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Abstract. Hierarchical identity-based encryption (HIBE) is an exten-
sion of identity-based encryption (IBE) where an identity of a user is
organized as a hierarchical structure and a user can delegate the private
key generation to another user. Providing a revocation mechanism for
HIBE is highly necessary to keep a system securely. Revocable HIBE
(RHIBE) is an HIBE scheme that can revoke a user’s private key if
his credential is expired or revealed. In this paper, we first propose an
unbounded HIBE scheme where the maximum hierarchy depth is not
limited and prove its selective security under a q-type assumption. Next,
we propose an efficient unbounded RHIBE scheme by combining our
unbounded HIBE scheme and a binary tree structure, and then we prove
its selective security. By presenting the unbounded RHIBE scheme, we
solve the open problem of Seo and Emura in CT-RSA 2015.
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1 Introduction

Identity-based encryption (IBE) is a kind of public key encryption (PKE) that
uses any bit-string (e.g., e-mail address, phone number, or identity) as a public
key of a user. Although the concept of IBE was introduced by Shamir [24], the
first realization of IBE was achieved by Boneh and Franklin [4] by using bilinear
maps. In IBE, a single key generation center (KGC) should issue private keys
and establish secure channels to transmit private keys of users. To reduce the
cost of private key generation of the KGC in IBE, the concept of hierarchical
IBE (HIBE) was introduced such that the KGC delegates the key generation
functionality to a lower level KGC [7,8]. After that, many IBE and HIBE schemes
were suggested with additional functionalities [2,3,5,14,25,26].

To maintain a whole system securely, a revocation mechanism is absolutely
necessary when a user’s contract is expired or the user’s private key is revealed.
Boldyreva, Goyal and Kumar [1] introduced the concept of revocable IBE (RIBE)
and proposed a scalable RIBE scheme by combining a fuzzy IBE scheme of Sahai
Waters [20] and a tree based revocation system of Naor et al. [16]. In RIBE, each
user initially obtains a private key from a KGC, and then the KGC periodically
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publishes an update key for non-revoked users. If a user is not revoked in the
update key, then he can derive a decryption key from his private key and the
update key. After the work of Boldyreva et al., many different RIBE scheme
were proposed [11,15,17,22].

It is a natural research direction to devise an efficient revocation mechanism
for HIBE. By following the design strategy of Boldyreva et al. [1], Seo and Emura
proposed efficient revocable HIBE (RHIBE) schemes [21,23]. In RHIBE, a KGC
can delegate the key generation functionality and the revocation functionality
to a lower level KGC or a user. Seo and Emura [21] first proposed a concrete
RHIBE scheme by combining the HIBE scheme of Boneh and Boyen and a binary
tree structure. After that, they also proposed new efficient RHIBE schemes by
using the history-free update approach to reduce the size of private keys [23].
Although they proposed efficient RHIBE schemes, their RHIBE schemes have
the inherent limitation that the size of public parameters linearly grows to the
maximum hierarchy depth. Thus, they left it as an interesting problem to devise
an unbounded RHIBE scheme [23].

1.1 Our Contributions

In this paper, we give an answer to the above problem of Seo and Emura by pre-
senting an unbounded RHIBE scheme. Before presenting an unbounded RHIBE
scheme, we first propose an HIBE scheme with no limitation in maximum hier-
archy, denoted by unbounded HIBE. Our unbounded HIBE scheme is derived
from the key-policy attribute-based encryption (KP-ABE) scheme of Rouselakis
and Waters [18]. We use the observation that an HIBE scheme can be derived
from a KP-ABE scheme if the KP-ABE scheme can be modified to support
the delegation of private key generation. We prove the selective security of our
unbounded HIBE scheme under the q-type assumption introduced by Rouselakis
and Waters. Next, we propose an unbounded RHIBE scheme by combining our
unbounded HIBE scheme and a tree-based revocation system. Mainly we follow
the design strategy of the previous RHIBE scheme of Seo and Emura [23]. To
prove the selective security of our RHIBE scheme, we show that our RHIBE
scheme is selectively secure if our HIBE scheme is selectively secure.

1.2 Related Work

IBE and Its Extensions. As mentioned before, the concept of IBE was intro-
duced by Shamir [24] where a public key can be the identity string of a user
such as an e-mail address. The first IBE scheme that uses bilinear maps was
constructed by Boneh and Franklin [4]. Since the pioneering work of Boneh and
Franklin, many IBE schemes were proposed in bilinear maps [2,6,25]. The notion
of IBE has been extended to several other encryption systems like HIBE [8],
attribute-based encryption (ABE), predicate encryption (PE), and functional
encryption (FE). The concept of HIBE was introduced by Horwitz and Lynn [8]
and it additionally provides a key delegation mechanism by which the private
key of a low level user is generated by a upper level user. After the introduction
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of HIBE, many HIBE schemes with different properties have been suggested
in bilinear maps [2,3,5,7,12,13,26]. One inherent limitation of previous HIBE
schemes is that the maximum hierarchy depth should be fixed in the setup phase.
To remove this restriction, an unbounded HIBE scheme was proposed by Lewko
and Waters [14].

Revocation in IBE. Boneh and Franklin [4] proposed the first IBE scheme
that supports key revocation, but their scheme is not scalable since each user
periodically connects to a KGC to receive a new private key. Boldyreva et al.
[1] proposed a scalable RIBE scheme by combining the fuzzy IBE scheme of
Sahai and Waters [20] and the tree based revocation system of Naor et al. [16].
Libert and Vergnaud [15] proposed first fully secure RIBE scheme by using
a fully secure IBE scheme that is a variant of the Waters IBE [25]. Seo and
Emura [22] refined the security model of RIBE by considering decryption key
exposure attacks and proposed a fully secure RIBE scheme in their security
model. To improve the efficiency of RIBE, Lee et al. [11] proposed a new RIBE
scheme based on the subset difference method and Park et al. [17] proposed
an RIBE scheme from multilinear maps. An efficient RHIBE scheme was first
presented by Seo and Emura [21] and its improvement was also proposed by
using the history-free update approach [23]. In RIBE, revoked user on the time
T is still accessible to ciphertext that were encrypted before the time T in the
cloud storage environment. To solve this problem, Sahai et al. [19] introduced
revocable storage ABE (RS-ABE) for cloud storage by using the idea of RIBE.
The improved RS-ABE schemes were presented in [9,10].

2 Preliminaries

In this section, we introduce the complexity assumption for our schemes and
define the syntax of RHIBE and its security model.

2.1 Bilinear Groups

Let G and GT be multiplicative cyclic groups of prime order p and g be a
generator of G. The bilinear map e : G × G → GT has the following properties:
(1) Bilinearity: for all u, v ∈ G and for all a, b ∈ Zp, e(ua, vb) = e(u, v)ab. (2) Non-
degeneracy: for generator g ∈ G, e(g, g) �= 1GT

, where 1GT
is an identity element

in GT . Furthermore, we assume the existence of a group generator algorithm
G which takes as input a security parameter λ and outputs a bilinear group
(p,G,GT , e) where p is a prime of Θ(λ) bits.

2.2 Complexity Assumption

For the proof of our schemes, we introduce the q-RW2 assumption of Rouselakis
and Waters [18] that was used to prove the security of their attribute-based
encryption schemes.
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Assumption 1 (q-RW2, [18]). Let (p,G,GT , e) be a description of the bilin-
ear groups of prime order p. Let g be a random generator of G. The q-RW2
assumption is that if the challenge tuple

D =
(
(p,G,GT , e), g, g

x, gy, gz, g(xz)
2
,
{
gbi , gxzbi , gxz/bi , gx

2zbi , gy/b
2
i , gy

2/b2i
}

∀ i∈[q]
,

{
gxzbi/bj , gybi/b

2
j , gxyzbi/b

2
j , g(xz)

2bi/bj
}

∀ i,j∈[q],i�=j

)
and Z

are given, no probabilistic polynomial time (PPT) algorithm A can distinguish
Z = Z0 = e(g, g)xyz from Z = Z1 = e(g, g)f with more than a negligible
advantage. The advantage of A is defined as Advq-RW2

A (λ) =
∣
∣ Pr[A(D,Z0) =

0] − Pr[A(D,Z1) = 0]
∣
∣ where the probability is taken over random choices of

x, y, z, {bi}i∈[q], f ∈ Zp.

Lemma 1 ([18]). The q-RW2 assumption holds in the generic group model.

2.3 Hierarchical IBE

HIBE is an extension of IBE where an identity of a user is represented as a
hierarchical structure such as ID|k = (I1, . . . , Ik) [7]. The syntax of HIBE is
given as follows:

Definition 1 (HIBE). An HIBE scheme consists of five algorithms Setup,
GenKey, Delegate, Encrypt, and Decrypt, which are defined as follows:

Setup(1λ). The setup algorithm takes as input a security parameter 1λ. It out-
puts a master key MK and public parameters PP .

GenKey(ID|k,MK,PP ). The key generation algorithm takes as input an iden-
tity ID|k = (I1, . . . , Ik) ∈ Ik, the master key MK, and the public parameters
PP . It outputs a private key SKID|k for ID|k.

Delegate(ID|k, SKID|k−1 , PP ). The delegation algorithm takes as input an
identity ID|k, a private key SKID|k−1 for an identity ID|k−1, and the public
parameters PP . It outputs a delegated private key SKID|k for ID|k.

Encrypt(ID|k,M, PP ). The encryption algorithm takes as input an identity
ID|k, a message M ∈ M, and the public parameters PP . It outputs a cipher-
text CTID|k for ID|k and M .

Decrypt(CTID|k , SKID′|� , PP ). The decryption algorithm takes as input a
ciphertext CTID|k for an identity ID|k, a private key SKID′

�
for an iden-

tity ID′
�, and the public parameters PP . It outputs an encrypted message M .

The correctness of HIBE is defined as follows: For all MK,PP generated by
Setup, all ID|k, ID′|�, any SKID|k generated by GenKey, and any M , it is
required that

– If ID|k is a prefix of ID′|�, then Decrypt(Encrypt(ID′|�,M, PP ), SKID|k ,
PP ) = M .

– If ID|k is not a prefix of ID′|�, then Decrypt(Encrypt(ID′|�,M, PP ), SKID,
PP ) =⊥.

We follow the security model of HIBE given in [14]. The exact security of
HIBE is given in the full version of this paper.
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2.4 Revocable HIBE

RHIBE is an extension of HIBE that provides revocation functionality [21]. The
syntax of RHIBE is given as follows:

Definition 2 (Revocable HIBE). An RHIBE scheme for the identity space I,
the time space T , and the message space M, consists of seven algorithms Setup,
GenKey, UpdateKey, DeriveKey, Encrypt, Decrypt, and Revoke, which
are defined as follows:

Setup(1λ): This algorithm takes as input a security parameter 1λ. It outputs a
master key MK, an (empty) revocation list RL, a state information ST , and
public parameters PP .

GenKey(ID|k, STID|k−1 , PP ): This algorithm takes as input an identity
ID|k = (I1, . . . , Ik) ∈ Ik, the state STID|k−1 , and public parameters PP .
It outputs a private key SKID|k .

UpdateKey(T,RLID|k−1 ,DKID|k−1,T , STID|k−1 , PP ): This algorithm takes
as input time T ∈ T , the revocation list RLID|k−1 , the decryption
key DKID|k−1,T , and public parameters PP . It outputs an update key
UKID|k−1,T .

DeriveKey(SKID|k , UKID|k−1,T , PP ): This algorithm takes as input a private
key SKID|k for an identity ID|k, an update key UKID|k−1,T for time T , and
the public parameters PP . It outputs a decryption key DKID|k,T .

Encrypt(ID|�, T,M,PP ): This algorithm takes as input an identity ID|� =
(I1, . . . , I�) ∈ I�, time T , a message M , and the public parameters PP . It
outputs a ciphertext CTID|�,T .

Decrypt(CTID|�,T ,DKID′|k,T ′ , PP ): This algorithm takes as input a ciphertext
CTID|�,T , a decryption key DKID′|k,T ′ and the public parameters PP . It out-
puts an encrypted message M .

Revoke(ID|k, T,RLID|k−1 , STID|k−1): This algorithm takes as input an identity
ID|k, revocation time T , the revocation list RLID|k−1 , and the state STID|k−1 .
It outputs the updated revocation list RLID|k−1 .

The correctness of RHIBE is defined as follows: For all MK, RL, ST , and
PP generated by Setup(1λ), SKID generated by GenKey(ID,MK,ST, PP )
for any ID, UKT,R generated by UpdateKey(T,RL,MK,ST, PP ) for any T
and RL, CTID′,T ′ generated by Encrypt(ID′, T ′,M, PP ) for any ID′, T ′, and
M , it is required that

– If ID|k is not revoked on time T , then DeriveKey(SKID|k , UKID|k−1,T ,
PP ) = DKID|k,T .

– If ID|k is revoked on time T , then DeriveKey(SKID|k , UKID|k−1,T ,
PP ) =⊥.

– If (ID′ = ID) ∧ (T ′ = T ), then Decrypt(CTID′,T ′ ,DKID,T , PP ) = M .
– If (ID′ �= ID) ∨ (T ′ �= T ), then Decrypt(CTID′,T ′ ,DKID,T , PP ) =⊥.

The security model of RHIBE was introduced by Seo and Emura [21]. We
follow the stronger security model of Seo and Emura [23] that considers decryp-
tion key exposure attackers and inside attackers. The detailed definition of the
security model is given as follows:
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Definition 3 (Selective IND-CPA Security). The selective IND-CPA secu-
rity of RHIBE is defined in terms of the following experiment between a chal-
lenger C and a PPT adversary A:

1. Init: A initially submits a challenge identity ID∗|k = (I∗
1 , . . . , I∗

k) and chal-
lenge time T ∗.

2. Setup: C runs Setup(1λ) and obtains a master key MK, a revocation list RL,
a state information ST , and public parameters PP . It keeps MK,RL, ST to
itself and gives PP to A.

3. Phase 1: A adaptively requests a polynomial number of queries. These
queries are processed as follows:
– If it is a private key query for an identity ID|k, then C gives

a private key SKID|k and a state information STID|k by running
GenKey(ID|k, STID|k−1 , PP ). There is a restriction: If A requested a
private key query for ID∗|k′ that is a prefix of ID∗|k where k′ ≤ k, then
the identity ID∗|k′ or one of its ancestors should be revoked at some time
T where T ≤ T ∗.

– If it is an update key query for an identity ID|k−1 and time T , then
C gives an update key UKID|k−1,T by running UpdateKey(T,RLID|k−1 ,
DKID|k−1 , STID|k−1 , PP ).

– If it is a decryption key query for an identity ID|k and time T , then C gives
a decryption key DKID|k,T by running DeriveKey(SKID|k , UKID|k−1 ,
PP ). There is a restriction: A cannot request a private key query for the
challenge identity ID∗|k or its ancestors on the challenge time T ∗.

– If it is a revocation query for an identity ID|k and time T , then C
updates a revocation list RLID|k−1 by running Revoke(ID|k, T,RLID|k−1 ,
STID|k−1). There is a restriction: A cannot request a revocation query for
ID|k on time T if he already requested an update key query for ID|k on
time T .

Note that we assume that update key, decryption key, and revocation queries
are requested in non-decreasing order of time.

4. Challenge: A submits two challenge messages M∗
0 ,M∗

1 with the same length.
C flips a random coin μ ∈ {0, 1} and gives the challenge ciphertext CTID∗|k,T ∗

to A by running Encrypt(ID∗|�, T ∗,M∗
μ , PP ).

5. Phase 2: A may continue to request a polynomial number of queries subject
to the same restrictions as before.

6. Guess: Finally, A outputs a guess μ′ ∈ {0, 1}, and wins the game if μ = μ′.

The advantage of A is defined as AdvRHIBE
A (λ) =

∣
∣ Pr[μ = μ′] − 1

2

∣
∣ where

the probability is taken over all the randomness of the experiment. An RHIBE
scheme is selectively secure under a chosen plaintext attack if for all PPT adver-
sary A, the advantage of A in the above experiment is negligible in the security
parameter λ.

3 Hierarchical Identity-Based Encryption

In this section, we propose an unbounded HIBE scheme from the key-policy
ABE scheme of Rouselakis and Waters [18] and prove its security.
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3.1 Construction

Let I = {0, 1}λ be the identity space where λ is a security parameter. Our
unbounded HIBE scheme is described as follows:

HIBE.Setup(1λ): This algorithm takes as input a security parameter λ. It first
runs the group generator G and obtains a bilinear group (p,G,GT , e). Let g
be a generator of G. Next, it selects random elements g, u, h ∈ G and random
exponents x, y ∈ Zp. It sets w = gx, v = gy, α = xy. It outputs a master key
MK = α and public parameters PP =

(

(p,G,GT , e), g, u, h, w, v,Ω = e(g, g)α
)

.

HIBE.GenKey(ID|k,MK,PP ): This algorithm takes as input an identity
ID|k = (I1, . . . , Ik) ∈ Ik, the master key MK, and the public parameters
PP . It chooses random exponents r1, . . . , rk ∈ Zp and outputs a private key
SKID|k =

(

K0 = gα
∏k

i=1 wri ,
{

Ki,1 = (uIih)−ri , Ki,2 = gri
}k

i=1

)

.

HIBE.RandKey(ID|k, γ, SKID|k , PP ): This algorithm takes as input an iden-
tity ID|k = (I1, . . . , Ik) ∈ Ik, an exponent γ ∈ Zp, a private key SKID|k =
(K ′

0, {K ′
i,1,K

′
i,2}k

i=1), and the public parameters PP . It chooses random expo-
nents r1, . . . , rk ∈ Zp and outputs a re-randomized private key SKID|k =

(

K0 =

K ′
0 · gγ

∏k
i=1 wri ,

{

Ki,1 = K ′
i,1 · (uIih)−ri , Ki,2 = K ′

i,2 · gri
}k

i=1

)

.

HIBE.Delegate(ID|k, SKID|k−1 , PP ): This algorithm takes as input an iden-
tity ID|k = (I1, . . . , Ik) ∈ Ik, a private key SKID|k−1 = (K ′

0, {K ′
i,1,K

′
i,2}k−1

i=1 )
for ID|k−1, and the public parameters PP . It chooses a random exponent
rk ∈ Zp and creates a temporal delegated private key TSKID|k =

(

K0 =

K ′
0 · wrk ,

{

Ki,1 = K ′
i,1, Ki,2 = K ′

i,2

}k−1

i=1
,

{

Kk,1 = (uIkh)−rk ,Kk,2 =
grk

})

. Next, it outputs a delegated private key SKID|k by running
HIBE.RandKey(ID|k, 0, TSKID|k , PP ).

HIBE.Encrypt(ID|�,M, PP ): This algorithm takes as input an identity
ID|� = (I1, . . . , I�) ∈ I�, a message M ∈ M, and the public parameters
PP . It chooses random exponents t, s1, . . . , sk ∈ Zp and outputs a ciphertext
CTID|� =

(

C = Ωt · M, C0 = gt,
{

Ci,1 = gsi , Ci,2 = (uIih)siw−t
}�

i=1

)

.

HIBE.Decrypt(CTID|� , SKID′|k , PP ): This algorithm takes as input a cipher-
text CTID|� = (C,C0, {C1, C2}�

i=1) for ID|�, a private key SKID′|k =
(K0, {Ki,1,Ki,2}k

i=1) for ID′|k, and the public parameters PP . If ID′|k is a pre-
fix of ID|�, it outputs an encrypted message by computing M = C ·e(C0,K0)−1 ·
∏k

i=1

(

e(Ci,1,Ki,1) · e(Ci,2,Ki,2)
)−1. Otherwise, it outputs ⊥.

3.2 Security Analysis

Theorem 2. The above HIBE scheme is selectively IND-CPA secure if the q-
RW2 assumption holds.

Due to the lack of space, we briefly sketch the proof of our HIBE scheme.
At first, HIBE can be considered as a kind of KP-ABE since an attribute is
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corresponding to an identity and an access policy in a private key just consists
of the AND gate only. Our HIBE scheme is based on the KP-ABE scheme of
Rouselakis and Waters [18] and the first component K0 of a private key in our
HIBE scheme is the multiplication of every components {Kτ,0} of their KP-ABE
scheme. Thus, the security proof of our HIBE scheme can be easily simulated
like that of their KP-ABE scheme.

4 Revocable Hierarchical Identity-Based Encryption

In this section, we propose an unbounded RHIBE scheme by using our
unbounded HIBE scheme in the previous section. To provide the revocation func-
tionality, we basically follow the design strategy of previous RIBE (or RHIBE)
schemes that use a binary tree structure [1,21,23].

4.1 KUNode Algorithm

We use the KUNode algorithm of Boldyreva et al. [1] for our RHIBE scheme.

Definition 4 (KUNode Algorithm). This algorithm takes as input a binary
tree BT , a revocation list RL, and time T . It outputs a set of nodes. If η is
a non-leaf node, then the left and right child node of η is denoted by ηleft and
ηright, respectively. Users are assigned to leaf nodes, and Path(η) means the set
of nodes on the path from η to the root node. If a user assigned to η is revoked
on time T , then (η, T ) ∈ RL. The algorithm is given below.

KUNode(BT ,RL,T ):
X,Y ← ∅
∀(ηi, Ti) ∈ RL

If Ti ≤ T then add Path(ηi) to X
∀x ∈ X

If xleft /∈ X then add xleft to Y
If xright /∈ X then add xright to Y

If Y �= ∅ then add root to Y
Return Y

When a user requests a private key to a KGC, the KGC assigns a user to the
leaf node η of a binary tree BT , and generates a private key. A private key is
associated with the set of nodes Path(η). The KGC publishes the update key for
a set KUNode(BT,RL, T ) at time T , then only unrevoked users have at least
one node in Path(η) ∩ KUNode(BT,RL, ST ). Unrevoked users can derive the
decryption key combining the secret key and the update key in that node.

4.2 Construction

Let I = {0, 1}λ be the identity space and T = {0, 1}λ be the time space where λ
is a security parameter. Our RHIBE scheme from our HIBE scheme is described
as follows:
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RHIBE.Setup(1λ): This algorithm takes as input a security parameter 1λ. It
first runs the group generator G and obtains a bilinear group (p,G,GT , e). Let
g be a generator of G. Next, it selects random elements u, h, u0, h0 ∈ G and
random exponents x, y ∈ Zp. It sets w = gx, v = gy, α = xy. It outputs a mas-
ter key MK = α and public parameters PP =

(

(p,G,GT , e), g, u, h, w, v,Ω =
e(g, g)α, u0, h0

)

.

RHIBE.GenKey(ID|k, STID|k−1 , PP ): This algorithm takes as input an iden-
tity ID|k = (I1, . . . , Ik) ∈ Ik, the state STID|k−1 , and public parameters PP .
Note that the state STID|k−1 contains BTID|k−1 .

1. It first assigns ID|k to a random leaf node in BTID|k−1 . Let Path be a path
node set defined by Path(ID|k) ∈ BTID|k−1 .

2. For each node θ ∈ Path, it performs the following steps: It first retrieves
γθ ∈ Zp from BTID|k−1 where γθ is associated to the node θ. Note that if γθ

is not defined, then it chooses a random exponent γθ ∈ Zp and stores it to the
node θ. Next, it creates a partial private key PSKθ =

(

K0, {Ki,1,Ki,2

}k

i=1

)

by running HIBE.GenKey(ID|k, γθ, PP ).
3. Finally, it outputs a private key SKID|k =

(

{θ, PSKθ}θ∈Path

)

.

RHIBE.UpdateKey(T,RLID|k−1 ,DKID|k−1,T , STID|k−1 , PP ):
This algorithm takes as input time T ∈ T , the revocation list RLID|k−1 , the
decryption key DKID|k−1,T , the state STID|k−1 where it contains BTID|k−1 , and
public parameters PP . Recall that RLID|0 = RL0 and STID|0 = ST0. Note that
DKID|0,T =

(

D0 = gα(uT
0 h0)−r0 ,D1 = gr0

)

can be easily generated by using
MK.

1. Let KUNode be a covering set that is obtained by running
KUNode(BTID|k−1 , RLID|k−1 , T ).

2. For each node θ ∈ KUNode, it performs the following steps: It first retrieves
γθ ∈ Zp from BTID|k−1 where γθ is associated to the node θ.
It obtains DK ′

ID|k−1,T =
(

D′
0,D

′
1, {D′

i,1,D
′
i,2}k−1

i=1

)

by running
RHIBE.RandDK(DKID|k−1,T , PP ). Next, it creates a time-constrained
update key TUKθ =

(

U0 = g−γθ · D′
0, U1 = D′

1,
{

Ui,1 = D′
i,1, Ui,2 =

D′
i,2

}k−1

i=1

)

.
3. Finally, it outputs an update key UKID|k−1,T =

(

{θ, TUKθ}θ∈KUNode

)

.

RHIBE.DeriveKey(SKID|k , UKID|k−1,T , PP ): This algorithm takes as input
a private key SKID|k for an identity ID|k, an update key UKID|k−1,T for time
T and the public parameters PP .

1. If ID|k �∈ RLID|k−1 , then it finds a unique node θ∗ ∈ Path(ID|k) ∩
KUNode(BTID|k−1 , RLID|k−1 , T ). Otherwise, it outputs ⊥.

2. It derives PSKθ∗ =
(

K0, {Ki,1,Ki,2}k
i=1

)

from SKID|k and TUKθ∗ =
(

U0, U1, {Ui,1, Ui,2}k−1
i=1

)

from UKID|k−1,T for the node θ∗. Next, it cre-
ates a decryption key DKID|k,T =

(

D0 = K0 · U0, D1 = U1,
{

Di,1 =

Ki,1 · Ui,1, Di,2 = Ki,2 · Ui,2

}k−1

i=1
,

{

Dk,1 = Kk,1, Dk,2 = Kk,2

})

and re-
randomizes it by running RHIBE.RandDK.
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3. Finally, it outputs a (re-randomized) decryption key DKID|k,T =
(

D0,D1, {Di,1,Di,2}k
i=1

)

.

RHIBE.RandDK(DKID|k,T , PP ): This algorithm takes as input a decryption
key DKID|k =

(

D′
0,D

′
1, {D′

i,1,D
′
i,2}k

i=1

)

for an identity ID|k = (I1, I2, . . . , Ik) ∈
Ik and time T , and the public parameters PP . It selects random exponents
r0, r1, . . . , rk ∈ Zp and outputs a re-randomized decryption key DKID|k,T =
(

D0 = D′
0 · (uT

0 h0)−r0
∏k

i=1 wri , D1 = D′
1 · gr0 ,

{

Di,1 = D′
i,1 · (uIih)−ri , Di,2 =

D′
i,2 · gri

}k

i=1

)

.

RHIBE.Encrypt(ID|�, T,M,PP ): This algorithm takes as input an identity
ID|� = (I1, . . . , I�) ∈ Ik, time T , a message M , and the public parameters
PP . It first chooses random exponents t, s1, . . . , s� ∈ Zp and outputs a cipher-
text CTID|k,T =

(

C = Ωt · M, C0 = gt, C1 = (uT
0 h0)t,

{

Ci,1 = gsi , Ci,2 =

w−t(uIih)si
}�

i=1

)

.

RHIBE.Decrypt(CTID|�,T ,DKID′|k,T ′ , PP ): This algorithm takes as input
a ciphertext CTID|�,T = (C,C0, C1, {Ci,1, Ci,2}�

i=1), a decryption key
DKID′|k,T ′ = (D0,D1, {Di,1,Di,2}k

i=1) and the public parameters PP . If ID′|k
is a prefix of ID|� and T = T ′, then it outputs an encrypted message M =
C ·

(

e(C0,D0) · e(C1,D1) ·
∏k

i=1

(

e(Ci,1,Di,1) · e(Ci,2,Di,2)
))−1 Otherwise, it

outputs ⊥.

RHIBE.Revoke(ID|k, T,RLID|k−1 , STID|k−1): This algorithm takes as input
an identity ID|k, revocation time T , the revocation list RLID|k−1 , and the state
STID|k−1 . If (ID|k,−) /∈ STID|k−1 , then it outputs ⊥ since the private key of
ID|k was not generated. Otherwise, it adds (ID|k, T ) to RLID|k−1 and outputs
the updated revocation list RLID|k−1 .

4.3 Security Analysis

Theorem 3. The above RHIBE scheme is selectively IND-CPA secure if the
underlying HIBE scheme is selectively IND-CPA secure.

The proof of this theorem is given in the full version of this paper.

5 Conclusion

In this paper, we proposed the first unbounded RHIBE scheme using proposed
HIBE and the history-free approach of Seo and Emura [23]. To achieve our
scheme, we first proposed an unbounded HIBE scheme from the KP-ABE scheme
of Rouselakis and Waters [18]. Our proposed RHIBE scheme makes it efficient
to generate private keys in IBE for a large number of users since it allows the
delegation of the key generation using a hierarchical structure among users and
provides the revocation functionality. Furthermore it solves the open problem of
removing the limitation on maximum hierarchy.
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The security of our RHIBE scheme was proved in the selective model. It will
be interesting to construct a fully secure RHIBE scheme with no limitations on
maximum hierarchy. Our RHIBE scheme essentially uses the complete subtree
(CS) method for revocation. We expect that the subset difference (SD) method
also can be applied to our RHIBE scheme since Seo and Emura [23] also proposed
an RHIBE scheme that uses the SD method by following the methodology of
Lee et al. [11].
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