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Abstract. We revisit the classical problem: given a memoryless source
having a certain amount of Shannon Entropy, how many random bits can
be extracted? This question appears in works studying random number
generators built from physical entropy sources.

Some authors proposed to use a heuristic estimate obtained from the
Asymptotic Equipartition Property, which yields roughly n extractable
bits, where n is the total Shannon entropy amount. However best precise
results of this form give only n − O(

√
log(1/ε)n) bits, where ε is the dis-

tance of the extracted bits from uniform. In this paper we show amatching
n − Ω(

√
log(1/ε)n) upper bound. Therefore, the loss of Θ(

√
log(1/ε)n)

bits is necessary. As we show, this theoretical bound is of practical rele-
vance. Namely, applying the imprecise AEP heuristic to a mobile phone
accelerometer one might overestimate extractable entropy even by 100%,
no matter what the extractor is. Thus, the “AEP extracting heuristic”
should not be used without taking the precise error into account.

Keywords: Shannon entropy · Randomness extractors · Asymptotic
equipartition property

1 Introduction

1.1 Entropy

Randomness Sources. Important computer applications, like generating cryp-
tographic keys, building countermeasures against side-channel attacks or gam-
bling, demand randomness of excellent quality, that is uniformly or almost uni-
formly distributed sequences of bits. Unfortunately, in practice we cannot gen-
erate pure randomness. Even best physical sources of randomness produce bits
that are slightly biased or correlated. Sources which provide some (not maximal)
amount of randomness are called weak sources. In practice, randomness can be
gathered based on a physical phenomena (like radiation [hot], photons trans-
mission, thermal noise [BP99], atmospheric noise [ran], jitters) or even from
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a human-device interaction (like timing I/O disk and network events [dev],
keystrokes or mouse movements [pgp], shaking accelerators in mobile phones
[VSH11] and other ideas). Such raw randomness must be further post-processed
before use, in order to eliminate bias and correlations between individual bits.
While this task can be easily achieved by general-purpose tools called random-
ness extractors [BST03], the main problem is in evaluating the quality of a ran-
dom source. One needs to ensure that enough randomness has been collected,
depending on the chosen post-processing technique. This is the major concern in
designing so called true random number generators, which combine randomness
sources with postprocessing algorithms to generate random output of high qual-
ity from underlying weak sources. The design of a typical TRNG is illustrated
in Fig. 1 below [BST03].

Weak Randomness Source Extractor Strongly Random Output

collecting raw bits postprocessing

Fig. 1. True Random Number Generators. The scheme illustrates the typical design,
where the building blocks are: (a) an entropy source (b) a harvesting mechanism and
(c) a postprocessor (extractor). The main issue is how to ensure that enough raw bits
have been collected?

Quantifying Randomness in Theory. From a theoretical point of view, to
evaluate randomness within a known probability distribution one uses the notion
of entropy. One uses different entropy definitions depending on the context. In
information theory most widely used is Shannon entropy, which quantifies the
encoding length of a given distribution. For any discrete random variable X its
Shannon Entropy equals

H(X) = −
∑

x

Pr[X = x] log Pr[X = x]. (1)

In turn, cryptographers use the more conservative notion called min-entropy,
which quantifies unpredictability (in particular, min-entropy provides a bound
on how much randomness can be extracted). The min-entropy of a probability
distribution X is defined as

H∞(X) = min
x

(1/ log Pr[X = x]). (2)

In general, there is a large gap between these two measures: the min-entropy of
an n-bit string may be only O(1) whereas its Shannon entropy as big as Ω(n)1.

1 Consider simply a n-bit distribution X which puts the weight 0.5 on the string 0n

and is uniform elsewhere.
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Quantifying Randomness in Practice. From a practical point of view,
often it happens that not only the distribution of X is unknown, but it may
be even hard to assign a fitting theoretical model with some degrees of freedom
(for example if we knew that X comes from a particular paremetrized family
of distributions, not knowing the concrete parameters). This is in particular the
case when randomness is being gathered from different sources (for example the
linux random number generator). In such cases, we have no understanding of
the underlying physical process and cannot conclude anything about its charac-
teristics (like the entropy), which would be the recommended solution [KMT15].
Instead, we can only observe output samples of the source, considering it a
black-box device. In this setting, we need an entropy estimator, which guess the
entropy of an unknown distribution X based on its samples.

1.2 Entropy Estimating

Motivations for Entropy Estimating. We have already seen that we need
entropy estimators to evaluate the quality of a source and thus the quality of the
extractor output. Also, entropy estimating is motivated in practice by the fact
that actually many parties may be interested in evaluating the source entropy
in the context of TRNGs [BL05,KMT15]: (a) designers, when they fail to fit
a good model to the source (b) testing labs, when verifying quality claimed by
manufacturers and (c) developers, especially when working with multiple sources.

Shannon Entropy or Min-Entropy? Technically speaking, extractable ran-
domness is quantified in terms of min-entropy, not Shannon entropy. However,
there are two reasons for why we actually makes sense to work with Shannon
entropy

(a) Shannon entropy is easier to be reliably estimated.
(b) For memoryless sources, Shannon and min-entropy are comparable

Regarding (a), we note that to estimate Shannon entropy one can use fairly
general source models based on Markov chains like Maurer-Coron tests [Cor99]
or measures based on mutual information [YSK13]. Also, Shannon Entropy is
much easier (and efficient) to estimate in an online manner, where the source
distribution may change over time. Such estimators are an active research area
and find important applications not only in cryptography [BL05,LPR11] but
also in learning, data mining or network anomaly detection [HJW15].

To discuss (b), recall that memoryless source (called also stateless) is a source
which produces consecutive samples independently. While this is a restriction,
it is often assumed as a part of the model by practitioners working on random
number generators (cf. [LRSV12,BKMS09,BL05,DG07]) or enforced be under
some circumstances (so called certification mode which enforces fresh samples,
see [BL05,DG07]). An important result is obtained from a more general fact
called Asymptotic Equipartition Property (AEP). Namely, for a stateless source
the min-entropy rate (min-entropy per sample) is close to its Shannon entropy
per bit (conditionally with probability almost 1), for a large number of samples.
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AEP and Extracting from Memoryless Shannon Sources. We start
with the following general fact, which easily follows by the Weak Law of Large
Numbers.

Theorem 1 (Asymptotic Equipartition Property). The min entropy per
bit in a sequence X1, . . . , Xn of i.id. samples from X, for large n and with high
probability, is close to the Shannon entropy of X. More precisely

− 1
n

log PX1,...,Xn
(x1, . . . , xn) −→ H(X) (3)

where the convergence holds in probability (over (x1, . . . , xn) ← X1, . . . , Xn).

Intuitively, the AEP simply means that, conditionally with large probability,
the product of many independent copies is flat and its min-entropy approaches
Shannon entropy.

Thus, the AEP is a bridge connecting the heuristic use of Shannon entropy
as a measure of extractable randomness (practice) and the provable security
(randomness extractors theory). The best known quantitative form of Eq. (3)
appears in [Hol06].

Theorem 2 (Quantitative Asymptotic Equipartition Property [Hol06]).
Let Xn = X1, . . . , Xn be a sequence of i.i.d. samples from a distribution X of
Shannon entropy k. Then the sequence (X1, . . . , Xn) is ε-close in the variational
distance to a distribution of min entropy kn − O

(√
kn log(1/ε)

)
.

Now we restate the same result in language of randomness extractors

Corollary 1 (Extracting from Memoryless Shannon Sources, Lower
Bound). In particular, in the above setting, one can extract at least

m = kn − O
(√

kn log(1/ε)
)

− 2 log(1/ε) (4)

bits which are ε-close to uniform (e.g. using independent hash functions [HILL99]
as an extractor). Since in most settings we have2 ε � 2−kn, we extract

m = H(Xn) − O
(√

H(Xn) log(1/ε)
)

(5)

bits, that is we extract all the Shannon entropy but O
(√

kn log(1/ε)
)
bits.

1.3 Problem Statement

We have already seen that in case of many independent copies the amount of
extractable bits approaches asymptotically the Shannon entropy. We note that
some works, including works on entropy estimating [BL05,LPR11] suggest to
use a simplified (asymptotic) version of Eq. (5), namely
2 Because ε ≈ 2−kn provides exponential security which is already overkill in most
cases.
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m ≈ H(Xn) (6)

bits ε-close to uniform, ignoring a smaller order term O
(
(H(Xn) log(1/ε))

1
2

)
.

The question which naturally arises is how much do we lose by this approxima-
tion. Is it safe to assume (heuristically) that the equality (6) holds in practical
parameter regimes?

Question: What is the exact error of the AEP heuristic Eq. (6)?

We rewrite this problem as the task of finding upper bounds on the extraction
rate of Shannon entropy memoryless sources.

Question (Reformulated): Suppose that we have a source which pro-
duces i.i.d samples X1,X2, . . . each of Shannon entropy k. How much
almost uniform bits can be extracted from n such samples?

This question is well-motivated as no upper bounds to Theorem 2 have been
known so far (though some other works [Hol11] also address lower bounds), and
because of the popularity of the AEP herustic (6).

1.4 Our Results and Applications

The Tight No-Go Result. We answer the posted question, showing that the
convergence rate in Eq. (3) given in Theorem 2 is optimal.

Theorem 3 (An Upper Bound on the Extraction Rate from Shan-
non Sources). From any sequence of i.i.d. binary random variables Xn =
X1, . . . , Xn we no extract can get more than

m = H(Xn) − Θ(
√

H(Xn) log(1/ε)) (7)

bits which are ε-close (in the variation distance) to uniform. This matches the
lower bound in [Hol06] (the constant under Θ(·) depends on the source X).

Corollary 2 (A Significant Entropy Loss in the AEP Heuristic
Estimate). In the above setting, the gap between the Shannon entropy and the
number of extractable bits ε-close to uniform equals at least Θ(

√
log(1/ε)kn). In

particular, for the recommended security level (ε = 2−80) we obtain the loss of
kn − m ≈ √

80kn bits, no matter what an extractor we use.

An Application to TRNGs: Not To Overestimate Security. Imagine a
mobile phone where the accelerometer is being used as an entropy source. Such
a source was studied in [LPR11] and the Shannon entropy rate was estimated
to be roughly 0.125 per bit. Since the recommended security level for almost
random bits is ε = 2−80. According to the heuristic (3) we need roughly m =
128/0.125 = 1024 samples to extract a 128-bit key. However taking into account
the true error in our Theorem 3 we see that we need at least m ≈ 2214 bits!
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An Application to the AEP: Convergence Speed. Let Xn =
X1,X2, . . . , Xn be a sequence of i.i.d. bit random variables. By the standard
AEP we know that with probability 1 − ε over x ← Xn we have PXn(x) �
2−nH(X1)+O

(√
nH(X1) log(/ε)

)
. Our result implies that for any event E of proba-

bility 1−ε for some x ∈ E we have PXn(x) � 2−nH(X1)+Ω
(√

nH(X1) log(1/ε)
)
. This

proves that the error term for the convergence is really Θ
(√

nH(X1) log(1/ε)
)
.

1.5 Organization

The remainder of the paper is structured as follows. In Sect. 2 we give some
basic facts and auxiliary technical results that will be used later. The proof of
the main result, that is Theorem 3, is given in Sect. 3. Finally, Sect. 4 concludes
the work.

2 Preliminaries

2.1 Basic Definitions

The most popular way of measuring how two distributions are close is the sta-
tistical distance.

Definition 1 (Statistical Distance). The statistical (or total variation) dis-
tance of two distributions X,Y is defined as

SD (X;Y ) =
∑

x

|Pr[X = x] − Pr[Y = x]| (8)

We also simply say that X and Y are ε-close.

Below we recall the definition of Shannon entropy and min entropy. The loga-
rithms are taken at base 2.

Definition 2 (Shannon Entropy). The Shannon Entropy of a distribution X
equals H(X) = −∑

x Pr[X = x] log Pr[X = x].

Definition 3 (Min Entropy). The min entropy of a distribution X equals
H∞(X) = minx(1/ log Pr[X = x]).

2.2 Extractors

Extractors are functions which transform inputs of some required min-entropy
amount into an almost uniform string of known length. To extract from every
high-entropy source (that is, to have an extractor of general purpose), one needs
to allow extractors to use small amount of auxiliary randomness, which can be
“reinvested” as in the case of catalysts in chemistry. Also, one has to accept some
small deviation of the output from being uniform (small enough to be acceptable
for almost every application) and some entropy loss [RTS00]. Good extractors,
simple, provable-secure and widely used in practice, are obtained from universal
hash families [CW79]. We refer the reader to [Sha11] for a survey.



How Much Randomness Can Be Extracted 81

Definition 4 (RandomnessExtractors).A functionExt : {0, 1}n ×{0, 1}d →
{0, 1}m is a (k, ε)-extractor

SD (Ext(X,Ud), Ud;Um+d) � ε

for any distribution X of min-entropy at least k and independent d-bit string Ud.

Definition 5 (Extractable Entropy, [RW04]). We say that X has k
extractable bits within distance ε, denoted Hε

ext(X) � k, if for some random-
ized function Ext we have SD (Ext(X,S);Uk, S) � ε, where Uk is a uniform
k-bit string and S is an independent uniform string (called the seed).

The so called Leftover Hash Lemma [HILL88] ensures that Hε
ext(X) � H∞(X)−

2 log(1/ε).

2.3 Technical Facts

Our proof uses the following characterization of “extractable” distributions.

Theorem 4 (An Upper Bound on Extractable Entropy, [RW04]). If
Hε

ext(X) � k then X is ε-close to Y such that H∞(Y ) � k.

The second important fact we use is the sharp bound on binomial tails.

Theorem 5 (Tight Binomial Tails [McK]). Let B(n, p) be a sum of inde-
pendent Bernoulli trials with success probability p. Then for γ � 3

4q we have

Pr [B(n, p) � pn + γn] = Q

(√
nγ2

pq

)
· ψ (p, q, n, γ) (9)

with the error term satisfies

ψ (p, q, n, γ) = exp

(
nγ2

2pq
− nKL (p + γ ‖ p) +

1

2
log

(
p + γ

p
· q

q − γ

)
+ Op,q

(
n− 1

2

))
(10)

where KL (a ‖ b) = a log(a/b)+ (1−a) log((1−a)/(1− b) is the Kullback-Leibler
divergence, and Q is the complement of the cumulative distribution function of
the standard normal distribution.

3 Proof of Theorem3

3.1 Characterizing Extractable Entropy

We state the following fact with an explanation in Fig. 2.

Lemma 1 (An Uppper Bound on the Extractable Entropy). Let X be
a distribution. Then for every distribution Y which is ε-close to X, twe have
H∞(Y ) � − log t where t satisfies

∑

x

max(PX(x) − t, 0) = ε. (11)
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Proof (of Lemma 1). The proof follows easily by observation that the optimal
mass rearrangement (which maximizes H∞(Y )) is to decrease probability mass
at biggest points. Indeed, we have to find the optimal value of the following
optimization program.

maximize H∞(Y )
s.t. SD(X;Y ) � ε

(12)

Note that we can write PY = ε(x) + PX where
∑

x ε(x) = 0 and
∑

x |ε(x)| = 2ε,
transforming program (12) into

maximize min
x

(
log 1

PX(x)+ε(x)

)

s.t.
{ ∑

x ε(x) = 0∑
x |ε(x)| = 2ε

(13)

where the optimization runs over the numbers ε(x). Since u → log u−1 is an
decreasing function when u ∈ (0, 1), the program has the same maximizer as the
solution of

maximize min
x

(PX(x) + ε(x))

s.t.
{ ∑

x′ ε(x′) = 0∑
x′ |ε(x′)| � 2ε

(14)

For the set S = {x : ε(x) < 0}, we claim that the optimal solution satisfies
PX(x) + ε(x) = const on x ∈ S. Indeed, otherwise we have

PX(x1) + ε(x1) < PX(x) + ε(x) � PX(x2) + ε(x2)

for some x1, x2 ∈ S and every x ∈ S \ {x1}. Then replacing ε(x1), ε(x2) by
ε(x1)+ε(x2)

2 increases the objective keeping the constraint, a contradiction. Thus
PX(x)+ ε(x) = t0 whenever ε(x) < 0. Similarly, we prove that PX(x)+ ε(x) � t0
for any x. Going back to Eq. (13), it suffices to observe that we have

min
x

(
log

1
PX(x) + ε(x)

)
� − log t0.

Finally, since −ε(x) = PX(x) − t0 when x ∈ S, we get ε � −∑
x ε(x) =∑

x max(PX(x) − t0, 0). In particular, t0 � t which gives − log t0 � − log t and
the result follows. 	


Without losing generality, we assume from now that X ∈ {0, 1} where
Pr[X = 1] = p, q = 1 − p. Define Xn = (X1, . . . , Xn). For any x ∈ {0, 1}n

we have

Pr[Xn = x] = p‖x‖qn−‖x‖. (15)

According to the last lemma and Theorem 4, we have

Hε
ext (Xn) � − log t (16)
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t =?

1 −

y = PDF(x)

Fig. 2. The Entropy Smoothing Problem. For a given probability density function, we
want to cut a total mass of up to ε above a possibly highest threshold (in dotted red)
and rearrange it (in green), to keep the upper bound smallest possible.

where t ∈ (0, 1) is such that
∑

x

max (PXn(x) − t, 0) = ε. (17)

From now we assume that

t = ppn+γnqqn−γn. (18)

3.2 Determining the Threshold t

The next key observation is that t is actually small and can be omitted. That
is, we can simply cut the (1 − ε)-quantile. This is stated in the lemma below.

Lemma 2 (Replacing the Threshold by the Quantile). Let x0 ∈ {0, 1}n

be a point such that ‖x0‖ = pn + γn. Then we have

∑

x: ‖x‖�‖x0‖
max (PXn(x) − PXn(x0)) � 1

2

∑

x: ‖x‖�‖x0‖
PXn(x) (19)

To prove the lemma, note that from Theorem 5 it follows that setting

γ′ = γ + n−1 log
(

p

q

)
(20)

we obtain

∑

j�pn+γ′n

(
n

j

)
� 3

4
·

∑

j�pn+γn

(
n

j

)
(21)
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when γ is sufficiently small comparing to p and q (formally this is justified by
calculating the derivative with respect to γ and noticing that it is bigger by at
most a factor of 1 + γ√

npq ). But we also have

pjqn−j � 2 · p(p+γ)nq(q−γ)n for j � γ′n (22)

Therefore,
∑

j�pn+γn

(
n

j

)
pjqn−j �

∑

j�pn+γ′n

(
n

j

)
pjqn−j

� 2 · p(p+γ)nq(q−γ)n ·
∑

j�pn+γ′n

(
n

j

)

� 2 · 3
4

· p(p+γ)nq(q−γ)n ·
∑

j�pn+γn

(
n

j

)
(23)

which finishes the proof.

3.3 Putting This All Together

Now, by combining Lemmas 1 and 2 and the estimate Q(x) ≈ x−1 exp(−x2/2)
for x � 0 we obtain

ε � exp
(

−nKL (p + γ ‖ p) − log
(

nγ2

2pq

)
+ Op,q(1)

)
(24)

which, because of the Taylor expansion KL (p + γ ‖ p) = γ2

2pq +Op,q(γ3), gives us

γ � Ω

(√
log(1/ε)

pqn

)
(25)

Setting γ = c ·
√

log(1/ε)
pqn , with sufficiently big c, we obtain the claimed result.

4 Conclusion

We show an upper bound on the amount of random bits that can be extracted
from a Shannon entropy source. Even in the most favourable case, that is for
independent bits, the gap between the Shannon entropy and the amount of ran-
domness that can be extracted is significant. In practical settings, the Shannon
entropy may be even 2 times bigger than the extractable entropy. We conclude
that the hard error term in the AEP needs to be taken into account when
extracting from memoryless Shannon sources.
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