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Abstract. Wearable devices have recently become popular, and more
and more people now buy and wear these devices to obtain health-related
services. However, as wearable device technology quickly advances, its
security cannot keep up with the speed of its development. As a result,
it is highly likely for the devices to have severe vulnerabilities. Moreover,
because these wearable devices are usually light-weight, they delegate
a large portion of their operations as well as permissions to a software
gateways on computers or smartphones, which put users at high risk
if there are vulnerabilities in these gateways. In order to validate this
claim, we analyzed three devices as a case study and found a total 17
vulnerabilities in them. We verified that an adversary can utilize these
vulnerabilities to compromise the software gateway and take over a vic-
tim’s computers and smartphones. We also suggest possible mitigation
to improve the security of wearable devices.
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1 Introduction

Wearable device, a representitive example of the Internet of Things (IoT), have
been increasing their market share recently. Researchers expect that this market
share will reach 13 billion dollars by 2018 [23]. As increasing numbers of people
are wearing these devices, adversaries may turn their attention to steal customers’
private information. Despite their popularity, research on the security of wear-
able devices has been lacking. One can consider wearable devices as an embedded
device, whose security has been actively studied recently [5,8,11,21,28]. These
studies mainly focus on (semi) automatic analysis of their firmware.

In order to prepare for the IoT era, we have to understand the current state
of art in designing wearable devices, as they represent the first batch of IoT
devices. To this end, we decided to comprehensively evaluate the security of
wearable devices through multiple steps. First, we classify the attack vectors
on these devices. To save energy, wearable devices push their computational
overhead and many permissions to their corresponding application on computers
or smartphones, so called software gateways. These software gateways take the
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role of medium between wearable devices and servers for updating the device
or storing user data for customer services. Wearable devices utilize Bluetooth
Low Energy (BLE) to communicate with the software gateways, and software
gateways connect to the servers as usual.

We chose three popular wearable devices from a top 10 list [22], and analyzed
and classified attack vectors for their update, data, and BLE channels as well
as those for the device itself. From this analysis, we discovered a total of 17
vulnerabilities in the devices and showed that a user’s private information can
be exposed in plaintext. We successfully exploited them to take control of the
software gateways as well. Finally, we present mitigations in the design stage to
prevent wearable devices from being compromised.

To summarize, we make the following contributions in this study:

— We classified possible attack vectors related to the wearable devices that can
be applied to most low-power IoT devices.

— We performed an analysis on our target devices and found 17 vulnerabilities.
An adversary can take the control of the software gateways as well.

— We discuss mitigations for wearable devices in their operational channels to
securely protect a user’s private.

The rest of this paper is organized as follows: Section2 outlines existing
security research related to wearable devices and embedded systems. Section 3
overviews wearable device system as a whole and introduces our threat model. In
Sect. 4, we analyze the vulnerability of wearable devices and their exploitation
is described in Sect.b. We discuss the analysis result and mitigation of these
vulnerabilities in Sect. 6, and we conclude the paper in Sect. 7.

2 Related Works

Attacks on Wearable Devices. When no wearable device was available on the
market in the early 2000s, there were a few studies forecasting security and privacy
issues of wearable devices [3,7,13], but they were not really materialized until now.
Recently, Ryan exposed vulnerabilities in the BLE interface, a dominant communi-
cation channel for wearable devices, and showed that sniffing is possible [19]. After
that, Barcena at el. applied this research to actual wearable devices [6]. In par-
ticular, the authors proved that they can extract user information from the BLE
interface between the target device and smartphone. In contrast to these previous
studies, we perform a comprehensive study to classify possible attack vectors of the
operational channels on wearable devices and analyze all.

Attacks on Embedded Devices. Security research on embedded devices is
also relevant. Zaddach at el. introduced various ways to analyze the vulnerability
of embedded devices [28]. In addition, Costin et al. performed a large-scale secu-
rity analysis on embedded devices [10]. The authors improved their research and
proposed an analysis platform for embedded devices called Avatar [27]. With this
platform, firmware of embedded devices can be emulated and debugged along
with the peripherals.
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In addition, there have been several other approaches to embedded devices.
AEG [5], Mayhem [8], FIE [11], and Firmalice [21] are frameworks for detecting
vulnerabilities in firmware utilizing symbolic execution and taint analysis. These
analysis methods on embedded devices can also be applied to determine vulner-
abilities in the wearable devices. However, in this study, we focus on operational
channels rather than their firmware. Furthermore, these studies are limited to
Intel or ARM platform.

3 Background

3.1 Wearable Device Overview

A wearable device is a device that users can wear in their daily lives. Because
wearable devices are light-weight and use low energy, they offload their compu-
tational overhead to software gateways. Therefore, almost all wearable devices
are connected to a computer or smartphone, and this connection is usually based
on Bluetooth. In this case, computers and smartphones take the role of software
gateways to bridge the wearable devices to update and database servers through
the Internet. Figurel illustrates an overview of the operational procedure of
wearable devices.
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Fig. 1. General operational procedure of wearable devices

3.2 Bluetooth Low Energy (BLE)

Bluetooth Smart, also called BLE, is a relatively new protocol proposed after
Bluetooth 4.0. Over the years, the security of classic Bluetooth has been
improved. But BLE is a different protocol from classic Bluetooth, and, therefore,
its security has to be analyzed almost from scratch.

Because BLE is designed to reduce power consumption, the randomness of
the frequency hopping sequence, which protects the classic Bluetooth signal from
sniffing, is replaced with an insecure modular addition. Furthermore, in clas-
sic Bluetooth, the secure simple pairing (SSP) technique effectively protects it
from Man-in-the-Middle (MitM) attacks. However, this feature was only intro-
duced in Bluetooth 4.1, meaning that devices implementing the earlier versions
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of Bluetooth would be vulnerable. Instead of using SSP, BLE utilizes six-digit
pin numbers as a Temporary Key (TK), but this can be brute-forced within a
second.

Ryan identified the vulnerabilities of the BLE interface pairing procedure
in [19]. However, because many devices use customized BLE stack, their com-
muncation should be analyzed to determine the exact meaning of the payload
data in each BLE packet.

3.3 Threat Model

Wearable devices offload their operation to software gateways (i.e., applications
on computers and smartphones). This includes access to various information such
as health information, SMS message, calendar, email, and call history. Therefore,
if an adversary can compromise the software gateway, she can take over the
whole information that the wearable device can access. Furthermore, as wearable
devices use more communication channels than a computer, they are likely to
have more vulnerabilities.

@® Gateway to Update Server. If there is a vulnerability in the update chan-
nel, this would be critical. An adversary can replace a benign update file to
her own malicious one to compromise the software gateway as well as the
wearable device. Usually this update channel is in a content management
system managed by third party environment; hence, it could have vulnera-
bilities with respect to a link or URL access.

@ Gateway to Database Server. As many wearable devices operate with
health applications, they collect health information and send it to the data-
base server. Based on this collected data, companies provide health-related
services to their customers. However, if this channel is vulnerable, private
user information can be exposed to an adversary.

® BLE Connection. Wearable devices are usually connected to their software
gateway through BLE. Because the BLE interface aims for low energy con-
sumption, it is highly likely to have vulnerabilities in the pairing or commu-
nication procedure. Furthermore, the data encapsulated in the BLE signals
may not be encrypted. In addition, if the channel is not authenticated, an
adversary can directly send a request to the device and extract private user
information.

@ Device Analysis. If there are vulnerabilities on the device itself, an adver-
sary can exploit them to compromise the device itself. In this case, the adver-
sary can control the device arbitrarily: sending multiple alarms or vibration
to wake up the victim at night. Additionally, the adversary could extract a
user’s health information through the BLE interface.

We assume an adversary may have her own device for the analysis, but she
does not have a physical access to the victim’s device. In addition, we assume



BurnFit: Analyzing and Exploiting Wearable Devices 231

an adversary has access to the same or upper layer of the network so that she
can perform DNS spoofing to redirect packets to her server. In addition, the
adversary could be located close to the target so that she can send and receive
BLE packets from the device.

4 Vulnerability Analysis of Wearable Devices

4.1 Methodology

We targeted three devices: A-fit, B-fit, and C-fit, all of which are fitness trackers
that are on the list of the most popular wearable devices [22]. As we mentioned
in Sect. 3, the software gateways bridging the wearable devices to the servers
through the Internet may have many vulnerabilities.

We analyzed the devices as well as the operational channels: update, data,
BLE. To analyze the update channel, we disassembled the software gate-
ways using IDA Pro [14], and checked whether an adversary could substitute
updates and device firmware with malicious ones. For the application analysis
on Android smartphones, we utilized decompiling tools such as ApkTool [24],
Smali/Baksmali [15], and dex2jar [18]. For the data channel, we analyzed the
security of the health information by determining whether it is exposed as
plaintext. For the analysis of BLE channel, it was determined whether sniff-
ing or spoofing over-the-air data was possible. We sniffed BLE packets with
Ubertooth [17], and analyzed them with Wireshark [9]. For device analysis, we
searched for hardware debug points that could be utilized to extract firmware
or other device information directly. From this analysis, we discovered total 17
vulnerabilities among three devices, as listed in Table 1.

Table 1. Vulnerabilities found on A-fit, B-fit, and C-fit. (éU§ means there was only
partial obfuscation.)
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4.2 TUpdate Channel Analysis

We performed both traffic and application analysis by respectively monitor-
ing the network and disassembling the application to find vulnerabilities in
the update channel. The A-fit has a couple of software gateways: applications
on a smartphone and computer. The other devices only have a smartphone
application.

A-fit. The A-fit can be connected to either a smartphone or computer using
the provided Bluetooth connector. The smartphone loads its data using HTTPS,
and this application was heavily obfuscated. Therefore, we chose to analyze the
application on the computer, which was not obfuscated. As a result, we could
easily figure out the firmware update procedure.

When a user first connects the A-fit to a computer, the device determines
whether there is an update for the application on the computer. In addition,
the user can directly send an update request message to the server by clicking
an update button on the side of the application screen. From this analysis, we
discovered that there was a hardcoded URL for the update server. Additionally,
the A-fit application utilizes HTTP, which has no protection mechanism, so users
are exposed to sniffing or even spoofing.

Stream Content

GET HTTP/1.1
User-Agent:
no-cacne

HOST :
Cache_Control:

HTTP/1.1 200 OK

server: Apache-coyote/1.1 Update RequeSt

X-UA-CompatibY'y ¢ near ; DATA XREF: .rdata:@85C87EC0

Accept-Ranges . ciza

ETag: w/"2412]Push  u2h =

Last-Modified{ push offset ; _nttp -/ /I
Content-Type: | mov ecx, offset dword_63CACS

Content-Length ca1)  sub 402468 Hardcoded Request URL

Date: wWed, 16
X-Frame-0ptior|

M Follow TCP Stream

push offset sub_5C5DAB ; void (__cdecl =){)
call _atexit

pop ecx

retn

Update File Link in XML

91
Tlication/octet-stream” />

</rss>

Fig. 2. XML file contents in A-fit update procedure. (Critical information was redacted
to protect device.)

To update itself, the application first accesses to an XML file located at the
update server of A-fit, as shown in Fig. 2. It then downloads an update file from
the secondary server following the link written in the body of the XML file
after checking its version. Because the A-fit application runs on Windows, this
downloaded update file is an executable (.exe). After downloading it, the A-fit
automatically executes the file to continue its update. From the analysis of the
application we found that there is neither authentication of the downloaded file
nor integrity check/verification of it. Therefore, if an adversary can perform DNS
spoofing and make the A-fit application access her spoofed XML, it is possible
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to substitute a benign update file with a malicious one so that the application
will execute it and compromise the victim’s computer.

B-fit. In case of B-fit, there was only partial obfuscation on the application,
and this obfuscation was not applied to the update routine. Therefore, we were
able to analyze the application in a similar way to A-fit.

B-fit has similar vulnerability as A-fit; it first accesses to an XML file that
contains the link of the update file. Even though it utilizes HTTPS to protect
the connection from spoofing and verifies the certificate of the update server,
there was no protection for the link of the update file in the XML file. The link
was HTTP, which enables an adversary to perform a DNS spoofing attack to
change the original update to a malicious one.

However, B-fit utilizes the update channel only for the firmware update.
Because the application on the smartphone is updated from the app store, it was
not able to modify the application. Furthermore, the update file was encrypted
and decrypted on the B-fit device. Therefore, even though an adversary could
perform DNS spoofing, she cannot create properly functioning firmware without
the key.

C-fit. C-fit was the most vulnerable device in our test. Similar to B-fit, it only
supports a connection with an Android smartphone that has the BLE feature.
When C-fit is first connected to a smartphone, the application on the smartphone
checks the firmware version as well as the application version in a similar way
to A-fit. It accesses an XML file from the update server, follows the URL within
it, and downloads an update file. We found that the application contains the
new version of firmware in its assets folder. The application was not obfuscated,
and there was neither integrity check nor authentication of the application and
firmware, just as for A-fit. Therefore, an adversary could perform DNS spoofing
and manipulate the application as well as the C-fit firmware.

4.3 Data Channel Analysis

We analyzed the security of the data channels by investigating the capability
of sniffing. When A-fit transfers a user’s data to the database server, it utilizes
HTTP which is vulnerable to sniffing. As shown in Fig. 3, the application transfer
the victim’s private information in plaintext, which is only encoded in Base64.
This private information includes the version of the victim’s operating system,
victim’s private information in plaintext, health information, and device model,
which is only encoded in Base64. This private information includes the version
of the victim’s operating system, health information, and device model.

By monitoring the network, an adversary can easily collect the private infor-
mation of the users. Based on this collected data, the adversary could perform
targeted attack in the real world. For example, an adversary could determine
whether the target is sleeping or not before breaking into a house, or could
recognize whether the target is sick. We also found that not only health infor-
mation, but also the user’s account information (i.e., ID and password) was
exposed in plaintext. Therefore, from this analysis, we determined that the A-fit
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Fig. 3. Plaintext health information of a user. (The box shows user’s private informa-
tion and critical information of device was redacted.)

was vulnerable to sniffing because it utilized HTTP. However, in case of B-fit
and C-fit, they encrypted their data using HTTPS with certificate verification,
which made it difficult to extract information.

4.4 BLE Channel Analysis

As all these devices are known to use BLE, we analyzed the BLE channel to
check if an adversary could access a user’s health information. First, we needed
to determine which version of Bluetooth was utilized. This information can be
found in the BLE advertisement packets; there is a Flags field that indicates the
configuration of BLE discoverable mode as well as the rates for data transferring.

As A-fit and B-fit only utilize BLE for communication, we were able to sniff
the communication process via a pairing step. Moreover, these two devices did
not have any option for BLE encryption. Because most BLE devices communi-
cate using their own protocol implementation to increase energy efficiency, we
could not understand the captured wireless packets. However, we analyzed the
Android applications and figured out the data structure of the BLE packets. If
an adversary is within BLE range, she can read the health information of the
devices and even send fake data to the software gateways.

The C-fit supports classic Bluetooth. During our repeated experiments, we
could not find any connection request in BLE protocol. This is because C-fit
utilizes classic Bluetooth to send its actual data, and BLE is only used for the
device ID advertisement to reduce power consumption.
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4.5 Device Analysis

We also analyzed the devices to explore possible hidden functions. In the case of
C-fit, the firmware consists of a file system, main executable binary, and binary
for group of library functions. The firmware was not encrypted, so we could
analyze it to find hidden functions and protocols.

The C-fit has an engineering mode to provide debugging at the service center.
By analyzing the firmware, we could find all of the hidden functions, as listed
in Table 2. Some hidden functions were published in [2], but this study did not
report the full list.

Table 2. Codes for hidden functions in the C-fit engineering mode (bold codes were
published in [2])

Codes for hidden menu

*40* *4737425 | *41111 *H250 | *42222 *4251

* #1234 | *#350 | *#12580%369 | *#0228 | *#232337 | *#2663
*42664 | *#7353 | *4£7284 * 409900 | *#22228378 | *#232331
*4533881 | ¥#£533883 | ¥4737425

In addition, we found that C-fit has a modem feature that accepts AT com-
mands similarly to a smartphone if it is connected to a computer with a micro
USB interface. The C-fit supports multiple AT commands to configure or check
device information. We discovered that there was a buffer overflow vulnerability
in the AT commands. For example, if we entered an extremely long string as
a parameter of the AT command, the C-fit displays the text "Hardware Fault’
on its screen and reboots itself. If an adversary can physically access the device,
she can exploit this vulnerability to compromise the device. After it is compro-
mised, she can then send fake health information to the smartphone through the
Bluetooth interface and make multiple false alarms.

Furthermore, we searched for hardware debugging points that we could uti-
lize to extract device information or firmware. Because we could not obtain
the firmware of the A-fit and B-fit, we need to utilize these debugging points.
We focused on exploiting the Universal Asynchronous Receiver/Transmitter
(UART), Joint Test Action Group (JTAG), and Serial Wire Debug (SWD)
interfaces [25,26], as many embedded devices generally contain these debugging
features.

We utilized JTAGulator [16] and J-link [20] to determine if one of debugging
interfaces exists. JTAGulator automatically generates signals to find debugging
pins for UART and JTAG, but we could not find any such pins. In the case
of SWD, we needed to input every single pin to find the debugging interface.
However, as there were too many combinations of pins, we could not explore all
pins. We also used a logic analyzer from Quant Asylum to directly analyze the
signals from each pin, but the signal was too complicated to analyze. Therefore,
we were not able to find one on the devices.
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5 Exploiting Wearable Devices

We verified the exploitability of the update channel from the discovered vulner-
abilities because this is the most critical part that can harm users. We prepared
one phone as a victim, our own update server, and a laptop for DNS spoofing
with [1]. As a result, the software gateways of the A-fit and C-fit were successfully
compromised, but we were not able to take over the B-fit.

A-fit. We first performed DNS spoofing to substitute the A-fit application with
our own. As we mentioned in Sect. 4.2, the application checks for updates when
a user clicks on a button. We placed a malicious XML file and executable file on
our server, and redirected the update traffic to it. As a result, the application on
the victim’s computer downloaded our file and executed it, as shown in Fig. 4.
As a proof-of-concept, we utilized the Windows calculator, but any application
could be executed here.

EER] =
¥ 2RO =82M
ESCEREETE | °
@ Degrees Radians GvstH MC ‘ MR MS ‘ M+ ‘ M-
[————J°l =22 sTo| &Lt e [ (.
IHVH\H ‘[ )H‘—‘(E (‘ z ‘v
C——————Jumogsuc@anal| — —(—
—— lnl‘sthsm ‘x‘ n!H7 ‘s 9 ‘ / %
(amomonn @) || [ame||com||on [| 22 || 2x]] 4 |[ 5 || 6 [[ ||
o J{saon] an [ ] 1 [[ 2 ][ 3 L= ]
. you hacked [re |[on |[moa| [0 |[105][ 0 |[- |[+]
CIickﬁ
ENCELE (usaws || 2oos

Fig. 4. Successful compromise of the victim’s computer after DNS spoofing on the A-fit
application. (Critical information of device was redacted. Note that words in the figure
are Korean due to the OS language pack.)

C-fit. We also tried DNS spoofing the C-fit. In the case of C-fit, we were able
to compromise both the Android application and the C-fit device firmware. We
could install our malicious application successfully on the victim’s phone. Fur-
thermore, the installed application inherited the permissions from the original
C-fit application, which includes many permissions such as accessing the phone
book, extracting SMS messages, connecting to the Internet, and so on. Therefore,
we could perform almost all behaviors on the victim’s smartphone.

6 Discussion

6.1 Failure to Debug Hardware

Most hardware developers make debugging points to help them to remove bugs.
However, these debugging points are eliminated before shipping or are located
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in a hidden space that only developers can recognize. Therefore, it takes a large
amount of time and effort to find such points. In this experiment, we could not
find any hardware debugging points among the three devices because the devices
were too small and there were no public datasheets. However, even though we
could not find hardware debugging interface in our target devices, we found 17
vulnerabilities from the operational channels that could enable an adversary to
compromise the victim’s computer and smartphone.

6.2 Improving the Security of Wearable Devices

To protect wearable devices securely, the update, data, and BLE channels should
be securely protected as well as the device. Currently, the update and data
channels from the software gateway to the servers are easily spoofed because
they do not use encryption. Even the BLE interface has no encryption, and hence
an adversary could exploit these channels. Because these channels are necessary,
as light-weight wearable devices cannot directly communicate with servers, the
channels should operate using SSL or TLS with certificate verification. This
can prevent an adversary from manipulating packets to inject malicious update
files or to extract private information from the users. Furthermore, the software
gateways as well as the devices should be protected; integrity checks should be
performed to prevent and detect modification of the firmware or application as
in Sect. 5. In addition, TrustZone and secure boot should be applied to prohibit
an adversary from bypassing the integrity check [4,12].

7 Conclusion

As wearable devices are currently becoming popular, development should be
accompanied by security research. Therefore, we classified possible attack vectors
related to some wearable devices. We analyzed three devices and found a total
17 vulnerabilities among them. Utilizing these vulnerabilities, we verified the
exploitability of the software gateways. We also discussed ways to protect these
wearable devices.

However, these issues are not only a matter for wearable devices, as other
IoT devices might have similar problems. As more and more IoT devices are
developed and appear on the market, researchers should take their security into
account and take steps to resolve their vulnerabilities at the design stage.
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