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Abstract. In this paper, we revisit the simple probabilistic approach of
unsupervised anomaly detection by estimating multivariate probability
as a product of univariate probabilities, assuming attributes are gener-
ated independently. We show that this simple traditional approach per-
forms competitively to or better than five state-of-the-art unsupervised
anomaly detection methods across a wide range of data sets from cat-
egorical, numeric or mixed domains. It is arguably the fastest anomaly
detector. It is one order of magnitude faster than the fastest state-of-
the-art method in high dimensional data sets.
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1 Introduction

Let database D be a collection of n data instances (x1,x2, · · · ,xn). Each instance
x is a m-dimensional vector 〈x1, x2, · · · , xm〉 where each component is either
a numeric attribute xi ∈ R (R is a real domain) or a categorical attribute
xi ∈ {vi1 , · · · , viw} (where vij is a label out of w possible labels for attribute xi).
The problem of anomaly detection is to identify anomalous instances which are
significantly different from the majority of instances in the database.

In the literature, anomaly detection has two main approaches [1]: (i) the
supervised approach classifies an instance in either anomaly or normal class by
using a classification model trained on a labelled training set; (ii) the unsuper-
vised approach trains an anomaly detector from unlabelled training data, and
identifies anomalies based on their anomaly scores. In many real-world appli-
cations, labelled training data are difficult to obtain; and thus anomalies have
to be identified using an unsupervised approach. In this paper, we focus on the
unsupervised approach to anomaly detection.
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As databases are currently growing rapidly in terms of volume and dimen-
sionality, identifying anomalous patterns in massive databases is a challenging
task. Traditional distance or density based unsupervised methods using nearest
neighbours such as kNN [2] and LOF [3] are not applicable in large databases
because of their high time complexity in the order of O(n2m). Recently, sim-
pler and more efficient methods such as iForest [4] and the nearest neighbour
in a small subsamples (Sp) [5] are proposed for numeric domains. In categor-
ical domains, anomaly detection methods have been largely based on frequent
patterns (e.g., FPOF [6] and COMPREX [7]) which do not scale up to high
dimensionality and large data size.

In probabilistic approach, instances in low density region are considered as
anomalies, i.e., anomalies have a low probability to be generated from the dis-
tribution of normal instances. The simplest efficient probabilistic approach of
estimating multivariate probability as the product of univariate probabilities has
been used for anomaly detection in some domains [1,8]. The intuition behind
this Simple univariate Probabilistic Anomaly Detector (we call it SPAD) is that
an anomalous instance is significantly different from normal instances in a few
attributes where it has low probability.

Despite its simplicity, effectiveness and efficiency, SPAD is not considered as
a benchmark to compare the performance of recently proposed efficient unsu-
pervised anomaly detectors [4–7]. They are shown to run orders of magnitude
faster than traditional kNN based methods and produce better or competitive
detection accuracy. But, it is not clear if they are more effective and efficient
than the simplest traditional probabilistic method SPAD.

In this paper, we show that SPAD performs competitively to or better than
all the state-of-the-art anomaly detection methods mentioned above in a wide
range of 25 data sets from categorical only, numeric only, and mixed domains. It
runs one order of magnitude faster than the simplest nearest neighbour anomaly
detector Sp [5] in data sets with high dimensionality. In categorical domains,
it runs up to five orders of magnitude faster than the existing state-of-the-art
categorical based methods [6,7].

The rest of the paper is organised as follows. SPAD and five widely used
state-of-the-art anomaly detection methods are discussed in Sect. 2, followed
by experimental evaluations in Sect. 3. The parametrized version of SPAD is
described in Sect. 4, and the conclusions are provided in the last section.

2 Related Work

In this section, we review six unsupervised anomaly detectors including five
widely used state-of-the-art anomaly detection methods and SPAD. The first
three are designed primarily for numeric domains and the last three are mainly
for categorical domains. The pertinent details of these methods are described in
the following six subsections.
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2.1 Local Outlier Factor (LOF)

Breunig et al. (2000) [3] proposed a method based on relative density of an
instance with respect to its k-neighbourhood. Let Nk(x) be the set of k-nearest
neighbours of x, d(x,y) be the distance between x and y and dk(x,D) is the
distance between x and its kth-NN in D. The anomaly score of x is defined as
follows:

slof (x) =

∑

y∈Nk(x)

lrd(y)

|Nk(x)| × lrd(x)
(1)

where lrd(x) = |Nk(x)|∑
y∈Nk(x) max(dk(y,D),d(x,y))

.

It requires a distance measure to compute all pairwise distances between
instances in D. Euclidean distance

(
deuc(x,y) =

√∑m
a=1(xa − ya)2

)
is the most

widely used distance measure. In the case of categorical attribute a, xa − ya = 0
if xa = ya; and 1 otherwise. An alternative measure in categorical domains
advocated by Boriah et al. [9] is Occurrence Frequency (OF): dof (x,y) =
1
m

∑m
a=1(xa−ya) where xa−ya = 0 if xa = ya; and xa−ya = log n

f(xa)
×log n

f(ya)

otherwise; where f(xa) is the frequency of the categorical label xa in D.

2.2 Isolation Forest (iForest)

Instead of density, iForest [4] employs an isolation mechanism to isolate every
instance in the given training set. This is done efficiently by random axis-parallel
partitioning of the data space in a tree structure until every instance is isolated.
A set of t trees is constructed, each tree Ti is built using a subsample randomly
selected from D. The anomaly score of an instance x is measured as the average
path length over t trees as follows:

siforest(x) =
1
t

t∑

i=1

�i(x) (2)

where �i(x) is the path length of x in tree Ti.
The intuition is that anomalies are more susceptible to isolation. Isolation

using trees yields that anomalies have shorter average path lengths than normal
instances. iForest is designed for numeric domains only. In this paper, we show
that it can be effective in categorical and mixed domains as well, by simply
converting each categorical label into a binary {0, 1} attributes and treating
them as numeric attributes (see the empirical evaluation in Sect. 3).

2.3 Sampling (Sp)

Instead of searching k-nearest neighbour in D, Sugiyama and Borgwardt (2013)
[5] proposed to search the nearest neighbour (i.e., k = 1) in a small random
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subsample D ⊂ D to detect anomalies. The anomaly score is the distance to the
nearest neighbour in D, defined as follows:

ssp(x) = min
y∈D

d(x,y) (3)

They have shown that the method called Sp with a very small subsample
(ψ = 20) performs better than or competitive to LOF; but it runs several orders
of magnitude faster. In [5], Sp is used only in numeric domains with the euclidean
distance. In this paper, we evaluated Sp in categorical and mixed domains as
well with the euclidean and Occurrence Frequency (OF) distance measures [9].

2.4 Frequent Pattern Outlier Factor (FPOF)

He et al. (2005) [6] proposed an anomaly detection method for categorical
domains based on frequent patterns. It uses Apriori algorithm [10] to gener-
ate frequent itemsets of maximum size η with minimum support threshold δ in
D, denoted as FPS(D, η, δ). The score of an instance x is estimated as follows:

sfpof (x) =

∑

z⊆x ∧ z∈FPS(D,η,δ)

support(z)

|FPS(D, η, δ)| (4)

where z is a frequent itemset, z ⊆ x denotes that z is contained in x, and
support(z) is the support of z.

The intuition of Eq. 4 is that x is more likely to be an anomaly if it has a
few or none of the frequent itemsets, i.e., the lower the score, the more likely x
is an anomaly.

2.5 Pattern Based Compression Technique (COMPREX)

Recently, Akoglu et al. (2012) proposed a pattern-based compression technique
called COMPREX for anomaly detection in categorical data [7]. It builds a
collection of dictionaries (code tables) CT1, CT2, · · · , CTk which are learnt from
data using disjoint subsets of highly correlated features based on information
gain. The anomaly score of x is defined as the cost of encoding x using the code
tables.

scmprx(x) =
∑

F∈P

∑

p⊆πF (x)

L(code(p)|CTF ) (5)

where P = {F1, F2, · · · , Fk} is a set of disjoint partitions of the feature set, p
is a pattern, πF (x) is a projection of x into feature subset F , code(p) is a code
word corresponding to p and L(·) is the length of a code word.

The intuition is that the higher the cost of encoding x, the more likely it
is to be an anomaly. Even though it produces better detection accuracy than
other categorical methods, it is limited to low dimensional data sets because of
its high time complexity.
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2.6 Simple Probabilistic Method (SPAD)

In probabilistic approach, instance x is an anomaly if the probability of x, P (x),
is low. An estimate of P (x) requires a large amount of data (even in a moderate
number of dimensions) which is usually infeasible in many applications. Assum-
ing the attributes are independent of each other (e.g. naive Bayes [11]), it can
be decomposed as:

P̂ (x) =
m∏

i=1

P̂ (xi) (6)

The one-dimensional P̂ (xi) can be estimated from D using the Laplace-
corrected estimate as: P̂ (xi) = f(xi)+1

n+wi
, where f(xi) is the occurrence frequency

of xi in D, and wi is the number of possible values of xi. The same estimation can
be used in numeric domains by converting numeric attributes into categorical
attributes through discretisation1.

In order to avoid floating point overflow, instances are ranked using logarithm
of P (x) in Eq. 6, effectively using the summation of the logarithm of univariate
probabilities P (xi) as:

sspad(x) =
m∑

i=1

log P̂ (xi) (7)

Instances are ranked in ascending order based on their probabilities —
instances having low probability, which are ranked at the top, are likely to be
anomalies. Note that SPAD is parameter-free, like COMPREX. Goldstein and
Dengel (2012) used a similar score as defined in Eq. 7, though they have called
it a histogram-based method and evaluated it using three numeric data sets
only [8].

Compared with the commonly used frequent pattern based approach, SPAD
shares two common features: they are all based on categorical domains and
employ probability or frequency as the basis for detecting anomalies. Yet, SPAD
is significantly simpler and requires no search; whereas the frequent pattern
approach requires an expensive search.

SPAD is scalable to both high dimension and large data sets as it just needs
to store the frequency count of every categorical label which can be done in a
single pass of data in O(nm) time and requires O(mw) space (where w is the
average number of labels in each dimension). Having constructed the frequency
count table (in a preprocessing step), calculating the score of an instance just
needs a table look-up which costs O(m). Hence, the total runtime complexity
of ranking n instances is O(nm) which is cheaper than iForest (if m < t log2 ψ
which is generally the case unless the dimensionality of the data is very high in
the order of thousands); and it is ψ times faster than Sp.

The time and space complexities of the above six anomaly detectors are
presented in Table 1.

1 Though P̂ (·) can be estimated directly in numeric domains, it is a lot easier and
faster to do it in categorical domains.
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Table 1. Time and space complexities

Anomaly detector Time complexity Space complexity

LOF O(n2m) O(nm)

iForest O(nt log2 ψ) O(tψ)

Sp O(nmψ) O(mψ)

FPOF O(n2m) O(2m)

COMPREX O(nm2) O(m2)

SPAD O(nm) O(mw)

w: The average number of categorical labels in each dimen-
sion.

3 Empirical Evaluation

In this section, we present the evaluation results of the six anomaly detection
methods discussed in Sect. 2: LOF-L2 (LOF using the euclidean distance), LOF-
OF (LOF using the occurrence frequency based distance), iForest, Sp-L2 (Sp
with the euclidean distance), Sp-OF (Sp with the occurrence frequency based
distance), FPOF, COMPREX and SPAD.

We used 25 benchmark data sets from UCI machine learning data repository
[12] with categorical only, numeric only and mixed attributes. The data sets were
from different domains ranging from health and medicine, text, email filtering to
digit recognition. Many of the data sets used were from classification problems.
We converted them to anomaly detection problems by considering some larger
classes (1 or more) as normal and some smaller classes (1 or more) as anomalies.
In the case where classes were more or less uniformly distributed, anomalies were
random samples from classes which are not used as normal. They have different
data characteristics in terms of data size (366 ≤ n ≤ 5 million), dimensionality
(5 ≤ m ≤ 4670) and anomaly proportion (0.5% ≤ p ≤ 35%). The characteristics
of data sets used are given in Table 2.

Some preprocessing is required for some algorithms. For iForest which can
handle numeric attributes only, each categorical label was converted into a binary
attribute [13] (where 0 represents the absence of the label and 1 represents
the presence); and all converted binary attributes are treated as numeric. For
algorithms that can handle categorical attributes only, numeric attributes were
converted into categorical using a modified version of equal width bins which
divides the range [μj − 3σj , μj + 3σj ] into b equal width bins (where μj and σj

are the mean and standard deviation of data values in dimension j). This version
is used to reduce the distortion due to outliers. This discretisation technique
with b = 5 was used to discretise numeric attributes for all categorical methods:
SPAD, LOF-OF, Sp-OF, FPOF and COMPREX.

Parameters in all the algorithms were set to the suggested values in respective
papers. For LOF, k was set to a commonly used value of 10 [3,5]. The parameter
ψ in Sp was set to 20 as suggested in [5]. Parameters η and δ in FPOF were set
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Table 2. Characteristics of data sets. n: data size, m: # attributes, mnum: # numeric
attributes, mcat: # categorical attributes

Name n m mnum mcat anomaly %

Chess 4580 6 0 6 0.5

Nursery 4648 8 0 8 7

Solar 1066 9 0 9 1

Mushroom 4429 22 0 22 5

Dermatology 366 33 0 33 5.5

Reuters 4297 4134 0 4134 9

Newsgroup 5668 4670 0 4670 14

Advertise 3279 1558 3 1555 14

Arrhythmia 452 279 206 73 14.5

Kddcup99 64759 41 34 7 6.5

U2r 60821 41 34 7 0.5

Census 299285 40 7 33 6

Hypothyroid 3772 29 7 22 7.5

Sick 3772 27 6 21 6

Annthyroid 7200 21 6 15 7.5

Lymph 148 18 3 15 4

Covertype 287128 12 10 2 1

Linkage 5749132 7 2 5 0.5

Breastw 683 9 9 0 35

Spambase 2964 57 57 0 6

Mnist 20444 96 96 0 3.5

Har 7032 561 561 0 20

Secom 1567 590 590 0 6

Isolete 730 617 617 0 1.5

Mfeat 410 649 649 0 2.5

to 5 and 0.1, respectively, as suggested in [6]. Parameters t = 100 and ψ = 256
were used in iForest, as suggested in [4].

All the algorithms were implemented in JAVA using the WEKA [13] platform,
except COMPREX for which we used the MATLAB implementation provided
by the authors [7]2. All the experiments were conducted in a Linux machine with
2.27 GHz processor and 8 GB memory.

We used area under the receiver operating curve (AUC) as the measure of
anomaly detection performance. AUC = 1 if all the anomalies are at the top of
the ranked list; and a randomly ranked list will yield AUC = 0.5. We conducted
2 http://www3.cs.stonybrook.edu/∼leman/pubs.html.

http://www3.cs.stonybrook.edu/~leman/pubs.html
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10 runs for each of the randomised methods: iForest, Sp-L2 and Sp-OF; and
reported the average AUC (and time). A significance test was conducted using
confidence interval based on two standard errors over 10 runs. A win or loss
between two algorithms is counted only if the difference is significant; otherwise
it is a draw.

The AUC of all methods in the 25 data sets is provided in Table 3. Note
that FPOF and COMPREX did not complete in data sets with high number of
dimensions and/or large data size in 24 h.

The overall performance is summarised using the average rank, shown in the
bottom three rows in Table 3. SPAD is the best method having an average rank
of 1.8; and the closest contenders are COMPREX which has a rank of 2.3 (based
on the result of 15 data sets only), and iForest which has a rank of 2.9.

In the last row of Table 3, the pairwise win:loss:draw (w:l:d) counts of con-
tenders against SPAD clearly shows that LOF-L2, LOF-OF, FPOF, iForest,
Sp-L2 and Sp-OF produced significantly worse AUC than SPAD (i.e., they have
more losses than wins). COMPREX produced competitive detection accuracy
in comparison with SPAD, where they have the same number of wins and losses
on 15 data sets in which COMPREX completed.

SPAD produced the best (or equivalent to the best) AUC in 13 data sets
followed by iForest (7), COMPREX (5), Sp-OF (3), Sp-L2 (2), FPOF (2), LOF-
L2 (1) and LOF-OF (0). Note that SPAD is one of the top three performers in
almost every data set we have used, shown in the second last row in Table 3.
The only exception is Mnist, where SPAD is the fourth best performer. The two
closest contenders are iForest and COMPREX which are one of the top three
performers in 17 out of 25 data sets and 11 out of 15 data sets, respectively.

The total runtime, including preprocessing (discretisation or nominal to
binary conversion), model building (if required), ranking n instances and com-
puting AUC, is provided in Table 4. Note that the direct comparison of the
runtime of COMPREX with other methods is not fair as it was implemented in
MATLAB and others were implemented in JAVA. It is included in the table to
provide an idea about its runtime.

SPAD was faster than all the contenders in all data sets, except in a few
small data sets where it ran slight slower than Sp. Note that SPAD ran one
order of magnitude faster than its closest contender Sp and iForest in the two
highest dimensional data sets (Reuters and Newsgroup) which have more than
4000 attributes; and SPAD ran one to five orders of magnitude faster than LOF,
FPOF and COMPREX in all data sets. The only exception is Lymph, compared
with LOF-L2. Note that the runtime of LOF-L2 presented here are without
using indexing scheme to expedite the k nearest neighbour search [2,14,15]. We
did not use indexing because they are not effective as the number of dimensions
increases and they do not work with non-metric distance such as OF.

It is interesting to note the longest time a method took in all these data sets:
SPAD took less than 20 s to complete in Linkage, the largest data set having more
than 5 million instances. Sp and iForest took about 50 s and 256 s, respectively,
in the same data set. Ignoring the data sets in which they could not complete
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Table 3. Anomaly detection performance (AUC). The average rank, the number of
data sets on which a method is among the top three performers, and win:loss:draw
(w:l:d) counts of a method against SPAD are included in the last three rows.

Data set LOF-L2 LOF-OF FPOF CMPRX iForest Sp-L2 Sp-OF SPAD

Chess 0.890 0.730 0.912 0.995 0.945 0.707 0.901 0.994

Nursery 0.446 0.365 1.000 1.000 1.000 0.759 0.480 1.000

Solar 0.588 0.651 0.979 0.968 0.943 0.801 0.855 ∗0.980
Mushroom 0.371 0.709 0.922 0.987 0.907 0.892 0.892 0.936

Dermatology 0.884 0.418 0.641 0.810 0.726 0.638 0.397 0.727

Reuters 0.793 0.684 ◦ • 0.861 0.865 0.802 ∗0.883
Newsgroup 0.670 0.289 ◦ • 0.684 0.708 0.635 ∗0.735
Advertise 0.597 0.547 ◦ • 0.689 0.710 0.673 0.704

Arrhythmia 0.729 0.798 ◦ • 0.803 0.755 0.771 ∗0.813
Kddcup99 0.553 0.804 0.997 0.943 0.998 0.925 0.920 0.996

U2r 0.626 0.799 • 0.968 0.986 0.985 0.943 ∗0.990
Census • • • • 0.623 0.627 0.724 0.676

Hypothyroid 0.603 0.541 0.631 0.688 0.562 0.509 0.616 0.667

Sick 0.596 0.490 0.564 0.621 0.523 0.471 0.641 0.602

Annthyroid 0.669 0.599 0.688 0.696 0.632 0.503 0.603 ∗0.697
Lymph 0.994 0.953 0.979 0.996 0.995 0.847 0.833 ∗0.997
Covertype 0.520 0.479 0.838 • 0.977 0.930 0.925 0.974

Linkage • • 0.910 0.972 1.000 0.998 0.898 0.993

Breastw 0.435 0.822 0.991 0.990 0.987 0.952 0.971 0.990

Spambase 0.653 0.649 ◦ 0.787 0.785 0.658 0.717 0.770

Mnist 0.801 0.706 0.635 0.799 0.835 0.807 0.798 0.799

Har 0.318 0.998 ◦ • 0.988 0.922 0.996 ∗1.000
Secom 0.533 0.553 ◦ • 0.537 0.534 0.548 ∗0.562
Isolete 0.835 0.983 ◦ • 1.000 1.000 1.000 1.000

Mfeat 0.755 0.722 ◦ • 0.947 0.834 0.848 0.938

Avg. Rank 5.2 5.7 3.6 2.3 2.9 4.4 4.3 1.8

#Top3 3/23 3/23 7/14 11/15 17/25 10/25 7/25 24/25

w:l:d 2:21:0 0:23:0 2:11:1 6:6:3 5:16:4 2:21:2 2:21:2 –

Bold face: The best or equivalent to the best AUC.
∗: Significantly better detection performance of SPAD over all other contenders.
•: Did not complete in 24 h.
◦: Did not complete due to insufficient memory with 8 GB.
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Table 4. Total runtime (in seconds).

Data set LOF-L2 LOF-OF FPOF CMPRX iForest Sp-L2 Sp-OF SPAD

Chess 5.14 14.69 0.49 148.61 0.59 0.12 0.24 0.13

Nursery 3.23 15.29 0.52 54.15 0.51 0.12 0.21 0.10

Solar 0.24 0.51 0.35 20.20 0.40 0.07 0.12 0.04

Mushroom 5.07 16.07 100.79 363.59 0.56 0.14 0.30 0.08

Dermatology 0.33 0.48 1848.42 128.62 0.66 0.05 0.06 0.03

Reuters 2198.30 1879.72 ◦ • 49.85 11.11 19.75 2.25

Newsgroup 5520.84 5126.25 ◦ • 76.33 31.68 43.98 5.26

Advertise 193.66 177.44 ◦ • 2.03 1.53 2.06 0.93

Arrhythmia 1.35 3.56 ◦ • 0.73 0.07 0.25 0.19

Kddcup99 3527.47 2419.10 79488.06 6272.76 4.47 1.10 1.91 0.86

U2r 1448.58 1987.84 • 4342.38 4.34 1.02 1.71 0.85

Census • • • • 25.84 5.60 13.29 3.40

Hypothyroid 9.57 15.93 1536.38 297.69 0.73 0.14 0.27 0.17

Sick 4.56 8.60 1076.37 149.14 0.66 0.14 0.26 0.15

Annthyroid 20.00 34.86 167.05 204.02 0.73 0.16 0.31 0.14

Lymph 0.08 0.24 1.79 28.03 0.21 0.02 0.03 0.02

Covertype 40586.59 85501.06 14.23 • 15.03 1.71 6.34 2.22

Linkage • • 137.87 43976.78 255.80 19.76 49.11 17.58

Breastw 0.54 0.72 0.37 28.45 0.39 0.03 0.07 0.09

Spambase 3.94 8.48 ◦ 950.53 0.66 0.12 0.34 0.13

Mnist 366.48 2964.48 6072.35 13174.59 2.00 0.65 3.20 0.65

Har 398.22 1383.15 ◦ • 1.39 1.30 4.52 0.78

Secom 10.16 42.24 ◦ • 1.03 0.36 1.40 0.26

Isolete 4.61 22.90 ◦ • 1.25 0.18 0.90 0.14

Mfeat 1.75 7.33 ◦ • 1.33 0.11 0.55 0.12

Avg. Rank 5.0 5.8 5.9 7.0 4.1 1.6 2.8 1.4

Bold face: The best or equivalent to the best AUC.

∗: Significantly better detection performance of SPAD over all other contenders.

•: Did not complete in 24 h or 86400 s.

◦: Did not complete due to insufficient memory with 8 GB.

in the experiments, LOF took the longest, close to one day, in Covertype which
has less than 300000 instances; COMPREX took about half a day in Linkage;
and FPOF took about 22 h in Kddcup99 which has 41 attributes and less than
65000 instances. Note also that COMPREX and FPOF would take more than a
day to complete even for small data sets such as Isolete, Mfeat and Arrhythmia
which have less than 1000 instances and 700 attributes.
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4 Detecting Anomalies Which Rely on Multiple
Attributes

Despite its strong assumption of attribute independence, SPAD produced supe-
rior performance than other state-of-the-art anomaly detectors in many data
sets. But, it has a limitation in detecting anomalies which rely on multiple
attributes as it does not capture the relationship between attributes. An exam-
ple is shown in Fig. 1 where anomalies are not different from normal instances
in any single attribute; but they exhibit outlierness only if both attributes are
examined.

Fig. 1. An example where SPAD fails.

In order to handle such a situation, we propose a parametrized model called
SPADr, in which data in the original m-dimensional space X are embedded into
a new s-dimensional space Z. Each dimension (or attribute) in Z is a product
set of r dimensions (or attributes) in X . The instances can be ranked using Eq. 7
in the new space Z. In the new space, we are able to inspect data distribution
along various combinations of the original attributes to identify those outliers
which are otherwise difficult to identify.

To guarantee that all possible r attributes are represented in Z, a set S of(
m
r

)
combinations is required, which is intractable even for moderate values of m

and r. Instead, we randomly generate a subset of attribute combinations S ⊂ S
(|S| = s � (

m
r

)
) as follows: A random order of m attributes (in X ) is generated.

Then m sets of new attributes are formed from the ordered attributes through
a moving window of size r (the attributes ordering is considered as a circular
sequence). As an example, for r = 2 and a random ordering [x3, x1, x2] of three
attributes in X , three new attributes (z1, z2, z3) are formed as [(x3∧x1), (x1∧x2),
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(x2∧x3)]. The above is repeated t times to produce s = mt new attributes, where
t is chosen such that s � (

m
r

)
. Note that the simplest version with r = 1 and

t = 1 is the SPAD used in Sect. 3.
SPADr has the advantage that the size of S is linear in t and m; and each

attribute is used exactly r times. The time complexity for SPADr is O(nmtr)
and the space complexity is O(mtwr) since each attribute in Z has wr labels.

If anomaly x relies on r attributes to be identified, and as long as one of
the attributes in Z represents the r attributes in X , then it can be detected by
SPADr because it has low probability in that particular attribute in Z.

In a data set, the appropriate setting of r in SPADr depends on the number
of attributes required to detect anomalies. Figure 2 shows three examples where
r = 1 is enough in Sick; r = 10 is required in Mushroom; and r = 5 is the best
in Mfeat. Though we have used t = 1 in these examples, we found that in some
cases, t > 1 can further improve the AUC of SPADr.

Fig. 2. AUC of SPADr w.r.t r (t = 1) (The curve of Sick is using the right y-axis)
(Color figure online).

One can see some similarity of SPADr with subspace anomaly detection
methods such as HICS [16]. The fundamental difference is that SPADr avoids
the expensive search in HICS to find subspaces by considering random subspaces;
and SPADr runs significantly faster than those complex subspace search based
methods.

5 Conclusions

We show that the simple parameter-free anomaly detection method based on uni-
variate probabilities is the fastest method and works as effective as, if not better
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than, five state-of-the-art anomaly detection methods. Its anomaly detection per-
formance is consistent across different domains – categorical only, numeric only
and mixed domains. It is the method of choice in big data and data streams, as
far as we know.

The parametrized version can be used to further improve the detection perfor-
mance of the parameter-free version in data sets where the detection of anomalies
relies on multiple attributes.
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