2.5. Omitting all technical
details, we get

Lemma 4.4 (Arnold et al. 2015, Lemma 2) The global errors eqn satisfy

eqn+1 = eqn + h�heqn (73)

with

�h ẽqn = ẽv
n + (0.5 − β)h̃ea

n + βh̃ea
n+1+[̃eqn , ṽ(tn)] + 1

h
˜lqn+

+ O(h)(εn + h‖ea
n+1‖) (74)

and the notation
εn := ‖eqn‖ + ‖ev

n‖ + h‖ea
n‖ + h‖eλ

n ‖ (75)

that is used to summarize higher order error terms in compact form. In particular,
Eqs. (73) and (74) and the local error estimate (69) imply

eqn+1 = eqn + O(h)(εn + εn+1) + O(h3) , (76a)

‖�heqn‖ ≤ O(1)(εn + εn+1) + O(h2) . (76b)

Error estimates like the ones in Lemma 4.4 are valid if the numerical solution
remains in a small neighbourhood of the analytical one. More precisely, we suppose
that there are positive constants h0 and C and a sufficiently small constant γ0 > 0
such that

‖eqr ‖ ≤ Ch , ‖ev
r ‖ + ‖ea

r ‖ + ‖eλ
r ‖ ≤ γ0 (77)

is satisfied for all h ∈ (0, h0] and all r with t0 + rh ∈ [t0, tend]. This technical assump-
tion may be verified using the results of the convergence analysis in Sect. 4.3 below,
see (Hairer and Wanner 1996, Theorem VII.3.5) and the slightly more detailed dis-
cussion in (Arnold et al. 2015, Sect. 3.1).

Linearizing the equilibrium conditions (37e), we may estimate ev̇
n in terms of εn

and eλ
n :

Lemma 4.5 (Arnold et al. 2015, Lemma 3) If the order condition (41) is satisfied
then

ev̇
n + eM−1B�λ

n = O(1)εn , ‖ev̇
n‖ = O(1)(εn + ‖eλ

n ‖) , (78a)

ev̇
n+1 + eM−1B�λ

n+1 = O(1)εn + O(h)(‖ea
n+1‖ + ‖eλ

n+1‖) + O(h3) . (78b)

Here we used the notation e(C •)
n := C(q(tn), v(tn),λ(tn), tn)e(•)

n for matrix-valued
functions C = C(q, v,λ, t).
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Inserting (78) into the error estimate (71b), we get a coupled error recursion

(1 − αm)ea
n+1 + αmea

n + (1 − α f )eM−1B�λ
n+1 + α f eM−1B�λ

n =
= O(1)(εn + εn+1) + O(h2) (79)

that has to be studied separately in tangential and normal direction of the constraint
manifold M := { q ∈ G : �(q) = 0 } to get optimal error bounds, see (Hairer and
Wanner 1996). The error component in tangential direction is obtained by multipli-
cation with a matrix P(q) that projects into the tangential space TqM = ker B(q).
Such a projector P(q) is given by

P(q) := I − [M−1B�S−1B](q) with S(q) := [BM−1B�](q) (80)

since PP = P and BP = B − BM−1B�S−1B = B − SS−1B = 0. Taking into account
that this projector satisfies PM−1B� ≡ 0, we get an optimal error recursion in tan-
gential direction by left multiplication of (79) with matrix P

(

q(tn+1)
)

. The error
propagation in normal direction to the constrained manifold may be characterized
multiplying (79) by B

(

q(tn+1)
)

:

Lemma 4.6 (Arnold et al. 2015, Lemma 5) The errors ea
n, eλ

n satisfy

(1 − αm)ePa
n+1 + αmePa

n = O(1)(εn + εn+1) + O(h2) , (81)

(1 − αm)eBa
n+1 + αmeBa

n + (1 − α f )eSλ
n+1 + α f eSλ

n =
= O(1)(εn + εn+1) + O(h2) (82)

and ‖ea
n‖ ≤ ‖ePa

n ‖ + ‖M−1B�S−1‖‖eBa
n ‖ ≤ O(1)(‖ePa

n ‖ + ‖eBa
n ‖).

Estimate (81) defines a one-step recursion for the tangential error component ePa
n

in terms of εn , εn+1 and local errors O(h2).
The most crucial part of the convergence analysis are recursive estimates for the

error component eBa
n in normal direction to the constrained manifold. Similar to the

discussion in Sect. 3.2, we may scale the error recursion (71a) by the factor 1/h to get

(1 − γ)eBa
n + γeBa

n+1 = eBv
n+1 − eBv

n

h
+ O(1)εn + O(h2) . (83)

The scaled error term eBv
n /h in the right-hand side of (83) is studied considering

error estimate (74) and its equivalent in R
k . We get

1

h

(

eBv
n + 1

h
B

(

q(tn)
)

lqn
)

= rB
n − rh(tn, eqn ) + O(1)εn + O(h)‖ea

n+1‖ (84)
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with the vector

rB
n := 1

h

(

B
(

q(tn)
)

�heqn + Z(q(tn))
(

eqn , v(tn)
)

)

−
−B

(

q(tn)
)(

(0.5 − β)ea
n − βea

n+1

)

(85)

and a vector-valued function

rh(tn, eqn) := 1

h

(

Z(q(tn))
(

eqn , v(tn)
) + êqnv(tn)

)

(86)

that is linear in eqn . Here, the term êqnv(tn) ∈ R
k represents the matrix commutator

[̃eqn , ṽ(tn)] ∈ g, see (29). By purpose, the notation rB
n in (84) adopts the notation rn

that was introduced in (48) to denote a scaled linear combination of global errors
in v and local errors in q for proving second-order convergence for the linear test
equation, see Sect. 3.2.

The definitions of rB
n and rh(tn, eqn) contain a term Z(q(tn))

(

eqn , v(tn)
)

/h with the
bilinear form Z(q) that is known from the hidden constraints (18) at the level of
acceleration coordinates. A time discrete approximation of these hidden constraints
shows that thefirst term in the right-hand side of (85) is of sizeO(1)(‖eqn‖ + ‖�heqn‖),
see (88):

Lemma 4.7 (Arnold et al. 2015, Lemma 4) The global errors eqn ∈ R
k satisfy

B
(

q(tn)
)

eqn = O(h)‖eqn‖ , (87)

B
(

q(tn)
)

�heqn + Z
(

q(tn)
)(

eqn , v(tn)
) = O(h)(‖eqn‖ + ‖�heqn‖) . (88)

Proof Taking into account that �(q(tn)) = �(qn) = 0, we consider �(qn,ϑ) for
qn,ϑ := q(tn) ◦ exp(−ϑ̃eqn) ∈ G, (ϑ ∈ [0, 1] ), and get

0 = −(

�(qn) − �(q(tn))
) = −(

�(qn,1) − �(qn,0)
) =

∫ 1

0
B(qn,ϑ)eqn dϑ (89)

since B(qn,ϑ)e
q
n = −(d/dϑ)�(qn,ϑ), see (14). Assertion (87) follows from (89)

because B(qn,ϑ) = B
(

q(tn)
) + O(h), see (77).

The proof of (88) is technically much more complicated and starts with the obser-
vation that

0 =
∫ 1

0

B(qn+1,ϑ)e
q
n+1 − B(qn,ϑ)e

q
n

h
dϑ ,

see (89). The integrand may be split into terms B(qn+1,ϑ)(e
q
n+1 − eqn)/h and

(

B(qn+1,ϑ)e
q
n − B(qn,ϑ)e

q
n
)

/h that yield in (88) the termsB
(

q(tn)
)

�heqn andZ
(

q(tn)
)

(

eqn , v(tn)
)

, respectively. For the detailed proof, we refer to (Arnold et al. 2015). �
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Lemma 4.8 (Arnold et al. 2015, Lemma 6) Ifαm �= 1,α f �= 1, β �= 0 and the order
condition (41) is satisfied then

rB
n + (0.5 − β)eBa

n + βeBa
n+1 = O(1)(εn + εn+1) + O(h2) , (90)

(1 − γ)eBa
n + γeBa

n+1 = rB
n+1 − rB

n + O(1)(εn + εn+1) + O(h2) . (91)

Proof (a) Inserting error estimate (88) in (85), we get

rB
n + (0.5 − β)eBa

n + βeBa
n+1 = O(1)(‖eqn‖ + ‖�heqn‖ + h‖ea

n+1‖) ,

and (90) follows from (76b).
(b) With the assumptions on the algorithmic parameters αm , α f , β and γ, we

may substitute in (84) the termO(h)‖ea
n+1‖ by its upper boundO(1)εn + O(h2), see

(Arnold et al. 2015, Corollary 1a). In this modified form, estimate (84) implies

eBv
n+1 − eBv

n

h
= rB

n+1 − rB
n + O(1)(εn + εn+1) + O(h2) (92)

since‖lqn+1 − lqn‖ = O(h4), seeLemma4.2, and rh(tn, eqn ) = (. . .)/h varies smoothly
in n in the sense that

rh(tn+1, eqn+1) − rh(tn, eqn)

= (

rh(tn+1, eqn+1) − rh(tn+1, eqn )
) + (

rh(tn+1, eqn ) − rh(tn, eqn )
)

= hrh(tn+1,�heqn) + hṙh(tn + ϑh, eqn) = O(1)‖�heqn‖ + O(1)‖eqn‖

with some ϑ ∈ (0, 1), see also the more detailed discussion in (Arnold et al. 2015,
Lemma 6). Inserting (92) into (83), we get estimate (91). �

Finally, a one-step error recursion for the generalized-α Lie group integrator (37)
may be formulated in terms of rB

n and the vector-valued global errors eqn , ev
n , ePa

n , eBa
n ,

eSλ
n combining (71a), (76a), (81), (82), (90) and (91) to

‖Ey
n+1 − TyEy

n‖ ≤ O(h)(εn + εn+1 + ‖Ez
n‖ + ‖Ez

n+1‖) + O(h3) , (93a)

‖Ez
n+1 − TzEz

n‖ ≤ O(1)(εn + εn+1) + O(h2) (93b)

with

Ey
n :=

(

eqn
ev
n

)

, Ez
n :=

(

ePa
n

Er
n

)

, Er
n :=

⎛

⎝

eSλ
n

rB
n

eBa
n

⎞

⎠ , (94)

Ty := I2k , Tz := blockdiag (− αm

1 − αm
)Ik, (T−1

+ T0 ⊗ Im) ) (95)



136 M. Arnold et al.

and

T+ :=
⎛

⎝

0 0 −β
0 1 −γ

1 − α f 0 1 − αm

⎞

⎠ , T0 :=
⎛

⎝

0 1 0.5 − β
0 1 1 − γ

−α f 0 −αm

⎞

⎠ .

The one-step error recursion (93) couples the convergence analysis for uncon-
strained systems (error components eqn , ev

n , ePa
n ) to error bounds for the Lagrange

multipliers and other algebraic variables (error components eλ
n , rB

n , eBa
n ). The latter

ones are closely related to the error analysis for the linear test equation q̈ + ω2q = 0
in the limit case hω → ∞, see Eqs. (46)–(48) in Sect. 3.2.

The error bounds (93) are the key to the convergence analysis of the DAE Lie
group integrator (37), see Sect. 4.2 and Theorem 4.18 below. In the following, we
will call this integrator the index-3 integrator since it results from the direct time
discretization of the original index-3 formulation (15) of the equations of motion.
With a slightly different definition of vectors Er

n and matrix Tz, error bounds (93)
may also be proved for the stabilized index-2 integrator (56) that is based on the
stabilized index-2 formulation (55) of the equations of motion. For this integrator,
the time discrete approximation of hidden constraints yields:

Lemma 4.9 (see Arnold et al. 2015, Theorem 2)

(a) The auxiliary variables ηn in (56b) are of size ‖ηn‖ = O(1)(εn + εn+1) +
O(h2). Therefore, error estimate (76a) applies as well to integrator (56).

(b) For integrator (56), the error bounds in (84) and (91) get the form

1

h
eBv
n = −r̄h(tn, eqn ) + O(1)(εn + εn+1) + O(h2) , (96)

(1 − γ)eBa
n + γeBa

n+1 = O(1)(εn + εn+1) + O(h2) (97)

with

r̄h(tn, eqn ) := 1

h
Z(q(tn))

(

v(tn), eqn
)

.

Proof We sketch the basic ideas of the proof and refer to the proof of (Arnold et al.
2015, Theorem 2) for a more detailed discussion.

(a) For the stabilized index-2 formulation, the scaled increment �heqn in (73) and
(88) has to be substituted by �heqn + B�(qn)ηn , see (56b). In this modified form,
estimate (88) yields

B
(

q(tn)
)

B�(qn)ηn = O(1)(‖eqn‖ + ‖�heqn‖) (98)

with a right-hand side that is of sizeO(1)(εn + εn+1) + O(h2), see (76b). The asser-
tion may be proved solving (98) w.r.t. ηn since the full rank assumption on B(q)

implies that B
(

q(tn)
)

B�(qn) = [BB�](qn) + O(h) is non-singular. Using this upper
bound for ‖ηn‖, we get error estimate (76a) from eqn+1 = eqn + h(�heqn + B�(qn)ηn).
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(b) For the stabilized index-2 formulation, analytical and numerical solution sat-
isfy the hidden constraints (16) resulting in

0 = B
(

q(tn)
)

v(tn) − B(qn)vn
h

= 1

h
B(qn)ev

n + B
(

q(tn)
) − B(qn)

h
v(tn) (99)

with B(qn)ev
n = eBv

n + O(h)εn . For the analysis of the second term in the right-hand
side of (99), we use ideas of the proof of Lemma 4.7 and take into account that

(

B
(

q(tn)
) − B(qn)

)

v(tn) = −(

B(qn,1) − B(qn,0)
)

v(tn)

with qn,ϑ := q(tn) ◦ exp(−ϑ̃eqn). Because of

− d

dϑ

(

B(qn,ϑ)v(tn)
) = Z(qn,ϑ)

(

v(tn), eqn) = hr̄h(tn, eqn ) + O(h2)εn ,

we get r̄h(tn, eqn) = (

B
(

q(tn)
) − B(qn)

)

v(tn)/h + O(h)εn and estimate (96) is seen
to be a consequence of (99). With (96), the one-step recursion (97) for error vectors
eBa
n may be proved as in Lemma 4.8. �

Because of Lemma 4.9(b), there is no need to consider vectors rB
n in the global

error analysis of the stabilized index-2 integrator (56). Summarizing error estimates
(71a), (76a), (81), (82) and (97), we get the one-step error recursion (93) with

Ty := I2k , Tz := blockdiag (− αm

1 − αm
Ik, (T̄−1

+ T̄0 ⊗ Im) ) (100)

and

Er
n :=

(

eSλ
n

eBa
n

)

, T̄+ :=
(

0 −γ
1 − α f 1 − αm

)

, T̄0 :=
(

0 1 − γ
−α f −αm

)

.

4.2 Coupled Error Propagation in Differential
and Algebraic Solution Components

The classical convergence analysis of ODE one-step methods provides the basis
for investigating the coupled error propagation in differential and algebraic solution
components of DAE Lie group integrators. We start this section with a perturbation
analysis for ODE initial value problems (Theorem 4.10) and consider in Theorem
4.11 the corresponding convergence result for ODE one-stepmethods. Themain new
result of this section is the extension of this convergence analysis to the DAE case,
see Theorem 4.16.
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Theorem 4.10 (see Walter 1998) Consider the initial value problem

ẋ(t) = f(t, x(t)) , ( t ∈ [t0, tend] ) , x(t0) = x0 (101)

with a continuous right-hand side f that satisfies for all t ∈ [t0, tend] a Lipschitz
condition w.r.t. x with a Lipschitz constant L > 0. For functions x̂ ∈ C1[t0, tend] with

˙̂x(t) = f(t, x̂(t)) + δ(t) , ( t ∈ [t0, tend] ) , (102)

the influence of perturbations δ(t) may be estimated by

‖x̂(t) − x(t)‖ ≤ eL(t−t0)‖x̂(t0) − x(t0)‖ + eL(t−t0) − 1

L
max

s∈[t0,tend]
‖δ(s)‖ . (103)

Proof For t ∈ [t0, tend], we have

x̂(t) − x(t) = x̂(t0) − x(t0) +
∫ t

t0

( ˙̂x(s) − ẋ(s)
)

ds

= x̂(t0) − x(t0) +
∫ t

t0

(

f(s, x̂(s)) − f(s, x(s))
)

ds +
∫ t

t0

δ(s) ds .

Therefore, the triangle inequality and the Lipschitz condition on f imply

‖x̂(t) − x(t)‖ ≤ ψ(t) (104)

with the continuously differentiable function

ψ(t) := ‖x̂(t0) − x(t0)‖ + L
∫ t

t0

‖x̂(s) − x(s)‖ ds + (t − t0)�

and � := maxs∈[t0,tend] ‖δ(s)‖ . Note, that maxs ‖δ(s)‖ is well defined since x̂ ∈
C1[t0, tend] implies that δ is continuous on the compact interval [t0, tend].

Because of (104), the time derivative ofψ satisfies for all t ∈ [t0, tend] the estimate

ψ̇(t) = L‖x̂(t) − x(t)‖ + � ≤ Lψ(t) + � .

Hence, the derivative of σ(τ ) := eL(t−τ )ψ(τ ) is bounded by

σ′(τ ) = eL(t−τ )
(−Lψ(τ ) + ψ̇(τ )

) ≤ eL(t−τ ) �

and we get

σ(t) = σ(s) +
∫ t

s
σ′(τ ) dτ ≤ σ(s) +

∫ t

s
eL(t−τ ) dτ · �,
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i.e.,

ψ(t) ≤ eL(t−s)ψ(s) +
∫ t

s
eL(t−τ ) dτ · � (105)

for any s ∈ [t0, tend]. Error bound (105) with s = t0 proves (103) since

∫ t

t0

eL(t−τ ) dτ = eL(t−t0) − 1

L
(106)

and ψ(t0) = ‖x̂(t0) − x(t0)‖. �

For the numerical solution of ODE (101), we consider a one-step method that
updates the numerical solution in time step tn → tn+1 = tn + hn according to

xn+1 = xn + hn�n(tn, xn; f, hn) (107)

with a continuous increment function � that satisfies a Lipschitz condition w.r.t. xn
with a Lipschitz constant L� > 0, see, e.g., (Hairer et al. 1993). The time discretiza-
tion error in one single time step defines the local error

len := x(tn+1) − (

x(tn) + hn�(tn, x(tn); f, hn)
)

.

In the global error analysis, the accumulation of these local errors during time integra-
tion is studied by a discrete counterpart to the perturbation analysis for the continuous
problem (see Theorem 4.10).

Theorem 4.11 The global errors en := x(tn) − xn satisfy the error recursion

‖en+1 − en‖ ≤ L�hn‖en‖ + ‖len‖ (108)

that results in the global error estimate

‖en‖ ≤ eL�(tn−t0)‖e0‖ + eL�(tn−t0) − 1

L�

max
0≤l<n

1

hl
‖lel‖ . (109)

Proof (a) Using the definition of local and global errors, we get

en+1 − en = (

x(tn+1) − xn+1
) − (

x(tn) − xn
)

= x(tn+1) − (

x(tn) + hn�(tn, x(tn); f, hn)
)+

+ hn�(tn, x(tn); f, hn) − (

xn+1 − xn
)

= len + hn
(

�(tn, x(tn); f, hn) − �(tn, xn; f, hn)
)

.



140 M. Arnold et al.

Therefore, estimate (108) follows from the triangle inequality and from the Lipschitz
condition on �:

‖en+1 − en‖ ≤ ‖len‖ + hnL�‖x(tn) − xn‖ = L�hn‖en‖ + ‖len‖ .

(b) Estimate (108) with n being substituted by some r ∈ {0, 1, . . . , n} implies

‖er+1‖ ≤ ‖er‖ + L�hr‖er‖ + ‖ler‖ = (1 + L�hr )‖er‖ + ‖ler‖ (110)

with hr = tr+1 − tr . For a recursive application of this error estimate, we substitute
the coefficients of ‖er‖ and ‖ler‖ in the right-hand side of (110) by upper bounds
that are obtained from 1 + Lt ≤ eLt and

1 = tr+1 − tr
hr

= 1

hr

∫ tr+1

tr

dτ ≤ 1

hr

∫ tr+1

tr

eL�(tr+1−τ ) dτ

and get

‖er+1‖ ≤ eL�(tr+1−tr )‖er‖ +
∫ tr+1

tr

eL�(tr+1−τ ) dτ · 1

hr
‖ler‖ . (111)

(c) Estimate (111) is a special case of the more general expression

‖en‖ ≤ eL�(tn−tr )‖er‖ +
∫ tn

tr

eL�(tn−τ ) dτ · max
r≤l<n

1

hl
‖lel‖ , (112)

( r = 0, 1, . . . , n − 1 ), thatmay be considered as a time discrete counterpart to (105).
To prove the error bound (112) by induction, we observe that (111) is estimate (112)
with r = n − 1. For the induction step, we suppose that (112) is satisfied for r + 1:

‖en‖ ≤ eL�(tn−tr+1)‖er+1‖ +
∫ tn

tr+1

eL�(tn−τ ) dτ · max
r+1≤l<n

1

hl
‖lel‖ .

Inserting in this expression the upper bound (111) for ‖er+1‖, we get estimate (112)
since

eL�(tn−tr+1)eL�(tr+1−τ ) = eL�(tn−τ )

for any τ ∈ [tr , tr+1].
(d) To complete the proof, we use the identity (106) and see that (112) with r = 0

proves the global error bound (109). �

Abstracting from the specific setting in Theorem 4.11, we may consider more
general one-step error recursions and the resulting error bounds. For simplicity, we
restrict this analysis to constant time step sizes h. In that case, we may substitute the
term ‖ler‖ in (110) by hM with an appropriate constant M ≥ 0 and get a one-step
recursion
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un+1 ≤ (1 + Lh)un + hM , (113)

( n ≥ 0 ), that implies

un ≤ eL(tn−t0)u0 + eL(tn−t0) − 1

L
M (114)

with un := ‖en‖, L := L� > 0 and tn := t0 + nh, see (109). The convergence analy-
sis of Theorem 4.11 may be generalized straightforwardly to more complex error
recursions:

Lemma 4.12 Consider sequences (vn)n≥0, (wn)n≥0 of non-negative numbers that
satisfy

vn+1 ≤ (1 + Lh)vn + Lhκne0 + hM , (115a)

wn+1 ≤ (κ + Lh)wn + Lhκne0 + M (115b)

with a positive constant L and non-negative constants κ ∈ [0, 1), M and e0. All these
constants are supposed to be independent of h > 0 and n ≥ 0.

Using the notation tn := t0 + nh, we get for all n ≥ 0 the estimate

vn ≤ eL(tn−t0)
(

v0 + h
Le0
1 − κ

) + eL(tn−t0) − 1

L
M . (116a)

For the sequence (wn)n≥0, an estimate

wn ≤ (κ + Lh)nw0 + h
Le0
1 − κ

+ M

1 − (κ + Lh)
(116b)

may be shown for all n ≥ 0 and all h ∈ (0, h0] with h0 > 0 denoting a constant such
that κ + Lh0 < 1.

Proof Following part (b) of the proof of Theorem 4.11, we rewrite the one-step error
recursions (115) in a form that is appropriate for recursive application:

vr+1 ≤ eL(tr+1−tr )
(

vr + Lhκr e0
) +

∫ tr+1

tr

eL(tr+1−τ ) dτ · M ,

wr+1 ≤ (κ + Lh)wr + Lhκr e0 + M .

Then, the error bounds

vn ≤ eL(tn−tr )
(

vr + h
n−1
∑

l=r

κl · Le0
) +

∫ tn

tr

eL(tn−τ ) dτ · M , (117a)

wn ≤ (κ + Lh)n−rwr + h
n−1
∑

l=r

κl · Le0 +
n−1
∑

l=r

(κ + Lh)n−(l+1) · M , (117b)
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( r = 0, 1, . . . , n − 1 ), follow (similar to part (c) of the proof of Theorem 4.11) by
induction starting at r = n − 1. In the induction step, we have to take into account
that

eL(tn−tr )κr + eL(tn−tr+1)

n−1
∑

l=r+1

κl ≤ eL(tn−tr )
n−1
∑

l=r

κl .

and (κ + Lh)n−(r+1) < 1 for any h ∈ (0, h0]. Error bounds (117) with r = 0 prove
the lemma since κ ∈ [0, 1) and κ + Lh ∈ [0, 1) imply

n−1
∑

l=r

κl ≤
∞

∑

l=0

κl = 1

1 − κ
,

n−1
∑

l=r

(κ + Lh)n−(l+1) ≤ 1

1 − (κ + Lh)

and the integral term in (117a) may be evaluated in closed form, see (106). �

Lemma 4.13 Let (En)n≥0 be a sequence of vectors that satisfy

‖En+1 − TEn‖ ≤ L0(h‖En‖ + h‖En+1‖) + hM0 (118)

with a matrix T and positive constants L0, M0 that are independent of h > 0 and
n ≥ 0. If there is a norm ‖.‖
 such that κ
 := ‖T‖
 ≤ 1 then (118) implies for time
step sizes h ∈ (0, h0] a one-step recursion

‖En+1 − Tn+1E0‖
 ≤ (κ
 + L̃0h)‖En − TnE0‖
 + L̃0hκn

‖E0‖
 + hM̃0 (119)

and error bounds

‖En‖ ≤ ‖TnE0‖ + C0‖En − TnE0‖
 , (120a)

‖En‖ ≤ C0(‖E0‖
 + ‖En − TnE0‖
) (120b)

with appropriate constants h0, L̃0, M̃0 and C0 that are supposed to be positive. They
depend on the norm ‖.‖ and on the constants L0, M0 in (118).

Proof (a) Since all norms in a finite-dimensional vector space are equivalent, there
are positive constants c, c with

c‖E‖
 ≤ ‖E‖ ≤ c‖E‖
 (121)

for any vector E. Therefore, estimate (118) implies

‖En+1 − TEn‖
 ≤ L̂0(h‖En‖
 + h‖En+1‖
) + hM̂0 (122)

with L̂0 := cL0/c, M̂0 := M0/c.
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(b) For the proof of estimate (119), we use the triangle inequality and get

‖En+1 − Tn+1E0‖
 ≤ ‖En+1 − TEn‖
 + ‖T(En − TnE0)‖
 .

The term ‖T(En − TnE0)‖
 is bounded by κ
‖En − TnE0‖
 with κ
 = ‖T‖
 ≤ 1.
We obtain

‖En+1 − Tn+1E0‖
 ≤ κ
‖En − TnE0‖
 + ‖En+1 − TEn‖


and may substitute ‖En+1 − TEn‖
 by the upper bound (122) taking into account
that

‖En‖
 ≤ ‖En − TnE0‖
 + ‖T‖n
 ‖E0‖ = ‖En − TnE0‖
 + κn

‖E0‖
 .

The resulting inequality

(1 − L̂0h)‖En+1 − Tn+1E0‖


≤ (κ
 + L̂0h)‖En − TnE0‖
 + 2L̂0hκn

‖E0‖
 + hM̂0

is multiplied by 1/(1 − L̂0h) to get an upper bound for ‖En+1 − Tn+1E0‖
. If we
suppose that h ∈ (0, h0] with h0 := 1/(2L̂0) then 1 − L̂0h ≥ 1/2 and we may use
the inequalities (κ
 + x)/(1 − x) ≤ κ
 + 4x and 1/(1 − x) ≤ 2 that are valid for all
x ∈ [0, 1/2]. To complete the proof of (119), we set L̃0 := 4L̂0 and M̃0 := 2M̂0.

(c) Because of ‖En‖ ≤ ‖TnE0‖ + ‖En − TnE0‖, error bound (120a)withC0 := c
follows from the equivalence of norms ‖.‖ and ‖.‖
, see (121). With this def-
inition of C0, we have furthermore ‖En‖ ≤ C0‖En‖
 and (120b) results from
‖En‖
 ≤ ‖TnE0‖
 + ‖En − TnE0‖
 with ‖Tn‖
 ≤ κn


 ≤ 1. �

Corollary 4.14 If the assumptions of Lemma 4.13 are satisfied with κ
 = ‖T‖
 = 1
then estimates (119) and (120b) imply

‖En‖ ≤ C̃0
(

eL̃0(tn−t0)‖E0‖ + eL̃0(tn−t0) − 1

L̃0

M̃0
)

(123)

with tn := t0 + nh, ( n ≥ 0 ), and a constant C̃0 > 0 that depends on C0 and the norm
‖.‖.
Proof Forκ
 = 1, estimate (119) gets the form (113)with the notations un := ‖En −
TnE0‖
, L := L̃0 and M := L̃0‖E0‖
 + M̃0. Inserting these expressions in error
bound (114), we get

‖En − TnE0‖
 ≤ (eL̃0(tn−t0) − 1)‖E0‖
 + eL̃0(tn−t0) − 1

L̃0

M̃0
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since u0 = ‖E0 − T0E0‖
 = 0. Therefore, the assertion of the corollary follows
directly from (120b) if constant C̃0 is set to C̃0 := C0/min{1, c} such thatC0‖E0‖
 ≤
C̃0‖E0‖ and C0M̃0 ≤ C̃0M̃0, see (121). �

Remark 4.15 (a) For constant time step sizes hn = h = const, the convergence
result in Theorem 4.11 is a special case of the error analysis in Lemma 4.13 and
Corollary 4.14 with En = en , T = I, C̃0 = 1, L̃0 = L� and M = maxl ‖lel‖/h.

(b) In ODE time integration, the error estimate of Corollary 4.14 is used to prove the
convergence of linear multi-stepmethods by an equivalent one-step formulation,
see (Hairer et al. 1993, Sect. III.4). For a k-stepmethod, vectorEn is composed of
global errors en− j at k consecutive grid points tn−(k−1), . . . , tn−1, tn and matrix T
has aKronecker product structureT = A ⊗ Iwith a companionmatrixA ∈ R

k×k

that satisfies ‖A‖
 = 1 in a suitable norm ‖.‖
 if the method is zero-stable. For
a more detailed discussion of this convergence analysis, the interested reader is
referred to the above cited reference.

(c) For matrices T with spectral radius 
(T) = 1, the transformation to Jordan
canonical form may be used to construct a norm ‖.‖
 with ‖T‖
 = 1 provided
that all Jordan blocks corresponding to eigenvalues λi [T] with |λi [T]| = 1 are
of dimension 1 × 1, see (Hairer et al. 1993, Lemma III.4.4).

With appropriate matrices T of norm ‖T‖
 = 1, Lemma 4.13 and Corollary 4.14
provide a unified framework for the error analysis of one-step andmulti-stepmethods
in ODE time integration. Corollary 4.14 may be generalized to the technically more
challenging DAE case that is characterized by a coupled error propagation in differ-
ential and algebraic solution components. The error analysis employs two different
error propagation matrices satisfying ‖Ty‖y,
 = 1 and ‖Tz‖z,
 < 1, respectively. It
is inspired by the classical convergence analysis of one-step methods for index-1
DAEs in (Deuflhard et al. 1987), see also (Arnold et al. 2015, Lemma 7).

Theorem 4.16 Let (Ey
n)n≥0 and (Ez

n)n≥0 be sequences of vectors that satisfy

‖Ey
n+1 − TyEy

n‖ ≤ L0h(‖Ey
n‖ + ‖Ey

n+1‖ + ‖Ez
n‖ + ‖Ez

n+1‖) + hM0, (124a)

‖Ez
n+1 − TzEz

n‖ ≤ L0(‖Ey
n‖ + ‖Ey

n+1‖ + h‖Ez
n‖ + h‖Ez

n+1‖) + M0 (124b)

with matrices Ty, Tz and positive constants L0, M0 that are independent of h > 0
and n ≥ 0. If there are norms ‖.‖y,
, ‖.‖z,
 such that ‖Ty‖y,
 = 1 and ‖Tz‖z,
 < 1
then (124) implies for time step sizes h ∈ (0, h0] error bounds

‖Ey
n‖ ≤ eL̄0(tn−t0)(‖Ey

0‖ + C̄0h‖Ez
0‖) + eL̄0(tn−t0) − 1

L̄0
M̄0 , (125a)

‖Ez
n − Tn

z Ez
0‖ ≤ C̄0e

L̄0(tn−t0)(‖Ey
0‖ + h‖Ez

0‖ + M̄0) (125b)

with tn := t0 + nh, ( n ≥ 0 ). The constants h0, C̄0, L̄0 and M̄0 are supposed to be
positive. They depend on constants L0, M0 in (124) and may depend furthermore on
the vector norms ‖.‖ = ‖.‖y and ‖.‖ = ‖.‖z for Ey

n and Ez
n.
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Proof (a)Using the samearguments as in parts (a) and (c) of the proof ofLemma4.13,
we may verify that the assertion of the Theorem (with appropriate norm dependent
constants C̄0, L̄0 and M̄0) is valid for any pair of norms (‖.‖y, ‖.‖z) if it is valid for
one specific pair (‖.‖y,∗, ‖.‖z,∗). To simplify the notation, we will therefore restrict
the error analysis to a pair of norms with κy := ‖Ty‖y = 1 and κz := ‖Tz‖z < 1 and
will furthermore omit the indices y and z at the norm symbol ‖.‖.

(b) Similar to Lemma 4.13 and Corollary 4.14, the coupled error propagation is
studied in terms of sequences (un)n≥0, (wn)n≥0 with

un := ‖Ey
n − Tn

yEy
0‖ , wn := ‖Ez

n − Tn
z Ez

0‖ . (126)

For a one-step error recursion, we look for error bounds like (119) for un+1 andwn+1.
As in Lemma 4.13, we get from assumptions (124) the estimates

un+1 ≤ (1 + L̃0h)un + L̃0hwn + L̃0hκn
z‖Ez

0‖ + h(M̃0 + L̃0‖Ey
0‖) , (127a)

wn+1 ≤ L̃0un + (κz + L̃0h)wn + L̃0hκn
z‖Ez

0‖ + M̃0 + L̃0‖Ey
0‖ (127b)

with appropriate positive constants L̃0 and M̃0. Here, we have taken into account that
κy = ‖Ty‖ = 1 and κz = ‖Tz‖ < 1 and restricted the analysis to h ∈ (0, h0] with a
sufficiently small constant h0 > 0.

(c) The recursive application of error bounds (127) shows that the coupled
error propagation in differential and algebraic solution components may be stud-
ied analysing powers of the 2 × 2 error amplification matrix

W(h) :=
(

1 + L̃0h L̃0h
L̃0 κz + L̃0h

)

,

see (Deuflhard et al. 1987, Lemma2). The eigenvalue analysis formatrixW(h) yields
an eigenvalueλ(h) = κz + O(h). Because ofκz < 1, this eigenvalue satisfiesλ(h) <

1 for all sufficiently small time step sizes h > 0. The corresponding eigenvector

ζ(h) :=
( −Lvh

1

)

with Lv := L̃0

1 + L̃0h − λ(h)
= L̃0

1 − κz
+ O(h) (128)

is used to transform W(h) to lower triangular form: We define the transformation
matrix

V(h) := [ e1 ζ(h) ] =
(

1 −Lvh
0 1

)

with V−1(h) =
(

1 Lvh
0 1

)

(129)

and observe that the second column vector of W(h)V(h) is a multiple of the second
column vector of V(h) since W(h)ζ(h) = λ(h)ζ(h). Therefore, the scalar product
of the first row vector of V−1(h) and the second column vector ofW(h)V(h), i.e., the
upper right element of V−1(h)W(h)V(h), vanishes. Straightforward computations
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yield

V−1(h)W(h)V(h) =
(

1 + L̃0(Lv + 1)h 0
L̃0 κz + L̃0(1 − Lv)h

)

(130)

and

vn+1 ≤ (1 + L̃0(Lv + 1)h)vn+ (131a)

+ L̃0(Lvh + 1)hκn
z‖Ez

0‖ + (Lv + 1)h(M̃0 + L̃0‖Ey
0‖) ,

wn+1 ≤ L̃0vn + (κz + L̃0(1 − Lv)h)wn+ (131b)

+ L̃0hκn
z‖Ez

0‖ + M̃0 + L̃0‖Ey
0‖

with a sequence (vn)n≥0 of non-negative numbers vn that are defined by

(

vn
wn

)

= V−1(h)

(

un
wn

)

,

see (127), (130) and (131). Note, that all matrix elements of V−1(h) are non-negative
which is an essential assumption for the transformation from (127) to (131).

(d) The right-hand side of (131a) depends nonlinearly on h because Lv = Lv(h). If
we substitute Lv for sufficiently small time step sizes h > 0 by the upper bound L̃v :=
2L̃0/(1 − κz), see (128), then Lemma 4.12 may be applied with constants L :=
L̃0(L̃v max{1, h0} + 1), κ := κz < 1, e0 := ‖Ez

0‖ and M := (L̃v + 1)M̃0 + L‖Ey
0‖.

Inequality (116a) yields the error bound

vn ≤ errn − ‖Ey
0‖ (132)

with

errn := eL(tn−t0)(‖Ey
0‖ + hL

1 − κ
‖Ez

0‖) + eL(tn−t0) − 1

L
(L̃v + 1)M̃0 (133)

because v0 = u0 + Lvhw0 = 0, see (126). Inequality (132) proves the global error
bound (125a) since un = vn − Lvhwn ≤ vn and

‖Ey
n‖ ≤ ‖Tn

yEy
0‖ + ‖Ey

n − Tn
yEy

0‖ ≤ ‖Ty‖n‖Ey
0‖ + un ≤ ‖Ey

0‖ + vn ≤ errn .

For the proof of error bound (125b), we substitute in (131b) the variable vn by its
upper bound (132) and get

wn+1 ≤ (κ + Lh)wn + Lhκne0 + M̃0 + L̃0 errn
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since L̃0(1 − Lv) ≤ L̃0 ≤ L . For all r ≤ n, the term M̃0 + L̃0 errr is bounded by
M̃0 + L̃0 errn because (errn)n≥0 ismonotonically increasing. Therefore, Lemma 4.12
with

M := M̃0 + L̃0 errn ≤ L̃0e
L(tn−t0)(‖Ey

0‖ + hL

1 − κ
‖Ez

0‖) + eL(tn−t0) M̃0 ,

see (133), yields

wn ≤ Cz
0

(

h‖Ez
0‖ + eL(tn−t0)(‖Ey

0‖ + hL

1 − κ
‖Ez

0‖ + M̃0)
)

with an appropriate constantCz
0 > 0, see (116b). Error bound (125b) follows straight-

forwardly from ‖Ez
n − Tn

z Ez
0‖ = wn , see (126). �

4.3 Convergence of Lie Group Time Integration Methods

For the application of Theorem4.16 to the one-step error recursion (93) we have to
verify the assumptions on error propagationmatricesTy andTz. Because ofTy = I2k ,
we get ‖Ty‖2 = 1. For proving ‖Tz‖z,
 < 1 in a suitable norm ‖.‖z,
, we analyse the
spectral radius ρ(Tz):

Lemma 4.17 (a) For algorithmic parameters αm, α f , β, γ that satisfy the order
condition (41) and the stability conditions

αm < α f < 0.5 , γ < 2β , (134)

the spectral radii of matrices Tz in (95) and (100) are bounded by ρ(Tz) < 1.
(b) For the “optimal” parameters of Chung and Hulbert (1993), see (42), the sta-

bility conditions (134) are satisfied for any ρ∞ ∈ [0, 1).
Proof (a) The block-diagonal structure of matrix Tz ∈ R

m+3k in (95) implies that its
characteristic polynomial is given by

det(ζI − Tz) =
(

ζ + αm

1 − αm

)k(

det T−1
+ det(ζT+ − T0)

)m
.

Straightforward computations show that matrix Tz has an eigenvalue ζm :=
−αm/(1 − αm) of multiplicity k, an eigenvalue ζ f := −α f /(1 − α f ) of multiplic-
ity m and eigenvalues ζ1,2 that are given by the roots of the quadratic polynomial
σ(ζ) := aζ2 + bζ + c with

a := β , b := 0.5 + γ − 2β , c := 1 − a − b , (135)
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see also (Arnold and Brüls 2007, Lemma 1). The stability conditions (134) imply
|ζm | < 1, |ζ f | < 1 and γ = 0.5 + α f − αm > 0.5.

Therefore, the coefficients a, b, c in (135) satisfy a = β > 0, b > 1 − 2β = 1 −
2a and c = 1 − a − b < a. Since c/a < 1 and ζ1ζ2 = c/a (Vieta’s theorem), we get
|ζ1|2 = |ζ2|2 = ζ1ζ2 = c/a < 1 whenever σ(ζ) = 0 has a pair of conjugate complex
roots ζ1, ζ2.

If both roots of σ are real then the discriminant

b2 − 4ac = b2 − 4a(1 − a − b) = (2a + b)2 − 4a

has to be non-negative. Hence,

√

b2 − 4ac <
√

(2a + b)2 = 2a + b (136a)

since a > 0 and 2a + b = 0.5 + γ > 1 ≥ 0, see (135). On the other hand, stability
condition γ < 2β results in b < 0.5 and

(2a + b)2 − 4a = (2a − b)2 + 8a(b − 0.5) < (2a − b)2 ,

i.e.,
√

b2 − 4ac =
√

(2a + b)2 − 4a <
√

(2a − b)2 = 2a − b (136b)

since 2a − b = 2(2β − γ) + (γ − 0.5) > 0. Estimates (136) show that the roots
ζ1,2 = (−b ± √

b2 − 4ac)/2a of σ satisfy−1 < ζi < 1, ( i = 1, 2 ). This completes
the proof of ρ(Tz) < 1 for matrix Tz being defined in (95).

Substituting the quadratic polynomial σ(ζ) by σ(ζ) := ζ + (1 − γ)/γ, we may
extend this analysis straightforwardly to the matrix Tz in (100).

(b) With ρ∞ ∈ [0, 1), the algorithmic parameters αm , α f in (42) satisfy αm <

α f < 0.5 and γ = 0.5 + α f − αm > 0.5. For the second stability condition in (134),
we observe that (42) implies 2β − γ = (γ − 0.5)2/2 > 0. �

Theorem 4.18 Let the order condition (41) and the stability conditions (134) be
fulfilled and suppose that the starting values q0, v0, v̇0, a0 and λ0 satisfy

‖eq0‖ + ‖ev
0‖ + h‖ePa

0 ‖ = O(h2) , ‖ev̇
0‖ + ‖eBa

0 ‖ = O(h1+δ) , (137a)

‖M(q0)v̇0 + g(q0, v0, t0) + B�(q0)λ0‖ = O(h1+δ) (137b)

with a non-negative constant δ ∈ [0, 1]. Then, there are positive constants C0, L̃ , h0
being independent of n and h such that we have for all h ∈ (0, h0] and all n ≥ 0
with t0 + nh ≤ tend − h:
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(a) a global error bound

‖eqn‖ + ‖ev
n‖ ≤ C0e

L̃(tn−t0)h2 , (138a)

‖eλ
n ‖ ≤ C0(‖(T−1

+ T0)
n‖h1+δ + eL̃(tn−t0)h2) (138b)

for the index-3 integrator (37) provided that the starting values q0, v0 satisfy the
additional assumption

‖eq0‖ + ‖eBv
0 + 1

h
B(q(t0))l

q
0‖ = O(h2+δ) (139)

and
(b) a global error bound

‖eqn‖ + ‖ev
n‖ + ‖ηn‖ ≤ C0e

L̃(tn−t0)h2 , (140a)

‖eλ
n ‖ ≤ C0(‖(T̄−1

+ T̄0)
n‖h1+δ + eL̃(tn−t0)h2) (140b)

for the stabilized index-2 integrator (56).

Proof These error estimates are a straightforward consequence of Theorem 4.16 and
Lemma 4.17 since error recursion (93) withmatricesTy andTz being defined in (95),
(100) and εn = O(1)(‖Ey

n‖ + h‖Ez
n‖) imply (124). Furthermore, assumptions (137)

and (139) result in ‖Ey
0‖ = O(h2), ‖Ez

0‖ = O(h) and ‖Er
0‖ = O(h1+δ). Finally, the

upper bound for ‖ηn‖ in (140a) is obtained from (98). �

Lemma 4.17 and Theorem 4.18 show that transient errors of size O(h1+δ) are
damped out by numerical dissipation if the generalized-α methods (37) and (56)
have algorithmic parameters according to (42) with ρ∞ < 1. For starting values q0 =
q(t0),v0 = v(t0), v̇0 = v̇(t0) andλ0 = λ(t0)beingdefinedby consistent initial values
q(t0), v(t0), v̇(t0),λ(t0), assumptions (137) and (139) are satisfied with δ ≥ 0 if a0 =
v̇(t0) + O(h). Beyond the transient phase, we observe second-order convergence in
all solution components, see Fig. 8.

For the heavy top benchmark problem in configuration spaceG = SE(3), wemay
even prove that there is no order reduction at all in generalized-α Lie group time
integration:

Example 4.19 (a) For consistent initial values q(t0), v(t0), v̇(t0) and λ(t0), the start-
ing values q0 = q(t0), v0 = v(t0), v̇0 = v̇(t0), a0 = v̇(t0),λ0 = λ(t0) satisfy assump-
tion (137) with δ = 1 if B

(

q(t0)
)

v̈(t0) = 0 since Taylor expansion of v̇(t0 + �αh) at
h = 0 shows in that case that ‖eBa

0 ‖ = ‖B
(

q(t0)
)(

v̇(t0 + �αh) − a0
)‖ = O(h2).

(b) ConditionB
(

q(t0)
)

v̈(t0) = 0 in part (a) of this example is satisfied for the equa-
tions of motion (22) of the heavy top benchmark in configuration space G = SE(3)
since B

(

q(t)
) ≡ BX := (−˜X − I3) along any solution curve q(t) in the constraint

manifold M := { q : �(q) = 0 }, see Lemma 3.5, and the hidden constraints (16),
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(18) are given by 0 = BX v(t) = BX v̇(t) implying B
(

q(t)
)

v̈(t) = 0. Therefore, The-
orem 4.18(b) proves second-order convergence of the stabilized index-2 integrator
(56) for this benchmark problem. These theoretical investigations are illustrated by
the numerical test results in the right plot of Fig. 11.

(c) The equations of motion (22) of the heavy top benchmark in configuration
spaceG = SE(3) fulfill the assumptions of Lemma 3.5. Therefore, the generalized-α
integrator (37) defines a numerical solution that satisfies the hidden constraints (16)
at the level of velocity coordinates. I.e., integrators (37) and (56) define identical
numerical solutions for this benchmark problem and we get ηn = 0. The numerical
test results in the right plots of Figs. 6 and 11 illustrate this coincidence.

For a more direct proof of the corresponding second-order convergence result for
integrator (37), we may verify that for this benchmark problem assumption (139)
in Theorem 4.18(a) is satisfied with δ = 1: Taking into account B

(

q(tn)
)

v̈(tn) =
0 and the structure of the leading error term in lqn , we get B

(

q(tn)
)

lqn = O(h4) if
B

(

q(t)
)

v̂(t)v̇(t) ≡ 0, see Lemma 4.2. Here, we have substituted the term [̃v,˜v̇] ∈
se(3) in (69) by its equivalent v̂v̇ ∈ R

6 with v̂ ∈ R
6×6 being defined in (34), see also

(29). For consistent velocity vectors v, the skew symmetric matrix ˜U in (34) may be
expressed in terms of˜X and ˜� since BX v = 0 implies U = −˜X� = ˜�X = ̂�X, i.e.,
˜U = [˜�,˜X] = ˜�˜X − ˜X˜�, see (29). The identity ˜� = ̂� is valid for any� ∈ R

3, see
Remark 2.8(b). We get

B
(

q(t)
)

v̂(t) = BX
(

˜� 0
˜U ˜�

)

= ( −˜X − I3 )

(

˜� 0
˜�˜X − ˜X˜� ˜�

)

= ˜�BX

and therefore also B
(

q(t)
)

v̂(t)v̇(t) ≡ 0 since BX v̇(t) ≡ 0, see (18). Hence, B
(

q(tn)
)

lqn = O(h4) and assumptions (139) are satisfied for this benchmark problem with
δ = 1 if the starting values in the index-3 integrator (37) are set to q0 = q(t0), v0 =
v(t0).

Example 4.19 illustrates that the trivial initialization a0 = v̇(t0) results for cer-
tain problem classes in transient error terms of size O(h1+δ) with δ = 1 such
that second-order convergence is already observed in the transient phase. In gen-
eral, however, this trivial initialization yields transient errors of size O(h) since
‖eBa

0 ‖ = O(h) if a0 = v̇(t0) andB
(

q(t0)
)

v̈(t0) �= 0. These first order error terms have
been observed numerically for the heavy top benchmark problem in configuration
space G = SO(3) × R

3 in Figs. 6, 7 and 13.
More sophisticated initializations of sequence (an)n≥0 in HHT-α and generalized-

α time integration have been discussed, e.g., in (Jay and Negrut 2007) and (Arnold
et al. 2015). We follow the latter approach and set

a0 := v̇(t0) + �a
0 with �a

0 := �αh
v̇sh − v̇−sh

2sh
, (141)

vectors v̇±sh = v̇(t0 ± sh) + O(h2) and a (small) parameter s ∈ (0, 1] that may be
set, e.g., to s := 1/10. For the computation of �a

0, we have to evaluate the equations
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Table 1 Initialization of the stabilized index-2 integrator (56)

Data Consistent initial values q(t0), v(t0); parameter s ∈ (0, 1]
Result Modified starting values q0, v0, v̇0, a0, λ0 of integrator (56)

Step 1 Set starting values q0, v0 to the consistent initial values:
q0 := q(t0), v0 := v(t0)

Step 2 Solve system (19) with t = t0, q = q0, v = v0 to get consistent
starting values v̇0 and λ0

Step 3 Get v̇sh from system (19) with t = t0 + sh and
q = q0 ◦ exp

(

shv0 + s2h2v̇0/2
)

, v = v0 + shv̇0
Step 4 Get v̇−sh from system (19) with t = t0 − sh and

q = q0 ◦ exp
(−shv0 + s2h2v̇0/2

)

, v = v0 − shv̇0
Step 5 Compute starting value a0 := v̇0 + �αh (v̇sh − v̇−sh)/(2sh)

of motion at t0 + sh and at t0 − sh. Then, vectors v̇sh and v̇−sh may be obtained
from block-structured systems of linear equations (19), see the numerical algorithm
in Table1 for a more detailed discussion of this initialization phase.

Starting values a0 according to (141) satisfy assumption (137) with δ = 1 since
v̇(t0) + �αh(v̇sh − v̇−sh)/2sh = v̇(t0 + �αh) + O(h2). Hence, Theorem 4.18(b)
proves second-order convergence of the stabilized index-2 integrator (56) for all
solution components. This convergence result may be verified by a numerical test for
the heavy top benchmark problem in configuration space G = SO(3) × R

3: Fig. 16
shows for time step size h = 1.0 × 10−3 the global error eλ1

n /‖λn‖ of the stabilized
index-2 integrator (56) in time interval [0, 0.1]. The test results in the left plot are
already known from the left plot of Fig. 13. They show the transient oscillating first-
order error term being characteristic of the trivial initialization a0 = v̇(t0). The test
results in the right plot illustrate that this first-order error term disappears if we use
the modified starting value a0 = v̇(t0) + �a

0 ≈ v̇(t0 + �αh).
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Fig. 16 Heavy top benchmark (h = 1.0 × 10−3, starting values q0 = q(t0), v0 = v(t0), stabilized
index-2 formulation, G = SO(3) × R

3): Global error eλ1
n /‖λn‖. Left plot a0 = v̇(t0), right plot

a0 ≈ v̇(t0 + �αh)
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Fig. 17 Heavy top benchmark (h = 1.0 × 10−3, starting values q0 = q(t0), v0 = v(t0), index-3
formulation,G = SO(3) × R

3): Global error eλ1
n /‖λn‖.Left plot a0 = v̇(t0), right plot a0 ≈ v̇(t0 +

�αh)

Note, that this modification of starting value a0 does not contribute significantly
to the result accuracy of the index-3 integrator (37) since the additional assumption
(139) in part (a) of Theorem4.18 is (as before) only satisfiedwith δ = 0. The resulting
large first-order error term in λn,1 is (up to plot accuracy) not affected by modified
starting values a0, see Fig. 17.

This first-order error term is well known from the convergence analysis for the
linear test problem in Sect. 3.2. In Theorem 3.1(b), we proposed a systematic per-
turbation of starting values v0 to get second-order convergence, see (52). In the Lie
group setting, these modified starting values are given by

v0 = v(t0) + [M−1B�(BM−1B�)−1B](q(t0)
)

lq0/h + O(h3) .

In a practical implementation, we restrict ourselves to the leading error term in lq0 ,
see (69), and use again a difference approximation of v̈(t0), see (141). The modified
starting values are given by v0 = v(t0) + �v

0 with

�v
0 := h2 [M−1B�(BM−1B�)−1B](q(t0)

)·
· (Cq

v̇sh − v̇−sh

2sh
+ 1

12
v̂(t0)v̇(t0)

)

.
(142)

Theymay be computed efficiently by the numerical algorithm in Table2. The numer-
ical test results for two different time step sizes in Fig. 18 illustrate that the mod-
ified starting values eliminate the first-order error term. The maximum amplitude
of eλ1

n /‖λn‖ is reduced by a factor of 4 if the time step size is reduced from
h = 1.0 × 10−3 to h = 5.0 × 10−4.

The perturbation of size O(h2) in (142) results in starting values q0 = q(t0) and
v0 = v(t0) + �v

0 that satisfy assumption (139) in Theorem 4.18(a) with δ = 1. In
general, these starting values are not consistent with the hidden constraints (16)
at the level of velocity coordinates but introduce systematically a residual of size
B(q0)v0 = O(h2) at t = t0. The numerical test results in Figs. 19 and 20 show that this
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Table 2 Initialization of the index-3 integrator (37)

Data Consistent initial values q(t0), v(t0); parameter s ∈ (0, 1]
Result Modified starting values q0, v0, v̇0, a0, λ0 of integrator (37)

Step 1 Set starting value q0 to the consistent initial value: q0 := q(t0)

Step 2 Solve system (19) with t = t0, q = q(t0), v = v(t0) to get consistent
starting values v̇0 and λ0

Step 3 Get v̇sh from system (19) with t = t0 + sh and
q = q(t0) ◦ exp

(

shv(t0) + s2h2v̇0/2
)

, v = v(t0) + shv̇0
Step 4 Get v̇−sh from system (19) with t = t0 − sh and

q = q(t0) ◦ exp
(−shv(t0) + s2h2v̇0/2

)

, v = v(t0) − shv̇0
Step 5 Compute starting value a0 := v̇0 + �αh (v̇sh − v̇−sh)/(2sh)

Step 6 Get �v
0 := xv̇ from the system of linear equations (20) with

rv̇ = 0k , rλ = h2 B(q0)
(

Cq
v̇sh − v̇−sh

2sh
+ 1

12
v̂(t0)v̇(t0)

)

and

matrices M = M(q0), B = B(q0)

Step 7 Set starting value v0 to v0 := v(t0) + �v
0, see (142)
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Fig. 18 Heavy top benchmark (index-3 formulation, starting values q0 = q(t0), v0 = v(t0) + �v
0,

a0 = v̇(t0) + �a
0, G = SO(3) × R

3): Global error eλ1
n /‖λn‖. Left plot h = 1.0 × 10−3, right plot

h = 5.0 × 10−4

non-vanishing initial constraint residual helps to avoid the oscillating second-order
term in the constraint residuals B(qn)vn as well as the corresponding oscillating first-
order error term in the Lagrangemultipliersλn: In the left plots of Figs. 19 and 20, we
see the simulation data for (classical) starting values v0 = v(t0), a0 = v̇(t0) that are
already known from the numerical tests in Sect. 3.3 (left plots of Figs. 10 and 7). The
test results in the right plots of Figs. 19 and 20 show that the transient oscillating terms
disappear up to plot accuracy for the modified starting values v0 = v(t0) + �v

0 =
v(t0) + O(h2) and a0 = v̇(t0) + �a

0 = v̇(t0 + �αh) + O(h2).
The algorithm in Table2 spends moderate numerical effort to get (modified) start-

ing values q0, v0, v̇0, a0 and λ0 for the generalized-α Lie group integrator (37) that
satisfy assumptions (137) and (139) in the convergence theorem with δ = 1. The
error bounds (138) in Theorem 4.18(a) prove second-order convergence in all solu-
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3): Residu-

als in hidden constraints (16). Left plot classical starting values v0, a0, right plot modified starting
values v0, a0
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ical solution λn . Left plot classical starting values v0, a0, right plot modified starting values v0, a0
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Fig. 21 Heavy top benchmark (index-3 formulation, G = SO(3) × R
3): Global error of integrator

(37) versus h for t ∈ [0, 1]. Left plot classical starting values v0, a0, right plot modified starting
values v0, a0
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tion components. The right plot of Fig. 21 shows numerical test results for the heavy
top benchmark problem that are in perfect agreement with this asymptotic error
analysis for small time step sizes h.

5 Summary

The generalized-α method is a Newmark-type method and one of the standard time
integration methods in structural dynamics. The method is second-order accurate
for unconstrained systems in linear spaces and has a free algorithmic parameter that
allows to control the amount of numerical dissipation for high-frequency solution
components. Following a Lie algebra approach, themethodmay be applied as well to
mechanical systems that have a nonlinear configuration space with Lie group struc-
ture. In each time step, the increment of the configuration variables is parametrized
by an element of the corresponding Lie algebra that may be obtained numerically by
a classical Newton–Raphson iteration in linear spaces.

The Lie algebra approach is used as well in the asymptotic error analysis for the
application to constrained systems that are typical ofmultibody dynamics.Newmark-
type time integration methods of second-order accuracy are known to suffer from
“overshooting”, i.e., from an oscillating transient error term in the application to a
scalar linear test equation with high-frequency solutions. For constrained systems,
these large transient errors may result in order reduction unless the starting values of
the generalized-α method are perturbed by an appropriate second-order correction
term. Second-order convergence of the algorithm with perturbed starting values is
proved analytically studying a coupled error propagation in differential and algebraic
solution components that takes into account a quadratic approximation of hidden
constraints at the level of acceleration coordinates.

The order reduction phenomenonmay be avoided by an analytical index reduction
before time discretization. The Lie algebra approach allows to modify the increment
of configuration variables such that the numerical solution satisfies in each time
step the original holonomic constraints at the level of position coordinates as well
as the corresponding hidden constraints at the level of velocity coordinates (stabi-
lized index-2 formulation). With an appropriate initialization of the acceleration like
variables an in the generalized-αmethod, this stabilized index-2 Lie groupDAE inte-
grator is second-order accurate for any starting values being consistent with original
and hidden constraints in the equations of motion.

All results of the convergence analysis have been verified in detail by numerical
tests for a heavy top benchmark problem in Lie groups SO(3) × R

3 and SE(3),
respectively. The theoretical investigations are limited to fixed time step sizes but will
be extended to variable step size implementations with error control in future work.
In that case, the acceleration like variables an need to be updated whenever the time
step size is changed at t = tn . Furthermore, the velocity vector vn has to be perturbed
by an appropriate second-order correction term unless the generalized-α Lie group
DAE integrator is applied to the index-reduced stabilized index-2 formulation of the
equations of motion.
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