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Interfacing Physical and Cyber Worlds:
A Big Data Perspective

Zartasha Baloch, Faisal Karim Shaikh, and Mukhtiar A. Unar

Abstract With the increase in utilization and pervasiveness of smart gadgets, there

is a rise in new application domains. For that reason, computational technologies

are progressing very rapidly, and computations are becoming an essential part of

our life. Cyber-physical systems (CPSs) are a new evolution in computing that are

integrated with the real world along with the physical devices to provide control in

real-time environments. CPS generally takes input through sensors and controls the

physical system through cyber systems using actuators. Such systems are really

complex and challenging as they control real environments. This necessitates a

proper interfacing of physical and cyber domains. To this end, the data generated by

physical devices is getting bigger and bigger that is collectively acknowledged as

big data. The real challenge in interfacing cyber and physical domains is the

efficient management of big data. Accordingly, this chapter discusses big data

sources and the relevant computing paradigms. It also classifies and discusses the

main phases of data management for interfacing CPS, viz., data acquisition, data

preprocessing, storage, query processing, data analysis, and actuation.

Keywords Big Data • Cyber-physical systems • Cloud computing • Data

analytics • Decision support systems • Data management • Big data sources

6.1 Introduction

The computing paradigm has evolved in line with the development of the latest and

newer technologies. With these advancements, there is a perception that 1 day

computing will become the fifth utility (after water, gas, electricity, and telephone)

which will be essential for everyday needs of the society [1]. Cyber-physical
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systems (CPSs) may support a new wave of computing by actively engaging it with

the real world in real time [2]. Cyber-physical system is a new generation of systems
with integrated computational and physical capabilities that can interact with
humans through many new modalities [3]. It is a bridge between the cyber world

and the physical world [4], where the physical world is simply the real world and

the cyber world comprised of computing paradigms.

A cyber-physical system is the integration of the physical world with the cyber

world to monitor and control physical entities by using feedback loops. It is an

emerging technology which provides computing and communication facilities to

the real-world systems and adds intelligence to the physical entities (see Fig. 6.1).

CPS uses digital capabilities of computing to control analog physical systems.

In cyber-physical systems, multiple static or mobile sensors and actuators may

be used that are integrated with intelligent decision support systems [5, 6]. The

Fig. 6.1 Generic cyber-physical system
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sensors are constrained due to low energy, low computational power, and less

storage capacity. Also a sensor does not have enough storage capacity to

accommodate huge datasets. Cloud computing is a solution to some of these

issues related to sensors. The combination of sensors and cloud is known as

sensor cloud [7]. The sensor cloud infrastructure is a vital part of CPS, where the

cloud performs computing (cyber) activities and sensor supports physical

activities [7].

Kim et al. [8] proposed a generic framework for design, modeling, and simula-

tion of CPS. The paper highlights many important features that need to be part of

that framework. The features include heterogeneous application support, physical

modeling environments that support mathematical expressions, scalability that

helps to increase in number of sensors deployed, support to connect with existing

simulation tools, and software reusability, and all the proprietary solutions and open

standards should be integrated into generic framework [8].

Due to the increase in the use of smart computing devices, a huge amount of data

is generated across the physical world. The term big data is used for those huge

datasets and is defined as a massive volume of both structured and unstructured
data that is so large that it is difficult to process using traditional database and
software techniques [9]. There are many sources of big data at the physical world;

there may be wireless sensor networks, social networks, wireless body area net-

works, mobile networks and vehicular ad hoc networks, etc. The data are physically

managed through some data management frameworks, and then that captured data

is sent to the cyber world for analytics.

The cyber world may include big data, big data management, cloud storage, data

analytics, and decision support systems. The continuous data growth poses many

challenges. The major issues are storing that data and extracting valuable informa-

tion from such a large amount of data. The data is not limited, but it is increasing

exponentially so there is a major issue to store this data efficiently and in a cost-

effective manner. The cloud storage provides a cost-effective way to facilitate the

users with ease of computing, storing, and networking resources. As the big data is

in large quantity and all of that data is not important, there is a need to extract

valuable data through data analytics. Big data analytics is the process of capturing,

arranging, and analyzing huge sets of data to identify patterns and valuable infor-

mation [10]. The analyzed data will be sent back to the physical world. Big data is a

buzz word today, so it provides wide space for research in this field. This chapter

presents the review of various technical aspects of big data for cyber-physical

systems.

The remaining chapter is organized as follows. Section 6.2 discusses various

sources of big data. Section 6.3 briefly describes data management at cyberspace

that includes cloud computing and decision support systems. Interfacing cyber

and physical worlds is discussed in Sect. 6.4. Section 6.5 identifies the main

challenges of cyber physical systems in terms of big data, and Sect. 6.6 concludes

the chapter.
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6.2 Data Generation by Physical Systems: Big Data
Sources

The first step in big data scenario is data generation. There are many sources of big

data which are generating highly diverse and complex datasets. These sources

include wireless sensor networks, mobile ad hoc networks, social networks, vehic-

ular networks, RFIDs, web servers, online transactions, etc.

Big data can be structured, unstructured, and semistructured. The data, which are

well organized and are based on some data model, are referred to as structured data.

On the other hand, the unstructured data does not follow any data model. The

semistructured data is the combination of structured and unstructured. It is a type of

structured data, but somehow it lacks the data model structure and uses markers or

tags to mark specific data elements. For example, emails contain unstructured data,

but it has some fields like date, time, sender, recipient, etc. which are considered to

be as structured data. Generally, big data is considered as unstructured.

There are three main characteristics of big data: volume, variety, and velocity

[11]. The volume characteristic is defined as the amount of data, variety as different
formats of data/data sources, and velocity is the speed at which the data is growing

[12]. The data is not just large in volume, but there is variety of complex datasets. The

real challenge is to handle that diversity and variety. We can categorize the data

growth as business application data, personal data, and machine data [13]. The data

generated by business applications is moderate in volume, variety, and velocity. This

type of data is highly structured data. It includes online transactions. The personal

data includes web logs, documents, emails, social media, etc. It is highly unstructured

data, and it is moderate in variety but high in volume and velocity. The data growth is

two times more than business application data. The third category is machine data

which include sensors, machine logs data, audio and video recordings, bio-informat-

ics, etc. This type of data is highly structured, and it is high in volume, variety, and

velocity [14]. The growth is three times more than business application data.

In this section, we discuss a number of common data sources such as wireless

sensor networks, social networks, body area networks, and vehicular ad hoc

networks.

6.2.1 Wireless Sensor Networks

In the past few years, the applications of wireless sensor networks (WSNs) have

been increasing rapidly, such as monitoring, event detection, surveillance, etc.

Wireless sensor network is a wireless network of many small devices which are

capable of sensing, computation, and communication. A sensor network consists of

multiple sensor nodes, which are small and lightweight. The sensor nodes are

generally dispersed in a sensor field as shown in Fig. 6.2. Every sensor node

contains a transducer, microcomputer, transceiver, and a power source [15, 16].

When a sensor node senses a physical phenomenon, an electrical signal is
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generated by the transducer, which is processed and stored by microcomputer. The

collected data will then be sent to the sink/gateway which sends it back to the end user

via Internet/satellite or any other means of communication [17].

The traditional technologies for data processing, storing, and reporting provide

limited support for analyzing WSN data. These technologies have become prohib-

itively expensive, while dealing with sensor-generated big data [18]. Even then,

they cannot handle the processing requirements for real-time processes such as fire

detection, natural disasters, and traffic control [18]. Thus, the research is directed

toward new technologies for processing big data. There are many attempts in

combining big data and WSN. Jardak et al. [19] proposed a data model for

structuring the stored data by allowing a wide range of analysis by using Bigtable,

Hadoop, and MapReduce algorithms. A Hadoop-based cloud storage solution for

WSN data is presented by Fan et al. [20]. Similarly, Ahmed et al. [21] proposed an

infrastructure for integrating cloud computing with WSNs.

6.2.2 Social Networks

A social network is a Web-based service that connects people with each other. The

user can make their profile and share information, experiences, ideas, etc. The most

popular social networking sites are Twitter [22], Facebook [23], Pinterest [24],

Google+ [25], Instagram [26], and many more. These social sites are very popular

among youngsters. Data is being shared on these networks, which include billions

of photos, videos, and other information. Most of the data is unstructured with high

volume and velocity.

Fig. 6.2 Generic wireless sensor network model
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The social networks can have enormous benefits for the society as it can help in

disasters. Through the social networks, the information about disasters can quickly

be disseminated among the people. The most prominent and widely used social

media networks like Twitter and Facebook are playing an important role in the

propagation of information which could be of different genres. The widespread use

of hashtag trends can help with easy access of the latest trends going on. In case of

any disaster or catastrophic crisis, the faster spread of information through these

sites could be an epidemic in saving lives and providing assistance for the further

course of action. One of the crisis situation examples could be the current deadliest

earthquake which struck Nepal in April 25, 2015 [27, 28], leaving behind thousands

of people dead and other severe casualties. It was within minutes that this news

broke through the whole social networks and spread throughout the whole world.

Immediate actions were taken to help the people affected by this devastating

tragedy. This was due to social networking sites which showed the world how

severe the situation was, and because of it various rescue and relief aids were

instantly sent from around the world to Nepal. Social networks have become a

binding force in the world where within seconds information could be propagated

from one corner of the world to the other. The only disadvantage is that we cannot

verify the credibility of the information being generated on the social networking

sites. Furthermore, social media analysis can be helpful for the organizations to

redesign their policies to address the public issues [29]. Social networks are leading

toward a new generation of crowd sourcing applications [30], which will help in

analyzing in-depth physical environments.

6.2.3 Vehicular Ad Hoc Networks

The research on integrating communication technologies with vehicles has begun

since long ago. The communication between vehicles by using ad hoc networks is

known as vehicular ad hoc networks (VANETs) [31, 32] as shown in Fig. 6.3. It is a

subcategory of intelligent transport systems and mobile ad hoc networks. The

vehicles can share necessary information with each other (referred to as vehicle

Fig. 6.3 Generic vehicular ad hoc network
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to vehicle or V2V), such as traffic information (traffic jam or accident), emergency

warnings, weather information, road condition warnings, etc. Furthermore, the data

can also be shared with the data center to the passing vehicles (referred as infra-

structure to vehicle or I2V and vice versa). It is not only important to pass along the

latest information but also to remove the outdated data [33, 34]. Since there are

many vehicles passing on the roads, they may consume the total bandwidth in data

dissemination. Therefore, it is important to efficiently transmit the data by using

limited bandwidth [35].

6.2.4 Wireless Body Area Networks

The recent development in wireless networks and microelectronics has resulted in

wireless body area networks (WBANs). A WBAN may consist of miniature

lightweight sensor nodes with low power and is used for healthcare application to

monitor physiological status of the human body, such as blood pressure, blood

sugar, ECG, pulse rate, etc. [36].

Figure 6.4 shows a generic architecture for WBAN-based health monitoring

system where sensor nodes senses medical data and sends it to the base station (BS).

Fig. 6.4 Generic WBAN scenario
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The BS then transmits the data to the doctor for real-time diagnosis, to a database

for keeping medical records or to a particular device that generates emergency

alerts via medical health service (MHS) center [37, 38].

The common factor in all the emerging data sources is that they all are

continuously generating data. The data is high in volume, with lots of variety

and with dynamic velocities [39]. In general, the characteristics of big data for

these data sources are summarized in Table 6.1. The data from these four sources

are mostly high in volume and velocity. As the WSN, VANET, and WBAN data

are sensor-generated data, so they have a vast data variety depending on the nature

of sensors used and are mostly highly structured. The social network data is

moderate to high in volume but does not have much data variety. This type of

data is mostly unstructured, as it mostly contains images and audio and video

streams.

6.3 Data in Cyber Systems: Big Data Management

Once the raw data is collected from the physical world, it is passed to the cyber

world for further processing. In this section, we will mainly consider how the data is

managed in the cyber world and what the prerequisites are. This section also

highlights the role of existing cloud computing paradigm and decision support

systems that solves the problem of storage and provides other computational

facilities.

6.3.1 Cloud Computing Paradigms

For the past few years, cloud computing and big data have been the two key fields

which gained significant attention of the researchers [40, 41]. A few years back,

large datasets assumed to be of a few terabytes, but nowadays this concept has

been changed, and individual applications are producing more than that: new units

being used as terabytes and petabytes. With this continuous growth of data, it is

difficult for an organization to handle the data which is too big, too versatile, and

Table 6.1 Comparison of big data sources

Big data sources Volume Velocity Variety Structured/unstructured

WSN High High Low Structured

Social networks Moderate to high High Low to moderate Unstructured

VANET Moderate to high Moderate Low to moderate Structured

WBAN High High High Unstructured
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too fast because the traditional storage methods are not designed for such a huge

data. One solution is cloud storage. Cloud computing is the emerging technology

that provides users to perform complex computations without maintaining expen-

sive hardware and software. Although cloud computing is currently used by

almost all the leading companies, still there is no universally agreed definition

[42]. Gartner [43] defines cloud computing as a computing style which provides

scalable and elastic IT-enabled capabilities as a service by using Internet tech-

nologies. It provides many computational services to the users such as infrastruc-

ture as a service (IaaS) [44], platform as a service (PaaS) [44], and software as a

service (SaaS) [44]. The IaaS offers storage and processing infrastructure as a

service. The user is provided virtualized infrastructure without worrying about

hardware resources [45]. The PaaS provides a platform for the software devel-

opers to write and upload their application code [45]. The SaaS is the most

common layer of cloud computing. It provides software application as a service

to users on pay-as-per-use basis [45]. Cloud computing has many advantages over

other computational services which includes parallel processing, security, scalable

data storage, and resource virtualization [46]. It also reduces maintenance of

infrastructure. Cloud computing supports virtualization; through virtualization

software, a simple computer can behave like a supercomputer at an affordable

cost [46].

There is a big challenge for researchers to design an appropriate platform for

cloud computing that handles it and performs data analytics. There are many cloud

service providers, whenever an enterprise tend to migrate from IT system to the

cloud, the decision can be difficult, as the enterprise want to evaluate cost, benefits,

and risks of using cloud computing [47]. Hashem et al. [47] presented two decision

support tools for migration to the public IaaS cloud. These tools help an enterprise

to make cloud migration decisions. The first tool is a cost modeling tool [47], which

can be used in modeling the requirements of enterprise data, applications, and

infrastructure along with the usage patterns of computational resource. This tool

can also be used to compare the cost of cloud services from different cloud service

providers with different deployment options and usage. The second tool, which is a

spreadsheet, shows the usage benefits of IaaS cloud, and it also provides beginning

point for risk assessment [47].

The data management applications in the cloud include two main data manage-

ment components: transactional data management and analytical data management

[48]. Transactional data management is the database related with transactions like

banking and online reservations [49]. Shared nothing is simply a distributed

architecture in which each node consists of a processor, main memory, and disk,

and the nodes communicate with each other via interconnecting network [50]. For

implementation of transactional data management, the usage of shared nothing

architecture may result in the complex distributed locking and commit protocols

[48]. There is an extensive risk of storing transactional data on untrusted host

because of the sensitive information which includes credit card numbers and pin

codes. Analytical data management is for the applications that query a data store for
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business intelligence and decision making purposes [48]. Its scale is larger than

transactional database management. The analytical data management systems are

best suited for execution in a cloud environment. Generally, for implementation of

analytical data management, the use of shared nothing architecture is well suited.

The atomicity, consistency, and isolation are easy to obtain as compared to

transactional data.

6.3.2 Service-Oriented Decision Support Systems

Decision support system (DSS) is a computer application that analyzes business

data and presents it in a way so that users can make business decisions more easily

[51]. It may use artificial intelligence for analyzing data. DSS finds certain patterns

in data which helps humans to take decisions. For example, DSS helps doctors to

diagnose the disease on the basis of symptoms.

There are three service models for service-oriented DSS [52], namely, data as a

service (DaaS), information as a service (IaaS), and analytics as a service (AaaS).

These are discussed in the following subsections.

6.3.2.1 Data as a Service

The service-oriented architecture provides access to the data from anywhere,

independent of the platform. The data as a service provides the business applica-

tions, a facility to access the data wherever it resides [53]. With the provision of

DaaS, the data quality can be maintained at central place, i.e., at cloud. According

to Demirkan et al. [52], the data cleansing and data enriching can be done by two

solutions, namely, master data management (MDM) and customer data integration

(CDI), where customer data can be placed anywhere and can be accessed as a

service through any application that has service provision.

6.3.2.2 Information as a Service

Sometimes the information repositories at organizations are not efficiently designed

to transmit information to the required destinations; this is due to the increased

complexity of processes and architectures. Demirkan et al. [52] defines information

as a service as an idea to make information quickly available to users, processes,

and applications in an organization. This shares real-time information with emerg-

ing applications and hides complexities. It increases availability with virtualization.

It also provides master data management (MDM), content management services,

and business intelligence services [52].
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6.3.2.3 Analytics as a Service

Analytics as a Service can be defined as the combination of cloud computing and

big data analytics [53]. It enables data scientists to access datasets that are centrally

managed by cloud providers. The business analysts can make decisions effectively

and delivers successful outcomes. AaaS is a cloud-based analytical platform, where

several data analytical tools are available, which can be configured by end users to

process and analyze large amounts of heterogeneous data.

6.4 Interfacing Cyber World with Physical World

The error-free interaction between cyber and physical worlds is not an easy task

because the physical world is mostly unpredictable. The most critical element is

that human lives are dependent on the system. Thus, availability, connectivity,

predictability, and repeatability are very much important for the cyber-physical

interface [54].

In general, CPS can be divided into three parts: physical world, cyber world, and

interfacing physical and cyber worlds. The sensors sense physical characteristics,

then the sensed data is passed to cyber world to perform computations, and finally,

response is generated through some actuators (see Fig. 6.1).

The physical components may include power sources, energy storage, and

physical transducers that perform energy conversions in physical domains

[55]. The cyber components may include data stores, computation, and I/O inter-

faces. The interface contains both physical and cyber components and adds a few

more components to connect them. Rajhans et al. [56] presented two connector

types for modeling the interface between cyber and physical worlds. The connec-

tors are physical-to-cyber (P2C) and cyber-to-physical (C2P) connectors. Simple

sensors can be used for physical-to-cyber connector type and actuators can be used

for cyber-to-physical connector type. For the complex interfaces in CPS, physical-

to-cyber transducer and cyber-to-physical transducer may also be used, which have

ports to cyber and physical components on each side [56].

Applications of CPS apparently have potential to overshadow the twentieth-

century IT advancements. CPS applications include many components that coop-

erate through an unpredictable physical environment. In this regard, reliability and

security are major issues to be resolved. The CPS applications include transporta-

tion, defense, energy and industrial automation, health and biomedical, agriculture,

and other critical infrastructures [57].

Cyber-physical cloud computing is the integration of CPS and cloud computing.

The CPCC architectural framework is “a system environment that can rapidly build,

modify, and provision cyber physical systems composed of a set of cloud comput-

ing based sensor, processing, control, and data services” [58]. The customers can

access available resources through Internet independent of location and devices.
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CPCC automatically manages all the resources. CPCC can benefit many systems

such as traffic management, intelligent power grids, disaster management systems,

healthcare, etc. [58].

Despite the fact that data management is the focal point of interest for many

researchers, there is still lack of an agreed-upon definition for data management. It

includes many phases. The data management phases are defined by many

researchers; these steps depend on the nature of data to be managed. Some phases

can be added or removed accordingly. We will discuss some of them in this section.

In TDWI report [39], the data management is defined as data collection, storage,

processing, and delivery, and it considers data management as a broad practice that

includes many data disciplines such as data quality, data integration, data

warehousing, event processing, database administration and content management,

etc. According to Mokashi et al. [59], data management includes data collection,

data storage, and query processing. Padgavankar et al. [60] consider data manage-

ment as a four-step process, i.e., data generation, big data acquisition, big data

storage, and data analysis. Furthermore, Sathe et al. [61] use four tasks for WSN

data management, i.e., data acquisition, data cleaning, query processing, and data

compression.

Accordingly, we classify the main phases of data management for interfacing

CPS as data acquisition, data preprocessing, storage, query processing, data anal-

ysis, and actuation.

6.4.1 Data Acquisition

Data acquisition is simply data gathering or data collection. As the physical world is

generating huge datasets, the data acquisition process determines which data should

be collected along with minimal energy consumption. This is challenging task,

because of the data uncertainty due to natural errors, noise, and missed readings in

sensor data [62]. It is responsible for efficiently collecting samples from sensors in

CPS. In sensor data acquisition, the main objective is to achieve energy efficiency

because sensors are battery powered and located mostly at unreachable locations.

Sathe et al. [61] presented model-based data acquisition techniques that are

designed to handle challenges such as minimal energy consumption and

communication cost.

6.4.2 Data Preprocessing

In the data acquisition phase, the raw data gets collected. The acquired sensor

datasets may sometimes contain erroneous or redundant data, which will definitely

occupy more storage space and will affect data analysis [60]. Therefore, before data
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storage, preprocessing may be applied which may include data cleaning, data

fusion, and data compression [60].

6.4.2.1 Data Cleaning

It is a process of finding incomplete, inaccurate, and unreasonable data and then

correcting the errors to improve data quality [63]. In the data cleaning process, the

errors will be removed from raw sensor data. For incomplete datasets, regression or

interpolation models can be used to reconstruct missing data. Alonso et al. [64]

proposed an extensible receptor stream processing (ESP) framework for online data

cleaning of the acquired sensor data streams.

6.4.2.2 Data Fusion

As the name shows, data fusion combines data from various data sources. Sensor

fusion is a technique to merge data from many sources to provide accurate and

comprehensive information [65]. It is a technique to address sensor impairments.

Some other terms are also used in the literature that are related to data fusion such as

decision fusion, multisensor fusion, and information fusion.

Data fusion is a technique of combining data from various sensors and informa-

tion from related databases to attain accuracy and more specific inferences than by

using a single sensor [66]. The data fusion techniques can be categorized into three

categories, that is, data association, state estimation, and decision fusion [67].

6.4.2.3 Data Compression

As the sensors continuously generate huge datasets, and sometimes the collected

data contains redundant data, this redundancy is common in environmental moni-

toring. The data compression techniques can help to reduce the redundancy which

helps in reducing storage space [60]. Data transmission is more energy consuming

than computation; thus, reduced data size, before data transmission, will minimize

the overall energy consumption [68]. Different data compression schemes have

been discussed by Kimura et al. [68]. Sathe et al. [61] also discussed many data

compression techniques such as linear approximation, model approximation, and

orthogonal transformation. Marcelloni et al. [69] introduces a new lossless com-

pression algorithm that is suitable for reduced computational and storage resources

of a WSN node. Many other techniques are proposed in the literature, some of them

are derived from signal processing [70] and some has used correlations between

sensor data to compress the data streams [71–73].
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6.4.3 Data Storage

Due to the limitations of sensors, it is important to store the sensor data efficiently

elsewhere [74], to improve the data retrieval and analytics processes. As the sensors

generate huge datasets, the question arise: do all the generated data is required to be

stored? For different applications, the answer could be different. For example, in

real-time applications, mostly, the recent data is important [75], so there is no need

to keep all the data for long periods. In such cases, live data streaming will be an

appropriate approach. In some applications, the historical data need to be stored for

future analysis, in those cases; the historical storage approach will be appropriate

[76]. For a variety of applications, both the storage approaches can be combined to

make an efficient storage system, but this could be very challenging [75].

The second important issue is determine where to store that data. Many

researchers have done work in this direction. Three data storage methods for

WSN have been discussed by Xing et al. [74]; these are local storage, external

storage, and data centric storage (DCS). In local storage, only short-lived data is

stored in the sensor node. In external storage, data is stored at an external point for

further processing. While in data-centric storage, data is stored along with the name

or location. In DCS, the related data is classified and named according to its

meaning. The data with the same name will be stored in the same sensor node.

For a particular name, the user queries will be sent directly to that particular node

which holds that named data [59].

For live querying data, many data management techniques have been proposed,

whereas for querying historical data, only a few data management solutions have

been developed. Those techniques are discussed by Diao et al. [76].

With the technology advancements, the storage devices are becoming more

energy efficient and cheaper in price. Thus the sensor networks are transforming

from communication-centric to storage-centric perspective which provides a net-

work that efficiently stores data from sensors [76, 77]. The data can be batched or

accessed later. Energy efficiency can be improved by batching sensed data. In

storage-centric sensor network, the applications must be delay tolerant because

the data is not transmitted immediately. For the applications where immediate

response is needed, delay cannot be tolerated, in such cases communication-centric

approach is appropriate [77].

6.4.4 Query Processing

Another important component of data management is data retrieval or query

processing. Many important model-based query processing techniques, which aim

to process queries by retrieving minimum amount of data, are presented by Sathe

et al. [61]. Apart from that, these techniques also handle missing data and create an

abstraction layer on sensor network by using these models [78, 79]. Some of the
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techniques are based on hidden Markov model (HMM) [80] or dynamic probabi-

listic model which is for spatiotemporal evolution of the data from sensors [79].

For querying the real-time applications of CPS, different researchers have

developed many tools that can be named as information flow processing (IFP)

systems [81]. Information flow processing is an application domain where users are

required to collect data from various data sources to process it within due time

[81]. After processing data, the collected data is generally discarded, except some

critical applications where historical analysis is important. This is done using two

popular models that are data stream processing [82] and complex event processing

models [83]. The data stream processing model is processing data from various

sources to produce output data streams. The data stream management system

(DSMS) is also based on database management systems (DBMS) with a few

differences such as DBMSs deals with data that is not updated constantly, whereas

DSMSs are specially designed to deal with data that is updated continuously

[81]. Apart from few differences, there are more similarities in between both

of them.

The recent developments in DSMSs are reviewed by Golab et al. [84]. The

complex event processing model considers information flow items as notification of

events of the physical world, which will be filtered and combined to visualize what

is happening in the form of high-level events [81]. The approach mainly focuses to

detect patterns of low-level events that will eventually be combined to represent the

high-level events that will be notified to the parties that are interested. An archi-

tecture for real-time analysis and processing of complex-event streams of sensor

networks, which is based on semantically rich event models, is presented by Dunkel

et al. [85].

6.4.5 Data Analysis

The data analysis is the most significant phase of data management for CPS

interfacing. As CPS data is larger in magnitude, the real challenge is to extract

the insight value from it which is valuable. The purpose of data analysis is to sift

valuable information. It helps organizations to better cope with the needs of their

customers and to make better decisions [86].

The traditional analytical methods, based on statistics and computer science,

may still be used for big data analysis, such as cluster analysis, factor analysis,

correlation analysis, regression analysis, real-time analysis, offline analysis, mem-

ory level analysis, business intelligence (BI) analysis, and massive analysis

[60]. Some advanced analysis techniques are also required to handle the complexity

of real-world heterogeneous datasets. Big data analytics is the set of modern

techniques that are designed to operate on heterogeneous data with large magni-

tudes [87]. The intelligent quantitative methods, such as artificial intelligence,

robotics, artificial neural networks, or machine learning, can be used to explore

and to identify hidden patterns and their relationships [87].
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In a typical CPS for environment monitoring, most of the collected data is

considered as regular, but some of them may be irregular; such data is known as

atypical data [88]. Atypical data is extremely crucial as it identifies a change in

environmental condition; therefore, such data need to be analyzed. Different

approaches have been discussed in the literature [88–90] to analyze atypical data

in the CPS. Tang et al. [91] proposed a method named as Tru-alarm, which finds out

trustworthy alarms for the cyber-physical systems. It uses data analysis to eliminate

noisy data that can cause false emergency alarms.

6.4.6 Actuation

Actuation is the most crucial element in CPS because it controls the environment.

In many CPS applications, sensing data is not just sufficient, but a response is also

required to show how the system reacts in a particular situation [92]. For example,

in fire alarm systems, the actuators may be deployed to shower water on the fire.

Another example could be of an agricultural environment where crops can be

monitored and pesticides can be sprinkled by an actuation process if needed.

Data actuation is the process in which the processed data is sent to actuators to

perform some action. It transfers data back to the physical systems. Thouin

et al. [93] discussed different actuation strategies to acquire desired actions to be

performed on physical devices. A dynamic actuation strategy is group of decision

rules to find the actuation nature which will be executed throughout the course of

operations in a wireless sensor and actuator networks [93].

6.5 Future Challenges and Opportunities

The CPS is a multidisciplinary technology, which involves communication and

networks, embedded systems, and semantic technologies. To take the maximum

benefit from CPS and to handle big data that flows in between the cyber and

physical worlds, there are many challenges to be addressed. A few challenges of

CPS in big data perspective are given below.

Volume As discussed earlier, CPS data is enormous and keeps growing continu-

ously, processing that huge dataset can lead to many challenges. Data abstraction,

i.e., summarizing the data and making it human comprehensible, is one of the

biggest challenge for big data generated across CPS. Another challenge could be

efficient use of distributed processing to scale the CPS computations. The simple

computations can become complex when scaling from terabytes to petabytes. Even

sequential scans to petabytes data takes too much time. The indexing techniques are

also very challenging while scaling to huge volume.
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Variety There is a huge variety of datasets with different data formats, which need

to be integrated together. As the data is collected from distinct sources, the structure

of data can be complex and data processing can also be very complex. Thus,

efficient techniques are needed to cope with the increasing variety of data.

Velocity With these fast growing datasets, it is challenging to focus on the data

trends and the correlations between data. There is a great need of robust and real-

time techniques to cope with velocity of the data generation and processing.

Veracity Sometimes, the sensors in a CPS generate erroneous data, or some data is

missed due to erroneous communication. Therefore, it is challenging to find

trustworthiness of the data.

Value The main challenge of interfacing CPS is to transform the collected raw data

into useful information in order to facilitate the decision making process. The

efficient transformation techniques are needed to provide the accurate value of

the information.

Query Load Generally, the query loads vary and are unpredictable. Due to lack of

flexibility, it is complex to handle these variations. Conti et al. [94] proposed a new

term data vitalization to sense the query load variations. There is still lot of work

needed to optimize the query load in accordance with the needed information and

available resources.

Quality of Service The methodologies to precisely capture and communicate

information and the quality needs of an application should be researched. Due

to increase in scalability and complexity of data, the computational techniques and

their results are very complex to reproduce. Thus, the relationship between data

from information producing systems and the operational systems need to be

studied such that application’s quality of service requirements are fulfilled

efficiently.

Knowledge Association The constant sensor data streams are required to be

processed by CPS. These streams need to be efficiently associated with the existing

knowledge [6, 58]. For the complex and uncertain data, the temporal and spatial

correlations must be used with data mining tools to retrieve valuable knowledge

[6]. There is very little work in this direction, and more research is needed for

efficient knowledge association across CPS.

Open CPS Architecture A new open architecture is required, which can be

customized in different situations by different application scenarios. The physical

components are mostly unreliable; tools are needed to build a reliable CPS that

should be resilient to tolerate malicious attacks on the data [57]. For the complex

design of CPS, new modeling and analytical tools are essential to be

utilized [95].
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6.6 Conclusion

In the era of advanced computing, there is an emergent and rapid technological

enhancements in the fields of embedded systems, human computer interaction,

cloud computing, data analysis, cyber-physical systems, and many other computing

aspects. Cyber-physical systems, a new wave of computing, have enabled many

applications that were not practical before. The data from cyber-physical systems is

enormous and growing constantly which poses many challenges in this field. This

chapter discusses the state-of-the-art of the cyber-physical systems from big data

perspective. The data generation sources, cyberspace paradigms, and interfacing

them with the physical and cyber world have been discussed. From data generation

to its storage, different phases of data management for interfacing the two worlds

have also been elaborated. The main issues are efficient storage and processing of

cyber-physical systems big data. The cyber-physical system cloud computing

infrastructure has also been discussed which provides the framework to interface

with the computing devices. Furthermore, the research issues related to big data in

cyber-physical systems have been highlighted. The cyber-physical systems are in

its way of development; therefore, significant issues and challenges must be

addressed by researchers for long-term success.
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