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Preface

This volume contains notes based on lectures presented at the advanced course
‘Structure-preserving Integrators in Nonlinear Structural Dynamics and Flexible
Multibody Dynamics’ held at the International Centre for Mechanical Sciences
(CISM) in Udine, Italy, during October 7–11, 2013.

The objective of the five chapters in this volume is to provide insight into
state-of-the-art numerical methods for nonlinear structural and flexible multibody
dynamics. In the field of structural mechanics, finite element methods are com-
monly applied for the discretization in space. Due to the large dimension of the
resulting semi-discrete system, one is typically content with second-order accurate
schemes for the discretization in time.

Based on well-established time-stepping schemes for the linear regime,
energy-momentum consistent schemes and energy dissipating variants thereof have
been developed in the framework of nonlinear structural dynamics during the past
25 years. These schemes are known to possess superior numerical stability and
robustness properties when compared to standard methods.

The chapter written by I. Romero provides a general overview of high-frequency
dissipative integrators for linear and nonlinear elastodynamics. If the controllable
numerical dissipation is switched off, one typically gets back to energy-momentum
consistent schemes that are addressed in the chapter authored by P. Betsch.

Due to the presence of finite rotations, the configuration space of multibody
systems is typically nonlinear. In the chapter written by M. Arnold, A. Cardona, and
O. Brüls, Lie group integrators are presented which preserve the Lie group structure
of the underlying nonlinear configuration space by design.

An alternative route to the design of structure-preserving numerical methods are
variational integrators. The newly emerging class of variational integrators is the
topic of the chapter authored by A.J. Lew and P. Mata A. Last but not least the
Chapter written by J. Gerstmayr, A. Humer, P. Gruber, and K. Nachbagauer pro-
vides insight into the absolute nodal coordinate formulation which is increasingly
popular in the field of flexible multibody dynamics.
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The combination of these chapters provides a unique perspective on up-to-date
numerical methods for nonlinear structural dynamics and flexible multibody
dynamics. Sincere thanks are due to the colleagues for preparing their chapters for
this volume. Special thanks to Professors Martin Arnold, Alberto Cardona,
Johannes Gerstmayr, Adrian Lew, and Ignacio Romero for taking part at the course
and presenting their excellent lectures.

The course brought together nearly 40 participants from 8 countries. We are
grateful to all participants for their interest and the numerous discussions that took
place during and after the lectures. We are particularly thankful to the Scientific
Council of CISM for supporting this course and recognizing the importance of the
topic. We further thank the CISM staff for the excellent organization, support, and
hospitality. Professor Paolo Serafini is gratefully acknowledged for his encour-
agement to publish these lecture notes and his patience to wait for the final versions.

Peter Betsch
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High Frequency Dissipative Integration
Schemes for Linear and Nonlinear
Elastodynamics

Ignacio Romero

Abstract Time integration schemes with controllable, artificial, high frequency dis-
sipation are extremely common in practical engineering analyses for integrating in
time initial boundary value problems previously discretized in space with finite ele-
ments or similar techniques. In this chapter, we describe the structure of the most
commonly employed integration schemes of this type and focus in their numeri-
cal analysis for linear and nonlinear problems. These include spectral, energy, and
backward error analyses. For the nonlinear case, additionally, we study the preserva-
tion of conservation laws and the approximation of relative equilibria. The chapter
should provide a general overview of dissipative methods, their issues, and the tools
available for their formulation and analysis.

1 Introduction

Stiff ordinary differential equations, such as the ones commonly appearing in solid
dynamics and many other areas of applied mathematics, have solutions that involve
characteristic times of very different orders of magnitude. Whereas one is often
interested only in the slow response, integrating the fastest time scales is sometimes
necessary and always dictated by the time step choice (Wood 1990; Hairer and
Wanner 1991).

In systems of ordinary differential equations resulting from the spatial dis-
cretization of partial differential equations, the modes with highest frequencies are
inevitably resolved very poorly by the mesh. This is the case, for example, in solid
mechanics, where a finite element mesh—or a similar discretization technique—is
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Department of Mechanical Engineering, Technical University of Madrid,
Madrid, Spain
e-mail: ignacio.romero@upm.es

I. Romero
IMDEA Materials Institute, Getafe, Madrid, Spain

© CISM International Centre for Mechanical Sciences 2016
P. Betsch (ed.), Structure-preserving Integrators in Nonlinear Structural
Dynamics and Flexible Multibody Dynamics, CISM International Centre
for Mechanical Sciences 565, DOI 10.1007/978-3-319-31879-0_1

1



2 I. Romero

employed to approximate the initial boundary value problem of continuum elasto-
dynamics by a semidiscrete initial value problem, governed by the same equations
as the problem of structural dynamics, which can then be integrated in time numer-
ically. In such a process, the one of interest in this chapter, the highest frequencies
modes are completely spurious, and so poorly resolved that their precise value is
often irrelevant for the analyst.

The mathematical analysis and the numerical experience accumulated during
decades indicates that, in nonlinear problems, the poorly resolved, high frequency
modes of the solution are ultimately responsible for many instabilities observed
in the numerical solution of stiff evolution problems. Since, as already mentioned,
those same modes are poorly resolved when deriving from a spatial discretization,
time integration algorithms that possess some kind of high frequency controllable
dissipation are frequently favored in research and commercial codes. It is the goal
of this chapter to discuss in which sense this is a valid approach and how it should
be addressed from the standpoint of the user and the algorithmic designer.

To understand the strengths and limitations of high frequency dissipative integra-
tors for solid mechanics, it is convenient to start by studying them in the context
of linear elastodynamics. The equations that describe this problem are amenable to
a complete mathematical analysis and guide the choice of algorithms that can later
be applied to more complex nonlinear problems. Most of the efforts in this regard
have been addressed toward the development of direct integration schemes, simi-
lar to Newmark’s classical method (Newmark 1956), but with optimal dissipation
properties and maximum accuracy. In fact, some members of the Newmark family
of methods, possibly the most commonly used integrators in solid and structural
dynamics, have controllable high frequency dissipation, although all of these are
only first-order accurate (Hughes 1983). The design of Newmark-like integrators
for solid and structural dynamics with second-order accuracy and controllable high
frequency dissipation motivated a large amount of works since the 1960s (Wilson
1968; Bathe andWilson 1973; Hilber et al. 1977;Wood et al. 1981; Bazzi and Ander-
heggen 1982; Zienkiewicz et al. 1984; Chung and Hulbert 1993;Modak and Sotelino
2002; Zhou andTamma 2004).Many commercial finite element andmultibody codes
have adopted one of these methods as the default integrator for implicit dynamical
problems.

The stability of a time integrationmethod, when employed in the solution of linear
elastodynamics, is best understood when a complete spectral analysis is performed
(Hughes 1983, 1987; Wood 1990; Bathe 1996). Such an analysis characterizes the
evolution in time of each of the independent modes that contribute to the global
solution, identifying their growth or decay, phase error, overshoot, etc. Alternatively,
a more direct method of analysis based on the energy of the solution can be employed
to assess the properties of the integrators (Hughes 1976, 1983; Romero 2002, 2004).
The latter approach, although less systematic than the spectral analysis, furnishes
global information that completes the information obtained from the former.
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The analysis of time integration schemes for general, nonlinear problems in elas-
todynamics demands completely different techniques. Since spectral analyses cannot
be performed on nonlinear equations, the study of the stability of time integrators is
often limited to the assessment of the energy evolution (Belytschko and Schoeberle
1975; Simo and Wong 1991; Simo and Tarnow 1992, 1994; Betsch and Steinmann
2001; Kuhl and Crisfield 1999; Armero and Romero 2001a, b; Bathe 2007). A note-
worthy exception is the work of Erlicher et al. (2002), where a complete nonlinear
analysis of the Generalized-α method is presented. In the context of nonlinear prob-
lems, however, stability analysis is not the only interesting information one needs to
know about a time integration scheme. Given that the dynamics of conserving—and
dissipative—solid mechanics often possesses symmetries and conservation laws it is
desirable to employ time integration schemes which can preserves exactly as many
invariants as possible, even when controllable high frequency dissipation is intro-
duced in the integration.With this goal inmind,manyworks have tried to extend clas-
sical high frequency dissipative schemes. See, among others, the works by Bauchau
and Theron (1996), Kuhl and Ramm (1996), Bottasso and Borri (1997), Kuhl and
Ramm (1999), Bauchau and Joo (1999), Kuhl and Crisfield (1999), Armero and
Petocz (1999), Armero and Romero (2001a, b), Bottasso and Borri (1997), Armero
and Romero (2003).

In this chapter we study time stepping algorithms for linear and nonlinear solid
elastodynamics, with a special emphasis in methods that possess controllable high
frequency dissipation. These methods are widely employed in solid, structural, and
multibody dynamics, but, for concreteness, we restrict our presentation to the former.
It should be noted that multibody dynamical systems often include, in addition to
rigid andflexible parts, a large number of constraints that turn the governing equations
into differential algebraic systems. The analysis techniques required to study these
are not the same as the ones presented in this chapter.

The chapter is structured as follows. First, the problem of linear elastodynam-
ics in described in Sect. 2. Section3 discusses the discretization of elastodynamics,
including specific examples, and presents their numerical analysis based on spec-
tral and energy methods, and the modified differential equation. In Sect. 4 the initial
boundary problem of nonlinear elastodynamics is reviewed, with a special emphasis
in conservation laws and relative equilibria. There are a large number of methods
that have been specially designed for this problem, as described above, but in Sect. 5
we focus in the EDMC family of high frequency dissipative methods. We discuss
again their numerical analysis and study the solution of relative equilibria, by the
EDMC and other dissipative methods. Section6 closes the chapter with a summary
of results.

2 Linear Elastodynamics

We present in this section the problem of continuum linear elastodynamics and
describe some of its main properties.
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2.1 The Weak Form of the Equations of Linear
Elastodynamics

The initial boundary value problem of linear elastodynamics is presented in weak
form since finite elements, the only spatial discretization considered in this chapter,
are based on the variational form of these equations. For that, consider a deformable
body occupying a set B ⊂ R

N , where N can be 2 or 3, with boundary ∂B partitioned
into disjoint subsets ∂uB and ∂tB. Denoting points in B as x, the displacement of
one of them at time t ∈ I = [0, T ] is given by u(x, t). Using the notation (̇) for
the partial derivative with respect to time, the velocity and acceleration fields are,
respectively, u̇ and ü.

Assuming that the solid is elastic and homogeneous with elasticity tensor C, and
density ρ, the initial boundary value problem of linear elastodynamics consists in
finding u in the set

S = {u : B × I → R
N , u(·, t) ∈ [H 1(B)]N ,

u̇(x, ·), ü(x, ·) ∈ [L2(B)]N , u = 0 on ∂uB × I } ,
(1)

such that, for every v in

V = {w : B → R
N ,w ∈ [H1(B)]N ,w = 0 on ∂uB}, (2)

the following variational equation is satisfied:

∫
B

σ · ε[w] dV +
∫
B

ρ v̇ · w dV =
∫
B
b · w dV +

∫
∂tB

h · w dA , (3)

with v = u̇ and H 1 being the Hilbert space of square integrable functions with square
integrable derivatives. In the previous equation, and below, b is a known field of body
forces and h a known field of tractions on the set ∂tB; σ = Cε is the stress tensor,
and ε = (∇u + ∇T u)/2 is the tensor of infinitesimal strain. In addition to (3), the
solution u must satisfy the following initial conditions

u(x, 0) = uo(x) , u̇(x, 0) = vo(x) , x ∈ B , (4)

where uo, vo are the known initial displacement and velocity, respectively. The dot
product in Eq. (3), and hereafter, denotes the inner product between tensors of any
order resulting from the pairwise contraction of all their indices.
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2.2 Energy

A pair (u, v) will be referred to as a state of the system, and will be denoted by the
symbol z. Given any state z, its energy E(z) is defined as the sum of kinetic and
potential energy of a body with displacement u and velocity v, i.e.,

E(z) = 1

2

∫
B

ε[u] · Cε[u] dV + 1

2

∫
B

ρ v · v dV , (5)

and its (energy) norm as
||z||E = √

E(z) . (6)

The properties of the potential and kinetic energy guarantee that the function || · ||E
has indeed all the properties of a norm. Moreover, it is a natural norm for the prob-
lem (3) which is reasonable for studying the convergence and stability of numerical
approximations of elastodynamics.

The evolution of the energy along a solution to the problem (3) is obtained by
taking the derivative of (5), using (3), and setting u̇ = v:

Ė =
∫
B

ε[u] · Cε[u̇] dV +
∫
B

ρ v̇ · v dV

=
∫
B
b · v dV +

∫
∂tB

h · v dA ,

(7)

which corresponds to the external power exerted on the body. Obviously, if the
external forces vanish, the energy of the system is conserved. This a priori estimate
on the growth of the energy norm of the solution is the basis of the energy method
of stability analysis.

3 Direct Integration Schemes for Linear Elastodynamics

We describe next the most commonly employed strategy for approximating numer-
ically the solution to linear elastodynamics. The idea, often referred in the literature
as the method of lines consists in projecting the solution in space first and later inte-
grating in time the resulting ordinary differential equations (see, e.g., Belytschko
1983; Hughes 1987; Wood 1990; Zienkiewicz and Taylor 2005).

3.1 The Spatial Discretization

We proceed next to study the spatial discretization of (3) by means of finite ele-
ments. This is done for concreteness, since it is the most common approach in solid
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dynamics.However, almost all the results that follow are validwhen the finite element
spatial discretization is replaced by any other approximation method in space.

To define the finite element projection, let us consider a mesh on B connecting a
setN of nodes. Themesh is assumed to be regular and h its mesh size parameter. The
basic step in any Galerkin method is to replace the trial space S and the weighting
space V by finite dimensional subsets of the form

Sh = {uh(x, t) =
∑
a∈N

Na(x) ua(t) , with ua(t) ∈ [C2(I)]N ,

uh(x, t) = 0 on ∂uB, } ,

Vh = {wh(x) =
∑
a∈N

Na(x) wa, with wa ∈ R
N ,

wh(x) = 0 on ∂uB} ,

(8)

where C2(I) is the space of continuous functions in I, with continuous derivatives
up to order 2. The shape functions Na : B → R are piecewise polynomials with com-
pact support and sufficient smoothness. The vectors ua(t) are the nodal displacement
functions and likewise,wa are the nodal values of the weighting functions. The semi-
discrete solution uh is the displacement function inSh that verifies (3) for everywh in
the the space Vh . Denoting by ndof the number of unknown nodal components of the
displacement uh , the weak equation (3) can be written, after a standardmanipulation,
in matrix form as system of ndof ordinary differential equations:

MÜ(t) + KU(t) = f(t), t ∈ I
U(0) = Uo

U̇(0) = Vo .

(9)

In these equations, M is the mass matrix, K the stiffness matrix, f the vector of exter-
nal forces and U the vector of nodal displacements, which collects in a single vector
all the unknown nodal components ua . The solution to the system of ordinary differ-
ential equations (9) is denoted zh = (uh, vh) with vh(x, t) = u̇(x, t). Abusing the
notation, the same symbol will sometimes refer to the vector form of the semidiscrete
displacement and velocity, i.e., zh = (U, U̇).

We note that there is no damping in Eq. (9) because the constitutive law employed
in its derivation is purely elastic. A damping term of the form CU̇, where C is the
damping matrix, might show in the dynamic equilibrium either due to a viscous
contribution in the material response or added ad hoc due to, i.e., Rayleigh damping.

3.2 The Time Discretization

To complete the numerical approximation of the equations of motion, the system of
ordinary differential equations (9) needs to be solved and a numerical method is used
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to integrate it. In this work we consider a certain type of linear multistep algorithms
which includes the most commonly employed integrators for linear elastodynamics,
namely Newmark’s method, the HHT method, the Wilson’s θ-method, Hulbert’s α-
method, and others. Before defining this class of methods, consider a partition of the
time interval I into N subintervals [tn, tn+1] of constant size �t = tn+1 − tn , where
0 = to < t1 < · · · < tN−1 < tN = T and denote by yn the numerical approximation
at time tn of a variable y. With this notation, we have the following

Definition 3.1 (Geradin 1974; Hughes 1987) A linear k−step method for the
second-order differential equation (9) is a rule of the form

k∑
i=0

[
αiMUn+i + �t2βi (−KUn+i + f(tn+i ))

] = 0 , (10)

together with the initial conditions

Ui = U(i�t), i = 1 − k, . . . , 0 . (11)

The scalars αi ,βi are constants and define each method.

The initial conditions (11) are given at negative time instants for simplicity of notation
and are equivalent to the usual initial conditions at positive time instants, up to a time
shift.

Many integration schemes have been developed for structural and continuum
elastodynamics, some ofwhich have beenmentioned in Sect. 1.Asworking examples
we mention two of them:

Example 3.2 Newmark’s method (Newmark 1956) is possibly the most commonly
employed direct integration scheme for continuum and structural dynamics. Given
the displacement Un , velocity Vn and acceleration An at time tn , the value of these
vectors at time tn+1 is obtained by solving

MAn+1 + CVn+1 + KUn+1 = fn+1 ,

Un+1 = Un + �tVn + �t

2
((1 − 2β)An + 2βAn+1) ,

Vn+1 = Vn + �t ((1 − γ)An + γAn+1) .

(12)

In these equations (β, γ) are algorithmic parameters that select individual members
of the family, each of them with different properties. We note, for example, that
second order can only be attained if γ = 1

2 . A full analysis of this method can be
found, e.g., in Hughes (1987).

For reasons that will become apparent later, certain perturbations of Newmark’s
method have favorable properties from the numerical standpoint. As an example of
this class of integrators we consider the following:
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Example 3.3 The HHT method (Hilber et al. 1977) is a one-parameter family
of implicit algorithms for continuum and structural dynamics. As before, given
(Un, Vn, An), the approximations to the displacement, velocity and acceleration,
respectively, at time tn , their corresponding values at time tn+1 are obtained from the
system of equations:

MAn+1 + CVn+α + KUn+α = fn+α ,

Un+1 = Un + �tVn + �t

2
((1 − 2β)An + 2βAn+1) ,

Vn+1 = Vn + �t ((1 − γ)An + γAn+1) ,

0.7 ≤ α ≤ 1 , β =
(
1 − α

2

)2
, γ = 3

2
− α .

(13)

With the notation employed, α is the only free parameter and, as shown in Hilber
et al. (1977), it selects among different members of the family, all being second-order
accurate.

3.3 Spectral Properties of Direct Integration Schemes

As noted above, the most commonly used integration schemes in elastodynamics
are linear multistep methods for the second-order equation (9) and therefore may
be formulated as in Eq. (10). For analysis purposes, it proves convenient to express
these methods as a single-step recurrence relation. For example, if the velocity and
acceleration at time tn are denoted, respectively, as Vn, An , linear 3-step methods for
elastodynamics can be expressed as

Zn+1 = AZn + Bn , with Zn = (
Un,�t Vn,�t2 An

)T
. (14)

The so-called amplification matrix A has dimensions (3ndof )2, and depends on the
parameters of the method; the vector Bn has length 3ndof and is obtained from a
weighted evaluation of the forcing terms at times tn−1, tn and tn+1.

Since (14) is a linear recurrence equation, much information can be inferred
from the spectral properties of the amplification matrix alone. But, moreover, since
the semidiscrete problem itself is defined by linear differential equations, the time
evolution of each of the modes of the solution is independent from the rest, and it
suffices to study the properties of the modal amplification matrices. More details
on this simplification can be found, for instance, in Hughes (1987). Following the
example above, the modal recurrence relation for a linear 3-step method must be of
the form

Zω
n+1 = AωZω

n + Bω
n with Zω

n = (
uω
n ,�tvω

n ,�t2aω
n

)T
. (15)
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In this equation, the vector Zω
n holds the amplitude, rate, and acceleration at time tn

and tn+1 of themodewith frequencyω. ThematrixAω and vectorBω
n are, respectively,

the amplification matrix of the ω−mode and the forcing associated with this mode
corresponding to the interval In .

Expression (15) is very convenient for the study of the algorithm. It characterizes
in a very simple and compact way the evolution of each mode in the solution. In
particular, this frequency analysis helps to understand the dissipation (or lack thereof)
in the integration of the modes. Even though direct integration schemes do not make
use of any modal decomposition, they treat each mode in the solution independently,
as relation (15) indicates.

Since the equations of elastodynamics are linear, an explicit expression for the
modal amplification matrix can always be found, which would be a function of
the method’s parameters and the nondimensional frequency � = ω�t . Once this
expression is obtained, all the conservation/dissipation properties of the method can
be deduced solely from its spectrum {λi }. In particular, the spectral radius ρ of the
matrix or its algorithmic damping ratio ξ, defined respectively as

ρ = max(|λi |), ξ = − 1

�
log(max(|λi |)) , (16)

measure the growth or decay of each individual mode in a single step. Spectral
stability requires the spectral value not to be larger than one, and that eigenvalues
of unit modulus be simple. In addition, the spectral radii of dissipative integration
schemes need to be smaller than 1 for high frequencies.

Example 3.4 Following our previous example, the modal amplification matrix of
the HHT method can be shown to be

A =
⎡
⎣�2α 0 1

1 0 −β
0 1 −γ

⎤
⎦

−1 ⎡
⎣�2(α − 1) 0 0

1 1 1
2 − β

0 1 1 − γ

⎤
⎦ . (17)

The spectral radius of this matrix and its algorithmic damping ratio, for three values
of the algorithmic parameter α, is depicted in Fig. 1. It is clearly observed that the
spectral radius is never greater than 1 and that for α < 1, it decreases monotonically
with �. It is ρ∞, the limit value for � → ∞, the one that defines the algorithmic
treatment of the high frequencies. An algorithm with efficient high frequency dis-
sipation must possess ρ∞ < 1, and controllable by the use via a parameter choice.
In the case of the HHT method, the parameter α clearly modulates the amount of
high frequency dissipation. The same conclusion can be drawn from the plot of the
algorithmic damping ratio.

If the case of Newmark’s method, it is possible to have high frequency algorithmic
dissipation, as Fig. 2 shows, but only at the expense of selecting γ > 1

2 , i.e., by losing
the second-order accuracy. Methods such as HHT were developed to preserve the
second-order accuracy of the trapezoidal rule (Newmark’s method with (β, γ) =
( 14 ,

1
2 ), even with the addition of dissipation.
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Fig. 1 Spectral radius (top)
and algorithmic damping
ratio (bottom) of the HHT
method for three values of
the parameter α (1, 0.9, and
0.7)
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3.4 Energy Stability Analysis

A space-time discretization is unconditionally stable when, for a forcing free prob-
lem, the total energy in the solution is uniformly bounded by the initial energy, i.e.,

‖(U(t), U̇(t)‖E ≤ C‖(Uo, Vo)‖E , (18)

for some constant C independent of h and �t . This is the discrete counterpart of the
a priori energy estimate that was derived for the continuum problem and forms the
basis for the energy method of stability analysis.

It is often argued that spectral analyses, as described in Sect. 3.3, can give neces-
sary and sufficient conditions for stability of time stepping methods in linear elastic-
ity. The spectral stability condition, namely that the spectral radius must be smaller
than one for all frequencies or strictly smaller than one in the case of repeated eigen-
values, is equivalent to the energy-boundedness of each of the modes. However,
following Romero (2002, 2004), we claim that this is not enough to guarantee uni-
form boundedness across all modes in a solution and a stronger notion of stability
must be established. As a corollary, it turns out that some spectrally stable methods
such as the HHT are not unconditionally stable in the sense introduced before.
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Fig. 2 Spectral radius (top) and algorithmic damping ratio (bottom) of Newmark’s method for
three values of the parameter γ (0.5, 0.75, 1.0) and the parameter β = (γ/2 + 1/4)2 selected for
maximum dissipation of high frequencies

The main result of Romero (2002, 2004) is the following:

Theorem 3.5 A time stepping method employed in the time discretization of an
initial boundary value problem is unconditionally stable when the amplification
matrices Aωi are spectrally stable and the set

F = {Aω,ω ∈ R
+}

is compact.

For one system of ordinary differential equations, like the one in Eq. (9), the
classical spectral stability criterion is necessary and sufficient for energy stability,
since the set of all amplification matrices is finite, and thus compact. However, when
a method is analyzed for all possible spatial discretizations of a problem, and in the
limit when the number of degrees of freedom goes to infinity, one must study if there
is a uniform bound for the energy, and Theorem 3.5 provides a sufficient condition.
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3.5 Backward Stability Analysis

Spectral analysis has traditionally been themain technique to evaluate the dissipation
properties of time integration schemes for elastodynamics, as described in Sect. 3.3.
Next, we outline an alternative approach, seldom employed in the literature, that may
cast some additional light on the dissipative/conservative behavior of these methods.

The idea of backward error analysis is to find a perturbed system whose exact
evolution closely resembles the solution furnished by a given numerical method.
Then, by analyzing the partial or ordinary differential equations of the perturbed
system, one might obtain relevant information about the numerical method itself.
This approach was first employed in the context of partial differential equations
(see, e.g., Warming and Hyett 1974). Since then, this technique has been extensively
employed for the stability analysis of linear and nonlinear problems (cf., Hairer 1994,
1999; Leimkuhler andReich 2004, and references therein). Amajor advantage of this
approach is that the conclusions obtained are valid for both the linear and nonlinear
ranges.

We will use this idea to study time integrators, i.e., solutions to the semidiscrete
problem of elastodynamics. If we consider a numerical scheme which is order m
accurate, the goal of this analysis is to obtain a perturbed differential equation of
linear elastodynamics, for which the given numerical scheme is order n accurate
(with n > m). If we require that the solution of the modified differential equation
exactly coincides at discrete points with the numerical solution, the former may be
very difficult to obtain in general. However, enough information can be obtained if
the time step size�t is small and only the lower order terms of the modified equation
are retained.

The procedure to obtain themodified equation is as follows. If a numerical scheme
has a truncation error of the form τ = Cm�tm when it approximates a certain differen-
tial equation, there must exist another differential equation constructed by appending
an O(�tm) term to the original one such that the resulting truncation error is one
order higher, τ̃ = Cm+1�tm+1. To increase the accuracy, the process is repeated.

To clarify these concepts, a backward error analysis of theHHTmethod previously
described is presented next.

Example 3.6 For the one degree of freedom, elastodynamic equation with no physi-
cal damping and no external forces (d̈ + ω2d = 0), the fourth order accuratemodified
differential equation corresponding to the HHT method is

d̈ + G2ω
4�t3ḋ + (1 + G1ω

2�t2)ω2d = 0, with

G1 = 3

4
α2 − α + 1

12
, and G2 = 1

4
(1 − α)α2 .

(19)

Figure3 depicts G1 and G2 as functions of the parameter α.
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Fig. 3 Values of G1 and G2
in the modified equation of
the HHT method
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To prove this claim, letA be the amplification matrix (17) of the HHTmethod and
let (I1, I2, I3) be its three principal invariants. Using Cayley-Hamilton’s theorem
we can write:

A3 − I1A2 + I2A − I3 I = 0 . (20)

Let zn = (dn,�tvn,�t2an)T be the vector of solution variables at time tn . Multiply-
ing both sides of Eq. (20) by the vector zn−2, and using zn+1 = A3zn−2, zn = A2zn−2,
zn−1 = Azn−2 results in

zn+1 − I1zn + I2zn−1 − I3zn−2 = 0 . (21)

Finally, reordering the first row of this equation and calculating the expressions for
the matrix invariants, the following 3-step formula is obtained

dn+1 − 2dn + dn−1

�t2
+ ω2

D
dn − I3 dn − 2dn−1 + dn−2

�t2
= 0 , (22)

where D = 1 + (1 − α
2 )2α�2, I3 = 1

4Dα2(α − 1)�2. The next step consists in
inserting the Taylor expansions of dn+1, dn , dn−1 and dn−2 at time tn+α in expres-
sion (22). After simplifying the resulting equations we obtain:
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0 = d̈(tn+α) + ω2d(tn+α)

+ �t2
[
(
1

12
+ α2

2
)d(4)(tn+α) + α(1 − α

4
)ω2d̈(tn+α)

]

+ �t3
[
(
5

6
α − 5

4
)α2ω2d(3)(tn+α) − (

1

2
+ α2)

α

6
d(5)(tn+α)

]

+ O(�t4) .

(23)

Inserting d̈ = −G2ω
4�t3ḋ − (1 + G1ω

2�t2)ω2d and its derivatives in Eq. (23) we
observe that the O(�t2) and O(�t3) terms cancel for the choice

G1 = 3

4
α2 − α + 1

12
and G2 = 1

4
(1 − α)α2 , (24)

which are precisely of the form indicated in Eq. (19).

The interest in the previous result is that some of the properties of theHHTmethod
can be deduced by analyzing the solution to the differential equation (19).

First, we can interpret the modified differential equation as the equation of
motion of a one degree of freedom oscillator of mass m = 1, spring constant
k = (1 + G1ω

2�t2)ω2 and damping c = G2ω
4�t2. The natural frequency of the

corresponding undamped system is
√
k/m =

√
1 + G1ω2�t2ω. In view of the value

of the constant G1 in (19), for α ∈ [0, 0.7], the algorithmic natural frequencies must
be smaller than the exact ones. Hence, we expect that the periods in the numerically
computed solution be longer than the exact ones.

Second, since the artificial damping introduced by the HHT is of the form
G2ω

4�t3, for α ∈ [0, 0.7] this quantity is always nonnegative and maximum for
α = 0.7, as predicted by the spectral analysis (see Hilber et al. 1977). In particular,
for α = 1, no extra damping is added, as expected, since in this case the method
reduces to the trapezoidal rule, which is conservative for linear problems. In addi-
tion, since the damping is proportional to �4 we expect the numerical method to
be dissipative for high frequency modes, with highest dissipation for the highest
frequency modes.

Third, since forα > 1 the constantG2 is negative, the energy of the corresponding
physical system will grow in time, even for vanishing forcing. This is clearly an
unstable system and indicates that for α > 1 the HHT method should be unstable,
as observed in the original article of Hilber et al. (1977).

The previous analysis has been restricted to a one-dimensional, linear problem, but
need not be. Although a full backward analysis of the method can provided insights
not obtainable by the spectral analysis, this limited application serves to illustrate
the connections between the two approaches.

Example 3.7 The following example shows graphically that themodified differential
equation possesses an exact solution which closely resembles the numerical solution
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Fig. 4 Solutions to the exact
and modified differential
equations compared with the
numerical solution obtained
by the HHT method

obtained with the HHT method. In the following example the exact solutions to the
differential equations

d̈ + ω2d = 0, d(0) = d0, v(0) = v0 , (25)

d̈ + G2ω
4�t3ḋ + (1 + G1ω

2�t2)ω2d = 0, d(0) = d0, v(0) = v0 , (26)

are compared with the numerical solution of Eq. (25) obtained with the HHTmethod.
For this particular example, let ω = 5, �t = 0.1, α = 0.7, d0 = 3 and v0 = 0.
Figure4 shows the exact solution to the differential equation (25), the solution to
the modified differential equation (26), and the data points corresponding to the
HHT solution of the former equation. It is clear that the solution to the modified
equation and the HHT method are very close, illustrating that the modified equation
effectively captures the correct dissipation and period error of the numerical scheme.

4 Nonlinear Elastodynamics

Following the same structure as for linear problems, we introduce in this section
the problem of nonlinear continuum dynamics, focusing on the equations of the
problem and the symmetries that it possesses. In the Sect. 5, we will present a family
of high frequency dissipativemethods for its solution, andwewill discuss some of the
difficulties entailed by the design of dissipative integrators for nonlinear problems.

Following standard notation in continuum mechanics (see, e.g., Gurtin 1981),
let Bo ⊂ R

N denote the reference configuration of a deformable body with points
denoted by X , and ϕ(·, t) : Bo → R

N a one parameter family of deformations with
t ∈ [0, T ] being the time. The boundary of the body admits the partition ∂Bo =
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∂ϕBo ∪ ∂tBo. The (possibly empty) set ∂ϕBo is such thatϕ(·, t) = ϕ̄(t) on its points,
with ϕ̄ a known function. Similarly, the tractions on the boundary subset ∂tBo ⊂ ∂Bo

are also known, and of value T (t). If the body is hyperelastic with stored energy
function W and is subjected to body forces B, its motion is described by an initial
boundary value problem that, in weak form, is:

∫
Bo

(
S · FT D[δϕ] dV + ρoV̇ · δϕ dV − ρoB · δϕ

)
dV =

∫
∂tBo

T · δϕ dA ,

(27)
for all admissible displacement variations δϕ, andV = ϕ̇ being thematerial velocity.
In these equations, and below, ρo is the reference density, F = Dϕ is the deformation
gradient, and S, the second Piola–Kirchhoff stress tensor, is defined as S = 2∂CW
with C = FT F being the right Cauchy–Green deformation tensor.

4.1 Conservation Laws

The elastodynamic problem has a rich geometric structure that reveals itself more
clearly when the problem is described in the Lagrangian or Hamiltonian formalism
(Marsden and Hughes 1983; Simo et al. 1988). Keeping with the style of the presen-
tation for linear systems we do not pursue either of these formalisms, discussed at
length in some of the references provided, but recognize that the presence of sym-
metries in the Eq. (27) lead to conservation laws for the motion which are of great
importance from the theoretical and practical points of view.

Before stating the most important conservation laws we define the linear momen-
tum L, the angular momentum J and the total energy H , respectively, as

L =
∫
Bo

ρoV dV ,

J =
∫
Bo

ρoϕ × V dV ,

H =
∫
Bo

(ρ

2
|v|2 + W (ϕ)

)
dV .

(28)

We summarize all the conservation laws in the following.

Theorem 4.1 Themotion of a bodywith∂ϕBo = ∅ and no external forcing preserves
the linear and angular momenta as well as the total energy.

Proof The proof of these three conservation laws follows directly from Eq. (27) by
choosing the admissible deformation variations to be, respectively, δϕ = c, δϕ =
ϕ × c and δϕ = V with c being a arbitrary constant vector field on Bo. Details are
omitted. �
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4.2 Relative Equilibria

Another characteristic feature of nonlinear elastodynamics is the existence of a par-
ticular kind of solutions known as relative equilibria (Simo et al. 1991; Marsden and
Ratiu 1994). These are motions along which not only the momenta and the energy
are preserved, but also the deformation, as described for example by C, is pointwise
time-invariant. In these motions the body might translate and rotate, but without
changing its shape. As shown in Simo et al. (1991) the boundary value problem
that defines the relative equilibrium deformation ϕe in a reference frame attached to
the center of mass of the solid for a given angular momentum μe and given linear
momentum pe is

pe = ρo� × ϕe

DIV[FeSe] = � × pe
(29)

where � = i−1(ϕe)μe, and i(ϕe) is the inertia tensor at the equilibrium configura-
tion.

The conservation laws stated in Theorem 4.1 and relative equilibria are important
qualitative feature of themotionϕ. One of the driving stimulus for new discretization
techniques is precisely the preservation of these features, without losing accuracy,
or stability in the way.

5 Numerical Methods for Nonlinear Elastodynamics

As in the linear case, numerical methods for the equations of nonlinear continuum
dynamics can be obtained in several ways. The most common of them is the method
of lines already introduced in Sect. 3.1. As in the linear case, the deformation ϕ is
approximated by a mapping ϕh ∈ Sh , with

Sh =
{

ϕh =
∑
a∈N

Na(X)ϕa(t) ,ϕh = ϕ̄ on ∂ϕBo

}
, (30)

and the variations δϕ ∈ Vh , with

Vh =
{

wh =
∑
a∈N

Na(X)wa ,wh = 0 on ∂ϕBo

}
. (31)

We note that the material velocities V h belong to the same space as the deformation
variations so their finite dimensional approximations will belong to Vh as well.

The time-continuous, spatially discrete version of the dynamic equilibrium equa-
tion is obtained by replacing the deformation, velocity and variations in Eq. (27)
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by their counterparts in Sh and Vh . To complete the discretization, again as in the
linear case, the time-dependent fields are to be replaced by approximated values at
the time instants to, t1, . . . , tn and the rates by approximated values of the velocity
and acceleration.

This strategy is very general, and one is free to select any of the time stepping
methods mentioned in Sect. 1 to carry it out. We choose, however, to carry out the
time discretization with a fairly general class of methods introduced in Armero and
Romero (2001a, b), which are of the form

∫
Bo

(
S∗ · FT

n+1/2 D[δϕh] + ρo
V h

n+1 − V h
n

�t
· δϕh

)
dV

=
∫
Bo

ρoBn+1/2 · δϕh dV +
∫

∂tBo

T n+1/2 · δϕh dA

∫
Bo

ρoV ∗ · δV h dV =
∫
Bo

ρo
ϕh

n+1 − ϕh
n

�t
· δV h dV , (32)

with S∗ and V ∗ being consistent approximations to the second Piola–Kirchhoff stress
tensor and material velocity, respectively, at time tn+1/2. More specifically, these two
quantities are defined to be

S∗ = Scons + Sdiss , V ∗ = V cons + V diss . (33)

In the previous equation, the quantities denoted with ()cons are the conserving
part of the stress and velocity, respectively. They are exactly the same expressions
of the midpoint stress and velocity of the Energy-Momentum method, as described
in Gonzalez (2000), namely

Scons = 2(I − N ⊗ N)
∂W

∂C
(Cn+1/2) + W (Cn+1) − W (Cn)

‖Cn+1 − Cn‖ N

with N = Cn+1 − Cn

‖Cn+1 − Cn‖ ,

V cons = V h
n+1/2 .

(34)

To complete the method definition it remains to define the dissipative terms in
Eq. (33), which must be of the form

Sdiss = fdissN , V diss = gdissV h
n+1/2 , (35)

with fdiss and gdiss two scalar functions defined themselves as

fdiss = 2DV

‖Cn+1 − Cn‖ , gdiss = 2DK

‖V h
n+1‖2 − ‖V h

n‖2
. (36)
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The final step is the formulation of the termsDV andDK , for which there is a certain
freedom, as long as the consistency of the method is guaranteed and

DK + DV ≥ 0 . (37)

This choice will be driven by the following result, which is the discrete counterpart
of Theorem 4.1:

Theorem 5.1 The scheme defined by Eqs. (32)–(36) preserves the conservation laws
of momenta. Moreover, when there are no external forces applied on the body, its
total energy is nonincreasing.

Proof To show that the scheme preserves the conservation laws of the continuum,
consider a nonlinear dynamical problemwith no forcing and ∂ϕB0 = ∅. By choosing
δϕh = c, a constant field, in Eq. (32), it follows directly that

0 = c ·
∫
Bo

ρo
V h

n+1 − V h
n

�t
dV = c

�t
· (Ln+1 − Ln) , (38)

which is just the discrete statement of the conservation of linear momentum. Simi-
larly, by choosing δϕh = c× ϕh

n+1/2, with c constant as before, we get

0 = c ·
∫
Bo

ρoϕ
h
n+1/2 × V h

n+1 − V h
n

�t
dV = c

�t
· (Jn+1 − Jn) , (39)

that proves the conservation of angular momentum. Finally, by selecting δϕh =
V h

n+1/2 we obtain

0 = 1

�t

∫
Bo

S∗ · (Cn+1 − Cn) dV +
∫
Bo

ρoV ∗ · V
h
n+1 − V h

n

�t
dV

= 1

�t

(
H(ϕh

n+1, V
h
n+1) − H(ϕh

n, V
h
n) + DK + DV

)
.

(40)

Hence,

H(ϕh
n, V

h
n) − H(ϕh

n+1, V
h
n+1) = DK + DV , (41)

which is nonnegative, in view of Eq. (37). �

The previous theorem motivates that methods of the type described are referred
to EDMC integrators, which stands for Energy Dissipative, Momentum Conserving.
Depending on the expressions for the dissipative termsDV andDK , first and second
order methods have been proposed. In the first-order case, the EDMC-1 method, the
expressions read:
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DV = χ

2

(
1

2
W (Cn+1) + 1

2
W (Cn) − W (Cn+1/2)

)
,

DK = χ

2

(
1

2
k(V h

n+1) + 1

2
k(V h

n) − W (V h
n+1/2)

)
,

(42)

withχ ≥ 0 and k(V h) = 1
2ρo|V h |2 being the kinetic energy density. The parameterχ

controls the size of the dissipation which grows proportionally to it. The EDMC-2
method, a second-order version of this type of integrators, is based on the expressions:

DV =
(
C̃ − Cn

)
· 1
4
C (Cn+1 − Cn) ,

DK = (ṽ − vn) · ρo (vn+1 − vn) ,

(43)

with vn+α = ‖V h
n+α‖ and C̃, ṽ two auxiliary variables implicitly defined by

C̃ = (1 − β)Cn + βCn+1

β = α
�t

h
(vn+1 − ṽn)

ṽn − vn = −α
�t

h
c2(1 − β̃n)‖Cn+1 − Cn‖2 ,

(44)

for some user parameter α and a characteristic length and wave velocity denoted,
respectively, as h and c. Details on the dissipative character and accuracy of the
EDMC-2 method can be found in Armero and Romero (2001b).

Numerical integrators with artificial high frequency dissipation, like the ones dis-
cussed in Sect. 2 can be used, and are actually very frequently employed, for the
solution of nonlinear problems. However, their greatest drawback is that they do not
possess properties such as the ones proved in Theorem 5.1 for the EDMC integra-
tors. First, most of these classical methods break the symmetries of the continuum
problem, and often the conservation of angular momentum is spoiled. Second, the
spectral dissipation, which is guaranteed in the linear setting cannot be proved in
the nonlinear case, when the modes in the solution change as the solid deforms. On
the contrary, it has been shown numerically that these methods can exhibit a patho-
logical energy growth leading invariably to a solution blow-up (cf., e.g., Bauchau
et al. (1995), Armero and Romero (2001a)). The conclusion is that the so-called
unconditionally stable methods possess this property only for linear problems.

5.1 Relative Equilibria

As studied in Sect. 4.2, the equations of nonlinear continuum dynamics possess solu-
tions in which, in addition to the usual conservation laws, the solid moves without
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changing its shape. From the numerical point of view it would be interesting to
discern which integrators preserve these solutions.

It can be shown that any EDMCmethod, when given initial conditions in relative
equilibrium, gives a solution which lies on the relative equilibrium for all times (see
Armero and Romero 2001a). Moreover, we have the following stability result:

Theorem 5.2 Given initial conditions sufficiently close to a relative equilibrium the
solution obtained with an EDMC method will converge asymptotically to the latter.

Proof It is shown in Simo et al. (1991) that the energy, as a function of deformation
and velocity, has a minimum in the relative equilibria, when constrained to the level
set of constant angular and linear momentum. Denoting by He this value, close
to the relative equilibria, the function L = H − He is a Liapunov function. When
an EDMC method is employed to solve a problem with initial conditions close
to a relative equilibria, L will decrease monotonically, while on the level set of
constant momenta, to its minimum, which corresponds to the relative equilibrium by
construction. �

On the other hand, we show next that, for example, Newmark’s method with
γ > 1

2 or the HHT method with α < 1 can not preserve relative equilibria even for
the simplest nonlinear problem, that of a point mass m attached to a fixed point
through an elastic spring moving on a plane.

Let z = (q, p) ∈ R
2 × R

2 collect the position and momentum of the point mass
on the plane and define the Hamiltonian of the system

H(z) = V (q) + K ( p) , (45)

to be sum of the potential energy V (q) = V̂ (λ) = k
2 (λ − λo)

2, with λ = |q|, and
the kinetic energy K = 1

2m | p|2. If the angular momentum of the system is μ, the
equations that describe the relative equilibrium are:

V̂ ′(λe) = |μ|2
mλ3

e

, πe = |μ|
λe

, (46)

with λe = |qe|, πe = | pe| and μ = q × p. Moreover, this relative equilibrium is
unique for every value of |μ| due to the convexity of V̂ .

From the property of conservation of angular momentum, both the position and
momentum of the point mass must remain orthogonal to μ, and the relative equilib-
rium must be a motion in which the mass orbits around the fix point with constant
spring length, equal to λe, and constant velocity ve = πe/m. To describe this motion
mathematically we can consider rotations Q : R2 → R

2 of the form

Q(θ) =
[
cos θ − sin θ
sin θ cos θ

]
. (47)
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The relative equilibria of the spring-mass system must be a motion

q(t) = Q(θ(t))λee ,

p(t) = m Q̇(θ(t))λee = πe Q(θ(t))Q(π/2)e ,
(48)

for some unit vector e ∈ R
2.

We want to study next if the equations resulting from discretizing the equations
of motion of the spring-mass system with an integrator admit solutions which are
discrete relative equilibria, i.e., one parameter orbits of the point mass, and if they
do, whether they fall on top of the exact trajectories, or not. More specifically, we
would like to determine if an integrator can have solutions such as:

qn = Qnqe = Qnλee ,

pn = Qn pe = πe Qn Q(π/2)e ,
(49)

for some values of λe,πe and Qn = Q(θn). Define

Qn+α = (1 − α)Qn + αQn+1 , P = Qn+1Q
−1
n = Q(�θ) , (50)

where �θ is the angle formed by qn and qn+1. Note that Qn+α is not, in general, a
rotation matrix.

The application of the HHT method, as given by Eq. (13), to the spring-mass
model results, after eliminating the acceleration, in

(P − I)qn = �t

m
pn − mν

[
(
1

2
− β)I + βP

]
Qn+αqn ,

(P − I) pn = −ν
m

�t

[
(1 − γ)I + γP

]
Qn+αqn .

(51)

with

ν = �t2

m

V̂ ′(|qn+α|)
|qn+α| = �t2

m

V̂ ′(|Qn+αλee|)
|Qn+αλee| . (52)

From Eq. (51), after some straightforward manipulations, we obtain that the position
and momentum on the relative equilibrium must satisfy:

pe = m

�t

[
P − I + ν(

1

2
− β)Qn+α + νβP Qn+α

]
qe ,

0 =(P − I)2qe + ν(P − I)
[
(
1

2
− β)I + βP

]
Qn+αqe

+ ν [(1 − γ)I + γP] Qn+αqe .

(53)
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To determine if these equations have a solution, let us define the scalarsκ2,κ1,κT ,κ0

κ0 = 1 + ν(
1

2
− 2β + 3αβ + γ − 2αγ) ,

κ1 = −2 + ν(−3αβ + β + α

2
+ αγ) ,

κ2 = 1 + αβν ,

κT = ν

[
(β − 1

2
)(1 − α) + (1 − γ)(1 − α)

]
,

(54)

so that, Eq. (53)2 becomes

[
κ2P2 + κ1P + κT PT + κ0 I

]
Qnqe = 0 . (55)

Without loss of generality, choose Qnqe = λee, to finally obtain

[
κ2P2 + κ1P + κT PT + κ0 I

]
e = 0 . (56)

The trivial solution P = I, ν = 0 is a solution for every combination of parameters
(α,β, γ), but corresponds to the mass at rest. Any nontrivial solution corresponds to
the zero sum of four vectors. See Fig. 5 for an illustration.

In the case of the trapezoidal rule, (α,β, γ) = (1, 1
4 ,

1
2 ), the identity (56)

evaluates to

κ0 = κ2 = 1 + ν

4
, κ1 = −2 + ν

2
, κT = 0 ,

0 =
[
P2 + κ1

κ0
P + I

]
e .

(57)

See Fig. 6 for a graphical interpretation of Eq. (57). Defining η = κ1/κo, Eq. (57)
can be rewritten as

Fig. 5 Graphical
interpretation of Eq. (56).
Each term of the equation
can be viewed as a vector
and their sum must vanish
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Fig. 6 Graphical
interpretation of the
relation (57). We identify
each term of the equation
with a vector, and their sum
must vanish

κ1
κo
Pe

P 2e

e

θ

θ

cos 2θ̂ + η cos θ̂ = −1 ,

sin 2θ̂ + η sin θ̂ = 0 .
(58)

These equations have a nontrivial solution η = −2 cos θ̂, which implies that the trape-
zoidal rule possesses solutions which are discrete relative equilibria of the spring-
mass problem. For a given qe, the corresponding pe is recovered fromEq. (53), using
the definition of η:

pe = m

�t

[
0 2 sin θ̂

1+cos θ̂

− 2 sin θ̂

1+cos θ̂
0

]
, qe = m

�t

√
ν

[
0 1

−1 0

]
qe . (59)

Moreover, the discrete relative equilibria obtained with the trapezoidal rule lie on
the exact ones. To see this, observe that by construction, the motion described by
Eq. (59) is a discrete orbit of the symmetry group with energy

H(zn) = K ( pn) + V (qn) = K̂ (πe) + V̂ (λe) , (60)

as the exact relative equilibria. To calculate the corresponding angular momentum,
let qe = |qe|e and by Eq. (59)

pe = m

�t

√
ν|qe|e2

μ = qe × pe = m

�t

√
ν |qe|2e3

(61)

implying

|μ|2 = m2

�t2
ν |qe|4 = m V̂ ′(λe)λ3

e , (62)
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which coincides with the value of the of the angular momentum in the exact relative
equilibrium. In summary, the discrete relative equilibria of the trapezoidal rule are
discrete group orbits with energy and angular momentum equal to the corresponding
values in the exact relative equilibria. Hence, the discrete motions lie on the exact
relative equilibria.

The previous analysis is nowmodified for the parameter combination (α,β, γ) =
(1, 1

4 (
1
2 + γ)2, γ), with 1

2 < γ ≤ 1, that corresponds the first-ordermembers of New-
mark’s method with maximum dissipation. By replacing α = 1 in Eq. (54) it follows
that

κ0 = 1 + ν(
1

2
+ β − γ) ,

κ1 = −2 + ν(−2β + 1

2
+ γ) ,

κ2 = 1 + νβ

κT = 0 .

(63)

Inserting these parameters in Eq. (56) gives, after some manipulations,

η1 = −2 + ν( 12 + γ − 2β)

1 + ν(β − γ + 1
2 )

,

η2 = (1 + βν)

1 + ν(β − γ + 1
2 )

,

[
η2P2 + η1P + I

]
e = 0 .

(64)

The third equation is illustrated in Fig. 7. From this figure it is clear that a necessary
condition for the existence of solutions is that η2 = 1. But η2 is strictly greater
than 1 for every ν > 0 and thus it can be concluded that the dissipative family of
Newmark’s method cannot have solutions which are relative equilibria of the spring-
mass problem.

Fig. 7 Graphical
interpretation of Eq. (64)3.
Each of the terms
represented by a vector. A
necessary condition for their
sum to be zero is that the
vertical components of e and
η2P2e are equal and
opposite. This implies
η2 = 1

η1Pe

η2P 2e

e

θ

θ
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To study theHHTmethod, the sameanalysis is repeatedoncemore, for algorithmic
parameters (α,β, γ) = (α, (1 − α/2)2, 3/2 − α), 0.7 ≤ α ≤ 1. The value of the
scalars κ0,κ1,κ2,κT is now

κ0 = 1 + ν

4
α(3α2 − 6α + 4) ,

κ1 = −2 + ν

4
(−3α3 + 9α2 − 8α + 4) ,

κ2 = 1 + ν

4
α(2 − α)2 ,

κT = ν

4
α2(1 − α) .

(65)

Using these parameters in Eq. (56), this last equation becomes

κ2 cos(2θ̂) + (κ1 + κT ) cos θ̂ + κ0 = 0 ,

κ2 sin(2θ̂) + (κ1 − κT ) sin θ̂ = 0 .
(66)

The second equations gives

cos θ̂ = κT − κ1

2κ2
(67)

which is plotted in Fig. 8 as a function of α. Inserting Eq. (67) in Eq. (66)1, results
in the algebraic equation

κT (κT − κ1) + κ2(κ0 − κ2) = 0 ⇔ 1

4
(α − 1)α2ν2 = 0 . (68)

Fig. 8 HHT method.
(κT − κ1)/(2κ2) as a
function of α. If this ratio
must be equal to cos θ, the
parameter α must belong ot
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This equation has three solutions: when ν = 0, corresponding to the trivial solution
as indicated before, α = 1, corresponding to the trapezoidal rule, already studied,
and the case α = 0. This last solution must be rejected since Fig. 8 shows that for
α < 0.35 the function (κT − κ1)/(2κ2) can not be the cosine of any angle. It can
be concluded that, as for the dissipative members of Newmark’s family, there is
no dissipative HHT scheme able to represent a discrete relative equilibrium of the
spring-mass system.

6 Summary

This chapter deals with the numerical approximation of the initial boundary value
problem of continuum dynamics. More specifically, it presents the most commonly
used methods to solve it, i.e. a discretization in space with finite elements followed
by an integration in time using methods for ordinary differential equations.

The main emphasis has been the discussion of the formulation and analysis of
discretization techniques that employ time integration schemes with controllable,
artificial, high frequency dissipation. These are extremely popular in commercial
codes for their ability to obtain approximate solutions to complex, stiff, problems in
linear and nonlinear mechanics.

The chapter has presented the derivation of space and time discretization, and the
most commonly used analysis techniques that can be employed to assess the stability
of this type of methods, and their dissipation properties. Since these techniques are
different in the linear and nonlinear regimes, we have presented them separately.

In linear problems, spectral analysis has been the de facto methodology to ana-
lyze time integration schemes. While this is an extremely useful tool, we argue that
it might lead to unsupported conclusions both for linear and nonlinear problems. In
linear problems, unconditional spectral stability is not sufficient to guarantee uncon-
ditional stability of the complete space-time discretization, as it is often believed. An
additional property of the method, originally obtained by the author, is reviewed.

Two are the most common methods for analyzing the stability of integration
schemes for linear problems, namely, spectral and energy methods. We have pre-
sented a third strategy, never used in this context to the author’s knowledge, which
is based on backward error analysis. Using this method we are able to show that the
response of high frequency dissipative schemes closely resembles the exact solution
of perturbed systems in which additional, frequency dependent, damping and stiff-
ness are added. This idea sheds new light into the understanding of dissipative time
stepping methods.

In nonlinear problems, the only way to assess the stability of a discretization is by
evaluating the evolution of the energy in the system. Since spectral analysis can not
be used to study this aspect, the focus needs to be shifted toward numerical methods
which can guarantee unconditional energy dissipation in the nonlinear regime.One of
these types of methods is the EDMC family, which in addition to controlling energy
growth for all hyperelastic models, exactly preserve linear and angular momenta in
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problems with translational and rotational symmetry. The EDMC are recalled in this
chapter, and their major conservation properties proven.

A very interesting feature of nonlinear solid and structural dynamics with sym-
metry is the existence of a particular kind of solutions, known as relative equilibria.
These are motions along level sets of constant momenta, energy, and with pointwise
constant deformation, stress (and thus strain energy density). We show that EDMC
methods preserve these solutions and, moreover, when a trajectory starts close to a
relative equilibrium, it will be attracted to it asymptotically.We show, also for the first
time in the authors’ knowledge, that standard dissipative schemes can not preserve
relative equilibria even in the simplest cases, explaining why long term simulations
obtained with such type of methods invariantly end up in static equilibria.

Acknowledgments Funding for this work has been provided by the Spanish Ministry of Science
and Competitiveness under Grant DPI2012-36429.
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Energy-Momentum Integrators
for Elastic Cosserat Points, Rigid Bodies,
and Multibody Systems

Peter Betsch

Abstract The goal of this chapter is to present the development of energy-
momentum (EM) schemes in the framework of discrete (or finite-dimensional)
mechanical systems. EM integrators belong to the class of structure-preserving
numerical methods and have been originally developed in the field of nonlinear
solid and structural mechanics. EM schemes and energy dissipating variants thereof
typically exhibit improved numerical stability and robustnesswhen compared to stan-
dard integrators. Due to their superior numerical properties, EM schemes have soon
been extended to more involved applications such as flexible multibody dynamics
and coupled thermomechanical problems. In this chapter, we start the development
of second-order EM schemes in the context of the Cosserat point (or pseudo-rigid
body). The theory of a Cosserat point shares main structural properties with semi-
discrete formulations of elastodynamics. Indeed, the Cosserat point can be directly
linked to the 4-node tetrahedral finite element. Besides its usefulness in explaining
main ingredients of EM schemes such as the algorithmic stress formula, the Cosserat
point is ideally suited to perform the transition to rigid body dynamics. In particular,
in the presentwork, the rigid body formulation is obtained by imposing the zero strain
condition on the Cosserat point. This way the rigid body is treated as constrained
mechanical system. Moreover, we show that the EM discretization of constrained
mechanical systems can be derived in a straightforward way from the EM scheme for
the Cosserat point. The resulting rigid body formulation is closely connected to nat-
ural coordinates. Eventually, we deal with the extension to multibody systems which
can be done in a straightforward way due to the presence of holonomic constraints
in the present rigid body formulation.
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1 Introduction

Energy-momentum (EM) integrators have been originally developed in the context
of nonlinear structural dynamics. Building upon the previous work by Hughes et al.
(1978), Greenspan (1984), Simo and Wong (1991) and Simo et al. (1992b), the first
EM scheme for nonlinear elastodynamics has been proposed in the seminal work
by Simo and Tarnow (1992). Due to their favorable numerical stability properties
(Gonzalez and Simo 1996) EM methods have soon been extended to the realm
of nonlinear structural and rigid body dynamics. The description of these systems
typically relies on the introduction of rotational coordinates. For example, in rigid
body dynamics one may use Euler angles, Euler parameters (or unit quaternions), or
Rodrigues parameters for the parametrization of the rotation manifold. It was soon
realized that the selection of specific rotational coordinates has a strong impact on
the design of structure-preserving integrators (Lewis and Simo 1994). In particular,
the use of minimal coordinates (like Euler angles for rigid body dynamics) in general
leads to highly nonlinear and elaborate expressions that typically impede the design
of time-stepping schemes featuring conservation of angular momentum.

In nonlinear structural dynamics the parametrization of the rotation manifold
does affect both the discretization in space and time. It has been shown in Simo et al.
(1992a) that the finite element interpolation of rotational variables in general destroys
conservation of angular momentum of the semi-discrete system. Strictly speaking
the available EM methods for nonlinear beams (Romero and Armero 2002a; Betsch
and Steinmann 2003; Leyendecker et al. 2006) and shells (Simo and Tarnow 1994;
Brank et al. 1998; Betsch and Sänger 2009a) confine the use of rotational parameters
to the nodes of the finite element mesh. Similarly, in these works the discretization
in time does not directly rely on the use of rotational parameters.

EM schemes provide a good starting point for the development of energy decaying
schemes. Energy decaying variants of EM schemes have been proposed, for example,
by Bauchau and Bottasso (1999), Kuhl and Crisfield (1999), Armero and Romero
(2001, 2003), Romero and Armero (2002b), Bottasso et al. (2002), Bottasso and
Trainelli (2004), Lens and Cardona (2007). More about energy decaying integrators
can be found in chapters “HighFrequencyDissipative Integration Schemes for Linear
and Nonlinear Elastodynamics” and “A Lie Algebra Approach to Lie Group Time
Integration of Constrained Systems”.

Due to their desirable numerical properties, EMmethods have also been extended
tomore involved problems such as nonlinear visco-elastodynamics (Groß andBetsch
2010), thermo-elastodynamics (Romero 2009; Groß andBetsch 2011; Romero 2010;
Hesch and Betsch 2011c; CondeMartín et al. 2016), finite deformation contact prob-
lems (Laursen and Chawla 1997; Armero and Petöcz 1998; Hesch and Betsch 2009,
2011b), and flexible multibody dynamics (Bauchau and Bottasso 1999; Ibrahimbe-
gović et al. 2000; Bottasso et al. 2001; Betsch and Steinmann 2002a, c; Lens et al.
2004; Betsch and Sänger 2009b; Leyendecker et al. 2008a). EM schemes have also
been incorporated into direct methods for the optimal control of multibody systems
(Bottasso and Croce 2004; Betsch et al. 2012; Koch and Leyendecker 2013).

http://dx.doi.org/10.1007/978-3-319-31879-0_1
http://dx.doi.org/10.1007/978-3-319-31879-0_1
http://dx.doi.org/10.1007/978-3-319-31879-0_3
http://dx.doi.org/10.1007/978-3-319-31879-0_3
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A good account on the development of EM schemes in the context of nonlinear
finite element methods can be found in the books by Crisfield (1997), Géradin and
Cardona (2001), Laursen (2002), Krenk (2009), Ibrahimbegović (2009), Bauchau
(2011).

An alternative route to the design of structure-preserving time-stepping schemes
are variational integrators. In the context of multibody dynamics variational integra-
tors have been dealt with, for example, in Leyendecker et al. (2008b), Ober-Blöbaum
et al. (2011), Leyendecker et al. (2010), Johnson and Murphey (2009), Betsch et al.
(2010). For a tutorial on variational integrators we refer to the chapter “A Brief
Introduction to Variational Integrators”.

The goal of this chapter is to present the development of EM schemes in the frame-
work of discrete (or finite-dimensional) mechanical systems. To this end, we start
in Sect. 2 with the Cosserat point (or pseudo-rigid body). The theory of a Cosserat
point shares main structural properties with semi-discrete formulations of elastody-
namics. Indeed, the Cosserat point can be directly linked to the 4-node tetrahedral
finite element as will be shown in Sect. 2.6. Besides its usefulness in explaining main
ingredients of EM schemes such as the algorithmic stress formula, the Cosserat point
is ideally suited to perform the transition to rigid body dynamics. In Sect. 3, the rigid
body formulation is obtained by imposing the zero strain condition on the Cosserat
point. This way the rigid body is treated as constrained mechanical system. More-
over, the EM discretization of constrained mechanical systems can be derived in
a straightforward way from the previously developed EM scheme for the Cosserat
point. The resulting rigid body formulation is closely connected to natural coordi-
nates as will be shown in Sect. 3.7. Due to the presence of holonomic constraints
in the present rigid body formulation, the extension to multibody systems can be
done in a straightforward way. This is the subject of Sect. 4. Eventually, in Sect. 5,
representative numerical examples are presented.

2 EMMethod for Cosserat Points

We start the description of EM schemes in the context of a Cosserat point (Rubin
2000). Similar to the theory of a pseudo-rigid body (Cohen and Muncaster 1988;
Nordenholz and O’Reilly 1998) the theory of a Cosserat point represents a finite-
dimensional model for a deformable body. This model problem already features
key structural properties of more complicated mechanical systems such as nonlin-
ear elastodynamics and structural dynamics. In contrast to the continuum theory the
equations governing the motion of a Cosserat point consist of ordinary differen-
tial equations (ODEs). Due to its relative simplicity, the theory of a Cosserat point
is deemed to be especially well-suited to convey main ideas of the design of EM
schemes.

In addition to that, the theory of a Cosserat point paves the way to rigid body
dynamics. To this end additional geometric constraints are imposed on the Cosserat
point leading to differential-algebraic equations (DAEs) governing the motion of a

http://dx.doi.org/10.1007/978-3-319-31879-0_5
http://dx.doi.org/10.1007/978-3-319-31879-0_5
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rigid body. Consequently, we shall regard the rigid body as a constrained mechanical
system. The DAEs not only govern the motion of rigid bodies but also the motion
of general flexible multibody systems. It will subsequently become apparent that the
development of EM methods for constrained mechanical systems is closely related
to the design of EM schemes for elastic bodies.

2.1 Governing Equations

The equations of motion pertaining to the present model problem of a deformable
body can be derived from the principle of virtual work for a general deformable
continuum. To this end, the assumption of spatially homogeneous deformations is
imposed by considering affine deformation maps of the form (Fig. 1)

x = Φ(X, t) = x(t) + F(t)(X − X) (1)

Here, material points in the reference configuration B ⊂ R
3 are denoted by X ∈ B,

X ∈ B is the center of mass, and x(t) ∈ Bt denotes the corresponding placement in
the configuration Bt ⊂ R

3 at time t ∈ [0,T ], the time interval of interest. Moreover,
F(t) = DΦ t(X) is the deformation gradient, where Φ t(X) = Φ(X, t).

Due to the kinematic assumption (1) the deformation gradient F does not depend
on X. This property gives rise to the present model problem of a Cosserat point.
Alternatively, the model problem could be termed homogeneous elasticity (see, for
example, Simo et al. 1991). Another perspective is to view the presentmodel problem
as an extension of the classical model of a rigid body. This viewpoint leads to the
notion of a pseudo-rigid body. The configuration space of the free Cosserat point is
given by

Q = {
(x,F) ∈ R

3 × R
3×3 | det(F) > 0

}
(2)

Note that F ∈ GL+(3) , where GL+(3) is the subgroup of the general linear group,
GL(3), consisting of 3 × 3matrices with positive determinant. Obviously, dim(Q) =
12, so that the free Cosserat point has n = 12 degrees of freedom (DOFs).We further
remark that consistent with the definition of the center of mass in the reference
configuration we have the relationships

Fig. 1 Planar illustration of
the Cosserat point:
Reference configuration B
(left), and current
configuration Bt (right)

B
Bt

X

x

X x

Φ

F
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X = 1

M

∫
B0

ρ0X dV or
∫
B0

ρ0(X − X) dV = 0

where M = ∫
B0

ρ0 dV is the total mass and ρ0 : B0 → R is the reference density.
The principle of virtual work for a general continuum body can be written as

G(Φ; δΦ) = Gdyn(Φ; δΦ) + Gint(Φ; δΦ) − Gext(Φ; δΦ) = 0 (3)

where δΦ : B0 → R
3 can be interpreted as virtual displacement of the material point

X, Gext is the virtual work of the external loading, Gint is the internal virtual work
due to deformation, and Gdyn is the contribution of the inertia terms. In particular

Gdyn(Φ; δΦ) =
∫
B0

ρ0δΦ · Φ̈ dV (4)

where Φ̈ = ∂2

∂t2 Φ(X, t) is the acceleration of thematerial pointX at time t. The virtual
work of the internal forces is given by

Gint(Φ; δΦ) =
∫
B0

δF : P dV (5)

where δF = DδΦ(X), and P is the first Piola–Kirchhoff stress tensor. Note that
P = FS, where S is the second Piola–Kirchhoff stress tensor. We further remark that
the scalar product of the two second-order tensors δF and P is given by

δF : P = tr(δFTP)

where tr(•) is the trace operator and δFT denotes the transpose of δF. The virtual
work of the external loading can be written as

Gext(Φ; δΦ) =
∫
B0

ρ0δΦ · b dV +
∫

∂B0

δΦ · p dA (6)

where b : B0 × [0,T ] → R
3 is the body force per unit mass and p : ∂B0 × [0,T ] →

R
3 is the nominal traction vector on the boundary. For simplicity of exposition we

confine our attention to the pure Neumann problem (i.e., no Dirichlet boundary
conditions).

To derive the variational formulation of the present model problem we insert (1)
along with

δΦ(X) = δx + δF(X − X) (7)

into the principle of virtual work (3). Accordingly, the virtual work of the inertia
terms (4) yields

Ĝdyn
(
(x,F); (δx, δF)

) = δx · Mẍ + δF : (F̈E0) (8)
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where E0 is the constant and positive-definite tensor given by

E0 =
∫
B0

ρ0(X − X) ⊗ (X − X) dV (9)

Note that ⊗ is the standard tensor product of two vectors. Tensor (9) is often called
the (referential) Euler tensor (Gurtin 1981), and is closely related to the classical
inertia tensor of rigid body dynamics, see Sect. 3.4 for further details.

Concerning the internal virtual work (5) the assumption of an homogeneous defor-
mation leads to the expression

Ĝint(F; δF) = δF :
(
F

∫
B0

S(F) dV

)
(10)

where an elastic solid with stress response function S(F) has been assumed. In the
following we focus on constitutive models for hyperelastic solids. In particular, a
frame-indifferent hyperelastic stress response is given by

S(F) = 2DW (C) (11)

whereW denotes the strain energy density and C = FTF is the right Cauchy–Green
deformation tensor. Expression (10) shows that only the stress resultants

S =
∫
B0

S dV = 2V0DW (C) (12)

enter the internal virtual work. Here V0 = ∫
B0

dV is the total volume of the body in
the reference configuration. We further introduce the total strain energy given by

U =
∫
B0

W (C) dV = V0W (C) (13)

so that the second Piola–Kirchhoff stress resultants (12) can be written as

S = 2DU(C) (14)

Now the internal virtual work pertaining to the hyperelastic Cosserat point can be
written as

Ĝint(F; δF) = δF : (
2FDU(C)

)
(15)

The virtual work of the external loading (6) together with (7) yields

Ĝext
(
(x,F); (δx, δF)

) = δx · f ext + δF : Mext (16)
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where

f ext =
∫
B0

ρ0b dV +
∫

∂B0

p dA (17)

Mext =
∫
B0

ρ0b ⊗ (X − X) dV +
∫

∂B0

p ⊗ (X − X) dA (18)

Note that f ext is the resultant external force acting on the body. Moreover,Mext may
be called referential external force-moment (Cohen and Muncaster 1988) relative
to the center of mass. Altogether the variational formulation emanating from the
principle of virtual work (3) can be written as

δx · (
Mẍ − f ext

) + δF : (
F̈E0 + 2FDU(C) − Mext

) = 0 (19)

The last equation has to hold for arbitrary δx ∈ R
3 and δF ∈ R

3×3. These equa-
tions give rise to the following initial value problem: Find x : [0,T ] → R

3 and
F : [0,T ] → R

3×3 such that

Mẍ = f ext
F̈E0 + 2FDU(C) = Mext

(20)

subject to the initial conditions x(0) = x0, ẋ(0) = v0, F(0) = F0, and Ḟ(0) = V 0,
wherex0, v0 ∈ R

3 andF0, V 0 ∈ R
3×3 are givenquantities. The aboveODEs coincide

with the equations of motion in referential form in Cohen and Muncaster (1988).

2.1.1 Balance Laws

Before dealing with the balance laws we recast (19) in an alternative form. Note,
however, that the balance laws for linearmomentum, angular momentum, and energy
can be directly deduced from the principle of virtual work in the form (19) as well.
For completeness, this procedure is outlined in Appendix A.1.

2.2 Formulation in Terms of Directors

For our purposes it is convenient to recast the previously derived equations of motion
in a form that is typically used in the theory of a Cosserat point (Rubin 2000). To
this end we write the homogeneous deformation gradient as

F(t) = di(t) ⊗ Di (21)
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where di(t) ∈ R
3 are three director vectors that in general rotate, stretch and shear

with the body in its motion (Fig. 2). Note that in the last equation and in what follows,
the summation convention applies to indices appearing twice in a formula. The
directors are subject to the requirement that (d1 × d2) · d3 > 0, which is consistent
with the condition det(F) > 0.

Corresponding to the directors di(t) ∈ R
3, we introduce the vectorsDi ∈ R

3 con-
stituting the director triad in the reference configuration. In particular,Di represent a
basis fixed in space whose origin coincides with the center of mass. The correspond-
ing coordinates will be denoted by

Xi = Di · (X − X) (22)

Without loss of generality, we assume that the directors in the reference configuration
aremutually orthonormal, that is,Di · Dj = δij, where δij is the Kronecker delta. Note
that the last assumption implies Di = Di. We further assume that the reference con-
figuration of the Cosserat point is a natural (i.e., stress-free) configuration. Inserting
(21) into (1) and taking into account (22) yields

x = x(t) + Xidi(t) (23)

The last equation indicates that the kinematics of the Cosserat point confines the
(convected) coordinates Xi to remain straight. Differentiating (21) with respect to
time gives

Ḟ(t) = ḋi(t) ⊗ Di

F̈(t) = d̈i(t) ⊗ Di (24)

In line with (7) we further have

δF = δdi ⊗ Di (25)

Nowwe are in a position to recast theODEs (20) governing themotion of theCosserat
point in an alternative form. Substituting (25) along with (24)2 into the virtual work
(8) of the inertia terms we obtain

G̃dyn
(
(x, di); (δx, δdi)

) = δx · Mẍ + δdi · Eij
0 d̈j (26)

Fig. 2 Planar illustration of
the Cosserat point:
Reference configuration B
(left), and current
configuration Bt (right)

B
Bt

X
x

X x

Φ

FD1

D2

d1d2
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where the components Eij
0 of the referential Euler tensor (9) are given by

Eij
0 = Di · E0Dj =

∫
B0

ρ0X
iXj dV (27)

In the last equation use has been made of (9) and (22). Similarly, expression (15) for
the internal virtual work can be recast in the form

G̃int(d; δdi) = δdi · dj (Di · 2DU(C)Dj) (28)

where use has been made of (13). Note that the strain energy U(C) depends on the
right Cauchy–Green deformation tensor C = FTF which, in view of (21), can also
be written as

C = dijDi ⊗ Dj

where
dij = di · dj (29)

play the role of metric coefficients. Accordingly, we have six independent metric
coefficients measuring homogeneous deformations of the Cosserat point. Specif-
ically, if the magnitude of di changes, the Cosserat point experiences extension,
whereas shear deformation happens if the angle between any two directors changes.
Next consider

d
dt U(C) = DU(C) : Ċ = DU(C) : (ḋijDi ⊗ Dj) = 1

2S
ij
ḋij (30)

where the components

S
ij = Di · 2DU(C)Di = 2

∂U

∂dij
(31)

have been introduced. Moreover, employing (29) in (30) yields the relationship

d
dt U(C) = 1

2S
ij
(ḋi · dj + di · ḋj) = S

ij
dj · ḋi (32)

where the symmetry of S
ij
(i.e., S

ij = S
ji
) has been taken into account. Next we

introduce the internal director forces

f iint = S
ij
dj = ∂U

∂di
(33)

such that the internal virtual work (28) can be written as

G̃int(d; δdi) = δdi · f iint (34)
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Remark 2.1 For later usewe note that applying the chain rule and taking into account
the symmetry of the metric coefficients djk one gets

∂U
∂di

= ∂U
∂djk

∂djk
∂di

= ∂U
∂djk

(
δijdk + δikdj

)

= 2 ∂U
∂dik

dk

(35)

This result is consistent with (31) and (33).

The virtual work of the external loading (16) can be written as

G̃ext
(
(x, di); (δx, δdi)

) = δx · f ext + δdi · f iext (36)

where the external director forces f iext ∈ R
3 are given by

f iext = MextDi =
∫
B0

ρ0X
ib dV +

∫
∂B0

Xip dA (37)

To get the last equation use has been made of (18) along with (22). Note that with
regard to the last equation the referential external force-momentMext defined in (18)
can also be written as

Mext = f iext ⊗ Di (38)

Now, using (26), (34), and (36), a variational formulation of the Cosserat point
equivalent to (19) can be obtained:

δx · (
Mẍ − f ext

) + δdi ·
(
Eij
0 d̈j + f iint − f iext

)
= 0 (39)

Due to the arbitrariness of δx ∈ R
3 and δdi ∈ R

3, i = 1, 2, 3, we obtain 12 inde-
pendent ODEs giving rise to the following initial value problem for the hyperelastic
Cosserat point: Find x : [0,T ] → R

3 and di : [0,T ] → R
3 (i = 1, 2, 3) such that

Mẍ = f ext
Eij
0 d̈j + f iint = f iext

(40)

subject to the initial conditions x(0) = x0, ẋ(0) = v0, di(0) = (di)0, and ḋi(0) =
(vi)0, where x0, v0, (di)0, (vi)0 ∈ R

3 are given quantities. It is worth noting that the
ODEs (40)2 coincidewith the balances of directormomentum inRubin (2000).More-
over, in Rubin (2000), f iext ∈ R

3 and f iint ∈ R
3 are called external director couples

and intrinsic director couples, respectively.
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2.3 Balance of Linear Momentum

The balance law for linear momentum can be directly obtained from the principle
of virtual work (39) by setting δx = ξ, where ξ ∈ R

3 is a constant vector, together
with δdi = 0. Accordingly, we get

d

dt
l = f ext (41)

where the total linear momentum of the Cosserat point is given by

l = Mẋ (42)

As before, the right-hand side of (41) characterizes the resultant external force applied
to the Cosserat point.

2.4 Balance of Angular Momentum

In preparation for the design of EM integrators, we next consider the fundamental
balance law for angular momentum. Substituting δx = ξ × x along with δdi = ξ ×
di into (39) yields

(ξ × x) · (
Mẍ − f ext

) + (ξ × di) ·
(
Eij
0 d̈j + f iint − f iext

)
= 0 (43)

or
ξ ·

(
Mx × ẍ − x × f ext + Eij

0 di × d̈j + S
ij
di × dj − di × f iext

)
= 0 (44)

In the last equation use has been made of (33). Due to the symmetry of S
ij
and the

skew-symmetry of the vector cross product we have S
ij
di × dj = 0. Now equation

(44) can be recast in the form
d

dt
j = mext (45)

where j ∈ R
3 is the total angular momentum of the Cosserat point and mext ∈ R

3 is
the resultant external torque acting on the Cosserat point:

j = Mx × ẋ + Eij
0 di × ḋj

mext = x × f ext + di × f iext
(46)

Note that both quantities are referred to the origin of the inertial frame of reference.
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2.5 Balance of Energy

The balance law for energy can be obtained from the variational formulation (39) by
substituting ẋ for δx and ḋi for δdi. Accordingly, we get

ẋ · (
Mẍ − f ext

) + ḋi ·
(
Eij
0 d̈j +

∂U

∂di
− f iext

)
= 0

where (33) has been employed. The last equation can be recast in the form

d

dt
E = Pext (47)

where
Pext = f ext · ẋ + f iext · ḋi (48)

denotes the power of the external forces acting on the body. Moreover, E is the total
mechanical energy1 given by

E = T + U (49)

where U denotes the total strain energy defined in (13) and

T = 1

2
Mẋ · ẋ + 1

2
Eij
0 ḋi · ḋj (50)

is the kinetic energy of the Cosserat point.

Remark 2.2 It is obvious from the balance law (45) that the total angular momentum
is conserved (or a first integral of themotion) if the resultant external torque vanishes,
that is, if mext = 0. Then (43) yields

ξ ·
(
Mx × ẍ + Eij

0 di × d̈j
)

= ξ ·
(
di × ∂U

∂di

)

ξ · d
dt j = ξ ·

(
S
ij
di × dj

)
= 0

(51)

where use has been made of (33). Due to the arbitrariness of ξ ∈ R
3 the last equality

implies that j is constant.

Remark 2.3 According to Noether’s theorem conservation laws are intimately con-
nected with invariance (or symmetry) properties of the system. In the present case
conservation of angular momentum can be linked to the invariance of the potential
energy under rotations.

1If the external loads or part of them can be derived from an associated potential energy function Vext
their contribution to the balance of energy can be shifted to the left-hand side of (47) by replacing
U in (49) with U + Vext .
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In essence, the principle ofmaterial frame-indifference requires the stress response
to be invariant under rigid motions. This requirement is satisfied by the fact that the
total strain energy (13) is a function of the metric coefficients (29). That is,

U = Û(di) = Ũ(dij) (52)

This implies invariance under rotations. To see this, let d�

i (t) define a motion that
differs from di(t) by a rotation. Then, there is a rotation tensor Q(t) ∈ SO(3) that
belongs to the Special Orthogonal group in 3-space such that

d�

i = Qdi

It can be easily seen that the metric coefficients dij are invariant under rotations:

d�

ij = d�

i · d�

j

= (Qdi) · Qdj
= di · QTQdj
= di · dj
= dij

(53)

With regard to (52) this implies rotational invariance of the total strain energy:

Û(Qdi) = Û(di) (54)

LetQε = expS0(3)(ε̂ξ) ∈ SO(3) for any ε ∈ R and skew-symmetric tensor ξ̂ ∈ so(3).
In this connection, expS0(3) : so(3) �→ SO(3) is the exponential map on the rotation
group SO(3), given by the Rodrigues formula (see, for example, Marsden and Ratiu
1999)

expS0(3)(ε̂ξ) = I + sin(ε‖ξ‖)
‖ξ‖ ξ̂ + 1

2

[
sin(ε‖ξ‖/2)

‖ξ/2‖
]2

ξ̂
2

(55)

Here, ξ̂ ∈ so(3) is a skew-symmetric tensor with associated axial vector ξ ∈ R
3.

That is, ξ̂a = ξ × a for any a ∈ R
3. It can be easily verified that Qε = expS0(3)(ε̂ξ)

satisfies

Qε=0 = I and
d

dε

∣∣∣∣
ε=0

Qε = ξ̂

Rotational invariance of the strain energy function (54) yields

0 = d
dε

∣∣
ε=0

Û
(
Qεdi

)
= ∂Û

∂di
· ξ̂di

= −ξ ·
(

∂Û
∂di

× di
) (56)
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for any ξ ∈ R
3. Comparison of the last equation with (51)1 shows that rotational

invariance of the strain energy indeed yields the conservation law for angularmomen-
tum.

Remark 2.4 The rotational invariance of the total strain energy (52) is in agreement
with Cauchy’s representation theorem (see Truesdell and Noll 2004, Sect. 11, or
Antman 2005, Chapter 8). Accordingly, if a scalar-valued function f̂ (di) is invariant
under the proper orthogonal group then it depends only on the set of invariants
S(η) ∪ T(η), where η denotes the ordered set of directors η = {d1, d2, d3} and

S(η) = {di · dj, 1 ≤ i ≤ j ≤ 3}
T(η) = {(d1 × d2) · d3}

The fact that themetric coefficients dij ∈ S(η) corroborates that the total strain energy
Û(di) = Ũ(dij) is invariant under rotations.

2.6 The Link to Finite Elements

The initial value problem (40) fits into the standard framework for semi-discrete
mechanical systems resulting from a space discretization of nonlinear elastodynam-
ics. The finite element method is commonly used to perform the discretization in
space of continuum bodies. This results in the semi-discrete equations of motion
which assume the standard form

Mq̈ + Fint(q) = Fext(q) (57)

The system of nonlinear second-order ODEs (57) is subject to the initial conditions
q(0) = q0 and q̇(0) = v0, where q0, v0 ∈ R

n are given. For the free hyperelastic
Cosserat point we have n = 12 DOFs. In particular, the configuration vector q :
[0,T ] → R

n of the Cosserat point is given by

q =
⎡
⎢⎣
q1
...

qN

⎤
⎥⎦ =

⎡
⎢⎢⎣
x
d1
d2
d3

⎤
⎥⎥⎦ (58)

where N denotes the number of ‘nodal’ configuration vectors qA ∈ R
3 needed

to describe the finite-dimensional mechanical system at hand. Obviously, for the
Cosserat point we have N = 4. Taking into account the above partition of the config-
uration vector q ∈ R

3N , the equations of motion (57) can be recast in the equivalent
form

N∑
A,B=1

δqA · (
MABq̈A + ∇qAV (q) − FA

ext(q)
) = 0 (59)
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for arbitrary δqA ∈ R
3, A = 1, . . . ,N . Comparing (59) with (39) yields the mass

matrixM ∈ R
3N×3N pertaining to the Cosserat point

M =

⎡
⎢⎢⎣
MI 0 0 0
0 E11

0 I E12
0 I E13

0 I
0 E21

0 I E22
0 I E23

0 I
0 E31

0 I E32
0 I E33

0 I

⎤
⎥⎥⎦ (60)

where I denotes the 3 × 3 identity matrix. Note that the mass matrix is constant,
symmetric and positive-definite. In this connection we remark that, as is obvious
from (27), Eij

0 = Eji
0 . Moreover, V : Rn → R is a potential energy function which, in

the case of the Cosserat point, originates from the strain energy (13). In addition to the
internal force vector Fint(q) = ∇V (q), the external force vector Fext(q) ∈ R

n might
represent configuration dependent (follower) loads. For the Cosserat point we have

Fext =
⎡
⎢⎣
F1
ext
...

FN
ext

⎤
⎥⎦ =

⎡
⎢⎢⎣
f ext
f 1ext
f 2ext
f 3ext

⎤
⎥⎥⎦ (61)

2.6.1 The 4-node Tetrahedral Element

One of themost frequently used low-order elements is the 4-node tetrahedral element
and its two dimensional counterpart, the 3-node triangle. The present formulation of
the Cosserat point is equivalent to the 4-node tetrahedral element (Fig. 3). Specifi-
cally, the configuration vector (58) of the Cosserat point, q ∈ R

12, can be directly
connected to the four nodal position vectors, xA ∈ R

3, A ∈ {1, 2, 3, 4}, characteriz-
ing the deformed configuration of the tetrahedral element. In view of the kinematic

Fig. 3 The 4-node
tetrahedral element and its
connection with the Cosserat
point

3

x1
x2

x3

x4

x d1

d2

d3

X1

X2

X3
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relationship (23), the nodal position vectors of the 4-node tetrahedral element can be
expressed as

xA = x + Xi
A di

where x ∈ R
3 denotes the center of mass of the tetrahedral element and

Xi
A = Di · (XA − X)

are the material coordinates of the nodes in accordance with (22). We refer to Fig. 4
for an illustration of the planar case.

Introducing the nodal configuration vector of the 4-node tetrahedral element

qe = [
xT1 xT2 xT3 xT4

]T

we may write
qe = Tq

where the configuration vector of the Cosserat point, q ∈ R
12 is given by (58), and

T is a constant 12 × 12 transformation matrix of the form

T =

⎡
⎢⎢⎣
I X1

1 I X
2
1 I X

3
1 I

I X1
2 I X

2
2 I X

3
2 I

I X1
3 I X

2
3 I X

3
3 I

I X1
4 I X

2
4 I X

3
4 I

⎤
⎥⎥⎦

For regular geometries of the tetrahedral element, matrix T is non-singular. Substi-
tuting the relationships

q = T−1qe , δq = T−1δqe , q̈ = T−1q̈e

Fig. 4 The 3-node
triangular element in the
reference configuration. The
position of node 2 relative to
the center of mass, X ∈ R

2,
is characterized by the
coordinates X1

2 and X2
2

X1

X2

X3

X

D1D2 X1

X2

X1
2

X2
2
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into (59), the equations of motion can be written in terms of the nodal quantities
pertaining to the tetrahedral element. For example, the corresponding mass matrix
is given by

Me = T−TMT−1

where the mass matrixM of the Cosserat point is given by (60).

2.7 The EM Method Due to Simo and Tarnow

Westart our treatment ofEMschemes by applying themethod developed bySimo and
Tarnow (1992) in the context of nonlinear elastodynamics to themodel problem of an
elastic Cosserat point. In essence the discretization in time of the ODEs (40) consists
of a modification of the mid-point rule. Correspondingly, the resulting EM integrator
is an implicit second-order scheme. For the present purposes it is convenient to
confine our attention to the balances of director momentum (40)2. Accordingly, we
shall consider the following initial value problem written in first-order form: Find
di, vi : [0,T ] → R

3, (i = 1, 2, 3), such that

ḋi = vi

Eij
0 v̇j = f iext − S

ij
dj

(62)

subject to the initial conditions di(0) = (di)0, and vi(0) = (vi)0, where (di)0, (vi)0 ∈
R

3 are given quantities. Note that expression (33) for the internal director forces,

f iint = S
ij
dj, has been used in (62)2. Consider a representative time interval [tn, tn+1]

with time step �t = tn+1 − tn, and given state-space coordinates din ∈ R
3 and

vin ∈ R
3 at tn. The resulting algebraic problem to be solved is given as follows:

Find (din+1 , vin+1) ∈ R
3 × R

3, (i = 1, 2, 3), as the solution of the algebraic system of
equations

din+1 − din = �tvi
n+ 1

2

Eij
0

(
vjn+1 − vjn

) = �t
(

(f iext)
∣∣
n+ 1

2
− S

ij
Adjn+ 1

2

) (63)

Here and in the sequel (•)n+ 1
2
denotes the mean value of the quantity (•) in the time

interval [tn, tn+1]. That is,

(•)n+ 1
2

= 1

2

(
(•)n + (•)n+1

)
(64)

Moreover, (f iext)
∣∣
n+ 1

2
denotes the approximation of the external director forces in the

time interval [tn, tn+1], the specification of which is left open at the present stage.
The distinguishing feature of the scheme (63) is the presence of an algorithmic stress

formula for the calculation of S
ij
A. In particular, for the specific case of St. Venant-
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Kirchhoff material, in Simo andTarnow (1992) the following closed-form expression

for S
ij
A is proposed:

S
ij
A = Cijklγkl

n+ 1
2

(65)

Here, Cijkl = 4 ∂2U
∂dij∂dkl

are the components of the fourth-order elasticity tensor and γij
denote the components of the Green–Lagrangean strain tensor given by

γij = 1

2

(
dij − δij

)
(66)

In view of (64) and (66), the algorithmic stress formula (65) relies on the mean value
of the metric coefficients

dij
n+ 1

2
= 1

2

(
dijn + dijn+1

)
= 1

2

(
din · djn + din+1 · djn+1

)

Note that this is in contrast to the mid-point rule, in which

dMP
ij = di

n+ 1
2

· dj
n+ 1

2

= 1
2dijn+ 1

2
+ 1

4

(
din · djn+1 + din+1 · djn

)
= dij

n+ 1
2

− �t2

4 vi
n+ 1

2
· vj

n+ 1
2

(67)

would have to be used. In the last equation use has been made of (63)1. We next
show that the scheme is capable of conserving both angular momentum and energy.

2.7.1 Algorithmic Conservation of Angular Momentum

With regard to (46)1 the angular momentum j of the Cosserat point relative to its
center of mass can be written in the form.

j(di, vi) = Eij
0 di × vj (68)

Obviously, the angular momentum is a quadratic function of the state-space coordi-
nates (di, vi). To calculate the incremental change in the angular momentum we take
into account the following remark.

Remark 2.5 When the map f : Rk → R is at most quadratic then the relationship

Df (yn+ 1
2
) · (yn+1 − yn) = f (yn+1) − f (yn) (69)

holds.
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Accordingly, setting y = (d1, . . . , d3, v1, . . . , v3), we get

jn+1 − jn = j(yn+1) − j(yn)

= ∂j
∂di

(yn+ 1
2
)(din+1 − din) + ∂j

∂vi
(yn+ 1

2
)(vin+1 − vin)

= −Eij
0 v̂j

n+ 1
2
(din+1 − din) + Eji

0 d̂jn+ 1
2
(vin+1 − vin)

Substituting form (63)1 and (63)2 into the last equation and taking into account the
symmetry property Eij

0 = Eji
0 yields

jn+1 − jn = d̂j
n+ 1

2
�t

(
(f jext)

∣∣∣
n+ 1

2

− S
ji
Adin+ 1

2

)

= �tdj
n+ 1

2
× (f jext)

∣∣∣
n+ 1

2

= �t mext|n+ 1
2

(70)

where the symmetry of S
ji
A has been accounted for. In the last equation mext|n+ 1

2

denotes the discrete version of the resultant external torque relative to the center of
mass defined by

mext = di × f iext (71)

Note that this definition is in line with (46)2. It is obvious from (70) that the present
scheme conserves the angular momentum provided that the external torque vanishes.

2.7.2 Algorithmic Conservation of Energy

Combining (63)1 and (63)2 using the dot product leads to

(
din+1 − din

) · (
(f iext)

∣∣
n+ 1

2
− S

ij
Adjn+ 1

2

) = vi
n+ 1

2
· Eij

0

(
vjn+1 − vjn

)
(72)

Concerning the right-hand side of the last equation we get

vi
n+ 1

2
· Eij

0

(
vjn+1 − vjn

) = 1
2E

ij
0

(
vin+1 · vjn+1 − vin · vjn

)
= Tn+1 − Tn

where the symmetry of Eij
0 has been taken into account. Moreover, T denotes the

relative kinetic energy given by

T = 1

2
Eij
0 vi · vj (73)



50 P. Betsch

Note that the above expression for the relative kinetic energy is in line with definition
(50) of the total kinetic energy of the Cosserat point. Furthermore,

(
din+1 − din

) · SijAdjn+ 1
2

= 1
2S

ij
A

(
din+1 · djn+1 − din · djn

)
= 1

2S
ij
A

(
dijn+1 − dijn

)
= S

ij
A

(
γijn+1 − γijn

)

where use has beenmade of the symmetry of S
ij
A alongwith the definition of themetric

coefficients and theGreen–Lagrangean strains (66). Employing the algorithmic stress
formula (65), the last equation gives

S
ij
A

(
γijn+1 − γijn

) = Cijklγkl
n+ 1

2

(
γijn+1 − γijn

)
= 1

2

(
γijn+1 − γijn

)
Cijkl

(
γkln+1 + γkln

)
= 1

2

(
γijn+1C

ijklγkln+1 − γijnC
ijklγkln

)

where the major symmetry Cijkl = Cklij of the elasticity tensor has been taken into
account. The total strain energy of the St. Venant-Kirchhoff Cosserat point is given
by

USt.V−K = 1

2
γijCijklγkl (74)

Altogether, Eq. (72) can be recast in the form

�t (f iext)
∣∣
n+ 1

2
vi

n+ 1
2

= Tn+1 − Tn + USt.V−K
n+1 − USt.V−K

n

= En+1 − En
(75)

where on the left-hand side of the last equation use has beenmade of (63)1.Moreover,
on the right-hand side the total energy E has been introduced, analogous to (49).
The last equation corroborates algorithmic conservation of energy in the absence of
external loading.

Remark 2.6 The above investigation shows that in order to achieve algorithmic con-
servation of energy the stress formula has to satisfy the condition

Un+1 − Un = 1

2
S
ij
A

(
dijn+1 − dijn

)
(76)

This condition can be viewed as discrete counterpart of

d

dt
Ũ(dij) = ∂Ũ

∂dij
ḋij = 1

2
S
ij
ḋij

In the last equation use has been made of (31).
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Remark 2.7 The nonlinear system of equations emanating from the EM scheme
(63) is typically solved iteratively by applying Newton’s method. As outlined in
AppendixA.3, the corresponding iterationmatrix is nonsymmetric. This is in contrast
to standard schemes such as the mid-point rule which yield a symmetric iteration
matrix. This is the price one has to pay for the improved numerical stability of the
EM integrator.

2.8 The Discrete Derivative

The closed-form expression for the algorithmic stress formula (65) proposed by
Simo and Tarnow (1992) is restricted to St. Venant-Kirchhoff material. A general-
ized procedure for the design of second-order EM integrators relies on the notation
of a discrete derivative introduced in Gonzalez (1996). This approach makes pos-
sible the design of appropriate algorithmic stress formulas for general hyperelastic
constitutive laws. Moreover, symmetries of the mechanical system can be taken into
account by the introduction of specific invariants. If the invariants and the correspond-
ing momentum maps are at most quadratic, the resulting time-stepping scheme is
capable of conserving the respective momentum map. As has been shown above the
momentum map of primary interest in the present work is the total angular momen-
tum. In this connection the metric coefficients play the role of quadratic invariants
(see Remark2.4). In analogy to (35), see Remark2.1, the discrete version of the
derivative ∂Û/∂di is chosen to be

∇diU(djn , djn+1) = DŨ(djkn , djkn+1)
∂djk
∂di

(dln+ 1
2
) (77)

where

DŨ(dikn , dikn+1) = Sik + Un+1 − Un − Sjl�djl
�dmn�dmn

�dik (78)

with
Sik = DŨ(dikn+ 1

2
) and �dik = dikn+1 − dikn

Similar to (35), the discrete gradient (77) can be written as

∇diU(djn , djn+1) = 2DŨ(dikn , dikn+1)dkn+ 1
2

(79)

Using the discrete gradient (77), the EM scheme (63) can be recast in the form

din+1 − din = �tvin+ 1
2

Eij
0

(
vjn+1 − vjn

) = �t
(

(f iext)
∣∣
n+ 1

2
− ∇diU(djn , djn+1)

) (80)
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We refer to this scheme as the EM integrator for hyperelastic Cosserat points. In the
present context the discrete gradient (79) gives rise to the algorithmic stress formula

S
ij
A = 2DŨ(dijn , dijn+1) (81)

2.8.1 Directionality Property of the Discrete Derivative

In analogy to the following continuous relationship

d

dt
U = ∂Û

∂dk
· ḋk

the discrete derivative satisfies by design the so-called directionality property
(Gonzalez 1996)

Un+1 − Un = ∇diU · (
din+1 − din+1

)
(82)

To see this, substitute from (77) into the last equation to get

Un+1 − Un = DŨ(djkn , djkn+1)
∂djk
∂di

(dl
n+ 1

2
) · (

din+1 − din+1

)
= DŨ(djkn , djkn+1)

(
djkn+1 − djkn

) (83)

Here Remark2.5 has been applied since the metric coefficients djk are merely
quadratic functions of di. It can be easily verified that formula (78) satisfies the
last equation by design.

2.8.2 Algorithmic Conservation Properties

Due to the directionality property (83)2 the algorithmic stress formula (81) automat-
ically fulfills the condition (76) for the conservation of energy. Moreover, the above
proof of algorithmic conservation of angular momentum remains unaltered.

Remark 2.8 Condition (76) for algorithmic energy conservation can be used as alge-
braic constraint in an optimization problem to devise suitable stress formulas for
second-order EM schemes, see Groß et al. (2005, Sect. 6.8) and Romero (2012).
In particular, in these works, formula (78) is derived by applying the optimization
approach. Moreover, the optimization approach is employed in the Galerkin-based
discretization method in Groß et al. (2005, Sect. 6) to construct higher-order EM
schemes for nonlinear elastodynamics.

Remark 2.9 While the notion of a discrete derivative makes possible the design of
EM schemes for general hyperelastic constitutive laws, stress formula (81) boils
down to (65) in the case of the St. Venant-Kirchhoff model. This can be shown by
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inserting the total strain energy (74) pertaining to the St. Venant-Kirchhoff model
into the discrete derivative (78).

Remark 2.10 The discrete derivative of a quadratic function coincides with the stan-
dard derivative evaluated at (•)n+ 1

2
. In particular, since the strain energy of the St.

Venant-Kirchhoff model is merely a quadratic function of the metric coefficients or
Green–Lagrangean strains, respectively, the discrete derivative (81) coincides with
the standard derivative

S
ij
A = 2DŨSt.V−K

(
dij

n+ 1
2

)
= DŨSt.V−K

(
γijn+ 1

2

)
= Cijklγkl

n+ 1
2

(84)

where relation (66) between the metric coefficients dij and the Green–
Lagrangean strains γij has been taken into account along with the strain energy
function (74). This result is in agreement with stress formula (65) due to Simo and
Tarnow (1992), and therefore complements Remark2.9.

Remark 2.11 In the linearized theory the strains are merely linear functions of the
displacements. In the present context the linearized strains are given by

γlin
ij = 1

2

(
ui · Dj + Di · uj

)

Note that the director displacements ui ∈ R
3 have been introduced such that the

relationship di = Di + ui holds. The strain energy (74) thus becomes a quadratic
function of the displacements and can be written as

Ulin = 1

2
ui · K ijuj

where K ij ∈ R
3×3 constitutes a symmetric stiffness matrix. Consequently, due to the

properties of the discrete derivative (cf. Remark2.10),

∇diUlin(djn , djn+1) = ∇Ulin(dj
n+ 1

2
)

= 1
2

(∇Ulin(djn) + ∇Ulin(djn+1)
)

= 1
2K

ij
(
ujn + ujn+1)

)

Accordingly, for linear problems the EM integrator (80) coincides with the trape-
zoidal rule (or average acceleration method) which is a member of the Newmark
family, see Hughes (2000). The average acceleration method is known to be energy
preserving, unconditionally stable, and one of the most widely used methods for
structural dynamics applications.
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3 Rigid Body Dynamics

3.1 From the Cosserat Point to the Rigid Body

We next perform the transition from the theory of a Cosserat point to rigid body
dynamics (Fig. 5). To this end we consider the imposition of geometric constraints on
the Cosserat point. In particular, the constraints can be included in a straightforward
way by replacing the strain energy (13) with an augmented potential function

Vλ(di) = Û(di) +
R∑
l=1

λlĝl(di) (85)

Here, λl : [0,T ] → R are Lagrange multipliers for the enforcement of the (holo-
nomic) constraints gl = 0. Similar to the strain energy (52), frame-indifferent con-
straint functions are given by

gl = ĝl(di) = g̃l(dij) (86)

For example, the constraint g1 = d1 · d1 − 1 = 0 eliminates extension in the direc-
tion of d1. For a rigid body we have to impose R = 6 independent constraints. To
this end we choose (85) to be of the form

V RB
λ =

6∑
l=1

λlg̃l(dij) = � : 1
2 (C − I)

= � : 1
2

(
(dij − δij)Di ⊗ Dj

)
= Di · �Dj 1

2 (dij − δij)

= �ij 1
2 (dij − δij)

(87)

Here, the Lagrange multipliers are contained in the symmetric tensor � according
to the following assignment

B Bt

X
x

X x

Φ

FD1

D2

d1

d2

Fig. 5 Planar illustration of the transition from the elastic Cosserat point to the rigid body: The
director frame {di} is forced to stay orthonormal for all time. Correspondingly, F ∈ SO(3), see
Remark3.1
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⎡
⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

λ3

λ4

λ5

λ6

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

�11

�22

�33

�12

�13

�23

⎤
⎥⎥⎥⎥⎥⎥⎦

(88)

giving rise to the following six independent constraints of rigidity:

[g̃l(dij)] =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2 (d11 − 1)
1
2 (d22 − 1)
1
2 (d33 − 1)

d12
d13
d23

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 (89)

Asbefore (seeSect. 2.2),we assume that the director triad {Di} in the reference config-
uration is orthonormal, that is, Di · Dj = δij. Accordingly, the constraints g̃l(δij) = 0
(l = 1, . . . , 6) are identically fulfilled in the reference configuration. Imposing these
constraints forces the director triad {di(t)} to stay orthonormal for all time. The con-
figuration space corresponding to the motion of the rigid body about its center of
mass is given by

Q = {di ∈ R
3 | g̃l(dij) = 0 , 1 ≤ l ≤ 6 , (d1 × d2) · d3 = 1} (90)

Accordingly, the nine director components are subject to six independent constraints
of rigidity. This is in agreement with the fact that the rotational motion of a rigid
body has three degrees of freedom. The director velocities vi have to belong to the
tangent space to Q at di ∈ Q given by

TdiQ = {vi ∈ R
3 | vi = ω × di ,ω ∈ R

3} (91)

where ω is the angular velocity (Fig. 6). It can be easily verified that the director
velocities vi ∈ TdiQ satisfy the constraints on the velocity level given by

d

dt

(
1

2

(
dij − δij

)) = 1

2

(
di · vj + vi · dj

) = 0 (92)

The equations governing the rotational motion of the free rigid body can be easily
deduced from the Cosserat point by replacing the internal director forces

f iint = ∂U

∂di
= 2

∂U

∂dik
dk = S

ik
dk (93)
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Fig. 6 Planar illustration of
the rotation of a rigid body
with angular velocity
ω = ωe3 and director
velocities vi ∈ TdiQ

Bt

ω

v1

v2

e1

e2

d1

d2

with the constraint director forces

f ic = ∂V RB
λ

∂di
=

6∑
l=1

λl ∂gl

∂di
= 2

∂V RB
λ

∂dik
dk = �ikdk (94)

Here, Remark2.1 along with (87) have been taken into account. Now the initial value
problem governing the rotational motion of the rigid body can be directly deduced
from the corresponding problem pertaining to the Cosserat point (see Sect. 2.7): Find
(di, vi) ∈ R

3 × R
3 (i = 1, 2, 3), and λl ∈ R (l = 1, . . . , 6), such that

ḋi = vi

Eij
0 v̇j = f iext − �ijdj

ĝl(di) = 0
(95)

subject to the initial conditions di(0) = (di)0, and vi(0) = (vi)0, where (di)0 ∈ Q,
and (vi)0 ∈ TdiQ are given quantities. While the motion of the hyperelastic Cosserat
point is governed by ODEs, the present rigid body formulation relies on differential-
algebraic equations (DAEs). As is common with constrained mechanical systems
the DAEs (95) have (differential) index three. For more background on DAEs we
refer to Ascher and Petzold (1998) and Kunkel and Mehrmann (2006). Note that
the constraints (95)3 provide six algebraic equations for the determination of the six

independent Lagrange multipliers (88). In contrast to that, the six stress resultants S
ij

of the hyperelastic Cosserat point are depending on the Green–Lagrangean strains
(or metric coefficients) via the constitutive law.

Remark 3.1 Imposition of the six independent constraints of rigidity (89) is equiv-
alent to the enforcement of zero Green–Lagrangean strains, that is γij = 0, or

G = 1

2
(C − I) = γijDi ⊗ Dj = 0

The last equation implies
C = FTF = I
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Taking into account the original requirement det(F) > 0 for the Cosserat point, the
last equation yields

FTF = I and det(F) = 1

Consequently, in the case of the rigid body, the deformation gradient coincides with
a rotation tensor F ∈ SO(3).

3.2 Balance of Angular Momentum

For the free rigid body, balance of angular momentum can be shown along the lines
of the previous treatment of the Cosserat point. In particular, the balance law (45)
together with the definition of the angular momentum and the resultant external
torque in (46) remain unaltered. Accordingly, scalar multiplying (95)2 by ξ × di
yields

(ξ × di) · Eij
0 v̇j = (ξ × di) · (f iext − �ijdj)

or
ξ ·

(
Eij
0 di × v̇j − di × f iext + �ijdi × dj

)
= 0

Due to the symmetry of�ij the constraint director forces drop out of the last equation.
The fact that the constraint director forces (94) do not contribute to the balance
of angular momentum can be linked to the rotational invariance of the function
V RB

λ : Q → R. This is in complete analogy to Remark2.3. Due to the arbitrariness
of ξ ∈ R

3, the last equation yields the balance of angular momentum

d

dt

(
Eij
0 di × vj

)
= di × f iext

d

dt
j = mext

(96)

relative to the center of mass of the rigid body. Note that the quantities j and mext

have been introduced before in (68) and (71), respectively.

3.3 Balance of Energy

Balance of energy can be shown for the rigid body along the lines of the previous
treatment of the Cosserat point. Accordingly, scalar multiplying (95)2 by vi yields

vi ·
(
Eij
0 v̇j − f iext + �ijdj

)
= 0 (97)
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Due to the symmetry of �ij the rate of work done by the constraint director forces
(94) can be written as

f ic · vi = �ijdj · vi

= �ij 1
2 (di · vj + dj · vi)

= 0

The last equality holds due to the constraints on the velocity level (92). This property
complies with the fact that ideal forces of constraint are workless. Finally, (97) can
be recast in the form

d

dt

(
1

2
Eij
0 vi · vj

)
= f iext · vi

This is the balance of energy for the rotational motion of the rigid body about its
center of mass. The last equation can also be written as d

dt T = Pext, where T denotes
the relative kinetic energy introduced in (73) and

Pext = f iext · vi (98)

denotes the power of the external director forces. Note that the quantities T and (98)
correspond to the quantities (50) and (48), respectively, in the previous treatment of
the Cosserat point.

3.4 Connection with the Classical Euler’s Equations

We next link the present equations for the rotational motion of the rigid body to the
classical Euler’s equations. To this end we recast (95)2 in the form

δdi ·
(
Eij
0 v̇j − f iext + �ijdj

)
= 0 (99)

which has to hold for arbitrary δdi ∈ R
3. Now we impose δdi ∈ TdiQ. With regard

to (91), we set δdi = δϑ × di for any δϑ ∈ R
3 such that (99) can be rewritten as

δϑ ·
(
Eij
0 di × v̇j − di × f iext

)
= 0

Note that in analogy to Sect. 3.2 the constraint director forces drop out of the last
equation. The last equation can also be written as

Eij
0 di × v̇j = mext (100)
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where mext denotes the resultant external torque relative to the center of mass (see
(71)).We next introduce the angular velocityω ∈ R

3 to confine the director velocities
to vi ∈ TdiQ. Accordingly, we have vi = ω × di such that

v̇j = ω̇ × dj + ω × vj

= ω̇ × dj + ω × (ω × dj)

Now the left-hand side of (100) can be written as

Eij
0 di × v̇j = Eij

0 di × (ω̇ × dj) + Eij
0 di × (ω × (ω × dj))

= Eij
0 di × (ω̇ × dj) + ω × (Eij

0 di × (ω × dj))
(101)

The last equality can be verified by a straightforward calculation using the properties
of the vector triple product along with the symmetry of Eij

0 . Next consider

Eij
0 di × (a × dj) = Eij

0 [(di · dj)a − (di · a)dj]
= Eij

0 [δijI − dj ⊗ di]a
= [tr(E)I − E]a
= Ja

(102)

for any a ∈ R
3. Here, the current Euler tensor

E = FE0FT = Eij
0 di ⊗ dj

has been introduced. Note that E has the same coefficients as the referential Euler
tensor (9). Moreover, in (102) the rigid body constraints, namely dij = δij, have been
taken into account. Eventually, the classical inertia tensor

J = tr(E)I − E

has been introduced. Now we are in a position to recast (100) in the form

Jω̇ + ω × Jω = mext

which corresponds to the classical Euler’s equations for the rigid body.

3.5 EM Integrator for the Rigid Body

As has been shown above, the equations of motion for the rigid body can be directly
deduced from those for the hyperelastic Cosserat point by replacing the strain energy
(13) with the augmented potential function (87). To construct an EM scheme we
apply the notion of a discrete derivative to the new potential function (87). That is,
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in analogy to the continuous formulation (94), the discrete version of the constraint
director forces is given by

(f ic)
∣∣
n+ 1

2
= ∇di V

RB
λ (djn , djn+1)

=
6∑

l=1
λl∇digl(djn , djn+1)

= 2DṼ RB
λ (dikn , dikn+1)dkn+ 1

2= �ikdk
n+ 1

2

(103)

Now the rigid body variant of the EM scheme (80) for the hyperelastic Cosserat
point can be written as follows. Given din ∈ Q and vin ∈ R

3, (i = 1, 2, 3), find
(din+1 , vin+1) ∈ R

3 × R
3, and λln+1 ∈ R (l = 1, . . . , 6), as the solution of the alge-

braic system of equations

din+1 − din = �tvi
n+ 1

2

Eij
0

(
vjn+1 − vjn

) = �t
(

(f iext)
∣∣
n+ 1

2
− �

ij
n+1djn+ 1

2

)
ĝl(din+1) = 0

(104)

The scheme (104) provides 24 algebraic equations for the determination of the 18
state space coordinates (din+1 , vin+1) and the 6 independent Lagrange multipliers in
�

ij
n+1. We further remark that (104)3 ensures that din+1 ∈ Q.

3.5.1 Algorithmic Conservation of Energy

This can be shown as before (see Sect. 2.7.2). One just has to replace the stress

resultants S
ij
A with the Lagrange multipliers �

ij
n+1. Accordingly, combining (104)1

and (104)2 using the dot product yields

(
din+1 − din

) · (
(f iext)

∣∣
n+ 1

2
− �

ij
n+1djn+ 1

2

) = vi
n+ 1

2
· Eij

0

(
vjn+1 − vjn

)

or
�t (f iext)

∣∣
n+ 1

2
· vi

n+ 1
2

− (
din+1 − din

) · (f ic)
∣∣
n+ 1

2
= Tn+1 − Tn (105)

On the right-hand side of the last equation the relative kinetic energy T (see (73)) has
been introduced. On the left-hand side the discrete constraint director forces (103)
have been used. Now consider

(
din+1 − din

) · (f ic)
∣∣
n+ 1

2
=

6∑
l=1

λl
n+1∇digl(djn , djn+1) · (

din+1 − din
)

=
6∑

l=1
λl
n+1

(
ĝl(djn+1) − ĝl(djn)

)
= 0

(106)
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In the last equation use has been made of the directionality property of the discrete
derivative, see (82). In the present context we have

ĝl(djn+1) − ĝl(djn) = ∇digl(djn , djn+1) · (
din+1 − din

)
(107)

Since the EM scheme satisfies the constraints at the end-point of the time step, see
(104))3, result (106) follows. Accordingly, in analogy to the continuous case the
discrete constraint forces do no work. Altogether, (105) yields the discrete balance
equation for the energy

�t (Pext)
∣∣
n+ 1

2
= Tn+1 − Tn

Accordingly, if the work of the external loading vanishes, the EM scheme conserves
the energy.

Remark 3.2 Instead of using the directionality property (107), result (106) can be
obtained as well by a direct calculation. To this end consider the work done by the
constraint forces in the time interval [tn, tn+1]:

�t (f ic)
∣∣
n+ 1

2
· vi

n+ 1
2

= (f ic)
∣∣
n+ 1

2
· (
din+1 − din

)
= �

ij
n+1djn+ 1

2
· (
din+1 − din

)
= �

ij
n+1

1
2

(
djn+1 + djn

) · (
din+1 − din

)
= �

ij
n+1

1
2

(
dijn+1 − dijn

)
= 0

(108)

Here, it has been taken into account that (104)3 enforces the algebraic constraints at
the end-point of each time step such that dijn = dijn+1 = δij.

Remark 3.3 Whereas the EM scheme (104) enforces the constraints on the position
level explicitly through (104)3, this is not the case for the constraints on the velocity
level

d

dt
ĝl(dj) = ∂ĝl

∂dj
· vj = 0 (109)

However, due to the directionality property (107) of the discrete derivative applied
to the constraints, in the discrete setting the relationship

∇digl(djn , djn+1) · vi
n+ 1

2
= 1

�t∇digl(djn , djn+1) · (
din+1 − din

)
= ĝl(djn+1) − ĝl(djn)
= 0

holds. The last equation can be viewed as discrete counterpart of (109). In analogy
to (92), the last equation can be recast in the form

di
n+ 1

2
· vj

n+ 1
2

+ vi
n+ 1

2
· dj

n+ 1
2

= 0
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Accordingly, the rigid body constraints on the velocity level are satisfied at the mid-
point of each time step.

3.6 The Director Triad in the Discrete Setting

The present rigid body formulation is based on the canonical embedding of the
rotation group SO(3) into the 9-dimensional linear space. Correspondingly, the 3 × 3
matrix corresponding to the rotation tensor F ∈ SO(3) is viewed as vector in R

9

composed of the three directors di ∈ R
3. Due to the present discretization in time, the

configuration constraints are relaxed to specific points in time lying on the boundary
of the time intervals [tn, tn+1] (n = 0, 1, . . .). Accordingly, for finite time steps �t =
tn+1 − tn, the orthonormality of the director triad {di} is generally violated inside
the time interval [tn, tn+1]. This observation holds in particular for the mid-points
tn+ 1

2
= 1

2 (tn + tn+1).

3.6.1 Planar Rotations

In a first step we investigate the violation of the orthonormality of the mid-point
directors for planar rotations. To this end we consider rotations of the rigid body
that take place in the plane spanned by the Cartesian base vectors e1 and e2. By
introducing an angle α ∈ R, the orthonormality of the director frame can be ensured
for arbitrarily large rotation angles (see Fig. 7):

d̃1(α) = cosαe1 + sinαe2

d̃2(α) = − sinαe1 + cosαe2

and d3 = e3. Since in the discrete setting the orthonormality condition is always
enforced at the endpoints of the time steps we write

d1n = d̃1(αn) , d1n+1 = d̃1(αn+1)

d2n = d̃2(αn) , d2n+1 = d̃2(αn+1)

Fig. 7 Left Finite rotation of
the director frame about the
axis e3 with angle α. Right
Incremental rotation of d1
with angle �α and
corresponding mid-point
director d1

n+ 1
2

e1

e2
d1

d2 α

d1n

d1n+1

d1
n+1

2

Δα
2

Δα
2
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where
αn+1 = αn + �α

so that the incremental rotation from tn to tn+1 is characterized by the angle�α. Now
a straightforward calculation shows that the mid-point directors dβn+ 1

2
(β = 1, 2) can

be written as

dβ
n+ 1

2
= 1

2

(
dβn + dβn+1

)

= A(�α)̃dβ(αn+ 1
2
)

where αn+ 1
2

= 1
2 (αn + αn+1), and

A(�α) = cos

(
�α

2

)

Accordingly, the mid-point approximation of the directors is still orthogonal, for

d1
n+ 1

2
· d2

n+ 1
2

= (
A(�α)

)2
d̃1(αn+ 1

2
) · d̃2(αn+ 1

2
) = 0

but generally fails to be of unit length (see also Fig. 7). In particular, we have

d(β)
n+ 1

2
· d(β)

n+ 1
2

= (
A(�α)

)2 ‖ d̃β(αn+ 1
2
) ‖2

= 1
2 (1 + cos(�α))

≤ 1

(110)

To summarize, in the case of planar rotations, the mid-point directors stay mutually
orthogonal but their length is reduced. Note that this discretization error decreases if
the rotation increment (or time step) is reduced.

3.6.2 Three-dimensional Rotations

In the three-dimensional setting the mid-point directors are in general neither of unit
length, nor mutually orthogonal. That is, di

n+ 1
2

· dj
n+ 1

2
�= δij in general. In particu-

lar, a lengthy but straightforward calculation, employing the well-known formula
(Bottema and Roth 1979; Hughes and Winget 1980)

din+1 − din = ϑ × di
n+ 1

2

shows that
di

n+ 1
2

· B(ϑ)dj
n+ 1

2
= δij (111)
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where

B(ϑ) =
(
1 + 1

4
ϑ · ϑ

)
I − 1

4
ϑ ⊗ ϑ

Thus, in the limit case of vanishing incremental rotations (i.e.,ϑ = 0) we getB(0) =
I, and the orthonormality of the mid-point directors is recovered.

Moreover, if ϑ · di
n+ 1

2
= 0, such as in the planar case, Eq. (111) yields

(
1 + 1

4
ϑ · ϑ

)
di

n+ 1
2

· dj
n+ 1

2
= δij

Accordingly, the mid-point directors are mutually orthogonal. In addition to that,
the relation d(i)

n+ 1
2

· d(i)
n+ 1

2
= (1 + 1

4ϑ · ϑ)−1 shows that the length of the mid-point

directors is generally smaller than one. This result is in agreement with (110). In
particular, it can be shown that

(A(�α))2 = 1
2 (1 + cos(�α))

=
(
1 +

(
‖ϑ‖
2

)2
)−1

for ‖ϑ‖
2 = tan(�α

2 ).

Remark 3.4 Similar geometric considerations apply to the elastic Cosserat point.
In particular, the application of the mid-point rule rests on the Green–Lagrangean
strains

γMP
ij = 1

2

(
dMP
ij − δij

)
(112)

where
dMP
ij = di

n+ 1
2

· dj
n+ 1

2

Accordingly, if the elastic Cosserat point undergoes finite rotations, the mid-point
rule in general generates artificial strains. This discretization error is especially pro-
nounced for stiff material behavior and might trigger spurious oscillations leading
to numerical instabilities. Originally, artificial normal strains produced by the mid-
point rule have been observed in the context of an elastic pendulum (Tarnow 1993;
Crisfield and Shi 1994).

3.7 The Link to Natural Coordinates

The present formulation of rigid body dynamics is closely related to the notion of
natural coordinates advocated by García de Jalón and co-workers (García de Jalón
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2007). This can be easily shown by considering the connection between the present
coordinates and the natural coordinates associated with the most general element
(García de Jalón and Bayo 1994). The configuration of the most general element is
specified by

qe = [
rTA rTB uT vT

]T
(113)

where rA, rB ∈ R
3 denote the position vectors of two basic points A, B, and u, v ∈ R

3

denote two non-coplanar unit vectors (Fig. 8). The natural coordinates in (113) can
now be expressed in terms of the present coordinates:

rA = x + Xi
A di

rB = x + Xi
B di

and
u = Ui di
v = V i di

Here Xi
A,X

i
B are the material coordinates of points A,B, and Ui, V i are the compo-

nents of the unit vectors u, v relative to the director (or body) frame. Alternatively,
we may write

qe = Tq

where q ∈ R
12 contains the present coordinates according to (58), and T is a 12 × 12

transformation matrix of the form

T =

⎡
⎢⎢⎣
I X1

AI X2
AI X3

AI
I X1

BI X2
BI X3

BI
0 U1I U2I U3I
0 V 1I V 2I V 3I

⎤
⎥⎥⎦

The mass matrix pertaining to the most general element is given by

Me = TTMT

where the constantmassmatrixM of the present formulation is given by (60). SinceT
is constant,Me is constant too. The connection between further rigid body elements

Fig. 8 Connection between
the present director
formulation and natural
coordinates

Bt

3

A

B

rA

rB u

v

d1

d2

d3

X1

X2

X3
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belonging to the family of elements provided by the natural coordinates approach
can be found in García de Jalón and Bayo (1994, Sect. 4.2.2).

3.8 Application of External Torques

The application of external torques mext relative to the center of mass of the rigid
body can be accomplished via the external director forces f iext, cf. (71). For this
purpose one may use

⎡
⎣f 1ext
f 2ext
f 3ext

⎤
⎦ = 1

2
√
d

⎡
⎣d2 ⊗ d3 − d3 ⊗ d2
d3 ⊗ d1 − d1 ⊗ d3
d1 ⊗ d2 − d2 ⊗ d1

⎤
⎦mext = 1

2

⎡
⎣mext × d1

mext × d2

mext × d3

⎤
⎦

This relationship is derived in Appendix A.2. In the discrete setting we make use of

(f iext)
∣∣
n+ 1

2
= 1

2
mext|n+ 1

2
× di

∣∣
n+ 1

2
(114)

Here, mext|n+ 1
2
represents an external torque applied in the time interval [tn, tn+1],

and di
∣∣
n+ 1

2
are contravariant mid-point directors that satisfy the condition

di
∣∣
n+ 1

2
· dj

n+ 1
2

= δij

To satisfy the balance of angular momentum in the discrete setting, it is of paramount
importance to distinguish between covariant mid-point directors, dj

n+ 1
2
, and associ-

ated contravariant (or dual) mid-point directors, di
∣∣
n+ 1

2
. This fact is closely related to

the properties of the mid-point directors investigated in Sect. 3.6. Formula (114) has
originally been proposed in Betsch et al. (2012), see also Betsch and Sänger (2013)
and Koch and Leyendecker (2013).

3.9 Balance of Angular Momentum in the Discrete Setting

We next prove that formula (114) does indeed make possible the consistent appli-
cation of external torques. To this end we consider the discrete counterpart of the
continuous relationship d

dt j = mext, see (96)2, which is given by

jn+1 − jn = �tdj
n+ 1

2
× (f jext)

∣∣∣
n+ 1

2
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cf. (70). Inserting from (114) yields

jn+1 − jn = �t

2
di

n+ 1
2

×
(
mext|n+ 1

2
× di

∣∣
n+ 1

2

)

= �t

2

(
(di

n+ 1
2

· di∣∣n+ 1
2
) mext|n+ 1

2
− (di

n+ 1
2

· mext|n+ 1
2
) di

∣∣
n+ 1

2

)

= �t mext|n+ 1
2

(115)

Consequently, formula (114) guarantees that external torques are properly applied
in the discrete setting.

4 Extension to Multibody Dynamics

So far we focused on a single Cosserat point and a single rigid body. However,
the present framework can be easily extended to nonlinear structural dynamics and
flexible multibody dynamics by applying Cosserat theories for the description of
nonlinear beams and shells (Rubin 2000; Antman 2005; Bauchau 2011). Further
details of the extension of the present approach to more complicated mechanical
systems may be found in Betsch and Steinmann (2002b, c, 2003), Betsch (2006),
Betsch and Leyendecker (2006), Leyendecker et al. (2006, 2008a), Betsch and Uhlar
(2007), Betsch and Sänger (2009a, b).

In this work we illustrate the extension of the present approach to classical multi-
body systems, comprised of rigid bodies. First we consider the formulation of kine-
matic pairs.

4.1 Kinematic Pairs

Wenext illustrate the formulation of kinematic pairs with the example of a cylindrical
pair (Fig. 9). To this end we consider two rigid bodies formulated as constrained
mechanical systems as described in Sect. 3. Accordingly, the configuration of the
two-body system under consideration is characterized by redundant coordinates

q =
[
1q
2q

]
where αq =

⎡
⎢⎢⎣

αϕ
αd1
αd2
αd3

⎤
⎥⎥⎦ (116)

Note that the contribution of body α to the configuration vector coincides with (58).
The equations of motion pertaining to the constrained mechanical system at hand
can again be formulated as outlined in Sect. 3. Similar to (116), the contribution of
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1ϕ
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{2di}

1ϕ

2ϕ

1d3

1d1

1d2

2d3

2d1

2d2

e1

e2

e3

Fig. 9 Sketch of the cylindrical pair: Coordinates (αϕ, {αdi}) characterizing the current configu-
ration αBt of rigid body α. The additional systems (αϕ′, {αd′

i}) are introduced for the description
of the motion of the second body relative to the first body (translation along and rotation about
1d′

3 = 2d′
3). The connection between (αϕ′, {αd′

i}) and the coordinates (αϕ, {αdi}) is defined in the
initial configuration of the multibody system

each rigid body to the external forces leads to the system vector

F =
[
1F
2F

]
where αF =

⎡
⎢⎢⎣

αf ϕ
αf 1
αf 2
αf 3

⎤
⎥⎥⎦ (117)

Note that the force vector αF associated with body α coincides with (61).

4.1.1 Initialization of Kinematic Relationships

To describe the motion of the second body relative to the first one we introduce
orthonormal body-fixed triads {αd′

i} in such a way that the unit vectors αd′
3 are parallel

to the axis of the cylindrical pair (Fig. 9). Moreover, we choose the two orthonormal
triads to coincide in the initial configuration, i.e. 1d′

i(0) = 2d′
i(0). The connection

between the newly introduced orthonormal triads {αd′
i} and the original triads {αdi}

is given by
αR′ = αF αΛ0 (118)
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where
αF = αdi ⊗ ei and αR′ = αd′

i ⊗ ei

The constant tensors αΛ0 in (118) are calculated in the initial configuration via

αΛ0 = αF−1(0) αR′(0)

The origin of the newly introduced orthonormal triads {αd′
i} is fixed at material points

α�i whose placement in the current configuration αBt of rigid body α is denoted by
αϕ′. Accordingly,

αϕ′ = αϕ + α�i αdi

Note that the location of the material points α�i has to be specified during initializa-
tion.

4.1.2 Configuration Space of the Cylindrical Pair

The configuration space of the cylindrical pair can be easily defined by distinguishing
between internal constraints due the assumption of rigidity and external constraints
due to the interconnection between the rigid bodies in a multibody system (Betsch
and Steinmann 2002c). Accordingly, the present description of the cylindrical pair
relies onn = 24 coordinates subject to 12 internal constraintsgint(αq) = 0 (α = 1, 2),
where gint : R12 → R

6 follows from (89), and 4 external constraints associated with
the constraint functions

gext
P (q) =

[1d′
1 · (

2ϕ′ − 1ϕ′)
1d′

2 · (
2ϕ′ − 1ϕ′)

]
(119)

and

gext
R (q) =

[1d′
1 · 2d′

3
1d′

2 · 2d′
3

]
(120)

To summarize, we have n = 24 coordinates subject tom = 16 constraints which can
be assembled in the constraint function gC : R24 → R

16 given by

gC(q) =

⎡
⎢⎢⎣

gint(1q)
gint(2q)
gext
P (q)

gext
R (q)

⎤
⎥⎥⎦ (121)

Consequently, the configuration space of the cylindrical pair is defined by

QC = {q ∈ R
24 | gC(q) = 0} (122)
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4.2 Multibody Systems

As mentioned before, geometrically exact Cosserat models for beams and shells fit
perfectly well into the present framework. In particular, if the nonlinear beam and
shell formulations are discretized in space as proposed in Betsch and Steinmann
(2002b, 2003), Betsch and Sänger (2009a), the equations of motion pertaining to
the resulting discrete mechanical systems fit into the framework outlined in Sect. 3.
Thus the use of director coordinates makes possible a uniform formulation of flexible
multibody dynamics.2 Main characteristics of the present approach can be summa-
rized as follows:

1. The inertia parameters are always constant leading to the simple structure of the
inertia terms in the equations of motion. In particular, the differential part of the
equations of motion can be written as

Mq̈ + ∇Vλ(q) − F = 0

where the potential forces along with the constraint forces can be derived from
an augmented potential function of the form

Vλ(q) = U(q) +
m∑
l=1

λl∇gl(q)

For example, the potential function U(q) can be associated with the action of
gravitational forces or with the deformation of flexible bodies such as nonlinear
beams and shells relying on hyperelastic constitutive laws.

2. The configuration vector of the complete flexible multibody systems is composed
of vectors qI ∈ R

3 and thus given by

q =

⎡
⎢⎢⎢⎣

q1
q2
...

qN

⎤
⎥⎥⎥⎦ (123)

where N denotes the total number of 3-vectors qI needed to describe a specific
multibody system. Accordingly, in total, the configuration vector q ∈ R

n has
n = 3N components.

3. The total angular momentum of flexible multibody systems can be cast in the
form

J =
N∑

a,b=1

Mabqa × vb (124)

2The present framework comprises as well domain decomposition problems (Hesch and Betsch
2010) and large deformation contact (Hesch and Betsch 2009, 2011a, b).
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where Mab contain the constant inertia parameters and vb = q̇b.
4. The balance of angular momentum can be written as

d

dt
J =

N∑
a=1

qa × (
Fa − ∇qa Vλ(q)

)
(125)

The EM consistent discretization of the discrete mechanical systems at hand can be
performed in complete analogy to the Cosserat point and the rigid body dealt with
in detail in the previous sections.

5 Numerical Examples

5.1 Spacecraft Attitude Maneuver

In the first numerical examplewedemonstrate the importance of formula (114) for the
consistent application of external torques. To this end we apply the present approach
to the control of spacecraft rotational maneuvers.

The spacecraft is modeled as multibody system consisting of four rigid bodies
(Fig. 10), namely the base body and three reaction wheels. A similar example has
been dealt with in Leyendecker et al. (2010). The data for the present 4-body system

Fig. 10 The spacecraft as
4-body system
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Table 1 Spacecraft: data for the 4-body system

Body Mϕ E11 E22 E33 L

1 1005.3096 89.3609 201.0619 357.4434

2 424.1150 8.8357 106.0288 106.0288 0.9167

3 424.1150 106.0288 8.8357 106.0288 1.25

4 424.1150 106.0288 106.0288 8.8357 1.5833

Note that L denotes the distance between the center of mass of the reaction wheels and the base
body

have been taken from (Leyendecker et al. 2010). Using principal axis for each rigid
body the data used in the simulations are summarized in Table1.

The reaction wheels are spinning about body-fixed axis of the base body. For
simplicity the three body-fixed axis are assumed to coincide with the director frame
{1di} of the base body. Spacecraft attitude maneuvers are performed by applying
reaction wheel motor torques

2m = (u1) 1d1 , 3m = (u2) 1d2 , 4m = (u3) 1d3 (126)

In the example we prescribe constant motor torques ui = 200.
A total of n = 48 coordinates are employed to describe the multibody system at

hand. Each body is subject to 6 rigid body constraints giving rise tomint = 24 internal
constraints. Revolute joints are used to connect the reaction wheels to the base body.
This amounts to mext = 3 × 5 = 15 external constraints. Accordingly, in total there
are m = mint + mext = 39 independent constraints leading to n − m = 9 degrees of
freedom.

The newly devised formula (114) has been used to consistently apply the motor
torques to the reaction wheels. The torque acting on the base body is given by

1m = − (
2m + 3m + 4m

)
(127)

Since no resultant external torque acts on the spacecraft, the total angular momentum
is a first integral of the motion. In particular,

Jn+1 − Jn = �t
4∑

b=1

bdi
n+ 1

2
× bf i

∣∣
n+ 1

2

= �t

2

4∑
b=1

bdi
n+ 1

2
×

(
bm × bdi

∣∣
n+ 1

2

)

= �t

2

4∑
b=1

(
(bdin+ 1

2
· bdi)bm − (bdin+ 1

2
· bm) bdi

∣∣
n+ 1

2

)

= �t
4∑

b=1

bm

= 0



Energy-Momentum Integrators for Elastic Cosserat Points … 73

Fig. 11 Spacecraft:
Comparison of angular
momentum
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where use has been made of (126) and (127). In the numerical simulations we focus
on the 3-component J3 of the total angular momentum and the total kinetic energy
T of the multibody system at hand. The numerical results due to the application of
the newly devised formula (114) are denoted by Jkontra3 and Tkontra.

For comparison we apply the motor torques via the straightforward mid-point
evaluation of the continuous expression of the ‘original’ formulation (Betsch et al.
2012).

f i
n+ 1

2

= 1

2
mn+ 1

2
× di

n+ 1
2

(128)

The corresponding results are denoted by Jkov3 and Tkov .
A number of N time steps is used to resolve the time interval [0, 5]. It can be

observed from Fig. 11 that Jkontra3 stays constant for all N . This corroborates algorith-
mic conservation of the total angular momentum. In severe contrast to that Jkov3 does
not stay constant. Accordingly the balance law for angular momentum is violated.
This discretization error can be decreased by raising the number of time steps N .
These observations are further supported by considering the total kinetic energy in
Fig. 12. Accordingly, Tkontra does hardly change if the time steps are refined. That
is, using only N = 5 time steps already leads to a very good approximation of the
kinetic energy. This is in severe contrast to Tkov .

5.2 Parallel Robot

In the second example we consider the planar parallel robot depicted in Fig. 13. Each
of the three legs of the parallel robot consists of a prismatic kinematic pair along
with two revolute joints. The parallel mechanism has three degrees of freedom and
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Fig. 12 Spacecraft: Comparison of kinetic energy

A

B

C

D

E

FG

θA

θB

θC

e1

e2 1m

1m
1

2

3

4

5

6

7

Fig. 13 The 3-RPR planar parallel robot

is referred to as the 3-RPR planar parallel manipulator, where the underlined letter
indicates that one of the revolute joints of each leg is driven.

In the forward dynamics simulation we rely on the results of an inverse dynamics
analysis due to McPhee and Redmond (2006). The goal of the inverse dynamics
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analysis is to determine the driving torques required to translate the center of mass
G of the end-effector in a figure-8 pattern, with a cycle time of 2 s, defined by

xG = 2 + sin(πt)

yG = 4

3
+ 1

2
sin(2πt)

θG = 0

(129)

The geometry and inertia properties of the parallel robot have been taken as well
from McPhee and Redmond (2006) and are summarized in Table2. In addition to
that, we remark that the position of points B and C (Fig. 13) is given by xB = 2,
yB = 3.5, and xC = 4.0. The result of the inverse dynamics analysis gives rise to the
three driving torques, one of which is depicted in Fig. 14 (compare with Fig. 12 in
McPhee and Redmond 2006).

Obviously, using the three driving torques from the inverse dynamics analysis in
the forward dynamics simulation along with the data in Table2 should lead to the
motion of the end-effector given by (129). That is, the trajectory of the center of mass
G of the end-effector should follow a figure-8 pattern, while the end-effector should
not rotate.

In the simulation we use 200 time steps and apply formula (114) for the consistent
application of external torques. It can be observed from Fig. 15 that the proposed

Table 2 Geometry and inertia properties of the parallel robot

Body Width (m) Length (m) Mass (kg) Moment of inertia (kg m2)

1, 2, 3 0.3 1.0 2.4 0.218

4, 5, 6 0.1 1.5 1.2 0.226

7 1.0 1.0 0.5 0.049

Fig. 14 Parallel robot:
Driving torque at joint A
determined by the inverse
dynamics analysis
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Fig. 15 Parallel robot: Final
position simulated with the
proposed method. The
figure-8 trajectory is
correctly tracked by the mass
center of the end-effector

Fig. 16 Parallel robot: Final
position simulated with the
original method. The
inconsistent application of
the driving torques leads to a
deviation from the correct
motion

simulationmethod yields the correctmotion. In sharp contrast to that, using instead of
formula (114) the mid-point evaluation of the original formulation, Eq. (128), yields
a deviation from the correct motion (Fig. 16). This observation is further supported
by Fig. 17, where the rotation angle of the end-effector is plotted versus time. While
the advocated method correctly reproduces the constant angle θkontraG = 0, the angle
θkovG determined by the original approach deviates significantly from the correct
value. These results strongly support the need for a consistent formulation of external
torques in the underlying rotationless formulation.
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Fig. 17 Parallel robot:
Rotation angle of the
end-effector
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A Appendix

A.1 Balance Laws

For comparison, the balance laws are directly derived from the variational equations
(19) governing the motion of the pseudo-rigid body. To this end, we recast (19) in
the form

δx · (
Mẍ − f ext

) = 0 (130)

tr
(
δFT

(
F̈E0 + 2FDU(C) − Mext

)) = 0 (131)

Applying the polar decomposition theorem to the deformation gradient, we get

F = RU and δF = δRU + RδU (132)

Since RRT = I, δRRT + RδRT = 0, and consequently

ω̂δ = δRRT (133)

is skew-symmetric.A straightforward calculation shows that (131) can be rewritten as

tr
(
δUU

(
F−1F̈E0 + 2DU(C) − F−1Mext

)) = 0 (134)

ωδ · (
2vect

(
F̈E0FT

) − 2vect
(
MextFT

)) = 0 (135)
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Accordingly, the nine independent equations emanating from (131) have been con-
verted to six independent equations (134) plus three independent equations (135).
In (135), vect(•) denotes the vector invariant of a second-order tensor defined by

vect(a ⊗ b) × c = skew(a ⊗ b)c

Since

skew(a ⊗ b)c = 1

2
(a ⊗ b − b ⊗ a)c

= 1

2
((b · c)a − (a · c)b)

= 1

2
(b × a) × c

we have

vect(a ⊗ b) = 1

2
(b × a) (136)

Accordingly,

2vect
(
F̈E0FT

) = 2vect
(
Eij
0 d̈i ⊗ dj

) = Eij
0 dj × d̈i (137)

2vect
(
MextFT

) = 2vect
(
f iext ⊗ di

) = di × f iext = mext (138)

A.1.1 Balance of Angular Momentum

To get the balance law for angular momentum, substitute δU = 0 into (134), ωδ =
ξ into (135), and δx = ξ × x into (130). Subsequent summation of the resulting
equations yields

ξ · (
Mx × ẍ + 2vect

(
F̈E0FT

) − x × f ext − 2vect
(
MextFT

)) = 0

or

ξ ·
(
d

dt
j − mext

)
= 0

The last equation has to hold for arbitrary ξ ∈ R
3. Accordingly, one obtains dj/dt =

mext, where

j = Mx × ẋ + 2vect
(
ḞE0FT

)
mext = x × f ext + 2vect

(
MextFT

)
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denote, respectively, the total angular momentum and the resultant external torque
with respect to the origin of the inertial frame of reference. Note that the same conclu-
sions can be drawn by substituting δx = ξ × x into (130), and δF = ξ̂F into (131).

A.1.2 Balance of Energy

Suppose that an external force f ext ∈ R
3 along with external director forces f iext ∈

R
3, i = 1, 2, 3, are acting on the body under consideration. Recall that the external

director forces f iext can be linked to the second-order tensorMext viaMext = f iext ⊗ Di

(see Eq. (38) in Sect. 2.2). To define the external director forces we introduce 9
independent quantities Mij such that

M = MijDi ⊗ Dj (139)

and

Mext = FM = Mijdi ⊗ Dj (140)

Note that the last equation implies

f iext = Mkidk (141)

Now substitute ẋ for δx into (130) and Ḟ for δF into (131). Subsequent summation
of both equations yields

ẋ · (
Mẍ − f ext

) + tr
(
Ḟ
T (
F̈E0 + 2FDU(C) − Mext

)) = 0 (142)

Taking into account the relationships

ẋ · Mẍ = d

dt

(
1

2
Mẋ · ẋ

)

tr
(
Ḟ
T
F̈E0

)
= d

dt

(
1

2
tr

(
Ḟ
T
ḞE0

))

we define the kinetic energy

T = 1

2
Mẋ · ẋ + 1

2
tr

(
ḞE0Ḟ

T
)

(143)
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Moreover,

tr
(
Ḟ
T
F2DU(C)

)
= tr

(
2DU(C)sym(Ḟ

T
F)

)

= tr

(
2DU(C)

1

2
(Ḟ

T
F + FT Ḟ)

)

= tr

(
2DU(C)

1

2
Ċ

)

= d

dt
U(C)

Now (142) can be recast in the form

d

dt
E = Pext (144)

Here, E is the total mechanical energy given by

E = T + U

where U denotes the total strain energy defined in (13). On the right hand side of
balance equation (144)

Pext = f ext · ẋ + tr
(
Ḟ
T
Mext

)

denotes the power of the external forces acting on the pseudo-rigid body. We next
focus on the power of the director forces given by

Pext = tr
(
Ḟ
T
Mext

)

Taking into account (140), the last equation can be rewritten as

Pext = tr
(
Ḟ
T
FM

)

= tr
((M + M̃)

Ḟ
T
F

)

In the last equation

M = sym (M)

M̃ = skew (M)

have been introduced. Now

tr
(
MḞ

T
F

)
= tr

(
Msym

(
Ḟ
T
F

))
= 1

2
tr

(
MĊ

)
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Furthermore,

tr
(
M̃Ḟ

T
F

)
= tr

(
M̃skew

(
Ḟ
T
F

))

Applying the polar decompositionF = RU alongwith Ḟ = ṘU + RU̇ and ω̂ = ṘRT

(cf. (132) and (133) on p. 47), we get

tr
(
M̃skew

(
Ḟ
T
F

))
= ω · 2vect (FM̃FT

) + tr
(
M̃U̇

T
U

)

Altogether the power of the external forces can be written in the form

Pext = f ext · ẋ + 1

2
tr

(
MĊ

)
+ ω · 2vect (FM̃FT

) + tr
(
M̃U̇

T
U

)

= f ext · ẋ + 1

2
Mij

ḋij + ω · mext + tr
(
M̃U̇

T
U

)

Here, mext can be identified as the resultant external torque relative to the center of
mass that has been introduced in (71). In particular, we have

mext = 2vect
(
FM̃FT

)
= M̃jidi × dj

= εijkM̃jidk

= di × f iext

In the last equation use has been made of (141). Moreover,

εijk = (di × dj) · dk = eijk
√
d

where d = det(dij) (or
√
d = (d1 × d2) · d3) and eijk denotes the alternating symbol.

A.2 Application of External Torques

It can be observed from the above treatment that the application of external torques
mext relative to the center of mass is linked to the skew-symmetric tensor M̃ =
M̃ijDi ⊗ Dj. In particular, given the covariant components of the external torque,
mk = dk · mext, we obtain

mk = εijkM̃ji
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from which it follows that

M̃23 = −M̃32 = − m1

2
√
d

M̃31 = −M̃13 = − m2

2
√
d

M̃12 = −M̃21 = − m3

2
√
d

or

M̃ij = ejikmk

2
√
d

(145)

where eijk = eijk again denotes the alternating symbol. Accordingly, using the above
formulas for M̃ij in terms of the torque components mk , the corresponding director
forces can be calculated via

f jext = M̃ijdi (146)

or

f jext = eijk

2
√
d

(
dj ⊗ dk

)
mext (147)

To summarize, the action of an external torquemext relative to the center of mass can
be realized by applying external director forces of the form

⎡
⎣f 1ext
f 2ext
f 3ext

⎤
⎦ = 1

2
√
d

⎡
⎣d2 ⊗ d3 − d3 ⊗ d2
d3 ⊗ d1 − d1 ⊗ d3
d1 ⊗ d2 − d2 ⊗ d1

⎤
⎦mext (148)

Remark A.1 Formula (148) can be viewed as an extension to flexible Cosserat points
of the method proposed in Betsch and Sänger (2013). In this work the consistent
application of torques has been dealt with in the context of rigid body dynamics
formulated in terms of directors (or direction cosines). The formula proposed in
Betsch and Sänger (2013) is given by

f jext = 1

2
mext × dj (149)
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The equivalence of (149) to (148) can be shown by a direct calculation:

f jext = 1

2
mext × dj

= 1

2
mkd

k × dj

= 1

2
mkd

− 1
2 ekjidi

= M̃ijdi

where (145) has been used.

A.2.1 Fully Actuated Cosserat Point

If the Cosserat point shall be fully actuated, the 9 independent quantitiesMij in (139)
can be employed as control inputs. According to (141) this approach determines the
external director forces

f iext = Mjidj

If required the external torque associated with the control inputs can be extracted via

mext = Mjidi × dj

Note that due to the presence of the cross product the skew-symmetric part of Mji,
that is,M̃ji = (Mji − Mij)/2, is automatically extracted. The above result coincides
with

mext = mkd
k where mk = √

d eijkMji

Again the skew-symmetric part of Mji is extracted due to the presence of the alter-
nating symbol.

A.3 Iteration Matrix of the EM Integrator

Consider St. Venant-Kirchhoff material with strain energy density

W (G) = λ

2
(trG)2 + μtr

(
G2)

where the Green–Lagrangean strain tensor is given by

G = 1

2
(C − I) = γijDi ⊗ Dj
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Note that the components γij = 1
2 (dij − δij) have been introduced in (66). According

to (11), the second Piola-Kirchhoff stress tensor is given by

S = 2DW (C)

= DW (G)

= λ (trG) I + 2μG
(150)

Moreover, the fourth-order elasticity tensor assumes the form

C = 4D2W (C)

= D2W (G)

= λI ⊗ I + 2μI
(151)

Since we have assumed that the director triad {Di} in the reference configuration is
orthonormal, it suffices to consider the Cartesian components of S and C. Accord-
ingly, we have

Sij = λγkkδij + 2μγij (152)

and
Cijkl = λδijδkl + μ

(
δikδjl + δilδjk

)

We next deal with the linearization of the internal director forces f iint = Sijdj. First
consider the time-continuous case where, according to the product rule of differen-
tiation, we get

�f iint = �Sijdj + Sij�dj (153)

With regard to (152)

�Sij = λ�γkkδij + 2μ�γij
= λ(dk · �dk)δij + μ(di · �dj + dj · �di)

(154)

Now, a straightforward calculation yields

�f iint =
(
K ij

mat + K ij
geo

)
�dj (155)

where the contributions to the iteration matrix have been split into a material part
K ij

mat and a geometric part K ij
geo. The material part is given by

K ij
mat = λdi ⊗ dj + μdj ⊗ di + μdk ⊗ dk δij

and the geometric part assumes the form

K ij
geo = SijI
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The symmetry of the iteration matrix follows from the properties K ij
mat = (K ji

mat)
T

and K ij
geo = (K ji

geo)
T . Similar to (153), in the discrete case the EM scheme (63) leads

to
� (f iint)

∣∣
n+ 1

2
= �SijAdjn+ 1

2
+ SijA�dj

n+ 1
2

Similar to (154), the algorithmic stress formula (65) leads to

�SijA = λ�γkk
n+ 1

2
δij + 2μ�γij

n+ 1
2= λ

2 (dkn+1 · �dkn+1)δij + μ
2 (din+1 · �djn+1 + djn+1 · �din+1)

(156)

Altogether the discrete counterpart of (155) is given by the consistent linearization

� (f iint)
∣∣
n+ 1

2
=

(
K ij

mat

∣∣∣
n+ 1

2

+ K ij
geo

∣∣∣
n+ 1

2

)
�djn+1

where the material part is given by

K ij
mat

∣∣∣
n+ 1

2

= 1

2

(
λdi

n+ 1
2

⊗ djn+1 + μdj
n+ 1

2
⊗ din+1 + μdk

n+ 1
2

⊗ dkn+1 δij

)

and the geometric part assumes the form

K ij
geo

∣∣∣
n+ 1

2

= 1

2
SijAI

It is obvious that in the discrete setting the material part destroys the symmetry of
the iteration matrix, for

(
K ij

mat

)∣∣∣
n+ 1

2

�=
(
K ji

mat

)T
∣∣∣∣
n+ 1

2

We finally remark that due to definition (13) of the total strain energy of the Cosserat
point, namelyU(C) = V0W (C), the above stress components Sij should be replaced

by S
ij = V0Sij.
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A Lie Algebra Approach to Lie Group Time
Integration of Constrained Systems

Martin Arnold, Alberto Cardona and Olivier Brüls

Abstract Lie group integrators preserve by construction the Lie group structure
of a nonlinear configuration space. In multibody dynamics, they support a repre-
sentation of (large) rotations in a Lie group setting that is free of singularities. The
resulting equations of motion are differential equations on a manifold with tangent
spaces being parametrized by the corresponding Lie algebra. In the present paper,
we discuss the time discretization of these equations of motion by a generalized-α
Lie group integrator for constrained systems and show how to exploit in this context
the linear structure of the Lie algebra. This linear structure allows a very natural
definition of the generalized-α Lie group integrator, an efficient practical implemen-
tation and a very detailed error analysis. Furthermore, the Lie algebra approach may
be combined with analytical transformations that help to avoid an undesired order
reduction phenomenon in generalized-α time integration. After a tutorial-like step-
by-step introduction to the generalized-α Lie group integrator, we investigate its
convergence behaviour and develop a novel initialization scheme to achieve second-
order accuracy in the application to constrained systems. The theoretical results are
illustrated by a comprehensive set of numerical tests for two Lie group formulations
of a rotating heavy top.

1 Introduction

Structure-preserving integrators overcome limitations of classical time integration
methods from the fields of ordinary differential equations (ODEs) and differential-
algebraic equations (DAEs). They are known for their favourable nonlinear stability
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properties for the long-term integration of conservative systems, see, e.g., (Hairer
et al. 2006).

The focus of the present paper is slightly different since we consider a class
of time integration methods that is tailored to flexible multibody system models
with dissipative terms resulting, e.g., from friction forces or control structures. The
methods are applied to constrained systems with a nonlinear configuration space
with Lie group structure. They preserve this structural property of the equations
of motion in the sense that the numerical solution remains by construction in this
nonlinear configuration space.

The Lie group setting allows a representation of (large) rotations that is globally
free of singularities. Local parametrizations could be used to transform the system
in each time step in a linear configuration space such that classical time integration
methods could be used. As an alternative to such local parametrizations, Simo and
Vu-Quoc (1988) proposed a Newmark-type method that is directly based on the
equations of motion in a nonlinear configuration space with Lie group structure.

Starting with the work of Crouch and Grossman (1993) and Munthe-Kaas (1995,
1998), the time discretization of ordinary differential equations on Lie groups has
foundmuch interest in the numerical analysis community. Thisworkwas summarized
in the comprehensive survey paper by Iserles et al. (2000). In that time, the application
of Lie group time integration methods to multibody systemmodels was studied, e.g.,
by Bottasso and Borri (1998) and Celledoni and Owren (2003).

In 2010, the combination of Lie group time integration with the time dis-
cretization by generalized-α methods was proposed, see (Brüls and Cardona 2010).
Generalized-α methods are Newmark type methods that go back to the work of
Chung and Hulbert (1993). They may be considered as a generalization of Hilber–
Hughes–Taylor (HHT)methods, see (Hilber et al. 1977), and have found new interest
in industrial multibody system simulation since they avoid the very strong damping
of high-frequency solution components that is characteristic of other integrators in
this field, see, e.g., (Negrut et al. 2005; Lunk and Simeon 2006; Jay and Negrut 2007,
2008; Arnold and Brüls 2007).

Cardona and Géradin (1994) investigated systematically the stability and con-
vergence of HHT methods for constrained systems. This analysis may be extended
to generalized-α methods, see Géradin and Cardona (2001, Sect. 10.5), and shows
a risk of order reduction and large transient errors in the Lagrange multipliers and
constrained forces. Numerical test results for the generalized-α Lie group integrator
illustrate that this undesired numerical effect is strongly related to the specific Lie
group formulation of the equations of motion, see (Brüls et al. 2011).

Therefore, the error analysis for the Lie group integrator has to consider the global
errors in long-term integration as well as the transient behaviour of the numerical
solution. In a series of papers, we developed a strategy for defining, implementing
and analysing the Lie group integrator that is based on the observation that the
increments of the configuration variables in each time step are parametrized by
elements of the Lie algebra, i.e., by elements of a linear space, see (Arnold et al.
2011b, 2014, 2015) and (Brüls et al. 2011, 2012). In the present paper, we follow
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this Lie algebra approach and consider local and global discretization errors of the
Lie group integrator as elements of the corresponding Lie algebra.

We introduce theLie group setting in a tutorial like style and showhow todiscretize
the equations of motion by a generalized-α Lie group integrator. There is a specific
focus on practical aspects like corrector iteration and initialization of the integrator. In
a comprehensive numerical test series, we consider different Lie group formulations
of a heavy top benchmark problem. For the convergence analysis, we follow to a
large extent the presentation in the recently published paper (Arnold et al. 2015).

The remaining part of the paper is organized as follows: Basic aspects of Lie
group theory in the context of multibody dynamics and the equations of motion of
constrained systems are introduced in Sect. 2. Furthermore, we discuss two different
Lie group formulations of a rotating heavy top thatwill be used as benchmarkproblem
throughout the paper.

In Sect. 3, we consider the generalized-α Lie group DAE integrator and study
its asymptotic behaviour for time step sizes h → 0. Classical results of Hilber and
Hughes (1978) on “overshooting” ofNewmark typemethods in the application to lin-
ear problems with high-frequency solutions are shown to result in an order reduction
phenomenon for the constrained case, see (Cardona and Géradin 1994). In Sect. 3.3,
the large first-order error terms are illustrated by numerical tests for the heavy top
benchmark problem. They may be reduced drastically by index reduction and a
modification of the generalized-α Lie group integrator that is based on the so-called
stabilized index-2 formulation of the equations of motion, see Sect. 3.4. Implemen-
tation aspects and some technical details are discussed in Sects. 3.5 and 3.6.

For the convergence analysis, we discuss in Sect. 4.1 a one-step error recursion
of generalized-α methods for constrained systems. The coupled error propagation in
differential and algebraic solution components may be studied extending the conver-
gence analysis of ODE one-step methods to the Lie group DAE case, see Sect. 4.2.
The convergence theorem for the generalized-α Lie group DAE integrators is given
in Sect. 4.3. It provides the basis for an optimal initialization using perturbed starting
values that guarantee second-order convergence in all solution components such that
order reduction may be avoided.

2 Constrained Systems in a Configuration Space
with Lie Group Structure

Themain interest of this paper is in time integrationmethods for constrainedmechan-
ical systems that have a configuration space with Lie group structure. In the present
section, we introduce this Lie group setting by studying the configuration space of a
rigid body (Sect. 2.1). Lie groups are differentiablemanifolds that are in a very natural
way parametrized locally by elements of the corresponding Lie algebra (Sect. 2.2).

Lie groups may be used to represent large rotations in R
3 without singularities.

They are part of the mathematical framework for a generic finite element approach
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to flexible multibody dynamics that has been applied successfully for more than two
decades (Géradin and Cardona 1989, 2001). In Sect. 2.3, we consider constrained
systems and discuss the general structure of the equations of motion. As a typical
example, two different Lie group formulations of a heavy top benchmark problem
are introduced in Sect. 2.4. Finally, some technical details of the Lie group setting
are discussed in Sect. 2.5.

2.1 The Configuration Space of a Rigid Body in R
3

The position of a rigid body in an inertial frame is represented by a vector x ∈ R
3, i.e.,

by an element of a linear space. There are three additional degrees of freedom that
describe the orientation of this rigid body but these degrees of freedom may not be
represented globally by elements of a three-dimensional linear space. In engineering,
small deviations from a nominal state are often characterized by three angles of
rotation like Euler angles or Bryant angles (Géradin and Cardona 2001, Sect. 4.8)
that suffer, however, from singularities in the case of large rotations.

Alternative representations that are free of singularities are provided, e.g., by
Euler parameters that are also known as quaternions (Betsch and Siebert 2009 and
Géradin and Cardona 2001, Sect. 4.5) or by the rotation matrix

R ∈ SO(3) := { R ∈ R
3×3 : R�R = I3 , det R = +1 } .

The set SO(3) is a three-dimensional differentiable manifold in R
3×3 and may be

combined in two alternative ways with the linear space R
3 to describe the config-

uration of the rigid body by an element q := (R, x) of a six-dimensional group G
(Brüls et al. 2011; Müller and Terze 2014a): In the direct product G = SO(3) × R

3,
the group operation ◦ is defined by

(Ra, xa) ◦ (Rb, xb) = (RaRb, xa + xb)

and results in kinematic relations

Ṙ = R�̃ , ẋ = u (1)

with u ∈ R
3 denoting the translation velocity in the inertial frame and a skew sym-

metric matrix

�̃ :=
⎛
⎝ 0 −�3 �2

�3 0 −�1

−�2 �1 0

⎞
⎠ ∈ R

3×3 (2)

that represents the angular velocity � = (�1, �2, �3 )� ∈ R
3. The semi-direct

product G = SO(3) � R
3 is known as the special Euclidean group SE(3) with the

group operation
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(Ra, xa) ◦ (Rb, xb) = (RaRb, Raxb + xa) ,

kinematic relations
Ṙ = R�̃ , ẋ = RU (3)

and U ∈ R
3 denoting the translation velocity in the body-attached frame.

For group elements q = (R, x), the group operations in SO(3) × R
3 and in SE(3)

are equivalent to the matrix multiplication of non-singular block-structured matrices
in R

7×7 and in R
4×4, respectively, that are defined by

SO(3) × R
3 :

⎛
⎝ R 03×3 03×1

03×3 I3 x
01×3 01×3 1

⎞
⎠ , SE(3) :

(
R x

01×3 1

)
. (4)

Therefore, the groupsSO(3) × R
3 andSE(3) aswell as the groupSO(3)of all rotation

matricesR are isomorphic to a subset of a general linear groupGL(r) = { A ∈ R
r×r :

det A �= 0 } of suitable degree r > 0. The structure of the block matrices in (4) and
the orthogonality condition R�R = I3 imply that the groups SO(3) × R

3, SE(3)
and SO(3) are isomorphic to differentiable manifolds in GL(7), GL(4) and GL(3),
respectively.

2.2 Differential Equations on Manifolds: Matrix Lie Groups

A group G with group operation ◦ and neutral element e ∈ G is called a Lie group if
G is a differentiable manifold and the group operation ◦ : G × G → G as well as
the map q �→ q−1 are differentiable ( q ◦ q−1 = e ). Lie groups that are subgroups of
GL(r) for some r > 0 are called matrix Lie groups if the group operation ◦ is given
by the matrix multiplication. For a compact introduction to analytical and numerical
aspects of such matrix Lie groups, the interested reader is referred to (Hairer et al.
2006, Sect. IV.6).

It is a trivial observation that a continuously differentiable function q(t) with
q(t0) ∈ G will remain in a Lie group G if and only if its time derivative q̇(t) is in the
tangent space TqG at the point q = q(t): q̇(t) ∈ Tq(t)G, (t ≥ t0). The tangent space
at the neutral element e defines the Lie algebra g := TeG. As a linear space, it is
isomorphic to a finite dimensional linear space R

k with an invertible linear mapping
(̃•) : R

k → g, v �→ ṽ.
The group structure of G makes it possible to represent the elements of TqG at

any element q ∈ G by the elements ṽ of the Lie algebra: The left translation

Lq : G → G , y �→ Lq(y) := q ◦ y
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defines a bijection in G. Its derivative DLq(y) at y = e represents the corresponding
bijection between the tangent spaces g := TeG and TqG, i.e.,

TqG = { DLq(e) · ṽ : ṽ ∈ g } = { DLq(e) · ṽ : v ∈ R
k } . (5)

With these notations, kinematic relations like (1) and (3) may be summarized in
compact form:

q̇(t) = DLq(t)(e) · ṽ(t) (6)

with a velocity vector v(t) ∈ R
k . In (6), the left translation Lq as well as the tilde

operator (̃•) depend on the specific Lie group setting.
For constant velocity v, the kinematic relation (6) yields locally

q(t) = q(t0) ◦ exp
(
(t − t0)̃v

) ∈ G (7)

with the exponential map exp : g → G. For matrix Lie groups, this exponential map
is given by

exp(̃v) =
∞∑
i=0

1

i ! ṽi . (8)

It is a local diffeomorphism, i.e., for any qa ∈ G there are neighbourhoodsUqa ⊂ G
and Ṽ0 ⊂ g such that any q ∈ Uqa may be expressed by

q = qa ◦ exp(�̃q) (9)

with a uniquely defined element �̃q ∈ Ṽ0.

Example 2.1 (a) Using the block matrix representation (4), the groups SO(3) × R
3,

SE(3) and SO(3) are seen to be matrix Lie groups. The Lie algebra corresponding
to Lie group G = SO(3) is given by the set

so(3) := { A ∈ R
3×3 : A + A� = 0 }

of all skew symmetric matrices in R
3×3. As a linear space, this Lie algebra is iso-

morphic to R
3 with the tilde operator being defined in (2). In SO(3), the exponential

map (8) may be evaluated very efficiently by Rodrigues’ formula

expSO(3)(�̃) = I3 + sin�

�
�̃ + 1 − cos�

�2
�̃

2
(10)

with � := ‖�‖2 since powers �̃
i
with i ≥ 3 may be expressed in terms of I3, �̃

and �̃
2
because each matrix �̃ ∈ R

3×3 is a zero of its characteristic polynomial
χμ(�̃) = det(μI3 − �̃) = μ3 + ‖�‖22 μ = μ3 + �2μ, i.e., �̃

3 = −�2 �̃ (Cayley-
Hamilton theorem).
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According to (1), (3) and (6), the Lie algebras of SO(3) × R
3 and SE(3) are

parametrized by vectors v = (��, u�)� and v = (��, U�)�, respectively. In block
matrix form, they are represented by (Brüls et al. 2011)

so(3) × R
3 : ṽ =

⎛
⎝ �̃ 03×3 03×1

03×3 03×3 u
01×3 01×3 0

⎞
⎠ , se(3) : ṽ =

(
�̃ U

01×3 0

)

with exponential maps

expSO(3)×R3 (̃v) =
⎛
⎝ expSO(3)(�̃) 03×3 03×1

03×3 I3 u
01×3 01×3 1

⎞
⎠ , (11a)

expSE(3)(̃v) =
(
expSO(3)(�̃) T�

SO(3)(�) U
01×3 1

)
(11b)

and the so-called tangent operator TSO(3) : R
3 → R

3×3, see (33), that will be dis-
cussed in more detail in Remark 2.8(b) below.

(b) The linear space R
k with vector addition + as group operation ◦ is a trivial

example of a matrix Lie group since x ∈ R
k may be identified with the non-singular

2 × 2 block matrix (
Ik x

01×k 1

)
∈ GL(k + 1) . (12)

Substituting vector x by u ∈ R
k and the main diagonal blocks by 0k×k and by 0,

respectively, we get the block matrix representation of the corresponding Lie algebra
that is parametrized by u:

ũ =
(

0k×k u
01×k 0

)
, exp

Rk (̃u) =
(

Ik u
01×k 1

)
. (13)

Alternatively, the exponential map may be expressed directly in terms of u ∈ R
k

using exp
Rk = idRk , i.e., x ◦ exp

Rk (̃u) = x + u.
(c) The block matrix representation of (R, x)SO(3)×R3 in (4) is block-diagonal

with diagonal blocks for R ∈ SO(3) and x ∈ R
3, see (12). The same block-diagonal

structure is observed for the elements of the corresponding Lie algebra so(3) × R
3,

for the tilde operator and for expSO(3)×R3 , see (11a) and (13). It is typical for direct
products ofLie groups andmaybeused aswell forLie groupsGN = G × G × · · · ×
G that are direct products of N ≥ 2 factors G with G = SO(3) × R

3 or G = SE(3).
In particular, we have

expGN

(
(̃v1, ṽ2, . . . , ṽN )

) = blockdiag1≤i≤N expG (̃vi ) .
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Fig. 1 Interpolation in Lie
groups: qb = qa ◦ exp(�̃q )

G

TqaG

qa

qb

˜Δq

− ˜Δq

TqbG

Hence, the exponential map expGN : gN → GN in the direct product GN may be
evaluated as efficiently as the one in its factors G, see (10) and (11). In flexible
multibody dynamics, the configuration spaces (SO(3) × R

3)N and (SE(3))N are of
special interest since they allow to represent the configuration of an articulated system
of rigid and flexible bodies in the nonlinear finite element method by N ≥ 1 pairs of
absolute nodal translation and rotation variables, see (Brüls et al. 2012; Géradin and
Cardona 2001).

Remark 2.2 The parametrization (9) offers a generic way to interpolate between qa
and any point qb in a sufficiently small neighbourhood Uqa ⊂ G, see Fig. 1: If qb =
qa ◦ exp(�̃q)with a vector�q ∈ R

k of sufficiently small norm ‖�q‖, then exp(ϑ�̃q)

is well defined for any ϑ ∈ [0, 1] and qa, qb ∈ G are connected by the path

{ q(ϑ; qa,�q) = qa ◦ exp(ϑ�̃q) : ϑ ∈ [0, 1] } ⊂ G .

Because of qa = qb ◦ exp(−�̃q) the parametrization of this path by ϑ ∈ [0, 1] is
symmetric in the sense that q(ϑ; qa,�q) = q(1 − ϑ; qb,−�q). This expression is
the Lie group equivalent to the identity qa + ϑ�q = qb − (1 − ϑ)�q that is trivially
satisfied for a path that interpolates two points qa, qb ∈ R

k .

In the Lie group setting, the nonlinear structure of the configuration space G
makes it possible to represent large rotations globally without singularities. Under
reasonable smoothness assumptions, there are smooth functions q : [t0, tend] → G
solving the equations of motion on a time interval [t0, tend] of finite length, see
Sect. 2.3 below. Locally, for a fixed time t = t∗ ∈ [t0, tend], the configuration space
in a sufficiently small neighbourhood of q(t∗) may nevertheless be parametrized by
elements of the linear space g that is independent of t∗ and q(t∗), see (9).

The local parametrization of G by elements ṽ ∈ g provides the basis for an effi-
cient implementation of Lie group time integration methods and for the analysis
of discretization errors, see Sects. 3 and 4 below. Using the notation exp(·) we will
assume tacitly throughout the paper that the argument of the exponential map is in a
small neighbourhood of 0̃ ∈ g on which exp is a diffeomorphism.

The basic concepts of time discretization and error analysis in Lie group time
integration are not limited to the specific parametrization by the exponential map,
see, e.g., (Kobilarov et al. 2009) for an analysis of variational Lie group integrators
that may be combined with the exponential map exp, with the Cayley transform
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cay(̃v/2) = (I − ṽ/2)−1(I + ṽ/2)orwith other local parametrizations. In the present
paper, we restrict ourselves, however, to the exponential map that reproduces the flow
exactly if the velocity ṽ ∈ g is constant, see (7).

2.3 Configuration Space with Lie Group Structure:
Equations of Motion

In a k-dimensional configuration space G with Lie group structure, the kinematic
relations are given by (6) with position coordinates q(t) ∈ G and the velocity vector
v(t) ∈ R

k .
We consider constrained systems with m ≤ k linearly independent holonomic

constraints �(q) = 0 that are coupled by constraint forces −B�(q)λ to the equi-
librium equations for forces and momenta. Here, λ(t) ∈ R

m denotes a vector of
Lagrange multipliers which is multiplied by the transposed of the constraint matrix
B(q) ∈ R

m×k with rank B(q) = m that represents the constraint gradients in the sense
that

D�(q) · (
DLq(e) · w̃

) = B(q)w , ( w ∈ R
k ) . (14)

The notation D�(q) · (
DLq(e) · w̃

)
is used for the directional derivative of � :

G → R
m at q ∈ G in the direction of DLq(e) · w̃ ∈ TqG.

Kinematic equations, equilibrium conditions and holonomic constraints are sum-
marized in the equations of motion

q̇ = DLq(e) · ṽ , (15a)

M(q)v̇ = −g(q, v, t) − B�(q)λ , (15b)

�(q) = 0 (15c)

that form a differential-algebraic equation (DAE) on Lie group G, see (Brüls and
Cardona 2010).MatrixM(q) denotes themassmatrix that is supposed to be symmet-
ric, positive definite. The force vector −g(q, v, t) summarizes external, internal and
complementary inertia forces. Throughout the present paper, we consider equations
of motion (15) with functions M(q), g(q, v, t) and �(q) being smooth in the sense
that they are as often continuously differentiable as required by the convergence
analysis.

Remark 2.3 (a) For linear configuration spaces, the equations of motion (15) are
well known from textbooks on DAE time integration, see, e.g., (Brenan et al. 1996,
Sect. 6.2 and Hairer and Wanner 1996, Sect. VII.1). Model equations of constrained
mechanical and mechatronic systems in industrial applications have often a more
complex structure with additional first-order differential equations ċ = hc(q, v, c, t)
or additional algebraic equations 0 = hs(q, s) that are locally uniquely solvable w.r.t.
s = s(q) if the Jacobian (∂hs/∂s)(q, s) is non-singular. Other useful generalizations
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of (15) are rheonomic, i.e., explicitly time-dependent constraints �(q, t) = 0 and
force vectors g = g(q, v,λ, t) that contain friction forces depending nonlinearly
on λ, see (Arnold et al. 2011c and Brüls and Golinval 2006) for a more detailed dis-
cussion.All these additionalmodel componentsmay be considered straightforwardly
in the convergence analysis of generalized-α Lie group integrators, see (Arnold et al.
2015).

(b) The full rank assumption on B(q) is essential for the analysis and numerical
solution of (15) since otherwise the Lagrange multipliersλ(t)would not be uniquely
defined, see (García de Jalón and Bayo 1994, Sect. 3.4) and the more recent material
in (García de Jalón and Gutiérrez-López 2013). On the other hand, the assumptions
on M(q)may be slightly relaxed considering symmetric, positive semi-definite mass
matrices that are positive definite on ker B(q), see (Géradin and Cardona 2001). The
extension of the convergence analysis to this more complex class of model equations
has recently been discussed in (Arnold et al. 2014).

The holonomic constraints (15c) imply hidden constraints at the level of velocity
coordinates and at the level of acceleration coordinates. The first ones are obtained
by differentiation of (15c) w.r.t. t :

0 = d

dt
�(q(t)) = D�(q(t)) · q̇(t) = D�(q) · (

DLq(e) · ṽ
) = B(q)v . (16)

For the second time derivative of (15c), we have to consider partial derivatives of
�(q, z) := B(q)z w.r.t. q ∈ G. Since � : G × R

k → R
m is by construction linear

in z we have

Dq�(q, z) · (
DLq(e) · w̃

) = Z(q)(z, w) , ( w ∈ R
k ) (17)

with a bilinear form Z(q) : R
k × R

k → R
m . Using these notations, the time deriv-

ative of (16) gets the form

0 = d

dt

(
B(q(t))v(t)

) = d

dt
�

(
q(t), v(t)

) = B(q)v̇ + Z(q)(v, v) . (18)

It defines the hidden constraints at the level of acceleration coordinates.
The dynamical equations (15b) and the hidden constraints (18) are linear in v̇(t)

and λ(t) and may formally be used to eliminate λ(t) and to express v̇(t) in terms of
t , q(t) and v(t), see (Hairer and Wanner 1996, Sect. VII.1):

(
M(q) B�(q)

B(q) 0

)(
v̇
λ

)
=

( −g(q, v, t)
−Z(q)(v, v)

)
. (19)

Initial value problems for the resulting analytically equivalent unconstrained sys-
tem for functions q : [t0, tend] → G and v : [t0, tend] → R

k are uniquely solvable
whenever its right-hand side satisfies a Lipschitz condition, see, e.g., (Walter 1998).
This proves unique solvability of initial value problems for the constrained system
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(15) if q(t0) and v(t0) are consistent with the (hidden) constraints (15c) and (16),
i.e., �

(
q(t0)

) = B
(
q(t0)

)
v(t0) = 0. The initial values v̇(t0) and λ(t0) are given by

(19) with t = t0, q = q(t0) and v = v(t0).
The index analysis of Lie group DAE (15) follows step by step the classical

index analysis for the equations of motion for constrained mechanical systems in
linear configuration spaces, see (Hairer and Wanner 1996, Sect. VII.1). The alge-
braic variables λ = λ(q, v, t) are defined by the system of linear equations (19) that
contains the second time derivative of (15c). A formal third differentiation step yields
λ̇ = λ̇(q, v, t) and illustrates that (15) is an index-3Lie groupDAE inG × R

k × R
m .

Therefore, Eq. (15) is called the index-3 formulation of the equations of motion.

Remark 2.4 Block-structured systems of linear equations

(
M B�
B 0

) (
xv̇

xλ

)
=

(
rv̇

rλ

)
(20)

with a symmetric, positive definite matrix M ∈ R
k×k and a rectangular matrix B ∈

R
m×k of full rank m ≤ k are uniquely solvable since left multiplication of the upper

block row by BM−1 yields equations

BM−1B�xλ = BM−1rv̇ − Bxv̇ = BM−1rv̇ − rλ

that may be solved w.r.t. xλ ∈ R
m since BM−1B� is symmetric, positive defi-

nite. Inserting this vector xλ in the upper block row, we get xv̇ ∈ R
k from Mxv̇ =

rv̇ − B�xλ. The most time-consuming parts of this block Gaussian elimination are
the Cholesky factorization of M ∈ R

k×k (to get M−1B� ∈ R
k×m and M−1rv̇ ∈ R

k)
the evaluation of the matrix-matrix product B(M−1B�) ∈ R

m×m and the Cholesky
factorization of this matrix.

Alternatively, we could follow a nullspace approach that separates the nullspace
of B ∈ R

m×k from a non-singular matrix R̄ ∈ R
m×m : For any non-singular matrix

Q ∈ R
k×k with BQ = (

R̄�, 0m×(k−m)

)
, system (20) is equivalent to

⎛
⎝ M̄11 M̄12 R̄

M̄21 M̄22 0
R̄� 0 0

⎞
⎠

⎛
⎝ x̄v̇,1

x̄v̇,2

xλ

⎞
⎠ =

⎛
⎝ r̄v̇,1

r̄v̇,2

rλ

⎞
⎠ with

(
M̄11 M̄12

M̄21 M̄22

)
= Q�MQ ,

x̄v̇ = Q−1xv̇ and r̄v̇ = Q�rv̇. This block-structured system may be solved in three
steps by block backward substitution to get x̄v̇,1, x̄v̇,2 and x̄λ since matrices R̄�,
M̄22 and R̄ are non-singular. Betsch and Leyendecker (2006) discussed analytical
nullspace representations of the constraint matrixB for typical types of constraints in
engineering systems. If such analytical expressions are not available, then matrices
Q and R̄ could be computed, e.g., by a QR-factorization of B� ∈ R

k×m , see (Golub
and van Loan 1996).
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Fig. 2 Benchmark problem
Heavy top (Brüls and
Cardona 2010), see also
(Géradin and Cardona 2001)

2.4 Benchmark Problem: Heavy Top

The Lie group formulation of the equations of motion is the backbone of a rather
general finite element framework for flexible multibody dynamics (Géradin and
Cardona 2001). In the present paper, we focus on basic aspects of Lie group time
integration in multibody dynamics and restrict the numerical tests to the simulation
of a single rigid body in a gravitation field. This heavy top has found much interest
in mechanics and serves as a benchmark problem for Lie group methods (Géradin
and Cardona 2001, Sect. 5.8). The simulation of more complex flexible structures by
Lie group time integration methods is discussed, e.g., in (Brüls et al. 2012).

Figure2 shows the configuration of the heavy top in R
3 with R(t) ∈ SO(3) char-

acterizing its orientation and the position vector x(t) ∈ R
3 of the centre of mass

in the inertial frame. In the body-attached frame, the centre of mass is given by
X = ( 0, 1, 0 )�. Here and in the following, we omit all physical units. We consider
a gravitation field with fixed acceleration vector γ = (0, 0,−9.81)�. Mass and iner-
tia tensor are given by m = 15.0 and J = diag (0.234375, 0.46875, 0.234375) with
J denoting the inertia tensor w.r.t. the centre of mass.

In the benchmark problem, the top rotates about a fixed point. Therefore, the
configuration variables (R, x) are subject to holonomic constraints x = RX. We
consider an initial configuration being defined by R(0) = I3 with an angular velocity
�(0) = (0, 150,−4.61538)�. All other initial values are supposed to be consistent
with 0 = �

(
(R, x)

) := X − R�x andwith the corresponding hidden constraints (16)
and (18) at the level of velocity and acceleration coordinates.

The equations ofmotion (15) of the rotating heavy top result from the principles of
classical mechanics. In (Brüls et al. 2011), theywere derived for configuration spaces
G = SO(3) × R

3 and G = SE(3) following an augmented Lagrangian method. In
SO(3) × R

3, we get hidden constraints

0 = d

dt
(X − R�x) = −Ṙ�x − R�ẋ = −�̃

�
R�x − R�u = −X̃� − R�u

and a constraint matrix B = (−X̃ −R�). The equations of motion are given by

J�̇ + � × J� + X × λ = 0 , (21a)

mu̇ − Rλ = mγ , (21b)

X − R�x = 0 (21c)
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Fig. 3 Heavy top benchmark, G = SO(3) × R
3: Reference solution

with kinematic relations (1). Figure3 shows a reference solution that has been com-
puted with the very small time step size h = 2.5 × 10−5. The position x(t) ∈ R

3 of
the centre of mass varies slowly in the inertial frame. For the Lagrange multipliers
λ(t) ∈ R

3, we observe much higher frequencies that reflect the fast rotation of the
top being caused by the rather large initial velocity �(0). Note, that the time scale
in the right plot of Fig. 3 has been zoomed by a factor of 10.

In the configuration space SE(3), we have ẋ = RU resulting in hidden constraints
0 = −X̃� − U with a constraint matrix B = (−X̃ −I3) that is constant and does
not depend on q ∈ G. The equations of motion are given by

J�̇ + � × J� + X × λ = 0 , (22a)

mU̇ + m� × U − λ = R�mγ , (22b)

X − R�x = 0 (22c)

with kinematic relations (3). The position coordinates q = (R, x) coincide for both
formulations (21) and (22) but there may be substantial differences between the
velocity coordinates u(t) in the inertial frame and their counterparts U(t) in the
body-attached frame. This is illustrated by the simulation results in Fig. 4 that have
been obtained again with time step size h = 2.5 × 10−5. In SO(3) × R

3, we observe
low frequency changes of u(t) that correspond to the solution behaviour of x(t) in
the left plot of Fig. 3. For the configuration space G = SE(3), we see in the right plot
of Fig. 4 the dominating influence of the large initial velocity �(0) on the qualitative
solution behaviour of U(t).

Throughout the paper, we will use the two different formulations (21) and (22) of
the heavy top benchmark problem for numerical tests to discuss various aspects of
the convergence analysis for the generalized-α Lie group integrator.
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Fig. 4 Heavy top benchmark: Velocity coordinates in the inertial frame (u(t), left plot) and in the
body-attached frame (U(t), right plot)

2.5 More on the Exponential Map

Equation (7) illustrates the crucial role of the exponential map for multibody system
models that have a configuration space with Lie group structure. Since the numerical
solution proceeds in time steps, we have to study the composition of exponential
maps with different arguments in more detail. Furthermore, the proposed Lie group
time integration methods are implicit and rely on a Newton–Raphson iteration that
requires the efficient evaluation of Jacobians (∂h/∂v)

(
q ◦ exp(̃v)

)
for vector-valued

functions h : G → R
l . In the present section, we follow the presentation in (Hairer

et al. 2006, Sect. III.4) to discuss these rather technical aspects of Lie group time
integration.

Formatrix Lie groups, the exponential map exp is given by thematrix exponential.
For s ∈ R and any matrices A, C ∈ R

r×r , the series expansion (8) shows

exp(sA) exp(sC) = (Ir + sA + s2

2
A2)(Ir + sC + s2

2
C2) + O(s3)

= Ir + s(A + C) + s2

2
(A2 + 2AC + C2) + O(s3)

= Ir + s(A + C) + s2

2
(A + C)2 + 1

2
[sA, sC] + O(s3)

= exp
(
sA + sC + 1

2
[sA, sC]) + O(s3) , ( s → 0 )

with the matrix commutator [A, C] := AC − CA that vanishes iff matrices A and C
commute. For a slightly more detailed analysis of the product of matrix exponentials,
we use the Baker–Campbell–Hausdorff formula, see (Hairer et al. 2006, Lemma
III.4.3), to get the following estimate:
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Lemma 2.5 For s → 0, the product of matrix exponentials exp(sA) and exp(sC)

satisfies

exp(sA) exp(sC) = exp
(
sA + sC + 1

2
[sA, sC] + O(s)‖[sA, sC]‖) . (23)

Proof The Baker–Campbell–Hausdorff formula defines the argument of the matrix
exponential at the right-hand side of (23) by the solution of an initial value problem
with zero initial values at s = 0. Solving this initial value problem by Picard iteration
with starting guess sA + sC + [sA, sC]/2, we may show that all higher order terms
result in a remainder term of size O(s)‖[sA, sC]‖, see (23). �

For fixed argument A, the matrix commutator defines a linear operator

adA : R
r×r → R

r×r , C �→ adA := [A, C] (24)

that is called the adjoint operator. By recursive application of adA we may represent
directional derivatives of the exponential map exp(A) = ∑

i Ai/ i ! in compact form:
We denote ad0A(C) := C and

ad j+1
A (C) := adA

(
ad j

A(C)
) = A ad j

A(C) − ad j
A(C) A , ( j ≥ 1 ) (25)

and consider powers (A + sC)i , ( i ≥ 0 ), in the limit case s → 0. For i = 2, we get

(A + sC)2 = A2 + s(AC + CA) + O(s2) = A2 + s
(
2AC + ad−A(C)

) + O(s2) .

Here, the term ad−A(C) results from the non-commutativity of matrix multipli-
cation and could be represented as well by the adjoint operator adA itself since
2AC + ad−A(C) = 2CA + adA(C), see (Hairer et al. 2006). The use of ad−A corre-
sponds, however, to the characterization of the tangent space TqG by left translations
Lq , see (5) and the discussion in (Iserles et al. 2000). In multibody dynamics, this
characterization implies that vector v in the kinematic relations (6) is a left-invariant
velocity vector. These left-invariant vectors are favourable since the associated rota-
tional inertia are defined in the body-attached frame and the body mass matrices
remain constant during motion (Brüls et al. 2011).

Lemma 2.6 For s → 0 and matrices A, C ∈ R
r×r , the asymptotic behaviour of

(A + sC)i and exp(A + sC) is characterized by

(A + sC)i = Ai + s
i−1∑
j=0

(
i

j + 1

)
Ai− j−1 ad j

−A(C) + O(s2) , ( i ≥ 1 ) , (26)

and
exp(A + sC) = exp(A)

(
Ir + s dexp−A(C)

) + O(s2) (27)
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with the matrix-valued function

dexp−A(C) :=
∞∑
j=0

1

( j + 1)! ad j
−A(C) (28)

that satisfies dexp−A(C) = C whenever A and C commute.

Proof To prove (26) by induction, we multiply this expression from the right by
(A + sC) and observe that Ai sC = sA(i+1)− j−1 ad j

−A(C) with j = 0. Taking into
account the identity

Ai− j−1 ad j
−A(C) A = A(i+1)−( j+1)−1 ad j+1

−A (C) + A(i+1)− j−1 ad j
−A(C) ,

see (25), we get (26) with i being substituted by i + 1 since

(
i
j

)
+

(
i

j + 1

)
=

(
i + 1
j + 1

)
, ( j = 0, 1, . . . , i − 1 ) .

For the proof of (27), we scale (26) by 1/i ! and use the series expansion (8) to get

exp(A + sC) =
∞∑
i=0

1

i !Ai + s
∞∑
i=0

1

i !
i−1∑
j=0

(
i

j + 1

)
Ai− j−1 ad j

−A(C) + O(s2)

=
∞∑
i=0

1

i !Ai + s
∞∑
j=0

1

( j + 1)!
∞∑

i= j+1

1

(i − j − 1)!Ai− j−1

︸ ︷︷ ︸
=

∞∑
i=0

1

i !Ai = exp(A)

ad j
−A(C) + O(s2)

= exp(A)
(
Ir + s dexp−A(C)

) + O(s2) .

For commuting matrices A and C, the iterated adjoint operators ad j
−A(C) vanish for

all j > 0 resulting in dexp−A(C) = C, see (28). �

Lemma 2.6 shows that the directional derivative of the matrix exponential is
given by (∂/∂A) exp(A)C = exp(A) dexp−A(C). In the Lie group setting, we use
this expression to study the Jacobian of vector-valued functions h

(
q ◦ exp(̃v)

)
w.r.t.

v ∈ R
k . For elements ṽ, w̃ ∈ g, the terms ad−ṽ(w̃) and dexp−ṽ(w̃) are linear in w ∈

R
k and may be represented by matrix-vector products in R

k using the notation

(̂•) : R
k → R

k×k with ˜̂vw = adṽ(w̃) = [̃v, w̃] , (v, w ∈ R
k ) . (29)

With (29), the operators adṽ, ad−ṽ and ad
j
−ṽ correspond to k × k-matrices v̂, −v̂ and

(−v̂) j , respectively, and the counterpart to z̃ = dexp−ṽ(w̃) ∈ g, see (28), is given by
z = T(v)w ∈ R

k with the tangent operator
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T : R
k → R

k×k , T(v) =
∞∑
i=0

(−1)i

(i + 1)! v̂i , (30)

see (Iserles et al. 2000). Using the chain rule, we obtain

Corollary 2.7 Consider a continuously differentiable function h : G → R
l and a

matrix-valued function H : G → R
l×k that represents the derivative of h in the sense

that
Dh(q) · (

DLq(e) · w̃
) = H(q)w , ( w ∈ R

k ) ,

see (14). The Jacobian of h
(
q ◦ exp(̃v)

)
w.r.t. v ∈ R

k is given by

∂h
∂v

(
q ◦ exp(̃v)

) = H
(
q ◦ exp(̃v)

)
T(v) . (31)

Remark 2.8 (a) For commuting elements of the Lie algebra (̃v, w̃ ∈ gwith [̃v, w̃] =
0̃), the adjoint operator vanishes resulting in v̂w = 0k and T(v)w = w. Therefore,
the tangent operator satisfies T(v)v = v, (v ∈ R

k), and Corollary 2.7 implies

dh
dϑ

(
q ◦ exp(ϑ̃v)

) = H
(
q ◦ exp(ϑ̃v)

)
v (32)

with ϑ ∈ R and any vector v ∈ R
k .

(b) The efficient evaluation of the tangent operator is essential for an efficient
implementation of implicit Lie group integrators. In the Lie group G = SO(3), the
hat operator maps � ∈ R

3 to �̂ := �̃ with the skew symmetric matrix �̃ being
defined in (2). Similar to Rodrigues’ formula (10), the tangent operator TSO(3) may
be evaluated in closed form (Brüls et al. 2011):

TSO(3)(�) = I3 + cos� − 1

�2
�̃ +

1 − sin�

�

�2
�̃

2
. (33)

For G = SO(3) × R
3, the Lie algebra g = so(3) × R

3 is parametrized by vectors
v = (��, u�)� ∈ R

6 and we get

v̂ = blockdiag ( �̃, 03×3 ) , TSO(3)×R3(v) = blockdiag
(

TSO(3)(�), I3
)
.

More complex expressions are obtained for the Lie group G = SE(3) and its Lie
algebra se(3) that is parametrized by vectors v = (��, U�)� ∈ R

6 with

v̂ =
(

�̃ 03×3

Ũ �̃

)
. (34)
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Using the identities �̃
3 = −�2�̃, Ũ�̃= − (��U)I3 + �U�, Ũ�̃

2 + �̃
2
Ũ = −

�2Ũ − (��U)�̃ and �̃Ũ�̃ = −(��U)�̃ with � := ‖�‖2, we prove by induction

v̂2l+1 =
(

(−�2)l �̃ 03×3

(−�2)l Ũ − 2l(−�2)l−1(��U)�̃ (−�2)l �̃

)

and

v̂2l+2 =
(

(−�2)l �̃
2

03×3

(−�2)l (Ũ�̃ + �̃Ũ) − 2l(−�2)l−1(��U)�̃
2

(−�2)l �̃
2

)

for all l ≥ 0 and get the tangent operator

TSE(3)(�) =
(

TSO(3)(�) 03×3

SSE(3)(�, U) TSO(3)(�)

)
(35)

with SSE(3)(0, U) = −Ũ/2 and

SSE(3)(�, U) = 1

�2

(
−(1 − cos�)Ũ + (

1 − sin�

�

)
(Ũ�̃ + �̃Ũ)+

+ (
2
1 − cos�

�2
− sin�

�

)
(��U)�̃+

+ 1

�2

(
1 − cos� − 3 (1 − sin�

�
)
)
(��U)�̃

2
)

if � �= 0, see (Brüls et al. 2011 and Sonneville et al. 2014, Appendix A).
(c) If R

k with the addition is considered as a Lie group, then we get v̂ = 0k×k and
TRk (v) = Ik for any vector v ∈ R

k since the group operation is commutative.
(d) Similar to the discussion in Example 2.1(c), we observe for direct products

like SO(3) × R
3 that the matrix v̂ and the tangent operator T(v) are block-diagonal.

In (SO(3) × R
3)N and (SE(3))N , the tangent operators are given by

TGN

(
(v1, v2, . . . , vN )

) = blockdiag1≤i≤N TG(vi ) ∈ R
6N×6N

with G = SO(3) × R
3 and G = SE(3), respectively.

3 Generalized-α Lie Group Time Integration

The time integration of the equations of motion (15) by Lie group methods is based
on the observation that (15a) implies

q(t + h) = q(t) ◦ exp
(
hṽ(t) + h2

2
˜̇v(t) + O(h3)

)
, ( h → 0 ) . (36)
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In Sect. 3.1, a generalized-α Lie group method for the index-3 formulation (15)
is introduced. In Sect. 3.2, we recall some well-known facts about order, stability
and “overshooting” of generalized-α methods in linear spaces. For the heavy top
benchmark problem, second-order convergence of the Lie group integrator and an
order reduction phenomenon in the transient phase may be observed numerically
(Sect. 3.3). In Sect. 3.4, we show that the error constant of the first-order error term
may be reduced drastically by an analytical index reduction before time discretiza-
tion. Implementation aspects and the discretization errors in hidden constraints are
studied in Sects. 3.5 and 3.6.

3.1 The Lie Group Time Integration Method

As proposed by Brüls and Cardona (2010), we consider a generalized-α method for
the index-3 formulation (15) of the equations of motion that updates the numerical
solution (qn, vn, an,λn) in a time step tn → tn + h of step size h according to

qn+1 = qn ◦ exp(h�̃qn) , (37a)

�qn = vn + (0.5 − β)han + βhan+1 , (37b)

vn+1 = vn + (1 − γ)han + γhan+1 , (37c)

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n (37d)

with vectors v̇n+1, λn+1 satisfying the equilibrium conditions

M(qn+1)v̇n+1 = −g(qn+1, vn+1, tn+1) − B�(qn+1)λn+1 , (37e)

�(qn+1) = 0 . (37f)

The term generalized-α method refers to the coefficients αm , α f in the update for-
mula (37d) for the acceleration like variables an . These auxiliary variables an were
introduced by Chung and Hulbert (1993) who studied the time integration of uncon-
strained linear systems in linear spaces and proposed a one-parametric set of algo-
rithmic parameters αm , α f , β and γ that may be considered as a quasi-standard for
this type of methods, see Sect. 3.2 below.

Method (37) is initialized with starting values q0 ∈ G and v0 ∈ R
k that approx-

imate the (consistent) initial values q(t0), v(t0) in (15). The starting values v̇0, a0
at acceleration level are approximations of v̇(t0) ∈ R

k , see (19). The convergence
analysis in Sect. 4 below will show that the starting values need to be selected care-
fully to guarantee second order convergence in all solution components and to avoid
spurious oscillations in the numerical solution λn .

In practical applications, variable step size implementations with error control
are expected to be superior to methods with fixed time step size h. For constrained
systems in linear configuration spaces, a step size control algorithm for generalized-
α methods with αm = 0 (HHT-methods, see Hilber et al. 1977) was developed in
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(Géradin andCardona 2001, Chap.11). For this problem class, Jay andNegrut (2007)
proposed a linear update formula for the auxiliary variables an to compensate a first-
order error term resulting from a step size change at t = tn .

An alternative approach is based on the elimination of these variables an in
the multi-step representation of generalized-α methods according to Erlicher et al.
(2002). Here, the algorithmic parameters αm , α f , β and γ have to be updated in each
time step considering the step size ratio hn+1/hn , see (Brüls and Arnold 2008).

There is no straightforward extension of the results of Erlicher et al. (2002) from
linear configuration spaces to the Lie group setting of the present paper. Furthermore,
the analysis of the error propagation in time integration is simplified substantially
if the time step size h is fixed for all time steps. For both reasons, the convergence
analysis for generalized-α Lie group integrators (37) with variable time step size hn
will be a topic of future research that is beyond the scope of the present paper.

3.2 The Generalized-α Method in Linear Spaces

For linear configuration spaces G = R
k and unconstrained systems (15) with con-

stant mass matrix M, the generalized-α Lie group method (37) coincides with the
“classical” generalized-α method that goes back to the work of Chung and Hulbert
(1993). Multiplying (37d) by the (constant) mass matrix M and eliminating vectors
�qn and v̇n+1, we get

qn+1 = qn + hvn + (0.5 − β)h2an + βh2an+1 , (38a)

vn+1 = vn + (1 − γ)han + γhan+1 , (38b)

0 = (1 − αm)Man+1 + αmMan + (1 − α f )gn+1 + α f gn (38c)

with gn := g(qn, vn, tn) and vectors qn, qn+1 ∈ R
k that are typeset in boldface font

to indicate the linear structure of the configuration space.
For a local error analysis, we suppose that an approximates v̇(tn + �αh) with a

fixed offset �α ∈ R, see (Jay and Negrut 2008, Sect. 2), and substitute in (38) the
numerical solution vectors qn , vn , an , gn by q(tn), v(tn), v̇(tn + �αh) and −Mv̇(tn),
respectively. The resulting residuals define local truncation errors lq

n , lv
n and la

n:

q(tn+1) = q(tn) + hv(tn) + (0.5 − β)h2v̇(tn + �αh)+
+ βh2v̇(tn+1 + �αh) + lq

n , (39a)

v(tn+1) = v(tn) + (1 − γ)hv̇(tn + �αh) + γhv̇(tn+1 + �αh) + lv
n , (39b)

Mla
n = (1 − αm)Mv̇(tn+1 + �αh) + αmMv̇(tn + �αh)−

− (1 − α f )Mv̇(tn+1) − α f Mv̇(tn) . (39c)

For sufficiently smooth solutions q(t), the local truncation errors in (39) may be
analysed by Taylor expansion of functions q(t), v(t) and v̇(t) at t = tn:
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lq
n = Cqh

3v̈(tn) + O(h4) with Cq := (1 − 6β − 3�α)/6 , (40a)

lv
n = (0.5 − �α − γ)h2v̈(tn) + O(h3) , (40b)

la
n = (

�α − (αm − α f )
)
hv̈(tn) + O(h2) . (40c)

We get local truncation errors lq
n = O(h3), lv

n = O(h3) and la
n = O(h2) if the algo-

rithmic parameters satisfy the order condition

γ = 0.5 − �α with �α := αm − α f . (41)

Chung and Hulbert (1993) studied the scalar test equation q̈ + ω2q = 0 with peri-
odic analytical solutions q(t) = c1 sinωt + c2 cosωt and observed that (38) results
in a frequency-dependent linear mapping (qn, vn, an) �→ (qn+1, vn+1, an+1). Scaling
the update formulae (38a, 38b) by factors 1/h2 and 1/h, respectively, we get

⎛
⎝

1
(hω)2

0 −β

0 1 −γ
1 − α f 0 1 − αm

⎞
⎠

︸ ︷︷ ︸
=: T+

hω

⎛
⎝ ω2qn+1

1
h vn+1

an+1

⎞
⎠

︸ ︷︷ ︸
= zn+1

=
⎛
⎝

1
(hω)2

1 0.5 − β

0 1 1 − γ
−α f 0 −αm

⎞
⎠

︸ ︷︷ ︸
=: T0

hω

⎛
⎝ ω2qn

1
h vn
an

⎞
⎠ .

︸ ︷︷ ︸
=: zn

Recursive application yields zn = Tn
hωz0 with Thω := (T+

hω)−1T0
hω. Therefore, the

stability and (numerical) damping properties of the generalized-α method (38)
applied to q̈ + ω2q = 0 may be characterized by an eigenvalue analysis of Thω ∈
R

3×3. Chung and Hulbert (1993) propose to choose a user-defined parameter ρ∞ ∈
[0, 1] to characterize the numerical damping properties in the limit case hω → ∞.
They show that the algorithmic parameters αm , α f , β and γ may be defined such that
the order condition (41) is satisfied and the spectral radius 
(Thω) is monotonically
decreasing for hω ∈ (0,+∞) with limhω→0 
(Thω) = 1 and 
(T∞) = ρ∞ :

αm = 2ρ∞ − 1

ρ∞ + 1
, α f = ρ∞

ρ∞ + 1
, γ = 1

2
+ α f − αm , β = 1

4
(γ + 1

2
)2 . (42)

For these parameters, all three eigenvalues of Thω = Thω(ρ∞) coincide in the limit
case hω → ∞ and the Jordan canonical form ofT∞(ρ∞) ∈ R

3×3 consists of a single
3 × 3 Jordan block for the eigenvalue μ := −ρ∞, i.e., T∞(ρ∞) = X(μ)J(μ)X−1(μ)

with

J(μ) :=
⎛
⎝ μ 1 0

0 μ 1
0 0 μ

⎞
⎠ , X(μ) :=

⎛
⎝

1 − μ2 −(2 + μ) 0
0 1

2
1+μ
1−μ

− 1
(1−μ)2

0 1 0

⎞
⎠ .

With algorithmic parameters αm , α f , β and γ according to (42) and a damping
parameter ρ∞ < 1, the linear stability of the generalized-α method (38) is always
guaranteed. For the test equation q̈ + ω2q = 0, the numerical solution (qn, vn, an)�



112 M. Arnold et al.

will finally be damped out for any starting values q0, v0, a0 since zn = Tn
hω(ρ∞)z0

and limn→∞ Tn
hω(ρ∞) = 0 because 
(Thω(ρ∞)) < 1, ( hω ∈ (0,∞) ).

In a transient phase, however, ‖zn‖ may be much larger than ‖z0‖ since ‖Tn‖
may be much larger than (
(T))n for matrices that are not diagonalisable (non-
normal matrices). Typical values are maxn ‖Tn‖2 = ‖T3‖2 = 7.4 for T = T∞(ρ∞)

with ρ∞ = 0.6 and maxn ‖Tn‖2 = ‖T14‖2 = 34.3 for T = T∞(ρ∞) with ρ∞ = 0.9.
In structural dynamics, this phenomenon is called overshooting since |qn| may
grow rapidly in a transient phase before the numerical dissipation results finally
in limn→0 qn = 0. Overshooting is a well-known problem of unconditionally stable
Newmark-type methods with second-order accuracy (Hilber and Hughes 1978) and
may be a motivation to prefer first-order accurate Newmark integrators in industrial
multibody system simulation (Sanborn et al. 2014).

In the quantitative error analysis, we denote the global errors of the generalized-α
method in linear spaces by e(•)

n with (•)(tn) = (•)n + e(•)
n . For the auxiliary vectors

an that do not have a corresponding component of the analytical solution, we take
into account the offset parameter �α from (41) and define the global error ea

n by
v̇(tn + �αh) = an + ea

n . For the scalar test equation q̈ + ω2q = 0, these global errors
as well as the local errors lqn , lvn , l

a
n are scalar quantities and T+

hωzn+1 = T0
hωzn implies

T+
hω

⎛
⎜⎝

ω2eqn+1
1

h
ev
n+1

ean+1

⎞
⎟⎠ = T0

hω

⎛
⎜⎝

ω2eqn
1

h
ev
n

ean

⎞
⎟⎠ +

⎛
⎜⎜⎜⎝

1

h2
lqn

1

h
lvn
lan

⎞
⎟⎟⎟⎠ , (43)

see (39). As before, the first and second row are scaled by 1/h2 and 1/h, respectively.
The resulting first-order error term lqn /h2 = Cqhv̈(tn) + O(h2) may strongly affect
the result accuracy.

This order reduction phenomenon is known from the convergence analysis for the
application of Newmark-type methods to constrained mechanical systems in linear
configuration spaces, see (Cardona and Géradin 1994). In the limit case ω → ∞,
the transient solution behaviour is dominated by an oscillating first-order error term
that is finally damped out by numerical dissipation. To study this qualitative solution
behaviour in full detail, we introduce a new variable λ := ω2q and rewrite the test
equation as a singular singularly perturbed problem with perturbation parameter
ε := 1/ω, see (Lubich 1993):

q̈ + ω2q = 0 ⇔
q̈ = −λ

1

ω2
λ = q

}
(44)

The corresponding reduced system (ε = 0, i.e., ω → ∞) is a constrained system
(15) with G = R and k = m = 1:
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q̈ = −λ
0 = q

}
(45)

With the notation λn := ω2qn , the generalized-α method (38) for the singularly
perturbed system (44) converges for ω → ∞ to the generalized-α method (37) for
the constrained system (45) and we get in (43) both for finite frequencies ω and in
the limit case ω → ∞:

T+
hωer

n+1 = T0
hωer

n + lr
n (46)

with

er
n :=

⎛
⎝ eλ

n
rn
ean

⎞
⎠ , lr

n :=

⎛
⎜⎜⎝

0
1

h
lvn + lqn+1 − lqn

h2
lan

⎞
⎟⎟⎠ (47)

and

rn := 1

h

(
ev
n + 1

h
lqn

) = 1

h

(
ev
n + Cqh

2v̈(tn)
) + O(h2) . (48)

The error recursion in terms of eλ
n , rn and e

a
n provides the basis for a detailed conver-

gence analysis:

Theorem 3.1 Consider the time discretization of the linear test equations (44) and
(45) by a generalized-α method with parameters αm, α f , β and γ according to (42)
for some numerical damping parameter ρ∞ ∈ [0, 1).
(a) The discretization errors are bounded by

‖lr
n‖ = O(h2) , ‖er

n+1 − Thωer
n‖ = O(h2) , (49)

‖er
n − Tn

hωer
0‖ = O(h2) (50)

and
‖er

n‖ ≤ ‖Tn
hω‖ ‖er

0‖ + O(h2) . (51)

(b) For starting values λ0 = λ(t0) + O(h2), a0 = v̇(t0 + �αh) + O(h2), we have
‖er

0‖ = O(h) if v0 = v(t0) + O(h2). This error estimate may be improved by
one power of h perturbing the starting value v0 such that

v0 = v(t0) + Cqh
2v̈(t0) + O(h3) . (52)

In that case, we get ‖er
n‖ = O(h2), ( n ≥ 0 ).

Proof (a) Because of

lqn+1 − lqn = Cqh
3(v̈(tn+1) − v̈(tn)

) + O(h4) = O(h4) ,
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the local error term lr
n is of sizeO(h2), see (40), and (49) is a direct consequence of the

error recursion (46). The assumptions on parametersαm ,α f ,β and γ imply 
(Thω) <

1 and the existence of a norm ‖T‖ρ withκ := ‖Thω‖ρ < 1, see, e.g., (Quarteroni et al.
2000, Sect. 1.11.1). Therefore,

‖er
n − Tn

hωer
0‖ρ ≤ ‖er

n − Thωer
n−1‖ρ + ‖Thωer

n−1 − Tn
hωer

0‖ρ

≤ ‖er
n − Thωer

n−1‖ρ + ‖Thω‖ρ ‖er
n−1 − Tn−1

hω er
0‖ρ

≤ Ch2 + κ‖er
n−1 − Tn−1

hω er
0‖ρ

with an appropriate constant C > 0, see (49). Recursive application of this error
estimate results in

‖er
n − Tn

hωer
0‖ρ ≤

n−1∑
i=0

κi Ch2 + κn‖er
0 − T0

hωer
0‖ρ <

1

1 − κ
Ch2

and (50) follows from the equivalence of all norms in the finite dimensional space
R

3. Error bound (51) is a straightforward consequence of the triangle inequality.
(b)We get ‖er

0‖ = |r0| + O(h2) and the estimates for ‖er
0‖ and for ‖er

n‖, ( n > 0 ),
follow from the definition of rn , see (48), and from part (a) of the theorem. �

The most natural choice of starting values λ0 := λ(t0), v0 := v(t0), a0 := v̇(t0 +
�αh) yields er

0 = ( 0, r0, 0 )� with r0 = Cqhv̈(t0) + O(h2), see (48). In error
estimate (50), we obtain for v̈(t0) �= 0 a first-order error term being amplified by
matrix-valued factors Tn

hω that are well known from the analysis of the “overshoot”
phenomenon by Hilber and Hughes (1978). In the limit case hω → ∞, this term
may be studied in more detail using the Jordan canonical form of T∞, see (Cardona
and Géradin 1989, 1994). We get

Tn
∞ er

0 = X(−ρ∞) Jn(−ρ∞) X−1(−ρ∞) er
0

with the Jordan block J(−ρ∞) ∈ R
3×3. It may be verified by induction that the

non-zero elements of Jn(−ρ∞) are given by (−ρ∞)n , n(−ρ∞)n−1 and n(n −
1)(−ρ∞)n−2/2. Straightforward computations show that the global error eλ

n (that
coincides up to a term of size O(h2) with the first component of Tn∞er

0 ) satisfies
eλ
n = cnhv̈(t0) + O(h2) with

cn := Cq(1 + ρ∞)2
(n
2
(n − 1)(ρ2∞ − 1)(−ρ∞)n−2 + n(2 − ρ∞)(−ρ∞)n−1

)
.

(53)
After a transient phase, the first-order error term cnhv̈(t0) is damped out since
limn→∞ cn = 0 for any ρ∞ ∈ [0, 1). In the transient phase, however, the error con-
stants cn may become very large with maximum absolute values of size |c3| = 6.8
for ρ∞ = 0.6, |c15| = 31.9 for ρ∞ = 0.9 and |c161| = 334.3 for ρ∞ = 0.99.

For the test equation (45) itself, this error analysis has notmuch practical relevance
since q(t) ≡ 0 implies v̈(t) ≡ 0 and er

0 = 0 for exact starting values λ0 = λ(t0) = 0,
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v0 = v(t0) = 0, a0 = v̇(t0 + �αh) = 0. Substituting the trivial constraint q = 0 by
a rheonomic constraint q(t) = t3/6, we may construct, however, a slightly more
complex test problem with non-vanishing first-order error term r0 = Cqh since lqn =
Cqh3v̈(tn) = Cqh3 and the local truncation errors lvn , l

a
n vanish identically. For this

test problem, the global error in λ really suffers from order reduction since eλ
n = cnh.

The convergence analysis for generalized-α methods shows that this order reduc-
tion phenomenon is typical for the initialization of method (37) with exact starting
values λ0 = λ(t0), v0 = v(t0) and a0 = v̇(t0 + �αh), see (Arnold et al. 2015) and
Sect. 4 below. For linear configuration spaces (G = R

k), the global error in λ is
bounded by

[BM−1B�](q(tn)
)

eλ
n = cnh B

(
q(t0)

)
v̈(t0) + O(h2) (54)

with the error constants cn being defined in (53). The undesired first-order error term
is nicely illustrated by numerical test results for the mathematical pendulum, see
(Arnold et al. 2015, Sect. 2.3):

Example 3.2 Consider amathematical pendulumofmassm and length l in Cartesian
coordinates q = (x, y)� with constraint (x2 + y2 − l2)/2 = 0, see (15c). In (15), we
have M = mI2, g = ( 0 , g )� with m = l = 1, g = 9.81 (here and in the following,
all physical units are omitted). We fix the total energy E = m(ẋ20 + ẏ20 )/2 + mgy0
to E = m/2 − mgl and determine the consistent initial values x0, y0, ẋ0, ẏ0 and λ0

by the initial deviation x0 from the equilibrium position.
Method (37) is appliedwith algorithmic parameters according to (42) anddamping

parameter ρ∞ = 0.9. The starting values are set to q0 := (x0, y0)�, v0 := (ẋ0, ẏ0)�
and v̇0 := (ẍ0, ÿ0)� with accelerations ẍ0, ÿ0 that are obtained from evaluating
the equations of motion for the consistent initial values x0, y0, ẋ0, ẏ0, λ0. The
acceleration like variables an are initialized with a0 = v̇(t0) + �αhv̈(t0) + O(h2) =
v̇(t0 + �αh) + O(h2) using the starting value v̇0 = v̇(t0) and a difference approxi-
mation of v̈(t0).

Figure5 shows on a short time interval the global error inλ for initial values x0 = 0
(marked by dots) and x0 = 0.2 (marked by “+”) for two different step sizes h. If we
start in the equilibriumposition, the error is very small but for x0 = 0.2, the oscillating
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Fig. 5 Mathematical pendulum: Global error in λ for x0 = 0 (“·”) and x0 = 0.2 (“+”)
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error in λ reaches a maximum amplitude of 2.48 × 10−1 for h = 2.0 × 10−2 and
1.23 × 10−1 for h = 1.0 × 10−2. After about 100 time steps these transient errors
are damped out.

The numerical results in Fig. 5 show that in the transient phase the generalized-α
method (37) may suffer from spurious oscillations of amplitudeO(h). According to
(54), this first-order error term is given by cnh B

(
q(t0)

)
v̈(t0) with B

(
q(t0)

)
v̈(t0) =

−3gx0 ẋ0/y0. Therefore, the spurious oscillations and the order reduction disappear
if we start at the equilibrium position x0 = 0. Reducing the damping parameter ρ∞
in (42), the oscillations are damped out more rapidly but may still be observed.

3.3 Numerical Tests for the Heavy Top Benchmark Problem

In the present section, we study the convergence behaviour of the generalized-α Lie
group integrator (37) numerically. We use algorithmic parameters according to (42)
with the numerical damping parameter ρ∞ = 0.9 and apply (37) to the equations
of motion (21), (22) of the heavy top benchmark problem in configuration spaces
G = SO(3) × R

3 and G = SE(3), respectively. Initial values q(t0), v(t0) are given
in Sect. 2.4. In the numerical tests, the integrator was initialized with starting values
q0 := q(t0), v0 := v(t0), v̇0 := v̇(t0) and a0 := v̇(t0) with v̇(t0) denoting the consis-
tent acceleration vector being defined in (19).

In Fig. 6, the asymptotic behaviour of the global errors in qn , vn andλn for h → 0
is visualized in terms of the maximum maxn ‖e(•)

n ‖/‖(•)n‖ of the norm of relative
errors in the time interval [t0, tend] = [0, 1]. Here, the numerical solutions for h =
1.25 × 10−4, h = 2.5 × 10−4, h = 5.0 × 10−4, . . . , h = 4.0 × 10−3 are compared
to a reference solution that has been obtained numerically with the very small time
step size h = 2.5 × 10−5. In double logarithmic scale, the plots of global errors in qn
and vn are straight lines of slope+2 (for both configuration spaces). These numerical
test results indicate second-order convergence for components q and v.

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h

M
ax

im
um

 r
el

at
iv

e 
er

ro
r

Heavy top in SO(3) × R3

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h

M
ax

im
um

 r
el

at
iv

e 
er

ro
r

Heavy top in SE(3)

q

v

λ

q

v

λ

Fig. 6 Heavy top benchmark (index-3 formulation): Global error of integrator (37) versus h for
t ∈ [0, 1]. Left plot SO(3) × R

3, right plot SE(3)
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The error constants depend on model parameters, initial values and configuration
space. With the test setup of Sect. 2.4, the velocity components v(t) vary much more
rapidly for G = SE(3) than for G = SO(3) × R

3, see Fig. 4. This might explain the
substantially larger error constants for qn and vn in the right plot of Fig. 6. For other
setups, much smaller error constants have been observed for the configuration space
SE(3), see, e.g., the numerical test results of Brüls et al. (2011) for a slowly rotating
top with an initial angular velocity �(0) that has been reduced by a factor of 100.

Note, that Fig. 6 shows the norm of relative errors. The rather large nominal
values of v(t) with ‖�(0)‖ ≈ 150.0 result systematically in relative errors that have
a substantially smaller norm than the ones in the position coordinates q(t).

For the Lagrange multipliers λ(t), we observe order reduction since slope +1
of the curve for the global errors in λn in the left plot of Fig. 6 indicates first-order
convergence. The test results forG = SE(3) in the right plot of Fig. 6 are qualitatively
different from the ones in the left plot since they indicate second-order convergence
forall solution components.A formal proof of this numerically observed convergence
behaviour will be given in Theorem 4.18 and Example 4.19 below.

Guided by the test results for the mathematical pendulum in Example 3.2, we
expect that the order reduction phenomenon might affect the numerical solution
only in a transient phase and the first-order error terms in λn are finally damped out
by numerical dissipation. This is nicely illustrated by Fig. 7 that shows the numerical
solution λn,1 for t ∈ [0, 0.1] and two different time step sizes. In the configura-
tion space G = SO(3) × R

3 (solid lines), spurious oscillations are observed that are
damped out after about 50 time steps and have a maximum amplitude that depends
linearly on h. Beyond this transient phase, the results coincide up to plot accuracywith
the dashed lines showing simulation results for the configuration space G = SE(3)
that do not suffer from order reduction.

Neglecting the transient behaviour, we observe for both Lie group formulations
second-order convergence in all solution components, see Fig. 8 that shows the max-
imum of the norm of global errors in time interval [0.5, 1], i.e., beyond the transient
phase.

0 0.02 0.04 0.06 0.08 0.1
−500

−250

0

250

500

λ n,
1 [N

]

Time  t [s]

h = 1.0E−3

0 0.02 0.04 0.06 0.08 0.1
−500

−250

0

250

500

λ n,
1 [N

]

Time  t [s]

h = 5.0E−4

SO(3) × R3

SE(3)

SO(3) × R3

SE(3)

Fig. 7 Heavy top benchmark (index-3 formulation, G = SO(3) × R
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118 M. Arnold et al.

10
−4

10
−3 10

−2
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

h

M
ax

im
um

 r
el

at
iv

e 
er

ro
r

Heavy top in SO(3) × R3

10
−4

10
−3

10
−2

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h

M
ax

im
um

 r
el

at
iv

e 
er

ro
r

Heavy top in SE(3)

q

v

λ

q

v

λ

Fig. 8 Heavy top benchmark (index-3 formulation): Global error of integrator (37) versus h for
t ∈ [0.5, 1]. Left plot SO(3) × R

3, right plot SE(3)

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1
x 10

−10

Φ
(q

n)

Time  t [s]

            Heavy top in SO(3) × R3

0 0.02 0.04 0.06 0.08 0.1
−1

−0.5

0

0.5

1
x 10

−13
Φ

(q
n)

Time  t [s]

      Heavy top in SE(3)

Fig. 9 Heavy top benchmark (h = 1.0 × 10−3, index-3 formulation): Residuals in constraints
(15c). Left plot SO(3) × R

3, right plot SE(3)

By construction, the Lie group integrator (37) defines a numerical solution qn
that satisfies the holonomic constraints �(q) = 0. In a practical implementation, the
residuals remain in the size of the stopping bounds for theNewtonmethod that is used
to solve in each time step the system of nonlinear equations (37). For the numerical
tests we applied a combined absolute and relative error criterion with tolerances
ATOL = 10−10 for the absolute errors and RTOL = 10−8 for the relative errors and
observe constraint residuals of size ‖�(qn)‖ � 10−10, see Fig. 9.

Situation is different for the residuals in the hidden constraints (16) that are in
general of the size of global discretization errors since B

(
q(t)

)
v(t) = 0. The left

plot of Fig. 10 shows these non-vanishing residuals B(qn)vn for h = 1.0 × 10−3 and
G = SO(3) × R

3. They are of size ‖B(qn)vn‖ ≤ 0.025 and suffer from the transient
spurious oscillations being known from Fig. 7 above. For the configuration space
G = SE(3), the constraint residuals are smaller by eight orders of magnitude with
maxn ‖B(qn)vn‖ ≈ 1.0 × 10−10. This unexpected solution behaviour is visualized
in the right plot of Fig. 10. It is closely related to the fact that the constraint Jacobian
B(q) in (22) is constant along the analytical solution q(t), see Sect. 3.6 below for a
more detailed analysis.
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Fig. 10 Heavy top benchmark (h = 1.0 × 10−3, index-3 formulation): Residuals in hidden con-
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In all numerical tests of the present section, the numerical damping parameter was
set to ρ∞ := 0.9. The qualitative behaviour of the numerical solution in configura-
tion spaces SO(3) × R

3 and SE(3) is, however, not sensitive w.r.t. this algorithmic
parameter, see, e.g., the results for ρ∞ = 0.8 and the test setup of Fig. 7 in (Brüls
et al. 2011) and the results for ρ∞ = 0.6 and the test setup of Fig. 20 below in (Arnold
et al. 2015).

3.4 Lie Group Time Integration and Index Reduction

The large amplitude of spurious oscillations in the numerical solution λn , see Fig. 7,
results from order reduction inNewmark-typemethods that are directly applied to the
index-3 formulation of the equations of motion for constrained mechanical systems,
see (Cardona and Géradin 1994) and (Arnold et al. 2015). As an alternative to this
direct time discretization of the index-3 Lie group DAE (15) we consider in the
present section an analytical index reduction before time integration. We follow the
approach of Gear et al. (1985) that is well known for equations of motion in linear
spaces and was extended to the Lie group setting of the present paper in (Arnold
et al. 2011a).

Gear et al. (1985) introduced an auxiliary vector η(t) ∈ R
m in the kinematic

equations to couple the hidden constraints at the level of velocity coordinates to the
equations of motion. In the Lie algebra approach to Lie group time integration, these
modified kinematic equations get the form q̇(t) = DLq(t)(e) · �̃q(t) with �̃q ∈ g
being defined by �q = v − B�(q)η, see (6). The resulting stabilized index-2 for-
mulation of the equations of motion is given by

q̇ = DLq(e) · �̃q , (55a)

�q = v − B�(q)η , (55b)

M(q)v̇ = −g(q, v, t) − B�(q)λ , (55c)
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�(q) = 0 , (55d)

B(q)v = 0 . (55e)

For the modified kinematic equations (55a), the time derivative of the holonomic
constraints (55d) is given by 0 = B(q)�q, see (16). Therefore, Eqs. (55b) and (55e)
yield 0 = [BB�](q)η and η(t) ≡ 0 since the full rank assumption on the constraint
matrix B ∈ R

m×k implies that BB� ∈ R
m×m is non-singular. Hence, �q(t) = v(t)

and the stabilized index-2 formulation (55) is analytically equivalent to the original
equations of motion (15).

The index analysis of Gear et al. (1985) is extended straightforwardly from linear
spaces to the Lie group setting of the present paper and shows that the analytical
transformation from (15) to (55) reduces the DAE index of the equations of motion
from three to two.

The generalized-α method for the index-2 system (55) satisfies at t = tn+1 the
holonomic constraints (55d) as well as the hidden constraints (55e). An auxiliary
vector ηn ∈ R

m is added to the definition of the increment vector �qn , see (55b):

qn+1 = qn ◦ exp(h�̃qn) , (56a)

�qn = vn − B�(qn)ηn+ (56b)

+ (0.5 − β)han + βhan+1 ,

vn+1 = vn + (1 − γ)han + γhan+1 , (56c)

(1 − αm)an+1 + αman = (1 − α f )v̇n+1 + α f v̇n , (56d)

M(qn+1)v̇n+1 = −g(qn+1, vn+1, tn+1) − B�(qn+1)λn+1 , (56e)

�(qn+1) = 0 , (56f)

B(qn+1)vn+1 = 0 . (56g)

Following the test scenario of Sect. 3.3, we study the asymptotic behaviour of inte-
grator (56) for h → 0 by numerical tests for the heavy top benchmark in configuration
spaces G = SO(3) × R

3 and G = SE(3), respectively. As before, we scale the norm
of the (absolute) global errors by the norm of nominal values and consider the maxi-
mum of these relative errors in time interval [t0, tend] = [0, 1]. Figure11 shows these
maximum values of the norm of global errors in qn , vn andλn versus time step size h.
In double logarithmic scale, we get in the step size range h ≥ 2.5 × 10−4 curves of
slope +2 indicating second-order error terms in all solution components.

For the configuration space SO(3) × R
3 (left plot) and very small time step sizes

h < 2.5 × 10−4, the errors in λn are dominated by a first-order term. On the other
hand, the error constants of the second-order error terms are slightly smaller than
the ones in the corresponding plots for the index-3 integrator (37), see Figs. 6 and 8.
The results for configuration space SE(3) in the right plot of Fig. 11 coincide up to
plot accuracy with the ones in Figs. 6 and 8.
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The comparison of time histories for λn in Figs. 7 and 12 shows that the spurious
oscillations seem to disappear if hidden constraints are taken into account for time
integration, see (56g). For amore detailed analysis, we consider in Fig. 13 the relative
global error in λn,1 for G = SO(3) × R

3 and two different time step sizes. There is
an oscillating first-order error term of maximum amplitude 0.64 h that is rapidly
damped out. For time step sizes h ≥ 5.0 × 10−4, it does not contribute significantly
to the overall global error in λn on time interval [0, 1] that is approximately of size
3.0 × 103 h2, see Fig. 11.

The test results in the right plot of Fig. 10 indicate that the index-3 integrator
(37) yields for the heavy top benchmark in G = SE(3) a numerical solution qn , vn
that satisfies the hidden constraints (56g) up to (very) small residuals. Therefore, the
auxiliary variables ηn ∈ R

m that represent the differences between integrators (37)
and (56) vanish in that case identically, see also Sect. 3.6 below.

For the configuration space G = SO(3) × R
3, we observed in the left plot of

Fig. 10 non-vanishing constraint residuals B(qn)vn for the index-3 integrator (37).
In integrator (56), they are compensated by auxiliary variables ηn = O(h2) for the
stabilized index-2 formulation of the equations of motion. Figure14 shows ηn versus
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tn for two different time step sizes. The maximum amplitudes of ηn differ by a factor
of 4 if step sizes h and h/2 are considered, h = 1.0 × 10−3. Therefore, we expect
second-order convergence for solution components ηn .

Finally, we study the constraint residuals for a practical implementation of inte-
grator (56). As before, the residuals in the holonomic constraints (15c) at the level
of position coordinates are very small. For the hidden constraints (16) at the level of
velocity coordinates, the residuals for integrator (56) are shown in Fig. 15. For the
heavy top benchmark, they are of size 2.0 × 10−9 for G = SO(3) × R

3 and of size
2.0 × 10−15 for G = SE(3).

In all these numerical tests for integrator (56), the extra effort for considering the
hidden constraints (16) helps to reduce systematically shortcomings like spurious
oscillations that were observed for the index-3 integrator (37) in Sect. 3.3.

3.5 Implementation Aspects

In each time step, the generalized-α method (37) defines the numerical solution
(qn+1, vn+1, v̇n+1, an+1,λn+1) implicitly by a mixed system of linear and nonlinear
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equations inG × R
k × R

k × R
k × R

m . Despite the nonlinear structure of the config-
uration space G, these equations may be solved numerically by a Newton–Raphson
iteration in a linear space expressing qn+1 ∈ G in terms of �̃qn ∈ g.

For the practical implementation of this Lie algebra approach, the Newton–
Raphson method has to be combined with an appropriate scaling of equations and
unknowns to guarantee that the condition number of the iteration matrix is bounded
independently of h, see (Petzold and Lötstedt 1986) and the more recent discussion
in (Bottasso et al. 2007). Denoting the scaled residual in the equilibrium conditions
(15b) by

rh(q, v, v̇, hλ, t) := h
(
M(q)v̇ + g(q, v, t)

) + B�(q) · hλ ,

we may rewrite the corrector equations (37) in the scaled and condensed form

0 = �n,h(ξn+1) :=
(

rh
(
q(�qn), v(�qn), v̇(�qn), hλn+1, tn+1

)
1

h
�

(
q(�qn)

)
)

(57)

with ξn+1 := (
(�qn)

�, hλ�
n+1)

� ∈ R
k+m and

qn+1 = q(�qn) := qn ◦ exp(h�̃qn) , (58a)

vn+1 = v(�qn) := γ

β
�qn + (1 − γ

β
)vn + h(1 − γ

2β
)an , (58b)

v̇n+1 = v̇(�qn) := 1 − αm

β(1 − α f )

(�qn − vn
h

− 0.5an
) + an − α f v̇n

1 − α f
. (58c)

The Newton–Raphson iteration

ξ(k+1)
n+1 = ξ(k)

n+1 + �ξ(k)
n+1 with

∂�n,h

∂ξ
(ξ(k)

n+1)�ξ(k)
n+1 = −�n,h(ξ

(k)
n+1) (59)
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may be started, e.g., with the initial guess ξ(0)
n+1 = (

v�
n + 0.5ha�

n , hλ�
n )�, see also

(Brüls et al. 2012, Table1) for an alternative definition of ξ(0)
n+1 and for amore detailed

description of the full algorithm. The iteration matrix ∂�n,h/∂ξ has a 2 × 2-block
structure

∂�n,h

∂ξ
=

⎛
⎝

1 − αm

β(1 − α f )
M + h

γ

β
D + h2 K T B�

B T 0

⎞
⎠ (60)

with mass matrix M = M
(
q(�qn)

) ∈ R
k×k , damping matrix

D = ∂g
∂v

(
q(�qn), v(�qn), tn+1

) ∈ R
k×k ,

constraint matrixB = B
(
q(�qn)

) ∈ R
m×k and the tangent operatorT = T(h�qn) ∈

R
k×k that results from the derivative of the exponential map in (58a), see Corollary

2.7. The stiffness matrix K = K(q, v, v̇,λ, t) ∈ R
k×k represents the partial deriva-

tives of the equilibrium equations (15b) w.r.t. q ∈ G in the sense that

Dq
(
M(q)v̇ + g(q, v, t) + B�(q)λ

) · (
DLq(e) · w̃

) = K(q, v, v̇,λ, t) w

for all w ∈ R
k . It is evaluated at q = q(�qn), v = v(�qn), v̇ = v̇(�qn), λ = λn+1

and t = tn+1.
The algorithmic parametersαm ,α f and β in (37) satisfyαm �= 1,α f �= 1 andβ �=

0 since otherwise qn+1 would be independent of v̇n+1 (and therefore also independent
of the equilibrium equations (37e) at t = tn+1). Hence, the iterationmatrix ∂�n,h/∂ξ
in (60) is non-singular for sufficiently small time step sizes h if the mass matrixM(q)

is symmetric, positive definite and the constraint matrix B(q) has full rank (note, that
T(h�qn) = Ik + O(h)).

For sufficiently small time step sizes h > 0, the convergence of the Newton–
Raphson iteration (59) may always be guaranteed under reasonable assumptions on
qn , vn:

Lemma 3.3 Ifαm �= 1,α f �= 1, β �= 0 and the numerical solution satisfies at t = tn
the (hidden) constraints with residuals ‖�(qn)‖ ≤ γ0h and ‖B(qn)vn‖ ≤ γ0 and a
sufficiently small constant γ0 > 0 then the generalized-α method (37) is well defined
since the Newton–Raphson iteration (59) with initial guess ξ(0)

n+1 = ( v�
n , 0�)� +

O(h) converges for all sufficiently small time step sizes h > 0 to a locally uniquely
defined solution of (57) with ξn+1 = ξ(0)

n+1 + O(h) + O(γ0).

Proof The assumptions on �(qn), B(qn)vn and ξ(0)
n+1 are sufficient to prove

�n,h(ξ
(0)
n+1) = O(h) + O(γ0) since rh = O(h)bydefinition andq(�q(0)

n ) = q(vn) +
O(h) = qn ◦ exp(hṽn) + O(h) resulting in
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1

h
‖�(

q(�q(0)
n )

)‖ = 1

h
‖�(qn) + h

d

dh
�

(
qn ◦ exp(hṽn)

) + O(h2)‖

≤ 1

h
‖�(qn)‖ + ‖B

(
qn ◦ exp(hṽn)

)
vn‖ + O(h)

= O(h) + O(γ0) ,

see (32). Therefore, the convergence of the Newton–Raphson iteration to a locally
uniquely defined solution ξn+1 = ξ(0)

n+1 + O(h) + O(γ0) of (57) is guaranteed when-
ever the constant γ0 > 0 and the time step size h > 0 are sufficiently small (Kelley
1995). �

The corrector equations (56) of the Lie group integrator for the stabilized index-2
formulation (55) may be condensed as well replacing the left equations in (58b, 58c)
by

vn+1 = v
(
�qn + B�(qn)ηn

)
, v̇n+1 = v̇

(
�qn + B�(qn)ηn

)
.

The resulting scaled system of nonlinear equations is given by

0 = �n,h(ξn+1) :=
⎛
⎜⎝

�h(�qn, hλn+1,ηn)
1

h
�

(
q(�qn)

)
B

(
q(�qn)

)
v
(
�qn + B�(qn)ηn

)

⎞
⎟⎠ (61)

with ξn+1 := (
(�qn)

�, hλ�
n+1, η�

n )� ∈ R
k+2m and

�h(�qn, hλn+1,ηn) :=
rh

(
q(�qn), v

(
�qn + B�(qn)ηn

)
, v̇

(
�qn + B�(qn)ηn

)
, hλn+1, tn+1

)
.

The scaling of equations and unknowns guarantees again that the condition number
of the iteration matrix ∂�n,h/∂ξ is bounded for h → 0. This iteration matrix has the
3 × 3-block structure

∂�n,h

∂ξ
=

⎛
⎜⎝

M∗ + h2 K T B� M∗ B�(qn)
B T 0 0

γ

β
B + hZ 0

γ

β
BB�(qn)

⎞
⎟⎠ (62)

with

M∗ := 1 − αm

β(1 − α f )
M + h

γ

β
D

and a matrix Z ∈ R
k×k that represents

(
∂/∂(�qn)

)
B

(
q(�qn)

)
v in the sense that

Zw = Z
(
q(�qn)

)(
v
(
�qn + B�(qn)ηn

)
, T(h�qn)w

)
, ( w ∈ R

k ) ,
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see (17). Using the formal decomposition

∂�n,h

∂ξ
=

⎛
⎜⎝

Ik 0 M∗ B�(qn)
0 Im 0

0
γ

β
Im

γ

β
BB�(qn)

⎞
⎟⎠

⎛
⎝ M∗ + O(h) B� 0

B T 0 0
O(h) 0 Im

⎞
⎠ ,

see (62), wemay verify that the iterationmatrix is non-singular if h > 0 is sufficiently
small. With the additional assumptions γ �= 0 and η(0)

n = O(h), Lemma 3.3 applies
also to the Lie group integrator (56) for the stabilized index-2 formulation. The
method is well defined and the corresponding condensed system (61) may be solved
by the Newton–Raphson method (59).

In the practical implementation of implicit ODE/DAE time integration methods,
the Jacobian (∂�n,h/∂ξ)(ξ(k)

n+1) in the Newton–Raphson step (59) is substituted by
an approximation that is kept constant during integration as long as possible, see,
e.g., (Brenan et al. 1996, Sect. 5.2.2). In (Brüls et al. 2011), the influence of different
Lie group formulations on the number of Jacobian updates was studied by numerical
tests for the Lie group integrator (37). A very small number of Jacobian evaluations
were observed for equations of motion like (22) that are characterized by a constant
mass matrix M and a constant constraint Jacobian B, see also Lemma 3.5 below.

If the generalized-α integrators (37) and (56) are applied to non-stiff systems
and the time step size h is sufficiently small, then we may neglect in (60) and (62)
the terms hγD/β, h2KT and hZ. For the numerical tests in Sects. 3.3 and 3.4, this
simplified Newton–Raphson method was combined with a damping strategy based
on Armijo line search, see (Kelley 1995). Convergence problems in the corrector
iteration were observed for just one simulation scenario (integrator (37) for the heavy
top benchmark,G = SO(3) × R

3, h = 4.0 × 10−3, see the left plots of Figs. 6 and 8).
Here, we had to take into account a difference approximation of the term hγD/β +
h2KT in (60).

3.6 Constraint Residuals

Both generalized-α integrators (37) and (56) satisfy by construction the holonomic
constraints (15c) at the level of position coordinates: �(qn) = 0, ( n > 0 ). For the
stabilized index-2 integrator (56), the hidden constraints (16) at velocity level are sat-
isfied as well:B(qn)vn = 0, ( n > 0 ), see (56g). For the index-3 integrator (37), these
residuals B(qn)vn remain in general in the size of global discretization errors since
B(q(t))v(t) ≡ 0. For some problem classes, the constraint residuals B(qn)vn vanish,
however, also for the index-3 integrator (37). Therefore, both integrators (37) and
(56) define in that case one and the same numerical solution (qn, vn, v̇n, an,λn)with
auxiliary variables ηn = 0, ( n ≥ 0 ). In a practical implementation, the numerical
solutions will coincide up to round-off errors and errors that are caused by stopping
the Newton–Raphson iteration after a finite number of iteration steps.
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In the present section,we show that the numerical solution of the index-3 integrator
(37) will always satisfy the hidden constraints (16) at the level of velocity coordinates
if the constraint Jacobian B is constant (Lemma 3.4). In Lemma 3.5, this result is
extended to a special problem class in SE(3) with B(q) = const on the constraint
manifold M = { q ∈ G : �(q) = 0 }. This analysis gives the formal proof for the
numerical test results in the right plot of Fig. 10 that were obtained for the heavy top
benchmark in configuration space G = SE(3).

Improved error estimates for certain configuration spaces are a topic of active cur-
rent research on Lie group time integration methods, see also the recently published
results of Müller and Terze (2014a, b).

Lemma 3.4 Consider equations of motion (15) with constant constraint Jacobian
B in the hidden constraints (16) at velocity level.

(a) For this problem class, the curvature term Z(q)
(
v, v

)
in the hidden constraints

(18) at acceleration level vanishes identically.
(b) If B = const and the starting values q0, v0, a0 are consistent ( 0 = �(q0) =

Bv0 = Ba0 ) then the numerical solution (qn, vn, v̇n, an,λn) of the generalized-
α method (37) satisfies for all n ≥ 0 both the holonomic constraints (15c) at
position level and the hidden constraints (16) at velocity level:�(qn)= Bvn = 0.

Proof (a) The time derivative of hidden constraints (16) with B = const is given
by 0 = Bv̇(t). Comparing this expression with the hidden constraints (18), we get
Z(q)

(
v, v

) = 0.
(b) Because of �(q0) = 0 and (37f), the numerical solution qn satisfies the holo-

nomic constraints (15c) for all n ≥ 0. To prove Bvn = Ban = 0 by induction, we
observe that �(qn+1) = �(qn) = 0 and qn+1 = qn ◦ exp(h�̃qn), see (37a), imply
�(1) = �(0) = 0 for the continuously differentiable function � : [0, 1] → R

m ,
ϑ �→ �

(
qn ◦ exp(ϑh�̃qn)

)
. Therefore,

0 = �(1) − �(0)

h
= 1

h

∫ 1

0

d�

dϑ

(
qn ◦ exp(ϑh�̃qn)

)
dϑ

=
∫ 1

0
B

(
qn ◦ exp(ϑh�̃qn)

)
�qn dϑ , (63)

see (14) and (32). IfB = const, then the integrand in (63) is constant as well resulting
inB�qn = 0.WegetBan+1 = 0 (ifBvn = Ban = 0) from leftmultiplicationof (37b)
by matrix B and obtain finally Bvn+1 = 0 multiplying also the velocity update (37c)
from the left by the (constant) constraint Jacobian B. �
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Lemma 3.5 Consider a rigid body with configuration space SE(3) and holonomic
constraints (15c) of the form

0 = �(q) = �
(
(R, x)SE(3)

) = X − R�x (64)

with a constant vector X ∈ R
3.

(a) Along any solution q(t) of the constrained equations of motion (15) matrix
B

(
q(t)

)
is constant and the curvature term Z

(
q(t)

)(
v(t), v(t)

)
vanishes identi-

cally.
(b) If the generalized-α method (37) is applied with consistent starting values ( 0 =

�(q0) = B(q0)v0 = B(q0)a0) and with sufficiently small time step size h > 0
to equations of motion (15) in SE(3) with holonomic constraints (64) then the
numerical solution satisfies both the holonomic constraints at position level and
the hidden constraints at velocity level: �(qn) = B(qn)vn = 0, ( n ≥ 0 ).

Proof (a) Straightforward differentiation of constraint (64) shows

0 = d

dt
�(q(t)) = −Ṙ�x − R�ẋ = −(R�̃)�x − R�RU

= −�̃
�

R�x − U = �̃R�x − U = − R̃�x � − U = B(q)v

with q = (R, x)SE(3) ∈ SE(3) and v = (��, U�)� ∈ R
6. On the constraint man-

ifold, we have R�x = X, see (64), and the constraint Jacobian B(q) is constant:
B

(
(R, x)SE(3)

) = BX := ( −X̃ − I3 ). Therefore, the hidden constraints (16) and
(18) are given by BXv(t) = 0 and BXv̇(t) = 0 with Z

(
q(t)

)(
v(t), v(t)

) ≡ 0 along
any solution

(
q(t), v(t)

)
.

(b) This part of the proof is substantially more technical than the corresponding
proof of Lemma 3.4(b) since B(q) is not constant beyond the constraint manifold
M and there is no straightforward way to prove that in (63) the argument qn ◦
exp(ϑh�̃qn) of B will remain inM for ϑ ∈ (0, 1).

In SE(3), the position update formula qn+1 = qn ◦ exp(h�̃qn) gets the form

Rn+1 = Rn expSO(3)(h�̃Rn) , xn+1 = xn + hRnT�
SO(3)(h�Rn)�xn

with �qn = (�R�
n , �x�

n )�, see Example 2.1(a). Because of �(q0) = 0 and
�(qn+1) = 0, ( n ≥ 0 ), see (37f), we get R�

n xn − R�
n+1xn+1 = X − X = 0, see (64),

and
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0 = expSO(3)(h�̃Rn)
R�

n xn − R�
n+1xn+1

h

=
expSO(3)(h�̃Rn)R�

n xn − R�
n

(
xn + hRnT�

SO(3)(h�Rn)�xn
)

h

= expSO(3)(h�̃Rn) − I3
h

R�
n xn − T�

SO(3)(h�Rn)�xn (65)

with

expSO(3)(h�̃Rn) − I3 =
∞∑
i=1

1

i !
(
h�̃Rn

)i = h
∞∑
i=0

1

(i + 1)!
(
h�̃Rn

)i
�̃Rn

= h
∞∑
i=0

(−1)i

(i + 1)!
(−h�̃Rn

)i
�̃Rn .

In SO(3), the (̃•) operator maps �Rn ∈ R
3 to the skew symmetric matrix �̃Rn , see

(2), and we have �̂Rn = �̃Rn , see Remark 2.8(b). Therefore, −�̃Rn = (�̃Rn)
� =

(�̂Rn)
� and the series expansion (30) proves

expSO(3)(h�̃Rn) − I3 = h
(
TSO(3)(h�Rn)

)�
�̃Rn .

Inserting this expression in (65), we get

0 = T�
SO(3)(h�Rn)

(
�̃Rn(R�

n xn) − �xn
)

and therefore also

0 = �̃Rn(R�
n xn) − �xn = −R̃�

n xn �Rn − �xn = B(qn)�qn

since the tangent operatorTSO(3)(h�Rn) = I3 + O(h) is non-singular for sufficiently
small time step sizes h > 0. Now, the proof may be completed following line by line
the proof of Lemma 3.4(b) since qn ∈ M by construction and B(q) is constant on
the constraint manifold, i.e., B(qn) = BX = const. �

4 Convergence Analysis

The convergence of generalized-α time integration methods for nonlinear uncon-
strained systems in linear configuration spaces was studied by Erlicher et al. (2002)
using an equivalent multi-step representation. In the DAE Lie group case, this analy-
sis has to be extended to constrained systems in nonlinear configuration spaces with
Lie group structure, see (Brüls et al. 2012). In the present section, we follow the direct
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convergence analysis for the generalized-α method in one-step form (37) that was
developed in (Arnold et al. 2015) to study the convergence in long-term integration
as well as in the transient phase in full detail.

4.1 Local Truncation Errors, Global Errors
and Error Recursion

For unconstrained systems in linear spaces, the local truncation errors were intro-
duced in (39), see Sect. 3.2 above. Since there are no discretization errors in the
holonomic constraints (15c), see (37f), these definitions may be used as well in the
constrained case.

For configuration spaces with Lie group structure, the definition of the local trun-
cation error lq

n in (39a) has to be adapted to the Lie group setting. In the Lie algebra
approach to error analysis of Lie group time integration methods, we follow the
proposal of Wensch (2001) to define local and global errors by elements of the
corresponding Lie algebra, see also (Orel 2010):

Definition 4.1 For the solution components q ∈ G, the local truncation error l̃qn ∈ g
of the generalized-α Lie group method (37) is defined by

q(tn+1) = q(tn) ◦ exp(h�̃q(tn)) ◦ exp(̃lqn) (66)

with �q(tn) := v(tn) + (0.5 − β)hv̇(tn + �αh) + βhv̇(tn+1 + �αh).

To get an error estimate for l̃qn , we compare the asymptotic behaviour of q(tn+1) =
q(tn + h) and q(tn) ◦ exp(h�̃q(tn)) for h → 0. For any smooth function v(t),
the flow of q̇(t) = DLq(e) · ṽ(t) is locally represented by a smooth function
ν̃ : [−h0, h0] × R × G → g:

q(t + h) = q(t) ◦ exp
(
hν̃(h; t, q(t))

)
. (67)

The asymptotic behaviour of hν̃ is characterized by the Magnus expansion

hν̃(h; t, q(t)) = hṽ(t) + h2

2
˜̇v(t) + h3

6
˜̈v(t) + h3

12
[̃v(t),˜̇v(t)] + O(h4) , (68)

see (Hairer et al. 2006) and (Müller 2010). The matrix commutator [̃v,˜̇v] vanishes
identically in linear spaces, see Sect. 2.5. In the Lie group setting, it introduces an
additional local error term if the arguments ṽ(t) and˜̇v(t) do not commute, see Lemma
4.2 below.

Inserting (67) with t = tn into the (implicit) definition of l̃qn , see (66), we get
q(tn) ◦ exp

(
hν̃(h; tn, q(tn))

) = q(tn) ◦ exp(h�̃q(tn)) ◦ exp(̃lqn). Therefore, the term
exp(̃lqn) may be expressed as product of matrix exponentials:
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exp(̃lqn) = exp(−h�̃q(tn)) ◦ exp
(
hν̃(h; tn, q(tn))

)
.

In (Arnold et al. 2015, Lemma 1), we used the Baker–Campbell–Hausdorff formula
to show that̃ lqn and h

(
ν̃(h; tn, q(tn)) − �̃q(tn)

)
coincide up to higher order terms, see

also Lemma 2.5. Comparing the Magnus expansion (68) with the Taylor expansion
of �̃q(tn), we get

Lemma 4.2 With �α := αm − α f and Cq := (1 − 6β − 3�α)/6, the local trunca-
tion error l̃qn is given by

l̃qn = Cqh
3̃v̈(tn) + h3[̃v(tn),˜̇v(tn)]/12 + O(h4) . (69)

If the parameters γ, αm, α f satisfy the order condition (41) then the local truncation
errors are bounded by

‖lqn‖ = O(h3) , ‖lqn+1 − lqn‖ = O(h4) , ‖lv
n‖ = O(h3) , ‖la

n‖ = O(h2) . (70)

The linear relations between vn , an and v̇n in (37) result in linear relations for the
corresponding global errors. Here and in the following we will always assume that
the algorithmic parameters γ, αm and α f satisfy the order condition (41) and the
local truncation errors are bounded by (70).

Lemma 4.3 Consider global errors ea
n with v̇(tn + �αh) = an + ea

n and use
(•)(tn) = (•)n + e(•)

n to define e(•)
n for all remaining solution components being ele-

ments of linear spaces. The order condition (41) implies

ev
n+1 = ev

n + (1 − γ)hea
n + γhea

n+1 + O(h3) , (71a)

(1 − αm)ea
n+1 + αmea

n = (1 − α f )ev̇
n+1 + α f ev̇

n + O(h2) . (71b)

For linear configuration spacesG, the global error inq is givenbyq(tn) = qn + eq
n .

In the nonlinear case, we take into account the Lie group structure of the configuration
space G and consider global errors ẽqn being elements of the corresponding Lie
algebra g:

q(tn) = qn ◦ exp(̃eqn) . (72)

This definition is compatible with the classical definition of eq
n ∈ R

k if the configu-
ration space G is linear.

The position update (37a) and the definition (66) of the local error l̃qn yield a global
error recursion for ẽqn in terms of matrix exponentials:

exp(̃eqn+1) = (qn+1)
−1 ◦ q(tn+1)

= exp(−h�̃qn) ◦ (qn)
−1 ◦ q(tn)︸ ︷︷ ︸

= exp(̃eqn)

◦ exp(h�̃q(tn)) ◦ exp(̃lqn) .
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This product of matrix exponentials may be studied by repeated application of
the Baker–Campbell–Hausdorff formula using Lemma 2.5. Omitting all technical
details, we get

Lemma 4.4 (Arnold et al. 2015, Lemma 2) The global errors eqn satisfy

eqn+1 = eqn + h�heqn (73)

with

�h̃eqn = ẽv
n + (0.5 − β)h̃ea

n + βh̃ea
n+1+[̃eqn , ṽ(tn)] + 1

h
l̃qn+

+ O(h)(εn + h‖ea
n+1‖) (74)

and the notation
εn := ‖eqn‖ + ‖ev

n‖ + h‖ea
n‖ + h‖eλ

n ‖ (75)

that is used to summarize higher order error terms in compact form. In particular,
Eqs. (73) and (74) and the local error estimate (69) imply

eqn+1 = eqn + O(h)(εn + εn+1) + O(h3) , (76a)

‖�heqn‖ ≤ O(1)(εn + εn+1) + O(h2) . (76b)

Error estimates like the ones in Lemma 4.4 are valid if the numerical solution
remains in a small neighbourhood of the analytical one. More precisely, we suppose
that there are positive constants h0 and C and a sufficiently small constant γ0 > 0
such that

‖eqr ‖ ≤ Ch , ‖ev
r ‖ + ‖ea

r ‖ + ‖eλ
r ‖ ≤ γ0 (77)

is satisfied for all h ∈ (0, h0] and all r with t0 + rh ∈ [t0, tend]. This technical assump-
tion may be verified using the results of the convergence analysis in Sect. 4.3 below,
see (Hairer and Wanner 1996, Theorem VII.3.5) and the slightly more detailed dis-
cussion in (Arnold et al. 2015, Sect. 3.1).

Linearizing the equilibrium conditions (37e), we may estimate ev̇
n in terms of εn

and eλ
n :

Lemma 4.5 (Arnold et al. 2015, Lemma 3) If the order condition (41) is satisfied
then

ev̇
n + eM−1B�λ

n = O(1)εn , ‖ev̇
n‖ = O(1)(εn + ‖eλ

n ‖) , (78a)

ev̇
n+1 + eM−1B�λ

n+1 = O(1)εn + O(h)(‖ea
n+1‖ + ‖eλ

n+1‖) + O(h3) . (78b)

Here we used the notation e(C •)
n := C(q(tn), v(tn),λ(tn), tn)e(•)

n for matrix-valued
functions C = C(q, v,λ, t).



A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems 133

Inserting (78) into the error estimate (71b), we get a coupled error recursion

(1 − αm)ea
n+1 + αmea

n + (1 − α f )eM−1B�λ
n+1 + α f eM−1B�λ

n =
= O(1)(εn + εn+1) + O(h2) (79)

that has to be studied separately in tangential and normal direction of the constraint
manifold M := { q ∈ G : �(q) = 0 } to get optimal error bounds, see (Hairer and
Wanner 1996). The error component in tangential direction is obtained by multipli-
cation with a matrix P(q) that projects into the tangential space TqM = ker B(q).
Such a projector P(q) is given by

P(q) := I − [M−1B�S−1B](q) with S(q) := [BM−1B�](q) (80)

since PP = P and BP = B − BM−1B�S−1B = B − SS−1B = 0. Taking into account
that this projector satisfies PM−1B� ≡ 0, we get an optimal error recursion in tan-
gential direction by left multiplication of (79) with matrix P

(
q(tn+1)

)
. The error

propagation in normal direction to the constrained manifold may be characterized
multiplying (79) by B

(
q(tn+1)

)
:

Lemma 4.6 (Arnold et al. 2015, Lemma 5) The errors ea
n, eλ

n satisfy

(1 − αm)ePa
n+1 + αmePa

n = O(1)(εn + εn+1) + O(h2) , (81)

(1 − αm)eBa
n+1 + αmeBa

n + (1 − α f )eSλ
n+1 + α f eSλ

n =
= O(1)(εn + εn+1) + O(h2) (82)

and ‖ea
n‖ ≤ ‖ePa

n ‖ + ‖M−1B�S−1‖‖eBa
n ‖ ≤ O(1)(‖ePa

n ‖ + ‖eBa
n ‖).

Estimate (81) defines a one-step recursion for the tangential error component ePa
n

in terms of εn , εn+1 and local errors O(h2).
The most crucial part of the convergence analysis are recursive estimates for the

error component eBa
n in normal direction to the constrained manifold. Similar to the

discussion in Sect. 3.2, we may scale the error recursion (71a) by the factor 1/h to get

(1 − γ)eBa
n + γeBa

n+1 = eBv
n+1 − eBv

n

h
+ O(1)εn + O(h2) . (83)

The scaled error term eBv
n /h in the right-hand side of (83) is studied considering

error estimate (74) and its equivalent in R
k . We get

1

h

(
eBv
n + 1

h
B

(
q(tn)

)
lqn

)
= rB

n − rh(tn, eqn ) + O(1)εn + O(h)‖ea
n+1‖ (84)
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with the vector

rB
n := 1

h

(
B

(
q(tn)

)
�heqn + Z(q(tn))

(
eqn , v(tn)

)) −
−B

(
q(tn)

)(
(0.5 − β)ea

n − βea
n+1

) (85)

and a vector-valued function

rh(tn, eqn) := 1

h

(
Z(q(tn))

(
eqn , v(tn)

) + êqnv(tn)
)

(86)

that is linear in eqn . Here, the term êqnv(tn) ∈ R
k represents the matrix commutator

[̃eqn , ṽ(tn)] ∈ g, see (29). By purpose, the notation rB
n in (84) adopts the notation rn

that was introduced in (48) to denote a scaled linear combination of global errors
in v and local errors in q for proving second-order convergence for the linear test
equation, see Sect. 3.2.

The definitions of rB
n and rh(tn, eqn) contain a term Z(q(tn))

(
eqn , v(tn)

)
/h with the

bilinear form Z(q) that is known from the hidden constraints (18) at the level of
acceleration coordinates. A time discrete approximation of these hidden constraints
shows that thefirst term in the right-hand side of (85) is of sizeO(1)(‖eqn‖ + ‖�heqn‖),
see (88):

Lemma 4.7 (Arnold et al. 2015, Lemma 4) The global errors eqn ∈ R
k satisfy

B
(
q(tn)

)
eqn = O(h)‖eqn‖ , (87)

B
(
q(tn)

)
�heqn + Z

(
q(tn)

)(
eqn , v(tn)

) = O(h)(‖eqn‖ + ‖�heqn‖) . (88)

Proof Taking into account that �(q(tn)) = �(qn) = 0, we consider �(qn,ϑ) for
qn,ϑ := q(tn) ◦ exp(−ϑ̃eqn) ∈ G, (ϑ ∈ [0, 1] ), and get

0 = −(
�(qn) − �(q(tn))

) = −(
�(qn,1) − �(qn,0)

) =
∫ 1

0
B(qn,ϑ)eqn dϑ (89)

since B(qn,ϑ)e
q
n = −(d/dϑ)�(qn,ϑ), see (14). Assertion (87) follows from (89)

because B(qn,ϑ) = B
(
q(tn)

) + O(h), see (77).
The proof of (88) is technically much more complicated and starts with the obser-

vation that

0 =
∫ 1

0

B(qn+1,ϑ)e
q
n+1 − B(qn,ϑ)e

q
n

h
dϑ ,

see (89). The integrand may be split into terms B(qn+1,ϑ)(e
q
n+1 − eqn)/h and(

B(qn+1,ϑ)e
q
n − B(qn,ϑ)e

q
n
)
/h that yield in (88) the termsB

(
q(tn)

)
�heqn andZ

(
q(tn)

)
(
eqn , v(tn)

)
, respectively. For the detailed proof, we refer to (Arnold et al. 2015). �
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Lemma 4.8 (Arnold et al. 2015, Lemma 6) Ifαm �= 1,α f �= 1, β �= 0 and the order
condition (41) is satisfied then

rB
n + (0.5 − β)eBa

n + βeBa
n+1 = O(1)(εn + εn+1) + O(h2) , (90)

(1 − γ)eBa
n + γeBa

n+1 = rB
n+1 − rB

n + O(1)(εn + εn+1) + O(h2) . (91)

Proof (a) Inserting error estimate (88) in (85), we get

rB
n + (0.5 − β)eBa

n + βeBa
n+1 = O(1)(‖eqn‖ + ‖�heqn‖ + h‖ea

n+1‖) ,

and (90) follows from (76b).
(b) With the assumptions on the algorithmic parameters αm , α f , β and γ, we

may substitute in (84) the termO(h)‖ea
n+1‖ by its upper boundO(1)εn + O(h2), see

(Arnold et al. 2015, Corollary 1a). In this modified form, estimate (84) implies

eBv
n+1 − eBv

n

h
= rB

n+1 − rB
n + O(1)(εn + εn+1) + O(h2) (92)

since‖lqn+1 − lqn‖ = O(h4), seeLemma4.2, and rh(tn, eqn ) = (. . .)/h varies smoothly
in n in the sense that

rh(tn+1, eqn+1) − rh(tn, eqn)

= (
rh(tn+1, eqn+1) − rh(tn+1, eqn )

) + (
rh(tn+1, eqn ) − rh(tn, eqn )

)
= hrh(tn+1,�heqn) + hṙh(tn + ϑh, eqn) = O(1)‖�heqn‖ + O(1)‖eqn‖

with some ϑ ∈ (0, 1), see also the more detailed discussion in (Arnold et al. 2015,
Lemma 6). Inserting (92) into (83), we get estimate (91). �

Finally, a one-step error recursion for the generalized-α Lie group integrator (37)
may be formulated in terms of rB

n and the vector-valued global errors eqn , ev
n , ePa

n , eBa
n ,

eSλ
n combining (71a), (76a), (81), (82), (90) and (91) to

‖Ey
n+1 − TyEy

n‖ ≤ O(h)(εn + εn+1 + ‖Ez
n‖ + ‖Ez

n+1‖) + O(h3) , (93a)

‖Ez
n+1 − TzEz

n‖ ≤ O(1)(εn + εn+1) + O(h2) (93b)

with

Ey
n :=

(
eqn
ev
n

)
, Ez

n :=
(

ePa
n

Er
n

)
, Er

n :=
⎛
⎝ eSλ

n
rB
n

eBa
n

⎞
⎠ , (94)

Ty := I2k , Tz := blockdiag (− αm

1 − αm
)Ik, (T−1

+ T0 ⊗ Im) ) (95)
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and

T+ :=
⎛
⎝ 0 0 −β

0 1 −γ
1 − α f 0 1 − αm

⎞
⎠ , T0 :=

⎛
⎝ 0 1 0.5 − β

0 1 1 − γ
−α f 0 −αm

⎞
⎠ .

The one-step error recursion (93) couples the convergence analysis for uncon-
strained systems (error components eqn , ev

n , ePa
n ) to error bounds for the Lagrange

multipliers and other algebraic variables (error components eλ
n , rB

n , eBa
n ). The latter

ones are closely related to the error analysis for the linear test equation q̈ + ω2q = 0
in the limit case hω → ∞, see Eqs. (46)–(48) in Sect. 3.2.

The error bounds (93) are the key to the convergence analysis of the DAE Lie
group integrator (37), see Sect. 4.2 and Theorem 4.18 below. In the following, we
will call this integrator the index-3 integrator since it results from the direct time
discretization of the original index-3 formulation (15) of the equations of motion.
With a slightly different definition of vectors Er

n and matrix Tz, error bounds (93)
may also be proved for the stabilized index-2 integrator (56) that is based on the
stabilized index-2 formulation (55) of the equations of motion. For this integrator,
the time discrete approximation of hidden constraints yields:

Lemma 4.9 (see Arnold et al. 2015, Theorem 2)

(a) The auxiliary variables ηn in (56b) are of size ‖ηn‖ = O(1)(εn + εn+1) +
O(h2). Therefore, error estimate (76a) applies as well to integrator (56).

(b) For integrator (56), the error bounds in (84) and (91) get the form

1

h
eBv
n = −r̄h(tn, eqn ) + O(1)(εn + εn+1) + O(h2) , (96)

(1 − γ)eBa
n + γeBa

n+1 = O(1)(εn + εn+1) + O(h2) (97)

with

r̄h(tn, eqn ) := 1

h
Z(q(tn))

(
v(tn), eqn

)
.

Proof We sketch the basic ideas of the proof and refer to the proof of (Arnold et al.
2015, Theorem 2) for a more detailed discussion.

(a) For the stabilized index-2 formulation, the scaled increment �heqn in (73) and
(88) has to be substituted by �heqn + B�(qn)ηn , see (56b). In this modified form,
estimate (88) yields

B
(
q(tn)

)
B�(qn)ηn = O(1)(‖eqn‖ + ‖�heqn‖) (98)

with a right-hand side that is of sizeO(1)(εn + εn+1) + O(h2), see (76b). The asser-
tion may be proved solving (98) w.r.t. ηn since the full rank assumption on B(q)

implies that B
(
q(tn)

)
B�(qn) = [BB�](qn) + O(h) is non-singular. Using this upper

bound for ‖ηn‖, we get error estimate (76a) from eqn+1 = eqn + h(�heqn + B�(qn)ηn).
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(b) For the stabilized index-2 formulation, analytical and numerical solution sat-
isfy the hidden constraints (16) resulting in

0 = B
(
q(tn)

)
v(tn) − B(qn)vn

h
= 1

h
B(qn)ev

n + B
(
q(tn)

) − B(qn)

h
v(tn) (99)

with B(qn)ev
n = eBv

n + O(h)εn . For the analysis of the second term in the right-hand
side of (99), we use ideas of the proof of Lemma 4.7 and take into account that

(
B

(
q(tn)

) − B(qn)
)
v(tn) = −(

B(qn,1) − B(qn,0)
)
v(tn)

with qn,ϑ := q(tn) ◦ exp(−ϑ̃eqn). Because of

− d

dϑ

(
B(qn,ϑ)v(tn)

) = Z(qn,ϑ)
(
v(tn), eqn) = hr̄h(tn, eqn ) + O(h2)εn ,

we get r̄h(tn, eqn) = (
B

(
q(tn)

) − B(qn)
)
v(tn)/h + O(h)εn and estimate (96) is seen

to be a consequence of (99). With (96), the one-step recursion (97) for error vectors
eBa
n may be proved as in Lemma 4.8. �

Because of Lemma 4.9(b), there is no need to consider vectors rB
n in the global

error analysis of the stabilized index-2 integrator (56). Summarizing error estimates
(71a), (76a), (81), (82) and (97), we get the one-step error recursion (93) with

Ty := I2k , Tz := blockdiag (− αm

1 − αm
Ik, (T̄−1

+ T̄0 ⊗ Im) ) (100)

and

Er
n :=

(
eSλ
n

eBa
n

)
, T̄+ :=

(
0 −γ

1 − α f 1 − αm

)
, T̄0 :=

(
0 1 − γ

−α f −αm

)
.

4.2 Coupled Error Propagation in Differential
and Algebraic Solution Components

The classical convergence analysis of ODE one-step methods provides the basis
for investigating the coupled error propagation in differential and algebraic solution
components of DAE Lie group integrators. We start this section with a perturbation
analysis for ODE initial value problems (Theorem 4.10) and consider in Theorem
4.11 the corresponding convergence result for ODE one-stepmethods. Themain new
result of this section is the extension of this convergence analysis to the DAE case,
see Theorem 4.16.
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Theorem 4.10 (see Walter 1998) Consider the initial value problem

ẋ(t) = f(t, x(t)) , ( t ∈ [t0, tend] ) , x(t0) = x0 (101)

with a continuous right-hand side f that satisfies for all t ∈ [t0, tend] a Lipschitz
condition w.r.t. x with a Lipschitz constant L > 0. For functions x̂ ∈ C1[t0, tend] with

˙̂x(t) = f(t, x̂(t)) + δ(t) , ( t ∈ [t0, tend] ) , (102)

the influence of perturbations δ(t) may be estimated by

‖x̂(t) − x(t)‖ ≤ eL(t−t0)‖x̂(t0) − x(t0)‖ + eL(t−t0) − 1

L
max

s∈[t0,tend]
‖δ(s)‖ . (103)

Proof For t ∈ [t0, tend], we have

x̂(t) − x(t) = x̂(t0) − x(t0) +
∫ t

t0

( ˙̂x(s) − ẋ(s)
)
ds

= x̂(t0) − x(t0) +
∫ t

t0

(
f(s, x̂(s)) − f(s, x(s))

)
ds +

∫ t

t0

δ(s) ds .

Therefore, the triangle inequality and the Lipschitz condition on f imply

‖x̂(t) − x(t)‖ ≤ ψ(t) (104)

with the continuously differentiable function

ψ(t) := ‖x̂(t0) − x(t0)‖ + L
∫ t

t0

‖x̂(s) − x(s)‖ ds + (t − t0)�

and � := maxs∈[t0,tend] ‖δ(s)‖ . Note, that maxs ‖δ(s)‖ is well defined since x̂ ∈
C1[t0, tend] implies that δ is continuous on the compact interval [t0, tend].

Because of (104), the time derivative ofψ satisfies for all t ∈ [t0, tend] the estimate

ψ̇(t) = L‖x̂(t) − x(t)‖ + � ≤ Lψ(t) + � .

Hence, the derivative of σ(τ ) := eL(t−τ )ψ(τ ) is bounded by

σ′(τ ) = eL(t−τ )
(−Lψ(τ ) + ψ̇(τ )

) ≤ eL(t−τ ) �

and we get

σ(t) = σ(s) +
∫ t

s
σ′(τ ) dτ ≤ σ(s) +

∫ t

s
eL(t−τ ) dτ · �,
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i.e.,

ψ(t) ≤ eL(t−s)ψ(s) +
∫ t

s
eL(t−τ ) dτ · � (105)

for any s ∈ [t0, tend]. Error bound (105) with s = t0 proves (103) since

∫ t

t0

eL(t−τ ) dτ = eL(t−t0) − 1

L
(106)

and ψ(t0) = ‖x̂(t0) − x(t0)‖. �

For the numerical solution of ODE (101), we consider a one-step method that
updates the numerical solution in time step tn → tn+1 = tn + hn according to

xn+1 = xn + hn�n(tn, xn; f, hn) (107)

with a continuous increment function � that satisfies a Lipschitz condition w.r.t. xn
with a Lipschitz constant L� > 0, see, e.g., (Hairer et al. 1993). The time discretiza-
tion error in one single time step defines the local error

len := x(tn+1) − (
x(tn) + hn�(tn, x(tn); f, hn)

)
.

In the global error analysis, the accumulation of these local errors during time integra-
tion is studied by a discrete counterpart to the perturbation analysis for the continuous
problem (see Theorem 4.10).

Theorem 4.11 The global errors en := x(tn) − xn satisfy the error recursion

‖en+1 − en‖ ≤ L�hn‖en‖ + ‖len‖ (108)

that results in the global error estimate

‖en‖ ≤ eL�(tn−t0)‖e0‖ + eL�(tn−t0) − 1

L�

max
0≤l<n

1

hl
‖lel‖ . (109)

Proof (a) Using the definition of local and global errors, we get

en+1 − en = (
x(tn+1) − xn+1

) − (
x(tn) − xn

)
= x(tn+1) − (

x(tn) + hn�(tn, x(tn); f, hn)
)+

+ hn�(tn, x(tn); f, hn) − (
xn+1 − xn

)
= len + hn

(
�(tn, x(tn); f, hn) − �(tn, xn; f, hn)

)
.
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Therefore, estimate (108) follows from the triangle inequality and from the Lipschitz
condition on �:

‖en+1 − en‖ ≤ ‖len‖ + hnL�‖x(tn) − xn‖ = L�hn‖en‖ + ‖len‖ .

(b) Estimate (108) with n being substituted by some r ∈ {0, 1, . . . , n} implies

‖er+1‖ ≤ ‖er‖ + L�hr‖er‖ + ‖ler‖ = (1 + L�hr )‖er‖ + ‖ler‖ (110)

with hr = tr+1 − tr . For a recursive application of this error estimate, we substitute
the coefficients of ‖er‖ and ‖ler‖ in the right-hand side of (110) by upper bounds
that are obtained from 1 + Lt ≤ eLt and

1 = tr+1 − tr
hr

= 1

hr

∫ tr+1

tr

dτ ≤ 1

hr

∫ tr+1

tr

eL�(tr+1−τ ) dτ

and get

‖er+1‖ ≤ eL�(tr+1−tr )‖er‖ +
∫ tr+1

tr

eL�(tr+1−τ ) dτ · 1

hr
‖ler‖ . (111)

(c) Estimate (111) is a special case of the more general expression

‖en‖ ≤ eL�(tn−tr )‖er‖ +
∫ tn

tr

eL�(tn−τ ) dτ · max
r≤l<n

1

hl
‖lel‖ , (112)

( r = 0, 1, . . . , n − 1 ), thatmay be considered as a time discrete counterpart to (105).
To prove the error bound (112) by induction, we observe that (111) is estimate (112)
with r = n − 1. For the induction step, we suppose that (112) is satisfied for r + 1:

‖en‖ ≤ eL�(tn−tr+1)‖er+1‖ +
∫ tn

tr+1

eL�(tn−τ ) dτ · max
r+1≤l<n

1

hl
‖lel‖ .

Inserting in this expression the upper bound (111) for ‖er+1‖, we get estimate (112)
since

eL�(tn−tr+1)eL�(tr+1−τ ) = eL�(tn−τ )

for any τ ∈ [tr , tr+1].
(d) To complete the proof, we use the identity (106) and see that (112) with r = 0

proves the global error bound (109). �

Abstracting from the specific setting in Theorem 4.11, we may consider more
general one-step error recursions and the resulting error bounds. For simplicity, we
restrict this analysis to constant time step sizes h. In that case, we may substitute the
term ‖ler‖ in (110) by hM with an appropriate constant M ≥ 0 and get a one-step
recursion
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un+1 ≤ (1 + Lh)un + hM , (113)

( n ≥ 0 ), that implies

un ≤ eL(tn−t0)u0 + eL(tn−t0) − 1

L
M (114)

with un := ‖en‖, L := L� > 0 and tn := t0 + nh, see (109). The convergence analy-
sis of Theorem 4.11 may be generalized straightforwardly to more complex error
recursions:

Lemma 4.12 Consider sequences (vn)n≥0, (wn)n≥0 of non-negative numbers that
satisfy

vn+1 ≤ (1 + Lh)vn + Lhκne0 + hM , (115a)

wn+1 ≤ (κ + Lh)wn + Lhκne0 + M (115b)

with a positive constant L and non-negative constants κ ∈ [0, 1), M and e0. All these
constants are supposed to be independent of h > 0 and n ≥ 0.

Using the notation tn := t0 + nh, we get for all n ≥ 0 the estimate

vn ≤ eL(tn−t0)
(
v0 + h

Le0
1 − κ

) + eL(tn−t0) − 1

L
M . (116a)

For the sequence (wn)n≥0, an estimate

wn ≤ (κ + Lh)nw0 + h
Le0
1 − κ

+ M

1 − (κ + Lh)
(116b)

may be shown for all n ≥ 0 and all h ∈ (0, h0] with h0 > 0 denoting a constant such
that κ + Lh0 < 1.

Proof Following part (b) of the proof of Theorem 4.11, we rewrite the one-step error
recursions (115) in a form that is appropriate for recursive application:

vr+1 ≤ eL(tr+1−tr )
(
vr + Lhκr e0

) +
∫ tr+1

tr

eL(tr+1−τ ) dτ · M ,

wr+1 ≤ (κ + Lh)wr + Lhκr e0 + M .

Then, the error bounds

vn ≤ eL(tn−tr )
(
vr + h

n−1∑
l=r

κl · Le0
) +

∫ tn

tr

eL(tn−τ ) dτ · M , (117a)

wn ≤ (κ + Lh)n−rwr + h
n−1∑
l=r

κl · Le0 +
n−1∑
l=r

(κ + Lh)n−(l+1) · M , (117b)
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( r = 0, 1, . . . , n − 1 ), follow (similar to part (c) of the proof of Theorem 4.11) by
induction starting at r = n − 1. In the induction step, we have to take into account
that

eL(tn−tr )κr + eL(tn−tr+1)

n−1∑
l=r+1

κl ≤ eL(tn−tr )
n−1∑
l=r

κl .

and (κ + Lh)n−(r+1) < 1 for any h ∈ (0, h0]. Error bounds (117) with r = 0 prove
the lemma since κ ∈ [0, 1) and κ + Lh ∈ [0, 1) imply

n−1∑
l=r

κl ≤
∞∑
l=0

κl = 1

1 − κ
,

n−1∑
l=r

(κ + Lh)n−(l+1) ≤ 1

1 − (κ + Lh)

and the integral term in (117a) may be evaluated in closed form, see (106). �

Lemma 4.13 Let (En)n≥0 be a sequence of vectors that satisfy

‖En+1 − TEn‖ ≤ L0(h‖En‖ + h‖En+1‖) + hM0 (118)

with a matrix T and positive constants L0, M0 that are independent of h > 0 and
n ≥ 0. If there is a norm ‖.‖
 such that κ
 := ‖T‖
 ≤ 1 then (118) implies for time
step sizes h ∈ (0, h0] a one-step recursion

‖En+1 − Tn+1E0‖
 ≤ (κ
 + L̃0h)‖En − TnE0‖
 + L̃0hκn

‖E0‖
 + hM̃0 (119)

and error bounds

‖En‖ ≤ ‖TnE0‖ + C0‖En − TnE0‖
 , (120a)

‖En‖ ≤ C0(‖E0‖
 + ‖En − TnE0‖
) (120b)

with appropriate constants h0, L̃0, M̃0 and C0 that are supposed to be positive. They
depend on the norm ‖.‖ and on the constants L0, M0 in (118).

Proof (a) Since all norms in a finite-dimensional vector space are equivalent, there
are positive constants c, c with

c‖E‖
 ≤ ‖E‖ ≤ c‖E‖
 (121)

for any vector E. Therefore, estimate (118) implies

‖En+1 − TEn‖
 ≤ L̂0(h‖En‖
 + h‖En+1‖
) + hM̂0 (122)

with L̂0 := cL0/c, M̂0 := M0/c.



A Lie Algebra Approach to Lie Group Time Integration of Constrained Systems 143

(b) For the proof of estimate (119), we use the triangle inequality and get

‖En+1 − Tn+1E0‖
 ≤ ‖En+1 − TEn‖
 + ‖T(En − TnE0)‖
 .

The term ‖T(En − TnE0)‖
 is bounded by κ
‖En − TnE0‖
 with κ
 = ‖T‖
 ≤ 1.
We obtain

‖En+1 − Tn+1E0‖
 ≤ κ
‖En − TnE0‖
 + ‖En+1 − TEn‖


and may substitute ‖En+1 − TEn‖
 by the upper bound (122) taking into account
that

‖En‖
 ≤ ‖En − TnE0‖
 + ‖T‖n
 ‖E0‖ = ‖En − TnE0‖
 + κn

‖E0‖
 .

The resulting inequality

(1 − L̂0h)‖En+1 − Tn+1E0‖


≤ (κ
 + L̂0h)‖En − TnE0‖
 + 2L̂0hκn

‖E0‖
 + hM̂0

is multiplied by 1/(1 − L̂0h) to get an upper bound for ‖En+1 − Tn+1E0‖
. If we
suppose that h ∈ (0, h0] with h0 := 1/(2L̂0) then 1 − L̂0h ≥ 1/2 and we may use
the inequalities (κ
 + x)/(1 − x) ≤ κ
 + 4x and 1/(1 − x) ≤ 2 that are valid for all
x ∈ [0, 1/2]. To complete the proof of (119), we set L̃0 := 4L̂0 and M̃0 := 2M̂0.

(c) Because of ‖En‖ ≤ ‖TnE0‖ + ‖En − TnE0‖, error bound (120a)withC0 := c
follows from the equivalence of norms ‖.‖ and ‖.‖
, see (121). With this def-
inition of C0, we have furthermore ‖En‖ ≤ C0‖En‖
 and (120b) results from
‖En‖
 ≤ ‖TnE0‖
 + ‖En − TnE0‖
 with ‖Tn‖
 ≤ κn


 ≤ 1. �

Corollary 4.14 If the assumptions of Lemma 4.13 are satisfied with κ
 = ‖T‖
 = 1
then estimates (119) and (120b) imply

‖En‖ ≤ C̃0
(
eL̃0(tn−t0)‖E0‖ + eL̃0(tn−t0) − 1

L̃0

M̃0
)

(123)

with tn := t0 + nh, ( n ≥ 0 ), and a constant C̃0 > 0 that depends on C0 and the norm
‖.‖.
Proof Forκ
 = 1, estimate (119) gets the form (113)with the notations un := ‖En −
TnE0‖
, L := L̃0 and M := L̃0‖E0‖
 + M̃0. Inserting these expressions in error
bound (114), we get

‖En − TnE0‖
 ≤ (eL̃0(tn−t0) − 1)‖E0‖
 + eL̃0(tn−t0) − 1

L̃0

M̃0
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since u0 = ‖E0 − T0E0‖
 = 0. Therefore, the assertion of the corollary follows
directly from (120b) if constant C̃0 is set to C̃0 := C0/min{1, c} such thatC0‖E0‖
 ≤
C̃0‖E0‖ and C0M̃0 ≤ C̃0M̃0, see (121). �

Remark 4.15 (a) For constant time step sizes hn = h = const, the convergence
result in Theorem 4.11 is a special case of the error analysis in Lemma 4.13 and
Corollary 4.14 with En = en , T = I, C̃0 = 1, L̃0 = L� and M = maxl ‖lel‖/h.

(b) In ODE time integration, the error estimate of Corollary 4.14 is used to prove the
convergence of linear multi-stepmethods by an equivalent one-step formulation,
see (Hairer et al. 1993, Sect. III.4). For a k-stepmethod, vectorEn is composed of
global errors en− j at k consecutive grid points tn−(k−1), . . . , tn−1, tn and matrix T
has aKronecker product structureT = A ⊗ Iwith a companionmatrixA ∈ R

k×k

that satisfies ‖A‖
 = 1 in a suitable norm ‖.‖
 if the method is zero-stable. For
a more detailed discussion of this convergence analysis, the interested reader is
referred to the above cited reference.

(c) For matrices T with spectral radius 
(T) = 1, the transformation to Jordan
canonical form may be used to construct a norm ‖.‖
 with ‖T‖
 = 1 provided
that all Jordan blocks corresponding to eigenvalues λi [T] with |λi [T]| = 1 are
of dimension 1 × 1, see (Hairer et al. 1993, Lemma III.4.4).

With appropriate matrices T of norm ‖T‖
 = 1, Lemma 4.13 and Corollary 4.14
provide a unified framework for the error analysis of one-step andmulti-stepmethods
in ODE time integration. Corollary 4.14 may be generalized to the technically more
challenging DAE case that is characterized by a coupled error propagation in differ-
ential and algebraic solution components. The error analysis employs two different
error propagation matrices satisfying ‖Ty‖y,
 = 1 and ‖Tz‖z,
 < 1, respectively. It
is inspired by the classical convergence analysis of one-step methods for index-1
DAEs in (Deuflhard et al. 1987), see also (Arnold et al. 2015, Lemma 7).

Theorem 4.16 Let (Ey
n)n≥0 and (Ez

n)n≥0 be sequences of vectors that satisfy

‖Ey
n+1 − TyEy

n‖ ≤ L0h(‖Ey
n‖ + ‖Ey

n+1‖ + ‖Ez
n‖ + ‖Ez

n+1‖) + hM0, (124a)

‖Ez
n+1 − TzEz

n‖ ≤ L0(‖Ey
n‖ + ‖Ey

n+1‖ + h‖Ez
n‖ + h‖Ez

n+1‖) + M0 (124b)

with matrices Ty, Tz and positive constants L0, M0 that are independent of h > 0
and n ≥ 0. If there are norms ‖.‖y,
, ‖.‖z,
 such that ‖Ty‖y,
 = 1 and ‖Tz‖z,
 < 1
then (124) implies for time step sizes h ∈ (0, h0] error bounds

‖Ey
n‖ ≤ eL̄0(tn−t0)(‖Ey

0‖ + C̄0h‖Ez
0‖) + eL̄0(tn−t0) − 1

L̄0
M̄0 , (125a)

‖Ez
n − Tn

z Ez
0‖ ≤ C̄0e

L̄0(tn−t0)(‖Ey
0‖ + h‖Ez

0‖ + M̄0) (125b)

with tn := t0 + nh, ( n ≥ 0 ). The constants h0, C̄0, L̄0 and M̄0 are supposed to be
positive. They depend on constants L0, M0 in (124) and may depend furthermore on
the vector norms ‖.‖ = ‖.‖y and ‖.‖ = ‖.‖z for Ey

n and Ez
n.
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Proof (a)Using the samearguments as in parts (a) and (c) of the proof ofLemma4.13,
we may verify that the assertion of the Theorem (with appropriate norm dependent
constants C̄0, L̄0 and M̄0) is valid for any pair of norms (‖.‖y, ‖.‖z) if it is valid for
one specific pair (‖.‖y,∗, ‖.‖z,∗). To simplify the notation, we will therefore restrict
the error analysis to a pair of norms with κy := ‖Ty‖y = 1 and κz := ‖Tz‖z < 1 and
will furthermore omit the indices y and z at the norm symbol ‖.‖.

(b) Similar to Lemma 4.13 and Corollary 4.14, the coupled error propagation is
studied in terms of sequences (un)n≥0, (wn)n≥0 with

un := ‖Ey
n − Tn

yEy
0‖ , wn := ‖Ez

n − Tn
z Ez

0‖ . (126)

For a one-step error recursion, we look for error bounds like (119) for un+1 andwn+1.
As in Lemma 4.13, we get from assumptions (124) the estimates

un+1 ≤ (1 + L̃0h)un + L̃0hwn + L̃0hκn
z‖Ez

0‖ + h(M̃0 + L̃0‖Ey
0‖) , (127a)

wn+1 ≤ L̃0un + (κz + L̃0h)wn + L̃0hκn
z‖Ez

0‖ + M̃0 + L̃0‖Ey
0‖ (127b)

with appropriate positive constants L̃0 and M̃0. Here, we have taken into account that
κy = ‖Ty‖ = 1 and κz = ‖Tz‖ < 1 and restricted the analysis to h ∈ (0, h0] with a
sufficiently small constant h0 > 0.

(c) The recursive application of error bounds (127) shows that the coupled
error propagation in differential and algebraic solution components may be stud-
ied analysing powers of the 2 × 2 error amplification matrix

W(h) :=
(
1 + L̃0h L̃0h

L̃0 κz + L̃0h

)
,

see (Deuflhard et al. 1987, Lemma2). The eigenvalue analysis formatrixW(h) yields
an eigenvalueλ(h) = κz + O(h). Because ofκz < 1, this eigenvalue satisfiesλ(h) <

1 for all sufficiently small time step sizes h > 0. The corresponding eigenvector

ζ(h) :=
( −Lvh

1

)
with Lv := L̃0

1 + L̃0h − λ(h)
= L̃0

1 − κz
+ O(h) (128)

is used to transform W(h) to lower triangular form: We define the transformation
matrix

V(h) := [ e1 ζ(h) ] =
(
1 −Lvh
0 1

)
with V−1(h) =

(
1 Lvh
0 1

)
(129)

and observe that the second column vector of W(h)V(h) is a multiple of the second
column vector of V(h) since W(h)ζ(h) = λ(h)ζ(h). Therefore, the scalar product
of the first row vector of V−1(h) and the second column vector ofW(h)V(h), i.e., the
upper right element of V−1(h)W(h)V(h), vanishes. Straightforward computations
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yield

V−1(h)W(h)V(h) =
(
1 + L̃0(Lv + 1)h 0

L̃0 κz + L̃0(1 − Lv)h

)
(130)

and

vn+1 ≤ (1 + L̃0(Lv + 1)h)vn+ (131a)

+ L̃0(Lvh + 1)hκn
z‖Ez

0‖ + (Lv + 1)h(M̃0 + L̃0‖Ey
0‖) ,

wn+1 ≤ L̃0vn + (κz + L̃0(1 − Lv)h)wn+ (131b)

+ L̃0hκn
z‖Ez

0‖ + M̃0 + L̃0‖Ey
0‖

with a sequence (vn)n≥0 of non-negative numbers vn that are defined by

(
vn
wn

)
= V−1(h)

(
un
wn

)
,

see (127), (130) and (131). Note, that all matrix elements of V−1(h) are non-negative
which is an essential assumption for the transformation from (127) to (131).

(d) The right-hand side of (131a) depends nonlinearly on h because Lv = Lv(h). If
we substitute Lv for sufficiently small time step sizes h > 0 by the upper bound L̃v :=
2L̃0/(1 − κz), see (128), then Lemma 4.12 may be applied with constants L :=
L̃0(L̃v max{1, h0} + 1), κ := κz < 1, e0 := ‖Ez

0‖ and M := (L̃v + 1)M̃0 + L‖Ey
0‖.

Inequality (116a) yields the error bound

vn ≤ errn − ‖Ey
0‖ (132)

with

errn := eL(tn−t0)(‖Ey
0‖ + hL

1 − κ
‖Ez

0‖) + eL(tn−t0) − 1

L
(L̃v + 1)M̃0 (133)

because v0 = u0 + Lvhw0 = 0, see (126). Inequality (132) proves the global error
bound (125a) since un = vn − Lvhwn ≤ vn and

‖Ey
n‖ ≤ ‖Tn

yEy
0‖ + ‖Ey

n − Tn
yEy

0‖ ≤ ‖Ty‖n‖Ey
0‖ + un ≤ ‖Ey

0‖ + vn ≤ errn .

For the proof of error bound (125b), we substitute in (131b) the variable vn by its
upper bound (132) and get

wn+1 ≤ (κ + Lh)wn + Lhκne0 + M̃0 + L̃0 errn
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since L̃0(1 − Lv) ≤ L̃0 ≤ L . For all r ≤ n, the term M̃0 + L̃0 errr is bounded by
M̃0 + L̃0 errn because (errn)n≥0 ismonotonically increasing. Therefore, Lemma 4.12
with

M := M̃0 + L̃0 errn ≤ L̃0e
L(tn−t0)(‖Ey

0‖ + hL

1 − κ
‖Ez

0‖) + eL(tn−t0) M̃0 ,

see (133), yields

wn ≤ Cz
0

(
h‖Ez

0‖ + eL(tn−t0)(‖Ey
0‖ + hL

1 − κ
‖Ez

0‖ + M̃0)
)

with an appropriate constantCz
0 > 0, see (116b). Error bound (125b) follows straight-

forwardly from ‖Ez
n − Tn

z Ez
0‖ = wn , see (126). �

4.3 Convergence of Lie Group Time Integration Methods

For the application of Theorem4.16 to the one-step error recursion (93) we have to
verify the assumptions on error propagationmatricesTy andTz. Because ofTy = I2k ,
we get ‖Ty‖2 = 1. For proving ‖Tz‖z,
 < 1 in a suitable norm ‖.‖z,
, we analyse the
spectral radius ρ(Tz):

Lemma 4.17 (a) For algorithmic parameters αm, α f , β, γ that satisfy the order
condition (41) and the stability conditions

αm < α f < 0.5 , γ < 2β , (134)

the spectral radii of matrices Tz in (95) and (100) are bounded by ρ(Tz) < 1.
(b) For the “optimal” parameters of Chung and Hulbert (1993), see (42), the sta-

bility conditions (134) are satisfied for any ρ∞ ∈ [0, 1).
Proof (a) The block-diagonal structure of matrix Tz ∈ R

m+3k in (95) implies that its
characteristic polynomial is given by

det(ζI − Tz) =
(
ζ + αm

1 − αm

)k(
det T−1

+ det(ζT+ − T0)
)m

.

Straightforward computations show that matrix Tz has an eigenvalue ζm :=
−αm/(1 − αm) of multiplicity k, an eigenvalue ζ f := −α f /(1 − α f ) of multiplic-
ity m and eigenvalues ζ1,2 that are given by the roots of the quadratic polynomial
σ(ζ) := aζ2 + bζ + c with

a := β , b := 0.5 + γ − 2β , c := 1 − a − b , (135)
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see also (Arnold and Brüls 2007, Lemma 1). The stability conditions (134) imply
|ζm | < 1, |ζ f | < 1 and γ = 0.5 + α f − αm > 0.5.

Therefore, the coefficients a, b, c in (135) satisfy a = β > 0, b > 1 − 2β = 1 −
2a and c = 1 − a − b < a. Since c/a < 1 and ζ1ζ2 = c/a (Vieta’s theorem), we get
|ζ1|2 = |ζ2|2 = ζ1ζ2 = c/a < 1 whenever σ(ζ) = 0 has a pair of conjugate complex
roots ζ1, ζ2.

If both roots of σ are real then the discriminant

b2 − 4ac = b2 − 4a(1 − a − b) = (2a + b)2 − 4a

has to be non-negative. Hence,

√
b2 − 4ac <

√
(2a + b)2 = 2a + b (136a)

since a > 0 and 2a + b = 0.5 + γ > 1 ≥ 0, see (135). On the other hand, stability
condition γ < 2β results in b < 0.5 and

(2a + b)2 − 4a = (2a − b)2 + 8a(b − 0.5) < (2a − b)2 ,

i.e., √
b2 − 4ac =

√
(2a + b)2 − 4a <

√
(2a − b)2 = 2a − b (136b)

since 2a − b = 2(2β − γ) + (γ − 0.5) > 0. Estimates (136) show that the roots
ζ1,2 = (−b ± √

b2 − 4ac)/2a of σ satisfy−1 < ζi < 1, ( i = 1, 2 ). This completes
the proof of ρ(Tz) < 1 for matrix Tz being defined in (95).

Substituting the quadratic polynomial σ(ζ) by σ(ζ) := ζ + (1 − γ)/γ, we may
extend this analysis straightforwardly to the matrix Tz in (100).

(b) With ρ∞ ∈ [0, 1), the algorithmic parameters αm , α f in (42) satisfy αm <

α f < 0.5 and γ = 0.5 + α f − αm > 0.5. For the second stability condition in (134),
we observe that (42) implies 2β − γ = (γ − 0.5)2/2 > 0. �

Theorem 4.18 Let the order condition (41) and the stability conditions (134) be
fulfilled and suppose that the starting values q0, v0, v̇0, a0 and λ0 satisfy

‖eq0‖ + ‖ev
0‖ + h‖ePa

0 ‖ = O(h2) , ‖ev̇
0‖ + ‖eBa

0 ‖ = O(h1+δ) , (137a)

‖M(q0)v̇0 + g(q0, v0, t0) + B�(q0)λ0‖ = O(h1+δ) (137b)

with a non-negative constant δ ∈ [0, 1]. Then, there are positive constants C0, L̃ , h0
being independent of n and h such that we have for all h ∈ (0, h0] and all n ≥ 0
with t0 + nh ≤ tend − h:
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(a) a global error bound

‖eqn‖ + ‖ev
n‖ ≤ C0e

L̃(tn−t0)h2 , (138a)

‖eλ
n ‖ ≤ C0(‖(T−1

+ T0)
n‖h1+δ + eL̃(tn−t0)h2) (138b)

for the index-3 integrator (37) provided that the starting values q0, v0 satisfy the
additional assumption

‖eq0‖ + ‖eBv
0 + 1

h
B(q(t0))l

q
0‖ = O(h2+δ) (139)

and
(b) a global error bound

‖eqn‖ + ‖ev
n‖ + ‖ηn‖ ≤ C0e

L̃(tn−t0)h2 , (140a)

‖eλ
n ‖ ≤ C0(‖(T̄−1

+ T̄0)
n‖h1+δ + eL̃(tn−t0)h2) (140b)

for the stabilized index-2 integrator (56).

Proof These error estimates are a straightforward consequence of Theorem 4.16 and
Lemma 4.17 since error recursion (93) withmatricesTy andTz being defined in (95),
(100) and εn = O(1)(‖Ey

n‖ + h‖Ez
n‖) imply (124). Furthermore, assumptions (137)

and (139) result in ‖Ey
0‖ = O(h2), ‖Ez

0‖ = O(h) and ‖Er
0‖ = O(h1+δ). Finally, the

upper bound for ‖ηn‖ in (140a) is obtained from (98). �

Lemma 4.17 and Theorem 4.18 show that transient errors of size O(h1+δ) are
damped out by numerical dissipation if the generalized-α methods (37) and (56)
have algorithmic parameters according to (42) with ρ∞ < 1. For starting values q0 =
q(t0),v0 = v(t0), v̇0 = v̇(t0) andλ0 = λ(t0)beingdefinedby consistent initial values
q(t0), v(t0), v̇(t0),λ(t0), assumptions (137) and (139) are satisfied with δ ≥ 0 if a0 =
v̇(t0) + O(h). Beyond the transient phase, we observe second-order convergence in
all solution components, see Fig. 8.

For the heavy top benchmark problem in configuration spaceG = SE(3), wemay
even prove that there is no order reduction at all in generalized-α Lie group time
integration:

Example 4.19 (a) For consistent initial values q(t0), v(t0), v̇(t0) and λ(t0), the start-
ing values q0 = q(t0), v0 = v(t0), v̇0 = v̇(t0), a0 = v̇(t0),λ0 = λ(t0) satisfy assump-
tion (137) with δ = 1 if B

(
q(t0)

)
v̈(t0) = 0 since Taylor expansion of v̇(t0 + �αh) at

h = 0 shows in that case that ‖eBa
0 ‖ = ‖B

(
q(t0)

)(
v̇(t0 + �αh) − a0

)‖ = O(h2).
(b) ConditionB

(
q(t0)

)
v̈(t0) = 0 in part (a) of this example is satisfied for the equa-

tions of motion (22) of the heavy top benchmark in configuration space G = SE(3)
since B

(
q(t)

) ≡ BX := (−X̃ − I3) along any solution curve q(t) in the constraint
manifold M := { q : �(q) = 0 }, see Lemma 3.5, and the hidden constraints (16),
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(18) are given by 0 = BX v(t) = BX v̇(t) implying B
(
q(t)

)
v̈(t) = 0. Therefore, The-

orem 4.18(b) proves second-order convergence of the stabilized index-2 integrator
(56) for this benchmark problem. These theoretical investigations are illustrated by
the numerical test results in the right plot of Fig. 11.

(c) The equations of motion (22) of the heavy top benchmark in configuration
spaceG = SE(3) fulfill the assumptions of Lemma 3.5. Therefore, the generalized-α
integrator (37) defines a numerical solution that satisfies the hidden constraints (16)
at the level of velocity coordinates. I.e., integrators (37) and (56) define identical
numerical solutions for this benchmark problem and we get ηn = 0. The numerical
test results in the right plots of Figs. 6 and 11 illustrate this coincidence.

For a more direct proof of the corresponding second-order convergence result for
integrator (37), we may verify that for this benchmark problem assumption (139)
in Theorem 4.18(a) is satisfied with δ = 1: Taking into account B

(
q(tn)

)
v̈(tn) =

0 and the structure of the leading error term in lqn , we get B
(
q(tn)

)
lqn = O(h4) if

B
(
q(t)

)̂
v(t)v̇(t) ≡ 0, see Lemma 4.2. Here, we have substituted the term [̃v,˜̇v] ∈

se(3) in (69) by its equivalent v̂v̇ ∈ R
6 with v̂ ∈ R

6×6 being defined in (34), see also
(29). For consistent velocity vectors v, the skew symmetric matrix Ũ in (34) may be
expressed in terms of X̃ and �̃ since BX v = 0 implies U = −X̃� = �̃X = �̂X, i.e.,
Ũ = [�̃, X̃] = �̃X̃ − X̃�̃, see (29). The identity �̃ = �̂ is valid for any� ∈ R

3, see
Remark 2.8(b). We get

B
(
q(t)

)̂
v(t) = BX

(
�̃ 0
Ũ �̃

)
= ( −X̃ − I3 )

(
�̃ 0

�̃X̃ − X̃�̃ �̃

)
= �̃BX

and therefore also B
(
q(t)

)̂
v(t)v̇(t) ≡ 0 since BX v̇(t) ≡ 0, see (18). Hence, B

(
q(tn)

)
lqn = O(h4) and assumptions (139) are satisfied for this benchmark problem with
δ = 1 if the starting values in the index-3 integrator (37) are set to q0 = q(t0), v0 =
v(t0).

Example 4.19 illustrates that the trivial initialization a0 = v̇(t0) results for cer-
tain problem classes in transient error terms of size O(h1+δ) with δ = 1 such
that second-order convergence is already observed in the transient phase. In gen-
eral, however, this trivial initialization yields transient errors of size O(h) since
‖eBa

0 ‖ = O(h) if a0 = v̇(t0) andB
(
q(t0)

)
v̈(t0) �= 0. These first order error terms have

been observed numerically for the heavy top benchmark problem in configuration
space G = SO(3) × R

3 in Figs. 6, 7 and 13.
More sophisticated initializations of sequence (an)n≥0 in HHT-α and generalized-

α time integration have been discussed, e.g., in (Jay and Negrut 2007) and (Arnold
et al. 2015). We follow the latter approach and set

a0 := v̇(t0) + �a
0 with �a

0 := �αh
v̇sh − v̇−sh

2sh
, (141)

vectors v̇±sh = v̇(t0 ± sh) + O(h2) and a (small) parameter s ∈ (0, 1] that may be
set, e.g., to s := 1/10. For the computation of �a

0, we have to evaluate the equations
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Table 1 Initialization of the stabilized index-2 integrator (56)

Data Consistent initial values q(t0), v(t0); parameter s ∈ (0, 1]
Result Modified starting values q0, v0, v̇0, a0, λ0 of integrator (56)

Step 1 Set starting values q0, v0 to the consistent initial values:
q0 := q(t0), v0 := v(t0)

Step 2 Solve system (19) with t = t0, q = q0, v = v0 to get consistent
starting values v̇0 and λ0

Step 3 Get v̇sh from system (19) with t = t0 + sh and
q = q0 ◦ exp

(
shv0 + s2h2v̇0/2

)
, v = v0 + shv̇0

Step 4 Get v̇−sh from system (19) with t = t0 − sh and
q = q0 ◦ exp

(−shv0 + s2h2v̇0/2
)
, v = v0 − shv̇0

Step 5 Compute starting value a0 := v̇0 + �αh (v̇sh − v̇−sh)/(2sh)

of motion at t0 + sh and at t0 − sh. Then, vectors v̇sh and v̇−sh may be obtained
from block-structured systems of linear equations (19), see the numerical algorithm
in Table1 for a more detailed discussion of this initialization phase.

Starting values a0 according to (141) satisfy assumption (137) with δ = 1 since
v̇(t0) + �αh(v̇sh − v̇−sh)/2sh = v̇(t0 + �αh) + O(h2). Hence, Theorem 4.18(b)
proves second-order convergence of the stabilized index-2 integrator (56) for all
solution components. This convergence result may be verified by a numerical test for
the heavy top benchmark problem in configuration space G = SO(3) × R

3: Fig. 16
shows for time step size h = 1.0 × 10−3 the global error eλ1

n /‖λn‖ of the stabilized
index-2 integrator (56) in time interval [0, 0.1]. The test results in the left plot are
already known from the left plot of Fig. 13. They show the transient oscillating first-
order error term being characteristic of the trivial initialization a0 = v̇(t0). The test
results in the right plot illustrate that this first-order error term disappears if we use
the modified starting value a0 = v̇(t0) + �a

0 ≈ v̇(t0 + �αh).
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Fig. 16 Heavy top benchmark (h = 1.0 × 10−3, starting values q0 = q(t0), v0 = v(t0), stabilized
index-2 formulation, G = SO(3) × R

3): Global error eλ1
n /‖λn‖. Left plot a0 = v̇(t0), right plot

a0 ≈ v̇(t0 + �αh)
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Fig. 17 Heavy top benchmark (h = 1.0 × 10−3, starting values q0 = q(t0), v0 = v(t0), index-3
formulation,G = SO(3) × R

3): Global error eλ1
n /‖λn‖.Left plot a0 = v̇(t0), right plot a0 ≈ v̇(t0 +

�αh)

Note, that this modification of starting value a0 does not contribute significantly
to the result accuracy of the index-3 integrator (37) since the additional assumption
(139) in part (a) of Theorem4.18 is (as before) only satisfiedwith δ = 0. The resulting
large first-order error term in λn,1 is (up to plot accuracy) not affected by modified
starting values a0, see Fig. 17.

This first-order error term is well known from the convergence analysis for the
linear test problem in Sect. 3.2. In Theorem 3.1(b), we proposed a systematic per-
turbation of starting values v0 to get second-order convergence, see (52). In the Lie
group setting, these modified starting values are given by

v0 = v(t0) + [M−1B�(BM−1B�)−1B](q(t0)
)

lq0/h + O(h3) .

In a practical implementation, we restrict ourselves to the leading error term in lq0 ,
see (69), and use again a difference approximation of v̈(t0), see (141). The modified
starting values are given by v0 = v(t0) + �v

0 with

�v
0 := h2 [M−1B�(BM−1B�)−1B](q(t0)

)·
· (Cq

v̇sh − v̇−sh

2sh
+ 1

12
v̂(t0)v̇(t0)

)
.

(142)

Theymay be computed efficiently by the numerical algorithm in Table2. The numer-
ical test results for two different time step sizes in Fig. 18 illustrate that the mod-
ified starting values eliminate the first-order error term. The maximum amplitude
of eλ1

n /‖λn‖ is reduced by a factor of 4 if the time step size is reduced from
h = 1.0 × 10−3 to h = 5.0 × 10−4.

The perturbation of size O(h2) in (142) results in starting values q0 = q(t0) and
v0 = v(t0) + �v

0 that satisfy assumption (139) in Theorem 4.18(a) with δ = 1. In
general, these starting values are not consistent with the hidden constraints (16)
at the level of velocity coordinates but introduce systematically a residual of size
B(q0)v0 = O(h2) at t = t0. The numerical test results in Figs. 19 and 20 show that this
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Table 2 Initialization of the index-3 integrator (37)

Data Consistent initial values q(t0), v(t0); parameter s ∈ (0, 1]
Result Modified starting values q0, v0, v̇0, a0, λ0 of integrator (37)

Step 1 Set starting value q0 to the consistent initial value: q0 := q(t0)

Step 2 Solve system (19) with t = t0, q = q(t0), v = v(t0) to get consistent
starting values v̇0 and λ0

Step 3 Get v̇sh from system (19) with t = t0 + sh and
q = q(t0) ◦ exp

(
shv(t0) + s2h2v̇0/2

)
, v = v(t0) + shv̇0

Step 4 Get v̇−sh from system (19) with t = t0 − sh and
q = q(t0) ◦ exp

(−shv(t0) + s2h2v̇0/2
)
, v = v(t0) − shv̇0

Step 5 Compute starting value a0 := v̇0 + �αh (v̇sh − v̇−sh)/(2sh)

Step 6 Get �v
0 := xv̇ from the system of linear equations (20) with

rv̇ = 0k , rλ = h2 B(q0)
(
Cq

v̇sh − v̇−sh

2sh
+ 1

12
v̂(t0)v̇(t0)

)
and

matrices M = M(q0), B = B(q0)

Step 7 Set starting value v0 to v0 := v(t0) + �v
0, see (142)
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Fig. 18 Heavy top benchmark (index-3 formulation, starting values q0 = q(t0), v0 = v(t0) + �v
0,

a0 = v̇(t0) + �a
0, G = SO(3) × R

3): Global error eλ1
n /‖λn‖. Left plot h = 1.0 × 10−3, right plot

h = 5.0 × 10−4

non-vanishing initial constraint residual helps to avoid the oscillating second-order
term in the constraint residuals B(qn)vn as well as the corresponding oscillating first-
order error term in the Lagrangemultipliersλn: In the left plots of Figs. 19 and 20, we
see the simulation data for (classical) starting values v0 = v(t0), a0 = v̇(t0) that are
already known from the numerical tests in Sect. 3.3 (left plots of Figs. 10 and 7). The
test results in the right plots of Figs. 19 and 20 show that the transient oscillating terms
disappear up to plot accuracy for the modified starting values v0 = v(t0) + �v

0 =
v(t0) + O(h2) and a0 = v̇(t0) + �a

0 = v̇(t0 + �αh) + O(h2).
The algorithm in Table2 spends moderate numerical effort to get (modified) start-

ing values q0, v0, v̇0, a0 and λ0 for the generalized-α Lie group integrator (37) that
satisfy assumptions (137) and (139) in the convergence theorem with δ = 1. The
error bounds (138) in Theorem 4.18(a) prove second-order convergence in all solu-
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Fig. 19 Heavy top benchmark (h = 1.0 × 10−3, index-3 formulation, G = SO(3) × R
3): Residu-

als in hidden constraints (16). Left plot classical starting values v0, a0, right plot modified starting
values v0, a0
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Fig. 20 Heavy top benchmark (h = 1.0 × 10−3, index-3 formulation, G = SO(3) × R
3): Numer-

ical solution λn . Left plot classical starting values v0, a0, right plot modified starting values v0, a0
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Fig. 21 Heavy top benchmark (index-3 formulation, G = SO(3) × R
3): Global error of integrator

(37) versus h for t ∈ [0, 1]. Left plot classical starting values v0, a0, right plot modified starting
values v0, a0
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tion components. The right plot of Fig. 21 shows numerical test results for the heavy
top benchmark problem that are in perfect agreement with this asymptotic error
analysis for small time step sizes h.

5 Summary

The generalized-α method is a Newmark-type method and one of the standard time
integration methods in structural dynamics. The method is second-order accurate
for unconstrained systems in linear spaces and has a free algorithmic parameter that
allows to control the amount of numerical dissipation for high-frequency solution
components. Following a Lie algebra approach, themethodmay be applied as well to
mechanical systems that have a nonlinear configuration space with Lie group struc-
ture. In each time step, the increment of the configuration variables is parametrized
by an element of the corresponding Lie algebra that may be obtained numerically by
a classical Newton–Raphson iteration in linear spaces.

The Lie algebra approach is used as well in the asymptotic error analysis for the
application to constrained systems that are typical ofmultibody dynamics.Newmark-
type time integration methods of second-order accuracy are known to suffer from
“overshooting”, i.e., from an oscillating transient error term in the application to a
scalar linear test equation with high-frequency solutions. For constrained systems,
these large transient errors may result in order reduction unless the starting values of
the generalized-α method are perturbed by an appropriate second-order correction
term. Second-order convergence of the algorithm with perturbed starting values is
proved analytically studying a coupled error propagation in differential and algebraic
solution components that takes into account a quadratic approximation of hidden
constraints at the level of acceleration coordinates.

The order reduction phenomenonmay be avoided by an analytical index reduction
before time discretization. The Lie algebra approach allows to modify the increment
of configuration variables such that the numerical solution satisfies in each time
step the original holonomic constraints at the level of position coordinates as well
as the corresponding hidden constraints at the level of velocity coordinates (stabi-
lized index-2 formulation). With an appropriate initialization of the acceleration like
variables an in the generalized-αmethod, this stabilized index-2 Lie groupDAE inte-
grator is second-order accurate for any starting values being consistent with original
and hidden constraints in the equations of motion.

All results of the convergence analysis have been verified in detail by numerical
tests for a heavy top benchmark problem in Lie groups SO(3) × R

3 and SE(3),
respectively. The theoretical investigations are limited to fixed time step sizes but will
be extended to variable step size implementations with error control in future work.
In that case, the acceleration like variables an need to be updated whenever the time
step size is changed at t = tn . Furthermore, the velocity vector vn has to be perturbed
by an appropriate second-order correction term unless the generalized-α Lie group
DAE integrator is applied to the index-reduced stabilized index-2 formulation of the
equations of motion.
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The Absolute Nodal Coordinate Formulation

Johannes Gerstmayr, Alexander Humer, Peter Gruber
and Karin Nachbagauer

Abstract The key idea of the absolute nodal coordinate formulation (ANCF) is to
use slope vectors in order to describe the orientation of the cross-section of structural
mechanics components, such as beams, plates or shells. This formulation relaxes
the kinematical assumptions of Bernoulli–Euler and Timoshenko beam theories and
enables a deformation of the cross-sections. The present contribution shows how to
create 2D and 3D structural finite elements based on the ANCF by employing differ-
ent sets of slope vectors for approximating the cross-sections’ orientation. A specific
aim of this chapter is to present a unified notation for structural mechanics and
continuum mechanics ANC formulations. Particular focus is laid on enhanced for-
mulations for such finite elements that circumvent severe issues like Poisson or shear
locking. The performance of these elements is evaluated and a detailed assessment
comprising the convergence order, the number of iterations, and Jacobian updates
for large deformation benchmark problems is provided.

1 Introduction

In a world with an increasing amount of automation, mobility, adaptive structures,
and miniaturized systems, the modeling and simulation of flexible multibody systems
gains importance. Large deformation of some components can significantly influence
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the behavior of the flexible multibody system. Examples are the dynamics of thin
rotor blades, transportation of sheets or strips, various kinds of cables, wires, and
tires.

There are several possibilities to study the dynamic behavior of slender structures.
A convenient way to model large deformations of beam-like structures is to combine
several beams described by the floating frame of reference formulation with an indi-
vidual frame for each beam. As soon as the number of beams becomes larger, the
solution of geometrically nonlinear problems converges to the solution of nonlin-
ear beam formulations, see Gerstmayr and Irschik (2003) and Dibold et al. (2009).
The floating frame approach has drawbacks like inappropriate modeling of nonlin-
earities for geometric stiffening and slow convergence and it cannot be extended to
shells. Furthermore, the equations of motion as well as the constraint conditions for
pairwise interconnection of beams become tedious. In finite element codes, large
deformation structural finite elements based on the large rotation vector formulation
of Simo and Vu-Quoc (1988) are available for studying the dynamics of thin struc-
tures. These elements require special time integration methods for stable long-term
dynamic simulations.

In the present chapter, we focus on beam finite elements based on the absolute
nodal coordinate formulation. Specifically, the focus of this chapter lies on a class
of thin beam finite elements, based on the Bernoulli–Euler beam theory, and a class
of thick beam finite elements, which include shear and cross-section deformation.
This chapter provides a brief overview of existing absolute nodal coordinate (ANC)
formulations, relations to other modeling techniques for large deformation beam
finite elements, details on the formulation and implementation of the equations of
motion, and some representative numerical tests that show the order of convergence,
the performance and the stability of ANC beam finite elements.

1.1 ANCF—Basic Ideas

This section aims to highlight various basic ideas for ANC finite elements. For a
recent review article on ANCF, which provides important references, see Gerstmayr
et al. (2013b). We like to emphasize that some of the subsequent ideas do not apply
to every ANC finite element published in the literature. In addition to that, there is
no general definition whether to call a finite element ANC element, or not.

The first, and probably most widely accepted, idea is that ANC finite elements
are based on slope vectors1 rather than rotation parameters such as Euler angles
or Euler parameters. Rotational parameters can immediately lead to a numerically
induced blow up of the total energy in a conservative flexible multibody system, see
the examples section of this chapter as well as the classical literature on 3D nonlinear
beam formulations of the 1980s and 1990s, see Simo and Vu-Quoc (1988). As an
advantage of the ANCF, slope vectors can be interpolated in space and time in

1For an example of a slope vector, see x,ξ , x,η or x,ζ in Fig. 2.
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the same way as displacements, which does not lead to well-known problems of
interpolation of rotations. As a disadvantage, the slope vectors are stiffly constrained
to the nearly-rigid-body motion of the cross-section, which can cause high-frequency
dynamics behavior.

As a result of a pure displacement (or displacement gradient) interpolation in
space, ANC finite elements usually employ a constant mass matrix. This can lead to
simpler implementation and computational efficiency. The straightforward kinematic
description of the motion of each point of the beam makes an extension to advanced
kinematics descriptions (such as ALE) or to multi-physics coupling much easier, see
Pechstein and Gerstmayr (2013).

From the computational point of view, ANC finite elements are solved according
to a Total Lagrangian (TL) scheme. This means, that no incremental (or co-rotational)
formulation is utilized, which is sometimes applied in formulations based on rota-
tional parameters.

ANC finite elements shall be capable of large deformations (in comparison to
structural finite elements based on the floating frame of reference formulation) and
can even be applied to (moderately) large strains. Specifically, in some sort of ANC
finite elements, 3D continuum mechanics material laws can be directly applied,
which makes this formulation attractive, e.g., for rubber-like materials, see Irschik
and Gerstmayr (2009a).

The original shear and cross-section deformable ANC finite elements relax the
assumptions of the classical Bernoulli–Euler and the Timoshenko beam theory, in the
sense that the cross-section is not rigid any longer. As a consequence, the shrinkage
of parts of the cross-section due to elongation can be modeled, which has many
applications, e.g., in rolling processes.

In the case of so-called fully parametrized ANC finite elements, which use three
slope vectors for the definition of the orientation of the cross-section, an intercon-
nection of finite elements at any angle is possible without the need of constraint
conditions, see Sugiyama et al. (2003).

There is a general transformation of the NURBS-based geometry of slender struc-
tures to ANC finite elements, which allows the direct computation of CAD geometry
without the need for an intermediate discretization, see Lan and Shabana (2010a, b).

1.2 ANCF—Short Summary

There exist a vast amount of structural finite elements in the literature. Many of the
proposed structural finite elements have specific objectives and purposes. Among
other things, ANC finite elements have been designed for simulation of the dynamics
of flexible multibody systems consisting of structural components. In this context,
the term “structural” is used in order to distinguish such elements from conventional
solid finite elements.

In one of the earliest papers on ANCF, Escalona et al. (1998) proposed
a polynomial interpolation of the position of the beam axis for the computation



162 J. Gerstmayr et al.

of the deformation energy, the kinetic energy and the mass matrix. In the latter paper,
the authors used a planar Bernoulli–Euler beam theory, using a cubic interpolation
along the axis of the beam finite element. A co-rotational frame is defined, which
is spanned by the end points of the beam finite element, in order to compute the
strain energy. However, the mass matrix becomes constant and the formulation can
be implemented very efficiently. In order to extend the latter idea, it is possible to
use cross-section slope vectors, see Yakoub and Shabana (2001), and to use a similar
co-rotational linearization, see, e.g., Gerstmayr (2009).

The absolute nodal coordinate formulation facilitates the application of constitu-
tive relations on the continuum mechanics level, therefore, almost arbitrary material
laws as well as large strain formulations can be incorporated in a straightforward
manner. The classical large deformation beam finite elements, which have been pro-
posed by Simo (1985) and Simo and Vu-Quoc (1986c), are based on a strain energy
which is a quadratic function of generalized strain measures such as axial strain or
curvature. These strain measures can be interpreted in terms of continuum mechan-
ics quantities, see Irschik and Gerstmayr (2009b), however, the ANCF allows for a
much simpler realization of nonlinear, e.g., hyperelastic, material laws, see Irschik
and Gerstmayr (2009a).

There are other approaches than ANC finite elements for the combination of con-
tinuum mechanics with structural finite elements, see Frischkorn and Reese (2012)
for a recent work on beams modeled with hexahedrals. The slope vectors in the
ANCF can be directly related to well-known director based methods, if constraints
are applied to the length of the slopes vectors and for the orthogonality of the slope
vectors. Applying constraints on a fully parametrized ANC beam finite element is
in line with the approach proposed by Betsch and Steinmann (2003), see the cor-
responding chapter in this book. Furthermore, the latter approach is based on the
geometrically exact beam formulation of Simo (1985).

There is one important group of so-called fully parametrized ANC finite elements.
The term ‘fully parameterized’ indicates that all nine components of the spatial
deformation gradient (four in the planar case) are used as coordinates in each node.
Using these coordinates, it is possible to interconnect ANC finite elements with slope
discontinuities without any constraint equations, see Sugiyama et al. (2003). In this
chapter, a specific focus is laid on so-called gradient-deficient ANC finite elements,
which means that less slope vectors are used than in the fully parametrized case.

There are several issues concerning the ANCF, which are not discussed in detail
in the present chapter. The idea of using slopes as nodal degrees of freedom has been
extended to plates, see Mikkola and Shabana (2003), resp. shells and general 3D
solids, see Olshevskiy et al. (2013). In the present chapter, we only discuss planar
and spatial ANC beam finite elements. The continuum mechanics formulation, which
is frequently used for the computation of the elastic forces in ANCF, is well suited
for the modeling of nonlinear elastic material, see Irschik and Gerstmayr (2011), or
inelastic material behavior, see Sugiyama and Shabana (2004) and Gerstmayr and
Matikainen (2006). The latter topics are not addressed in the present chapter.
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2 General Formulation of ANC Beam Elements

2.1 Kinematics of ANC Beam Elements

In the present section, the kinematic preliminaries describing the deformation of
beams are introduced. Throughout the following sections, we employ a direct tensor
notation or tensor components where appropriate. Einstein’s notion of summation
over repeated indices is used for the sake of brevity. The scalar product of two vectors
is given as aTb = aibi . The composition of two tensors and the linear mapping of
a vector by a tensor read AA−1 = I and Ab = Ai jb j , respectively. The double
contraction of tensors is indicated by a colon, e.g., the inner product of second-order
tensors, i.e., A : B = tr(ATB) = Ai j Bi j ; the product of a fourth- and a second-order
tensor is defined as 4C : A = Ci jkl Akl . For the tensor product of two vectors, we use
the notation a ⊗ b = aib j .

Regardless of whether structural finite elements as beams and plates or con-
ventional solid elements are considered, large deformation problems in continuum
mechanics require an exact representation of the geometry of deformation. As is
customary in solid mechanics, a reference configuration is introduced which pri-
marily serves the purpose of identifying a body’s material points. In the material or
Lagrangian representation employed subsequently, the field variables are functions
of the material points, or rather, their positions in the reference configuration. In
order to avoid curvilinear coordinates, the reference configuration—not necessarily
occupied by the body in the course of deformation—is a straight beam whose axis is
aligned with the x-axis of some fixed Cartesian frame {ex , ey, ez}. Let (ξ, η, ζ) denote
the (straight) referential coordinates, see Fig. 1, such that the position of some point
P is identified by the vector ξ,

ξ = ξex + ηey + ζez . (1)

Fig. 1 Important
geometrical definitions for
ANC elements
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In general, the undeformed beam can be curved and arbitrarily oriented relative to the
previously introduced fixed frame. The undeformed configuration, relative to which
the deformation is measured, therefore has to be distinguished from the reference
configuration. The position of the material point P in the undeformed configuration
is denoted by x̄, whose coordinates (x̄, ȳ, z̄) relative to the fixed frame are referred
to as material coordinates subsequently:

x̄ = x̄ex + ȳey + z̄ez . (2)

The position in the undeformed state is related to the current position in the deformed
configuration x by means of the displacement vector u, i.e.,

x = x̄ + u = xex + yey + zez . (3)

The position vector to a material point of the beam’s axis in undeformed configuration
is defined as r̄ whereas in deformed configuration it reads r.

Besides the idea of cross-sectional stress resultants, restrictions concerning the
deformation of the beam’s cross-section are a key ingredient enabling a reduction
of a 3D problem to a 1D problem of a beam. All the beam finite elements dis-
cussed subsequently can be considered as more or less special cases of a single set
of kinematic assumptions: Cross-sections, initially plane and perpendicular to the
beam’s axis in the undeformed configuration, remain plane in the course of defor-
mation. In contrast to conventional formulations, however, we want to allow the
cross-sections to change their size and shape, i.e., a constant in-plane stretch and
shearing. Timoshenko’s hypothesis would be recovered by prohibiting the latter; the
classical assumption for slender structures attributed to Bernoulli and Euler would
be obtained by further restricting that the cross-sections remain perpendicular to the
beam’s axis during deformation.

In the most general case considered herein, the position of the material point P
can therefore be expressed in terms of the axis’ initial and current position, i.e., r̄
and r, respectively, as

x = r + A (x̄ − r̄) + ucs, (4)

where ucs denotes the in-plane deformation of the cross-sections and the second-
order tensor A represents the rotation of the local frame in P from the undeformed
to the deformed configuration:

A = ei ⊗ ēi . (5)

The notions of bending and shear deformation in beam theories are intrinsically
related to body-local directions. In order to specify the strain measures the subse-
quent formulations are based on, we therefore need to specify local frames in the
beam’s configurations used in the analysis. As the beam is straight in the reference
configuration, we choose the associated local frame in the directions of the global
Cartesian frame {eref,1 = ex , eref,2 = ey, eref,3 = ez}. Expressing the position in
the undeformed configuration in terms of the referential coordinates, x̄ = x̄(ξ, η, ζ),
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the corresponding local (cross-section) frame may be defined in dependence of the
lateral slope vectors x̄,η and x̄,ζ . Under the convenient assumption that the unde-
formed configuration is chosen such that x̄,η and x̄,ζ are perpendicular at every x̄, the
definition of the local frame (ē1, ē2, ē3) reads

ē1 = x̄,η × x̄,ζ

‖x̄,η × x̄,ζ‖ , ē2 = x̄,η

‖x̄,η‖ , ē3 = x̄,ζ

‖x̄,ζ‖ . (6)

Apparently, ē1 is perpendicular to the undeformed cross-section, whereas ē2 and ē3

lie within and are perpendicular to each other. The local frame is orthonormal and
independent of the local position within the cross-section. Concerning the deformed
configuration we proceed in a similar way, but here the lateral slope vectors are, in
general, no more perpendicular. Let x = x(ξ, η, ζ), then the local frame (e1, e2, e3)

is given by

e1 = x,η × x,ζ

‖x,η × x,ζ‖ , e2 = x,ζ × (
x,η × x,ζ

)
‖x,ζ × (

x,η × x,ζ

) ‖ , e3 = x,ζ

‖x,ζ‖ . (7)

Note, that the definition of the local frame is chosen arbitrarily, regarding its rotation
about e1. Particularly, x,ζ defines the rotation of the cross-section around e1. Alter-
natively, x,η could define the rotation of the cross-section, or a symmetric definition
regarding the slope vectors could be built upon the polar decomposition—however,
at higher computational costs.

With the local basis in the undeformed and the deformed configuration introduced,
we can represent the respective rotation tensor from the reference to the undeformed
configuration as

Ā = ēi ⊗ eref,i , (8)

and that from the reference to the deformed configuration becomes

AĀ = ei ⊗ eref,i . (9)

2.1.1 Continuum Mechanics Formulation

Having provided the key ideas and assumptions concerning the geometry of deforma-
tion, the strain measures entering the constitutive equations are to be defined next. In
the continuum mechanics formulation, Green’s strain tensor is employed to measure
the deformation,

E = 1

2

(
FTF − I

)
, (10)

where F denotes the deformation gradient, which is expressed as
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F = ∂x
∂x̄

= ∂x
∂ξ

∂ξ

∂x̄
= ∂x

∂ξ

(
∂x̄
∂ξ

)−1

, (11)

since we want to use the referential coordinates for the sake of simplicity. Green’s
strain—the change of the metric represented in the reference configuration—is con-
sequently given by

E = 1

2

(
∂x̄
∂ξ

)−T
{(

∂x
∂ξ

)T ∂x
∂ξ

−
(

∂x̄
∂ξ

)T (
∂x̄
∂ξ

)}(
∂x̄
∂ξ

)−1

. (12)

In case of an initially straight beam, the undeformed configuration is typically chosen
as the reference configuration, i.e., ξ = x̄. Accordingly, Green’s strain tensor then
reduces to the well-known representation

E = 1

2

{(
∂x
∂ξ

)T ∂x
∂ξ

− I

}
, (13)

in which I = eref,i ⊗ eref,i denotes the identity tensor.
While the choice of the above strain measure is natural within continuum theory,

the structural mechanics formulation relies on the introduction of proper generalized
strain measures which originate in the Cosserat theory of solids, which is described
in what follows.

2.1.2 Structural Mechanics Formulation

Neglecting the in-plane deformation of cross-sections at first, a beam can be thought
of as an elastic line with cross-sections attached to it. In the nonlinear rod model,
the elastic line gets translated and stretched in the course of deformation; the cross-
sections, which are represented by the local frames introduced above, undergo a rigid
body rotation. The vector of generalized force strains describing both axial extension
and shear deformation is the change of the derivatives of the axis’s position vector
with respect to the undeformed arc-length S:

� = ∂r
∂S

− A
∂r̄
∂S

. (14)

In order to compute the difference, the derivative in the deformed configuration is
transformed into the local frame of the beam’s undeformed configuration. Recalling
that we want to express the involved field variables as functions of the referential
coordinates, we use the relationship

dS =
√(

∂ x̄

∂ξ

)2

+
(

∂ ȳ

∂ξ

)2

+
(

∂ z̄

∂ξ

)2

dξ =
∥∥∥∥∂r̄
∂ξ

∥∥∥∥ dξ (15)
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for rewriting the generalized force strains as

� =
∥∥∥∥∂r̄
∂ξ

∥∥∥∥
−1 (

∂r
∂ξ

− A
∂r̄
∂ξ

)
. (16)

The definition of the generalized moment strains relies on the fundamental prop-
erty of orthogonal tensors that

AAT = I ⇒ ∂A
∂S

AT = −A
∂AT

∂S
= −

(
∂A
∂S

AT

)T

. (17)

The vector of moment strains κ is the vector associated with the above skew-
symmetric tensor such that the following identity holds for any vector v,

κ × v =
(

∂A
∂S

AT

)
v. (18)

For an alternative representation of the generalized moment strains, the vector of
twist and curvature k is introduced,

k = 1

2
ei × ∂ei

∂S
, (19)

which describes the change of the local basis along a material line,

∂ei
∂S

= k × ei . (20)

Likewise, the vector of the curvature and twist in the undeformed configuration is
given by

k̄ = 1

2
ēi × ∂ēi

∂S
. (21)

In terms of these vectors, the change of the local basis along the beam’s axis can be
written as

∂A
∂S

= ∂ei
∂S

⊗ ēi + ei ⊗ ∂ēi
∂S

= (k × ei ) ⊗ ēi − ei ⊗ (ēi × k̄). (22)

The product with the AT yields

∂A
∂S

AT = (k× ei ) ⊗ ei − ei ⊗ (ēi × k̄)AT = (k× ei ) ⊗ ei − ei ⊗ (ei ×Ak̄), (23)
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where the identity a × b = (Aa × Ab)A has been utilized. The skew-symmetry of
the above tensor allows us to rewrite the product with some vector v as

(
∂A
∂S

AT

)
v = (k × v) − (Ak̄ × v) = (k − Ak̄) × v. (24)

Comparing this result with the previous definition (18), we can immediately identify
the simple representation of κ in terms of k and k̄ as

κ = k − Ak̄. (25)

2.2 Equations of Motion

Pursuing a finite element discretization, the equations of motion are discussed in
their weak form. According to d’Alembert’s principle in Lagrange’s representation,
the virtual work of the external forces is balanced by the sum of the virtual work of
the internal forces, i.e., the variation of the strain energy, and the virtual work of the
inertia forces

δW inert + δW int = δW ext. (26)

Similar to other beam formulations, the virtual work of external forces can be given
in terms of products of concentrated forces and torques times virtual displacements
and rotations, respectively. The virtual rotations need to be determined from the
rotation tensor A and consequently from the slope vectors involved, cf. (6)–(7). The
virtual work of surface tractions and body forces is obtained from surface and volume
integrals over their products with the corresponding virtual displacements.

The virtual work of the inertia forces is given by the volume integral over the
beam’s domain � in the following reference configuration:

δW inert =
∫

�

ρ0üT δu dV, (27)

where the variation of the displacement field is indicated by a δ and ρ0 denotes
the referential density. Regardless of the particular kinematic hypothesis employed,
the key idea of absolute displacements being interpolated results in a constant mass
matrix. This property underlies all ANC elements discussed subsequently, apart from
the ANC-like formulation concerning the thin spatial beam element with torsional
stiffness of Sect. 3.5.
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2.2.1 Continuum Mechanics Formulation

The virtual work of the internal forces in the continuum mechanics formulation
corresponds to what is known from the conventional continuum theory of solids.
Accordingly, the second Piola–Kirchhoff stress tensorT is work-conjugate to Green’s
strain tensor:

δW int =
∫

�

T : δE dV . (28)

In case of a linearly elastic material—in finite strain theory, such constitutive behavior
is referred to as St. Venant–Kirchhoff material—the stress tensor is given as

T = 4D : E, (29)

in which 4D is the fourth-order tensor of elastic moduli. In the isotropic case, e.g., it
contains two independent parameters, i.e., Young’s modulus E and Poisson’s ratio
ν. From a computational point of view, the distinction between vectors and tensors
and their components with respect to some particular basis has to be taken care of
at this point. In the numerical implementation, one often prefers to represent all
quantities in the common inertial frame of the reference configuration {ex , ey, ez}.
When evaluating Green’s strain tensor (12), the components are usually given with
respect to the inertial frame whereas the components of the tensor of elastic moduli
refer to the local frame in the undeformed configuration {ē1, ē2, ē3}. Therefore, one
must either represent the components of 4D in the inertial frame when evaluating
the stresses, or, alternatively, transform the components of the strain tensor into the
local frame of the undeformed configuration using the rotation tensor Ā:

[
Ē

] = [
Ā

]T [
E

][
Ā

]
. (30)

In the above relation, we have introduced brackets in order to clearly distinguish
between a tensor as an invariant object and its components relative to some ten-
sorial basis. Subsequently, the components of the stress tensor can be determined
from the constitutive equation (29), where a vector-matrix representation is typically
employed for the sake of simplicity. Collecting the six independent components of
both stress and strain tensor relative to the natural basis of the undeformed configu-
ration {ē1, ē2, ē3} in vectors,

τ̄ = [
T̄11, T̄22, T̄33, T̄23, T̄13, T̄12

]T
, (31)

ε̄ = [
Ē11, Ē22, Ē33, 2Ē23, 2Ē13, 2Ē12

]T
, (32)

Equation (29) can be equivalently rewritten in terms of the 6 × 6 matrix D̄CM as

τ̄ = D̄CMε̄, (33)
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where D̄CM gathers all relevant components of the fourth-order tensor 4D. In case of
a linearly elastic, isotropic material, for instance, the matrix is given by

D̄CM = Eν2

(1 + ν)(1 − 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1 − ν 1 1 0 0 0
1 1 − ν 1 0 0 0
1 1 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 k2 0
0 0 0 0 0 1−2ν

2 k3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (34)

where k2 and k3 denote shear correction factors that account for the non-uniform
distribution of shear stresses within the beam’s cross-section. Note that these correc-
tion factors may be different from well-known structural mechanics shear correction
factors due to the specific integration over the cross-section in ANC finite elements.
While the shear correction factors provided above enable a correct transverse shear
stiffness, a correction for torsional stiffness is not accounted for in the present con-
tinuum mechanics formulation.

The components of the second Piola–Kirchhoff stress tensor T̄, which are col-
lected in the vector τ̄ , need to be transformed back into the reference frame afterwards

[
T

] = [
Ā

][
T̄

][
Ā

]T
. (35)

With the stress tensor given, the variation of Green’s strain tensor remains to be
determined when evaluating the virtual work of the internal forces (28):

δE = 1

2

(
∂x̄
∂ξ

)−T
{(

∂(δx)
∂ξ

)T ∂x
∂ξ

+
(

∂x
∂ξ

)T ∂(δx)
∂ξ

}(
∂x̄
∂ξ

)−1

. (36)

2.2.2 Structural Mechanics Formulation

As opposed to the continuum mechanics formulation, the question of rational stress
resultants that are conjugate to the previously introduced generalized strain measures
is raised on a structural level. The internal forces and moments f and m, respectively,
represent stress resultants that can be regarded as quantities obtained upon a static
condensation of the stress distribution within the cross-section relative to the beam’s
axis. The present variational formulation of the strain energy relies on the ideas
of Reissner (1972, 1973), Antman (1972) and Simo (1985) according to which the
internal forces are conjugate to the generalized force strains and the internal moments
to the generalized moment strains, respectively,

δW int =
∫
L
fT δ� + mT δκ dξ, (37)
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where L denotes the length of the beam in the undeformed configuration. In the case
of elastic material behavior, the constitutive equations for the cross-sectional forces
and moments can be expressed as

f = a� + cTκ, m = bκ + c�, (38)

with a, b and c denoting second-order tensors of cross-sectional stiffnesses. Once
again, the question of the respective basis of vectors and tensors involved needs to be
addressed. The components of � and κ are typically available in the inertial frame that
is used throughout the numerical analysis. The constitutive behavior (38), however,
represents a locally linear behavior with a constant tangent stiffness that rotates with
the beam in the course of deformation. Similar to the continuum mechanics approach,
we have two options: one is determining the components of the material tensors
relative to the inertial frame. Alternatively, the components of the generalized strains
in the local frame of either the beam’s undeformed or its deformed configuration
are computed using the respective rotation tensor. Choosing the local frame in the
undeformed configuration, the components of � and κ are transformed by means of

[
�̄

] = [
Ā

][
�

]
,

[
κ̄

] = [
Ā

][
κ

]
. (39)

Again, we can gather the stress resultants and the generalized strains in vectors
in order to represent the material behavior by means of a matrix equation:

τ̄ SM = DSMε̄SM (40)

with

τ̄ SM = [
f̄1, f̄2, f̄3, m̄1, m̄2, m̄3

]T
, ε̄SM = [

�̄1, �̄2, �̄3, κ̄1, κ̄2, κ̄3
]T

. (41)

where DSM is the 6 × 6 cross-sectional stiffness matrix. In case of simple symmetric
cross-sections, the coupling term disappears, i.e., c = 0, and DSM becomes diagonal,

DSM = diag (EA, k2GA2, k3GA3,GJ 1, EI 2, EI 3) , (42)

with commonly used beam properties, i.e., the axial stiffness EA, corrected shear
stiffnesses k2,3GA2,3, torsional rigidity GJ 1 and bending stiffnesses EI 2,3.

To this point, the deformation of the cross-sections ucs in Eq. (4) has not been
addressed within the structural mechanics formulation. In conventional beam theo-
ries, the cross-sections are usually assumed to be rigid, i.e., they only undergo a rota-
tion relative to the undeformed configuration. Although such restriction has proven
useful in many engineering applications, a significant change of the cross-sections
size is inherent to certain problems as, e.g., rolling processes in metal processing.
Among some of the ANC elements discussed subsequently, the parametrization facil-
itates including such deformation of the cross-sections’ from a numerical point of
view. For this purpose, the question of how to consistently augment the virtual work
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of the internal forces in terms of appropriate strain measures and conjugate forces
needs to be answered. A natural approach is to extend the structural mechanics
formulation by the corresponding terms in the continuum mechanics formulation.
Following Eq. (4), the deformation gradient is expressed as

F = ∂

∂x̄
{r + A (x̄ − r̄)} + Gcs, (43)

where the displacement gradient Gcs represents the additional contribution from the
deformation of the cross-sections given by

Gcs = ∂ucs

∂x̄
. (44)

The definition of Green’s strain (10) immediately reveals the coupling of the cross-
sections’ stretching and shearing with the conventional deformation allowed within
Timoshenko’s hypothesis. Subsequently, however, we introduce the key assumption
that the in-plane deformation of the cross-sections does not interfere with the original
structural mechanics formulation, or, in other words, the cross-section deformation
is decoupled from generalized strain measures introduced above. Accordingly, only
the in-plane components of the strain tensor (12), i.e.,

Ē22 = ēT2 (Eē2) , Ē33 = ēT3 (Eē3) , Ē23 = ēT3 (Eē2) , (45)

are regarded when augmenting the virtual work of the internal forces. The above
requirement further implies that the cross-sections’ deformation does not affect the
generalized forces and moments of the structural mechanics formulation, which—
from a continuum mechanics perspective—represent cross-sectional resultants of the
stresses. In case of an elastic material, for instance, we have to stipulate ν = 0 such
that the conjugate stresses are given by

T22 = E Ē22, T33 = E Ē33, T23 = 2GĒ23, (46)

where E and G denote the Young’s modulus and the shear modulus, respectively.
The additional term in the virtual work of the internal forces consequently reads

δW int
cs =

∫
�

E
(
Ē22δ Ē22 + Ē33δ Ē33

) + 2GĒ23δ Ē23dV . (47)

If the in-plane strains are distributed uniformly within the cross-sections, the above
relation simplifies to

δW int
cs =

∫
L
EA

(
Ē22δ Ē22 + Ē33δ Ē33

) + 2 GA Ē23δ Ē23dξ, (48)
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where the axial and shear stiffness have been introduced, which further connects
the cross-sections’ deformation to the structural mechanics formulation. The total
variation of the internal forces is obtained by adding the contribution from the cross-
sections (48) to the conventional expression for the virtual work of the internal
forces (37):

δW int
tot = δW int + δW int

cs . (49)

Before we proceed with the derivations, a few comments on the cross-sections’
deformation seem to be appropriate. The numerous assumptions needed to eventually
arrive at the simple expression (48) may appear restrictive to such an extent that the
general applicability of the proposed formulation is questionable at best. The answer
to that question is twofold: indeed but deliberately. The extension of the structural
mechanics formulation for beams is not meant to contain all features of deformation
a structure can be subjected to. It is specifically aimed at problems in which uniform
in-plane stretch and shearing are relevant—as in the examples mentioned above—but
the assumptions underlying the structural mechanics formulation are sufficient oth-
erwise. That is to say, including the cross-sectional deformation widens the scope of
applicability of the efficient structural mechanics formulation. In problems showing
a more complex state of deformation, for which the coupling of in-plane and out-of-
plane deformation cannot be neglected, the continuum mechanics formulation needs
to be resorted to.

From a numerical point of view, the expressions to be evaluated in the general
case of a beam that is arbitrarily curved in its undeformed configuration are rel-
atively complicated since both the generalized strains and conjugate forces of the
structural mechanics approach and the components of the strain tensor and the con-
jugate stresses of the continuum mechanics formulation are required. For an initially
straight beam, however, the terms related to the cross-sectional deformation sim-
plify significantly. In this case, the relevant components of Green’s strain tensor with
respect to the global frame are given by

Eηη = 1

2

(
∂x
∂η

∂x
∂η

− 1

)
, Eζζ = 1

2

(
∂x
∂ζ

∂x
∂ζ

− 1

)
, Eηζ = 1

2

∂x
∂η

∂x
∂ζ

. (50)

Some of the ANC elements discussed subsequently are based on the interpolation of
the derivatives contained in the above relations which greatly facilitates the evaluation
of the strains related to the cross-sectional deformation.

2.3 Numerical Interpolation

The fundamental idea of ANCF is the direct interpolation of positions and position
gradients with respect to the global frame—therefore, absolute—using positions and
position gradients of a finite number of points, i.e., the nodes. Accordingly, the
position vector—or rather, its components with respect to the global frame—of a
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beam’s material point is represented by a Ritz approach as

x(ξ, t) = S(ξ)q(t), x ∈ R
m (51)

where q denotes the vector of n generalized coordinates and S is the m×n matrix of
interpolation or shape functions, which is briefly referred to as shape function matrix.
Naturally, the same representation is used for the position field in the undeformed
configuration,

x̄(ξ) = S(ξ)q̄. (52)

Regarding both formulation and implementation, it should be mentioned that it is
more or less a matter of taste of whether absolute nodal positions or displacements are
utilized as generalized coordinates. Employing a Galerkin projection, the variation
of the position is contained in the same function space as the position vector itself,
i.e., we use the same shape function matrix

δx(ξ) = S(ξ)δq. (53)

2.4 Overview of Different ANC Finite Elements

In the absolute nodal coordinate formulation, the design of finite elements is based
on the choice of nodal degrees of freedom (coordinates).

In most ANC finite elements, the nodal coordinates consist of position or dis-
placement coordinates as well as the corresponding derivatives with respect to the
referential coordinates (ξ, η, ζ).

Figure 2 shows selected 2D and 3D ANC finite elements. As a minimum, one axial
slope vector is employed in order to create a Bernoulli–Euler beam finite elements,
see Fig. 2a, b. Another case is retrieved, if all components of the gradient at each
node are used to define shear and cross-section deformable ANC finite elements,
also denoted as fully parametrized, see Fig. 2c, d. The term ‘fully parametrized’ is
used, because all components of the gradient at the nodal positions are parametrized
by three nodal slope vectors.

The coordinates of two- and three-noded beam finite elements according to Eq.
(51) can be given in the general form,

q(2 node) =
[
q(1)T q(2)T

]T
, and

q(3 node) =
[
q(1)T q(2)T q(3)T

]T
. (54)
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(a)

(c)

(b)

(d)

Fig. 2 Overview of some basic ANC finite elements. a 8 DOF, planar ANC finite element, b 12
DOF, spatial ANC finite element, c 12 DOF, planar ANC finite element with shear and cross-section
deformation, d 24 DOF, spatial ANC finite element with shear and cross-section deformation

in whichq(i)T represents the nodal coordinates of the i-th node. Following the original
idea of the ANCF, a fully parametrized set of nodal position and slope vectors has
been utilized,

q( j)
fp =

[
x( j)T x( j)T

,ξ x( j)T
,η x( j)T

,ζ

]T
. (55)

The vectorx( j) represents the current position of the node j of the beam finite element.
Note that the nodal coordinates of Eq. (55) are comprised of the position and three
slope vectors which represent the deformation gradient.

In order to efficiently model ANC beam finite elements based on the Bernoulli–
Euler theory, so-called gradient-deficient nodal coordinates are utilized, which means
that not all components of the gradient are employed in the nodal coordinates,

q( j)
axial =

[
x( j)T x( j)T

,ξ

]T
. (56)

In case of ANC beam finite elements which cover the Timoshenko beam theory,
gradient-deficient nodal coordinate that which do not contain the axial slope vector
are frequently used

q( j)
cross−section =

[
x( j)T x( j)T

,η x( j)T

,ζ

]T
. (57)
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3 ANC Finite Elements Based on the Bernoulli-Euler
Condition

In this section, the 2D and 3D formulations of thin beam (or cable) finite elements
based on the ANCF are discussed. The original formulations of 2D Bernoulli–Euler
ANC beam finite elements have been developed by Shabana and Schwertassek (1997)
and later on by Berzeri and Shabana (2002). In the present section, an extended
formulation is presented for 2D and 3D thin beams, which follows the works of
Gerstmayr and Shabana (2006), Gerstmayr and Irschik (2008) and Gruber et al.
(2013).

3.1 Kinematics of Thin ANC Beam Finite Elements

For notational convenience, the derivative of a quantity with respect to the axial
coordinate ξ is subsequently abbreviated as

∂ ( )

∂ξ
= ( )′ . (58)

The two-noded planar element has eight degrees of freedom, see Fig. 2a. For such
beam element, the position (or displacement) of its axis can be interpolated by two
third-order polynomials in ξ,

x2D =
[
x2D

1
x2D

2

]
=

[
a0 + a1ξ + a2ξ

2 + a3ξ
3

b0 + b1ξ + b2ξ
2 + b3ξ

3

]
. (59)

The coefficients ai and bi are determined by requiring that the generalized degrees
of freedom q2D represent components of the nodal positions (or displacements) and
slope vectors. Using third-order polynomials also for the interpolation of the slope
vectors, we obtain the shape functions Si ,

S1 = 1

2
− 3

4
ξ + 1

4
ξ3, S2 = L

8

(
1 − ξ − ξ2 + ξ3

)
,

S3 = 1

2
+ 3

4
ξ − 1

4
ξ3, S4 = L

8

(−1 − ξ + ξ2 + ξ3) .

which are gathered in the shape function matrix Sm as

x2D = [S1I S2I S3I S4I]q2D = Smq2D, (60)

in which I2D is the 2 × 2 unit matrix.
In addition to the thin planar ANC beam element, two formulations for spatial

(3D) thin ANC finite elements exist. The simplest spatial element considers bending
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and axial stretch only, see Gerstmayr and Shabana (2006), and thus can only be used
to model cable problems, whereas an extended formulation for spatial beam elements
can also handle torsion. The latter extends the idea of Dmitrochenko and Pogorelov
(2003) in order to prevent from singularities, see Gruber et al. (2013) or Sect. 3.5.

For thin spatial beams, the polynomial interpolation of the position reads

x =
⎡
⎣ x1

x2

x3

⎤
⎦ =

⎡
⎣a0 + a1ξ + a2ξ

2 + a3ξ
3

b0 + b1ξ + b2ξ
2 + b3ξ

3

c0 + c1ξ + c2ξ
2 + c3ξ

3

⎤
⎦ . (61)

Again, the coefficients ai , bi and ci are chosen such that the generalized coordinates
q correspond to the components of the position (or displacement) and slope vectors
at the nodes. For a compact representation of the relation between the position vector
and the element coordinates, the shape functions can be collected in the shape function
matrix,

x = [S1I S2I S3I S4I]q = Smq. (62)

Note that we will not distinguish between planar (2D) and spatial vectors in the
following since most mathematical operations are identical. In the planar case, the
vector product (×) is understood as the product of two spatial vectors that represent
the embedding of the planar ones in the 3D space.

3.2 Virtual Work of Elastic Forces for Thin Beams Without
Torsional Stiffness

In thin ANC beam finite elements, only a structural mechanics formulation exists
for the definition of the elastic forces, while in the thick ANC beam finite elements,
both a continuum mechanics and structural mechanics formulations are available for
the computation of the elastic forces.

3.2.1 Bending and Axial Strain

In the present section, the kinematics and the strain energy of a planar Bernoulli–Euler
beam undergoing large rigid body motions and large deformations (but small strains)
is investigated. In order to keep this section simple, the planar beam formulation is
written for an initially straight and undeformed beam, assuming that the undeformed
configuration is identical to the reference configuration (beam aligned along ex axis).

The kinematics of the beam element is according to Fig. 1. In a planar Bernoulli–
Euler beam, Eq. (4) reduces to

x(ξ, η) = r(ξ) + η e2(ξ). (63)
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The local basis, which is rigidly attached to the cross-section of the beam in current
configuration, is simply defined within the relations

e1 = 1

‖r′‖
∂r
∂ξ

, eT1 e2 = 0, eT2 ez = 0, and e3 = ez . (64)

The derivative of the position vector x with respect to ξ is given by

x′ = ∂x
∂ξ

= r′(ξ) + η e′
2(ξ). (65)

The derivative of the cross-section vector e2 with respect to ξ follows as

e′
2 = −θ′e1. (66)

Thus, the rate of change of the rotation of the cross-section ∂θ/∂S, also denoted as
material measure of curvature K , is given by

K = ∂θ

∂S
= ∂θ

∂ξ

∂ξ

∂S
= 1

‖r̄′‖
(
r′ × r′′

‖r′‖2

)T

e3. (67)

The latter result follows from the general definition of the moment strain mea-
sure (25). In the planar case, the only nontrivial component of the vector of twist and
curvature k reads

kT ez = 1

2

(
e1 × ∂e1

∂S
+ e2 × ∂e2

∂S

)T

ez =
(
e1 × ∂e1

∂S

)T

ez, (68)

where the identity e2 = ez × e1 has been utilized. Introducing Eq. (64) and using the
relation (15), the above equation yields

kT ez =
(

r′

‖r′‖ × r′′

‖r′‖
1

‖r̄′‖
)T

ez = 1

‖r̄′‖
(
r′ × r′′

‖r′‖2

)T

ez = K . (69)

Assuming that the beam’s axis may be curved but not stretched in the undeformed
configuration, i.e., ‖r̄′‖ = 1, we obtain the familiar relation

K =
(
r′ × r′′

‖r′‖2

)T

e3. (70)

Finally, the derivative of the position vector x reads

x′ = (∥∥r′(ξ)
∥∥ − ηK

)
e1. (71)
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Thus, the computation of the deformation gradient simply becomes

F = ∂x
∂ξ

⊗ e1 + ∂x
∂η

⊗ e2 + e3 ⊗ e3

= (∥∥r′(ξ)
∥∥ + ηK

)
e1 ⊗ ex + e2 ⊗ ey + e3 ⊗ ez . (72)

Note that the condition e3 = ez holds in the planar case. It immediately follows that
the only nonzero component of the Green strain tensor,

E = 1

2
(FTF − I), (73)

in the local frame {e1, e2, e3} is given as

E11 = 1

2

{(‖r′‖ + ηK
)2 − 1

}
. (74)

Usually, Green’s strain tensor is not used in beam theories. Its quadratic dependency
on the beam’s cross-section coordinate η leads to nonzero strain at the beam axis for
pure bending, see Gerstmayr and Irschik (2008).

Therefore, the strain components are usually linearized with respect to the cross-
section coordinates. In the planar case of Bernoulli–Euler beams, a more elegant
way to obtain geometrically linearized strain measures is shown subsequently. Biot’s
strain tensor is obtained from the polar decomposition of the deformation gradient,

F = RU, (75)

in which R denotes the rotational part of the deformation gradient and U represents
the stretch, which is related to Biot’s strain by H = U−I. Due to the simple structure
of the deformation gradient in the planar case, it follows that R = A, which results in

U = ATF = (‖r′‖ − ηK
)
e1 ⊗ ex + e2 ⊗ ey + e3 ⊗ ez . (76)

The work-conjugate stress to the Biot strainH is the Biot stressB. Under the assump-
tion of a linear elastic material, the following relation can be applied:

B11 = EH11, (77)

in which E represents the Young’s modulus.
In the beam theory, the strain component H11 = ε0 + εbend is split into a mean

value, the (sectional) axial strain ε0 and the bending strain proportional to the curva-
ture K ,

ε0 = ‖r′‖ − 1 and εbend = ηK . (78)
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Finally, the stress resultants are introduced as the normal force

N =
∫
A
B11d A =

∫
A
E(ε0 − ηK )d A = E Aε0, (79)

and the bending moment

M =
∫
A
η B̄11d A =

∫
A
E(η ε0 − η2K )d A = E I K , (80)

where the beam’s axis is chosen such that
∫
A
Eηd A = 0. (81)

In order to consider curved and pre-stretched beams, the curvature K̄ and stretch ε̄0

in the undeformed configuration need to be considered,

N = E A(ε0 − ε̄0), M = E I (K − K̄ ). (82)

The relations for the sectional strain measures (78) as well as the stress resultants
(82) represent the conventional linear elastic beam modeling for large deformation
beams, which has been used, e.g., for the extensible Euler elastica, Reissner’s shear
deformable beam Reissner (1972) or the geometrically exact beam model of Simo
and Vu-Quoc (1986a).

The virtual work of elastic forces for the sectional strain measures and stress
resultants based on Biot’s strain is provided as

δWS =
∫
L
Nδε0 − MδK dξ. (83)

In contrast, the St. Venant–Kirchhoff material model (29) can be used instead.
The sectional strain measures as well as the stress resultants can be computed in a
similar fashion from Eq. (74). For details of the derivation of the stress resultants,
see Gerstmayr and Irschik (2008) and Irschik and Gerstmayr (2009b) for shear-
deformable beams. The stress resultants for the St. Venant–Kirchhoff material model
can be computed from the first Piola–Kirchhoff stress tensor, see Appendix A of
Gerstmayr and Irschik (2008), and result in

N (P1) = ε0
11‖r′‖ + 3

2
E I K 2‖r′‖, (84)

and

M (P1) = −E I K‖r′‖2 + 1

2
E I4K

3. (85)
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Obviously, the fourth area moment of inertia E I4 enters the bending moment due
to the nonlinear distribution along the cross-section of the Green–Lagrange strain,
see Fig. 2 of Gerstmayr and Irschik (2008). Equations (84)–(85) provide insight into
what happens in a continuum mechanics based formulation of an ANC beam finite
element, which is usually based on the St. Venant–Kirchhoff material.

The virtual work of elastic forces results into the classical form

δWSV K
S =

∫
L
N (P1)δε(G)

0 + M (P1)δK (G) dξ, (86)

taking into account the cross-sectional strain measures based on Green’s strain, which
is indicated by a superscript ‘(G)’,

ε(G)
0 = ε0

11 + 1

2

E I

E A
K 2, (87)

and
K (G) = K‖r′‖. (88)

The quadratic dependency of the axial strain ε(G)
0 on the square of the curvature K

can be explained in terms of the quadratic distribution of Green’s strains, see Fig. 2
of Gerstmayr and Irschik (2008).

A comparison of Eqs. (83) and (86) reveals the difference of a continuum mechan-
ics and a structural mechanics model of a Bernoulli–Euler beam in the ANCF. This
idea can be extended to 3D and shear-deformable beams, as well. The most important
contribution, however, is due to axial strain and bending.

3.3 Linearized Axial and Bending Strain and Relation to
Floating Frame of Reference Formulation

The Biot’s strain component (78) corresponds to a linearization of the local strain
components with respect to the local frame of the cross-section.

In the case of the Biot’s strain and Bernoulli–Euler beam theory, the polar decom-
position exactly gives the rotation of the cross-section as the rotational part of the
deformation gradient, cf. Eq. (76). In order to further simplify the beam finite ele-
ment, it is possible to use a linearization about an average rotation of the whole beam
element. Early development of the ANCF, see Shabana and Schwertassek (1997) and
Escalona et al. (1998), discussed the stiffness matrix of the ANC finite element for
such element-wise linearization.

A planar co-rotational coordinate system i and j has been introduced,

i = r(2) − r(1)

‖r(2) − r(1)‖ , (89)
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in which r(1), r(2) are the positions of the left and the right node of the finite element.
The second local axis is perpendicular to i, i.e.,

j =
[−i2

i1

]
, (90)

In this way, the vector u is introduced

u = r(ξ) − r(1), (91)

and the projection of u into the local element frame leads to the relations for the local
beam deformation quantities

ud =
[
u
v

]
=

[
uT i − ξ
uT j

]
. (92)

Thus, the strain energy can be written as

U = 1

2

∫
L
E Au′2 + E Iv′′2 dξ = 1

2

∫
L
E A

{(
u′)T i − 1

}2 + E I
{(
u′′)T j}2

dξ.

(93)
The latter approach fully corresponds to the floating frame of reference formula-

tion, which assumes geometrically linearized relations in the body or element frame,
see Shabana and Schwertassek (1997). An extension of this idea to shear-deformable
3D ANC beams has been introduced by Gerstmayr (2009), in which the linearized
strains are computed in a co-rotational configuration of the large deformation beam
element.

In a further work, a comparison of the floating frame of reference formulation
based on geometrically linearized relations in each beam finite element to the ANC
beam finite element with fully geometrically nonlinear formulation has been per-
formed by Dibold et al. (2009). It turned out that co-rotationally linearized finite ele-
ments converge to exactly the same solution of large deformation static and dynamics
examples as compared to Bernoulli–Euler ANC beam finite elements as discussed
in the present section. The CPU performance of both formulations is similar and
mainly depends on the type of mechanical problem.

3.4 Thin 3D ANC Beam Finite Element Without Torsional
Stiffness

The planar Bernoulli–Euler ANC beam finite element can be extended to 3D straight-
forward, by adding a third component to the position and slope degrees of freedom,
see Gerstmayr and Shabana (2006). In this way, a specific cable finite element is
found, which has the following restrictions:
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(a) The bending stiffness must be symmetrical, E Iηη = E Iζζ , which applies to
homogeneous round or quadratic cables

(b) The torsional stiffness and the moment of inertia for a rotation of the cross-
section about the beam’s axis is neglected; thus, it must be guaranteed that the
physical problem which is modeled with the beam finite element does not show
a twist or rotation about the beam’s axis

If these restrictions are fulfilled, the 3D cable finite element becomes extremely
simple. The axial strain is identical to the planar case (78),

ε0 = ‖r′‖ − 1, (94)

the bending strain (material measure of curvature) is derived from Eq. (18). Due to
simplicity of the structure of the rotation matrix, the formula of the curvature reads

K = ‖r′ × r′′‖
‖r′‖2

. (95)

Note that in the original work of Gerstmayr and Shabana (2006), slightly different
strain measures have been used, which has been discussed and corrected in the work
of Gerstmayr and Irschik (2008).

The virtual work of elastic forces for the ANC cable finite element is given by
Eqs. (37) and (40), using only the axial stiffness and the bending stiffness.

The ANC cable finite element is superior to other finite elements because of
its simple structure and the resulting computational efficiency. If torsion plays an
important role, however, then it needs to be extended as described in the following
section.

3.5 Thin 3D ANC Beam Finite Element with Torsional
Stiffness

If torsional deformation is considered additionally to bending and axial deformation
of a spatial beam, then the correct representation of its configuration in space requires
additional information addressing the rotation of the cross-section about the beam
axis (at every point of the beam axis).

Particularly, let us choose a fixed ξ for which r̄(ξ) and r(ξ) denote the position
of an axial point in reference and actual configuration, respectively (see Fig. 1). The
straightforward way in the ANCF to describe the rotation of a beam’s cross-section
at this particular point would be to consider three more absolute nodal coordinates in
form of a slope vector in lateral direction, see Yakoub and Shabana (2001). However,
this vector would have to yield two more conditions: first, being perpendicular to the
beams axis (which is one of the basic assumptions in Bernoulli–Euler beam theory),
and second, remaining its length constant in order to avoid thickness deformation of
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Fig. 3 Geometrical
description of a thin beam
with torsional stiffness. The
orientation of the
cross-section at point r is
defined by the normalized
projection e30 of the director
d into the normal plane of
the beam axis, and a
subsequent rotation about the
beam axis by the torsional
angle θ, which gives e3

e1

e3

e2

deformed configuration

e30

d
r

the beam. Owing to that, only one degree of freedom remains to be chosen (addressing
the torsional rotation of the lateral slope vector about the beam axis) in order to fully
describe the beam’s configuration.

We express this single degree of freedom by the natural choice of a torsional angle
θ(ξ) (see Fig. 3). Note, that this angle is no more an absolute, but a relative quantity. It
is measured relative to the projection of a vector d(ξ), called director, into the normal
plane of the axial slope r′(ξ). The torsional angle of the cross-section in reference
configuration is denoted by θ̄(ξ) and measured also relative to the orientation of the
director d(ξ), i.e., its projection into the normal plane of r̄′(ξ). Note that the director
d(ξ), other than the axial position or slope vectors, basically represents a constant
vector in time t . Let us—for the moment, and the sake of simplicity—additionally
assume, that the director is constant in space, meaning d(ξ) = d for all ξ, and omit
the explicit notion of the variables ξ and t in the following formulas. The rotation of
the local frame at a particular axis point, see Eq. (6), may be defined as

e1 = r′

|r′| , (96)

e2 = e20 cos(θ) + e30 sin(θ) , (97)

e3 = e30 cos(θ) − e20 sin(θ) , (98)

in which e30 denotes the normalized projection of the director d into the normal plane
of the axial slope r′, i.e.,

e30 = ê30∣∣ê30

∣∣ , ê30 = d − (dT e1) e1 , (99)

and the bi-normal e20 is obtained by the cross product

e20 = e30 × e1. (100)
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Thereby, the curvature strain κ from Eq. (18) and the axial strain ε0 = � ex ,
utilizing� from Eq. (16), can be computed. Combining these strain measures together
with the assumption of vanishing shear strains, i.e.,

|�T ey | + |�T ez| = 0 ,

the variational formulation of the strain energy according to Eq. (37) is fully defined.
Note that a spatially non-constant director approach may be required combined with
a temporal director update (see Sect. 3.6) in order to guarantee the Gram–Schmidt
projection in Eq. (99) being well defined along the beam’s axis.

Let us turn to the spatial discretization by means of an ANC beam finite element
with two nodes. In addition to the cubic interpolation of the axial position r, see
Eq. (62), also the torsional angle at ξ is obtained by interpolation between nodal
degrees of freedom,

θ(ξ) = Smθ(ξ)qθ . (101)

The presented ANC beam finite element provides a linear interpolation of the tor-
sional angle

Smθ(ξ) = [S5(ξ) S6(ξ)] , S5(ξ) = 1

2
− ξ

L
, S6(ξ) = 1

2
+ ξ

L
, (102)

with the generalized coordinates qθ defined by the nodal values

qθ = [
θ|1 θ|2

]T
. (103)

To prevent the element from locking, a reduced numerical integration order of 5
(e.g., via 3 point Gauß’ integration) is recommended when integrating bending and
torsional stiffness terms over the beam’s axis in Eq. (37), whereas the axial stiffness
term shall be integrated exact, which means a numerical integration order of 9 or
higher.

3.6 Director Update

For small deformation problems it is sufficient to consider a director d, which is
constant in space and time. However, problems arise, if the beam’s axis, i.e., the
axial slope r′(ξ) becomes (numerically) collinear with the director for any ξ. In
this case the projection Eq. (99) becomes singular and the orientation of the beam’s
cross-section remains unknown. Note that the same holds not only for the deformed
configuration, but also for the undeformed configuration. As a remedy, the director
is chosen to vary
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1. in space, achieved, e.g., by a spatial interpolation of d(ξ) between the two neigh-
boring nodal directors d1 and d2, e.g., by a linear interpolation

d(ξ) = S5d1 + S6d2 ,

2. in time, by performing an update of the nodal directors d1 and d2 past each time
or load step, given as a function of the current orientation of the local frame at
the i th node, e.g.,

d1(t j ) = e30(ξ = − L

2
, t = t j−1),

d2(t j ) = e30(ξ = + L

2
, t = t j−1),

or optionally by the post-rotated update

d1(t j ) = e3(ξ = − L

2
, t = t j−1), θ1(t j ) = 0

d2(t j ) = e3(ξ = + L

2
, t = t j−1), θ2(t j ) = 0

for all time steps t j .

Let it be finally mentioned that the proposed Bernoulli–Euler beam finite element
provides C1-continuity along element borders only for the geometry of the beam
axis, whereas the torsion of the cross-section, i.e., angle θ, is just C0-continuous.
Hence, the element has fourth-order convergence in problems with insignificant
torsional effects, and a second-order convergence in all remaining problems. A fully
C1 continuous setting, requiring the rate of the torsional angle θ̇ to remain zero at the
FE-nodes (in order to serve as a generalized coordinate) together with a conforming
interpolation of the torsional angle θ (and the director d) along the beam axis, is left
for further investigation.

4 ANC Finite Elements with Shear and Cross-Section
Deformation

In this section, the 2D and 3D formulations of thick ANC beam finite elements which
include shear and cross-section deformation are discussed. In addition to the previous
sections, displacements and displacement gradients are utilized rather than position
and position gradients.
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4.1 Kinematics of Thick Gradient-Deficient ANC Beam
Finite Elements

Omar and Shabana (2001) presented an ANC finite element, in which a slope vector
is used for modeling the shear deformation. For the 2D gradient-deficient ANC finite
element, the latter finite element is modified by omitting the axial slope vector. The
element is parametrized by displacements and displacement gradients at the nodes
which form the degrees of freedom. Figure 2c shows a sketch of the fully parametrized
element. The gradient-deficient element is obtained, if the axial slope vector x,ξ is
eliminated. The interpolation for a two-noded resp. a three-noded beam element is
given with linear resp. quadratic shape functions. In case of the two-noded element,
the shape functions are chosen according to Matikainen et al. (2009),

S1 = 1

L

(
L

2
− ξ

)
, S2 = ηS1,

S3 = 1

L

(
L

2
+ ξ

)
, S4 = ηS3. (104)

In case of the three-noded element, the shape functions are chosen similar to those
given by Mikkola et al. (2007) as

S1 = − 2

L2
ξ

(
L

2
− ξ

)
, S2 = ηS1,

S3 = + 2

L2
ξ

(
L

2
+ ξ

)
, S4 = ηS3,

S5 = − 4

L2

(
ξ − L

2

) (
ξ + L

2

)
, S6 = ηS5. (105)

The 3D gradient deficient ANC beam elements can be defined as the generalization
of the 2D elements discussed above. Here, the two transverse slope vectors, which
are in the cross-section plane, are used as degrees of freedom, compare Fig. 2d. In
the spatial case, the shape functions of the linear (two-noded) element are given by

S1(ξ, η, ζ) = 1

2
− ξ

L
, S2(ξ, η, ζ) = ηS1, S3(ξ, η, ζ) = ζS1,

S4(ξ, η, ζ) = 1

2
+ ξ

L
, S5(ξ, η, ζ) = ηS4, S6(ξ, η, ζ) = ζS4. (106)

The shape functions for the quadratic (three-noded) ANC beam finite element are
given by

S1 = − 2

L2
ξ

(
L

2
− ξ

)
, S2 = ηS1, S3 = ζS1,
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S4 = + 2

L2
ξ

(
L

2
+ ξ

)
, S5 = ηS4, S6 = ζS4,

S7 = − 4

L2

(
ξ − L

2

) (
ξ + L

2

)
, S8 = ηS7, S9 = ζS7. (107)

4.2 Virtual Work of Elastic Forces for Thick Beams with
Shear and Cross-Section Deformation

In addition to the structural mechanics formulation, which is customary for thin
beams, a structural as well as a continuum mechanics based formulation is provided
for shear and cross-section deformable ANC finite elements. Following the work
of Gerstmayr et al. (2008), the work of elastic forces can be based on Reissner’s
nonlinear rod theory, see Reissner (1972), as implemented by Simo and Vu-Quoc
(1986a), and a continuum mechanics based formulation, using a St. Venant–Kirchhoff
material. For the 3D case, see Nachbagauer et al. (2011).

4.2.1 Continuum Mechanics Formulation

In the original shear-deformable ANC beam finite element by Omar and Shabana
(2001), the elastic strain energy is defined using the Green’s strain and the second
Piola–Kirchhoff stress, as provided in Eq. (28). The main problem of this original
continuum mechanics based formulation is the Poisson-locking phenomenon. In the
original approach, the strain energy of a beam element with a rectangular cross-
section is written in terms of the engineering strain vector ε̄ and the elasticity matrix
D̄CM as presented in Eq. (33). The main problem of the original continuum mechanics
based formulation arises since the Poisson ratio ν couples axial strains Ē11 and
transverse normal strains Ē22 in the stress-strain relation. For pure axial deformation,
the Poisson effect is modeled exactly. However, for bending deformation, the Poisson
effect would require a trapezoidal deformation of the cross-section, which is not
available in the original formulation. To avoid the locking effect, the strain energy is
modified based on the idea of Gerstmayr et al. (2008). The elasticity matrix is split
into two parts:

D̄CM = D̄0
CM + D̄ν

CM, (108)

in which D̄0
CM does not include the Poisson ratio ν, while Dν involves the Pois-

son effect only. Hereafter, the strain energy is integrated over the cross-section, see
Eq. (28), in which the part related to D̄0

CM is integrated over the cross-section and
the other part related to D̄ν

CM is integrated along the beam axis only using the cross-
sectional area.
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4.2.2 Structural Mechanics Formulation

The idea of the structural mechanics formulation is to incorporate the strain energy
of classical nonlinear rod theories into the ANCF, for details see Gerstmayr et al.
(2008) and Nachbagauer et al. (2011). The planar case of Eq. (37) reads

δW int =
∫
L
E A�̄1δ�̄1 + ksGA�̄2δ�̄2 + E I κ̄δκ̄ dξ, (109)

in which the axial stiffness E A, the shear stiffnessGAwith the shear correction factor
ks , and the bending stiffness E I are coupled to the generalized strain measures for
axial, shear, and bending strains, respectively. As proposed by Simo and Vu-Quoc
(1986a), shear locking is eliminated by means of reduced integration here.

An additional term in the strain energy is necessary regarding the degrees of
freedom of the cross-section deformation. Following Gerstmayr et al. (2008), the
additional thickness strain energy W int

cs in case of a 2D beam finite element can be
defined—in case of a rectangular cross-section—by

δW int
cs =

∫
L
EAĒ22 δ Ē22 dξ, (110)

which is defined similar to Eq. (48). The enhanced strain energy in the structural
mechanics based formulation is the sum of the conventional strain energy W int in
Eq. (109) and W int

cs in Eq. (110), see Eq. (37). In the 3D case, the structural mechanics
based formulation follows Simo (1985). For the case of simple symmetric cross-
sections, see Eqs. (42) and (37) can be given for the single components,

δW int =
∫
L

E A�̄1δ�̄1 + GAk2�̄2δ�̄2 + GAk3�̄3δ�̄3 (111)

+GJkt κ̄1δκ̄1 + E I2κ̄2δκ̄2 + E I3κ̄3δκ̄3 dξ.

In the 3D case, the virtual work of elastic forces covering cross-section deformation
follows from Eq. (48).

5 Evaluation of the Accuracy and Performance of ANC
Finite Elements

This section is dedicated to outline the numerical behavior of four of the proposed
ANC beam finite elements, all of which are implemented in the open-source flexible
multibody system dynamics code HOTINT,2 see Gerstmayr et al. (2013a). Hence-
forth, let us use abbreviations as in Table 1.

2http://www.hotint.org/.

http://www.hotint.org/
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The interested reader is referred to the works by Gerstmayr and Irschik (2008),
Gerstmayr et al. (2008), Nachbagauer et al. (2011), Nachbagauer et al. (2013) and
Gruber et al. (2013), in which each of the proposed ANC beam finite elements is
tested separately.

5.1 Static Example (Planar): Largely Deforming Cantilever

In this example we aim to compare the convergence and performance properties of
all proposed ANC beam finite elements (Table 1) at once, i.e., both thin and thick
elements are studied on behalf of the same setup.

A cantilever with length L and square cross-section with side-length a is subjected
to a point load F acting at the material point B (which is the tip of the beam axis, see
Fig. 4). The material parameters of the cantilever are defined by Young’s modulus E
and Poisson’s ratio ν as

E = 2.07 × 1011 N/m2 , ν = 0.3 ,

based on which the shear modulus G and the shear correction factor ks are given by

G = E

2(ν + 1)
N/m2 , ks = 10(1 + ν)

12 + 11 ν
. (112)

Table 1 Types of ANC beam finite elements tested in Sect. 5

Name Theory Description

BE2D Sect. 3 Thin beam in 2D (acc. to Bernoulli–Euler theory)

BE3D Sect. 3.5 Same in 3D

SQ2D Sect. 4 Shear deformable beam in 2D

SQ3D Sect. 4 Same in 3D

Throughout the whole section the shear-deformable ANC beam finite elements SQ2D and SQ3D
are considered to use quadratic shape functions, as defined in Eq. (105)

Fig. 4 Geometrical setup of
the cantilever of Sect. 5.1 in
reference configuration

L = 2.0 m
a = 0.1 m

Fy = 3EI/L2 N
F = Fy ey
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A reference solution to the problem has been computed in the mathematical soft-
ware framework Maple by solving an elliptic integral equation utilizing global poly-
nomial shape functions, see Gerstmayr and Irschik (2008). The respective polynomial
degree was chosen such that the first 12 digits of the displacement at material point
B, reading

uB
ref =

{
−0.50853730436 ex + 1.20723985455 ey , for BE2D and BE3D ,

−0.50946471774 ex + 1.20882282955 ey , for SQ2D and SQ3D ,

(113)
have been converged.

All of the four beams, cf. Table 1, were tested in a scenario with ten uniform load
steps, i.e.,

Fi = i

10
F .

At each of those load steps a nonlinear system is solved by means of Newton’s
method, utilizing the solution of the previous load step as initial guess at the current
load step. Newton’s method is terminated if the relative error (i.e., max-norm of the
actual residual over max-norm of the initial residual) becomes less than the bound
ε = 10−8. The overall performance and convergence behavior of the respective ANC
beam finite elements are documented in Table 2 as well as in the convergence plots
of Fig. 5 and a performance plot in Fig. 6.

Studying these tables and figures we arrive at the following conclusions:

1. All of the elements of Table 1 require roughly the same number of Newton itera-
tions, independently of the underlying spatial refinement level.

2. Comparing the error of tip deflection |uB
ref −uB

FE| versus number of elements (see
also the left plot in Fig. 2), a quantitatively slightly different, but asymptotically
equal behavior of all element types can be observed, namely a convergence order
of 4 (meaning a decrease of the error roughly by a factor of c−4 if the number of
elements is increased by a factor of c > 0.

3. The right plot in Fig. 2 seems to be a consequence from the left plot, owing to the
fact that thick (i.e., shear-deformable) beam elements naturally own more degrees
of freedom than their thin counterparts. The same holds of course with respect to
the dimensionality of the several beam types.

4. The final plot in Fig. 6 shows that thin and thick elements need roughly the same
computational time asymptotically, both in the planar and in the spatial case.

5.2 Free Beam Flying in Plane

By this planar dynamic benchmark example we aim to compare the computational
speed of all the ANC finite elements presented in Table 1, as well as their convergence
in terms of a displacement error, integrated over time.
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Table 2 Performance table for the example Largely deforming cantilever of Sect. 5.1

Spatial discretization Performance

#NEL #DOF Err. (m) CPU (s) #Its.

SQ2D

1 12 1.098e-001 0.109 51

2 20 1.516e-002 0.187 49

4 36 1.327e-003 0.297 49

8 68 9.159e-005 0.531 49

16 132 5.874e-006 0.952 49

32 260 3.695e-007 1.731 49

64 516 2.312e-008 3.244 50

BE2D

1 8 2.585e-001 0.094 49

2 12 3.755e-002 0.156 49

4 20 2.035e-003 0.265 49

8 36 5.060e-005 0.655 49

16 68 1.202e-006 0.827 49

32 132 3.876e-008 1.716 49

64 260 1.820e-009 3.136 49

SQ3D

1 27 1.098e-001 1.482 54

2 45 1.516e-002 2.324 55

4 81 1.327e-003 4.586 55

8 153 9.159e-005 8.471 55

16 297 5.874e-006 16.41 55

32 585 3.695e-007 32.6 55

64 1161 2.312e-008 70.86 55

BE3D

1 14 2.585e-001 0.905 49

2 21 3.755e-002 1.404 49

4 35 2.035e-003 2.652 49

8 63 5.060e-005 4.695 49

16 119 1.202e-006 9.002 49

32 231 3.876e-008 17.94 49

64 455 1.820e-009 35.47 49

CPU-time in seconds (CPU (s)) and number of Newton iterations (#Its.) for various levels of
spatial approximation including number of elements (#NEL), total degrees of freedom (#DOF), and
approximation error (Err. (m)), measured by the error of the tip deflection, i.e. Err. = |uB

ref − uB
FE|
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Fig. 5 Convergence plot of the example problem in Sect. 5.1 showing the error of tip deflection
|uB

ref − uB
FE| versus number of elements (left) and degrees of freedom (right)

Fig. 6 The performance of the ANC beam finite elements in the example problem of Sect. 5.1 is
compared in terms of CPU-time versus error of tip deflection |uB

ref − uB
FE|

Lx = 0.6 m
Ly = 0.8 m
a = 0.05 m

f(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2 t t ∈ [0, 0.5[ ,
1 t ∈ [0.5, 2.5[ ,
2 (3 − t) t ∈ [2.5, 3[ ,
0 t ≥ 3

Fx = 0.3 N , F(t) = f(t)Fx ex
Mz = 0.3 Nm , M(t) = f(t)Mz ez

Fig. 7 Geometrical setup of the free beam of Sect. 5.2 in reference configuration
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A free beam with a square cross-section, as shown in Fig. 7, is subjected to a force
F(t) and a moment M(t), both acting over the time t ∈ [0, 10] at the beam axis
point B. The material parameters of the beam are defined by Young’s modulus E ,
Poisson’s ratio ν, and the material density ρ as

E = 1 × 105 N/m2 , ν = 0.3 , ρ = 2500 kg/m3 , (114)

based on which the shear modulus G and the shear correction factor ks are computed
up to double precision, utilizing Eq. (112).

Note that the problem setup is defined similar but not equal to the well-known
flying spaghetti problem of Simo and Vu-Quoc (1986b). The reason for considering
not the original but a modified problem setup is to end up with less differences in the
kinematic behavior of thin and shear-deformable beam elements.

Time integration is numerically performed by a uniform time step size �t =
0.001 s utilizing a two staged trapezoidal rule (Lobatto), which means three integra-
tion points per time step and a fourth-order global convergence in time. In difference
to the test example largely deforming cantilever of Sect. 5.1, where a classical New-
ton method was used per load step, we choose to update the Jacobian not at each
time step, but only if required, i.e., if the Newton residual is not converging fast
enough. Although generally resulting in much more iteration steps, such a modified
Newton method speeds up the simulation, particularly if the considered time steps
are comparatively small. Alike the classical Newton method, the modified Newton
method is terminated, if the relative error (i.e., max-norm of the actual residual over
max-norm of the initial residual) becomes less than the bound ε = 10−8.

Two convergence plots in Fig. 8 and a performance plot in Fig. 9 conclude this
example. In all of these plots, the integrated deflection error

εT =
(∫ T

0
|uB

ref − uB
FE|2dt

)1/2

(115)

Fig. 8 Convergence plot of the example problem in Sect. 5.2 showing the integrated tip deflection
error, as defined in Eq. (115), versus number of elements (left) or degrees of freedom (right)
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Fig. 9 The performance of
the ANC beam finite
elements in the example
problem of Sect. 5.2 is
compared in terms of
CPU-time versus integrated
tip deflection error, as
defined in Eq. (115)

at material point B (see Fig. 7) served as a measure of the finite element approximation
error. The reference solution uB

ref (which is different for thin and for shear deformable
beams) is computed by means of a highly refined FE-solution of 128 elements, also
at a time step size of �t = 0.001 s.

5.3 Free Beam Flying in Space

If a spatial beam formulation uses angular in addition to absolute coordinates (which
is the case in the beam class BE3D, but not so in the beam class SQ3D), the shape
function interpolation of those angular coordinates (evaluated at the integration points
along the beam’s axis) causes the total energy of the beam to be no more conserved,
and thus any time integration scheme becomes unstable and must fail to converge. To
demonstrate this effect in this third test example, we consider a similar problem setup
as in Sect. 5.2, however with slightly different material and geometrical parameters,
and with a different loading scenario causing the beam to move out of plane.

A free beam with a square cross-section, as shown in Fig. 10, is subjected to a
moment M(t) acting at the time t at the beam axis point B. The material parameters
of the beam are defined by Young’s modulus E , Poisson’s ratio ν, and the material
density ρ as in Eq. (114), based on which the shear modulusG and the shear correction
factor ks are computed up to double precision, utilizing Eq. (112).

Although the beam class BE3D shows better convergence compared to the beam
class SQ3D (as shown in Fig. 12) the simulation with type BE3D elements would
become unstable after a while. To be precise, an implicit time integration scheme
(of type Lobatto using 2 stages and a uniform time step size of 0.001 s) would fail
to converge after 8 s of simulation time when using a spatial discretization with 8
elements, after 9 s when using 16 elements, and after 12 s when using 32 elements
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Lx = 0.6 m
Ly = 0.8 m
a = 0.02 m

f(t) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

2 t t ∈ [0, 0.5[ ,
1 t ∈ [0.5, 2.5[ ,
2 (3 − t) t ∈ [2.5, 3[ ,
0 t ≥ 3

Mx =
1
72

Nm , My =
1

100
Nm

M(t) = f(t) (Mx ex +My ey)

Fig. 10 Geometrical setup of the free beam of Sect. 5.3 in reference configuration
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BE3D 32
BE3D 16
BE3D 08
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Fig. 11 Sum of kinetic and potential energy of the beam computed with a uniform time step of
0.001 s and a spatial discretization of 8, 16, and 32 elements of type BE3D compared to 64 elements
of type SQ3D

of beam type BE3D, whereas simulations with the same type of integration scheme
but using SQ3D elements did not show instability effects at all (at least, in our tests
the simulation remained stable until 50 s of simulation time).

This issue becomes even more evident if we study the total (i.e., the sum of kinetic
and potential) energy, see Fig. 11. Analytically the total energy of the flying beam
must stay constant as soon as the outer forces, i.e., the tip moment, become zero
(which happens past 3 s of simulation time, see the definition of the time ramp f (t)
in Fig. 10). In case of simulations with BE3D elements, sudden energy blowups
occur whereas in simulations with SQ3D elements the total energy is conserved,
independently of the spatial refinement.
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Fig. 12 Displacement in x-, y-, and z-direction of the axial point B of the beam in Sect. 5.3
computed with 32, 64, and 128 elements of type SQ3D (left), and 8, 16, and 32 elements of type
BE3D (right)

6 Conclusions

In the present chapter, the absolute nodal coordinate formulation has been introduced
and some specific finite elements, which are based upon this formulation, have been
presented in a unified notation regarding kinematics and work of elastic forces. The
finite elements under investigation have been studied regarding its convergence as
well as the stability. It turned out that displacement-based finite elements, which do
not employ rotations as degrees of freedom, are not showing numerical instabilities
as compared to those which contain at least one rotational parameter. Finite elements
with rotational parameters, however, have other advantages. For those elements, it
is necessary to obtain stable numerical integration schemes, which are discussed in
detail in other chapters of this book.
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struction of theLagrangian function and to the role ofHamilton’s variational principle
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1 Introduction

1.1 Overview

A bumper sticker explaining how to construct variational integrators (VI) would read

“Approximate the action instead of the equations of motion.”

This simple idea turns out to be very powerful, as we shall have the opportunity
to explore in these notes. In fact, it has underpinned the solutions to elastostatics
problems with the finite element method for 60 years now. Why, when, and how an
approximation of a fundamental object in classical mechanics, the action, gives rise
to a convergent scheme to integrate the equations of motion are questions that we
shall address.

To explain the implications of the above bumper sticker, in the following sections
we briefly review the Lagrangian formulation of the mechanics of a conservative
system, and then we mimic this process at the discrete level to construct variational
integrators.

1.2 Perspective

Early approaches toward the creation of time integrators for ordinary differential
equations (ODE’s) consisted in constructing a suitable discretization of equations,
without accounting for additional structure these equations might have. See for
example, (Hughes 1987; Bathe 1996; Hairer et al. 1993; Hairer and Wanner 1996;
Holmes 2007) among others.

An alternative point of view is given by the formulation of the so-called structure-
preservingmethods.Thosemethods are designed to preserve the geometric properties
of the flow of the differential equations. This category includes but is not limited to:

• Methods that conserve the invariants of the dynamics such as energy-conserving
integrators applied to conservative systems (Bayliss and Issacson 1975; Labudde
andGreenspan 1976) or energy-momentum conservingmethods (Simo et al. 1992;
Simo andWong1991)which conserve energy aswell as linear and angularmomen-
tum. These ideas have been also applied to problems described by partial differ-
ential equations (PDE’s), such as for example to the dynamics of nonlinear solids
(Gonzalez 2000). The list of contributions in this area is long, with for example
(Armero and Romero 2001; Armero and Petoz 1999; Bauchau and Bottasso 1999;
Betsch and Uhlar 2007; Borri et al. 2001), to name only a few of them.

• Numerical methods for dynamical systems evolving on general manifolds rather
than on linear spaces. The key feature of these methods consists in that the result-
ing discrete trajectory belongs to the same configuration manifold as the time-
continuous system (Iserles 1997; Desbrun et al. 2014). Many important problems
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in physics are described in terms of dynamical systems evolving on Lie-groups
(see Sect.A.2) such as for example, the dynamics in space of N-interacting rigid
bodies, the dynamics of slender structures such as rods and filaments, the dynam-
ics of shells and the motion of incompressible and inviscid fluids among others.
Lie-group methods are numerical integrators specifically formulated for dynam-
ical problems on Lie groups or on manifolds acted upon by Lie groups (Iserles
et al. 2000; Celledoni et al. 2014).The application of these methods to the full-
body problem can be consulted in (Lee et al. 2007; Celledoni and Owren 2003),
to the dynamics of elastic and inelastic rods in (Mata 2015; Mata et al. 2008,
2009; Romero and Armero 2002, Simo et al. 1995) and to the dynamics of shells
e.g., in (Simo and Tarnow 1994; Sansour and Wagner 2003). An error analysis of
Lie-group methods can be consulted in (Faltinsen 2000).

• Symmetric methods for reversible problems. Reversible dynamical systems are
characterized by the fact that inverting the direction of the velocity vector while
keeping the initial position fixed, results in an inversion of the solution trajectory.
Conservative mechanical systems are reversible. Numerical methods able to gen-
erate reversible numerical flows when applied to a reversible differential equations
constitute an active field of research in geometric time integration (Hairer et al.
2006, Chap. V; Cano and Sanz-Serna 1988).

• Symplectic methods for Lagrangian/Hamiltonian problems. The Lagrangian/
Hamiltonian systems are among the most important dynamical systems in sci-
ences and engineering. As noted in (Feng and Qin 2010) any conservative real
physical process can be formulated as a Hamiltonian system, whether they have
finite or infinite degrees of freedom. An outstanding property of Hamiltonian sys-
tems is the symplectic nature of their flows on the phase space. See Sects. 2.3 and
3.5 for a precise definition of continuous and discrete symplecticity. Examples
of Hamiltonian systems appearing in science and engineering include but are not
limited to the structural biology (Gay-Balmaz et al. 2009), molecular dynamics
(Stavros 2014; Manning andMaddocks 1999), mathematical models in ecosystem
dynamics (Kirwan 2008), superconductivity (Bogolyubov 1972), plasma physics
(Larsson 1996), celestial mechanics and cosmology (Arnold et al. 2006), fluid
mechanics (Desbrun et al. 2014; Gawlik et al. 2011), mechanics of materials and
structures (Simo et al. 1988), theoretical physics (Esposito et al. 2004; Marsden
1988), aerospace engineering (Kasdin et al. 2005), satellite dynamics and con-
trol (Kuang et al. 2003; Koon et al. 2011), kinematics and dynamics of mecha-
nisms and robots (Macchelli et al. 2009; Chen 1990) and other areas of seismic
(Luo et al. 2013), mechanical and electrical (Clemente-Gallardo and Scherpen
2003) engineering. Symplectic integrators are methods specially formulated to
produce a symplectic flows on the phase space. This property is intimately related
to the ability of these methods to reproduce the long-time structure of the solutions
of Hamiltonian ODE’s (e.g., limit cycles, attractors, invariant manifolds, etc.) as
it has been reported in several occasions e.g., (Bou-Rabee and Marsden 2009).
A survey on symplectic time integration of Hamiltonian ODE’s and Hamiltonian
PDE’s can be consulted in (Leimkuhler and Reich 2005; Feng and Qin 2010) and
(Hairer et al. 2006, Chap. VI). The nonlinear stability of symplectic integrators
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is considered in (McLachlan et al. 2004). The role of symplectic integration in
optimal control is reviewed in (Chyba et al. 2009).

Therefore, formulating numerical methods able to preserve the geometric struc-
ture of the solutions of Hamiltonian systems will have extremely broad applications.
This chapter focuses on describing a particular methodology, based on the discretiza-
tion of a fundamental principle in mechanics, to construct structure-preservingmeth-
ods for Lagrangian systems with symmetries.

1.3 Variational Integration

Variational integrators (VI’s) constitute a more recent approach toward the creation
of structure-preserving methods for finite-dimensional Lagrangian systems or for
appropriate discretizations of someHamiltonian continuum systems. Their construc-
tion is based on the formulation of a discrete analogue to Hamilton’s variational
principle. The basic idea consists in constructing a time-discrete approximation of
the action integral called the discrete action sum. Stationary points of the discrete
action sum are then the discrete-in-time trajectories of the mechanical system, and
can be proved to approximate the exact trajectories as the time-step goes to zero.
These ideas were originally explored in the works of (Maeda 1980; Maeda 1982)
and of (Veselov 1988; Moser and Veselov 1991) in the context of integrable systems
in mechanics.

The procedure used to construct a time-discrete trajectory defines a variational
time integrator that shows a number of remarkable properties among which are:

(i) It conserves the invariants of the dynamics associated to the symmetries of the
original mechanical system if the discrete action sum is designed to preserve
the same symmetries. See Sects. 2.3 and 3.4. This is also known as a discrete
version of Noether’s theorem, see e.g., (Marsden and West 2001; Lew et al.
2004, 2003).

(ii) A discrete version of the Legendre transform allows to construct an alternative
but otherwise equivalent form of the method that defines a discrete symplectic
flow over the phase space. See Sect. 3.5.

(iii) The discrete trajectory displays an outstanding energy behavior. To be more
precise, the value of the energy computed over the discrete trajectory remains
close to its initial value for very long times, provided the time step is small
enough, see e.g., (Leimkuhler and Reich 2005; Hairer et al. 2006).

(iv) Symplectic and momentum-conserving methods of arbitrarily high order of
accuracy for dynamical systems evolving on nonlinear manifolds can be sys-
tematically constructed following the standard methodology of variational inte-
gration.
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The essential aspects of VI’s can be reviewed in (Wendlandt and Marsden 1997;
Marsden and Wendlandt 1997; Marsden and West 2001) and in (Leok and Shingel
2012a; Leok 2005) general techniques for constructing variational integrators are
provided. Spectral variational integrators are described in (Hall and Leok 2014a)
and prolongation–collocation methods in (Leok and Shingel 2012b).

The variational methodology has been successfully applied to a broad range of
fields such as for example:

• Mechanical problems with multisymplectic geometry. In (Marsden et al. 1998)
a geometric-variational approach to continuous and discrete field theories is
described and in (Marsden et al. 2001) the authors present a variational and multi-
symplectic formulation of both compressible and incompressible models of con-
tinuum mechanics. Asynchronous variational time integrators for finite element
discretizations of deformable solids and field theories are formulated in (Lew et al.
2004, 2003; Lew 2003; Kale and Lew 2006; De León et al. 2008). An analysis of
the stability properties of asynchronous VI’s can be found in (Fong et al. 2008).
See (Focardi and Maria-Mariano 2008) for a converge analysis of asynchronous
VI’s in linear elastodynamics and (Patrick and Cuell 2009) for a complete error
analysis.

• Dynamical systems evolving on nonlinear manifolds. Discrete analogues of Euler–
Poincaré and Lie–Poisson reduction theory for systems on finite-dimensional Lie
groups with symmetries are developed in (Marsden et al. 1999). A Lie Poisson
structure for a discrete mechanical system evolving on a Lie group is deduced
in (Marsden et al. 2000). Lie group VI’s applied to the full-body problem are
formulated in (Lee et al. 2007) and VI’s on two-spheres in (Lee et al. 2009). The
extension of spectral variational integrators to Lie groups is developed in (Hall
and Leok 2014b).

• Structural elements: beams, rods, plates, and shells. An explicit, second-order
accurate VI that can be identifiedwith a Lie-group, symplectic, partitionedRunge–
Kutta method for finite element discretizations of geometrically exact rods is pre-
sented in (Mata 2015). The formulation of VI’s for spatial beams and plates is
carried out in (Demoures 2012; Demoures et al. 2014). In (Nichols and Murphey
2008) aVI for simulating the dynamics of cable structures is formulated. A discrete
model for shells is formulated in (Grispun et al. 2003).

• Contact and impact. In (Fetecau et al. 2003b; Fetecau 2003) the classical theory
of (smooth) Lagrangian mechanics is extended to the nonsmooth case in order to
include collisions and the foundations of the multisymplectic formulation of non-
smooth continuum mechanics are presented in Fetecau et al. (2003a). An example
of asynchronous collision integrators can be consulted inWolff and Bucher (2013)
and an application to polymer chains in (Leyendecker et al. 2012). In (Ryck-
man and Lew 2010, 2011, 2012) a new explicit dynamic contact algorithm that
takes advantage of a variational asynchronous time integrator is formulated. A
variational formulation of contact is formulated in (Harmon et al. 2009) and an
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optimization of this method is carried out in (Ainsley et al. 2012). See also (Cirak
and West 2005).

• Multibody dynamics and control. A comparison between the numerical perfor-
mance of VI’s and energy-momentum schemes when applied to the numerical
simulation of flexible multibody dynamics is presented in Betsch et al. (2010).
The solvability of some geometric integrators for multibody systems is analyzed
in (Kobilarov 2014). A discontinuous version of VI’s is formulated in (Johnson
et al. 2014) to treat collisions inmultibody systems. In (Jiménez et al. 2013) numer-
ical methods for optimal control of mechanical systems in the Lagrangian setting
are formulated.

• Stochastic differential equations. In (Bou-Rabee and Owhadi 2009) a contin-
uous and discrete Lagrangian theory for stochastic Hamiltonian systems on
manifolds is presented. See also (Wang et al. 2009; Wang 2007). The long-
time statistical properties of a Lie–Trotter splitting for inertial Langevin equa-
tions are presented in (Bou-Rabee and Owhadi 2010). The splitting is defined
as a composition of a variational integrator with an Ornstein–Uhlenbeck flow
(Van Bargena and Dimitroff 2009). Further material about geometric integrators
for stochastic dynamical systems can be found in Tao et al. (2010). Variational inte-
grators for constrained, stochasticmechanical systems are presented in Bou-Rabee
and Owhadi (2007).

• Constrained and forced problems. The formulation of variational integrators
applied to Lagrangian systems subjected to holonomic constraints or forces can
be consulted in (Marsden and West 2001; West 2004). A variational discrete null
spacemethod is proposed in (Leyendecker et al. 2008). See also (Leyendecker et al.
(2007)). A study of the �-convergence of VI’s to the corresponding continuum
action functional and the convergence properties of the discrete trajectories to sta-
tionary points of the continuum problem is presented in Schmidt et al. (2009). The
use of a discrete version of Lagrange–D’Alembert principle allows to include non-
conservative generalized forces. This is particularly useful for weakly dissipative
systems (Kane et al. 1999, 2000).

• Dynamics of fluids. A geometric theory for fluid dynamics can be found in (Mars-
den and Ratiu 1999; Arnold and Khesin 1998; Pavlov 2009). Traditionally, numer-
ical methods for fluid dynamics have been rarely designed to preserve the geo-
metric structure of the solution trajectories, resulting in the introduction of spu-
rious numerical artifacts. In contrast, in (Pavlov et al. 2011) discrete equations
of motion for fluid dynamics are derived from first principles in Eulerian form.
In (Gawlik et al. 2011) a variational discretization of continuum theories arising
in fluid dynamics, magnetohydrodynamics and the dynamics of complex fluids
is presented and in (Desbrun et al. 2014) a structure-preserving scheme for the
dynamics of rotating and/or stratified fluids is formulated.

• Thermoelasticity and nonequilibrium thermodynamics. The dynamics of systems
undergoing irreversible processes has motivated the formulation of structure-
preserving integrators able to satisfy the first (energy conservation) and second
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(nondecreasing entropy of an isolated system) laws of thermodynamics along
with the conservation of the invariants associated to the symmetries of the sys-
tem. Those methods are frequently called thermodynamically consistent. See e.g.,
(Romero 2009; Bargmann and Steinmann 2008a, b). The simplest type of such sys-
tems are likely to be the thermomechanical systems. A Lagrangian/Hamiltonian
formulation of thermoelasticity is obtained by introducing the concept of ther-
mal displacements (Maugin 2000; Maugin and Kalpakides 2002) and (Green and
Naghdi 1993, 1991, 1995). In this formulation, the temperatures are obtained as
the time derivatives of the thermal displacements and the entropy is the conju-
gate momentum to the temperature. In (Mata and Lew 2011) a class of variational
integrators for finite-dimensional adiabatic thermoelastic is formulated. The same
ideas are applied in (Mata andLew2014) to develop thermodynamically consistent
methods for finite element discretizations of deformable elastic solids with second
sound. Unfortunately, it is not possible to construct a Hamiltonian formulation of
thermoelasticity with heat conduction of Fourier type.1 In (Mata and Lew 2012),
an entropy flux term of Fourier type is added as a dissipative perturbation to the
Hamiltonian form of the balance equations of adiabatic thermoelasticity and a dis-
crete version of D’Alembert’s principle is used to formulate structure-preserving
methods. A similar approach has been followed in (Kern et al. 2014).

Other applications of variational integration can be reviewed, e.g., in (Kharevych
et al. 2006; Kraus 2013; Ober-Blöbauma et al. 2013; Stern and Grinspun 2009).

1.4 Objectives and Layout of the Chapter

This chapter presents an introduction to the formulation of variational methods for
finite-dimensional Lagrangian dynamical systems.

In Sect. 2 we revisit the Lagrangian and Hamiltonian points of view of mechanics
for systems evolving on manifolds. To this end, we first introduce the concepts of
generalized coordinates, configuration space, tangent space and the consistent com-
putation of variations. Every concept is illustrated through some simple examples.
Special attention is given to the construction of Lagrangian functions and to the
role of Hamilton’s variational principle in the deduction of the balance equations. In
Sect. 2.3, we introduce the concept of (group) symmetries of the Lagrangian func-
tional andwe explain how they are relatedwith the existence invariants of the dynam-
ics. The symplectic nature of the flow is also discussed. Section2.4 introduces the

1Alternative variational principles have been proposed for thermoelasticity with heat conduction,
see e.g., (Yang et al. 2006; Vujanovic and Djukic 1971; Gambar and Markus 1994; Hutter and
Tervoort 2007; Cannarozzi and Ubertini 2001). Structure-preserving methods may be consulted in
(Armero andSimo1992;Gross andBetsch 2006, 2007; Simo andMiehe 1992) to name only a fewof
them.Outstanding among themost recent approaches are themethods formulated byRomero (2009,
2010) whichmay be considered as energy-momentummethods applied to irreversible thermoelastic
systems.
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Legendre transform to compute the conjugated momenta along with the Hamiltonian
form of the balance equations presented as a dynamical system evolving over the
phase space.

The discrete version of Lagrangian mechanics is the main topic of Sect. 3. The
standardmethodology to construct variational integrators is explained in Sect. 3.1 and
the position-momentum of the methods is given in Sect. 3.2. Section3.3 is devoted to
the implementation of the algorithms. The approximation properties and the geomet-
ric characteristics of the resulting discrete trajectories, including a discrete version
of the symplecticity, are studied in Sect. 3.5.

Finally, in Sect. 4, we exemplify the usage of the variational methodology to con-
struct structure-preserving methods for two problems of practical interest. First, we
develop a VI based on the trapezoidal rule for a free-flying body that is able to
undergo arbitrarily large rotations and displacements in space. The second exam-
ple corresponds to the formulation of an explicit, second-order accurate variational
integrator for the finite element discretization of geometrically exact rods.

This chapter is further complemented with the appendices A, B, and C.

2 Lagrangian and Hamiltonian Mechanics for
Finite-Dimensional Systems

In the following, we will introduce (or review) the basic concepts in Lagrangian and
Hamiltonian Mechanics. We shall make the abstractions concrete by applying them
to two working examples, a particle in a hoop, and two particles joined by a rigid
rod moving in a plane.

A particle in a hoop. Consider a particle of mass m that can slide without friction
on a rigid circular hoop of radius R. The hoop is rigidly attached to an inertial frame,
see Fig. 1.

Two particles joined by a rigid rod in a plane. Consider two particles of mass m
joined by a rigid massless rod of length 2L which can freely move in R2.

As we shall see, these simple examples contain a lot of the concepts we discuss
next.

2.1 Basic Concepts

For the first part of these notes we are going to consider mechanical systems for
which all possible positions or configurations of the system can be identified with a
finite-dimensional configuration space or, more generally, configuration manifold Q
(see also Sect.A). The configurationmanifold Q is a datumof themechanical system,
or at most, a modeling assumption. Prototypical systems of this type are multibody
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L
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Fig. 1 Sketch of a particle in a hoop (left), and two particles joined by a rigid rod (right)

dynamical systems, involving a finite number of particles and rigid bodies moving
together in R

n , n ∈ N.
To identify points in Q, we adopt a set of generalized coordinates

q = (q1, . . . , qd),

(lengths, angles, etc.), where d ∈ N is the dimension of Q. A trajectory of the
mechanical system over the time interval [0, T ] is a map

q(·) : [0, T ] → Q.

In generalized coordinates, a trajectory is indicated with maps qi (t), i = 1, . . . , d.
For mechanical systems consisting of m particles moving in some subset of Rk ,

we can regard the configuration manifold as a subset of Rk×m . This means that we
can define k ×m maps xα,r (q1, . . . , qd), r = 1, . . . , k, α = 1, . . . ,m that return the
r th Cartesian coordinate of particle α for the given configuration of the system.

Particle in a hoop. Q = S1, or the unit circle in R
2. This is a one-dimensional

manifold. The single generalized coordinate could be chosen as q1 = θ, the angle
shown in Fig. 1. Notice that we could have chosen as a generalized coordinate any
bijective andmonotone function of θ, such as q1 = −θ3. The choice of generalized
coordinates is not unique. An example trajectory of the particle is θ(t) = cos t .
For this system, we can define x1,1(θ) = r cos θ, x1,2(θ) = r sin θ, to recover the
Cartesian coordinates of this particle in R

2. Henceforth, we set q1 = θ for this
example.

Two particles joined by a rigid rod. Q = R
2× S1, which is a three-dimensional

manifold, d = 3. A possible set of generalized coordinates is

(q1, q2, q3) = (xCG, yCG, θ),
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where (xCG, yCG) are the Cartesian coordinates of the center of mass of the
system and θ is the angle shown in Fig. 1. As before, other choices of generalized
coordinates are possible, such as (q1, q2, q3) = (x1, y1, θ), where (x1, y1) are the
Cartesian coordinates of the position of one the masses. Henceforth, we choose
the former set of generalized coordinates for this example. An example trajectory
of the two particles is

(xCG(t), yCG(t), θ(t)) = (t, 2t, t2).

The Cartesian coordinates of this system in R4 are

x1,1(xCG, yCG, θ) = xCG + L cos θ

x1,2(xCG, yCG, θ) = yCG + L sin θ

x2,1(xCG, yCG, θ) = xCG − L cos θ

x2,2(xCG, yCG, θ) = yCG − L sin θ.

�

Given a trajectory q(·), the generalized velocity of the system at time t is q̇(t).
Given a point q ∈ Q, the set of all possible generalized velocities of the system at
q is called the tangent space TqQ, which is a vector space. The union of all points
in Q with the tangent spaces attached is the tangent bundle T Q, and it is also a
manifold. An element of the tangent bundle is, roughly speaking, a point q ∈ Q with
a generalized velocity vector q̇ attached to it. Coordinates on T Q are denoted by

(q, q̇) = (q1, . . . , qd , q̇1, . . . , q̇d).

For a system of m particles in R
k , we can recover the traditional Cartesian com-

ponents of the velocities as

vα,r (q1, . . . , qd , q̇1, . . . , q̇d) =
d∑

i=1

q̇i
∂xα,r

∂qi
(q1, . . . , qd).

Particle in a hoop. T Q = S1 × R. A point in T Q has coordinates (θ, θ̇). For
example, for the trajectory θ(t) = cos t , and the coordinates of the point of T Q
in which the system is at t = 1 is (cos 1,− sin 1). The tangent space at θ = cos 1,
Tcos 1Q, is the line tangent to the circle at such point, with origin at θ = cos 1.
This is the space to which possible velocities of the particle at that point belong,
so velocities are always tangent to the hoop. Figure2 shows the position vector
of the particle in space is given by

r i = r
(
cos θi e1 + sin θi e2

)
,
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Fig. 2 Position vector, r i ,
and velocity vector, ṙ i , of the
particle at times t i

(i = 1, 2, 3)

and the corresponding velocity vector by

ṙ i = r θ̇i
(
cos θi e2 − sin θi e1

)
,

where θi and θ̇i denote the values of θ(t) and θ̇(t) at the time t i (i = 1, 2, 3),
respectively. Note that we may think the motion of the particle in a hoop as a
two-dimensional motion restricted by the condition r i · ṙ i = 0.

Two particles joined by a rigid rod. T Q = (S1 × R
2) × (R × R

2), which has
coordinates (xCG, yCG, θ, ẋCG, ẏCG, θ̇). For the trajectory (t, 2t, t2), the gener-
alized velocities at time t = 1 are (1, 2, 2), and the coordinates in T Q are
(1, 2, 1, 1, 2, 2). A graphical depiction of the tangent space is difficult here,
because we should be thinking about the tangent space to the surface defined
by the configuration manifold when embedded in R4. �
Given q(·) : [0, T ] → Q, we consider a one-parameter family of trajectories

qε(·) : [0, T ] → Q such that q0(·) = q(·) for all ε ∈ (−ε, ε), for some ε > 0.
A variation δq(·) of q(·) is defined as

δq(t) = d

dε
qε(t)

∣∣∣
ε=0

. (1)

Coordinates of a variation are (δq1, . . . , δqd). Different one-parameter families
of trajectories generally give rise to different variations, but of course, multi-
ple one-parameter families of trajectories give rise to the same variation. Clearly,
(q(t), δq(t)) ∈ Tq(t)Q for each t . An intuitive graphical interpretation of a variation
is shown in Fig. 3.
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Fig. 3 Sketch of a trajectory
q(·) over Q, and a variation
δq(·). The variation at each
time t , δq(t), is tangent to Q
at q(t)

For a system of m particles in R
k , we can compute the Cartesian components of

the variation as

δxα,r = d

dε
xα,r (q

ε
1, . . . , q

ε
d)

∣∣∣
ε=0

=
d∑

i=1

∂xα,r (q1, . . . , qd)

∂qi
δqi .

Particle in a hoop. Consider the one-parameter family of trajectories θε(t) =
cos t + ε�θ(t), for some �θ : [0, T ] → R. Then, δθ(t) = �θ(t) at all times.
The Cartesian components of the variation are

δx1,1(t) = −r sin θ(t)�θ(t) δx1,2(t) = r cos θ(t)�θ(t),

which clearly shows that δq(t) is tangent to the circle at q(t), for all times.

Another example of a variation follows by selecting θε(t) = cos(t + βε), for
β ∈ R. In this case δθ(t) = −β sin t at all times.

�
A functional is defined as a map from a set S to R. Scalar-valued functions are
functionals.More interesting functionals, however, are foundwhen the set S contains
functions, for example,

S [y(·)] =
∫ b

a
y(t) dt (2)

is a functional that takes values over the set S of integrable functions over [a, b].
Weare going to be interested in functionals that take values over sets of trajectories.

The variation of a functional S at a trajectory q(·) for a variation δq(·) is defined as
〈
δS

[
q(·)] , δq

〉 = d

dε
S
[
qε(·)]

∣∣∣
ε=0

, (3)

where qε(·) is any of the one-parameter families that defines δq. This is also called
the Gâteaux derivative of S at q(·) in direction δq(·).
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2.2 Lagrangian Mechanics

The starting point for Lagrangian mechanics is the definition of the Lagrangian
L : T Q → R, L(q, q̇), or in coordinates, L(q1, . . . , qd , q̇1, . . . , q̇d). Notice that the
Lagrangian returns a real number for each point of the tangent bundle T Q.

Different physical theories give rise to different Lagrangians. For mechanical
systems, the Lagrangian has the general form L = K − U , where K : T Q → R

is the kinetic energy of the system, and U : Q → R is the potential energy of the
system.

Particle in a hoop. The Lagrangian for this system, in the presence of gravity in
the negative-y direction is

L(θ, θ̇) = m

2
r2θ̇2 − mgr sin θ. (4)

Two particles joined by a rigid rod. In this case, in the absence of gravity,

L(xCG, yCG, θ, ẋCG, ẏCG, θ̇) = m(ẋ2CG + ẏ2CG + L2θ̇2). (5)

General multibody systems. A general class of Lagrangians obtained in multi-
body dynamics has the form

L(q, q̇) = 1

2
q̇ · M(q)q̇ −U (q), (6)

where for each q ∈ Q, M(q) is the symmetric and positive-definite d × d mass
matrix of the system at q. The particle in the hoop and the two particles connected
by a rigid rod are particular cases of this Lagrangian.

Thermoelastic systems. Finite-dimensional and adiabatic thermoelastic systems
may be constructed following (Maugin andKalpakides 2002; Romero 2009;Mata
and Lew 2011, 2012, 2014). We consider N masses connected by M thermoelas-
tic springs, such as those shown in Fig. 4. The spatial position of themasses at time
t is described by q(t) = (q1(t), .., qd(t)) ∈ QS , where QS is the a d-dimensional
manifold. Additionally, each thermoelastic spring is assigned a time-dependent
thermal displacement �i (t) ∈ R, i = 1, ..., M , such that the empirical tempera-
tures are computed as

θ(t) = d

dt
�(t) = (

�̇1(t), ..., �̇M (t)
)
.

The configuration manifold for this system is Q = QS × R
M , and it is speci-

fied by points of the form (q,�). Trajectories of the system are time-dependent
functions (q(t),�(t)), and the generalized velocities are (q̇(t),θ(t)); therefore,
in this system the temperatures of the springs are generalized velocities. The
thermoelastic behavior of each spring is described by a Helmholtz free-energy
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Fig. 4 A typical thermoelastic system: an assembly of three masses connected by eight
thermoelastic springs and subjected to boundary conditions

function Ai (q, θi ), i ∈ {1, ..., M} so that the Helmholtz free energy of the system
follows as

A(q,θ) =
M∑
i=1

Ai (q, θi ).

A Lagrangian for this system is constructed as

L(q, q̇,�,θ) = 1

2
q̇ · M(q)q̇ − A(q,θ). (7)

�
The second step in Lagrangian mechanics is the definition of the action functional

over the time interval [0, T ]

S
[
q(·)] =

∫ T

0
L (q(t), q̇(t)) dt. (8)

In Lagrangianmechanics the physical trajectories, namely, those that satisfyNew-
ton’s laws whenever the acceleration is well-defined, are obtained from a variational
principle, Hamilton’s principle. This principle states that: The physical trajectory
q(·) is such that 〈

S
[
q(·)] , δq

〉 = 0, (9)

for all variations δq that satisfy δq(0) = δq(T ) = 0. The set of all variations that
satisfy these last conditions receive the name of admissible variations. Because the
variation of S is the Gâteaux derivative of S, we also say that the action functional
is stationary at the physical trajectory with respect to all admissible variations.
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This variational principle completely characterizes trajectories of the system. It
even gives meaning to physical trajectories when accelerations are not defined, and
hence when Newton’s second law cannot be applied. This is the case of impacts,
for example. In principle, there would be no need to go any further to characterize
trajectories. However, an alternative characterization of the stationary points of S is
given by a system of ordinary differential equations that we shall find next. These
are the equations of the trajectory of the system.

To find these equations, we proceed first by computing the variation of S for
smooth enough L (q, q̇), q(·), δq(·):

〈δS[q(·)], δq〉 = d

dε
S[qε(·)]

∣∣∣
ε=0

= d

dε

∫ T

0
L(qε(t), q̇ε(t)) dt

∣∣∣
ε=0

=
d∑

i=1

∫ T

0

∂L

∂qi
(q(t), q̇(t)) δqi (t) + ∂L

∂q̇i
(q(t), q̇(t)) δq̇i (t) dt

=
d∑

i=1

∫ T

0

[
∂L

∂qi
(q(t), q̇(t)) − d

dt

(
∂L

∂q̇i
(q(t), q̇(t))

)]
δqi (t) dt

+ ∂L

∂q̇i
(q(t), q̇(t)) δqi (t)

∣∣∣T
0
. (10)

In Hamilton’s principle δq(0) = δq(T ) = 0, so the last term of the last expression
is identically zero. Then, (9) implies that2

0 = ∂L

∂qi
(q(t), q̇(t)) − d

dt

(
∂L

∂q̇i
(q(t), q̇(t))

)
(11)

for all t ∈ (0, T ), and i = 1, . . . , d. These are the Euler–Lagrange (E–L) equations
of the system, and can be regarded as Newton’s laws in terms of the chosen general-
ized coordinates. This is precisely part of the beauty of Lagrangian mechanics: The
equations of motion are written as in (11) for all choices of generalized coordinates.

Particle in a hoop. The equations of motion are

0 = −mgr cos θ − d

dt

(
mr2θ̇

)
.

Two particles joined by a rigid rod. The equations of motion are:

m
d

dt
ẋCG = 0, m

d

dt
ẏCG = 0 and mL2 d

dt
θ̇ = 0.

2The rigorous justification of this step requires the careful definition of the set of trajectories and
corresponding variations, and then the use of some version of the fundamental lemma of the calculus
of variations.
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General multibody system. The equations of motion in this case take the form

0 = 1

2
q̇ · ∂M

∂q
(q)q̇ − ∂U

∂q
(q) − d

dt
(M(q)q̇) .

Thermoelastic systems. In this case, the equations of motion are given by

d

dt
(M(q)q̇) − 1

2
q̇ · ∂M

∂q
(q)q̇ = −∂A

∂q
(q,θ),

d

dt

(
−∂A

∂θ
(q,θ)

)
= 0.

To interpret these equations, it is useful to recall the thermodynamic relations
(see, e.g., Coleman and Noll 1963),

f(q,θ) = −∂A
∂q

(q,θ) and η(q,θ) = −∂A
∂θ

(q,θ), (12)

where f is the vector of thermoelastic forces on the particles, and η is the vector
of entropies, one entropy component per spring. Thus, the first equation states
Newton’s second law for the system in the case of a configuration-dependent
mass matrix. The second equation states that the entropy of each one of the
springs remains constant in time, as it should when no heat is transferred between
springs. �

2.3 Conservation Properties: Lagrangian Point of View

A fundamental realization by E. Noether almost a century ago (Noether 1918)
was that a (variation of a) motion that leaves the value of the Lagrangian invari-
ant defines associated conserved quantities. Such motions are called symmetries
of the Lagrangian, and we show some examples below. Typical examples of these
conserved quantities are linear and angular momenta, and by adopting time as an
independent coordinate as well, it is possible to regard energy as one such quantity
as well (see, e.g., Kane et al. 1999). In summary, Noether’s theorem states that to
each symmetry of the Lagrangian corresponds a conserved quantity.

The simplest invariance or symmetry of the Lagrangian we may find is when for
some i ,

∂L

∂qi
(q, q̇) = 0,

for all (q, q̇) ∈ T Q. In this case a trajectory q̂ that satisfies the E–L equations,
satisfies that
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∂L

∂q̇i
(̂q, ˙̂q)

is constant in time, and hence it is a conserved quantity for the motion q̂. In such
case, coordinate qi is called a cyclic coordinate.

Of course, the definition of the symmetry is independent of the choice of coor-
dinates. To keep the discussion at an intuitive level, it is useful to think about a
symmetry of the Lagrangian in the following way: Given a trajectory q(t) and some
ε > 0, we say that a one-parameter family of curves qε(t) with q0(t) = q(t) is a
symmetry of the Lagrangian if at all times t

L (qε(t), q̇ε(t)) = L (q(t), q̇(t)) (13)

for any ε ∈ (−ε, ε). The variation of this symmetry,

ξ(t) = (δq1(t), ..., δqd(t))

computed according to (1), is called an infinitesimal symmetry direction, see e.g.,
(Marsden and West 2001; Lew et al. 2004).

If follows from integrating (13) in time that

S[qε(·)] = S[q(·)] (14)

for all ε ∈ (−ε, ε). Clearly, the variation of S in the infinitesimal symmetry direction
is equal to zero, a result of computing the derivative with respect to ε on both sides
of (14). Then, for a trajectory q(t) that satisfies the Euler–Lagrange equations (11)
the only nonzero terms in (10) are the boundary terms, i.e.,

0 = d

dε

(∫ T

0
L(qε(t), q̇ε(t)dt

)∣∣∣∣
ε=0

=
d∑

i=1

(
∂L

∂q̇i

(
q(T ), q̇(T )

)
ξi (T ) − ∂L

∂q̇i

(
q(0), q̇(0)

)
ξi (0)

)
. (15)

The above equations are a formal statement of Noether’s theorem which show that
the initial and final values of the momentum

p(t) =
(

∂L

∂q̇1
(q(t), q̇(t)) , ...,

∂L

∂q̇d
(q(t), q̇(t))

)
,

are equal in the ξ(t) direction,

p(T ) · ξ(T ) = p(0) · ξ(0). (16)
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The following examples illustrate the application of Noether’s theorem.

Particle in a hoop. Consider the particle in the hoop in the absence of gravity and
a one-parameter family of curves of the form θε(t) = θ(t) + εθ0 where θ0 is a
constant but otherwise arbitrary increment superposed onto θ(t). In words, we
are considering trajectories identical to θ(t) that are simply rotated by a constant
angle θ0. A simple inspection reveals that the Lagrangian is invariant

L(θ̇ε) = L(θ̇),

and thus, according to Noether’s theorem a conserved quantity exists. The infini-
tesimal symmetry direction in this case is

δθ(t) = θ0,

and the momentum is

pθ(t) = ∂L

∂θ̇
= mr2θ̇, (17)

which is the angular momentum of the particle with respect to the center of the
hoop.
From (16), we conclude that

pθ(T ) = mr2θ̇(T )θ0 = mr2θ̇(0)θ0 = pθ(0),

for any θ0, and hence that

mr2θ̇(T ) = mr2θ̇(0),

which shows that in the absence of external potentials breaking the symmetry of
the Lagrangian, the angular momentum is a constant of the motion.

Two particles joined by a rigid rod. For this example we consider the
one-parameter family of curves

zε(t) = (
x ε
CG(t), yε

CG(t), θε(t)
)

= (
xCG(t) + εx̄, yCG(t) + εȳ, θ(t) + εθ̄

)
= z(t) + ε χ,

where χ = (x̄, ȳ, θ̄) is an arbitrary vector in R
3. The first two components of χ,

c = (x̄, ȳ), represent an imposed rigid body translation in space, and θ̄ represents
an imposed rigid body rotation, see Fig. 5. This family of curves is a symmetry
of the Lagrangian, since it is simple to check that

L(zε, żε) = L(z, ż).
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Fig. 5 Two particles joined by a rigid rod: rigid body translation (left), and rigid body rotation
(right)

with infinitesimal symmetry direction

δz = d

dε
zε(t)

∣∣∣∣
ε=0

= χ.

The momentum in this case is computed as

p(t) = 2m
(
ẋCG(t), ẏCG(t), L2θ̇(t)

)
.

It then follows from Noether’s theorem that

p(0) · χ = p(T ) · χ, (18)

for any such χ. In particular, this implies that each component of p is conserved
(chooseχ = (1, 0, 0),χ = (0, 1, 0), andχ = (0, 0, 1)). Thus, the linear momen-
tum of the system is constant in time

2mẋCG(0) = 2mẋCG(T ), 2mẏCG(0) = 2mẏCG(T ),

as it is the angular momentum of the system,

2mL2θ̇(0) = 2mL2θ̇(T ).

Thermoelastic system. We consider the thermoelastic system described in
Sect. 2.2 with constant mass matrix M = diag(m, ...,m), m ∈ R and for which
QS ≡ R

d . For concreteness, we will let qi denote the Cartesian coordinates of
the i th particle in R3, and set q = (q1, . . . , qN ) = (q1, . . . , qd) ∈ R

d . Moreover,
we assume that a Helmholtz energy function of the form
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A(q,θ) =
M∑
i=1

Ai (li (q),θ) ,

where li (q) denotes the distance between the two masses connected by the i th

thermoelastic spring.
We first consider a one-parameter family of curves (qε,�ε) of the form

qε
i (t) = qi (t) + εv i = 1, . . . , N

�ε(t) = �(t) + εk,

where v ∈ R
3 and k ∈ R

M are constant but otherwise arbitrary vectors and ε ∈ R.
This family of curves results from applying arbitrary rigid body displacements
onto both themechanical and the thermal positions of the system.Aswe see below,
this is a symmetry of the Lagrangian, with infinitesimal symmetry direction

ξ = (vN , k),

where vN = (v, . . . , v︸ ︷︷ ︸
N times

) ∈ R
d . To check that this is a symmetry of the

Lagrangian (7), note that

q̇ε(t) = q̇(t) and �̇
ε
(t) = θε(t) = θ(t),

and therefore the kinetic energy is invariant upon changing ε, i.e.,

1

2
q̇ε · Mq̇ε = 1

2
q̇ · Mq̇.

Additionally, considering that the distance between masses is conserved by rigid
body translations in space, i.e., li (qε) = li (q), and that the constant translations
of the thermal displacements do not change the temperature, as stated above, we
have that

A (qε,θε) = A (q,θ) ,

from where it follows that the Lagrangian is invariant as well, and hence that
(qε,�ε) is one of its symmetries.
The momentum vector has components

p(t) = (
mq̇(t), η

(
q(t),θ(t)

))
. (19)

It follows from Noether’s theorem that

p(T ) · ξ = p(0) · ξ, (20)
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for any ξ = (vN , k) ∈ R
d × R

M . Equivalently,

(
N∑
i=1

mq̇i (T )

)
· v =

(
N∑
i=1

mq̇i (0)

)
· v, (21)

Thus, the linear momentum of the system is conserved (we can, for example,
choose v = ei for i = 1, 2, 3 to conclude this, where {ei }i is a basis in R

3),
namely,

N∑
i=1

mq̇i (T ) =
N∑
i=1

mq̇i (0). (22)

Similarly, we can conclude that the entropy of each spring ηi = −∂Ai/∂θi is
conserved (this follows by choosing ξ j = (0, k j ) for j = 1, . . . , M , where
k j
i = δ

j
i ), namely,

ηi (0) = ηi (T ),

for i = 1, . . . , M . This is precisely what is expected from a system without heat
conduction, and it follows as a consequence of the symmetry of the Lagrangian
upon rigid translations of the thermal displacements.
Next, we consider a second family of one-parameter curves, which involve rigid
rotations of the mechanical displacements and leave the thermal ones unaltered.
The family of curves is

qε
i (t) = exp(εω̃)qi (t), i = 1, ..., N ,

�ε(t) = �(t),

where

ω̃ =
⎡
⎣ 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎤
⎦ = skew[ω̂],

is a skew-symmetric but otherwise constant tensor, ω̂ = (ω1,ω2,ω3) is the axial
vector of ω̃, which satisfies ω̃v = ω̂ × v for any v ∈ R

3, and exp[·] is the tensor
exponential operator; see Sect. B for a brief introduction to finite rotations.
Because this family of curves rigidly rotates the trajectory, it is simple to verify that
the magnitude of the velocity of each particle does not change with ε, and neither
does the distance between any two particles. Therefore, this family of curves is
also a symmetry of theLagrangian,with infinitesimal symmetry direction given by

ξQ(t) = (
ξ1, . . . , ξN , 0M

)
,
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where 0M is an M-dimensional vector of zeroes and

ξi (t) = dqε
i

dε
(t)

∣∣∣∣
ε=0

= ω̃ qi (t) = ω̂ × qi (t), i = 1, ..., N .

With this new infinitesimal symmetry direction in Noether’s theorem (20) using
the momentum (19) we obtain that

N∑
i=1

(
qi (T ) × mq̇i (T )

) · ω̂ =
N∑
i=1

(
qi (0) × mq̇i (0)

) · ω̂.

Again, since this holds for any ω̂ ∈ R
3, we can conclude that the angular momen-

tum of the system

A(t) :=
N∑
i=1

qi (t) × mq̇i (t)

is conserved, namely,
A(0) = A(T ).

�

2.3.1 Conservation of Energy

When the Lagrangian is a convex function of the generalized velocities,3 such as
when it is a quadratic function of q̇, the energy of the system is defined as

E(q, q̇) = ∂L

∂q̇
· q̇ − L (q, q̇) . (23)

This is the case for a general multibody system, whose Lagrangian is (6). In this
case, the energy takes the form

E(q, q̇) = 1

2
q̇ · M(q)q̇ +U (q). (24)

The energy of the system is conserved along its solution trajectory. This can
easily be seen by computing its time derivative and using the Euler–Lagrange equa-
tions. However, this result can also be obtained if we note that for an autonomous
Lagrangian the following relation hods

3And as assumed here, the Lagrangian does not depend explicitly on time. Such Lagrangian is said
to be autonomous.
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∫ T

0
L (q(t), q̇(t)) dt =

∫ T+ε

0+ε

L (q(s − ε), q̇(s − ε)) ds = I (ε)

for any ε ∈ R. Equivalently, since the Lagrangian does not depend explicitly of
time, this statement says that a trajectory can be translated uniformly in time without
changing the value of the action. This is called a time-translation symmetry, and
there is a way to frame this symmetry in the context of Noether’s theorem, which
we shall not pursue here (see, e.g., Marsden andWest 2001). Differentiating this last
expression, we get

0 = d I (ε)

dε

∣∣∣∣
ε=0

=
[∫ T+ε

0+ε

d

dε
L (q(s − ε), q̇(s − ε)) ds

]
ε=0

+ L (q(t), q̇(t))
∣∣∣T
0

= −
∫ T

0

∂L

∂q̇
q̈ dt −

∫ T

0

∂L

∂q
q̇ dt + L(q, q̇)

∣∣∣T
0
.

Integrating by parts the first term of the right-hand side

∫ T

0

∂L

∂q̇
q̈ dt =

(
∂L

∂q̇
q̇
)∣∣∣∣

T

0

−
∫ T

0

d

dt

(
∂L

∂q̇

)
q̇ dt,

and replacing in the above equation yields

d I (ε)

dε

∣∣∣∣
ε=0

=
∫ T

0

(
d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
q̇ dt +

[
L(q, q̇) − ∂L

∂q̇
q̇
]T
0

= 0.

The term under the integral vanish identically since q(t) is a solution trajectory of the
system. The remaining boundary term is precisely a statement of the conservation
of the energy, i.e.,

E(T ) = E(0).

Therefore, the energy of mechanical systems described by autonomous Lagrangians
is an invariant of the dynamics, and it is a result of the invariance of the action upon
time-translating a trajectory in time.

2.3.2 Symplecticity: Lagrangian Point of View

Lagrangian mechanical systems also have another important conservation property:
they conserve a skew-symmetric bilinear form known4 as the symplectic Lagrangian

4We recall that a bilinear form on a vector space V is a mapping w : V × V → R that is linear in
both arguments. It is skew-symmetric if w(u, v) = −w(v, u) for all u, v ∈ V .
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Fig. 6 Consider two points
q0, q1 belonging to the
configuration manifold Q
such that q1 = ϕ(q0). The
tangent map Tϕ relates the
vectors u0, v0 ∈ Tq0Q with
u1, v1 ∈ Tq1Q according
to (25). The two-form
� : T Q × T Q → R is
conserved by ϕ if
�q0 (u0, v0) = �q1 (u1, v1)

form along solution trajectories (Marsden and Ratiu 1999). In contrast to the conser-
vation of energy or Noether’s theorem, which are properties associated to individual
trajectories, the symplectic form is associated to the behavior of nearby trajectories,
namely, trajectories with very close initial conditions. We will discuss the closest to
an “intuitive” explanation of the symplectic form we are aware of in a later section.
We also refer the reader to Leimkuhler and Reich (2005), which contains a very
approachable (the geometric concepts are progressively introduced) introduction
and discussion on this topic.

Symplectic Map and Symplectic Form. We start by considering a N -dimensional
configuration manifold Q with N ∈ N being an even number and a smooth enough
and one-to-one mapping ϕ : Q → Q. The image through the mapping ϕ of an
arbitrary point q0 ∈ Q is given by q1 = ϕ(q0) which also belongs to Q. As
explained in Sect. 2.1, it is possible to attach a tangent space to every point in a
configuration manifold. Therefore, we construct the tangent spaces Tq0Q and Tq1Q.
See Fig. 6.

Additionally, we define tangent map of ϕ, denoted by Tϕ, as a mapping between
elements of the tangent spaces according to

Tϕ : T Q → T Q
(q0, u0) �→ (q1, u1),

where q1 = ϕ(q0) and u1 ∈ Tq1Q is obtained as

u1 := Tϕ · u0 = dϕ

ds
(c(s))

∣∣∣∣
s=0

, (25)

and c(s) is a s-parametrized curve on Q such that c′(0) = u0. As it is schematically
depicted in Fig. 6, Tϕ maps elements in the tangent space of q0 to elements in the
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tangent space of q1. In terms of components, we have that

ua1 =
N∑
j=1

∂ϕa(q0)

∂q j
u j
0, a = 1, ..., N .

Further details can be found in (Marsden and Hughes 1983).

Furthermore, assume thatweare givenwith anondegenerated and skew-symmetric
bilinear form defined for every q ∈ Q according to

�q : TqQ × TqQ → R

(u, v) �→ �q(u, v).

The explicit form of �q is problem depend. Some examples are given in e.g., (Mars-
den and Ratiu 1999, Chap. 2). The subscript in �q highlights the dependency of the
two-form on the point of the manifold.

The map ϕ is called symplectic or canonical is it preserves �q in the following
sense:

�q0(u0, v0) = �ϕ(q0) (Tϕ · u0, Tϕ · v0) ,

where u0, v0 ∈ Tq0Q. Note that the above expression equals to zero, unless N is an
even number. If this is the case, �q is called a symplectic two-form. See Fig. 6 for a
schematic representation.

In following, we explain how the solution trajectory of a Lagrangian mechani-
cal system implicitly defines a time-dependent symplectic transformation over the
tangent space of the configuration manifold, T Q. Furthermore, we show that the
Lagrangian function of the system allows to construct the matrix representation of
the corresponding symplectic two-form.

Lagrangian symplecticity. Consider a mechanical system characterized by a
Lagrangian L(q, q̇) evolving on a configuration manifold Q. We construct a solu-
tion trajectory over T Q by means considering the following smooth enough and
one-to-one mapping,

ψ : T Q × [0, T ] → T Q
(z, t) �→ ψ(z, t)

(26)

where z = (q, q̇) is an arbitrary point inT Q. Themappingψ is such thatψ(z, 0) = z.
Therefore, given certain initial conditions z0 ∈ T Q, we define the trajectory of the
mechanical system as

z(t) := ψ(z0, t),

for all t ∈ [0, T ]. Note that T Q posses the structure of a (even-dimensional) smooth
manifold and therefore, it is possible to attach a tangent space to every z ∈ T Q. See
Sect.A.1 and Fig. 7.
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Fig. 7 Consider two points
z(0), z(T ) over the solution
trajectory in the tangent
space T Q. These points are
related by ψ according to
z(T ) = ψ(z(0), T ). The
variations δzi (0) and δzi (T ),
i = 1, 2, belong to the
tangent spaces Tz(0)T Q and
Tz(T )T Q, respectively

A remarkable property of Lagrangian systems is given by the fact that ψ(·, t)
results to be symplectic or in other words, there exist a skew-symmetric bilinear
form, �L , defined for every point over the solution trajectory z(t) which enjoys the
following conservation property,

�L
(
z(0)

)(
δz1(0), δz2(0)

)
= �L

(
z(T )

)(
δz1(T ), δz2(T )

)
, (27a)

for arbitrary variations

δzi (t) =
[
δqi (t)
δq̇i (t)

]
∈ Tz(t)T Q, i = 1, 2, (27b)

such that
δzi (T ) = Tψ

(
z(0), T

) · δzi (0), i = 1, 2. (27c)

Moreover, the Lagrangian symplectic two-form may be represented in matrix form
by

�L(q, q̇) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 A12 . . . A1N B11 . . . B1N

−A12 0 . . . A2N B21 . . . B2N
...

...
. . .

...
...

. . .
...

−A1N −A2N . . . 0 BN1 . . . BNN

−B11 −B12 . . . −B1N 0 . . . 0
...

...
. . .

...
...

. . .
...

−BN1 −BN2 . . . −BNN 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (27d)
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where

Ai j (q, q̇) = −A ji (q, q̇) = 1

2

(
∂2L

∂q j∂q̇i
(q, q̇) − ∂2L

∂qi∂q̇ j
(q, q̇)

)

Bi j (q, q̇) = ∂2L

∂q̇ j∂q̇i
(q, q̇).

(27e)

To show how the above result can be deduced, we follow the procedure presented
in (Marsden and West 2001; Lew et al. 2004). Consider a two-parameter family of
solution trajectories (qε,ν(t), vε,ν(t)) ∈ T Qwith ε, ν ∈ R and compute the following
variations

δqε
1(t) = ∂qε,ν

∂ν
(t)

∣∣∣∣
ν=0

(28a)

δqν
2(t) = ∂qε,ν

∂ε
(t)

∣∣∣∣
ε=0

(28b)

δ2q(t) = ∂2qε,ν

∂ε∂ν
(t)

∣∣∣∣
ε,ν=0

, (28c)

and the same applies for δvε
1(t), δv

ν
2(t), and δ2v(t). See Fig. 8. Moreover, we write

δq1(t) = δq0
1(t), δq2(t) = δq0

2(t) and qε(t) = qε,0(t). (28d)

Example. We build the two-parameters family of curves

qε,ν(t) = exp [εω̃] (q(t) + ν k) ,

Fig. 8 Two-parameter
family of solution
trajectories z(t)ε,ν =
(q(t)ε,ν , q̇(t)ε,ν) ∈ T Q. The
corresponding variations
δz1(t) and δz2(t) belong to
the tangent space Tz(t)T Q
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where ω̃ is a constant and skew-symmetric tensor and k ∈ R
3. Then, we have

δqε
1(t) = exp [εω̃]k,

δqν
2(t) = ω̃ (q(t) + νk) ,

δq0
1(t) = k,

δq0
2(t) = ω̃q(t),

δ2q(t) = dδqε
1

dε
(t)

∣∣∣∣
ε=0

= dδqν
2

dν
(t)

∣∣∣∣
ν=0

= ω̃k.

�

Since we assumed that qε,ν(t) are solutions of the Euler–Lagrange equations, then

∂

∂ν

∣∣∣∣
ν=0

S
[
qε,ν

] =
N∑
i=1

∂L

∂q̇i
(qε,0(t), q̇ε,0(t)) δqε

1i (t)
∣∣∣T
0

(29)

for any ε. We obtain the second variation of the action in the direction of these
variations as (omitting arguments of functions for simplicity)

∂

∂ε

∣∣∣∣
ε=0

∂

∂ν

∣∣∣∣
ν=0

S
[
qε,ν

] = ∂

∂ε

∣∣∣∣
ε=0

(
N∑
i=1

∂L

∂q̇i
δqε

1i

∣∣∣T
0

)

=
N∑

i, j=1

[
∂2L

∂q j∂q̇i
δq1iδq2 j

∣∣∣T
0

+ ∂2L

∂q̇ j∂q̇i
δq1iδq̇2 j

∣∣∣T
0

]

+
N∑
i=1

∂L

∂q̇i
δ2qi

∣∣∣T
0
.

An equivalent expression is obtained by reversing the order of differentiation with
respect to ε and ν since mixed partial derivatives are equal. Subtracting both expres-
sion we obtain

0 =
N∑

i, j=1

[
∂2L

∂q j∂q̇i

(
δq1iδq2 j − δq2iδq1 j

) ∣∣∣T
0

+ ∂2L

∂q̇ j∂q̇i

(
δq1iδq̇2 j − δq2iδq̇1 j

) ∣∣∣T
0

]
.

(30)

This identity can be rewritten to obtain an expression equivalent to (27a) with the
(2N ) × (2N ) Lagrangian symplectic matrix given by (27d) and (27e), i.e.,
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[
δq1(0) δq̇1(0)

]T · �L(q(0), q̇(0)) ·
[

δq2(0)
δq̇2(0)

]
=

[
δq1(T ) δq̇1(T )

]T · �L(q(T ), q̇(T )) ·
[

δq2(T )

δq̇2(T )

]
. (31)

Therefore, we say that the Lagrangian symplectic two-form is exactly conserved
along solution trajectories over T Q.

Particle in a hoop. Considering the Lagrangian function (4) we have that

∂2L

∂θ∂θ̇
= 0 and

∂2L

∂θ̇2
= mr2,

and thus, the matrix representing the symplectic two-form is

�L
(
θ(t), θ̇(t)

) =
[

0 mr2

−mr2 0

]
.

Consider, for example, the following bi-parametric family of solution trajectories

θε,ν(t) = eεθ(t) + νt

θ̇ε,ν(t) = dθε,ν(t)

dt
= eεθ̇(t) + ν,

where ε, ν ∈ R. Then,

δθ1(t) = t, δθ2(t) = θ(t), δθ̇1(t) = 1 and δθ̇2(t) = θ̇(t).

Notice that (δθi (t), δθ̇i (t)) ∈ Tθ(t),θ̇(t)T S1, i = 1, 2. The conservation of the
symplectic two-form along solution trajectories (31) implies that

[
δθ1(0)
δθ̇1(0)

]
· �L

[
δθ2(0)
δθ̇2(0)

]
=
[
δθ1(T )

δθ̇1(T )

]
· �L

[
δθ2(T )

δθ̇2(T )

]
,

or equivalently,

[
0
1

]
·
[

0 mr2

−mr2 0

] [
θ(0)
θ̇(0)

]
=
[
T
1

]
·
[

0 mr2

−mr2 0

] [
θ(T )

θ̇(T )

]
.

Two particles joined by a rigid rod. We note that the only nonzero coefficients
of the Lagrangian symplectic two-form are

B11 = ∂2L

∂ ẋ2CG

= 2m, B22 = ∂2L

∂ ẏ2CG

= 2m, B33 = ∂2L

∂θ̇2
= 2mL2,
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and therefore, the symplectic two-form is represented by

�L
(
z(t)

) =
[

03×3 B
−B 03×3

]
,

where z(t) = (xCG(t), yCG(t), θ(t), ẋCG(t), ẏCG(t), θ̇(t)) ∈ T Q, 03×3 is a 3× 3
matrix with of zeros and

B = 2m

⎡
⎣1 0 0
0 1 0
0 0 L2

⎤
⎦ .

Consider two admissible variations δzi (t) ∈ Tz(t)T Q, i = 1, 2, computed accord-
ing to (28a)–(28d). The conservation of the symplectic two-form along solution
trajectories ensures that

δz2(t) · �L
(
z(t)

)
δz1(t),

remains constant for all t ∈ [0, T ].

2.4 Hamiltonian Mechanics

HamiltonianMechanics reformulates Lagrange’s equations of motion in generalized
coordinates in a way that presents the motion of the system as a flow over phase
space, as we explain next.

Given a Lagrangian L , the conjugate momenta are defined as

p = ∂L

∂q̇
(q, q̇), (32)

or in coordinates,

pi = ∂L

∂q̇i
(q, q̇) i = 1, . . . , d. (33)

This defines a map (q, q̇) �→ (q, p), or (q, p) = FL(q, q̇). This map is termed the
Legendre transform. The space of all possible values of (q, p) is called phase space
T ∗Q. To be precise, T ∗Q is the cotangent bundle, also a manifold, which informally
speaking is defined by attaching to each point q ∈ Q the dual space T ∗

q Q to TqQ.

For typical mechanical systems FL : T Q → T ∗Q is bijective (and hence invert-
ible) and onto, because the Lagrangian is strictly convex in q̇ for each q. This means
that for these systems all possible values of the conjugate momenta are attained at
each point q ∈ Q, and hence FL−1(q, p) is defined for all p ∈ R

d .
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The Hamiltonian H : T ∗Q → R is defined as

H(p, q) = p · q̇ − L(q, q̇), (34)

where q̇ = FL−1(q, p).

Lagrange’s equations of motion can then be written in terms of (q, p) as
(in coordinates)

q̇i = ∂H

∂ pi
(q, p) (35a)

ṗi = −∂H

∂qi
(q, p). (35b)

These are Hamilton’s equations of motion, and are, again, valid for any choice of
generalized coordinates. These equations follow easily from using (34), namely,

∂H

∂ p j
= q̇ j +

d∑
i=1

[
pi

∂q̇i
∂ p j

− ∂L

∂q̇i

∂q̇i
∂ p j

]
= q̇ j

∂H

∂q j
=

d∑
i=1

[
pi

∂q̇i
∂q j

− ∂L

∂q j
− ∂L

∂q̇i

∂q̇i
∂q j

]
= − ∂L

∂q j

and replacing in (11).

Particle in a hoop. The Legendre transform is

pθ = FL(θ, θ̇) = mr2θ̇

which is precisely the angular momentum of the particle around the origin. By
solving the above equation for θ̇, and replacing in (34), we obtain the Hamiltonian

H(θ, pθ) = p2θ
2mr2

+ mgr sin θ.

Hamilton’s equations of motion are

θ̇ = ∂H

∂ pθ
= pθ

mr2

ṗθ = −∂H

∂θ
= −mgr cos θ.

General multibody system. The Legendre transform in this case is

π = M(q)q̇. (36)
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Since M(q) is positive definite for any q, it is invertible for any q. Hence,

q̇ = M−1(q)π. (37)

The Hamiltonian then follows as

H(q,π) = 1

2
π · M−1(q)π +U (q), (38)

and Hamilton’s equations of motion as

q̇ = M−1(q)π,

π̇ = −1

2
π · ∂M−1

∂q
(q)π − ∂U

∂q
(q).

�
Hamilton’s equations (35a) and (35b) can be written in a more succinct form as

ẏ = J
∂H

∂ y
( y) = XH ( y), (39)

where y = (q, p) is a point on the phase space T ∗Q, XH ( y) ∈ TyT ∗Q is known as
the Hamiltonian vector field and the skew-symmetric matrix

J =
[

0d×d Id×d

−Id×d 0d×d

]
, (40)

is the canonical symplectic matrixwhich represents a skew-symmetric bilinear form,
the canonical symplectic two-fom, that is conserved along solution trajectories on the
phase space. This crucial aspect will be considered in detail in the following section.
In (40) Id×d and 0d×d , are the d × d identity and zero matrices, respectively.

The expression (39) provides an intrinsic definition for Hamiltonian systems since
given a smooth enough Hamiltonian function H : T ∗Q → R, the matrix J may be
though as a the linear transformation thatmaps ∂H( y)/∂ ywhich belongs to T ∗

y T
∗Q,

to the Hamiltonian vector field XH ( y) which belongs to TyT ∗Q. See Fig. 9.

Note that as long as a solution of the system (39) exists, it is possible to define a
function

� : T ∗Q × R → T ∗Q
( y, t) �→ �( y, t)

(41)

with �( y, 0) = y0 so that the trajectory of the mechanical system that starts at
y0 ∈ T ∗Q is given by

y(t) = �( y0, t). (42)
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(a) (b)

Fig. 9 Consider a point y = (q, p) belonging to the phase field T ∗Q. a Shows how the gradient
∂H( y)/∂ y which belongs to the linear space T ∗

y T
∗Q is related to the Hamiltonian map XH ( y) ∈

TyT ∗Q through the map J. In (b) a geometric interpretation of Hamilton’s equations is provided.
The Hamiltonian vector field XH ( y) = (∂H/∂p,−∂H/∂q) is shown as a velocity vector which
is tangent to the solution trajectory

Themap� is called the flowmap of theHamiltonian vector fieldXH , and it enables to
consider the mechanical system as evolving collections of initial conditions, instead
of only individual ones.

2.5 Conservation Properties: Hamiltonian Point of View

Since the Hamiltonian and Lagrangian points of view of mechanics are equivalent,5

conservation propertiesmay be stated in terms of variables on T ∗Q. In this sectionwe
show how the properties described in Sect. 2.3 look when observed from the Hamil-
tonian point of view ofmechanics. In particular, we present a comprehensive descrip-
tion of the connection existing between the symplectic nature of Hamiltonian flows
and the conservation of volume in the phase space. This might seems at first glance,
as a technicality of minor significance, however it has important consequences in the
study of conservative and dissipative perturbations of nearly integrable Hamiltonian
systems (Meyer et al. 2009;Maddocks andOverton 1995; Stoffer 1997, 1998; Hairer
and Lubich 1999) and in the formulation of structure-preserving algorithms (Hairer
et al. 2006, Chap. X, XI, XII; Channell and Scovel 1990; Meyer et al. 2011). The
uninterested reader may skip this section, and continue directly to the formulation
of variational integrators.

5There exist some exceptions in this regard such as for example, when the Legendre transform is
not well defined.
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2.5.1 Conservation of Energy

An autonomous Hamiltonian system conserves the energy, or in other words, its
Hamiltonian function is exactly conserved along solution trajectories. This conser-
vationproperty is readily verifiedby computing the timederivative of theHamiltonian
function (34) over a solution trajectory (q(t), p(t)) that satisfies (35a) and (35b), i.e.,

Ḣ(q, p) = ∂H

∂p
· ṗ + ∂H

∂q
· q̇ = −∂H

∂p
· ∂H

∂q
+ ∂H

∂q
· ∂H

∂p
= 0. (43)

2.5.2 Symplecticity of the Flow

An outstanding property of Hamiltonian systems is the symplecticity of their
flows (41) on the phase space. In fact, the preservation of a discrete form of this
property by the so-called symplectic methods (Yoshida 1993; Hairer et al. 2003)
contributes to explain their superior performance in numerical simulations in terms
of long-term stability and error propagation, when applied to Hamiltonian problems
and/or to perturbations of them (Maddocks and Overton 1995; Hairer and Lubich
1999; Hairer et al. 2006, Chap. XII). A nice introduction to this subject can be con-
sulted in (Leimkuhler and Reich 2005, Chap. 3) where a geometric interpretation
of symplecticity in terms of volume preservation on the phase space is provided.
A complete survey about symplectic forms on differentiable manifolds can be found
elsewhere, e.g., (Arnold 1989; Marsden and Ratiu 1999).

To make a proper introduction of this geometric property of Hamiltonian flows,
we closely follow (Leimkuhler and Reich 2005) and (Hairer et al. 2006). We first
restrict the discussion to mappings fromR

2d to itself and we show that for d = 1 the
symplectic nature of the flow is manifested through area preservation on the phase
space. The generalization to d > 1 allows to identify symplecticity with volume
preservation. Finally, we provide some rudiments in order to extend the ideas to
symplectic maps on cotangent bundles.

Symplectic two-fom. Consider two points z1 = (q1
1 , ..., q

n
1 , p11, ..., p

n
1 ) and z2 =

(q1
2 , ..., q

n
2 , p12, ..., p

n
2 ) both belonging toR

2n . The oriented area of the parallelogram
spanned by the projections of z1 and z2 on the coordinate plane (qi , pi ) is given by

ρi = pi2q
i
1 − qi

2 p
i
1, i = 1, ...n, (44)

see Fig. 10. The sum of all the oriented areas is

ω (z1, z1) = ρ1 + · · · + ρn. (45)
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Fig. 10 Consider
z1 = (q1, p1) and
z2 = (q2, p2) ∈ R

2. The area
of the parallelogram spanned
is given by z1 and z2 is
ω(z1, z2) = p1q2 − p2q1.
The linear mapping
A : R2 → R

2 is symplectic
if ω(z1, z2) = ω(Az1, Az2).
This is equivalent to area
conservation

This expression defines the skew-symmetric bilinear map ω : R2n × R
2n �→ R that

may be represented in matrix form as

ω(z1, z2) = z2 · J−1z1, (46)

where J is the canonical symplectic matrix (40).

Symplectic mappings. A linear mapping A : R2n �→ R
2n is called symplectic if

AtJ−1A = J−1, (47)

which is equivalent to

ω(z1, z2) = ω(Az1, Az2), for all z1, z2 ∈ R
2n . (48)

Then, a symplectic linear map conserves the sum of the oriented areas of the paral-
lelograms spanned by the projections of any two arbitrary points z1 and z2 on the
coordinate planes (qi , pi ), i = 1, ..., n. For n = 1 it is equivalent to area preservation
in the phase space and for n > 1 to volume preservation. See Fig. 10.

For nonlinear maps, an analogous result holds. A differentiable map ψ : U ⊂
R

2n �→ R
2n is symplectic if its Jacobian matrix ∂ψ( y)/∂ y is symplectic for all

y ∈ U , i.e., (
∂ψ

∂ y
( y)

)t

J−1

(
∂ψ

∂ y
( y)

)
= J−1, (49)

which is equivalent to (48) after replacing A by ∂ψ( y)/∂ y. A geometric interpre-
tation of symplecticity for nonlinear maps can be consulted in for example (Hairer
et al. 2006, Chap. VI.2) or (Leimkuhler and Reich 2005).

Taking into account the above definitions it is possible to state the following
fundamental result due to Poincaré:
Theorem (Poincaré 1899). For each fixed time t , the flow map �( y0, t) of a Hamil-
tonian system with a twice continuously differentiable function H( y), defines a
symplectic transformation, i.e.,
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(
∂�

∂ y0
( y0, t)

)t

J−1

(
∂�

∂ y0
( y0, t)

)
= J−1. (50)

Proof See (Hairer et al. 2006, pp. 184–185) or (Arnold 1989, Chap. 8) �

Equation (50) provides an intrinsic definition forHamiltonian systems in the sense
that any continuously differentiable f : U ⊂ R

2n �→ R
2n can be locally written as

f = J
∂H

∂ y
( y),

for an appropriate Hamiltonian function H( y) if the flow generated by

ẏ = f ( y),

is symplectic for all y ∈ U and small enough t (Hairer et al. 2006).

Hamiltonian flows on manifolds. The form in which Hamiltonian systems generate
symplectic flows on the phase space can be alternatively explained following the
ideas presented in Sect. 2.3.2. To this end, we consider a Hamiltonian system with
differentiable flow map �( y, t) where y ∈ T ∗Q and t > 0. We also consider the
elements u and v which belong to TyT ∗Q. Owing to the fact that � is symplectic, it
preserves the canonical symplectic form ω, according to

ω y (u, v) = ω�( y,t) (T� · u, T� · v) ,

u · J−1v = (T� · u) · J−1(T� · v)

which, since

T�( y, t) · u = ∂�

∂ y
( y, t)u = �′u,

yields to
u · J−1v = u · (�′tJ−1�′) v.

The condition given in (50) is recovered after noticing that u and v are arbitrary
elements.

Figure11 shows an illustration of the flow map � for the particle in the hoop
settingm = 1, r = 1, and g = 1. The horizontal axis has the angle coordinate θ, and
the vertical axis has themomentum,mr2θ̇, which for these constants reduces to θ̇.We
consider initial conditions belonging to the boundary of the square [0, 4]×[−2, 2] ∈
T ∗Q ⊂ R

2 drawn in black color and to the boundary of the square [0, 2]×[−1, 1] ⊂
R

2 drawn in blue color. Then, we define the set of initial conditions as

B0 = boundary
([0, 2] × [−1, 1]) ∪ boundary

([0, 4] × [−2, 2]). (51)
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2 40

-2

-1

1

2 *

Fig. 11 Illustration of the flow map � for the particle in the hoop with m = 1, r = 1, and g = 1.
The horizontal axis has the angle coordinate and the vertical axis has the momentum. For every time
instant {t i }i=1,...,4 the map � generates an updated configuration, Bi , of the set of initial conditions
(51) according to (52). Despite the fact that the shape of the set B0 deforms drastically in time, its
area remains invariant due to the symplectic (volume-preserving) nature the flow

The area enclosed by the figure is 16. The flow map � deforms the shape of the set
of initial conditions in such a manner that the sets

Bi :=
{
v ∈ T ∗Q

∣∣∣ v = �(u0, t
i ), u0 ∈ B0

}
, i = 1, 2, 3, 4. (52)

represent updated configurations of B0 at later times {t i }i=1,...,4. The same figure
shows that even though the shape of the Bi ’s changes drastically, its area remains
invariant due to the fact that � is a symplectic map.

3 Discrete Lagrangian Mechanics

This section focuses on presenting a systematic methodology to construct structure-
preserving methods for finite-dimensional and autonomous, Lagrangian dynamical
systems. To this end, we take advantage of some concepts in discrete Lagrangian
mechanics (Marsden and West 2001). The basic idea is to consider discrete trajecto-
ries for the mechanical system, and to define the dynamics of those trajectories via
a discrete version of Hamilton’s principle applied to an approximate action.

3.1 Construction of Variational Integrators

We begin by considering a discretization 0 = t0 < t1 < . . . < t N−1 < t N = T
of the interval [0, T ], for some N ∈ N. In the most common case tn = nh, with
h = T/N , and for simplicity, this is the case we shall adopt for these notes. A discrete
trajectory associated to this discretization is an element of
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QN+1 = Q × · · · × Q︸ ︷︷ ︸
N times

,

and it is indicated by

{qi }i=0,...,N = {q0, q1, . . . , qN−1, qN } ⊂ QN+1.

Let us then introduce a discrete Lagrangian Ld : Q × Q × R → R such that

Ld(q0, q1, h) ≈
∫ h

0
L(q(t), q̇(t)) dt (53)

when q0 = q(0) and q1 = q(h), where q(t) is the exact trajectory of the system in
that time interval. We shall discuss this approximation in more length later. Notice
that the tangent space T Q has been replaced by Q × Q × h. Notice as well that
the discrete Lagrangian is not an approximation of the Lagrangian, but rather of the
action over a time interval [0, h].

The discrete Lagrangian will be used to select a discrete trajectory for the system,
inasmuch the Lagrangian is used to select a trajectory in the time-continuous system.

Example We explain how the discrete Lagrangians of some of the most popular time
integrators for ODE’s are constructed. We also apply the method to some particular
Lagrangian functions.

• Rectangle rule (case 1). A general guideline for the construction of discrete
Lagrangians is to combine an approximation space for a trajectory of the sys-
tem and a quadrature rule for the integral over [0, h]. In this simplest case, we
approximate the exact trajectory of the system q(t) over [0, T ] with a continuous
piecewise linear polynomial, i.e.,

q(t) ≈ q0 + q1 − q0

h
t, t ∈ [0, h].

Therefore, the exact velocity, q̇(t), is approximated by

h−1(q1 − q0) ≈ q̇(t), t ∈ [0, h],

see Fig. 12. The discrete Lagrangian is then constructed as

L0
d(q

0, q1, h) = hL

(
q0,

q1 − q0

h

)
≈
∫ h

0
L(q(t), q̇(t))dt, (54a)
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Fig. 12 Piecewise linear
approximation of q(t),
continuous across time
intervals. The approximation
obtained for the velocity is
constant over the time
interval, and hence generally
discontinuous across time
interval boundaries

which is equivalent to using a single quadrature point at the beginningof the interval
[0, h] (rectangle rule). For the particle in the hoop, this discrete Lagrangian takes
the form

L0
d(θ

0, θ1, h) = h

[
m

2
r2
(

θ1 − θ0

h

)2

− mgr sin θ0

]
. (54b)

For thermoelastic systems we have

L0
d(q

0, q1,�0,�1, h) = (54c)

h

[
1

2

(
q1 − q0

h

)
· M(q0)

(
q1 − q0

h

)
− A

(
q0,

�1 − �0

h

)]
.

• Rectangle rule (case 2). Alternatively, it is possible to approximate the action
functional by

L1
d(q

0, q1, h) = hL

(
q1,

q1 − q0

h

)
. (54d)

• Trapezoidal rule. Both, (54a) and (54d) are particular cases of the discrete
Lagrangian

Lα
d (q

0, q1, h) = (1 − α)L0
d(q

0, q1, h) + αL1
d(q

0, q1, h). (54e)

which for α = 1
2 is known as the trapezoidal rule.

• Midpoint rule. The so-called implicit midpoint method is derived from the mid-
point discrete Lagrangian

Lm
d (q0, q1, h) = hL

(
q1 + q0

2
,

q1 − q0

h

)
. (54f)
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For the two particles joined by the rigid rod, it is given by

Ld(x
0, y0, θ0, x1, y1, θ1, h) =

m

[
(x1CG − x0CG)2

h
+ (y1CG − y0CG)2

h
+ L2 (θ1CG − θ0CG)2

h

]
, (54g)

and for thermoelastic systems,

L0
d(q

0, q1,�0,�1, h) =
h

[
1

2

(
q1 − q0

h

)
· M

(
q1 + q0

2

)(
q1 − q0

h

)
−

A
(

q1 + q0

2
,
�1 − �0

h

)]
. (54h)

Back to selecting the discrete trajectory, we construct the discrete Action Sum
Sd : QN+1 → R as

Sd(q0, . . . , qN ) =
N−1∑
i=0

Ld(qi , qi+1, h). (55)

The discrete Variational Principle is formulated mimicking the continuous case:
The trajectory {qi }i=0,...,N is a stationary point of the discrete action sum among all
variations that leave the endpoints fixed. In other words,

〈Sd(q0, . . . , qN ), (δq0, . . . , δqN )〉 =
N∑
i=0

∂Sd
∂qi

(q0, . . . , qN )δqi = 0 (56)

for any variations that satisfy δq0 = δqN = 0. This happens if and only if

∂Sd
∂qi

(
q0, . . . , qN

) = 0, i = 1, . . . , N − 1. (57)

In terms of the discrete Lagrangians, this reads

0 = ∂Ld

∂qi
(qi , qi+1, h) + ∂Ld

∂qi
(qi−1, qi , h), i = 1, . . . , N − 1. (58)

These are the discrete Euler–Lagrange equations, or DEL equations, and they define
the discrete trajectory. They also define the algorithm: If qi−1, qi are known, these
equations need to be solved to find qi+1.
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(a) (b)

Fig. 13 Schematic representation of a the discrete Lagrangian map �L
h : Q × Q → Q × Q and

b the discrete Hamiltonian map �h : T Q∗ → T Q∗

Thus, the discrete Euler–Lagrange equations implicitly define a map

�L
h : Q × Q → Q × Q

(qi−1, qi ) �→ �L
h (qi−1, qi ) = (qi , qi+1)

,

known as the discrete Lagrangian map. If ∂Ld/∂qi is invertible over Q × Q, then
this map is well defined. The map �L

h then flows the system forward over Q × Q
between consecutive time-steps. See Fig. 13a.

Aswe shall see later, under simple conditions the discrete trajectories will approx-
imate the exact trajectories of the Lagrangian in (53). The map �L

h can thus be con-
sidered a time-integrator, and because it satisfies the DEL equations of the discrete
variational principle, it is called a variational integrator.

Example In this example, we derive the DEL equations for the discrete Lagrangians
introduced so far, as applied to a general multibody system with a configuration-
independent mass matrix.

• Rectangle rules 1 and 2 and trapezoidal rule. Consider first the discrete
Lagrangian L0

d for such system. Then, we have that

∂L0
d

∂q0
(q0, q1, h) = −M

(
q1 − q0

h

)
− h

∂U

∂q
(q0)

∂Ld

∂q1
(q0, q1, h) = M

(
q1 − q0

h

)
,
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from where the DEL equations follow as

0 = − M
(

qi+1 − qi

h

)
− h

∂U

∂q
(qi ) + M

(
qi − qi−1

h

)

= −M
(

qi+1 − 2qi + qi−1

h

)
− h

∂U

∂q
(qi ).

(59)

These are the equations of Newmark’s second-order explicit algorithm, known
also as central differences or Störmer-Verlet.

Since M is positive definite, it is possible to solve (59) to get

qi+1 = 2qi − qi−1 − h2M−1 ∂U

∂q
(qi ).

The discrete Lagrangian map is then

�L
h (qi−1, qi ) =

(
qi , 2qi − qi−1 − h2M−1 ∂U

∂q
(qi )

)
. (60)

It is simple to check that the discrete Lagrangian

L1
d(q0, q1, h) = hL

(
q1,

q1 − q0

h

)
,

gives rise to the same DEL in this case! Therefore, the trapezoidal rule (54e)
yields the same DEL independently of the value chosen for α. This may not the
case when the dependence of the Lagrangian on the velocities is more complex,
such as in thermoelastic systems, see for example (Mata and Lew 2011, 2014).

• Midpoint rule. Using the midpoint rule, the discrete Lagrangian is given by

Lm
d (q0, q1, h) = h

[
1

2

(
q1 − q0

h

)
· M

(
q1 − q0

h

)
−U

(
q1 + q0

2

)]
, (61)

and thus,

∂Lm
d

∂q0
(q0, q1, h) = −M

(
q1 − q0

h

)
− h

2

∂U

∂q

(
q1 + q0

2

)
,

∂Lm
d

∂q1
(q0, q1, h) = M

(
q1 − q0

h

)
− h

2

∂U

∂q

(
q1 + q0

2

)
.
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Therefore, the DEL equations are given by

0 = −M
(

qi+1 − 2qi + qi−1

h

)

−h

2

(
∂U

∂q

(
qi+1 + qi

2

)
+ ∂U

∂q

(
qi + qi−1

2

))
.

Compare with (59). Note that in this case it is not possible to provide an explicit
expression for the discrete Lagrangian map �L

h (qi−1, qi ). �

More Discrete Lagrangians. The discrete Lagrangians shown so far give rise to
first- or second-order variational integrators. In the following, we show some discrete
Lagrangians that give rise to higher order time integrators.

• Quadratic rule. Consider a piecewise continuous quadratic approximation of the
trajectory over [0, h], i.e.,

qt/h = N1(t)q0 + N2(t)q
1
2 + N3(t)q1 ≈ q(t), t ∈ [0, h],

where q
1
2 ≈ q(h/2) is a coefficient needed for the quadratic interpolation and

Ni : [0, h] → R, i = 1, 2, 3,

are a set of basis functions for the set of second degree polynomials over [0, h],
P
2([0, h]), which satisfy

Ni (τ j ) = δi j for τ j ∈ {0, h/2, h},

see Fig. 14a. The velocity is approximated by

q̇t/h = Ṅ1(t)q0 + Ṅ2(t)q
1
2 + Ṅ3(t)q1 ≈ q̇(t), t ∈ [0, h].

The next step to construct a discrete Lagrangian consists in providing a quadrature
rule, described by a set of quadrature points over [0, h] and weights

{ξi , wi }i=1,...,nq .

Then, the discrete Lagrangian is given by

Ld(q0, q1, h) = inf
q̃(t) ∈ P

2([0,h])
q̃(0)=q0, q̃(h)=q1

Lu
d(q

0, q1/2, q1, h) (62a)
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where the unoptimized Lagrangian is defined as

Lu
d(q

0, q1/2, q1, h) =
nq∑
i=1

wi L (̃q(ξi ), ˙̃q(ξi )). (62b)

When a unique solution exists, the infimization in this last equation implicitly
defines the value of q1/2 given those of q0 and q1. In practice, the infimization is
imposed by requesting q1/2 to satisfy the stationarity condition

∂Lu
d

∂q1/2

(
q0, q1/2, q1, h

) = 0. (62c)

TheDELequations are thengivenby (58). In order to clarify the procedure consider
the thermoelastic Lagrangian (7) with constant mass matrix along with the Gauss–
Lobatto quadrature rulewith points {0, h/2, h} andweights {h/6, 4h/6, h/6}. First
we define the unoptimized discrete Lagrangian

Lu
d(q

0,�0, q
1
2 ,�

1
2 , q1,�

1
2 , h) = h

6

(
L0 + 4L

1
2 + L1

)
, (62d)

where

L0 = q̇0 · Mq̇0 − A
(

q0, �̇
0
)

,

L
1
2 = q̇

1
2 · Mq̇

1
2 − A

(
q

1
2 , �̇

1
2

)
,

L1 = q̇1 · Mq̇1 − A
(

q1, �̇
1
)

.

and

�̇
0 = h−1

(
4�

1
2 − 3�0 − �1

)
, �̇

1
2 = h−1

(
�1 − �0

)
,

�̇
1 = h−1

(
�0 − 4�

1
2 + 3�1

)
, q̇0 = h−1

(
4q

1
2 − 3q0 − q1

)
,

q̇
1
2 = h−1

(
q1 − q0

)
, q̇1 = h−1

(
q0 − 4q

1
2 + 3q1

)
.

Then, the discrete Lagrangian follows as

Ld(q0,�0, q1,�1, h) = inf
q

1
2 ,�

1
2

Lu
d(q

0,�0, q
1
2 ,�

1
2 , q1,�

1
2 , h). (62e)

The values of q
1
2 and �

1
2 that infimize Lu

d for given values of q0, �0, q1 and �1

satisfy the equations

∂Lu
d

∂q
1
2

= 4m
h2

(qk − 2qk+ 1
2 + qk+1) − fk+

1
2 = 0, (62f)
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∂Lu
d

∂�
1
2

= �k+ − �(k+1)− = 0, (62g)

where

fk+
1
2 = −∂A

∂q

(
qk+ 1

2 ,
�k+1 − �k

h

)
,

�k+ = −∂A
∂θ

(
qk,

−3�k + 4�k+ 1
2 − �k+1

h

)
,

�k− = −∂A
∂θ

(
qk,

�k−1 − 4�k− 1
2 + 3�k

h

)
.

• General Galerkin variational integrators. The basic idea behind the formulation
of general Galerkin VI’s consists in increasing the order of the approximation
polynomial along with the order of the quadrature rule used to approximate the
action of the system. To this end, we consider s + 1 control points over [0, h],

{
q0ν

}
ν=0,...,s ,

which satisfy q00 = q0 and q0s = q1 and correspond to the values of the trajectory
at control times

{dνh}ν=0,...,s with 0 = d0 < d1 < ... < ds = 1.

Moreover, we assume that the exact trajectory over [0, h] is approximated by a
unique s-degree polynomial

qp(t; q00 , ..., q0s , h) ∈ P
s([0, h])

such that
qp(dνh) = q0ν , ν = 0, 1, ..., s.

See Fig. 14b. Then, the discrete Lagrangian is obtained after providing an appro-
priate quadrature rule, {wi , ξi }i=1,...,nq , as

Ld(q0, q1, h) = inf
q(t)∈Ps ([0,h])

q(0)=q0,q(h)=q1

Lu
d

(
q00 , . . . , q0s , h

)
, (62h)

where

Lu
d

(
q00 , . . . , q0s , h

) =
nq∑
i=1

wi L(qp(ξi ), q̇p(ξi )). (62i)
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(a) (b)

Fig. 14 a The polynomial qt/h defines a continuous piecewise quadratic approximation of q(t)
over [0, h]. b Higher order approximation of the trajectory by means of high-order polynomials

The infimization in (62h) implicitly defines the value of
{
q0ν

}
ν=1,...,s−1 given those

of q0 and q1. In this case the stationarity conditions are given by

∂Lu
d

∂q0ν

(
q00 , . . . , q0s , h

) = 0, ν = 1, . . . , s − 1. (63)

�

Example Consider the discrete Lagrangian (62e) for thermoelastic systems along
with the stationarity (62f) and (62g). The DEL equations follow as

m
h2

(−qk+1 + 8qk+ 1
2 − 14qk + 8qk− 1

2 − qk−1) = fk+ + fk−

2
, (64a)

�(k+1)− − 4�k+ 1
2 − 3�k+ + 3�k− + 4�k− 1

2 − �(k−1)+ = 0, (64b)

where

fk+ = −∂A
∂q

(
qk,

−3�k + 4�k+ 1
2 − �k+1

h

)
(65a)

fk− = −∂A
∂q

(
qk,

�k−1 − 4�k− 1
2 + 3�k

h

)
, (65b)

�k+ 1
2 = −∂A

∂θ

(
qk+ 1

2 ,
�k+1 − �k

h

)
. (65c)

Together, (62f), (62g), (64a) and (64b) provide enough equations to solve for
(qk+ 1

2 , qk+1, �k+ 1
2 ,�k+1) given (qk− 1

2 , qk,�k− 1
2 ,�k).

Remark Higher order methods can be constructed by means of dividing [0, h] into
subintervals and applying compositionmethods. The basic idea consists in combining
several discrete Lagrangians together to obtain a new discrete Lagrangianwith higher
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order of accuracy. In (Marsden and West 2001, pp. 49–51) the methodologies to
construct both multistep and single step, multisubsteps methods are presented. �

3.2 Computation of Conjugate Momenta

The discrete Lagrangian map defines an evolution over Q × Q, so it does not define
either velocities or conjugate momenta. To do this, it is necessary to introduce the
discrete Legendre transforms F±Ld : Q × Q → T ∗Q as

F+Ld(q0, q1, h) = (q1, p1) =
(

q1,
∂Ld

∂q1
(q0, q1, h)

)
(66)

F−Ld(q0, q1, h) = (q0, p0) =
(

q0,−∂Ld

∂q0
(q0, q1, h)

)
. (67)

So, the discrete Legendre transforms define conjugate momenta p0 and p1 at q0

and at q1, respectively. Notice that along a discrete trajectory a single value of a
conjugate momentum is defined for each qi , instead of possibly two, coming each of
the two surrounding time-steps. This is because the discrete trajectory satisfies the
DEL equations, which state that

∂Ld

∂qi
(qi−1, qi , h) = −∂Ld

∂qi
(qi , qi+1, h), (68)

so

F−Ld(qi , qi+1, h) =
(

qi ,−∂Ld

∂qi
(qi , qi+1, h)

)

=
(

qi ,
∂Ld

∂qi
(qi−1, qi , h)

)
= F+Ld(qi−1, qi , h)

and the momentum at qi is uniquely defined.

The introduction of the conjugate momentum permits rewriting the DEL in the
so-called position-momentum form:

pi = −∂Ld

∂qi
(qi , qi+1, h) (69a)

pi+1 = ∂Ld

∂qi+1
(qi , qi+1, h). (69b)

Then, given (qi , pi ), these equations define (qi+1, pi+1). Themap�h : T ∗Q → T ∗Q
defined as (qi+1, pi+1) = �h(qi , pi ) is the discrete Hamiltonian map. See Fig. 13b.
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The velocities do not have an intrinsic definition in discrete Lagrangianmechanics
in terms of Ld , instead the velocities are approximated by inverting the Legendre
transform, namely,

(qi , q̇i ) = FL−1(qi , pi ) (70a)

or

q̇i = ∂H

∂p
(qi , pi ) (70b)

for each i . Notice that q̇i defined in this way will generally be different than the
approximation of the velocities that might have been used to construct the discrete
Lagrangian. As we shall see later, approximating the velocity as in (70a) guarantees
it will enjoy the same rate of convergence that q and p have.

Example In following we derive the position-momentum form of the DEL of some
discrete Lagrangians.

• Rectangle rules (cases 1 and 2). The position-momentum form of the DEL cor-
responding to L0

d(q
0, q1, h) is given by the equations

p0 = − ∂

∂q0

[
hL

(
q0,

q1 − q0

h

)]
=
[
−h

∂L

∂q
+ ∂L

∂q̇

] ∣∣∣∣(
q0,

q1−q0
h

),

p1 = ∂

∂q1

[
hL

(
q0,

q1 − q0

h

)]
= ∂L

∂q̇

(
q0,

q1 − q0

h

)
,

(71)

which for the case of a particle in the hoop are

p0 = mr

(
r

(
θ1 − θ0

h

)
+ hg cos θ0

)
,

p1 = mr2
(

θ1 − θ0

h

)
,

therefore, the discrete Hamiltonian map is

(θ1, p1) = �0
h(θ

0, p0) =
(

θ0 + hp0

mr2
− h2g

r
cos θ0, p0 − hmgr cos θ0

)
.

For the case of L1
d(q

0, q1, h) we have

p0 = − ∂

∂q0

[
hL

(
q1,

q1 − q0

h

)]
= ∂L

∂q̇

(
q1,

q1 − q0

h

)
,

p1 = ∂

∂q1

[
hL

(
q1,

q1 − q0

h

)]
=
[
h

∂L

∂q
+ ∂L

∂q̇

] ∣∣∣∣(
q1,

q1−q0
h

).
(72)



A Brief Introduction to Variational Integrators 249

As we mentioned earlier, both discrete Lagrangians L0
d and L1

d lead to the same
DEL. However, they define different approximations to the momenta, and hence
to the velocity. This is how these two discrete Lagrangians, and hence their inte-
grators, differ.

In the case of the particle in the hoop,

p0 = mr2
(

θ1 − θ0

h

)
,

p1 = mr

(
r

(
θ1 − θ0

h

)
− hg cos θ1

)
,

and the discrete Hamiltonian map is given by

(θ1, p1) = �1
h(θ

0, p0) =
(

θ0 + hp0

mr2
, p0 − hmgr cos θ1

)
.

The velocities are approximated considering (70a) as

θ̇0 = FL−1L(θ0, p0) = p0

mr2

θ̇1 = FL−1(θ1, θ̇1) = p1

mr2
.

• Trapezoidal rule. If the trapezoidal rule is selected to construct the discrete

Lagrangian for the particle in thehoop, L
1
2
d (θ0, θ1, h), the followingdiscreteHamil-

tonian map is obtained

(θ1, p1) = �
1
2
h (θ0, p0) = 1

2

(
�0

h(θ
0, p0) + �1

h(θ
0, p0)

)

=
(

θ0 + hp0

mr2
− h2g

2r
cos θ0, p0 − hmgr

cos θ1 − cos θ0

2

)

• Midpoint rule. Consider the midpoint discrete Lagrangian (54g). The position
momentum form of the DEL equations is given by

p0 =
⎛
⎝p0x
p0y
p0θ

⎞
⎠ = −2m

h

⎛
⎝ x1CG − x0CG

y1CG − y0CG
L2(θ1 − θ0)

⎞
⎠ , (73a)

and

p1 =
⎛
⎝p1x
p1y
p1θ

⎞
⎠ = −p0. (73b)
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�
The relations (69a) and (69b) are also valid for Galerkin VI’s. However, they need

to be complemented with (63) in order to fulfill the condition (62h).

Example Consider the discrete Lagrangian (62e) for the thermoelastic systems. The
conjugate momenta are given by

pk = m
3h

(8qk+ 1
2 − 7qk − qk+1) − h

6
fk+, (74a)

pk+1 = m
3h

(qk − 8qk+ 1
2 + 7qk+1) + h

6
f (k+1)−, (74b)

ηk = 3

6
�k+ − 1

6
�(k+1)− + 4

6
�k+ 1

2 , (74c)

ηk+1 = 3

6
�(k+1)− − 1

6
�k+ + 4

6
�k+ 1

2 . (74d)

�

3.3 Implementation of Variational Integrators

The position-momentum form of the DEL equations provide a natural way to imple-
ment a variational integrator in a computer code. We describe the general format of
an implementation next.

3.3.1 Initial Conditions

Most commonly initial conditions are provided in terms of positions and velocities
instead of positions and momenta as required by variational integrators in position-
momentum form. Then, we take advantage of the Legendre transform to compute
the initial momentum as

p0 = ∂L

∂q̇
(q(0), q̇(0)). (75)

3.3.2 Basic Algorithm

The computer implementation of variational methods in position-momentum form
follows a general structure summarized in Algorithm 1.

3.3.3 Post-processing Velocities

Consistent approximations to the velocities can be computedwith the help of (35a) as
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Data: Require (q0, p0), h and N .

forall the k = 0, 1, . . . , N − 1 do

Solve pk = −∂Ld

∂qk
(qk , qk+1, h) for qn+1.

Set pk+1 = ∂Ld

∂qk+1 (qk , qk+1, h).

end
Algorithm 1: Basic implementation of variational integrators.

q̇k = ∂H

∂p
(qk, pk).

3.4 Approximation Properties and Convergence

In contrast to the traditional approach to constructing time integrators, which begins
by approximating the equations ofmotion, the construction of a variational integrator
departs from an approximation of the action. The order of convergence of a traditional
integrator is generally assessed by the order of the consistency error. The question
is then how the order of convergence of a variational integrator can be determined
from the approximation of the action. This question was answered in (Marsden and
West 2001, Sect. 2.3), and we describe the main ideas next.

First we define the exact discrete Lagrangian

LE
d

(
q0, q1, h

) =
∫ h

0
L (q(t), q̇(t)) dt,

where q(t) is the solution of the E–L equations satisfying q(0) = q0 and q(h) = q1.
In other words, LE

d is a discrete Lagrangian that exactly matches the value of the
action for the exact trajectory in the time interval [0, h].

We can now define the local variational order. The discrete Lagrangian Ld is of
order r ≥ 1 if for any solution q of the E–L equations there exists hv > 0 andCv > 0
independent of h such that

∥∥Ld(q(0), q(h), h) − LE
d (q(0), q(h), h)

∥∥ ≤ Cvh
r+1, (76)

for all 0 < h < hv .6

6Notice that Cv can depend on (q(0), q̇(0)). For simplicity, we deliberately avoided the additional
requirement that Cv should be uniformly bounded over a subset of TQ (see Marsden and West
2001). In designing a variational integrator and evaluating its order, this is a secondary condition
not difficult to satisfy.
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We are now ready to answer the question we started from: A fundamental result
presented in (Marsden and West 2001, Theorem2.3.1, pp. 43–44) states that the
variational integrator obtained from a discrete Lagrangian of order r+1 has order r .
Thus, to design a variational integrator of order r it is enough to construct a discrete
Lagrangian of order r + 1. We show examples of order calculation below.

3.4.1 Order Calculation

To compute the order of Ld(q(0), q(h), h), we expand it in a Taylor series of h
around h = 0 and compare the terms with those of the Taylor series expansion of
the exact discrete Lagrangian. The first few terms of the latter are

LE
d (q(0), q(h), h) = hL (q(0), q̇(0)) +
+h2

2

(
∂L

∂q
(q(0), q̇(0)) · q̇(0) + ∂L

∂q̇
(q(0), q̇(0)) · q̈(0)

)
+ O(h3). (77)

If the first r terms of the series of both discrete Lagrangian are the same, then the
discrete Lagrangian is of order r + 1.

Example Consider the discrete Lagrangian built on the trapezoidal rule,

Lα
d (q(0), q(h), h) = f (h) =

(1 − α)hL

(
q(0),

q(h) − q(0)

h

)
+ αhL

(
q(h),

q(h) − q(0)

h

)
.

Here we introduced the name f (h) to explicitly indicate that the left-hand side is a
function of h only. Then,

f (0) = Lα
d (q(0), q(0), 0) = 0,

f ′(0) = dLα
d

dh
(q(0), q(0), 0) = L(q(0), q̇(0)),

f ′′(0) = d2Lα
d

dh2
(q(0), q(0), 0) = 2α

∂

∂q
L(q(0), q̇(0)) · q̇(0) + ∂

∂q̇
L(q(0), q̇(0)) · q̈(0),

therefore,

Lα
d (q(0), q(h), h) = hL(q(0), q̇(0))

+ h2

2

[
2α

∂

∂q
L(q(0), q̇(0)) · q̇(0)

+ ∂

∂q̇
L(q(0), q̇(0)) · q̈(0)

]
+ O (

h3
)
, (78)
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Comparing with (77) have that

LE
d (q(0), q(h), h)−Lα

d (q(0), q(h), h) = h2

2
(1−2α)

∂

∂q
L(q(0), q̇(0)) · q̇(0)+O (

h3
)
,

and hence r + 1 = 3 if and only if α = 1/2, and r + 1 = 2 otherwise. This
means that the two rectangle rules (α = 0, 1) are only first-order integrators, while
α = 1/2 gives rise to a second-order algorithm. A rather curious aspect of this last
remark is that, as mentioned earlier, all the aforementioned algorithms give rise to
the same DEL, but they differ on the discrete Legendre transform, or the definition
of the discrete momenta. Thus, while the coordinate values qi coincide in all three
algorithms, the momenta pi do not, and this is where the order difference between
the algorithms comes from.

The midpoint rule gives rise to the same expansion (78) with α = 1/2, so its a
second-order algorithm.

3.5 Conservation Properties: Discrete Point of View

This section focuses on the geometric properties of the flows generated by variational
integrators. As we highlighted before, they correspond to symplectic flows that show
an excellent long-term energy behavior along with the exact conservation of the
invariants associated to the symmetries of the discrete Lagrangian. These properties
along with the existence of a standard methodology to construct high-order methods
for Lagrangian systems evolving on general manifolds have contributed to increase
the use of VI’s in both the scientific and engineering communities.

• Symmetries and invariants of the dynamics. A discrete Lagrangian posses a
symmetrywhen it remains invariant under the actionof a groupon the configuration
manifold. Moreover, each symmetry of the discrete Lagrangian leads to a quantity
conserved by the dynamics (Marsden and West 2001) according to a discrete
version of the celebrated Noether’s theorem. This theorem reads as follows,

Discrete version of Noether’s theorem. Consider a discrete Lagrangian
Ld(qk, qk+1, h) and a one-parameter group of discrete curves {qε,k}k=0,...,N with
ε > 0 and q0,k = qk , that leaves the discrete Lagrangian invariant in the following
sense,

Ld
(
qε,k, qε,k+1, h

) = Ld
(
qk, qk+1, h

)
,

for all ε > 0 and k = 0, ..., N − 1. Moreover, consider the infinitesimal symmetry
direction,

ζ(qk) = d

dε
qε,k

∣∣∣∣
ε=0

.
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Then

I (qk, pk) = pk · ζ(qk) with pk = ∂Ld

∂qk
(qk−1, qk, h),

is an invariant of the dynamics for all k = 0, ..., N .

Proof See, e.g., (Lew et al. 2004) or (Hairer et al. 2006, Chap. VI.6) �

Example Consider the thermoelastic system described in page7 20. We know the
Lagrangian function is invariant under rigid body translations and rigid body rotations
in the physical space and under rigid body translations of the thermal displacements.
Therefore, total linear momentum, the total angular momentum and the entropy of
each thermoelastic spring are invariants of the dynamics.

We construct a discrete Lagrangian by means of applying the midpoint rule as

Lm
d

(
qk, qk+1,�k,�k+1, h

) = h

2

(
qk+1 − qk

h

)
· M

(
qk+1 − qk

h

)
−

−hA
(

qk + qk+1

2
,
�k+1 − �k

h

)
. (79)

First, we consider the one-parameter group of discrete curves

{
qε,k
i (t)

}
k=0,...,Nt

= {
qk
i (t) + εv

}
k=0,...,Nt{

�k,ε(t)
}
k=0,...,Nt

= {
�k(t) + εk

}
k=0,...,Nt

,

where v ∈ R
3 and k ∈ R

M are constant but otherwise arbitrary vectors. The corre-
sponding infinitesimal directions are given by

ξk = (vN , k) , k = 0, . . . , Nt ,

where vk
N ∈ R

d . Noticing that

qε,k+1 − qε,k = qk+1 − qk

�ε,k+1 − �ε,k = �k+1 − �k,

and considering that the distance between masses is conserved by rigid body trans-
lations in space, i.e.,

li

(
qε,k+1 + qε,k

2

)
= li

(
qk+1 + qk

2

)
, i = 1, . . . , N ,

7In this example Nt denotes the total number of time instants of the discrete trajectory and N is
reserved for the number of masses of the thermoelastic system.
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it is possible to verify that the discrete Lagrangian remains invariant and thus{
qε,k,�ε,k

}
k=0,...,Nt

is one of its symmetries.

The momentum vector is given by

(
pk,ηk

)
,

where

pk = M
(

qk+1 − qk

h

)
− h

2

∂A
∂q

(
qk+1 + qk

2
,
�k+1 − �k

h

)

ηk = −∂A
∂θ

(
qk+1 + qk

2
,
�k+1 − �k

h

)
,

and according to the discrete version of Noether’s theorem

vN · pk + k · ηk,

is conserved for all k = 1, . . . , Nt and (vN , k) ∈ R
d × R

M . Choosing

(vN , k) = ((ei , . . . , ei ), 0M) , i = 1, 2, 3

where {ei }i=1,2,3 is a basis in R3 and 0M is a M-dimensional vector of zeros, allows
to deduce that every component of the total linear momentum is exactly conserved.
Moreover, setting

(vN , k) = (
0N , k j

)
,

where k j
i = δ

j
i yields to the exact conservation of the entropy of every thermoelastic

spring.

Alternatively, we can consider a one-parameter group of discrete curves corre-
sponding to rigid body rotations in the physical space, namely

{
qε,k
i (t)

}
k=0,...,Nt

= {
exp [εω̃]qk

i (t)
}
k=0,...,Nt

(80a)
{
�k,ε(t)

}
k=0,...,Nt

= {
�k(t)

}
k=0,...,Nt

, (80b)

where ω̃ is a constant and skew-symmetric but otherwise arbitrary tensor with axial
vector ω̂ ∈ R

3. The corresponding infinitesimal symmetry direction is given by

ζ(qk) = {((
ω̂ × qk

1, ..., ω̂ × qk
N

)
, 0M

)}
k=0,...,Nt

.

The discrete Lagrangian (79) is invariant under the transformations defined in (80a)
and (80b) for all ε > 0, since both the discrete version of the kinetic energy and the
distance among the masses of the system remain unaffected by rigid body motions
in the physical space.
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Then, according to the discrete version of Noether’s theorem

pk · ξ(qk),

is exactly conserved by the dynamics for all k = 0, . . . , Nt . The above expression
can be rewritten as

Ak · Ŵ =
N∑
i=1

(
qk
i ×

[
M

(
qk+1 − qk

h

)
− ∂A

∂qk
i

(
qk+ 1

2 ,θk
)])

· ω̂,

where

Ŵ := (ω̂, . . . , ω̂)︸ ︷︷ ︸
N times

, qk+ 1
2 = qk+1 + qk

2
and θk = �k+1 − �k

h
.

Therefore, since ω̂ is an arbitrary vector inR3, it is possible to conclude that a discrete
version of the total angular momentum, Ak , remains invariant. �

• Discrete symplecticity. In Sect. 3.2 we described how the discrete Legendre trans-
form allows to define the discrete Hamiltonian map

�h : T ∗Q → T ∗Q
(qn, pn) �→ �h(qn, pn) = (qn+1, pn+1)

,

which can be used to construct the position-momentum form of a variational
method. In this section we show that �h also defines a discrete symplectic flow
on T ∗Q.

Remark Given a particular discrete Lagrangian, to demonstrate that its discrete
Hamiltonian map is symplectic, it is enough to verify that �h fulfils (50), i.e.,

(
∂�h

∂ yk
( yk)

)t

J−1

(
∂�h

∂ yk
( yk)

)
= J−1,

where yk = (qk, pk) ∈ T ∗Q. �

However, to prove this in a more general setting, we consider the following result:

Theorem Any smooth enough and nondegenerate function S(q, Q) generates a sym-
plectic flow (q, p) �→ (P, Q) if

p = −∂S

∂q
(q, Q) and P = ∂S

∂Q
(q, Q). (81)

Proof See (Hairer et al. 2006, pp. 196–197) �
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The function S(q, Q) is a particular case of the so-called generating functions.

Consider a sequence of points {qi }i=0,...,N on Q that is the solution of the DEL
equations (58) subjected to boundary conditions q0 and qN . Then the discrete action
sum (55) can be regarded as a function of the initial and final configuration points,
i.e.,

Sd
(
q0, qN

) =
N−1∑
i=0

Ld
(
qi , qi+1, h

)
.

Taking into account the discrete Legendre transformations (69a) and (69b), we have
that

∂Sd
∂q0

(
q0, qN

) = ∂Ld

∂q0

(
q0, q1, h

) = −p0,

∂Sd
∂qN

(
q0, qN

) = ∂Ld

∂qN

(
qN−1, qN , h

) = pN ,

and therefore applying Theorem3.5, the flow (q0, p0) �→ (qN , pN ) results to be sym-
plectic. This result can be applied to an arbitrary time interval [t i , t i+1], i = 0, . . . , N ,
which shows that the discrete flow of any variational integrator is automatically sym-
plectic and that the corresponding generating function is the discrete Lagrangian
Ld(qi , qi+1, h).

Example (Hairer et al. 2006, pp. 190). Consider the midpoint discrete Lagrangian,

Ld(q0, q1, h) = 1

2h
M(q1 − q0) · (q1 − q0) + hU

(
q

1
2

)
,

where q
1
2 = 1

2 (q
1 + q0). The corresponding variational integrator in position-

momentum form is given by

q1 = q0 + h M−1p
1
2

p1 = p0 − h
∂U

∂q

(
q

1
2

)
,

which can be rewritten as

z1 = z0 + h J
∂H

∂z

(
z

1
2

)
,

where z = (q, p) and H(z) is the Hamiltonian function of the problem. Differenti-
ating the above equation yields

(
I − h

2
J
∂2H

∂z2

)
∂z1

∂z0
=
(

I + h

2
J
∂2H

∂z2

)
,
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from which it is clear that

(
∂z1

∂z0

)t

J−1

(
∂z1

∂z0

)
= J−1.

�

• Long-term energy behavior. As it has been explained in Sect. 2.5 the flow on
the phase space of an autonomous Hamiltonian system is constrained to remain
on a constant energy manifold which depends on the initial conditions. Unfortu-
nately, the discrete flows generated by symplectic methods with constant time step
cannot conserve exactly the energy of the original Hamiltonian system (Ge and
Marsden 1988; Kane et al. 1999). However, in spite of this limitation, they show
an excellent long-term behavior with errors in the energy that remain bounded
for exponentially long periods of time. See, e.g., (Marsden and West (2001)). In
following, we explain the reasons for the superior behavior of symplectic methods.

In Fig. 15 the numerical flow of the Symplectic-Euler method (obtained from the
discrete Lagrangian (54a)) is compared with the numerical flow of the Explicit-
Euler method, when both methods are used to simulate the dynamics of the system
described by the Lagrangian

L(q(t), q̇(t)) = 1

2
q̇(t)2 − 5(q(t) − 1)2,

subjected to the initial conditions q(0) = 2, q̇(0) = 0. This system is conservative
and thus there should be no loss of energy over time. This figure shows that while

Fig. 15 Comparison
between the
Symplectic-Euler and the
Explicit-Euler methods.
Trajectories on the phase
space
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Fig. 16 Comparison between the Symplectic-Euler and the Explicit-Euler methods in terms of the
numerically computed energy

the trajectory of the Explicit-Euler method departs progressively from the exact
one, the trajectory of the Symplectic-Euler remains bounded and close to the exact
trajectory.

In Fig. 16 a plot of the energy

H(q(t), p(t)) = 1

2
m−1 p(t)2 + 5(q(t) − 1)2,

evaluated on the discrete trajectories versus time is shown. The striking aspect of
this graph is that while the energy associated with the Explicit-Euler method blows
up due to numerical instability, for the Symplectic-Euler method the energy error
remains bounded over a long period of time.

Backward error analysis. For a better understanding the above results, we may
resort to use the so-called backward error analysis applied to symplectic methods
(Marsden and West 2001; Lew et al. 2004; Faltinsen 2000).

Consider a numerical method, here represented by its discrete flowmap �̂h : Q →
Q, which we use to approximate the flow of the differential equation

ẏ = f(y), y(0) = y0 ∈ Q.

The basic idea of backward error analysis consist constructingmodified differential
equation

ỹ = fh (̃y) = f (̃y) + hf2(̃y) + h2f3(̃y) + ... (82)

such that its exact solution trajectory ỹ(t) exactly matches the discrete flow of the
numerical method, i.e.,

yk = �̂kh(y0) = ỹ(kh), k = 1, 2, ..., N .
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Then, the numerical analysis focuses on studying the difference between f(y)

and fh(y) in an appropriate norm instead of studying the difference between yk

and �̂kh(y0) which is the focus of the more traditional forward error analysis.
In practice the series (82) diverges and has to be truncated after a finite number
of terms. Therefore, this approach allows to interpret the numerical solution of a
differential equation as a higher order approximation of a modified system. We
can now understand why variational integrators are different to standard methods.
To this end we first consider the next theorem, which for sake of simplicity is
restricted to Hamiltonian functions taking arguments in R2d .

Theorem The modified equation of a symplectic method �h applied to a Hamil-
tonian system with a smooth Hamiltonian H : R2d → R is also Hamiltonian. It
means that there exist smooth functions Hj : R2d → R for j = 2, 3, ..., such that

ẏ = J
(

∂H

∂y
(y) + h

∂H2

∂y
(y) + h2

∂H3

∂y
(y) + · · ·

)
.

Proof See, e.g., (Hairer et al. 2006). �

In other words, �h is a higher order approximation to the flow of the dynamical
system defined by a shadow Hamiltonian

H̃h(y) = H(y) +
N∑
i=2

hi−1Hi (y),

which remains at least O(h) close to H .

Since every Lagrangian system admits a Hamiltonian representation, the modified
differential equation of every variational integrator is Hamiltonian. This means that
the discrete trajectory has all of the properties of a conservative mechanical system,
such as energy conservation. This property explains the shape of the closed trajectory
described by the Symplectic-Euler in Fig. 15. This also explains why the energy plots
for variational integrators contain a typical oscillation about a value close to the true
energy. See Fig. 16. The modified energy level set will be close to the true energy
level set everywhere, but it will typically be inside it at some locations and outside
it at others.

Finally, we mention a few words regarding to how much the discrete trajectory
moves away from both the exact energy manifold and the constant energy manifold
defined by the shadow Hamiltonian. If we apply an order p numerical method �h

with step size h to approximate the flow of a Hamiltonian system with analytic
H : D ⊂ R

2d → R, and if the numerical solution stays in the compact set K ⊂ D,
then there exist h0 and N = N (h) such that
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H̃(yk) = H̃(y0) + O (
eh0/2h

)
,

H(yk) = H(y0) + O(h p),

over exponentially long time intervals kh ≤ eh0/2h . See (Hairer et al. 2006,
Chap. IX) for details.

Therefore, it is possible to see that the discrete trajectory remains exponentially close
to the constant energymanifold defined by the shadowHamiltonian for exponentially
longs periods of time.Moreover, it also remainsO(h p) close to the manifold of exact
energy.

4 Final Examples

In this section,we formulate variational time integrators for two problems of practical
interest in science and engineering. First, we develop a second-order method based
on the trapezoidal rule for a free-flying body that is able to undergo arbitrarily large
rotations and displacements in space. This problem has been extensively studied
from both theoretical and numerical aspects (see, e.g., Meyer et al. 2009; Bauchau
and Bottasso 1999; Chaturvedi et al. 2011; Lee et al. 2007; Marsden and Ratiu 1999;
Simo and Wong 1991) among others) since its configuration space corresponds to
a nonlinear differentiable manifold rather than a linear space. The second example
corresponds to the formulation of an explicit, second-order accurate varitational
integrator for finite element discretizations of geometrically exact rods. We only
consider linear finite elements in space since a more general formulation can be
consulted in (Mata 2015). In both examples the time interval of interest [0, T ] is
partitioned into N > 1 subintervals with constant time step �t = T/N , and we set
t k = kT/N , k = 0, 1, ..., N .

4.1 Rotating Rigid Body

Consider an inertial reference frame {ei }i=1,2,3 in the three-dimensional space and
a rigid body B with mass density ρ > 0 which has rigidly attached to its center of
mass an orthogonal reference frame {t i }i=1,2,3. See Fig. 17. The orientation of the
body-fixed frame with respect to the inertial frame is specified by means of a rotation
tensor � according to

t i = �ei , i = 1, 2, 3.
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Fig. 17 Free-flying rigid
body. {ei }i=1,2,3 is a inertial
reference frame and
{t i }i=1,2,3 an orthogonal
body-fixed reference frame

The position vector of a material point of B is given by

y = x +
3∑

i=1

ξi t i = x +
3∑

i=1

ξi�ei ,

where ξ = (ξ1, ξ2, ξ3) is a set of coordinates with respect to {t i }i=1,2,3 and x =
x1e1 + x2e2 + x3e3 is the position vector of the center of mass of the body. The
spatial position of the body is specified by the pair (x,�) which is composed of a
position vector plus a rotation tensor measuring the deviation of body-fixed frame
with respect to the inertial reference frame.

Note that although x belongs to R
3 which is a linear space, � is an element of

the noncommutative (Lie) group of proper rotations

SO(3) = {
σ ∈ R

3×3 | σ−1 = σt and det[σ] = 1
}
,

which is a nonlinear manifold. A brief introduction to finite rotations is given in
Sect.B. Then, the configuration the manifold is SE(3) = R

3 × SO(3).

A motion of the body can be described by means of the time-dependent curve

� = (x,�) : [0, T ] → SE(3), (83)

with velocity given by

�̇ = (ẋ, �̇) ∈ T(x,�)SE(3) = R
3 × T�SO(3).

For free-flying bodies the Lagrangian function L : T SE(3) → R is equal to the
kinetic energy

L(�, �̇) = 1

2

(
m ẋ · ẋ + tr

[
�̃Jd�̃

t
])

, (84)

where m = ∫
B ρ dv is the total mass of the body,

�̃ = �t�̇,
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is the angular velocity tensor expressed in the body-fixed frame which belongs to
the (linear) space of skew-symmetric tensors so(3), and

Jd =
∫
B

ρ ξ ⊗ ξdv,

is a nonstandard moment of inertia tensor which is related to the standard symmetric
moment of inertia tensor, J, by

J =
∫
B

ρ ξ̃
t
ξ̃ dv = tr [Jd ] I − Jd ,

where ξ̃ = skew[ξ] ∈ so(3) is the skew-symmetric tensor obtained from ξ ∈ R
3.

See Sect.B.3. More details about this relation can be found in (Lee et al. 2007).

The application of Hamilton’s principle requires computing

〈
δS[�(t)], δ�(t)

〉
= dL

dε

(
xε(t),�ε(t), ẋε(t), �̇ε(t)

) = 0, (85)

where δ�(t) = (δx(t), δ�(t)) represents a variation over an arbitrary element �(t)
belonging to the set C composed by all the smooth enough trajectories of the form
(83) that leaves the endpoints of the trajectory fixed. This is by no means a trivial
task owing to the nonlinear nature of SE(3). On one hand, we have that

δx(t) = d

dε
(x(t) + εu(t))

∣∣∣∣
ε=0

= u(t),

δ�(t) = d

dε

(
exp

[
ε�̃(t)

]
�(t)

)∣∣∣∣
ε=0

= �̃(t)�(t),

where
u : [0, T ] → R

3 and �̃ : [0, T ] → so(3).

Therefore, a variation over �(·) is given by

δ� = (
u, �̃�

) ∈ T�C.

The above results allow to see that

δ ẋ = u̇ and δ�̃ = �t ˙̃��.

Replacing the above results in (85) yields

〈
δS[�], δ�

〉
= 1

2

∫ T

0
tr

[
δ�̃

(
d

dt
(jdω̃ + ω̃jd)

)]
dt −

∫ T

0
m ẍ · u dt = 0,
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where ω̃ = ��̃�t and jd = �Jd�t are the spatial forms of the angular velocity
tensor and nonstandard inertia tensor, respectively. Noting that since (u(t), �̃(t))
are arbitrary for all t ∈ [0, T ] and that

skew
[
j ω

] = jd ω̃ + ω̃ jd , (ω̃ = skew[ω]),

the following system of Euler–Lagrange equations is obtained

m ẍ = 0 and
d

dt
(skew [j ω]) = 0,

where ω ∈ R
3 is the axial vector of ω̃ and j = �J�t . Basically, both equations are

alternative statements for the conservation of the total linear momentum and total
angular momentum.

4.1.1 Legendre Transforms

Themomentumvectors are computedwith the help of the Legendre transformation as

p = m ẋ, and π = jω,

which allows to define the Hamiltonian function, H : T ∗SE(3) → R, as

H(p,π) = 1

2

(
m−1p · p + j−1π · π

)
,

and therefore, the E–L equations may be rewritten as

ṗ = 0 and ˙̃π = 0, (86)

respectively.

4.1.2 Discretization

The procedure to construct a variational integrator for this problem follows some
ideas presented in (Lee et al. 2007) for the full-body problem. We denote by
xk ≈ x(t k) and �k ≈ �(t k), k = 1, ..., N and we assume that the velocities
are approximated by

ẋ(τ ) ≈ x1 − x0

h
, (87a)

�̃(τ ) ≈ �0t �
1 − �0

h
, τ ∈ [t0, t1], (87b)
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and therefore,

tr
[
�̃Jd�̃

t
]

≈ tr

[
�0t �

1 − �0

h
Jd

(
�0t �

1 − �0

h

)t
]

, (88)

which, taking into account that for any two matrices A, B ∈ R
n×n , tr[AB] =

tr[BA] = tr[AtBt ], yields

tr
[
�̃Jd�̃

t
]

≈ 2

h2
tr
[(

I − �0t�1) Jd
]
.

Then, the discrete Lagrangian based on the trapezoidal rule is given by

Ld(x0, x1,�0,�1) = 1

2h
m(x1 − x0) · (x1 − x0) + 1

h
tr
[(

I − �0t�1) Jd
]
. (89)

Remark If the midpoint rule is preferred, the following approximation has to be used
for the angular velocity tensor

�̃ ≈ �0t + �1t

2

�1 − �0

h
.

Moreover, denoting by

A = (�0t + �1t )(�1 − �0)Jd
B = (�1t − �0t )(�0 + �1)

and applying the fact that tr[AB] = tr
[
AtBt

]
, it is possible to obtain

tr
[
�̃Jd�̃

t
]

≈ 1

2h2
tr
[
Jd

(
I − �1t�0�1t�0)] ,

which contains a higher power of (�1t�0) �

From (89) it is possible to define the discrete translational momenta as

p0 = −Dx0Ld = m

h
(x1 − x0), (90a)

p1 = Dx1Ld = p0. (90b)

Determining the momenta associated to the rotational part of the motion is a little
bit more involved. On one hand, considering that δ�0 = �̃

0
�0, we have that the

following relation holds

tr
[− (

D�0Ld
)
δ�0] = tr

[
−�̃

0
�0D�0Ld

]
= tr

[
�̃

0
(
1

h
�1Jd�0t

)]
= 0.
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On the other hand, we know that �̃
0
, the momentum conjugated to the rotation �0,

belongs to the linear space so(3)∗ which is the dual space of so(3). Moreover, so(3)∗
is also composed by skew-symmetric tensors. See, e.g., (Wendlandt and Marsden
1997; Marsden and Ratiu 1999).

Therefore, since �̃
0
is skew-symmetric and

tr
[
�̃

0
B
]

= 1

2
tr
[
�̃

0
(B − Bt )

]
,

for any 3 × 3 matrix B, we have that the above equation can be rewritten as

1

h
tr
[
�̃

0 (
�1Jd�0t − �0Jd�1t)] = 1

h
tr
[
�̃

0
�̃

0
]
,

which allows to identify

�̃
0 = 1

h

(
�inj0d − j0d�

in(t)
)
, (90c)

with themomentumconjugated to�0 after defining j0d = �0Jd�0t and�in = �1�0t .
On the other hand, following an analogue procedure allows to compute the skew-
symmetric momentum associated to �1 as

�̃
1 = �̃

0
. (90d)

Note that (90b) and (90d) are the DEL equations. They also are discrete counterparts
of the conservation laws (86)1,2.

4.1.3 Solution Procedure

Since the translational and rotational momenta are exactly conserved by the algo-
rithm, we only need to determine (x1,�1) from (x0,�0, p0,�0). The procedure is
as follows.

• The position in space is updated using (90a) as

x1 = x0 + h

m
p0.

• To determine �1 we parametrize the incremental rotation tensor �in in terms of
an incremental rotation vector θ ∈ R

3 as

�in = exp[̃θ],
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where θ̃ = skew[θ] is the skew-symmetric tensor obtained from θ and exp[•] :
so(3) �→ SO(3) is the exponential map (see Sect.B.3). Then, replacing in (90c)
yields to the following nonlinear system of equations

(
sin θ

θ

)
j0d θ +

(
1 − cos θ

θ2

)
θ × j0d θ = �0, (91)

where θ = ‖θ‖. This system is solved with the help of the Newton–Raphson
scheme. Having obtained θ, we update �1 = �in�0.

4.2 A Model for Geometrically Exact Rods

In this example, we take advantage of some of the previous results to build an explicit
time integrator for finite element discretizations of geometrically exact rods made of
an isotropic, homogeneous and hyperelastic material.

4.2.1 Continuum Model

First, we briefly review some basic results of the continuum model. The reference
configuration corresponds to a straight rod of length L and constant cross-section
A ⊂ R

2. The position vector of a material point in this configuration is

X(s, ξ1, ξ2) = sE1 + ξ2E2 + ξ3E3,

where {Ei }i=1,..,3 is an (orthogonal) inertial reference frame, s ∈ [0, L] is an arch-
length coordinate and (ξ2, ξ3) ⊂ A are coordinates on the cross section. The geomet-
ric place of points of the form X(s, 0, 0) defines a reference curve ϕ0. The current
configuration of the rod is characterized by the fields

� = (ϕ,�) : [0, L] → R
3 × SO(3), (92)

where ϕ is obtained by adding a displacement field onto ϕ0 and � defines the
orientation of the reference frame

t i (s) = �(s)Ei , s ∈ [0, L], i = 1, 2, 3,

which rigidly attached to the cross-section at s ∈ [0, L] and oriented along the
principal axis of inertia by convenience. The position vector of a material point in
the current configuration is given by

x(s, ξ2, ξ3) = ϕ(s) + ξ2t2(s) + ξ3t3(s).
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Fig. 18 Reference and
current configurations of the
elastic rod

See e.g., (Simo 1985; Simo and Vu-Quoc 1986, 1988; Kapania and Li 2003) and
Fig. 18.

Then, the configuration manifold, Q, is the set of all the smooth-enough fields
of the form (92) subjected to the prescribed boundary conditions �(0) = �0 and
�(L) = �L and to the restriction ∂ϕ

∂s · t1 > 0 (Simo et al. 1995).

Given a motion �(·) : [0, T ] → Q, the corresponding velocity is obtained as
�̇ = (ϕ̇, �̇) which yields to the following expression for the velocity of a material
point:

ẋ = ϕ̇ + �ṼZ, (93)

where Z = ξ2E2 + ξ3E3 and Ṽ = �t�̇, is the material form of the angular velocity
tensor.

Moreover, consider a stored energy function per unit of reference length ψ(�,�)

such that the material form of the cross-sectional stress resultants and stress couples
are given by

nm = ∂ψ

∂�
(�,�) = C��, and mm = ∂ψ

∂�
(�,�) = C��, (94)

where

� = �t (
∂ϕ

∂s
− t1)

is the (translational) strain vector, � is the axial vector of the curvature tensor

�̃ = �t ∂�

∂s

and the constitutive tensors C� and C� are given by

C� =
⎡
⎣EA 0

0 GA 0
0 0 GA

⎤
⎦ and C� =

⎡
⎣GJ 0 0

0 E I2 0
0 0 E I3

⎤
⎦ ,



A Brief Introduction to Variational Integrators 269

where E , G, J , I2, and I3 are an elastic modulus, a shear modulus, a torsional
stiffness, and two flexural stiffnesses, respectively. We also define the spatial forms
of the stress resultants and couples as

n = �nm and m = �mm,

respectively.

4.2.2 Hamilton’s Principle

The Lagrangian function L : TQ → R is constructed as the kinetic minus the
potential energy of the system, i.e.,

L(�, �̇) = K(�̇, �̇) − U(�), (95a)

where

K(�, �̇) = 1

2

∫ L

0

(Aρϕ̇ · ϕ̇ − Tr[ṼEρṼ]) ds, (95b)

U(�) =
∫ L

0
ψ(�,�) ds. (95c)

In (95b) the mass density per unit of reference length is given by

Aρ =
∫
A

ρ0 d A

and

Eρ =
∫
A

ρ0Z ⊗ Z d A,

a cross-sectional nonstandard inertia tensor. Compare with (84).

Consider the set C composed by all the smooth enough motions � : [0, T ] → Q.
Hamilton’s principle states that the trajectory followed by the system is a stationary
point of the action under all variations in C that leaves fixed the end points �(0) =
�(T ) = 0. This principle yields to the following Euler–Lagrange equations

Aρ
d2ϕ

dt2
= ∂n

∂s
+ N, (96a)

d

dt

(
skew[iρv]) = ∂m̃

∂s
+ ∂ϕ̃

∂s
ñ − ñ

∂ϕ̃

∂s
+ M̃, (96b)
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which have to be supplemented with adequate initial conditions. In the above equa-
tions iρ is the spatial form of the inertial tensor, N a vector of the external forces and
M̃ a skew-symmetric tensor of external moments.

4.2.3 Hamiltonian Framework

The Momentum densities

p = Aρϕ̇ and π̃ = skew
[
iρv

]
, (97)

are introduced by means of the Legendre transforms. Rewriting the kinetic energy
in terms of (p,π) it is possible to define the Hamiltonian function H : T∗Q → R as

H(p,π,�) = K(p,π) + U(�) = 1

2

∫ L

0

(A−1
ρ p · p + i−1

ρ π · π
)
ds + U(�),

from which it is possible to obtain the balance equations in Hamiltonian form as

ϕ̇ = A−1
ρ p,

�̇ = skew[i−1
ρ π]�,

ṗ = ∂n
∂s

+ N,

˙̃π = ∂m̃
∂s

+ ∂ϕ̃

∂s
ñ − ñ

∂ϕ̃

∂s
+ M̃.

Regarding to the invariants of the dynamics, we note that the Lagrangian is invariant
under translations in time and under rigid body translations and rotations in space.
These properties yields to the conservation of energy along with conservation of the
total linear momentum, Lt, and total angular momentum, Jt, which are given by

Lt =
∫ L

0
p ds and Jt =

∫ L

0
(ϕ × p + π) ds. (99)

4.2.4 Discretization in Space: Finite Elements

The discretization in space of the problem is carried out with the help of the finite
element method.We consider a partition of [0, L] in Ne linear elements with constant
length h. The basic idea consists in approximatingQ bymeans of a finite-dimensional
subspaceQh . In following, calculations are performed on the basis of a generic finite
element.
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(i) We consider first the translational part of the motion. The current position of ϕ
is approximated by

ϕh(ζ) = 1

2
(1 − ζ)ϕ1 + 1

2
(1 + ζ)ϕ2, ζ ∈ [−1, 1], (100)

where ϕ1,ϕ2 are the position vectors of the initial and final nodes of a generic
element in the mesh (Hughes 1987). It is worth noting that ϕh(ζ) belongs to R3

for all ζ ∈ [−1, 1] and that

∂ϕh

∂s
(ζ) = ϕ2 − ϕ1

h
, ζ ∈ [−1, 1],

since ds/dζ = 2/h.
(ii) Since the rotation group is a nonlinearmanifold, (100) cannot be applied. Instead,

we adopt the following procedure proposed in (Sansour and Wagner 2003),

• Use the Spurrier’s algorithm (Spurrier 1978) to represent the nodal values of
the rotation tensors, {�1,�2}, in terms of unit quaternions8 {q1, q2}.

• The nodal values of the rotation vectors {�1,�2} are extracted from {q1, q2}
with the help of the procedure given in (Simo and Vu-Quoc 1986).

• �h(s) can be obtained by applying (100). Then,qh(s) is computed from�h(s)
following standard procedures (see e.g. Crisfield 1998, Chap. XVI).

• Finally, �h(s) is obtained from qh(s) by applying the classical relation
between rotation tensors and quaternions.

The construction of a semi-discrete counterpart of the Lagrangian function (95a)
is as follows. The semi-discrete kinetic energy Kh : TQh ×R → R and the internal
and external components of the potential energy Uh,int

, Uh,ext : Qh × R → R are
given by

Kh = h

4

(Aρ(‖ϕ̇1‖2 + ‖ϕ̇2‖2
) − Tr

[
Ṽ1EρṼ1 + Ṽ2EρṼ2

]
, (101a)

Uh,int = h ψ (�h(0),�h(0)) , (101b)

Uh,ext = h wext
(
ϕh(0),�h(0)

)
, (101c)

where the explicit dependence on time has been omitted to simplify notation and

�h(0) = �t
h(0)

∂ϕh

∂s
(0) − E1,

�h(0) = axial
[
�̃h(0)

] = axial

[
�t

h(0)
∂�h

∂s
(0)

]
,

8Theoretical aspect about unit quaternions can be consulted, e.g., in (Mcrobie and Lasenby 1999;
Crisfield 1998).



272 A.J. Lew and P. Mata A

The semi-discrete Lagrangian is then constructed as

Lh = Kh − Uh,int − Uh,ext
.

The application of Hamilton’s principle allows to obtain the corresponding EL equa-
tions on the nodes of the mesh.

4.2.5 Discretization in Time: Variational Integrators

We denote by
(ϕk

i ,�
k
i ), i = 1, 2, (102)

to the approximation of the nodal variables
(
ϕi (t

k),�k
a(t

k)
)
.

The nodal value of the translational velocity is approximated by

ϕ̇i (τ ) ≈ ϕk+1
i − ϕk

i

�t
, i = 1, 2, τ ∈ (t k, t k+1), (103)

and time derivative of the rotational tensor by

�̇i (τ ) ≈ �k+1
i − �k

h

�t
, i = 1, 2, τ ∈ (t k, t k+1). (104)

The fully discrete (in space and time) counterpart of the kinetics energy is obtained
by replacing ϕ̇i by (103) and �̇i by (104) in (101a) to obtain

Kh
d

(
�0

h,�
1
h

) = h

2(�t)2

2∑
i=1

(Aρ

2
‖ϕk+1

i − ϕk
i ‖2 + Tr

[(
I − �

(k)t
i �k+1

i

)
Eρ

])
.

(105)
Correspondingly, the discrete potential energy, Ud : Qh → R, is given by

Uh
d(�

k
h) = h

(
ψ
(
�k
h(0), �̃

k
h(0)

)
− wext

(
ϕk

h(0),�
k
h(0)

))
. (106)

Considerα ∈ [0, 1] and apply the generalized trapezoidal rule (Marsden andWest
2001) to construct a discrete Lagrangian,

Lh,α
d

(
�0

h,�
1
h

) = �t
(
Kh
d

(
�0

h,�
1
h

) − αUh
d

(
�0

h

) − (1 − α)Uh
d

(
�1

h

))
. (107)

The application of the discrete Hamilton’s principle yields to the following DEL
equations
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mi
ϕk+1

i − 2ϕk
i − ϕk−1

i

(�t)2
= ski + Sk

i ,

R(k)t
i − R(k−1)t

i − Rk
i + R(k−1)

i

(�t)2
= h̃k

i + H̃k
i , i = 1, 2,

where

mi = h

2
Aρ, (109a)

Rk
i = h

2
Jk

ρ(i)�
(k)t
in(i), (109b)

ski = (−1)ink
h(0), (109c)

h̃k
i = (−1)i+1m̃k

h(0) + (ϕ̃k
2 − ϕ̃k

1)

2
ñk
h(0) − ñk

h(0)
(ϕ̃k

2 − ϕ̃k
1)

2
, (109d)

Sk
i = −h

2
Nk

h(0) and H̃k
i = h

2
M̃k

h(0), (109e)

with Jk
ρ(i) = �k

i Eρ�
(k)t
i and �k

in(i) = �
(k)t
i �k+1

i .

For the translational part of the motion, the discrete Legendre transform allows
to obtain

pk
i = mi

ϕk+1
i − ϕk

i

�t
+ α�t

(
ski + Sk

i

)
, (110a)

pk+1
i = mi

ϕk+1
i − ϕk

i

�t
− (1 − α)�t

(
sk+1
i + Sk+1

i

)
, i = 1, 2. (110b)

For the rotational part the following relation holds,

�̃
k
i = R(k)t

i − Rk
i

�t
− α�t

(̃
hk
i + H̃k

i

)
, (111a)

�̃
k+1
i = R(k)t

i − Rk
i

�t
+ (1 − α)�t

(̃
hk+1
i + H̃k+1

i

)
, i = 1, 2. (111b)

Subtracting (110a) from (110b) and (111a) from (111b), yields to the following
relations:

pk+1
i = pk

i − �t
(
sk+α
i + Sk+α

i

)
, (112a)

�̃
k+1
i = �̃

k
i + �t

(̃
hk+α
i + H̃k+α

i

)
, i = 1, 2, (112b)

where (•)k+α
a = (1 − α)(•)k+1

a + α(•)ka . A detailed deduction of (110a), (110b),
(111a), and (111b) may be found in (Mata 2015).
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4.2.6 Solution Procedure

The updating procedure for the nodal values of the configuration variables is as
follows.

• Since mass matrix is diagonal, it is possible to update the nodal positions explicitly
according to

ϕk+1
i = ϕk

i + �t

mi

(
pk
i − α�t

(
ski + Sk

i

))
. (113)

• Equation (111a) yields to

�k
in(i)J

k
ρ(i) − Jk

ρ(i)�
k(t)
in(i) = 2�t

h

(
�̃

k
i + α�t

(̃
hk
i + H̃k

i

))
. (114)

To determine �k
in(i) we follow the method proposed in (Lee et al. 2007). We

parametrize the incremental rotation tensor in terms of an incremental rotation
vector as

�k
in(i) = exp

[
skew

(
θk
i

)]
.

Then, replacing the above expression in (114) the following nonlinear system of
equations is obtained

sin θki
θki

(
ikρ(i)θ

k
i

) + 1 − cos θki
(θki )

2

(
θk
i × ikρ(i)θ

k
i

) = Yk
i , (115)

where θ = ‖θ‖ and Yk
i is the axial vector of the right-hand side of (114).The

system (115) is solved with the help of the Newton–Raphson scheme.

Having obtained θk
i , we update the nodal rotation tensors according to

�k+1
a = exp[̃θk

i ]�k
i . (116)

• Finally, the nodal values of the momenta are updated with the help of (112a) and
(112b).

Remark We formulated an explicit method to update translational part of the con-
figuration variables, (see (113)). However, to update the rotational part a nonlinear
system of equations has to be solved iteratively in every node of the mesh. �

4.2.7 Properties of the Resulting Scheme

The resulting integration scheme enjoys several properties which are described in
following.
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• The discretization in space allows to formulate an explicit time integrator since
mass matrix is diagonal and positive. Moreover, the order of accuracy with the
mesh size does not result affected as explained in (Mata 2015; Cohen et al. 2001).

• Fixing h > 0, the order of accuracy of an algorithm in position-momentum form
coincides with the order of accuracy with which the discrete Lagrangian approx-
imates the exact discrete Lagrangian (if some standard smooth conditions hold).
See (Marsden and West 2001). In our case, second order of accuracy is obtained
if α = 1

2 since the resulting method is symmetric.
• Variational methods automatically conserve a discrete analogue of the symplec-
tic two-form (see, e.g., Lew et al. 2003; Marsden and West 2001 for a proof).
Moreover, the discrete total energy

Hk
d = 1

2

nt∑
a=1

(
m−1

a pk
a · pk

a + I−1
ρ(a)�

k
a · �k

a

)
+ Ud

(
ϕk

1, ...,ϕ
k
nd ,�

k
1, ...,�

k
nd

)
,

(117)

remainsO (
(�t)2

)
close to the exact value for exponentially long periods of time

if a small enough �t > 0 is provided (Hairer et al. 2006). In the above equation
nt is the total number of nodes in the mesh.

• Lh,α
d results to be invariant under the action of rigid body translations and rota-

tions. Therefore, according to a discrete version of Noether’s theorem the discrete
versions of the total linear momentum and total angular velocity

Lt,d =
nt∑
a=1

pk
a and Jt,d =

nt∑
a=1

(�̃
k
a + ϕk

a × pk
a), (118)

are invariants of the discrete trajectories.
• Regarding to the stability limit, we follow (Lew et al. 2003) choosing �t as a
fraction of the critical time step length imposed by the Courant condition.

4.2.8 Numerical Example: Elastic Ring

In this example, we use the rod model to simulate the dynamics of the elastic ring
shown in Fig. 19. The applied load are

m1t) = m(t)e2 and m2(t) = −m1(t),

where

m(t) =
{

(160/3)t, 0 ≤ t ≤ 1.5
0, t > 0

. (119)

Since the applied moments are self-equilibrated, both the total linear momentum
and the total angular momentum are equal to zero and exactly conserved during the
free-fly phase of the motion. The mechanical properties of the cross-section are:
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Fig. 19 Elastic ring

EA = GA = 3× 104, EI = 7× 103,Aρ0 = 1 and Iρ0 = 10. The ring is discretized
using 80 linear elements. The simulation is carried out during 4.5 s with a time
step length �t = 0.0015 s. The system exhibits drastic changes in the configuration
during themotion. Figure20 shows a sequence of snapshots of themotion in the e1-e2
plane. Finally, the time evolution of total energy is shown in Fig. 21 from which it is
possible to verify the excellent long-term energy behavior of the algorithm.

Fig. 20 Sequence of snapshots of the motion in the e1-e2 plane. Note that self-contact is not
prevented in the present form of the algorithm

Fig. 21 Time evolution of the total energy
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A (Smooth) Manifolds and Lie Groups

In this section, we briefly introduce the concepts of smooth n-dimensional manifolds
and Lie groups in order to use them to make a proper introduction to finite rotations
in the following section. The interested reader may consult standard textbooks such
as, e.g., (Abraham et al. 1988, Arnold 1989, Mishchenko and Fomenko 1988).

A.1 Smooth n-Manifolds

A smooth n–manifold or manifold modeled in R
n is a set M such that:

• For each element P ∈ M there exists a subset U ofM containing P and an one-
to-one mapping called a chart or coordinate system, {xα}α=1,2,...,n , from U onto an
open set V ∈ R

n; xα denote the components of this mapping (α = 1, 2, . . . , n).
• If xα and xα are two of such mappings, the change of coordinate functions
xα(x1, . . . , xn) are C∞ (i.e. it is continuously differentiable as many times as
required).

Tangent Space

LetM ⊂ R
n be an open set (manifold) and let P ∈ M. The tangent space toM at

P is simply the vector space Rn regarded as vectors emanating from P; this tangent
space is denoted TPM.

A.2 Lie Groups

A Lie group is a smooth n–dimensional manifold Mn endowed with the following
two smooth mappings:

(i) Multiplication:

Fα : Mn × Mn → Mn

(u, v) �→ Fα(u, v) = u � v.

where � is used to indicate an abstract operation (multiplication) between ele-
ments of the manifold Mn .

(ii) Construction of the inverse element:

Fβ : Mn → Mn

u �→ Fβ(u) = u−1.
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Moreover, a Lie group posses a marked point e ∈ Mn (the identity) which satisfies
together withFα and Fβ the following relations:

• x1 � (x2 � x3) = (x1 � x2) � x3, for all x1, x2, x3 ∈ Mn .
• e � x1 = x1 � e = x, x, e ∈ Mn .
• x � x−1 = x−1 � x = e, x, x−1, e ∈ Mn .

Lie Algebra

The Lie algebra, g, of the Lie group G is given by its tangent vector space at the
identity, g = TeG, equipped with a bilinear, skew–symmetric brackets operator [·, ·]
satisfying the following relations (Dubrokin et al. 2000; Mishchenko and Fomenko
1988):

(i) Jacobi’s identity:

[xa, [xb, xc]] + [xb, [xc, xa]] + [xc, [xa, xb]] = 0 for all xa, xb, xc ∈ g.

(ii) Skew-symmetry:

[xa, xb] = −[xb, xa] for all xa, xb ∈ g,

where the Lie brackets are given by [xa, xb] = xa � xb − xb � xa .

B Finite Rotations

This section provides a brief introduction to finite rotations and to the rotational
motion. We restrict the survey to such concepts that are used through the sections of
the chapter. A more extensive review can be found, e.g., in (Argyris 1982; Argyris
and Poterasu 1993; Atluri and Cazzani 1995; Bauchau and Trainelli 2003).

B.1 Noncommutative Rotations

Consider the rotation vector

φ̂ = (φxx ,φyy,φzz) = (π/2,π/2,π/2).

Figure22 shows that the order in which we apply the components of the rotation
vector on a rigid body (in this case a rigid box) affects its final configuration in
space. Therefore, φ̂ can not be used to represent uniquely a rotation in space. Or, in
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Fig. 22 Noncommutativity
of the components of the
rotation vector
φ̂ = [φxx ,φyy,φzz]

other words, rotations are not elements of a vector space (Jelenic̀ and Crisfield 1999;
Simo and Vu-Quoc 1986).

Alternatively, wemay think of a rotationβ as a linear application from the Euclid-
ean vector space, E3, to itself. Therefore, when β is applied to a vector u ∈ E

3, the
result is a new vector v = βu conserving the original length. Consider the set

R = {β : E3 → E
3 | β is a rotation},

and define the sum of rotations as

(βa ⊗ βb)(x) = βa

(
βb(x)

)
βa,βb ∈ R, x ∈ E

3. (120)

Clearly βa ⊗ βb ∈ R is a compound rotation applied on x.

The set R equipped with the operation ⊗ posses the algebraic structure of
noncommutative group (Bauchau and Trainelli 2003; Mäkinen and Marjamäki
2005; Mäkinen 2004; Mishchenko and Fomenko 1988) and enjoys the following
properties:

(i) Associativity:

βa ⊗ (βb ⊗ βc) = (βa ⊗ βb) ⊗ βc, for all βa,βb,βc ∈ R.

(ii) There exists a unique identity element i ∈ R such that

β ⊗ i = i ⊗ β = β, for all β ∈ R.

(iii) For each β ∈ R there exists a unique element belonging toR called the inverse
of β and denoted by β−1 such that

β−1 ⊗ β = β ⊗ β−1 = i .
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(iv) The operation ⊗ is, in general, noncommutative, i.e. ,

βa ⊗ βb(x) �= βb ⊗ βa(x).

for all βa,βb ∈ R and x ∈ E
3.

The following result is fundamental:

Theorem The groupR is isomorphic to the set composed by all the real and orthog-
onal matrices of order 3, with determinant equal to 1.

Proof See, e.g., (Pérez-Morán 2005) and references therein �

This theorem allows to identify each finite rotation with an orthogonal rotation
tensor belonging to the special orthogonal group, SO(3), defined as

SO(3) = {
� ∈ M3×3 | �t� = ��t = I; det [�] = 1

}
, (121)

where I is the identity matrix and M3×3 is the set composed by all the 3× 3 matrices
with real coefficients. It is not difficult to see that SO(3) also has the structure of
a smooth differentiable manifold (Dubrokin et al. 2000). See Sect.A.1. Moreover,
under the usualmatrixmultiplication, it has the structure of aLie group. See Sect.A.2.

The components of a rotation tensor depend on the reference frame adopted and
thus to compose two rotations �a,�b ∈ SO(3) two situations can happen:

(i) Spatial description of rotations. In this case the components of �a and �b are
expressed in terms of a fixed reference frame (Argyris 1982). The rotation tensor
representing the result of applying �b after �a is obtained as

�b ◦ �a = �b�a ∈ SO(3),

Therefore, the inverse multiplicative rule for rotation tensors applies.
(ii) Material description of rotations. In the second case, �a moves the reference

frame and therefore, the components of�b are expressed in an updated reference
frame. Then, we have that

�b ◦ �a = �a�b ∈ SO(3).

B.2 Parametrization of SO(3)

The rotational motion can be described by a means of a trajectory on SO(3). There-
fore, it can not be described trivially by using standard coordinates such as those
employed for trajectories belonging to a linear space. Rotations may be parame-
trized using suitable charts which are inherently not global and/or singular. Over
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the years, numerous techniques have been developed to cope with the description
of rotational motion (Pérez-Morán 2005; Simo and Vu-Quoc 1986; Bauchau and
Choi 2003; Milenkovic and Milenkovic 1997; Stuelpnagel 1964; Grassia 1998; Cot-
tingham and Doyle 2001; Innocenti and Paganelli 2006). All these techniques show
certain balance between advantages and drawbacks when compared each to other. In
the following, we describe a (minimal) parametrization of rotation tensors in terms
of rotation vectors. It is based on the following result:

Fundamental Theorem of Euler

The general displacement of a rigid body or vector, with one point fixed is a rotation
about some axis which passes through that point.

Proof See (Crisfield 1998, Vol 2.) �

Basically, the above theorem shows that the rotational motion is completely
described by a unit vector ê ∈ R

3 defining an axis of rotation in space and a rota-
tion angle of magnitude θ ∈ [0, 2π]. Moreover, the corresponding rotation tensor is
expressed according to the Rodrigues’s formula:

� = I + sin θ

θ
θ̃ + (1 − cos θ)

θ2
θ̃θ̃ = I + sin θ̃e + (1 − cos θ)̃ẽe. (122)

where we use ũ to denote the skew-symmetric tensor obtained from the vector
u ∈ R

3.

B.3 Tangent Spaces

Consider � ∈ SO(3). The variations of ��t and �t� are given by

δ(��t ) = δ��t + �δ�t = φ̃ + φ̃
t = 0

δ(�t�) = δ�t� + �tδ� = �̃
t + �̃ = 0,

from which it is possible to deduce that φ̃ and �̃ are skew-symmetric tensors.
Moreover, we have that

δ� = φ̃� = ��̃. (123)

Clearly δ� belongs to the tangent space to SO(3) at �, T�SO(3).

The tangent space at the identity forms the Lie algebra of SO(3) and is denoted by

so(3) = TISO(3).
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From (123) it is possible to see that so(3) corresponds to the linear space of skew-
symmetric tensors of the form

θ̃θθ =
⎡
⎣ 0 −θ3 θ2

θ3 0 −θ1
−θ2 θ1 0

⎤
⎦ = skew[θ]. (124)

Since so(3) is isomorphic to R
3, every θ̃ ∈ so(3) can be represented by a vector

θ = (θ1, θ2, θ3) ∈ R
3. Moreover, �̃ = �t φ̃� and � = �tφ.

The exponential map

exp[•] : so(3) → SO(3)

θ̃ �→ exp
[̃
θ
] = �

(̃
θ
)
, (125)

allows to parametrize any rotation tensor in terms of an element of so(3). See (122).

C Quaternions

The (minimal) vectorial parametrization of SO(3) shows some limitations due to
the fact that the exponential map is not a bijective application for angles greater
than π (Pérez-Morán 2005; Simo and Vu-Quoc 1988; Crisfield 1998). The problem
can be avoided if unit quaternions are used. A unit quaternion is defined using four
parameters, q0– q3, so that:

qθ = cos (θ/2) + sin (θ/2) ê =
[

q
q0

]
=
[
sin

(
θ
2

)
ê

cos
(

θ
2

)
]

, (126)

where θ and ê are an angle of rotation and an axis of rotation, respectively. It is
possible to see that |qθ| = 1.

A rotation tensor� ∈ SO(3) isuniquely parametrized in termsof a unit quaternion
qθ according to the formula:

� (qθ) = (q20 − q · q)I + 2q ⊗ q + 2q0q̃, (127)

The quaternion compound rotation of the quaternions qa = (a0, a) and qb = (b0, b)

is given by
qab = qbqa = a0b0 − a · b + a0b + b0a − a × b.
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C.1 Normalized Quaternion from the Rotation Tensor

A general procedure for obtaining the rotation vector from the rotation tensor
involves the computation of the Euler parameters, q0–q3. This can be achieved via
the Spurrier’s algorithm (Crisfield 1998), which involves computing

a = max
[
Tr[�],�11,�22,�33

]

where Tr[•] is the trace operator and

if a = Tr(�) →
{
q0 = 1

2 (1 + a)
1
2

qi = (�k j − � jk)/4q0; i = 1, 3

else if a = �i i →
⎧⎨
⎩
qi = ( 12a + 1

4

[
1 − Tr[�]])

q0 = 1
4 (�k j − � jk)/qi

ql = 1
4 (�li + �il)/qi ; l = j, k

where i, j, k are a cyclic combinations of 1, 2, and 3.
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