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Abstract. The eruption of social networks, communication networks
etc. makes them become valuable resources for the research commu-
nity. However, the graph data owners hesitate to share their data due to
the barrier of privacy leakage. In this work, we propose a new privacy
definition, called subgraph-differential privacy (subgraph-DP), for graph
data publishing based on the conventional differential privacy definition.
Subgraph-DP is against the subgraph-based attacks by restricting the
adversaries predict the true subgraph with a high confidence. We pro-
vide the mechanism that gives subgraph-DP in which noise will be added
to a small set of edges to make sure that all k-vertices connected sub-
graphs are perturbed. The experimental results show that our pertur-
bation mechanism preserves most of the important statistic features of
graph while still guarantees privacy.
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1 Introduction

In recent years, more and more data has been collected and stored on the Inter-
net. These information are not independent but have relationships such as social
networks, communication networks etc. Many applications are improved with
information from the social networks such as network-based recommendation
systems [9], sybil defenses [10]. However, the graph owners hesitate to publish
their data because that may result in leaking the confidential information. Graph
perturbation emerges as an inevitable solution and receives more attention from
the research community. The re-identification on Netflix [6] is a typical example
showing that simply anonymizating graph is not enough because adversaries can
easily get desired information about a particular person if the personal privacy
is not considered carefully in graph publishing.

Differential privacy [1] is an in-focus paradigm for publishing useful statistical
information over sensitive data with the rigorous privacy’s guarantees. Differen-
tial privacy has been successfully applied to a wide range of data analysis tasks
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and found to have tight relations to other fields such as cryptography, statistics,
complexity, combinatorics, mechanism design and optimization. However, it is
not easy to apply differential privacy to non-tabular databases like graphs where
relationships exist among separated entities.

In this paper, we propose a new privacy definition, subgraph-differential pri-
vacy, which applies the conventional differential privacy to graphs. We also intro-
duce a mechanism satisfying subgraph-differential privacy. Finally, we evaluate
the mechanism on real graphs and show that our mechanism provides strong
privacy while retaining utility.

The paper is organized as follows. In Sect. 2, we summarize the related work.
Section 3 reviews the basic concepts of differential privacy. In Sect. 4, we focus on
our proposal, called subgraph-differential privacy, the definition and mechanism.
In Sect. 5, we show our experiments and evaluate our scheme on real graphs. The
conclusion and future work is addressed in Sect. 6.

2 Related Work

Several existing works try to apply the robust privacy definition, differential pri-
vacy, to graph data. There are two approaches in literature of graph data publish-
ing: the interactive and non-interactive mechanism. In the so-called interactive
setting, information is protected inside a graph handled by the data owner, and
access is allowed only through an interface. In the non-interactive setting these
problems are addressed by releasing once and for all the graph or its model which
we think is interest to most analysts, while still preserving privacy.

In the perspective of the interactive publishing, [12] designs the node differen-
tially private algorithms, that are, algorithms whose the output distribution does
not change significantly when a node and all its adjacent edges are added/deleted
to a graph. The main idea behind their techniques is to project the input graph
onto a set of graphs with their maximum degree below a certain threshold. By
this way, node privacy is easier to achieve in bounded-degree graphs since the
insertion of one node affects only a relatively small part of the graph.

In the perspective of the non-interactive publishing, F. Ahmed et al. [4]
propose a random projection approach which publishes the adjacency matrix
of a given graph. This approach utilizes random matrix theory to reduce the
dimensions of the adjacency matrix and achieves differential privacy by adding
small amount of noise. A. Sala et al. [5] describes graph into dK -graph model.
They introduce the dK -perturbation algorithm that computes the noise injected
into dK -2 to obtain differential privacy. This approach becomes more efficient if
dK -series is clustered.

3 Background

Differential privacy ensures that the outcome of any analysis on database is
not influenced substantially by the existence of any individual. An adversary
therefore hardly inference attacks on any data rows.
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Definition 1. (Differential Privacy [1]): A randomize function K gives
ε-differential privacy if for all datasets D1 and D2 differing on at most one
element, and all S ⊆ Range(K)

Pr[K(D1) ∈ S] ≤ exp(ε)Pr[K(D2) ∈ S] (1)

where Range(K) denotes the output range of the algorithm K.

The most popular mechanism achieving ε -DP is calibrating Laplace noise
to query answer. The standard deviation of noise depends on the sensitivity of
function K.

Theorem 1. (Laplace mechanism [2]): For all randomize function K : D → R
d,

the following mechanism is ε-DP:

SanK(x) = K(x) + (Y1, .., Yd) (2)

where the Yd are drawn i.i.d. from Lap(ΔK/ε)

4 Subgraph-Differential Privacy

4.1 Problem

Given a graph G representing graph data, the graph owner wants to release the
anonymized and possibly sanitized network graphs to commercial partners and
academic researchers. Therefore, we take it for granted that attackers will access
to such data.

The structural attack model on graph data is a class of attacks that adver-
saries somehow can collect a set of vertices and their trust relationships which
are represented as edges between those vertices. [3] proposes the k -neighborhood
graph attack in which adversaries possess a subgraph formed from a specific ver-
tex and its neighborhoods in d -hops distance. Another attack assume that an
adversary can collect a relatively large graph whose memberships partially over-
lap with the original graph [7].

In our work, we consider subgraph attack model which is similar to Neighbor-
hood Attack Graph (NAG) in [8]. Assume that adversary can somehow collect
an arbitrary connected graph made from any set of vertices. General speaking,
adversary only has partial neighborhoods of a target user/vertex but he may
know neighborhoods of the target’s neighborhoods. Our model does not limit
vertices having relationship with the target vertex.

4.2 Definition

The conventional DP limits the adversaries’ ability to conclude which neighbor
database the output database comes from. In context of tabular datasets, two
datasets are considered as neighbor datasets if they exactly differ from one tuple.
This definition is no longer appropriate in the context of graph data. We define
a new neighbor graph definition in which a separated entity is a subgraph.



Publishing Graph Data with Subgraph Differential Privacy 137

G

GkGd Neighbor(G,Vk)

Fig. 1. Example of subgraph-based neighbor graphs

Definition 2. (Subgraph-based neighbor graphs): Given graph G = (V,E), the
set of k vertices Vk ⊆ V and Ek ⊆ E is set of edges between vertices in Vk.
Neighbor(G,Vk) is defined as follows:

Neighbor(G,Vk) = {Gi|∀Gk ∈ G
k, Gi = Gd ‖ Gk}

in which Gd = G \ {e|e ∈ Ek}
Intuitively, two graphs are neighbors if they are different from exactly one sub-
graph, given the set of k vertices Vk (Fig. 1).

Definition 3. (Subgraph-Differential privacy): A randomized function K :
G

n → G
n is (k, ε)-subgraph-differential-privacy if given graph G = (V,E); for

all connected subgraph Gk = (Vk, Ek), in which Vk ⊆ V is a set of k ver-
tices, Ek ⊆ E is set of edges between vertices in Vk; for all pair of graphs
G1, G2 ∈ Neighbor(G,Vk); for all S ∈ Range(K)

Pr[K(G1) ∈ S] ≤ exp(ε)Pr[K(G2) ∈ S] (3)

Subgraph-DP is against subgraph-based attacks. By observing the perturbed
subgraph, adversaries cannot figure out which subgraph that observed subgraph
comes from with a high confidence.

Privacy parameter ε and k control how much privacy leaks. Parameter k is
introduced as a new parameter for graph data. Obviously, k measures how large
subgraph is. In fact, the graph owners do not need configure a large value of k.
We suggest k = 3 is enough.

4.3 Mechanism

Consider a given graph G = (V,E) as a complete graph. Er is the set of real
edges in G, Er = E and Ev is the set of virtual edges which do not exist in G.
The underlining idea of our mechanism is very simple. The graph is perturbed
by rewiring edges. Rewiring an edge means that the edge changes its state, from
real to virtual and vice versa. A set of edges, including real and virtual edges, is
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selected such that every k-vertices connected subgraph in G is perturbed. Each
edge is assigned a weight w. The range of w is [0, 1]. The weight measures how
“important” that edge is. Its weight closes to 0 means that it is not important
and we can rewire it without too much changes in the graph features. Note that
the terminology important here is an abstract definition that we define.

Overall, the mechanism comprises three stages. In stage 1, we select a set of
edges which are injected noise in the perturbation process. The execution of our
mechanism needs some parameters, therefore, these parameters are configured
in the stage 2. In the final step, Laplace noise is generated and injected to weight
of selected edges. Noise makes a change in the importance of an edge to graph
features toward two tendencies, namely the edge becomes more or less important.
A pre-defined threshold θ is used to decide whether an edge is rewired or not.
We will explain in detail in the rest of this section.

Algorithm 1. Subgraph-DP Mechanism
1: procedure PerturbGraph(G,k,ε)
2: Es = SelectEdges(G,k)

3: σ = − 1

ln( 2
exp(εi)+1 )

� (εi = ε
Nk

and Nk = k(k−1)
2

)

4: M = ComputeMetric(G)
5: C = ComputeCost(G)
6: α = SetParameter(Es,σ)
7: M = Scale(M ,α) � Re-compute metric M
8: G′ = AddNoise(G,Es,σ,θ = 0)
9: Return G′

10: end procedure

Selection Strategy. For every vertex v ∈ G, we construct Breadth First Search
(BFS) on G, starting from v. Because we consider subgraphs with exactly k
vertices, we only need traversal the vertices within (k − 1)-hops distance from v.
The purpose of constructing BFS with root v is that we want to select edges
which have one vertex is v, and put them in Es. Certainly, Es should be minimum
while it still guarantees the condition. However, it is not trivial task. In our work,
we propose a flexible selection strategy which does not give the optimal set but
it is simple and still satisfies the condition.

For each BFS, if all real edges are selected, the condition satisfies certainly.
But the graph features may change significantly due to a large amount of edges
are deleted without any compensation of new edges introduced in the perturbed
graph. Therefore, virtual edges should be selected even though only real edges
are enough. Random selecting is the most simple way that we can consider.
Selecting the edges having maximum or minimum weight among candidates is
another strategy. This strategy, actually, depends on which feature we want to
preserve.
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Fig. 2. An example of the edges selection. (a) The original graph G; (b) The BFS
starts from 1

We introduce β, the ratio between the number of real edges and that of
virtual edges when the selection performs in a particular BFS. It is noted that
neither the ratio always is β in each BFS nor after the whole selection.

Figure 2 is an example of a graph G and its BFS starting from vertex 1.
Every vertices, excluding 1, in BFS are candidates for selection. If the random
selection strategy is used and β = 1, two edges in {(1, 3), (1, 5), (1, 7)} are selected
randomly; for instance, (1, 3) and (1, 5) are selected. In summary, from this BFS,
{(1, 2), (1, 4), (1, 3), (1, 5)} are supplemented to Es.

Graph Perturbation. In the final step, an appropriately pre-defined random
noise will be injected into weight of each e ∈ Es. For each edge, if the new weight
is smaller than threshold θ that edge is rewired and remains unchanged if the
new weight is larger than θ. The random noise follows Laplace distribution with
μ = 0 and σ depends on the privacy budget ε.

The injected noise should be large enough to guarantee subgraph-DP Eq. (3).
Theoretically, we can select θ in the range of [0, 1], which is the range of weight.
However, we fix θ = 0 for following reason. Intuitively, according to the definition
of subgraph-DP, when ε is large, injected noise becomes small, whereby the graph
feature changes a little bit. Given large enough ε, G′ should be the same as G,
which means no edge or just very little edges are injected noise. If θ ∈ [0, 1], even
though given large enough ε, a fixed part of edges is still injected noise. This
seems quite odd.

Theorem 2. Algorithm1 satisfies Subgraph-DP given privacy parameter ε

Proof. SelectEdges(G,k) in line 2 guarantees that every k-vertices connected
subgraph in G is perturbed as the above explanation.

Consider a set of k vertices Vk and G1, G2 ∈ Neighbor(G,Vk) and S ∈
Range(K).

Pr[K(G1) ∈ S] = ΠNk
i=1PrG1,i

in which Nk = k(k−1)
2 and PrG1,i is probability of the ith edge changing its state

in G1 to that in G′
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Given pi is probability of rewiring the ith edge.

pi = Pr[wi + noise ≤ θ] = Pr[Lap(σ) ≤ θ − wi]

θ = 0 and noise is Laplace noise Lap(σ) with μ = 0
Basically, pi is the cumulative distribution at (θ − wi)

pi =
1
2

exp(−wi

σ
)

For the ith edge, pi ≤ 1
2 because wi ∈ [0, 1], therefore

PrG1,i

PrG2,i
≤ 1 − pi

pi
=

1
1
2 exp(−wi

σ )
− 1 ≤ 1

1
2 exp(− 1

σ )
− 1 = exp(εi)

Pr[K(G1) ∈ S]
Pr[K(G2) ∈ S]

=
ΠNk

i=1PrG1,i

ΠNk
i=1PrG2,i

≤ ΠNk
i=1 exp(εi) = exp(ΣNk

i=1εi) = exp(ε)

Parameter Setting. Given w is weight of the edge (i, j), regardless real or
virtual edge, between two vertices i and j, w is computed from metric m of this
edge.

w(i, j) = −σ log(m(i, j)) (4)

The metric m(i, j) measures how strong the connection between i and j is.
We introduce the normalized mutual friends as the metric.

m(i, j) =
[#mutualfriends]

2
(

1
deg(i)

+
1

deg(j)
) (5)

in which deg(i) is node degree of vertex i.
Note that different metrics have different specific ranges, however, the range

of the weight is fixed in [0, 1]. Therefore, we have to translate the original range
of metric to a new range [exp(− 1

σ ), 1].
We define a target equation which decides which feature we want to preserve

in the perturbed graph.
∑

e∈Es∩Er

pece =
∑

e∈Es∩Ev

pece (6)

in which, pe is the probability of rewiring an edge and ce is the cost for rewiring
that edge.

The cost ce measures how much an edge impacts a specific graph feature.
The target equation means that the cost for deleting the edges should be the
same as the cost for adding new edges. In fact, appraising judiciously the cost
ce is not trivial in some cases. We introduce two case studies.

Case 1: Preserving Average Node Degree. It is easily seen that the cost for
deleting an edge and adding an edge is the same. Therefore, the target function
is re-written as follow: ∑

e∈Es∩Er

pe =
∑

e∈Es∩Ev

pe (7)
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Case 2: Preserving the Number of Triangles. Triangles play an important
role in graph analysis. If an edge (i, j) is deleted or added, the decrease/increase
in the number of triangles exactly equals the number of mutual friends of i and j.
Therefore, we can use the number of mutual friends as the cost of deleting/adding
an edge. This cost, in fact, does not assess thoroughly triangle counting. However,
our experimental results prove that the number of mutual friends is accurate
enough to achieve triangle counting preservation if the number of the selected
real and virtual edges approximatively are the same.

∑

e∈Es∩Er

pemue =
∑

e∈Es∩Ev

pemue (8)

in which mue is the number of mutual friends of two vertices connected by edge e.
Unfortunately, it is difficult to achieve both Eqs. (7) and (8) in practice. To

guarantee the target equation has a solution, the naive method we can consider
is to scale again the range of metric to new range [exp(− 1

σ ), α] such that the
target equation satisfies. The new range is also a subset of [exp(− 1

σ ), 1]. Solving
that condition, we can get εmin such that for ε � εmin, the target equation has a
solution. We do not describe in detail how to compute α and εmin here because
of the space limitation.

5 Evaluation

We collect real graphs to demonstrate that our proposed privacy definition and
mechanism work well in practice, guarantee privacy while is useful in analysis. We
run the mechanism in both cases: preserving average node degree and preserving
triangle counting and then measure the features of both the original graphs and
the perturbed graphs to evaluate the differences between them. Note that we do
not consider the case of preserving number of triangles in directed graphs. We
implement our mechanism using NetworkX which is a Python language software
package for processing complex networks.

We use the data sets that are available on https://snap.stanford.edu/data/.
The data sets and their characteristics are described in the Table 1.

Table 1. Data sets and their characteristics

Data set Type #nodes #edges Average node #triangles Clustering Power law

degree coefficient

Facebook Undirected 4039 88234 43.69 1612010 0.61 1.2588

Twitter Directed 81306 1768149 43.49 - - 1.3189

DBLP Undirected 425957 1049867 6.62 2224385 0.63 1.4803

Enron Undirected 36692 183831 10.02 727044 0.50 1.5127

Stanford Directed 281903 2312497 16.41 - - 1.4367

“-” indicates that this value cannot be specified. We do not consider the number of
triangles and thus clustering coefficient in directed graphs.

https://snap.stanford.edu/data/
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5.1 Preserving Average Node Degree

Table 2 shows the average node degree of the perturbed graphs with k = 3 and
β = 0.5. The average node degree in all cases is preserved in general. The main
trend is that the average node degree of perturbed graphs is slightly higher than
that of the original graph.

Table 2. Average node degree of perturbed graphs

ε Facebook Twitter DBLP Enron Stanford

1 43.54 44.45 6.99 10.93 16.57

2 43.56 44.27 6.90 10.74 16.55

3 43.81 44.09 6.85 10.59 16.53

4 43.81 43.95 6.80 10.49 16.49

5 43.67 43.87 6.75 10.35 16.46

Simultaneously, we also compute other statistical graph features to verify
that how our mechanism influences other features while preserving average node
degree. We compute the power law exponent and the clustering coefficient.

Even though power law exponent is also preserved in this case, the clustering
coefficient changes much (Fig. 3). Note that in case of preserving average node
degree, we expect the number of added and deleted edges are relatively similar.
Due to the cost of real and virtual edges are generally different, namely deleting
a real edge tends to lose more triangles than an new edge brings in. Therefore
the number of triangles decreases dramatically, especially with a small ε.

Fig. 3. Power law exponent and clustering coefficient of perturbed graphs in case of
preserving average node degree

5.2 Preserving Triangle Counting

Table 3 shows the changes of the perturbed graphs in clustering coefficient. Three
graphs are preserved with respect of clustering coefficient. However, all three
graphs incur a relatively high εmin.



Publishing Graph Data with Subgraph Differential Privacy 143

Table 3. Clustering coefficient of perturbed graphs

ε Facebook DBLP Enron

6 0.50 - -

7 0.51 - -

8 0.51 - -

9 0.51 0.60 -

10 0.52 0.61 0.53

11 0.61 0.53

12 0.61 0.53

13 0.62 0.53

14 0.53

“-” indicates that this value
is not specified because of
εmin or we do not measure

Similar to the case of preserving average node degree, power law exponent is
also preserved in this case (Fig. 4). All graphs have slightly higher average node
degree because the cost of a selected real edge in general is higher than that of
a selected virtual edge because two vertices with relationship tend to have more
mutual friends than two vertices without relationship. If we want to preserve the
number of triangle, we have to add more new edges to make sure that the cost
for adding and deleting are the same. However, we believe that the difference in
the average node degree is acceptable.

Fig. 4. Power law exponent and average node degree of perturbed graphs in case of
preserving the number of triangles

6 Conclusions and Future Work

In this study, we propose a novel privacy framework, subgraph-DP, which is
based on definition of differential privacy. Subgraph-DP is a robust framework for
graph data where entities have relationships with others. Subgraph-DP is against
subgraph-based attacks. We also propose a mechanism which gives subgraph-
DP. We introduce the mechanism in two cases: preserving average node degree
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and preserving the number of triangles. The perturbed graph preserves most of
the statistical features of graph. The database owners can appropriately adapt
subgraph-DP for their purposes.

However, our work incurs some limitations. Firstly, εmin in case of preserving
the number of triangles is high, which means we cannot protect much privacy
in these cases. Secondly, measuring how much an edge effects on specific graph
feature is a challenge, especially with complex features such as spectral analysis
and node degree distribution. Thirdly, our mechanism works well with small and
medium graphs, however, with large graphs running time reaches several hours.
As the future work, we plan to overcome these limitations.
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