
Chapter 7

Distributed Platforms and Cloud Services:
Enabling Machine Learning for Big Data

Daniel Pop, Gabriel Iuhasz, and Dana Petcu

Abstract Applying popular machine learning algorithms to large amounts of data

has raised new challenges for machine learning practitioners. Traditional libraries

do not support properly the processing of huge data sets, so the new approaches are

needed. Using modern distributed computing paradigms, such as MapReduce or

in-memory processing, novel machine learning libraries have been developed. At

the same time, the advance of cloud computing in the past 10 years could not be

ignored by the machine learning community. Thus, a rise of cloud-based platforms

has been of significance. This chapter aims at presenting an overview of novel

platforms, libraries, and cloud services that can be used by data scientists to extract

knowledge from unstructured and semi-structured, large data sets. The overview

covers several popular packages to enable distributed computing in popular

machine learning environments, distributed platforms for machine learning, and

cloud services for machine learning, known as machine-learning-as-a-service

approach. We also provide a number of recommendations for data scientists

when considering machine learning approach for their problem.

Keywords Machine learning • Data mining • Cloud computing • Big data • Data

scientist • Distributed computing • Distributed platforms

7.1 Introduction

Analyzing large amounts of data collected by companies, industries, and scientific

domains is becoming increasingly important for all impacted domains. The data to

be analyzed is no longer restricted to sensor data and classical databases, but it often

includes textual documents and Web pages (text mining, Web mining), spatial data,

multimedia data, or graph-like data (e.g., molecule configuration and social

networks).
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Although, for more than two decades, parallel database products such as

Teradata, Oracle, and Netezza have provided means to realize a parallel imple-

mentation of machine learning algorithms, expressing these algorithms in SQL

code is a complex and difficult-to-maintain task. On the other side, large-scale

installations of these products are expensive. Another reason for moving away

from relational databases is the exponential growth of the unstructured data (e.g.,

audio and video) and semi-structured data (e.g., Web traffic data, social media

content, sensor-generated data) in recent years. The needs of data science practi-

tioners with respect to data analysis tools vary greatly across different domains,

from medical statistics and bioinformatics to social network analysis or even in

physics. This diversity is equally important for the advancement of machine

learning tools and platforms. Consequently, in the past decade, researchers

moved from the parallelization of machine learning algorithms and support in

relational databases toward the design and implementation on top of novel

distributed storage (e.g., NoSQL data stores, distributed file systems) and

processing paradigms (e.g., MapReduce). From the business perspective, Soft-

ware-as-a-Service (SaaS) model opened up new opportunities for machine learn-

ing providers, who moved the stand-alone tools toward cloud-based machine

learning services.

In this chapter, we survey how distributed storage and processing platforms help

data scientists to process large, heterogeneous sets of data. The tools, frameworks,

and services included in this chapter share a common characteristic: all run on top

of distributed platforms. Thus, parallelization of machine learning algorithms,

either using multiple-core CPU or GPU, was not included here. The reader is

referred to [42], a recent comprehensive study covering that topic. We also avoided

commercial solution providers, small or big players, since their offerings are either

based on distributed open-source packages or they do not disclose the implemen-

tation details.

In the first section, we briefly introduce the reader to the machine learning field,

describing and classifying the types of problems and overviewing the challenges

of applying traditional algorithms to large, unstructured data sets. The first cate-

gory of tools considered in this survey covers tools, packages, and libraries that

enable data scientists to use traditional environments for data analysis such as R

Systems, Python, or statistics applications, in order to deal with large data sets. We

survey, next, the distributed platforms for big data processing, either based on

Apache Hadoop or Spark, as well as platforms specifically designed for distributed

machine learning. We also include a section on scalable machine learning services

delivered using Software-as-a-Service business model since they offer easy-to-use,

user-friendly graphical interfaces supporting users in quickly getting and

deploying models. The last section of the chapter summarizes our findings and

provides readers with a collection of best practices in applying machine learning

algorithms.
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7.2 Machine Learning for Data Science

The broadest and simplest definition of machine learning is that it is a collection of
computational methods that use experience, i.e., information available to the

system to improve performance or to make predictions [28]. This information

usually takes the form of electronic records collected and made available for

analytical purposes. These records can take the form of pre-labeled training sets

(usually by a human operator although this is not always the case). Another

important source of data is that resulting from direct interactions with a given

environment, either virtual, such as software interactions, network data, etc., or

relying on real-world natural scenarios, such as weather phenomena, water level,

etc. Data quality and quantity are extremely important in order to obtain an

acceptable learned model. Machine learning relies on data-driven methods that

combine fundamental concepts in the field of computer science with optimization,

probability, and statistics [28].

There is a wide array of applications to which machine learning can and is being

applied, such as taming (text mining and document classification), spam detection,

keyword extraction, emotion extraction, natural language processing (NPL),

unstructured text understanding, morphological analysis, speech synthesis and

recognition, optical character recognition (OCR), computational biology, face

detection, image segmentation, image recognition, fraud detection, network intru-

sion detection, board and video games, navigation in self-driving vehicles, plan-

ning, medical diagnosis, recommendation systems, or search engines. In all these

applications, we can identify several types of learning-related issues, which are:

• Classification – to assign each item from a data set to a specific category, e.g.,

given a document, assign a domain (history, biology, mathematics) to which it

belongs.

• Regression and time series analysis – to predict a real value for each item, e.g.,

future stock market values, rainfall runoff, etc.

• Ranking – to return an ordered set of features based on some user-defined

criterion (e.g., Web search).

• Dimensionality reduction (feature selection) – to use for transforming initial

large feature spaces into a lower-dimensional representation so that it preserves

the properties of the initial representation.

• Clustering – to group items based on some predefined distance measure. It is

usually used on very large data sets. In sociology, it can be used to group

individuals into communities [30].

• Anomaly detection – to conduct observation or series of observations which do

not resemble any pattern or data item in a data set [6, 37].

The most common classification techniques are called linear classifiers. In this

case, classification is expressed in the form of a linear function. This function

assigns scores to each possible category. Among the linear classifiers, we have

linear regression, perceptron, and support vector machines (SVM) [28]. Another
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form of classification is based on kernel estimation in the form of the k-nearest

neighbor (k-NN) algorithms. Decision trees such as C4.5 [28] are also used for this

type of problem and are based on information theory (difference in entropy), which

is used as the splitting criterion. Ensemble meta-algorithm-based techniques such

as AdaBoost [28] are also used although they have questionable performance on

noisy data sets. Some methods such as Classification and Regression Tree (CART)

algorithm can be used for both regression and classification problems. Naı̈ve Bayes,

for example, can also be used for both types of problems.

Clustering algorithms are largely split according to their particular definition of

what cluster model they use. Connectivity models (hierarchical clustering) are

based on distance connectivity. Centroid models, such as k-means (k-M), represent

each cluster with a single mean vector. Density models consider clusters as

connected dense regions from the data space. DBSCAN and OPTICS [28] are

two algorithms using this model. Statistical distribution-based models are also used.

Anomaly detection is a special case of either classification or clustering; thus, it

uses mostly the same algorithms and methodologies. Feature selections’ main goal

is the reduction of the amount of recourses required to analyze big data set. They are

extremely useful when no domain expert is available that could help in the

reduction of the dimensionality of the available data. There are a number of general

dimensionality reduction techniques such as principal component analysis (PCA),

kernel PCA, multilinear PCA, and wrapping methods [25].

In machine learning, there are different types of training scenarios [28]. Arguably

the most widely used type of training is called supervised learning. In this scenario,
the learner receives a set of labeled data for training and validation. The learned

prediction model can be then applied to a larger data set and identify all unseen data

points. This type of learning is used for classification and regression (time series

analysis). Supervised methods rely on the availability and accuracy of labeled data

sets. In unsupervised learning, the learner receives unlabeled data that it has to

group based on a distance measurement. In some scenarios, labeled data is

extremely hard to come by; thus, training a classification model is often unfeasible.

This type of learning is used for clustering, anomaly detections (a type of cluster-

ing), and dimensionality reduction.

In some cases, labeled data is only a small fraction of the overall training data

set. This is called semi-supervised learning. The idea is that the distribution of

unlabeled data can help the learner achieve a much better performance [11].

In reinforcement learning, the training is done using an evaluation function.

This means that training and testing are much more interlaced than in other

learning scenarios. The performance of an algorithm in a problem environment

is continuously evaluated through the monitoring and evaluation of its perfor-

mance. Favorable outcomes are rewarded, while unfavorable ones are punished.

Reinforcement learning is used in genetic algorithm, neural networks, etc. Online
learning is used when data is available in a sequential way. This means that the

mapping between data sets and labels is established each time a new data point is

received.
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Due to the popularity of data analytics, machine learning techniques are being

pursued by teams with complementary skills across very different businesses

(finance, telecommunications, life sciences, etc.). This section aims to classify the

diversity of groups of interests with respect to machine for big data. We must state

upfront that there is no clear line between these perspectives, as competencies and

expectations blur the edges and multidisciplinary teams are put in place to tackle

complex scenarios. Some of the groups are:

• Data scientists and machine learning practitioners: One way of approaching the
problem is from the data scientist’s perspective. Statisticians and data scientists

are now facing data set size explosion; thus, coping with large-size data sets is a

must. These are users with strong mathematical background, proficient in sta-

tistics and mathematical software applications, such as R, Octave, MATLAB,

Mathematica, Python, SAS Studio, or IBM’s SPSS, but less experienced in

coping with data sets of large dimensions, distributed computing, or software

development. Their expectation is to easily reuse the algorithms already avail-

able in their preferred language and be able to run them against large data sets on

distributed architectures (on-premise or cloud based). A later section in this

chapter entitled “Distributed and Cloud-Based Execution Support in Popular

Machine Learning Tools” overviews packages and tools available for this

purpose.

• Software engineers and developers: Teams of software engineers often face

client requirements asking for the transition from available (large) data ware-

house to actionable knowledge. These are users with a vast experience in

software development, skilled programmers in general-purpose programming

languages, and they “speak” parallel and distributed computing. Deep mathe-

matics and statistics are not necessarily their preferred playground, as they

expect tools and libraries to enable them to integrate advanced ML algorithms

in their systems and thus quickly get actionable results. They need fast, easy-to-

customize (less number of parameters), and easy-to-integrate algorithms that run

on distributed architectures and are able to fetch data from large data reposito-

ries. Tools addressing these requirements are discussed in a later section in this

chapter entitled “Distributed Machine Learning Platforms.”

• Domain experts: Domain experts (financial, telecommunications, physics,

astronomy, biotechnologies, etc.) know their data best, but they are less experi-

enced in ML algorithms and software tools. Ideally, they need off-the-shelf

software applications, easy to install and use, or cloud-based Software-as-a-

Service solutions allowing them to get insights on their data and produce reports

and executable models for further usage. A later section on “Machine Learning

as a Service” presents several machine learning services providers.

The dynamic of natural, social, and economic systems raises new challenges for

data scientists, such as:
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• Massive data sets. Data sets are growing faster, being common now to reach

numbers of 100 TB or more. The Sloan Digital Sky Survey occupies 5 TB of

storage, the Common Crawl Web corpus is 81 TB in size, and the 1000 Genomes

Project requires 200 TB of space, just to name a few.

• Large models. Massive data sets need large models to be learned. Some deep

neural networks are comprised of more than ten layers with more than a billion

parameters [24, 25], collaborative filtering for video recommendation on Netflix

comprises 1–10 billion parameters, and multitask regression model for simplest

whole-genome analysis may reach 1 billion parameters as well.

• Inadequate ML tools and libraries. Traditional ML algorithms used for decades

(k-means, logistic regression, decision trees, Naı̈ve Bayes) were not designed for

handling large data sets and huge models; they were not developed for parallel/

distributed environments.

• “Operationalization” of predictive models. “Operationalize” refers to integrate

predictive models into automated decision-making systems and processes on a

large scale in order to deliver predictions to end users, who will ultimately

benefit from them. Integrating these models into multiple platforms (Web,

stand-alone, mobile) across different business units requires a high degree of

customization, which slows deployment, drives up costs, and limits scalability.

• Lack of clear contracts. More recently, terms such as Analytics as a Service

(AaaS) and Big Data as a Service (BDaaS) are becoming popular. They com-

prise services for data analysis similarly as IaaS offers computing resources.

Unfortunately, the analytics services still lack well-defined service-level agree-

ments available for IaaS because it is difficult to measure quality and reliability

of results and input data, to provide promises on execution times and guarantees

on methods for analyzing the data. Therefore, there are fundamental gaps on

tools to assist service providers and clients to perform these tasks and facilitate

the definition of contracts for both parties [2].

• Inadequate staffing. Market research shows that inadequate staffing and skills,

lack of business support, and problems with analytics software are some of the

barriers faced by corporations when performing analytics [36].

In the next three sections, we discuss various machine learning tools.

7.3 Distributed and Cloud-Based Execution Support
in Popular Machine Learning Tools

Annual Nuggets survey [23] shows that R, Python, SQL, and SAS have been rated

the preferred languages of choice for the past 3 years. One of the early trends

matching cloud computing and data analysis was, around 2010s, the provision of

virtual machine images (VMI) for these popular systems (R, Octave, or Maple)

integrated within public cloud service providers, such as Amazon Web Services or

Rackspace. After several proofs of concept were successfully built, such as
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Cloudnumbers,1 CloudStat,2 Opani,3 and Revolution R Enterprise,4 the practice

today is to provide VMI through the public cloud providers’ marketplaces, such as

Amazon Marketplace. One can find Amazon Machine Images (AMI), via the

marketplace, for all the popular mathematical and statistics environments. Exam-

ples include Predictive Analytics Framework and Data Science Toolbox5 that

support both Python and R, BF Accelerated Scientific Compute for R with accel-

erated math libraries for boosted performance, or SAS University Edition for SAS

Studio.

Much more effort has been invested in the development of plug-ins for the most

popular machine learning platforms to allow data scientists to easily create and run

time-consuming jobs over clusters of computers. This approach allows ML practi-

tioners to reuse their existing code and adapt it for large data set processing, into the

same environment they used for prototyping. It also leverages existing infrastruc-

ture (grids, clusters) for large-scale distributed computation and data storage.

Table 7.1 synthesizes available plug-ins for distributed storage and processing for

the most popular languages of big data: R and Python.

Since R is the preferred option among machine learning practitioners, several

packages were developed in order to enable big data processing within R, most of

them being available under CRAN6 package Web page. These R extensions make

possible to distribute the computational workload on different types of clusters,

while accessing data from distributed file systems. First example is the RHadoop

[33], a collection of five R packages, that enables R users to run MapReduce jobs on

Table 7.1 Distributed processing and storage

Environment Package

Distributed processing

support

Distributed file system

access

R RHadoop Hadoop HDFS

RHIPE Hadoop HDFS

Segue for R Amazon Elastic MapReduce –

RHive HIVE HIVE

Snow Socket-based, MPI, PVM –

H5 – HDF5

Pbd* MPI NetCDF

Python pyDoop Hadoop HDFS

Anaconda Distributed and GPU HDFS, HDF5

IPython.

parallel

Distributed and parallel –

1 http://cloudnumbers.com
2 http://cs.croakun.com
3 http://opani.com
4www.revolutionanalytics.com
5 http://datasciencetoolbox.org
6 http://cran.r-project.org/web/packages/available_packages_by_name.html
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Hadoop by writing R functions for mapping and reducing. Similarly, RHIPE7 is

another R package that brings MapReduce framework to R practitioners, providing

seamless access to Hadoop cluster from within R environment. Using specific R

functions, programmers are able to launch MapReduce jobs on the Hadoop cluster,

with results being easily retrieved from HDFS. Segue8 for R project makes it easier

to execute MapReduce jobs from within the R environment on elastic clusters at

Amazon Elastic MapReduce,9 but lacks support for handling large data sets. RHive

is an extension enabling distributed computing via HIVE in R, by a seamless

integration between HQL (Hive Query Language) and R objects and functions.

Snow (Simple Network of Workstations) [41] and its variants (snowfall, snowFT,

doSnow) implement a framework that is able to express an important class of

parallel computations and is easy to use within an interactive environment like

R. It supports three types of clusters: socket based, MPI, and PVM. Support for

manipulating large data sets in R is available in H5 plug-in, which provides an

interface to the HDF5 API through S4 objects, supporting fast storage and retrieval

of R objects to/from binary files in a language-independent format. The pbd*

(pbdBASE, pbbMPI, pbdNCDF4, pbdSLAP, etc.) series is a collection of R pack-

ages for programming with big data, enabling MPI distributed execution, NetCDF

file system access, or tools for scalable linear algebra.

As far as Python is concerned, we should start by mentioning pyDoop,10 a

Python MapReduce and HDFS API for Hadoop [26]. Anaconda11 is a free, scalable

Python distribution for large-scale data analytics and scientific computing. It is a

collection of Python packages (NumPy, SciPy, Pandas, IPython, Matplotlib,

Numba, Blaze, Bokeh) that enables fast large data set access, GPU computation,

access to distributed implementations of ML algorithms, and more. IPython.paral-

lel12 provides a sophisticated and powerful architecture for parallel and distributed

computing [14] that enables IPython to support many different styles of parallelism

including single program multiple data (SPMD), multiple program multiple data

(MPMD), message passing using MPI, data parallel, and others. In a tutorial at

PyCon 2013, Grisel [15] presented how scikit-learn [32], a popular open-source

library for machine learning in Python, can be used to perform distributed machine

learning algorithms on a cheap Amazon EC2 cluster using IPython.parallel and

StarCluster.13 We should note as well that most of the libraries and frameworks

considered in the next sections offer Python language bindings, but we choose not

to include them in this section.

7 http://www.stat.purdue.edu/~sguha/rhipe/doc/html/index.html
8 http://code.google.com/p/segue
9 http://aws.amazon.com/elasticmapreduce
10 https://github.com/crs4/pydoop
11 https://store.continuum.io/cshop/anaconda
12 http://ipython.org/ipython-doc/dev/parallel/
13 http://star.mit.edu/cluster/
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Other mathematical and statistics environments have seen similar interest in

embracing big data processing. For example, HadoopLink14 is a package that

allows MapReduce programs being implemented in Mathematica and to run them

on a Hadoop cluster. It looks more like a proof of concept (PoC), being stalled since

2013. MATLAB has its Parallel Computing Toolbox which extends the capabilities

of MATLAB MapReduce and Datastore15 in order to run big data application.

MATLAB Distributed Computing Server also supports running parallel

MapReduce programs on Hadoop clusters.16

There are extensions to traditional machine learning libraries that enable execu-

tion on top of Hadoop or Spark clusters. Weka [16], one of the most popular

libraries for data mining, supports both Hadoop and Spark execution through

Weka Hadoop integration [17]. There is also a commercial distribution, Pentaho

[34], that offers a complete solution for big data analytics, supporting all phases of

an analytics process – from preprocessing to advanced data exploration and visu-

alization, which uses distributed Weka execution for analytics. Another example is

the KNIME’s [4] big data extension,17 which enables the access to Hadoop via

Hive. RapidMiner [20] has Radoop18 that enables the deployment of workflows on

Hadoop.

7.4 Distributed Machine Learning Platforms

After distributed processing and storage environments (Hadoop, Dryad, MPI)

reached an acceptable level of maturity, they became an increasingly appealing

foundation for the design and implementation of new platforms for machine

learning algorithms. These provide users out-of-the-box algorithms, which are

run in parallel mode over a cluster of (commodity) computers. These solutions do

not use statistics, or mathematics software packages, rather they offer self-

contained, optimized implementations in general-purpose programming languages

(C/C++, Java) of state-of-the-art ML methods and algorithms. This section focuses

on ML platforms specifically designed for distributed and scalable computing.

Table 7.2 summarizes some recent platforms.

The IBM Research Lab has been one of the pioneers who invested in distributed

machine learning frameworks. Nimble [12] and SystemML [13] are two high-level

conceptual frameworks supporting the definition of ML algorithms and their exe-

cution on Hadoop clusters. Nimble, a sequel to IBM’s Parallel Machine Learning

Toolbox [31], features a multilayered framework enabling developers to express

14 https://github.com/shadanan/HadoopLink
15 http://www.mathworks.com/help/matlab/large-files-and-big-data.html
16 http://www.mathworks.com/help/distcomp/big-data.html
17 https://www.knime.org/knime-big-data-extension
18 https://rapidminer.com/products/radoop/
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their ML algorithms as tasks, which are then passed to the next layer, an

architecture-independent layer, composed of one queue of DAGs of tasks, plus

worker thread pool that unfolds this queue. The bottom layer is an architecture-

dependent layer that translates the generic entities from the upper layer into various

runtimes, the only distributed environment supported within the proof of concept

being Hadoop alone. The layered architecture of the system hides the low-level

control and choreography details of most of the distributed and parallel program-

ming paradigms (MR, MPI, etc.), it allows developers to compose parallel ML

algorithms using reusable (serial and parallel) building blocks, but also it enables

portability and scalability. SystemML proposes an R-like language (declarative

Table 7.2 Distributed ML frameworks

Name License ML Problem Distr. Env. Comm. Lang.

Petuum Open

source

(Sailing

Lab)

DL, CLS, CLU,

RGR, MET, TOP

Clusters or Ama-

zon EC2, Google

CE

Medium C++

Jubatus LGPL v2.1 CLS, RGR, ANO,

CLU, REC, Graph

Zookeeper Medium C++

MLlib

(MLBase)

Apache 2.0 RGR, CLS, REC,

CLU

Spark Large Scala,

Java

Mahout Apache 2.0 Collaborative filter-

ing, CLS, CLU, DR,

TOP

Hadoop, Spark,

H2O

Medium Java

Oryx Apache 2.0 REC, CLS, RGR,

CLU

Hadoop, Spark Low Java

Trident-ML Apache 2.0 CLS, RGR, CLU,

DR

Storm Low Java

H2O Apache 2.0 DL, RGR, CLS,

CLU, DR

Hadoop Medium Java

GraphLab

Create

Apache 2.0 CLU, CLS, RGR,

DL, REC

Hadoop, Spark,

MPI

High C++

Vowpal

Wabbit

Ms-PL CLS, RGR, CLU Hadoop Medium C++

Deeplearning4J Apache 2.0 DL Hadoop, Spark,

AWS, Akka

Medium Java,

Scala

Julia’s MLBase MIT

License

CLS Julia Julia

Flink-ML Apache 2.0 CLS, RGR, CLU,

REC

Flink Hadoop Low Scala

DryadLINQ Dryad, Hadoop

YARN

None C#,

LINQ

Nimble NA CLU, FRQ, ANO, Hadoop None Java

SystemML NA RGR, PageRank Hadoop None DML

ANO anomaly detection, CLS classification, CLU clustering, DL deep learning, DR dimensionality

reduction, FRQ frequent pattern, MET metrics learning, REC recommendation, RGR regression,

TOP topic modeling
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machine learning language) that includes linear algebra primitives and shows how

it can be optimized and compiled down to MapReduce. Authors report an extensive

performance evaluation on three ML algorithms (group nonnegative matrix factor-

ization, linear regression, PageRank) on varying data and Hadoop cluster sizes.

These two systems are purely research endeavors, and they are not available to the

community.

Most of the frameworks rely on Hadoop’s MapReduce paradigm and the under-

lying distributed file storage system (HDFS) because it simplifies the design and

implementation of large-scale data processing systems. Only a few frameworks

(e.g., Jubatus, Petuum, GraphLab Create) have tried to propose novel distributed

paradigms, customized to machine learning for big data, in order to optimize the

complex, time-consuming ML algorithms.

Recognizing the limitations and difficulties of adapting general-purpose distrib-

uted frameworks (Hadoop, MPI, Dryad, etc.) to ML problems, a team at CMU

under E. P. Xing lead designed a new framework for distributed machine learning

able to handle massive data sets and cope with big models. Petuum19 (from

Perpetuum Mobile) [8, 43] takes advantage of data correlation, staleness, and

other statistical properties to maximize the performance for ML algorithms, real-

ized through core features such as a distributed Parameter Server and a distributed

Scheduler (STRADS). It may run either on-premise clusters or on cloud computing

resources like Amazon EC2 or Google Compute Engine (GCE).

Jubatus20 is a distributed computing framework specifically designed for online

machine learning on big data. A loose model sharing architecture allows it to

efficiently train and share machine learning models by defining three fundamental

operations, viz., update, mix, and analyze [19]. Comparing to Apache Mahout,

Jubatus offers stream processing and online learning, which means that the model is

continuously updated with each data sample that is coming in, by fast, not memory-

intensive algorithms. It requires no data storage nor sharing, only model mixing. In

order to efficiently support online learning, Jubatus operates updates on local

models and then each server transmits its model difference that are merged and

distributed back to all servers. The mixed model improves gradually thanks to all

servers’ work.
GraphLab Create,21 formerly GraphLab project [27], is a framework for

machine learning that expresses asynchronous, dynamic, graph-parallel computa-

tion while ensuring data consistency and achieving a high degree of parallel

performance, in both shared-memory and distributed settings. It is an end-to-end

platform enabling data scientists to easily create intelligent apps at scale, from

cleaning the data, developing features, training a model, and creating and

maintaining a predictive service. It runs on distributed Hadoop/YARN clusters, as

19 http://petuum.org
20 http://jubat.us
21 https://dato.com/products/create
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well on local machine or on EC2, and it exposes a Python interface for an easy

accessibility.

Apache Mahout [29] is a scalable machine learning framework built on top of

Hadoop that features a rich collection of distributed implementations of machine

learning and data mining algorithms. Although initially created on top of Hadoop,

starting with version 0.10, it supports additional execution engines such as Spark

and H20, while Flink22 is a project in progress. The same release introduces

Mahout-Samsara, a new math environment created to enable users to develop

their own extensions, using Scala language, based on general linear algebra and

statistical operations. Mahout-Samsara comes with an interactive shell that runs

distributed operations on a Spark cluster. This makes prototyping or task submis-

sion much easier and allows users to customize algorithms with a whole new degree

of freedom.

H2O23 and MLlib [10] are two of the most actively developed projects. Both

feature distributed, in-memory computations and are certified for Apache Spark

(MLlib being part of Spark), as well as for Hadoop platforms. This in-memory

capability means that in some instances these frameworks outperform Hadoop-

based frameworks [44]. MLlib has been shown to be more scalable than Vowpal

Wabbit. One important distinction when comparing H2O with other MapReduce

applications is that each H2O node (which is a single JVM process) runs as a

mapper in Hadoop. There are no combiners nor reducers. Also, H2O has more built-

in analytical features and a more mature REST API for R, Python, and JavaScript

than MLlib.

Vowpal Wabbit24 [38] is an open-source, fast, out-of-core learning system,

currently sponsored by Microsoft research. It has an efficient implementation of

online machine learning, using the so-called hash trick [35] as the core data

representation, which results in significant storage compression for parameter

vectors. VW reduces regression, multiclass, multi-label, or structured prediction

problems to a weighted binary classification problem. A Hadoop-compatible com-

putational model called AllReduce [1] has been implemented in order to eliminate

MPI and MapReduce drawbacks, which relate to machine learning. Using this

model, a 1000-node cluster was able to learn a terafeature data set in one hour [1].

Julia25 is high-level, high-performance, and dynamic programming language. It

is designed for computing and provides a sophisticated compiler, distributed par-

allel execution, and numerical accuracy and has an extensive mathematical function

library. Comparing to traditional MPI, Julia’s implementation of message passing is

“one sided,” thus simplifying the process management. Furthermore, these opera-

tions typically do not look like “message send” and “message receive” but rather

resemble higher-level operations like calls to user functions. It also provides a

22 https://flink.apache.org/
23 http://0xdata.com/product/
24 https://github.com/JohnLangford/vowpal_wabbit/
25 http://julialang.org/
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powerful browser-based notebook using IPython. It also possesses a built-in pack-

age manager and it is able to call C functions directly. It is specially designed for

parallelism and distributed computation. It also provides a variety of classification,

clustering, and regression analysis packages26 implemented in Julia.

Another framework focusing on real-time online machine learning is Trident-

ML [22], built on top of Apache Storm, a distributed stream-processing framework.

It processes batches of tuples in a distributed way, which means that it can scale

horizontally. However, Storm does not allow state updates to append simulta-

neously, a shortage that hinders distributed model learning.

The Apache Oryx 227 framework is a realization of the lambda architecture built

on top of Spark and Apache Kafka. It is a specialized framework that provides real-

time, large-scale machine learning. It consists of three tiers: lambda, machine

learning, and application. The lambda tier is further split up into batch, speed,

and serving tier, respectively. Currently, it has only three end-to-end

implementations for the batch, speed, and serving layers (collaborative filtering,

k-means clustering, classification, and regression based on random forest).

Although it has only these three complete implementations, its main design goal

is not that of a traditional machine learning library but more of a lambda

architecture-based platform for MLlib and Mahout. At this point, it is important

to note several key differences between Oryx 128 and Oryx 2. Firstly, Oryx 1 has a

monolithic tier for lambda architecture, while Oryx 2 has three as mentioned in the

previous paragraph. The streaming-based batch layer in Oryx 2 is based in Spark,

while in the first version, it was a custom MapReduce implementation in the

computational layer. Two of the most important differences relate to the deploy-

ment of these frameworks. Oryx 2 is faster yet more memory hungry than the

previous version because of its reliance on Spark. Second, the first version

supported local (non-Hadoop) deployment, while the second version does not.

DryadLINQ29 [5] is LINQ30 (Language Integrated Query) subsystem developed

at Microsoft Research on top of Dryad [21], a general-purpose architecture for

execution of data-parallel applications. A DryadLINQ program is a sequential

program composed of LINQ expressions performing arbitrary side effect-free

transformations on data sets and can be written and debugged using standard .

NET development tools. The system transparently translates the data-parallel

portions of the program into a distributed execution plan, which is passed to the

Dryad execution platform that ensures efficient and reliable execution of this plan.

Following Microsoft’s decision to focus on bringing Apache Hadoop to Windows

systems, this platform has been abandoned, and Daytona project took off, which has

recently became Windows Azure Machine Learning platform.

26 http://mlbasejl.readthedocs.org/en/latest/
27 http://oryxproject.github.io/oryx/
28 https://github.com/cloudera/oryx
29 http://research.microsoft.com/en-us/projects/dryad/
30 http://msdn.microsoft.com/netframework/future/linq/
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Deeplearning4J31 is an open-source distributed deep-learning library written in

Java and Scala. It is largely based on ND4J library for scientific computation that

enables GPU, as well as native code integration. It is also deployable on Hadoop,

Spark, and Mesos. The main difference between this library and the others men-

tioned above is that it is mainly focused on business use cases, not on research. This

means that some features, such as parallelism, is automatic, meaning that worker

nodes are set up automatically.

Apache SAMOA32 is a distributed streaming machine learning framework. It

contains abstractions for distributed streaming machine learning algorithms. This

means that users can focus on implementing distributed algorithms and not worry

about the underlying complexities of the stream processing engines it supports

(Storm, S4, Samza, etc.).

7.5 Machine Learning as a Service (MLaaS)

This section focuses on Software-as-a-Service providers’ provision of machine

learning services as MLaaS. These services are accessible via RESTful interfaces,

and in some cases, the solution may also be installed on-premise (e.g., ersatz). The

favorite class of machine learning problems addressed by these services is predic-

tive modeling (BigML, Google Prediction API, EigenDog), while clustering and

anomaly detection receive far less attention. We did not include in this category the

fair number of SQL over Hadoop processing solutions (e.g., Cloudera Impala,

Hadapt, Hive), because their main target is not machine learning problems, rather

fast, elastic, and scalable SQL processing of relational data using the distributed

architecture of Hadoop.

Table 7.3 presents current MLaaS solutions as well as some of their key

characteristics. We have identified four characteristics: machine learning problem

support, data sources, model exporting, and model deployment. It is easily observ-

able that most MLaaS are designed to deal with common problems such as

classification, regression, and clustering. When it comes to data acquisition facil-

ities, all platforms support data upload (various formats csv, arff, etc.); some even

feature integration with different storage solutions (S3, HDFS, etc.). Predictive

model training, verification, and visualization are supported by all the solutions

listed in Table 7.3; however, not all support predictive model exporting via

PMML.33 Last but not least, some platforms support local Web services as well

as cloud deployment. In the next few paragraphs, we detail some of the more

important services from Table 7.3.

31 http://deeplearning4j.org
32 https://samoa.incubator.apache.org/
33 http://www.dmg.org/v4-1/GeneralStructure.html
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Windows Azure Machine Learning, formerly project Daytona, was officially

launched in February 2015 as a cloud-based platform for big data processing. This

comes with a rich set of predefined templates for data mining workflows, as well

with a visual workflow designer that allows end users to compose complex machine

learning workflows. In addition, it supports the integration of R and Python scripts

within workflows and is able to run the jobs on Hadoop and Spark platforms. The

built models are deployed in a highly scalable cloud environment and can easily be

accessed via Web services [39].

PredictionIO34 is based on an open-source software such as Spark. This means

that the solution can be deployed and hosted on any infrastructure. This is in sharp

contrast with Azure, which requires the data to be uploaded into Azure. Also, it is

possible to write custom distributed data processing tasks in Scala while on Azure

custom scripts can only be run on a single node. There are no restrictions on the size

of the training data not on the number of concurrent request. It can be deployed on

Amazon WS, Vagrant, Docker, or even starting from source code.

Table 7.3 Machine learning as a service

Name ML problems Data source

Model

export Deployment

Azure ML CLS, RGR,

CLU, ANO

Upload, Azure None Cloud

PredictionIO RGR, CLS,

REC, CLU

Upload, Hbase None Local, cloud

Ersatz Labs DL Upload None Cloud, local

ScienceOpsa

(ScienceBox)

RGR, CLS,

REC, CLU

S3, Upload PMML Cloud, local

Skymind DL Upload None Cloud, Local

BigMLb CLS, RGR, CLU Upload, S3, Azure,

OData

PMML Cloud

Amazon ML CLS, RGR, CLU S3, Redshift Upload None Cloud

BitYotac CLS, RGR, CLU S3, Azure None Cloud

Google Prediction

API

CLS, RGR,

CLU, ANO

Upload, Google Cloud

Storage

PMML Cloud

EigenDogd CLU, RGR Upload, S3 None Local, cloud

Metamarketse CLU, ANO Upload, HDFS None Local (Druid),

cloud

Zementis ADAPAf CLS, RGR, CLU S3, Azure, Upload,

SAP HANA

PMML Local, cloud

ahttps://yhathq.com/products/scienceops
bhttp://bigml.com
chttp://bityota.com
dhttps://eigendog.com/\#home
ehttp://metamarkets.com/
fhttp://zementis.com/products/adapa/amazon-cloud/

34 https://prediction.io/
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The recent popularity of deep learning has resulted in the creation of various

services which bundle deep-learning libraries (Theano, pylearn2, Deeplearning4j,

etc.) into a MLaaS format. Some good examples are Ersatz Labs35 and Skymind.36

These provide similar services and support distributed as well as GPU deployment.

Amazon Machine Learning service37 allows users to train predictive models in

the cloud. It targets a similar use case as Azure Machine Learning from Microsoft

and Google’s Predictive API. It has similar features to many large-scale learning

applications including visualization and basic data statistics. The exact learning

algorithm it uses is not known; however, it is similar to Vowpal Wabbit. There are

some limitations such as the inability to export the learned model or to access data

which is not stored inside Amazon (Amazon S3 or Redshift).

Google Prediction API38 is Google’s cloud-based machine learning tools that

can help to analyze data. It is closely connected to Google Cloud Storage39 where

training data is stored and offers its services using a RESTful interface, client

libraries allowing programmers to connect from Java, JavaScript, .NET, Ruby,

Python, etc. In the first step, the model needs to be trained on data, supported

models being classification and regression for now. After the model is built, one can

query this model to obtain predictions on new instances. Adding new data to a

trained model is called Streaming Training and it is also nicely supported. Recently,

PMML preprocessing feature has been added, i.e., Prediction API supports

preprocessing your data against a PMML transform specified using PMML 4.0

syntax and does not support importing of a complete PMML model that includes

data. Created models can be shared as hosted models in the marketplace.

7.6 Related Studies

Since 1995, when Thearling [40] presented a massively parallel architecture and the

algorithms for analyzing time series data, allegedly, one of the first approaches to

parallelization of ML algorithms, many implementations were proposed for ML

algorithm parallelization for both shared and distributed systems. Consequently,

many studies tried to summarize, classify, and compare these approaches. We will

address in this section only the most recent ones.

Upadhyaya [42] presents an overview of machine learning efforts since 1995

onward grouping the approaches based on prominent underlying technologies:

those employed on GPUs (2000–2005 and beyond), those using MapReduce tech-

nique (2005 onward), the ones that did not consider neither MapReduce nor GPUs

35 http://www.ersatzlabs.com/
36 http://www.skymind.io/about/
37 http://docs.aws.amazon.com/machine-learning/latest/mlconcepts/mlconcepts.html
38 https://developers.google.com/prediction/
39 https://developers.google.com/storage/
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(1999–2000 and beyond), and, finally, few efforts discussing the MapReduce

technique on GPU. Contrasting to this extensive overview, we focus on more recent

distributed and cloud-based solutions, regardless if they are coming from academia

or industry.

The book Scaling Up Machine Learning: Parallel and Distributed Approaches
by Bekkerman et al. [3] presents an integrated collection of representative

approaches, emerged in both academic (Berkeley, NYU, University of California,

etc.) and industrial (Google, HP, IBM, Microsoft) environments, for scaling up

machine learning and data mining methods on parallel and distributed computing

platforms. It covers general frameworks for highly scalable ML implementations,

such as DryadLINQ and IBM PMLT, as well as specific implementations of ML

techniques on these platforms, like ensemble decision trees, SVM, or k-means. The

book is a good starting point, but it does not aim at providing a structured view on

how to scale out machine learning for big data applications, which is central to our

study.

A broader study is conducted by Assunç~ao et al. [2], who discuss approaches and
environments for carrying out analytics on clouds for big data applications. Model

development and scoring, i.e., machine learning, is one of the areas they considered,

alongside other three: data management and supporting architectures, visualization

and user interaction, and business models. Through a detailed survey, they identify

possible gaps in technology and provide recommendations for the research com-

munity on future directions on cloud-supported big data computing and analytics

solutions. With respect to this study, our work goes into deeper details on the

specific topic of distributed machine learning approaches, synthesizing and classi-

fying existing solutions to give data scientists a comprehensive view of the field.

Interesting analyses have been made available through online press and blogs

[7, 9, 18]; they have reviewed open-source or commercial players for big data

analytics and predictions.

7.7 Conclusion and Guidelines

Analyzing big data sets gives users the power to identify new revenue sources,

develop loyal and profitable customer relationships, and run the organization more

efficiently and cost-effectively – overall, giving them competitive advantage over

other competitions. Big data analytics is still a challenging and time-demanding

task that requires important resources, in terms of large e-infrastructure, complex

software, skilled people, and significant effort, without any guarantee on ROI. After

reviewing more than 40 solutions, our key findings are summarized below.

Both, research and industry, have invested efforts in developing “as-a-Service”

solutions for big data problems (Analytics-as-a-Service, Data-as-a-Service,

Machine-Learning-as-a-Service) in order to benefit of the advantages cloud com-

puting provides such as resources on demand (with costs proportional to the actual

usage), scalability, and reliability.
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Existing programming paradigms for expressing large-scale parallelism

(MapReduce, MPI) are the de facto choices for implementing distributed machine

learning algorithms. The initial enthusiastic interest devoted to MapReduce has

been balanced in recent years by novel distributed architectures specifically

designed for machine learning problems. Nevertheless, Hadoop remains the state-

of-the-art platform for processing large data sets stored on HDFS, either in

MapReduce jobs or using higher-level languages and abstractions.

Although state-of-the-art tools and platforms provide intuitive graphical user

interfaces, current environments lack an interactive process, and techniques should

be developed to facilitate interactivity in order to include analysts in the loop, by

providing means to reduce time to insight. Systems and techniques that iteratively

refine answers to queries and give users more control of processing are desired.

From the perspective of resource management and data processing, new frame-

works able to combine applications from multiple programming models (e.g., MPI,

MapReduce, workflows) on a single solution need to be further investigated.

Optimization of resource usage and energy consumption, while executing data-

intensive applications, is another challenging research direction in the next decade.

Developing software that meets the high-quality standards expected for

business-critical applications remains a challenge, and quality-driven development

methodology and new tools need to be created. Building on the principles of model-

driven development and on popular standards, e.g., UML or MARTE, such an

approach will guide the simulation, verification, and quality evolution of big data

applications.

Further exploiting the scalability, availability, and elasticity of cloud computing

for model building and exposing of prediction and analytics as hosted services is

opening a competitive and challenging market. Tools and frameworks to support

the integration of mobile and sensor data into cloud platforms need to be further

developed.

At the end of this chapter, we review some of the best practices that the recently

published literature recommends, namely:

• Understand the business problem. Having a well-defined problem, knowing

specific constraints available for the problem under investigation, can greatly

improve performance of the ML algorithms.

• Understand the ML task. Is it supervised or unsupervised? What activities are

required to get the data labeled? The same features (attributes, domains, labels)

need to be available at both times, training and testing. Pick a machine learning

method appropriate to the problem and the data set. This is the most difficult

task, and here are some questions you should consider: Do human users need to

understand the model? Is the training time a constraint for your problem? What

is an acceptable trade-off between having an accurate answer and having the

answer quickly? Keep in mind that there is no single best algorithm; experiment

with several algorithms and see which one gives better results for your problem.

• In case of predictive modeling, carefully select and partition the data at hand in

training and validation set, which will be used to build the model, versus the test
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set that you will use to test the performance of your model. More data for

training the model results in better predictive performance. Better data always

beats a better algorithm, no matter how advanced it is. Visualize the data with at

least univariate histograms. Examine correlations between variables.

• Well prepare your data. Deal with missing and invalid values (misspelled words,

values out of range, outliers). Take enough time, because no matter how robust a

model is, poor data will yield poor results.

• Evaluate your model using confusion matrix, ROC (receiver operating charac-

teristic) curve, precision, recall, or F1 score. Do not overfit your model, because

the power lies in good prediction of unseen examples.

• Use proper tools for your problems. For low-level programming environments

you might find difficult to use, try first the machine learning services offered by

cloud service providers, which are easy to use and powered by state-of-the-art

algorithms.
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