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Abstract. Privacy restrictions of sensitive data repositories imply that
the data analysis is performed in isolation at each data source. A prime
example is the isolated nature of building prognosis models from hospital
data and the associated challenge of dealing with small number of sam-
ples in risk classes (e.g. suicide) while doing so. Pooling knowledge from
other hospitals, through multi-task learning, can alleviate this problem.
However, if knowledge is to be shared unrestricted, privacy is breached.
Addressing this, we propose a novel multi-task learning method that pre-
serves privacy of data under the strong guarantees of differential privacy.
Further, we develop a novel attribute-wise noise addition scheme that
significantly lifts the utility of the proposed method. We demonstrate
the effectiveness of our method with a synthetic and two real datasets.

1 Introduction

Privacy matters. Tough legislations are in place to safeguard the privacy of
individual data repositories, resulting in a large set of disconnected data islands
with no means of connection between them. However, as data mining researchers
we believe that knowledge is everywhere and the true potential of data will be
unlocked when these disparate data islands are appropriately bridged - a pursuit
remains unrealized in the presence of privacy restrictions.

Consider healthcare as an example. Modern healthcare facilities are equipped
with Electronic Medical Records systems that capture detailed information
about patients as they access hospital facilities. The value of such information is
immense in creation of accurate prognosis models, central to efficient and appro-
priate delivery of care. However, we often encounter diseases that have small
number of samples in risk classes, e.g. suicide is rare in populations. The prog-
nosis model built in such situations may result in poor performance. Pooling
knowledge across hospitals via multi-task learning framework can alleviate this
problem, but privacy-protecting regulatory frameworks control access to sensi-
tive data across hospital jurisdictions. Similar situations arise in other areas,
e.g. building spam filters in a collaborative yet privacy-preserving manner etc.
Therefore, there is opportunity to develop privacy preserving multi-task learning
models that provides strong guarantees on privacy protection.

Early work on privacy preserving data analysis has used a variety of meth-
ods, e.g. query restriction [1], anonymization of information [2], secure multi-
party function evaluation [3], data/output perturbations [4] etc. Of these, query
c© Springer International Publishing Switzerland 2016
M. Chau et al. (Eds.): PAISI 2016, LNCS 9650, pp. 101–113, 2016.
DOI: 10.1007/978-3-319-31863-9 8



102 S.K. Gupta et al.

restriction provides limited utility [5], anonymization may reveal sensitive data
in presence of auxiliary information [6] and secure multi-party function evalu-
ation may not provide statistical guarantees. Recently, differential privacy has
emerged as a framework for privacy preserving information disclosure with strong
theoretical guarantees [7]. It ensures that the answer to a statistical query is not
significantly different between two datasets that differ at most in one instance.
A major strength of differential privacy is its ability to provide graded levels of
privacy by specifying a leakage parameter ε, giving rise to the name ε-differential
privacy. Differential privacy has been applied to many data mining areas [7,8].
The closest work to our problem of building prediction models is the output
perturbation approach due to [7], who suggested that differentially private algo-
rithms can be constructed by calibrating the standard deviation of a Laplacian
noise according to the “sensitivity” of a function involved in the algorithm. This
idea was followed by Chaudhuri et al. to build differentially private empirical
risk minimization models [9]. However, applicability of these models is limited
to only single-task learning scenarios.

Current methods leverage collective knowledge across prediction problems (or
tasks) via multi-task learning [10,11], building prediction models where inter-
task knowledge transfer is achieved via some form of joint modeling. Exist-
ing multi-task learning models, however, are not equipped to satisfy privacy
requirements as they require unrestricted access to sensitive data [11] or derived
statistics [10]. A recent state-of-the-art multi-task learning method is MTRL
[12], which provides a flexible way of sharing knowledge across tasks by using a
covariance matrix to model task relationships. As a result, it is able to exploit
knowledge from tasks that have varying degree of relatedness - a crucial property
when dealing with real world data.

Limited work exist on privacy preserving multi-task learning. Mathew and
Obradovic [13] construct a distributed Id3-based decision tree for predicting
hospitalization risk from multi-hospital data. Although no data is exchanged
between the hospitals, leakage on privacy may occur due to exchanging unper-
turbed statistics. Pathak et al. [14] propose a differentially private multi-task
learning via averaging classifiers from multiple sources using secure multi-
party communication. This method has two drawbacks. (1) Averaging classifiers
assumes that tasks are strongly correlated, and (2) the level of noise is calibrated
with respect to the smallest source, resulting in high model perturbation. This
seriously brings down the utility of the algorithm. Therefore, the opportunity to
develop a differentially private multi-task learning model is open.

Taking this opportunity, we propose a novel multi-task learning that pre-
serves privacy of individuals in participating sources, under the strong guarantee
of differential privacy. The proposed model infuses privacy into the MTRL model
[12]. This delivers strong privacy preserving property to a state-of-art multi-task
learning model facilitating seamless sharing of knowledge without sharing data
between the participating sources. In case of healthcare, this means that hos-
pitals across the world can improve their prognosis models by leveraging their
mutual knowledge and thus derive best practice to revolutionize healthcare.
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Following sensitivity based approach of Dwork et al. [7], we derive the sensi-
tivity for the proposed multi-task learning model and use it to calibrate the level
of noise used for differential privacy. We provably show that the proposed scheme
satisfies ε-differential privacy where it is possible for a source (e.g. hospital) to
control its privacy requirements via its own ε parameter. Adding calibrated noise
to task parameters helps us in securing privacy, however, it comes at the cost of
reduced performance (or utility). Addressing this problem, we propose a novel
scheme of attribute-wise noise addition that exploits the information content
of attributes and reduces the overall noise. We demonstrate that this scheme
can significantly lift the performance of the proposed technique. Using a syn-
thetic dataset, we illustrate the behavior of the proposed models and validate
their effectiveness using two real world problems: predicting cancer mortality
and designing personalized spam filter.

2 Preliminaries

Differential Privacy. Differential privacy is a privacy preserving framework
proposed by Dwork et al. [7]. This framework defines a notion of privacy for a
learning algorithm A . The algorithm A satisfies differential privacy if likelihood
of its output for two datasets that differ at most by one instance are close.
Due to this closeness, an adversary can not infer anything significant about the
differing instance by using the algorithm output. The closeness of the likelihoods
is characterized by a “leakage” parameter ε, giving rise to the name ε-differential
privacy.

Definition 1 [7]: An algorithm A is said to satisfy ε-differential privacy if for
any two datasets D and D ′ that differ by at most one instance, and all S ⊆
Range (A ),

exp (−ε) ≤ P (A (D) ∈ S)
P (A (D ′) ∈ S)

≤ exp (ε) (1)

where A (D) and A (D ′) are the outputs of A on datasets D and D ′ respectively.

Sensitivity. The sensitivity of a function f is the maximum change in its output
due to any single data instance. A formal definition of sensitivity is provided
below:

Definition 2 [7]: The sensitivity of a function f : D → R
M is defined as

S (f) = max
D,D′

||f (D) − f (D ′) ||

for all datasets D and D ′ that differ by at most one instance. Dwork et al. [7]
showed that ε-differential privacy is satisfied by an algorithm if i.i.d. Laplacian
noise with standard deviation S (f) /ε is added in each co-ordinate of the output
vector before its release.
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Strong Convexity. The strong convexity property is used to derive our pro-
posed model. We provide the definition of strong convexity in the following.

Definition 3. A twice continuously differential function C (f) is called strongly
convex with parameter μ > 0 iff the following inequality holds for all f in its
domain

∇2C (f) � μI, (2)

where � means that ∇2C (f) − μI is positive semi-definite.

3 Privacy Preserving MTL

Let us assume we have T0 tasks, indexed as t = 1, . . . , T0. For the t-th task,
we denote the training set as Dt = {(xti, yti)}Nt

i=1 where xti ∈ R
M is a M -

dimensional feature vector and yti is the target, usually real-valued for regression
and binary-valued for binary classification problems. Let βt denote the weight
vector for the task t, we also refer to this as task parameter. Collectively, we
denote the data of t-th task by Xt = (xt1, . . . ,xtNt

)T and yt = (yt1, . . . , ytNt
)T

and all the task parameters as β = (β1, . . . , βT0). When tasks differ in some of
the features, a common feature list can be obtained via their union.

The multi-task learning literature is full of sophisticated models where the
aim is to jointly model multiple tasks towards improved average prediction per-
formance for all the tasks. In this paper, we use a multi-task learning model that
learns relationship of tasks via a covariance matrix and uses it for joint modeling
[12]. Although we have chosen this model to build a privacy preserving variant,
one can use the technique described in this paper to many other multi-task learn-
ing models provided these models minimize a convex loss function. The results
for non-convex models are more involved and out of scope of this paper.

The proposed multi-task learning model minimizes the following objective
function

min
β,Ω

∑

t

||Xtβt + bt1 − yt||2
Nt

+λ1Tr
(
ββT

)
+λ2Tr

(
βΩ−1βT

)
, s.t. Ω � 0, tr(Ω)=1

(3)
where bt is the bias parameter of the t-th task and the notation 1 denotes a
vector of all ones. We refer to the above cost function as C (β,Ω). Although, in
this paper, we use the square loss, it is possible to extend this formulation for
logistic loss. Similarly, extensions to multi-class classification is straight-forward.
We take the above model and build its privacy preserving variant, which protects
the data from being reversed engineered by an adversary from model parameters.

Since the cost function of 3 is jointly convex in β and Ω along with the
constraints, we can find unique solution. Our approach is to optimize β for a
fixed Ω and then optimize Ω given β. This leads to an iterative solution.

For square loss, task parameter βt given Ω can be learnt in a closed form.
This is done by setting the derivative of C (β,Ω) with respect to βt to zero,
leading to the following linear equation in βt
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Algorithm 1. The proposed Private-MTL
1: Input: Multi-task data {Xt,yt}T0

t=1, parameters λ1, λ2, ε.
2: Output: Task parameters β1:T0 and matrix Ω.
3: Initialization: For initialization, learn task parameters using single task learning

(STL), let us assume the task parameter for task t using STL is βt, computed
locally.

4: compute sensitivity for task t as St = 2
NtΛt

where Λt = λ1 + λ2Ω
−1 (t, t) and Nt is

the number of instances in t-th task.
5: sample ηt from the density function: p (ηt) ∝ exp

(
− ε

St
||ηt||

)
.

6: Add noise to task parameters as βt = βt + ηt.
7: repeat

8: update task relationship matrix as Ω =
(βT β)1/2

Tr
(
(βT β)1/2

) .

9: solve βt given Ω and other noisy βt′ , t′ �= t using (4).
10: set βt = βt + ηt where ηt is sampled similar to step-5.
11: until convergence

[(
XT

t Xt

)
/Nt +

(
λ1 + λ2Ω−1 (t, t)

)
I
]

βt=
(
XT

t (yt − bt1)
)

/Nt−λ2

∑
t′ �=t

Ω−1
(
t′, t
)
βt′ . (4)

As seen from this equation, for a fixed task relatedness Ω, learning task parame-
ter of t-th task, i.e. βt requires data from only its own task. The knowledge from
other tasks is brought through their task parameters, i.e. βt′ where t′ 	= t. To
have a solution that preserves privacy according to the ε-differential privacy, we
follow the sensitivity method suggested by [7]. We compute sensitivity (St) of
our objective function and add a noise vector (ηt) calibrated using this sensitiv-
ity to the task parameters. This method can be shown to guarantee the privacy
of data instances from all the tasks. Using this method, the noisy βt is given as

βt = βt + ηt, p (ηt) ∝ exp
(

− ε

St
||ηt||

)
. (5)

where we slightly abuse the notation of βt using it to denote the task parameters
both before and after adding noise.

For a fixed noisy β, the matrix Ω can be learnt by minimizing Tr
(
βΩ−1βT

)

subject to constraints Ω � 0, tr (Ω) = 1. Zhang et al. [12] show that the closed

form solution of this optimization problem is given as Ω = (βT β)1/2

Tr((βT β)1/2) . We

note that there is no need to add noise in Ω, as it is estimated from β, which
is already noisy and privacy preserving. For all future references, we term this
model as Private-MTL.

In spite of adding noise to βt, the convergence of the optimization function
in (3) is still guaranteed under the framework of stochastic optimization. The
noisy perturbations (with mean zero) to βt can be thought as updating βt using
a noisy gradient of the cost function, which is popular in stochastic optimiza-
tion literature and known to converge [15]. Algorithm 1 provides a step-by-step
summary of the proposed model.
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Privacy Guarantees. We establish the conditions under which Algorithm 1
provide ε-differential privacy with respect to β. Proving differential privacy w.r.t.
Ω is not necessary as by reverse engineering Ω, one can only reach to β, which
is noisy and privacy preserving.

Theorem 1. The task parameters β1:T0 learnt using Algorithm 1 preserves ε-
differential privacy.

Proof: The proof of the Theorem follows a similar sketch as the proof of Theo-
rem6 in Chaudhuri et al. [9]. Due to involvement of multi-task regularization, the
sensitivity of the model, however, is different. Lemma3 derives the sensitivity of
our proposed model (St = 2L

NtΛt
, where Λt = λ1 + λ2Ω

−1 (t, t) and loss function
is assumed to be L-Lipschitz). This result, in combination with the sensitivity
method of Dwork et al. [7] and output perturbation method of [9], establishes
the theorem. For the sake of completeness, we provide a sketch of the proof here.

Let D and D ′ be any two datasets that differ only in nt-th instance of task
t. Further, let βD

t and βD′
t be the task parameters learnt using these datasets

without any noise additions. Let βt be the task parameter after noise addition.
Then, for any βt and dataset D , we have p (βt|D) ∝ e− NtΛtε

2L (||βt−βD
t ||), which

leads to
p (βt|D)
p (βt|D ′)

= e
− NtΛtε

2L

(
||βt−βD

t ||−||βt−βD′
t ||
)

(6)

where p (βt|D) and p (βt|D ′) are the density function of the task parameter βt

given datasets D and D ′. Using triangular inequality and Lemma3, we have

||βt − βD
t || − ||βt − βD′

t || ≤ ||βD′
t − βD

t || ≤ 2L

NtΛt
.

Plugging this result in (6), we have p(βt|D)
p(βt|D′) ≥ e−ε. Due to symmetry in choosing

D and D ′, we also have p(βt|D)
p(βt|D′) ≤ eε, guaranteeing ε-differential privacy.

Lemma 2. The cost function of (3) for task t is Λt-strongly convex with Λt =
λ1 + λ2Ω

−1 (t, t).

Proof: We note that C (β,Ω) is doubly-differentiable. In this light, consider
the strong convexity condition in (2). To prove the lemma, we need to show:
∇2

βt
C (β,Ω) � (

λ1 + λ2Ω
−1 (t, t)

)
I. The first derivative of the cost function in

(3) is given as

∇βt
C =

(
XT

t Xtβt − XT
t (yt − bt1)

)

Nt
+ λ1βt + λ2βΩ−1 (:, t) . (7)

Taking second derivative, we get the following result

∇2
βt

C =
1
Nt

XT
t Xt + λ1I + λ2Ω

−1 (t, t) I. (8)

Clearly the matrix ∇2
βt

C − (
λ1 + λ2Ω

−1 (t, t)
)
I is positive semi-definite as, for

any v, vT
(
XT

t Xt

)
v = (Xtv)T (Xtv) ≥ 0. Therefore, the cost function C (β,Ω)

for each βt (i.e. task t) is Λt-strongly convex with Λt = λ1 + λ2Ω
−1 (t, t).
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Lemma 3. Assuming bounded input (||xti|| ≤ 1) and L-Lipschitz assumption
on the loss function, the sensitivity of C (β,Ω) for task t is at most 2L

NtΛt
,

where Λt = λ1 + λ2Ω
−1 (t, t).

Proof: To derive the sensitivity of C (β,Ω), consider two datasets D and D ′

that differ only in nt-th instance of task t (denoted as dt,nt
= (xt,nt

, yt,nt
)).

Further let G (β,Ω) = C (β,Ω) |D′ , g(β) = C (β,Ω) |D − C (β,Ω) |D′ , βD
t =

argminβt
C (β,Ω) |D , and βD′

t = argminβt
C (β,Ω) |D′ . The sensitivity of βt is

given by max
dt,nt

||βD
t − βD′

t ||, which following a similar derivation as Lemma 7 and

Corollary 8 in [9] can be shown to be at most 2L
NtΛt

, where Λt = λ1+λ2Ω
−1 (t, t).

Attribute-Wise Noise Addition. In above method, both ε and the sensitivity
St are set identically for all attributes - noise is added isotropically. We aim to
reduce the level of noise by exploiting attribute-specific properties. The main
idea is that an attribute needs to be kept strictly private only when it is rich
in information. For an attribute that does not carry much information, there
is not much reason to make it private. For example, most patients in a cancer
hospital will have chemotherapy, thus enforcing stringent privacy on ‘whether
someone has undergone chemotherapy or not’ is unnecessary. For such attributes,
we can relax the privacy constraint by setting parameter ε to a higher value. We
do this by setting ε as a function of the attribute entropy (Hti). Entropy is
a surrogate to capture the uniqueness of an attribute. In particular, we set the
privacy level for the i-th attribute in task t as εti = ε0 (1 + κfexp (−Hti)), where
Hti represents uncertainty of i-th attribute in task t and κf is an “attribute-wise
privacy scale parameter”. The parameter κf decides the rate at which the privacy
requirements are relaxed with decreasing attribute uncertainty. Depending on
the level of entropy, εti varies between (ε0, ε0(1 + κf )]. For continuous valued
feature differential privacy can be used. Using attribute-wise privacy parameter
εti, for task t, the perturbation in i-th element of task parameter is given as

βti = βti + ηti, p (ηti) ∝ exp
(

−εti

St
|ηti|

)
. (9)

The proof on privacy guarantee is similar to the proof in Theorem 3.1. Only
difference is that we are now using independent Laplacian noise with different
parameters for each attribute instead of using i.i.d. noise. In Algorithm 1, the
step-5, step-6 and step-10 are appropriately replaced by Eq. (9).

4 Experiments

4.1 Experimental Setup

We experiment with a synthetic dataset and two real datasets.
We compare our Private-MTL with the following baselines: (a) NonPrivate-

STL: In this algorithm, prediction weight vectors are learnt separately at each
entity and released without privacy protection, (b) NonPrivate-MTL: In this
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algorithm, prediction weight vectors are learnt using multi-task learning but
without privacy restriction, (c) Private-STL: In this algorithm, weight vectors
of all entities are learnt separately and noise is added to preserve privacy, and (d)
MDP-AC: In this algorithm [14], weight vectors are shared via secure multiparty
computation and averaged to obtain a global classifier. The noise is added cor-
responding to the smallest dataset. For all the above baselines and the proposed
models, the regularization parameters are learnt using cross-validation.

4.2 Experiments with Synthetic Dataset

We synthesize a multi-task learning dataset where tasks have various form of
relationships: positive, negative and no relationship. Our aim is to show that
our proposed model is able to estimate the task parameters (βt) accurately
even under privacy preserving restrictions. We create a total of 12 tasks with
their task parameters defined in a 9-dim. space. We simulate three task groups
putting the first 4 tasks in group-1, the next 4 tasks in group-2 and the last 4
tasks in group-3. We use different relatedness across task groups along different
features. In particular, for the first 3 features, tasks in group-2 and group-3 are
positively related, but unrelated to tasks in group-1. Similarly, for the next 3
features, tasks in group-1 and group-3 are positively related, but unrelated to
tasks in group-2. Finally, for the last 3 features, tasks in group-1 and group-2 are

Fig. 1. Experimental results on Synthetic dataset: (a) Root Mean Square Error
(RMSE) as a function of privacy parameter (ε), and (b) RMSE as a function of
attribute-wise privacy scale parameter (κf ) at ε0 = 0.1.

Fig. 2. Task parameters for Synthetic data experiments: (a) True, (b) Private-STL,
and (c) Private-MTL. The task parameters shown are average of 50 run with ε = 0.1
and κf = 1; Between the task parameters obtained by Private-STL and Private-MTL,
the latter resembles more to the true task parameters used for the synthesis of data.
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negatively related, but unrelated to tasks in group-3. Overall relationship across
tasks aggregated over all features becomes partial.

The i-th instance for t-th task, i.e. xti is generated from a 9-dim. multi-
variate normal distribution as xti ∼ N (0, I). The outcome yti is generated as
yti = βT

t xti + eti, eti ∼ N (0, 0.1) , where eti is a random noise. We generate
100 instances per task.

We randomly divide the data from each task into a 70 % training set and
a 30 % test set. Figure 1a shows the average predictive performance as a func-
tion of the privacy parameter ε for the proposed Private-MTL and the two STL
baselines. As seen from the figure, NonPrivate-STL provides the lowest RMSE
error. This is because there is no noise addition in the task parameters. Out of
the two privacy preserving algorithms, Private-MTL performs better than the
Private-STL. This benefit comes from the ability of the Private-MTL success-
fully leveraging from the knowledge of the other tasks. At the stronger privacy
requirements (i.e. for lower values of ε), the performance benefit is even more
pronounced with Private-MTL performing two times better than Private-STL at
ε = 0.05. Figure 1b shows similar plots as a function of κf when the global pri-
vacy parameter is set at ε0 = 0.1. This plot clearly shows significant improvement
in performance due to attribute-wise anisotropic noise addition. As the data is
synthesized, we know the true task parameters and compare that with the recov-
ered task parameters by different algorithms. Figure (2a–c) provide depiction of
both the true and the recovered task parameters. It is evident that the task
parameters recovered by Private-MTL resemble more closely to the true task
parameters than that of by Private-STL.

4.3 Experiments with Real Dataset

Cancer Dataset. The Cancer dataset is obtained from a large regional hospital in
Australia1. This cohort consists of 4,200 cancer patients who visited the hospital
during 2010-2012. The data contains a variety of information such as patient
demographics, diagnosis records in terms of ICD-10 codes, and procedure codes
in terms of ACHI system. Features are extracted following [16], resulting in 683
features. The task involves 1 year mortality prediction. To simulate a multi-
hospital scenario, we randomly divide the whole cohort into 5 separate cohorts
that are assumed to be coming from hospitals of different sizes: a large hospital
(LH) with 3000 patients, a medium hospital (MH) with 600 patients, and 3 small
hospitals (SH) with 200 patients each. The unequal division reflects the typical
real-world setting where several medium to small hospitals work together with
a large hospital in the nearby city.

Multi-user Spam Dataset. The spam dataset is obtained from the ECML-PKDD
challenge held in 2006. We use the test dataset from the Task B challenge.
The dataset contains 15 users, each having 400 labeled emails. The emails are
supplied as a term-document matrix with a dictionary size of around 150,000.

1 Ethics approval obtained through University and the hospital – 12/83.
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For each user spams constitute 50 % of the emails. The goal is to build a spam
classifier for each user locally. Since the notion of spam emails is related across
users, multi-task learning can be used to share classification knowledge across
the users. However, emails being private in nature, we should aim to perform
any knowledge sharing in a privacy preserving way.

Experimental Results

Cancer Dataset. Figure 3a shows the predictive performance averaged across
all the hospitals as a function of privacy parameter ε on the Cancer dataset.
Randomly selected 70 % data from each hospital is used for training and the
rest for test. The experiment is performed 50 times and the average performance
is reported along with respective standard error. As seen from the figure, the
highest average Area Under the ROC Curve (AUC) over all the hospitals is
achieved by the Private-MTL across the range of privacy parameter (ε) tested.
Even at a stringent privacy requirement of ε = 0.05, Private-MTL achieves
∼ 5% higher AUC than the NonPrivate-STL. This indicates that the hospitals
benefit by collaboration than building tools independently. This is significant
since collaborating privately introduces noise in the estimation, yet improvement
in prediction is achieved. Private-STL may not be a suitable benchmark as we
may assume that learning independently at each hospital does not require the
use of privacy preserving algorithms. However, it is still a useful comparator
to illustrate the absolute gain achieved just because of multi-task learning. At
ε = 0.05, the improvement achieved by the multi-task learning is more than 30 %
over the Private-STL. As expected, the performance by both the Private-STL
and Private-MTL improves with increasing ε (decreasing privacy requirement),
however, the benefits obtained by using multi-task learning remains significant.
Further, the performance of Private-MTL almost reaches the performance of
Non-Private MTL. MDP-AC performs lower but somewhat closer to the Private-
STL. As the data is originally from a single source averaging the weight vectors
had the potential to work. However, the amount of noise is computed based on
the smallest sized hospital. This has resulted in a higher noise, leading to a poor
performance.

In the Cancer dataset, we have one large, one medium and three small sized
hospitals. Table 1 shows the performance by different algorithms at different
hospitals at ε = 0.1. We compare the performance between Private-MTL over
the NonPrivate-STL. We see that the gain in performance by the Private-MTL
is more for medium and small sized hospitals (average gain = 4.5 %) than the
large hospital (gain = 1.5 %). This shows the higher need of multi-task learning
for medium/smaller sized hospitals.

Figure 3b shows the use of attribute-wise privacy for the cancer dataset.
Figure 4 shows the histogram of attribute-wise entropy across all the 5 hospitals.
It clearly shows that there are many features which have low entropy. Figure 3b
shows the predictive performance as a function of the attribute-wise privacy
scale parameter κf when the global privacy parameter is set at ε0 = 0.1. Average
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Fig. 3. (a) Average AUC of prediction on Cancer dataset as a function of the privacy
parameter ε, and (b) average AUC of prediction on Cancer dataset as a function of
the attribute-wise privacy parameter κf when ε0 = 0.1. For both average performance
is reported over 50 random training/test splits (std. errors shown as error-bars).

Fig. 4. Histogram of entropy across features over all the tasks (hospitals).

Table 1. Average AUC of prediction on Cancer dataset at different hospitals; a large
hospital (LH) with 3000 patients, a medium sized hospital (MH) with 600 patients and
three small hospitals (SH1-3) with 200 patients each at ε = 0.1. Performance is averaged
over 50 random training/test splits. Standard errors are reported in parenthesis.

AUC (std err)

LH MH SH1 SH2 SH3

NonPrivate-STL (R1) 0.800 (0.002) 0.683 (0.005) 0.750 (0.011) 0.713 (0.012) 0.612 (0.014)

Private-STL (R2) 0.791 (0.003) 0.632 (0.008) 0.576 (0.020) 0.573 (0.015) 0.527 (0.018)

Private-MTL (R3) 0.815 (0.002) 0.735 (0.005) 0.787 (0.011) 0.777 (0.010) 0.657 (0.013)

Δ(R3 − R1) 0.015 0.052 0.037 0.0.064 0.045

performance from 50 random splits of 70 % data for training and the rest for test
is reported. The plot shows that AUC improves considerably with increasing κf .
Private-MTL gains further 2.5 % in AUC at κf = 4.

Multi-user Spam Dataset. Figure 5a shows the average comparative predictive
performance in terms of AUC on Spam dataset as a function of the privacy
parameter ε. For each user, 70 % of the data is randomly selected for training
and the rest for test. The average performance over 50 such splits are shown. As
seen from the plot, the performance by all three privacy preserving algorithms
are much worse than NonPrivate-STL at the stringent privacy requirement of
ε = 0.05. However, they improved as the privacy requirement is lowered (ε
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is increased). Private-MTL starts to become better at ε ≥ 0.2, almost reaching
up to NonPrivate-MTL. It implies that building spam filters collaboratively may
perform better on average below a certain privacy restriction. This is a common
phenomenon one will encounter while designing privacy preserving algorithms.
Figure 5b shows the corresponding performance when ε0 = 0.1 and the attribute-
wise privacy parameter κf is varied. As expected, the performance improves
when the attribute-wise anisotropic noise is introduced.

Fig. 5. Average AUC achieved by various algorithms on the Spam dataset: (a) as a
function of privacy parameter ε, and (b) as a function of attribute-wise privacy scale
parameter κf when ε0 = 0.1. The results are averaged over 50 random training-test
splits. Standard errors are shown as error bars.

5 Conclusion

We propose a novel multi-task learning model that preserves privacy of individu-
als at participating tasks under differential privacy. To lift the model’s utility, we
develop a novel attribute-wise noise addition scheme that adds anisotropic noise
calibrated according to uncertainty of the attributes leading to reduced noise.
Comparing with the state-of-art baselines on two real world datasets we demon-
strate the effectiveness of our approach. In future, we will continue exploring
connections between multi-task learning and privacy by extending differentially
private random forest [17] to multi-task learning or extending model-agnostic
multi-task learning [18] to a privacy-preserving variant.
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4. Traub, J.F., Yemini, Y., Woźniakowski, H.: The statistical security of a statistical
database. TODS 9(4), 672–679 (1984)



Differentially Private Multi-task Learning 113

5. Dinur, I., Nissim, K.: Revealing information while preserving privacy. In: PODS,
pp. 202–210. ACM (2003)

6. Ganta, S., Kasiviswanathan, S., Smith, A.: Composition attacks and auxiliary
information in data privacy. In: SIGKDD, pp. 265–273. ACM (2008)

7. Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in
private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876,
pp. 265–284. Springer, Heidelberg (2006)

8. Vaidya, J., Clifton, C.W., Zhu, Y.M.: Privacy Preserving Data Mining, vol. 19.
Springer Science & Business Media, New York (2006)

9. Chaudhuri, K., Monteleoni, C., Sarwate, A.D.: Differentially private empirical risk
minimization. J. Mach. Learn. Res. 12, 1069–1109 (2011)

10. Argyriou, A., Evgeniou, T., Pontil, M.: Convex multi-task feature learning. Mach.
Learn. 73(3), 243–272 (2008)

11. Saha, B., Gupta, S., Phung, D., Venkatesh, S.: Multiple task transfer learning with
small sample sizes. In: Knowledge and Information Systems, pp. 1–28 (2015)

12. Zhang, Y., Yeung, D.-Y.: A convex formulation for learning task relationships in
multi-task learning. In: Uncertainty in Artificial Intelligence, pp. 733–442 (2010)

13. Mathew, G., Obradovic, Z.: Distributed privacy preserving decision support system
for predicting hospitalization risk in hospitals with insufficient data. In: ICMLA,
vol. 2, pp. 178–183 (2012)

14. Pathak, M., Rane, S., Raj, B.: Multiparty differential privacy via aggregation of
locally trained classifiers. In: NIPS, pp. 1876–1884 (2010)

15. Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Sim-
ulation, and Control, vol. 65. Wiley, Hoboken (2005)

16. Tran, T., Luo, W., Phung, D., Gupta, S., Rana, S., Kennedy, R.L., Larkins, A.,
Venkatesh, S.: A framework for feature extraction from hospital medical data with
applications in risk prediction. BMC Bioinform. 15(1), 6596 (2014)

17. Rana, S., Gupta, S., Venkatesh, S.: Differentially-private random forest with high
utility. In: ICDM, pp. 955–960. IEEE, Atlantic City (2015)

18. Gupta, S., Rana, S., Saha, B., Phung, D., Venkatesh, S.: A new transfer learning
framework with application to model-agnostic multi-task learning. In: KAIS (2015)


	Differentially Private Multi-task Learning
	1 Introduction
	2 Preliminaries
	3 Privacy Preserving MTL
	4 Experiments
	4.1 Experimental Setup
	4.2 Experiments with Synthetic Dataset
	4.3 Experiments with Real Dataset

	5 Conclusion
	References


