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Abstract. Entity resolution (ER) is the detection of duplicated records within a
dataset representing the same real-world entity. The importance of ER is amplified
within law enforcement as criminal data, or criminal networks, has inherent
uncertainty and ER inaccuracy incurs a high cost. Commercial ER solutions focus
on fast and scalable resolution of obvious pairs of entities, rather than the more
complex non-obvious pairs which are so critical to law enforcement. Here we
outline the use of proper names represented as reference graphs - generated from
an algorithm that conducts name similarity, logic-based pruning, and classifica‐
tion using community detection and a proper name origin algorithm. The resultant
classes are used at indexing and decision management stages within an ER model
to support the detection of non-obvious duplicate entities. Utility is clearly
demonstrated through the application of the approach on three real-world datasets
of varying origin, size, topology, and heterogeneity.
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1 Introduction

Criminal networks - graph representations focusing on criminal actors - present
significant challenges in terms of deriving an accurate representation that mimics the
real-world. Incompleteness, data heterogeneity, non-intentional error, intentional
misinformation, and bias all contribute to increase the uncertainty of the data. At the
core of this uncertainty and variance is accurately and reliably resolving duplicate
entities within the data representation which in fact represent the same real world
entity [1] - entity resolution.

Whether the problem is derived from the integration of multiple heterogeneous
datasets or focuses on one homogeneous dataset the domain dictates the nature and
complexity of the problem, which in turn places specific demands of an entity resolution
solution. This complexity can be driven from artefacts of the source(s) of data and their
representation or the wider domain where data error is generated from not only incidental
variance but variance derived from specific intent. Interestingly within the criminal
domain the very entities that are the source of intentionally poor quality data are often
the very entities that are of most interest.
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The criminal context provides an additional layer of complexity and uncertainty due
to the motivation of entities to actively supply misinformation with the goal to reduce
the effectiveness of entity resolution. For this reason entity resolution and link discovery
are often deployed in concert to enhance the quality of the graph through making the
data as explicit as possible and discover latent knowledge. This paper however is limited
to entity resolution, and in particular the use of reference graphs in entity resolution. A
critical element though to highlight is that entity resolution in the criminal domain must
be able to contend with not just missing nodes and edges, but the existence of fake nodes,
nodes that are in the dataset but do not exist in the real world, and spoof nodes, where
a real world node will be represented in multiple nodes within the dataset [2]. And of
course in instances of high incompleteness, the presence of fake and spoof nodes (and
edges), and high uncertainty the generation of false positives can significantly obfuscate
the graph.

Therefore, inexpensive, accurate and scalable approaches to entity resolution that go
beyond identifying the obvious matches (deduplication) and can also detect the non-
obvious matches are of critical importance. Current “state of the art” commercial entity
resolution products are often focused on markets that require generic scalable fast dedu‐
plication solutions and do not place the requisite emphasis on the detection of the
complex low-signal non-obvious matches. Responding to this need the reference graph
algorithm has been designed to support the detection of non-obvious duplicate entities.

A reference graph, in this instance, is defined as a graph constructed from a set of
proper names whose pairwise distance is calculated using a variety of concepts,
including string similarity and co-occurrence, and represented as a graph that can be
improved over time to enhance ER performance. Improvement to the reference graph
can be derived from improvements in the algorithm that constructs the graph, the inte‐
gration of additional data, or the manual annotation by human experts. The reference
graph algorithm generates meta-data that can be used in both indexing and decision
management stages of an entity resolution model that out-performs more traditional
algorithms on typical criminal networks, is scalable (≈4 million nodes) and “fast
enough”.

From an applied perspective two main elements of entity resolution are critical
to an effective and performant solution: indexing (otherwise known as blocking or
key-generation) and decision management - making a decision on whether to resolve
a pair of entities or not. These two components of entity resolution will be briefly
introduced to create context required before reference graphs are explained further.

Indexing is essentially the creation of subsets of records or entities based on some
notion of similarity. The comparison of all pairs is an intractable problem and hence
indexing has been a pragmatic solution to avoid exhaustive comparison and reduce the
computational expense by breaking the initial set into multiple sub-sets or blocks. The
number, size and the “similarity” between entities within each sub-set determine the
quality of the indexing, as each block, or cluster of blocks, will serve as the set that
pairwise similarity will be measured. The quality in combination with runtime, scala‐
bility, ease of optimization, and versatility (how well the indexing performs across a
range of different scenarios) determine the utility of the indexing. Many approaches have
been used to generate blocks including the use of phonetic algorithms like Soundex [3],
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Double-Metaphone [4], and Metaphone 3 [5] which generate keys based on the phonetic
sound of the name (e.g. Metaphone 3 of “Robinson” == “RPNS”). Although many of
the latest generation algorithms are proprietary, making them problematic to benchmark
against, a wide range of quality algorithms exist and are freely available to apply. Trun‐
cation approaches similarly generate keys off a predetermined number of letters from
the front of the Family Name (e.g. “Robinson” == “ROB”). Suffix Array is another
blocking approach that is used, which creates an integer key based on lexicographically
sorted string suffixes [6]. Meta-blocking approaches are another class of approach that
takes the output from a blocking strategy and attempts to optimize given the tolerance
for error and speed. A good example of a meta-blocking strategy is that outlined by
Hernandez and Stolfo [7, 8] and McCallum, Nigam and Ungar [9] using windows or
canopies to effectively create overlapping classes to reduce computational expense and
yet retain accuracy.

Decision management is about making decisions under uncertainty, given the
context of the purpose of making those decisions and validation metrics [10]. The first
element within ER to achieve this is the discovery of a number of relevant pairwise
similarity metrics (e.g. Name similarity, Date of Birth similarity, and distance), meas‐
uring key concepts. The pairwise similarity metrics fall under two concepts, those
helping to measure congruence and commonality. Congruence refers to the holistic
assessment of how similar the pair is based on name features, other attribute features
(e.g. Date of Birth; Gender) and contextual features such (e.g. graph distance;
community membership) which have all shown to significantly improve performance
[11–13]. Commonality refers to how often these features are represented in different
entities within the bounded context of the comparison. If the pairwise similarity is
conducted globally across the entire dataset without any notion of distance (for example,
geographical or social relationship) between the pair then the commonality measurement
has to be based on a global assessment. However, incorporating the notion of distance
can create a bounded local context which significantly alters the measurement of
commonality. For example, the certainty of the pairwise assessment of whether “Joan
Mary SMITH” and “Joan Mary SMITH” are indeed the same real-world entity is signif‐
icantly increased if it is known that they reside in the same suburb or community detec‐
tion has identified they are members of the same community. The second component is
factoring in the context of what the ER is being conducted for (for example tax evasion
detection or counter terrorism). Central concepts from a contextual perspective include
how rare the class of events are that are the focus of detection and measurement, and
the size of impact, and then how that translates into the cost of false positives and false
negatives. The third aspect is the generation, retention, and use of contextual validation
metrics of the decision made - a critical element to decision management [14]. In this
case the ER model computes transitivity providing a useful guide to the measurement
of accuracy of the overall model, each ER function, and at a pair level. Indeed, generating
transitivity metrics creates the opportunity for fine-grained transitive closure based
approaches to enhance performance [15]. All relevant discovered metrics are then output
in graph format enabling robust validation and exploitation of the model.

As alluded to earlier a core feature of the broader entity resolution model developed
is the use of reference graphs to drive indexing and support decision management.
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Reference graphs are an explicit representation of proper name knowledge derived from
the data and from external knowledge sources. Knowledge representations are often
used as a “deterministic” adjunct to bolster accuracy through the provision of a set of
relationships between names based on synonyms and hypocorisms [16]. Here the novel
generation of reference graphs from proper names, derived from both the data source
and external proper name based edge-lists of hypocorisms, has been used to generate
blocking-keys from a simple partitioning of the reference graphs using non-overlapping
community detection coupled with classification derived from a proper name co-occur‐
rence graph, which are used at both indexing and decision management stages. An
important feature of the indexing is that the keys form a graph, which creates the oppor‐
tunity for deploying meta-blocking strategies to optimize performance [17].

The details of how the reference graphs are constructed and implemented are covered
before the experimental conditions are outlined and the results thereof are examined. A
discussion of the results, conclusions and extensions complete the investigation.

2 Generation and Implementation of Reference Graphs

2.1 Reference Graph Generation

The proper name reference graphs, Family Name Reference Graph (FNRG) and Given
Name Reference Graph (GNRG), are generated by measuring the string distance, using
the Jaro-Winkler algorithm [18], between all names of the same class, whether that is
the Family name class or Given name class. The proper names are sourced from the
target unresolved dataset, and potentially any other source. Dependent on the size of the
target unresolved dataset there may need to be an intermediate blocking phase to
generate the reference graph. The intermediate blocking phase is implemented by a two-
step algorithm that firstly blocks the names by the first letter of each name and compares
all names beginning with that letter and uses the string distance to start building the
reference graph. The second step of the algorithm generates a sample of names and
conducts string distance on all pairs from the sample. The complete graph derived from
this process is then pruned via using a simple threshold to remove edges and enable the
assessment of relationship strength between names starting with a specific letter (see
Fig. 1). This derived graph served as the basis in the second stage of the algorithm to
select meta-blocks (as per the circled clusters) from which to base additional string
distance comparisons.

The result of this intermediate blocking phase is an approximately complete graph
based on the distance between proper names, either Family names as in the FNRG or
Given names as in the GNRG.

The next step is to turn the distance graph into a similarity graph (so more intuitive)
and only retain edges between proper names that are useful to the ultimate goal of
conducting community detection that is both accurate and inexpensive. A simple thresh‐
olding method could be used to delete edges under a certain weight however that would
mean that unique names are more likely to be isolated and not part of larger blocks and
therefore resulting in poor blocking performance. So, a core goal is to ensure that
communities of names are larger than one or two and obviously at the other end of the
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spectrum are small enough so the communities/blocks enable scalable deployment. To
do this the two highest (as the graph is now a similarity based graph rather than a distance
based graph) weighted incident edges of every node (i.e. name) is retained to ensure the
graph retains a giant single component. It is important to select the two highest as simply
using the single highest weighted edge can result in isolated dyads. Using this approach
significantly reduces the number of components and ensures the smallest component is
a triad. Furthermore, all edges above a pre specified threshold were retained.

An alternate source of names and their variants (derived from transcription, hypo‐
corisms) is then introduced. This secondary source of proper name variation is important
from a human centered systems perspective as it creates the opportunity for experts to
add their explicit knowledge into the entity resolution model and derive instant perform‐
ance improvements. Knowledge is added to both create relationships between names and
negate relationships between names that do not exist. For example, the transcription of
the Chinese family name � into the Latin alphabet is dependent on the dialect - China’s
pinyin system converts this to “Han”, in Cantonese “Hon”, and in Hainan “Hang”.
Furthermore, negation is critical in situations where names are very similar but are
actually distinct proper names. String matching cannot discriminate between these sets
of names easily, so other methods are required to buttress performance (see Fig. 2.). The
use of deterministic sources also reinforces the fact that the reference graphs are indeed
assets that can be developed and curated to support a range of endeavors in addition to
identity and entity resolution such as named entity recognition.

Fig. 1. This figure depicts a derived contracted graph indicating the relationship between classes
of names based on their first letter. This graph is used in the second stage of the intermediate
blocking phase to improve the accuracy and completeness of the reference graphs.
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Fig. 2. This figure provides an example of Given Name Reference Graph (GNRG) annotation.
The dashed blue lines represent the relationships that have been manually removed to ensure the
four proper names “Rajendra”, “Ravendra”, “Rabendra”, and “Ramendra” are discriminated
between appropriately. Note how the community detection appropriately ascribes a different
membership to each of these four names (Color figure online).

Next a non-overlapping community detection algorithm was deployed to partition the
graph of names into classes (see Fig. 3. for an illustration of a subgraph of the FNRG). In
this case the multilevel algorithm was used [19] due to its relative speed and performance.

Fig. 3. This figure illustrates a subgraph of the Family Name Reference Graph (FNRG), including
the membership classes derived from the community detection algorithm which are used in
blocking.
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Subsequent to the use of a community detection algorithm the classification derived
from a proper name co-occurrence graph (for example, the name “John Edward Smith”
would create a triad of “John– Edward; Edward – Smith; and John – Smith”) derived
from the target unresolved data, which is used to deterministically predict the origin of
proper names using a coarse classification, is then used to allocate new hybrid classes.

Importantly the frequency of each name within the target unresolved dataset is
retained as a node attribute to enable efficient assessment of the block sizes. The
three levels of blocks in addition to the frequency of names from each block repre‐
sented in the target unresolved dataset enables a degree of optimization, dependent
on the domain specific context (e.g. the level of incompleteness and uncertainty in
the data is significant), the business context (e.g. the cost of missing a match is high
and real time assessment is not required so batch processing is preferable) and other
factors such as hardware, software etc.

At this point the FNRG can be represented as a simple table of nodes with a member‐
ship integer, and the GNRG the more complex representation of a ragged array of inte‐
gers, due to the nature of people having multiple given names.

2.2 Reference Graph Implementation

The entity resolution function with which the reference graphs were deployed within
has four modules (see Fig. 4.).

The first module (see Fig. 4.) is Pre-Indexing which selects (e.g. Persons) and
constrains (e.g. only those persons that have a Family name, Given name, and Date of
Birth) the nodes to be compared for entity resolution. A range of parameters are used to
configure this module.

The Equivalence Assessment module (see Fig. 4.) takes the set of entities from the
previous module and creates sub-sets or blocks (Indexing), based on the algorithm
selected as a parameter, to ensure the quadratic assessment of pairs is done in a scalable
manner yet retaining as much accuracy as possible. Then Approximate String Matching
(ASM), based on the algorithm (Jaro-Winkler or Cosine) selected as a parameter, is
performed on each pair.

The Decision Management module (see Fig. 4.) takes the output of the previous
module and a range of attributes from the target unresolved dataset (g) and makes a
decision on whether the pair are a match or not. This decision is made on the basis of
two concepts. Congruence – how similar the pair are in terms of the metrics available,
and commonality – how unique the set of attributes are. These two concepts create the
basis to not only decide whether the pair of entities are in fact the same real world entity
in a probabilistic way but additionally how much certainty exists so optimized decision
making can be made, given the domain context, of whether decisions can be made with
a reduced set of attributes in a relatively inexpensive fashion, or whether uncertainty is
high enough, given the domain context, to require an enriched set of attributes and a
higher standard of proof. Decision making is conducted via a rule-based approach.

The Graph Contraction module (see Fig. 4.) manages the contraction of the graph
using a range of methods including provenance to select what data to retain as the
primary attributes. The meta-data derived from the ER model is retained.
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Fig. 4. This figure is a graphical representation of the design of the entity resolution function
which was used to implement the experimental design. The indexing and decision management
of the various strategies were conducted within the Equivalence Assessment and Decision
Management modules respectively.

10 D. Robinson



The reference graphs are used at both Equivalence Assessment (blocking) and Deci‐
sion Management modules. Within the Equivalence Assessment module the FNRG
community membership is used to create blocks or subsets of similar nodes to ensure
the implementation is scalable. The granularity of blocks is dependent on the size and
nature of the entity resolution task. The GNRG is not implemented within the Equiva‐
lence Assessment module at this point in time due to the added complexities of the
overlapping nature of community membership.

However, both FNRG and GNRG are used in the Decision Management module.
The FNRG is represented as a simple binary marker of whether the Family names of the
pair of persons share the same class or not.

The GNRG is similarly implemented however rather than a binary approach each of
the pairs community membership vectors (which can be of varying length dependent on
how many given names they have) are compared and the number of matches is output.

3 Experiment

The utility of the reference graphs is measured on their ability to augment indexing and
decision management. Performance measurement is based on the computational speed,
scalability, and the number of true positive pairs identified through the application of
one run of an optimally set entity resolution function. Four blocking strategies are
compared. The reference graph strategy and three alternate blocking strategies have been
deployed within the Equivalence Assessment module to serve as performance bench‐
marks. Each of the four blocking strategies is compared on the performance metrics
under two decision management states – not using reference graph attributes and using
reference graph attributes to support decision making. All other parameters are kept
constant at near optimal levels for each dataset to replicate real-world conditions.

Importantly, the relative contextual performance of the overall ER model, which is
comprised of multiple ER functions in a range of configurations, is briefly compared
against a range of proprietary and non-proprietary entity resolution models that were
benchmarked by Ferrante and Boyd [20]. This was done to provide comparative insight
into how the reference graph algorithm contributes to the overall real world performance
of the ER model.

3.1 Indexing Strategies

The “reference graph” strategy is implemented using the Family Name Reference Graph,
and the classes derived from this graph.

The “Meta-Blocking Canopy” strategy [7–9] amalgamates blocks in a logical way
to enhance accuracy with concomitant performance degradation. It is an effective
optimizing strategy when the cost of inaccuracy is high, and computational expense
can be sacrificed. The implementation here uses string length as the underpinning
blocking strategy and then takes clusters of these blocks to form meta-blocks. The
purpose for using the canopy strategy as a benchmark was to firstly to create a
quasi-gold standard, and secondly to introduce the concept from a block-optimizing
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perspective to provide the explicit extension potential of using such strategies in
tandem with reference graphs.

The second benchmark blocking strategy is a simple “Truncation” strategy. The
implementation here is in two forms. For the small and two big datasets key-generation
is derived from the truncation of each person entities family name at the first two letters
(e.g. “DerekRobinson” > “RO”) and first three letters (e.g. “DerekRobinson” > “ROB”),
respectively. The reason for changing the implementation between small and large data‐
sets is due to scalability and real world application.

The third strategy is the “Phonetic” strategy implemented using the Metaphone 3
(v2.5.4) algorithm [5] generating keys from each Person entities Family Name.

3.2 Decision Management States

The two decision management states implemented here consist of holding all other
parameters constant and applying the use of the Given Name Reference Graph (GNRG)
community membership attribute, or not.

3.3 Context

As discussed three real world target unresolved datasets are used to test the conditions
previously outlined.

The first dataset is centered on Suspicious Transactions and is a small heterogeneous
directed multiplex graph of approximately 40,000 nodes and 51,000 edges, comprised
largely of manually annotated data, involving a vast range of relationships including
familial, business, and financial transactions. The data contains high data incompleteness
meaning there will be a high number of missing edges and nodes, and attributes thereof.
Furthermore, fake and spoof nodes will also be present. Fake nodes are nodes that exist
in the dataset that do not exist in the real world, and spoof nodes is where a real world
entity is represented as multiple nodes in the data [2]. Both fake and spoof nodes will
be derived from instances where real world entities intend to provide misinformation
and where instances simply derive from human error. The cost of false positives and
false negatives is high and therefore accuracy is paramount.

The second and third datasets are drawn from shareholding and directorship of NZ
Companies. The Partial Companies graph is derived from the giant component from this
data, and the Complete Companies graph is the complete graph. They are homogeneous
multiplex weighted graphs of approximately 1.1 million nodes and 2.4 million edges,
and 2.2 million nodes and 3.8 million edges respectively. The relationships consist of
two types – shareholding and directorship. The data is drawn from the companies register
and therefore is relatively complete; however there is a relatively low threshold of entity
validation. Indeed it is highly probable that again fake and spoof nodes are present. The
cost of false positives and false negatives is not as high, but scalability and run time
become increasingly important considerations.

Here we are testing one entity resolution function to generate performance metrics
from which to assess the utility of reference graphs. Of course within real world appli‐
cation the entity resolution function would be run, with alternate parameters, multiple
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times and as a collective form the implemented entity resolution model. In this experi‐
ment the performance metrics is couched within the context of the entity resolution
model’s performance and the context of each of the three target unresolved datasets.

It is also important to explicitly state that the entity resolution model was designed
for batch process rather than real time, and the strength of the model is its extensibility
and ability to be configured to incorporate a range of different methods at the indexing
phase within the Equivalence Assessment module (e.g. Canopy, Phonetic, FNRG,
Community Detection) and within the Decision Management module (e.g. hypocorisms,
graph distance, reference graphs) for the purpose of entity resolving non-obvious latent
entity pairs in the criminal context. Reference graphs are designed to ally the entity
resolution of non-obvious pairs of entities and as such it is important to create the condi‐
tions where this is the goal. So, deduplication is conducted first to ensure all obvious
entity resolutions are completed so as to leave only the non-obvious pairs.

In terms of the contextual performance of the ER model, of which the use of reference
graphs is but one feature, both runtime and quality metrics (precision, recall, and f-
measure) have been benchmarked against other ER models using Ferrante and Boyd’s
[20] comparison of software using synthetic data. Using the comparative performance
results from Ferrante and Boyd’s [20] study the ER model used here performs in the
“slow” and “moderate” brackets for the small and large record sets respectively.
However the quality metrics derived from the ER model used here (precision: 0.999,
recall: 0.994, f-measure: 0.996) on the Suspicious Transactions Graph significantly
outperform all benchmarked competitors (the top ranked software attained precision:
1.0, recall: 0.79, f-measure: 0.88), and using Ferrante and Boyd’s classification would
be classed as “very good”. The limitations of this comparator are obvious but give a
useful guide to performance for contextual purposes.

3.4 Performance Metrics

The following performance metrics have been used to assess the utility of the reference
graphs within the experiment; computational expense; scalability and accuracy.

Computational expense consists of the measurement of each of the four blocking
strategies across Equivalence Assessment (indexing) and Decision Management
modules in both states (reference graph used in decision management or not) within the
context of the entity resolution function and the overall entity resolution model.

Scalability is measured within the Equivalence Assessment module as the opti‐
mization of blocking remains a key research and applied problem. The primary
metric is the number of computations required; however the number of blocks and
the maximum number of entities within the blocks are important metrics to give a
sense of block distribution, and how that distribution translates into computational
performance.

Accuracy is measured simply by the number of pairs correctly resolved (true posi‐
tives). The introduction of error through incorrectly resolving two entities within the
context of the three data-sets generates a high cost and therefore the simple metric of
counting the number of true positives is core. By-products of using a simple metric are
that it was relatively simple to ensure each strategy was compared like for like, and the
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possibility of bias was reduced, and also the assessment of which strategy was most
performant is made straight forward.

Diversity of the blocking approaches as a collective is another important concept to
measure as in the real world the strategies are simply implemented as an alternate
parameter setting from which the user can select and tune a specific entity resolution
function. Not just one entity resolution function, but a number of entity resolution func‐
tions that together as a collective comprise the entity resolution model. Having said this
however the partitions derived from the experiment indicate a nested structure, so those
with a greater number of correctly resolved pairs are more diverse.

Table 1 outlines the scalability and accuracy of the reference graph and competing
algorithms. The measurement of scalability was achieved by measuring the number of
blocks generated, the maximum block size, the highest number ASM of computations
conducted on a block, and total ASM computations. The measurement of accuracy was
conducted by measuring the number of matches when the Given Name Reference Graph
was not used in the Decision Management module, and the number of matches when
the Given Name Reference Graph was used in the Decision Management module.

Table 2 illustrates the computational expense of the reference graph and competing
algorithms across the three datasets for pre-processing, Equivalence Assessment (indexing)
and Decision Management modules, the total run time for the Equivalence Assessment and
Decision Management modules, and the average run time for each ER function.

3.5 Experimental Results

From Tables 1 and 2 the performance profiles of each strategy is evident. The Meta-
Blocking Canopy strategy, as implemented, is not scalable as highlighted within scala‐
bility metrics and particularly the large number of total computations (80,103,833) but
due to the near exhaustive equivalence assessment is most accurate on the Suspicious
Transactions Graph with 317 (not using the GNRG) and 344 (using the GNRG) matches.
In terms of its speed the Meta-Blocking Canopy strategy is slower, however the high
accuracy of this approach means it remains a viable niche strategy on small graphs.

The Truncation strategy is scalable but performance will drop as the size of the
dataset increases into the millions of nodes as either the number of computations
increases sharply relative to the other algorithms or the truncation strategy is adjusted
and accuracy suffers. Performance is good on the Suspicious Transactions Graph both
in terms of expense and accuracy. This strategy is simple to implement, is fast on small
graphs and relatively scalable.

The Phonetic (Metaphone 3) strategy, surprisingly, is consistently the poorest
performer from an accuracy perspective, but the most scalable. The accuracy may be
due to the very diverse set of names contained within the Suspicious Transactions graph,
however the Companies graphs are less diverse and still the algorithm underperforms.
Run times are slow on small graphs but relatively quicker on the larger graphs.

The reference graph strategy has a relatively expensive pre-processing time, however
this one-off cost is offset under the context of the entity resolution model that will run
multiple entity resolution functions together as a cluster to perform the resolution.
Otherwise, the reference graph strategy consistently out-performed the other algorithms
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on both run time and accuracy. In terms of scalability the reference graph showed it is
scalable, and due to being represented in a graph optimization is possible.

Table 1. Experimental results: Scalability and accuracy.

Table 2. Experimental results: Computational expense (run time in seconds).
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Perhaps the most significant finding was the clear advantage of using the Given Name
Reference Graph to assist making decisions, especially considering there is no material
computational expense involved.

4 Discussion

The experimental results clearly mark the applied utility of the reference graph strategy,
and excitingly, the demonstrated applied utility is buttressed by a number of features
that extends the real-world value of this strategy.

The experimental results clearly indicate the relative scalability, expense, and accu‐
racy of the reference graph as a blocking strategy, across all graph types examined
showing encouraging performance and generalized applicability. Furthermore, the
reference graph has a number of features that extends this value under real-world condi‐
tions. From a human centered computing perspective the reference graph can be
improved over time by the curation of human experts annotating the relationships
between proper names, crucially including ensuring counter-factual relationships
between proper names do not exist (e.g.“Rabendra” ! = “Ravendra”), and validate the
performance of community detection.

The flexibility of the coarseness of partitioning, or indeed potential for over-lapping
classes, is another feature that enable meta-blocking like capabilities creating the oppor‐
tunity to tune the reference graph dependent on the contextual requirements demanded
by each individual set of instances.

As an adjunct to decision management the case for the use of reference graphs is
compelling. Performance was significantly enhanced with little to no material increase
in expense. From a criminal network perspective, as alluded to earlier, performance
enhancements targeting the non-obvious pairs is the focus and a very complex and chal‐
lenging problem. The results derived from the experiment are very encouraging from
this perspective, both in terms of dealing with the higher uncertainty of the Suspicious
Transactions Graph, and from a scalability perspective with the Companies Graphs. Of
course these are only indicative findings and further comparison against a variety of
“state of the art” algorithms using a diverse range of criminal datasets is required to
further validate the utility of reference graphs.

From a real world perspective the application of the ER model using reference graphs
within the criminal domain has significantly improved downstream models, designed to
detect, measure and prioritize risk, that consume the output from the ER model. It was
expected that the downstream benefit would be more amplified in anomaly detection
approaches, however there has proven to be a significantly improved performance across
the more generic models as well. Models such as shortest-path based models that identify
subgraphs of clusters of entities involved in suspicious transactions that are linked to
entities that generate illicit income (e.g. methamphetamine traffickers), and graph prop‐
agation models used across a range of criminal sub-domains. This provides initial tenta‐
tive support to the earlier assertion that the latent non-obvious pairs are of most impor‐
tance, and indeed this small set of latent actors may well be essential to the ongoing
criminal structural fabric of criminal networks.
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5 Extensions

A number of areas have been identified to extend the current implementation of reference
graphs.

The use of overlapping community detection approaches will undoubtedly increase
the accuracy of the reference graphs, however there is certainly a trade-off of making
the approach more complex and potentially significantly more expensive even if data
representations like hypergraphs are used.

The reference graphs are used as a binary attribute to drive blocking and support
decision management. However, there is the simple extension of deploying the attribute
as a graph-distance based metric that creates the opportunity for optimized blocking via
a meta-blocking implementation and at the decision management phase creates the
opportunity to use a more nuanced and sophisticated approach to support making deci‐
sions.

6 Conclusion

The use of reference graphs to bolster performance in entity resolution, at both indexing
and decision management stages, has been clearly demonstrated within this paper, with
both experimental results and the outlining of additional real-world benefits. This
coupled to the reference graphs wide applicability, simple implementation, and
numerous areas for extensions points to an entity resolution strategy that has great
potential for generating real-world value.

Specifically within the criminal domain the use of reference graphs within entity
resolution has been demonstrated to be both performant from an accuracy perspective,
which is critical when targeting non-obvious instances, and also performant from a
scalability perspective. This unlocks the ability to federate data between a criminal
network hub and multiple large heterogeneous datasets (the spokes), in addition to
providing quality accurate resolution with data characterised by incompleteness, high
uncertainty, and the presence of fake and spoof nodes.
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