
k-NN Classification of Malware in HTTPS
Traffic Using the Metric Space Approach

Jakub Lokoč1, Jan Kohout2, Přemysl Čech1(B), Tomáš Skopal1,
and Tomáš Pevný2

1 SIRET Research Group, Department of Software Engineering, Faculty
of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic

{okoc,cech,skopal}@ksi.mff.cuni.cz
2 Department of Computer Science and Engineering, FEE, Czech Technical

University in Prague, Cisco Systems, Inc., Cognitive Research Center in Prague,
Prague, Czech Republic

{jkohout,tpevny}@cisco.com

Abstract. In this paper, we present detection of malware in HTTPS
traffic using k-NN classification. We focus on the metric space approach
for approximate k-NN searches over dataset of sparse high-dimensional
descriptors of network traffic. We show the classification based on approx-
imate k-NN search using metric index exhibits false positive rate reduced
by an order of magnitude when compared to the state of the art method,
while keeping the classification fast enough.

Keywords: Similarity search · k-NN classification · Intrusion detection

1 Introduction

Network Intrusion Detection Systems (NIDS) are presently an essential tool
in detecting intrusions in computer networks, infected computers within, and
other types of unwanted behaviour (e.g. exfiltration of company’s sensitive data,
using peer to peer networks, etc.). Traditionally, these systems have relied on
the signature matching paradigm, which identifies known sequences of bytes
(signatures) in packets unique for a particular virus, trojan, or other threat,
which we further refer to as a malware. The advantage of signature matching
is very low false alarm rate, however, malware nowadays implements plethora
of evasion techniques such as polymorphism and encryption to randomize byte
sequences rendering signature matching ineffective.

While randomizing byte sequences is relatively simple, randomizing behav-
iour is conceptually significantly more difficult problem. For example if the
attacker wants to steal data from a computer, he needs to transfer them over the
network. Similarly if he wants to know, if infected computers are still infected,
they need to contact attacker’s computer. Behaviour based NIDS detects such
actions that are specific to malware activity, by using higher-level features of
the traffic, such as the number of connections to different hosts during some
c© Springer International Publishing Switzerland 2016
M. Chau et al. (Eds.): PAISI 2016, LNCS 9650, pp. 131–145, 2016.
DOI: 10.1007/978-3-319-31863-9 10

132 J. Lokoč et al.

period of time, number of transferred bytes between two computers, etc. The
drawback of behaviour based NIDS is higher false alarm rate, but the recall
can be higher due to robustness with respect to simple randomization of byte
sequences. The other advantage of relying on higher-level features is that they
are exported by most network devices (switches, routers, HTTP proxies), which
increases the visibility into the network (there are more collection points), and
simplifies deployment as no adaptation of devices is needed.

This paper focuses on detecting secure HTTP (HTTPS) connections related
to a malware activity, which is a pressing problem due to the generally grow-
ing volume of HTTPS traffic on the Internet (accelerated by Snowden’s affair)
and increasing adoption of HTTPS protocol by malware for its primary mean
of communication. Information about HTTPS connections are effectively lim-
ited to the number of uploaded and downloaded bytes and a duration of the
connection, which makes the classification of HTTPS connections particularly
difficult. Nevertheless the prior art [13,14] has presented a statistical fingerprint
of servers based on modelling joint distribution of properties of all connections
to it. It has been demonstrated that they are usable for detecting malware and
grouping servers with similar purpose.

In this paper we built upon these fingerprints, as features they rely on can
be extracted from HTTPS connections. We show that (i) albeit the large dimen-
sion of fingerprints (14641), the problem of separating malware connections from
legitimate is not linearly separable; (ii) a simple nearest neighbour based detec-
tor have order of magnitude better false alarm rate than the linear detector at
the same recall; (iii) since we use large number of labeled data, the presented
results estimate well the accuracy the representation of fingerprints can offer;
(iv) we demonstrate that modern indexing structures allow to implement oth-
erwise costly nearest-neighbour based detector efficiently, such that it become
competitive to the linear classifier, particularly if its better false alarm rate is
taken into the account.

2 Challenges in Detection of Malware Using HTTPS

The web proxy logs have become a widely used source of input data for the
network intrusion detection systems because they provide relatively lightweight
information about network that can be processed in high volumes to detect sus-
picious communication. However, the increasing usage of encrypted web commu-
nication via the HTTPS protocol hardens such detection or any traffic analysis
at all. The creators of malware are aware of this fact which leads them to design
the malware to use the encrypted communication as well. A commonly used way
how to deal with HTTPS on web proxies is to intercept the HTTPS traffic on
the proxy, decrypt it, log the information needed and encrypt it again. While the
advantage is that the same detection techniques as in the case of HTTP traffic
can be used, we see the main disadvantages in the computational burden on the
proxy and the security concerns associated with the re-encryption of the private
traffic. An alternative way is to develop new detection mechanisms that do not

k-NN Classification of Malware in HTTPS Traffic Using the Metric Space 133

rely on features available only after the decryption. This is a challenging prob-
lem because the behavior of the network connections has to be reconstructed
from very limited information. If the connection requests are not decrypted by
the proxy, they are usually logged just as the so called connect requests [11],
for which the only data available are the amounts of bytes transferred in both
directions and the length of the time interval for which the connection was open.
This rules out, for example, any detection methods that are based on features
extracted from the visited URLs. On the other hand, if a detection method
capable of working with such limited information is available, the design of the
web proxy can be significantly simplified, its security improved and the privacy
of the users is fully preserved. Therefore, developing such a method is a highly
desirable task which motived our research presented in this paper.

3 Related Work

To the best of our knowledge, the prior art on using machine learning algorithm
to classify HTTPS connections and detect malware is very limited. However
there is some prior art using higher-level features as is the goal here. For example,
Wright et al. [22] use a k-NN classifier with sizes and directions of TCP packets
carrying encrypted traffic to identify application layer protocols. Contrary to our
goal, their aim is not to distinguish between benign and malware’s traffic, but to
identify application protocols carried by the encrypted packets. Works of Crotti
et al. [9] and Dusi et al. [10] use empirical estimates of probability distributions of
packets’ sizes and inter-arrival times in TCP flows for identification of application
protocols (e.g. POP3, SMTP, HTTP). Despite that these do not aim directly to
processing encrypted traffic, their representations could be applicable to it. The
limiting factor of these approaches is that they need to know the order of each
packet from the start of the TCP flow. Moreover, network sensors do not usually
export information or statistics about individual packets within the connection.
Many works can be found in the field of behavioral detection of malware that use
non-encrypted HTTP traffic. Although they do not apply content inspection,
they still employ features that can not be extracted from HTTPS traffic, for
example lengths of URLs or types of HTTP methods (e.g., GET or POST) —
for examples of such works, see [19,20] or [16].

In the work of Kohout and Pevny [13], servers are represented by a joint his-
togram of tuples (rup, rdown, rtd, rti) with 114 bins, where rup is the number of
bytes sent from the client to the server, rdown is the number of bytes received by
the client from the server, rtd is the duration of the connection (in milliseconds),
and rti is the time in seconds elapsed between start of the current and previous
request of the same client. Each tuple describes one connection to the server, and
the dynamic range of values is decreased by taking log(1 + x) before creating the
joint the histogram. The biggest advantage of this representation is that the infor-
mation is typically exported by most network devices supporting IPFIX [8] and
Netflow [6] formats, web proxies, and they are available for encrypted (HTTPS)
connections. With respect to this, these fingerprints are used in our work as basic
features. Their dimension is 114 = 14641 for each server.

134 J. Lokoč et al.

In the introduction, it is mentioned that the biggest advantage of signature
based techniques is low false alarm rate. This property is crucial for practical
deployment, since the problem is unbalanced with the prevalence of legitimate
traffic. For example, in our experimental dataset there are 160–220 thousands of
benign servers and only 600–1800 examples of those that were related to malware
activity (depending on a particular testing set). Thus high false alarm rate floods
the network operator with meaningless alarms, which renders the system useless.
Due to this imbalance in costs of error, the performance of each classifier is mea-
sured by the false alarm rate at 50 % recall on malware [21] (further called FP-50).
Formally, the value of the FP-50 error e is defined as follows:

e =
1

|I−|
∑

i∈I−
I
[
f(xi) > median{f(xj)|j ∈ I+}]

, (1)

where I− are indexes of the negative (benign) training samples, I+ are indexes
of the expositive training samples (malware), f(x) is the output of the classi-
fier (classification score) for the sample x and I is an indicator function. The
rationale behind the measure is that we are willing to miss 50 % of malware for
the benefit of having extremely low false positive rate. Moreover, thanks to the
using of the 2-quantile of the false negatives (which reflects the demanded 50 %
recall), the median in (1) can by replaced with mean for purposes of the FP-50
minimisation. This makes the optimization computationally tractable. In [21],
the exponential Chebyshev Minimizer (ECM) was presented as a suitable linear
classifier optimizing the FP-50 measure. This classifier is used also in the exper-
imental section as a baseline classification technique. Denoting x ∈ S ⊂ R

d the
training set of samples, ECM solves the following optimization problem

arg min
w∈Rd

λ

2
‖w‖2 +

1
|I−|

∑

i∈I−
log

(
1 + exp(wT(xi − μ+)

)
, (2)

where μ+ is the mean of the positive samples: μ+ = 1
|I+|

∑
i∈I+ xi. λ is a regular-

ization parameter that needs to be set in prior of the training. Under reasonable
assumptions on symmetry of the distribution of positive samples, the mean well
approximates the median and ECM optimizes FP-50 for the class of linear func-
tions. The optimization problem (2) is solved using L-BFGS method.

This paper investigates also a simple nearest-neighbour based classifier con-
sidering the Euclidean norm L2 as a distance between two samples. The classifi-
cation rule for a test sample x is based on its k nearest neighbours from a given
training set S. The k-NN query is defined for k ∈ N

+, x ∈ R
d and S ⊂ R

d as:

kNN(x) = {X ⊂ S; |X| = k ∧ ∀y ∈ X, z ∈ S − X : L2(x, y) ≤ L2(x, z)}.

The k-NN classifier used in this paper assigns two values to each test sample x.
The first value v1 is the number of malicious objects in kNN(x) and the second
value v2 is the sum of distances to the malicious objects in kNN(x). The test
samples are then sorted in the multi-column manner, where the samples are first
sorted by v1 in descending order and then by v2 in the ascending order. This
sorting is the input for the FP-50 measure.

k-NN Classification of Malware in HTTPS Traffic Using the Metric Space 135

Although being currently out of fashion the advantage of k-NN classifier is its
universal consistency, which means that it converges to the optimum classifier in
a Bayesian sense [2]. This property enables estimation of the accuracy that can
be achieved using the representation of servers proposed in [13], provided suffi-
cient number of well labelled samples is available (more on this in Sect. 5). As the
nearest neighbour classifier can be extremely slow, the next section is devoted
to presentation of indexing structures, which significantly improve the classifica-
tion time. Since the data considered in this work are high-dimensional vectors,
an approximate k-NN search strategy has to be employed by indexes to provide
practical query processing times. The approximate search, however, affects clas-
sification, because the set of nearest neighbors just approximates the real nearest
neighbors. Nevertheless, in the experiments we show that the approximation of
the real nearest neighbors has negligible impact on the accuracy.

4 Efficient k-NN Search Using Metric Indexing

To perform the kNN classification fast, a database index is needed that provides
exact and/or approximate kNN search over large set of high-dimensional sparse
descriptors of the traffic. During last decades, there have been investigated many
approaches to search efficiently in huge collections of (sparse) high-dimensional
vectors. The approaches use various techniques to reduce the negative effect of
high dimensionality of the data. For example, the dimension reduction techniques
that try to find new low-dimensional representations of the original vectors pre-
serving distances, or, the locality sensitive hashing [12] that tries to map close
vectors to the same buckets with high probability. Within the vast portfolio of
database techniques implementing the two principles, in this paper we focus on
the metric index (M-Index [17]) that represents a metric variant of locality sensi-
tive hashing [18]. The M-Index is suitable for the mentioned task as it represents
efficient yet extensible solution for fast similarity searches.

4.1 Metric Indexing in a Nutshell

The fundamental trick of metric indexes lies in using lower bounds that can be
used to filter out irrelevant object from the search cheaply (i.e., without the need
of actual distance computations regarded as computationally expensive).

A metric space (U, δ) consists of a descriptor domain U and a distance func-
tion δ which has to satisfy the metric postulates of identity, non-negativity,
symmetry, and triangle inequality, defined ∀x, y, z ∈ U as:

δ(x, y) = 0 ⇔ x = y identity
δ(x, y) ≥ 0 non-negativity
δ(x, y) = δ(y, x) symmetry

δ(x, y) + δ(y, z) ≥ δ(x, z) triangle inequality

136 J. Lokoč et al.

In this way, metric spaces allow domain experts to model their notion of
content-based similarity by an appropriate descriptor representation and dis-
tance function serving as similarity measure1. At the same time, this approach
allows to design index structures, so-called metric indexes [1,3–5,17,23] for effi-
cient query processing of content-based similarity queries in a database S ⊂ U.
These methods rely on the distance function δ only, i.e., they do not necessarily
know the structure of the descriptor representation of the objects.

Metric indexes organize database objects (descriptors) oi ∈ S by grouping
them based on their distances, with the aim of minimizing not only traditional
database cost like I/O but also the number of costly distance function evalua-
tions. For this purpose, nearly all metric indexes apply some form of filtering
based on cheaply computed lower bounds. These bounds are constructed based
on the fact that exact pivot–object distances are pre-computed, where a pivot
is either a static or a dynamic reference object selected from the database.

We illustrate this fundamental principle in Fig. 1a where we depict the query
object q ∈ U, some pivot object p ∈ S, and a database object o ∈ S in some
metric space. Given a range query (q, r), we wish to estimate the distance δ(q, o)
by making use of δ(q, p) and δ(o, p), with the latter already stored in the metric
index. Because of the triangle inequality, we can safely filter object o without
needing to compute the (costly) distance δ(q, o) if the triangular lower bound
δT(q, o) = |δ(q, p) − δ(o, p)| is greater than the query radius r.

Fig. 1. (a) The lowerbounding principle, (b) The index.

4.2 Metric Index for kNN Search in High-Dimensional Sparse Data

There have been developed many metric indexes varying in the application pur-
pose, however, in this paper we introduce a simple main-memory variant of the

1 In our case, the descriptors are high-dimensional sparse vectors representing network
traffic and the distance function is the Euclidean distance.

k-NN Classification of Malware in HTTPS Traffic Using the Metric Space 137

state-of-the-art structure M-Index that fits the requirements of network traf-
fic kNN classification (high-dimensional data, cheap distance, many queries).
Inspired by GNAT [1], M-index [17] and M-tree [5], we assume a set of p piv-
ots pi selected from the dataset S, each representing a partition Si in the metric
space. The rest of the objects in the dataset are partitioned such that each object
is assigned to a partition of its closest pivot. In such a way we obtain Voronoi
partitioning (complete and disjoint), see Fig. 1b. Moreover, for each partition we
store the distance ri between the pivot and the furthest objects within the parti-
tion (partition radius), i.e., ri = δ(pi, o), o ∈ Si,∀oj ∈ Si : δ(pi, oj) ≤ δ(pi, o), see
the dotted circle in the figure for r2. Moreover, for each partition we also store
the distances from the partition objects to the pivot pi, i.e., 〈δ(pi, oj)〉oj∈Si

, see
the dashed lines in the figure for δ(p2, oj).

The structure corresponds to one level GNAT or M-index, i.e., without addi-
tional (repetitive) Voronoi partitioning. The structure stores radius of each clus-
ter and distances from partition objects to corresponding partition pivots as
utilized by the M-Tree [5] (so called distances to parent). Note that also the
M-Index considers the distances from partition objects to partition pivots to
construct a key value that is stored in the B-Tree structure and used later for
efficient searching. Since the distance function is not expensive, the structure
stores information just for the most efficient filtering rules (ball-region filter-
ing, parent filtering [23]), skipping less efficient filtering rules presented for M-
Index (or GNAT) and expensive distance measures. In the following section, the
approximate kNN search principles are detailed given the presented structure.

Approximate kNN Search. Given a kNN query (q, k), the index is used
to process the query in a simple way. The partition with closest pivot to q is
searched, then the partition with the second closest pivot is searched, and so on.
During the search the closest k objects from the partitions searched so far to q
are maintained as the kNN candidates. In order to speedup the search, there are
several optimizations used.

First, when a partition is to be searched, its radius is checked whether the
partition ball (pi, ri) overlaps the query ball or not. The query is formed by a ball
centered in q having the radius to the actual kth nearest neighbour candidate.
If the query ball and the partition ball do not overlap, the partition is skipped.

Second, whenever an object o from a partition is to be checked whether it is
contained within the actual query ball or not, prior to computing the distance
δ(q, o) the triangular lower bound is computed (as depicted in Fig. 1a). If the
lower bound is greater than the actual query radius, the object cannot become
a kNN candidate so the object is discarded without computing δ(q, o).

Third, as will be shown in experiments, it is not necessary to perform exact
kNN search that could lead to exhaustive search in many of the partitions. In
order to speedup the search even more, the kNN search could be stopped after a
predefined number of objects is inspected (e.g., 4 % of all objects in the dataset).

For the kNN pseudocode see Algorithm 1.

138 J. Lokoč et al.

Algorithm 1. kNN(q, k, S, maxObjectsInspected)
1: compute distance to pivots d(q, p[i]) and sort partitions S[i]
2: initialize kNN candidate set Can using pivots p[i]
3: get actual query radius r
4: count = 0;
5: // for each partition check its objects
6: foreach S[i] in S
7: if count > maxObjectsInspected then break
8: // query-partition overlap check
9: if d(q, p[i]) > r[i] + r then continue

10: foreach o[j] in S[i]
11: // lower bound filter
12: if |d(q, p[i]) − d(o[j], p[i])| > r then continue
13: distance = d(q, o[j])
14: if distance ≥ r then continue
15: update Can by o[j]
16: r = d(q, Can[k])
17: count++
18: return Can

5 Experiments

Below experiments reflect the problem to solve, which is the identification of
servers contacted by malware by observing HTTPS connections to them. The
first part focuses on description of the dataset and its labeling, which is an
important aspect in the network intrusion detection research. Then it moves
to the comparison of linear classifier to the nearest-neighbour based one, and
finishes with a discussion of its scalability.

5.1 Dataset

The experimental dataset contains logs of HTTPS connections observed during
the period of one day (24 h) in November 2014 from 500 major international
companies2 collected using Cisco’s cloud web security solution [7]. Each log of
HTTPS connection contains source and destination IP address, number of sent
and received bytes, duration of the connection, and timestamp indicating when
the connection has started. Besides this, some logs contain SHA hash of the
process that has initiated the HTTPS connection. These logs with hashes are
used in the experiments here, since matching them with a database of malware
hashes3 provides the precious labels (malware/benign). We emphasize here that
the process hash is usually missing in logs, since network devices like routers,
switches, and proxies do not have any means to compute them. Also, the avail-
ability of the hash is independent to the type of the connection, therefore errors
measured on this set is a good estimate of what can be expected in real world.
2 The exact cannot be published due to non-disclosure agreements.
3 Specifically, the hash was considered to be malicious if the corresponding process

was detected by at least 20 anti-viruses used by virustotal.com service.

k-NN Classification of Malware in HTTPS Traffic Using the Metric Space 139

In total, there was 145 822 799 connections to 475 605 unique servers with
the total volume of transferred data 10 082 GB. As already mentioned above,
a request is deemed to be related to a malware activity if hash of its parent
process was in Virustotal’s4 database of malware hashes. Similarly a domain
or destination IP address is considered to be malware if there was at least one
malware connection to it.

Since the subject of the interest are servers, a server’s feature vector (a
descriptor or fingerprint) is formed from a joint histogram of four-tuple r =
(rup, rdown, rtd, rti)5 of all HTTPS connections to it, as described in Sect. 3.

The employed dataset has specific properties. The 4-dimensional vectors used
to create the joint histograms form a strongly uneven distribution in the corre-
sponding 4-dimensional space, making some parts of the space (and thus cor-
responding bins of the fingerprints) dominant. Based on these observations, we
have also calculated joint histograms considering inverse document frequency
(idf) weighting. However, according to our experiments (see Fig. 2) the idf
weighting just deteriorates the performance of the k-NN classifier.

5.2 Test Settings

The main error measure used for the comparison is the FP-50, which is the prob-
ability of false alarm at 50 % recall. Note that FP-50 is evaluated after all query
objects with assigned labels are sorted using ranking obtained from the employed
classifier. The rationale behind the FP-50 measure is that low false alarm rate is
extremely important, hence the measure focuses on it. Moreover, since malware
usually uses more than one server, 50 % recall is perfectly reasonable.

FP-50 and other quantities were estimated using six-fold cross-validation,
where each fold contained all HTTPS connections observed during continuous
four hours. Domain descriptors were calculated separately from connections in
the training folds and in the testing fold. The exact number of domains (samples)
is shown in Table 1.

The linear ECM classifier [21] has only one parameter, which is the regular-
ization constant λ (see Eq. 2). Although the parameter has an influence on the
accuracy, for a small values its effect on it is limited, which is caused by the large
number of training samples. In all experiments below its value was set to 10−8.
The basic nearest neighbor classifier has also one tunable parameter, which is
the number of nearest neighbors. The level of approximation of the k-NN search
is another parameter affecting precision. The effect of both parameters on FP-50
measure is studied below in Fig. 4. The metric index uses 1000 randomly selected
pivots.

4 virustotal.com.
5 rup is the number of bytes sent from the client to the server, rdown is the number

of bytes received by the client from the server, rtd is the duration of the connection
(in milliseconds), and rti is the time in seconds elapsed between start of the current
and previous request of the same client.

140 J. Lokoč et al.

Table 1. The number of benign/malware/total servers (samples) in each fold in the
cross-validation.

fold

#domains 1 2 3 4 5 6

in training set 444540 441357 441073 424555 428635 440690

in testing set 161908 165132 161352 224004 222294 192691

benign 160911 164276 160741 222605 220549 191204

malware 997 856 611 1399 1745 1487

5.3 Performance of the Classifiers

FP-50 together with training and classification times is shown in Table 2. The
results reveal that the linear classifier (ECM) is outperformed in FP-50 by almost
order of magnitude by the 4-nearest neighbor classifier (without idf weighting),
which means that the problem is not linearly separable despite the high dimen-
sion. The presented times6 show that efficient indexing techniques are necessary
for k-NN classifier to reach practical times.

Table 2. FP-50 estimated by the cross-validation of compared classifiers, together with
their average training and classification times.

time of

classifier FP-50 training classification

ECM 13.23 % 56mins 0.3s

exact 4-NN no index 2.015 % 0s 63mins

exact 4-NN 2.015 % 44s 17mins

exact 4-NN with idf 2.247 % 44s 23mins

approx. 4-NN (4 % DB) 2.017 % 44s 3mins

Figure 2 shows FP-50 measure of exact search based k-NN classifier with
respect to k and two types of fingerprints — with and without tf-idf weight-
ing. The advantage of a small k in the k-NN classifier can be explained by a
non-linearity of the problem and very low number of malware domains, which
amounts only of 0.6% of the total number (see Table 1). Indeed, a t-sne plot [15]
in Fig. 3 reveals that malware domains do not form a tight clusters, but they
are scattered in the space and surrounded by legitimate ones. This means that
increasing k increases the proportion of benign domains in the neighbourhood
yielding into incorrect classification.
6 The experiments have run on 64-bit Windows Server 2008 R2 Standard with Intel

Xeon CPU X5660, 2.8 GHz, 12 cores supporting hyper-threading. The training of the
ECM classifier has run on a virtual machine (VMWare) using 8 cores CPU 2.2 GHz
and 132GB RAM. Matlab library MinFunc has been used.

k-NN Classification of Malware in HTTPS Traffic Using the Metric Space 141

Fig. 2. FP-50 measure for exact kNN classifier and different types of descriptors.

Fig. 3. A t-sne visualization of the space of servers’ fingerprints, blue/red dots repre-
sent benign/malware fingerprints. The plot was created from uniformly sampled 5000
instances of benign fingerprints and 1000 instances of fingerprints of servers contacted
by malware from the fold 6 of the cross-validation. This figure demonstrates that the
malware’s behavior does not follow a simple pattern common to all servers. However,
as many of the servers contacted by malware form small clusters, the k-NN classifier
which leverages the local similarities has a good chance to succeed (Color figure online).

142 J. Lokoč et al.

5.4 Speeding-Up Nearest-Neighbor Search

As presented in Table 2, the classification based on exact 4-NN search, even when
using the index, takes several orders of magnitude more time to perform the clas-
sification than using a liner classifier. The classification of 192.000 servers with
a training set comprising 440.000 servers takes 17 min even on a 12-core server
supporting hyper-threading. Table 3 presents times for exact and approximate
search (only for fold 6). The exact 4-NN search using the index takes 17 min
because it has to evaluate about one fifth of the distance computations. Note
that the filtering power is limited because of the high-dimensionality of the data
(14641). Therefore, only the approximate search strategies visiting just limited
number of objects can further improve the efficiency of the retrieval using the
index. For example, visiting just 1 % of the training dataset during query process-
ing takes 17 times less time then exact search. However, the approximate search
also affects the performance of the classification. Figure 4 presents FP-50 mea-
sure for the k-NN classification variants considering faster approximate search
strategies for k-NN query processing. We may observe that the FP-50 measure
is almost the same for exact search and for approximate search strategy visiting
just 4 % of the training dataset. For the all considered levels of approximation,
the optimal value of k was the same (k = 4) as for the exact search strategy.

Table 3. 4-NN classification times (in seconds) of the testing data for different levels
of approximation.

% of DB 1 2 3 4 5 6 7 8 9 10 100

time 73,1 118,2 157,1 193,4 226,9 258,0 287,2 314,7 341,0 367,3 1021,6

Fig. 4. FP-50 measure for the k-NN classifier and different levels of approximation.

k-NN Classification of Malware in HTTPS Traffic Using the Metric Space 143

Fig. 5. FP-50 measure and approximation error for 4-NN classifier and different levels
of approximation.

Fig. 6. FP-50 measure after re-ranking of ECM-based classification using k-NN classi-
fier. Note that the time for classification corresponds to the secondary axis.

Figure 5 illustrates the approximation error7 with decreasing number of vis-
ited objects during 4-NN query processing. Albeit the approximation error sig-
nificantly increases for lower percentage of visited objects, the value of the FP-50
measure changes only slightly. Such advantageous trade-off is promising for our
future research focusing on even faster approximate search algorithms for k-NN
classification of HTTPS traffic data.

7 For a given query, the approximation error is computed as a normed overlap distance
between the query result returned by approximate k-NN search and the correct result
returned by exact k-NN search.

144 J. Lokoč et al.

In the last set of experiments, the linear classifier ECM was employed as an
efficient ranking approach for the whole query set, while the investigated k-NN
classifier was used to re-rank only a prefix of the ECM-based ordering of query
objects. This technique is based on the assumption that the highly efficient ECM
classifier could identify a subset of the query objects with low precision but high
recall (i.e., with more than 50 % objects representing malicious servers) thus
avoiding k-NN search for the whole query set. Based on the results presented
in Fig. 6, re-ranking of just 30 % of the query objects using expensive k-NN
classifier has almost the same effectiveness as evaluating k-NN classifier for all
query objects, while the FP-50 evaluation time is almost three times lower.

6 Conclusions

In this paper, we have presented a technique for detection of malware in HTTPS
traffic using k-NN classification. We have presented the efficiency of metric
indexing for approximate k-NN search over dataset of sparse high-dimensional
descriptors of network traffic. In the experiments, we have demonstrated that
the classification based on approximate k-NN search using metric index exhibits
false positive rate reduced by an order of magnitude when compared to the
ECM linear classifier, while keeping the classification fast enough. We have also
demonstrated that both classifiers can be combined in order to reach the overall
classification time below one minute and FP-50 measure close to 2 %.

In the future, we would like to extend this work in several directions. We
would like to investigate distance learning approaches for more effective classifi-
cation using k-NN classifiers. We would also like to try data reduction techniques
to improve both effectiveness and efficiency of the k-NN classification.

Acknowledgments. This research has been supported by Czech Science Foundation
project (GAČR) 15-08916S.

References

1. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of 21th
International Conference on Very Large Data Bases, VLDB 1995, 11–15 September
1995, Zurich, Switzerland, pp. 574–584 (1995). http://www.vldb.org/conf/1995/
P574.PDF

2. Chaudhuri, K., Dasgupta, S.: Rates of convergence for nearest neighbor classifica-
tion. In: Advances in Neural Information Processing Systems (2014)

3. Chávez, E., Navarro, G.: A compact space decomposition for effec-
tive metric indexing. Pattern Recogn. Lett. 26(9), 1363–1376 (2005).
http://dx.doi.org/10.1016/j.patrec.2004.11.014

4. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

5. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity
search in metric spaces. In: VLDB 1997, pp. 426–435 (1997)

http://www.vldb.org/conf/1995/P574.PDF
http://www.vldb.org/conf/1995/P574.PDF
http://dx.doi.org/10.1016/j.patrec.2004.11.014

k-NN Classification of Malware in HTTPS Traffic Using the Metric Space 145

6. Cisco: Cisco IOS NetFlow. http://www.cisco.com/c/en/us/products/
ios-nx-os-software/ios-netflow/index.html

7. Cisco: Cloud Web Security (CWS). http://www.cisco.com/c/en/us/products/
security/cloud-web-security/index.html

8. Claise, B., Trammell, B., Aitken, P.: Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of Flow Information (2013). https://
tools.ietf.org/html/rfc7011

9. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple
statistical fingerprinting. SIGCOMM Comput. Commun. Rev. 37, 5–16 (2007)

10. Dusi, M., Crotti, M., Gringoli, F., Salgarelli, L.: Tunnel hunter: detecting
application-layer tunnels with statistical fingerprinting. Comput. Netw. 53, 81–
97 (2009)

11. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-
Lee, T.: Hypertext Transfer Protocol – HTTP/1.1. https://tools.ietf.org/html/
rfc2616

12. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of the 25th International Conference on Very Large Data
Bases, VLDB 1999, pp. 518–529. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1999). http://dl.acm.org/citation.cfm?id=645925.671516

13. Kohout, J., Pevny, T.: Automatic discovery of web servers hosting similar applica-
tions. In: 2015 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM) (2015)

14. Kohout, J., Pevny, T.: Unsupervised detection of malware in persistent web traffic.
In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) (2015)

15. van der Maaten, L., Hinton, G.E.: Visualizing high-dimensional data using t-SNE.
J. Mach. Learn. Res. 9, 2579–2605 (2008)

16. Nelms, T., Perdisci, R., Ahamad, M.: Execscent: mining for new c&c domains in
live networks with adaptive control protocol templates. In: Proceedings of the 22nd
USENIX Conference on Security (2013)

17. Novak, D., Batko, M., Zezula, P.: Metric index: an efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

18. Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric
spaces. In: Proceedings of the Third International Conference on SImilarity Search
and APplications, SISAP 2010, pp. 59–66. ACM, New York (2010). http://doi.
acm.org/10.1145/1862344.1862354

19. Perdisci, R., Ariu, D., Giacinto, G.: Scalable fine-grained behavioral clustering of
HTTP-based malware. Comput. Netw. 57, 487–500 (2013)

20. Perdisci, R., Lee, W., Feamster, N.: Behavioral clustering of HTTP-based malware
and signature generation using malicious network traces. In: Proceedings of the 7th
USENIX Conference on Networked Systems Design and Implementation (2010)

21. Pevny, T., Ker, A.D.: Towards dependable steganalysis. In: IS&T/SPIE Electronic
Imaging (2015)

22. Wright, C., Monrose, F., Masson, G.M.: On inferring application protocol behaviors
in encrypted network traffic. J. Mach. Learn. Res. 7, 2745–2769 (2006)

23. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Springer, New York (2005)

http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/ios-nx-os-software/ios-netflow/index.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
http://www.cisco.com/c/en/us/products/security/cloud-web-security/index.html
https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc2616
https://tools.ietf.org/html/rfc2616
http://dl.acm.org/citation.cfm?id=645925.671516
http://doi.acm.org/10.1145/1862344.1862354
http://doi.acm.org/10.1145/1862344.1862354

	k-NN Classification of Malware in HTTPS Traffic Using the Metric Space Approach
	1 Introduction
	2 Challenges in Detection of Malware Using HTTPS
	3 Related Work
	4 Efficient k-NN Search Using Metric Indexing
	4.1 Metric Indexing in a Nutshell
	4.2 Metric Index for kNN Search in High-Dimensional Sparse Data

	5 Experiments
	5.1 Dataset
	5.2 Test Settings
	5.3 Performance of the Classifiers
	5.4 Speeding-Up Nearest-Neighbor Search

	6 Conclusions
	References

