
Keyword Updatable PEKS

Hyun Sook Rhee1 and Dong Hoon Lee2(B)

1 Printing Solutions, Samsung Electronics Co. Ltd.,
Suwon-si, Gyeonggi-do, Korea
hyunsook.rhee@gmail.com

2 Graduate School of Information Security, CIST,
Korea University, Seoul, Korea

donghlee@korea.ac.kr

Abstract. Secure keyword search in the asymmetric setting, also known
as public-key encryption with keyword search (PEKS), enables a receiver
to search the encrypted messages with a keyword without revealing any
information on the messages to the server in the store-and-forward sys-
tem such as an e-mail system. To make this possible, a sender encrypts
a keyword with a receiver’s public-key and tags the encrypted keyword
to the messages. In the paper, we propose PEKS with keyword updat-
ablility (KU-PEKS), where a tagged keyword can be updated upon the
receiver’s request. The proposed KU-PEKS is generically constructed
and provides ciphertext confidentiality and keyword-update privacy. This
keyword updatability enables synonym search and/or similarity search
in PEKS. We also propose a generic transformation from KU-PEKS to
secure keyword search in the symmetric setting, that is the first attempt
to generically construct secure keyword search in the symmetric setting
providing trapdoor privacy.

Keywords: Keyword updatable PEKS · Searchable encryption ·
Trapdoor privacy

1 Introduction

Secure keyword search enables a user to search the encrypted data with a key-
word without revealing any information on the data. As increasing the concern
of efficient searching techniques on massive encrypted data for providing data
privacy against inside adversaries, secure keyword search has been extended to
accommodate various queries such as equality, subset, range and inner product
queries [1,6,8,9,11,17,19].

Secure keyword search can be classified into two types. (1) Secure keyword
search in the asymmetric setting, also known as public-key encryption with key-
word search (PEKS), was introduced by Boneh et al. [4], considering an appli-
cation to the store-and-forward systems such as an e-mail system. In a PEKS, a
sender generates a ciphertext CTw of a keyword w under the public key of a receiver
and sends the ciphertext CTw along with an encrypted message to a server.
c© Springer International Publishing Switzerland 2016
H. Kim and D. Choi (Eds.): WISA 2015, LNCS 9503, pp. 96–109, 2016.
DOI: 10.1007/978-3-319-31875-2 9

Keyword Updatable PEKS 97

To retrieve the encrypted email messages containing a keyword w′ from the server,
a receiver asks to the server a query, that is a trapdoor Tw′ generated under the
receiver’s secret key. The server then runs a test function with inputs CTw and Tw′

to decide whether or not w = w′, and forwards the corresponding email messages
to the receiver. (2) In secure keyword search in the symmetric setting [5,17], the
ciphertext CTw of a keyword w is generated under a symmetric key and only the
owner of the key can generate queries by using the symmetric key. Here a symmet-
ric key is not shared, but owned by one client. The symmetric setting is suitable
for a blog and web-hard service, where the same client uploads and downloads
his/her data.

This paper firstly proposes a PEKS scheme with keyword updatability, called
keyword-updatable PEKS scheme (KU-PEKS for short). Keyword updatability
means that the server can update a ciphertext CTw of keyword w into CTw′ of
keyword w′ by using a value, called keyword update value kw→w′ provided by
a receiver in advance. This update process is different from re-encryption in the
literature [2,10]. Keyword update process changes a corresponding plaintext of a
ciphertext while re-encryption changes a person who can decrypt the ciphertext.

We can intuitionally and straightforwardly construct a direct construction
from identity-based proxy reencryption (IBPRE) [10]. An IBPRE scheme is an
identity-based one where a proxy can transform convert a ciphertext computed
under Alice’s ID into one that can be decrypted by Bob’s secret key. In the
direct construction, the server is provided with trapdoor Tw for finding CTw and
a keyword update key to transform CTw into CTw′ , where the key is derived
from Tw. This implies that the server with Tw can derive any key to transform
CTw, say into CTw′′ , for any keyword w′′. This is not intended by the receiver.
To remedy this drawback, we construct an improved KU-PEKS scheme, where
keyword update key can be generated only by the receiver. The improved scheme
satisfies ciphertext confidentiality and consistency. In addition, KU-PEKS should
satisfy the property, called keyword-update privacy which can update ciphertext
without revealing any information on a keyword.

Application. One of the main applications of PEKS is an e-mail system, where
a receiver retrieves e-mails with a keyword [4]. For example, the receiver may
want to retrieve urgent e-mails with keyword “urgent”. However it is highly
possible that urgent e-mails in fact do not contain keyword “urgent”. A sender
might have selected a proper synonym as a keyword to express suitable situation.
That is, urgent e-mail may contain “urgency”, “emergency”, or “burning” other
than “urgent”. It is certain that PEKS with enabling synonym search capability
would be practically useful. This type of synonym search can be exploited for
similarity search if we select a similar word with a few character difference instead
of synonym. For example, “urgent” could be mistyped into urgant”, “urgenk”,
and so on. Similarity search is not known to be possible in secure keyword search
on encrypted data yet, while it is possible in web search engines. Similarity search
in PEKS has been considered not attainable since one bit difference in a plaintext
results in unexpected difference in the corresponding ciphertext.

98 H.S. Rhee and D.H. Lee

One naive approach to enable similarity search in PEKS would be that a
receiver tries each of all possible similar keywords, one by one. This inevitably
delays retrieval time. Furthermore, more trapdoors available makes keyword
guessing easier. Hence this is not a wise approach for similarity search. The
generic construction to reduce retrieval time would be to provide the server with
trapdoors for similar keywords in advance. For example, for keyword urgent a
receiver provides ciphertext CTurgent and similar trapdoors Turgency, Temergency,
Tburning and so on. When a ciphertext CT of a keyword similar to urgent is
sent, the server runs the test function with inputs CT and each of the similar
trapdoors. If the result of test function is true, the server replaces CT with
CTurgent. This approach results in an identical ciphertext for similar keywords.
That is, both CTurgency and CTemergency are transformed into CTurgent. However,
this approach reveals the information that two original ciphertexts CTurgency and
CTemergency encrypted two similar keywords even without keyword guessing. KU-
PEKS construction makes the server transform CT into CTurgent even without
providing a trapdoor, where only the receiver can generate a keyword-update
key. Furthermore, the transformed ciphertexts for similar keywords are random.
That is, both CTurgency and CTemergency are transformed into independent ran-
dom objects.

2 Preliminaries

We review the notation and the definitions of an identity-based proxy re-
encryption (IBPRE) scheme. We assume that IBPRE satisfies (1) unidirectional-
ity that IBPRE scheme permits a user U1 to delegate to another user U2 without
permitting U1 to decrypt U2’s ciphertexts and (2) multiple-use capability that
IBPRE scheme permits the proxy to perform multiple consecutive re-encryptions
on a ciphertext [2,10].

Notation: For any string x, |x| denotes its length. For any set S, |S| denotes
its size. The symbol λ denotes a security parameter. We let a ← b denote the
assignment to a the result of evaluating b. We say a function μ is negligible if for
any constant λ, there exists N such that μ(n) < 1/nλ for n > N .

2.1 Identity-Based Proxy Re-encryption

An identity-based proxy re-encryption (IBPRE) scheme is an extension of iden-
tity based encryption (IBE) scheme in which the decryption capability of a user
to another user via a third party called a proxy. Via (PP,msk) ← Setup(1λ)
the setup algorithm produces a pair of public parameters and master secret key
for security parameter λ; via skid ← KeyGen(PP, msk, id) the key generation
algorithm takes the public parameters PP and the master secret key msk and
an identity id ∈ {0, 1}∗ as input and produces a secret key skid correspond-
ing to that identity id; via cid ← Enc(PP, id , m) the encryption algorithm
encrypts a message m to create a ciphertext cid under the specified identity;
via rkid1→id2 ← RKGen(PP, skid1 , id1, id2) the re-encryption key generation

Keyword Updatable PEKS 99

algorithm generates a re-encryption key rkid1→id2 for converting a ciphertext
for one identity id1 into for the other identity id2, which are given to the proxy;
via cid2 ← Reencrypt(PP, rkid1→id2 , cid1) the re-encryption algorithm reen-
crypts a ciphertext cid1 to produce a “re-encrypted”ciphertext cid2 ; via m ←
Decrypt(PP, skid, cid) the decryption algorithm decrypts a ciphertext cid to
recover a message m.

Correctness of IBPRE: In [10], Green and Ateniese identified the concept
of the correctness of IBPRE schemes. Suppose that (PP,msk) ← Setup(1λ),
did ← KeyGen(PP, msk, id). Let id and id1 be any identities. Suppose that
rkid1→id ← RKGen(PP, skid1 , id1, id) and Cid1 ← Enc(PP, id1, m). If Cid ←
Enc(PP, id, m) or Cid ← Reencrypt(PP, rkid1→id, Cid1), then the following
propositions hold:

- Decrypt(PP, skid1 , Cid1) = m
- Decrypt(PP, skid, Reencrypt(PP, rkid1→id ,Cid1)) = m

Game1: The game for ciphertext confidentiality [10] between the adversary
A and the challenger B proceeds as follows.

– Setup: B runs the Setup(1λ) algorithm to obtain (PP,msk) and sends the
public parameter PP to A.

– Phase 1: A makes the following queries and B adaptively responses as follows.
- For any extraction query id, B returns did =KeyGen(PP, msk, id) to A.
- For any reencryption key query (id1, id2), B extracts the key did1=KeyGen

(PP, msk, id1) and returns rkid1→id2 =RKGen(PP, skid1 , id1, id2).
– Challenge: A sends identity id∗ and messages m0 and m1 to the challenger.

B picks a random β ∈ {0, 1} and returns cβ ← Enc(PP, id∗,mβ) to A. The
restriction is as follows.
- The extraction query id∗ and the re-encryption key query (id∗, id′) and the

extraction query id′ should not be queried previously, for any identity id′.
– Phase 2: A makes the following queries as in the Phase 1, except for the

following queries.
- The extraction query id∗ and the re-encryption key query (id∗, id′) and the

extraction query id′ should not be queried previously, for any identity id′.
– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of A in breaking IND-CPA security in an IBPRE scheme is
defined as

Advibpre-ind-cpa
IBPRE,A (λ) = |Pr[β = β′] − 1/2| .

Definition 1. We say that IBPRE satisfies a ciphertext confidentiality (IND-
CPA-secure) if the advantage Advibpre-ind-cpaIBPRE,A (λ) of any probabilistic polynomial-
time (PPT) adversary A is negligible in the security parameter λ.

Game2: The game for anonymity of IBPRE between the adversary A and the
challenger B proceeds as follows.

100 H.S. Rhee and D.H. Lee

– Setup: B runs the Setup(1λ) algorithm to obtain (PP,msk) and sends the
public parameter PP to A.

– Phase 1: A makes the following queries and B adaptively responses as follows.
- For any extraction query id, B returns did =KeyGen(PP, msk, id) to A.
- For any re-encryption key query (id1, id2), B extracts the key did1=KeyGen

(PP, msk, id1) and returns rkid1→id2 =RKGen(PP, skid1 , id1, id2).
– Challenge: A sends identities id∗

0 and id∗
1 and a message m∗ to the chal-

lenger, and id∗
0 �= id∗

1. B picks a random β ∈ {0, 1} and returns Cβ ←
Enc(PP, id∗

β ,m∗) to A. The restriction is that A does not hold a secret keys
did∗

0
and did∗

1
, and reencryption keys rkid∗

0→id, rkid∗
1→id and a secret key did,

for any identity id.
– Phase 2: A makes the following queries as in the Phase 1, except for the

following queries.
- The extraction query id∗

1 and re-encryption key extraction queries (id∗
1, id

′)
and the extraction query id′ should be restricted, for any id′.

– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.
The advantage of A in breaking ANO-CPA security in an IBPRE scheme is
defined as

Advibpre-ano-cpa
IBPRE,A (λ) = |Pr[β = β′] − 1/2| .

Definition 2. We say that IBPRE satisfies the anonymity (ANO-CPA-secure)
if the advantage Advibpre-ano-cpaIBPRE,A (λ) of any probabilistic polynomial-time (PPT)
adversary A is negligible in the security parameter λ.

Remark 1. The notion of key-privacy or anonymity [3] in public-key encryption
schemes has been considered as the security requirements of encryption schemes
as well as semantic security. Ateniese et al. introduced a notion of key privacy of
proxy re-encryption scheme [2]. For anonymity in IBPRE, an adversary cannot
distinguish the intended recipient from the ciphertexts and re-encryption keys
even when given re-encryption keys and re-encryption oracles. As mentioned in
[2], the anonymity of ciphertext (Definition 3) as well as the re-encryption key
privacy (Definition 4) should be considered in IBPRE.

We can infer that the IBPRE scheme proposed by Green and Ateniese [10]
satisfies the anonymity (IBPRE-ANO-CPA security) against chosen-plaintext
attacks.

Re-encryption key privacy of IBPRE: We first define the anonymity
(IBPRE-REKey-CPA security) of the IBPRE scheme against adaptive chosen-
plaintext attacks using Game3.

Game3: The game for re-encryption predicate privacy between the adversary
A and the challenger B proceeds as follows.

– Setup: B runs the Setup(1λ) algorithm to obtain (PP,msk) and sends the
public parameter PP to A.

– Phase 1: A makes the following queries and B adaptively responses as follows.

Keyword Updatable PEKS 101

- For any extraction query id, B returns did =KeyGen(PP, msk, id) to A.
- For any reencryption key query (id1, id2), B extracts the key did1=KeyGen

(PP, msk, id1) and returns rkid1→id2 =RKGen(PP, skid1 , id1, id2).
– Challenge: A sends identities id∗

0 and id∗
1 and a message m∗ to the chal-

lenger, and id∗
0 �= id∗

1. B computes s ← RKGen(PP, skid∗
0
, id∗

0, id
∗
1) and picks

a random β ∈ {0, 1}. B returns cβ = s to A if β = 1 and a random key in the
key space otherwise. The restriction is that A does not hold secret keys did∗

0

and did∗
1
, and a reencryption key rkid∗

0→id∗
1
.

– Phase 2: A makes the following queries as in the Phase 1, except for the
following queries.
- The extraction query id∗

1 should be restricted.
- The re-encryption key extraction queries (id∗

1, id
′) and the extraction query

id′ should be restricted, for any id′.
– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of A in breaking REKey-CPA security in an IBPRE scheme is
defined as

Advibpre-rekey-cpa
IBPRE,A (λ) = |Pr[β = β′] − 1/2| .

Definition 3. We say that IBPRE satisfies a privacy of re-encryption key
(REKey-CPA-secure) if the advantage Advibpre-rekey-cpaIBPRE,A (λ) of any probabilistic
polynomial-time (PPT) adversary A is negligible in the security parameter λ.

3 Keyword-Updatable PEKS

Definition 4. (Keyword Updatable PEKS Scheme) A keyword-updatable PEKS
scheme (KU-PEKS) consists of six PPT algorithms as follows.

• Gen(λ) takes a security parameter λ as input, and generates a pair of public
and secret keys (PK,SK) of the receiver R.

• Td(SK,w) takes as inputs a receiver’s secret key SK and a keyword, w. It
then generates a trapdoor Tw.

• PEKS(PK,w) takes as inputs a receiver’s public key PK and a keyword, w.
It returns a ciphertext CT on the keyword w.

• Test(CT, Tw) takes as inputs a ciphertext CT and a trapdoor Tw. It outputs
‘1’ if w = w′ and ‘0’ otherwise, where CT = PEKS(PK,w′).

• kuTd(PK, Tw1 , w1, w2) takes as inputs a receiver’s public key PK, a trap-
door Tw1 , and keywords w1 and w2. It then outputs a keyword-update value
kuTdw1→w2 .

• kuPEKS(PK,CT, kuTdw1→w2) takes as inputs a receiver’s public key PK, a
ciphertext CT = PEKS(PK,w), and a keyword-update value kuTdw1→w2 =
kuTd(PK, Tw1 , w1, w2). It outputs CT ′ = PEKS(PK,w2) if w = w1 and
aborts otherwise.

102 H.S. Rhee and D.H. Lee

Table 1. Consistency of KU-PEKS.

Suppose there exists an adversary A that wants to make consistency fail. A com-
putational consistency for KU-PEKS scheme is defined as follows (Table 1).
The advantage of A is defined as follows.

Advkupeks-cons
kuPEKS,A(λ) = Pr[Expkupeks-cons

kuPEKS,A(λ) = 1],

where the probability is taken over all possible coin flips of all the algorithms
involved.

Definition 5. We say that KU-PEKS satisfies “computationally consistency”
if for any PPT adversary A attacking KU-PEKS scheme the advantage
Advkupeks-conskuPEKS,A(λ) is negligible.

Game4: The game for ciphertext confidentiality between the adversary A and
the challenger B proceeds as follows.

– Setup: B runs the Gen(1λ) algorithm to obtain (PK,SK) and sends the
public key PK to A.

– Phase 1: A makes the following queries and B adaptively responses as follows.
- Trapdoor queries: For any trapdoor query of the form w ∈ {0, 1}∗, B

returns Tw=Td(SK,w) to A.
- Keyword-Update Key queries: For any keyword-update key query

(w1, w2), B returns kuTdw1→w2 =kuTd(PK, Tw1 , w1, w2).
– Challenge: A sends keywords w∗

0 and w∗
1 to the challenger. The restriction

is that A did not previously make both (1) the trapdoor query of w∗
b and (2)

the keyword-update value kuTdw∗
b →w as well as the trapdoor query Tw, for

any keyword w and b = 0, 1. B picks a random β ∈ {0, 1} and returns the
challenge ciphertext CT∗

β ← PEKS(PK,w∗
β).

– Phase 2: A makes the following queries as in the Phase 1, except for the
following queries.
- The trapdoor query of the form w0

∗ and w1
∗ should be restricted.

- The keyword-update key queries of the form (wb
∗, w′) and the trapdoor

query of the form w′ should be not queried, for any keyword w′ ∈ {0, 1}∗

and b = 0, 1.
– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of A in breaking the ciphertext confidentiality (kuPEKS-IND-
CPA security) in KU-PEKS scheme is defined as

Advkupeks-ind-cpa
KU-PEKS, A(λ) = |Pr[β = β′] − 1/2| .

Keyword Updatable PEKS 103

Definition 6. We say that a KU-PEKS scheme provides the ciphertext confi-
dentiality against an adaptive chosen-plaintext attack (kuPEKS-IND-CPA secu-
rity) if for any PPT adversary A, Advkupeks-ind-cpakuPEKS, A (λ) is negligible.

Game5: The game for keyword-update key privacy between the adversary A and
the challenger B proceeds as follows.

– Setup: B runs the Gen(1λ) algorithm to obtain (PK,SK) and sends the
public key PK to A.

– Phase 1: A makes the following queries and B adaptively responses as follows.
- Trapdoor queries: For any trapdoor query of the form w ∈ {0, 1}∗, B

returns Tw=Td(SK,w) to A.
- Keyword-Update Key queries: For any keyword-update key query

(w1, w2), B returns kuTdw1→w2 =kuTd(PK, Tw1 , w1, w2).
– Challenge: A queries w to obtain Tw ← Td(SK,w), for any keyword w �= w∗

b

(b = 0, 1) and sends Tw as well as keywords w∗
0 and w∗

1 to the challenger B. The
restriction is that A did not previously make both (1) the trapdoor query of w∗

b

and (2) the keyword-update key kuTdw∗
b →w as well as the trapdoor query Tw,

for any keyword w and b = 0, 1. B picks a random β ∈ {0, 1} and returns the
challenge keyword-update key kuTdw→w∗

β
← kuTd (PK, Tw, w, w∗

β) to A.
– Phase 2: A makes the following queries as in the Phase 1, except for the

following queries.
- The trapdoor query of the form w0

∗ and w1
∗ should be restricted.

- The keyword-update key queries of the form (wb
∗, w′) and the trapdoor

query of the form w′ should be not queried, for any keyword w′ ∈ {0, 1}∗

and b = 0, 1.
– Guess: The adversary returns a guess β′ ∈ {0, 1} of β.

The advantage of A in breaking the keyword-update key privacy (kuTd-IND-
CPA security) in KU-PEKS scheme is defined as

AdvkuTd-ind-cpa
KU-PEKS, A(λ) = |Pr[β = β′] − 1/2| .

Definition 7. We say that KU-PEKS scheme provides the keyword-update key
privacy against an adaptive chosen-plaintext attack (kuTd-IND-CPA security) if
for any PPT adversary A, AdvkuTd-ind-cpakuPEKS, A(λ) is negligible.

4 Construction of KU-PEKS

In an IBE scheme IBE = (SetupIBE , KeyDerIBE , EncIBE , DecIBE), the key
generator with master public/private key pair (PK,SK) generates the secret
key skID corresponding to an identity ID by computing KeyDerIBE (SK, ID).

We now propose a generic construction keyword updatability PEKS from
IBPRE. We can intuitionally and straightforwardly construct a direct construc-
tion from IBPRE along the line of the approach in [1]. The idea of providing
keyword-updatability is that re-encryption key rkw→w′ that converts Cw into

104 H.S. Rhee and D.H. Lee

Cw′ without changing the message in IBPRE is used in generating keyword-
update key kw→w′ for converting ciphertext CTw with ciphertext CTw′ in KU-
PEKS. Unfortunately, the direct construction inherits the property from IBPRE
that anyone with secret key skw can generate re-encryption key rkw→w′′ , for
any identity w′′, by the re-encryption key generation algorithm. Moreover, it is
required that anyone with re-encryption key rkw→w′ and secret key skw′ can
generate re-encryption key rkw→w′′ , for any identity w′′ that is called collu-
sion attacks of a proxy and a delegator [16]. This property in KU-PEKS means
that anyone who obtains trapdoor Tw(= skw) or keyword-update key kw→w′ =
[Tw, rkw→w′] can generate new keyword-update key kw→w′′ = [skw, rkw→w′′] for
any keyword w′′. To overcome this weakness, the underlying IBPRE needs to be
secure against collusion attacks. Koo et al.’s collusion-resistant IBPRE scheme
[16] can be a proper candidate for the underlying IBPRE.

A generic approach transforms an IBPRE scheme secure against collusion
attacks [16] into a secure KU-PEKS scheme. To perform the keyword update,
the server first needs to find the PEKS ciphertexts that a receiver wants to
retrieve. For this purpose, the server in the first approach is given a trapdoor
information together with a keyword-update key. The novel idea of the second
approach is that the server is enabled to find the corresponding PEKS cipher-
texts without any trapdoor information. Let rkw1→w2 be a re-encryption key
in IBPRE. The keyword-update key kw1→w2 of the transformed KU-PEKS con-
sists of two re-encryption keys rkw1→rand and rkw1→w2 and secret key skrand

for random rand. Here, rkw1→rand and skrand are used in searching a ciphertext
CTw1 , and rkw1→w2 is used in converting CTw1 into CTw2 . As stated above, if
the underlying IBPRE scheme is secure against collusion attacks, anyone with
rkw1→rand, skrand and rkw1→w2 cannot obtain skw1 or rkw1→w′

2
for some key-

word w′
2(�= w2) from the given information.

The generic construction of KU-PEKS scheme KU-PEKS =(Gen, Td,
PEKS, kuTd, kuPEKS, Test), using IBPRE=(Setup, KeyGen, Enc,
RKGen, Reencrypt, Decrypt), proceeds as follows.

– Gen(1λ): This algorithm runs Setup(1λ) to obtain (PP,msk). The public
key is PK = PP and the secret key is SK = msk. It outputs (PK,SK) =
(PP,msk).

– Td(SK,w): Let w ∈ {0, 1}n be a keyword. To generate a trapdoor Tw of w,
the trapdoor algorithm runs dw ← KeyGen(PP, msk, w). The trapdoor is
Tw = dw.

– PEKS(PK,w): To encrypt a keyword w ∈ {0, 1}∗ under the public key
PK, this algorithm picks a random message R ∈ M and computes C ←
Enc(PK,w,R) and outputs CT = [C1, C2] = [R, C].

– Test(PK,CT, Tw′) : To obtain the test result, this algorithm parses the cipher-
text CT as [C1, C2]. It computes R′ ← Decrypt(PK, Tw′ , C2). It outputs ‘0’
if C1 �= R′ and ‘1’ otherwise.

– kuTd(PK, Tw1 , w1, w2) : To generate a keyword-update key from w1 to w2,
this algorithm chooses a random identity id ∈ {0, 1}∗ and computes did ←
KeyGen(PP, msk, id). It computes rkw1→w2 ← RKGen(PK, Tw1 , w1,

Keyword Updatable PEKS 105

w2) and rkw1→id ←RKGen(PK, Tw1 , w1, id) and outputs kuTdw1→w2 =
[rkw1→w2 , rkw1→id, Tid].

– kuPEKS(PK,CT, kuTdw1→w2) : Let kuTdw1→w2 = [K1,K2,K3] be a
keyword-update key and CT = [C1, C2] be a ciphertext. This algorithm pro-
ceeds as follows.
• It computes C ′

2 ← Reencrypt(PK,K1, C2) and C ′′
2 ← Reencrypt

(PK,K2, C2).
• It aborts if Decrypt(PK,K3, C

′′
2) �= C1 and outputs CTw2 = [C1, C

′
2]

otherwise.

We now prove that our generic construction provides the ciphertext confiden-
tiality, the keyword-update key privacy and the computational consistency as
follows. We note that this proof approach follows from [1].

Theorem 1. If the underlying IBE scheme of IBPRE scheme provides IBE-
ANO-CPA security, then our generic construction provides the kuPEKS-IND-
CPA security.

Proof. Suppose that there exists a PPT adversary A attacking the kuPEKS-
IND-CPA security of KU-PEKS scheme. We can construct a PPT adversary B
attacking the IBE-ANO-CPA security of the underlying IBE scheme of IBPRE
scheme. Let C denote a challenger against B. C begins by supplying B with the
public parameters PP of IBPRE and B forwards PP (as the public key PK of
KU-PEKS) to A.

In its find stage, given public key PP, A runs B(find,PP) to obtain challenge
keywords w∗

0 and w∗
1 . B chooses a random message R∗ ∈ M and gives a challenge

query (w∗
0 , w

∗
1 , R

∗) to C. B mounts an IBPRE-ANO-CPA attack on IBPRE by
interacting with A as follows.

- On trapdoor query w, B makes an extraction query with an identity w to
C. Upon receiving w, C runs the KeyGen algorithm in IBPRE to obtain the
private key dw. C returns the trapdoor dw(= Tw).

- On keyword-update key query (w,w′), B makes a re-encryption key query with
an identity (w,w′) to C. Upon receiving (w,w′), C runs the RKGen algorithm
in IBPRE to obtain the re-encryption key rkw→w′ . C returns the keyword-
update key rkw→w′(= kuTdw1→w2).

On receiving C∗
b = Enc(PP, w∗

b , R∗) from C, B gives back his challenge ciphertext
[R∗, C∗

b] to A in its guess stage. It is easy to see from the definition of the KU-
PEKS scheme that CT∗ is equal to the output of the encryption algorithm in
KU-PEKS for the input (PP, w∗

b). For any keyword w ∈ {0, 1}∗, we insist that
if B makes a trapdoor query on w∗

b (b = 0, 1) or a keyword-update key rkwb→w

on (wb, w) in some phases, then B aborts. Eventually, A must guess b′ for b.
Then B outputs b′ as its guess for b. It is easy to see that for any b (∈ {0, 1}),

Pr[Expibe-ano-cpa-b
IBPRE,B (k) = 1] = Pr[Expkupeks-ind-cpa-b

KU-PEKS,A (k) = 1].

106 H.S. Rhee and D.H. Lee

Therefore, Advkupeks-ind-cpa
KU-PEKS,A(k) ≤ Advibe-ano-cpa

IBPRE,B(k).

Theorem 2. If IBPRE scheme provides the IBPRE-ANO-CPA security, then
our generic construction provides the kuTd-IND-CPA security.

Proof. Suppose that there exists a PPT adversary A attacking the kuTd-IND-
CPA security of KU-PEKS scheme. We can construct a PPT adversary B attack-
ing the IBPRE-ANO-CPA security of IBPRE scheme. Let C denote a challenger
against B. C begins by supplying B with the public parameters PP of IBPRE
and B forwards PP (as the public key PK of KU-PEKS) to A.

In its find stage, given public key PP, A runs B(find,PP) to obtain chal-
lenge keywords w∗

0 and w∗
1 . B chooses a random message R∗ ∈ M and keyword

w1 and computes CTw1 ← Enc(PP, w1, R
∗) and queries w1 to the private-key

generation oracle to obtain dw1 ← KeyGen(PP,msk, w1). B gives a challenge
query (Tw1 , w1, w

∗
0 , w

∗
1) to C. B mounts an IBPRE-ANO-CPA attack on IBPRE

by interacting with A as follows.

- On trapdoor query w, B makes an extraction query with an identity w to
C. Upon receiving w, C runs the KeyGen algorithm in IBPRE to obtain the
private key dw. C returns the trapdoor dw(= Tw).

- On keyword-update key query (w,w′), B makes a re-encryption key query with
an identity (w,w′) to C. Upon receiving (w,w′), C runs the RKGen algorithm
in IBPRE to obtain the re-encryption key rkw→w′ . C returns the keyword-
update key rkw→w′(= kuTdw1→w2).

On receiving rkw1→w∗
b

= RKGen(PP, dw1 , w
∗
b) from C, B randomly chooses id ∈

{0, 1}∗ and runs the private-key generation oracle to obtain Tid and computes
rkw1→id with dw1 . B gives back his challenge keyword update key kuTdw1→w∗

b
=

[rkw1→w∗
b
, rkw1→id, Tid] to A in its guess stage. It is easy to see from the

definition of the KU-PEKS scheme that kuTdw1→w∗
b

is equal to the output
of the keyword update key generation algorithm in KU-PEKS for the input
(PK, Tw1 , w1, w

∗
b).

For any keyword w ∈ {0, 1}∗, we insist that if B makes a trapdoor query on
w∗

b (b = 0, 1) or a keyword-update key rkwb→w on (wb, w) in some phases, then
B aborts. Eventually, A must guess b′ for b. Then B outputs b′ as its guess for
b. It is easy to see that for any b (∈ {0, 1}),

Pr[Expibpre-ano-cpa-b
IBPRE,B (k) = 1] = Pr[ExpkuTd-ind-cpa-b

KU-PEKS,A(k) = 1].

Therefore, AdvkuTd-ind-cpa
KU-PEKS,A(k) ≤ Advibpre-ano-cpa

IBPRE,B (k).

Theorem 3. If IBPRE scheme satisfies the correctness, then our construction
is computationally consistent.

Proof. Suppose that there is a PPT adversary A attacking the computational
consistency of KU-PEKS scheme KU-PEKS. We can construct a PPT adver-
sary B attacking the IBPRE-IND-CPA security of IBPRE scheme IBPRE.

Keyword Updatable PEKS 107

To show the computational consistency of IBPRE, we will show that if A
successes to attack the computational consistency of KU-PEKS then B suc-
cesses to attack the IBPRE-IND-CPA security of IBPRE or it contradicts the
correctness constraint of IBPRE. We can construct algorithms B as follows.

Let C denote a challenger against B. C begins by supplying B with the public
parameters PP of IBPRE. Given public parameters PP = PK, B runs A(PP)
to obtain keywords w and w′ such that Test(CTw, Tw′) = 1, where CTw =
PEKS(PP, w), (or CTw = kuPEKS(PP, Tw0 , w0, w), for some w0 ∈ {0, 1}∗) and
Tw′ = Td(msk, w′).

In simulation, B will eventually obtain in one of two different ways:

Case I A will obtain keywords w and w′ such that Test(CTw, Tw′) = 1, where
CTw = PEKS(PP, w) and Tw′ = Td(msk, w′). In this case, B needs to
generate all secret keys, except the key dw.

Case II A will obtain keywords w and w′ such that Test(CTw, Tw′) = 1, where
kuTdw0→w = kuTd(PK, Tw0 , w0, w), CTw = kuPEKS(PP,CTw0 , kuTdw0→w)
and Tw0 = Td(msk, w0) (for some w0 ∈ {0, 1}∗) and Tw′ = Td(msk, w′). In
this case, B needs to generate all secret keys, except the key dw and dw0 .

B chooses random messages R∗
0, R

∗
1 ∈ M and gives a challenge query (w,R∗

0,
R∗

1) to C. B gets back a ciphertext C∗ = Enc(PP, w,R∗
b) from C. B uses its

key-derivation oracle to obtain a trapdoor Tw′ (a private key dw′ corresponding
to an identity w′) for a keyword w′.
Case I: If Dec(C∗, Tw′) = R∗

b′ (for some b′ = 0, 1) then B wins attacking IBPRE-
IND-CPA security of IBPRE. Hence, if Dec(C∗, Tw′) = R∗

1 then it returns 1 else
it returns 0. Otherwise, we can assume that there exists R∗ ∈ M (R∗ �= R∗

0, R
∗
1)

such that Dec(C∗
2 , Tw′) = R∗. It is contradict to Test(CTw, Tw′) = 1 in the

definition of the consistency of KU-PEKS scheme.
Case II: Suppose that Dec(C∗, Tw′) = R∗

b′ (for some b′ = 0, 1). There exist
a keyword w0 ∈ {0, 1}∗ and R∗ ∈ M such that CTw0 = PEKS(PP, w0) =
[R∗,Enc(PP, w0, R

∗)], Tw0 = Td(msk, w0), kuTdw0→w = kuTd(PP, Tw0 , w0, w),
CT∗= [R∗

b′ , C∗] = kuPEKS (PP,CTw0 , kuTdw0→w), and Tw′ = Td(msk, w′).
Suppose that R∗ �= R∗

0, R
∗
1 and Reencryt(PP,Enc(PP, w0, R

∗), kuTdw0→w)
= C∗. If Dec(C∗, Tw′) = R∗

b′ (for some b′ = 0, 1) then it is contradict to the
definition of the correctness of IBPRE scheme. Meanwhile, if Dec(C∗, Tw′) = R∗

b′

(for some b′ = 0, 1) then B wins attacking IBPRE-IND-CPA security of IBPRE.
Hence, if Dec(C∗, Tw′) = R∗

1 then it returns 1 else it returns 0. It is easy to see
that

Pr[Expibpre-ind-cpa-1
IBPRE,B (k) = 1] ≥ Pr[Expkupeks-cons

KU-PEKS,A(k) = 1],
Pr[Expibpre-ind-cpa-0

IBPRE,B (k) = 1] ≤ 2−k.

Therefore, Advkupeks-cons
KU-PEKS,A(k) ≤ Advibpre-ind-cpa

IBPRE,B (k) + 2−k.

108 H.S. Rhee and D.H. Lee

5 Applications

As efforts to improve an efficiency of database management, the research of
relational database management system (RDBMS) is very mentally active. To
convert from one keyword into another keyword in an encrypted email system,
we proposed a keyword-updatable PEKS scheme. This had improved the prob-
lem of keyword inconsistency residing in PEKS system processed by guessable
keywords without previous commitments. After converting the ciphertexts, if
only the converted ciphertexts remain open over the public database then these
ciphertexts confidentiality and the corresponding queries privacy against an out-
side adversary also are provided.

References

1. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange, T., Malone-
Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable encryption revisited: consistency
properties. Relat. Anonymous IBE, Extensions, J. Crypt. 21(3), 350–391 (2008)

2. Ateniese, G., Benson, K., Hohenberger, S.: Key-Private proxy re-encryption. In:
Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 279–294. Springer, Heidel-
berg (2009)

3. Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-Privacy in public-key
encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582.
Springer, Heidelberg (2001)

4. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public key encryption
with keyword search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

5. Blundo, C., Iovino, V., Persiano, G.: Private-Key hidden vector encryption with
key confidentiality. In: Garay, J.A., Miyaji, A., Otsuka, A. (eds.) CANS 2009.
LNCS, vol. 5888, pp. 259–277. Springer, Heidelberg (2009)

6. Baek, J., Safavi-Naini, R., Susilo, W.: Public key encryption with keyword search
revisited. In: Proceedings of ACIS2006 (2006)

7. Boyen, X., Waters, B.: Anonymous hierarchical identity-based encryption (without
random oracles). In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 290–307.
Springer, Heidelberg (2006)

8. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007)

9. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965–981 (1998)

10. Green, M., Ateniese, G.: Identity-based proxy re-encryption. In: Katz, J., Yung,
M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 288–306. Springer, Heidelberg (2007)

11. Gentry, C., Silverberg, A.: Hierarchical ID-Based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

12. Garg, S., Sahai, A., Waters, B.: Efficient fully collusion-resilient traitor tracing
scheme, Cryptology ePrint Archive, in report /532 (2009). http://eprint.iacr.org/
2009/532/

13. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen,
L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg
(2002)

http://eprint.iacr.org/2009/532/
http://eprint.iacr.org/2009/532/

Keyword Updatable PEKS 109

14. Jeong, I.R., Kwon, J.O., Hong, D., Lee, D.H.: Constructing PEKS schemes secure
against keyword guessing attacks is possible? Elsevier’s Comput. Commun. 32(2),
394–396 (2009)

15. Kiltz, E., Galindo, D.: Direct chosen-ciphertext secure identity-based key encap-
sulation without random oracle. J. Theor. Comput. Sci. 410(47–49), 5093–5111
(2009)

16. Koo, W., Hwang, J., Lee, D.: Collusion-resistatn identity-based proxy re-encryption
scheme. In: Proceedings of International Conference, Information Science and Tech-
nology, pp. 265–269 (2012)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)

18. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Improved searchable public key
encryption with designated tester. In: Proceedings of ASIACCS, pp. 376–379 (2009)

19. Rhee, H.S., Park, J.H., Susilo, W., Lee, D.H.: Trapdoor security in a searchable
public-key encryption scheme with a designated tester. J. Syst. Softw. 83(5), 763–
771 (2010)

20. Seo, J.H., Kobayashi, T., Ohkubo, M., Suzuki, K.: Anonymous hierarchical
identity-based encryption with constant size ciphertexts. In: Jarecki, S., Tsudik,
G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 215–234. Springer, Heidelberg (2009)

21. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009)

	Keyword Updatable PEKS
	1 Introduction
	2 Preliminaries
	2.1 Identity-Based Proxy Re-encryption

	3 Keyword-Updatable PEKS
	4 Construction of KU-PEKS
	5 Applications
	References

