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Abstract. The challenges of recognition of spontaneous expressions
from spatio-temporal data include the characterization of subtle changes
of facial textures, which in many cases occur for a very brief duration.
In this context, the paper presents an intelligent approach for sponta-
neous expression recognition algorithm, wherein adaptive magnification
of motion of spatio-temporal data is applied prior to the extraction of
features of expression. The proposed magnification enhances the low-
intensity facial activities without introducing notable artifacts for the
high-intensity activities. The local binary patterns extracted from three-
orthogonal planes of the Eulerian magnified spatio-temporal data are
used as features of spontaneous expressions. The extracted features are
classified using the well-known support vector machine classifier. Exper-
iments are conducted on commonly-referred spatio-temporal databases
such as the SMIC and MMI that have spontaneous expressions represent-
ing the micro- and meso-level facial activities, respectively. Experimental
results reveal that the proposed approach of motion magnification prior
to feature extraction significantly improves the detection and classifica-
tion accuracy at the expense of acceptable robustness.

Keywords: Eulerian motion magnification · Expression features · Local
binary patterns · Spatio-temporal data · Spontaneous expression

1 Introduction

In the recent years, the understanding of emotional state of humans from phys-
iological traits has been gaining increasing research interest, especially in the
area of security aware applications. This is mainly due to the fact that estimat-
ing the meaningful emotional state can be very useful for wide-deployment of
interactions between humans and machines as well as for automatic analysis of
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social behavior of people. The emotional state can be continuous in three inde-
pendent spaces, namely, valance, arousal and dominance [1]. However, Ekman
and Friesan [2] have shown that discrete emotional level can be categorized in six
basic expressions, viz., Happy, Sad, Anger, Surprise, Fear, and Disgust, which are
independent of cultures. The physiological traits that are used for recognition of
expressions include the measurements of activities of faces via spatio-temporal
imaging modalities [3], activities of tones via voice modalities [4], or even that
of bio-signals, e.g., electromyography and electroencephalography [5]. Neverthe-
less, the spatio-temporal affective analysis has remained in the top-priority due
to the fact that such modalities capture a significant amount of information in
a non-intrusive manner.

Spatio-temporal expression classification methods can be broadly classified in
three categories, namely, the model or geometric-based, holistic or appearance-
based, and combination of these or hybrid approach [6]. In the geometric app-
roach, certain key points on the face images are identified and the features of
expressions are obtained from these fiducial points. For example, the inter dis-
tance among these points, the change of textures of the neighboring region of
these points over the frames that is often referred to as the facial action units
(FAUs) are considered as measures of facial activities. The main problem of the
geometric approach lies in the selection of fiducial points, which often requires
manual intervention even in controlled environments. Further, the accuracy of
classification is highly sensitive to the localization of the fiducial points. At the
same time, the geometric approach often requires computationally expensive
algorithms such as the elastic bunch graph matching method to obtain the fea-
tures of facial activities [7].

In the appearance-based approach, the entire facial region is considered for
extracting features of expression instead of certain fiducial points. Conventional
holistic approaches that have been used for extracting facial features include the
principal component analysis (PCA), independent component analysis, Fisher
discriminant analysis (FDA) with Asymmetry-Face, kernel PCA-FDA, non-
negative matrix factorization, and mixture covariance analysis applied to the
whole face. In the hybrid approach, features of expressions are extracted from the
local neighboring regions of facial parts called patches, which are partitioned uni-
formly or selectively. Manifold learning of patches have been shown to be effective
for classification of expressions in the cases of significant distortions of faces such
as those due to occlusions [8]. The texture-based features of the uniform or selec-
tive patches of facial images that were used for expression classification include
the scale invariant feature transform (SIFT), histogram of oriented gradients
(HOGs), local binary patterns (LBPs), local directional number pattern, local
directional patterns variance, multiscale Gaussian derivatives, Gabor, log-Gabor
features, and the geometric orthogonal moments. Densely sampled facial features
have also been used to determine the expressions in-the-wild [9]. The expressions
in question are determined from the chosen features using well-known classifica-
tion techniques such as the support vector machine (SVM), Bayesian dynamic
network, and neural network. Suitable feature selection strategies including the
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AdaBoost and bagging have also been applied to minimize the redundancy and
maximize the relevancy to improve the classification performance.

In order to accommodate the depth information of facial parts, the 3D face
images have also been used in addition to the 2D intensity image for expression
analysis. For example, the SIFT, HOG, and LBP-based features have been fused
together to classify expressions from 3D face images [10]. It is to be pointed out
that due to the constrained settings of 3D imaging, the practical facial expression
analysis still depends very much on the spatio-temporal information available in
2D image sequence. Ji and Idrissi [11] have recommended that LBPs obtained
from three orthogonal planes (TOPs) of spatio-temporal data can effectively rep-
resent features of facial expressions. Recent surveys on spatio-temporal analysis
for facial affective analysis can be found in [12,13].

In practice, there exist two major types of expressions, viz., the posed-
and spontaneous-type, based on the exaggeration of facial activities available
in spatio-temporal data. The involvement of professional guidance are involved
while disposing the posed-type expressions, while touches of real-life such as sub-
tle changes of facial textures exist in the spontaneous-type expressions. Studies
reveal that spontaneous-type expressions are significantly different from posed-
type expressions, and in general, the slightest change of facial activities in spatio-
temporal data can be more important in the former than that in the latter. In
our day-to-day life, the subtle facial activities may last for couple of seconds rep-
resenting a meso-level spontaneous expression. On the other hand, in micro-level
spontaneous expressions, when people try to conceal their emotions, the extrac-
tion of facial activities is even more challenging. This is mainly due to the fact
that in such cases the facial changes occur in fraction of a second [14]. The recog-
nition of micro-expressions serves as important clue for detecting lies that usually
occur in high-stake situations when people know about serious consequences of
lying or cheating. In the literature, there exists few number of research stud-
ies that focus on the automatic recognition of micro-expressions. For example,
Shreve et al. [15] used strain patterns as a feature descriptor for spotting posed-
type micro-expressions in spatio-temporal data. Polikovsky et al. [16] have used
the HOGs as a descriptor for micro-expression recognition in posed scenario. An
initial research carried out by Li et al. [14] has shown that the features obtained
in terms of the LBP-TOP of spatio-temporal data can perform well for clas-
sifying the micro-expression even in the case of spontaneous scenario. In [17],
class-specific pass bands of temporal filters have been prescribed for magnifi-
cation of spatio-temporal data. This method detects the micro-expressions by
recognizing that the low, mid-range, and high frequency temporal data corre-
spond to three types of movements, viz., broad head, lip/brow, and eye/pupil.
Discriminative learning of the bands of temporal filter is proposed for recogniz-
ing subtle facial expressions in [18]. Dynamics of depth information and dense
motion field of faces while uttering certain vocabularies are also used to deter-
mine micro-expressions [19]. In [20], a set of arbitrarily chosen magnification
factors for the region specific motion vectors of geometric face features was used
to enhance the recognition performance of subtle expressions. In a recent report,
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Li et al. [21] use peak contrast of feature difference to spot the micro-expressions
in spatio-temporal data. In this algorithm, heuristically chosen ten discrete lev-
els are applied to magnify the Eulerian motion of spatio-temporal data prior to
the extraction of LBP or HOG features for recognizing the micro-expressions.

In this paper, we argue that instead of applying fixed-level of magnification of
motion, certain adaptive magnification should be employed to enhance the subtle
activities of spatio-temporal data for the purpose of recognition of spontaneous
expressions. The objectives of adaptation of motion magnification is two-fold:
(i) to amplify the low intensity motions in micro-expressions and (ii) to reduce
excessive artifacts induced in the meso-level expressions due to magnification.
In particular, we promote the use of simple yet effective mean-adaptive Eulerian
motion magnification in conjunction with the LBP-TOP features for the repre-
sentation of micro- or meso-level facial activities in the spontaneous expressions.
Experimental results obtained from databases having micro-expressions, namely,
spontaneous micro-expression (SMIC) and meso-level expressions, namely, M&M
initiative (MMI) reveal that the proposed approach of adaptive motion magni-
fication improves the performance of expression classification significantly.

The paper is organized as follows. Section 2 presents the proposed approach
of adaptation for the Eulerian motion magnification. The feature extraction and
classification of expressions are detailed in Sects. 3 and 4, respectively. The exper-
imental results showing the significance of proposed approach for improving
the classification performance is given in Sect. 5. Finally, Sect. 6 provides the
conclusions.

2 Motion Magnification

Let I(x, y; t) denote the spatial intensity at position (x, y) and time t in a spatio-
temporal data of size (X,Y, T ). Let the initial intensity in a given frame I(x, y; 0)
be denoted as f(x, y). If the translational displacement called motion vector in
time t is δxy(t) = δx(t)+ jδy(t), where j is a complex operator, then I(x, y; t) =
f(x, y; δxy(t)). The Eulerian motion magnification of the data by a fixed-level α
refers to synthesizing a signal given by [22]

Im(x, y; t) = f(x, y; (1 + α)δxy(t)) (1)

According to first-order Taylor series expansion around (x, y), the motion mag-
nified signal can be approximated as

Ĩm(x, y; t) ≈ f(x, y) + (1 + α)
√(

δx(t)fx

)2 +
(
δy(t)fy

)2 (2)

where fx ≡ ∂f(x, y)/∂x and fy ≡ ∂f(x, y)/∂y. In a general case, the selective-
band temporal filter is used so that a good approximation of motion magnified
signal can be attained [17]. Let δxy

ω (t) = δx
ω(t) + jδy

ω(t) represent the different
spectral components of δxy(t) in a continuous variable of temporal frequency ω.
Let the frequency dependent motion magnification factor be αω. In such a case,
the resultant motion magnified intensity is given by
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Fig. 1. Comparison of outputs of video frames due to motion magnification in micro-,
meso-, and macro-level expressions. The top row of frames show the actual frames. The
middle row shows the motion magnified frames when α = 10. The bottom row shows
the motion magnified frames as per the proposed approach.

Îm(x, y; t) ≈ f(x, y) +
∫

ω

(1 + αω)
√(

δx
ω(t)fx

)2 +
(
δy
ω(t)fy

)2dω (3)

The first-order Taylor series expansion may introduce significant artifacts
when spatial frequency is considerably high such as for noticeable changes in
f(x, y). In order to restrict the over magnification due to high spatial frequencies,
the magnification factor αω is constrained according to the recommendation
given in [22] as

(1 + αω)δx
ω(t) <

λu

8
(4)

(1 + αω)δy
ω(t) <

λv

8
(5)

where λu = 2π/ux and λv = 2π/vy are the wavelengths of spectral components of
f(x, y) that are expressed in terms of the continuous variables of spatial frequen-
cies ux and vy, respectively. These restrictions may not work well for the meso-
level spontaneous expressions and macro-level posed expressions, when the facial
activities are non-trivial. Hence, an adaptive magnification of spatio-temporal
data is required, in which the magnification level can be selected according to the
overall motions available in the data. In particular, the adaptive magnification
level can be inversely proportional to the mean of magnitude of displacement
vectors available in the entire data given by
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α̂ω = ηXY T

[∫

x

∫

y

∫

t

√(
δx
ω(t)

)2 +
(
δy
ω(t)

)2dxdydt

]−1

(6)

where η (η ≥ 1) is a proportional constant. A value of η close to unity is prefer-
able to avoid excessive magnification and resulting artifacts in the frames. In
practice, any pixel-based motion estimation algorithm can be used to find the
adaptive motion magnification factor α̂ω. In the proposed method, the block-
matching and optical flow-based subpixel motion estimation technique is recom-
mended due its fast implementation [23]. Figure 1 shows a typical comparison of
the motion magnified frames of spatio-temporal data having micro-, meso-, and
macro-level expressions that are available in the SMIC and MMI databases. It
is seen from this figure that a heuristic choice of magnification factor such as
α = 10 can produce significant artifacts in spatial textures of the frames, which
in fact severely affects the expression recognition performance. As expected,
the artifacts caused due to improper magnification is increasingly pronounced
in the case of micro-, meso-, and macro-level expressions. However, if the pro-
posed adaptation of scaling of magnification is considered, then the artifacts are
reduced significantly. It may be mentioned that the perceptual quality of motion
magnification and reduced amount of artifacts provided by the proposed method
appears to be even better than that shown in Fig. 1, when the entire frames of
the spatio-temporal data are viewed rather than just a few number of frames.

3 Features for Expressions

In the proposed recognition algorithm, the features of expressions are extracted
from the magnified spatio-temporal data using the LBP-TOP algorithm [24].
This descriptor is obtained by concatenating LBP on three orthogonal planes:
XY, XT, and YT, and considering only the co-occurrence statistics in these three
directions. Let us consider that a set of dynamic textures in terms of LBP of
size Xd × Yd × Td (xc ∈ {1, 2, · · · ,Xd}, yc ∈ {1, 2, · · · , Yd}, tc ∈ {1, 2, · · · , Td})
are estimated by considering only the center part of the neighborhood in the
magnified data. The histogram of the dynamic feature is estimated as

Hi� =
∑
x,y,t

I{Φc
�(x, y, t) = i} i = 1, 2, · · · , n� 
 = 1, 2, 3 (7)

where Φc
�(x, y, t) expresses the uniform LBP code of central pixel (xc, yc, tc), n�

is the number of different labels produced by the LBP operator in the 
th plane
(
 = 1 : XY, 2 : XT, 3 : YT) and

I{A} =
{

1 if A is true
0 if A is false (8)

In order to get a coherent description, the histograms obtained are normalized as

Ni� =
Hi�∑n�

k=1 Hk�
i = 1, 2, · · · , n� 
 = 1, 2, 3 (9)
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The labels from the XY-plane contain information about the appearance,
whereas that in the XT- and YT-planes represent the co-occurrence statistics of
motion in horizontal and vertical directions. The three histograms are concate-
nated to build a global description F that represents dynamic feature with the
spatial and temporal characteristics of the data, which is often referred to as the
LBP-TOP.

4 Feature Classification

In the proposed method, the kernel-based SVM is employed to classify the his-
tograms of LBP-TOP by acknowledging that it is a well established statistical
learning theory applied successfully in many classification tasks in computer
vision. The kernel SVM implicitly maps the LBP-based features into a higher
dimensional feature space to find a linear hyperplane, wherein the expressions
can be categorized with a maximal margin. Given a training set of Γ labeled
expressions Θtr = {(Fγ , dγ)|γ = 1, 2, · · · , Γ}, where Fγ ∈ Z

n� and dγ ∈ {−1, 1},
the test feature F is classified using the decision function

D(F ) = sign

(
Γ∑

γ=1

βγdγΨ (Fγ , F ) + b

)
(10)

where βγ are the Lagrange multipliers of a dual optimization problem that
describe the separating hyperplane, Ψ (Fγ , F ) is a kernel function, and b is the
weight of bias. The training samples Fγ with βγ > 0 are called the support
vectors. The SVM finds the separating hyperplane that maximizes the margin
with respect to these support vectors. In order to map the LBP-based histogram
into the higher dimensional feature space for classification, the most frequently
used kernel functions such as the linear, polynomial, and radial basis function
can be used.

Admitting that the SVM provides a binary decision, the multiclass decisions
can be obtained by adopting the several two-class or one-against-rest problems.
In the proposed method, one-against-rest problems are chosen, and hence ulti-
mate expression class is obtained by Γ number of binary learners. With a view
to select the parameters of the SVM, a grid-search on the hyper-parameters is
used by adopting a cross-validation scheme. The parameter settings that pro-
duce the best cross-validation accuracy are used for obtaining the decision on
the LBP-TOP feature under test.

5 Experimental Results

The experiments presented in this paper mainly focus on the effect of proposed
motion magnification on the recognition of spontaneous expressions. The experi-
ments are conducted on both the micro- and meso-level spontaneous expressions.
In order to present representative results, only the findings of the recognition
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Table 1. Results of Expression Classification Accuracy of SMIC-HS Dataset

Method Class Actual Magnified

Overall (%) Best (%) Overall (%) Best (%)

Detection Micro 63.65±0.0016 69.05 65.34±0.1111 70.63

Recognition Positive 37.46±0.0068 52.38 40.63±0.0175 57.14

Negative 40.63±0.0233 71.43 44.13±0.0199 66.67

Surprise 52.06±0.0199 76.19 53.97±0.0145 76.19

Table 2. Results of Expression Classification Accuracy of SMIC-VIS Dataset

Method Class Actual Magnified

Overall (%) Best (%) Overall (%) Best (%)

Detection Micro 52.00±0.0039 61.67 54.88±0.0049 65.00

Recognition Positive 59.33±0.0135 90.00 60.00±0.0243 100.00

Negative 39.33±0.0107 50.00 49.33±0.0278 80.00

Surprise 44.00±0.0126 60.00 48.00±0.0246 80.00

performance of micro-expressions of SMIC database and that of the meso-level
expressions of the MMI database are presented. In this section, first we provide
a brief description of the two datasets, which is followed by the experimen-
tal setup and the performance comparisons of expression recognition with and
without magnification of motions of data.

5.1 Datasets

The SMIC is a spontaneous micro-expression database having 164 video clips, in
which the involuntary emotions were induced by displaying audiovisual films and
the required level of inhibition in expressing emotions were strictly maintained
by imposing enough pressure to 16 participants [14]. The facial activities were
captured using three types of cameras, viz., high speed (HS), normal visual
(VIS) and near infra-red (NIR), all having pixel resolution of 640 × 480. The
frame rate of HS camera is 100 fps and that of the rest two is 25 fps. The
71 video clips captured from the VIS and NIR cameras yield data similar to
standard web cameras, including their limitations such as motion blurs. The
micro-expressions in this dataset is classified into three classes (i) Surprise, (ii)
Positive representing the emotion Happy and (iii) Negative representing any
of the emotions Sad, Fear, or Disgust. The dataset did not elicit any micro-
expressions for the emotion Anger. There is an extra class of video clips called
non-micro which display no emotion though they have facial movements.

The MMI database has 197 video sequences of faces displaying mostly for
the spontaneous-type facial expressions of one of the six basic emotions [25]. The
video clips are collected from 75 subjects with a standard camera of frame rate 24
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Table 3. Results of Expression Classification Accuracy of SMIC-NIR Dataset

Method Class Actual Magnified

Overall (%) Best (%) Overall (%) Best (%)

Detection Micro 55.44±0.0039 66.67 57.00±0.0044 66.67

Recognition Positive 58.67±0.0270 80.00 62.00±0.0246 90.00

Negative 53.33±0.0152 70.00 57.33±0.0135 80.00

Surprise 62.67±0.0421 90.00 67.33±0.0121 100.00

Table 4. Results of Expression Classification Accuracy of MMI Dataset

Method Class Actual Magnified

Overall (%) Best (%) Overall (%) Best (%)

Recognition Happy 29.33±0.0292 50.00 31.33±0.0327 60.00

Sad 32.00±0.0160 50.00 39.33±0.0235 70.00

Surprise 48.67±0.0184 70.00 52.67±0.0121 80.00

fps and pixel resolution of 720 × 576. The sequences in the data corpus are fully
annotated for the presence of single or multiple FAUs in the video. In order to
generate a generic dataset of meso-level spontaneous expressions, we choose 25,
21, and 22 number of spatio-temporal clips from this database representing the
Happy (i.e., Positive), Sad (i.e., Negative), and Surprise expressions, respectively.
The face region is detected first using the Viola-Jones algorithm [26] and by using
the coordinates of eye pair. Each spatio-temporal data representing the facial
activities is cropped and resized to a spatial resolution of 180 × 240 using the
bi-cubic interpolation.

5.2 Setups

To extract the LBP-TOP features from datasets, the frame lengths of clips of
all expressions are normalized. In particular, the linear interpolation is used to
normalize the frame length 20 for the clips of SMIC and 60 for the MMI datasets.
The XY-plane of each of the clips is partitioned to 5 × 5, and the LBP-TOP
features are calculated for all the partitions using the codes available in the
website1 maintained by the developers of LBP. These features are concatenated
to obtain the ultimate features of expressions. In order to magnify the motion of
a video, the parameter η is chosen to be close to unity. In the experiment, it is
found that η = 1.2 works very well for both the SMIC and MMI datasets. The
mean values of motions of spatio-temporal clips of datasets are obtained from
the codes available in the website2 of one of the authors of [23]. The motions are
estimated using a block-size of 8×8 and a search limit of 10. The codes available
1 http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab.
2 http://scholar.harvard.edu/stanleychan/software/.

http://www.cse.oulu.fi/CMV/Downloads/LBPMatlab
http://scholar.harvard.edu/stanleychan/software/


Intelligent Recognition of Spontaneous Expression 123

1 3 5 7 9 11 13 15 17 19
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Actual Video
Magnified Video

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 60
0

0.02

0.04

0.06

0.08

0.1

0.12

Actual Video
Magnified Video

Fig. 2. Amplified feature intensities due to the proposed motion magnification of
spatio-temporal clips of the datasets (a) SMIC and (b) MMI.

in the website3 of one of the authors of [22] are employed for the Eulerian video
magnification. The Laplacian pyramid with cutoff wavelength 16 is used for
spatial filtering during the magnification. The temporal filtering is performed
by using two infinite impulse response low-pass filters that have weights 0.4 and
0.05. The chrome attenuation factor is chosen as 0.1. These parameters are set
as default in the codes for motion magnification.

The proposed expression recognition algorithm uses supervised learning tech-
nique by employing the kernel SVM. In particular, randomly chosen 50 % of the
spatio-temporal clips for each of the expressions are treated as the training set,
and the rest as the probe set. The expression recognition accuracies are esti-
mated from the correctly classified clips in the probe set. The overall classifi-
cation performance are reported in terms of the mean and standard deviation
of the accuracies obtained from 15 independent randomly chosen training-probe
sets. The hyper parameters of the kernel-based SVM classifier are estimated
from the cross validation scheme applied only on the training sets. In the exper-
iments, it has been found that the linear kernel function performs the best for
the LBP-TOP-based expression classification.

5.3 Results

We first evaluate the changes of magnitude of the LBP-based features due to the
proposed motion magnification. In particular, the LBP features are calculated
for the XY-plane only, and the frame-by-frame feature differences are obtained
from the last frame representing neutral expression of each of the spatio-temporal
clips. Figure 2 shows typical frame-by-frame feature differences for the expres-
sion Surprise in the SMIC and MMI datasets for both the actual and motion
magnified clips according to proposed approach. Since both the datasets have

3 http://people.csail.mit.edu/mrub/evm/.

http://people.csail.mit.edu/mrub/evm/
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Fig. 3. Results concerning the ROC curves showing improved expression detection due
to the proposed motion magnification of spatio-temporal clips. The curves are obtained
for detection of (a) micro expressions from SMIC-HS clips, (b) Surprise expression from
SMIC-VIS clips, (c) Positive expression from SMIC-NIR clips and (d) Happy expression
from MMI clips.

the neutral expression at both ends of the clips, the feature distances slowly
increase from the starting frame, reach a peak and then fall to the off-set. What
is notable here in this figure is that due to the magnification of motion, the
feature differences significantly increase from the actual ones. In other words,
the proposed magnification of motion is capable of providing amplification of
facial activities, which in turn is expected to provide improved performance for
recognizing facial expressions.

Tables 1, 2 and 3 present comparisons of detection accuracy of micro expres-
sion and recognition accuracy of the Positive, Negative and Surprise expressions
when the clips are magnified according to proposed approach and remain as
actual in [14] for the three resolutions of SMIC dataset, viz., HS, VIS and NIR,
respectively. It is seen from these tables that the detection accuracy of micro-level
expressions is the highest for the HS camera, and it can be increased further by
introducing the proposed motion magnification with a very slight compromise in
the robustness. This is expected because, the motion magnification can slightly
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increase the chance of false detection, if the magnification factor is not scaled
appropriately. In the case of recognition of types of expressions, the magnifica-
tion of motion increases the accuracy by more than 3.9 % on average and shows
relatively better performance improvement for the VIS and NIR clips. A negli-
gible decrease in the robustness is seen for the HS and VIS clips, but noticeable
improvement of robustness is observed for the low-resolution NIR clips especially
for recognizing the Surprise expression. In all cases, the best detection or recog-
nition accuracy of magnified video is never less than that without magnification.
Table 4 presents the improvement of recognition accuracy for three expressions,
namely, Happy, Sad, and Surprise in two scenarios when the spatio-temporal
clips of MMI dataset are magnified or remain untouched. As can be seen from
this table, even for the meso-level expressions, the improvement of average accu-
racy is more than 4.25 %, and the highest improvement is seen for the case of
Sad expression. The robustness slightly decreases for the Happy and Sad expres-
sions, and increases for the Surprise expression. But the improvements in the
mean accuracy or that in the best accuracy due to the introduction of proposed
motion magnification of spatio-temporal data actually surpass the slight sacrifice
in the robustness.

The effect of magnification of spatio-temporal clips is also evaluated by
estimating the receiver operating characteristics (ROC) curves for detection of
micro-level expressions as well as for detecting a certain-type of expression from
the pool of clips of a dataset. Figure 3 shows comparisons of ROC curves when the
clips are magnified or remain as actual for typical scenarios in the SMIC and MMI
datsets. In particular, Fig. 3(a) shows that the true positive rate for the detec-
tion of micro-expression in the HS clips of SMIC dataset significantly improves
especially in the case of low-level false alarm rate, when the clips undergo the
proposed motion magnification. Similar improvements are also observed for the
recognition of Surprise and Positive expressions in the SMIC dataset as shown
in Fig. 3(b) and (c), when the clips are captured by the VIS and NIR cameras,
respectively. Due to the poor resolution, the improvement in the NIR clips due to
motion magnification is observed to be marginal as compared to that in the HS
and VIS clips of the SMIC dataset. Nevertheless, the motion magnification pro-
vides significantly higher values of true positive rate for a given false alarm rate
for the MMI dataset, which is primarily dominated by the meso-level sponta-
neous expressions. A typical example of such improvement in detection accuracy
of the expression Surprise is shown in Fig. 3(d). Thus, the proposed magnifica-
tion invariably improves the detection or recognition performance both for the
micro- or meso-level spontaneous expressions.

6 Conclusion

The most challenging aspect of detection and recognition of spontaneous expres-
sions is the low-level of the facial activities in the captured spatio-temporal clips.
Not only the duration of these facial activities is very brief in period, but also the
trivial dynamics of the textures pose notable challenge to extract effective fea-
tures of expressions. In order to overcome such problems, motion magnification
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prior to the extraction of features was recommended for detecting and classify-
ing the micro-expressions. However, existing methods use heuristic choice to set
the level of motion magnification. In such cases, artifacts are introduced for the
facial activities, especially when there remains meso-level facial activities in the
spontaneous expressions let alone the macro-level activities in posed expressions.
Thus, the proposed paper has introduced a mean-adaptive level of motion magni-
fication, so that small-scale dynamics of faces can be magnified without causing
any significant artifacts. The features of the expressions can be extracted from
the magnified clips with minimum error and thereby increasing the detection
and classification accuracy.

In the proposed method, subpixel-based block-matching algorithm has been
used for the motion estimation and the Eulerian technique for motion mag-
nification. The LBP-TOP method has been adopted to extract the features for
expression. It has been shown that the proposed magnification of spatio-temporal
data enhances the feature intensities as a function of facial activities. The ker-
nel SVM-based classification of features shows that the proposed method can
significantly improve the mean accuracy of detection of micro-expression and
that of classification of expressions for the SMIC dataset. Such improvements
have been observed invariably for the three resolutions, namely, HS, VIS, and
NIR of the spatio-temporal clips of SMIC dataset. The increased average clas-
sification has also been observed for the MMI dataset, which has meso-level
activities representing the spontaneous expressions. The improvements of per-
formance of detection of expressions have also been verified by constructing the
ROC curves, which shows that the true positive rate for a given false alarm
rate increases on average due to the motion magnification of the clips. We claim
that such improvements have resulted due to the proposed adaptation of the
level of motion magnification. The only challenge of the proposed magnification
is the very tiny scale decay of the robustness of the detection and classifica-
tion accuracies. But the results of overall classification accuracy, best accuracy,
and the true positive rate clearly reveal that the use of proposed adaptation
of motion magnification is worthy in detection or classification of spontaneous
expressions. We expect that the proposed method can play a significant role for
the next generation affective computing in the area of security and surveillance
applications.
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expression database: inducement, collection and baseline. In: Proceedings of the
IEEE International Conference on Automatic Face and Gesture Recognition and
Workshops, Shanghai, China, pp. 1–6 (2013)

15. Shreve, M., Godavarthy, S., Goldgof, D., Sarkar, S.: Macro- and micro-expression
spotting in long videos using spatio-temporal strain. In: Proceedings of the IEEE
International Conference on Automatic Face and Gesture Recognition and Work-
shops, Santa Barbara, pp. 51–56 (2011)

16. Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using
high speed camera and 3D-gradient descriptor. In: Proceedings of the IET IEEE
International Conference on Crime Detection and Prevention, London, UK, pp.
1–6 (2009)

17. Gogia, S., Liu, R.: Motion magnification of facial micro-expressions. Technical
report 4, Massachusetts Institute of Technology (2014). http://runpeng.mit.edu/
project#research

18. Park, S.Y., Lee, S.H., Ro, Y.M.: Subtle facial expression recognition using adaptive
magnification of discriminative facial motion. In: Proceedings of the ACM IEEE
International Conference on Multimedia, pp. 911–914 (2015)

19. Akagi, Y., Kawasaki, H.: A method of micro facial expression recognition based on
dense facial motion data. In: Proceedings of the IEEE International Conference on
Central Europeon Computer Graphics, Visualization and Computer Vision, Plzen,
Czech Republic, pp. 39–44 (2014)

20. Park, S., Kim, D.: Subtle facial expression recognition using motion magnification.
Pattern Recogn. Lett. 30(7), 708–716 (2009)

http://runpeng.mit.edu/project#research
http://runpeng.mit.edu/project#research


128 B.M.S.B. Talukder et al.

21. Li, X., Hong, X., Moilanen, A., Huang, X., Pfister, T., Zhao, G., Pietikäinen, M.:
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