
Zaigham Mahmood    Editor 

Data Science 
and Big Data 
Computing
Frameworks and Methodologies



Data Science and Big Data Computing



ThiS is a FM Blank Page



Zaigham Mahmood

Editor

Data Science and Big Data
Computing

Frameworks and Methodologies



Editor
Zaigham Mahmood
Department of Computing and Mathematics
University of Derby
Derby, UK

Business Management and Informatics Unit
North West University
Potchefstroom, South Africa

ISBN 978-3-319-31859-2 ISBN 978-3-319-31861-5 (eBook)
DOI 10.1007/978-3-319-31861-5

Library of Congress Control Number: 2016943181

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland



To
Rehana Zaigham Mahmood:
For her Love and Support



ThiS is a FM Blank Page



Preface

Overview

Huge volumes of data are being generated by commercial enterprises, scientific

domains and general public. According to a recent report by IBM, we create 2.5

quintillion bytes of data every day. According to another recent research, data

production will be 44 times greater in 2020 than it was in 2009.

Data being a vital organisational resource, its management and analysis is

becoming increasingly important: not just for business organisations but also for

other domains including education, health, manufacturing and many other sectors

of our daily life. This data, due to its volume, variety and velocity, often referred to

as Big Data, is no longer restricted to sensory outputs and classical databases; it also
includes highly unstructured data in the form of textual documents, webpages,

photos, spatial and multimedia data, graphical information, social media comments

and public opinions. Since Big Data is characterised by massive sample sizes, high-

dimensionality and intrinsic heterogeneity, and since noise accumulation, spurious

correlation and incidental endogeneity are common features of such datasets,

traditional approaches to data management, visualisation and analytics are no

longer satisfactorily applicable. There is therefore an urgent need for newer tools,

better frameworks and workable methodologies for such data to be appropriately

categorised, logically segmented, efficiently analysed and securely managed. This

requirement has resulted in an emerging new discipline of Data Science that is now
gaining much attention with researchers and practitioners in the field of Data
Analytics.

Although the terms Big Data and Data Science are often used interchangeably,

the two concepts have fundamentally different roles to play. Whereas Big Data

refers to collection and management of large amounts of varied data from diverse

sources, Data Science looks to creating models and providing tools, techniques and

scientific approaches to capture the underlying patterns and trends embedded in

these datasets, mainly for the purposes of strategic decision making.

vii



In this context, this book, Data Science and Big Data Computing: Frameworks
and Methodologies, aims to capture the state of the art and present discussions and

guidance on the current advances and trends in Data Science and Big Data Ana-

lytics. In this reference text, 36 researchers and practitioners from around the world

have presented latest research developments, frameworks and methodologies, cur-

rent trends, state of the art reports, case studies and suggestions for further under-

standing and development of the Data Science paradigm and Big Data Computing.

Objectives

The aim of this volume is to present the current research and future trends in the

development and use of methodologies, frameworks and the latest technologies

relating to Data Science, Big Data and Data Analytics. The key objectives include:

• Capturing the state of the art research and practice relating to Data Science and

Big Data

• Analysing the relevant theoretical frameworks, practical approaches and meth-

odologies currently in use

• Discussing the latest advances, current trends and future directions in the subject

areas relating to Big Data

• Providing guidance and best practices with respect to employing frameworks

and methodologies for efficient and effective Data Analytics

• In general, advancing the understanding of the emerging new methodologies

relevant to Data Science, Big Data and Data Analytics

Organisation

There are 13 chapters in Data Science and Big Data Computing: Frameworks and
Methodologies. These are organised in three parts, as follows:

• Part I: Data Science Applications and Scenarios. This section has a focus on Big
Data (BD) applications. There are four chapters. The first chapter presents a

framework for fast data applications, while the second contribution suggests a

technique for complex event processing for BD applications. The third chapter

focuses on agglomerative approaches for partitioning of networks in BD sce-

narios; and the fourth chapter presents a BD perspective for identifying

minimum-sized influential vertices from large-scale weighted graphs.

• Part II: Big Data Modelling and Frameworks. This part of the book also

comprises four chapters. The first chapter presents a unified approach to data

modelling and management, whereas the second contribution presents a distrib-

uted computing perspective on interfacing physical and cyber worlds. The third

chapter discusses machine learning in the context of Big Data, and the final

viii Preface



contribution in this section presents an analytics-driven approach to identifying

duplicate records in large data repositories.

• Part III: Big Data Tools and Analytics: There are five chapters in this section that
focus on frameworks, strategies and data analytics technologies. The first two

chapters present Apache and other enabling technologies and tools for data

mining. The third contribution suggests a framework for data extraction and

knowledge discovery. The fourth contribution presents a case study for adaptive

decision making; and the final chapter focuses on social impact and social media

analysis relating to Big Data.

Target Audiences

The current volume is a reference text aimed at supporting a number of potential

audiences, including the following:

• Data scientists, software architect and business analysts who wish to adopt the

newer approaches to Data Analytics to gain business intelligence to support

business managers’ strategic decision making

• Students and lecturers who have an interest in further enhancing the knowledge

of Data Science; and technologies, mechanisms and frameworks relevant to Big

Data and Data Analytics

• Researchers in this field who need to have up-to-date knowledge of the current

practices, mechanisms and frameworks relevant to Data Science and Big Data to

further develop the same

Derby, UK

Potchefstroom, South Africa

Zaigham Mahmood

Preface ix



ThiS is a FM Blank Page



Acknowledgements

The editor acknowledges the help and support of the following colleagues during

the review and editing phases of this text:

• Dr. Ashiq Anjum, University of Derby, Derby, UK

• Anupam Biswas, Indian Institute of Technology (BHU) Varanasi, India

• Dr. Alfredo Cuzzocrea, CAR-CNR & Univ. of Calabria, Rende (CS), Italy

• Dr. Emre Erturk, Eastern Institute of Technology, New Zealand

• Prof. Jing He, Kennesaw State University, Kennesaw, GA, USA

• Josip Lorincz, FESB-Split, University of Split, Croatia

• Dr. N Maheswari, School CS & Eng, Chennai, Tamil Nadu, India

• Aleksandar Milić, University of Belgrade, Serbia,

• Prof. Sulata Mitra, Indian Institute of Eng Science and Tech, Shibpur, India

• Prof. Saswati Mukherjee, Anna University, Chennai, India

• Dr. S Parthasarathy, Thiagarajar College of Eng, Tamil Nadu, India

• Daniel Pop, Institute e-Austria Timisoara, West Univ. of Timisoara, Romania

• Dr. Pethuru Raj, IBM Cloud Center of Excellence, Bangalore, India

• Dr. Muthu Ramachandran, Leeds Beckett University, Leeds, UK

• Dr. Lucio Agostinho Rocha, State University of Campinas, Brazil

• Dr. Saqib Saeed, Bahria University, Islamabad, Pakistan

• Prof. Claudio Sartori, University of Bologna, Bologna, Italy

• Dr. Mahmood Shah, University of Central Lancashire, Preston, UK

• Amro Najjar, École Nationale Supérieure des Mines de Saint Étienne, France

• Dr. Fareeha Zafar, GC University, Lahore, Pakistan

I would also like to thank the contributors to this book: 36 authors and coauthors,

from academia as well as industry from around the world, who collectively sub-

mitted 13 chapters. Without their efforts in developing quality contributions,

conforming to the guidelines and meeting often the strict deadlines, this text

would not have been possible.

xi



Grateful thanks are also due to the members of my family – Rehana, Zoya,

Imran, Hanya, Arif and Ozair – for their continued support and encouragement.

Best wishes also to Eyaad Imran.

Department of Computing and Mathematics Zaigham Mahmood

University of Derby

Derby, UK

Business Management and Informatics Unit

North West University

Potchefstroom, South Africa

14 February 2016

xii Acknowledgements



Other Springer Books by Zaigham Mahmood

Cloud Computing: Challenges, Limitations and R&D
Solutions

This reference text reviews the challenging issues that present barriers to greater

implementation of the Cloud Computing paradigm, together with the latest research

into developing potential solutions. This book presents case studies, and analysis of

the implications of the cloud paradigm, from a diverse selection of researchers and

practitioners of international repute (ISBN: 978-3-319-10529-1).

Continued Rise of the Cloud: Advances and Trends in Cloud
Computing

This reference volume presents latest research and trends in cloud-related technol-

ogies, infrastructure and architecture. Contributed by expert researchers and prac-

titioners in the field, this book presents discussions on current advances and

practical approaches including guidance and case studies on the provision of

cloud-based services and frameworks (ISBN: 978-1-4471-6451-7).

Cloud Computing: Methods and Practical Approaches

The benefits associated with cloud computing are enormous; yet the dynamic,

virtualized and multi-tenant nature of the cloud environment presents many chal-

lenges. To help tackle these, this volume provides illuminating viewpoints and case

studies to present current research and best practices on approaches and technolo-

gies for the emerging cloud paradigm (ISBN: 978-1-4471-5106-7).

xiii



Software Engineering Frameworks for the Cloud
Computing Paradigm

This is an authoritative reference that presents the latest research on software

development approaches suitable for distributed computing environments. Contrib-

uted by researchers and practitioners of international repute, the book offers

practical guidance on enterprise-wide software deployment in the cloud environ-

ment. Case studies are also presented (ISBN: 978-1-4471-5030-5).

Cloud Computing for Enterprise Architectures

This reference text, aimed at system architects and business managers, examines

the cloud paradigm from the perspective of enterprise architectures. It introduces

fundamental concepts, discusses principles and explores frameworks for the adop-

tion of cloud computing. The book explores the inherent challenges and presents

future directions for further research (ISBN: 978-1-4471-2235-7).

xiv Other Springer Books by Zaigham Mahmood



Contents

Part I Data Science Applications and Scenarios

1 An Interoperability Framework and Distributed Platform for
Fast Data Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

José Carlos Martins Delgado

2 Complex Event Processing Framework for Big Data
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Rentachintala Bhargavi

3 Agglomerative Approaches for Partitioning of Networks in Big

Data Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Anupam Biswas, Gourav Arora, Gaurav Tiwari, Srijan Khare,

Vyankatesh Agrawal, and Bhaskar Biswas

4 Identifying Minimum-Sized Influential Vertices on Large-Scale
Weighted Graphs: A Big Data Perspective . . . . . . . . . . . . . . . . . . . 79

Ying Xie, Jing (Selena) He, and Vijay V. Raghavan

Part II Big Data Modelling and Frameworks

5 A Unified Approach to Data Modeling and Management in Big

Data Era . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Catalin Negru, Florin Pop, Mariana Mocanu, and Valentin Cristea

6 Interfacing Physical and Cyber Worlds: A Big Data

Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Zartasha Baloch, Faisal Karim Shaikh, and Mukhtiar A. Unar

7 Distributed Platforms and Cloud Services: Enabling Machine
Learning for Big Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Daniel Pop, Gabriel Iuhasz, and Dana Petcu

xv



8 An Analytics-Driven Approach to Identify Duplicate Bug

Records in Large Data Repositories . . . . . . . . . . . . . . . . . . . . . . . . 161

Anjaneyulu Pasala, Sarbendu Guha, Gopichand Agnihotram,

Satya Prateek B, and Srinivas Padmanabhuni

Part III Big Data Tools and Analytics

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and

HBase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

N. Maheswari and M. Sivagami

10 Big Data Analytics: Enabling Technologies and Tools . . . . . . . . . . 221

Mohanavadivu Periasamy and Pethuru Raj

11 A Framework for Data Mining and Knowledge Discovery in

Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

Derya Birant and Pelin Yıldırım

12 Feature Selection for Adaptive Decision Making in Big Data
Analytics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Jaya Sil and Asit Kumar Das

13 Social Impact and Social Media Analysis Relating to Big
Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Nirmala Dorasamy and Nataša Pomazalová

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

xvi Contents



Contributors

Gopichand Agnihotram Infosys Labs, Infosys Ltd., Bangalore, India

Vyankatesh Agrawal Department of Computer Science and Engineering, Indian

Institute of Technology (BHU), Varanasi, India

Gourav Arora Department of Computer Science and Engineering, Indian Insti-

tute of Technology (BHU), Varanasi, India

Zartasha Baloch IICT, Mehran University of Engineering and Technology,

Jamshoro, Pakistan

Rentachintala Bhargavi School of Computing Sciences and Engineering, VIT

University, Chennai, India

Derya Birant Department of Computer Engineering, Dokuz Eylul University,

Izmir, Turkey

Bhaskar Biswas Department of Computer Science and Engineering, Indian Insti-

tute of Technology (BHU), Varanasi, India

Anupam Biswas Department of Computer Science and Engineering, Indian Insti-

tute of Technology (BHU), Varanasi, India

Valentin Cristea Computer Science Department, Faculty of Automatic Control

and Computers, University Politehnica of Bucharest, Bucharest, Romania

Asit Kumar Das Department of Computer Science and Technology, Indian Insti-

tute of Engineering Science and Technology, Shibpur, Howrah, West Bengal, India

José Carlos Martins Delgado Department of Computer Science and Computer

Engineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Nirmala Dorasamy Department of Public management and Economics, Durban

University of Technology, Durban, South Africa

Sarbendu Guha Infosys Labs, Infosys Ltd., Bangalore, India

xvii



Jing (Selena) He Department of Computer Science, Kennesaw State University,

Marietta, GA, USA

Gabriel Iuhasz Institute e-Austria Timisoara, West University of Timisoara,

Timișoara, Romania

Srijan Khare Department of Computer Science and Engineering, Indian Institute

of Technology (BHU), Varanasi, India

N. Maheswari School of Computing Science and Engineering, VIT University,

Chennai, Tamil Nadu, India

Mariana Mocanu Computer Science Department, Faculty of Automatic Control

and Computers, University Politehnica of Bucharest, Bucharest, Romania

Catalin Negru Computer Science Department, Faculty of Automatic Control and

Computers, University Politehnica of Bucharest, Bucharest, Romania

Srinivas Padmanabhuni Infosys Labs, Infosys Ltd., Bangalore, India

Anjaneyulu Pasala Infosys Labs, Infosys Ltd., Bangalore, India

Mohanavadivu Periasamy TCL Canada, Montreal, QC, Canada

Dana Petcu Institute e-Austria Timisoara, West University of Timisoara,

Timișoara, Romania

Nataša Pomazalová Department of Regional Development, Mendel University,

Brno, Czech Republic

Durban University of Technology, Durban, South Africa

Daniel Pop Institute e-Austria Timisoara, West University of Timisoara,

Timișoara, Romania

Florin Pop Computer Science Department, Faculty of Automatic Control and

Computers, University Politehnica of Bucharest, Bucharest, Romania

Satya Prateek B Infosys Labs, Infosys Ltd., Bangalore, India

Vijay V. Raghavan The Center for Advanced Computer Studies, University of

Louisiana at Lafayette, Lafayette, LA, USA

Pethuru Raj IBM Global Cloud Center of Excellence, Bangalore, India

Faisal Karim Shaikh IICT, Mehran University of Engineering and Technology,

Jamshoro, Pakistan

TCMCORE, STU, University of Umm Al-Qura, Mecca, Saudi Arabia

Jaya Sil Department of Computer Science and Technology, Indian Institute of

Engineering Science and Technology, Shibpur, Howrah, West Bengal, India

xviii Contributors



M. Sivagami School of Computing Science and Engineering, VIT University,

Chennai, Tamil Nadu, India

Gaurav Tiwari Department of Computer Science and Engineering, Indian Insti-

tute of Technology (BHU), Varanasi, India

Mukhtiar A. Unar IICT, Mehran University of Engineering and Technology,

Jamshoro, Pakistan

Ying Xie Department of Computer Science, Kennesaw State University, Marietta,

GA, USA

Pelin Yıldırım Department of Software Engineering, Celal Bayar University,

Manisa, Turkey

Contributors xix



ThiS is a FM Blank Page



About the Editor

Professor Dr. Zaigham Mahmood is a published author of 16 books, five of which

are dedicated to Electronic Government and the other eleven focus on the subjects

of Cloud Computing and Data Science, including: Cloud Computing: Concepts,
Technology & Architecturewhich is also published in Korean and Chinese languages;
Cloud Computing: Methods and Practical Approaches; Software Engineering
Frameworks for the Cloud Computing Paradigm; Cloud Computing for Enterprise
Architectures; Cloud Computing Technologies for Connected Government; Continued
Rise of the Cloud: Advances and Trends in Cloud Computing; Connectivity
Frameworks for Smart Devices: The Internet of Things from a Distributed Computing
Perspective; and Cloud Computing: Challenges, Limitations and R&D Solutions.
Additionally, he is developing two new books to appear later in 2017. He has

also published more than 100 articles and book chapters and organised numerous

conference tracks and workshops.

Professor Mahmood is the Editor-in-Chief of Journal of E-Government Studies
and Best Practices as well as the Series Editor-in-Chief of the IGI book series on

E-Government and Digital Divide. He is a Senior Technology Consultant at

Debesis Education UK and Associate Lecturer (Research) at the University of

Derby, UK. He further holds positions as Foreign Professor at NUST and IIU in

Islamabad, Pakistan, and Professor Extraordinaire at the North West University,

Potchefstroom, South Africa. Professor Mahmood is also a certified cloud comput-

ing instructor and a regular speaker at international conferences devoted to Cloud

Computing and E-Government. His specialised areas of research include distrib-

uted computing, project management and e-government.

Professor Mahmood can be reached at z.mahmood@debesis.co.uk

xxi



Part I

Data Science Applications and Scenarios



Chapter 1

An Interoperability Framework
and Distributed Platform for Fast Data
Applications

José Carlos Martins Delgado

Abstract Big data developments have been centred mainly on the volume dimen-

sion of data, with frameworks such as Hadoop and Spark, capable of processing

very large data sets in parallel. This chapter focuses on the less researched dimen-

sions of velocity and variety, which are characteristics of fast data applications. The

chapter proposes a general-purpose distributed platform to host and interconnect

fast data applications, namely, those involving interacting resources in a heteroge-

neous environment such as the Internet of Things. The solutions depart from

conventional technologies (such as XML, Web services or RESTful applications),

by using a resource-based meta model that is a partial interoperability mechanism

based on the compliance and conformance, service-based distributed programming

language, binary message serialization format and architecture for a distributed

platform. This platform is suitable for both complex (Web-level) and simple

(device-level) applications. On the variety dimension, the goal is to reduce

design-time requirements for interoperability by using structural data matching

instead of sharing schemas or media types. In this approach, independently devel-

oped applications can still interact. On the velocity dimension, a binary serialization

format and a simple message-level protocol, coupled with a cache to hold frequent

type mappings, enable efficient interaction without compromising the flexibility

required by unstructured data.

Keywords Internet of Things • IoT • Big data • Web services • XML • Coupling •

Structural compatibility • Compliance • Conformance • Distributed programming •

Variety • Velocity

J.C.M. Delgado (*)

Department of Computer Science and Computer Engineering, Instituto Superior Técnico,

Universidade de Lisboa, Lisbon, Portugal

e-mail: jose.delgado@tecnico.ulisboa.pt

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_1

3

mailto:jose.delgado@tecnico.ulisboa.pt


1.1 Introduction

One of the fundamental objectives of any distributed data system is the ability to

perform the required amount of data exchange and computation in the available

timeframe, which translates into a required minimum data flow and processing

rates. Big data scenarios turn this into a harder endeavour due to several reasons,

including the following characteristics of data [1]:

• Volume: high volume of data (more data to process)

• Velocity: high rate of incoming data (less time to process data)

• Variety: data heterogeneity (more data formats or data sources to deal with)

Big data developments have been mainly centred on the volume dimension, with

dynamic frameworks such as Hadoop [2] and Spark [3], capable of processing very

large data sets in parallel. This chapter focuses on the less researched dimensions of

velocity and variety, which are characteristics of fast data applications [4]. Typi-

cally, these involve too many entities, interacting and exchanging too many data, at

too high rates in a too heterogeneous environment. An entity can be a complex

application in a server or a very simple functionality provided by a small sensor, in

the context of what is usually known as the Internet of Things, abbreviated as IoT

[5, 6].

The European Commission [7] estimates that by 2020, the number of globally

connected devices will be in the order of 50–100 billion devices. These will

generate big data, which many applications will need to process very quickly and

with low latency.

Variety means supporting a diversity of data sources, formats and protocols. Not

all devices are adequate to support Transmission Control Protocol/Internet Protocol

(TCP/IP) and all the features required to be part of the Web. Velocity requires

efficient data exchange and processing mechanisms. Together, they demand for

new data-level distributed interoperability mechanisms.

Current interoperability technologies rely on text-based data description lan-

guages, such as Extensible Markup Language (XML) and JavaScript Object Nota-

tion (JSON) [57], and high-level and complex protocols such as Hypertext Transfer

Protocol (HTTP) and Simple Object Access Protocol (SOAP). However, these

languages have not been designed for the high throughput and low latency that

fast applications require. Similarly, the big data solutions such as Hadoop empha-

size the volume dimension and are not adequate for fast data [4]. In terms of

interoperability, these languages and protocols constitute specific solutions,

designed for the Web class of applications (many clients for each server, best effort

rather than real time) and do not allow an arbitrary set of computer-based applica-

tions to interact as peers.

What is needed is a new set of solutions that support the generic interoperability

of fast data applications, in the same way as web technologies have provided

universal interoperability for web applications. These solutions include native

support for binary data, efficient and full-duplex protocols, machine-level data

4 J.C.M. Delgado



and service interoperability and context awareness for dynamic and mobile envi-

ronments, such as those found in smart cities [8]. Today, these features are

simulated on top of Web services: applications based on representational state

transfer (REST), HTTP, XML, JSON and other related technologies, rather than

implemented by native solutions. The problem needs to be revisited to minimize the

limitations at the source, instead of just hiding them with abstraction layers that add

complexity and reduce performance.

As a contribution to satisfy these requirements, this chapter includes the follow-

ing proposals:

• A layered interoperability framework, to systematize the various aspects and

slants of distributed interoperability

• A language to describe not only data structures (state) but also operations

(behaviour), with self-description capability to support platform-agnostic

interoperability

• A data interoperability model, on which this language is based, which relies on

compliance and conformance [9] instead of schema sharing (as in XML) or

previously defined data types (as REST requires)

• A message-level protocol at a lower level than that of SOAP and even HTTP,

with many of the features included in these protocols implemented on top of the

basic interoperability model

• The architecture of a node of a distributed platform suitable for fast data

applications

These features are the building blocks of a distributed interoperability platform

conceived to tackle the velocity and variety dimensions of distributed applications,

modelled as services. This platform is suitable not only for complex, Web-level

applications but also for simple, device-level applications.

This chapter is structured as follows. Section 1.2 describes some of the existing

technologies relevant to the theme of this chapter, followed by a description in

Sect. 1.3 of several of the issues concerning fast data. Section 1.4 describes an

interoperability framework with emphasis on fast data problems, namely, those

affecting variety (interoperability and coupling) and velocity (message latency). It

also presents a resource-based model to support structural compatibility, based on

compliance and conformance, and a service interoperability language that imple-

ments these proposals. Section 1.5 describes the architecture of a distributed

platform to support the resource-based model and the service-based language.

The chapter ends by discussing the usefulness of this approach, outlining future

directions of research and drawing the main conclusions of this work.

1.2 Background

Big data [1] has become a relevant topic in recent years, spurred by the ever-

increasing growth rate of data produced in this globally interconnected world and

by the always-pressing need of obtaining meaningful information from large data

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 5



sets, in domains such as business analytics [10], healthcare [11], bioinformatics

[12], scientific computing [13] and many others [14].

Big data refers to handling very large data sets, for storage, processing, analysis,

visualization and control. The National Institute of Standards and Technology

(NIST) have proposed a Big Data Interoperability Framework [15] to lay down a

foundation for this topic.

A big push for this area came from the MapReduce programming model [16],

initially used for indexing large data sets and business intelligence over data

warehouses. The first motivating factor for big data was, thus, volume (data size),

using immutable and previously stored data. However, agile enterprises [17]

require almost real-time analysis and reaction to a large number of events and

business data, stemming from many sources and involving many data formats. This

means that the velocity and variety dimensions are gaining momentum [4]. A

survey of systems for big data, with emphasis on real time, appears in [18].

Enterprise integration models and technologies, such as service-oriented archi-

tecture (SOA) [19], REST [20] and enterprise service bus (ESB) [21], have not been

conceived for fast data processing and therefore constitute only as a best-effort

approach.

Besides the dimensions already described (volume, velocity and variety), other

Vs have also been deemed relevant in this context [13, 15], these being veracity

(accuracy of data), validity (quality and applicability of data in a given context),

value (of data to stakeholders), volatility (changes in data over time) and variability

(of the data flow).

Gone are the days when the dominant distributed application scenario consisted

of a Web encompassing fixed computers, both at the user (browser) and server

(Web application) sides. Today, cloud computing [22] and the IoT [6] are revolu-

tionizing the society, both at the enterprise and personal levels, in particular in

urban environments [8] with new services and applications. For example, mobile

cloud computing [23] is on the rise, given the pervasiveness of smartphones and

tablets that created a surge in the bring your own device (BYOD) trend [24]. The

increasing use of radio-frequency identification (RFID) tags [25] in supply chains

raises the need to integrate enterprise applications with the physical world, includ-

ing sensor networks [26] and vehicular [27] networks.

Cisco have set up a counter [28], indicating the estimated number of devices

connected to the Internet. This counter started with 8.7 billion devices at the end of

2012, increased to roughly 10 and 14 billion at the end of 2013 and 2014,

respectively, and at the time of writing (April 2015), it shows a figure of 15.5 billion,

with a foreseen value in the order of 50 billion by 2020. The Internet World Stats

site (http://www.internetworldstats.com/stats.htm), on the other hand, estimates

that by mid-2014, the number of Internet human users was around three billion,

almost half the worldwide population of roughly 7.2 billion people. The number of

Internet-enabled devices is clearly growing faster than the number of Internet users,

since the world population is estimated to be in the order of 7.7 billion by 2020

[29]. This means that the Internet is no longer dominated by human users but rather

6 J.C.M. Delgado

http://www.internetworldstats.com/stats.htm


by smart devices that are small computers and require technologies suitable to

them, rather than those mostly adequate to full-fledged servers.

1.3 Introducing Fast Data

Fast data has a number of inherent issues, in addition to those relating to big data.

This section describes motivating scenarios and one of the fundamental issues, that

of interoperability. Other issues, stemming from the variety and velocity dimen-

sions are discussed in Sects. 1.4.2 and 1.4.3 respectively.

1.3.1 Motivating Scenarios

Figure 1.1 depicts several scenarios in which large quantities of data can be

produced from a heterogeneous set of data sources, eventually with different

formats and processing requirements. For simplicity, not all possible connections

are depicted, but the inherent complexity of integrating all these systems and

processing all the data they can produce is easy to grasp.

Hadoop cluster

Web servers

Vehicular network

Mobile cloud

Mobile
users

Sensor network

Users

Public cloud

Datacenter

Private cloud

Fig. 1.1 An example of a set of heterogeneous systems with big data requirements

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 7



Most big data applications today use best-effort technologies such as Hadoop [2]

and Spark [3], in which immutable data is previously loaded into the processing

nodes. This is suitable for applications in areas such as business analytics [30],

which attempt to mine information that can be relevant in specific contexts and

essentially just deal with the volume dimension of big data. However, this is not the

case for applications where many data sets are produced or a large number of events

occur frequently, in a heterogeneous ecosystem of producers and consumers. In

these applications, processing needs to be performed as data are produced or events

occur, therefore emphasizing the variety and velocity dimensions (fast data).

No matter which dimension we consider, “big” essentially means too complex,

too much, too many and too fast to apply conventional techniques, technologies and

systems, since their capabilities are not enough to handle such extraordinary

requirements. This raises the problem of integrating heterogeneous interacting

parties to a completely new level, in which conventional integration technologies

(such as HTTP, XML, JSON, Web Services and RESTful applications) expose their

limitations. These are based on technologies conceived initially for human interac-

tion, with text as the main format and sub-second time scales and not for heavy-

duty, machine-level binary data exchange that characterizes computer-to-computer

interactions, especially those involving big data.

New solutions are needed to deal with these integration problems, in particular in

what concerns fast data requirements. Unlike processing of large passive and

immutable data sets, for which frameworks such as Hadoop are a good match,

fast data scenarios consist of a set of active interacting peers, producing, processing

and consuming data and event notifications.

1.3.2 Issues Relating to Interoperability

A distributed software system has modules with independent life cycles, each able

to evolve to a new version without having to change, suspend or stop the behaviour

or interface of the others. These modules are built and executed in an independent

way. Frequently, they are programmed in different programming languages and

target different formats, platforms and processors. Distribution usually involves

geographical dispersion, a network and static node addresses. Nevertheless, nothing

prevents two different modules from sharing the same server, physical or virtual.

Modules are usually designed to interact, cooperating towards some common

goal. Since they are independent and make different assumptions, an interopera-

bility problem arises. Interoperability, as old as networking, is a word formed by the

juxtaposition of a prefix (inter) and the agglutination of two other words (operate
and ability), meaning literally “the ability of two or more system modules to operate

together”. In this context, an application is a set of software modules with synchro-

nized lifecycles, i.e. compiled and linked together. Applications are the units of

system distribution, and their interaction is usually limited to message exchange.

8 J.C.M. Delgado



Applications are independent, and each can evolve in ways that the others cannot

predict or control.

The interaction between modules belonging to the same application can rely on

names to designate concepts in the type system (types, inheritance, variables,

methods and so on). A name can have only one meaning in a given scope, which

means that using a name is equivalent to using its definition. A working application

usually assumes that all its modules are also working and use the same implemen-

tation language and formats, with any changes notified to all modules. The appli-

cation is a coherent and cohesive whole.

The interaction of modules belonging to different applications, however, is a

completely different matter. Different applications may use the same name for

different meanings, be programmed in different languages, be deployed in different

platforms, use different formats and without notifying other applications, migrate

from one server to another, change their functionality or interface and even be down

for some reason, planned or not.

This raises relevant interoperability problems, not only in terms of correctly

interpreting and understanding exchanged data but also in keeping behaviours

synchronized in some choreography. The typical solutions involve a common

protocol (such as HTTP), self-describing data at the syntax and sometimes seman-

tics levels and many assumptions previously agreed upon. For example, XML-

based interactions, including Web services, assume a common schema. REST

proponents claim decoupling between client and server (the client needs just the

initial URI, Universal Resource Identifier). However, RESTful applications do

require previously agreed upon media types (schemas) and implicit assumptions

by the client on the behaviour of the server when executing the protocol verbs.

It is virtually impossible for one application to know how to appropriately

interact with another application, if it knows nothing about that application. Not

even humans are able to achieve it. Some form of coupling (based on shared and

agreed knowledge, prior to interaction) needs to exist. The goal is to reduce

coupling as much as possible while ensuring the minimum level of interoperability

required by the problem that motivated the interaction between applications.

Figure 1.2 provides an example of the kind of problems that need to be tackled in

order to achieve this goal.

Figure 1.2 can be described in terms of the scenario of Fig. 1.2a which refers to

the first seven steps of the process; the entire process being as follows:

1. Application A resorts to a directory to find a suitable application, according to

some specification.

2. The directory has a reference (a link) to such an application, e.g. B.
3. The directory sends that reference to A.
4. Application A sends a message to B, which it must understand, react and

respond according to the expectations of A (note the bidirectional arrow).

5. If message is unreachable, A can have predefined alternative applications, such

as B1 or B2. Resending the message to them can be done automatically or as a

result from an exception.

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 9



6. If B is reachable but somehow not functional, B itself (or the cloud that

implements it) can forward the message to an alternative application, such

as B3.
7. Application B can be migrated dynamically to another cloud, yielding the

scenario of Fig. 1.2b.

8. B leaves a reverse proxy as a replacement, which means that if A sends another

message to B (step 4), it will be automatically forwarded to the new B.
9. The response, however, will be sent to the original sender, A, including

information on the new location of B, which Awill use for subsequent messages

(the message protocol must support this).

10. The proxy could be garbage collected; but this is not easy to manage in a

distributed system that is unreliable by nature. Therefore, the proxy can be

maintained for some time under some policy and destroyed afterward. If some

application still holding a reference to the old B sends a message to it, the

protocol should respond with a suitable error stating that B does not exist. A can

(a)

(b)

Server 1

Server 3Server 2

A

B

Directory

B
B2

B1 B3

1

3

45
5

6

2

7

Server 1

Server 3Server 2

A
Directory

B
B2

B1 B3

1

3

45
5

6

8proxy

9

10

Fig. 1.2 Illustration of

some interoperability

aspects. (a) Before
migration of application

B. (b) After migration

10 J.C.M. Delgado



then repeat steps 1 through 3, obtaining the new location of B from the

directory.

Figure 1.2 raises some interesting interoperability issues, namely, the question of

compatibility between an application and its alternatives, which must be able to

behave as if they were the original application. Therefore, we need to detail what is

involved in an interaction between two applications.

1.4 An Interoperability Framework for Fast Data

Having discussed the interoperability problem, a framework is needed to dissect its

various slants. This will enable us to discuss what the variety and velocity dimen-

sions really mean and to derive a metamodel and a language to deal with them. This

section presents the relevant discussion.

1.4.1 Understanding Interoperability

In general, successfully sending a message from one application to another entails

the following aspects (noting that requests and responses reverse the roles of the

sender and receiver applications):

• Intent. Sending the message must have an underlying intent, inherent in the

interaction to which it belongs and related to the motivation to interact and the

goals to achieve. This should be aligned with the design strategy of both

applications.

• Content. This concerns the generation and interpretation of the content of a

message by the sender, expressed by some representation, in such a way that the

receiver is also able to interpret it, in its own context.

• Transfer. The message content needs to be successfully transferred from the

context of the sender to the context of the receiver.

• Willingness. Usually, applications are designed to interact and therefore to

accept messages, but nonfunctional aspects such as security and performance

limitations can impose constraints.

• Reaction. This concerns the reaction of the receiver upon reception of a message,

which should produce effects according to the expectations of the sender.

Interoperability between two applications can be seen at a higher level, involv-

ing intentions (why interact and what reactions can be expected from whom), or at a

lower level, concerning messages (what to exchange, when and how). Detailing the

various levels leads to a systematization of interoperability such as the one

described in Table 1.1.

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 11



Table 1.1 can be described as follows, using the category column as the top

organizing feature:

• Symbiotic: Expresses the purpose and intent of two interacting applications to

engage in a mutually beneficial agreement. Enterprise engineering is usually the

topmost level in application interaction complexity, since it goes up to the

human level, with governance and strategy heavily involved. Therefore, it

maps mainly onto the symbiotic category, although the same principles apply

(in a more rudimentary fashion) to simpler subsystems. This can entail a tight

coordination under a common governance (if the applications are controlled by

the same entity), a joint venture agreement (if the two applications are substan-

tially aligned), a collaboration involving a partnership agreement (if some goals

are shared) or a mere value chain cooperation (an outsourcing contract).

Table 1.1 Levels of interoperability

Category Level Main artefact Description

Symbiotic (pur-

pose and intent)

Coordination Governance Motivations to have the interaction,

with varying levels of mutual knowl-

edge of governance, strategy and goals
Alignment Joint venture

Collaboration Partnership

Cooperation Outsourcing

Pragmatic (reac-

tion and effects)

Contract Choreography Management of the effects of the

interaction at the levels of choreogra-

phy, process and service
Workflow Process

Interface Service

Semantic (mean-

ing of content)

Inference Rule base Interpretation of a message in context,

at the levels of rule, known application

components and relations and defini-

tion of concepts

Knowledge Knowledge

base

Ontology Concept

Syntactic (nota-

tion of

representation)

Structure Schema Representation of application compo-

nents, in terms of composition, primi-

tive components and their serialization

format in messages

Predefined type Primitive

application

Serialization Message

format

Connective

(transfer

protocol)

Messaging Message

protocol

Lower-level formats and network pro-

tocols involved in transferring a mes-

sage from the context of the sender to

that of the receiver
Routing Gateway

Communication Network

protocol

Physics Media

protocol

Environmental

(deployment and

migration)

Management API Environment in which each application

is deployed and managed, including the

portability problems raised by

migrations

Library Utility

service

Platform Basic

software

Computer Computing

hardware

12 J.C.M. Delgado



• Pragmatic: The effect of an interaction between a consumer and a provider is the

outcome of a contract, which is implemented by a choreography that coordinates

processes, which in turn implement workflow behaviour by orchestrating service

invocations. Languages such as Business Process Execution Language (BPEL)

[31] support the implementation of processes and Web Services Choreography

Description Language (WS-CDL) is an example of a language that allows

choreographies to be specified.

• Semantic: Both interacting applications must be able to understand the meaning

of the content of the messages exchanged: both requests and responses. This

implies interoperability in rules, knowledge and ontologies, so that meaning is

not lost when transferring a message from the context of the sender to that of the

receiver. Semantic languages and specifications such as Web Ontology Lan-

guage (OWL) and Resource Description Framework (RDF), map onto this

category [32].

• Syntactic: This deals mainly with form, rather than content. Each message has a

structure composed of data (primitive applications) according to some structural

definition (its schema). Data need to be serialized to be sent over the network as

messages using representations such as XML or JSON.

• Connective: The main objective is to transfer a message from the context of one

application to the other regardless of its content. This usually involves enclosing

that content in another message with control information and implementing a

message protocol (such as SOAP or HTTP) over a communications network

according to its own protocol (such as TCP/IP) and possibly resorting to routing

gateways if different networks are involved.

• Environmental: Each application also interacts with the environment (e.g. a

cloud or a server) in which it is deployed, anewed or by migration. The

environment’s management application programming interface (API) and the

infrastructure level that the application requires will most likely have impact on

the way applications interact, particularly if they are deployed in (or migrate

between) different environments, from different vendors. Interoperability

between an application and the environment in which it is deployed usually

known as portability.

In most cases, not all these levels are considered explicitly. Higher levels tend to

be treated tacitly (specified in documentation or simply assumed but not ensured),

whereas lower levels are commonly dealt with empirically (ensured by running

software but details hidden by lower level software layers).

Syntactic is the most used category, because it is the simplest and the most

familiar, with interfaces that mainly deal with syntax or primitive semantics. The

pragmatic category, fundamental to specify behaviour, is mainly implemented by

software but without any formal specification.

Another important aspect is nonfunctional interoperability. It is not just a

question of sending the right message. Adequate service levels, context awareness,

security and other nonfunctional issues must also be considered when applications

interact, otherwise interoperability will be less effective or not possible at all.

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 13



Finally, it should be stressed that, as asserted above, all these interoperability

levels constitute an expression of application coupling. On the one hand, two

uncoupled applications (with no interactions between them) can evolve freely and

independently, which favours adaptability, changeability and even reliability (such

that if one fails, there is no impact on the other). On the other hand, applications

need to interact to cooperate towards common or complementary goals, which

imply that some degree of previously agreed mutual knowledge is indispensable.

The more they share with the other, the more integrated they are, and so the

interoperability becomes easier, but coupling gets more complicated.

The usefulness of Table 1.1 lies in providing a classification that allows coupling

details to be better understood, namely, at which interoperability levels they occur

and what is involved at each level, instead of having just a blurry notion of

dependency. In this respect, it constitutes a tool to analyse and to compare different

coupling models and technologies.

1.4.2 The Variety Dimension

The previous section suggests that coupling is unavoidable. Without it, no interac-

tion is possible. Our goal is to minimize it as much as possible, down to the

minimum level that ensures the level of interaction required by the applications

exchanging fast data. In other words, the main goal is to ensure that each applica-

tion knows just enough about the other to be able to interoperate but no more than

that, to avoid unnecessary dependencies and constraints. This is consistent with the

principle of least knowledge [33].
Minimizing coupling maximizes the likelihood of finding suitable alternatives or

replacements for applications, as well as the set of applications with which some

application is compatible, as a consumer or as a provider of some functionality.

This is precisely one of the slants of the variety problem in fast data.

Figure 1.3 depicts the scenario of an application immersed in its environment, in

which it acts as a provider for a set of applications (known as consumers), from
which it receives requests or event notifications, and as a consumer of a set of

applications (called providers), to which it sends requests or event notifications.

Coupling between this application and the other applications expresses not only

how much it depends on (or is affected by the variety in) its providers but also how

much its consumers depend on (or are affected by changes in) it. Dependency on an

application can be assessed by the level and amount of features that another

application is constrained by. Two coupling metrics can be defined, from the

point of view of a given application, as follows:

• CF ( forward coupling), which expresses how much a consumer application is

dependent on its providers, is defined as

14 J.C.M. Delgado



CF ¼
P

i2P
Upi

Tpi ∙Ni

Pj j ð1:1Þ

where P is the set of providers that this application uses and |P| denotes the

cardinality of P, Upi is the number of features that this application uses in

provider i, Tpi is the total number of features that provider i exposes and Ni is

the number of providers with which this application is compatible as a consumer,

in all uses of features of provider i by this application.

• CB (backward coupling), which expresses how much impact a provider appli-

cation has on its consumers, is defined as

CB ¼
P

i2C
Uci

Tc ∙M

Cj j ð1:2Þ

where C is the set of consumers that use this application as provider and |C|
denotes the cardinality of C, Uci is the number of features of this application that

consumer i uses, Tc is the total number of features that this application exposes

and M is the number of known applications that are compatible with this

application and can replace it, as a provider.

The conclusion from metric 1.1 above is that the existence of alternative pro-

viders to an application reduces its forward coupling CF, since more applications

(with which this application is compatible, as a consumer) dilute the dependency.

Similarly, the conclusion from metric 1.2 above is that the existence of alternatives

to an application as a provider reduces the system dependency on it, thereby

reducing the impact that application may have on its potential consumers and

therefore its backward coupling CB.

Current application integration technologies, such as Web services [34] and

RESTful applications [35], do not really comply with the principle of least

An application

Backward coupling Forward coupling

C
o

n
su

m
er

s

P
ro

vi
d

er
s

Fig. 1.3 Coupling between an application and its consumers and providers

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 15



knowledge and constitute poor solutions in terms of coupling. In fact, both require

interacting applications to share the type (schema) of the data exchanged, even if

only a fraction of the data values is actually used. A change in that schema, even if

the interacting applications do not actually use the part of the schema that has

changed, implies a change in these applications, because the application that

receives the data must be prepared to deal with all the values of that schema.

Web services rely on sharing a schema (a document expressed in WSDL or Web

Services Description Language) and RESTful applications require data types that

have already been previously agreed upon. These technologies solve the distributed

interoperability problem but not the coupling problem. This is a consequence of the

classical document-style interaction, heralded by XML and schema languages, as

illustrated by Fig. 1.4a. This is a symmetric arrangement in which a writer produces

a document according to some schema, and the reader uses the same schema to

validate and to read the contents of the document. There is no notion of services,

only the passive resource that the document constitutes. We are at the level of data

description languages, such as XML or JSON.

Figure 1.4b introduces the notion of service, in which a message is sent over a

channel and received by the receiver. It is now treated as a parameter to be passed

on to some behaviour that the receiver implements, instead of just data to be read.

However, the message is still a document, validated and read essentially in the same

way as in Fig. 1.4a. We are at the level of Web services or RESTful applications.

(a)

(b)

write

Schema

Document

Writer

Data
structure validate

& read 

Reader

Data
structure

read

refer to

read

send

Schema

Message
sent

read

refer to

read

Message
received

Sender

Data
structure

Receiver

Data
structurechannel

refer to

receive,
validate &

read 

Fig. 1.4 Interaction styles: (a) documents; (b) document-based messages

16 J.C.M. Delgado



The behaviour invoked can thus be exposed and implemented in various ways, but

in the end, the goal is still similar.

The schemas in Fig. 1.4 refer to type specifications and need not be separate

documents, as it is usual in XML schema and WSDL. In the REST world, schemas

are known as media types but perform the same role. The difference is that instead

of being declared in a separate document referenced by messages, they are usually

previously known to the interacting applications, either by being standard or by

having been previously agreed upon. In any case, the schema or media type must be

the same at both sender and receiver endpoints, which imposes coupling between

the applications for all its possible values of a schema, even if only a few are

actually used.

Another problem concerns the variety in the networks. The protocols underlying

the Web (TCP/IP and HTTP) are demanding in terms of the smaller devices.

Hardware capabilities are increasingly better, and efforts exist to reduce the

requirements, such as IPv6 support on low-power wireless personal area networks

(6LoWPAN) [36] and the Constrained Application Protocol (CoAP) [37], to deal

with constrained RESTful environments. Building on the simplicity of REST,

CoAP is a specification of the Internet Engineering Task Force (IETF) working

group CoRE, which deals with constrained RESTful environments. CoAP includes

only a subset of the features of HTTP but adds asynchronous messages, binary

headers and User Datagram Protocol (UDP) binding. It is not easy to have the Web

everywhere, in a transparent manner.

1.4.3 The Velocity Dimension

Velocity in fast data is not just about receiving, or sending, many (and/or large)

messages or events in a given timeframe. The fundamental problem is the reaction

time (in the context of the timescale of the applications) between a request message,

or an event notification, and the availability of the processed results. Real-time

applications usually depend on a fast feedback loop. Messages frequently take the

form of a stream. Complex event processing [38], in which a set of related events is

analysed to aggregate data or detect event patterns, is a common technique to filter

unneeded events or messages and thus reduce the real velocity of processing and of

computing requirements.

Several factors affect velocity, e.g. processing time and message throughput. In

our context, emphasizing interoperability, the main problem lies in throughput of

messages exchanged. We cannot assume that data have been previously stored with

a view to be processed afterwards.

Throughput depends on message latency (the time taken to serialize data and

then to validate and to reconstruct it at the receiver) and on network throughput (its

own latency and bandwidth). The most relevant issue for velocity is the message

latency, since the characteristics of the network are usually fixed by the underlying

communications hardware. Latency is affected by several factors, including the

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 17



service-level platform (e.g. Web services, RESTful applications), the message

protocol (e.g. HTTP, SOAP, CoAP) and the message data format (e.g. XML,

JSON).

Web services, SOAP and XML are the most powerful combination and are

essentially used in enterprise-class applications, which are the most demanding.

But they are also the most complex and the heaviest, in terms of processing

overheads. RESTful applications, HTTP and JSON are a simpler and lighter

alternative, although less powerful and exhibiting a higher semantic gap in model-

ling real-world entities [39]. Nevertheless, application designers will gladly trade

expressive power for simplicity and performance (which translates into velocity),

and the fact is that many applications do not require all the features of a full-blown

Web services stack. REST-based approaches are becoming increasingly

popular [40].

In any case, these technologies evolved from the original Web of documents

[41], made for stateless browsing and with text as the dominant media type. The

Web was developed for people, not for enterprise integration. Today, the world is

rather different. The Web is now a Web of services [42], in which the goal is to

provide functionality, not just documents. There are now more computers

connected than people, with binary data formats (computer data, images, video

and so on) as the norm rather than the exception.

Yet, the evolution has been to map the abstraction of Web of services onto the

Web of documents, with a major revolution brought by XML and its schemas. The

document abstraction has been retained, with everything built on top of it. In the

interoperability levels of Table 1.1, XML (or JSON, for that matter) covers only the

syntactic category. The lack of support of XML for higher interoperability levels

(viz. at the service interface level) is one of the main sources of complexity in

current technologies for integration of applications. In turn, this imposes a signif-

icant overhead in message latency and, by extension, velocity.

Table 1.2 summarizes the main limitations of existing technologies that are

particularly relevant for this context.

1.4.4 Modelling with Resources and Services

Any approach should start with a metamodel of the relevant entities. In this case,

the organization of applications and their interactions are primordial aspects. The

interoperability levels of Table 1.1 constitute a foundation for the metamodel,

although this chapter concentrates on the syntactic, semantic and pragmatic

categories.

The interaction between different applications cannot simply use names,

because the contexts are different and only by out-of-band agreements (such as

sharing a common ontology) will a given name have the same meaning in both sides

of an interaction.

18 J.C.M. Delgado



XML-based systems, for example, solve this problem by sharing the same

schema, as illustrated by Fig. 1.4. However, this is a strong coupling constraint

and contemplates data only. Behaviour (operations) needs to be simulated by data

declarations, as in WSDL documents describing Web services.

We need to conceive a more dynamic and general model of applications and

their interactions, which supports interoperability without requiring to share the

specification of the application interface (schema). The strategy relies on structural

type matching, rather than nominal type matching. This approach entails:

• A small set of primitive types, shared by all applications (universal upper

ontology)

• Common structuring mechanisms, to build complex types from primitive ones

• A mechanism for structurally comparing types from interacting applications

Applications are structured, and, in the metamodel as described below, their

modules are designated as resources. Since applications are distributed by defini-

tion, sending each other messages through an interconnecting channel is the only

form of interaction. To make intra-application interactions as similar as possible to

inter-application interactions, all resources interact by messages, even if they

belong to the same application. Resources are the foundation artefacts of the

metamodel of applications and of their interactions as depicted in Fig. 1.5.

Table 1.2 Main limitations of relevant interoperability technologies

Technology Main limitations

XML Text based, verbose, complex, poor support for binary, data description only

(no behaviour), syntax-level only (higher levels require other languages),

high coupling (interoperability achieved by schema sharing)

JSON Simpler but less powerful than XML and the same limitations. Coupling is

also high since data types have to be agreed prior to data interaction

HTTP Optimized for Web browsing (scalable retrieval of hypermedia information)

but not for generic and distributed service-based interactions. Inefficient and

specific text-based control information format. Synchronous, committed to

the client-server paradigm, lack of support for the push model (server-

initiated interactions) and for binary data

SOAP Complex, significant performance overheads, XML-based (thus inheriting

XML’s problems), too high level, with specific solutions for nonfunctional

data and routing

Web Services

(SOA)

Complex (based on WSDL, SOAP and XML), many standards to cover

distributed interaction aspects, high coupling (interoperability achieved by

sharing the WSDL document), lack of support for structure (flat service

space)

REST Forces a create, read, update, delete (CRUD) approach to model real-world

entities, causing a significant semantic gap in generic service modelling.

Coupling is disguised under the structured data and the fixed syntactic

interface. Structure of data returned by the server may vary freely, but the

client needs to have prior knowledge of the data schemas and of the expected

behaviour of the server

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 19



This metamodel can be briefly described in the following way:

• A resource is an entity of any nature (material, virtual, conceptual, noun, action

and so on) that embodies a meaningful, complete and discrete concept, making

sense by itself while being distinguishable from, and able to interact with, other

entities.

• Resources that interact do so by sending each othermessages. A message is itself

a resource that migrates (through some channel, usually a network, using some

protocol) from the context of the resource that sends it to the context of the

resource that receives it. Messages can be either requests or responses.

• Operations (the equivalent of methods in objects) are first-class resources and

can be sent as message components. All instantiations of an operation (one for

each message received, with lazy creation) are closures [43], but distributed

messages (between applications) must be self-contained (no free variables). The

advantages of using operations as full-fledged resources instead of methods or

functions are uniformity of treatment (everything is a resource), support for

higher-order programming (operations as arguments to other operations) and

Fig. 1.5 A structural metamodel of resources and of their interactions

20 J.C.M. Delgado



transparent event processing (the occurrence of an event sends a message to a

resource, which can be an operation or any other kind of resource).

• A link can target more than one resource, constituting a list of remote references,

for consumer-side redundancy. If a resource targeted by the link is unavailable,

the support system can automatically try to resend the message to the next in

the list.

• A service is a set of logically related reactions of a resource to the messages it

can receive and react to (depends on the operations that are components of that

resource). A service can be seen as pure behaviour, although the implementation

of concrete reactions may depend on state, which needs a resource as an

implementation platform, or have side effects, changing that state.

• Sending a request message from a resource A to a resource B (which eventually

responds) constitutes a service transaction between these two resources, in

which the resources A and B perform the roles of service consumer and service

provider, respectively. A service transaction can entail other service transac-

tions, as part of the chain reaction to the message by the service provider. A

service is defined in terms of reactions to messages (external view) and not in

terms of state transitions or activity flows (internal view).

• A process is a graph of all service transactions that can occur, starting with a

service transaction initiated at some resource A and ending with a final service

transaction, which neither reacts back nor initiates new service transactions. A

process corresponds to a use case of resource A and usually involves other

resources as service transactions flow.

The metamodel depicted in Fig. 1.5 has been conceived to cover the main levels

of interoperability described in Table 1.1 and as a contribution to solve the

limitations of existing technologies, summarized in Table 1.2.

Interoperability, in terms of the current technological developments, is based on

data description languages such as XML and JSON, which cover just the syntactic

category of Table 1.1. Semantics has been an afterthought, with languages such as

RDF and OWL [44]. Pragmatics (behaviour) has been dealt with through generic

programming languages or, under the process paradigm, with BPEL [31]. Services

have been modelled essentially with WSDL documents, which are no more than an

interface specification simulated on top of a data description language (XML). The

REST architectural style uses a fixed service specification at the syntactic level and

restricts variability to resources and their structure. In essence, no solution today

covers Table 1.1 adequately.

Resources in Fig. 1.5 model real-world entities, with their interfaces modelled as

services. Dynamically, services interact by messages, requests and responses, over

some channel with some protocol. These constitute transactions that build up

processes. Structured resources refer to others by component names, or roles, in

the sense of Description Logic [45], and allow semantics to be incorporated in the

model from scratch (details not described here due to space limitations). Operations

are modelled as resources, in the same manner as entities typically modelled by a

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 21



class. This makes the metamodel simpler and more canonical and allows a finer

grain of application modelling.

1.4.5 Handling the Variety Dimension

Section 1.4.2 has shown that reducing coupling is a good approach to deal with the

variety problem, by increasing the potential base of consumers and providers. Most

resources are made interoperable by design, i.e. conceived and implemented to

work together, in a consumer-provider relationship. Therefore, coupling is high,

and it is not easy to accommodate changes and deal with variants of these resources.

For instance, Web services are a typical interoperability solution but work by

sharing schemas (Fig. 1.4b) and establish coupling for all the possible documents

satisfying each schema, even if they are not actually used. Searching for an

interoperable service is done by schema matching with similarity algorithms [46]

and ontology matching and mapping [47]. This does not ensure interoperability and

manual adaptations are usually unavoidable.

This chapter introduces a different perspective on interoperability, stronger than

similarity but weaker than sharing schemas and ontologies. The trick is to allow

partial (instead of full) interoperability, by considering only the intersection

between what the consumer needs and what the provider offers. If the latter

subsumes the former, the degree of interoperability required by the consumer is

feasible, regardless of whether the provider supports additional features or not.

When this is true, the consumer is said to be compatible with the provider or, more

precisely, that a resource X is compatible with a resource Y regarding a consumer-

provider relationship. In this respect, two resource relationships are of relevance:

• Consumer-provider: Compatibility between a consumer and a provider is known

as compliance [48]. The consumer must satisfy (comply with) the requirements

established by the provider to accept requests sent to it, without which these

cannot be validated, understood and executed. It is important to note that any

consumer that complies with a given provider can use it, independently of

having been designed for interaction with it or not. The consumer and provider

need not share the same schema. The consumer’s schema needs only to be

compliant with the provider’s schema in the features that it actually uses (partial

compliance). Since distributed resources have independent lifecycles, they can-

not freely share names and types, and schema compliance must be tested

structurally, feature by feature, between messages sent by the consumer and

the interface offered by the provider;

• Provider-provider: The issue is to ascertain whether a provider Y, serving a

consumer X, can be replaced by another provider Z in a way that the consumer-

provider relationship enjoyed by X is not impaired. In other words, the issue is

whether Z is replacement compatible with Y. Replacement compatibility

between two providers is known as conformance [49, 50]. The provider must

22 J.C.M. Delgado



fulfil the expectations of the consumer regarding the effects of a request (includ-

ing eventual responses), therefore being able to take the form of (to conform to)
whatever the consumer expects it to be. Note that a provider may be conformant

to another with respect to one consumer but not with respect to another con-

sumer. It all depends on the set of features used by the consumer. The reasons for

replacing a provider with another may be varied, such as switching to an

alternative in case of failure or lack of capacity of Y, evolution of Y (in which

case Z would be the new version of Y), or simply a management decision. The

important aspect to note is that Z does not need to support all the features of Y,
but just those that X actually uses (partial conformance).

Compliance and conformance are not symmetric relationships (e.g. if

X complies with Y, Y does not necessarily comply with X). Figure 1.6 illustrates

compliance and conformance, as well as its effects on reducing coupling, either by

limiting dependency to the required features or by increasing the set of possible

alternative providers or consumers.

A resource X, in the role of consumer, has been designed to interact with a

resource, in the role of provider, with a specification Y, which represents the set of

features that X requires as its provider. Nothing prevents the actual provider from

having additional features, as long as it includes this set.

Now consider a resource W, in the role of provider, which has been designed to

expect a consumer Z, which represents the set of features that W expects that the

actual consumer will access. Nothing prevents the consumer from accessing less

features, as long as they are included in this set.

X and W were not designed to interoperate, since what one expects is not what

the other is. They have been developed independently, or at least do not constitute a

full match of features (in other words, do not share the same schema). However,

interoperability is still possible, as long as the following holds:

• Y complies with Z, at least partially. This means that the set of features that

Y represents is a subset of the set of features that Z represents. In turn, X cannot

access a feature that W does not expect to be accessed.

Consumer

YX

Provider

WZ

Compliance Conformance

Provider
specification

Consumer
specification

View consumer as

View provider as

B
Compliance

Conformance
A View provider as

C
Compliance

Conformance
DView consumer as

New provider
specification New provider

New
consumer

New consumer
specification

Fig. 1.6 Resource compatibility, by use and replacement

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 23



• Z conforms to Y, at least partially. This means that the set of features that

Z represents is a superset of the set of features that Y represents.

Although it seems that these two items assert the same thing, it is not the case

when optional features exist, such as optional arguments to functions or optional

fields in an XML document. For compliance, the consumer needs to specify only

the mandatory features (minimum set), whereas for conformance, all features

(mandatory and optional) must be supported by the provider (maximum set).

Now consider adding a new consumer A to providerW, or simply replacing X. A
does not have to bear any relationship to X, the previous consumer. It may even use

a completely different set of features ofW (represented as specification B) as long as
B complies with Z and Z conforms to B. This also applies if A is a changed version

of X.
A similar reasoning can be made if X now uses a new provider, D, with the set of

requirements on consumers represented by specification C. Again, interoperability
is still possible as long as Y complies with C and C conforms to Y. Apart from this,

D andW need not bear any relationship. This also applies if D is a changed version

of W.

Reducing dependencies to the set of actually used features, instead of having to

share the full set of features (the schema) is an improvement over current technol-

ogies, typically based on XML or JSON documents. It also ensures interoperability,

whereas similarity-based approaches [46] do not.

We can now extend Fig. 1.4 with another interaction style, compliance-based

messages, as illustrated by Fig. 1.7.

Messages do not obey some external schema. Each message has one specific

value (most likely structured, but it is not a type, only one specific value) and its

own exclusive schema, which is nothing more than a self-description, without the

value variability that a type exhibits. This value and its description can be validated

against an infinite number of schemas, those that have this particular value included

in the set of their instances.

The receiver in Fig. 1.7 exposes a schema that defines the values it is willing to

accept. When a message is received, its schema is checked against the receiver’s
own schema. If it complies (satisfies all the requirements of the receiver’s schema),

the message can be accepted and processed. The advantage of this is that a resource

can send a message to all the resources with schemas that the message complies

Message
received

Schema

send

Receiver
schema

check

Sender

Data
structure channel receive,

read &
map

check &
validate

read

Message
sent

Schema

Receiver

Compliance
checker

Data
structure

Fig. 1.7 Extending the interaction styles of Fig. 1.4 with compliance-based messages

24 J.C.M. Delgado



with and, conversely, a resource can receive messages from any resource that sends

messages compliant with its receiving schema.

In other words, coupling occurs only in the characteristics actually used by

messages and not in all the characteristics of the schemas used to generate the

message or to describe the service of the receiving resource. Since the schemas of

the message and of the receiver are not agreed upon beforehand, they need to be

checked structurally. Resources of primitive types have predefined compliance

rules. Structured resources are compared by the names of components (regardless

of order of declaration or appearance) and (recursively) by the compliance between

structured resources with matching names. Since the order of appearance of named

component resources may different in the message and in the receiving schema,

there is the need to map one onto the other (bottom of Fig. 1.7).

This is a form of polymorphism that increases the range of applicability of both

sender and receiver, constituting a means to reduce coupling to only what is

actually used. Sender and receiver no longer need to be designed for each other.

Compliance ensures usability, whereas conformance ensures replaceability. When

a resource is able to interact with another, although not entirely interoperable with

it, we say that they have partial interoperability.
We also need to handle the velocity dimension, but, since it involves perfor-

mance, this is included in the description of the platform, in Sect. 1.5.1.

1.4.6 A Service Interoperability Language with Support
for Variety

Data description languages, such as XML and JSON [57], merely describe data and

their structure. If we want to describe resources and their services, we can use

WSDL, but the resulting verbosity and complexity has progressively turned away

developers in favour of something much simpler, REST [20]. If we want a pro-

gramming language suitable for distributed environments, we can use BPEL [31]

but again with an unwieldy XML-based syntax that forces programmers to use

visual programming tools that generate BPEL and increase the complexity stack.

JSON is much simpler than XML, and its popularity has been constantly

increasing, but the evolution of the dynamic nature of the Web, as shown by

JavaScript and HyperText Markup Language, version 5 (HTML5) [51], hints that

data description is not enough anymore and distributed programming is a basic

requirement. In the IoT, with machine-to-machine interactions now much more

frequent than human-to-server interactions, this is even of greater importance.

Current Web-level interoperability technologies are greatly constrained by the

initial decision of basing Web interoperability on data (not services) and text

markup as the main description and representation format. Using them to imple-

ment the metamodel of Fig. 1.5 leads to a complex stack of specifications and to

syntactic and semantic adaptations and compromises, to bridge the gap between the

metamodel and the chosen language and/or platform. A language conceived from

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 25



scratch to implement this metamodel, providing native support for its characteris-

tics, will be a better match. We have designed Service Interoperability Language

(SIL) [56] to provide this support.

Each resource in SIL is represented by a SIL Public Interface Descriptor (SPID),

which corresponds to a Web service’s WSDL but much more compact and able to

describe both structure and operations. It is obtained automatically from the

resource description itself by including only the public parts (public component

resources, including operation headings). Unlike XML or even JSON, there is no

separate schema document to describe a resource.

Program 1.1 shows a simple example of resources described in SIL, involving

sensors in the context of the IoT [6]. It includes a temperature controller

(tempController), with a list of links to temperature sensors with history

(tempSensorStats). Each of these has a link to a remote temperature sensor

(tempSensor). The lines at the bottom illustrate how these resources can be used

and should be included in some resource that uses them.

1.1 Describing and Using Resources Using SIL

tempSensor: spid {// descriptor of a temperature sensor
getTemp: operation (-> [-50.0 .. þ60.0]);
};

tempSensorStats: {// temperature sensor with statistics
sensor: @tempSensor; // link to sensor (can be remote)
temp: list float; // temperature history
startStats <||; // spawn temperature measurements
getTemp: operation (-> float) {
reply sensor@getTemp<--; // forward request to sensor
};
getAverageTemp: operation ([1 .. 24] -> float) {
for (j: [temp.size .. temp.size-(in-1)])
out þ¼ temp[j];
reply out/in; // in ¼ number of hours
};
private startStats: operation () {// private operation
while (true) {
temp.add<-- (getTemp<--); // register temperature
wait 3600; // wait 1 hour and measure again
}
}
};

tempController: {// controller of several temperature
sensors
sensors: list @tempSensorStats; //list of links to sensors
addSensor: operation (@tempSensor) {
t: tempSensorStats; // creates a tempSensorStats resource

26 J.C.M. Delgado



t.sensor ¼ in; // register link to tempSensor
sensors.add<-- @t; // add sensor to list
};
getStats: operation (-> {min: float; max: float;
average: float})
{
out.min ¼ sensors[0]@getTemp<--;
out.max ¼ out.min;
total: float :¼ out.min; // initial value
for (i: [1 .. sensors.length-1) { // sensor 0 is done
t: sensors[i]@getTemp<--; // dereference sensor i
if (t <out.min) out.min ¼ t;
if (t >out.max) out.max ¼ t;
total þ¼ t;
};
out.average ¼ total/sensors.length;
reply; // nothing specified, returns out
}
};

// How to use the resources
// tc contains a link to tempController
tc@addSensor<-- ts1; // link to a tempSensor resource
tc@addSensor<-- ts2; // link to a tempSensor resource
x: tc@sensors[0]@getAverageTemp<-- 10; // average last
10 hours

This program can be described in the following way:

• The temperature sensor (tempSensor) is remote, and all we have is its SPID, the

equivalent to a Web service’s WSDL. For example, the SPID of

tempSensorStats can be expressed by the following lines:

tempSensorStats: spid {// temperature sensor with
statistics
sensor: @tempSensor; // link to sensor (can be remote)
temp: list float; // temperature history
getTemp: operation (-> float);
getAverageTemp: operation ([1 .. 24] -> float);
}

• Resources and their components are declared by a name, a colon and a resource

type, which can be primitive, such as integer, a range (e.g. [1 .. 24]), float or user

defined (enclosed in braces, i.e. “{. . .}”). There are some resemblances to JSON,

but component names are not strings, and operations are supported as first-class

resources.

• The definition of a resource is similar to a constructor. It is executed only once,

when the resource is created, and can include statements. This is illustrated by

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 27



the statement “startStats<||” in tempSensorStats. Actually, this is an asynchro-

nous invocation (“<||”) of private operation startStats, which is an infinite loop

registering temperature measurements every hour. Asynchronous invocations

return a future [52], which will be later replaced by the returned value (in this

example, the returned future is ignored). Synchronous invocation of operations

is done with “<��”, followed by the argument, if any.

• Operations have at most one argument, which can be structured (with “{. . .}”).

The same happens with the operation’s reply value, as illustrated by operation

getStats. Inside operations, the default names of the argument and the value to

return are in and out, respectively. The heading of operations specifies the type

of the argument and of the reply value (inside parentheses, separated by “->”);

• Links to resources (indicated by the symbol “@”) are not necessarily URIs, not

even strings. They can also be structured and include several addresses, so that a

resource in a network (e.g. the Internet) can reference another in a different

network, with a different protocol (e.g. a sensor network). It is up to the nodes

and gateways of the network, supporting these protocols, to interpret these

addresses so that transparent routing can be achieved, if needed

• Resource paths, to access resource components, use dot notation, except if the

path traverses a link, in which case a “@” is used. For example, the path used in

the last line of Program 1.1 computes the average temperature, along the last

10 h, in sensor 0 of the controller.

Program 1.2 illustrates the compliance and conformance concepts, by providing

two additional temperature sensors (weatherSensor and airSensor) in relation to

Program 1.1. Only the additional and relevant parts are included here, with the rest

as in Program 1.1.

1.2 Example of Partial Interoperability with Structural Compliance
and Conformance

tempSensor: spid {
getTemp: operation (->[-50.0 .. þ60.0]);
};

weatherSensor: spid {
getTemp: operation (->[-40.0 .. þ50.0]);
getPrecipitation: operation (-> integer);
};

airSensor: spid {
getTemp: operation (->[-40.0 .. þ45.0]);
getHumidity: operation (-> [10 .. 90]);
};

// tc contains a link to tempController
tc@addSensor<-- ts1; // link to a tempSensor resource
tc@addSensor<-- ts2; // link to a tempSensor resource
tc@addSensor<-- as1; // link to an airSensor resource
tc@addSensor<-- ws1; // link to an weatherSensor resource

28 J.C.M. Delgado



tc@addSensor<-- ws2; // link to an weatherSensor resource
tc@addSensor<-- as2; // link to an airSensor resource

x: tc@sensors[0]@getAverageTemp<-- 10; // average last
10 hours
s: {max: float; average: float};
s ¼ tc@getStats<--; // only max and average are assigned to s

temp: [-50.0 .. þ50.0];
temp ¼ ws1@getTemp <--; // complies. Variability ok
temp ¼ ts1@getTemp <--; // does not comply. Variability
mismatch

In Program 1.2:

• weatherSensor and airSensor conform to tempSensor, since they offer the same

operation and the result is within the expected variability. This means that they

can be used wherever a tempSensor is expected, which is illustrated by adding

all these types of sensors to tempController (through tc, a link to it) as if they

were of type tempSensor. Nonrelevant operations are ignored.

• The result of invoking the operation getStats on tempController is a resource

with three components (as indicated in Program 1.1), whereas s has only two.

However, the assignment is still possible. Structural interoperability ignores the

extra component.

• The last statement triggers a compliance check by the compiler, which issues an

error. The variability of the value returned by operation getTemp in tempSensor

(referenced by ts1) is outside the variability range declared for component temp.

Other features of SIL, not illustrated here for simplicity, include:

• Delegation: An operation can execute some statements and then delegate the rest

of the execution of the request to another resource, by forwarding either the

received message or another one. The delegate will respond directly to the first

sender, the one that originated the request.

• Context-awareness: Messages can be sent in two parts, data and context (sepa-

rated by a with keyword). The latter is typically used to pass nonfunctional

information. Both parts are normal resources and obey the same compliance and

conformance rules as other resources. This applies to both request and response

messages, which means that SIL supports forward and backward context pass-

ing. The latter is useful both in normal responses and exceptions. Context

awareness is another way in which variety can be supported.

• Reliability: The links in Programs 1.1 and 1.2 can target a list of resources. If for

some reason the protocol fails to communicate with the first resource in the link,

it will try automatically the following one. An exception is generated if all

alternatives fail. There is opportunity for recovery, at the level of the exception

handler (covering a set of statements) or at the application level.

• Interface to other languages: Resources in SIL can invoke methods in object-

oriented languages and have its operations invoked. The solution is similar to

XML-based systems, including Web services, and involves annotations. The

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 29



SPID of a resource can be used to generate at compile time an interface in Java,

for instance, or reflection can be used to support access to resources and objects

only at runtime.

1.5 A Distributed Interoperability Platform

This section proposes a platform for distributed interoperability that revisits the

problem and constitutes a native solution for computer-based applications in a fast

data context, instead of being based on the classical technologies conceived orig-

inally for human browsing. Backward compatibility is lost, but this exploratory

approach has the potential to compensate with flexibility and adequacy.

1.5.1 Handling the Velocity Dimension

We used several techniques to reduce message processing latency, including:

• Unlike XML or JSON, SIL is compiled. This corresponds to having two resource

representations, text (source) and compiled (binary), with coherence between the

two maintained by the compiler.

• A binary format based on the tag, length and value (TLV) scheme used by

ASN.1 [53], which allows a very efficient traversal of a serialized data structure.

• Messages can be sent with an adjustable level of metadata, from source (includ-

ing SPID) to almost no metadata at all (just structures composed of primitive

resources). Metadata means overhead and does not need to be sent in full in all

messages.

• Compliance checks (mappings between a message and the data structure

expected by the receiver) can be cached, so that subsequent messages of the

same type can be optimized.

• Using efficient full-duplex transport level protocols with support for binary data,

such as Web sockets [51], with automatic session management.

• Using a generic message-level protocol as the foundation, instead of an

application-level protocol such as HTTP, even in its HTTP/2 incarnation. The

protocol just deals with basic messages and not resource-level operations.

We have developed a compiler for SIL based on ANother Tool for Language

Recognition (ANTLR) [54], which is able to produce the SPID automatically and to

convert source to instructions and data in a binary format (TLV), or silcodes
(similar to Java’s bytecodes). An interpreter, similar to a Java virtual machine

(JVM), executes these silcodes. The current implementation, in pure Java, is not

optimized and has a performance roughly 50 times slower than a JVM. Much of that

time is spent just on virtual method dispatch, the mechanism used to execute the

various silcodes. A C-based interpreter, for example, would be much faster,

30 J.C.M. Delgado



although harder to develop. To maintain flexibility and control of implementation,

we did not use a JVM.

The format of a compiled resource is exactly the same as a serialized resource, to

be sent as a message or stored in a persistent medium. It supports three levels of

metadata (self-description) information, in addition to the data itself: source code,

ontology (names and relationships) and no metadata. The latter is used when a

previous data-type checking was cached by the message receiver and a token

returned to the sender, to be used in subsequent messages. The protocol returns

an error if metadata is absent and there is no valid token in the message. The sender

then repeats the message, this time with metadata. The ontology-level metadata is

the usual case without cache optimization. The source code can be included, if

desired, to provide user-level readability.

Table 1.3 gives an idea of the size of resource representations in various

situations. The example refers to a data-only resource, so that XML and JSON

can be used for comparison. The two lines refer to the same resource, but with

longer and shorter component names, which have an impact on metadata size. That

is why the sizes in the last column are the same, and the size reduction with less

metadata is greater when names are longer. The sizes presented vary with the

concrete example, but this gives an idea of the values involved.

An end-to-end application performance comparison with SOA- and REST-based

solutions has not been done yet. Trivial examples tend to assess essentially the

application servers and network latency, which are not the distinguishing aspects.

A meaningful comparison needs to separate concerns, such as protocols, data parsing,

platform-agnostic execution (SIL) versus local programming language (e.g. Java),

professional versus research implementation and so on. This will be done in the near

future. In the meantime, it has been shown that parsing binary data markup (TLV) can

be at least an order of magnitude faster than parsing XML text markup [55].

Unlike HTTP, which goes down from the transport level up to the service level,

with verbs such as GET or PUT, the SIL protocol deals only with messages, addressed

to resources. Its goal is to support message-level interaction and nothing else. What to

do with the message is the receiver’s responsibility. Unlike SOAP, which defines

headers for additional information such as security, the SIL protocol delegates to

higher interoperability levels the responsibility to add extra information. This is done

by wrapping simple messages within other messages, with the extra information, in

what constitutes an open extension to the basic protocol. Both interacting applications

need to support the protocol extension mechanism, which may be standardized or be

specific to a pair of applications. The basic protocol remains simple.

Table 1.3 Comparison of the sizes (in bytes) of several resource representations, from source to

binary only

Names XML JSON

Silcodes

With source With ontology Without metadata

Long 2595 1631 1432 953 382

Short 1972 1193 1014 621 382

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 31



The SIL protocol requires only an underlying addressable message-level trans-

port protocol, which does not have to be reliable. Message level reliability, if not

provided by the transport protocol, can be implemented at the resource or applica-

tion level. This is intended as a means to support heterogeneity, namely, in

non-TCP/IP protocols, such as those used in sensor networks [26], or in the IoT,

at the UDP level, with protocols such as CoAP [37]. In the opposite direction,

security can be provided by the underlying protocol itself, if it is complex enough to

support secure transport.

Table 1.4 illustrates some of the message types in this protocol, which imple-

ments basic transactions in a universal way. Any resource can be both sender and

receiver of messages.

There is no notion of session. Messages are independent of each other, with

coherence maintained by higher interoperability levels, namely, the pragmatic and

symbiotic categories in Table 1.1. However, the underlying transport protocol can

open a channel, such as a socket in the Web socket protocol [51], and maintain it

open for some predefined time (TTL or time to live) or until some consecutive

inactivity period occurs. These timings can be defined by any of interacting

applications (either of them can close the channel). If subsequently a message

needs to be sent between the interacting applications, the channel is open again,

automatically. Timings can be adaptive, depending on message traffic.

The correlation between request and response messages is made by a token value

generated at the sender’s server (by a pseudo-random number generator) for each

message sent. It is meaningful in the context of that server only. The receiver of the

request must copy this token to the response and forward it in delegation messages,

so that the delegate can also include it in the response. The implementation of

futures also uses this mechanism.

Table 1.4 Examples of message types

Message category/type Description

Request Initial request in each transaction

React React to message, no answer expected

React & respond React to message and answer/notify

Asynchronous react & respond Asynchronous data message. Return future immediately

Amendment Further information on an already sent request

Cancel Cancel the execution of the request

Response Response to the request

Answer Data returned as a response

Resource fault Data returned as the result of an exception

Protocol fault Error data resulting from protocol or partner failure

Notification Information of completion status

Denial Confirm rejection of request

Done Request completed but has no value to reply

Cancelled Confirm cancellation of request

32 J.C.M. Delgado



1.5.2 Architecture of the Platform

The platform is essentially a distributed collection of SIL nodes, each confined to

one computing server. Each SIL node can connect to more than one network, as

shown in Fig. 1.8, which details the architecture of one node. This requires the

provision of some server or handler to receive and send messages through each

network’s protocol. The protocol at message level (Table 1.1) is identical in all

cases.

The architecture of a SIL node can be briefly described as follows:

• The application server (Jetty, in our implementation, but any other would do) is

the interface to the Internet. It can support several protocols, although we have

only catered for two, HTTP (to handle Web requests) and Web sockets

(to support the message protocol of SIL). There is a list of protocol handlers

and each in turn checks whether it recognizes the message format. The first one

to do so gets the message for further processing. All SIL messages begin with

“SIL”, encoded in UTF-8.

• Other types of network protocols, such as those of sensor networks, can be

supported as long as there are handlers to use those protocols at the transport

level.

Server

SIL node

Resource 
manager

Web 
Socket 
handler

Jetty 
server

Internet

HTTP 
handler

Message 
manager

Compliance 
checker

Interpreter

Resource 
serializer

Directory

SOA or REST 
service

Sensor
network 
handler

SIL 
node

SIL 
node

SIL 
node

Sensor 
networkSensor

Sensor

Sensor Sensor

Resources

Fig. 1.8 Basic architecture of a SIL node, expressing its multi-network capability

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 33



• A message received (by any of the protocols) is handled by the message

manager, which determines the recipient of the message, the type of the message

(according to the SIL message protocol, described in Table 1.4), and whether a

compliance token is present (described in Sect. 1.5.1);

• The resource manager implements the access to the structured resources regis-

tered in the directory, obtaining internal links (indices to a resource table) to

resources targeted by messages or by distributed links (the equivalent of URIs).

• The directory is the root resource in each SIL node and implements several

operations, such as searching for a resource with a service that conforms to a

given SPID. The resource tree depicted in Fig. 1.8 shows only containment

relationships. Any resource can have a distributed link to another but only if it is

registered as globally accessible in a directory. This means that resources can be

locally reached from others during execution of a SIL program, but only

registered resources, directly in the directory, can be addressed by a global,

distributed link.

• The compliance checker performs type compliance between the message and the

addressed operation or resource. It can do so in text or binary formats, since each

has all the information needed, as long as the metadata is also present. Naturally,

this is faster when done in binary. Messages that include a compliance token,

obtained in a previous checking, can skip this step.

• If the resource targeted by the message is not an operation, the compliance

checker must go through the various operations defined in that resource, to find

one, which the message complies with. A protocol fault (Table 1.4) is returned if

none is found.

• Once the target operation has been identified, a thread is created in the silcode

interpreter to execute that operation’s code, produced previously by the SIL

compiler.

• If the operation needs to send a message to a resource in another SIL node, as

illustrated by Program 1.1, it passes the message (which is a resource) to the

resource serializer, which produces the same format as the compiler.

1.6 Usefulness of the Approach

Long gone are the days when most of the relevant data were structured and static,

enabling schema-based optimizations that have supported conventional databases.

The success of the Web-made data become much more dynamic and unstructured,

and now we are in the era of big (unstructured) data. In particular, fast data, along

with velocity and variety dimensions, make design-time optimizations increasingly

difficult, if applicable at all.

This is why the solutions for application interoperability need to become more

dynamic, with decisions taken at runtime, in an adaptive manner. The approach

taken by this chapter entails two essential slants:

34 J.C.M. Delgado



• To reduce the interoperability requirements at the schema level, through partial

compliance and conformance. Interacting applications need not be designed to

work together, either by sharing schemas or by agreeing on specific data types at

design time. Any application that happen to comply with another can use it as a

consumer, and any application that conforms to another can replace it as a

provider. Although not a magical or universal solution, it can definitely contrib-

ute to better support variants of some basic design. This is a contribution to the

variety dimension.

• To optimize statistically while maintaining the flexibility. Checking for compli-

ance and conformance is just too slow to be done in all messages. However,

messages arriving at a high rate tend to repeat a data pattern, which means that

the mapping between the data types of the messages and the receiver’s interface
can be cached and managed automatically. A simple token such as a 64-bit

integer, returned by the receiver in the first message’s response and used

subsequently by the sender in future messages of the same type, can optimize

performance without losing the benefits of dynamic type checking. When a

mapping is cached, metadata need not be checked and only binary data is

relevant (Table 1.3). The more repetitive message patterns are, the more effec-

tive this technique is. This is a contribution to the velocity dimension.

1.7 Future Research

The proposals contained in this chapter constitute exploratory work. There is a

prototype of the language compiler, interpreter and node platform, but much work

is still needed before the approach can be validated in a sufficiently large scale. The

following activities are currently in development:

• Assessing the fault-tolerant capabilities of the platform. SIL supports fault-

tolerant resource links (with alternative resources), but state checkpointing and

recovery are not implemented yet.

• Assessing the scalability capabilities of the platform and assuming a large

number of small-grained applications, characteristic of the IoT. This will be

carried out by simulation.

• Tackling the volume dimension with a general-purpose mindset. Programming

models such as MapReduce force a specific organization of data processing,

from input data until results are produced. Our approach is to use any type of

service (a task, in MapReduce parlance) or combination thereof and start with

the last service (the one producing the final result) and proceed backward,

invoking other services asynchronously. The final result, a collection of data

(resource) initially containing just futures, is progressively filled in with the

partial results returned by these services. Services are automatically replicated

by each request. The nuance is to allow automatic replication and spreading of

resources and their services, throughout a pool of SIL nodes. SIL already

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 35



supports distributed resources, since components of a resource can be remote,

accessible by a link. The idea is to allow automatic replication of immutable

components (a feature of SIL not described in the example of this paper), as well

as code. This allows not only the code-to-data migration approach of Hadoop but

also data-to-code (in which new data, such as streaming messages, are send to

remote nodes to be processed there) or even resource-to-node (in which com-

plete resources, code and data, are migrated to new nodes just to spread the

computing load);

• Carrying out a comparative study, with qualitative and quantitative assessment,

between the distributed platform proposed in this chapter and other dynamic

platforms for real-time data processing [18].

1.8 Conclusions

Currently available platforms for big data are mainly centred on the volume

dimension and usually assume that data already exist, are immutable and have

been loaded into the system. This may be adequate for batch applications but not for

processing dynamic data, namely, data streams. Although there are platforms trying

to process large sets of data or events in real time or near it [18], these are still very

focused on data and events and do not yet constitute a general-purpose platform to

interconnect a large number of heterogeneous services. This is the scenario when

we consider the Web and the IoT, in which the number of interacting entities and

messages is very large but do not constitute a coherent, or even related, large set of

data or events. This chapter intends to constitute a step towards such a general-

purpose platform.

Current integration technologies evolved from basic browsing to web services

by privileging backward compatibility over adequacy to computer-to-computer

interactions. As a result, they exhibit many limitations for systems in which the

number of entities is large and data granularity (messages) is small. New integration

approaches, with native solutions to the problems of today, need to be devised.

This chapter contends that new solutions to fast data should adopt the following

approaches:

• Languages should describe not only passive data (XML, JSON) but also oper-

ations, describing structured resources that offer services, so that most of the

interoperability levels of Table 1.1 are covered natively, instead of having to

build languages over languages, which increases the complexity and reduces the

performance.

• A resource-based metamodel should be used as the foundation, to minimize the

semantic gap in modelling real-world entities, in structure, state and behaviour.

• Interoperability should be allowed to be partial, based on compliance and

conformance. This reduces service coupling with regard to sharing of schemas

36 J.C.M. Delgado



(XML, Web services) or of types (JSON, REST), providing a better support for

heterogeneity of services and data types.

• The distributed platform should be based on nodes as universal and as indepen-

dent from the network protocol as possible. This way, it can be overlaid on

different networks in a more transparent way.

• The resource serialization format should be natively binary and adjust automat-

ically the level of metadata included, to minimize message size.

• The message protocol should be simple but efficient. Features that are more

complex should be built on top of the basic mechanisms, according to the levels

as shown in Table 1.1.

References

1. Zikopoulos P et al (2012) Understanding big data. McGraw-Hill, New York

2. White T (2012) Hadoop: the definitive guide. O’Reilly Media, Inc., Sebastopol

3. Zaharia M, Chowdhury M, Franklin M, Shenker S, Stoica I (2010) Spark: cluster computing

with working sets. In: Proceedings of the 2nd USENIX conference on Hot topics in cloud

computing, Boston, MA, pp 10

4. Mishne G, Dalton J, Li Z, Sharma A, Lin J (2013) Fast data in the era of big data: twitter’s real-
time related query suggestion architecture. In: Proceedings of the international conference on

management of data, Ahmedabad, India, pp 1147–1158

5. Luigi A, Iera A, Morabito G (2010) The internet of things: a survey. Comput Netw

54:2787–2805

6. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT): a vision,

architectural elements, and future directions. Futur Gener Comp Syst 29(7):1645–1660

7. Sundmaeker H, Guillemin P, Friess P, Woelffle S (2010) Vision and challenges for realising

the internet of things. European Commission Information Society and Media. http://bookshop.

europa.eu/en/vision-and-challenges-for-realising-the-internet-of-things-pbKK3110323/.

Accessed 20 Apr 2015

8. Schaffers H et al (2011) Smart cities and the future internet: towards cooperation frameworks

for open innovation. In: Domingue J et al (eds) The future internet. Springer, Berlin/Heidel-

berg, pp 431–446

9. Delgado J (2014) The role of compliance and conformance in software engineering. In:

Ghani I, Kadir W, Ahmad M (eds) Handbook of research on emerging advancements and

technologies in software engineering. IGI Global, Hershey, pp 392–420

10. Ohlhorst F (2012) Big data analytics: turning big data into big money. Wiley, Hoboken

11. Murdoch T, Detsky A (2013) The inevitable application of big data to health care. J Am Med

Assoc 309(13):1351–1352

12. Holzinger A (2014) Biomedical informatics: discovering knowledge in big data. Springer

International Publishing, Cham

13. Demchenko Y, Zhao Z, Grosso P, Wibisono A, de Laat C (2012) Addressing Big Data

challenges for scientific data infrastructure. In: Proceedings of the IEEE 4th international

conference on cloud computing technology and science, Taipei, Taiwan, pp 614–617

14. Mayer-Sch€onberger V, Cukier K (2013) Big data: a revolution that will transform how we live,

work, and think. Houghton Mifflin Harcourt, New York

15. NIIST (2014) DRAFT NIST Big Data interoperability framework: volume 6, reference archi-

tecture. http://bigdatawg.nist.gov/_uploadfiles/BD_Vol6-RefArchitecture_V1Draft_Pre-

release.pdf. Accessed 20 Apr 2015

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 37

http://bookshop.europa.eu/en/vision-and-challenges-for-realising-the-internet-of-things-pbKK3110323/
http://bookshop.europa.eu/en/vision-and-challenges-for-realising-the-internet-of-things-pbKK3110323/
http://bigdatawg.nist.gov/_uploadfiles/BD_Vol6-RefArchitecture_V1Draft_Pre-release.pdf
http://bigdatawg.nist.gov/_uploadfiles/BD_Vol6-RefArchitecture_V1Draft_Pre-release.pdf


16. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters.

Commun ACM 51(1):107–113

17. Heisterberg R, Verma A (2014) Creating business agility. Wiley, Hoboken

18. Liu X, Iftikhar N, Xie X (2014) Survey of real-time processing systems for big data. In:

Proceedings of the 18th international database engineering & applications symposium, Porto,

Portugal, pp 356–361

19. Erl T (2007) SOA: principles of service design. Prentice Hall PTR, Upper Saddle River

20. Fielding R (2000) Architectural styles and the design of network-based software architectures.

Doctoral dissertation, University of California at Irvine. http://www.ics.uci.edu/~fielding/

pubs/dissertation/fielding_dissertation_2up.pdf. Accessed 20 Apr 2015

21. Chappell D (2004) Enterprise service bus. O’Reilly Media, Inc., Sebastopol

22. Armbrust M et al (2010) A view of cloud computing. Commun ACM 53(4):50–58

23. Fernando N, Loke S, Rahayu W (2013) Mobile cloud computing: a survey. Futur Gener Comp

Syst 29(1):84–106

24. Keyes J (2013) Bring your own devices (BYOD) survival guide. CRC Press, Boca Raton

25. Aggarwal C, Han J (2013) A survey of RFID data processing. In: Aggarwal C (ed) Managing

and mining sensor data. Springer, New York, pp 349–382

26. Potdar V, Sharif A, Chang E (2009) Wireless sensor networks: a survey. In: Proceedings of the

international conference on advanced information networking and applications workshops,

Bradford, UK, pp 636–641

27. Hartenstein H, Laberteaux K (eds) (2010) VANET: vehicular applications and inter-

networking technologies. Wiley, Chichester

28. Karen T (2013) How many internet connections are in the world? Right. Now. http://blogs.

cisco.com/news/cisco-connections-counter/. Accessed 20 Apr 2015

29. United Nations (2013) World population prospects: the 2012 revision, key findings and

advance tables. Working Paper No. ESA/P/WP.227. United Nations, Department of Economic

and Social Affairs, Population Division. http://esa.un.org/unpd/wpp/Documentation/pdf/

WPP2012_%20KEY%20FINDINGS.pdf. Accessed 20 Apr 2015

30. Liebowitz J (ed) (2013) Big data and business analytics. CRC Press, Boca Raton

31. Juric M, Pant K (2008) Business process driven SOA using BPMN and BPEL: from business

process modeling to orchestration and service oriented architecture. Packt Publishing,

Birmingham

32. Shadbolt N, Hall W, Berners-Lee T (2006) The semantic web revisited. IEEE Intell Syst 21

(3):96–101

33. Palm J, Anderson K, Lieberherr K (2003) Investigating the relationship between violations of

the law of demeter and software maintainability. In: Proceedings of the workshop on software-

engineering properties of languages for aspect technologies. http://www.daimi.au.dk/~eernst/

splat03/papers/Jeffrey_Palm.pdf. Accessed 20 Apr 2015

34. Papazoglou M (2008) Web services: principles and technology. Pearson Education Limited,

Harlow

35. Webber J, Parastatidis S, Robinson I (2010) REST in practice: hypermedia and systems

architecture. O’Reilly Media, Sebastopol

36. Jacobsen R, Toftegaard T, Kjærgaard J (2012) IP connected low power wireless personal area

networks in the future internet. In: Vidyarthi D (ed) Technologies and protocols for the future

of internet design: reinventing the web. IGI Global, Hershey, pp 191–213

37. Castellani A, Gheda M, Bui N, Rossi M, Zorzi M (2011) Web services for the internet of things

through CoAP and EXI. In: Proceedings of the international conference communications

workshops, pp 1–6. doi:10.1109/iccw.2011.5963563

38. Cugola G, Margara A (2012) Processing flows of information: from data stream to complex

event processing. ACM Comp Surv 44(3):article 15

39. Delgado J (2012) Bridging the SOA and REST architectural styles. In: Ionita A, Litoiu M,

Lewis G (eds) Migrating legacy applications: challenges in service oriented architecture and

cloud computing environments. IGI Global, Hershey, pp 276–302

38 J.C.M. Delgado

http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://blogs.cisco.com/news/cisco-connections-counter/
http://blogs.cisco.com/news/cisco-connections-counter/
http://esa.un.org/unpd/wpp/Documentation/pdf/WPP2012_%20KEY%20FINDINGS.pdf
http://esa.un.org/unpd/wpp/Documentation/pdf/WPP2012_%20KEY%20FINDINGS.pdf
http://www.daimi.au.dk/~eernst/splat03/papers/Jeffrey_Palm.pdf
http://www.daimi.au.dk/~eernst/splat03/papers/Jeffrey_Palm.pdf
http://dx.doi.org/10.1109/iccw.2011.5963563


40. Adamczyk P, Smith P, Johnson R, Hafiz M (2011) REST and web services: in theory and in

practice. In: Wilde E, Pautasso C (eds) REST: from research to practice. Springer, New York,

pp 35–57

41. Berners-Lee T (1999) Weaving the web: the original design and ultimate destiny of the world

wide web by its inventor. HarperCollins Publishers, New York

42. Tolk A (2006) What comes after the semantic web – PADS implications for the dynamic web.

In: Proceedings of the 20th workshop on principles of advanced and distributed simulation,

Beach Road, Singapore, pp 55–62

43. Järvi J, Freeman J (2010) Cþþ lambda expressions and closures. Sci Comp Program 75

(9):762–772

44. Grau B et al (2008) OWL 2: the next step for OWL. Web Semant Sci Serv Agents World Wide

Web 6(4):309–322

45. Baader F et al (eds) (2010) The description logic handbook: theory, implementation, and

applications, 2nd edn. Cambridge University Press, Cambridge

46. Jeong B, Lee D, Cho H, Lee J (2008) A novel method for measuring semantic similarity for

XML schema matching. Expert Syst Appl 34:1651–1658

47. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin

48. Kokash N, Arbab F (2009) Formal behavioral modeling and compliance analysis for service-

oriented systems. In: de Boer F, Bonsangue M, Hallerstede S, Leuschel M (eds) Formal

methods for components and objects. Springer, Berlin/Heidelberg, pp 21–41

49. Kim D, Shen W (2007) An approach to evaluating structural pattern conformance of UML

models. In: Proceedings of the ACM symposium on applied computing, Seoul, Korea, pp

1404–1408

50. Adriansyah A, van Dongen B, van der Aalst W (2010) Towards robust conformance checking.

In: Proceedings of the business process management workshops, Hoboken, NJ, pp 122–133

51. Lubbers P, Albers B, Salim F (2010) Pro HTML5 programming: powerful APIs for richer

internet application development. Apress, New York

52. Schippers H (2009) Towards an actor-based concurrent machine model. In: Rogers I

(ed) Proceedings of the 4th workshop on the implementation, compilation, optimization of

object-oriented languages and programming systems, Genova, Italy, pp 4–9

53. Dubuisson O (2000) ASN.1 communication between heterogeneous systems. Academic, San

Diego

54. Parr T (2013) The definitive ANTLR 4 reference. The Pragmatic Bookshelf, Raleigh

55. Sumaray A, Makki S (2012) A comparison of data serialization formats for optimal efficiency

on a mobile platform. In: Proceedings 6th international conference on ubiquitous information

management and communication, article 48. doi:10.1145/2184751.2184810

56. Delgado J (2014) Structural services: a new approach to enterprise integration. In: Wadhwa M,

Harper A (eds) Technology, innovation, and enterprise transformation. IGI Global, Hershey,

pp 50–91

57. Galiegue F, Zyp K (eds) (2013) JSON schema: core definitions and terminology. Internet

engineering task force. https://tools.ietf.org/html/draft-zyp-json-schema-04. Accessed 20 Apr

2015

1 An Interoperability Framework and Distributed Platform for Fast Data. . . 39

http://dx.doi.org/10.1145/2184751.2184810
https://tools.ietf.org/html/draft-zyp-json-schema-04


Chapter 2

Complex Event Processing Framework
for Big Data Applications

Rentachintala Bhargavi

Abstract The fundamental requirement for modern IT systems is the ability to

detect and produce timely reaction to the occurrence of real-world situations in the

system environment. This applies to any of the Internet of Things (IoT) applications

where number of sensors and other smart devices are deployed. These sensors and

smart devices embedded in IoT networks continually produce huge amounts of

data. These data streams from heterogeneous sources arrive at high rates and need

to be processed in real time in order to detect more complex situations from the

low-level information embedded in the data. Complex event processing (CEP) has

emerged as an appropriate approach to tackle such scenarios. Complex event

processing is the technology used to process one or more streams of data/events

and identify patterns of interest from multiple streams of events to derive a

meaningful conclusion. This chapter proposes CEP-based solution to continuously

collect and analyze the data generated from multiple sources in real time. Two case

studies on intrusion detection in a heterogeneous sensor network and automated

healthcare monitoring of geriatric patient are also considered for experimenting and

validating the proposed solutions.

Keywords Complex event processing • IoT • Big data • Data stream • Event •

Intrusion detection • Geriatric health monitoring

2.1 Introduction

A wide range of IoT applications have been developed and deployed in recent

years. IoT has provided promising solution to several real-time applications by

leveraging the growing ubiquity of radio frequency identification (RFID) and

wireless mobile, sensors, and other smart devices [7]. Big data is a term

encompassing the use of techniques to capture, process, analyze, and visualize

potentially large datasets in a reasonable time frame not accessible to standard IT

technologies [11]. The platforms, tools, and software used for this purpose are

R. Bhargavi (*)

School of Computing Sciences and Engineering, VIT University, Chennai, India

e-mail: bhargavi.r@vit.ac.in

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_2

41

mailto:bhargavi.r@vit.ac.in


collectively called “big data technologies.” These technologies refer to and present

the ability to crunch vast collections of information, analyze it instantly, and draw

conclusions. Big data technologies deal with petabytes of records, files, and trans-

actional data either arriving as streams or in batches. The RFIDs, sensors, smart

devices, etc., embedded in IoT networks produce huge amounts of data/events

continuously [19]. This data has the characteristics like volume, variety, velocity,

variability, veracity, and complexity. Some of the characteristics of the data/event

streams and their implications are as follows:

• Data streams are continuous and sequential and are ordered by a time stamp or

any other attribute value of the data item. Therefore, data items which belong to

the same stream are processed in the order they arrive.

• Data streams are generated by external sources and are sent to a processing

system. Hence, the data stream processing system does not have any direct

control over the data sources.

• The input characteristics and the rate of a data stream are unpredictable. The

input rate can be very irregular and, at times, bursty in nature. Also, the nature of

the input does not allow one to make multiple passes over the data while

processing.

• The amount of data is very large and unbounded. Therefore, processing require-

ments may not permit persistence followed by processing. However, data or

summary of data can be stored for archival or other purposes.

• The data types of the data items can be structured, semi-structured, or

unstructured.

• Data items in a data stream are not error free because the data sources are

external. Some data may be corrupted or discarded due to network problems.

These data streams need to be processed and analyzed to identify some interest-

ing patterns and take actions if necessary. Processing these continuous data/event

streams in real time to identify the patterns among them is a herculean task and has

raised new research challenges over the last few years [3, 5]. A large number of

solutions exist in terms of systems, middleware, applications, techniques, and

models proposed by researchers to solve different challenges [13]. Data generated

from multiple sources have logical and spatiotemporal relations among them. There

is a need for data fusion as the data from a single source may not be enough for

taking accurate decision. Conventional process-oriented control flow software

architectures do not explicitly target the efficient processing of continuous event

streams. Complex event processing is the technology used to process and analyze

one or more streams of data/events and identify patterns of interest from multiple

streams of events to derive a meaningful conclusion and respond by taking appro-

priate action [2].

The remaining parts of this chapter are organized as follows. Section 2.2 pre-

sents CEP preliminaries and event modeling. Semantic intrusion detection using

complex event processing is elaborated in Sect. 2.3. Section 2.4 discusses the

CEP-enabled geriatric health monitoring, and Sect. 2.5 concludes the chapter.

42 R. Bhargavi



2.2 Complex Event Processing

Complex event processing (CEP) is a relatively new concept, but it has received

wider acceptance due to its systematic and multilevel architecture-driven concept

approach [9]. An event is an object that is a record of an activity; it signifies the

activity. A key stroke or the output reading produced by a sensor, etc., are examples

of an event. CEP allows one to set a request for an analysis or some query and then

have it executed continuously over a period of time against one or many streams of

events in a highly efficient manner. CEP is all about the processing of events that

combines data from many sources to infer events or patterns that represent more

complicated circumstances. In contrast to Hadoop’s two-stage disk-based

MapReduce paradigm, CEP’s push-based paradigm supports faster processing of

data streams.

2.2.1 CEP Architectural Layers

The architectural layers of a CEP system are shown in Fig. 2.1. A typical system

consists of four layers, as briefly described below.

Application layer

Event Analysis layer

Event source layer

Data Collection layer

GUI Alert system

Output Adapters

Rules

Device adapter

Sensors logs Files appRSS feed

HTTP adapter App adapter

Queries Stream mining Algorithms

Formatted events

Observed events

Historic
Data

External systems

Fig. 2.1 Architectural layers of CEP

2 Complex Event Processing Framework for Big Data Applications 43



Event Source Layer This layer consists of event sources. These sources can be

sensors, RFID readers, RSS feed, feed from network monitoring systems, web

logs, etc.

Data Collection Layer Data collection layer is responsible for collecting the data

coming from various sensors and filtering the data. Data collection could be

distributed or centralized based on the requirement of the application. Basic

capabilities in WSN involve mechanisms like routing, tunneling, data aggregation,

and clustering to collect information from nodes and forward them to a sink node.

Event Analysis Layer The event analysis layer is responsible for data mining on

streams of data. An important feature of this layer is pattern matching and corre-

lation across multiple event streams. In this layer, few fixed continuous queries act

on the incoming data streams to identify patterns of interest. Comparison of real-

time data with historical or static data is also often required for event analysis. In

many instances, historical or static data is also often required along with the real-

time data for analysis. Thus, the event analysis layer should contain facilities for

connecting to data base.

Application Layer This layer consists of event listeners, i.e., modules/systems that

receive the processed events. Examples of event listeners are event storage systems,

mobile phones and pagers, or other systems that can take actions based on the

results of event processing (e.g., GUI receives the processed events and displays the

information).

There are two underlying stages or steps involved in CEP. The first step is to

detect meaningful events or pattern of events which signifies either threats or

opportunities from the streams of events. The second step is to send alerts to the

responsible person/entity for the identified threat or opportunity for quick response.

CEP solutions and concepts can broadly be classified into two categories:

• Computation-oriented CEP

• Detection-oriented CEP

In computation-oriented CEP solutions, online algorithms are executed when-

ever an event or data enters the system. Simple example is to calculate the moving

average temperature sensed by a temperature sensor. Detection-oriented CEP

concentrates on detecting combinations of events or event patterns. Simple example

is to look for a sequence of events.

Complex event processing system is made up of a number of modules like input

adapters, output adapters, and event processing modules such as event filtering

modules, in-memory caching, aggregation, database lookup module, database write

module, correlation, joins, event pattern matching, state machines, dynamic

queries, etc, as shown in Fig. 2.2. In order to support more flexibility and adapt-

ability for different use cases, more number of I/O adapters must be supported by

the CEP. The main component of CEP is the continuous queries which monitor

streams of simple/raw events for so-called complex events, that is, events that

manifest themselves in certain temporal, spatial, or logical combinations. Querying

44 R. Bhargavi



events over data streams is different from traditional querying with database, in the

way that traditional database querying is pull based, whereas continuous querying

of events is push based.

Many of the real-time distributed applications require continuous monitoring

and processing and analysis of information or data in a timely fashion as it flows

from periphery to the system. Intrusion detection in surveillance and healthcare

monitoring are a couple of such applications. Traditional pull-based approaches can

hardly address the requirements of timeliness, response generation, etc. Hence, this

chapter proposes CEP-based solution to continuously collect and analyze the data

generated from multiple sources in real time. Two case studies: Intrusion detection

in a heterogeneous sensor network and automated healthcare monitoring of geriat-

ric patient are considered for experimenting and validating the proposed solutions.

2.2.2 Event Modeling

An event is “anything that happens, or is contemplated as happening” [10] in the

real world, and normally it is of interest to some groups of people. A key stroke, a

sensor outputs a reading, etc., are couple of examples of an event. Sometimes these

events, in turn, may produce secondary events internally. Real-world occurrences

can be defined as events that happen over space and time. Events are of two types:

basic or primitive events and complex events. Events have event attributes. An

event attribute is a property of the event. For example, the entry of an identified

person in a restricted area could be treated as an activity. Then the form of the event

Event
Sources

Input
Adapters

Sequencing

Output
Adapters

Event
consumers

Filtering
Aggregation
Pattern matching
Classification

Prediction Tools
Tracking Tools
Logic Development

DB

Flat
file

Logs

Sensor
Network

Social Feed

Streaming Input

Feedback Events

Delivery Mode

CEP Engine

Fig. 2.2 Logical view of CEP

2 Complex Event Processing Framework for Big Data Applications 45



instance could be composed by unique id of the person, time, and location (geo-

graphical coordinates). An event is an object that represents, encodes, or records an

event, generally for the purpose of computer processing [10].

A basic event is atomic and indivisible and occurs at a point in time. Attributes of

a basic or primitive event are the parameters of the activity that caused the event.

An event instance is a record of an activity, which has three features such as:

• Significance, which gives its semantic

• Form, which gives activity information that will be processed by the computer,

e.g., unique id, time, etc.

• Relation with other event instances

Computer systems process the events by representing them as event objects.

From a software application perspective, an event is something that needs to be

monitored and may trigger a specific action. Specifying an event is therefore

providing a description of the happening. A common model of an event is a tuple

represented as

E ¼ E id; a; tð Þ

where

id is the unique ID of an event.

a ¼ {a1, a2, . . .. . ., am}, m > 0, is a set of attributes.

t is the time of occurrence of the event.

For example, an RFID event can be described with some set of dimensions

which includes source of event, location of event, time at which the event occurred,

and a possible set of operations for combining events. An RFID event is denoted as

E¼ e (o, r, t) where o is the tag EPC, r is the reader ID, and t is the time stamp of the

event.

Complex events are composed of basic events. Complex events are defined by

connecting basic events using temporal, spatial, or logical relations. A common

model for a complex event is as follows:

E ¼ E id; a; c; tb; teð Þ, tb <¼ te

where

c ¼ {e1, e2, . . ...,en}, n > 0 is the vector that contains basic events and complex

events that cause this event to happen.

tb, te are starting and ending times of the complex event.

Attributes of complex events are derived from the attributes of the constituent

primitive events. Event constructors and event operators are used to express the

relationship among events and correlate events to form complex events.

Any basic event or a complex event is specified by an event expression. An event

expression is a mapping from histories (domain) to histories (range) [6], i.e.:

46 R. Bhargavi



E : histories ! histories:

Since event expressions are equivalent to regular expressions, it is possible to

implement event expressions using finite automata. For example, composite/com-

plex event ¼ E1 ^E2 can be represented using the finite automata as shown in

Fig. 2.3.

Event expression is formed by combining events with the event constructors.

Many of the event processing engines support different types of logical and

temporal constructs.

2.3 Semantic Intrusion Detection Using CEP

There is an increasing demand for security solutions in the society. This results in a

growing need for surveillance activities in many environments. Recent events, like

terrorist attacks, have resulted in an increased demand for security in society. There

is a growing interest in surveillance applications, because of the availability of

cheap sensors and processors at a reasonable cost. Intelligent remote monitoring

systems allow users to survey sites from remote location. Sensor networks bridge

the gap between the physical world and the virtual world of processing and

communication. It is envisioned that sensor networks can reduce or eliminate the

need for human involvement in information gathering and processing in surveil-

lance applications if the ability of the sensor networks can be suitably harnessed.

Distributed sensors and smart devices in the surveillance application produce huge

data [14]. Processing, analyzing, and detecting abnormal patterns from this data are

very complex in nature. There is a need for multi-sensor data fusion in sensor

network applications as the data from homogeneous sensors may not be enough for

taking accurate decision [17]. Also the data generated from multiple sensors have

logical and spatiotemporal relations among them. Special processing and mining

algorithms are proposed in the literature for distributed and in-network processing.

E1

S F

E2

E2
E1

Fig. 2.3 Finite automata

representation of composite

event E1 ^ E2

2 Complex Event Processing Framework for Big Data Applications 47



Existing solutions for surveillance and intrusion detection are based on pull-based

architecture where the data from sensors are stored, and later, the user runs queries

to retrieve the data. There are also solutions based on machine learning techniques,

but these solutions again work on the static data. Traditional approaches which are

pull based can hardly address the requirements of timeliness, response generation,

etc. The proposed CEP-based semantic intrusion detection system (CSIDS) [1]

addresses the abovementioned problems.

In the context of surveillance, the evaluation of available technologies shows

that the security bottleneck is not the hardware but rather the real-time analysis and

correlation of data provided by various sensors. The objective of proposed

CEP-based semantic intrusion detection system is early detection and prevention

of security compromises/risks by identifying abnormal situations and quickly

responding with appropriate action. To achieve this goal, sensors (such as cameras,

RFID readers, etc.) are installed in the places to be monitored, and a control center

receives the information transmitted by sensors. This information is processed and

analyzed by an event processing engine to detect the intrusive patterns. There are a

few factors that make this task rather difficult. First, the raw data to deal with is very

huge, and second, the information sources are heterogeneous. Therefore, there is a

need to fuse or aggregate the data coming from such sensors to construct a global

view of the situation and even more to go one step beyond to the intent assessment.

The proposed CSIDS allows fusion of information generated by heterogeneous

sensors that support the goal of providing a global situational view for intrusion

detection. The goal of this fusion is to transform lower-level data into higher-level

quality information and to improve the certainty of situation recognition, i.e.,

reduce the false alarm rate. The fusion is realized by taking into consideration the

semantics of the information. This means that there should be a representation or

model of the situation that needs to be detected (such as an intrusion in a restricted

area). In this context, a situation is viewed as a combination of several activity

elements (or smaller situations), each of them appearing at some place and time. As

a consequence, the finer the granularity of these elements, the more difficult the

situation modeling task will become. This task is further complicated if any of the

elements appear at different time instants and do not relate to the same situation.

Furthermore, the set of heterogeneous sensors capturing these sub-situations have

an asynchronous behavior, meaning each of the sensors computes the situation

independently, unconnected of each other.

CSIDS supports online detection of event patterns which represent anomalies.

The association of an event pattern, a constraint, and an action is referred to as a

rule. The approach consists of time, content, and context-based selection of a subset

of events described by their pattern. Finally, after the event pattern is matched, one

or more appropriate actions are executed such as creation and sending of a new

event or sending an alert message to the concern personnel, etc.

The architecture of the complex event processing system for semantic intrusion

detection system is shown in Fig. 2.4. CSIDS has multiple event receivers. Each

event receiver receives the data/events coming from a different data/event source.

The event receiver on receiving the data from the source converts them into event

48 R. Bhargavi



streams. Data generated by different sources follows a different format; hence,

event receivers also convert the data from different sources to the specific format

suitable for processing further by the event processing engine. The events generated

by the event receivers are inserted in to a FIFO or a queue. Events are organized in

the queue in the order of their detection time. To avoid the out of order arrival of the

events which is caused by the network delays, the events are stored internally in the

queue for some time T. Hence, the events are dequeued after a time T for

processing. Any event getting generated at time t will be processed after t+T time

by the CEP engine. Any event arriving at the queue with a time stamp smaller than

the time stamp of the already dequeued events is ignored. This leads to missing of

events. Missing events due to network delays can be avoided by having larger value

of T, i.e., by storing the events internally for longer duration. But this will delay the

event processing time. Hence, there is a trade-off between missing events due to

network delay and latency.

Event processing engine processes the event streams. The events generated from

heterogeneous sensors are collected and aggregated using logical and spatiotem-

poral relations to form complex events which model the intrusion patterns. All the

rules and patterns are to be registered initially. The listeners are intimated whenever

Sensor Node 1

Event
Receiver

Event
Receiver

Event
Receiver

Queue

Event Processing Engine

Notifier

Listener Listener Listener

Notifier Notifier

Sensor Node 2 Sensor Node N

Fig. 2.4 CEP architecture for semantic intrusion detection system

2 Complex Event Processing Framework for Big Data Applications 49



the corresponding rule is hit or pattern is matched for which it is configured.

Modeling of the complex events using event expressions is explained later in this

section. Notifiers are used for intimating the listeners about the rule or pattern

occurrences. Listeners are the modules that take necessary action on notifications.

There are several supporting modules in semantic IDS to perform the activities

on the occurrence of certain events. These modules are Kalman tracking module,

person detection module, authentication module, etc. Person tracking is done using

Kalman filter. All these modules are listeners to the CEP engine.

Figure 2.5 shows how the physical events generated from different sensors can

be aggregated to generate a complex event which represents a pattern or a scenario

of interest. Sensed information from the sensors that interact with the physical

environment/world is collected by the event receivers. Various scenarios

representing simple and complex events have been modeled using event

expressions.

The following primitive events are considered for the present study:

• Events generated during the interaction between the RFID readers and tags

• PIR readings generated whenever a person crosses the sensor

• GPS readings indicating the location of event occurrence

• Time of event occurrence

• Images captured by the camera

One of the complex event scenarios and its modeling using event expressions are

discussed below.

EQL
Rule

Event Query Language
(EQL)

Event Processing
Agent (EPA)

EPA

Result

Result

Raw Events

Simple Event

Event Receiver

RFID PIR GPS Timer Camera

Event Receiver Event Receiver Event Receiver

Complex Event

Event Stream/Event cloud

Event
Listener 1

Event
Listener 2

Event
Listener n

Event
Listeners

Physical events (Generated from sensors)

Complex Event Processing

Pattern
Complex Event Processing Engine

Rule

Fig. 2.5 CSIDS

50 R. Bhargavi



Example: Unauthorized Entry

When a person who does not possess a valid RFID tag tries to enter a location just

behind an authorized person, it is called as tailgating. This scenario can be captured

as explained below.

CEP queries the wireless data for an event where PIR is present but RFID is zero.

Once such an event is identified, CEP gets the image from the database

corresponding to that event’s time stamp and gives the image to Haar face detection

module. The Haar face detection algorithm counts the number of persons present

and gives the count back to CEP. This scenario can be modeled as follows:

E1: Office entry

E1¼ (s1, o1, t1) type (s1)¼RFID event

E2: Office entry

E2¼ (s2, o1, t2) type (s2)¼ PIR event

E3: Multiple people sensed by image sensor

The complex pattern can now be formulated as

every E2 : Ø E1ð Þð Þ ^ E3ð Þ

Now, the rule can be developed to raise an alert on the above complex event using

IF – THEN condition:

IF (true)

Get the image with the same time stamp and node ID from the data base.

Send the location of the image in the data base to the image processing module for

checking number of people.

Receive the response from the image processing module.

Generate alert if needed.

End

2.3.1 Implementation and Validation

The proposed CSIDS is validated using a sensor network. A wireless sensor node is

devolved which consists of a passive infrared sensor, radio frequency identifier

reader, GPS receiver, and timer. Ten such sensor nodes are used for deploying the

wireless sensor network. Some of the nodes are connected with cameras. The

camera is triggered by the PIR sensor and is connected to a personal computer.

The images captured are stored in PC and transmitted to the server via wired

network. A unique ID is assigned to each sensor node. Data from the RFID and

PIR sensors are sent to the sink using wireless communication (using ZigBee

module). Data from the cameras is sent to the server using Ethernet. This is done

2 Complex Event Processing Framework for Big Data Applications 51



to overcome the bandwidth, memory, processing, and power limitations of sensor

node. The complete CSIDS is developed using Java. Esper event processing engine

is used to implement and execute the rules. Patterns representing intrusion are

modeled as complex events which in turn are aggregated from base events and other

complex events using logical and spatiotemporal relations. Rules have been devel-

oped to identify the unauthorized entry of the people in to the security zones,

tailgating issue, and few other scenarios. It is observed that the proposed CSIDS

identifies the intrusion patterns efficiently in near real time. It is also observed that

the proposed system out performs the pull-based solutions in terms of detection

accuracy and detection time. The quality of results depends on the quality of sensors

and processes of their data. For example, if the sensors take more time to sense the

data, process, and communicate, then this introduces a delay between the occur-

rence of real situation and its recognition by the application which can become

considerable in sensitive situations.

2.4 CEP-Enabled Geriatric Health Monitoring

Healthcare monitoring is another application which can best exploit the advantages

of CEP. This section explains the proposed CEP-based geriatric health monitoring

system (CGHMS). Advancements in wireless body area networks have led

researchers to exploit the usage of these technologies in healthcare applications

[4, 15, 18]. Availability of wearable and cost-effective physiological and motion

sensors allow automated health monitoring of elderly people. There are a number of

healthcare applications using sensor networks. Within the hospital, there are three

applications: (1) to track people and objects around the hospital [16], (2) to safe-

guard use of equipment, and (3) to assist medical personnel with their jobs. Another

important application is elder care in home. Global increase in the ratio of elderly

people [8] in the world requires alternatives to the traditional homecare technolo-

gies that are available today. This in turn indicates that there will be challenges

related to giving proper care to the elderly people since care giving requires enough

people and resources. Hence, there is a need for alternatives that automate the home

care application domain.

The important requirement of healthcare monitoring is automatic anomaly

detection of vital parameters. Another important requirement is that when some-

thing dangerous or critical occurs, it is important that the system detects this

immediately and that the delay is minimal. There are several existing solutions

for monitoring the activity of a person or abnormality of a particular health

parameter. But there is no solution for identifying the abnormal situations like

fall of a person by combining the vital parameters, activities of the person, and the

context information. CEP-enabled geriatric healthcare monitoring system

(CGHMS) collects data generated from physiological and environmental sensors

and detects the abnormalities in vital parameters and fall of a person.

52 R. Bhargavi



The main objective of the CEP-enabled geriatric healthcare monitoring is to

collect health parameters from the patient, detect the presence of an abnormality in

vital parameters, and provide feedback to the rules in decision-making about the

health condition and falls of a geriatric patient. In the geriatric healthcare monitor-

ing domain, complex event processing involves analyzing raw sensor data and

recognizing next level of events like low BP, high BP, and high temperature to

complex events like person has fallen, etc. The data/event streams are filtered

correlated and aggregated to identify any abnormal patterns. Rules/patterns of

interest corresponding to various scenarios are stored in the knowledge base.

Rules are executed on the incoming data to detect the anomalies. Every rule has

associated action to be executed like sending SMS to caregiver or doctor or patient.

Figure 2.6 shows the architecture of the CEP-enabled geriatric health monitoring

system. The physical and semantic data flows are also shown. The proposed

CGHMS uses wearable BP sensor, pulse oximeter, and BioHarness 3 device, a

Zephyr product which contains both biosensors and triaxial accelerometer for

measuring the vital parameters like respiration/breathing rate, heart rate, ECG,

and movement along X-, Y-, and Z-axis, respectively. CGHMS also uses RFID

reader which can be connected and used with IPAQ PDA device. RFID tags and

environmental sensors are placed throughout the area to be monitored to get the

context information. Data generated by these sensors are collected and sent to a

central server where CEP engine. The knowledge base consists of CEP rules which

model the various abnormal health condition events. The CEP engine executes all

the rules whenever it receives the sensor data/facts to detect abnormality situations.

Raw data

SVM

Physiological Sensors

RFID tags RFID Reader

Accelerometer

CEP

Rule Base

CEP Engine

Working
Memory

RFID
Middle ware

Basic
Events

Complex
Events

Alert
Generation

Alert
Generation

Semantic
Data Flow

P
hy

si
ca

l 
D

at
a 

F
lo

w

Fig. 2.6 CGHMS architecture

2 Complex Event Processing Framework for Big Data Applications 53



Every rule has associated action to be executed like sending SMS to the caregiver or

doctor or patient.

2.4.1 Implementation and Validation

The complete CGHMS is implemented in Java. Java-based Drools Expert engine is

used for rule development. Drools APIs are extended to support CGHMS. To

reduce the false alarms in fall detection, the proposed CGHMS uses vital parameter

data, activity of the person, RFID information which gives the contextual informa-

tion, and camera. For activity classification using triaxial accelerometer and gyro-

scope, SVM classifier is used [12]. The proposed CGHMS provides continuous

accessibility to vital parameters and other relevant data and analysis of the data. The

CGHMS improves the quality of life of the elderly people by monitoring the well-

being and alerting in case of emergency. The proposed CGHMS is tested and

validated in real-time environment using Zephyr BioHarness device; pulse oxim-

eter; BP sensor, for measuring the vital parameters; RFID tags and reader to get the

context information; activity of a person using accelerometer and gyroscope; and

camera. It is observed that CGHMS detects the abnormalities in the vital parameters

and fall of a person more precisely compared to using the individual sensors. As

discussed earlier, the performance of the proposed CGHMS depends on the quality

of the sensors used. Also, the wearable sensor device must be worn by the person

correctly in the right position; otherwise, the captured data by the sensors may be

incorrect or sometimes the parameters may not be captured at all. Other problems

which affect the performance of the system include operating condition of the

device, battery charging, availability of the communication links, etc.

2.5 Conclusion

To conclude, this chapter discusses CEP framework for big data applications. Two

real-time case studies have also been discussed thoroughly. Early identification of

significant complex events provides situational awareness and better decision-

making. Complex event processing enables sense-and-respond behavior, in which

incoming events or information is used to assess the current situation and generate a

response in a timely fashion. This chapter has proposed CEP-based solutions to

Internet of Things where early identification of significant complex events provides

situational awareness and better decision-making. Two real-time applications,

semantic intrusion detection and healthcare monitoring, are implemented and

validated to demonstrate the power of CEP. Patterns representing intrusion and

abnormal situations are modeled as complex events which are aggregated from base

events and other complex events using logical and spatiotemporal relations. The

CEP-based solutions provide the capabilities of heterogeneous information fusion

54 R. Bhargavi



coming from several kinds of sensors to get a global situation view and take

necessary action in near real time. The proposed semantic intrusion detection

system is found to outperform the existing solutions in terms of detection latency

(i.e., time delay between the event occurrence and event detection) and detection

accuracy, i.e., event identification with less false positives and false negatives. The

proposed CEP-based solutions require domain knowledge of the application. All

the situations/scenarios of interest should be well understood and modeled as rules

using the events and available constructors. Failing to which, the pattern

representing the complex event (event of interest) may not be captured as expected.

Missing events is another common problem in case of wireless sensors. Missing

basic events will lead to the failure of getting the high-level complex situations

captured. The quality of results depends on the quality of sensors. For example, if

the sensors take more time to sense the data, process, and communicate, then this

introduces a delay between the occurrence of real situation and its recognition by

the application which can become considerable in sensitive situations.

In any of the complex event processing-based applications, the system is initially

configured with all the rules (defined by the domain experts) which define the

complex events or patterns to be identified and alerted. But there are several

applications in which new rules need to be added or deleted at run time. Hence,

the proposed solutions can be extended to support dynamic rule addition and rule

deletion. CEP is a rule-based technology for detecting known patterns of events and

reacting to the identified situations in real time. Incremental or dynamic learning is

used to learn the dynamic environments effectively. Hence, the proposed solutions

can be extended to incorporate dynamic learning, and the newly learned knowl-

edge/concepts can be given as feed back to the CEP engine to add new rules and

identify new patterns or situations of interest. This makes the complete system more

adaptive and intelligent.

References

1. Bhargavi R, Vaidehi V (2013) Semantic intrusion detection with multisensor data fusion using

complex event processing. Sadhana Acad Proc Eng Sci 38(2):169–185, ISSN: 0256–2499

2. Bastian Hoßbach and Bernhard Seeger (2013) Anomaly management using complex event

processing: extending data base technology paper. In: Proceedings of the 16th international

conference on extending database technology (EDBT ’13). ACM, New York, pp 149–154

3. Cantoni V, Lombardi L, Lombardi P (2006) Challenges for data mining in distributed sensor

networks. ICPR 1:1000–1007

4. Poon CYC, Liu Q, Gao H, Lin W-H, Zhang Y-T (2011) Wearable intelligent systems for

E-health. J Comput Sci and Eng 5(3):246–256

5. Elnahrawy E (2003) Research directions in sensor data streams: solutions and challenges.

DCIS, Technical Report DCIS-TR-527, Rutgers University

6. Gehani NH, Jagadish HV, Shmueli O (1992) Composite event specification in active data-

bases: model and implementation. In: VLDB ’92: Proceedings of the 18th international

conference on very large data bases. Morgan Kaufmann Publishers Inc., San Francisco, pp

327–338

2 Complex Event Processing Framework for Big Data Applications 55



7. Jin J, Gubbi J, Marusic S, Palaniswami M (2014) An information framework for creating a

smart city through internet of things. Internet Things J IEEE 1(2):112–121. doi:10.1109/JIOT.

2013.2296516

8. Kinsella K, He W (2009) An aging world: 2008. International population reports,

U.S. Department of Health and Human Services

9. Luckham DC (2010) The power of events: an introduction to complex event processing in

distributed enterprise systems. Addison Wesley Longman Publishing Co., Inc., Boston

10. Luckham DC, Schulte R (2008) Event processing glossary – version 1.1.. Event processing

technical society. URL: http://www.ep-ts.com/component/option.com_docman/task.doc_

download/gid.66/Itemid.84/

11. NESSI White Paper, December 2012.

12. Palaniappan A, Bhargavi R, Vaidehi V (2012) Abnormal human activity recognition using

SVM based approach. In: Proceedings of IEEE international conference on recent trends in

information technology (ICRTIT 2012), Chennai, India, pp 97–102, April 19–21

13. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the

internet of things: a survey. Commun Surv Tutorials IEEE 16(1):414–454

14. Tian He, Krishnamurthy S, Liqian Luo, Ting Yan, Lin Gu, Stoleru R, Gang Zhou, Qing Cao,

Vicaire P, John AS, Tarek FA, Jonathan Hui, Krogh B (2006) VigilNet: an integrated sensor

network system for energy-efficient surveillance. ACM Trans Sen Netw 2(1):1–381

15. Vaidehi V, Bhargavi R, Ganapathy K, Sweetlin Hemalatha C (2012) Multi-sensor based

in-home health monitoring using complex event processing. In: Proceedings of IEEE interna-

tional conference on recent trends in information technology (ICRTIT 2012), Chennai, India,

pp 570–575, April 19–21

16. Yao W, Chu C-H, Zang Li Yao W, Chu C, Li Z (2011) Leveraging complex event processing

for smart hospitals using RFID. J Netw and Comput Appl 34(3):799–810

17. White Jr FE (1987) Data fusion lexicon. Data fusion subpanel of the joint directors of

laboratories, Technical Panel for C3, Naval Ocean Systems Centre, San Diego

18. Wood A, Virone G, Doan T, Cao Q, Selavo L, Wu Y, Fang L, He Z, Lin S, Stankovic S (2006)

ALARM-NET: wireless sensor networks for assisted-living and residential monitoring. Tech-

nical report, Department of Computer Science, University of Virginia, Wireless Sensor

Network Research Group

19. Zaslavsky A, Perera C, Georgakopoulos D (2012) Sensing as a service and big data. In:

International conference on advances in cloud computing (ACC-2012), Bangalore, India,

July 2012, pp 21–29

56 R. Bhargavi

http://dx.doi.org/10.1109/JIOT.2013.2296516
http://dx.doi.org/10.1109/JIOT.2013.2296516
http://www.ep-ts.com/component/option.com_docman/task.doc_download/gid.66/Itemid.84/
http://www.ep-ts.com/component/option.com_docman/task.doc_download/gid.66/Itemid.84/


Chapter 3

Agglomerative Approaches for Partitioning
of Networks in Big Data Scenarios

Anupam Biswas, Gourav Arora, Gaurav Tiwari, Srijan Khare,

Vyankatesh Agrawal, and Bhaskar Biswas

Abstract Big Data systems are often confronted with storage and processing-

related issues. Nowadays, data in various domains is growing so enormously and

so quickly that storage and processing are becoming the two key concerns in such

large systems of data. In addition to the size, complex relationship within the data is

making the system highly sophisticated. Such complex relationships are often

represented as network of data objects. Parallel processing, external memory

algorithms, and data partitioning are at the forefront of techniques to deal with

the Big Data issues. This chapter discusses these techniques in relation to storage

and processing of Big Data. The Big Data partitioning techniques, such as agglom-

erative approaches in particular, have been studied and reported. Network data

partitioning or clustering is common to most of the network-related applications

where the objective is to group similar objects based on the connectivity among

them. Application areas include social network analysis, World Wide Web, image

processing, biological networks, supply chain networks, and many others. In this

chapter, we discuss the relevant agglomerative approaches. Relative advantages

with respect to Big Data scenarios are also presented. The discussion also covers the

impact on Big Data scenarios with respect to strategic changes in the presented

agglomerative approaches. Tuning of various parameters of agglomerative

approaches is also addressed in this chapter.

Keywords Big Data • Agglomerative approaches • Clustering • Partitioning •

MapReduce • Network partitioning

A. Biswas (*) • G. Arora • G. Tiwari • S. Khare • V. Agrawal • B. Biswas

Department of Computer Science and Engineering, Indian Institute of Technology (BHU),

Varanasi, India

e-mail: anupam.rs.cse13@iitbhu.ac.in; gourav.arora.cse11@iitbhu.ac.in; gaurav.tiwari.

cse11@iitbhu.ac.in; srijan.khare.cse11@iitbhu.ac.in; v.agrawal.cse11@iitbhu.ac.in; bhaskar.

cse@iitbhu.ac.in

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_3

57

mailto:anupam.rs.cse13@iitbhu.ac.in
mailto:gourav.arora.cse11@iitbhu.ac.in
mailto:gaurav.tiwari.cse11@iitbhu.ac.in
mailto:gaurav.tiwari.cse11@iitbhu.ac.in
mailto:srijan.khare.cse11@iitbhu.ac.in
mailto:v.agrawal.cse11@iitbhu.ac.in
mailto:bhaskar.cse@iitbhu.ac.in
mailto:bhaskar.cse@iitbhu.ac.in


3.1 Introduction

Big Data maintenance and processing are the two major issues in modern-day data

mining. Complex relationships present within the data have resulted in data systems

becoming even more complicated. Often such relationships are represented as

networks in different domains [1–4]. In the network data representation, various

objects within the data are represented with nodes and relationships among those

objects that are represented with connections. The network representation of com-

plex relationships present within the data is relatively easily interpretable. How-

ever, the main issues relating to memory and processing are retained due to huge

size of these networks. In this context, various parallel processing techniques

become highly useful for efficient processing. GPU techniques such as Pregel [5],

Giraph [6] and Seraph [7] are very popular for parallel processing of network data.

These techniques are based on the computation model called the bulk-synchronous

parallel (BSP) model [8]. On the other hand, to deal with memory-related issues

such as maintenance of larger network data than the memory, external memory

algorithms are often frequently utilized.

Both parallel processing and external memory techniques require partitioning of

networks [5–9]. In a parallel processing scheme, smaller parts of a network are

processed simultaneously in multiple processing units. Results of the multiple

processing units are accumulated to generate overall output. On the contrary,

external memory schemes partition the network to fit into the memory. Thus,

efficient partitioning of networks is very important from both perspectives. Mean-

ingful partitions of networks can reduce computation cost. Moreover, such parti-

tions can be easily handled with low-memory requirement. The objective of

meaningful partitioning is to divide the network into subnetworks such that nodes

within the subnetwork are close or similar. It means that nodes belonging to sub-

networks have more connectivity than the connectivity among subnetworks. Such

subnetworks are often referred to as clusters or communities.

Numerous network data partitioning or clustering approaches have been devel-

oped, which can be broadly categorized as node centric [3, 10], group centric [11–

14], network centric [15], and hierarchical [11, 16–20]. Node-centric approaches

specify certain properties that needed to be satisfied by all the nodes of any cluster.

Group-centric approaches relax such restrictions from all nodes of clusters to some

members of the cluster. Instead of bounding individual nodes, group-centric

approaches consider properties for groups during partitioning of networks.

Network-centric approaches consider properties that are defined by covering the

entire network. Hierarchical approaches can be further subcategorized as divisive

and agglomerative. Divisive approaches follow top-down method, i.e., these

approaches keep partitioning the network until it maximizes prespecified criterion.

In contrast, agglomerative approaches follow natural way of group formation.

Starting from nodes, gradually groups grow by merging similar groups. In order

to ensure a meaningful clustering, several metrics [21–23] are used to evaluate

clustering algorithms. In this context, agglomerative approaches are found better in

58 A. Biswas et al.



generating accurate clustering than other approaches [11, 16–20]. In this chapter,

we have presented agglomerative approaches in detail with their advantages and

limitations in relation to certain Big Data scenarios.

Remainder of the chapter is organized as follows. Section 3.2 explains various

Big Data scenarios and their inherent issues. Section 3.3 illustrates parallel

processing techniques of Big Data for the resolution of related issues. Section 3.4

explains various external memory operations to tackle memory-related issues.

Section 3.5 discusses how agglomeration can be helpful for Big Data scenarios in

parallel processing and external memory operation techniques. Section 3.6

describes various agglomerative approaches with a generic model. Section 3.7

discusses relative impact in handling large graphs with various strategic changes

in the agglomerative approaches. Section 3.8 lists the specific parameters of various

agglomerative algorithms and discusses beneficiary treatments of those parameter

in Big Data scenarios. In Sect. 3.9, we discuss various advantages, disadvantages,

and issues related to incorporation of agglomerative approaches in Big Data

scenarios. Finally, the conclusion is presented in Sect. 3.10.

3.2 Big Data Scenarios and Issues

Big Data involves three Vs (volume, variety, and velocity) [24] in its definition,

which resembles large, heterogeneous, and rapidly and continuously growing data

sets. In this section, we study applications of various domains that deal with large

data and associated issues. For example, social networks such as Facebook and

Twitter are growing enormously and are therefore generation huge volumes of user

data. Graph-based analysis of links and text analysis-related application to such

social networks are very common. Facebook has more than 802 million active users

and has to process over 1.26 billion queries every day [25]. Twitter also has almost

500 million active users who generate more than 58 million tweets and 2.1 billion

search queries every day [26]. Another instance is the searching of the World Wide

Web. Popular search engine Google processes 3.5 billion searches per day

[27]. Dealing with such large data is often confronted with the major issues mainly

related to handling of processing and storage of data.

Telecommunication traffic management system [28] receives billions of com-

mon channel signaling (CCS) messages and calls from multiple subnetworks that

require gigabytes of memory. Analysis of characteristics of both the telephone call

arrival process and the signaling message arrival process is key requisite for the

traffic system. Major concern is to analyze call arrival, call holding, message

arrival, message routing, etc. Such analysis requires processing of gigabytes of

data. The size and complexity of traffic data require sophisticated methodology for

data management, data translation and manipulation, and data analysis. Today’s
Internet traffic management system [29] requires even more sophisticated and

efficient processing of such enormous amounts of data collected from the network.

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 59



In the image processing domain, content-based image retrieval (CBIR) systems

[30], duplicate image detection (DID) systems [31], and face recognition systems

[32] involve massive image data processing. Billions of images are available on

Facebook and Picasa. These image processing systems require processing each of

the images, which implies necessity of memory as well as efficient processing.

From the perspective of the data analysis specialist, the Big Data scenario infers

various specialized difficulties. The most evident of them is the computational

issue of needing to manage large data in memory (memory management) and to do

as such in a sensible amount of time (efficient processing). Efficient processing of

algorithms depends on super-linearity on size of the data and dimensions of data.

Increasing any one of these two variables requires memory optimization, paral-

lelism, and new creative approaches. Other fundamental issues with aforemen-

tioned scenarios are to deal with dimensionality, variety, and heterogeneity

of data.

In practical applications of real-world problems, dealing with large data with

billions of instances and high dimensions focuses mainly on efficient processing

and creative memory management. In recent years, researchers have developed

brilliant models that optimize the processing part by executing in parallel. Prime

focus of this chapter is on large graph processing or processing of large-scale

linked data. MapReduce [33] and bulk-synchronous parallel (BSP) [8] are the

widely accepted models for processing of large graphs in parallel with multiple

machines. Similarly, for the storage issues, numerous solutions are proposed

which have proven to be very efficient in handling large data. External memory

operations are very popular for efficient memory management. In coming sections,

various BSP models for parallel processing and external memory operations are

elaborated.

3.3 Parallel Processing

This section explains the bulk-synchronous parallel (BSP) model [8] for the

processing of large graphs in parallel. In addition to this, techniques such as Pregel

[5] and Seraph [7] that incorporate BSP model for graph processing are also

illustrated.

3.3.1 Bulk-Synchronous Parallel (BSP)

Main objective of both MapReduce and BSP models is the same, i.e., processing of

graphs in parallel. The difference between the two models lies in the flow of data

while processing takes place. A typical BSP model adopted from [7] is presented in

Fig. 3.1. BSP partitions the input data once and for all during initialization. Nodes

process the part of data that are assigned to them independently by consuming

60 A. Biswas et al.



messages from a private box. Data does not flow between the nodes; rather

instruction messages are exchanged between nodes that are smaller and efficiently

transmitted. This is an incarnation of message passing interface (MPI) pattern.

There is no restriction on the outcome of the processing phase. It can be the

modification of the local partition’s data or output of a new data set or in particular

production of new messages, which will be shipped to the appropriate nodes and

consumed on the next iteration and so on.

Processing moves ahead with the completion of smaller units called supersteps.
It indicates the completion of processing in all nodes for the current iteration. Thus,

after each superstep, all nodes join a common synchronization barrier. The role of

such barriers is to decouple the production and consumption of messages. All nodes

pause their activity, while the BSP plumbing enqueues messages into each node’s
private mailbox and signals ready for consumption when processing resumes at the

next superstep. In this way, a message produced by node A for node B will not

interrupt the latter during its processing activity. Resources are mostly dedicated to

computing. In case of nonuniform processing of nodes, faster nodes will sit idle

while waiting for the other ones to complete a superstep. The superstep that

produces no more messages that will be shipped to any other nodes is the termi-

nating step of the algorithm.

Fig. 3.1 BSP model

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 61



3.3.2 Overview of Pregel

The idea behind Pregel [5] is the exploring the graph along its edges. Starting from a

fixed set of vertices, one can hop from vertex to vertex and “propagate” the

execution of the algorithm, so to speak, across the set of vertices. This reminds

about how BSP model had executed an algorithm iteratively by passing messages.

In BSP, messages are exchanged between computation nodes, and in Pregel,

messages are exchanged between vertices of the graph. After knowing the

partitioning function of the graph, it is easy to know what node hosts each vertex

so that each node can dispatch incoming messages at the finest level. Thus, at a

logical level, vertices send messages to each other; at the physical level, the

underlying BSP foundation takes care of grouping those messages together and

delivering them to the appropriate nodes of the cluster. After each superstep, the

processing covers a bigger portion of the graph. Of course, messages are not

necessarily sent along edges of the graph, but it is the most common scenario.

The default partitioning function in Pregel does not take into account the shape of

the graph. It does not try to optimize the partitioning to minimize node-to-node

communication by keeping strongly connected vertices together.

3.3.3 Overview of Seraph

Seraph [7] is an efficient, low-cost system for concurrent graph processing. Existing

systems such as Pregel can process single graph job efficiently, but they incur high

cost while dealing with multiple concurrent jobs. These systems limit the sharing of

graphs in memory for multiple jobs. In other words, these systems strongly asso-

ciate graph structure with job-specific vertex values. Therefore, each individual job

needs to maintain a separate graph data in memory that imply inefficient use of

memory. Seraph solves the above issues as follows. Concurrent jobs can share

graph structure, which reduces memory requirement even if the fact that graph

structure and job-specific data are strongly associated. Small amount of data is

required in Seraph; with that, the entire computation states can be recovered.

Seraph enables multiple jobs to share the same graph structure data in memory

[7] as illustrated in Fig. 3.2. To maximize job parallelism, Seraph incorporates three

new features as follows:

• In order to isolate mutations in graph from concurrent jobs, Seraph adopts

“copy-on-write” semantic. When the graph structure needs to be modified by a

job, Seraph copies the local region that corresponds to that job, and mutations are

applied without affecting remaining jobs.

• A “lazy snapshot” protocol is used. It maintains a continuous graph updates.

Further, consistent snapshot is generated for each new submitted job.

• Delta graph check pointing and state regeneration are used to implement fault

tolerance. This is because it deals with both, job-level and worker-level failures.

62 A. Biswas et al.



A job scheduler controls the execution progress and message flow of each

concurrent job. Therefore, avoiding aggressive resource competition requires a

job scheduler to be a part of Seraph.

3.4 External Memory Operations

In the case of large graph networks that cannot be stored completely in the main

memory, external disk is used. However, this incurs I/O interaction overheads.

External memory breadth-first search (EM BFS) algorithm is one of the competent

algorithms in efficiently handling such overheads. This section briefly discusses

different variants of the EM BFS algorithm.

3.4.1 External Memory BFS

EM BFS consists mainly of two phases: partitioning of graphs into disjoint sub-

graphs and breadth-first search (BFS) generation phase.

• Partitioning phase: Partitioning of graph is done generally in parallel to speed up

the process. Adjacency list representation of graph is restructured in this phase.

With randomly selected nodes called master nodes, multiple connected sub-

graphs are prepared and stored in external file and spatial indexing is used to

Fig. 3.2 The execution of concurrent jobs in Seraph

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 63



access them. Boundaries of these subgraphs are actually the master nodes.

Therefore, the external files can be used to define the level of BFS.

• BFS generation phase: External files are sorted in accordance with their identi-

fiers. External file at level i contains adjacency list of subgraph of level i. Thus,
starting with level 0 through level n will generate levels of BFS from 0 to n.

There are several variants of EM BFS that have been proposed. The MM BFS

[34] and MR BFS [35] are the most efficient variants of EM BFS. These have

successfully managed to reduce the I/O-bound complexity in the following ways:

• MR BFS: Worst-case I/O-bound complexity is reduced to O nþ sort nþmð Þð Þ
by I/O efficient comparing the two most recently completed BFS levels with

current BFS.

• MM BFS: It introduced a preprocessing step where nodes are grouped and

accessed orderly. Whenever the first node of a group is visited, then the

remaining nodes of that group will be accessed soon. Thus, it has reduced I/O-

bound complexity.

3.5 Agglomeration in Big Data Scenarios

Discussions in Sects. 3.3 and 3.4 indicate that the handling of big data issues with

both the parallel processing and external memory operation requires partitioning of

graphs or networks. This section illustrates how the agglomerative approaches are

becoming beneficial for the partitioning of large networks. In agglomerative

approaches, partitioning is started from arbitrary nodes and gradually enlarged to

obtain final clusters present in the entire network. Clusters are identified locally

with agglomeration approaches. Most of these approaches do not require access to

the entire network at the same time, which helps during processing large networks.

Large networks are processed in parallel by partitioning them into smaller sub-

networks. Thus, clustering is very important for parallelization of processing.

However, most of the clustering algorithms other than agglomerative approaches

require processing of the entire network at the same time, which takes us on the

processing and memory-related issues. On the contrary, agglomerative approaches

partition the networks through local processing of parts of the networks.

Local nature of the agglomerative approaches gives a place for implication of

these approaches to execute and start clustering from multiple parts of the network

in parallel. For example, local nature of merging clusters based on incremental

modularity in fast unfolding algorithm [11] can be noticed easily. Processing of two

clusters for merging requires only information about those clusters. If it indicates

that the modularity increases with merging, then simply merge those clusters

without bothering about other parts of the network. Hence, merging operation in

fast unfolding algorithm can be treated as local operation and can be executed in

parallel. Similarly, visiting of nodes in random walk algorithm [20] during simi-

larity matrix preparation requires processing only those nodes, which come under

64 A. Biswas et al.



the path with prespecified length. Visiting of nodes in multiple random paths can be

performed in parallel. Thus, clustering process itself can be parallelized easily with

agglomerative approaches.

The local nature of agglomerative approaches can be parallelized if local

operations are defined explicitly. However, some of the algorithms are a little bit

complex, and the local nature of these algorithms is implicitly defined within the

process. Local operations cannot be extracted from the main process of the algo-

rithm. These approaches limit the implication of the local operations in parallel. For

example, the evaluation of membership of nodes in LICOD algorithm [10] requires

the identification of the shortest path. The entire network has to be processed to find

the shortest path. Therefore, the algorithm cannot be parallelized. Similarly, leader-

follower algorithm [16] also requires the shortest path. Moreover, the merging of

clustering in LICOD is also not local, since it incorporates of Borda voting scheme.

Therefore, these algorithms cannot be parallelized. On the contrary, top leader

algorithm [18] can be parallelized though the local nature is implicit. Identification

of top k nodes requires access to the entire network. However, after identification of
top k nodes, the portion that finds associated members to these nodes can be easily

executed in parallel.

Partitioning of large networks and processing those parts in parallel are the

primary aspects to deal with most of the Big Data scenarios where linked informa-

tion are presented in the form of a network. Therefore, efficient and proper

partitioning of network is prerequisite for processing the networks in parallel. If

partitioning scheme itself can be parallelized, then it avails additional advantage for

dealing with Big Data. Agglomerative approaches have privilege over other clus-

tering or partitioning schemes, since these approaches can be parallelized. How-

ever, due to implicit definition of local operation or inseparable local operations,

parallelization of the algorithms cannot be performed for some cases. Nevertheless,

these approaches reduce significantly the processing time. Specially, the

approaches such as fast unfolding and SCAN [19] are very fast and overwhelmingly

accepted approaches for dealing with Big Data scenarios.

3.6 Agglomerative Approaches

This section elaborates on various agglomerative approaches with a generic model

for partitioning graphs. Agglomerative approaches follow bottom-up approach

where each observation starts in its own cluster and pairs of clusters are merged

as they move up in the hierarchy. Unlike divisive approaches, here clusters merge

instead of splitting. The generic agglomerative approach is briefly described, first,

as follows.

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 65



3.6.1 Generic Model

A generic model of agglomerative approach is shown in Fig. 3.3. Initially, each

node is considered as a cluster. At each level, these clusters are merged with other

clusters. Generally, merging of nodes is done in a greedy manner. Each level of

merging carries cost or benefit of merging. If merging is associated with any cost

function, then definitely that has to be minimized; otherwise, it has to be maxi-

mized. Generally, functions related to benefit of merging are considered to merge

clusters. The function associated with each level can be presented in the dendro-

gram. These functions are also used to determine when to stop merging clusters. For

example, in Fig. 3.3, the values of benefit of merging associated with each level are

S1, S2, S3, :::, Snf g, here n ¼ 4. Merging of clusters will stop at level 2 if S2 > S3,
i.e., the benefit of merging decreases with further merging of clusters. Hence, to

gain maximum benefit, algorithm will stop at level 2.

Apart from the cost and benefits, distance among clusters and number of clusters

are also used as stopping criteria. Each agglomeration occurs at a greater distance

between clusters than the previous agglomeration. One can decide to stop clustering

either when the clusters are too far apart to be merged (distance criterion) or when

there is a sufficiently small number of clusters (number criterion). Generally,

merging of clusters takes place in two ways depending on formation of clustering.

The model described in Fig. 3.3 is the global approach where clusters are formed on

processing of the entire graph. On the contrary, Fig. 3.4 presents generic model for

the local approach. Clusters are formed locally without processing the entire graph.

Clusters are formed sequentially one after another. However, each cluster is formed

by merging smaller clusters in successive levels until a maximum benefitted cluster

is obtained. Such merging is centric to a particular node that advocates benefit

Fig. 3.3 Generic model of agglomerative approach

66 A. Biswas et al.



associated with the cluster. Once the cluster associated with the advocating node

achieves maximum possible benefit, it starts new cluster associated with other

advocating node. In Fig. 3.4, S1i is the maximum benefit of the cluster 1. After

achieving the value S1i, processing for the cluster 1 ends and processing for cluster

2 begins. Most of the agglomerative algorithms follow local agglomeration

approach. In the next subsections, we illustrate strategies incorporated in different

agglomerative approaches in perspective of the generic model.

3.6.2 Fast Unfolding

Fast unfolding algorithm [11] uses the modularity function as benefit function to

obtain perfect clusters. The algorithm keeps on merging the clusters until maximum

modularity is reached. During intermediate states of the algorithm, the actual size of

graph reduces to the number of clusters formed at the current level, which are the

new nodes of the graph. These nodes are again sent back to the algorithm to reduce

it further to obtain maximum modularity. The algorithm has two phases. In the first

phase, a particular node is assigned to a neighboring node based on the change in

modularity, while in the second phase, the reduced graph is obtained from the first

phase. This process continues until there is no change in the graph obtained from

the first phase and the second phase.

Fig. 3.4 Generic local model of agglomerative approach

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 67



Phase 1:
• Initially each individual node is represented as a cluster.

• Each node is processed with its neighbors for the value of ΔQ that is the change

in modularity of the node in case neighbor is merged with node representing a

cluster.

• The neighbor with maximum positive gain in modularity is chosen for merging

with the node to obtain clusters.

• Intermediate clusters are obtained with the merging.

Phase 2:
• A new graph is prepared with the clusters obtained from phase 1. Nodes of the

graph are the clusters. Edges of the new graph are prepared as follows. The edges

that lie within a cluster represented by self-loop. The weight of the edge between

two clusters is given by number of inter-cluster edges.

• If the graph obtained from phase 2 is the same as the one used in phase 1, then

the algorithm stops. The nodes at this stage represent the final clusters. If two

graphs are not the same, the process continues.

The fast unfolding algorithm follows the generic agglomeration process

discussed in Fig. 3.3. Benefit function used in the algorithm is the modularity

function. Stopping criterion is the difference between two graphs that are processed

in two successive levels.

3.6.3 SCAN

SCAN [19] is another popular agglomerative clustering approach. In addition to

clusters, it also detects hubs and outliers. It follows local agglomerative approach as

presented in Fig. 3.4. At the initial stage, the core nodes are identified. All those

nodes that are structurally reachable from the core nodes are assigned to respective

core nodes that form a cluster. The process continues until all the nodes are either

classified or marked as nonmember. The nodes that are identified as nonmembers

are further classified as hubs and outliers. The algorithm uses the following special

terminologies.

• Structural similarity: Represented by σ u; vð Þ where u and v are nodes and is

evaluated as number of common neighbors of u and vdivided by geometric mean

of number of neighbors of u and v.

• e-neighborhood: The number of neighbors of vwhose structural similarity with v

is greater than e belongs to its e-neighborhood.

• Core: A vertex v is defined as core if its e-neighborhood contains at least μ
vertices.

• Direct structure reachability: The nodes that are neighbors of the core are

directly structure reachable from that core.

68 A. Biswas et al.



• Structure reachability: A node v is structure reachable from some nodew, if there

exist a path such that all the intermediate nodes are cores.

• Hub: A node is defined as a hub if some of its neighbors are in one cluster while

some in other.

• Outliers: An isolated node is treated as an outlier if all its neighbors lie in one

cluster or does not belong to any as such.

Unlike the fast unfolding algorithm, SCAN does not have clear levels of

agglomeration. It merges nodes based on structural reachability and structural

similarity as follows.

• Nodes are arbitrarily selected and find their neighbors to decide if the nodes

represent core or not.

• If a node is not a core node, then it is marked as a nonmember. Otherwise, a new

cluster is formulated corresponding to the core node.

• The neighbors of the core node that belong to its e-neighborhood are inserted

into a queue Q.
• Nodes that are in Q are dequeued one by one until it becomes empty.

• For each dequeued element from Q, direct structure reachable nodes are iden-

tified. If any of these nodes is a nonmember node, then assign that node to

current cluster and enqueue it into the queue.

• After completing the processing of the entire graph, nonmembers that do not

belong to any cluster are marked as hubs or outliers.

One of the major advantages of SCAN algorithm is that it not only forms the

clusters but also identifies the nodes that are not formally in any cluster as hubs and

outliers. The algorithm is very fast. The time complexity of the algorithm is O mð Þ
for a graph with n vertices and m edges.

3.6.4 Leader-Follower

The leader-follower algorithm [16] is designed based on the idea of leaders and
their followers. Nodes are divided into either leader or follower by measuring

distance centrality. It measures the closeness of a node to all other nodes. Followers

are again subdivided as loyal or not loyal. A loyal follower must have its distance

centrality value at least equal to each of its neighbors.

Leaders are arranged in increasing order of their distance centrality. Initially, all

the leaders represent potential clusters. The representative cluster for a leader

expands as follows. The expansion process follows local agglomerative approach

as presented in Fig. 3.4. The neighbors that are loyal followers of the leader are

assigned to the representative cluster of that leader. Many of the leaders get no

followers and constitute cluster with single node. Such leaders are identified as fake

leaders. These fake leaders are removed by assigning them to other clusters. The

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 69



neighbors of the leader are considered for such assignment. The leader that has the

majority of its neighbors are loyal follower is selected as the leader for assigning

fake leaders. A special case occurs when the neighbors of a fake leader are

themselves leaders. This is handled by the same procedure of finding majority

leader and breaking ties randomly that results in random leader assignment. Major

steps of the algorithm are summarized as follows:

• Initialization is done by calculating the distance centrality of each node. This

method utilizes Floyd-Warshall algorithm for computing the shortest path

among all pairs of nodes.

• Identify leaders and followers by measuring distance centrality.

• Each representative cluster for a leader is expanded by assigning loyal followers.

• Single-node clusters, i.e., fake leaders are assigned to appropriate cluster as

explained in the above discussion.

Leader-follower algorithm can identify smaller clusters. The algorithm does not

need to specify any parameter as it naturally discovers the underlying structure.

Most importantly, it does not generate singleton clusters because all such clusters

are assigned to other clusters. The algorithm results unexpected clusters, as most of

the data sets do not follow the definition of cluster utilized in the algorithm. There

are numerous other leader-based algorithms in existence. These are covered in the

following sections in terms of their efficiency with respect to Big Data scenarios.

3.6.5 HC-PIN

HC-PIN [17] is another agglomerative algorithm that was designed to identify

clustering in protein-protein interaction networks. The algorithm follows local

approach as in Fig. 3.4 for expanding clusters. However, at the initial stage, it

processes the entire network for calculating the edge clustering value (ECV). In the

essence of agglomeration, the algorithm initially considers each individual node as

cluster. For each of the edges, ECV is calculated, and those are arranged in a list in

decreasing order. The ECV of an edge is the square of the product of a number of

common neighbors of the nodes divided by the product of a number of neighbors of

each node. Higher ECV for an edge indicates greater the tendency that both the

associated nodes of that edge to be included in the same cluster.

The edges are removed one by one from the ECV list. The weighted degree for

the clusters of each of the representative nodes is computed. Weighted degree is

defined as the sum of weights of all the incoming edges to a particular node. For a

cluster, it is the summation of weighted degrees for all the nodes belong that cluster.

A parameter λ is used for decision-making. The ratio of weighted in-degree to

out-degree for each of the clusters is compared with λparameter. Another parameter

s, is used at the end to determine the minimum size of each cluster. Only clusters

that have minimum size as s are included in the result. The algorithm is summarized

as follows:

70 A. Biswas et al.



• All the vertices are initialized as a singleton cluster.

• ECV value is calculated for each of the edges of the network. All the ECV values

along with associated edges are arranged in a list in decreasing order.

• Edges are removed one by one from the list, and associated nodes of that edge

are compared. The comparison-based decision is made to merge both the nodes

either in the cluster or in the different clusters.

• Weighted in-degree and out-degree of all clusters are computed. These weighted

values are compared with parameter λ in order to determine if it satisfies

necessary structural requirement of the cluster or not. If a cluster does not fulfill

this objective, then the nodes of that cluster are assigned to other cluster.

• In addition, clusters are also refined with parameter s to ensure the sizes of

clusters that are identified.

HC-PIN is a successful algorithm in terms of accuracy of clusters it generates.

3.6.6 Other Approaches

Apart from the algorithms discussed in the above subsections, there are numerous

agglomerative approaches that have been developed which fall within either of the

two models. For instance, random walk algorithm [20] has been developed utilizing

very similar mechanism as SCAN and HC-PIN algorithms. The leader-based

algorithms such as top leader [18] and LICOD [10] have been developed along

the same lines as leader-follower algorithm. Recently, another agglomerative

algorithm, ENBC [36], has been proposed. The ENBC algorithm incorporates

both models discussed above. The algorithm is also very efficient in generating

accurate clusters. Details of the strategic changes of these algorithms and their

impact on Big Data scenarios are discussed in the next section.

3.7 Agglomerative Strategic Changes for Big Data
Scenarios

Strategies incorporated in handling Big Data problems have a vital role for making

processing efficient and effective. As part of large graph processing with parallel

processing and external memory schemes requires partitioning. Section 3.5 has

discussed several advantages of incorporating agglomerative clustering in

partitioning of large graphs. Prominent agglomerative approaches are studied in

Sect. 3.6 with generic models. This section is devoted to discussing the agglomer-

ative approaches by accounting their strategic changes and relative impact in

handling large graphs with such strategic changes.

Numerous strategic changes in agglomerative approach have been proposed in

the quest for more effective and efficient clustering. Most promising strategic

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 71



change in agglomerative approach is the local processing of graphs. Several

algorithms have been proposed to make the local processing more efficient. One

common approach is to derive a mechanism which defines similarity among the

nodes of the entire graph and identifies clusters locally. Normally, clusters start

from any arbitrary node and gradually expand by utilizing similarities among

nodes. Most of such algorithms can be roughly viewed as two phases, i.e., similarity
matrix creation and cluster formation. For example, in random walk algorithm [20],

a similarity matrix is prepared that keeps track of frequencies of pairs of nodes that

appear in the random path. Initially, the algorithm traverses randomly in fixed

length path started from any random node. The strategy here is the nodes that are

in densely connected region will appear frequently in the random path. Thus, those

nodes will get higher similarity values. Similar kind of strategy is followed in

HC-PIN [17], where edge clustering value (ECV) is computed for all pairs of edges

and maintained in a list. Cluster formation part of such strategies is local, but the

similarity matrix preparation requires processing of the entire network. Therefore, it

requires special mechanism to generate similarities locally for large graphs.

An alternative of similarity computation is identification of leader nodes locally

among the representative groups of nodes within the graph. Leader-based algo-

rithms are designed based on this principle. These approaches can also be viewed in

two phases, i.e., leader identification and cluster formation. In the LICOD algorithm

[10], leader nodes are identified utilizing the degree centrality. Since leader node

represents potential cluster, the group of identified leader nodes is optimized to get

minimized set of nodes. Followers of these leader nodes are identified and based on

their membership values assigned to the representative cluster of a leader node.

Leader-follower algorithm [16] divides followers further into two groups: loyal

followers and non-loyal followers. Distinction of follower results in more refined

clusters. In contrast to both LICOD and leader-follower algorithms, top leader

algorithm [18] identifies top k potential leaders instead of optimized set of leader

nodes. With this strategy, the optimization cost for obtaining leader nodes is

diminished, and as a result, top leader algorithm [18] requires comparatively less

time. On the other hand, SCAN algorithm [19] uses same mechanism as leaders

with new terminology called core nodes. It utilizes notion of structural reachability

instead of followers to define clusters represented for core nodes.

Both the similarity matrix-based approaches and leader-based approaches

require twofold processing of graphs. For large graphs, such processing costs

double. In that case, instead of two phases of clustering, merging both phases into

one will be more beneficial for large graphs. Fast unfolding algorithm [11] utilizes

such strategy with multilevel clustering. Clusters obtained in each level agglomer-

ation can be treated as potential clusters with specific properties. The algorithm is

very efficient for large-scale graphs with billions of nodes and edges. On the other

hand, ENBC algorithm [36] utilizes single-level agglomeration as in the similarity

matrix-based and leader-based approaches. However, ENBC identifies clusters by

merging similarity computation phase and cluster formation phase into single

phase. It starts from any arbitrary node that represents potential cluster and that

expands based on structural similarity of neighbors. The process of cluster

72 A. Biswas et al.



formation followed in ENBC is local and more efficient than both similarity matrix-

based and leader-based approaches. Therefore, it is suitable for large graph

processing both in perspective of parallel processing and external memory

operations.

3.8 Parameter Tuning for Big Data Scenarios

Most of the agglomerative algorithms have parameters to control various aspects of

clusters such as size and quality. From the perspective of Big Data, these aspects are

very important. As mentioned above, graph clustering is a prominent intermediary

step for handling Big Data with both parallel processing and external memory

operations. Sizes of clusters have to be balanced in a sense that neither the large nor

the small clusters are suitable for parallel processing and external memory opera-

tions. Cluster sizes have to be as homogeneous as possible because too much

variance in clustering is not suitable or ineffective for both parallel processing

and external memory operations. Agglomerative algorithms used different param-

eters for controlling cluster sizes.

Controlling of cluster sizes is done in two ways as follows. First approach is to

define the limit to the total number of nodes that can belong in a cluster. In HC-PIN

algorithm, this approach is utilized very effectively with parameter s for controlling
cluster size. Second approach on the other hand sets limit on the total number of

clusters. Top leader algorithm has this approach by utilizing parameter k. It

indirectly sets the size of cluster as follows. If the value of k is very large, then

the sizes of cluster will become very small. Again, if the value of k is very small,

then the sizes of cluster will become huge. Therefore, depending on the size of the

network, the parameter k can be set with a value that may result in reasonable

cluster sizes.

Quality of clustering is very important for structurally feasible clustering. It

indicates how a cluster is confident to claim that it is a cluster. Generally, it is

defined as the ratio of number of edges within the cluster to the number of edges

outside the cluster. Structurally feasible clusters are easy to handle and require less

effort specially for parallel processing. Agglomerative approaches are very rich in

controlling quality of clustering with different parameters to ensure structurally

feasible clusters. The ways of controlling quality of clustering through parameters

vary with the strategy of the algorithm. Different algorithms ensure qualities

through different parameters as follows:

• SCAN: The algorithm has two parameters e and μ for ensuring quality of

clustering. The parameter e is a threshold that represents the minimum structure

similarity for a node u to be in e-neighborhood of node v. Structure similarity

defines the closeness of two nodes. The parameterμ shows whether a nodev is the
more central one by setting this threshold of μ representing minimum μ elements

in e-neighborhood of node v, thereby declaring v as core.

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 73



• Top leader: It also has two parameters γ and δ for assuring quality of clustering.

With the parameter γ, the algorithm identifies outliers that do not fit in any

cluster. Higher γ value implies more connections, i.e., higher edge density for

a node to be not an outlier. The parameter δ defines the depth up to which the

common neighbors between a node and a leader can have. It represents the

required strength of connection between the node and a leader for the node to get

included in the cluster of leader.

• HC-PIN: The parameter λ is used in comparison with the weighted degree of

clusters. It indicates the kind of cluster quality that is desired by the algorithm.

Varying the λ parameter, different hierarchical structures can be obtained with

different qualities. In addition, another parameter s determines the minimum size

of clusters. With parameter s, small and unrelated clusters easily distinguished

from large, significant, and dominant clusters and process further. Such

processing of insignificant clusters enhances overall qualities of clusters. Some

algorithms often report small group of nodes as a separate cluster that might have

been a part of larger cluster. HC-PIN has undermined such difficulty with proper

settings of values of parameter s.
• LICOD: The algorithm has three parameters σ, δ, and ε. The parameter σ

determines of leaders, which actually represents the node that is surrounded by

densely connected region. The parameter δ is used for merging of the identified

leaders. It determines the closeness between two leaders. If two leaders are

closed, those are kept in same cluster rather than creating different clusters for

each. Therefore, the parameter δ has very important role in gaining better quality

clusters. The parameter ε is used to control the extent to which a node might

belong in more than one cluster. By varying ε parameter, the degree of

overlapping of the clusters can be controlled. For nonoverlapping clustering,

the parameter ε has no role in determining quality of clusters.

Due to a variety of parameters, most agglomerative algorithms provide large

degree of control to obtain variety of clusters with specific properties as desired.

The different characteristics of the clusters can be highlighted by changing these

parameters. Therefore, with agglomerative approaches, graphs can be partitioned

easily as per the requirements of both parallel processing and external memory

operations for dealing with large graphs.

3.9 Discussion

Big Data scenarios need to be handled in the context of both processing time and

memory requirements. Data clustering has a vital role in dealing with both these

issues. Representation of linked data in the form of network is another aspect of Big

Data scenarios. Parallel processing and external memory operations are prominent

solutions of these Big Data problems. Partitioning of such network is an interme-

diary step for parallel processing as well as memory management. For a meaningful

74 A. Biswas et al.



and efficient partitioning of networks, graph clustering techniques are used. How-

ever, as regards implications of clustering in dealing with Big Data scenarios, the

following major issues must be tackled:

• Efficient and proper utilization of partitions or clusters is very important in

parallel processing.

• Dealing with size of clusters is a major issue. Smaller clusters may reduce

memory requirement but increases processing overhead. Too large clusters

may not fit into memory and increase time complexity.

• Meaningful clusters are foremost important for efficient parallel processing.

• Evaluation of clusters is also very important for measuring clustering and

algorithms.

• Selection of clustering algorithm is another trivial problem especially with the

large numbers of algorithm available for clustering. Each of these algorithms

possesses specific advantages, which makes the selection process more difficult.

Agglomerative approaches are helpful in dealing with Big Data scenarios. These

approaches are local in nature and hence can be easily parallelized. The local nature

of these approaches can be utilized in efficient processing and memory manage-

ment. Beside this, agglomerative approaches have numerous other advantages that

are summarized as follows:

• Most of these approaches are very fast. Time complexities as well as space

complexity are low.

• These approaches generate clusters that are more accurate than other

approaches.

• Merging of clusters in level by level allows generation of structurally feasible

and meaningful clusters.

• Most of the operations incorporated in agglomerative approaches are local,

which do not require accessing of the entire networks. Therefore, it reduces

average memory requirement during intermediate steps of algorithms.

• Explicit local operations of agglomerative approaches can be executed in paral-

lel that can reduce clustering time significantly.

• Control parameters used in agglomerative approaches allow generating custom-

ized clusters. The algorithms are flexible to generate clusters with specific

properties.

Clearly, agglomerative approaches have several advantages in the perspective of

Big Data scenarios. However, incorporation of some of these approaches results in

the following disadvantages:

• Too many parameters used in algorithms may cause difficulty in customization

of clustering.

• Algorithm cannot be parallelized if operations of algorithms are not local or

local operations are implicit and inseparable from the main algorithm.

• Local operations in some algorithms caused large numbers of smaller sized

clusters.

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 75



3.10 Conclusion

Big Data handling systems are often confronted with two major issues: efficient

processing and memory management. Parallel processing and external memory

operation techniques are the most favored processes to solve these issues where

partitioning of data is the vital prerequisite for these techniques. Both these

techniques have undertaken processing and memory-related issues to an extent.

However, the rapid growth of data and complex relationships within the data have

unleashed more difficulty in handling. For such Big Data scenarios, incorporation

of network representation and clustering has been addressed and discussed in this

chapter. The utilization of clustering is advantageous to get a meaningful and

efficient partitioning for parallel processing and memory-related issues. Neverthe-

less, this kind of utilization requires bearing extra overheads related to clustering.

Agglomerative approaches can be very helpful due to their local nature for clus-

tering network data. Besides, several other advantages are also discussed while

dealing with Big Data scenarios. Despite numerous limitations and concerns,

agglomerative approaches have emerged as a core catalyst for dealing with

processing and memory-related issues, especially for Big Data scenarios of

modern-day data systems.

References

1. Wei T, Lu Y, Chang H, Zhou Q, Bao X (2015) A semantic approach for text clustering using

wordnet and lexical chains. Expert Sys with Appl 42:2264–2275

2. Li S, Wu D (2015) Modularity-based image segmentation. IEEE Trans Circuit Syst Video

Technol 25:570–581

3. Nikolaev AG, Razib R, Kucheriya A (2015) On efficient use of entropy centrality for social

network analysis and community detection. Soc Networks 40:154–162

4. Li S, Daie P (2014) Configuration of assembly supply chain using hierarchical cluster analysis.

Procedia fCIRPg 17:622–627

5. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I, Leiser N, Czajkowski G (2010) Pregel:

a system for large-scale graph processing. In: SIGMOD’10, 2010
6. The Apache Software Foundation (2014) http://giraph.apache.org/. Accessed 28 Apr 2015

7. Xue J, Yang Z, Qu Z, Hou S, Dai Y (2014) Seraph: an efficient, low-cost system for concurrent

graph processing. In: Proceedings of ACM HPDC’2014, Vancouver, Canada, 23–26 June

8. Vial T (2012) http://blog.octo.com/en/introduction-to-large-scale-graph-processing/.

Accessed 28 Apr 2015.

9. Ajwani D, Dementiev R, Meyer U (2006) A computational study of external-memory BFS

algorithms, SODA 2006 ACM-SIAM Symposium on Discrete Algorithms, Miami, Florida,

USA, January 2006

10. Kanawati R (2011) Licod: leaders identification for community detection in complex net-

works. In: SocialCom/PASSAT, pp 577–582

11. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in

large networks. J Stat Mech: Theory Exp 10:P10008

76 A. Biswas et al.

http://giraph.apache.org/
http://blog.octo.com/en/introduction-to-large-scale-graph-processing/


12. Fan W, Yeung K (2015) Similarity between community structures of different online social

networks and its impact on underlying community detection. Commun Nonlinear Sci Numer

Simul 20:1015–1025

13. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for

very large databases. In: ACM SIGMOD Record, vol. 25, No. 2, pp. 103–114, ACM.

14. Wang W, Yang J, Muntz R (1997) STING: a statistical information grid approach to spatial

data mining. In: VLDB, vol 97, pp 186–195

15. Shang R, Luo S, Li Y, Jiao L, Stolkin R (2015) Large-scale community detection based on

node membership grade and sub-communities integration. Physica A Stat Mech Appl

428:279–294

16. Shah D, Zaman T (2010) Community detection in networks: the leaderfollower algorithm. In:

Workshop on networks across disciplines in theory and applications, NIPS, November 2010

17. Wang J, Li M, Chen J, Pan Y (2011) A fast hierarchical clustering algorithm for functional

modules discovery in protein interaction networks. IEEE/ACM Trans Comput Biol Bioinform

8(3):607–620

18. Khorasgani RR, Chen J, Zaı̈ane OR (2010) Top leaders community detection approach in

information networks. In: Proceedings of the 4th workshop on social network mining and

analysis, ACM.

19. Xu X, Yuruk N, Feng Z, Schweiger TAJ (2007) SCAN: a structural clustering algorithm for

networks. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge

discovery and data mining, San Jose, CA, USA, August 12–15, 2007

20. Steinhaeuser K, Chawla NV (2010) Identifying and evaluating community structure in com-

plex networks. Pattern Recogn Lett 31(5):413–421

21. Hubert L, Arabie P (1985) Comparing partitions. J Classif 2(1):193–218

22. Fred A, Jain A (2003) Robust data clustering. In: Proceedings of the CVPR, 2003

23. Wikipedia (2015) Precision and recall http://en.wikipedia.org/wiki/Precision_and_recall.

Accessed 28 Apr 2015

24. Laney D (2001) 3d data management: controlling data volume, velocity, and variety, applica-

tion delivery strategies. META Group Inc, Stamford

25. Minas M, Subrahmanyam K, Dennis J (2015) Facebook use and academic performance among

college students: a mixed-methods study with a multi-ethnic sample. Comput Hum Behav

45:265–272

26. Debra AG, Kullar R, Newland JG (2015) Review of Twitter for infectious diseases clinicians:

useful or a waste of time? Clin Infect Dis 60(10):1533–1540

27. Google Search Statistics (2015) http://www.internetlivestats.com/google-search-statistics/.

Accessed 28 Apr 2015

28. Duffy DE, McIntosh AA, Rosenstein M, Willinger W (1993) Analyzing telecommunications

traffic data from working common channel signaling subnetworks. Comput Sci

Stat 1993:156–156

29. Joo H, Hong B, Choi H (2015) A study on the monitoring model development for quality

measurement of internet traffic. Inf Syst 48:236–240

30. Joan BE (2015) Content-based image retrieval methods and professional image users. J Assoc

Inform Sci Technol 67(2):2330–1643

31. Sebastiano B, Farinella GM, Puglisi G, Ravı̀ D (2014) Aligning codebooks for near duplicate

image detection. Multimedia Tools Appl 72(2):1483–1506

32. Karmakar D, Murthy CA,(2015) Face recognition using face-autocropping and facial feature

points extraction. In: Proceedings of the 2nd international conference on perception and

machine Intelligence, Kolkata, West Bengal, India, pp 116–122

33. Sabeur A, Lacomme P, Ren L, Vincent B (2015) A MapReduce-based approach for shortest

path problem in large-scale networks. Eng Appl Artif Intell 41:151–165

34. Mehlhorn K, Meyer U (2002) External-memory breadth-first search with sublinear I/O. In:

Proceedings 10th annual European Symposium on Algorithms (ESA), vol 2461 of LNCS, pp

723–735. Springer

3 Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios 77

http://en.wikipedia.org/wiki/Precision_and_recall
http://www.internetlivestats.com/google-search-statistics/


35. Munagala K, Ranade A (1999) I/O-complexity of graph algorithms. In: Proceedings 10th

symposium on discrete algorithms, ACM-SIAM, pp 687–694

36. Biswas A, Biswas B (2015) Investigating community structure in perspective of ego network.

Expert Sys Appl 42(20):6913–6934

78 A. Biswas et al.



Chapter 4

Identifying Minimum-Sized Influential
Vertices on Large-Scale Weighted Graphs:
A Big Data Perspective

Ying Xie, Jing (Selena) He, and Vijay V. Raghavan

Abstract Weighted graphs can be used to model any data sets composed of entities

and relationships. Social networks, concept networks, and document networks are

among the types of data that can be abstracted as weighted graphs. Identifying

minimum-sized influential vertices (MIV) in a weighted graph is an important task

in graph mining that gains valuable commercial applications. Although different

algorithms for this task have been proposed, it remains challenging for processing

web-scale weighted graph. In this chapter, we propose a highly scalable algorithm

for identifying MIV on large-scale weighted graph using the MapReduce frame-

work. The proposed algorithm starts with identifying an individual zone for every

vertex in the graph using an α-cut fuzzy set. This approximation allows to divide the

whole graph into multiple subgraphs that can be processed independently. Then, for

each subgraph, a MapReduce-based greedy algorithm can be designed to identify

the minimum-sized influential vertices for the whole graph.

Keywords MapReduce framework • Minimum-sized influential vertices • Social

influences • Data mining • Large-scale weighed graph, big data • Big data analytics

4.1 Introduction

Weighted graphs can be used to model any data sets composed of entities and

relationships. Social networks, concept networks, and document networks are

among the types of data that can be abstracted as weighted graphs. Identifying

minimum-sized influential vertices (MIV) in a weighted graph is an important task

in graph mining that gains valuable commercial applications. Consider the

Y. Xie • J. He (*)

Department of Computer Science, Kennesaw State University, Marietta, GA, USA

e-mail: yxie2@kennesaw.edu; jhe4@kennesaw.edu

V.V. Raghavan

The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette,

LA, USA

e-mail: raghavan@louisuana.edu

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_4

79

mailto:yxie2@kennesaw.edu
mailto:jhe4@kennesaw.edu
mailto:raghavan@louisuana.edu


following hypothetical scenario as a motivating example. A small company

develops a new online application and would like to market it through online social

networks. It is worth to mention that word-of-mouth or viral marketing through

online social networks differentiates itself from other marketing strategies because

it is based on trust among individuals’ close social circle of families, friends, and

co-workers. Research shows that people trust the information obtained from their

close social circle far more than the information obtained from general advertise-

ment channels such as TV, newspaper, and online advertisements [1]. The company

has a limited budget such that it can only select a small number of initial users to use

it (by giving the initial users gifts or payments). The company wishes that these

initial users would like the application and start influencing their friends on the

social networks to use it. And their friends would influence their friends’ friends
and so on, and thus through the word-of-mouth effect a large population in the

social network would adopt this application. Using the social network shown in

Fig. 4.1 as the example, the links between each individual represent the interactions

between the pair of the individuals, while the numbers on the links mean the social

influence between the pair of the individual. It is obvious that the company may first

choose Andy as the initial user, since Andy can influence Tony, John, and Ricky

with some influences. In sum, the MIV problem is who to be selected as the initial

users so that they eventually influence the largest number of people in the network.

The objective of the MIV problem is to minimize the size and the set of the initial

users because of budget limitations.

The problem is first introduced for social networks by Domingos and Richardson

in [2] and [3]. Subsequently, Kempe et al. [4] proved this problem to be NP-hard

and propose a basic greedy algorithm that provides good approximation to the

optimal solution. However, the greedy algorithm is seriously limited in efficiency

because it needs to run Monte-Carlo simulation for considerably long time period to

guarantee an accurate estimate. Although a number of successive efforts have been

Fig. 4.1 A sample of a

social network

80 Y. Xie et al.



made to improve the efficiency, the state-of-the-art approaches still suffer from

excessively long execution time due to the high-computational complexity for

large-scale weighted graph. Furthermore, the graph structures of real-world social

networks are highly irregular, making MapReduce acceleration a nontrivial task.

For example, Barack Obama, the US president, has more than 11 million followers

in Twitter, while for more than 90% of Twitter users, the follower number is under

100 [5]. Such irregularities may lead to severe performance degradation.

On the other hand, MapReduce framework has recently been widely used as a

popular general-purpose computing framework and has also been shown promising

potential in accelerating computation of graph problems such as breadth-first

searching and minimum spanning tree [6-9] due to its parallel processing capacity

and ample memory bandwidth. Therefore, in this chapter, we explore the use of

MapReduce framework to accelerate the computation of MIV in large-scale

weighted graphs.

The proposed framework starts with identifying an individual zone for every

vertex in the graph. The individual zone of a given vertex is the set of vertices that

the given vertex can influence. To design a scalable algorithm to address this, we

approximate individual zone by using the concept of α-cut fuzzy set. This approx-

imation allows us to reduce the complexity of multi-hop influence propagation to

the level of single-hop propagation. Subsequently, we aim to find a minimum-sized

set of vertices whose influence (the formal definition will be presented in Sect.4.3)

reaches a predefined threshold. To reach this goal, a MapReduce-based greedy

algorithm is designed by processing individual zones (the formal definition will be

given in Sect. 4.3) for all vertices.

The contribution of this work can be summarized as follows:

• A fuzzy propagation model was proposed to describe multi-hop influence

propagation along social links in weighted social networks.

• An α-cut fuzzy set called individual zone was defined to approximate multi-hop

influence propagation from each vertex.

• MapReduce algorithms were designed to locate each individual zone and then

identify minimum-sized influential vertices (MIV) using a greedy strategy.

This remainder of this chapter is organized as follows: Sect. 4.2 reviews related

literatures of the MIV problem. Network model and the formal definition of the

MIV problem are given in Sect. 4.3. The MapReduce-accelerated framework is

presented in Sects. 4.4 and 4.5. Finally, the work is concluded and future working

direction is given in Sect. 4.6.

4.2 Related Works

In this section, we first summarize the current research status of influence maximi-

zation problem in social network and then summarize some works; try to use GPU

framework to accelerate the process to find the solution of the influence

4 Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted. . . 81



maximization problem. Finally, we remark on the differences of the work described

in the chapter and emphasize the contribution of this work.

4.2.1 Influence Maximization Problem in Social Network

Finding the influential vertices and then eventually influencing most of the popu-

lation in the network are first proposed by Domingos et al. in [2, 3]. They model the

interaction of users as a Markov random field and provide heuristics to choose users

who have large influence in the network. Kempe et al. [4] formulate the problem as

a discrete optimization problem and propose a greedy algorithm. However, the

greedy algorithm is time-consuming. Hence, recently huge amount of researchers

try to improve the greedy algorithm in two ways. One is reduce the number of

individual searched in the graph. The other is improving the efficiency of calculat-

ing the influence of each individual. Leskovec et al. [10] propose an improved

approach which is called CELF to reduce the number of individual searched in the

graph. Later, Goyal et al. [11] propose an extension to CELF called CELFþþ,

which can further reduce the number. Kimura et al. [12] utilize the Strong

Connected Component (SCC) to improve the efficiency of the greedy algorithm.

Although many algorithms are proposed to improve the greedy algorithm, they

are not efficient enough for the large scale of current social networks. Hence, some

works are proposed to fit for large-scale networks. Chen et al. proposed a method

called MixGreedy [13] that reduces the computational complexity by computing

the marginal influence spread for each node and then selects the nodes that offer the

maximum influence spread. Subsequently, Chen et al. [14] use local arborescence

of the most probable influence path between two individuals to further improve the

efficiency of the algorithm. However, both of the algorithms provide no accuracy

guarantee. In [15], Liu et al. propose ESMCE, a power-law exponent supervised

Monte-Carlo method that efficiently estimates the influence spread by randomly

sampling only a portion of the nodes. There have been also many other algorithm

and heuristics proposed for improving the efficiency issues for large-scale social

networks, such as [16–19]. However, all of the aforementioned improvements are

not effective enough to reduce execution time to an acceptable range especially for

large-scale networks.

4.2.2 GPU Framework

Completely different from the previously mentioned work, Liu et al. [20] present a

GPU framework to accelerate influence maximization in large-scale social net-

works called IMGPU, which leveraging the parallel processing capability of

82 Y. Xie et al.



graphics processing unit (GPU). The authors first design a bottom-up traversal

algorithm with GPU implementation to improve the existing greedy algorithm.

To best fit the bottom-up algorithm with the GPU architecture, the authors further

develop an adaptive K-level combination method to maximize the parallelism and

reorganize the influence graph to minimize the potential divergence. Comprehen-

sive experiments with both real-world and synthetic social network traces demon-

strate that the proposed IMGPU framework outperforms the state-of-the-art

influence maximization algorithm up to a factor of 60.

4.2.3 Remarks

In this chapter, we focus on addressing the MIV problem on large-scale weighted

graphs using the MapReduce framework. The proposed method first improves the

algorithm efficiency by dividing the whole graph into some subgraphs using fuzzy

propagation model. Subsequently, a MapReduce greedy algorithm is presented to

search the best candidates in each subgraph to achieve high parallelism. The

proposed framework shows potential to scale up to extraordinarily large-scale

graphs especially from big data perspective.

4.3 Graph Model and Problem Definition

In this section, we first introduce how to model a weighted graph and then formally

define the minimum-sized influential vertices (MIV) problem.

4.3.1 Graph Model

Wemodel a weighted graph by an undirected graphG(V,E,W(E)), where V is the set

of N vertices, denoted by vi, and 0< i<N. i is called the vertex ID of vi. An
undirected edge eij¼ (vi, vj) є E represents weights between the pair of vertices. W
(E)¼ {pij, if (vi, vj) є E, then 0< pij< 1, else pij¼ 0}, where pij indicates the

weights between vertices vi and vj. For simplicity, we assume the links are undi-

rected (bidirectional), which means two linked vertices have the same weight (i.e.,
pij value) on each other. Figure 4.2 shows an example of a weighted graph. There

are nine vertices in the graph. The weights over edges represent the social influ-

ences between the pair of vertices.

4 Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted. . . 83



4.3.2 Problem Definition

The objective of the MIV problem is to identify a minimum-sized subset of

influential vertices in the weighted graph. Such that, eventually large number of

vertices in the graph can be influenced by these initially selected vertices. As we

mentioned in Sect. 4.1, we first partition the whole graph into subgraphs by

applying fuzzy propagation modes. The subgraph is called individual zone for

each vertex. Subsequently, we formally define individual zone as follows:

Definition 1. Individual zone (Zonev). For weighted graph G(V;E;W(E)), the indi-
vidual zone is a fuzzy set (Uv,Mv), where Uv is the set of vertices and Mv is a

function Uv! [0; 1], such that for any vertex v є Uv, we have:

Mv xð Þ ¼
1,Y

eij2Pxv

W eij
� �

,

8
<

:
ifx ¼ v;

otherwise;

where Pxv is the path from vertex x to vertex v and eij is an edge in the path. We

further define W(eii)¼ 1.
Another important terminology influence must be formally defined before the

problem definition.

Definition 2. Influence (ξv). For weighted graph G(V;E;W(E)), the influence of

vertex v is denoted by ξv, which is the sum of the membership value of all vertices in

Zonev.
Now, we are ready to define the minimum-sized influential vertices (MIV)

problem as follows:

Definition 3. Minimum-sized influential vertices (MIV). For weighted graph G(V;
E;W(E)), the MIV problem is to find minimum-sized influential vertices χ � V,
such that 8v2χ, ξv > N � x%, where x% is a predefined threshold.

1

2

7 8

9

6

5

4

3

0.7

0.7

0.7

0.7

0.6

0.6

0.6

0.6

0.5

0.8

0.80.9

0.6

0.8

Fig. 4.2 A sample of a weighted graph

84 Y. Xie et al.



4.4 MapReduce Algorithm for Identifying Individual
Zones

To scale the MIV problem to a large-scale weighted graph, we approximate

individual zones by using α-cut fuzzy sets. That is, given a vertex v, the α-cut
individual zone of v contains and only contains all vertices whose membership

value toward v is greater than or equal to the given parameter α. For simplicity, in

the description of the MapReduce algorithms shown in Sects. 4.4 and 4.5, individ-

ual zone actually means α-cut individual zone.
A given weighted graph will be represented by using adjacency lists, which are

similar representations used in MapReduce-based algorithms for breath-first

searching and minimum spanning tree [6-8]. For instance, the adjacency lists for

the weighted graph shown in Fig. 4.2 are described as follows:

1. 2(0.7), 7(0.6)

2. 1(0.7), 3(0.8), 6(0.6), 8(0.8)

3. 2(0.8), 4(0.7), 5(0.8), 8(0.6), 6(0.9)

4. 3(0.7), 5(0.5), 9(0.6)

5. 3(0.8), 4(0.7), 8(0.7)

6. 2(0.6), 3(0.9)

7. 1(0.6), 8(0.6)

8. 2(0.8), 3(0.6), 5(0.7), 7(0.6), 9(0.7)

9. 8(0.7), 4(0.6)

As already shown, each line in the adjacency lists represents the one-hop

neighbors for each vertex. The values in the parenthesis are the weights over

each link.

For a big weighted graph, we divide its adjacency lists into k equal-sized files,

where k¼ total size/block size (total size is the total size of the adjacency lists of the
graph data, and block size is the block size of the HDFS of the Hadoop cluster).

Assume there are n vertices for each of the k files. Then we select m vertices from

each file, respectively, to form a set of target vertices for which we identify

individual zones. In other words, the execution of the following MapReduce

algorithm is able to identify individual zones for k*m target vertices. Therefore,

we just need to run n/m times of this algorithm in order to identify individual zones

for all vertices. Fortunately, the n/m times of executing this algorithm are totally

independent to each other and, thus, can run in a completely parallel manner.

As an illustration, we assume k¼ 2 and n¼ 4 for the weighted graph given in

Fig. 4.2. Then, letm¼ 2, i.e., for each of the 2 files, we select 2 vertices as the target
vertices. Assume for the first run of the algorithm, we select vertices 1 and 2 from

file 1 and vertices 5 and 6 from file 2. Then we will have the following two input

files to identify individual zones for vertices 1, 2, 5, and 6.

File 1:

1. 2(0.7), 7(0.6) | 1, 0, 0, 0 | G, W, W, W| 0, �1, �1, �1

2. 1(0.7), 3(0.8), 6(0.6), 8(0.8) |0, 1, 0, 0 | W, G, W, W| �1, 0, �1, �1

4 Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted. . . 85



3. 2(0.8), 4(0.7), 5(0.8), 8(0.6), 6(0.9) |0, 0, 0, 0| W, W, W, W| �1, �1, �1, �1

4. 3(0.7), 5(0.5), 9(0.6) |0, 0, 0, 0| W, W, W, W| �1, �1, �1, �1

File 2:

5. 3(0.8), 4(0.7), 8(0.7)|0,0,1,0|W,W,G,W| �1, �1, 0, �1

6. 2(0.6), 3(0.9)|0,0,0,1|W,W,W,G| �1, �1, �1, 0

7. 1(0.6), 8(0.6)| 0,0,0,0|W,W,W,W| �1, �1, �1, �1

8. 7(0.6), 2(0.8), 3(0.6), 5(0.7), 9(0.7)| 0,0,0,0|W,W,W,W| �1, �1, �1, �1

9. 8(0.7), 4(0.6) | 0,0,0,0|W,W,W,W| �1, �1, �1, �1

In the two input files shown above, each vertex is represented in the following

format:

VertexID list of adjacent vertices and weights | membership
values target vertices | color decorations towards target
vertices| immediate parent towards target vertices

Take vertex 1 as an example; its membership values to the four target vertices

(vertex 1, 2, 5, and 6) are initialized to be 1, 0, 0, 0, respectively. Its color decoration

is set to be gray (G), white (W), white (W), white (W), respectively, where the first

G means that more vertices belonging to the individual zone of the first target vertex

need to be located starting from this vertex; the rest W means that, for other target

vertices, no immediate action is needed from this vertex; and the other possible color

value is black (B), which means no further development from the current vertex is

needed for the corresponding target vertex. We further assume the ordinal among the

three color values are B>G>W. Its immediate parent vertices toward each of the

target vertices are initialized to be 0, �1, �1, and �1, respectively, where the first

0 means that this vertex itself is the first target vertex and the rest �1 mean that its

parent vertex to the rest of the target vertices remains unknown for right now.

We further use the following data structure vertex to hold the information on

each individual vertex:

Vertex
ID: int
NeighborsID: List<Integer>
MembershipOfNeighbors: List<Double>
MembershipToTargets: Array<Double>
ColorToTargets: Array<Char>
ParentToTargets: Array<Integer>

Then, the MapReduce algorithm can be described in Algorithm 1.

When this MapReduce job is executed on input File 1 and File 2, it will generate

the following output, if α¼ 0:5:

1. 2(0.7), 7(0.6) | 1, 0.7, 0, 0 | B, G, W, W | 0, 2, �1, �1

2. 1(0.7), 3(0.8), 6(0.6), 8(0.8) | 0.7, 1, 0, 0.6 | G, B, W, G | 1, 0, �1, 6

3. 2(0.8), 4(0.7), 5(0.8), 8(0.6), 6(0.9) | 0, 0.8, 0.8, 0.9 | W, G, G, G | �1, 2, 5, 6

4. 3(0.7), 5(0.5), 9(0.6) | 0, 0, 0.7, 0 | W, W, G, W | �1, �1, 5, �1

5. 3(0.8), 4(0.7), 8(0.7) | 0,0,1,0 | W,W,B,W | �1, �1, 0, �1

86 Y. Xie et al.



6. 2(0.6), 3(0.9) | 0,0.6,0,1 | W,G,W,B | �1, 2, �1, 0

7. 1(0.6), 8(0.6)| 0.6,0,0,0 | G,W,W,W | 1, �1, �1, �1

8. 7(0.6), 2(0.8), 3(0.6), 5(0.7), 9(0.7) | 0,0.8,0.7,0 | W,G,G,W | �1, 2, 5, �1

9. 8(0.7), 4(0.6) | 0,0,0,0 | W,W,W,W | �1, �1, �1, �1

Since the output records contain G color, the job counter numberOfIterations

will be greater than 0. So we run above MapReduce job for another iteration by

using the output of the first run as input. This process will continue until no record

in output contains any G color. Then the output contains information on individual

zones for the target vertices 1, 2, 5, and 6. In the same way, we are able to obtain

individual zones for vertices 3, 4, 7, 8, and 9.

4.4.1 Algorithm 1: Mapper Part

Method Map(vertexID id, vertexRecord: r)
Instantiate Vertex v from id and r
for (int i¼ 0; i&amp;amp;lt;v.ColorToTargets.size(); iþþ)
{
if (v.ColorToTargets[i] ¼ ‘G’) {
for(int j¼0; j&amp;amp;lt;v.NeighborsID.size(); jþþ){
double membershipToTarget ¼
v.MembershipToTarges[i] *
v.MembershipOfNeighbors[j];
if (membershipToTarget > α){
Instantiate Vertex vv for Neighbors[j], such
that
vv.ID ¼ NeighborsID[j];
vv.NeighborsID ¼ Null;
vv.MembershipOfNeighbors ¼ Null;
for (int k¼0; k< v.ColorToTargets.size();
kþþ){
if (i¼¼k)
vv.MembershipToTargets[k] ¼
membershipToTarget;

vv.ColorToTargets[k] ¼ G;
vv.parentToTargets[k] ¼ v.VertexID;

else
vv.MembershipToTargets[k]¼0;
vv.ColorToTargets[k] ¼ W;
vv.ColorToTargets[k] ¼ -1;
}
Create record rr from vv in following format:
list of adjacent vertices and weights | membership

4 Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted. . . 87



values target vertices color decorations towards
target vertices | immediate parent towards
target vertices;
EMIT (vv.VertextID, rr);
}
}
v.ColorToTargets[i] ¼ ‘B’.
}
}
Create record r from v in the following format:
list of adjacent vertices and weights | membership values
target vertices | color decorations towards target verti-
ces| immediate parent towards target vertices;
EMIT(id, r);

4.4.2 Algorithm 1: Reducer Part

Method Reduce(vertexID id, [r1, r2, r3, . . ., rl])
Instantiate Vertex v from id;
v.VertexID ¼ id
v.NeighborsID ¼ Null
v.MembersOfNeighbors¼[0,0,0,. . .]
v.ColorToTargets¼[W, W,W,. . .]
v.ParentToTargets¼[-1,-1,-1,. . .]
for each ri in [r1, r2, r3, . . ., rl] {
Instantiate Vertex vv from id, and ri

if (vv.NeighborsID !¼ Null){
v.NeighborsID ¼ vv.NeighborsID;
v.MembershipOfNeighbors¼vv.MembershipOfNeighbors;
}
for (int j¼0; j&amp;amp;lt;vv.ColorToTargets.size();

jþþ){
if (vv.ColorToTargets[j] > v.ColorToTargets[j]){
v.ColorToTargets[j] ¼ vv.ColorToTargets[j]
}
}
for (int j¼0; j&amp;amp;lt;vv.MembershipToTargets.size

(); jþþ){
if (vv.MembershipToTargets[j] >
v.MembershipToTargets[j]){
v.MembershipToTargets[j] ¼
vv.MembershipToTargets[j]

88 Y. Xie et al.



}
}
}
for (int i¼0; i&amp;amp;lt;v.ColorToTargets.size(); iþþ)
{
if (v.ColorToTargets[i] ¼ G){

Increment a predefined job counter called
numberOfIterations;
}
}
Create record r from v in the following format:
list of adjacent vertices and weights | membership values
target vertices | color decorations towards target vertices
| immediate parent towards target vertices;
EMIT(id, r);

4.5 MapReduce Algorithm for Solving MIV

Using the graph shown in Fig. 4.2 as an illustration again, the output of algorithm

1 on this graph can be easily converted to the following format by a MapReduce

process. Each record represents the α-cut individual zone for a vertex. Given a

vertex, its influence is the sum of all the membership values in its α-cut individual
zone. For example, the influence of vertex 1 is 0.7þ 0.6þ 0.56þ 0.56¼ 2.42. Now,

the task is to find minimum-sized influential vertices (MIV) whose influence

reaches N*x%:

1. 2(0.7), 7(0.6), 8(0.56), 3(0.56)

2. 1(0.7), 8(0.8), 6(0.6), 3(0.8), 4(0.56), 5(0.64), 9(0.56)

3. 2(0.8), 6(0.9), 8(0.64), 5(0.8), 4(0.7), 1(0.56)

4. 3(0.7), 5(0.5), 9(0.6), 2(0.56), 6(0.63)

5. 8(0.7), 3(0.8), 4(0.56), 2(0.64), 6(0.72)

6. 2(0.6), 3(0.9),8(0.54),5(0.72), 4(0.63)

7. 1(0.6), 8(0.6)

8. 7(0.6), 2(0.8), 3(0.6), 5(0.7), 9(0.7), 1(0.56), 6(0.54)

9. 8(0.7), 4(0.6)

We design a MapReduce-based greedy algorithm for computing this task. Let

the minimum-sized set of influential vertices be denoted as S. We also introduce

another set denoted as I, which includes all the vertices that are influenced by

vertices in S as well as their maximum membership values toward all influential

vertices in S. For instance, for the graph shown in Fig. 4.2, if S¼ {2, 8}, then I¼ {2
(1), 8(1), 1(0.7), 6(0.6), 3(0.8), 4(0.56), 5(0.7), 9(0.7), 7(0.6)}, and the influence of

S is 1þ 1þ 0.7þ 0.6þ 0.8þ 0.56þ 0.7þ 0.7þ 0.6¼ 6.66.

4 Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted. . . 89



A MapReduce-based greedy algorithm for identifying minimum-sized influen-

tial vertices can be described in Algorithm 2:

4.5.1 Algorithm 2: Mapper Part

4.5.2 Algorithm 2: Reducer Part

As shown in Algorithm 2, in the mapper part, the sum of the influences of each

vertex is calculated and stored. In the reducer part, if the job counter

numberOfIterations is greater than 0, then the algorithm 2 will run again to add

90 Y. Xie et al.



the next most influential vertex to the set S, which is the influential set we are trying
to construct.

4.6 Conclusion and Future Work

In this chapter, we proposed a fuzzy propagation model to simplify the description

of how a vertex influences others in a large-scale weighted social network from big

data perspective. A MapReduce-based algorithm was then designed to locate

individual zone for each vertex of the network. The concept of individual zone

approximates the influence propagated from a vertex by using an α-cut fuzzy set.

Then, a MapReduce-based greedy algorithm was designed to identify MIV from all

individual zones.

The MapReduce algorithms are well designed in the chapter. However, how to

validate the proposed algorithms needs to be investigated in the future work. In the

future, we plan to conduct both simulations and experiments (crawl real social data

online) to validate and evaluate the performance of the proposed framework.

Another research direction is to extend the influence diffusion model. In the

chapter, we assume linear threshold model which is adding neighbors’ social

influences together to compare with the preset threshold. More practical diffusion

model can be designed and proposed to solve the MIV problem, such as indepen-

dent cascade model [21], susceptible/infected/susceptible (SIS) model [22], or voter

model [23]. One interesting direction could be model social influences as positive

and negative influences [23], since there are difference campaigns and opposite

ideas competing for their influence in the social network.

References

1. Nail J (2004) The consumer advertising. Forrester Research and Intelliseek Market Research

Report

2. Domingos P, Richardson M (2001) Mining the network value of customers. ACM SIGKDD,

pp 57–66

3. Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. ACM

SIGKDD, pp 61–70

4. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social

network. ACM SIGKDD, pp 137–146

5. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media?

WWW, pp 591–600

6. Goodrich MT (2010) Simulating parallel algorithms in the MapReduce framework with

applications to parallel computational geometry, CORR

7. Lattanzi S, Moseley B, Suri S, Vassilvitskii S (2011) Filtering: a method for solving graph

problems in MapReduce. SPAA, pp 85–94

8. Qin L, Yu J, Chang L, Cheng H, Zhang C, Lin X (2014) Scalable big graph processing in

MapReduce. ACM SIGMOD, pp 827–838

4 Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted. . . 91



9. White T (2012) Hadoop: the definitive guide, 3rd edn. O’Reilly, Beijing
10. Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective

outbreak detection in networks. ACM SIGKDD, pp 420–429

11. Goyal A, Lu W, Lakshmanan LV (2011) Celfþþ: optimizing the greedy algorithm for

influence maximization in social networks. WWW, pp 47–58

12. Kimura M, Saito K, Nakano R (2007), Extracting influential nodes for information diffusion

on a social network. NCAI, vol 22, 1371–1380

13. Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. ACM

SIGKDD

14. Chen W, Wang C, Wang Y (2010), Scalable influence maximization for prevalent viral

marketing in large scale social networks. ACM SIGKDD

15. Liu X, Li S, Liao X, Wang L, Wu Q (2012) In-time estimation for influence maximization in

large-scale social networks. ACM proceedings of EuroSys workshop social network systems,

pp 1–6

16. Hu J, Meng K, Chen X, Lin C, Huang J (2013) Analysis of influence maximization in large-

scale social networks. ACM sigmetrics Big Data analytics workshop

17. Kim J, Kim SK, Yu H (2013) Scalable and parallelizable processing of influence maximization

for large-scale social networks. ICDCS

18. He J, Ji S, Beyah R, Cai Z (2014) Minimum-sized influential node set selection for social

networks under the independent cascade model. ACM MOBIHOC 2014, Philadelphia, PA,

USA, August 11–14 2014

19. Shi Q, Wang H, Li D, Shi X, Ye C, Gao H (2015) Maximal influence spread for social network

based on MapReduce. Commun Comput Inf Sci 503:128–136

20. Liu X, Li M, Li S, Penng S, Liao X, Lu X (2014) IMGPU: GPU accelerated influence

maximization in large-scale social networks. Trans Parallel Distrib Syst 25(1):136–145

21. He S Ji, Beyah R, Cai Z (2014) Minimum-sized influential node set selection for social

networks under the independent cascade model. ACM MOBIHOC, August

22. Saito K, Kimura M, Motoda H (2009) Discovering influential nodes for SIS models in social

networks. Discov Science 5808:302–316

23. Li Y, Chen W, Wang Y, Zhang ZL (2013) Influence diffusion dynamics and influence

maximization in social networks with friend and foe relationships. WSDM

92 Y. Xie et al.



Part II

Big Data Modelling and Frameworks



Chapter 5

A Unified Approach to Data Modeling
and Management in Big Data Era

Catalin Negru, Florin Pop, Mariana Mocanu, and Valentin Cristea

Abstract The emergence of big data paradigm and developments in other areas,

such as cyber-infrastructures, smart cities, e-health, social media, Web 3.0, etc., has

led to the production of huge volumes of data. Moreover, these data are often

unstructured or semi-structured, with a high level of heterogeneity. Nowadays,

information represents an essential factor in the process for supporting decision-

making, and that is the reason that heterogeneous data must be integrated and

analyzed to provide a unique view of information for many types of application.

This chapter addresses the problem of modeling and integration of heterogeneous

data that comes from multiple heterogeneous sources in the context of cyber-

infrastructure systems and big data platforms. Furthermore, this chapter analyzes

different heterogeneous data models in relation to heterogeneous sources such as

the following: sensors, mobile users, web, and public open data sources (e.g.,

regulatory institutions). A CyberWater case study is also presented for the purposes

of modeling, integration, and operation of these data in order to provide a unified

approach and a unique view. The case study aims to offer support for different

processes inside the CyberWater platform such as monitoring, analysis, and control

of natural water resources, with the scope to preserve the water quality.

Keywords Big data • Data modeling • Data management • Cloud computing •

Heterogeneous distributed systems • Cyber-infrastructure • Natural resources

5.1 Introduction

Big data paradigm represents an interesting and challenging research topic. Many

scientific fields, such as cyber-infrastructures, smart cities, e-health, social media,

Web 3.0 etc., try to extract valuable information from huge amounts of data,

generated on a daily basis. Moreover these data are unstructured or semi-structured,

having a high level of heterogeneity [1].

C. Negru • F. Pop (*) • M. Mocanu • V. Cristea

Computer Science Department, Faculty of Automatic Control and Computers, University

Politehnica of Bucharest, Bucharest, Romania

e-mail: florin.pop@cs.pub.ro

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_5

95

mailto:florin.pop@cs.pub.ro


In the case of smart cities, big data relates to urban data, basically referring to

space and time perspective, which is gathered mostly from different sensors.

Furthermore, the growth of big data changes the planning strategies from long-

term thinking to short-term thinking as the management of the city can be made

more efficient [2]. Moreover, this data can open the possibility for real-time

analysis of city life and new modes of city administration and offer also the

possibility for more efficient, sustainable, competitive, productive, open, and trans-

parent city [3].

Healthcare systems are also transformed by big data paradigm as data is gener-

ated from different sources such as electronic medical records systems, mobilized

health records, personal health records, mobile healthcare monitors, genetic

sequencing, and predictive analytics as well as a large array of biomedical sensors

and smart devices that rise up to 1000 petabyte [4].

People and the interaction between them produce, regarding the social media

and Web 3.0, massive quantities of information. A huge effort is made to under-

stand social media interactions, online communities, human communication, and

culture [5].

The motivation for this chapter comes from the necessity of a unified approach

of data processing in large-scale cyber-infrastructure systems as the characteristics

of nontrivial scale cyber-physical systems (e.g., data sources, communication, and

computing) exhibit significant heterogeneity. The main contribution of the chapter

is the analysis of different heterogeneous sources and format of data collected from

sensors, users, and the web from public open data sources in the context of the big

data and cyber-infrastructure systems. First, we address the problem of data model-

ing for the water resource monitoring and management processes. Next, this

analysis is extended considering the big data characteristics of the collected data.

Furthermore, describe a unified approach for the water resource data models.

Finally, we illustrate the applicability of the presented analysis on a real research

project. The chapter is structured as follows.

The first part of the chapter analyzes existing data models for water resource

monitoring and management considering computational methods (e.g., neural net-

works) for handling environmental data, using software engineering to deliver the

computational solutions to the end user and developing methods for continuous

environmental monitoring based on sensor networks as part of Internet of things.

In the second part, based on this analysis, we address the problem of data

modeling considering a huge volume, high velocity, and variety of data collected

from environments (another big data problem) and process in real time to be used

for water quality support.

The third part presents the unified approach for water resource data models

considering the context of observation and the possibility of usage to enhance the

organization, publication, and analysis of world-distributed point observation data

while retaining a simple relational format. This will enable development of new

applications and services for water management that are increasingly aware of and

adapt to their changing contexts in any dynamic environment. A context-aware

approach requires an appropriate model to aggregate, semantically organize, and

96 C. Negru et al.



access large amounts of data, in various formats, collected from sensors or users,

from public open data sources.

Finally, we present the case study of CyberWater project, a prototype cyber-

infrastructure-based system for decision-making support in water resource man-

agement, as data modeling of water resources is a fundamental requirement. Cyber-

infrastructure basically refers to a mix of advanced data acquisition through real-

time sensor networks, big data, visualization tools, high-performance computa-

tional platforms, analytics, data integration, and web services.

5.2 Big Data: Heterogeneous Data

Big data refers to dealing with huge amounts of heterogeneous data. This requires a

pipeline of processing operations in order to accomplish efficient analytics. The

overall scope is to offer support in the decision-making process. An important

challenge, besides the large volumes and high-speed production rates (e.g., veloc-

ity), is raised by the enormous heterogeneity (e.g., variety) of such data.

Research fields, such as environmental research, disaster management, decision

support systems, information management in relief operations, crowdsourcing,

citizen sensing, and sensor web technologies, need to make use of new and

innovative tools and methods for big data. Ongoing research, challenges, and

possible solutions have been presented through several important projects and in

research papers that face with the previous presented challenges and try to

overcome them.

A new and innovative approach is presented in Dancer FP7 project being

oriented on developing new instruments and tools that will enhance environmental

research and promote innovation in Danube Region, including the Danube Delta

and the Black Sea. The project will undertake a critical analysis of what has been

achieved so far in the region and will build upon results of achievements to date, to

design innovative solutions and to strengthen knowledge transfer in this area.

In [6], the authors address the use of Geo-ICT in two stages of handling disasters,

before and during occurrence, giving special attention to the real utilization of

geo-information, e.g., risk maps, topographic maps, etc. They conclude that in both

risk management and disaster management is a growing awareness of the impor-

tance of spatial information and the increasing types of spatial data are used for

performing tasks within risk and disaster management; secondly a general under-

standing is building up about sharing information between the two domains.

A solution, called Sahana, is presented in [7] of a free and open-source software

(FOSS) application. It aims to be a comprehensive solution for information man-

agement in relief operations, recovery, and rehabilitation. After presenting the

architecture of the system, they conclude that there is much left to be done in the

technical development of FOSS disaster management software, and of primary

importance is the need to deal with a heterogeneity of data types (text, semi-

structured, Web HTML and XML, GIS, tabular, and DBMS) and to develop

5 A Unified Approach to Data Modeling and Management in Big Data Era 97



standards and protocols for data sharing. The purpose of these solutions is to assist

saving procedures for environment (by improving the quality of air, water, sedi-

ments, and soil) and people in the same time during a disaster. In periods without

disasters, prevention and improvement actions, like people training, will be

considered.

The authors of [8] survey the crowdsourcing, citizen sensing, and sensor web

technologies for public and environmental health surveillance and crisis manage-

ment and reinforce the roles of these technologies in environmental and public

health surveillance and crisis/disaster. The data used by these services, collected

from different sources (mobile smart devices, cameras, dedicated equipment, sen-

sors, etc.), must be stored in an aggregated way in the repository.

The authors of [9] propose a cloud-based natural disaster management system.

They conclude that it is essential to have a scalable environment with flexible

information access, easy communication, and real-time collaboration from all types

of computing devices, including mobile handheld devices (e.g., smartphones,

PDAs, and tablets (iPads)). Also, it is mandatory that the system must be accessible,

scalable, and transparent from location, migration, and resource perspectives.

An overview of all the extreme events that threaten people and what they value

in the twenty-first century is presented by Keith Smith in the book named Envi-
ronmental Hazards: Assessing Risk and Reducing Disaster [10]. It integrates

cutting-edge material from the physical and social sciences to illustrate how natural

and human systems interact to place communities of all sizes, and at all stages of

economic development, at risk. It also explains in detail the various measures

available to reduce the ongoing losses to life and property.

5.2.1 Characteristics, Promise, and Benefits

Big data is a business term that can also represent a buzzword for the advancing

trends in the latest technologies. It describes a new approach in order to understand

the process of data analysis for decision-making. Currently, data is growing at a rate

of 50% per year through new streams such as digital sensors, industrial equipment,

automobiles, and electric meters (measuring and communicating all sorts of param-

eters like location, temperature, movement) [11].

In this section, some of the most important big data characteristics such as

volume, variety, velocity, value and veracity, volatile, and vicissitude are analyzed.

Volume. represents the main challenge, as traditional relational database manage-

ment systems did not succeed to handle volumes of data in terms of terabyte and

petabyte levels. According to [12], it is estimated that 2.5 quintillion bytes of data

are created each day, six billion people have cell phones, and 40 zettabytes will be

created by 2020, which represents an increase of 300 times from 2005.

Variety. characteristic refers to different data formats and sources such as data

from sensors, documents, emails, social media texts, mobile devices, etc.

98 C. Negru et al.



According to [12], 400 million tweets are sent per day by about 200 million

monthly active users, four billion hours of video are watched on YouTube each

month, and more than 420 million wearable wireless health monitors exist.

Velocity. refers to the data acquisition rate, as data can be acquired at different

speeds. For instance, in the case of a natural disaster or pollution accident, the data

acquisition rate from the wireless sensor network rises exponentially, compared

with normal circumstances. According to [12], the New York Stock Exchange

captures 1 TB of trade information during each session, modern cars have close

to 100 sensors that monitor items such as fuel level and tire pressure, and by 2016 it

is projected that there will be 18.9 billion network connections, which represent

almost 2.5 connections per person on Earth.

Value property illustrates the potential gain of data, obtained after some

processing operations. Big data processing operations can help to uncover the

fine interactions in data, allowing to manipulate heretofore hidden – often counter-

intuitive – levels that directly impact different domains and activities.

Veracity. characteristic describes how accurate is data collected from different

sources. For example, data gathered from a social media website have a specific

degree of accuracy. In other words, veracity represents the degree of uncertainty in

the data. According to [12], the poor data quality costs the US economy around $1.3

trillion per year, one of three business managers don’t trust the information they use

to make decisions, and 27% of respondents in one survey were unsure about how

much of their data was inaccurate.

Volatility. propriety of big data refers to the time of storage of the data after the

processing step. Volatility has a direct impact on the other aspects of big data such

as volume and veracity. So, data volatility policies have to be defined, in order to

avoid the interference with other properties of even the damage of those.

Vicissitude. property refers to the challenge of scaling big data complex

workflows. This property signifies a combination between the large volume of

data and the complexity of the processing workflow, which prevent to gather useful

insights for data [13].

There are three categories of promises related to big data analytics identified by

the authors of [14]:

• Cost reduction – technologies like Hadoop and cloud-based analytics can pro-

vide significant cost advantages.

• Faster and better decision-making – this is obtained with the aid of frameworks

such as Apache Storm and Apache Spark designed to run programs up to 100�
faster than Hadoop. Also the possibility to analyze new sources of data can help

in decision-making process. For example, healthcare companies try to use

natural language processing tools to better understand customer’s satisfaction.
• New products and services – this is possible due to new sources of data such as

mobile phones. For example, a company called Verizon sells data about how

often mobile phone users are in certain locations.

5 A Unified Approach to Data Modeling and Management in Big Data Era 99



5.2.2 Data Models

Data models represent the building blocks of big data applications, having a major

impact on the performance and capabilities of those applications. Moreover, the

different tools that are used for data processing impose these data models. Next, we

will discuss the different data models that exist in the context of big data: structured

data, text file data, semi-structured data, key-value pair data, and XML data [15].

Structured data models refer to data that is contained in database or spreadsheet

files. The sources of structured data in a cyber-infrastructure are water quality

sensors (e.g., water parameters such as conductivity, salinity, total dissolved solids,

resistivity, density, dissolved oxygen, pH, temperature, and so on), mobile phone

sensors (e.g., location data), geographical information systems (e.g., geo-database

that contains spatial data such as points, polygons, raster, annotations, and so on),

and click-stream sources (e.g., data generated by human intervention in the case of

reporting an incident related to a pollution event). Figure 5.1 presents a database

table that contains information about a spatial dataset which has different attributes.

Data can be aggregated and queried across the entire database. Things get more

complicated when we want to aggregate data from many tables because the

problem becomes exponentially more complex. The reason behind this complexity

is that each query requires the read of the entire dataset.

Text data models, on the other hand, are at the opposite end of structured data, as

this type of data has no well-defined structure and meaning. The sources for this

data are represented by different documents related to different regulations released

by regulatory institutions in the field of cyber-infrastructure domains such as water

management [15].

Semi-structured data represents data that has a structure but is not relational.

Instrumentation equipment such as sensors generates this data. In order to be stored

in a relational database, data must be transformed. A major advantage of semi-

structured data is represented by the fact that can be loaded directly into a Hadoop

HDFS file system and processed in raw from there [16].

Key-value pair data represents the driver for performance in MapReduce pro-

gramming model. This model has a single key-value index for all data being similar

to memcached distributed in memory cache. This type of data is stored in key-value

stores and in general provides a persistence mechanism and additional functionality

as well: replication, versioning, locking, transactions, sorting, and/or other

features [17].

OBJECT_ID Zone SHAPE Length (m)
1 RightBank 54.021,952344830665
2 MainStream 37.099,640979200485
3 LeftBank 40.974,860305322997
5 MainStream 21.167,611441057656
6 LeftBank 23.707,147651820300

Fig. 5.1 Geographical data example

100 C. Negru et al.



5.2.3 Data Gathering

Environmental data gathering and analysis, resulting from continuous monitoring,

pose unprecedented challenges to the design and analysis of methods, workflows,

and interaction with datasets. A big part of these data that resulted from monitoring

is made available by public institutions, private companies, and scientists [18]. Fur-

thermore, data collected from social media sites such as geo-tagged photos, video

clips, and social interactions may contain information related to environmental

conditions. Moreover this process of data gathering must be energy efficient and

cost aware in the context of cloud computing services. New methods for gathering

and integration for these types of data for further processing stages must be

designed.

Geospatial sensor web [19] has been used widely for environmental monitoring.

Different from a sensor network, in a sensor web infrastructure, the device layers,

the network communication details, and the heterogeneous sensor hardware are

hidden [20]. The Sensor Web Enablement (SWE) of the Open Geospatial Consor-

tium (OGC) defines a sensor web as an infrastructure that enables access to sensor

networks and archived sensor data that can be discovered and accessed using

standard protocols and interfaces [21]. In [22] the authors propose a sensor web

heterogeneous node meta-model discussing development of five basic metadata

components, the design of a nine-tuple node information description structure as

shown in Fig. 5.2.

In [23], the authors describe the development of a service-oriented multipurpose

SOS framework in order to access data in a single method approach, integrating the

sensor observation service with other OGC services. The proposed solution

includes few components such as extensible sensor data adapter, OGC-compliant

Level 0 – Instance Level 1 – Model Level 2 – Meta-model Level 3 – Meta-Metamodel

Sensing
Node

Processing
Node

Application
Node

Sensor web
nodes

Information
Model

XML

Identification

Capability

Service

Characteristic

Quality

Administration

Geolocation Working

Constraint

Formalization
Metamodel

Modelling
Facility

Metamodel

Information
Describing

Metamodel

Metadata Structure

Metadata Components

Tag

Performance
State

Service

Accessibility

Sensor W
eb node M

eta-M
etam

odel

Fig. 5.2 Sensor web meta-model

5 A Unified Approach to Data Modeling and Management in Big Data Era 101



geospatial SOS, geospatial catalogue service, a WFST, and a WCS-T for the SOS,

and a geospatial sensor client. Data from live sensors, models, and simulation is

stored and managed with the aid of extensible sensor data adapter.

There is an important need for data gathering and content analysis techniques

from social media streams, such as Twitter and Facebook. These have become

essential real-time information resources with a wide range of users and applica-

tions [24]. Gathering valuable data from social media represents a good opportunity

for environmental monitoring. Also social media can play an important role in

pollution accidents or natural disasters as an information propagator.

5.2.4 Open Issues and Challenges

The challenges addressed in the chapter were also presented in the literature in

various forms: methodologies, applications, etc. The authors of [25] review state-

of-the-art research issues in the field of analytics over big data. Among the open

problems and research trends in big data analytics identified by the authors are the

following:

• Data source heterogeneity and incongruence

• Filtering-out uncorrelated data

• Strongly unstructured nature of data sources

• High scalability

• Combining the benefits of RDBMS and NoSQL database systems

• Query optimization

Integration of distributed heterogeneous web data sources is another important

challenge. In [26], the authors propose DeXIN (Distributed extended XQuery for

heterogeneous data INtegration), which is an extensible framework for distributed

query processing over heterogeneous, distributed, and autonomous data sources. In

this approach the base idea is that one data format is considered as the basis or the

aggregation model. It extends the corresponding query language to executing

queries over heterogeneous data sources in their respective query languages.

Disasters, such as water pollution accidents, bring together institutions, organi-

zations, and people. Moreover, these produce large amounts of data with a high

level of heterogeneity that must be handled in order to respond efficiently in disaster

management operations (a special attention can be offered for specific scenarios in

agriculture disasters [27] and land degradation assessment [28]).

In the case of a disaster, it is usually formed a crisis commandment which has to

coordinate a large number of people and resources involved in disaster management

operations. This often led to a lack of coordination and chaos among these institu-

tions, as they track the needs of the people affected by the disaster. Many auton-

omous actors control information and may work together for the first time, so the

development of a system that enable the information to be shared and analyzed to

target resources is fundamental to build a better response capacity [29].

102 C. Negru et al.



With the aid of big data solutions, we can acquire better results in response time,

coordination, and distribution of efforts, tracking displaced and vulnerable

populations; logging the damage to housing, infrastructure, and services; dealing

with the sudden influx of humanitarian supplies; and coordinating the work of

dozens and even hundreds of responding agencies [29]. However, there is no

current solution that provides information system or data management support for

the basic functionality of disaster management such as registering organizations,

locating missing persons, and requesting assistance [30].

So, a major challenge is to provide an integrated and interoperable framework

for environmental monitoring and data processing that include development of

sound solutions for a sustainable crisis management in order to support human

life in the case of disasters. For instance, the authors of [31] propose an approach to

integrate heterogeneous data with uncertainty in emergency systems.

Based on ICT (information and communications technology) support and big

data technologies, the response to natural disasters needs to be both rapid and

carefully coordinated. Saving lives and providing shelter for those displaced are

two key priorities for first responders. Helping citizens post disaster is a key part of

the mandate for damage assessors. This is by measuring and quantifying a disaster’s
impact on the community and then providing assistance to individuals. Mobile and

cloud-based GIS offers many potential benefits to improve disaster management.

This is the position of WebMapSolutions Company, which is implementing state-

of-the-art disaster management GIS solutions.

Another important challenge is to combine mobile applications, existing elec-

tronic services, and data repositories in an architecture based on cloud solutions and

existing big data approaches. Also we have to contribute to the development of

INSPIRE compliant solutions [32], based on the ISO 19156 standard on Observa-

tions and Measurements (O&M) and SOS (Sensor Observation Service), SES

(Sensor Event Service), and SAS (Sensor Alert Service) as a main contribution to

standardization.

Incorporating and extending the technology presented in the literature to create a

new one that will transform data into valuable information is another big challenge.

Even when faced with the big data problem, solutions based on cloud computing

and HPC infrastructure to process data must be used.

The main challenges when dealing with systems for water quality management

are the following: storage, processing, and management of data. For the storage

part, scale-out architectures have been developed to store large amount of data, and

also purpose-built appliance has improved the processing capability.

The major challenge is represented by the management of big data throughout its

entire life cycle, from acquisition to visualization in order to get valuable informa-

tion that helps in decision-making processes. Further challenges are in the field of

real-time control and action prediction for people and authority’s assistance and

setting up correlations between related phenomena, based on the available

information.

5 A Unified Approach to Data Modeling and Management in Big Data Era 103



5.3 Unified Approach to Big Data Modeling

In this part of the chapter, we present a unified approach for water resource data

models considering the context of observation and the possibility of usage to

enhance the organization, publication, and analysis of world-distributed point

observation data while retaining a simple relational format. This will enable

development of new applications and services for water management that are

increasingly aware of and adapt to their changing contexts in any dynamic

environment.

According to the National Oceanic and Atmospheric Administration (NOAA)

that collects, manages, and disseminates a wide range of climate, weather, ecosys-

tem, and other environmental data, there are nine principles for effective environ-

mental data management:

• Environmental data should be archived and made accessible.

• Data-generating activities should include adequate resources to support end-to-

end data management.

• Environmental data management activities should recognize user’s needs.
• Effective interagency and international partnerships are essential.

• Metadata are essential for data management.

• Data and metadata require expert stewardship.

• A formal, ongoing process, with broad community input, is needed to decide

what data to archive and what data not to archive.

• An effective data archive should provide for discovery, access, and integration.

• Effective data management requires a formal, ongoing planning process.

A matrix represents the basic structure of an environmental dataset, where

usually the rows correspond to the individual objects (measurements, time units,

or measuring spots) and the columns contain the series of reading for the

corresponding variable. The units in the columns may be logical characters

(true¼ 1, false¼ 0), ordered or unordered categories, integers (count data), or

reals (measurements); they may also contain a time information or a coding of

the measurement spots. The coding of missing data and of censored data (for

extreme values) has to be fixed. Of course some describing or classifying text

may be contained as well in the rows.

In a geographical information system (GIS), there are four basic data structures,

viz., vectors, rasters, triangulated irregular networks, and tabular information (table

of attributes). For example, a virtual representation of the Earth mostly contains

data values that are observed within the physical Earth system. On the other side,

data models are required to allow the integration of data across the silos of various

Earth and environmental science domains. Creating a mapping between the well-

defined terminologies of these silos is a challenging problem. A generalized

ontology for use within Web 3.0 services, which builds on European Commission

spatial data infrastructure models, that acknowledge that there are many complex-

ities to the description of environmental properties which can be observed within

104 C. Negru et al.



the physical Earth system is presented in [33]. The ontology is shown to be flexible

and robust enough to describe concepts drawn from a range of Earth science

disciplines, including ecology, geochemistry, hydrology, and oceanography.

5.3.1 Unified Data Representation and Aggregation

When it comes down to big data representation and aggregation, the most important

question that has to be answered is how to represent and aggregate relational and

non-relational data in the same storage engine. Moreover, this data must be queried

in an efficient way so that it offers relevant results across all data types.

An important aspect in wireless sensor networks is end-to-end data aggregation

without degrading sensing accuracy that can prevent network congestion to occur

[34]. With the aid of sensor web technologies, environmental monitoring observa-

tions are published. The integration of heterogeneous observations in different

applications poses important challenges as these differ in spatial-temporal coverage

and resolution. In [35], the authors present an approach for spatial-temporal aggre-

gation in the sensor web using the geo-processing web by defining a tailored

observation model for different aggregation levels, a process model for aggregation

processes, and a spatial-temporal aggregation service.

Also, context awareness represents a core function for the development of

modern ubiquitous systems. This offers the capacity to gather and deliver to the

next level any relevant information that can characterize service-provisioning

environment, such as computing resources/capabilities, physical device location,

user preferences, time constraints, and so on [36].

There are numerous applications that need to query multiple databases, with

heterogeneous schemas. The semantic integration approaches focus on heteroge-

neous schemas, with homogenous data sources. In [37], the authors propose a new

query type, called decomposition aggregate query, to integrate heterogeneous data

source domains. This approach is based on three-role structure. Decomposing

compounds into components and translating non-aggregate queries over com-

pounds into aggregate queries answerable by other data sources are achieved by a

type of data sources called dnodes. It is in order to mention that this is a solution

mainly designed for database management systems.

5.3.2 Data Access and Real-Time Processing

A monitoring platform for water data management needs to access distributed data

sources (e.g., sensor networks, mobile systems, data repository, social web, and so

on). Next, this data has to be processed in real time in order to prevent natural

disasters such as water pollution and more importantly to alert the possible affected

people.

5 A Unified Approach to Data Modeling and Management in Big Data Era 105



Apache Kafka is a solution that proposes a unified approach to offline and

online processing by providing a mechanism for parallel load in Hadoop systems

as well as the ability to partition real-time consumption over a cluster of machines.

Also it provides a real-time publish-subscribe solution, which overcomes the

challenges of real-time data usage for consumption, for data volumes that may

grow in order of magnitude, larger than the real data [38]. Figure 5.3 presents big

data aggregation-and-analysis scenario supported by the Apache Kafka messaging

system.

There are two main categories of data: one which has a value at the given

moment in time such as prediction data and the other whose value remains forever

such as the maximum value possible for pollutants or sensor data which represents

historical data. Mining the instantaneously valued data requires a real-time plat-

form. In [39], the authors propose a method of dynamic pattern identification for

logically clustering log data. The method is a real-time and generalized solution to

the process of log file management and analysis.

Computing frameworks such as MapReduce [40] or Dryad [41] are used for

large-scale data processing. In this paradigm users write parallel computations

with the aid of high-level operators, without paying attention to data distribution

or fault tolerance. The main drawback of these systems is represented by the fact

that these are batch-processing systems and are not designed for real-time

processing.

Storm [42] and Spark [43] represent a possible solution for real-time data

streaming processing. Storm is used currently at Twitter for real-time distributed

processing of stream data. The most important proprieties of Storm are scalability,

resiliency, extensibility, efficiency, and easy administration [44].

Kafka Broker

Front End

Services

Proxies

Adapters

Other

Producers

Real-Time

NoSQL

Hadoop

Warehouses

Other

Consumers

Fig. 5.3 Big data aggregation and analysis in Kafka

106 C. Negru et al.



5.4 Uniform Data Management

In relation to the uniform data management, a context-aware approach requires an

appropriate model to aggregate, semantically organize, and access large amounts of

data, in various formats, collected from sensors or users, from public open data

sources. When it comes down to uniform data management, the most important

question that has to be answered is how to handle relational and non-relational data

in the same storage engine. Moreover, this data must be queried in an efficient way

so that it offers relevant results across all data types.

Data handling methods have been applied in several areas including water

network data analysis and modeling, water quality analysis, energy-water relation-

ship, efficiency modeling of regional water resource under disaster constrains, etc.

Relational databases can handle various types of data, for example, sensor data or

GIS data. Every query has the same kind of data – location, water parameters, map,

and so on. These are all stored in a table with one column for each piece of data.

On the other hand, we have multimedia files such as images or videos that can be

attached to an event reporting action. Multimedia files cannot be represented in the

same way as a series of columns. What can be stored in a relational way is

represented by the data about the files, which is in fact metadata. Alongside with

multimedia files, we have social media objects such as blogs, tweets, and emails,

which can be categorized in the category of non-relational data.

One approach is to modify existing relational database management systems in a

way that can store non-relational data. For example, multimedia files can be stored

in Blob data type. In this way, data can be retrieved. The worst part is represented

by the fact that data stored in this way cannot be processed, for example, the image

cannot be scanned in order to find useful information.

Another approach is to design new engines for database systems that can handle

all these big data challenges. So, for example, the new engine can have functions for

parsing multimedia files in order to find information about a pollution event.

The authors in [45] propose a hybrid system called HadoopDB, which combines

the parallel database systems with MapReduce-based systems, in order to benefit

from the performance and efficiency of the first type of systems and scalability,

fault tolerance, and flexibility of the second ones. The main idea of this solution is

to connect multiple single-node database systems using Hadoop as the task coor-

dinator and to communicate through network layer. In this way queries can be

parallelized with MapReduce. The drawback of this approach is that HadoopDB

does not match the performance of parallel database systems.

Another approach is presented in [46]. This proposes a novel definition of a

declarative language that has to be able to map, with precision, an ontology into

queries for a set of data sources. This method is mainly designed for the case of

integration of multiple heterogeneous relational database systems. The authors

introduce the concepts of semantic identifier and semantic join. The first represents

a solution for the problem of entity resolution, and the second one is designed to

help in the problem of record linkage. Although, it is an interesting approach, this

5 A Unified Approach to Data Modeling and Management in Big Data Era 107



has to be modified in order to be used for multiple heterogeneous data sources in the

context of big data. Still, we cannot know for sure how accurate the mapping phase

can be when dealing with these types of data sources.

Tasso Argyros and Mayank Bawa from Teradata propose also an interesting

approach. This supposes the design of a management system composed of three

elements, storage engine, processing layer, and function library [47]. In the storage

engine, relational data is stored in database tables and non-relational data is stored

as de-serialized objects that are similar to Blobs. An extended SQL engine that

includes MapReduce functions represents the processing layer. In this way rela-

tional data is queried with SQL and non-relational data is queried with MapReduce

functions. The layer of function library is the core element. In this layer functions

written by users permit the manipulation and query non-relational data. Next these

functions are stored in a library and also the results of the functions are stored in

database tables. This is due to the closure principle from relational database model.

Basically this principle states that any query against a table or tables of data must

return the answer in the form of a table, permitting in this way the chaining of

queries.

So, in order to overcome the data heterogeneity in big data platforms and to

provide a unified and unique view of heterogeneous data, a layer on top of the

different data management systems, with aggregation and integration functions,

must be created.

5.5 CyberWater Case Study

Water resource monitoring implies a huge amount of information with different

levels of heterogeneity (e.g., spatial data, sensor data, multimedia data), availability

(e.g., data must have a minimum degree of redundancy), and accessibility (e.g.,

methods for data access such as REST, SOAP, WSDL) [48]. It is very important to

acquire, store, transmit, and analyze data in order to respond in real time to possible

threads or pollution accidents, for instance.

In this section, we present the case study of CyberWater project. This is a

prototype cyber-infrastructure-based system for decision-making support in water

resource management. The main reason we present this case study is to highlight

the need for heterogeneous data modeling in big data era, especially the context of

cyber-infrastructure-based systems.

Water resource data modeling is a fundamental process for cyber-infrastructures.

These are characterized by a mix of technologies such as advanced data acquisition

through real-time sensor networks, big data, visualization tools, high-performance

computational platforms, analytics, data integration, and web services.

Prototype Cyber Infrastructure-based System for Decision-Making Support in

Water Resources Management (CyberWater) project [49], a national project, aims

to create a prototype platform using advanced computational and communication

technology for implementation of new frameworks for managing water and land

108 C. Negru et al.



resources in a sustainable and integrative manner. The main focus of this effort will

be on acquiring diverse data from various disciplines in a common digital platform

that is subsequently used for routine decision-making in normal conditions and for

providing assistance in critical situations related to water, such as accidental

pollution flooding. So, one of the main challenges of this project will be to integrate

the heterogeneous data sources into a unique and unified view.

In Fig. 5.4, we present a layered architecture of CyberWater monitoring plat-

form. This is focused on three levels: data level, storage level, and level of access,

management, and the data processing. Between data and storage levels, there exists

the interface for monitoring, analysis, and processing rules. Further, between

storage and management level is placed the data access interface.

The data level consists of various heterogeneous data sources used by the

platform, such as sensor network, data suppliers (e.g., GIS, water treatments plants,

etc.), and third-party services (e.g., ANAR, ApaNova, and other Romanian

institutions).

At the storage level, data collected from heterogeneous data sources is stored,

in order to offer aggregation services, such as workflow execution, pollution

propagation modeling, pollution prediction methods, and platform configuration.

Also, the aggregation service is connected with a knowledge management service

and model parameter estimator service, in order to offer support for the offered

services.

Fig. 5.4 CyberWater-layered architecture

5 A Unified Approach to Data Modeling and Management in Big Data Era 109



The top layer of the architecture is the level of access, management, and the data
processing. Here, we have services such as spatial and temporal query services,

customized view of data, data validation, or specific preferences providing func-

tionality for applications like decision support systems, data analysis, real-time

alerts, video, mobile access, and online support.

The interface for monitoring, analysis, and processing rules has the role to store
data from data level (e.g., sensor network, data supplier, external events, and third-

party services) in a flexible and efficient manner.

Data access interface ensures the access to data for CyberWater services and

applications and also for third-party services which need access to data, offering

access methods such as REST, SOAP, and WSDL.

A sensor gathers the following parameters from water resources: temperature,

pH, specific conductivity, turbidity, and dissolved oxygen.

Data obtained from third-party suppliers is received in heterogeneous formats, in

a form of files such as pdf, csv, txt, etc. For example, data obtained from ApaNova

is in a form of a pdf file, called analysis bulletin, and contains information about

taste, color, odor, turbidity, pH, conductivity, free residual chlorine, ammonium,

nitrites, nitrates, iron, total hardness, and aluminum. From this format, we can

identify three main components:

• Limitations specification – in a fixed format

• Measured values

• Semantics – which refers to explanation of the measures

Based on the presented architecture, we modeled few conceptual workflows for

decision support module, real-time alerts and visualization of the maps, and infor-

mation’s presented on them. The applications offered by the platform need a unique

view and integrated approach of the data.

Figure 5.5 presents the visualization workflow. A user accesses the application

and can do one of the following actions: can do a zoom in action, click on a sensor,

Fig. 5.5 Visualization workflow

110 C. Negru et al.



or apply a filter. In the case of the first action, a detailed portion of a map is

visualized and data are brought from storage system by the aggregation service. In

this module can be identified the following components: analytics component, data

filtering component, and access to distributed databases. Analytics component

refers to all the activities in the workflow, such as zoom in, click on a sensor, and

apply a filter, and is important because it is the most accessed and utilized part of the

platform, all the users having access to this component.

Data filtering component occurs when users want to find specific data about an

event. So, in order to get data, the user must apply a series of filters, which will be

used as an input to query the storage system. Access to distributed storage supposes

that data gathered from sensors are stored in the near storage site and all the data

must be synchronized and processed.

Figure 5.6 presents the conceptual model for decision support module. First, the

client accesses decision support module from the web application, by making one

of the two requests: data validation or temporal and spatial queries. Next, the

aggregation service will interrogate the storage and service repositories in order

to calculate the propagation model or prediction methods. There are two important

components: analytics component and automatic control component.

Analytics component can be identified in the sub-workflow, which is responsible

with temporal and spatial queries. Data is aggregated from the storage system in

order to provide the application with historical data. In this case the cost for data

aggregation is very important in order to optimize the overall cost of the entire

system.

Another important service offered by the CyberWater project is real-time alerts.

Figure 5.7 presents the workflow of the service. The clients or administrators will

make preferences for platform configuration, and the service will perform spatial

and temporal queries, aggregating data from storage and service repositories. After

this step data is validated against third-party data suppliers and passed to alert

Fig. 5.6 Decision support workflow

5 A Unified Approach to Data Modeling and Management in Big Data Era 111



generation module, which will classify the alert and take necessary steps for

sending the alert.

All workflows presented above have been encapsulated in a web mapping

application presented in Fig. 5.8. Users are informed about the water quality on a

certain river in a certain point by clicking on a sensor marked on river course. Also

the watercourse is colored based on water quality (blue is a good quality and red bad

quality of the water). The evolution of a certain parameter can be viewed in a graph

displayed on top of the map. Our system also offers a prediction and alert service for

water quality in the case of a pollution event.

Fig. 5.7 Real-time alert workflow

Fig. 5.8 CyberWater front-end

112 C. Negru et al.



Users can report an incident by clicking on the map and filling a web form that

describes the reported incident, can upload multimedia files related to the incident,

and can share the reported event on social networks.

5.6 Conclusion

In this chapter, we analyzed the problem of modeling and integration of heteroge-

neous data sources in the context of cyber-infrastructure systems and big data as it is

a significant research issue. In this type of systems, information represents a key

factor in the process of decision-making. Hence, there is an urgent need to integrate

and operate heterogeneous data, in order to provide a unique and unified view of

information. Benefits such as cost reduction, faster and better decision-making, and

the development of new products and services can be obtained.

The unified approach for big data in environmental monitoring relies on a

separation of heterogeneous information into data, metadata, and semantics. In

terms of data management, operations such as integration, reduction, querying,

indexing analysis, and mining, must be performed. Every operation corresponds to

a specific layer and represents an important stage in the processing pipeline.

Data integrity check and validation also play an important role as there are often

many errors and missing data in environmental datasets. Visualization tools also

play a central role as front-end interface can offer a unified and uniform view of the

entire system permitting users to get useful insights from data and take the neces-

sary actions.

A key research issue nowadays is to find an approach that combines the

relational database management systems and NoSQL database systems in order to

benefit from the two paradigms. Equally important is to have new methods for the

query optimization.

The CyberWater case study presented in the chapter highlights the need for

methods and tools that integrate heterogeneous data sources. These need to be

integrated in order to build a robust and resilient system that offers support in the

decision-making process in the case of water resource management.

Although there are many tools for integrating various heterogeneous data

sources, these do not provide the performance needed by a real-time system. New

scalable and resilient methods and tools to integrate data source heterogeneity to

filter our uncorrelated data need to be developed.

References

1. Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R,

Shahabi C (2014) Big Data and its technical challenges. Commun ACM 57(7):86–94.

doi:10.1145/2611567

5 A Unified Approach to Data Modeling and Management in Big Data Era 113

http://dx.doi.org/10.1145/2611567


2. Kitchin R (2013) Big Data and human geography opportunities, challenges and risks. Dia-

logues in Hum Geogr 3(3):262–267. doi:10.1177/2043820613513388

3. Kitchin R (2014) The real-time city? Big Data and smart urbanism. GeoJournal 79(1):1–14.

doi:10.1007/s10708-013-9516-8

4. Liu W, Park EK (2014) Big Data as an e-health service. In: International conference on

Computing, Networking and Communications (ICNC), February 2014, IEEE, pp 982–988.

doi:10.1109/ICCNC.2014.6785471

5. Boyd D, Crawford K (2012) Critical questions for Big Data: provocations for a cultural,

technological, and scholarly phenomenon. Inf Commun Soc 15(5):662–679. doi:10.1080/

1369118X.2012.678878

6. Zlatanova S, Fabbri AG (2009) Geo-ICT for risk and disaster management. In: Geospatial

technology and the role of location in science, Springer, Dordrecht, pp 239–266. doi:10.1007/

978-90-481-2620-0_13

7. Careem M, De Silva C, De Silva R, Raschid L, Weerawarana S (2006) Sahana: overview of a

disaster management system. In: International conference on Information and Automation,

2006. ICIA 2006, IEEE, pp 361–366. doi:10.1109/ICINFA.2006.374152

8. Boulos MNK, Resch B, Crowley DN, Breslin JG, Sohn G, Burtner R, Chuang KYS (2011)

Crowdsourcing, citizen sensing and sensor web technologies for public and environmental

health surveillance and crisis management: trends, OGC standards and application examples.

Int J Health Geogr 10(1):67. doi:10.1186/1476-072X-10-67

9. Habiba M, Akhter S (2013) A cloud based natural disaster management system. In: Grid and

pervasive computing. Springer, Berlin/Heidelberg, pp 152–161. doi:10.1007/978-3-642-

38027-3_16

10. Smith K (2013) Environmental hazards: assessing risk and reducing disaster. Routledge,

New York

11. Lohr S (2012) The age of Big Data. New York Times, http://www.nytimes.com/2012/02/12/

sunday-review/big-datas-impact-in-the-world.html?_r¼0. Accessed 25 Mar 2015

12. Bizer C, Boncz P, Brodie ML, Erling O (2012) The meaningful use of Big Data: four

perspectives-four challenges. ACM SIGMOD Rec 40(4):56–60. doi:10.1145/2094114.

2094129

13. Ghit B, Capota M, Hegeman T, Hidders J, Epema D, Iosup A (2014) V for Vicissitude: the

challenge of scaling complex Big Data workflows. In: 2014 14th IEEE/ACM international

symposium on Cluster, Cloud and Grid Computing (CCGrid), IEEE, May, pp 927–932. doi:10.

1109/CCGrid.2014.97

14. Davenport T (2014) Three big benefits of Big Data analytics. http://www.sas.Com/tr_tr/news/

sascom/2014q3/Big-data-davenport.html. Accessed 25 Mar 2015

15. Pop F, Cristea V (2015) The art of scheduling for big data science. In: Kuan-Ching Li, Hai

Jiang, Yang LT, Cuzzocrea A (eds) Big data: algorithms, analytics, and applications. Chapman

& Hall/CRC Big Data Series, pp 105–120, ISBN 978-1482240559

16. Freitas A, Curry E, Oliveira JG, O’Riain S (2012) Querying heterogeneous datasets on the

linked data web: challenges, approaches, and trends. IEEE Internet Comput 16(1):24–33.

doi:10.1109/MIC.2011.141

17. Calı̀ A, Calvanese D, De Giacomo G, Lenzerini M (2013) Data integration under integrity

constraints. In: Seminal contributions to information systems engineering. Springer, Berlin/

Heidelberg, pp 335–352. doi:10.1007/3-540-47961-9_20

18. Buytaert W, Vitolo C, Reaney SM, Beven K (2012) Hydrological models as web services:

experiences from the environmental virtual observatory project. In: AGU fall meeting

abstracts, vol 1, p 1491

19. The Open Geospatial Consortium (OGC) Why is the OGC involved in sensor webs? http://

www.opengeospatial.org/domain/swe. Accessed: 15 Apr 2015

20. Br€oring A, Echterhoff J, Jirka S, Simonis I, Everding T, Stasch C, Lemmens R (2011) New

generation sensor web enablement. Sensors 11(3):2652–2699. doi:10.3390/s110302652

114 C. Negru et al.

http://dx.doi.org/10.1177/2043820613513388
http://dx.doi.org/10.1007/s10708-013-9516-8
http://dx.doi.org/10.1109/ICCNC.2014.6785471
http://dx.doi.org/10.1080/1369118X.2012.678878
http://dx.doi.org/10.1080/1369118X.2012.678878
http://dx.doi.org/10.1007/978-90-481-2620-0_13
http://dx.doi.org/10.1007/978-90-481-2620-0_13
http://dx.doi.org/10.1109/ICINFA.2006.374152
http://dx.doi.org/10.1186/1476-072X-10-67
http://dx.doi.org/10.1007/978-3-642-38027-3_16
http://dx.doi.org/10.1007/978-3-642-38027-3_16
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?_r=0
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?_r=0
http://www.nytimes.com/2012/02/12/sunday-review/big-datas-impact-in-the-world.html?_r=0
http://dx.doi.org/10.1145/2094114.2094129
http://dx.doi.org/10.1145/2094114.2094129
http://dx.doi.org/10.1109/CCGrid.2014.97
http://dx.doi.org/10.1109/CCGrid.2014.97
http://www.sas.com/tr_tr/news/sascom/2014q3/Big-data-davenport.html
http://www.sas.com/tr_tr/news/sascom/2014q3/Big-data-davenport.html
http://dx.doi.org/10.1109/MIC.2011.141
http://dx.doi.org/10.1007/3-540-47961-9_20
http://www.opengeospatial.org/domain/swe
http://www.opengeospatial.org/domain/swe
http://dx.doi.org/10.3390/s110302652


21. Reed C, Botts M, Davidson J, Percivall G (2007) OGC® sensor web enablement: overview and

high level architecture. In: Autotestcon, 2007 IEEE, IEEE, pp 372–380. doi:10.1007/978-3-

540-79996-2_10

22. Chen N, Wang K, Xiao C, Gong J (2014) A heterogeneous sensor web node meta-model for

the management of a flood monitoring system. Environ Model Softw 54:222–237. doi:10.

1016/j.envsoft.2014.01.014

23. Chen N, Di L, Yu G, Min M (2009) A flexible geospatial sensor observation service for diverse

sensor data based on web service. ISPRS J Photogramm Remote Sens 64(2):234–242. doi:10.

1016/j.isprsjprs.2008.12.001

24. Gao Y, Wang F, Luan H, Chua TS (2014) Brand data gathering from live social media streams.

In: Proceedings of international conference on multimedia retrieval, ACM, April, p 169.

doi:10.1145/2578726.2578748

25. Cuzzocrea A, Song IY, Davis KC (2011) Analytics over large-scale multidimensional data: the

Big Data revolution! In: Proceedings of the ACM 14th international workshop on Data

Warehousing and OLAP, ACM, October, pp 101–104. doi:10.1145/2064676.2064695

26. Ali MI (2011) Distributed heterogeneous web data sources integration: DeXIN approach. LAP

Lambert Academic Publishing, Saarbr€ucken
27. Riley J (2001) The indicator explosion: local needs and international challenges. Agric Ecosyst

Environ 87:119–120. doi:10.1016/S0167-8809(01)00271-7

28. Wessels KJ, Van Den Bergh F, Scholes RJ (2012) Limits to detectability of land degradation

by trend analysis of vegetation index data. Remote Sens Environ 125:10–22. doi:10.1016/j.rse.

2012.06.022

29. Amin S, Goldstein MP (eds) (2008) Data against natural disasters: establishing effective

systems for relief, recovery, and reconstruction. World Bank-free PDF

30. Alazawi Z, Altowaijri S, Mehmood R, Abdljabar MB (2011) Intelligent disaster management

system based on cloud-enabled vehicular networks. In: 2011 11th international conference on

ITS Telecommunications (ITST), IEEE, August, pp 361–368. doi:10.1109/ITST.2011.

6060083

31. Huang W, Chen KW, Xiao C (2014) Integration on heterogeneous data with uncertainty in

emergency system. In: Fuzzy information & engineering and operations research & manage-

ment. Springer, Berlin/Heidelberg, pp 483–490. doi:10.1007/978-3-642-38667-1_48

32. van Loenen B, Grothe M (2014) INSPIRE as enabler of open data objectives. In: INSPIRE

conference: INSPIRE for good governance

33. Leadbetter AM, Vodden PN (2015) Semantic linking of complex properties, monitoring

processes and facilities in web-based representations of the environment. Int J of Digital

Earth 9(3):1–38. doi:10.1080/17538947.2015.1033483

34. Sicari S, Grieco LA, Boggia G, Coen-Porisini A (2012) DyDAP: a dynamic data aggregation

scheme for privacy aware wireless sensor networks. J Syst Softw 85(1):152–166. doi:10.1016/

j.jss.2011.07.043

35. Stasch C, Foerster T, Autermann C, Pebesma E (2012) Spatio-temporal aggregation of

European air quality observations in the sensor web. Comput Geosci 47:111–118. doi:10.

1016/j.cageo.2011.11.008

36. Bellavista P, Corradi A, Fanelli M, Foschini L (2012) A survey of context data distribution for

mobile ubiquitous systems. ACM Comput Surv (CSUR) 44(4):24. doi:10.1145/2333112.

2333119

37. Xu J, Pottinger R (2014) Integrating domain heterogeneous data sources using decomposition

aggregation queries. Inf Syst 39:80–107. doi:10.1016/j.is.2013.06.003

38. Garg N (2013) Apache Kafka. Packt Publishing Ltd., Birmingham

39. Moharil B, Gokhale C, Ghadge V, Tambvekar P, Pundlik S, Rai G (2014) Real time gener-

alized log file management and analysis using pattern matching and dynamic clustering. Int J

Comput Appl 91(16):1–6. doi:10.5120/15962-5320

40. Dean J, Ghemawat S (2008) MapReduce: simplified data processing on large clusters.

Commun ACM 51(1):107–113. doi:10.1145/1327452.1327492

5 A Unified Approach to Data Modeling and Management in Big Data Era 115

http://dx.doi.org/10.1007/978-3-540-79996-2_10
http://dx.doi.org/10.1007/978-3-540-79996-2_10
http://dx.doi.org/10.1016/j.envsoft.2014.01.014
http://dx.doi.org/10.1016/j.envsoft.2014.01.014
http://dx.doi.org/10.1016/j.isprsjprs.2008.12.001
http://dx.doi.org/10.1016/j.isprsjprs.2008.12.001
http://dx.doi.org/10.1145/2578726.2578748
http://dx.doi.org/10.1145/2064676.2064695
http://dx.doi.org/10.1016/S0167-8809(01)00271-7
http://dx.doi.org/10.1016/j.rse.2012.06.022
http://dx.doi.org/10.1016/j.rse.2012.06.022
http://dx.doi.org/10.1109/ITST.2011.6060083
http://dx.doi.org/10.1109/ITST.2011.6060083
http://dx.doi.org/10.1007/978-3-642-38667-1_48
http://dx.doi.org/10.1080/17538947.2015.1033483
http://dx.doi.org/10.1016/j.jss.2011.07.043
http://dx.doi.org/10.1016/j.jss.2011.07.043
http://dx.doi.org/10.1016/j.cageo.2011.11.008
http://dx.doi.org/10.1016/j.cageo.2011.11.008
http://dx.doi.org/10.1145/2333112.2333119
http://dx.doi.org/10.1145/2333112.2333119
http://dx.doi.org/10.1016/j.is.2013.06.003
http://dx.doi.org/10.5120/15962-5320
http://dx.doi.org/10.1145/1327452.1327492


41. Isard M, Budiu M, Yu Y, Birrell A, Fetterly D (2007) Dryad: distributed data-parallel pro-

grams from sequential building blocks. In: ACM SIGOPS operating systems review, vol

41, no. 3, pp 59–72, March ACM. doi:10.1145/1272998.1273005

42. Ankit T, Siddarth T, Amit S, Karthik R, Jignesh MP, Sanjeev K, Jason J, Krishna G,

Maosong F, Jake D, Nikunj B, Sailesh M, Dmitriy R (2014) Storm@twitter. In: Proceedings

of the 2014 ACM SIGMOD international conference on Management of data (SIGMOD ’14).
ACM, New York, pp 147–156. doi:10.1145/2588555.2595641

43. Matei Z, Mosharaf C, Michael JF, Scott S, Ion S (2010) Spark: cluster computing with working

sets. In: Proceedings of the 2nd USENIX conference on Hot topics in Cloud Computing

(HotCloud’10). USENIX Association, Berkeley, CA, USA, pp 10–10

44. Toshniwal A, Taneja S, Shukla A, Ramasamy K, Patel JM, Kulkarni S, Ryaboy D (2014)

Storm@twitter. In: Proceedings of the 2014 ACM SIGMOD international conference on

Management of data, ACM, June, pp 147–156. doi:10.1145/2588555.2595641

45. Abouzeid A, Bajda-Pawlikowski K, Abadi D, Silberschatz A, Rasin A (2009) HadoopDB: an

architectural hybrid of MapReduce and DBMS technologies for analytical workloads. Pro-

ceedings of the VLDB Endowment 2(1):922–933. doi:10.14778/1687627.1687731

46. Leida M, Gusmini A, Davies J (2013) Semantics-aware data integration for heterogeneous data

sources. J Ambient Intell Humaniz Comput 4(4):471–491. doi:10.1007/s12652-012-0165-4

47. Whitehorn M. Aster Data founders explain unified approach to data big and small. http://www.

computerweekly.com/feature/Aster-Data-founders-explain-unified-approach-to-data-big-and-

small. Accessed: 15 Apr 2015

48. Singh VK, GaoM, Jain R (2012) Situation recognition: an evolving problem for heterogeneous

dynamic big multimedia data. In: Proceedings of the 20th ACM international conference on

Multimedia, ACM, October, pp 1209–1218. doi:10.1145/2393347.2396421

49. Ciolofan SN, Mocanu M, Pop F, Cristea V (2014) Improving quality of water related data in a

cyberinfrastructure. In: Third international workshop on cyber physical systems. doi:10.

13140/2.1.1380.4803

116 C. Negru et al.

http://dx.doi.org/10.1145/1272998.1273005
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.1145/2588555.2595641
http://dx.doi.org/10.14778/1687627.1687731
http://dx.doi.org/10.1007/s12652-012-0165-4
http://www.computerweekly.com/feature/Aster-Data-founders-explain-unified-approach-to-data-big-and-small
http://www.computerweekly.com/feature/Aster-Data-founders-explain-unified-approach-to-data-big-and-small
http://www.computerweekly.com/feature/Aster-Data-founders-explain-unified-approach-to-data-big-and-small
http://dx.doi.org/10.1145/2393347.2396421
http://dx.doi.org/10.13140/2.1.1380.4803
http://dx.doi.org/10.13140/2.1.1380.4803


Chapter 6

Interfacing Physical and Cyber Worlds:
A Big Data Perspective

Zartasha Baloch, Faisal Karim Shaikh, and Mukhtiar A. Unar

Abstract With the increase in utilization and pervasiveness of smart gadgets, there

is a rise in new application domains. For that reason, computational technologies

are progressing very rapidly, and computations are becoming an essential part of

our life. Cyber-physical systems (CPSs) are a new evolution in computing that are

integrated with the real world along with the physical devices to provide control in

real-time environments. CPS generally takes input through sensors and controls the

physical system through cyber systems using actuators. Such systems are really

complex and challenging as they control real environments. This necessitates a

proper interfacing of physical and cyber domains. To this end, the data generated by

physical devices is getting bigger and bigger that is collectively acknowledged as

big data. The real challenge in interfacing cyber and physical domains is the

efficient management of big data. Accordingly, this chapter discusses big data

sources and the relevant computing paradigms. It also classifies and discusses the

main phases of data management for interfacing CPS, viz., data acquisition, data

preprocessing, storage, query processing, data analysis, and actuation.

Keywords Big Data • Cyber-physical systems • Cloud computing • Data

analytics • Decision support systems • Data management • Big data sources

6.1 Introduction

The computing paradigm has evolved in line with the development of the latest and

newer technologies. With these advancements, there is a perception that 1 day

computing will become the fifth utility (after water, gas, electricity, and telephone)

which will be essential for everyday needs of the society [1]. Cyber-physical

Z. Baloch (*) • M.A. Unar

IICT, Mehran University of Engineering and Technology, Jamshoro, Pakistan

e-mail: zartasha.baloch@faculty.muet.edu.pk

F.K. Shaikh

IICT, Mehran University of Engineering and Technology, Jamshoro, Pakistan

TCMCORE, STU, University of Umm Al-Qura, Mecca, Saudi Arabia

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_6

117

mailto:zartasha.baloch@faculty.muet.edu.pk


systems (CPSs) may support a new wave of computing by actively engaging it with

the real world in real time [2]. Cyber-physical system is a new generation of systems
with integrated computational and physical capabilities that can interact with
humans through many new modalities [3]. It is a bridge between the cyber world

and the physical world [4], where the physical world is simply the real world and

the cyber world comprised of computing paradigms.

A cyber-physical system is the integration of the physical world with the cyber

world to monitor and control physical entities by using feedback loops. It is an

emerging technology which provides computing and communication facilities to

the real-world systems and adds intelligence to the physical entities (see Fig. 6.1).

CPS uses digital capabilities of computing to control analog physical systems.

In cyber-physical systems, multiple static or mobile sensors and actuators may

be used that are integrated with intelligent decision support systems [5, 6]. The

Fig. 6.1 Generic cyber-physical system

118 Z. Baloch et al.



sensors are constrained due to low energy, low computational power, and less

storage capacity. Also a sensor does not have enough storage capacity to

accommodate huge datasets. Cloud computing is a solution to some of these

issues related to sensors. The combination of sensors and cloud is known as

sensor cloud [7]. The sensor cloud infrastructure is a vital part of CPS, where the

cloud performs computing (cyber) activities and sensor supports physical

activities [7].

Kim et al. [8] proposed a generic framework for design, modeling, and simula-

tion of CPS. The paper highlights many important features that need to be part of

that framework. The features include heterogeneous application support, physical

modeling environments that support mathematical expressions, scalability that

helps to increase in number of sensors deployed, support to connect with existing

simulation tools, and software reusability, and all the proprietary solutions and open

standards should be integrated into generic framework [8].

Due to the increase in the use of smart computing devices, a huge amount of data

is generated across the physical world. The term big data is used for those huge

datasets and is defined as a massive volume of both structured and unstructured
data that is so large that it is difficult to process using traditional database and
software techniques [9]. There are many sources of big data at the physical world;

there may be wireless sensor networks, social networks, wireless body area net-

works, mobile networks and vehicular ad hoc networks, etc. The data are physically

managed through some data management frameworks, and then that captured data

is sent to the cyber world for analytics.

The cyber world may include big data, big data management, cloud storage, data

analytics, and decision support systems. The continuous data growth poses many

challenges. The major issues are storing that data and extracting valuable informa-

tion from such a large amount of data. The data is not limited, but it is increasing

exponentially so there is a major issue to store this data efficiently and in a cost-

effective manner. The cloud storage provides a cost-effective way to facilitate the

users with ease of computing, storing, and networking resources. As the big data is

in large quantity and all of that data is not important, there is a need to extract

valuable data through data analytics. Big data analytics is the process of capturing,

arranging, and analyzing huge sets of data to identify patterns and valuable infor-

mation [10]. The analyzed data will be sent back to the physical world. Big data is a

buzz word today, so it provides wide space for research in this field. This chapter

presents the review of various technical aspects of big data for cyber-physical

systems.

The remaining chapter is organized as follows. Section 6.2 discusses various

sources of big data. Section 6.3 briefly describes data management at cyberspace

that includes cloud computing and decision support systems. Interfacing cyber

and physical worlds is discussed in Sect. 6.4. Section 6.5 identifies the main

challenges of cyber physical systems in terms of big data, and Sect. 6.6 concludes

the chapter.

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 119



6.2 Data Generation by Physical Systems: Big Data
Sources

The first step in big data scenario is data generation. There are many sources of big

data which are generating highly diverse and complex datasets. These sources

include wireless sensor networks, mobile ad hoc networks, social networks, vehic-

ular networks, RFIDs, web servers, online transactions, etc.

Big data can be structured, unstructured, and semistructured. The data, which are

well organized and are based on some data model, are referred to as structured data.

On the other hand, the unstructured data does not follow any data model. The

semistructured data is the combination of structured and unstructured. It is a type of

structured data, but somehow it lacks the data model structure and uses markers or

tags to mark specific data elements. For example, emails contain unstructured data,

but it has some fields like date, time, sender, recipient, etc. which are considered to

be as structured data. Generally, big data is considered as unstructured.

There are three main characteristics of big data: volume, variety, and velocity

[11]. The volume characteristic is defined as the amount of data, variety as different
formats of data/data sources, and velocity is the speed at which the data is growing

[12]. The data is not just large in volume, but there is variety of complex datasets. The

real challenge is to handle that diversity and variety. We can categorize the data

growth as business application data, personal data, and machine data [13]. The data

generated by business applications is moderate in volume, variety, and velocity. This

type of data is highly structured data. It includes online transactions. The personal

data includes web logs, documents, emails, social media, etc. It is highly unstructured

data, and it is moderate in variety but high in volume and velocity. The data growth is

two times more than business application data. The third category is machine data

which include sensors, machine logs data, audio and video recordings, bio-informat-

ics, etc. This type of data is highly structured, and it is high in volume, variety, and

velocity [14]. The growth is three times more than business application data.

In this section, we discuss a number of common data sources such as wireless

sensor networks, social networks, body area networks, and vehicular ad hoc

networks.

6.2.1 Wireless Sensor Networks

In the past few years, the applications of wireless sensor networks (WSNs) have

been increasing rapidly, such as monitoring, event detection, surveillance, etc.

Wireless sensor network is a wireless network of many small devices which are

capable of sensing, computation, and communication. A sensor network consists of

multiple sensor nodes, which are small and lightweight. The sensor nodes are

generally dispersed in a sensor field as shown in Fig. 6.2. Every sensor node

contains a transducer, microcomputer, transceiver, and a power source [15, 16].

When a sensor node senses a physical phenomenon, an electrical signal is

120 Z. Baloch et al.



generated by the transducer, which is processed and stored by microcomputer. The

collected data will then be sent to the sink/gateway which sends it back to the end user

via Internet/satellite or any other means of communication [17].

The traditional technologies for data processing, storing, and reporting provide

limited support for analyzing WSN data. These technologies have become prohib-

itively expensive, while dealing with sensor-generated big data [18]. Even then,

they cannot handle the processing requirements for real-time processes such as fire

detection, natural disasters, and traffic control [18]. Thus, the research is directed

toward new technologies for processing big data. There are many attempts in

combining big data and WSN. Jardak et al. [19] proposed a data model for

structuring the stored data by allowing a wide range of analysis by using Bigtable,

Hadoop, and MapReduce algorithms. A Hadoop-based cloud storage solution for

WSN data is presented by Fan et al. [20]. Similarly, Ahmed et al. [21] proposed an

infrastructure for integrating cloud computing with WSNs.

6.2.2 Social Networks

A social network is a Web-based service that connects people with each other. The

user can make their profile and share information, experiences, ideas, etc. The most

popular social networking sites are Twitter [22], Facebook [23], Pinterest [24],

Google+ [25], Instagram [26], and many more. These social sites are very popular

among youngsters. Data is being shared on these networks, which include billions

of photos, videos, and other information. Most of the data is unstructured with high

volume and velocity.

Fig. 6.2 Generic wireless sensor network model

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 121



The social networks can have enormous benefits for the society as it can help in

disasters. Through the social networks, the information about disasters can quickly

be disseminated among the people. The most prominent and widely used social

media networks like Twitter and Facebook are playing an important role in the

propagation of information which could be of different genres. The widespread use

of hashtag trends can help with easy access of the latest trends going on. In case of

any disaster or catastrophic crisis, the faster spread of information through these

sites could be an epidemic in saving lives and providing assistance for the further

course of action. One of the crisis situation examples could be the current deadliest

earthquake which struck Nepal in April 25, 2015 [27, 28], leaving behind thousands

of people dead and other severe casualties. It was within minutes that this news

broke through the whole social networks and spread throughout the whole world.

Immediate actions were taken to help the people affected by this devastating

tragedy. This was due to social networking sites which showed the world how

severe the situation was, and because of it various rescue and relief aids were

instantly sent from around the world to Nepal. Social networks have become a

binding force in the world where within seconds information could be propagated

from one corner of the world to the other. The only disadvantage is that we cannot

verify the credibility of the information being generated on the social networking

sites. Furthermore, social media analysis can be helpful for the organizations to

redesign their policies to address the public issues [29]. Social networks are leading

toward a new generation of crowd sourcing applications [30], which will help in

analyzing in-depth physical environments.

6.2.3 Vehicular Ad Hoc Networks

The research on integrating communication technologies with vehicles has begun

since long ago. The communication between vehicles by using ad hoc networks is

known as vehicular ad hoc networks (VANETs) [31, 32] as shown in Fig. 6.3. It is a

subcategory of intelligent transport systems and mobile ad hoc networks. The

vehicles can share necessary information with each other (referred to as vehicle

Fig. 6.3 Generic vehicular ad hoc network

122 Z. Baloch et al.



to vehicle or V2V), such as traffic information (traffic jam or accident), emergency

warnings, weather information, road condition warnings, etc. Furthermore, the data

can also be shared with the data center to the passing vehicles (referred as infra-

structure to vehicle or I2V and vice versa). It is not only important to pass along the

latest information but also to remove the outdated data [33, 34]. Since there are

many vehicles passing on the roads, they may consume the total bandwidth in data

dissemination. Therefore, it is important to efficiently transmit the data by using

limited bandwidth [35].

6.2.4 Wireless Body Area Networks

The recent development in wireless networks and microelectronics has resulted in

wireless body area networks (WBANs). A WBAN may consist of miniature

lightweight sensor nodes with low power and is used for healthcare application to

monitor physiological status of the human body, such as blood pressure, blood

sugar, ECG, pulse rate, etc. [36].

Figure 6.4 shows a generic architecture for WBAN-based health monitoring

system where sensor nodes senses medical data and sends it to the base station (BS).

Fig. 6.4 Generic WBAN scenario

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 123



The BS then transmits the data to the doctor for real-time diagnosis, to a database

for keeping medical records or to a particular device that generates emergency

alerts via medical health service (MHS) center [37, 38].

The common factor in all the emerging data sources is that they all are

continuously generating data. The data is high in volume, with lots of variety

and with dynamic velocities [39]. In general, the characteristics of big data for

these data sources are summarized in Table 6.1. The data from these four sources

are mostly high in volume and velocity. As the WSN, VANET, and WBAN data

are sensor-generated data, so they have a vast data variety depending on the nature

of sensors used and are mostly highly structured. The social network data is

moderate to high in volume but does not have much data variety. This type of

data is mostly unstructured, as it mostly contains images and audio and video

streams.

6.3 Data in Cyber Systems: Big Data Management

Once the raw data is collected from the physical world, it is passed to the cyber

world for further processing. In this section, we will mainly consider how the data is

managed in the cyber world and what the prerequisites are. This section also

highlights the role of existing cloud computing paradigm and decision support

systems that solves the problem of storage and provides other computational

facilities.

6.3.1 Cloud Computing Paradigms

For the past few years, cloud computing and big data have been the two key fields

which gained significant attention of the researchers [40, 41]. A few years back,

large datasets assumed to be of a few terabytes, but nowadays this concept has

been changed, and individual applications are producing more than that: new units

being used as terabytes and petabytes. With this continuous growth of data, it is

difficult for an organization to handle the data which is too big, too versatile, and

Table 6.1 Comparison of big data sources

Big data sources Volume Velocity Variety Structured/unstructured

WSN High High Low Structured

Social networks Moderate to high High Low to moderate Unstructured

VANET Moderate to high Moderate Low to moderate Structured

WBAN High High High Unstructured

124 Z. Baloch et al.



too fast because the traditional storage methods are not designed for such a huge

data. One solution is cloud storage. Cloud computing is the emerging technology

that provides users to perform complex computations without maintaining expen-

sive hardware and software. Although cloud computing is currently used by

almost all the leading companies, still there is no universally agreed definition

[42]. Gartner [43] defines cloud computing as a computing style which provides

scalable and elastic IT-enabled capabilities as a service by using Internet tech-

nologies. It provides many computational services to the users such as infrastruc-

ture as a service (IaaS) [44], platform as a service (PaaS) [44], and software as a

service (SaaS) [44]. The IaaS offers storage and processing infrastructure as a

service. The user is provided virtualized infrastructure without worrying about

hardware resources [45]. The PaaS provides a platform for the software devel-

opers to write and upload their application code [45]. The SaaS is the most

common layer of cloud computing. It provides software application as a service

to users on pay-as-per-use basis [45]. Cloud computing has many advantages over

other computational services which includes parallel processing, security, scalable

data storage, and resource virtualization [46]. It also reduces maintenance of

infrastructure. Cloud computing supports virtualization; through virtualization

software, a simple computer can behave like a supercomputer at an affordable

cost [46].

There is a big challenge for researchers to design an appropriate platform for

cloud computing that handles it and performs data analytics. There are many cloud

service providers, whenever an enterprise tend to migrate from IT system to the

cloud, the decision can be difficult, as the enterprise want to evaluate cost, benefits,

and risks of using cloud computing [47]. Hashem et al. [47] presented two decision

support tools for migration to the public IaaS cloud. These tools help an enterprise

to make cloud migration decisions. The first tool is a cost modeling tool [47], which

can be used in modeling the requirements of enterprise data, applications, and

infrastructure along with the usage patterns of computational resource. This tool

can also be used to compare the cost of cloud services from different cloud service

providers with different deployment options and usage. The second tool, which is a

spreadsheet, shows the usage benefits of IaaS cloud, and it also provides beginning

point for risk assessment [47].

The data management applications in the cloud include two main data manage-

ment components: transactional data management and analytical data management

[48]. Transactional data management is the database related with transactions like

banking and online reservations [49]. Shared nothing is simply a distributed

architecture in which each node consists of a processor, main memory, and disk,

and the nodes communicate with each other via interconnecting network [50]. For

implementation of transactional data management, the usage of shared nothing

architecture may result in the complex distributed locking and commit protocols

[48]. There is an extensive risk of storing transactional data on untrusted host

because of the sensitive information which includes credit card numbers and pin

codes. Analytical data management is for the applications that query a data store for

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 125



business intelligence and decision making purposes [48]. Its scale is larger than

transactional database management. The analytical data management systems are

best suited for execution in a cloud environment. Generally, for implementation of

analytical data management, the use of shared nothing architecture is well suited.

The atomicity, consistency, and isolation are easy to obtain as compared to

transactional data.

6.3.2 Service-Oriented Decision Support Systems

Decision support system (DSS) is a computer application that analyzes business

data and presents it in a way so that users can make business decisions more easily

[51]. It may use artificial intelligence for analyzing data. DSS finds certain patterns

in data which helps humans to take decisions. For example, DSS helps doctors to

diagnose the disease on the basis of symptoms.

There are three service models for service-oriented DSS [52], namely, data as a

service (DaaS), information as a service (IaaS), and analytics as a service (AaaS).

These are discussed in the following subsections.

6.3.2.1 Data as a Service

The service-oriented architecture provides access to the data from anywhere,

independent of the platform. The data as a service provides the business applica-

tions, a facility to access the data wherever it resides [53]. With the provision of

DaaS, the data quality can be maintained at central place, i.e., at cloud. According

to Demirkan et al. [52], the data cleansing and data enriching can be done by two

solutions, namely, master data management (MDM) and customer data integration

(CDI), where customer data can be placed anywhere and can be accessed as a

service through any application that has service provision.

6.3.2.2 Information as a Service

Sometimes the information repositories at organizations are not efficiently designed

to transmit information to the required destinations; this is due to the increased

complexity of processes and architectures. Demirkan et al. [52] defines information

as a service as an idea to make information quickly available to users, processes,

and applications in an organization. This shares real-time information with emerg-

ing applications and hides complexities. It increases availability with virtualization.

It also provides master data management (MDM), content management services,

and business intelligence services [52].

126 Z. Baloch et al.



6.3.2.3 Analytics as a Service

Analytics as a Service can be defined as the combination of cloud computing and

big data analytics [53]. It enables data scientists to access datasets that are centrally

managed by cloud providers. The business analysts can make decisions effectively

and delivers successful outcomes. AaaS is a cloud-based analytical platform, where

several data analytical tools are available, which can be configured by end users to

process and analyze large amounts of heterogeneous data.

6.4 Interfacing Cyber World with Physical World

The error-free interaction between cyber and physical worlds is not an easy task

because the physical world is mostly unpredictable. The most critical element is

that human lives are dependent on the system. Thus, availability, connectivity,

predictability, and repeatability are very much important for the cyber-physical

interface [54].

In general, CPS can be divided into three parts: physical world, cyber world, and

interfacing physical and cyber worlds. The sensors sense physical characteristics,

then the sensed data is passed to cyber world to perform computations, and finally,

response is generated through some actuators (see Fig. 6.1).

The physical components may include power sources, energy storage, and

physical transducers that perform energy conversions in physical domains

[55]. The cyber components may include data stores, computation, and I/O inter-

faces. The interface contains both physical and cyber components and adds a few

more components to connect them. Rajhans et al. [56] presented two connector

types for modeling the interface between cyber and physical worlds. The connec-

tors are physical-to-cyber (P2C) and cyber-to-physical (C2P) connectors. Simple

sensors can be used for physical-to-cyber connector type and actuators can be used

for cyber-to-physical connector type. For the complex interfaces in CPS, physical-

to-cyber transducer and cyber-to-physical transducer may also be used, which have

ports to cyber and physical components on each side [56].

Applications of CPS apparently have potential to overshadow the twentieth-

century IT advancements. CPS applications include many components that coop-

erate through an unpredictable physical environment. In this regard, reliability and

security are major issues to be resolved. The CPS applications include transporta-

tion, defense, energy and industrial automation, health and biomedical, agriculture,

and other critical infrastructures [57].

Cyber-physical cloud computing is the integration of CPS and cloud computing.

The CPCC architectural framework is “a system environment that can rapidly build,

modify, and provision cyber physical systems composed of a set of cloud comput-

ing based sensor, processing, control, and data services” [58]. The customers can

access available resources through Internet independent of location and devices.

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 127



CPCC automatically manages all the resources. CPCC can benefit many systems

such as traffic management, intelligent power grids, disaster management systems,

healthcare, etc. [58].

Despite the fact that data management is the focal point of interest for many

researchers, there is still lack of an agreed-upon definition for data management. It

includes many phases. The data management phases are defined by many

researchers; these steps depend on the nature of data to be managed. Some phases

can be added or removed accordingly. We will discuss some of them in this section.

In TDWI report [39], the data management is defined as data collection, storage,

processing, and delivery, and it considers data management as a broad practice that

includes many data disciplines such as data quality, data integration, data

warehousing, event processing, database administration and content management,

etc. According to Mokashi et al. [59], data management includes data collection,

data storage, and query processing. Padgavankar et al. [60] consider data manage-

ment as a four-step process, i.e., data generation, big data acquisition, big data

storage, and data analysis. Furthermore, Sathe et al. [61] use four tasks for WSN

data management, i.e., data acquisition, data cleaning, query processing, and data

compression.

Accordingly, we classify the main phases of data management for interfacing

CPS as data acquisition, data preprocessing, storage, query processing, data anal-

ysis, and actuation.

6.4.1 Data Acquisition

Data acquisition is simply data gathering or data collection. As the physical world is

generating huge datasets, the data acquisition process determines which data should

be collected along with minimal energy consumption. This is challenging task,

because of the data uncertainty due to natural errors, noise, and missed readings in

sensor data [62]. It is responsible for efficiently collecting samples from sensors in

CPS. In sensor data acquisition, the main objective is to achieve energy efficiency

because sensors are battery powered and located mostly at unreachable locations.

Sathe et al. [61] presented model-based data acquisition techniques that are

designed to handle challenges such as minimal energy consumption and

communication cost.

6.4.2 Data Preprocessing

In the data acquisition phase, the raw data gets collected. The acquired sensor

datasets may sometimes contain erroneous or redundant data, which will definitely

occupy more storage space and will affect data analysis [60]. Therefore, before data

128 Z. Baloch et al.



storage, preprocessing may be applied which may include data cleaning, data

fusion, and data compression [60].

6.4.2.1 Data Cleaning

It is a process of finding incomplete, inaccurate, and unreasonable data and then

correcting the errors to improve data quality [63]. In the data cleaning process, the

errors will be removed from raw sensor data. For incomplete datasets, regression or

interpolation models can be used to reconstruct missing data. Alonso et al. [64]

proposed an extensible receptor stream processing (ESP) framework for online data

cleaning of the acquired sensor data streams.

6.4.2.2 Data Fusion

As the name shows, data fusion combines data from various data sources. Sensor

fusion is a technique to merge data from many sources to provide accurate and

comprehensive information [65]. It is a technique to address sensor impairments.

Some other terms are also used in the literature that are related to data fusion such as

decision fusion, multisensor fusion, and information fusion.

Data fusion is a technique of combining data from various sensors and informa-

tion from related databases to attain accuracy and more specific inferences than by

using a single sensor [66]. The data fusion techniques can be categorized into three

categories, that is, data association, state estimation, and decision fusion [67].

6.4.2.3 Data Compression

As the sensors continuously generate huge datasets, and sometimes the collected

data contains redundant data, this redundancy is common in environmental moni-

toring. The data compression techniques can help to reduce the redundancy which

helps in reducing storage space [60]. Data transmission is more energy consuming

than computation; thus, reduced data size, before data transmission, will minimize

the overall energy consumption [68]. Different data compression schemes have

been discussed by Kimura et al. [68]. Sathe et al. [61] also discussed many data

compression techniques such as linear approximation, model approximation, and

orthogonal transformation. Marcelloni et al. [69] introduces a new lossless com-

pression algorithm that is suitable for reduced computational and storage resources

of a WSN node. Many other techniques are proposed in the literature, some of them

are derived from signal processing [70] and some has used correlations between

sensor data to compress the data streams [71–73].

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 129



6.4.3 Data Storage

Due to the limitations of sensors, it is important to store the sensor data efficiently

elsewhere [74], to improve the data retrieval and analytics processes. As the sensors

generate huge datasets, the question arise: do all the generated data is required to be

stored? For different applications, the answer could be different. For example, in

real-time applications, mostly, the recent data is important [75], so there is no need

to keep all the data for long periods. In such cases, live data streaming will be an

appropriate approach. In some applications, the historical data need to be stored for

future analysis, in those cases; the historical storage approach will be appropriate

[76]. For a variety of applications, both the storage approaches can be combined to

make an efficient storage system, but this could be very challenging [75].

The second important issue is determine where to store that data. Many

researchers have done work in this direction. Three data storage methods for

WSN have been discussed by Xing et al. [74]; these are local storage, external

storage, and data centric storage (DCS). In local storage, only short-lived data is

stored in the sensor node. In external storage, data is stored at an external point for

further processing. While in data-centric storage, data is stored along with the name

or location. In DCS, the related data is classified and named according to its

meaning. The data with the same name will be stored in the same sensor node.

For a particular name, the user queries will be sent directly to that particular node

which holds that named data [59].

For live querying data, many data management techniques have been proposed,

whereas for querying historical data, only a few data management solutions have

been developed. Those techniques are discussed by Diao et al. [76].

With the technology advancements, the storage devices are becoming more

energy efficient and cheaper in price. Thus the sensor networks are transforming

from communication-centric to storage-centric perspective which provides a net-

work that efficiently stores data from sensors [76, 77]. The data can be batched or

accessed later. Energy efficiency can be improved by batching sensed data. In

storage-centric sensor network, the applications must be delay tolerant because

the data is not transmitted immediately. For the applications where immediate

response is needed, delay cannot be tolerated, in such cases communication-centric

approach is appropriate [77].

6.4.4 Query Processing

Another important component of data management is data retrieval or query

processing. Many important model-based query processing techniques, which aim

to process queries by retrieving minimum amount of data, are presented by Sathe

et al. [61]. Apart from that, these techniques also handle missing data and create an

abstraction layer on sensor network by using these models [78, 79]. Some of the

130 Z. Baloch et al.



techniques are based on hidden Markov model (HMM) [80] or dynamic probabi-

listic model which is for spatiotemporal evolution of the data from sensors [79].

For querying the real-time applications of CPS, different researchers have

developed many tools that can be named as information flow processing (IFP)

systems [81]. Information flow processing is an application domain where users are

required to collect data from various data sources to process it within due time

[81]. After processing data, the collected data is generally discarded, except some

critical applications where historical analysis is important. This is done using two

popular models that are data stream processing [82] and complex event processing

models [83]. The data stream processing model is processing data from various

sources to produce output data streams. The data stream management system

(DSMS) is also based on database management systems (DBMS) with a few

differences such as DBMSs deals with data that is not updated constantly, whereas

DSMSs are specially designed to deal with data that is updated continuously

[81]. Apart from few differences, there are more similarities in between both

of them.

The recent developments in DSMSs are reviewed by Golab et al. [84]. The

complex event processing model considers information flow items as notification of

events of the physical world, which will be filtered and combined to visualize what

is happening in the form of high-level events [81]. The approach mainly focuses to

detect patterns of low-level events that will eventually be combined to represent the

high-level events that will be notified to the parties that are interested. An archi-

tecture for real-time analysis and processing of complex-event streams of sensor

networks, which is based on semantically rich event models, is presented by Dunkel

et al. [85].

6.4.5 Data Analysis

The data analysis is the most significant phase of data management for CPS

interfacing. As CPS data is larger in magnitude, the real challenge is to extract

the insight value from it which is valuable. The purpose of data analysis is to sift

valuable information. It helps organizations to better cope with the needs of their

customers and to make better decisions [86].

The traditional analytical methods, based on statistics and computer science,

may still be used for big data analysis, such as cluster analysis, factor analysis,

correlation analysis, regression analysis, real-time analysis, offline analysis, mem-

ory level analysis, business intelligence (BI) analysis, and massive analysis

[60]. Some advanced analysis techniques are also required to handle the complexity

of real-world heterogeneous datasets. Big data analytics is the set of modern

techniques that are designed to operate on heterogeneous data with large magni-

tudes [87]. The intelligent quantitative methods, such as artificial intelligence,

robotics, artificial neural networks, or machine learning, can be used to explore

and to identify hidden patterns and their relationships [87].

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 131



In a typical CPS for environment monitoring, most of the collected data is

considered as regular, but some of them may be irregular; such data is known as

atypical data [88]. Atypical data is extremely crucial as it identifies a change in

environmental condition; therefore, such data need to be analyzed. Different

approaches have been discussed in the literature [88–90] to analyze atypical data

in the CPS. Tang et al. [91] proposed a method named as Tru-alarm, which finds out

trustworthy alarms for the cyber-physical systems. It uses data analysis to eliminate

noisy data that can cause false emergency alarms.

6.4.6 Actuation

Actuation is the most crucial element in CPS because it controls the environment.

In many CPS applications, sensing data is not just sufficient, but a response is also

required to show how the system reacts in a particular situation [92]. For example,

in fire alarm systems, the actuators may be deployed to shower water on the fire.

Another example could be of an agricultural environment where crops can be

monitored and pesticides can be sprinkled by an actuation process if needed.

Data actuation is the process in which the processed data is sent to actuators to

perform some action. It transfers data back to the physical systems. Thouin

et al. [93] discussed different actuation strategies to acquire desired actions to be

performed on physical devices. A dynamic actuation strategy is group of decision

rules to find the actuation nature which will be executed throughout the course of

operations in a wireless sensor and actuator networks [93].

6.5 Future Challenges and Opportunities

The CPS is a multidisciplinary technology, which involves communication and

networks, embedded systems, and semantic technologies. To take the maximum

benefit from CPS and to handle big data that flows in between the cyber and

physical worlds, there are many challenges to be addressed. A few challenges of

CPS in big data perspective are given below.

Volume As discussed earlier, CPS data is enormous and keeps growing continu-

ously, processing that huge dataset can lead to many challenges. Data abstraction,

i.e., summarizing the data and making it human comprehensible, is one of the

biggest challenge for big data generated across CPS. Another challenge could be

efficient use of distributed processing to scale the CPS computations. The simple

computations can become complex when scaling from terabytes to petabytes. Even

sequential scans to petabytes data takes too much time. The indexing techniques are

also very challenging while scaling to huge volume.

132 Z. Baloch et al.



Variety There is a huge variety of datasets with different data formats, which need

to be integrated together. As the data is collected from distinct sources, the structure

of data can be complex and data processing can also be very complex. Thus,

efficient techniques are needed to cope with the increasing variety of data.

Velocity With these fast growing datasets, it is challenging to focus on the data

trends and the correlations between data. There is a great need of robust and real-

time techniques to cope with velocity of the data generation and processing.

Veracity Sometimes, the sensors in a CPS generate erroneous data, or some data is

missed due to erroneous communication. Therefore, it is challenging to find

trustworthiness of the data.

Value The main challenge of interfacing CPS is to transform the collected raw data

into useful information in order to facilitate the decision making process. The

efficient transformation techniques are needed to provide the accurate value of

the information.

Query Load Generally, the query loads vary and are unpredictable. Due to lack of

flexibility, it is complex to handle these variations. Conti et al. [94] proposed a new

term data vitalization to sense the query load variations. There is still lot of work

needed to optimize the query load in accordance with the needed information and

available resources.

Quality of Service The methodologies to precisely capture and communicate

information and the quality needs of an application should be researched. Due

to increase in scalability and complexity of data, the computational techniques and

their results are very complex to reproduce. Thus, the relationship between data

from information producing systems and the operational systems need to be

studied such that application’s quality of service requirements are fulfilled

efficiently.

Knowledge Association The constant sensor data streams are required to be

processed by CPS. These streams need to be efficiently associated with the existing

knowledge [6, 58]. For the complex and uncertain data, the temporal and spatial

correlations must be used with data mining tools to retrieve valuable knowledge

[6]. There is very little work in this direction, and more research is needed for

efficient knowledge association across CPS.

Open CPS Architecture A new open architecture is required, which can be

customized in different situations by different application scenarios. The physical

components are mostly unreliable; tools are needed to build a reliable CPS that

should be resilient to tolerate malicious attacks on the data [57]. For the complex

design of CPS, new modeling and analytical tools are essential to be

utilized [95].

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 133



6.6 Conclusion

In the era of advanced computing, there is an emergent and rapid technological

enhancements in the fields of embedded systems, human computer interaction,

cloud computing, data analysis, cyber-physical systems, and many other computing

aspects. Cyber-physical systems, a new wave of computing, have enabled many

applications that were not practical before. The data from cyber-physical systems is

enormous and growing constantly which poses many challenges in this field. This

chapter discusses the state-of-the-art of the cyber-physical systems from big data

perspective. The data generation sources, cyberspace paradigms, and interfacing

them with the physical and cyber world have been discussed. From data generation

to its storage, different phases of data management for interfacing the two worlds

have also been elaborated. The main issues are efficient storage and processing of

cyber-physical systems big data. The cyber-physical system cloud computing

infrastructure has also been discussed which provides the framework to interface

with the computing devices. Furthermore, the research issues related to big data in

cyber-physical systems have been highlighted. The cyber-physical systems are in

its way of development; therefore, significant issues and challenges must be

addressed by researchers for long-term success.

References

1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I (2009) Cloud computing and emerging

IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Futur Gener

Comput Syst 25(6):599–616

2. Wolf W (2009) Cyber-physical systems. Computer 3:88–89

3. Baheti R, Gill H (2011) Cyber-physical systems. Impact Control Technol 12:161–166

4. Rajkumar R, Lee I, Sha L, Stankovic J (2010) Cyber-physical systems: the next computing

revolution. In: Proceedings of the 47th design automation conference. ACM, pp 731–736

5. Shaikh FK, Zeadally S (2015) Mobile sensors in cyber-physical systems. Book Chapter in

cyber physical system design with sensor networking technologies, IET, 2015 (to appear)

6. Wu FJ, Kao YF, Tseng YC (2011) From wireless sensor networks towards cyber physical

systems. Pervasive Mob Comput 7(4):397–413

7. Haque AS, Aziz SM, Rahman M (2014) Review of cyber-physical system in healthcare. Int J

Distrib Sens Netw 2014:1–20

8. Kim JE, Mosse D (2008) Generic framework for design, modeling and simulation of cyber

physical systems. ACM SIGBED Rev 5:1

9. Bloomberg J (2013) The big data long tail. http://www.devx.com/blog/the-big-data-long-tail.

html. Accessed 17 Jan 2015

10. Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distr

Com 74(7):2561–2573

11. Madden S (2012) From databases to big data. IEEE Internet Comput 3:4–6

12. Rouse M (2015) 3Vs (volume, velocity & variety). http://whatis.techtarget.com/definition/

3Vs. Accessed Apr 2015

13. Hitachi Data Systems (2015) Capitalize on big data. http://www.hds.com/assets/pdf/hitachi-

webtech-educational-series-capitalize-on-big-data.pdf. Accessed 20 Mar 2015

134 Z. Baloch et al.

http://www.devx.com/blog/the-big-data-long-tail.html
http://www.devx.com/blog/the-big-data-long-tail.html
http://whatis.techtarget.com/definition/3Vs
http://whatis.techtarget.com/definition/3Vs
http://www.hds.com/assets/pdf/hitachi-webtech-educational-series-capitalize-on-big-data.pdf
http://www.hds.com/assets/pdf/hitachi-webtech-educational-series-capitalize-on-big-data.pdf


14. Hurwitz J, Nugent A, Halper F, Kaufman M (2015) Structured data in a big data environ-

ment. www.dummies.com/howto/ content/structured-data-in-a-big-data-environment.html.

Accessed 2 Apr 2015

15. Shaikh FK, Zeadally S, Siddiqui F (2013) Energy efficient routing in wireless sensor networks.

In: Next-generation wireless technologies. Springer, London, pp 131–157

16. Rouse M (2006) Wireless sensor networks. http://searchdatacenter.techtarget.com/definition/

sensor-network. Accessed 20 Feb 2015

17. Akyildiz IF, Vuran MC (2010) Wireless sensor networks, 4th edn. Wiley, New York

18. Rios LG, Diguez JEAI (2014) Big data infrastructure for analyzing data generated by wireless

sensor networks. In: IEEE international congress on big data (BigData Congress), 2014. IEEE,

pp 816–823

19. Jardak C, Riihijärvi J, Oldewurtel F, Mäh€onen P (2010) Parallel processing of data from very

large-scale wireless sensor networks. In: Proceedings of the 19th ACM international sympo-

sium on high performance distributed computing. ACM, pp 787–794

20. Fan T, Zhang X, Gao F (2013) Cloud storage solution for WSN in internet innovation union.

Int J Database Theory Appl 6(3):49–58

21. Ahmed K, Gregory M (2011) Integrating wireless sensor networks with cloud computing. In:

Seventh international conference onMobile Ad-hoc and Sensor Networks (MSN), 2011. IEEE,

pp 364–366

22. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media?.

In: Proceedings of the 19th international conference on world wide web. ACM, pp 591–600

23. Ellison NB, Steinfield C, Lampe C (2007) The benefits of Facebook “friends:” social capital

and college students’ use of online social network sites. J Comput-Mediat Commun 12

(4):1143–1168

24. Gilbert E, Bakhshi S, Chang S, Terveen L (2013) I need to try this?: a statistical overview of

pinterest. In: Proceedings of the SIGCHI conference on human factors in computing systems.

ACM, pp 2427–2436

25. Shervington M (2015) What is google Plus? A complete user guide. http://www.

martinshervington.com/what-is-google-plus/. Accessed 20 Apr 2015

26. Hochman N, Schwartz R (2012) Visualizing instagram: tracing cultural visual rhythms. In:

Proceedings of the workshop on Social Media Visualization (SocMedVis) in conjunction with

the sixth international AAAI conference on Weblogs and Social Media (ICWSM–12), pp 6–9

27. Watson I, Mullen J, Smith-Spark L (2015) CNN. Nepal earthquake: death toll passes 4,800 as

rescuers face challenges. http://edition.cnn.com/2015/04/28/asia/nepal-earthquake/. Accessed

on 05 May 2015

28. Ravilious K (2015) Nepal quake ‘followed historic pattern’. http://www.bbc.com/news/sci

ence-environment-32472310. Accessed on 28 Apr 2015

29. Garg Y, Chatterjee N (2014) Sentiment analysis of Twitter feeds. In: Big data analytics.

Springer International Publishing Switzerland, pp 33–52

30. Felemban E, Sheikh AA, Shaikh FK (2014) MMaPFlow: a crowd-sourcing based approach for

mapping mass pedestrian flow. In: Proceedings of the 11th international conference on Mobile

and Ubiquitous Systems: Computing, Networking and Services (MOBIQUITOUS ’14)
31. Yousefi S, Mousavi MS, Fathy M (2006) Vehicular ad hoc networks (VANETs): challenges

and perspectives. In: 6th international conference on ITS telecommunications proceedings,

2006. IEEE, pp 761–766

32. Ali F, Shaikh FK, Ansari AQ, Mahoto NA, Felemban E (2015) Comparative analysis of

VANET routing protocols- on placement of road side units. Int J Wirel Pers Commun,

Springer, pp 1–14, 2015. doi:10.1007/s11277-015-2745-z

33. Zhang Y, Zhao J, Cao G (2010) Roadcast: a popularity aware content sharing scheme in

vanets. ACM SIGMOBILE Mobile Comput Commun Rev 13(4):1–14

34. Sutariya D, Pradhan SN (2010) Data dissemination techniques in vehicular ad hoc network. Int

J Comput Appl 8(10):35–39

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 135

http://www.dummies.com/howto/%20content/structured-data-in-a-big-data-environment.html
http://searchdatacenter.techtarget.com/definition/sensor-network
http://searchdatacenter.techtarget.com/definition/sensor-network
http://www.martinshervington.com/what-is-google-plus/
http://www.martinshervington.com/what-is-google-plus/
http://edition.cnn.com/2015/04/28/asia/nepal-earthquake/
http://www.bbc.com/news/science-environment-32472310
http://www.bbc.com/news/science-environment-32472310
http://dx.doi.org/10.1007/s11277-015-2745-z


35. Dubey BB, Chauhan N, Kumar P (2010) A survey on data dissemination techniques used in

VANETs. Int J Comput Appl 10(7):5–10

36. Talpur A, Baloch N, Bohra N, Shaikh FK, Felemban E (2014) Analyzing the impact of body

postures and power on communication in WBAN. Procedia Comput Sci 32:894–899

37. Khelil A, Shaikh FK, Sheikh AA, Felemban E, Bojan H (2014) DigiAID: a wearable health

platform for automated self-tagging in emergency cases, In: 4th international conference on

wireless Mobile Communication and Healthcare (Mobihealth), 2014 EAI, pp 296,299

38. Aziz Z, Qureshi UM, Shaikh FK, Bohra N, Khelil A, Felemban E (2015) Revisiting routing in

wireless body area networks. In: Emerging communication technologies based on wireless

sensor networks: current research and future applications. CRC Press (to appear)

39. TDWI Best Practices Report (2015) Managing big data. http://tdwi.org/research/2013/10/

tdwi-best-practices-report-managing-big-data.aspx?tc¼page0. Accessed 01 Mar 2015

40. Dinh HT, Lee C, Niyato D, Wang P (2013) A survey of mobile cloud computing: architecture,

applications, and approaches. Wirel Commun Mob Comput 13(18):1587–1611

41. Agrawal D, Das S, El Abbadi A (2010) Big data and cloud computing: new wine or just new

bottles? Proc VLDB Endowment 3(1–2):1647–1648

42. Elazhary H (2014) Cloud computing for big data. MAGNT Res Rep 2(4):135–144

43. Gartner IT glossary (2013) Cloud computing. http://www.gartner.com/it-glossary/cloud-com

puting. Accessed 01 Apr 2015

44. Rodero-Merino L, Vaquero LM, Gil V, Galán F, Fontán J, Montero RS, Llorente IM (2010)

From infrastructure delivery to service management in clouds. Futur Gener Comput Syst 26

(8):1226–1240

45. Patidar S, Rane D, Jain P (2012) A survey paper on cloud computing. In: Second international

conference on Advanced Computing & Communication Technologies (ACCT), 2012. IEEE,

pp 394–398

46. Khajeh-Hosseini A, Sommerville I, Bogaerts J, Teregowda P (2011) Decision support tools for

cloud migration in the enterprise. In: IEEE international conference on Cloud Computing

(CLOUD), 2011. IEEE, pp 541–548

47. Hashem IAT, Yaqoob I, Anuar NB, Mokhtar S, Gani A, Khan SU (2015) The rise of “big data”

on cloud computing: review and open research issues. Inf Syst 47:98–115

48. Abadi DJ (2009) Data management in the cloud: limitations and opportunities. IEEE Data Eng

Bull 32(1):3–12

49. Das S, Agrawal D, El Abbadi A (2009) Elastras: an elastic transactional data store in the cloud.

USENIX HotCloud 2:7

50. Valduriez P (2009) Shared-memory architecture. In: Encyclopedia of database systems.

Springer US, New York, pp 2638–2638

51. Jill Dyche (2015) Data as a service explained and defined. http://searchdatamanagement.

techtarget.com/answer/Data-as-a-service-explained-and-defined Accessed on 20 Mar 2015

52. Demirkan H, Delen D (2013) Leveraging the capabilities of service-oriented decision support

systems: putting analytics and big data in cloud. Decis Support Syst 55(1):412–421

53. Mathiprakasam M (2015) The road to analytics as a service. http://www.forbes.com/sites/

oracle/2014/09/26/the-road-to-analytics-as-a-service/. Accessed on 20 Mar 2015

54. Poovendran R (2010) Cyber–physical systems: close encounters between two parallel worlds

[point of view]. Proc IEEE 98(8):1363–1366

55. Shaikh FK, Zeadally S, Exposito E (2015) Enabling technologies for green internet of things.

IEEE Syst J 99:1–12

56. Rajhans A, Cheng SW, Schmerl B, Garlan D, Krogh BH, Agbi C, Bhave A (2009) An

architectural approach to the design and analysis of cyber-physical systems. Electronic Com-

munications of the EASST, 21:1–10

57. CPS Steering Group (2008) Cyber-physical systems executive summary. CPS Summit

58. Simmon E, Kim KS, Subrahmanian E, Lee R, de Vaulx F, Murakami Y, Zettsu K, Sriram RD

(2013) A vision of cyber-physical cloud computing for smart networked systems. NIST,

Gaithersburg

136 Z. Baloch et al.

http://tdwi.org/research/2013/10/tdwi-best-practices-report-managing-big-data.aspx?tc=page0
http://tdwi.org/research/2013/10/tdwi-best-practices-report-managing-big-data.aspx?tc=page0
http://tdwi.org/research/2013/10/tdwi-best-practices-report-managing-big-data.aspx?tc=page0
http://www.gartner.com/it-glossary/cloud-computing
http://www.gartner.com/it-glossary/cloud-computing
http://searchdatamanagement.techtarget.com/answer/Data-as-a-service-explained-and-defined
http://searchdatamanagement.techtarget.com/answer/Data-as-a-service-explained-and-defined
http://www.forbes.com/sites/oracle/2014/09/26/the-road-to-analytics-as-a-service/
http://www.forbes.com/sites/oracle/2014/09/26/the-road-to-analytics-as-a-service/


59. Mokashi M, Alvi AS (2013) Data management in wireless sensor network: a survey. Int J Adv

Res Comput Commun Eng 2:1380–1383

60. Padgavankar MH, Gupta SR (2014) Big data storage and challenges. Int J Comput Sci Inf

Technol 5:2

61. Sathe S, Papaioannou TG, Jeung H, Aberer K (2013) A survey of model-based sensor data

acquisition and management. In: Managing and mining sensor data. Springer US, New York,

pp 9–50

62. Aggarwal CC (2013) Managing and mining sensor data. Springer Science & Business Media,

New York

63. Chapman AD (2005) Principles and methods of data cleaning. GBIF, Copenhagen

64. Jeffery SR, Alonso G, Franklin MJ, Hong W, Widom J (2006) A pipelined framework for

online cleaning of sensor data streams. IEEE, p 140

65. Elmenreich W (2002) Sensor fusion in time-triggered systems, Ph.D. thesis, Faculty of

Informatics at the Vienna University of Technology, Austria. http://www.vmars.tuwien.ac.

at/~wilfried/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf

66. Hall David L, Llinas J (1997) An introduction to multisensor data fusion. Proc IEEE 85

(1):6–23

67. Castanedo F (2013) A review of data fusion techniques. Sci World J 2013:1–19

68. Kimura N, Latifi S (2005) A survey on data compression in wireless sensor networks. In:

International conference on Information Technology: Coding and Computing (ITCC), 2005,

vol. 2. IEEE, pp 8–13

69. Marcelloni F, Vecchio M (2008) A simple algorithm for data compression in wireless sensor

networks. Commun Lett IEEE 12(6):411–413

70. Agrawal R, Faloutsos C, Swami A (1993) Efficient similarity search in sequence databases.

Springer, Berlin/Heidelberg, pp 69–84

71. Gandhi S, Nath S, Suri S, Liu J (2009) Gamps: compressing multi sensor data by grouping and

amplitude scaling. In: Proceedings of the 2009 ACM SIGMOD international conference on

management of data. ACM, pp 771–784

72. Wang L, Deshpande A (2008) Predictive modeling-based data collection in wireless sensor

networks. In: Wireless sensor networks. Springer, Berlin/Heidelberg, pp 34–51

73. Arion A, Jeung H, Aberer K (2011) Efficiently maintaining distributed model-based views on

real-time data streams. In: Global Telecommunications Conference (GLOBECOM 2011).

IEEE, pp 1–6

74. Xing K, Cheng X, Li J (2005) Location-centric storage for sensor networks. In: IEEE

international conference on mobile adhoc and sensor systems conference. IEEE, p 10

75. Petit L, Nafaa A, Jurdak R (2009) Historical data storage for large scale sensor networks. In:

Proceedings of the 5th French-speaking conference on mobility and ubiquity computing.

ACM, pp 45–52

76. Diao Y, Ganesan D, Mathur G, Shenoy PJ (2007) Rethinking data management for storage-

centric sensor networks. In: CIDR, vol. 7, pp 22–31

77. Dutta P, Culler DE, Shenker S (2007) Procrastination might lead to a longer and more useful

life. In: The sixth workshop on Hot Topics in Networks (HotNets-VI) pp 1–7

78. Deshpande A, Madden S (2006) MauveDB: supporting model-based user views in database

systems. In: Proceedings of the 2006 ACM SIGMOD international conference on management

of data. ACM, pp 73–84

79. Kanagal B, Deshpande A (2008) Online filtering, smoothing and probabilistic modeling of

streaming data. In: IEEE 24th international conference on Data Engineering, ICDE 2008.

IEEE, pp 1160–1169

80. Bhattacharya A, Meka A, Singh AK (2007) Mist: distributed indexing and querying in sensor

networks using statistical models. In: Proceedings of the 33rd international conference on very

large data bases. VLDB Endowment, pp 854–865

81. Cugola G, Margara A (2012) Processing flows of information: from data stream to complex

event processing. ACM Comput Surv (CSUR) 44(3):15

6 Interfacing Physical and Cyber Worlds: A Big Data Perspective 137

http://www.vmars.tuwien.ac.at/~wilfried/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf
http://www.vmars.tuwien.ac.at/~wilfried/papers/elmenreich_Dissertation_sensorFusionInTimeTriggeredSystems.pdf


82. Babcock B, Babu S, Datar M, Motwani R, Widom J (2002) Models and issues in data stream

systems. In: Proceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium on

principles of database systems. ACM, pp 1–16

83. Luckham D (2002) The power of events, vol 204. Addison-Wesley, Reading

84. Golab L, Özsu MT (2003) Issues in data stream management. ACM Sigmod Rec 32(2):5–14

85. Dunkel J (2009) On complex event processing for sensor networks. In: International sympo-

sium on autonomous decentralized systems, 2009. ISADS’09. IEEE, pp 1–6

86. Miller S (2013) Big data analytics. Podcasts at Singapore Management University, Available

at: http://ink.library.smu.edu.sg/podcasts/8

87. Big Data in the Cloud Converging Technologies-Intel (2014) http://www.intel.com/content/

www/us/en/big-data/big-data-cloud-technologies-brief.html. Accessed on Apr 2015

88. Tang LA, Yu X, Kim S, Han J, Peng WC, Sun Y, Gonzalez H, Seith S (2012)

Multidimensional analysis of atypical events in cyber-physical data. In: IEEE 28th interna-

tional conference on Data Engineering (ICDE), 2012. IEEE, pp 1025–1036

89. Tang LA, Yu X, Kim S, Han J, Peng WC, Sun Y, Leung A, La Porta T (2012)

Multidimensional sensor data analysis in cyber-physical system: an atypical cube approach.

Int J Distrib Sens Netw 2012:1–19

90. Yu X, Tang LA, Han J (2009) Filtering and refinement: a two-stage approach for efficient and

effective anomaly detection. In: Ninth IEEE international conference on Data Mining, 2009.

ICDM’09. IEEE, pp 617–626

91. Tang LA, Yu X, Kim S, Han J, Hung CC, PengWC (2010) Tru-alarm: trustworthiness analysis

of sensor networks in cyber-physical systems. In: IEEE 10th international conference on Data

Mining (ICDM), 2010. IEEE, pp 1079–1084

92. Xia F, Kong X, Xu Z (2011) Cyber-physical control over wireless sensor and actuator

networks with packet loss. In: Wireless networking based control. Springer, New York, pp

85–102

93. Thouin F, Thommes R, Coates MJ (2006) Optimal actuation strategies for sensor/actuator

networks. In: 3rd annual international conference on mobile and ubiquitous systems: network-

ing & services, 2006. IEEE, pp 1–8

94. Conti M, Das SK, Bisdikian C, Kumar M, Ni LM, Passarella A, Roussos G, Tr€oster G,

Tsudik G, Zambonelli F (2012) Looking ahead in pervasive computing: challenges and

opportunities in the era of cyber–physical convergence. Pervasive Mob Comput 8(1):2–21

95. Guturu P, Bhargava B (2011) Cyber-physical systems: a confluence of cutting edge techno-

logical streams. International conference on advances in computing and communication

138 Z. Baloch et al.

http://ink.library.smu.edu.sg/podcasts/8
http://www.intel.com/content/www/us/en/big-data/big-data-cloud-technologies-brief.html
http://www.intel.com/content/www/us/en/big-data/big-data-cloud-technologies-brief.html


Chapter 7

Distributed Platforms and Cloud Services:
Enabling Machine Learning for Big Data

Daniel Pop, Gabriel Iuhasz, and Dana Petcu

Abstract Applying popular machine learning algorithms to large amounts of data

has raised new challenges for machine learning practitioners. Traditional libraries

do not support properly the processing of huge data sets, so the new approaches are

needed. Using modern distributed computing paradigms, such as MapReduce or

in-memory processing, novel machine learning libraries have been developed. At

the same time, the advance of cloud computing in the past 10 years could not be

ignored by the machine learning community. Thus, a rise of cloud-based platforms

has been of significance. This chapter aims at presenting an overview of novel

platforms, libraries, and cloud services that can be used by data scientists to extract

knowledge from unstructured and semi-structured, large data sets. The overview

covers several popular packages to enable distributed computing in popular

machine learning environments, distributed platforms for machine learning, and

cloud services for machine learning, known as machine-learning-as-a-service

approach. We also provide a number of recommendations for data scientists

when considering machine learning approach for their problem.

Keywords Machine learning • Data mining • Cloud computing • Big data • Data

scientist • Distributed computing • Distributed platforms

7.1 Introduction

Analyzing large amounts of data collected by companies, industries, and scientific

domains is becoming increasingly important for all impacted domains. The data to

be analyzed is no longer restricted to sensor data and classical databases, but it often

includes textual documents and Web pages (text mining, Web mining), spatial data,

multimedia data, or graph-like data (e.g., molecule configuration and social

networks).

D. Pop (*) • G. Iuhasz • D. Petcu

Institute e-Austria Timisoara, West University of Timisoara, Blvd. Vasile Parvan, nr. 4,

300223 Timișoara, Romania

e-mail: daniel.pop@e-uvt.ro

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_7

139

mailto:daniel.pop@e-uvt.ro


Although, for more than two decades, parallel database products such as

Teradata, Oracle, and Netezza have provided means to realize a parallel imple-

mentation of machine learning algorithms, expressing these algorithms in SQL

code is a complex and difficult-to-maintain task. On the other side, large-scale

installations of these products are expensive. Another reason for moving away

from relational databases is the exponential growth of the unstructured data (e.g.,

audio and video) and semi-structured data (e.g., Web traffic data, social media

content, sensor-generated data) in recent years. The needs of data science practi-

tioners with respect to data analysis tools vary greatly across different domains,

from medical statistics and bioinformatics to social network analysis or even in

physics. This diversity is equally important for the advancement of machine

learning tools and platforms. Consequently, in the past decade, researchers

moved from the parallelization of machine learning algorithms and support in

relational databases toward the design and implementation on top of novel

distributed storage (e.g., NoSQL data stores, distributed file systems) and

processing paradigms (e.g., MapReduce). From the business perspective, Soft-

ware-as-a-Service (SaaS) model opened up new opportunities for machine learn-

ing providers, who moved the stand-alone tools toward cloud-based machine

learning services.

In this chapter, we survey how distributed storage and processing platforms help

data scientists to process large, heterogeneous sets of data. The tools, frameworks,

and services included in this chapter share a common characteristic: all run on top

of distributed platforms. Thus, parallelization of machine learning algorithms,

either using multiple-core CPU or GPU, was not included here. The reader is

referred to [42], a recent comprehensive study covering that topic. We also avoided

commercial solution providers, small or big players, since their offerings are either

based on distributed open-source packages or they do not disclose the implemen-

tation details.

In the first section, we briefly introduce the reader to the machine learning field,

describing and classifying the types of problems and overviewing the challenges

of applying traditional algorithms to large, unstructured data sets. The first cate-

gory of tools considered in this survey covers tools, packages, and libraries that

enable data scientists to use traditional environments for data analysis such as R

Systems, Python, or statistics applications, in order to deal with large data sets. We

survey, next, the distributed platforms for big data processing, either based on

Apache Hadoop or Spark, as well as platforms specifically designed for distributed

machine learning. We also include a section on scalable machine learning services

delivered using Software-as-a-Service business model since they offer easy-to-use,

user-friendly graphical interfaces supporting users in quickly getting and

deploying models. The last section of the chapter summarizes our findings and

provides readers with a collection of best practices in applying machine learning

algorithms.

140 D. Pop et al.



7.2 Machine Learning for Data Science

The broadest and simplest definition of machine learning is that it is a collection of
computational methods that use experience, i.e., information available to the

system to improve performance or to make predictions [28]. This information

usually takes the form of electronic records collected and made available for

analytical purposes. These records can take the form of pre-labeled training sets

(usually by a human operator although this is not always the case). Another

important source of data is that resulting from direct interactions with a given

environment, either virtual, such as software interactions, network data, etc., or

relying on real-world natural scenarios, such as weather phenomena, water level,

etc. Data quality and quantity are extremely important in order to obtain an

acceptable learned model. Machine learning relies on data-driven methods that

combine fundamental concepts in the field of computer science with optimization,

probability, and statistics [28].

There is a wide array of applications to which machine learning can and is being

applied, such as taming (text mining and document classification), spam detection,

keyword extraction, emotion extraction, natural language processing (NPL),

unstructured text understanding, morphological analysis, speech synthesis and

recognition, optical character recognition (OCR), computational biology, face

detection, image segmentation, image recognition, fraud detection, network intru-

sion detection, board and video games, navigation in self-driving vehicles, plan-

ning, medical diagnosis, recommendation systems, or search engines. In all these

applications, we can identify several types of learning-related issues, which are:

• Classification – to assign each item from a data set to a specific category, e.g.,

given a document, assign a domain (history, biology, mathematics) to which it

belongs.

• Regression and time series analysis – to predict a real value for each item, e.g.,

future stock market values, rainfall runoff, etc.

• Ranking – to return an ordered set of features based on some user-defined

criterion (e.g., Web search).

• Dimensionality reduction (feature selection) – to use for transforming initial

large feature spaces into a lower-dimensional representation so that it preserves

the properties of the initial representation.

• Clustering – to group items based on some predefined distance measure. It is

usually used on very large data sets. In sociology, it can be used to group

individuals into communities [30].

• Anomaly detection – to conduct observation or series of observations which do

not resemble any pattern or data item in a data set [6, 37].

The most common classification techniques are called linear classifiers. In this

case, classification is expressed in the form of a linear function. This function

assigns scores to each possible category. Among the linear classifiers, we have

linear regression, perceptron, and support vector machines (SVM) [28]. Another

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 141



form of classification is based on kernel estimation in the form of the k-nearest

neighbor (k-NN) algorithms. Decision trees such as C4.5 [28] are also used for this

type of problem and are based on information theory (difference in entropy), which

is used as the splitting criterion. Ensemble meta-algorithm-based techniques such

as AdaBoost [28] are also used although they have questionable performance on

noisy data sets. Some methods such as Classification and Regression Tree (CART)

algorithm can be used for both regression and classification problems. Naı̈ve Bayes,

for example, can also be used for both types of problems.

Clustering algorithms are largely split according to their particular definition of

what cluster model they use. Connectivity models (hierarchical clustering) are

based on distance connectivity. Centroid models, such as k-means (k-M), represent

each cluster with a single mean vector. Density models consider clusters as

connected dense regions from the data space. DBSCAN and OPTICS [28] are

two algorithms using this model. Statistical distribution-based models are also used.

Anomaly detection is a special case of either classification or clustering; thus, it

uses mostly the same algorithms and methodologies. Feature selections’ main goal

is the reduction of the amount of recourses required to analyze big data set. They are

extremely useful when no domain expert is available that could help in the

reduction of the dimensionality of the available data. There are a number of general

dimensionality reduction techniques such as principal component analysis (PCA),

kernel PCA, multilinear PCA, and wrapping methods [25].

In machine learning, there are different types of training scenarios [28]. Arguably

the most widely used type of training is called supervised learning. In this scenario,
the learner receives a set of labeled data for training and validation. The learned

prediction model can be then applied to a larger data set and identify all unseen data

points. This type of learning is used for classification and regression (time series

analysis). Supervised methods rely on the availability and accuracy of labeled data

sets. In unsupervised learning, the learner receives unlabeled data that it has to

group based on a distance measurement. In some scenarios, labeled data is

extremely hard to come by; thus, training a classification model is often unfeasible.

This type of learning is used for clustering, anomaly detections (a type of cluster-

ing), and dimensionality reduction.

In some cases, labeled data is only a small fraction of the overall training data

set. This is called semi-supervised learning. The idea is that the distribution of

unlabeled data can help the learner achieve a much better performance [11].

In reinforcement learning, the training is done using an evaluation function.

This means that training and testing are much more interlaced than in other

learning scenarios. The performance of an algorithm in a problem environment

is continuously evaluated through the monitoring and evaluation of its perfor-

mance. Favorable outcomes are rewarded, while unfavorable ones are punished.

Reinforcement learning is used in genetic algorithm, neural networks, etc. Online
learning is used when data is available in a sequential way. This means that the

mapping between data sets and labels is established each time a new data point is

received.

142 D. Pop et al.



Due to the popularity of data analytics, machine learning techniques are being

pursued by teams with complementary skills across very different businesses

(finance, telecommunications, life sciences, etc.). This section aims to classify the

diversity of groups of interests with respect to machine for big data. We must state

upfront that there is no clear line between these perspectives, as competencies and

expectations blur the edges and multidisciplinary teams are put in place to tackle

complex scenarios. Some of the groups are:

• Data scientists and machine learning practitioners: One way of approaching the
problem is from the data scientist’s perspective. Statisticians and data scientists

are now facing data set size explosion; thus, coping with large-size data sets is a

must. These are users with strong mathematical background, proficient in sta-

tistics and mathematical software applications, such as R, Octave, MATLAB,

Mathematica, Python, SAS Studio, or IBM’s SPSS, but less experienced in

coping with data sets of large dimensions, distributed computing, or software

development. Their expectation is to easily reuse the algorithms already avail-

able in their preferred language and be able to run them against large data sets on

distributed architectures (on-premise or cloud based). A later section in this

chapter entitled “Distributed and Cloud-Based Execution Support in Popular

Machine Learning Tools” overviews packages and tools available for this

purpose.

• Software engineers and developers: Teams of software engineers often face

client requirements asking for the transition from available (large) data ware-

house to actionable knowledge. These are users with a vast experience in

software development, skilled programmers in general-purpose programming

languages, and they “speak” parallel and distributed computing. Deep mathe-

matics and statistics are not necessarily their preferred playground, as they

expect tools and libraries to enable them to integrate advanced ML algorithms

in their systems and thus quickly get actionable results. They need fast, easy-to-

customize (less number of parameters), and easy-to-integrate algorithms that run

on distributed architectures and are able to fetch data from large data reposito-

ries. Tools addressing these requirements are discussed in a later section in this

chapter entitled “Distributed Machine Learning Platforms.”

• Domain experts: Domain experts (financial, telecommunications, physics,

astronomy, biotechnologies, etc.) know their data best, but they are less experi-

enced in ML algorithms and software tools. Ideally, they need off-the-shelf

software applications, easy to install and use, or cloud-based Software-as-a-

Service solutions allowing them to get insights on their data and produce reports

and executable models for further usage. A later section on “Machine Learning

as a Service” presents several machine learning services providers.

The dynamic of natural, social, and economic systems raises new challenges for

data scientists, such as:

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 143



• Massive data sets. Data sets are growing faster, being common now to reach

numbers of 100 TB or more. The Sloan Digital Sky Survey occupies 5 TB of

storage, the Common Crawl Web corpus is 81 TB in size, and the 1000 Genomes

Project requires 200 TB of space, just to name a few.

• Large models. Massive data sets need large models to be learned. Some deep

neural networks are comprised of more than ten layers with more than a billion

parameters [24, 25], collaborative filtering for video recommendation on Netflix

comprises 1–10 billion parameters, and multitask regression model for simplest

whole-genome analysis may reach 1 billion parameters as well.

• Inadequate ML tools and libraries. Traditional ML algorithms used for decades

(k-means, logistic regression, decision trees, Naı̈ve Bayes) were not designed for

handling large data sets and huge models; they were not developed for parallel/

distributed environments.

• “Operationalization” of predictive models. “Operationalize” refers to integrate

predictive models into automated decision-making systems and processes on a

large scale in order to deliver predictions to end users, who will ultimately

benefit from them. Integrating these models into multiple platforms (Web,

stand-alone, mobile) across different business units requires a high degree of

customization, which slows deployment, drives up costs, and limits scalability.

• Lack of clear contracts. More recently, terms such as Analytics as a Service

(AaaS) and Big Data as a Service (BDaaS) are becoming popular. They com-

prise services for data analysis similarly as IaaS offers computing resources.

Unfortunately, the analytics services still lack well-defined service-level agree-

ments available for IaaS because it is difficult to measure quality and reliability

of results and input data, to provide promises on execution times and guarantees

on methods for analyzing the data. Therefore, there are fundamental gaps on

tools to assist service providers and clients to perform these tasks and facilitate

the definition of contracts for both parties [2].

• Inadequate staffing. Market research shows that inadequate staffing and skills,

lack of business support, and problems with analytics software are some of the

barriers faced by corporations when performing analytics [36].

In the next three sections, we discuss various machine learning tools.

7.3 Distributed and Cloud-Based Execution Support
in Popular Machine Learning Tools

Annual Nuggets survey [23] shows that R, Python, SQL, and SAS have been rated

the preferred languages of choice for the past 3 years. One of the early trends

matching cloud computing and data analysis was, around 2010s, the provision of

virtual machine images (VMI) for these popular systems (R, Octave, or Maple)

integrated within public cloud service providers, such as Amazon Web Services or

Rackspace. After several proofs of concept were successfully built, such as

144 D. Pop et al.



Cloudnumbers,1 CloudStat,2 Opani,3 and Revolution R Enterprise,4 the practice

today is to provide VMI through the public cloud providers’ marketplaces, such as

Amazon Marketplace. One can find Amazon Machine Images (AMI), via the

marketplace, for all the popular mathematical and statistics environments. Exam-

ples include Predictive Analytics Framework and Data Science Toolbox5 that

support both Python and R, BF Accelerated Scientific Compute for R with accel-

erated math libraries for boosted performance, or SAS University Edition for SAS

Studio.

Much more effort has been invested in the development of plug-ins for the most

popular machine learning platforms to allow data scientists to easily create and run

time-consuming jobs over clusters of computers. This approach allows ML practi-

tioners to reuse their existing code and adapt it for large data set processing, into the

same environment they used for prototyping. It also leverages existing infrastruc-

ture (grids, clusters) for large-scale distributed computation and data storage.

Table 7.1 synthesizes available plug-ins for distributed storage and processing for

the most popular languages of big data: R and Python.

Since R is the preferred option among machine learning practitioners, several

packages were developed in order to enable big data processing within R, most of

them being available under CRAN6 package Web page. These R extensions make

possible to distribute the computational workload on different types of clusters,

while accessing data from distributed file systems. First example is the RHadoop

[33], a collection of five R packages, that enables R users to run MapReduce jobs on

Table 7.1 Distributed processing and storage

Environment Package

Distributed processing

support

Distributed file system

access

R RHadoop Hadoop HDFS

RHIPE Hadoop HDFS

Segue for R Amazon Elastic MapReduce –

RHive HIVE HIVE

Snow Socket-based, MPI, PVM –

H5 – HDF5

Pbd* MPI NetCDF

Python pyDoop Hadoop HDFS

Anaconda Distributed and GPU HDFS, HDF5

IPython.

parallel

Distributed and parallel –

1 http://cloudnumbers.com
2 http://cs.croakun.com
3 http://opani.com
4www.revolutionanalytics.com
5 http://datasciencetoolbox.org
6 http://cran.r-project.org/web/packages/available_packages_by_name.html

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 145

http://cloudnumbers.com/
http://cs.croakun.com/
http://opani.com/
http://www.revolutionanalytics.com/
http://datasciencetoolbox.org/
http://cran.r-project.org/web/packages/available_packages_by_name.html


Hadoop by writing R functions for mapping and reducing. Similarly, RHIPE7 is

another R package that brings MapReduce framework to R practitioners, providing

seamless access to Hadoop cluster from within R environment. Using specific R

functions, programmers are able to launch MapReduce jobs on the Hadoop cluster,

with results being easily retrieved from HDFS. Segue8 for R project makes it easier

to execute MapReduce jobs from within the R environment on elastic clusters at

Amazon Elastic MapReduce,9 but lacks support for handling large data sets. RHive

is an extension enabling distributed computing via HIVE in R, by a seamless

integration between HQL (Hive Query Language) and R objects and functions.

Snow (Simple Network of Workstations) [41] and its variants (snowfall, snowFT,

doSnow) implement a framework that is able to express an important class of

parallel computations and is easy to use within an interactive environment like

R. It supports three types of clusters: socket based, MPI, and PVM. Support for

manipulating large data sets in R is available in H5 plug-in, which provides an

interface to the HDF5 API through S4 objects, supporting fast storage and retrieval

of R objects to/from binary files in a language-independent format. The pbd*

(pbdBASE, pbbMPI, pbdNCDF4, pbdSLAP, etc.) series is a collection of R pack-

ages for programming with big data, enabling MPI distributed execution, NetCDF

file system access, or tools for scalable linear algebra.

As far as Python is concerned, we should start by mentioning pyDoop,10 a

Python MapReduce and HDFS API for Hadoop [26]. Anaconda11 is a free, scalable

Python distribution for large-scale data analytics and scientific computing. It is a

collection of Python packages (NumPy, SciPy, Pandas, IPython, Matplotlib,

Numba, Blaze, Bokeh) that enables fast large data set access, GPU computation,

access to distributed implementations of ML algorithms, and more. IPython.paral-

lel12 provides a sophisticated and powerful architecture for parallel and distributed

computing [14] that enables IPython to support many different styles of parallelism

including single program multiple data (SPMD), multiple program multiple data

(MPMD), message passing using MPI, data parallel, and others. In a tutorial at

PyCon 2013, Grisel [15] presented how scikit-learn [32], a popular open-source

library for machine learning in Python, can be used to perform distributed machine

learning algorithms on a cheap Amazon EC2 cluster using IPython.parallel and

StarCluster.13 We should note as well that most of the libraries and frameworks

considered in the next sections offer Python language bindings, but we choose not

to include them in this section.

7 http://www.stat.purdue.edu/~sguha/rhipe/doc/html/index.html
8 http://code.google.com/p/segue
9 http://aws.amazon.com/elasticmapreduce
10 https://github.com/crs4/pydoop
11 https://store.continuum.io/cshop/anaconda
12 http://ipython.org/ipython-doc/dev/parallel/
13 http://star.mit.edu/cluster/

146 D. Pop et al.

http://www.stat.purdue.edu/~sguha/rhipe/doc/html/index.html
http://code.google.com/p/segue
http://aws.amazon.com/elasticmapreduce
https://github.com/crs4/pydoop
https://store.continuum.io/cshop/anaconda
http://ipython.org/ipython-doc/dev/parallel/
http://star.mit.edu/cluster/


Other mathematical and statistics environments have seen similar interest in

embracing big data processing. For example, HadoopLink14 is a package that

allows MapReduce programs being implemented in Mathematica and to run them

on a Hadoop cluster. It looks more like a proof of concept (PoC), being stalled since

2013. MATLAB has its Parallel Computing Toolbox which extends the capabilities

of MATLAB MapReduce and Datastore15 in order to run big data application.

MATLAB Distributed Computing Server also supports running parallel

MapReduce programs on Hadoop clusters.16

There are extensions to traditional machine learning libraries that enable execu-

tion on top of Hadoop or Spark clusters. Weka [16], one of the most popular

libraries for data mining, supports both Hadoop and Spark execution through

Weka Hadoop integration [17]. There is also a commercial distribution, Pentaho

[34], that offers a complete solution for big data analytics, supporting all phases of

an analytics process – from preprocessing to advanced data exploration and visu-

alization, which uses distributed Weka execution for analytics. Another example is

the KNIME’s [4] big data extension,17 which enables the access to Hadoop via

Hive. RapidMiner [20] has Radoop18 that enables the deployment of workflows on

Hadoop.

7.4 Distributed Machine Learning Platforms

After distributed processing and storage environments (Hadoop, Dryad, MPI)

reached an acceptable level of maturity, they became an increasingly appealing

foundation for the design and implementation of new platforms for machine

learning algorithms. These provide users out-of-the-box algorithms, which are

run in parallel mode over a cluster of (commodity) computers. These solutions do

not use statistics, or mathematics software packages, rather they offer self-

contained, optimized implementations in general-purpose programming languages

(C/C++, Java) of state-of-the-art ML methods and algorithms. This section focuses

on ML platforms specifically designed for distributed and scalable computing.

Table 7.2 summarizes some recent platforms.

The IBM Research Lab has been one of the pioneers who invested in distributed

machine learning frameworks. Nimble [12] and SystemML [13] are two high-level

conceptual frameworks supporting the definition of ML algorithms and their exe-

cution on Hadoop clusters. Nimble, a sequel to IBM’s Parallel Machine Learning

Toolbox [31], features a multilayered framework enabling developers to express

14 https://github.com/shadanan/HadoopLink
15 http://www.mathworks.com/help/matlab/large-files-and-big-data.html
16 http://www.mathworks.com/help/distcomp/big-data.html
17 https://www.knime.org/knime-big-data-extension
18 https://rapidminer.com/products/radoop/

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 147

https://github.com/shadanan/HadoopLink
http://www.mathworks.com/help/matlab/large-files-and-big-data.html
http://www.mathworks.com/help/distcomp/big-data.html
https://www.knime.org/knime-big-data-extension
https://rapidminer.com/products/radoop/


their ML algorithms as tasks, which are then passed to the next layer, an

architecture-independent layer, composed of one queue of DAGs of tasks, plus

worker thread pool that unfolds this queue. The bottom layer is an architecture-

dependent layer that translates the generic entities from the upper layer into various

runtimes, the only distributed environment supported within the proof of concept

being Hadoop alone. The layered architecture of the system hides the low-level

control and choreography details of most of the distributed and parallel program-

ming paradigms (MR, MPI, etc.), it allows developers to compose parallel ML

algorithms using reusable (serial and parallel) building blocks, but also it enables

portability and scalability. SystemML proposes an R-like language (declarative

Table 7.2 Distributed ML frameworks

Name License ML Problem Distr. Env. Comm. Lang.

Petuum Open

source

(Sailing

Lab)

DL, CLS, CLU,

RGR, MET, TOP

Clusters or Ama-

zon EC2, Google

CE

Medium C++

Jubatus LGPL v2.1 CLS, RGR, ANO,

CLU, REC, Graph

Zookeeper Medium C++

MLlib

(MLBase)

Apache 2.0 RGR, CLS, REC,

CLU

Spark Large Scala,

Java

Mahout Apache 2.0 Collaborative filter-

ing, CLS, CLU, DR,

TOP

Hadoop, Spark,

H2O

Medium Java

Oryx Apache 2.0 REC, CLS, RGR,

CLU

Hadoop, Spark Low Java

Trident-ML Apache 2.0 CLS, RGR, CLU,

DR

Storm Low Java

H2O Apache 2.0 DL, RGR, CLS,

CLU, DR

Hadoop Medium Java

GraphLab

Create

Apache 2.0 CLU, CLS, RGR,

DL, REC

Hadoop, Spark,

MPI

High C++

Vowpal

Wabbit

Ms-PL CLS, RGR, CLU Hadoop Medium C++

Deeplearning4J Apache 2.0 DL Hadoop, Spark,

AWS, Akka

Medium Java,

Scala

Julia’s MLBase MIT

License

CLS Julia Julia

Flink-ML Apache 2.0 CLS, RGR, CLU,

REC

Flink Hadoop Low Scala

DryadLINQ Dryad, Hadoop

YARN

None C#,

LINQ

Nimble NA CLU, FRQ, ANO, Hadoop None Java

SystemML NA RGR, PageRank Hadoop None DML

ANO anomaly detection, CLS classification, CLU clustering, DL deep learning, DR dimensionality

reduction, FRQ frequent pattern, MET metrics learning, REC recommendation, RGR regression,

TOP topic modeling

148 D. Pop et al.



machine learning language) that includes linear algebra primitives and shows how

it can be optimized and compiled down to MapReduce. Authors report an extensive

performance evaluation on three ML algorithms (group nonnegative matrix factor-

ization, linear regression, PageRank) on varying data and Hadoop cluster sizes.

These two systems are purely research endeavors, and they are not available to the

community.

Most of the frameworks rely on Hadoop’s MapReduce paradigm and the under-

lying distributed file storage system (HDFS) because it simplifies the design and

implementation of large-scale data processing systems. Only a few frameworks

(e.g., Jubatus, Petuum, GraphLab Create) have tried to propose novel distributed

paradigms, customized to machine learning for big data, in order to optimize the

complex, time-consuming ML algorithms.

Recognizing the limitations and difficulties of adapting general-purpose distrib-

uted frameworks (Hadoop, MPI, Dryad, etc.) to ML problems, a team at CMU

under E. P. Xing lead designed a new framework for distributed machine learning

able to handle massive data sets and cope with big models. Petuum19 (from

Perpetuum Mobile) [8, 43] takes advantage of data correlation, staleness, and

other statistical properties to maximize the performance for ML algorithms, real-

ized through core features such as a distributed Parameter Server and a distributed

Scheduler (STRADS). It may run either on-premise clusters or on cloud computing

resources like Amazon EC2 or Google Compute Engine (GCE).

Jubatus20 is a distributed computing framework specifically designed for online

machine learning on big data. A loose model sharing architecture allows it to

efficiently train and share machine learning models by defining three fundamental

operations, viz., update, mix, and analyze [19]. Comparing to Apache Mahout,

Jubatus offers stream processing and online learning, which means that the model is

continuously updated with each data sample that is coming in, by fast, not memory-

intensive algorithms. It requires no data storage nor sharing, only model mixing. In

order to efficiently support online learning, Jubatus operates updates on local

models and then each server transmits its model difference that are merged and

distributed back to all servers. The mixed model improves gradually thanks to all

servers’ work.
GraphLab Create,21 formerly GraphLab project [27], is a framework for

machine learning that expresses asynchronous, dynamic, graph-parallel computa-

tion while ensuring data consistency and achieving a high degree of parallel

performance, in both shared-memory and distributed settings. It is an end-to-end

platform enabling data scientists to easily create intelligent apps at scale, from

cleaning the data, developing features, training a model, and creating and

maintaining a predictive service. It runs on distributed Hadoop/YARN clusters, as

19 http://petuum.org
20 http://jubat.us
21 https://dato.com/products/create

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 149

http://petuum.org/
http://jubat.us/
https://dato.com/products/create


well on local machine or on EC2, and it exposes a Python interface for an easy

accessibility.

Apache Mahout [29] is a scalable machine learning framework built on top of

Hadoop that features a rich collection of distributed implementations of machine

learning and data mining algorithms. Although initially created on top of Hadoop,

starting with version 0.10, it supports additional execution engines such as Spark

and H20, while Flink22 is a project in progress. The same release introduces

Mahout-Samsara, a new math environment created to enable users to develop

their own extensions, using Scala language, based on general linear algebra and

statistical operations. Mahout-Samsara comes with an interactive shell that runs

distributed operations on a Spark cluster. This makes prototyping or task submis-

sion much easier and allows users to customize algorithms with a whole new degree

of freedom.

H2O23 and MLlib [10] are two of the most actively developed projects. Both

feature distributed, in-memory computations and are certified for Apache Spark

(MLlib being part of Spark), as well as for Hadoop platforms. This in-memory

capability means that in some instances these frameworks outperform Hadoop-

based frameworks [44]. MLlib has been shown to be more scalable than Vowpal

Wabbit. One important distinction when comparing H2O with other MapReduce

applications is that each H2O node (which is a single JVM process) runs as a

mapper in Hadoop. There are no combiners nor reducers. Also, H2O has more built-

in analytical features and a more mature REST API for R, Python, and JavaScript

than MLlib.

Vowpal Wabbit24 [38] is an open-source, fast, out-of-core learning system,

currently sponsored by Microsoft research. It has an efficient implementation of

online machine learning, using the so-called hash trick [35] as the core data

representation, which results in significant storage compression for parameter

vectors. VW reduces regression, multiclass, multi-label, or structured prediction

problems to a weighted binary classification problem. A Hadoop-compatible com-

putational model called AllReduce [1] has been implemented in order to eliminate

MPI and MapReduce drawbacks, which relate to machine learning. Using this

model, a 1000-node cluster was able to learn a terafeature data set in one hour [1].

Julia25 is high-level, high-performance, and dynamic programming language. It

is designed for computing and provides a sophisticated compiler, distributed par-

allel execution, and numerical accuracy and has an extensive mathematical function

library. Comparing to traditional MPI, Julia’s implementation of message passing is

“one sided,” thus simplifying the process management. Furthermore, these opera-

tions typically do not look like “message send” and “message receive” but rather

resemble higher-level operations like calls to user functions. It also provides a

22 https://flink.apache.org/
23 http://0xdata.com/product/
24 https://github.com/JohnLangford/vowpal_wabbit/
25 http://julialang.org/

150 D. Pop et al.

https://flink.apache.org/
http://0xdata.com/product/
https://github.com/JohnLangford/vowpal_wabbit/
http://julialang.org/


powerful browser-based notebook using IPython. It also possesses a built-in pack-

age manager and it is able to call C functions directly. It is specially designed for

parallelism and distributed computation. It also provides a variety of classification,

clustering, and regression analysis packages26 implemented in Julia.

Another framework focusing on real-time online machine learning is Trident-

ML [22], built on top of Apache Storm, a distributed stream-processing framework.

It processes batches of tuples in a distributed way, which means that it can scale

horizontally. However, Storm does not allow state updates to append simulta-

neously, a shortage that hinders distributed model learning.

The Apache Oryx 227 framework is a realization of the lambda architecture built

on top of Spark and Apache Kafka. It is a specialized framework that provides real-

time, large-scale machine learning. It consists of three tiers: lambda, machine

learning, and application. The lambda tier is further split up into batch, speed,

and serving tier, respectively. Currently, it has only three end-to-end

implementations for the batch, speed, and serving layers (collaborative filtering,

k-means clustering, classification, and regression based on random forest).

Although it has only these three complete implementations, its main design goal

is not that of a traditional machine learning library but more of a lambda

architecture-based platform for MLlib and Mahout. At this point, it is important

to note several key differences between Oryx 128 and Oryx 2. Firstly, Oryx 1 has a

monolithic tier for lambda architecture, while Oryx 2 has three as mentioned in the

previous paragraph. The streaming-based batch layer in Oryx 2 is based in Spark,

while in the first version, it was a custom MapReduce implementation in the

computational layer. Two of the most important differences relate to the deploy-

ment of these frameworks. Oryx 2 is faster yet more memory hungry than the

previous version because of its reliance on Spark. Second, the first version

supported local (non-Hadoop) deployment, while the second version does not.

DryadLINQ29 [5] is LINQ30 (Language Integrated Query) subsystem developed

at Microsoft Research on top of Dryad [21], a general-purpose architecture for

execution of data-parallel applications. A DryadLINQ program is a sequential

program composed of LINQ expressions performing arbitrary side effect-free

transformations on data sets and can be written and debugged using standard .

NET development tools. The system transparently translates the data-parallel

portions of the program into a distributed execution plan, which is passed to the

Dryad execution platform that ensures efficient and reliable execution of this plan.

Following Microsoft’s decision to focus on bringing Apache Hadoop to Windows

systems, this platform has been abandoned, and Daytona project took off, which has

recently became Windows Azure Machine Learning platform.

26 http://mlbasejl.readthedocs.org/en/latest/
27 http://oryxproject.github.io/oryx/
28 https://github.com/cloudera/oryx
29 http://research.microsoft.com/en-us/projects/dryad/
30 http://msdn.microsoft.com/netframework/future/linq/

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 151

http://mlbasejl.readthedocs.org/en/latest/
http://oryxproject.github.io/oryx/
https://github.com/cloudera/oryx
http://research.microsoft.com/en-us/projects/dryad/
http://msdn.microsoft.com/netframework/future/linq/


Deeplearning4J31 is an open-source distributed deep-learning library written in

Java and Scala. It is largely based on ND4J library for scientific computation that

enables GPU, as well as native code integration. It is also deployable on Hadoop,

Spark, and Mesos. The main difference between this library and the others men-

tioned above is that it is mainly focused on business use cases, not on research. This

means that some features, such as parallelism, is automatic, meaning that worker

nodes are set up automatically.

Apache SAMOA32 is a distributed streaming machine learning framework. It

contains abstractions for distributed streaming machine learning algorithms. This

means that users can focus on implementing distributed algorithms and not worry

about the underlying complexities of the stream processing engines it supports

(Storm, S4, Samza, etc.).

7.5 Machine Learning as a Service (MLaaS)

This section focuses on Software-as-a-Service providers’ provision of machine

learning services as MLaaS. These services are accessible via RESTful interfaces,

and in some cases, the solution may also be installed on-premise (e.g., ersatz). The

favorite class of machine learning problems addressed by these services is predic-

tive modeling (BigML, Google Prediction API, EigenDog), while clustering and

anomaly detection receive far less attention. We did not include in this category the

fair number of SQL over Hadoop processing solutions (e.g., Cloudera Impala,

Hadapt, Hive), because their main target is not machine learning problems, rather

fast, elastic, and scalable SQL processing of relational data using the distributed

architecture of Hadoop.

Table 7.3 presents current MLaaS solutions as well as some of their key

characteristics. We have identified four characteristics: machine learning problem

support, data sources, model exporting, and model deployment. It is easily observ-

able that most MLaaS are designed to deal with common problems such as

classification, regression, and clustering. When it comes to data acquisition facil-

ities, all platforms support data upload (various formats csv, arff, etc.); some even

feature integration with different storage solutions (S3, HDFS, etc.). Predictive

model training, verification, and visualization are supported by all the solutions

listed in Table 7.3; however, not all support predictive model exporting via

PMML.33 Last but not least, some platforms support local Web services as well

as cloud deployment. In the next few paragraphs, we detail some of the more

important services from Table 7.3.

31 http://deeplearning4j.org
32 https://samoa.incubator.apache.org/
33 http://www.dmg.org/v4-1/GeneralStructure.html

152 D. Pop et al.

http://deeplearning4j.org/
https://samoa.incubator.apache.org/
http://www.dmg.org/v4-1/GeneralStructure.html


Windows Azure Machine Learning, formerly project Daytona, was officially

launched in February 2015 as a cloud-based platform for big data processing. This

comes with a rich set of predefined templates for data mining workflows, as well

with a visual workflow designer that allows end users to compose complex machine

learning workflows. In addition, it supports the integration of R and Python scripts

within workflows and is able to run the jobs on Hadoop and Spark platforms. The

built models are deployed in a highly scalable cloud environment and can easily be

accessed via Web services [39].

PredictionIO34 is based on an open-source software such as Spark. This means

that the solution can be deployed and hosted on any infrastructure. This is in sharp

contrast with Azure, which requires the data to be uploaded into Azure. Also, it is

possible to write custom distributed data processing tasks in Scala while on Azure

custom scripts can only be run on a single node. There are no restrictions on the size

of the training data not on the number of concurrent request. It can be deployed on

Amazon WS, Vagrant, Docker, or even starting from source code.

Table 7.3 Machine learning as a service

Name ML problems Data source

Model

export Deployment

Azure ML CLS, RGR,

CLU, ANO

Upload, Azure None Cloud

PredictionIO RGR, CLS,

REC, CLU

Upload, Hbase None Local, cloud

Ersatz Labs DL Upload None Cloud, local

ScienceOpsa

(ScienceBox)

RGR, CLS,

REC, CLU

S3, Upload PMML Cloud, local

Skymind DL Upload None Cloud, Local

BigMLb CLS, RGR, CLU Upload, S3, Azure,

OData

PMML Cloud

Amazon ML CLS, RGR, CLU S3, Redshift Upload None Cloud

BitYotac CLS, RGR, CLU S3, Azure None Cloud

Google Prediction

API

CLS, RGR,

CLU, ANO

Upload, Google Cloud

Storage

PMML Cloud

EigenDogd CLU, RGR Upload, S3 None Local, cloud

Metamarketse CLU, ANO Upload, HDFS None Local (Druid),

cloud

Zementis ADAPAf CLS, RGR, CLU S3, Azure, Upload,

SAP HANA

PMML Local, cloud

ahttps://yhathq.com/products/scienceops
bhttp://bigml.com
chttp://bityota.com
dhttps://eigendog.com/\#home
ehttp://metamarkets.com/
fhttp://zementis.com/products/adapa/amazon-cloud/

34 https://prediction.io/

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 153

https://yhathq.com/products/scienceops
http://bigml.com/
http://bityota.com/
https://eigendog.com//#home
http://metamarkets.com/
http://zementis.com/products/adapa/amazon-cloud/
https://prediction.io/


The recent popularity of deep learning has resulted in the creation of various

services which bundle deep-learning libraries (Theano, pylearn2, Deeplearning4j,

etc.) into a MLaaS format. Some good examples are Ersatz Labs35 and Skymind.36

These provide similar services and support distributed as well as GPU deployment.

Amazon Machine Learning service37 allows users to train predictive models in

the cloud. It targets a similar use case as Azure Machine Learning from Microsoft

and Google’s Predictive API. It has similar features to many large-scale learning

applications including visualization and basic data statistics. The exact learning

algorithm it uses is not known; however, it is similar to Vowpal Wabbit. There are

some limitations such as the inability to export the learned model or to access data

which is not stored inside Amazon (Amazon S3 or Redshift).

Google Prediction API38 is Google’s cloud-based machine learning tools that

can help to analyze data. It is closely connected to Google Cloud Storage39 where

training data is stored and offers its services using a RESTful interface, client

libraries allowing programmers to connect from Java, JavaScript, .NET, Ruby,

Python, etc. In the first step, the model needs to be trained on data, supported

models being classification and regression for now. After the model is built, one can

query this model to obtain predictions on new instances. Adding new data to a

trained model is called Streaming Training and it is also nicely supported. Recently,

PMML preprocessing feature has been added, i.e., Prediction API supports

preprocessing your data against a PMML transform specified using PMML 4.0

syntax and does not support importing of a complete PMML model that includes

data. Created models can be shared as hosted models in the marketplace.

7.6 Related Studies

Since 1995, when Thearling [40] presented a massively parallel architecture and the

algorithms for analyzing time series data, allegedly, one of the first approaches to

parallelization of ML algorithms, many implementations were proposed for ML

algorithm parallelization for both shared and distributed systems. Consequently,

many studies tried to summarize, classify, and compare these approaches. We will

address in this section only the most recent ones.

Upadhyaya [42] presents an overview of machine learning efforts since 1995

onward grouping the approaches based on prominent underlying technologies:

those employed on GPUs (2000–2005 and beyond), those using MapReduce tech-

nique (2005 onward), the ones that did not consider neither MapReduce nor GPUs

35 http://www.ersatzlabs.com/
36 http://www.skymind.io/about/
37 http://docs.aws.amazon.com/machine-learning/latest/mlconcepts/mlconcepts.html
38 https://developers.google.com/prediction/
39 https://developers.google.com/storage/

154 D. Pop et al.

http://www.ersatzlabs.com/
http://www.skymind.io/about/
http://docs.aws.amazon.com/machine-learning/latest/mlconcepts/mlconcepts.html
https://developers.google.com/prediction/
https://developers.google.com/storage/


(1999–2000 and beyond), and, finally, few efforts discussing the MapReduce

technique on GPU. Contrasting to this extensive overview, we focus on more recent

distributed and cloud-based solutions, regardless if they are coming from academia

or industry.

The book Scaling Up Machine Learning: Parallel and Distributed Approaches
by Bekkerman et al. [3] presents an integrated collection of representative

approaches, emerged in both academic (Berkeley, NYU, University of California,

etc.) and industrial (Google, HP, IBM, Microsoft) environments, for scaling up

machine learning and data mining methods on parallel and distributed computing

platforms. It covers general frameworks for highly scalable ML implementations,

such as DryadLINQ and IBM PMLT, as well as specific implementations of ML

techniques on these platforms, like ensemble decision trees, SVM, or k-means. The

book is a good starting point, but it does not aim at providing a structured view on

how to scale out machine learning for big data applications, which is central to our

study.

A broader study is conducted by Assunç~ao et al. [2], who discuss approaches and
environments for carrying out analytics on clouds for big data applications. Model

development and scoring, i.e., machine learning, is one of the areas they considered,

alongside other three: data management and supporting architectures, visualization

and user interaction, and business models. Through a detailed survey, they identify

possible gaps in technology and provide recommendations for the research com-

munity on future directions on cloud-supported big data computing and analytics

solutions. With respect to this study, our work goes into deeper details on the

specific topic of distributed machine learning approaches, synthesizing and classi-

fying existing solutions to give data scientists a comprehensive view of the field.

Interesting analyses have been made available through online press and blogs

[7, 9, 18]; they have reviewed open-source or commercial players for big data

analytics and predictions.

7.7 Conclusion and Guidelines

Analyzing big data sets gives users the power to identify new revenue sources,

develop loyal and profitable customer relationships, and run the organization more

efficiently and cost-effectively – overall, giving them competitive advantage over

other competitions. Big data analytics is still a challenging and time-demanding

task that requires important resources, in terms of large e-infrastructure, complex

software, skilled people, and significant effort, without any guarantee on ROI. After

reviewing more than 40 solutions, our key findings are summarized below.

Both, research and industry, have invested efforts in developing “as-a-Service”

solutions for big data problems (Analytics-as-a-Service, Data-as-a-Service,

Machine-Learning-as-a-Service) in order to benefit of the advantages cloud com-

puting provides such as resources on demand (with costs proportional to the actual

usage), scalability, and reliability.

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 155



Existing programming paradigms for expressing large-scale parallelism

(MapReduce, MPI) are the de facto choices for implementing distributed machine

learning algorithms. The initial enthusiastic interest devoted to MapReduce has

been balanced in recent years by novel distributed architectures specifically

designed for machine learning problems. Nevertheless, Hadoop remains the state-

of-the-art platform for processing large data sets stored on HDFS, either in

MapReduce jobs or using higher-level languages and abstractions.

Although state-of-the-art tools and platforms provide intuitive graphical user

interfaces, current environments lack an interactive process, and techniques should

be developed to facilitate interactivity in order to include analysts in the loop, by

providing means to reduce time to insight. Systems and techniques that iteratively

refine answers to queries and give users more control of processing are desired.

From the perspective of resource management and data processing, new frame-

works able to combine applications from multiple programming models (e.g., MPI,

MapReduce, workflows) on a single solution need to be further investigated.

Optimization of resource usage and energy consumption, while executing data-

intensive applications, is another challenging research direction in the next decade.

Developing software that meets the high-quality standards expected for

business-critical applications remains a challenge, and quality-driven development

methodology and new tools need to be created. Building on the principles of model-

driven development and on popular standards, e.g., UML or MARTE, such an

approach will guide the simulation, verification, and quality evolution of big data

applications.

Further exploiting the scalability, availability, and elasticity of cloud computing

for model building and exposing of prediction and analytics as hosted services is

opening a competitive and challenging market. Tools and frameworks to support

the integration of mobile and sensor data into cloud platforms need to be further

developed.

At the end of this chapter, we review some of the best practices that the recently

published literature recommends, namely:

• Understand the business problem. Having a well-defined problem, knowing

specific constraints available for the problem under investigation, can greatly

improve performance of the ML algorithms.

• Understand the ML task. Is it supervised or unsupervised? What activities are

required to get the data labeled? The same features (attributes, domains, labels)

need to be available at both times, training and testing. Pick a machine learning

method appropriate to the problem and the data set. This is the most difficult

task, and here are some questions you should consider: Do human users need to

understand the model? Is the training time a constraint for your problem? What

is an acceptable trade-off between having an accurate answer and having the

answer quickly? Keep in mind that there is no single best algorithm; experiment

with several algorithms and see which one gives better results for your problem.

• In case of predictive modeling, carefully select and partition the data at hand in

training and validation set, which will be used to build the model, versus the test

156 D. Pop et al.



set that you will use to test the performance of your model. More data for

training the model results in better predictive performance. Better data always

beats a better algorithm, no matter how advanced it is. Visualize the data with at

least univariate histograms. Examine correlations between variables.

• Well prepare your data. Deal with missing and invalid values (misspelled words,

values out of range, outliers). Take enough time, because no matter how robust a

model is, poor data will yield poor results.

• Evaluate your model using confusion matrix, ROC (receiver operating charac-

teristic) curve, precision, recall, or F1 score. Do not overfit your model, because

the power lies in good prediction of unseen examples.

• Use proper tools for your problems. For low-level programming environments

you might find difficult to use, try first the machine learning services offered by

cloud service providers, which are easy to use and powered by state-of-the-art

algorithms.

Acknowledgments This work was supported by the European Commission H2020 co-funded

with project DICE (GA 644869).

References

1. Agarwal A, Chapelle O, Dudik M, Langford J (2014) A reliable effective terascale linear

learning system. J Mach Learn Res 15:1111–1133

2. Assunç~ao MD, Calheiros RN, Bianchi S, Netto MAS, Buyya R (2014) Big data computing and

clouds: trends and future directions. J. Parallel Distrib Comput. http://dx.doi.org/10.10.16/j.

jpdc.2014.08.003

3. Bekkerman R, Bilenko M, Langford J (eds) (2012) Scaling up machine learning: parallel and

distributed approaches. Cambridge University Press, Cambridge

4. Berthold MR, Cebron N, Dill F, Gabriel TR, K€otter T, Meinl T, Ohl P, Sieb C, Thiel K,

Wiswedel B (2008) KNIME: The Konstanz Information Miner. In: Preisach C, Burkhardt H,

Schmidt-Thieme L, Decker R (eds) Studies in classification, data analysis, and knowledge

organization. Springer, Berlin/Heidelberg

5. Budiu M, Fetterly D, Isard M, McSherry F, Yu Y (2012) Large-scale machine learning using

DryadLINQ. In: Bekkerman R, Bilenko M, Langford J (eds) Scaling up machine learning.

Cambridge University Press, Cambridge

6. Chandola V, Banerjee A, Kumar V (2009) Anomaly detection: a survey. ACM Comput Surv

41(3):15:1–15:58

7. Charrington S (2012) Three new tools bring machine learning insights to the masses, February,

Read Write Web. http://www.readwriteweb.com/hack/2012/02/three-new-tools-bring-

machine.php

8. Dai W et al (2015) High-performance distributed ML at scale through parameter server

consistency models, AAAI

9. Eckerson W (2012) New technologies for big data. http://www.b-eye-network.com/blogs/

eckerson/archives/2012/11/new_technologie.php

10. Franklin M et al (2015) MLlib: Machine Learning in apache Spark

11. Gander M et al (2013) Anomaly detection in the cloud: detecting security incidents via

machine learning, trustworthy eternal systems via evolving software, data and knowledge,

vol 379. Springer, Berlin/Heidelberg, pp 103–116

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 157

http://dx.doi.org/10.10.16/j.jpdc.2014.08.003
http://dx.doi.org/10.10.16/j.jpdc.2014.08.003
http://www.readwriteweb.com/hack/2012/02/three-new-tools-bring-machine.php
http://www.readwriteweb.com/hack/2012/02/three-new-tools-bring-machine.php
http://www.b-eye-network.com/blogs/eckerson/archives/2012/11/new_technologie.php
http://www.b-eye-network.com/blogs/eckerson/archives/2012/11/new_technologie.php


12. Ghoting A, Kambadur P, Pednault E, Kannan R (2011) NIMBLE: a toolkit for the implemen-

tation of parallel data mining and machine learning algorithms onMapReduce. In: Proceedings

of the 17th ACM SIGKDD international conference on Knowledge Discovery and Data

mining KDD’11, ACM, New York, NY, USA, pp 334–342

13. Ghoting A, Krishnamurthy R, Pednault E, Reinwald B, Sindhwani V, Tatikonda S, Tian Y,

Vaithyanathan S (2011) SystemML: declarative machine learning on MapReduce. In: Pro-

ceedings of the 2011 I.E. 27th International Conference on Data Engineering (ICDE ‘11).
IEEE Computer Society, Washington, DC, USA, pp 231–242

14. Granger B, Perez F, Ragan-Kelley M (2011) Using IPython for parallel computing. http://

minrk.github.com/scipy-tutorial-2011. Accessed 13 May 2015

15. Grisel O (2013) Advanced machine learning with scikit-learn, PYCON tutorial. https://us.

pycon.org/2013/schedule/presentation/23/

16. Hall M et al (2009) The WEKA data mining software: an update. ACM SIGKDD Explor

Newsl 11(1):10–18

17. Hall M (2013) Weka and Spark – http://markahall.blogspot.co.nz/. Accessed 13 May 2015

18. Harris D (2015) 5 low-profile startups that could change the face of big data. http://gigaom.

com/cloud/5-low-profile-startups-that-could-change-the-face-of-big-data/. Accessed 15 July

2015

19. Hido S, Tokui S, Oda S (2013) Jubauts: an open source platform for distributed online machine

learning, NIPS workshop on Big Learning, Lake Taho

20. Hofmann M, Klinkenberg R (2013) RapidMiner: data mining use cases and business analytics

applications. Chapman &Hall/CRC, Boca Raton

21. Isard M et al. (2007) Dryad: distributed data-parallel programs from sequential building

blocks. SIGOPS Oper Syst Rev 41:59–72. doi:10.1145/1272998.1273005

22. Jain A, Nalya A (2014) Learning storm. Packt Publishing, Birmingham

23. Nuggets KD (2014) http://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-

data-science.html. Accessed 15 May 2015

24. Krizhevsky A, Sutskever I, Hinton GE ImageNet (2012) Classification with deep

convolutional neural networks. NIPS 2012: neural information processing systems, Lake

Tahoe, Nevada

25. Le Q, Ranzato MA, Monga R, Devin M, Chen K, Corrado G, Dean J, Ng A (2012) Building

high-level features using large scale unsupervised learning, international conference in

machine learning, Edinburgh, UK

26. Leo S, Zanetti G (2010) Pydoop: a Python MapReduce and HDFS API for Hadoop. In:

Proceedings of the 19th ACM international symposium on high performance distributed

computing, Chicago, IL, USA, pp 819–825

27. Low Y et al. (2012) Distributed GraphLab: a framework for machine learning and data mining

in the cloud. In: Proceedings of the VLDB endowment, vol 5, no 8, August 2012, Istanbul,

Turkey

28. Mohri M, Rostamizadeh A, Talwalkar A (2012) A foundations of machine learning. The MIT

Press, Cambridge, MA

29. Owen S, Anil R, Dunning T, Friedman E (2011) Mahout in action. Manning Publications Co.,

Shelter Island

30. Patcha A, Park JM (2007) An overview of anomaly detection techniques: existing solutions

and latest technological trends. Comput Netw Elsevier, North-Holland, Inc., 51:3448–3470

31. Pednault E, Yom-Tov E, Ghoting A (2012) IBM parallel machine learning toolbox. In:

Bekkerman R, Bilenko M, Langford J (eds) Scaling up machine learning. Cambridge Univer-

sity Press, New York

32. Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res

12:2825–2830

33. Piccolboni A (2015) RHadoop. https://github.com/RevolutionAnalytics/RHadoop/wiki.

Accessed 13 May 2015

34. Roldn MC (2013) Pentaho data integration beginner’s guide. Packt Publishing, Birmingham

158 D. Pop et al.

http://minrk.github.com/scipy-tutorial-2011
http://minrk.github.com/scipy-tutorial-2011
https://us.pycon.org/2013/schedule/presentation/23/
https://us.pycon.org/2013/schedule/presentation/23/
http://markahall.blogspot.co.nz/
http://gigaom.com/cloud/5-low-profile-startups-that-could-change-the-face-of-big-data/
http://gigaom.com/cloud/5-low-profile-startups-that-could-change-the-face-of-big-data/
http://dx.doi.org/10.1145/1272998.1273005
http://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-data-science.html
http://www.kdnuggets.com/polls/2014/languages-analytics-data-mining-data-science.html
https://github.com/RevolutionAnalytics/RHadoop/wiki


35. Rosen J et al (2013) Iterative MapReduce for large scale machine learning, CoRR,

abs/1303.3517

36. Russom P Big data Analytics (2011) TDWI best practices report, The Data Warehousing

Institute (TDWI) Research

37. Sagha H, Bayati H, Millán JDR, Chavarriaga R (2013) On-line anomaly detection and

resilience in classifier ensembles. Pattern Recogn Lett, Elsevier Science Inc., 34:1916–1927

38. Shi Q et al (2009) Hash kernels for structured data. J Mach Learn Res JMLR.org,

10:2615–2637

39. Elston SF (2015) Data science in the cloud with Microsoft Azure Machine Learning and R,

O’Reilly
40. Thearling KK (1995) Massively parallel architectures and algorithms for time series analysis.

In: Nadel L, Stien D (eds) Lectures in complex systems. Addison-Wesley, Reading

41. Tierney L, Rossini AJ, Snow NL (2009) A parallel computing framework for the R system. Int

J Parallel Prog 37:78–90. doi:10.1007/s10766-008-0077-2

42. Upadhyaya SR (2013) Parallel approaches to machine learning – a comprehensive survey. J

Parallel Distrib Comput 73(3):284–292. ISSN 0743–7315. http://dx.doi.org/10.1016/j.jpdc.

2012.11.001

43. Wei D, Wei J, Zheng X, Kim JK, Lee S, Yin J, Ho Q, Xing EP (2013) Petuum: a framework for

iterative-convergent distributed ML. arxiv.org/abs/1312:7651

44. Zaharia M et al. Spark: cluster computing with working sets. In: Proceedings of the 2nd

USENIX conference on hot topics in Cloud, Computing, USENIX Association, pp 10–10

7 Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data 159

http://dx.doi.org/10.1007/s10766-008-0077-2
http://dx.doi.org/10.1016/j.jpdc.2012.11.001
http://dx.doi.org/10.1016/j.jpdc.2012.11.001


Chapter 8

An Analytics-Driven Approach to Identify
Duplicate Bug Records in Large Data
Repositories

Anjaneyulu Pasala, Sarbendu Guha, Gopichand Agnihotram,
Satya Prateek B, and Srinivas Padmanabhuni

Abstract Typically, the identification and analysis of duplicate bug records of a

software application are mundane activities, carried out by software maintenance

engineers. As the bug repository grows in size for a large software application, this

manual process becomes erroneous and a time-consuming activity. Automatic

detection of these duplicate bug records will reduce the manual effort spent by

the maintenance engineers. It also results in the reduction of costs of software

maintenance. There are two types of duplicate bug records: (1) the records that

describe the same problem using similar vocabulary, and (2) the records that

describe different problems using dissimilar vocabulary but share the same under-

lying root cause. Each of these types of records needs a different set of techniques to

identify the duplicate bug records. In this chapter, we explain the various machine

learning techniques that are used to detect both types of duplicate bug records.

Some of these duplicate bug records reappear, that is, they show up continuously

over a long period of time. Here, we present a framework that can be used to

automate the entire process of detection of both types of duplicates and recurring

bug records. Using the framework, we conducted empirical studies on the open-

source Chrome bug data records that are accessible online and the results are

reported.

Keywords Software maintenance • Mining software repositories • Duplicate data

records • Vector space model • Clustering techniques • Co-occurrence models • Bug

fix

A. Pasala (*) • S. Guha • G. Agnihotram • S. Prateek B • S. Padmanabhuni

Infosys Labs, Infosys Ltd., Electronics City, Hosur Road, 560 100 Bangalore, India

e-mail: Anjaneyulu_Pasala@infosys.com; Sarbendu_Guha@infosys.com;

Gopichand_A@infosys.com; srinivas_p@infosys.com

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_8

161

mailto:Anjaneyulu_Pasala@infosys.com
mailto:Sarbendu_Guha@infosys.com
mailto:Gopichand_A@infosys.com
mailto:srinivas_p@infosys.com


8.1 Introduction

In recent years, the software industry has been growing in leaps and bounds. It was

estimated that in 2014, the global software market was valued at $299 billion

[1]. The maintenance activities alone account for 60–80% of the overall software

budget [2]. In the USA alone, the cost of maintenance was calculated to be more

than $70 billion for ten billion lines of existing code [3]. It has been reported that

more than 50% of software personnel are engaged in various activities [4] of

software maintenance. That shows the enormity of software maintenance activities

in organizations.

Therefore, organizations are increasingly focusing on cost optimization tech-

niques for software maintenance. One such technique is an automation of mundane

but highly important activities relating to software maintenance. One of the areas

where automation is used is in bug tracking and handling systems. Bug tracking and

handling systems are being extensively used by organizations to allow software

users to report on issues faced or bugs detected while using the software applica-

tion. These are called bug reports or bug records. The set of bug records for a

particular software application is termed as a bug repository. For large software

applications, the number of bugs reported grows exponentially in size, resulting in a

large data repository. Sometimes, these repositories grow to the levels of millions

and millions of records in number. Hence, there arises the challenge of managing

and analyzing these large bug data repositories.

One major challenge of these systems is managing and analyzing duplicates in

such massive data repositories. As several records come in concurrently, a large

number of these records tend to be duplicates. Studies have shown that duplicate

bug records can amount to as much as 20% of total bugs reported [5]. As a result of

this, maintenance engineers spend a lot of time and effort, dealing with issues that

are being handled elsewhere or have already been dealt with. Thus, automatic

detection of duplicate data records helps the maintenance engineers to dispose of

issues faster and in a timely fashion. Additionally, it enables them to gain the

confidence of software users.

Typically, issue management is carried at multiple levels. In software mainte-

nance parlance, service level 1 is where the bugs or incidents are initially received

immediately after they are reported. The maintenance engineers are assigned bugs

which are subsequently resolved. However the amount of analytics that gets carried

out at level 1 is very minimal. The analytics are usually carried at the level 2 where

the bugs reported over a period of time are analyzed for bug patterns and

recurring bugs.

For instance, a well-known software organization develops and maintains

200 software applications. On average 900 bugs or incidents are reported every

month on each of these applications by the users. It results in 2.16 millions of bug

records in a year for the organization to analyze. Among 900 reported bugs, close to

250 of them are duplicates. It shows the enormity of duplicate bugs reported by the

users. Hence, there arises a need for a system that automatically identifies and

162 A. Pasala et al.



groups all these duplicate bugs present in a massive data repository together. Such a

system would enable the maintenance engineer to identify frequently occurring

bugs and forward them to level 3 for further analysis and closure. At level 3, the root

cause for these duplicates or recurring bugs is identified and resolved. In this way

the organization ensures that the bug is resolved and it does not recur in the future.

This is how the prevention of recurring bugs is handled manually in the organiza-

tions. This manual process becomes a highly error-prone and time-consuming

activity in the case of massive bug repositories. And the cost grows exponentially

with the size of the repository. Therefore, automatic detection of these duplicate

bug records will reduce the manual effort spent by maintenance engineers. Hence, it

will result in the reduction of costs spent on software maintenance.

Magnus et al. [6] describe two types of bug data records: (1) records that

describe the same problem using similar vocabulary are called apple-to-apple
pairs, and (2) records that describe different problems textually (using dissimilar

vocabulary) but share the same underlying cause are called apple-to-orange pairs.
Some examples of reported apple-to-apple and apple-to-orange pairs are shown in

Tables 8.1 and 8.2, respectively. In our analysis, we find that around 11% of the

validated duplicates in the Chrome bug repository are apple-to-orange pairs.
Currently, the apple-to-apple pairs can be detected using natural language

processing (NLP) and information retrieval (IR) techniques as they are textually

similar. However, the apple-to-orange pairs cannot be detected using these tech-

niques as they generally use different vocabulary to describe the problem they

narrate.

Given a dataset of validated duplicate data records, our first task is to identify all

the apple-to-apple pairs in it. A couple of well-known techniques are described to

detect such apple-to-apple pairs. The idea being that any duplicate pair that cannot

be detected using simple NLP techniques is likely to be an apple-to-orange pair.

Given the list of apple-to-orange pairs, we build a matrix of the words found in the

training data that keeps track of the number of times a word, in one bug of an apple-

Table 8.1 Examples of apple-to-apple pairs

1. Gmail app should allow associating notifications/

ringtones with individual labels

Gmail should allow per-label

notification settings

2. No master password option Master password option is

missing

Table 8.2 Examples of apple-to-orange pairs

1. Home if force closing ClassCastException in the Launcher

with certain widgets on Donut/master

2. Version check for browser type causes failure –

emulation mode to mimic IE ver. response for

such queries

Can’t watch Netflix

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 163



to-orange pair, occurs along with another word in the second bug of that same pair.

After that, when the user searches for duplicate bug data records, the word matrix is

used to retrieve the keywords that are most common among the query and appended

with the keywords. This expanded query is then used to search for the duplicates.

This is the process we aim to use to detect the apple-to-orange pairs.
The organization of this chapter is as follows. Section 8.2 briefly presents the

different techniques proposed and used to identify the similar records in the

literature. Section 8.3 discusses our proposed framework to identify both types of

duplicate bug records. The next two sections, 8.4 and 8.5, describe in detail the

techniques presented to identify the duplicate records of apple-to-apple pairs and

apple-to-orange pairs, respectively. These are explained using example data repos-

itory available online. Section 8.6 presents the case study conducted on Chrome bug

data and its results. Section 8.7 briefly explains the proposed recurring duplicate

bug’s prevention framework. Finally, Section 8.8 provides conclusions and future

challenges of bug’s detection in big data repositories and the challenges of analytics
to be carried in the future.

8.2 Literature Survey

The most well-known information retrieval (IR) technique used in identifying the

duplicate records is vector space model (VSM). It was initially used by Magnus

et al. [6]. In their approach a defect report is represented as a weighted vector of

words, and the similarity between two records is calculated as the distance between

their vectors. Using this approach, they were able to filter out 40% of the marked

duplicate bug records. Nicholas et al. [7] build on Magnus’ model by using a linear

model classifier using textual similarity and a clustering algorithm combined. The

clustering is done on a graph built with nodes as defect records and edges link

records with similar text. They analyzed bug records from the Mozilla data and

were able to filter out 8% of the duplicate bug records.

Further machine learning approaches such as Latent Dirichlet Allocation (LDA),

a topic modeling method, along with clustering have also been successfully used.

These approaches use cluster–topic distribution and topic–word distribution for

extracting keywords from the corpus [8]. Support Vector Machine (SVM) tech-

nique has also been used with various features of keywords like frequency, part of

speech, distance from the beginning of document, etc. to detect textually similar

data records.

Statistical approaches such as the term frequency, which is the number of times a

word appears in the corpus, are also used extensively along with the above

approaches. These approaches improve the detection of duplicates in the text

documents. Further improvements in the results are achieved using a term

frequency–inverse document frequency (TF-IDF), mainly to obtain the frequency

of the word in the corpus [9].

164 A. Pasala et al.



Xiaoyin et al. [10] present an approach that involves execution information

along with NLP techniques. In their approach, when a new bug record arrives, its

language information and execution information are compared with the existing

bug record information. Based on this comparison, a small number of existing bug

records are suggested to the triager as the similar bug records to the new bug.

Finally, the triager determines whether the new bug record is a duplicate of the

existing bug record.

Chengnian et al. [11] leveraged discriminative models for information retrieval

to detect duplicate bug records more accurately. They claim that their technique

could result in 17–31%, 22–26%, and 35–43% relative improvement over state-

of-the-art techniques. Furthermore, retrieval function (REP) has been used to

measure the similarity between two bug records [12]. It fully utilizes the infor-

mation available in a bug record including not only the similarity of textual

content in summary and description fields but also similarity of non-textual fields

such as product, component, version, etc. For more accurate measurement of

textual similarity, they extended BM25F weighting technique, especially for

duplicate record retrieval. They also used a two-round stochastic gradient descent

to automatically optimize REP for specific bug repositories in a supervised

learning manner.

Yuan et al. [13] extended Nicholas’ work by improving the accuracy of auto-

mated duplicate bug record identification. They used a support vector classifier to

identify a duplicate bug. They conducted empirical studies on bug records from

Mozilla bug tracking system and found that they could improve the accuracy of

finding duplicate records.

Anahita et al. [14] extended the state of the art by using contextual information,

relying on prior knowledge of software quality, software architecture, and system

development topics, to improve bug deduplication detection. However, Ashish

et al. [15] used a character N-gram-based model for duplicate bug detection.

They use a feature extraction module that extracts all the character N-grams from

the title and description of each bug record and then calculate their similarity score

as a function of shared N-gram characters. It is more promising in detecting

duplicate bug data records submitted by developers.

Techniques also have been proposed to detect certain types of bug records with

different vocabulary such as synonym replacement, semantic matching using

WordNet, etc. However, the existing techniques can only detect duplicate bug

records with similar text and cannot detect dissimilar duplicate bug records as

they do not share the common words. Also, synonym replacement techniques do

reasonably well only when two bug records describe the same problem using

different words but totally fail in case of dissimilar duplicate bug records. This is

because while the underlying cause for the two bugs may be the same, they are

describing separate problems so the vocabulary for the two will be completely

different. There is no system, currently, where both types of duplicates can be

detected simultaneously in a real-time scenario.

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 165



Hence, there is a need for a method and system for detection of duplicate bug

records by expanding the queries using a word matrix. The word matrix models the

underlying relationships between the words present in the two dissimilar bug

records and by extension models the relation between the bug records themselves.

Further, it can also be extended such that it can be used in online scenario for

detection of all types of duplicates.

8.3 The Proposed System to Identify Duplicate Records

In this section, we propose and present a system to detect both types of duplicate

bug data records in an issue management system. A high-level depiction of the

system is shown in Fig. 8.1.

The system concurrently searches for both types of duplicate records using

different techniques. The resulting bug records from these searches are aggregated

and presented as a single list of duplicates. When the user submits a query (or a bug

arrives at the system through online process), the search for duplicate bug records is

carried out both with the normal query and with the expanded query. The details of

the expanded query is discussed in the subsequent sections. The normal query is

used to get the duplicate records that are similar in vocabulary of the query itself.

Hence, these records are termed as apple-to-apple pairs of duplicates. The

expanded query is used to get the duplicates that are dissimilar in vocabulary of

this query but represent a common cause to the problem of this bug occurrence.

These duplicate records are termed as apple-to-orange pairs. The records thus

fetched in both searches are then aggregated and displayed as a list of duplicates

to the user. In the following sections, we discuss the different techniques that are

used to detect the apple-to-apple and apple-to-orange pairs.

Apple-to-apple
pairs

Apple-to-orange
pairs

List of 
duplicates

Query Search with 
query

Search with 
expanded 
query 

Aggregate 
the results

Fig. 8.1 A system to detect

all duplicate bugs

166 A. Pasala et al.



8.4 Detecting Apple-to-Apple Pairs

In this section, we describe two well-known machine learning techniques to detect

apple-to-apple records. The techniques are vector space model (VSM) and cluster-

ing approaches.

8.4.1 Vector Space Model

In VSM [16, 17], both the collection of records and the query are represented as

vectors of unique words present in these records. These vectors usually result in a

high-dimensional Cartesian space depending on the number of unique words

present in these records. Each vector component corresponds to a unique word in

the vocabulary of these records. Given a query vector and a set of record vectors, it

ranks the records by computing a similarity measure between the query vector and

each record vector. This ranking is based on comparing the angle between these

vectors. The smaller the angle, the more similar are the vectors representing the

respective record and the query. The similarity in vectors means the record and

query representing it are similar in terms of the words present in the vocabulary of

the respective record and the query. Hence, these two are duplicate in terms of the

vocabulary they represent. For example, consider that records d1, d2, and d3 and a

query q are having the following vocabulary:

d1 ¼<Gossip, Gossip, Gossip, Gossip, Gossip, Jealous>
d2 ¼<Gossip, Gossip, Gossip, Gossip, Gossip, Gossip, Gossip, Jealous, Jealous,

Jealous, Jealous, Jealous, Jealous, Jealous>
d3 ¼<Jealous, Jealous, Jealous, Jealous, Jealous, Gossip>
q ¼<Gossip, Gossip, Gossip, Jealous, Jealous, Jealous>

These records can then be represented in a two-dimensional vector as shown in

Fig. 8.2.

Fig. 8.2 Vector space

representation of records

and query

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 167



The recordsd1,d2;andd3, and the queryqare distributed in a vector space defined
by the terms “Gossip” and “Jealous.” Here the record d2 is most similar to query q
because the angle between d2 and q is the smallest. A mathematical notion to the

VSM technique has been defined as follows.

In general, two n -dimensional vectors, say, vectors x and y, are represented as

~x ¼< x1, x2, . . . , xn >

~y ¼< y1, y2, . . . , yn >

We have

~x :~y ¼ ~xj j ~yj j cos θ

where ~x :~y represents the dot product between the vectors and ~xj j and ~yj j
represent the magnitude of these vectors, respectively. The dot product is also

defined as

~x :~y ¼
Xn

i¼1
xi yi

The length of a vector is computed from the Euclidean distance formula as

~xj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
x2i

q

Substituting and rearranging these three equations, we get

cos θ ¼ ~x

~xj j *
~y

~yj j ¼
Pn

i¼1 xi yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 x

2
i

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 y

2
i

p

If θ ¼ 0, then cos θ ¼ 1 so the two vectors are collinear and as similar as

possible. If θ ¼ π=2 , then cos θ ¼ 0 and vectors are orthogonal and as dissimilar

as possible.

In VSM, given a record vector ~d and a query vector ~q , the cosine similarity

sim
�
~d , ~q

�
is given as

sim ~d , ~q
� � ~d

~d
��� ��� *

~q

~qj j

It is the dot product of the record vector and query vector normalized to unit

length. Provided all components of the vectors are nonnegative, the value of this

cosine similarity ranges from 0 to 1, with its value increasing with increasing

similarity.

168 A. Pasala et al.



Naturally, for a collection of even modest size of data records, this vector space

model produces vectors having millions of dimensions. Though this high dimen-

sionality may appear inefficient, in many circumstances the query vector is sparse

with all but a few components being zero. For example, consider the entire

Shakespeare’s Romeo and Juliet novel represented as a set of records by consider-

ing each sentence as a record. Also consider the vector corresponding to a query

<William Shakespeare marriage>. The vector will have only three nonzero com-

ponents. To compute the length of the vector or its dot product with these record

vectors, we need to consider the components corresponding to these three terms

only. On the other hand, a record vector typically has a nonzero component for each

unique term contained in the record. However, the length of a record vector is

independent of the query. It may be precomputed and stored in a frequency or

positional index along with other record-specific information. Otherwise, it may

also be applied to normalize the record vector in advance, with the components of

the normalized vector taking the place of term frequencies in the posting lists.

Based on these concepts, the weightage techniques are formulated.

8.4.1.1 Weightage Techniques

As discussed above, in VSM, the records are represented as a set of vectors. Such

vectors are represented by their projections on each axis, which represent the terms

in the entire corpus. These projections of the vector along each axis (term) have

magnitude values which can be treated as weight of that term. Therefore, we

propose to use the weights of the terms.

Term frequency–inverse document frequency (TF-IDF) is the most popular

weighting scheme. In TF-IDF method [17], weights are assigned to terms in a

vector that represents a query or a record. In representing a record or a query as a

vector, a weight is assigned to each term that represents the value of corresponding

component of the vector. The assignment of weights to text tokens in a TF-IDF

scheme potentially changes the unstructured text data into a set of numeric data, and

thus it becomes easier to perform mathematical and statistical operations on the

data. The weight of a term denotes the magnitude of the component of the record/

query vector along the dimension of the vector represented by that term. When

assigning a weight in a record vector, the TF-IDF weights are computed by taking

the product of a function of the term frequency (f t,d ) and a function of the inverse

document frequency (1=Nt), whereNt is the number of documents in which the term

t occurs. When assigning weight to a query vector, the within-query term frequency

qt may be substituted for f t,d in essence treating the query as a tiny document. A

TF-IDF weight is a product of functions of the term frequency and inverse docu-

ment frequency. A common error is the use of the raw term frequency or f t,d . This

may lead to poor performance as very commonly occurring words will get assigned

higher weightage compared to distinctive words which may occur infrequently.

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 169



The IDF function typically relates the document frequency (Nt

�
to the total

number of records in the collection (N). The basic intuition behind the IDF is that a

term appearing in many records should be assigned a lower weight or importance
than a term appearing in only a few records. Of the two functions, IDF comes

closer to having a “standard form”:

IDF ¼ log N=Ntð Þ

The basic intuition behind the TF function is that a term appearing many times in

a record should be assigned a higher weight for that record than for a record in

which it appears less number of times. Another important consideration for the TF

function is that the value should not necessarily increase linearly with ft,d. Although
two occurrences of a term should be given more weight than single occurrence, they

should not necessarily be given twice the weight. The following definition of TF

meets these requirements:

TF ¼ log f t,d
� �þ 1 if f t,d > 0

0 otherwise

�

When the above equation is used with a query vector, f t,d is replaced with the

term qt, the query term frequency of t in q.

8.4.1.2 Example

Consider the text fragments from Shakespeare’s Romeo and Juliet, Act I, Scene I,
as listed in Table 8.3.

In Table 8.3, there are five records in the collection and the “sir” word appears in

four of them. Therefore, the IDF value for “sir” is

log N = f sirð Þ ¼ log 5=4ð Þ � 0:32

Also, “sir” word appears twice in record 2. Therefore, the TF-IDF value for the

corresponding component of its vector is

Table 8.3 Text fragment collection

Record ID Record content

1 Do you quarrel, sir?

2 Quarrel sir! No, sir!

3 If you do sir, I am for you. I serve as good a man as you

4 No better

5 Well sir!

170 A. Pasala et al.



log f sir; 2ð Þ þ 1ð Þ*log N = f sirð Þ ¼ log 2 þ 1ð Þ*log 5=4ð Þ � 0:64

Computing the TF-IDF values for the remaining components and the remaining

records gives the following set of vectors:

~d1 �< 0:00, 0:00, 0:00, 0:00, 1:32, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 1:32, 0:00, 0:32, 0:00, 1:32 >
~d2 �< 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 1:32, 1:32, 0:00, 0:64, 0:00, 0:00 >
~d3 �< 2:32, 2:32, 4:64, 0:00, 1:32, 2:32, 2:32, 4:64, 2:32, 2:32, 0:00, 0:00, 2:32, 0:32, 0:00, 3:42 >
~d4 �< 0:00, 0:00, 0:00, 2:32, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 1:32, 0:00, 0:00, 0:00, 0:00, 0:00 >
~d5 �< 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:32, 2:32, 0:00 >

where the components are sorted alphabetically according to their corresponding

terms. Normalizing these vectors by dividing with their lengths produces unit

vectors, as follows:

~d1=
��~d1 �� �< 0:00, 0:00, 0:00, 0:00, 0:57, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:57, 0:00, 0:14, 0:00, 0:57 >

~d2=
��~d2 �� �< 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:67, 0:67, 0:00, 0:33, 0:00, 0:00 >

~d3=
��~d3 �� �< 0:24, 0:24, 0:48, 0:00, 0:14, 0:24, 0:24, 0:48, 0:24, 0:24, 0:00, 0:00, 0:24, 0:03, 0:00, 0:35 >

~d4=
��~d4 �� �< 0:00, 0:00, 0:00, 0:87, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:49, 0:00, 0:00, 0:00, 0:00, 0:00 >

~d5=
��~d5 �� �< 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:14, 0:99, 0:00 >

To rank these five records with respect to the query< “quarrel”, “sir”>, we first

construct the unit query vector as stated below:

~q

~qj j �< 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:00, 0:97, 0:00, 0:24, 0:00, 0:00 >

The dot product between these unit query vector and each unit record vector

gives the cosine similarity values. The cosine similarity values for all these records

are computed and tabulated in Table 8.4. Based on these cosine similarity values,

the final record rankings are 2,1,5,3,4.

8.4.2 Clustering Approaches

Clustering approaches [18] are used in unsupervised methods to group the similar

text records together which will help the user in identifying the apple-to-apple

Table 8.4 Cosine similarity for text fragment collection

Record ID Cosine similarity

1 0.59

2 0.73

3 0.01

4 0.00

5 0.03

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 171



pairs. These approaches group the similar records together by identifying the same

words in the records. There are different clustering approaches available, e.g.,

K-means clustering [8, 19] and supervised methods such as the nearest neighbor

(NN) method [20, 21].

We use tokenization technique and TF-IDF scores to identify similar words in

the records so that they can be grouped together in one group. Tokenization is the

process of chopping up a given stream of text or character sequence into words,

phrases, or some meaningful words. This information is used as input for further

processing such as obtaining the similar phrases, apple-to-apple and apple-to-
orange phrases. In the following sub-section, we describe the K-means clustering

approach to identify similar records.

8.4.2.1 K-Mean Clustering

It is one of the most efficient methods of clustering approaches. From the given set

of data records, words or phrases are obtained using tokenization and form the k
different clusters. Each of these clusters characterized with a unique centroid (e.g.,

mean of the words in that cluster) is partitioned using the K -means algorithm. The

elements belonging to one cluster are close to the centroid of that particular cluster

and dissimilar to the elements belonging to the other clusters.

The “k” in the K -means algorithm refers to the number of groups to be assigned

for a given dataset. If “n” objects have to be grouped into “k” clusters, cluster

centers have to be initialized. These objects are referred to words or phrases.

Further, each object is assigned to its closest cluster center. And the center of the

cluster is updated until there is no change in each cluster center. From these centers,

we can define a clustering by grouping objects according to the center the object is

assigned to. The data is partitioned into k clusters where each cluster’s center is
represented by the mean value of the objects in the cluster. Each of these clusters

forms the apple-to-apple pairs. The algorithm is explained as follows.

8.4.2.2 Algorithm: Cluster Algorithm to Group Similar Bug Data

Records

Input: Data records and k – the number of clusters

Output: A set of k clusters:

Step 1: Choose k number of clusters to be determined.

Step 2: Choose Ck centroids randomly as the initial centers of the clusters.

Step 3: Repeat:

3.1: Assign each object to its closest cluster center using Euclidean distance.

3.2: Compute new cluster center by calculating mean points.

172 A. Pasala et al.



Step 4: Until:

4.1: No change in cluster center OR.

4.2: No object changes its clusters.

The flow of different activities of the K -means algorithm is shown in Fig. 8.3.

8.4.2.3 Example

From the given documents or records, derive the keywords using TF-IDF approach.

After that, cluster the similar keywords together form the apple-to-apple pair in

each of the cluster.

Consider the given four clusters as shown in Table 8.5. In cluster 1 we are having

similar words (Ab–Ab). In cluster 2, we are having (Ghi–Ghi) similar words.

Similarly, in cluster 3, we are having similar keywords (Dep–Dep). Likewise, in

cluster 4, we are having similar keywords (Rff–Rff). This algorithm helps in

identifying the duplicates of apple-to-apple pairs.

Start

Input: Preprocessed 
Documents/Incidents

Represent the documents as 
words/Phrases using VSM or 
Tokenization 

Apply -means Clustering Algorithm 
as given above 

Output: Cluster containing similar Apple to Apple
pairs

Fig. 8.3 Flow chart of K -means algorithm to obtain the similar records

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 173



8.4.2.4 Nearest Neighbor Classifier

The nearest neighbor (NN) classifier is a supervised approach which is also called

as K-nearest neighbor (K -NN) classifier [15, 21]. This approach is a nonparametric

approach and used for both classification and regression. It is the simplest of all

machine learning algorithms, and it can be used to weight the contributions of the

neighbors, so that the nearer neighbors contribute more to the average than the

distant neighbor.

Consider the documents containing the bug data and extract the keywords using

TF-IDF scheme. Run the NN algorithm, and if the new keyword appears, it will be

classified as its similar keyword which is the nearest sample. In this way we will

group all similar keywords. In other words, the classes which are similar to apple-
to-apple pairs will be assigned in one class, as shown below:

Input

• D - > Training data

• K -> Number of the nearest neighbors

• S -> New unknown sample which is a word or a phrase

Output

• C -> Class label assigned to new sample S

The Algorithm Is

• Let I1, I2, . . ., Ik denote the k instances from training set D that are nearest to new
unknown sample S.

• C ¼ The class from k-nearest neighbor samples with maximum count.
• k¼ 1; then the output is simply assigned to the class of that single nearest

neighbor.

Table 8.5 Identifying the similar words together using K-means clustering

Cluster1 Cluster2 Cluster3 Cluster4

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

Ab Ghi Dep Rff

174 A. Pasala et al.



8.5 An Approach to Detect Apple-to-Orange Pairs

In this section, we describe an approach to detect the apple-to-orange pairs of

duplicates. The approach is based on building word co-occurrence model. The idea

is to model the underlying relations between two dissimilar duplicates and use the

model thus built for future detection of duplicates. To accurately learn these

relations and build the model, we need to analyze the apple-to-orange pairs that
have been previously identified and stored during the maintenance of the software

manually by the maintenance engineers. Typically, this process is called learning or

training phase of the technique. After building the model, we use the model thus

built in our system to provide real-time detection of both apple-to-apple and apple-
to-orange pairs. This process is carried automatically by the system as and when a

new bug record arrives. The process is called an online phase of the technique.

Therefore, the process of identifying duplicates in dissimilar textual records con-

sists of two phases as shown in Fig. 8.4. These phases are further described in detail

in the following subsections, respectively.

8.5.1 Training Phase

The process of building a model using the previously known data records is known

as the training phase. In this phase, we train the model that will be used to expand

Fig. 8.4 Approach to detect apple-to-orange pairs

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 175



the query that is submitted by the user of the duplicate bug record detection system.

For training the model, we need the previous history of duplicate bug records that

has been manually verified by the maintenance engineers and marked as duplicates.

The training phase can be divided into two steps, namely, identify the apple-to-
orange pairs and build a word co-occurrence model. These steps are

elaborated here.

8.5.1.1 Step 1

Identify the apple-to-orange pairs present in bug record history. Initially to train

our model, we have to identify the list of apple-to-orange pairs present in the

validated duplicate dataset. This is done by using vector space model. Typically

each record is represented by a vector with one component in the vector for every

term in the entire vocabulary present in the bug records processed till that time.

These components are usually calculated using the TF-IDF weighting scheme:

wi ¼ tf i � idf i

where

– wi is the weight assigned to each term in the vector.

– tf i represents the term frequency, i.e., the number of occurrences of a term in that

record.

– idf i represents the inverse-document frequency and is a measure of whether a

term is common or rare across all records.

Inverse-document frequency is calculated as

idf i ¼ log
Dtot

Dti

where

– Dtot is the total number of records processed.

– Dti is the number of records containing that particular term.

The similarity between two records is calculated as the deviation of angles

between each record or the cosine of the angle between the vectors. We calculate

the similarity between all the duplicate pairs present in the bug repositories. The

ones which have no similarity are identified as apple-to-orange pairs.

8.5.1.2 Step 2

Build a word co-occurrence model by capturing the underlying relations between

known apple-to-orange pairs. The concept of co-occurrence has been slightly

176 A. Pasala et al.



modified in our approach than in the normal use. We do not consider the frequency

of co-occurrence between two words belonging to the same pair. Rather we

consider only the number of times a word in one bug record occurs along with a

word in that record’s validated duplicate. The model is represented in a word matrix

which is of size NxN (N being the size of the vocabulary), and the value of the cell

aij will be the co-occurrence score between the word with index i and the word with
index j. This score is representative of the relationship between the two words; the

greater the score, the more related the two words are. As there will be huge number

of words in our vocabulary, representing the model as a simple two-dimensional

array will not be feasible. As the majority of the words do not co-occur, there is a

high level of sparsity in the matrix which allows us to use simpler sparse represen-

tations. In this way, we plan to capture the relationships between apple-to-orange
pairs. For example, if “server failure” and “login issue” are two validated dissimilar

duplicates, then we map server with login in the matrix. The next time any server

issue is reported, then we can use this model to predict that there might have been

some sort of login issue also. We build the co-occurrence model for all the known

apple-to-orange pairs in the available bug record history.

8.5.2 Online Phase

In a real-time scenario with new bug records constantly being reported by the users

of the software application, our system performs two searches for each of these bug

records (or queries) as shown in Fig. 8.1. These are (1) the standard text similarity

algorithm that is used to find all the similar duplicates for that bug record and (2) the

technique to find the apple-to-orange pairs present in the repository with extended

query. The procedure has the following three steps:

1. Compare and augment the query with the word co-occurrence model built

during the training phase. It has the following two subphases:

a. Extract the keywords relevant to the query from the co-occurrence model.

This is done by picking up those related keywords that are most common to

all the words present in the query. These are the words that have the highest

co-occurrence score in the co-occurrence model.

b. Expand the query with the words extracted from the model. The above word

matrix is then used to expand the query submitted by the user. To do this, the

query is first processed and all the stop words in the query are removed. Then

for each word in the query, we extract the top 5 most commonly co-occurring

words from the matrix. All these related words are added into a collection,

sorted according to their count. The word with the greatest count would be the

word that is most common among the words of the original query. Thus from

the collection, we choose the top 5 words based on their count. These words

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 177



are added to the original query which is used to search for duplicates. Thus

the resulted query is called expanded query.

2. Search the repository with the above expanded query. This will return a list of

records that include duplicates that are dissimilar in text to the original query.

More details on the procedure of search are given below.

3. Retrain the model with the new data if maintenance engineer validates it to be

part of an apple-to-orange pair. The process of learning wherein model param-

eters are changed or tweaked whenever new data points emerge is known as

incremental learning.

Finally, we merge the results obtained via the two searches to provide the user

with an aggregated list of duplicates.

The final search is performed on the indexed data using three separate retrieval

algorithms implemented in Lucene. These are Okapi BM25 and language modeling

using Jelinek–Mercer and Dirichlet smoothing.

8.5.3 Okapi BM25

The BM25 weighting scheme also known as Okapi weighting scheme is one of the

state-of-the-art information retrieval (IR) techniques and has been in widespread

use since its introduction [22]. It is a probabilistic model, which uses three key

document attributes, namely, term frequency, document frequency, and average

document length. The scoring function is implemented as

S q; dð Þ ¼
X
t2q

IDF tð Þ ∙ tf dt

k1 1� bð Þ þ b ld
avld

� �
þ tf dt

where

– tf dt is the frequency of term t in document d.
– ld is the length of document d.
– avld is the average document length along the collection.

– k1 is a parameter used to tune the saturation of the term frequency and is usually

between 1.2 and 2.

– b is a length tuning parameter whose range is [0,1].

The IDF for term t is computed as

IDF tð Þ ¼ log
Dtot � Dt þ 0:5

Dt þ 0:5

where

178 A. Pasala et al.



– Dtot is the total number of documents.

– Dt is the number of documents where that particular term occurs.

8.5.4 Language Modeling with Smoothing

The central idea behind language modeling is to estimate a model for each docu-

ment and then rank the documents by the query likelihood according to the

estimated language model. A big problem while calculating the maximum likeli-

hood is that if a particular term has not been encountered before, then the maximum

likelihood would become 0 as the probability of the individual term would be 0. To

avoid this, a technique known as smoothing is used which adjusts the likelihood

estimator to account for that type of data sparseness. Here, we use two types of

smoothing methods Jelinek–Mercer and Dirichlet priors. The Jelinek–Mercer

method involves a simple mixture of a document-specific distribution and a distri-

bution estimated from the entire collection:

pλ tjdð Þ ¼ 1� λð Þpml tjdð Þ þ λpml t
��c� �

where pml t
��d� �

represents the conditional probability of the term belonging to that

document and pml t
��c� �

is the conditional probability of the term belonging to that

particular language.

In the Dirichlet smoothing method, the language model is built from the whole

collection as the prior distribution of a Bayesian process. The conjugate priors for

this form a Dirichlet distribution hence the name:

pμ tjdð Þ ¼ tf dt þ μp t
��d� �

ld þ μ

Here, p t
��d� �

is the conditional probability of the term belonging to the document.

According to Zhai et al. [9], the optimal value for λ in Jelinek–Mercer is 0.7, andμ in
Dirichlet prior is 2000.

8.6 Implementation and Case Study

The prototype of duplicate bug identifier is built in Java using the open-source API

Lucene (Apache 2.0 licence). Lucene allows easy implementation of indexing and

searching using the VSM algorithm described above. It calculates the TF-IDF

values for each word and implements its custom scoring technique to find the

similarity between bug records. We modify this custom scoring technique to

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 179



include some of the more recent and powerful algorithms such as Okapi BM25 and

language modeling as discussed earlier.

As there are often huge number of words in bug record vocabulary, representing

the model as a standard matrix becomes highly memory intensive, and it will not be

possible to run any program in memory. However, as a majority of the words do not

co-occur, there is a high level of sparsity (the presence of zeros) in the matrix which

allows us to use simpler sparse representations such as compressed row storage

(CRS) or compressed column storage (CCS). These representations save memory

by storing subsequent nonzero values in contiguous memory locations and ignoring

the zeros. This sparse matrix multiplication was done using another open-source

API called l4aj which has functions for CRS as well as CCS matrix representations.

We used CRS for sparse matrix representation.

8.6.1 Datasets

Typically a bug record contains several fields like summary, description, platform,

priority, etc. which are in a natural language format. There are also other fields with

non-textual information as attachments. The status of the bug is set by the developer

or triager who checks if the bug record is valid or not. And if the bug record has

been raised before or caused by the same issue as another bug record, then it is

marked as a duplicate. A typical example of a bug record from Chrome dataset,

taken from Chrome issue tracker, is shown in Fig. 8.5. We have used the Chrome

bug record dataset available on the Google code website. The Chrome dataset

consists of 142,286 issues out of which 25,756 issues (18.1%) were marked by

the maintenance engineers as duplicates. These numbers on this bug data are from

the date which we have accessed. Figure 8.6 shows a sample of the validated

duplicate bug record dataset.

We calculate the similarity between all the duplicate pairs, and the ones which

have no similarity are identified as apple-to-orange pairs. From Fig. 8.7, it is

noticed that 2769 out of 25,756 duplicate pairs in chrome were apple-to-orange
pairs.

Fig. 8.5 Bug records in Chrome issue tracker

180 A. Pasala et al.



The apple-to-orange dataset was split into 60% training and 40% testing

datasets. This split was done randomly and repeated five times for the purpose of

generalization.

Among the 1108 apple-to-orange pairs used for testing, our tool detected around
205 pairs. However the number of bug records detected in the top 10 is quite low

with the best result being only 14 records coming among the top 10. The average

recall rates at 10 for all three techniques are shown in Table 8.6, where recall rate at
k is defined as the fraction of duplicate pairs that were detected in the top k results of
the search. A “recall rate at 10” of 1 means that all the duplicate bug report pairs

Fig. 8.6 Validated duplicate pairs in Chrome dataset

Fig. 8.7 No. of apple-to-orange pairs found in Chrome dataset

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 181



were detected among the top 10 search results. We can observe that the best

performance was obtained using language modeling with Dirichlet smoothing.

Still it only amounts to 1.5% of the apple-to-orange pairs being detected in the

top 10 ranks.

The performance of the technique is rather low because there is very little

training dataset. We can see that a significant number of duplicates that were not

being detected at all before are becoming visible now and with more data that is

spread over a longer period of time. It will be possible to increase the rank of those

results and improve the recall rates.

The technique as such does not add much time costs to the standard search

algorithms. Table 8.7 describes the time overhead in detecting the duplicates using

VSM and our technique. The program was run on a machine with a 32 bit single

core processor and 4GBs of RAM. We can observe that there is an increase in time

taken to display the results as the number of bug’s increases, but at the maximum

for 150,000 bugs present, it can return the results for a new query in less than 2 min

on even a slower machine.

Figure 8.8 is a graphical representation of the time taken to get the results for a

bug given the total number of bugs already present in the repository. The values

Table 8.6 Recall rate of apple-to-orange pairs after using query expansion

Rank size Okapi BM25 Jelinek–Mercer Dirichlet priors

10 0.003 0.002 0.015

20 0.010 0.008 0.029

30 0.017 0.014 0.039

50 0.034 0.029 0.059

100 0.065 0.068 0.081

Table 8.7 Performance statistics of our technique versus standard search

Number of bug records 10,000 20,000 50,000 100,000 150,000

Number of apple-to-apple pairs 112 348 1116 2147 2796

Number of apple-to-orange pairs 1181 2907 8317 18,685 25,755

Time taken for standard search (milliseconds) 63 62 62 63 75

Time taken for search with query expansion

(seconds)

1.773 5.431 22.56 65.874 98.5

112 348 1116

2147

2796

0
20
40
60
80

100
120

T
im

e 
ta

ke
n 

fo
r 

Se
ar

ch
 

w
it
h 

Q
ue

ry
 E

xp
an

si
on

Number of Incidents

Se…
Values 
above data 
points 
represent 

Fig. 8.8 Performance

statistics of the technique

182 A. Pasala et al.



displayed over each data point correspond to the number of apple-to-orange pairs
that have been used to train the model.

8.7 Recurring Bug Prevention Framework

It is observed that some of the bugs reappear now and then. Such bugs are close to

20% of the total bugs reported by the end users for that particular software

application. Preventing these bugs will save the effort and time of maintenance

engineers. These types of bugs need to be monitored over a period of time and a root

cause will be identified. Once the root cause is identified, a solution to the problem

can be designed and implemented. Based on this approach, we propose the follow-

ing technical solution that automates the process of identifying the recurring bugs

and how well it prevents them to recur in the future. The framework consists of four

components as shown in Fig. 8.9. Brief detail of the components appears below.

8.7.1 Knowledge-Enriched Bug Repository

Typically, this component is a bug repository system that stores all the reported

bugs by the users for that particular software from the start. This repository is

maintained using any issue tracking system. The term knowledge enriched is used

because in addition to storing the bug details as reported by the user, it also stores

specific information retrieval-related information. This additional information con-

sists of whether it is duplicate of some existing bug, whether it belongs to a

particular cluster, when that particular bug group had been fixed, what the solution

is, when it is applied, etc. Also if it has reappeared, it marks and links all of the

Knowledge
Enriched bug

records

Identify groups
of recurring

duplicate Bugs
records

Bug record

Analyse the root
cause and apply

fix

Preventability
Analytics

Fig. 8.9 Recurring bug’s
prevention framework

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 183



duplicates. We can use this information to speed up the bug clustering process and

also to aid in the calculation of number of bugs prevented.

8.7.2 Identify Groups of Recurring Duplicate Bugs

At a given point of time, say once a month (or as decided by the organization based

on its policies toward bug analytics), using IR techniques the bugs in the

knowledge-enriched bug repository can be clustered into groups of similar bugs.

It is useful for identification of recurring bug patterns. IR technique is executed on

the above repository of reported bugs. One way is to iterate through all the bugs in

the repository and identify those duplicates with score greater than a threshold. Like

in ticket clustering tool, we can give the user the ability to vary the number of search

results and the threshold for the score. Two possible algorithms to identify this bug

patterns are (1) VSM and (2) clustering techniques.

Initial analysis on the Chrome data using VSM showed that out of 40,000 there

were around 2500 groups with cluster size greater than 10 and with a moderate

score (0.75) threshold. This grouping took 6 min which is not a huge overhead

considering the number of bugs reported every month is considerably lesser.

Further, through tooling we can also reduce the number of bugs to be grouped

each time increasing the performance.

Secondly, we used K-means algorithm to group the bugs into categories based

on similarity and provide the user the ability to choose number of clusters or give

keywords to aid and fine-tune the clustering. The problem is that the grouping

would be broader in nature and would not be feasible for large data. From the

previous example, we could see that there were more than 2500 clusters for the

Chrome incident data. Therefore, clustering technique could be helpful for small

datasets, which is a limitation.

8.7.3 Root Cause Analysis and Bug Fix

Once the patterns are identified, root cause analysis can be performed on the

clusters or patterns of duplicate/recurring bugs detected. The identification of root

cause for the repeatedly occurring bug is more of technical and manual process.

Based on the identified root cause for that particular bug, a solution to this root

cause problem is identified. The required solution is implemented. As the solutions

are stored for this recurring bug in the issue tracking system as and when these bugs

occurred, hence we can use machine learning algorithms to analyze all the applied

solutions, and a reasonable summary can be presented to the maintenance engineer

so that appropriate solution can be invented and implemented. Based on the

analysis, the maintenance engineer can devise a solution that is more suitable and

appropriate.

184 A. Pasala et al.



8.7.4 Preventability Analytics

In this step, we store the information regarding the bug fixes in the knowledge-

enriched bug repository to aid in the calculation of preventability. For example,

storing the time at which a particular pattern of reoccurring bugs are fixed can be

used to track further occurrences of the same. That is, if no further incidents of that

type are encountered, then we can use that to demonstrate the effectiveness of

preventive maintenance.

Let us assume that at some point of time t1, bug B1 has occurred the first time.

For the duration of “n” days, it was observed that there are “m” times the bug that

has been reported. That is, the Bm has occurred at time t2. At t2, the root cause

analysis is carried and the bug fixed with likely permanent solution at time t3. When

we carry the duplicate analysis at time t4, the duplicate bug doesn’t appear at all.
Based on this analysis, we can conclude that the bug is not recurring. Therefore, we

will assume that all such bugs have been disappeared. Hence, using statistical

techniques the percentage of bugs detected and closed and prevented can be

derived.

8.8 Conclusions

In this chapter, the practical challenges of identifying duplicate bugs in large bug

data repositories are explained in detail with examples. To address these challenges,

a set of machine learning techniques are proposed and discussed. Based on the

proposed techniques, a tool has been built. Using the tool a case study has been

conducted on a practical open-source dataset which is available online. The results

have been presented in terms of the number of duplicate bugs detected in this

dataset.

The chapter proposed VSM and cluster algorithms to identify duplicate bugs

which are similar in vocabulary. It also proposed a method to detect the textually

dissimilar duplicate records by capturing the underlying root cause relations

between the two bug records. It used an expanded query by aggregating the

words present in it and also words captured through the co-occurrence relationships

between words present in the existing duplicate records of that repository. Both

types of duplicates are captured concurrently using two searches, one with the

original query and the other with the expanded query. This is a novel way of

identifying duplicate data records. It expands further by identifying patterns in

the history of previously validated duplicates. One of the limitations of the method

is that it requires a priory properly triaged bug data records which are used to build

the model. The process of triaging though is often neglected in organizations and

there can be a shortage of available data records.

Though we have conducted a case study on practical data, the results are not

quite encouraging on identification of apple-to-orange types of duplicates

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 185



especially on the top 10 lists of duplicates. Further, empirical analysis is required to

validate these proposed methods of duplicate identification and results. Then only

one can analyze the efficiency of the proposed methods. Further, there was a

limitation on the dataset size we have used. We have to experiment on a huge

datasets and conclude the results. Certainly the recurring bugs’ prevention frame-

work takes a longer time to implement in an organization and also to validate the

framework. Therefore a lot of empirical analysis is warranted.

Further, the bug record not only contains textual information but also contains

the images of the screens. It is observed that few bugs have a simple screenshots

attached to the bug information for detailed explanation. However, these records

are out of our scope, as we perform analytics on text only. These images contain

more accurate information about the nature of the failure that occurred during the

access of the software application. To handle this additional information, given a

bug report with a screenshot of the error attached along with it, we can use optical

character recognition (OCR) techniques to extract any textual information that it

contains, and the text can be added to the description of the bug. This enhanced

description can now be used by the duplicate bug detection algorithms to provide

improved duplicate bug results. This could further increase the processing time for

duplicate search and building co-occurrence matrix. This shows the need for further

work in this direction to improve both the results fetched and as well as for

improving the processing time. Hence, there exists a wider scope for expanding

our work in applying analytics to large bug repositories.

References

1. Datamonitor (2011) Software: Global Industry Guide 2010. MarketLine

2. Canfora ACG (1995), Software maintenance. In: 7th international conference on software

engineering and knowledge engineering, pp 478–486

3. Sutherland J (1995) Business objects in corporate information systems. ACM Comput Surv 27

(2):274–276

4. Jones C (2006) http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf

5. Anvik J, Hiew L, Murphy GC (2005) Coping with an open bug repository. In: Proceedings of

the OOPSLA workshop on eclipse technology exchange, pp 35–39

6. Alexandersson M, Runeson ONP (2007) Detection of duplicate defect reports using natural

language. In: Processing 29th international conference on software engineering, pp 499–510

7. Jalbert N, WeimerW (2008) Automated duplicate detection for bug tracking systems. In: IEEE

international conference on dependable systems and networks with FTCS and DCC, pp 52–61

8. Pudi V, Krishna PR (2009) Data mining, 1/e. Oxford University Press, India. 2009.x

9. Zhai C, Lafferty J (2004) A study of smoothing methods for language models applied to

information retrieval. ACM Trans Inf Syst 22(2):179–214

10. Wang X, Zhang L, Xie T, Anvik J, Sun J (2008) An approach to detecting duplicate bug reports

using natural language and execution Information. In: Proceedings of ICSE 2008, Leipzig,

Germany

11. Sun C, Lo D, Jiang XWJ, Khoo S-C (2010) A discriminative model approach for accurate

duplicate bug report retrieval. In: The Proceedings of ICSE 2010, Cape Town, South Africa

186 A. Pasala et al.

http://www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf


12. Sun C, Lo D, Khoo S-C, Jiang J (2011) Towards more accurate retrieval of duplicate bug

records. In: The Proceedings of IEEE/ACM international conference of automated software

engineering, IEEE Computer Society, Washington, DC, pp 253–262

13. Tian Y, Sun C, Lo D (2012) Improved duplicate bug report identification. In: Proceedings of

16th European conference on software maintenance and reengineering

14. Alipour A, Hindle A, Stroulia E (2013) A contextual approach towards more accurate

duplicate bug detection. In: Mining Software Repositories (MSR), IEEE Press Piscataway,

pp 183–192

15. Sureka A, Jalote P (2010) Detecting duplicate bug report using character N-Gram-based

features. In: Proceedings of the Asia Pacific software engineering conference, pp 366–374

16. Manning C, Raghavan P, Sch€utze H (2008) Introduction to information retrieval. Cambridge

University Press, New York

17. Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun

ACM 18(11):613–620

18. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques: concepts and tech-

niques. Elsevier, Amsterdam

19. Forgy EW (1965) Cluster analysis of multivariate data: efficiency versus interpretability of

classifications. Biometrics 21:768–769

20. Dasarathy BV (1990) Nearest neighbor (NN), norms: NN pattern classification techniques

ISBN: 0-8186-8930-7

21. Shakhnarovish G, Darrell T, Indyk P (2005) Nearest-neighbour methods in learning and

vision. MIT Press, Cambridge. ISBN 0-262-19547-X

22. Robertson SE, Walker S, Jones S (1995) Okapi at TREC-3. In: Proceedings of the third text

retrieval conference Gaithersburg, USA, pp 109–126

8 An Analytics-Driven Approach to Identify Duplicate Bug Records in Large. . . 187



Part III

Big Data Tools and Analytics



Chapter 9

Large-Scale Data Analytics Tools: Apache
Hive, Pig, and HBase

N. Maheswari and M. Sivagami

Abstract The Apache Hadoop is an open-source project which allows for the

distributed processing of huge data sets across clusters of computers using simple

programming models. It is designed to handle massive amounts of data and has the

ability to store, analyze, and access large amounts of data quickly, across clusters of

commodity hardware. Hadoop has several large-scale data processing tools and

each has its own purpose. The Hadoop ecosystem has emerged as a cost-effective

way of working with large data sets. It imposes a particular programming model,

called MapReduce, for breaking up computation tasks into units that can be

distributed around a cluster of commodity and server class hardware and thereby

providing cost-effective horizontal scalability. This chapter provides the introduc-

tory material about the various Hadoop ecosystem tools and describes their usage

with data analytics. Each tool has its own significance in its functions in data

analytics environment.

Keywords Hadoop • Pig • Hive • HBase • HDFS • MapReduce • Data analytics •

Big data

9.1 Introduction

Big data refers to large or complex poly-structured data, including video, text,

sensor logs, and transactional records, that flows continuously through and around

organizations. Traditional data processing applications are not enough to handle

such big volumes of data. So, there are various challenges like data capture, data

sharing, data analysis, storage, security, and visualization. Organizations across

public and private sectors have made a strategic decision to turn big data into

competitive advantage. Extracting the required information from big data is similar

to refining the business intelligence from transactional data. The big data requires

“extract, transform, and load” (ETL) infrastructure [1] to handle it efficiently.

N. Maheswari (*) • M. Sivagami

School of Computing Science and Engineering, VIT University, Vandalur-Kelambakkam

Road, 600 127 Chennai, Tamil Nadu, India

e-mail: maheswari.n@vit.ac.in; msivagami@vit.ac.in

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_9

191

mailto:maheswari.n@vit.ac.in
mailto:msivagami@vit.ac.in


When the source data sets are large, fast, and unstructured, the traditional ETL is

not suitable, because it is too complex to develop and too expensive to operate and

takes too long to execute.

Yahoo, Google, Facebook, and other companies have extended their services to

web scale; the amount of data they collect routinely from user interactions online

would have besieged the capabilities of traditional IT architecture. In the interest of

advancing the development of core infrastructure components rapidly, they

released relevant code for many of the components into open source. Apache

Hadoop has emerged from these components, as the standard for managing

big data.

Apache Hadoop is an open-source distributed software platform for storing and

processing data. Written in Java, it runs on a cluster of industry-standard servers

configured with direct-attached storage. Using Hadoop, petabytes of data can be

stored reliably on tens of thousands of servers while scaling performance cost-

effectively by merely adding inexpensive nodes to the cluster. Apache Hadoop has

the distributed processing framework known as MapReduce (Fig. 9.1) that helps

programmers solve data-parallel problems by subdividing large data sets into small

parts and processing independently. The system splits the input data set into

multiple chunks, each of which is assigned a map task that can process the data

in parallel. Each map task reads the input as a set of key-value pairs and produces a

transformed set of key-value pairs as the output. The framework shuffles and sorts

Interfaces

Abstractions

Distributed
Data

Processing

Clustered
storage
system

ETL
Tools

Business 
Intelligence

RDMBS

PIG Hive

Mapreduce

HBASE
Database     

real-time 
access

Hadoop Distributed File System

(HDFS)

Fig. 9.1 Hadoop architecture

192 N. Maheswari and M. Sivagami



outputs of the map tasks, sending the intermediate key-value pairs to the reduce
tasks, which group them into final results. MapReduce uses JobTracker and

TaskTracker mechanisms to schedule tasks, monitor them, and restart any that fail.

The Apache Hadoop platform also includes the Hadoop Distributed File System

(HDFS), which is designed for scalability and fault tolerance. HDFS stores large

files by dividing them into blocks (usually 64 or 128 MB each) and replicating the

blocks on three or more servers. HDFS provides APIs for MapReduce applications

to read and write data in parallel. Capacity and performance can be scaled by adding

Data Nodes, and a single NameNode mechanism manages data placement and

monitors server availability. HDFS clusters may have thousands of nodes and

each can hold petabytes of data.

Apache Hadoop includes many other components that are useful for ETL along

with MapReduce and HDFS.

In the following sections, more details about the large-scale data analytics tools

have been provided. Section 9.2 describes the Hive compilation stages, Hive

commands, partitioning and bucketing in Hive, and Hive performance and chal-

lenges. Section 9.3 describes the Pig compilation stages, Pig commands, Pig user-

defined function, Pig scripts and issues, and challenges in Pig. Section 9.4 high-

lights the HBase architecture, HBase commands, and HBase performance. Conclu-

sions are given in Sect. 9.5.

9.2 Apache Hive

The size of data sets being collected and analyzed in the industry for business

intelligence is growing rapidly, making traditional warehousing solutions prohibi-

tively expensive. Apart from ad hoc analysis [2] and business intelligence applica-

tions used by analysts across the company, a number of Facebook products are also

based on analytics.

The entire data processing infrastructure in Facebook was developed around a

data warehouse built using a commercial RDBMS. The data generated was growing

very fast – for example, it grew from a 15 TB data to a 700 TB data set. The

infrastructure was so inadequate to process the data and the situation was getting

worse. So there was an urgent need for infrastructure that could scale along with

large data. As a result, the Hadoop technology has been explored to address the

scaling needs. The same jobs that had taken more than a day to complete could now

be completed within a few hours using Hadoop. But Hadoop was not easy for end

users, especially for those users who were not familiar with MapReduce. End users

had to write MapReduce programs for simple tasks like getting row counts or

averages. Hadoop lacked the expressiveness of popular query languages like

SQL, and as a result, users ended up spending hours to write programs for even

simple analysis. To analyze the data more productively, there must be a need to

improve the query capabilities of Hadoop. As a result, Hive was introduced in

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 193



January 2007. It aimed to bring the familiar concepts of tables, columns, partitions,

and a subset of SQL to the unstructured world of Hadoop, along with maintaining

the extensibility and flexibility of the Hadoop. Hive and Hadoop are used exten-

sively now for different kinds of data processing. Hive was open-source and since

then has been used and explored by a number of Hadoop users for their data

processing needs.

Apache Hive is a Hadoop ecosystem tool. It acts as a data warehouse infrastruc-

ture built on Hadoop for providing data aggregation, querying, and analysis. Data

warehouse applications maintain large data sets and can be mined for analytics.

Most of the data warehouse applications use SQL-based relational databases. In

order to do data analytics using Hadoop, data has to be transferred from warehouse

to Hadoop. Hive simplifies the process of moving the data from data warehouse

applications to Hadoop.

Hive QL is an SQL-like language provided by Hive to interact with it. It

facilitates a mechanism to project the structure on the data and query the data.

The traditional MapReduce pattern can be connected in Hive as a plug-in compo-

nent. Hive does not create Java MapReduce programs. It uses the built-in generic

mapper and reducer modules which are driven by an XML file containing the job

plan. The generic modules serve like small language interpreters, and the “lan-

guage” to force the computation is encoded using XML.

9.2.1 Hive Compilation and Execution Stages

The CLI (command line interface) is the most popular way to use Hive. The CLI

allows statements to be typed one at a time. It also facilitates to run “Hive scripts”

which are collection of Hive statements.

Hive components are shell, thrift server, metastore, driver, query compiler, and
execution engine. The shell allows the interactive queries to execute in CLI [3]. A

thrift service provides remote access from other processes. Access is provided by

using JDBC and ODBC. They are implemented on top of the thrift service. All Hive

installations require a metastore service, which Hive uses to store table schemas and

other metadata. It is typically implemented using tables in a relational database. The

driver manages the life cycle of Hive QL statement during compilation, optimiza-

tion, and execution. Query compiler is invoked by the driver when Hive QL

statement is given. It translates the query statement into directed acyclic graph of

MapReduce jobs.

The driver submits the DAG-based MapReduce jobs to the execution engine of

the Hive and is available in Hadoop. By default, Hive uses a built-in Derby SQL
server, which provides limited single process storage. For example, when using

Derby, two simultaneous instances of the Hive CLI cannot run. A simple web

interface known as Hive Web Interface provides remote access to Hive.

194 N. Maheswari and M. Sivagami



9.2.2 Hive Commands

Apache Hive works in three modes [4]: local, distributed, and pseudo distributed

modes. Local mode refers to the files from local file system and the jobs run all the

tasks in a single JVM instance. Distributed mode accesses the files from HDFS and

the jobs are run as several instances in the cluster. By default, Hive stores the table

data in file:///user/hive/warehouse for local mode and in hdfs://
nnamenode_server/user/hive/ warehouse for the distributed mode.

Pseudo distributed mode is almost identical to distributed, but it is a one-node cluster.

This section explores the data definition and data manipulation language parts of

Hive QL which is used to create and store data into the Hive tables, extract data into

the file system, and manipulate data with queries.

The syntax and examples have been provided for the Hive commands. These

commands can be executed in the hive> command line interface (CLI).

9.2.2.1 Databases

The database in Hive is essentially a catalog or namespace of tables [4]. Databases
are very useful for larger clusters with multiple teams and users and help in

avoiding table name collisions. It is also common to use databases to organize

production tables into logical groups. In the absence of database name, the default

database is used. The simplest syntax for creating a database is shown in the

following example:

CREATE (DATABASE|SCHEMA) [IF NOT EXISTS]
database_name
[COMMENT database_comment]
[LOCATION hdfs_path]
[WITH DBPROPERTIES
(property_name¼property_value, . . .)];
create database mydb;

The uses of SCHEMA and DATABASE are interchangeable – they mean the

same thing. CREATE DATABASE was added in Hive 0.6. The WITH

DBPROPERTIES clause was added in Hive 0.7.

The USE database command informs the Hive of the database where the data is

to be stored or accessed from. It helps to group the logical related tables to avoid the

name collision:

use database_name;
use mydb;

The SHOW command displays the list of databases available in Hive:

show databases;

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 195



9.2.2.2 Tables

The CREATE TABLE command creates a table with the given name. An error is

thrown if a table or view with the same name already exists. One can use IF NOT

EXISTS statement to skip the error. It should be noted that:

• Table names and column names are case insensitive but SerDe and property

names are case sensitive.

• Table and column comments are string literals (single quoted).

• The TBLPROPERTIES clause tags the table definition with the user’s own

metadata key-value pairs. Some predefined table properties also exist, such as

last_modified_user and last_modified_time which are automatically added and

managed by Hive. Other predefined table properties include: TBLPROPERTIES

("comment"¼ "table_comment") and TBLPROPERTIES ("hbase.table.

name"¼ "table_name") – see HBase Integration.

To specify a database for the table, either issue the USE database_name state-

ment prior to the CREATE TABLE statement (in Hive 0.6 and later) or qualify the

table name with a database name ("database_name.table.name" in Hive 0.7 and

later). The keyword “default” can be used for the default database:

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS]
[db_name.]table_name -- (Note: TEMPORARY available in Hive
0.14.0and later)
[(col_namedata_type [COMMENT col_comment], . . .)]
[COMMENT table_comment]
[PARTITIONED BY (col_namedata_type [COMMENT
col_comment], . . .)]
[CLUSTERED BY (col_name, col_name, . . .) [SORTED BY
(col_name [ASC|DESC], . . .)] INTO num_buckets BUCKETS]
[ROW FORMAT row_format]
[STORED AS file_format]
[LOCATION hdfs_path]
[TBLPROPERTIES (property_name¼property_value,
. . .)] -- (Note: Available in Hive 0.6.0 and
later)
[AS select_statement]; -- (Note: Available in
Hive 0.5.0and later; not supported for external
tables)

CREATE [TEMPORARY] [EXTERNAL] TABLE [IF NOT EXISTS]
[db_name.]table_name
LIKE existing_table_or_view_name
[LOCATION hdfs_path];
[ROW FORMAT row_format]
[STORED AS file_format]

196 N. Maheswari and M. Sivagami

https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration#HBaseIntegration-Usage
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-UseDatabase
https://issues.apache.org/jira/browse/HIVE-675
https://issues.apache.org/jira/browse/HIVE-1517


Use STORED AS TEXTFILE [4] if the data needs to be stored as plain text files.

TEXTFILE is the default file format. Use STORED AS SEQUENCEFILE if the

data needs to be compressed. Use STORED AS ORC if the data needs to be stored

in ORC file format. The Optimized Row Columnar (ORC) file format provides an

efficient way to store Hive data. Use ROW FORMAT SERDE for the serialization:

CREATE TABLE IF NOT EXISTS mydb.employees (
name STRING COMMENT ’Employee name’,
salary FLOAT COMMENT ’Employee salary’,
subordinates ARRAY<STRING>COMMENT ’Names of
subordinates’,
deductionsMAP<STRING, FLOAT>
COMMENT ’Keys are deductions names, values are
percentages’,
address STRUCT<street:STRING, city:STRING,
state:STRING, zip:INT>
COMMENT ’Home address’)
COMMENT ’Description of the table’
TBLPROPERTIES (’creator’¼’me’, ’created_at’¼’2012-
01-02 10:00:00’, . . .)
LOCATION ’/user/hive/warehouse/mydb.db/employees’;

The SHOW TABLES command lists all the tables and views in the current

working database:

show tables;

The DESCRIBE table command displays the structure of the table:

describe table table_name
describe table employees.

9.2.2.3 Loading Data into Table

The LOAD command loads the data either from local file system or from HDFS to

the Hive warehouse:

Load data local /path of a file/ overwrite into
table
table_ name.
load data local inpath ’/home/ponny/mar.txt’
overwrite into table dt;

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 197



9.2.2.4 Retrieving Data from Table

The SELECT..CASE command helps to retrieve data based on the various condi-

tions specified in each case:

select fieldnames from tablename where condition
select count(*), avg(salary) FROM employees;
select * FROM employees WHERE country ¼ ’US’ AND
state ¼ ’CA’;

select fieldnames case condition then action . . .. end
from table name
select *, case when c>60 then ’first’
when c<60 then ’second’
else ’third’
end from ma;

9.2.2.5 Drop Command for Database and Tables

The DROP command deletes the database/table from Hive:

DROP (DATABASE|SCHEMA) [IF EXISTS] database_name
[RESTRICT|CASCADE];
drop database mydp;

drop table tablename
drop table employee;

9.2.3 Partitioning and Bucketing

A simple query in Hive reads the entire data set even with the WHERE clause filter.

This becomes a bottleneck for running MapReduce jobs over a large table

[5, 6]. This issue can be overcome by implementing partitions in Hive. Hive

makes it very easy to implement partitions by using the automatic partition scheme

when the table is created. It organizes tables into partitions, a way of dividing a

table into related parts based on the values of partitioned columns such as date, city,

and department. Using partition, it is easy to query a portion of the data.

In Hive’s implementation of partitioning, data within a table is split across

multiple partitions. Each partition corresponds to a particular value(s) of partition

column(s) and is stored as a sub-directory within the table’s directory on HDFS.

Though the selection of partition key is always a sensitive decision, it should always

198 N. Maheswari and M. Sivagami



be a low cardinal attribute, e.g., if the data is associated with time dimension, then

date could be a good partition key. Similarly, if data has an association with

location, e.g., a country or state, then it is a good idea to have hierarchical partitions

like country/state. When the table is queried and if it has partitions, only the

required partitions of the table are queried, thereby reducing the I/O and time

required by the query. Partitioning can carry out using static, dynamic, or hybrid

mode. Data type of the partitioning column has to be able to be converted to a string

in order to be saved as a directory name in HDFS.

9.2.3.1 Dynamic Partitioning

Dynamic partitioning has been done based on the attribute/attributes and not the

value. Table is dynamically partitioned based on the value of the corresponding

attribute in the insertion phase. The following steps are required for the partition.

Non-partitioned Table Creation

create table dt(a int,b string,c int,,d int,e int)
row format delimited fields terminated by ’,’
stored as textfile;

Load Data into Non-partitioned Table

load data local inpath ’/home/ponny/mar.txt’
overwrite into table dt;

Dynamic Partition Table Creation

create table dtp(b string, c int, d int, e int) partitioned by
(a int) row format delimited fields terminated by ’,’ stored
as text file;

Flag Setting

set hive.exec.dynamic.partition ¼ true;
set hive.exec.dynamic.partition.mode ¼ nonstrict;

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 199



Load Data into Partitioned Table

insert overwrite table dtp partition(a) select
b,c,d,e,a from dt;

Here, the table dtp is partitioned by the attribute “a.” It will create n partitions

based on the total number of unique values of the attribute “a.”

9.2.3.2 Static Partitioning

Static partitioning is done based on the value/values of attribute/attributes. Table is

partitioned based on the value of the partitioned attribute in the insertion phase. The

following steps are required for the partition.

Non-partitioned Table Creation

create table dt(a int,b string,c int,,d int,e int)
row format delimited fields terminated by ’,’
stored as textfile;

Load Data into Non-partitioned Table

load data local inpath ’/home/ponny/mar.txt’
overwrite into table dt;

Static Partition Table Creation

create table stp(a int,,b string,,d int,e int)
partitioned by (c int) row format delimited fields
terminated by ’,’ stored as textfile;

Flag Setting

set hive.exec.dynamic.partition.mode ¼ strict;

200 N. Maheswari and M. Sivagami



Load Data into Partitioned Table

insert overwrite table stp partition(c ¼ 90)
select a,b,d,e from dt where c ¼ 90;

Here the table stp is partitioned by the value of the attribute “c.” It will create a

partition based on the given value of the attribute “c.” It will create a directory with
the name “c¼90,” and the partitioned values are stored in the file inside this

directory.

9.2.3.3 Hybrid Partitioning

Hybrid partitioning is a combination of dynamic and static partitioning. It should

have a minimum of one attribute pertaining to static partition and it must be

mentioned first in the order. If there are multiple partitioning columns, their order

is significant, since that translates to the directory structure in HDFS. The following

steps are required for the partition.

Non-partitioned Table Creation

create table dt(a int,b string,c int,,d int,e int)
row format delimited fields terminated by ’,’
stored as textfile;

Load Data into Non-partitioned Table

load data local inpath ’/home/ponny/mar.txt’
overwrite into table dt;

Hybrid Partition Table Creation

create table stpy(a int,b string,e int) partitioned
by (c int,d int) row format delimited fields
terminated by ’,’ stored as textfile;

Flag Setting

set hive.exec.dynamic.partition.mode ¼ strict;

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 201



Load Data into Partitioned Table

insert overwrite table stpy partition(c ¼ 90,d)
select a,b,e,d from dt where c ¼ 90;

Here the table stpy is partitioned based on the unique values of d for the

records which have the value of c¼ 90. For example, a table named Emp1 contains

employee data such as id, name, dept, and yoa (i.e., year of appointment). In order

to retrieve the details of all employees who joined in 2011, a query searches the

whole table for the required information. However, if the employee data is dynam-

ically partitioned with the year and stored in a separate file, it reduces the query

processing time. The following example shows how to partition a file and its data:

The following file contains employee data table Emp1:

/tab1/employeedata/file1
id, name, dept, yoa
1, anbu, TP, 2011
2, jeeva, HR, 2011
3, kunal,SC, 2012
4, Praba, SC, 2012

The above data is partitioned into two files using year:

/tab1/employeedata/2011/file2
1, anbu, TP, 2011
2, jeeva, HR, 2011

/tab1/employeedata/2012/file3
3, kunal,SC, 2012
4, Praba, SC, 2012

In Hive, as data is written to disk, each partition of data will be automatically

split into different folders. During a read operation, Hive will use the folder

structure to quickly locate the write partitions and also return the partitioning

columns as columns in the result set. This can dramatically improve query perfor-

mance, but only if the partitioning scheme reflects common filtering. Partitioning

feature is very useful in Hive; however, a design that creates too many partitions

may optimize some queries but damages other important queries. The other draw-

back is too many partitions lead to the large number of unnecessary Hadoop files

and directories. This creates overhead on the NameNode since it must keep all

metadata for the file system in memory. If the number of partitions rises above the

certain threshold, it can be run into “out of memory” errors when MapReduce jobs

are being generated. In this condition, even simple select statement can fail. In order

to solve this issue, Java heap size can be tuned/partitioning [7] and the scheme can

be modified to result as fewer partitions.

202 N. Maheswari and M. Sivagami



9.2.3.4 Bucketing

Bucketing is another technique [8] for decomposing data sets into more manageable

parts. For example, suppose a table using the date as the top-level partition and the

employee id as the second-level partition leads to too many small partitions. To

overcome this, Hive provides bucketing concept. Bucketing has several advantages.

The number of buckets is fixed so it does not fluctuate with data. If two tables are

bucketed by employee_id, Hive can create a logically correct sampling. Bucketing also

aids in doing efficient map-side joins, etc. Bucketing happens by using a hash algorithm

and then amodulo on the number of buckets. So, a rowmight get inserted into any of the

buckets. If the employee table had the buckets and employee_id had used as the

bucketing column, the value of this column will be hashed by a user-defined number

into buckets. Records with the same employee_id will always be stored in the same

bucket. Assuming the number of employee_id is much greater than the number of

buckets, each bucket will have huge employee_ids. Creating table, like CLUSTERED

BY (employee_id) INTOXXBUCKETS, can be specified, where XX is the number of

buckets. Bucketing can be used for sampling of data, as well as for joining two data sets

much more effectively. It reduces the I/O scans during the join process if the process is

happening on the same keys (columns). It also reduces the scan cycles to find a

particular key because bucketing ensures that the key is present in a certain bucket.

Example

Flag setting
Set hive.enforce.bucketing¼true;

Creation of buckets
create table dtb(a int,b string, c int, d int, e int)

clustered by (d) into 3 buckets row format delimited fields
terminated by ’,’ stored as textfile;

Data insertion
insert overwrite table dtb select a,b,c,d,e from dt;

Basically, both partitioning and bucketing slice the data for executing the query

much more efficiently than on the non-sliced data. The major difference is that the

number of slices will keep on changing in the case of partitioning as data is

modified, but with bucketing, the number of slices is fixed which are specified

during table creation.

9.2.4 External Table

In the managed table [3, 4], data is loaded using LOAD or INSERT command. Hive

will create appropriate directory and copy files into those directories. When

dropping those tables, Hive removes directory and data files both because Hive

owns data. So they are called Hive managed table. Here is an example:

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 203



create external table det(a int, c int, b string,d
int) row format delimited fields terminated by ’,’
location ’/user/ms/extq’;

It is very common that data analytics applications need to use data within Hive

which is owned by some other. In that case, the data file is already there in HDFS

directory but it is owned and used by some other tool like Pig. In the case of

managed table, it is necessary to copy data into Hive warehouse. So it would be

better if there is a facility to map that data into Hive, perform some queries, prepare

output, remove mapping, and then leave data at the original place as it was. For this

task, Hive provides external table concept. In order to create external table, the

keyword external is to be mentioned in create table command. In external tables,

Hive assumes that it does not own data or data files. It means that when an external

table is dropped, Hive will remove metadata about external table but will leave

table data as it was.

9.2.5 Hive Performance

Hive is most suited for data warehouse applications, where relatively static data is

analyzed, fast response times are not required, and the data is not changing rapidly.

Besides, Hive has its own challenges: it does not support transactions since it is not

a full database. It does not provide record-level update, insert, or delete. New tables

can be created from queries or output query results to files.

Input formats play a critical role in Hive performance. For example, JSON, the

text type of input formats, is not a good choice for a large production system where

data volume is really high. These types of readable formats actually take a lot of

space and have some overhead of parsing (e.g., JSON parsing). To address these

problems, Hive comes with columnar input formats like RCFile, ORC, etc. Colum-

nar formats reduce the read operations in analytics queries by allowing each column

to be accessed individually.

Hadoop can execute MapReduce jobs in parallel, and several queries executed

on Hive automatically use this parallelism. However, single, complex Hive queries

are normally translated to a number of MapReduce jobs that are executed by default

in a sequence. Often though, some of a query’s MapReduce stages are not

interdependent and could be executed in parallel. They can take advantage of

spare capacity on a cluster and improve cluster utilization while at the same time

reducing the overall query execution time. Vectorization allows Hive to process a

batch of rows together instead of processing one row at a time [9]. Each batch

consists of a column vector which is usually an array of primitive types. Operations

are performed on the entire column vector, which improves the instruction pipelines

and cache usage.

Hive adds extensions to provide better performance in the context of Hadoop

and to integrate with external programs. It provides a familiar programming model

204 N. Maheswari and M. Sivagami



for people who know SQL and it also eliminates lots of hassle to code in Java. Hive

makes it easier for developers to port SQL-based applications to Hadoop, compared

with other Hadoop languages and tools. It focuses primarily on query part of SQL

and better reflects the underlying MapReduce process. Pig is a simple scripting

language and helps to write complex MapReduce transformations easily.

9.3 Apache Pig

Hadoop MapReduce has high coding complexity and it is highly favored with the

programmers with high Java programming skills. Here, when the input file size

increases, the execution time for MapReduce also increases proportionally. So there

is a requirement for a platform which supports ease of programming as well as

enhanced extensibility. In this context, Apache Pig reveals itself as a novel

approach in data analytics. Pig was initially developed at Yahoo [10] and later it

was open sourced. It allows people using Hadoop to focus more on analyzing large

data sets and spend less time to write mapper and reducer programs. Apache Pig is a

platform that supports substantial parallelization which enables the processing of

huge data sets.

Pig is an open-source high-level data processing language. This high-level data

processing language is known as Pig Latin which simplifies programming because

of ease of expressing the code in Pig Latin. Pig Latin can work on schema-less or

inconsistent environments and can operate on the available data as soon as it is

loaded into the HDFS. The Pig compiler compiles the script in a choice of

evaluation mechanisms and utilizes optimization opportunities in the script. This

avoids tuning the program manually. The progress in Pig compiler makes the Pig

Latin program get an automatic speedup. Pig Latin defines a set of transformations

on a data set such as aggregate, join, and sort. The statement written in Pig script is

translated into MapReduce so that it can be executed within Hadoop. Pig Latin

describes a directed acyclic graph (DAG) where the edges are data flows and nodes

are operators that process the data. Pig Latin stores the data after the execution in

HDFS. It can be extended using user-defined functions (UDFs), in which the user

can write the customized functions in Java, Python, etc., and those functions can be

invoked directly from the Pig Latin.

9.3.1 Modes of User Interaction with Pig

Pig has two execution types:

• Local mode: To run Pig in local mode, users have access to a single machine. All

files are installed and run using the local host and file system. Local mode can be

specified using the -x flag (pig -x local). Local mode does not support parallel

mapper execution with Hadoop.

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 205



• MapReduce mode: To run Pig in MapReduce mode, users need a setup of

Hadoop cluster with HDFS installation. MapReduce mode is the default mode

and users do not need to specify it using the -x flag (Pig or Pig -x MapReduce).

Pig allows three modes of user interaction:

• Interactive mode: The user is presented with an interactive shell called Grunt,

which accepts Pig commands.

• Batch mode: In this mode, a user submits a pre-written script called Pig script,

containing a series of Pig commands, typically ending with STORE. The

semantics are similar to interactive mode.

• Embedded mode: Pig Latin commands can be submitted through method invo-

cations from a Java program. This option permits dynamic construction of Pig

Latin programs, as well as dynamic control flow.

9.3.2 Pig Compilation and Execution Stages

A Pig script has different stages before being executed, as shown in Fig. 9.2. These

stages are described below.

9.3.2.1 Parsing

The role of the parser [11] is to verify that the program is syntactically correct and

whether all referenced variables are defined. Type checking and schema inference

can also be done by parser. Other checks, such as verifying the ability to instantiate

classes corresponding to user defined, also occur in this phase. A canonical logical

plan with one-to-one correspondence between Pig Latin statements and logical

Pig Latin Scripts

PIG

Parse

Compile
&

Optimize

Plan

Mapreduce
Statements

HDFS

Fig. 9.2 Pig compilation and execution stages

206 N. Maheswari and M. Sivagami



operators which are arranged in directed acyclic graph (DAG) is the output of the

parser. Logical optimizer optimizes the logical plan generated by the parser. In this

stage, logical optimizations such as projection and pushdown are carried out.

9.3.2.2 Compile and Optimize

The optimized logical plan is compiled into a series of MapReduce jobs, which then

pass through another optimization phase. An example of MapReduce-level optimi-

zation is utilizing the MapReduce combiner stage in order to perform early partial

aggregation [2], in the case of distributive or algebraic aggregation functions.

9.3.2.3 Plan

Topologically, the DAG of optimized MapReduce jobs is sorted and then submitted

to Hadoop HDFS for execution in that order. Pig (Hadoop job manager) usually

monitors the Hadoop execution status, and the user periodically gets the reports on

the progress of the overall program. Warnings or errors that arise during execution

are logged and reported to the user.

9.3.3 Pig Latin Commands

Pig’s interactive shell Grunt allows to execute Pig commands manually. It is

typically used for ad hoc data analysis and the Grunt shell supports some basic

utility commands. Typing help will print out a help screen of such utility com-

mands. The command quit can be used to exit the Grunt shell.

Pig Latin statements are the basic constructs to process data using Pig. A Pig

Latin statement is an operator that takes a relation as input and produces another

relation as output (except LOAD and STORE which read data from and write data

to the file system).

A relation can be defined as follows:

• A relation is a bag (more specifically, an outer bag).

• A bag is a collection of tuples.

• A tuple is an ordered set of fields.

• A field is a piece of data.

The names (aliases) of relations, Pig Latin functions, and fields are case sensitive.

The names of parameters and all other Pig Latin keywords are also case insensitive.

Fields are referred to by positional notation or by name (alias). Positional notation is

generated by the system. Positional notation is indicated with the dollar sign ($) and

begins with zero (0), for example, $0, $1, and $2. Pig Latin statements may include

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 207



expressions and schemas. It can be extended to multiple lines and must end with a

semicolon. Basically, Pig Latin statements are processed using multi-query execution.

9.3.3.1 LOAD Command

This command places the data from a file into a relation. It uses the PigStorage load

function as default with USING option unless specified. The data can be given a

schema name using the AS option:

alias ¼ LOAD ’file’ [USING function] [AS schema];

9.3.3.2 DUMP Command

This helps to execute the statements mentioned above DUMP [12]. It displays the

content of a relation. It helps in debugging. The relation should be small enough for

printing on screen. The LIMIT operation can be applied on an alias to make sure it

is small enough for display:

DUMP alias;

9.3.3.3 STORE Command

This helps to place the data from a relation into a directory. The directory must not

exist when this command is executed. Pig will create the directory and store the

relation in files named part-nnnnn in it. It uses the PigStorage store function as

default with the USING option unless specified:

STORE alias INTO ’directory’ [USING function];

In the following example, the names (aliases) of the relations are A and B:

A ¼ load ’student’ using PigStorage() AS
(name:chararray, age:int,gpa:float);

B ¼ limit A 4;
dump B;

(Ashu,18,5.0F)
(Maya,19,5.8F)
(Belly,20,7.9F)
(Joney,18,8.8F)

The limit command allows to specify how many tuples (rows) are to be

returned back.

208 N. Maheswari and M. Sivagami



9.3.3.4 DESCRIBE Command

It displays the schema of a relation:

describe alias;
describe A;

9.3.3.5 ILLUSTRATE Command

It displays step-by-step process of how data is transformed, starting with a load

command, to arrive at the resulting relation. To keep the display and processing

manageable, only a (not completely random) sample of the input data is used to

simulate the execution:

illustrate alias;
illustrate A;

9.3.3.6 Expressions

In Pig Latin, expressions are language constructs used with the FILTER,

FOREACH, UNION, GROUP, and SPLIT operators. The most salient characteris-

tic about Pig Latin as a language is its relational operators. These operators, as

mentioned in the following subsections, define Pig Latin as a data processing

language.

9.3.3.7 UNION Command

This combines multiple relations together, whereas SPLIT partitions a relation into

multiple ones:

a ¼ load ’A’ using PigStorage(’,’) as (a1:int,
a2:int, a3:int);
b ¼ load ’B’ using PigStorage(’,’) as (b1:int,
b2:int, b3:int);
c ¼ UNION a, b;
dump c;

9.3.3.8 SPLIT Command

The SPLIT operation on relation s sends a tuple to f1 if its third field ($2) is greater

than 4000 and to f2 if it is not equal to 10,000. It is possible to write conditions such

that some rows will go to both f1 and f2 or to neither:

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 209



split s into f1 if $2>4000,f2 if $2 ! ¼ 10000;
dump f1;
dump f2;

9.3.3.9 FILTER Command

The FILTER operator trims a relation down to only tuples that pass a certain

condition:

p ¼ filter s by $2>¼5000;
dump p;

SPLIT can be simulated by multiple FILTER operators.

9.3.3.10 GROUP Command

When grouping a relation, the result will be a new relation with two columns,

“group” and the name of the original relation. The group column has the schema of

what it is grouped by. The new relations contain the tuples with the same group key.

Group key is the attribute on which the grouping has been performed:

l ¼ group s by $1;
dump l;

The group operator in Pig is a blocking operator and forces the Hadoop

MapReduce job. All the data is shuffled, so that rows in different partitions that

have the same grouping key group together. So grouping has overhead.

9.3.3.11 FOREACH Command

This can be used to project specific columns of a relation into the output. Arbitrary

expressions also can be applied on specific columns to produce the required output.

Nested form of FOREACH facilitates to do more complex processing of tuples:

h ¼ foreach s generate a*b;
dump h;

9.3.4 Pig Scripts

Pig scripts can run inside the Grunt shell and can be useful in debugging Pig scripts.

Pig Latin scripts are about combining the Pig Latin statements together. Pig scripts

210 N. Maheswari and M. Sivagami



can be executed in the Grunt shell using exec and run commands. The exec
command executes a Pig script in a separate space from the Grunt shell. The

command run executes a Pig script in the same space as Grunt (also known as

interactive mode [13]). It has the same effect as manually typing in each line of the

script into the Grunt shell. Pig Latin programs can be written in a sequence of steps

where each step is a single high-level data transformation. Pig Latin scripts are

generally structured as follows:

• A LOAD statement to read data from the file system.

• A series of “transformation” statements to process the data.

• A DUMP statement to view results or a STORE statement to save the results.

• DUMP or STORE statement is required to generate output.

9.3.4.1 ct.pig

u ¼ load ’/home/ponny/mar.txt’ as (f1:chararray);
y ¼ foreach u generate FLATTEN(TOKENIZE(f1));
r ¼ group y all;
c ¼ foreach r generate COUNT($1);
dump c;

9.3.4.2 comp.pig

u ¼ load ’/home/ponny/mar.txt’ as (f1:chararray);
y1 ¼ foreach u generate FLATTEN(TOKENIZE(f1)) as
word;
j ¼ filter y1 by word¼¼’abc’;
k ¼ group j all;
l ¼ foreach k generate COUNT(j.$0);
dump l;

The left-hand side of equal sign in the Pig Latin commands refers to the relation

but not a single row; and on the right-hand side, the required operations can be done

for each row. The ct.pig script counts the total number of words in a file. The comp.
pig counts the occurrence of the particular word “abc” in a file. The script always

finds the count of the word “abc.” The script can be made to work for any user-

specific word by parameter substitution. The third line of the above comp.pig script

can be replaced by the following statement for parameter substitution. For naming the

parameters in Pig Latin, the parameter name should start with the dollar ($) symbol:

j ¼ filter y1 by word¼¼’$inp’;

Here, $inp is the placeholder for the word entered by the user at the time of

execution. The variable name “$inp” in the above command is enclosed with single

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 211



quotes so that the word abc in the following execution command does not have the

quotes:

exec -param inp ¼ abc comp.pig

9.3.5 User-Defined Functions (UDFs) in Pig

Pig provides UDF as a piggy bank repository [14, 15]. These allow the users to

define their own user-defined functions for their requirement. UDFs can be

implemented using three languages, Java, Python, and Java script. Pig provides

extensive support for Java functions and limited support for other two languages. In

Java, UDFs can be developed using accumulator and algebraic interface.

9.3.5.1 Predefined UDF

Pig scripts can access the UDFs from the piggy bank repository. The sample script

using the same has been given below:

register
/home/ponny/hadoop/pig/pig/contrib/piggybank/java/
piggybank.jar;
define
Upper.org.apache.pig.piggybank.evaluation.string.
UPPER();
u ¼ load ’/home/ponny/mar.txt’ as (f1:chararray);
l ¼ foreach u generate Upper($0);

9.3.5.2 Customized Java UDFs

The steps below describe the user-defined uppercase conversion function using Java

UDF.

Step 1: Write a Java function, e.g.,

upper.java

package myudf;
import java.io.IOException;
import org.apache.pig.EvalFunc;
import org.apache.pig.data.Tuple;
public class upper extends EvalFunc<String>
{
public String exec(Tuple input) throws IOException
{
if (input ¼¼ null || input.size() ¼¼ 0)

212 N. Maheswari and M. Sivagami



return null;
try{
String str ¼ (String)input.get(0);
return str.toUpperCase();
}
catch(Exception e){
throw new IOException("Caught exception processing
input row", e);
}}}

Step 2: Compile the Java function, e.g.,

cd myudf
javac -cp /home/ponny/hadoop/pig/pig/pig-0.11.1.jar
upper.java

Step 3: Make a jar file, e.g.,

cd
jar -cf myudfs.jar myudf

Step 4: Develop a Pig script (s.pig) which uses the above UDF, e.g.,

s.pig
register myudfs.jar;
a ¼ load ’/home/ponny/myudf/b.csv’ using
PigStorage(’,’) as (l:chararray,c:int);
k ¼ foreach a generate myudf.upper(l);
dump k;

Pig is a higher-level data processing layer on top of Hadoop. Its Pig Latin

language provides programmers a more easy way to specify data flows. It supports

schemas in processing structured data, yet it is flexible enough to work with

unstructured text or semi-structured XML data. It is extensible with the use of

UDFs. It simplifies two aspects of MapReduce programming – data joining and job

chaining.

Pig gains popularity in different areas of computational and statistical analysis. It

is widely used in processing weblogs and wiping off corrupted data from records.

Pig helps to build the behavior prediction models based on the user interactions

with a website. This feature can be used in displaying ads and news stories as per

the users’ choice. It can also be updated as the behavior prediction model with the

users’ data. This feature is largely used in social networking sites. When it comes to

small data or scanning multiple records in random order, Pig cannot be considered

as effective as MapReduce. It reduces the time consumed for working on the

complex programming constructs for implementing a typical MapReduce paradigm

using Java but still has the advantages of MapReduce task division method with the

help of the layered architecture and inbuilt compilers of Apache Pig. Hive and Pig

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 213



were designed for ad hoc batch processing of potentially large amount of data by

leveraging MapReduce. To store enormous amount of data, HBase can be used as a

key-value data store with low latency than HDFS.

9.4 Apache HBase

Hadoop works with various data formats such as arbitrary, semi-, or even unstruc-

tured and accesses them only in a sequential manner. Hadoop has to search the

entire data set even for the simplest jobs. A huge data set when processed results in

another huge data set, which should also be processed sequentially. So, a new

technique is required to access any point of data in a single unit of time in Hadoop

environment. HDFS in Hadoop is optimized for streaming access of large files. The

files stored in HDFS are accessed through MapReduce to process them in batch

mode. HDFS files are write-once files and read-many files. There is no concept of

random writes in HDFS and it also doesn’t perform random reads very well.

HBase as an open-source project [16] provides the solution for it. It leverages the

fault tolerance provided by the Hadoop Distributed File System (HDFS). HBase is a

part of the Hadoop ecosystem and it provides random real-time read/write access to

data in the Hadoop File System.

It is a distributed column-oriented database, built on top of the Hadoop file

system, and horizontally scalable. Other random access databases are Cassandra,

CouchDB, Dynamo, MongoDB, etc. Column-oriented databases are those that store

data tables as sections of columns of data, rather than as rows of data. Facebook,

Twitter, Yahoo, Netflix, StumbleUpon, and Adobe use HBase internally to process

data. Data model of HBase is similar to Google’s big table [17] and it stores data as
key-value pairs. HBase allows low latency access to small amounts of data from

within a large data set. Single rows can be accessed quickly from a billion row table.

HBase has flexible data model to work with and data is indexed by the row key. It

scans faster across the tables. Scaling is in terms of writes as well as total volume

of data.

The table schema defines only column families, which are the key-value pairs. A

table has multiple column families and each column family can have any number of

columns. Subsequent column values are stored contiguously on the disk. Each cell

value of the table has a time stamp. It provides data replication across clusters. In

Table 9.1, employee and occupation are shown as column families.

Table 9.1 Employee details

Row key Employee Occupation

Eid Name Department Designation Salary

1 Anu Sales Manager $12,000

2 Keen Marketing Associate manager $10,000

214 N. Maheswari and M. Sivagami



9.4.1 HBase Architecture

HBase architecture [18] as shown in Fig. 9.3 has master server and region servers as

major components. Region servers can be added or removed as per requirement.

9.4.1.1 Region Server

Regions are tables. They are split up and spread across the region servers. Region

servers have regions and stores. The regions in region servers handle data-oriented

operations by communicating with the client. The region server also performs read

and write requests for all the regions. It finalizes the size of the region, based on the

region size thresholds.

The store in the region server has memory store and HFiles. Memstore in store is

similar to a cache memory. Initially, the data is stored in memstore and transferred

to HFiles as blocks. Later, the memstore is flushed.

9.4.1.2 Master Server

The master server takes help from Apache Zookeeper to handle the load balancing

of region servers. It assigns regions to the region servers and unloads the busy

servers by shifting the regions to less occupied servers. It maintains the state of the

clusters. It takes the responsibility of schema changes and other metadata opera-

tions like creation of tables and column families.

Master
Zookeeper

Region
Servers
memstore

HDFS
HFile

Fig. 9.3 HBase architecture

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 215



9.4.1.3 Zookeeper

Zookeeper is an open-source project [19] and acts as a reliable centralized distrib-

uted coordinator that provides services like maintaining configuration information,

naming, providing distributed synchronization, etc. Zookeeper has transient nodes

representing different region servers. Master servers use these nodes to discover

available servers. The nodes are also used to track server failures or network

partitions. Clients communicate with region servers through Zookeeper. HBase

itself takes care of Zookeeper in pseudo and stand-alone modes.

9.4.2 HBase Commands

The command bin/start-hbase.sh script [20, 21] is used to start all HBase

daemons. HBase has a shell that helps to communicate with HBase. The instance of

HBase can be connected using the HBase shell command ($ ./bin/hbase
shell). The HBase shell prompt ends with a> character. The HBase shell

prompt will be hbase(main):001:0>.

Some of the commands and their output are discussed below.

9.4.2.1 Table Creation

Use the CREATE command to create a new table. Table and the column family

names must be specified:

hbase(main):001:0>create ’test1’, ’cf1’ (test – table name
cf1- column family name)
0 row(s) in 0.4170 seconds
¼>Hbase::Table – test1

9.4.2.2 List

Display the information about the created table “test1” using the LIST command:

hbase(main):002:0>list ’test1’
TABLE
test1
1 row(s) in 0.0180seconds
¼>["test1"]

216 N. Maheswari and M. Sivagami



9.4.2.3 Put

Write data into the table using the PUT command:

hbase(main):002:0>put ’test1’, ’row1’, ’cf1:x’, ’xy’
0 row(s) in 0.080seconds
hbase(main):003:0>put ’test1’, ’row2’, ’cf1:y’, ’sb’
0 row(s) in 0.01seconds

Here, two values have been inserted. The first insert is at row1, column cf1:x,

with a value of “xy.” Columns in HBase are comprised of a column family prefix,

cf1 in this example, followed by a colon and then a column qualifier suffix, x in this

case.

9.4.2.4 Get

This command helps to get a single row of data at a time:

hbase(main):006:0>get ’test1’, ’row1’
COLUMN CELL
cf:x timestamp¼1421762485768, value¼xy
1 row(s) in 0.035seconds

9.4.2.5 Scan

Another way to get data from HBase is with the SCAN command. This command

can be used to scan all the rows from the table. The scan can be limited for a number

of records:

hbase(main):006:0>scan ’test1’
ROW COLUMNþCELL
row1 column¼cf1:x, timestamp¼1421762485768,
value¼xy
row2 column¼cf1:y, timestamp¼1421762491785, value¼sb
2 row(s) in 0.0230seconds

9.4.2.6 Disable/Enable a Table

Table can be disabled or enabled, using the DISABLE or ENABLE command:

hbase(main):008:0>disable ’test1’
0 row(s) in 1.1820seconds
hbase(main):009:0>enable ’test1’
0 row(s) in 0.1770seconds

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 217



9.4.2.7 Drop

To delete a table, this command can be used:

hbase(main):011:0>drop ’test1’
0 row(s) in 0.137seconds

9.4.2.8 Exit/Quit

To quit the HBase shell and disconnect from the cluster, the QUIT command is

available. But HBase will be running in the background.

9.4.2.9 Stop

In the same way that the bin/start-hbase.sh script is used to start all HBase

daemons, the bin/stop-hbase.sh script stops them:

$ ./bin/stop-hbase.sh
stoppinghbase....................

$

After issuing this command, it can take several minutes for the processes to shut

down. Use the jps to be sure that the HMaster and HRegionServer processes are

shut down.

HBase is more suitable for the applications with large amounts of data which

require frequent random read/write operations. HBase does not use Hadoop’s
MapReduce capabilities directly, though it can integrate with Hadoop to serve as a

source or destination of MapReduce jobs. HBase is designed to support queries of

massive data sets and is optimized for read performance. For writes, HBase seeks to

maintain consistency. In contrast to “eventually consistent” [17], HBase does not

offer various consistency level settings. Due to HBase’s strong consistency, writes

can be slower. It prevents data loss from cluster node failure via replication. Hadoop

MapReduce is used together with HBase to process data in an efficient way. HBase is

used in the organizations with multi-petabyte databases, running them as mission-

critical data stores. It also helps for click stream data storage and time series analysis.

9.5 Conclusion

The amount of existing data for processing is constantly increasing and becomes

more diverse. This chapter provides an insight into the various tools that can help in

analyzing big data. Apache Hadoop is one of the widely used software libraries to

perform large-scale data analytics tasks on clusters of computers in parallel.

218 N. Maheswari and M. Sivagami



Pig is a high-level data flow language and serves as an execution framework for

parallel computation. Hive acts as a data warehouse infrastructure that provides

data summarization and ad hoc querying. HBase is a NOSQL, scalable, distrib-

uted database that supports structured data storage for large tables. HBase is for

key-value data store and retrieve, but queries cannot be performed on rows

(key-value pairs). So Hive can be used as a query layer to an HBase data store –

Pig also offers a way of loading and storing HBase data. These tools provide the

major functionality to store both structured and unstructured data and perform

refined processing and analysis. These tools also play pivotal role in designing

scalable data analytics system. This chapter describes how the acquisition of large

amounts of data is analyzed with the help of data analytics tools for further

process.

References

1. Intel (2013) White paper: extract, transform and load Big data with Hadoop. Available at:

hadoop.intel.com. Accessed 30 July 2015

2. Ashish et al (2010) Hive – a Petabyte scale data warehouse using hadoop. IEEE International

Conference on Data Engineering, November 2010

3. Edward C et al (2012) Programming Hive. O’Reilly Media Inc, Sebastopol

4. Apache (2014) Language manual. Available at: https://cwiki.apache.org/confluence/display/

Hive/LanguageManualþDDL#LanguageManualDDL-Overview. Accessed 10 May 2014

5. Tutorials point (2013) Hive partitioning. Available at: http://www.tutorialspoint.com/Hive/

Hive_partitioning.html. Accessed 15 June 2014

6. Rohit R (2014) Introduction to Hive’s partitioning. Available at: http://java.dzone.com/arti

cles/introduction-Hives. Accessed 25 Jan 2015

7. Peschka J (2013) Introduction to Hive partitioning. Available at: http://www.brentozar.com/

archive/2013/03/introduction-to-hive-partitioning/. Accessed 8 Aug 2015

8. Thrive school (2013) Available at: http://thriveschool.blogspot.in/2013/11/Hive-bucketed-

tables-and-sampling.html. Accessed 10 Jan 2015

9. Philip N (2014) 10 best practices for Apache Hive.Available at: www.qubole.com/blog/big-

data/hive-best-practices. Accessed 15 July 2015

10. Petit W (2014) Introduction to Pig. Available at: http://bigdatauniversity.com/bdu-wp/bdu-

course/introduction-to-pig/#sthash.HUcw7EZe.dpuf. Accessed 20 June 2014

11. Apache (2014) Hadoop online tutorial. Available at: http://hadooptutorial.info/tag/hadoop-

pig-architecture-explanation. Accessed 13 Feb 2015

12. Hadoop (2010) Pig latin manual. Available at: https://pig.apache.org/docs/r0.7.0/piglatin_ref2.

html. Accessed 20 May 2014

13. Lam C (2010) Hadoop in action. Manning Publications, Greenwich

14. Gates A (2011) Programming Pig. O’Reilly Media Inc, Sebastopol

15. Apache (2007) Getting started-Pig, Apache Software Foundation

16. Apache (2015) When would I use Apache HBase. Available at: Hbase.apache.org. Accessed

10 Feb 2015

17. Grehan R (2014) Review: HBase is massively scalable – and hugely complex. Available at:

http://www.infoworld.com/article/2610709/database/review--hbase-is-massively-scalable----

and-hugely-complex.html. Accessed 10 July 2015

9 Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase 219

http://hadoop.intel.com/
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Overview
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Overview
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-Overview
http://www.tutorialspoint.com/Hive/Hive_partitioning.html
http://www.tutorialspoint.com/Hive/Hive_partitioning.html
http://java.dzone.com/articles/introduction-Hives
http://java.dzone.com/articles/introduction-Hives
http://www.brentozar.com/archive/2013/03/introduction-to-hive-partitioning/
http://www.brentozar.com/archive/2013/03/introduction-to-hive-partitioning/
http://thriveschool.blogspot.in/2013/11/Hive-bucketed-tables-and-sampling.html
http://thriveschool.blogspot.in/2013/11/Hive-bucketed-tables-and-sampling.html
http://www.qubole.com/blog/big-data/hive-best-practices
http://www.qubole.com/blog/big-data/hive-best-practices
http://bigdatauniversity.com/bdu-wp/bdu-course/introduction-to-pig/#sthash.HUcw7EZe.dpuf
http://bigdatauniversity.com/bdu-wp/bdu-course/introduction-to-pig/#sthash.HUcw7EZe.dpuf
http://hadooptutorial.info/tag/hadoop-pig-architecture-explanation
http://hadooptutorial.info/tag/hadoop-pig-architecture-explanation
https://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
https://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://hbase.apache.org/
http://www.infoworld.com/article/2610709/database/review--hbase-is-massively-scalable----and-hugely-complex.html
http://www.infoworld.com/article/2610709/database/review--hbase-is-massively-scalable----and-hugely-complex.html


18. Servelets C (2012) HBase overview. Available at: www.coreservlets.com/hadoop-tutorial/

#HBase. Accessed 12 Jan. 2015

19. Apache (2010) Apache Zookeeper. Available at: zookeeper.apache.org. Accessed 15 March

2015

20. Tutorials Point (2014) HBase tutorial. Available at: Tutorialspoint.com/hbase. Accessed

18 Feb 2015

21. George L (2011) HBase definitive guide. O’Reilly Media Inc, Sebastopol

220 N. Maheswari and M. Sivagami

http://www.coreservlets.com/hadoop-tutorial/#HBase
http://www.coreservlets.com/hadoop-tutorial/#HBase
http://zookeeper.apache.org/
http://tutorialspoint.com/hbase


Chapter 10

Big Data Analytics: Enabling Technologies
and Tools

Mohanavadivu Periasamy and Pethuru Raj

Abstract The era of big data is at its full bloom with the data being generated,

captured, stocked, polished, and processed in astronomical proportions. This is

mainly due to the unprecedented levels of technology adoption and adaption

resulting in the connectivity technologies, network topologies, and tools that have

enabled seamless connectivity between billions of physical, mechanical, electrical,

electronic, and computer systems. This data explosion also challenges the way

corporate decisions are being taken. It is for this reason that data is being widely

recognized as one of the core strategic assets, and extraction of value from the

collected data, using data science approaches, is gaining importance. Apart from

the analytics, data management, mining, and visualization are also becoming

feverishly articulated tasks on such data. In the knowledge economy and digital

world of today, insight-driven decision-making is being tipped as the most impor-

tant and influential factor. Precisely speaking, competent and cognitive data ana-

lytics is capable of bringing forth better and hitherto unforeseen approaches and

solutions for a variety of perpetual problems that are constantly hitting hard our

society and the global economy. This chapter looks into the big data domain and

discusses the relevant analytical methods, platforms, infrastructures, and

techniques.

Keywords AaaS • BI • Business intelligence • big data • CSP • data science • Data

virtualization • Hadoop • Information visualization • MapReduce • NoSQL •

NoSQL databases • SAP HANA

M. Periasamy (*)

TCL Canada, 1441 rue Carrie-Derick, Montreal H3C 4S9, QC, Canada

e-mail: mohanavadivu@gmail.com

P. Raj

IBM Global Cloud Center of Excellence, Bangalore 560045, India

e-mail: peterindia@gmail.com

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_10

221

mailto:mohanavadivu@gmail.com
mailto:peterindia@gmail.com


10.1 Introduction

There is an infamous adage based on the Parkinson’s Law: Work expands so as to
expand the time available for its completion. So is the case with the generation of

more data, which explodes to fill the space available for data storage. We now live

in an age where the number of electronic devices has already overtaken the human

population worldwide. There are more than seven billion mobile devices on this

planet. The data generated by billions of users over billions of devices for human-

to-human interaction, human-to-machine interaction, and machine-to-machine

interaction is now measured in zettabytes.

Classifying data generated online, these days, is a definite challenge. As an

example, for Twitter messages, people try to classify or categorize the message

using “hash tags” (#). It is easy to categorize a message with a single # tag into a

category, e.g., “I am #happy” can be put into a category named “happy.” However,

how does one categorize the following message: “When you’re #happy, you enjoy

the #music. But, when you’re #sad, you understand the #lyrics.” We can fit this into

the category of music, happy, sad, or lyrics. In this case, how do we establish the

logic for selecting the category based on the # tag? A seemingly simple statement

categorization snowballs into a problem of huge proportion when we take into

account the fact that a billion tweets are generated every day, resulting in massive

amount of information being uploaded or revised on line and generated through

various instant-messaging services. This is where the need for systems for

processing the vast amounts of data kicks in.

Big data is one such data framework that aims to manage a vast amount of data

very efficiently. A commonly accepted definition of big data can be stated as:

information assets characterized by such a high volume, velocity, and variety to
require specific technology and analytical methods for its transformation into
value. Big data has been used successfully by various government departments

including the National Security Agency in the USA to process information col-

lected over the Internet. In the UK, the National Health Service uses big data to

process information on drug intake; the Indian government uses big data to access

the effect of electorate response on various government policies. Corporate agen-

cies use big data to improve the customer response, improve the efficiency in supply

chain, etc. Citibank uses big data to assess the credit card spending of customers to

recommend discounts. Interestingly, political parties have also taken the big data in

a big way. Big data seems to have played a stellar role in the analysis of electorate

opinion and tune the successful campaign strategies of President Barrack Obama in

the USA in the year 2012 and in the prime ministerial campaign of Narendra Modi

in India in the year 2014. Some of the political analysts attribute both these victories

to the smart campaigning methods, where big data has played a decisive role. From

these examples, we can easily infer that the application of big data has spread into

all walks of life.

Organizations face a major challenge in managing and processing big data

effectively to work out venerable solutions. The job of data scientists is to discover

222 M. Periasamy and P. Raj



patterns and relationships and synthesize them into resultant information that

addresses the needs of the organizations. Handling, processing, and managing big

data is a complex task. These complexities have limited the capabilities of tradi-

tional RDBMS and have paved the way for exploring a host of new technologies,

approaches, and platforms that are based on the cloud computing paradigm. This

has opened up a wide range of possibilities for organizations to use big data network

to understand the needs and expectations of customers so as to optimize the use of

resources. This requires a rich mixture of skills on the part of data scientists. They

need to know how to handle different types of big data and storage mechanisms

(e.g., RDBMS, Hadoop HDFS), develop advanced algorithms, develop codes (e.g.,

Java, Python, R), access data (SQL, Hive, etc.), analyze any inherent constraints,

perform regression analysis, communicate to social networks, and finally present

the findings to management in business terms through briefings and reports. Invari-

ably, data scientists have established their impact in the advancement of all

analytical fields such as statistics, management science, operations research, com-

puter science, logistics, and mathematics.

From the examples mentioned above, one can easily notice two types of require-

ments or usage categories when it comes to big data application, the first one being

real-time operational systems such as capital markets which require instant stream-

ing, analysis, and feedback and the second one being analytical systems such as

market research, surveillance, government databases, etc. The concurrency of data

users and velocity are critical in real-time operations, whereas data scope and

variety are important in analytical systems. Big data handles the operational

systems and analytical systems differently as needs of the systems are different.

Database management systems for operational systems involve not only SQL

(NoSQL) database systems such as MongoDB, whereas analytical systems use

DBMS such as MPP-compliant MapReduce.

In the ensuing sections, we aim to focus on big data, its special characteristics,

how to capture and crunch big data to extract valuable insights, the technologies

and tools available for simplifying and streamlining the process of knowledge

discovery and dissemination across a variety of industry verticals, etc. There are

some challenges and concerns relating to big data. We also discuss the platforms

and products emerging and evolving in order to speed up big data analytics.

Finally, we discuss the role of the cloud paradigm in shaping up data analytics

and insight-driven enterprises. There are integrated platforms being deployed

in cloud environments so that the raging domain of analytics can be taken to

cost-effective, elastic, and elegant clouds.

10.2 Characterizing Big Data

Big data typically represents massive amounts of heterogeneous data that are not

necessarily stored in the relational form in traditional enterprise-scale databases.

Therefore, new-generation database systems are being unearthed in order to store,

10 Big Data Analytics: Enabling Technologies and Tools 223



retrieve, aggregate, filter, mine, and analyze large amount of multi-structured data

efficiently. The following are the general characteristics of big data:

• Data storage is defined in the order of petabytes and exabytes in volume as

opposed to the current storage limits in terms of gigabytes and terabytes.

• Big data contains structured, semi-structured, and totally unstructured data.

• Different types of data sources (sensors, machines, mobiles, social sites, etc.)

and resources for big data.

• Data is time sensitive (near real time as well as real time) which means that big

data consists of data collected with relevance to the time zones so that timely

insights can be extracted.

The recent developments in big data analytics have generated a lot of interest

among industry professionals as well as academicians. Big data has become an

inevitable trend, and it has to be solidly and compactly handled in order to derive

time-sensitive and actionable insights. There is a dazzling array of tools, tech-

niques, and tips evolving in order to quickly capture data from different distributed

resources and processes; analyze and mine the relevant data to extract actionable

business-to-insight technology-sponsored business transformation and sustenance.

In short, analytics is a flourishing phenomenon in every sphere and segment of the

international world today. Especially, with the automated capture, persistence, and

processing of tremendous amount of multi-structured data getting generated by men

as well as machines, the analytical value, scope, and power of data are bound to

blossom further. Precisely, data is a strategic asset for organizations to insightfully

plan to sharply enhance their capabilities and competencies and to venture on the

appropriate activities that decisively and drastically power up their short- as well as

long-term offerings, outputs, and outlooks. Business innovations can happen in

plenty and be maintained when there is a seamless and spontaneous connectivity

between data-driven and analytics-enabled business insights and business

processes.

In the recent past, real-time analytics has brought in much excrescence, and

several product vendors have been flooding the market with a number of elastic and

state-of-the-art solutions (software as well as hardware) for alleviating on-demand,

ad hoc, real-time, and runtime analysis of batch, online transaction, social, machine,

operational, and streaming data. There are numerous advancements in this field due

to its high potential for worldwide companies in considerably reducing operational

expenditures while gaining operational insights. Hadoop-based analytical products

are capable of processing and analyzing any data type and quantity across huge

volume of commodity server clusters. Stream computing drives continuous and

cognitive analysis of massive volumes of streaming data with sub-millisecond

response times. There are enterprise data warehouses, analytical platforms,

in-memory appliances, etc. Data warehousing delivers deep operational insights

with advanced in-database analytics. Here are some examples:

224 M. Periasamy and P. Raj



• The EMC Greenplum Data Computing Appliance (DCA) is an integrated ana-

lytics platform that accelerates the analysis of big data assets within a single

integrated appliance.

• IBM PureData System for Analytics architecturally integrates database, server,

and storage into a single, purpose-built, easy-to-manage system.

• SAP HANA is an exemplary platform for efficient big data analytics. Platform

vendors are conveniently tied up with infrastructure vendors especially Cloud

Service Providers (CSPs) to take analytics to cloud so that the goal of Analytics

as a Service (AaaS) sees a neat and nice reality, sooner than later.

There are multiple start-ups with innovative product offerings to speed up and

simplify the complex part of big data analysis.

10.3 The Inherent Challenges

There are some uncertainties, limitations, and potential roadblocks that could

probably unsettle the expected progress, since big data is still in the emerging

era. Let us consider a few of these which are more pertinent.

• Technology Precedence – Technologies and tools are very important for creating

business value from big data. There are multiple products and platforms from

different vendors. However, the technology choice is very important for firms to

plan and proceed without any hitch in their pursuit. The tools and technology

choices will vary depending on the types of data to be manipulated (e.g., XML

documents, social media, sensor data, etc.), business drivers (e.g., sentiment

analysis, customer trends, product development, etc.), and data usage (analytic

or product development focused).

• Data Governance – Any system has to be appropriately governed in order to be

strategically beneficial. Due to the sharp increase in data sources, types, chan-

nels, formats, and platforms, data governance is an important component in

efficiently regulating the data-driven tasks. Other important motivations include

data security while in transit and in persistence, data integrity, and data confi-

dentiality. Furthermore, there are governmental regulations and standards from

world bodies, and all these have to be fully complied with, in order to avoid any

kind of ramifications at a later point in time.

• Resource Deficit – It is predicted by MGI that there will be a huge shortage of

human talent for organizations providing big data-based services and solutions.

There will be requirements for data modelers, scientists, and analysts in order to

get all the envisaged benefits of big data. This is a definite concern to be

sincerely attended to by companies and governments across the world.

• Ramification in Framework – Big data product vendors need to bring forth

solutions that simplify the complexities of the big data framework to enable

users to extract business value. The operating interfaces need to be intuitive and

10 Big Data Analytics: Enabling Technologies and Tools 225



informative so that the goal of ease of use can be ensured for people using big

data solutions.

Big data’s reputation has taken a battering lately, e.g., in the case of the NSA for

collecting and storing people’s web and phone records, without proper consent. It

has led to a wider debate about the appropriateness of such extensive data-gathering

activities, but this negative publicity should not detract people from the reality of

big data. The fact is that big data is ultimately to benefit society as a whole.

In short, big data applications, platforms, appliances, and infrastructures need to

be contrived in a way to facilitate their usage and leverage for everyday purposes.

The awareness about the potential of big data needs to be propagated widely, and

professionals need to be trained in order to extract better business value out of big

data. Competing technologies, enabling methodologies, prescribing patterns, and

evaluating metrics, key guidelines, and best practices need to be unearthed and

made as reusable assets.

10.4 Big Data Infrastructures, Platforms, and Analytics

The future of business definitely belongs to those enterprises that embrace the big

data analytics movement and use it strategically to their own advantages. It is

pointed out that business leaders and other decision-makers, who are smart enough

to adopt a flexible and futuristic big data strategy, can take their businesses to

greater heights. Successful companies are already extending the value of classic and

conventional analytics by integrating cutting-edge big data technologies and

outsmarting their competitors [8]. There are several forecasts, exhortations, expo-

sitions, and trends on the discipline of big data analytics. Market research and

analyst groups have come out with positive reports and briefings, detailing its key

drivers and differentiators, the future of this brewing idea, its market value, the

revenue potentials and application domains, the fresh avenues and areas for

renewed focus, the needs for its sustainability, etc.

The cloud computing movement is expediently thriving and trendsetting a host

of delectable novelties. A number of tectonic transformations on the business front

are being activated and accentuated with faster and easier adaptability of the cloud

IT principles. The cloud concepts have opened up a deluge of fresh opportunities

for innovators, individuals, and institutions to conceive and formalize

new-generation business services and solutions. A dazzling array of pathbreaking

and mission-critical business augmentation models and mechanisms have already

emerged, and they are consistently evolving toward perfection as the cloud tech-

nology grows relentlessly and rewardingly in conjunction with other enterprise-

class technologies.

226 M. Periasamy and P. Raj



10.4.1 Unified Platforms for Big Data Analytics

Highly synchronized and integrated platforms are prerequisites to automate several

tasks enshrined in capturing of data, analysis, and knowledge discovery processes.

A converged platform brings out a reliable workbench to empower developers to

assist application development and other related tasks such as data security,

virtualization, integration, visualization, and dissemination. Special consoles are

being used with new-generation platforms for performing other important activities

such as management, governance, and enhancement. An example is Hadoop [7, 10]
that is a disruptive technology for data distribution among hundreds of commodity

compute machines for parallel data crunching, and any typical Big Data platform is

blessed with Hadoop software suite.

Furthermore, the big data platform enables entrepreneurs; investors; chief exec-

utive, information, operation, knowledge, and technology officers (CXOs); and

marketing and sales people to explore and perform their experiments on big data,

at scale at a fraction of time and cost to what was required previously. That is,

platforms are to bestow all kinds of stakeholders and end users with actionable

insights that in turn lead to consider and take informed decisions. Knowledge

workers such as business analysts and data scientists could be the other main

beneficiaries through these empowered platforms. Knowledge discovery is a vital

portion, and the platform has to be chipped in with real-time and real-world tips,

associations, patterns, trends, risks, alerts, and opportunities. In-memory and

in-database analytics are gaining momentum for high-performance and real-time

analytics. New advancements in the form of predictive and prescriptive analytics

are rapidly emerging with the maturity and stability of big data technologies,

platforms, infrastructures, tools and finally a cornucopia of sophisticated data

mining and analysis algorithms. Thus, platforms need to be fitted with new features,

functionalities, and facilities in order to provide new insights. Here is a simple

strategy:

• Develop Infrastructure – The infrastructure required to support the acquisition of
big data must deliver low and predictable latency both in capturing data and in

executing short and simple queries. It should be able to handle very high

transaction volumes often in a distributed environment that also support flexible

and dynamic data structures. NoSQL databases are the leading infrastructure to

acquire and store big data. NoSQL databases are well suited for dynamic data

structures and are highly scalable. The data stored in a NoSQL database is

typically of a high variety because the systems are intended to simply capture

all kinds of data without categorizing and parsing the data. For example, NoSQL

databases are often used to collect and store social media data. While customer-

facing applications frequently change, underlying storage structures are kept

simple. Instead of designing a schema with relationships between entities, these

simple structures often just contain a major key to identify the data point and

then a content container holding the relevant data. This extremely simple and

10 Big Data Analytics: Enabling Technologies and Tools 227



nimble structure allows changes to take place without any costly reorganization

at the storage layer.

• Integrate Big Data – In classical data warehousing terms, organizing data is

called data integration. Because there is such a huge volume of data, there is a

tendency and trend to organize data at the original storage locations. This saves a

lot of time and money as there is no movement of data. The brewing need is to

have a robust infrastructure that is innately able to organize big data and process

and manipulate data in the original storage location. It has to support very high

throughput (often in batches) to deal with large data processing steps and handle

a large variety of data formats (unstructured, semi-structured, and fully

structured).

• Analyze Big Data – The data analysis can also happen in a distributed environ-

ment. That is, data stored in diverse locations can be accessed from a data

warehouse to accomplish the intended analysis. The appropriate infrastructure

required for analyzing big data must be able to support in-depth analytics such as

statistical analysis and data mining [2] on a wider range of data types stored in

those diverse systems to scale the extreme data volumes and to deliver faster

response times driven by changes in behavior and also to automate decisions

based on analytical models. Most importantly, the infrastructure must be able to

integrate analysis on the combination of big data and traditional enterprise data

to produce exemplary insights for fresh opportunities and possibilities. For

example, analyzing inventory data from a smart vending machine in combina-

tion with the event calendar for the venue in which the vending machine is

located will dictate the optimal product mix and replenishment schedule for the

vending machine.

10.4.2 Newer and Nimbler Applications

The success of any technology is to be squarely decided based on the number of

mission-critical applications it can create and sustain. That is, the applicability or

employability of the new paradigm to as many application domains as possible is

the major deciding factor for its successful journey. As far as the development is

concerned, big data applications could differ from other software applications to a

larger extent. Web and mobile enablement of big data applications are also impor-

tant. As big insights are becoming mandatory for multiple industry segments, there

is a bigger scope for big data applications. Therefore, there is a big market for big

data application development platforms, patterns, metrics, methodology, reusable

components, etc.

228 M. Periasamy and P. Raj



10.4.3 Tending Toward a Unified Architecture

It is well recognized that an integrated IT environment is a minimum requirement

for attaining the expected success out of the big data paradigm. Refer to Fig. 10.1

for an integrated platform. Deploying big data platforms in an IT environment that

lacks a unified architecture and does not seamlessly and spontaneously integrate

distributed and diverse data sources, metadata, and other essential resources would

not produce the desired insights. Such deployments will quickly lead to a torrent of

failed big data projects, and in a fragmented setup, achieving the desired results

remains a dream forever. Hence, a unified and modular architecture is a need of the

hour for taking forward the ideals of the big data discipline. Deployment of big data

applications in a synchronized enterprise environment or cloud IT environment

makes analytics simpler, faster, cheaper, and accurate while reducing deployment

and operational costs.

In the ensuing era of big data, there could be multiple formats for data repre-

sentation, transmission, and persistence. The related trend is that there are databases

without any formal schema. SQL is the standard query language for traditional

databases, whereas in the big data era, there are NoSQL databases that do not

support the SQL, which is the standard for structured querying. Special file systems

such as Hadoop Distributed File System (HDFS) are being produced in order to

facilitate big data storage and access. Thus analytics in the big data period is quite

different from the analytics on the SQL databases. However, there is a firm place for

Fig. 10.1 Big Data analytics platforms, appliances, products, and tools

10 Big Data Analytics: Enabling Technologies and Tools 229



SQL-based analytics, and hence there is an insistence on converging both to fulfill

the varying needs of business intelligence (BI). Tools and technologies that provide

a native coalesce of classic and new data analytics techniques will have an inherent

advantage.

10.4.4 Big Data Appliances and Converged Solutions

Appliances (hardware and virtual) are being prescribed as a viable and value-

adding approach for scores of business-critical application infrastructure solutions

such as service integration middleware, messaging brokers, security gateways, load

balancing, etc. They are fully consolidated and prefabricated with the full software

stack so that their deployment and time to operation are quick and simple. There are

XML and SOA appliances plenty in the marketplace for eliminating all kinds of

performance bottlenecks in business IT solutions. In the recent past, EMC

Greenplum and SAP HANA appliances are stealing and securing the attention.

SAP HANA is being projected as a game-changing and real-time platform for

business analytics and applications. While simplifying the IT stack, it provides

powerful features like the significant processing speed, ability to handle big data,

predictive capabilities, and text mining capabilities. Thus, the emergence and

evolution of appliances represent a distinct trend as far as big data is concerned.

Besides converged architecture, infrastructures, application domains, and plat-

forms and synchronized processes are very important in order to augment and

accelerate big data analytics. Already, analytics-focused processes are emerging

and evolving consistently. Analytics becomes an important activity to tightly

integrate with processes. Also, the AaaS paradigm is on the verge of massive

adaptation, and hence the analytics-oriented process integration, innovation, con-

trol, and management aspects will gain more prominence and dominance in very

near future.

10.4.5 Big Data Frameworks

Big data processing is generally of two types: real-time and batch processing. The

data is flowing endlessly from countless sources these days. Data sources are on the

climb. Innumerable sensors, varying in size, scope, structure, and smartness, are

creating data continuously. Stock markets are emitting a lot of data every second;

system logs are being received, stored, processed, analyzed, and acted upon cease-

lessly. Monitoring agents are working tirelessly producing a lot of usable and useful

data, business events are being captured, and knowledge discovery is initiated. At

the same time, information visualization is being realized to empower enterprise

operations. Stream computing is the latest paradigm being aptly prescribed as the

best course of action for real-time receipt, processing, and analysis of online, live,

230 M. Periasamy and P. Raj



and continuous data. Real-time data analysis through in-memory and in-database

computing models is gaining a lot of ground these days with the sharp reduction in

computer memory costs. For the second category of batch processing, the Hadoop

technology is being recommended as there is a need for competent products,

platforms, and methods for efficiently and expectantly working with both real-

time as well as batch data.

As elucidated before, big data analysis is not a simple affair, and there are

Hadoop-based software programming frameworks, platforms, and appliances

emerging to ease the innate complications. The Hadoop programming model

[7, 10] has turned out to be the central and core method to further extend the field

of big data analysis. The Hadoop ecosystem is continuously spreading its wings

wider, and the enabling modules are being incorporated to make Hadoop-based big

data analysis simpler, succinct, and quicker.

10.4.6 The Hadoop Software Family

Apache Hadoop [7, 10] is an open-source framework that allows distributed

processing of large-volume data sets across clusters of computers using a simple

programming model. Hadoop was originally designed to scale up from a single

server to thousands of machines, each offering local computation and storage.

Rather than relying on hardware to deliver high availability, the Hadoop software

library itself is designed to detect and handle failures at the application layer.

Therefore, it delivers a highly available service on top of a cluster of cheap

computers, each of which may be prone to failures. Hadoop [7, 10] is based on

the modular architecture, and thereby any of its components can be swapped with

competent alternatives if such a replacement brings noteworthy advantages.

Despite all the hubbub and hype around Hadoop, few IT professionals know its

key drivers, differentiators, and killer applications. Because of the newness and

complexity of Hadoop, there are several areas where confusion reigns and restrains

its full-fledged assimilation and adoption. The Apache Hadoop product family

includes the Hadoop Distributed File System (HDFS), MapReduce, Hive, HBase,

Pig, Zookeeper, Flume, Sqoop, Oozie, Hue, and so on. HDFS and MapReduce

together constitute the core of Hadoop, which is the foundation for all Hadoop-

based applications. For applications in business intelligence (BI), data warehousing

(DW), and big data analytics, the core Hadoop is usually augmented with Hive and

HBase and sometimes Pig. The Hadoop file system excels with big data that is file

based, including files that contain nonstructured data. Hadoop is excellent for

storing and searching multi-structured big data, but advanced analytics is possible

only with certain combinations of Hadoop products, third-party products, or exten-

sions of Hadoop technologies. The Hadoop family has its own query and database

technologies, and these are similar to standard SQL and relational databases. That

means BI/DW professionals can learn them quickly.

10 Big Data Analytics: Enabling Technologies and Tools 231



The HDFS is a distributed file system designed to run on clusters of commodity

hardware. HDFS is highly fault-tolerant because it automatically replicates file

blocks across multiple machine nodes and is designed to be deployed on low-cost

hardware. HDFS provides high-throughput access to application data and is suitable

for applications that have large data sets. As a file system, HDFS manages files that

contain data. HDFS itself does not offer random access to data since it is file based

and provides only limited metadata capabilities when compared to a DBMS.

Likewise, HDFS is strongly batch oriented and hence has limited real-time data

access functions. To overcome these challenges, it is possible to layer HBase over

HDFS to gain some of the mainstream DBMS capabilities. HBase is a product from

Apache Hadoop family and is modeled after Google’s Bigtable, and hence HBase,

like Bigtable, excels with random and real-time access to very large tables

containing billions of rows and millions of columns. Currently, HBase is limited

to straightforward tables and records with little support for more complex data

structures. The Hive meta-store gives Hadoop some DBMS-like metadata

capabilities.

When HDFS and MapReduce are combined, Hadoop easily parses and indexes

the full range of data types. Furthermore, as a distributed system, HDFS scales well

and has a certain amount of fault tolerance based on data replication even when

deployed on top commodity hardware. For these reasons, HDFS and MapReduce

can complement existing BI/DW systems that focus on structured and relational

data. MapReduce is a general-purpose execution engine that works with a variety of

storage technologies including HDFS, other file systems, and some DBMSs.

As an execution engine, MapReduce and its underlying data platform handle the

complexities of network communication [1], parallel programming, and fault

tolerance. In addition, MapReduce controls hand-coded programs and automati-

cally provides multi-threading processes, so they can be executed in parallel for

massive scalability. The controlled parallelization of MapReduce can apply to

multiple types of distributed applications, not to analytic ones. In a nutshell,

Hadoop MapReduce is a software programming framework for easily writing

massively parallel applications which process massive amounts of data in parallel

on large clusters (thousands of nodes) of commodity hardware in a reliable and

fault-tolerant manner. A MapReduce job usually splits the input data set into

independent chunks which are processed by the map tasks in a completely parallel

manner. The framework sorts the outputs of the maps as input to the reduced tasks

which, in turn, assemble one or more result sets.

Hadoop is not just for new analytic applications; it can revamp old ones too. For

example, analytics for risk and fraud that is based on statistical analysis or data

mining benefits from the much larger data samples that HDFS and MapReduce can

wring from diverse Big Data. Furthermore, most 360� customer views include

hundreds of customer attributes. Hadoop can provide insight and data to bump up

to thousands of attributes, which in turn provide greater detail and precision for

customer-based segmentation and other customer analytics. Hadoop is a promising

and potential technology that allows large data volumes to be organized and

processed while keeping the data on the original data storage cluster. For example,

232 M. Periasamy and P. Raj



Weblogs can be turned into browsing behavior (sessions) by running MapReduce

programs (Hadoop) on the cluster and generating aggregated results on the same

cluster. These aggregated results are then loaded into a relational DBMS system.

HBase is the mainstream Apache Hadoop database. It is an open-source,

non-relational (column oriented), scalable, and distributed database management

system that supports structured data storage. Apache HBase, which is modeled after

Google Bigtable, is the right approach when you need random and real-time read/

write access to big data. It is for hosting of very large tables (billions of rows X

millions of columns) on top of clusters of commodity hardware. Just like Google

Bigtable leverages the distributed data storage provided by the Google File System,

Apache HBase provides Bigtable-like capabilities on top of Hadoop and HDFS.

HBase does support writing applications in Avro, REST, and Thrift.

10.5 Databases for Big Data Management and Analytics

10.5.1 NoSQL Databases

Next-generation databases are mandated to be non-relational, distributed, open

source, and horizontally scalable. The original inspiration is the modern

web-scale databases. Additional characteristics such as schema free, easy replica-

tion support, simple API, eventually consistent/BASE (not Atomicity, Consistency,

Isolation, Durability (ACID)), etc., are also being demanded. The traditional Rela-

tional Database Management Systems (RDBMSs) use Structured Query Language

(SQL) for accessing and manipulating data that reside in structured columns of

relational tables. However, unstructured data is typically stored in key-value pairs

in a data store and therefore cannot be accessed through SQL. Such data are stored

in NoSQL [9] data stores and accessed via GET and PUT commands. There are

some big advantages of NoSQL databases compared to the relational databases as

illustrated in the following web page: http://www.couchbase.com/why-nosql/nosql-

database.

• Flexible Data Model – Relational and NoSQL data models are extremely

different. The relational model takes data and separates them into many interre-

lated tables containing rows and columns. Tables reference each other through

foreign keys stored in columns. When looking up for data, the desired informa-

tion needs to be collected from many tables and combined before it can be

provided to the application. Similarly, when writing data, the write process

needs to be coordinated and performed on many tables.

NoSQL databases [9] follow a different model. For example, a document-

oriented NoSQL database takes the data that needs to be stored and aggregates it

into documents using the JSON format. Each JSON document can be thought of as

an object to be used by the application. A JSON document might, for example, take

10 Big Data Analytics: Enabling Technologies and Tools 233

http://www.couchbase.com/why-nosql/nosql-database
http://www.couchbase.com/why-nosql/nosql-database


all the data stored in a row that spans 20 tables of a relational database and

aggregate it into a single document/object. The resulting data model is flexible,

making it easy to distribute the resulting documents. Another major difference is

that relational technologies have rigid schemata, while NoSQL models are schema-

less. Changing the schema once data is inserted is a big deal, extremely disruptive,

and frequently avoided. However, the exact opposite of the behavior is desired for

the big data processing. Application developers need to constantly and rapidly

incorporate new types of data to enrich their applications.

• High Performance and Scalability – To handle the large volumes of data (big

data) and their concurrent user accesses (big users), applications and underlying

databases need to be scaled using one of two choices: scale-up or scale-out.

Scaling-up implies a centralized approach that relies on bigger and even bigger

servers. Scaling-out implies a distributed approach that leverages many com-

modity physical or virtual servers. Prior to NoSQL databases, the default scaling

approach at the database tier was to scale up, dictated by the fundamentally

centralized, shared-everything architecture of relational database technology. To

support more concurrent users and/or store more data, here is a requirement for a

bigger server with more CPUs, memory, and disk storage to keep all the tables.

Big servers are usually highly complex, proprietary, and disproportionately

expensive.

NoSQL databases [9] were developed from the ground up to be distributed and

scale out databases. They use a cluster of standard, physical, or virtual servers to

store data and support database operations. To scale, additional servers are joined to

the cluster, and the data and database operations are spread across the larger cluster.

Since commodity servers are expected to fail from time to time, NoSQL databases

are built to tolerate and recover from such failures to make them highly resilient.

NoSQL databases provide a much easier and linear approach to database scaling. If

10,000 new users start using an application, one simply needs to add another

database server to a cluster, and there is no need to modify the application as per

the scale since the application always sees a single (distributed) database. NoSQL

databases share some characteristics, as presented below, with respect to scaling

and performance.

• Auto-Sharding –A NoSQL database automatically spreads data across different

servers without requiring applications to participate. Servers can be added or

removed from the data layer without any application downtime, with data (and

I/O) automatically spread across the servers. Most NoSQL databases also sup-

port data replication, storing multiple copies of data across the cluster and even

across data centers to ensure high availability (HA) and to support disaster

recovery (DR). A properly managed NoSQL database system should never be

taken offline.

• Distributed Query Support – Sharing a relational database can reduce or elim-

inate in certain cases the ability to perform complex data queries. NoSQL

234 M. Periasamy and P. Raj



database system retains their full query expressive power even when distributed

across hundreds of servers.

• Integrated Caching – To reduce latency and increase sustained data throughput,

advanced NoSQL database technologies transparently cache data in system

memory. This behavior is transparent to the application developer and the

operations team, compared to relational technology where a caching tier is

usually a separate infrastructure tier that must be developed to and deployed

on separate servers and explicitly managed by the operations team.

There are some serious flaws with respect to relational databases that come in the

way of meeting up the unique requirements in the modern-day social web applica-

tions, which gradually move to reside in cloud infrastructures. Another noteworthy

factor is that doing data analysis for business intelligence (BI) is increasingly

happening in the cloud era. There are some groups in academic and industrial

circles striving hard for bringing in the necessary advancements in order to prop up

the traditional databases to cope up with the evolving and enigmatic requirements

of social networking applications. However NoSQL and NewSQL databases are the

new breeds of versatile, vivacious, and venerable solutions capturing the imagina-

tion and attention.

The business requirement to leverage complex data can be driven through the

adoption of scalable and high-performance NoSQL databases. This new entrant is

to sharply enhance the data management capabilities of various businesses. Several

variants of NoSQL databases have emerged in the past decade in order to appro-

priately handle the terabytes, petabytes, and even exabytes of data generated by

enterprises and consumers. They are specifically capable of processing multiple

data types such as text, audio, video, social network feeds, and Weblogs that are

difficult to handle by traditional databases. These data are highly complex and

deeply interrelated, and therefore the demand is to unravel the truth hidden behind

these huge yet diverse data assets besides understanding the insights and acting on

them to enable businesses to plan and surge ahead.

Having understood the changing scenario, web-based businesses have been

crafting their own custom NoSQL databases to elegantly manage high volume of

data and its diversity. Amazon Dynamo and Google’s Bigtable are the shining

examples of homegrown databases that can store huge amounts of data. These

NoSQL databases were designed for handling highly complex and heterogeneous

data. The key differentiation is that they are not built for high-end transactions but

for analytic purposes.

10.5.2 Why NoSQL Databases?

Business-to-consumer (B2C) e-commerce and business-to-business (B2B)

e-business applications are highly transactional, and the leading enterprise appli-

cation frameworks and platforms such as Java Enterprise Edition (JEE) can directly

10 Big Data Analytics: Enabling Technologies and Tools 235



and distinctly support a number of transaction types (simple, distributed, nested,

etc.). For a trivial example, flight reservation application has to be rigidly transac-

tional otherwise everything is bound to collapse. As enterprise systems are increas-

ingly distributed, the need for transaction feature is being pronounced as a

mandatory one.

In the recent past, social applications have grown fast, and especially the

younger generation is totally fascinated by a stream of social computing sites

which has resulted in an astronomical growth of further data. It is no secret that

the popularity, ubiquity, and utility of Facebook, LinkedIn, Twitter, Googleþ, and

other blogging sites are surging incessantly. There is a steady synchronization

between enterprise and social applications with the idea of adequately empowering

enterprise applications with additional power and value. For example, the online

sellers understand that businesses should be more interactive, open, and inclined

toward customers’ participation to garner and glean their views to reach out to even
more people across the globe and to pour in Richer Enterprise Applications (REAs).

There are specialized protocols and web 2.0 technologies (e.g., Atom, RSS, AJAX,

and mash-ups) to programmatically tag information about people and places and

proclivity to dynamically conceive, conceptualize, and concretize more and more

people-centric and premium services.

The dormant and dumb database technology has to evolve faster in order to

accomplish these new-generation IT abilities. With the modern data being more

complicated and connected, the NoSQL databases need to have the implicit and

innate strength to handle the multi-structured and massive amounts of data. A

NoSQL database should enable high-performance queries on such data. Users

should be able to ask questions such as the following: “Who are all my contacts

in Europe?” “Which of my contacts ordered from this catalog?” A white paper

entitled “NoSQL for the Enterprise” by Neo Technology [9] points to the unique-

ness of NoSQL databases for enterprises. Some of the key points have been

reproduced below, from that paper:

• A Simplified Data Representation – A NoSQL database should be able to easily

represent complex and connected data that makes up today’s enterprise appli-

cations [3]. Unlike traditional databases, a flexible schema that allows for

multiple data types also enables developers to easily change applications without

disrupting live systems. Databases must be extensible and adaptable. With the

massive adoption of clouds, NoSQL databases ought to be more suitable for

clouds.

• End-to-End Transactions – Traditional databases are famous for “all or nothing”

transactions, whereas NoSQL databases give a kind of leeway on this crucial

property. This is due to the fact that the prime reason for the emergence and

evolution of NoSQL databases was to process massive volumes of data quickly

and to come up with actionable inputs. In other words, traditional databases are

for enterprise applications, whereas NoSQL databases are for social applica-

tions. Specifically, the consistency aspect of ACID transactions is not rigidly

insisted in NoSQL databases. Sometimes an operation can fail in a social

236 M. Periasamy and P. Raj



application and it does not matter much. For instance, there are billions of short

messages being tweeted every day, and Twitter will probably survive if a few

Tweets do get lost. But online banking applications relying on traditional

databases have to ensure a very tight consistency in order to be meaningful.

That does not mean that NoSQL databases are off the ACID hook. Instead they

are supposed to support ACID transactions including XA-compliant distributed

two-phase commit protocol. The connections between data should be stored on a

disk in a structure designed for high-performance retrieval of connected data sets

– all while enforcing strict transaction management. This design delivers signif-

icantly better performance for connecting data than the one offered by relational

databases.

• Enterprise-Grade Durability – Every NoSQL database for the enterprise needs to

have the enterprise-class quality of durability. That is, any transaction commit-

ted to the database will not be lost at any cost under any circumstances. If there is

a flight ticket reserved and the system crashes due to an internal or external

problem thereafter, then when the system comes back, the allotted seat still has

to be there. Predominantly the durability feature is ensured through the use of

database backups and transaction logs that facilitate the restoration of committed

transactions in spite of any software or hardware hitches. Relational databases

have employed the replication method for years successfully to guarantee the

enterprise-strength durability.

10.5.3 Classification of NoSQL Databases

There are four categories of NoSQL databases available today: key-value stores,

document databases, column-family databases, and graph databases. Each was

designed to accommodate the huge volumes of data as well as to have room for

future data types. The choice of NoSQL database depends on the type of data one

needs to store, its size, and complexity. Here is a brief mention of the four types:

• Key-Value Stores – A key-value data model is quite simple. It stores data in key

and value pairs where every key maps to a value. It can scale across many

machines but cannot support other data types. Key-value data stores use a data

model similar to the popular memcached distributed in-memory cache, with a

single key-value index for all the data. Unlike memcached, these systems

generally provide a persistence mechanism and additional functionality as well

including replication, versioning, locking, transactions, sorting, and several

other features. The client interface provides inserts, deletes, and index lookups.

Like memcached, none of these systems offer secondary indices or keys. A

key-value store is ideal for applications that require massive amounts of simple

data like sensor data or for rapidly changing data such as stock quotes.

Key-value stores support massive data sets of very primitive data. Amazon

Dynamo was built as a key-value store.

10 Big Data Analytics: Enabling Technologies and Tools 237



• Document Databases (DocumentDB) – A document database contains a collec-

tion of key-value pairs stored in documents. The documentDB support more

complex data than the key-value stores. While it is good at storing documents, it

was not designed with enterprise-strength transactions and durability in mind.

DocumentDB are the most flexible of the key-value style stores, perfect for

storing a large collection of unrelated and discrete documents. Unlike the

key-value stores, these systems generally support secondary indexes and multi-

ple types of documents (objects) per database and nested documents or lists. A

good application would be a product catalog, which can display individual items,

but not related items. One can see what is available for purchase, but one cannot

connect it to what other products similar customers bought after they viewed

it. MongoDB and CouchDB are examples of documentDB systems.

• Column-Family Databases – A column-family database can handle semi-

structured data because in theory every row can have its own schema. It has

few mandatory attributes and few optional attributes. It is a powerful way to

capture semi-structured data but often sacrifices consistency for ensuring the

availability attribute. Column-family databases can accommodate huge amounts

of data, and the key differentiator is that it helps to sift through the data very fast.

Writes are really faster than reads so one natural niche is real-time data analysis.

Logging real-time events is a perfect use case, and another one is random and

real-time read/write access to the Big Data. Google’s Bigtable was built on a

column-family database. Apache Cassandra [6], the Facebook database, is

another well-known example, which was developed to store billions of columns

per row. However, it is unable to support unstructured data types or end-to-end

query transactions.

• Graph Databases – A graph database uses nodes, relationships between nodes,

and key-value properties instead of tables to represent information. This model

is typically substantially faster for associative data sets and uses a schema-less

and bottom-up model that is ideal for capturing ad hoc and rapidly changing

data. Much of today’s complex and connected data can be easily stored in a

graph database where there is great value in the relationships among data sets. A

graph database accesses data using traversals. A traversal is how a graph is

queried, navigating from starting nodes to related nodes according to an algo-

rithm, finding answers to questions like “what music do my friends like that I

don’t yet own?” or “if this power supply goes down, what web services are

affected?” Using traversals, one can easily conduct end-to-end transactions that

represent real user actions.

10.5.4 Cloud-Based Databases for Big Data

Relational database management systems are an integral and indispensable com-

ponent in enterprise IT, and their importance is all set to grow. However, with the

advances of cloud-hosted and managed computing, network, and storage

238 M. Periasamy and P. Raj



infrastructures, the opportunity to offer a DBMS, as an offloaded and outsourced

service, is gradually gaining momentum. Carlo Curino and his team members have

introduced a new transactional “database as a service” (DBaaS) [5]. A DBaaS

promises to move much of the operational burden of provisioning, configuration,

scaling, performance tuning, backup, privacy, and access control from the database

users to the service operator, effectively offering lower overall costs to users.

However, the DBaaS being provided by leading CSPs do not address three impor-

tant challenges: efficient multi-tenancy, elastic scalability, and database privacy.

The authors argue that before outsourcing database software and management into

cloud environments, these three challenges need to be surmounted. The key tech-

nical features of DBaaS are:

1. A workload-aware approach to multi-tenancy that identifies the workloads that

can be colocated on a database server achieving higher consolidation and better

performance over existing approaches

2. The use of a graph-based data partitioning algorithm to achieve near-linear

elastic scale-out even for complex transactional workloads

3. An adjustable security schema that enables SQL queries to run over encrypted

data including ordering operations, aggregates, and joins

An underlying theme in the design of the components of DBaaS is the notion of

workload awareness. By monitoring query patterns and data accesses, the system

obtains information useful for various optimization and security functions, reducing

the configuration effort for users and operators. By centralizing and automating

many database management tasks, a DBaaS can substantially reduce operational

costs and perform well. There are myriad of advantages of using cloud-based

databases, some of which are as follows:

• Fast and automated recovery from failures to ensure business continuity

• A built-in larger package with nothing to configure or comes with a straightfor-

ward GUI-based configuration

• Cheap backups, archival, and restoration

• Automated on-demand scaling with the ability to simply define the scaling rules

or facility to manually adjust

• Potentially lower cost, device independence, and better performance

• Scalability and automatic failover/high availability

• Anytime, anywhere, any device, any media, any network discoverable, accessi-

ble, and usable

• Less capital expenditure and usage-based payment

• Automated provisioning of physical as well as virtual servers in the cloud

Some of the disadvantages include:

• Security and privacy issues

• Constant Internet connection (bandwidth costs!) requirement

• Loss of controllability over resources

• Loss of visibility on database transactions

• Vendor lock in

10 Big Data Analytics: Enabling Technologies and Tools 239



Thus, newer realities such as NoSQL and NewSQL database solutions are fast

arriving and being adopted eagerly. On the other hand, the traditional database

management systems are being accordingly modernized and migrated to cloud

environments to substantiate the era of providing everything as a service. Data as

a service, insights as a service, etc., are bound to grow considerably in the days to

come as their realization technologies are fast maturing.

10.6 Data Science

Data science [4] is an independent discipline that emerged since the beginning of

the twenty-first century. It suggests models and frameworks to support the analysis

of complex data. Data analysis has a long history; it has been practiced by

librarians, statisticians, scientists, sales executives, financial experts, and marketing

technicians for years to induce attention of the customers to focus on their products.

In 1994, many companies introduced their marketing strategies based on data-

bases, as marketing prediction to sell the products to overwhelm the competition.

The first conference on data science was held in 1996. The terminologies such as

data mining, data analysis, and data science were used by researchers and scientists

were introduced at that time. Data mining is defined as an application for the

extraction of patterns from data using specific algorithm. Statistics plays a major

role in processing of data, through unique statistical methods. Data mining refers to

extracting, importing, and analyzing data from huge databases to determine the

relationship among internal and external factors and the impacts on sales, profits,

and customer satisfaction. At the moment, analyzing the data sounds difficult as it

requires information from stochastic statistical model and unknown algorithmic

model. Statisticians observed uncertainty in their results while analyzing these data

models. This has resulted in research in computing in the field of data analysis,

enabling the statisticians to merge statistical methods and computing using

web/Internet to produce innovations in the field of data science. The view and the

idea are to find pace-based decision-making, instead of traditional calculations, and

to find predictive model using quantitative analysis as primary object.

Data science brings together expertise from data visualization, hacker mindsets,

and various domains to process data that are generated in a specific domain or

across domains. Rightly, the journal of data science defines or claims data science

as almost everything that has something to do with data: collecting, analyzing,
modeling, its application, and all sorts of application. For example, data mining –

the processing of data to find interesting patterns in data that are not easily observed

using basic queries – is widely used for decision-making in diverse domains such as

surveillance, market research, and asset management of municipal infrastructure

such as pipe lines. This pattern recognition could be performed on multiple types of

data such as audio, video, images, and texts. However there are limitations when we

240 M. Periasamy and P. Raj



apply these techniques to vast amounts of data, and the traditional data processing

techniques become inadequate.

This necessitates for appropriate data-handling frameworks and tools that could

handle the vast amount of data in a timely and efficient manner. It should be noted

that a lot of junk is also being generated online and that can creep into important

decision-making tasks. Though we boast of efficient decision-making techniques in

place, most of these systems are also fragile and feeble. For example, a fake tweet

on the hacked Associated Press Twitter account that President Barrack Obama was

injured in a bomb blast in White House caused a momentary decline in the value of

S&P 500 index about 0.9%. This is just enough to wipe out $ 130 billion in a matter

of milliseconds. This is a crude reminder of how sensitive the systems are toward

the information generated online. A sensible recommendation based on a thorough

data analysis for such a highly impacting decision-making would require the

process of streaming large quantities of data from various sources; verifying the

authenticity of news from various news agency sites that are in audio (podcasts),

video (online live telecasts), and text formats (tweets, webpage contents); arriving

at a conclusion based on the analysis as and when the information is generated; and

instantly feeding it to the capital markets. All the aforementioned processes will

need to be performed at the lightning speed. Delays even by a couple of seconds

might render this information completely useless or might create negative and

irreparable consequences.

10.6.1 Basic Concepts

Data science is an activity to identify the problem (automated), process the require-

ment, and visualize the solution for the user. The activity involves collection of

data, preparation of the file system and storage, and analysis of data and the request,

focusing on result visualization and management to satisfy the customers’ require-
ments. It also involves predictive analysis of other aspects such as scalability,

storage, safety, and security.

Key factors involved with data science include classification, probability esti-

mation to predict, value estimation by regression analysis, identification of simi-

larities, determining unity between entities, describing attributes characterization,

link prediction from the basis, and reduction of data and technology to come up

with innovative models and modeling. Data science concepts and operations are

extracted from data engineering, programming analysis with statistics, social data

warehousing, and through other related processes. Data science [4] is of interest to

business by improving the decision-making concepts. Generally, Data science is the

function of quantitative and qualitative methods to solve related questions and

forecast conclusions. Businesses require real-time analysis using Data science.

The necessary skills relating to data science are as follows:

• Technical communication with users, explaining the statistical aspect and prob-

lem requests to clear the technicality of the problem.

10 Big Data Analytics: Enabling Technologies and Tools 241



• Expertise in adopting the application and getting the required data for the given

particular context.

• For complex systems, data scientist has to create constraints according to the

problem request, to thoroughly understand the issues from the user side.

• Skills in data description, defining the variables, and accordingly collecting

those data and making it available for analysis through network sharing.

• For process and data transformation, the data scientist must have the ability to

resolve issues with feasible solutions and to interpret data in presentable form.

• Visualization and keeping the presentable results with precision, detail, and

charts for a more effective communication with customers.

• Expertise in handling of ethical issues such as security violation, privacy, and

communication limitation and keeping the data away from malpractice.

10.6.2 The Role of Data Scientist

A data scientist could be a single person or a group of people working in an

organization, whose main role is to perform statistical analysis, data mining, and

retrieval processes on a huge amount of data to determine trends and other

diagnose-related information. They normally work on data analysis on huge data

sets in data warehouse or common access data centers to resolve many issues with

respect to optimization of performance and factors relating to business intelligence

(BI). This will be useful for the business to act upon the inherent trends, so they can

plan and take correct corporate decisions.

In general, the data scientists’ role is to analyze big data or data repository that

are preserved by an organization or some other sources and to analyze the objec-

tives using mathematics and statistical models to obtain instructions and recom-

mendation to help with excellent business and marketing decision-making. The

responsibilities include handling the product development, technology transforma-

tion to fit with current trends, and building architecture in the back end for the

analysis and front end for demonstration of the results.

10.7 Conclusion

Big data analytics is now moving beyond the realm of intellectual curiosity and

propensity to make tangible and trendsetting impacts on business operations,

offerings, and outlooks. It is no longer hype or a buzzword and is rapidly becoming

a core requirement for every sort of business enterprise to be relevant and rightful to

their stakeholders and end users. Being an emerging and evolving technology, it

needs a careful and cognitive analysis before its adoption.

In this chapter, we have provided some detail on enabling big data analytics and

data science concepts. We have commenced the chapter with the key drivers for big

242 M. Periasamy and P. Raj



data. Then we proceeded by describing the significance of generating actionable

insights out of data sets in huge amounts in order to determine sustainable business

value. We have incorporated the details regarding the proven and potential tools

and provided tips for simplifying and streamlining big data analytics. We have also

discussed the prominent database systems such as NoSQL databases. This is an

introductory chapter to expose what is generally needed for readers to start with in

the fast-moving big data field.

Acknowledgment Sincere thanks are due to the following individuals for their contribution and

support in developing this chapter:

• Ernestasia Siahaan, PhD candidate, Department of Intelligent Systems – Multimedia Computing,

Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of

Technology, the Netherlands

• Mohanasundar Radhakrishnan, PhD fellow, UNESCO-IHE Institute for Water Education, Delft,

the Netherlands

• Vadivazhagan Meiyazhagan, lead administrator, Wipro Infotech, India

References

1. Liang C, Yu FR (2014) Wireless network virtualization: a survey, some research issues and

challenges, communications surveys & tutorials. IEEE 17(1):358–380. doi:10.1109/COMST.

2014.2352118

2. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques. Elsevier Publications,

Amsterdam/Boston. ISBN 978-0-12-381479-1

3. Grolinger K, Higashino WA, Tiwari A, Capretz MAM (2013) Data management in cloud

environments: NoSQL and NewSQL data stores. J Cloud Comput: Adv Syst Appl 2:22. doi:10.

1186/2192-113X-2-22

4. Lillian Pierson, Wiley, Carl Anderson, Ryan Swanstrom (2015) Data science for dummies.

John Wiley & Sons Inc, New York, United States. ISBN 9781118841556

5. Raj P (2012) Cloud enterprise architecture. CRC Press, Boca Raton. ISBN 9781466502321

6. Strickland R (2014) Cassandra high availability. Packt Publishing, Birmingham, Ebook

ISBN:978-1-78398-913-3 | ISBN 10:1-78398-913-0

7. White T, Cutting D (2009) Hadoop: the definitive guide. O’Reil-ly Media, Beijing, ISBN

0596521979; ISBN13: 9780596521974

8. McKinsey Global Institute (2011) Big data: the next frontier for innovation, competition, and

productivity. Available at: http://www.mckinsey.com/insights/business_technology/big_data_

the_next_frontier_for_innovation

9. Neo Technology (2011) NoSQL for the enterprise, white paper. Available at: http://www.

neotechnology.com/tag/nosql/

10. Russom P (2011) Hadoop: revealing its true value for business intelligence, white paper.

Available at: http://www.tdwi.org

10 Big Data Analytics: Enabling Technologies and Tools 243

http://dx.doi.org/10.1109/COMST.2014.2352118
http://dx.doi.org/10.1109/COMST.2014.2352118
http://dx.doi.org/10.1186/2192-113X-2-22
http://dx.doi.org/10.1186/2192-113X-2-22
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation
http://www.neotechnology.com/tag/nosql/
http://www.neotechnology.com/tag/nosql/
http://www.tdwi.org/


Chapter 11

A Framework for Data Mining
and Knowledge Discovery in Cloud
Computing

Derya Birant and Pelin Yıldırım

Abstract The massive amounts of data being generated in the current world of

information technology have increased from terabytes to petabytes in volume. The

fact that extracting knowledge from large-scale data is a challenging issue creates a

great demand for cloud computing because of its potential benefits such as scalable

storage and processing services. Considering this motivation, this chapter intro-

duces a novel framework, data mining in cloud computing (DMCC), that allows

users to apply classification, clustering, and association rule mining methods on

huge amounts of data efficiently by combining data mining, cloud computing, and

parallel computing technologies. The chapter discusses the main architectural

components, interfaces, features, and advantages of the proposed DMCC frame-

work. This study also compares the running times when data mining algorithms are

executed in serial and parallel in a cloud environment through DMCC framework.

Experimental results show that DMCC greatly decreases the execution times of

data mining algorithms.

Keywords DMCC • Data mining • Cloud computing • Knowledge discovery •

Classification • Clustering • Association rule mining

11.1 Introduction

As a result of technological innovations and developments, enormous amounts of

data are generated every day in a wide range of areas such as business, education,

healthcare, government, finance, social media, and many others. The increase in the

amount of data that is generated creates the potential to discover valuable

D. Birant (*)

Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey

e-mail: derya@cs.deu.edu.tr

P. Yıldırım

Department of Software Engineering, Celal Bayar University, Manisa, Turkey

e-mail: pelin.yildirim@cbu.edu.tr

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_11

245

mailto:derya@cs.deu.edu.tr
mailto:pelin.yildirim@cbu.edu.tr


knowledge from it. However, it also generates a need to deal with data processing in

an efficient and low-cost way.

Data mining is the process of extracting interesting (previously unknown and

potentially useful) knowledge or patterns from large data repositories such as

databases, data warehouses, data marts, extensible markup language (XML) data,

files, and so on. Data mining is regarded as one of the main steps of Knowledge

Discovery in Databases (KDD).

The main data mining methods are classification, clustering, and association rule

mining (ARM). Classification is the process of developing an accurate model

according to classes that use the features in data. It enables the categorization of

new data into these predefined classes. Clustering is used to identify groups and

discover structure in unlabelled data. ARM is useful for finding the rules among

different items in large datasets.

The data mining in cloud computing allows to centralize the management of

software and data storage. Cloud computing is a new paradigm that relies on

sharing computing resources by providing parallel processing and data storage

over the Internet on a pay-for-use basis. Cloud systems can be effectively used to

handle the parallel mining of large datasets since they provide scalable storage and

processing services as well as software platforms for running data mining

applications.

This study presents a novel cloud computing-based framework, data mining in

cloud computing (DMCC), that has the ability to apply classification, clustering,

and ARMmethods on huge amounts of data efficiently. We propose this framework

to enhance the existing data mining applications to take advantage of features

inherent to cloud characteristics that include scalability, efficiency, and ease of

use. This study compares the running times when data mining algorithms are

executed in serial and parallel in a cloud environment. A performance comparison

between the traditional and DMCC frameworks shows that cloud-based applica-

tions can run in a parallel manner and that DMCC greatly decreases the execution

time of data mining algorithms.

The focus of this study is to present the advantages of combining three core

technologies: data mining, cloud computing, and parallel computing. The novelty

and main contributions of the DMCC framework proposed in this study are as

follows:

• It reduces the running time of data mining algorithms by simultaneously

exploiting both the scalable properties of cloud computing and parallel program-

ming methods.

• It enables on-demand pricing options of cloud platforms to utilize knowledge

discovery processes with affordable prices.

• It allows data mining applications to be accessible from anywhere.

• It makes data storage and management easier.

Experimental results in this study show that it is possible to decrease the

execution time of data mining techniques with the help of cloud computing

deployments and implementation of parallel programming structures.

246 D. Birant and P. Yıldırım



The rest of this chapter is structured as follows: Sect. 11.2 summarizes the

related literature and previous studies. While Sect. 11.3 explains the basic concepts

and methods of data mining, Sect. 11.4 presents the deployment models and service

models of cloud computing. Section 11.5 introduces the proposed DMCC frame-

work and describes its characteristics, promises, and benefits. In Sect. 11.6, the

results obtained from experiments are presented, focusing on an analysis of the

various data mining techniques with different input parameters on several datasets

and also more briefly commenting on the comparison of parallel and serial execu-

tions. Section 11.7 presents concluding remarks and possible future studies.

11.2 Related Work

In this section, some related studies that apply data mining techniques on large

datasets using cloud computing technology are described.

Using the advantages of cloud computing technology to tackle the performance

problems in large-scale data mining applications is an approach that has gained

increasing attention [1–4]. The most common way to perform data mining algo-

rithms effectively on high-volume data is to useMapReduce, a programming model

for parallel data processing that is widely used in cloud environments [5, 6]. An

open-source implementation of MapReduce, Hadoop, can be used for distributed

data processing [7]. However, many scientific applications, which have complex

communication patterns, still require low-latency communication mechanisms. For

this reason, in this study, we introduce a novel framework to help fill this

critical void.

The Sector/Sphere framework is another way to mine large-scale datasets using

computer clusters connected with wide-area high-performance networks [8–

10]. While high-level data parallel frameworks like Sector/Sphere simplify the

design and implementation of large-scale data processing systems, they do not

naturally support many important data mining algorithms and can lead to inefficient

learning systems [11]. Thus, in this study, we introduce a novel framework that

supports many different data mining algorithms.

In addition to MapReduce, Hadoop, and Sector/Sphere frameworks, other large-

scale computation frameworks have been proposed: the GraphLab, “Data Mining

Cloud App”, and Define-Ingest-Preprocess-Analyze-Report (DIPAR) frameworks.

The GraphLab abstraction was proposed for machine learning and data mining in

the cloud, and it directly targets dynamic, graph-parallel computation in the shared

memory setting [11]. The Data Mining Cloud App framework performs parameter

sweeping operations on clustering and classification algorithms [12]. The DIPAR
framework, which consists of five stages, define, ingest, preprocess, analyse, and

report, was proposed as a way to implement Big Data Science (BDS) in

organizations [13].

Association rule mining (ARM) is a major data mining task in the application of

large-scale and parallel data mining in cloud computing environments

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 247



[14, 15]. Apiletti et al. [16] proposed a novel cloud-based service, SEARUM

(SErvice for Association RUle Mining), that applies ARM on the large volume of

data using MapReduce jobs that are run in the cloud. In another study [17], the

Apriori algorithm, which is a well-known ARM algorithm, was selected as a case

study and a pipelined MapReduce framework was utilized.

In addition to ARM, other well-known data mining tasks have also been inves-

tigated in cloud environments such as classification [5, 6], clustering [12, 18, 19],

sequential pattern mining [20], XML data mining [21], web mining [22], semantic

web mining [23], and text mining [24].

In contrast to these studies, the work presented in this contribution (the DMCC

framework) focuses on the implementation of different classification, clustering,

and ARM algorithms on large-scale data using the Microsoft Azure cloud platform

to reduce local workload. In contrast to existing systems, the DMCC is off the shelf,

and thus (1) it is ready to use from anywhere, (2) there is no need to move data,

(3) there is no cost for managing the underlying hardware/software layers, and

(4) the installation of software is not required.

11.3 Data Mining

This section presents most commonly used data mining tasks and the algorithms

which DMCC framework offers.

11.3.1 Classification

Classification is the most studied and commonly applied data mining task. It

develops a model to assign new patterns into one of several predefined classes.

Classification uses a training set D¼ (R1, R2, . . ., Rn) that has some records R,

which consist of a number of attributes R¼ (a1, a2, . . ., am) of which one (aj) is a

target outcome. Classification algorithms try to determine relationships between

attributes in a training set to classify new observations.

In this study, four classification algorithms are developed as “Platform as a

Service (PaaS)” for cloud end users: Naive Bayes, Decision Tree (C4.5), Random

Forest, and AdaBoost.

11.3.1.1 Naive Bayes Classifier

The Naive Bayes classifier is a well-known statistical classifier that uses Bayes

theorem to calculate unknown conditional probabilities to identify classes of input

samples [25]. The algorithm performs well and returns successful results in many

248 D. Birant and P. Yıldırım



different areas such as medical diagnosis, pattern recognition, document categori-

zation, banking, and marketing.

The Naive Bayes classifier is generally applied to data that consists of discrete-

valued attributes. However, in this study, we used a Gaussian distribution to deal

with continuous-valued attributes. The Gaussian distribution, sometimes called the

normal distribution, uses mean μ and variance σ2 values to calculate its probability
density function as follows:

f x; μ; σð Þ ¼ 1

σ
ffiffiffiffiffi

2π
p e�

x�μð Þ2
2σ2 ð11:1Þ

11.3.1.2 Decision Tree (C4.5)

A Decision Tree is one of the commonly used supervised classification methods

that aims to develop a tree to identify unknown target attribute values based on

input parameters. A Decision Tree consists of internal nodes for attributes, branches

to represent attributes values, and leaf nodes to assign classification labels. In this

study, we used the C4.5 algorithm, which computes information gain to construct

the tree based on entropy and the fraction ( fi) of items labelled with value i in the set
as follows:

IEð f Þ ¼ �
X

m

i¼1

f ilog2f i ð11:2Þ

11.3.1.3 Random Forest

A Random Forest is an ensemble learning method that grows multivalued Decision

Trees in different training sets. To classify a new sample, input parameters are

given to each tree in the forest. The trees return predicted outcomes and the result is

selected by taking the majority vote over all the trees in the forest. The Random

Forest is an ideal learning model with the goal of reducing variance and increasing

ease of use.

11.3.1.4 AdaBoost

AdaBoost, an acronym of Adaptive Boosting, combines a number of weak learners

to form a weighted voting machine to achieve better separation between classes. It

is the most appropriate solution for binary classification problems in particular.

AdaBoost specifies a boost classifier FT for each weak learner ft that takes an object

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 249



x as input, and after T layers, it returns a real value indicating the class of the object

as follows:

FT xð Þ ¼
X

T

t¼1

f t xð Þ ð11:3Þ

11.3.2 Clustering

Clustering, an unsupervised learning technique, is the process of grouping a set of

objects into meaningful clusters in such a way that similar objects are placed within

a cluster. Clustering analysis is currently used in many areas such as image

processing, pattern recognition, segmentation, machine learning, and information

retrieval. The main task of clustering is to compare, measure, and identify the

resemblance of objects based on their features by using a similarity measure such as

the Manhattan, Euclidean, or Minkowski distance for numerical attributes and

Jaccard’s distance for categorical values. Clustering algorithms are categorized

into five major types, as listed in Table 11.1. One of these, the K-Means, is briefly

described below.

11.3.2.1 K-Means

In this study, the K-Means clustering algorithm is developed as a PaaS for the cloud

end users because of its popularity, computational simplicity, efficiency, and

empirical success. K-Means is a well-known and simple unsupervised learning

algorithm that groups a given dataset into k clusters. Let X¼ {x1, x2, . . ., xn} be a set
of observations. The K-Means algorithm divides n observations into k cluster sets
C¼ {c1, c2, . . ., ck} by minimizing the Sum of Squared Errors (SSE) of the

k clusters. The algorithm involves the following steps:

1. The k initial centroids are chosen randomly.

2. Each object is assigned to the cluster associated with the nearest centroid.

Table 11.1 Categorization of well-known clustering algorithms

Cluster models Clustering algorithms

Partitioning methods K-Means, C-Means, K-Medoids, CLARANS, etc.

Hierarchical

methods

Single/complete/average link, BIRCH, ROCK, CAMELEON, etc.

Density-based

methods

DBSCAN, DENCLUE, OPTICS, etc.

Grid-based methods STING, CLIQUE, WaveCluster, etc.

Model-based

methods

SOM (Self-Organizing Maps), COBWEB, EM (Expectation Maximiza-

tion), etc.

250 D. Birant and P. Yıldırım



3. Centroids are updated to the mean of each segment.

4. Steps 2 and 3 are repeated until no object switches clusters.

11.3.3 Association Rule Mining

Association rule mining (ARM), one of the most important and well-researched

techniques of data mining, is the extraction of interesting correlations, relation-

ships, frequent patterns or associations, or general structures among sets of items in

the transactions.

Let I¼ {i1, i2, . . ., im} be a set of m distinct literals called items, T be a

transaction that contains a set of items such that T� I, and D be a dataset D¼ {t1,
t2, . . ., tn} that has n transaction records T. An association rule is an implication of

the form X) Y, where X� I and Y� I are sets of items called frequent itemsets, and

X \ Y¼ ø. The rule X) Y can be interpreted as “if itemset X occurs in a transaction,

then itemset Y will also likely occur in the same transaction”.

There are two important basic measures for association rules: support and

confidence. Usually thresholds of support and confidence are predefined by users

to drop those rules that are not particularly interesting or useful. In addition to these

measures, additional constraints can also be specified by the users such as time,

item, dimensional, or interestingness constraints.

Support of an association rule in the form of X) Y is defined as the percentage

of records that contain both X and Y itemsets to the total number of transactions in

the dataset D. Support is calculated by the following formula:

Support X ) Yð Þ ¼ Numberof transactionscontainbothX andY

Totalnumberof transactions inD
ð11:4Þ

Suppose the support of rule X) Y is 1%. This means that 1% of the transactions

contain X and Y items together.

The Confidence of an association rule in the form of X) Y is defined as the

percentage of the number of records that contain both X and Y itemsets with respect

to the total number of transactions that contain X, as follows:

Confidence X ) Yð Þ ¼ Support X [ Yð Þ
Support Xð Þ ð11:5Þ

Suppose the confidence of the association rule X) Y is 85%. This means that 85%

of the transactions that contain X also contain Y.
In this study, the Apriori algorithm is developed as a PaaS for cloud end users.

Apriori is a well-known ARM algorithm that requires many passes over the

database, generating many candidate itemsets, pruning those itemsets whose sup-

ports are below the predefined threshold, and storing frequent itemsets. In each

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 251



pass, k itemsets are found. For example, the rule X, Y)Z can be produced as a

frequent three itemset, where X, Y, and Z represent in any items in the dataset.

11.4 Cloud Computing

Cloud computing offers resources, software applications, and infrastructures over

the Internet to users [26]. This section explains the basic deployment models and

service models of cloud computing.

11.4.1 Deployment Models

Cloud computing broadly breaks down into three different deployment models:

public, private, and hybrid cloud [27].

11.4.1.1 Public Cloud

The public cloud is the common cloud computing model in which a service

provider hosts resources, such as applications and data storage, available to the

general public over the Internet.

11.4.1.2 Private Cloud

The private cloud (also called the internal cloud) consists of cloud infrastructure

that is operated solely for a single organization, whether managed internally or by a

third party.

11.4.1.3 Hybrid Cloud

A hybrid cloud comprises both private (internal) and public (external) cloud

services, offering the benefits of multiple deployment models.

11.4.2 Service Models

Cloud computing is divided into three broad service categories: Infrastructure as a

Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) [28].

252 D. Birant and P. Yıldırım



11.4.2.1 Infrastructure as a Service (IaaS)

Infrastructure as a Service (IaaS) is a cloud computing model that provides

virtualized computing resources over the Internet, including some virtual machines

and hardware resource units. IaaS can also be classified into two categories:

Computation as a Service (CaaS) and Data as a Service (DaaS). CaaS refers to

the ability to buy or rent specific resources—mainly processor, RAM, operating

system, or deployed software—for a period of time to perform difficult computation

calculations. DaaS refers to the ability to buy or rent storage space to store the user’s
data, regardless of its type. IaaS clouds often offer additional resources such as a

virtual-machine disc image library, block- and file-based storage, load balancers, IP

addresses, firewalls, and virtual local area networks. Typical examples are Amazon

EC2 (Elastic Cloud Computing), GoGrid, Rackspace Cloud, Amazon S3 (Simple

Storage Service), and Google Compute Engine.

11.4.2.2 Platform as a Service (PaaS)

Platform as a Service (PaaS) is a form of cloud computing in which cloud providers

offer a computing platform that typically includes an operating system, database,

web server, and environments for building, testing, and deploying custom applica-

tions. Application developers can develop and run their software solutions on a

cloud platform without the cost of managing the underlying hardware and software

layers. Some common examples of PaaS include Microsoft Azure, Heroku, Force.

com, Google App Engine, and Apache Stratos.

11.4.2.3 Software as a Service (SaaS)

Software as a Service (SaaS) is a cloud computing model in which users are

provided access to application software and databases. It allows users to run

existing applications remotely from the cloud to meet their requirements. Instead

of cloud users, cloud providers manage the infrastructure and platforms that run the

applications. Some common examples of SaaS include Google Calendar, Microsoft

Office 365, Yahoo Maps, Flickr, and Gmail.

This study focuses on developing and deploying a framework in the public cloud

using a PaaS approach.

11.5 The Proposed DMCC Framework

DMCC (data mining in cloud computing) is a framework that uses current algo-

rithms to support data mining in a cloud environment. This section describes the

design and implementation of the DMCC framework that we developed to archive,

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 253



analyse, and mine large datasets in the cloud environment. The DMCC framework

offers the accessibility to increase computational power for users who need to

perform large-scale data/compute intensive data mining applications. However, to

perform such computations, two major conditions need to be satisfied: (i) the data

mining application should be deployed on the cloud, and (ii) an appropriate parallel

runtime support should be implemented.

11.5.1 Overview

In the DMCC framework, data mining techniques are implemented as a dynamic

library, and data mining applications are stored on the cloud. The aim is to develop

a framework suitable for executing data analysis and knowledge discovery tasks

over a wide range of different applications within different sectors such as medi-

cine, education, entertainment, transportation, and accounting. It allows the user to

discover useful knowledge from virtually stored data that reduces the costs of

infrastructure and storage.

The DMCC framework provides a user interface that facilitates the utilization of

data mining applications in a cloud environment. Figure 11.1 shows a screenshot

from a data mining application developed in Visual Studio. Weka open-source data

mining library is used to perform classification, clustering, and ARM on large-scale

datasets. It is hosted on the Microsoft Azure cloud platform. Users can access this

Fig. 11.1 Screenshot from a data mining application deployed on the cloud

254 D. Birant and P. Yıldırım



data mining application using a web browser, regardless of their location. They

perform mining algorithms on selected massive amounts of data, independently

from the installed operating system.

11.5.2 DMCC Framework Architecture

When designing a data mining system based on cloud computing, Lin [29] divided

the platform, bottom-up, into three layers, the algorithm layer, task layer, and user

layer. In contrast to previous studies, the DMCC framework is typically built using

a four-layer architecture model consisting of an application layer, data mining

engine layer (DMEL), data access layer (DAL), and data layer. The application

layer provides the application-user interactions, the DMEL executes the data

mining algorithms, the DAL encapsulates the data access functionality, and the

data layer is responsible for data persistence and data manipulation. The DMCC

framework architecture is a multilayered, parallel processing-enabled, cloud-based

architecture, as shown in Fig. 11.2.

The framework is designed so that parallel computing can be done very simply.

In particular, if a user defines a function f on the parts of a dataset d, then he invokes
the command

Fig. 11.2 DMCC architecture

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 255



Parallel.For(0, d.parts.count, i ¼>
{
f(d.part[i]);
});

This applies the user-defined function f to each part of the dataset d in parallel. In
other words, the Parallel. For command executes the same pieces of code several

times in parallel with different data parts.

Our framework was designed to significantly decrease the amount of time neces-

sary to run n-fold cross-validation on a dataset using any given classifier. Figure 11.3
presents the pseudocode for this classification task in DMCC. It takes the number of

folds (n) as an input parameter. In n-fold cross-validation, the entire dataset is divided

into n nonoverlapping parts, and then the algorithm is trained on n-1 parts and tested
on the remaining one. The Parallel. For command executes both the training and

testing operations for a C4.5 Decision Tree algorithm in parallel. Other classification

algorithms such as Random Forest can also be called instead of the C4.5 algorithm.

The accuracy rate is calculated as the average of the n prediction accuracies.

Figure 11.4 presents the pseudocode for a clustering task in DMCC. It executes

the K-Means algorithm n times in parallel with different k values to determine the

optimal number of clusters. It does this because determining the optimal k value is a

frequent problem in data clustering that affects the amount of error in the resulting

clusters. Increasing k will always reduce the Sum of Squared Errors (SSE) in the

resulting clustering; hence the elbow method looks at the percentage of variance

explained as a function of the number of clusters and determines the point at which

the marginal gain drops, creating an angle in the graph. Finally, the clusters are

created using the optimal k value.
Figure 11.5 presents the pseudocode for ARM in DMCC. It takes the minimum

support and confidence values as input parameters and executes the Apriori algo-

rithm with these parameters to output the rules.

Fig. 11.3 Pseudocode for the classification method in DMCC

256 D. Birant and P. Yıldırım



11.5.3 DMCC Framework Features

The DMCC framework has many advantages over traditional grid-based, distrib-

uted, or parallel computing techniques.

Grid computing is a collection of computer resources from multiple locations,

acting in concert to perform very large tasks using distributed and parallel compu-

tation. However, cloud computing provides the technologies to compute parallel

data mining applications at much more affordable prices than traditional parallel

computing techniques.

Distributed computing is an environment in which the application and data is

broken into pieces and executed on individual machines. However, cloud comput-

ing stores the data at a data centre and does not distribute it to individual machines

for processing.

Fig. 11.4 Pseudocode for the clustering method in DMCC

Fig. 11.5 Pseudocode for ARM in DMCC

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 257



The DMCC framework deploys data mining applications in cloud environments

for the following reasons:

• Cloud resources are dynamically reallocated per demand; hence the cloud

approach maximizes the use of computing power and thus significantly reduces

the running time of data mining algorithms.

• Cloud computing eliminates the investment needed for stand-alone software or

servers. It allows developers to avoid costs for items such as servers, air

conditioning, and rack space, allowing many data mining developers to reduce

their costs.

• Cloud computing allows developers to get their data mining applications oper-

ational within a short time with improved manageability and less maintenance.

• Developers focus on data mining projects instead of infrastructure.

• Cloud computing offers on-demand pricing so that commercial data mining

software can be provided at affordable prices [30].

• In cloud environments, providers are able to devote resources to solving security

issues, so security can be improved by data centralization, increased security-

focused resources, and so on.

• Cloud computing enables users to access systems using a web browser, regard-

less of their location or which device they use (e.g. PC, laptop, or mobile phone)

so that data mining applications can be accessed via the Internet and users can

connect from anywhere.

• Cloud computing offers cost-effective and policy-driven solutions to store big

data so that large amount of data can be processed in place without needing to

move it.

As a result, the major features of the DMCC framework include high perfor-

mance, scalability, simplified access interfaces, quality of service, ease of use, cost-

effectiveness, and conceptual simplicity in a large-scale and data-massive environ-

ment. The DMCC framework is a practical alternative to traditional distributed or

grid-based data mining solutions. Data mining in cloud computing can be consid-

ered as the future of data mining because of the advantages listed above.

11.6 Experimental Results

Because of explosive data growth and the amount of computation involved in data

mining, a high-performance cloud computing is an excellent resource that is

necessary for efficient data mining. This study presents the importance of parallel

data analysis for a data mining application in a cloud environment. The aim of this

study is to show that the execution time of data mining algorithms can be signif-

icantly reduced by combining cloud computing and parallel computing

technologies.

258 D. Birant and P. Yıldırım



11.6.1 Dataset Description

We performed experimental studies on four different large datasets obtained from

the UCI Machine Learning Repository: the EEG (electroencephalography) Eye

State, Skin Segmentation, KDD Cup 1999, and Census Income datasets.

11.6.1.1 EEG Eye State Dataset

This dataset is used to classify an eye state as eye closed (1) or eye opened (0).

There are 15 attributes in the dataset that were detected via a camera during the

EEG measurement. The dataset consists of 14,980 samples. A brief description of

the dataset is presented in Table 11.2.

11.6.1.2 Skin Segmentation Dataset

The Skin Segmentation dataset consists of R (red), G (green), and B (blue) colour

values from face images of various age groups (young, middle, or old), race groups

(white, black, or Asian), and gender. RGB attributes have continuous values

ranging from 0 to 255. The dataset contains 245,057 labelled samples, where

50,859 are skin/face samples (class label 1) and 194,198 are non-skin/not-face

samples (class label 2). Table 11.3 shows statistical information about the data.

Table 11.2 Description of the EEG Eye State dataset

Attributes Min value Max value Mean Std. dev.

AF3 1030.77 309,231 4321.92 2492.07

F7 2830.77 7804.62 4009.77 45.94

F3 1040 6880.51 4264.02 44.29

FC5 2453.33 642,564 4164.95 5216.40

T7 2089.74 6474.36 4341.74 34.74

P7 2768.21 362,564 4644.02 2924.79

O1 2086.15 567,179 4110.4 4600.93

O2 4567.18 7264.10 4616.06 29.29

P8 1357.95 265,641 4218.83 2136.41

T8 1816.41 6674.36 4231.32 38.05

FC6 3273.33 6823.08 4202.46 37.79

F4 2257.95 7002.56 4279.23 41.54

F8 86.67 152,308 4615.20 1208.37

AF4 1366.15 715,897 4416.44 5891.29

Class (eye detection) 0 (eye open) 1 (eye closed)

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 259



11.6.1.3 KDD Cup 1999 Dataset

The purpose of this dataset is to build a network intrusion detector capable of

distinguishing between attacks and normal connections. In this study, we used the

10% KDD Cup 1999 dataset, which contains 494,021 connection records, each

with 38 numeric features (i.e. duration, number of failed login attempts, number of

data bytes, number of urgent packets, and so on), except three categorical attributes

(protocol type, service, and status of the connection flag). It contains one normal

and 22 different attack types (class labels): normal, back, buffer_overflow,

ftp_write, guess_passwd, imap, ipsweep, land, loadmodule, multihop, neptune,

nmap, perl, phf, pod, portsweep, rootkit, satan, smurf, spy, teardrop, warezclient,

and warezmaster.

11.6.1.4 Census Income Dataset

The Census Income dataset has 48,842 individual records and contains demo-

graphic information about people. Each record has 15 attributes for each person:

age, working class, final weight, education, years of education, marital status,

occupation, type of relationship, race, sex, capital gain, capital loss, weekly work-

ing hours, native country, and salary.

11.6.2 Classification Results

We compared the performances of different classification algorithms in the cloud

environment in terms of both their accuracy rates and execution times when running

in parallel and serial. The average times shown in the figures and tables were

calculated using the results of five repeated runs.

The accuracy rate of a classification algorithm is generally defined as the

closeness of the predicted values to the actual values and shows the success of

the algorithm on the selected dataset. To evaluate the accuracy rates, we used a

fivefold cross-validation technique. Thus, the dataset is divided into five parts, 4/5

for training and 1/5 for testing, and the accuracy rates of the algorithms were

evaluated according to five experiments that were acquired independently on

different test sets.

Table 11.3 Description of the Skin Segmentation dataset

Attributes Min value Max value Mean Std. dev.

B (blue) 0 255 125.07 62.26

G (green) 0 255 132.51 59.94

R (red) 0 255 123.18 72.56

Class (skin detection) 1 (skin) 2 (non-skin)

260 D. Birant and P. Yıldırım



Tables 11.4, 11.5, and 11.6 show the execution times and accuracy rates of three

classification algorithms, C4.5 Decision Tree, AdaBoost, and Random Forest, on

three datasets, EEG Eye State, Skin Segmentation, and KDD Cup 1999. According

to the results, the Random Forest algorithm has the highest accuracy rate, but

performs poorly on the datasets in terms of execution times. The AdaBoost algo-

rithm shows the best performance for the Eye State dataset in the case of parallel

execution, but the accuracy rate of this classification algorithm is the worst.

Classification algorithms show similar accuracy rates for the KDD Cup 1999

dataset, highlighting the benefit of using a large training set to obtain a better

learning mechanism.

Comparing the execution times, we find that the running times of different data

mining algorithms on the same dataset are different. However, from these results, it

is clearly evident that the parallel run times in the cloud environment perform

competitively well for all classification algorithms. Although we used different

datasets with different sizes, the Random Forest algorithm shows considerably high

accuracy rates compared to the other algorithms; however we still need to compare

it with other algorithms or use alternative approaches for different types of prob-

lems and datasets.

We measured the performance of the Naive Bayes classification algorithm in a

cloud environment. The classifier created from the training set used a Gaussian

distribution to deal with continuous data. Figure 11.6 compares the parallel and

Table 11.4 Comparison of classification algorithms on EEG Eye State data

EEG Eye State data

Classification algorithms Serial (sec.) Parallel (sec.) Accuracy rate (%)

C4.5 Decision Tree 4.184 0.696 84.52

AdaBoost 2.020 0.345 67.16

Random Forest 6.078 0.610 90.24

Table 11.6 Comparison of classification algorithms on KDD Cup 1999 data

KDD Cup 1999 data

Classification algorithms Serial (sec.) Parallel (sec.) Accuracy rate (%)

C4.5 Decision Tree 232.822 73.876 99.94

AdaBoost 285.734 64.085 97.78

Random Forest 262.862 48.297 99.97

Table 11.5 Comparison of classification algorithms on Skin Segmentation data

Skin Segmentation data

Classification algorithms Serial (sec.) Parallel (sec.) Accuracy rate (%)

C4.5 Decision Tree 13.298 3.250 99.92

AdaBoost 16.778 3.423 89.62

Random Forest 46.070 5.890 99.94

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 261



serial execution of the Naive Bayes algorithm on different datasets in a cloud

environment. From these results, it is clearly evident that it is possible to decrease

long-term consumption fairly well using many computing resources concurrently.

Hence, this study confirms the importance of parallel data analysis in data mining

applications to provide good performance in a cloud environment.

Figures 11.7 and 11.8 show the average running times of the Naive Bayes

algorithm for varying input sizes, 5000, 10,000, and 14,980 records for the EEG

Eye State dataset and 50,000, 100,000, 150,000, 200,000, and 245,057 records for

the Skin Segmentation dataset. The results show that the running time increases

more sharply when the data size increases. When the amount of data is increased,

the gap between serial and parallel executions increases significantly.

Eyestate Dataset Skin Dataset

Serial 1.15 3.43

Parallel 0.26 1.23

0
0.5

1
1.5

2
2.5

3
3.5

4

Ex
ec

ut
io

n 
 ti

m
e 

(s
ec

.)

Naive Bayes with Gaussian DistributionFig. 11.6 Parallel and

serial executions of the

same data mining algorithm

in a cloud environment

5000
records

10000
records

14980
records

Serial 0.39 0.84 1.14

Parallel 0.17 0.29 0.28

0
0.2
0.4
0.6
0.8

1
1.2

Ex
ec

ut
io

n 
 ti

m
e 

(s
ec

.)

Naive Bayes - EEG Eye State DatasetFig. 11.7 Average running

times for varying input sizes

of the EEG Eye State

dataset

262 D. Birant and P. Yıldırım



11.6.3 Clustering Results

We specifically analysed the performance of clustering applications deployed in a

cloud environment to determine the overhead of virtualized resources and under-

stand how clustering algorithms with different numbers of clusters perform on

cloud resources. We also evaluated the K-Means clustering algorithm for different

numbers of clusters in order to understand clustering errors.

Tables 11.7, 11.8, and 11.9 show the execution times and SSE for the K-Means

clustering algorithm on three different datasets. The K-Means algorithm was

executed with varying k input values from two to ten in increments of two. These

results allow us to predict how the execution time changes as the number of clusters

increases. Results show that even as the amount of data grows and the number of

clusters increases, the execution time increases within an acceptable range

(a clearly normal way), and the application completes in reasonable time. In other

words, even when the data size and number of clusters increases rapidly, the

execution time increases in a much slower manner than the predicted time.

11.6.4 A Study of Association Rule Mining

We also specifically analysed the number of rules generated by the ARM applica-

tion deployed in a cloud environment to determine the overhead of virtualized

resources and understand how ARM applications with different numbers of support

values perform on cloud resources. We also evaluated the Apriori algorithm in a

cloud environment for different numbers of confidence values.

The graphs in Figs. 11.9 and 11.10 show the number of rules generated by the

Apriori algorithm for varying minimum support and confidence values, respec-

tively. When the minimum support value is kept constant and confidence values are

changed, the number of rules decreases almost linearly. However, in the other case,

50000
records

100000
records

150000
records

200000
records

245057
records

Serial 0.38 1.61 2.38 3.38 3.99

Parallel 0.24 0.56 0.81 1.05 1.12

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

Ex
ec

ut
io

n 
 ti

m
e 

(s
ec

.)

Naive Bayes - Skin Segmentation DatasetFig. 11.8 Average running

times for varying input sizes

of the Skin Segmentation

dataset

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 263



Table 11.7 Analyses of the K-Means algorithm in a cloud environment for varying numbers of

clusters on the Eye State dataset

Eye State data

K value Execution time (sec.) Sum of Squared Error (SSE)

2 1.267 14.45

4 1.330 13.17

6 3.020 10.29

8 5.710 6.94

10 5.675 6.79

Table 11.8 Analyses of K-Means algorithm in a cloud environment for varying numbers of

clusters on the Skin Segmentation dataset

Skin Segmentation data

K value Execution time (sec.) Sum of Squared Error (SSE)

2 3.120 20336.13

4 4.700 9842.09

6 6.990 6568.03

8 6.630 5063.96

10 6.285 4055.97

Table 11.9 Analyses of the K-Means algorithm in a cloud environment for varying numbers of

clusters on the KDD Cup 1999 dataset

KDD Cup 1999 data

K value Execution time (sec.) Sum of Squared Error (SSE)

2 51.130 551115.68

4 84.530 260735.65

6 89.500 83524.36

8 102.530 57807.90

10 147.620 61061.86

2486

652
188 106 50 24 70

500

1000

1500

2000

2500

3000

20 30 40 50 60 70 80

N
um

be
r o

f R
ul

es

Support (%)

Apriori Algorithm

Fig. 11.9 Evaluation of the Apriori algorithm for varying minimum support values and a constant

confidence value of 90

264 D. Birant and P. Yıldırım



the number of rules decreases exponentially. Results show that deploying an ARM

application on a cloud environment is more critical when the application is exe-

cuted with small support values.

Cloud infrastructures allow users to access the hardware nodes in which the

virtual machines are deployed. With a cloud infrastructure, we have complete

access to both virtual-machine instances and the underlying nodes; as a result, we

can deploy different virtual-machine configurations, allocating different CPU cores

to each virtual machine. In shared scale mode, six instances are served to an

application, while in standard mode, ten instances that have four cores and 7 GB

of memory are offered for usage. We increased the core count and memory capacity

of each instance by changing the settings to provide better throughput and

performance.

As a result, it is clear that the proposed DMCC framework can effectively

process very large data in a cloud environment. Based on our observations, we

conclude that the DMCC framework can improve the efficiency of data mining

applications.

11.7 Conclusion and Suggestions for Future Work

This study proposes DMCC, a cloud-based framework, developed to perform the

main data mining tasks (classification, clustering, and ARM) over large datasets.

We discussed the main architectural components, interfaces, and features of the

DMCC framework. The DMCC framework has many advantages over traditional

grid-based, distributed, or parallel computing techniques. The important advan-

tages provided by DMCC framework are that a large amount of data can be

processed from anywhere, without moving it, and with on-demand pricing options,

increased security, improved manageability, less maintenance, and increased

1118
1031

859

622

380

188

6
0

200

400

600

800

1000

1200

40 50 60 70 80 90 99

N
um

be
r o

f R
ul

es

Confidence (%)

Apriori Algorithm

Fig. 11.10 Evaluation of the Apriori algorithm for varying minimum confidence values and a

constant support value of 40

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 265



computing power. Furthermore, there is no investment in stand-alone software or

servers.

The general aim of the DMCC framework is to reduce the execution times of

data mining algorithms using the advantages of both cloud computing and parallel

programming methods. We performed experimental studies on the DMCC frame-

work using three real-world datasets. The performance of data mining algorithms

within the DMCC framework was measured by executing them in parallel and

serial modes. In the experiments, (i) classification algorithms (C4.5 Decision Tree,

Random Forest, and AdaBoost) were compared with each other, (ii) the K-Means

clustering algorithm was evaluated in terms of cluster numbers, and (iii) the number

of rules generated by the Apriori algorithm was measured for different support and

confidence values. The experimental results show that cloud systems can be

effectively used to handle the parallel mining of large datasets because they provide

virtualized, dynamically-scalable computing power as well as storage, platforms,

and services.

As future work, this approach could be specialized for the private cloud com-

puting deployment model to enable data mining applications for a specific organi-

zation. In this way, corporate companies could benefit from the proposed

framework on their private network, providing only authorized access to the

system. In addition, it would also be possible to expand this framework by inte-

grating different data mining algorithms.

References

1. Geng X, Yang Z (2013) Data mining in cloud computing. International conference on

information science and computer applications, Atlantis Press, 1–7

2. Petre R (2012) Data mining in cloud computing. Database Syst J 3(3):67–71

3. Kamala B (2013) A study on integrated approach of data mining and cloud mining. Int J Adv

Comput Sci Cloud Comput 1(2):35–38

4. Hu T, Chen H, Huang L, Zhu X (2012) A survey of mass data mining based on cloud-

computing. IEEE conference on anti-counterfeiting, security and identification, 1–4

5. Zhou L, Wang H, Wang W (2012) Parallel implementation of classification algorithms based

on cloud computing environment. Indonesian J Electr Eng 10(5):1087–1092

6. Tan A X, Liu VL, Kantarcioglu M, Thuraisingham B (2010) A comparison of approaches for

large-scale data mining – utilizing MapReduce in large-scale data mining, Technical Report

7. Nappinna V, Revathi N (2013) Data mining over large datasets using hadoop in cloud

environment. Int J Comput Sci Commun Netw 3(2):73–78

8. Grossman RL, Gu Y (2008) Data mining using high performance data clouds: experimental

studies using sector and sphere. In: Proceedings of the 14th ACM SIGKDD international

conference on knowledge discovery and data mining, 920–927

9. Mishra N, Sharma S, Pandey A (2013) High performance cloud data mining algorithm and

data mining in clouds. IOSR J Comput Eng 8(4):54–61

10. Mahendra TV, Deepika N, Rao NK (2012) Data mining for high performance data cloud using

association rule mining. Int J Adv Res Comput Sci Softw Eng 2(1)

266 D. Birant and P. Yıldırım



11. Low Y, Gonzalez J, Kyrola A, Bickson D, Guestrin C, Hellerstein JM (2012) Distributed

graphLab: a framework for machine learning and data mining in the cloud. Proc Very Large

Data Bases (VLDB) Endowment 5(8):716–727

12. Marozzo F, Talia D, Trunfio P (2011) A cloud framework for parameter sweeping data mining

applications. In: Proceedings of the IEEE 3th international conference on cloud computing

technology and science, 367–374

13. Villalpando LEV, April A, Abran A (2014) DIPAR: a framework for implementing big data

science in organizations. In: Mahmood Z (ed) Continued rise of the cloud: advances and trends

in cloud computing. Springer, London

14. Qureshi Z, Bansal J, Bansal S (2013) A survey on association rule mining in cloud computing.

Int J Emerg Tech Adv Eng 3(4):318–321

15. Kamalraj R, Kannan AR, Vaishnavi S, Suganya V (2012) A data mining based approach for

introducing products in SaaS (Software as a service). Int J Eng Innov Res 1(2):210–214

16. Apiletti D, Baralis E, Cerquitelli T, Chiusano S, Grimaudo L (2013) SeARuM: a cloud-based

service for association rule mining. In: Proceedings of the 12th IEEE international conference

on trust, security and privacy in computing and communications, 2013, 1283–1290

17. Wu Z, Cao J, Fang C (2012) Data cloud for distributed data mining via pipelined mapreduce,

vol 7103, Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 316–330

18. Ismail L, Masud MM, Khan L (2014) FSBD: a framework for scheduling of big data mining in

cloud computing. In: Proceedings of the IEEE international congress on big data, 514–521

19. Masih S, Tanwani S (2014) Distributed framework for data mining as a service on private

cloud. Int J Eng Res Appl 4(11):65–70

20. Huang JW, Lin SC, Chen MS (2010) DPSP: Distributed progressive sequential pattern mining

on the cloud, vol 6119, Lecture notes in computer science. Springer, Berlin/Heidelberg, pp

27–34

21. Li Z (2014) Massive XML data mining in cloud computing environment. J Multimed 9

(8):1011–1016

22. Ruan S (2012) Based on cloud-computing’s web data mining, vol 289, Communications in

computer and information science. Springer, Berlin/Heidelberg, pp 241–248

23. Lal K, Mahanti NC (2010) A novel data mining algorithm for semantic web based data cloud.

Int J Comput Sci Secur 4(2):160–175

24. Ioannou ZM, Nodarakis N, Sioutas S, Tsakalidis A, Tzimas G (2014) Mining biological data

on the cloud – a MapReduce approach, IFIP advances in information and communication

technology, vol. 437. Springer, 96–105

25. Yıldırım P, Birant D (2014) Naive bayes classifier for continuous variables using novel method

(NBC4D) and distributions. In: Proceedings of the IEEE international symposium on innova-

tions in intelligent systems and applications, 110–115

26. Erl T, Puttini R, Mahmood Z (2013) Cloud computing: concepts, technology, & architecture.

Prentice Hall, Upper Saddle River

27. Mahmood Z (2011) Cloud computing for enterprise architectures: concepts, principles and

approaches. In: Mahmood Z, Hill R (eds) Cloud computing for enterprise architectures.

Springer, London/New York

28. Fernandez A, Rio S, Herrera F, Benitez JM (2013) An overview on the structure and

applications for business intelligence and data mining in cloud computing, vol 172, Advances

in intelligent systems and computing. Springer, Berlin/Heidelberg, pp 559–570

29. Lin Y (2012) Study of layers construct for data mining platform based on cloud computing, vol

345, Communications in computer and information science. Springer, Berlin/Heidelberg

30. Wu X, Hou J, Zhuo S, Zhang W (2013) Dynamic pricing strategy for cloud computing with

data mining method, vol 207, Communications in computer and information science. Springer,

Berlin/Heidelberg, pp 40–54

11 A Framework for Data Mining and Knowledge Discovery in Cloud Computing 267



Chapter 12

Feature Selection for Adaptive Decision
Making in Big Data Analytics

Jaya Sil and Asit Kumar Das

Abstract Rapid growth in technology and its accessibility by general public

produce voluminous, heterogeneous and unstructured data resulted in the emer-

gence of new concepts, viz. Big Data and Big Data Analytics. High dimensionality,

variability, uncertainty and speed of generating such data pose new challenges in

data analysis using standard statistical methods, especially when Big Data consists

of redundant as well as important information. Devising intelligent methods is the

need of the hour to extract meaningful information from Big Data. Different

computational tools such as rough-set theory, fuzzy-set theory, fuzzy-rough-set

and genetic algorithm that are often applied to analyse such kind of data are the

focus of this chapter. But sometimes local optimal solution is achieved due to

premature convergence, so hybridization of genetic algorithm with local search

methods has been discussed here. Genetic algorithm, a well-proven global optimi-

zation algorithm, has been extended to search the fitness space more efficiently in

order to select global optimum feature subset. Real-life data is often vague, so fuzzy

logic and rough-set theory are applied to handle uncertainty and maintain consis-

tency in the data sets. The aim of the fuzzy-rough-based method is to generate

optimum variation in the range of membership functions of linguistic variables. As

a next step, dimensionality reduction is performed to search the selected features for

discovering knowledge from the given data set. The searching of most informative

features may terminate at local optimum, whereas the global optimum may lie

elsewhere in the search space. To remove local minima, an algorithm is proposed

using fuzzy-rough-set concept and genetic algorithm. The proposed algorithm

searches the most informative attribute set by utilising the optimal range of mem-

bership values used to design the objective function. Finally, a case study is given

where the dimension reduction techniques are applied in the field of agricultural

science, a real-life application domain. Rice plants diseases infect leaves, stems,

roots and other parts, which cause degradation of production. Disease identification

and taking precaution is very important data analytic task in the field of agriculture.

Here, it is demonstrated in the case study to show how the images are collected from

J. Sil (*) • A.K. Das

Department of Computer Science and Technology, Indian Institute of Engineering Science and

Technology, Shibpur, Howrah, West Bengal, India

e-mail: jayasil@hotmail.com

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_12

269

mailto:jayasil@hotmail.com


the fields, diseased features are extracted and preprocessed and finally important

features are selected using genetic algorithm-based local searching technique and

fuzzy-rough-set theory. These features are important to develop a decision support

system to predict the diseases and accordingly devise methods to protect the most

important crops.

Keywords High-dimensional data • Adaptive decision making • Optimization •

Local search • Uncertainty • Big Data Analytics

12.1 Introduction

Due to the advancement of technology and its accessibility to general public, data is

generated by leaps and bounds demanding the need for data analysis. The concept

of Big Data [1] opens up different areas of research including social networking,

bioinformatics, e-health and becomes a big challenge in devising new methods for

extracting knowledge. Big Data is characterised by massive sample size, high

dimensionality and intrinsic heterogeneity. Moreover, noise accumulation, spurious

correlation and incidental endogeneity are the common features in high-

dimensional data set. Due to the accumulation of noise, true signals are often

dominated and handled by sparsity assumption in high-dimensional data.

Big Data processing is difficult using standard statistical methods due to its

volume, variability, rate of growth and unstructured form [2]. In traditional statis-

tical data analysis, we think of observations of instances of a particular phenome-

non. We assumed many observations and a few selected variables are well chosen

to explain the phenomenon. Today the observations could be curves, images or

movies resulting dimension in the range of billions for only hundreds of observa-

tions considered for study. The problems include collection, storage, searching,

sharing, transfer, visualisation and analysis. A hybrid model may be appropriate to

model Big Data. Analysing the highly dynamic Big Data requires simultaneous

estimation and testing of several parameters. Errors associated with estimation of

these parameters help to design a decision rule or prediction rule depending on the

parameters. Big Data can make important contributions in real-life decision making

by developing cost-effective methods with minimum risk factor.

The basic approach of processing Big Data is to divide and analyse the sub-

problems, and finally results from subproblems are combined to obtain the final

solution. Dimensionality reduction plays an increasingly important role in the

analytics of Big Data and is applied before partitioning of the problem. Dimen-

sionality reduction techniques aim at finding and exploiting low-dimensional struc-

tures in high-dimensional data. The methods overcome the curse of dimensionality

and reduce computation and storage burden of the decision-making systems.

Designing very large-scale, highly adaptive and fault-tolerant computing systems

is the solution to manage and extract information from Big Data.

270 J. Sil and A.K. Das



The objective of the chapter is to integrate different fields of machine learning

for devising novel “dimensionality reduction” techniques. In this chapter, two

different concepts on dimensionality reduction techniques have been proposed to

improve decision making. Finally, we discuss how dimension reduction is impor-

tant for Big data analytics and present a case study in the field of agricultural

science.

In the rest of this chapter, we first discuss dimension reduction techniques in

Sect. 12.2. This section explores how the important features are selected using

genetic algorithm-based optimization technique. The vagueness and uncertainty is

also handled using fuzzy-rough-set theory in this section. A case study is provided,

based on agricultural data, in Sect. 12.3. This section gives a precise idea about how

a decision support system is designed in case of a Big data environment. The

section also includes acquisition of images, filtering and extraction of features,

selection of important diseased features, etc. The methodology explained in

Sect. 12.2 is used for important diseased feature selection. Finally, Sect. 12.4

presents our conclusions.

12.2 Dimension Reductions

Importance of features may vary from one application to another, and often it is

difficult to know exactly which features are relevant for a particular task. The

irrelevant features not only increase complexity of the systems but affect perfor-

mance of the system. Dimension reduction plays a vital role in discovering knowl-

edge from high-dimensional data set by removing redundant and irrelevant

attributes or features.

The goal of dimensionality reduction is to avoid selecting too many or too few

features than is necessary. Too few features result loss of information, while too

many irrelevant features dominate important features that overshadow the infor-

mation present in the data set. The aim of dimension reduction is to select a

minimum set of relevant features by preserving essential information content of

the data set. This minimum set of features is used instead of the entire attribute set

for decision making.

Feature selection [3] is basically searching of a feature space to select the

optimal subset of features that can fully characterise the whole data set. There are

various optimised searching techniques such as ant colony-based search, Tabu

search and simulated annealing which are used frequently for feature subset

selection. Memetic algorithms [4] are quite popular for successful searching in a

large search space where traditional exhaustive search methods often fail.

Genetic algorithms [5, 6] have great potential for finding the best approximate

solutions in the evolutionary optimization community. However, genetic algo-

rithms (GA) in some specific applications may provide local optimal solution due

to premature convergence. To overcome this problem, several hybridization of

genetic algorithms with local search methods are proposed [6–8]. In [9], the GA

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 271



incorporates two new operations, namely, cleaning operator and proposition

improvement operator to maintain sustained diversity among the population. The

work in [10] proposes a multi-objective genetic algorithm integrating local search

for finding a set of solutions of a flow shop scheduling problem. In [11], a multi-

objective time-dependent route planning problem is solved by integrating NSGA-II

[12] with local search.

In this section, two different feature selection methods are proposed. Firstly, a

novel neighbourhood-based local search strategy in genetic algorithm for obtaining

optimal set of important features is described. Kullback-Leibler (KL) divergence

method is used as fitness function with binary-coded chromosomes as population.

Steady-state selection, single-point crossover and jumping gene mutation [13]

scheme are applied stepwise to implement the proposed algorithm. Secondly,

dimension reduction is performed utilising fuzzy-rough concept and genetic algo-

rithm. Optimised range of value associated with each linguistic label of the attri-

butes is evaluated using rough-fuzzy concept. We build an efficient classifier using

genetic algorithm (GA) to obtain optimal subset of attributes considering optimal

membership values of the linguistic variables. The proposed algorithm reduces

dimensionality to a great extent without degrading the accuracy of classifier and

avoids being trapped at the local minima.

12.2.1 Hybrid Genetic Search Model (HGSM)

This method deals with selecting relevant features by hybridising genetic algorithm

with local neighbourhood-based searching method. Each chromosome is encoded

as a binary string where 1/0 in i-th position of the string depicts the presence/

absence of the corresponding feature. Population size is initialized randomly to

explore the search space. Genetic operators are described below.

Selection

A steady-state selection mechanism is implemented where each member of popu-

lation (i.e. chromosome) is equal probable to get into mating pool.

Crossover

Every pair of parents is made sure to take part in the crossover operation to produce

offspring using single-point crossover scheme. Offspring are kept if only if they fit

better than the least good individual of the population.

Mutation

Mutation plays a vital role in preserving diversity among the population over

generations. Single-bit mutation is most popular in genetic algorithm, but it lacks

diversity in population since the most significant bit of a binary string generally

does not change. To overcome the demerit, jumping gene or mutation methodology

is used for mutating the genes. Jumping genes are a set of genes which can jump

dynamically within the chromosome. These genes have a great potential for

272 J. Sil and A.K. Das



maintaining diversity throughout the entire population, crucial for evolutionary

searching algorithm.

Let a chromosome in population be (a1, a2, . . ..., an). Jumping genes of length

q (q<<n), say (b1, b2, . . ., bq), are selected randomly and replace a portion of the

chromosome, decided randomly. Let k be the starting position, so after mutation the

muted chromosome is (a1, a2, . . ., ak-1, b1,b2, . . ., bq, ak+q, . . ., an).

New Population Generation
At each generation, new population is obtained using local search strategy. In a

particular generation, proximity of an individual is computed with respect to other

members of the population. Let D be the snapshot of current population with four

members {1 1 0 1}, {1 0 0 1}, {1 1 1 1} and {1 0 0 0}. Proximity of first member {1

1 0 1} is evaluated using Hamming distance considering the rest of the members in

the population. Integer mean of the Hamming distances is taken for selecting the

neighbouring region of the first member. In this example, the mean is 1, so

assuming the member {1 1 0 1} as schema, specified number of neighbours is

generated each with Hamming distance 1, as illustrated in Fig. 12.1. If any binary

string in the neighbours is already present in the current population, then it is

discarded and another neighbour is created in its place. Now search is performed

within the neighbours, and original member {1 1 0 1} is replaced by a neighbour of

better fitness value. Similarly, neighbours of the entire population are built and the

population is modified by the local search strategy. In this way, searching is fine-

tuned resulting better performance in the output.

Fitness Function

Fitness function determines the quality of a chromosome in the population. So, a

strong fitness function is imperative for giving good result. The method uses

Kullback-Leibler (KL) divergence [14] for computing fitness of the chromosomes.

The KL divergence is a primary equation of information theory that quantifies the

proximity of two probability distributions. It is a measure in statistics that quantifies

in bits how close a probability distribution p¼ {pi} is to a model (or candidate)

distribution q¼ {qi}. The KL divergence is measured using Eq. (12.1).

DKL

�
pj qj Þ ¼

Xno:of feature

i¼1

pilog2
pi
qi

� �
ð12:1Þ

DKL is non-negative (�0) and not symmetric in p and q. Its value is zero if the

distributions match exactly and can potentially equal perpetuity. In the binary string

Fig. 12.1 Neighbourhood

generation method

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 273



population, candidate feature subset is created and associated probability distribu-

tion (qi) is computed. Then the probability distribution ( pi) based on decision

attribute over all samples is calculated. We evaluate pairwise DKL value and

mean of these DKL value is used as fitness function of the genetic algorithm. The

workflow diagram of the methodology is described in Fig. 12.2.

12.2.2 Fuzzy-Rough-Set Approach

Real-world data sets are often vague and redundant, creating problem to take

decision accurately. Very recently, rough-set theory [15, 16] has been used suc-

cessfully with the goal of removing vagueness and extracting knowledge after

dimension reduction of the data set. However, rough-set theory is applied on

discrete data set, but in real life most often the attributes are continuous.

Discretisation of data leads to information loss and may add inconsistency in the

data sets. Fuzzy-rough concept [17, 18] has been applied to overcome the above

limitations. After removing inconsistency, rough-set theory [19] is applied to obtain

the reduced attribute set called reduct. However, handling of non-discretised values
increases computational complexity of the system. Therefore, to build an efficient

classifier, genetic algorithm (GA) has been applied to obtain optimal subset of

attributes, sufficient to classify the objects. The proposed algorithm reduces dimen-

sionality to a great extent without degrading the accuracy of classifier and avoids

being trapped at local minima. As a next step genetic algorithm has been applied to

obtain global optima in the search space for most informative attributes.

The following subsection describes how to generate fuzzy rule set with optimum

variation in the range of linguistic labels representing antecedent of the rules. Fuzzy

inference system is invoked to obtain membership value of linguistic variables. In

the next subsection, we present the dimension reduction algorithm for obtaining

reduced attribute set or reduct.

12.2.2.1 Data Preparation

To design the fitness function of GA, two parameters are first evaluated, i.e. the

membership values of each instances or objects in different clusters and the

membership value of the objects in different classes. The former parameters are

obtained by applying fuzzy c-means clustering algorithm [20] and the latter by

invoking a Mamdani-type fuzzy inference system [19]. Different steps of the

procedure are described below:

• Step 1: Input data is fuzzified based on the range of minimum and maximum

value of each attribute, which determines the spread of membership value of

respective attribute.

274 J. Sil and A.K. Das



Start

Initialize GA parameters

Randomly generate
initial population

Evaluate fitness function

Satisfying
terminate 
criteria?

Yes

No

Steady state selection of parent
chromosomes for next generation

Best chromosome gives
the optimal feature subset

Apply single point cross-
over of parent chromosomes

Apply jumping gene
mutation

Deploy local search on
chromosomeNew population

Stop

Fig. 12.2 Workflow of hybrid genetic search model

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 275



• Step 2: Objects are grouped using fuzzy c-means clustering algorithm, where c is

equal to the number of class labels.

• Step 3: For each attribute and its respective class label, linguistic variables are

assigned following semantic of the dataset. The value of the linguistic variable is

set based on the range of values to which an attribute value is spread for a

particular class label.

• Step 4: For each linguistic variable, corresponding membership curves are

drawn.

• Step 5: The rule set is designed by randomly choosing data elements from the

training set and evaluating their membership values. Using the attribute values

we judge in which linguistic label corresponding attribute value belongs, and

finally the rule is framed with the linguistic label along with the class label of

the rule.

• Step 6: After generating the total rule base, a fuzzy inference system (FIS) has

been built using Mamdani model.

Finally, the FIS is used to produce the membership values of each object

belonging to different classes (second parameter) for evaluation of fuzzy-rough

dependency factor, which is treated as fitness function of GA. A data set with two

attributes and three output class label is considered in Table 12.1 to illustrate the

above procedure. The required steps are:

• Step 1: The minimum and maximum ranges of the attributes for spread of

corresponding membership curve, as shown in Table 12.1, are Attr#1¼ 2–15,

Attr#2¼ 5–25.

• Step 2: Now reconstruct the decision table by grouping the class label as shown

in Table 12.2.

• Step 3: For each attribute, membership values are assigned by utilising the range

of attribute values corresponding to individual class labels:

Attr#1: LOW (2–8), MED (6–12), HIGH (10–15)

Attr#2: VERY LITTLE (5–16), LITTLE (10–20), MORE (21–25)

Table 12.1 A decision table

Objects Attr#1 Attr#2 Class label

O1 2 10 1

O2 7 5 2

O3 5 15 1

O4 6 8 2

O5 12 16 2

O6 8 20 1

O7 10 25 3

O8 15 22 3

O9 1 17 1

O10 13 21 3

276 J. Sil and A.K. Das



• Step 4: The membership curves for the attributes are shown in Fig. 12.3.

• Step 5: The rule set corresponding to the decision system is given below:

1. IF Attr#1 is LOW and Attr#2 is VERY LITTLE THEN class is 1.

2. IF Attr#1 is LOW and Attr#2 is LITTLE THEN class is 1.

3. IF Attr#1 is LOW and Attr#2 is MORE THEN class is 1.

4. IF Attr#1 is MED and Attr#2 is LITTLE THEN class is 1.

5. IF Attr#1 is MED and Attr#2 is MORE THEN class is 1.

6. IF Attr#1 is LOW and Attr#2 is VERY LITTLE THEN class is 2.

7. IF Attr#1 is MED and Attr#2 is VERY LITTLE THEN class is 2.

8. IF Attr#1 is MED and Attr#2 is LITTLE THEN class is 2.

9. IF Attr#1 is HIGH and Attr#2 is VERY LITTLE THEN class is 2.

10. IF Attr#1 is HIGH and Attr#2 is LITTLE THEN class is 2.

11. IF Attr#1 is MED and Attr#2 is MORE THEN class is 3.

12. IF Attr#1 is HIGH and Attr#2 is MORE THEN class is 3.

Table 12.2 Output of step 2

Objects Attr#1 Attr#2 Class label

O1 2 10 1

O3 5 15 1

O6 8 20 1

O9 7 5 2

O2 6 8 2

O4 12 16 2

O5 10 25 3

O7 10 25 3

O8 15 22 3

O10 13 21 3

Fig. 12.3 Membership curve of two attributes

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 277



Finally, Mamdani model has been applied for evaluating degree of membership

value of each attribute in different classes.

12.2.2.2 DIM-RED-GA Algorithm

In the proposed method, the dependency of the decision attribute or class label on

different set of condition attribute is calculated, and attributes with highest depen-

dency factor are selected as optimum set of reduct by applying genetic algorithm.

In the proposed DIM-RED-GA, population size is considered as the size of the

total data set, and fuzzy-rough dependency factor is designed as the fitness function.

The length of each chromosome is equal to the number of attributes, and each

component represents corresponding attribute value of different objects,

i.e. population. Two parents are chosen randomly and crossing over between

them is performed by selecting a crossover point with a probability of 0.10.

Mutation is performed with a probability of 0.02. In each generation, a combination

of different attributes is formed and from them few are selected based on the fitness

value. Termination condition is kept as combination of two conditions: (1) number

of generation is greater than a maximum value set previously or (2) no change in

fitness value.

It has been observed that for the UCI database, the proposed algorithm DIM-

RED-GA shows appreciable performance both in terms of dimensionality reduction

and classification accuracy.

12.3 Case Study

Rice is cropped worldwide and over half of the world population depends on rice as

the main food. To cope with the increasing demand for rice, a key element is the

development and implementation of effective rice insect management strategies.

The use of high-yielding varieties and greater nitrogen fertiliser increased rice

yields. Still disease and pests cause 25% loss of rice in India, which need to be

controlled for more production of rice. Losses may be reduced using pesticides.

However, the use of pesticides increases the cost of production, and in addition it

reduces food quality creating adverse effect on the environment. So instead of using

pesticides, researchers try to develop sustainable farming practice that depends on

many factors including effective and timely detection of diseases and pest man-

agement to protect the crops. Timely diagnosis of crop diseases in the fields is

critical for precision on farm disease management.

Rapid development of digital devices for acquiring and storing of data attracts

researchers to apply analytical methods for automatic identification of rice diseases

using computational frameworks. However, due to the diversity of crops and their

associated diseases, application of technology in agriculture is still in research

stage. Therefore, the challenge is elaborate investigation and analysis of the big

data set for developing automated rice disease classification system. To design an

278 J. Sil and A.K. Das



efficient classification system, different types of features are acquired from the rice

plant images generating huge volume of data set. Using the proposed feature

selection methods, most important features are obtained based on which the rice

diseases are classified.

12.3.1 Rice Diseases

Three different types of attacks, namely, weeds, insect/pest and diseases, cause

substantial loss in crops. In the present study, five rice plant diseases are considered

that are grouped as follows:

• Diseases caused by fungus

• Diseases caused by bacteria

• Diseases caused by virus

To describe the diseases, locations of infection in different parts of the rice plant

are to be detected accurately. The rice plant consists of roots, stem, leaves and

panicle, as illustrated in Fig. 12.4.

12.3.1.1 Leaf Brown Spot

Brown spot symptoms are observed at the tillering stage and beyond. Small foliar

lesions are found and the shapes of the lesions vary from circular to oval with light

brown to grey at the centre and reddish brown margin, as shown in Fig. 12.5.

12.3.1.2 Rice Blast

Rice blast is observed in both lowland and upland. Lesions on the leaves are,

generally, brown to dark brown colour and may enlarge and coalesce to kill the

Fig. 12.4 Mature rice plant

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 279



entire leaves. Initially white to greyish green circular lesions or spots with dark

green borders are found on the leaves. Older lesions on the leaves are elliptical or

spindle shaped with more or less pointed ends. A leaf infected by blast is shown in

Fig. 12.6.

12.3.1.3 Sheath Rot

Sheath rot occurs on the leaf sheath that encloses the young panicles. The lesions

start as oblong or irregular spots with variation in colour from grey to light brown at

centres, surrounded by distinct dark reddish brown margins, shown in Fig. 12.7. As

the disease progresses, the lesions enlarge and coalesce and may cover most of the

leaf sheath. Lesions may also consist of diffuse reddish brown discolorations in the

Fig. 12.5 Leaf infected by

brown spot disease

Fig. 12.6 Rice leaf

infected by blast disease

Fig. 12.7 Rice stem

infected by sheath rot

280 J. Sil and A.K. Das



sheath. An abundant whitish powdery growth may be found inside the affected

sheaths, although the leaf sheath looks normal from outside.

12.3.1.4 Bacterial Blight

Bacterial blight disease appears on old plants, usually at or after maximum tillage or

at rooting stage. Water-soaked lesions usually start at leaf margins, a few cm from

the tip and spreading towards the leaf base. Length and width of the affected areas

increase, while colour changes from yellowish to light brown due to drying.

Yellowish border between dead and green areas are found on the leaf, as shown

in Fig. 12.8.

12.3.1.5 Rice Hispa

Rice hispa is a defoliator during the vegetative stage of the rice plant. Scraping of

the upper surface of the leaf blade leaving only the lower epidermis as white streaks

parallel to the midrib is observed, while tunnelling of larvae through leaf tissue

causes irregular translucent white patches that are parallel to the leaf veins, as

shown in Fig. 12.9.

Fig. 12.8 Rice leaf

infected by bacterial blight

disease

Fig. 12.9 Rice leaf

infected by pest rice hispa

disease

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 281



12.3.2 Methodology

Image processing has wide range of applications in biometric identification, defect

detection, quality measurement, medical imaging and many more fields. However,

in agriculture domain, it has limited applications. One potential area of application

in agriculture is rice disease classification where image processing and computa-

tional methodologies can be applied to develop an autonomous system. Many

researchers have attempted to develop such systems with the capability to under-

stand and reason from observations using intelligent techniques [21, 22]. Real-life

implementation has very limited scope due to variety of diseases and variation of

symptoms that increase complexity of the system. Presently, rice diseases are

detected manually depending on the visual symptoms and opinion of field experts.

Visual symptom-based common features are change of colour of the plant, shape of

the infected region, colour of different subregions with respect to the background

region, texture of infected regions and location of infection. However, evaluation of

manually identified visual symptoms are subjective and observer dependent, and

lack in timely diagnose often fail to classify diseases accurately. Different types of

features are identified and extracted from the infected regions using geometric

property of the affected region, statistical characteristics, intensity and texture

values. All such features are not significant, and the presence of redundant features

affect classification accuracy and increases complexity of the systems. Therefore,

features are selected using evolutionary algorithms to reduce complexity of the

decision-making system.

12.3.2.1 Image Filtering

The basic task of image processing is to extract pixel information from the image

and provide suitable interpretation of such information for understanding of human

observers. However, when images are captured optically or electronically, the

original image is degraded by the environment and image acquisition system. So

the very first step is to filter noise content from the acquired image with an objective

to recover the image from degraded observations. Filtering is a low-level image-

processing task, which removes high-frequency noise component from the

degraded image. Noise removal using different types of low-pass filtering tech-

niques is an important research area in image and signal processing. Linear filter

[23] is sufficient in removing additive noise like Gaussian noise [24] but delivers

poor performance due to the presence of impulse noise. Non-linear filter like

median filter [25] is used to de-noise the salt and pepper noise from the degraded

images. In linear filter, the value of the output pixel is obtained using the weighted

sum of the input pixels, while non-linear filtering method assigns a value to the

output pixel, based on the neighbouring pixel information of the input pixel.

Mean filter, also called average filter, is one kind of low-pass linear filter that

produces output as average intensity of the neighbouring pixels. The average filter

282 J. Sil and A.K. Das



smoothes local variation in an image, and thus noise is reduced due to blurring

effect in the image. In average filtering, if the template size is larger, the blurring

effect is more in the output image. Median filtering is a non-linear low-pass filter

that is adequate for removing the outliers present in an image. It uses

neighbourhood operations to process an image around the input pixel. The pixel

values in a neighbourhood region are ordered, and the median value is used to

substitute the pixel at the same location of the output image.

12.3.2.2 Feature Extraction

Feature extraction is an important step towards disease identification on which the

success of the system depends. A visual feature is defined to capture certain visual

properties of an image, either globally for the entire image or locally for a small

group of pixels. Most of the common features observed by the farmers in the

diseased plants are the visual symptoms in the spatial domain such as change of

colour, shape of the infected portion, location of infection and texture. Spots created

by the diseases have colour difference between its boundary region, centre or core

region and uninfected region. Change of colour of the spot at boundary and core

regions with respect to the uninfected portion have also been used as colour features

to address the age and nutrient level of the plant. Another set of colour features

based on distribution of hue are obtained since hue represents the true colour

recognised by the human visual system. Distribution of hue value from the centre

towards the boundary of the spot along the radius in eight different directions has

been considered as colour features to distinguish the diseases.

Different types of features are extracted from the infected plant images to

classify the rice diseases. However, it has been observed that classification accuracy

to detect diseases is not proportional to the number of features, rather less number

of features but more significant ones. Therefore, feature selection is an important

step for accurately classifying rice diseases based on the extracted features. The

irrelevant and redundant features should be removed prior to building the classifier

in order to achieve better performance and reducing complexity of the systems.

Most common features used for building image-based recognition/classification

system are colour features, shape-based features and texture features.

12.3.2.3 Colour Features

Colour is a major distinctive attribute used to distinguish diseases. Colour features

are geometric transformation invariance and generally global so is considered to

extract colour features. Consumers initially accept or reject a food based on its

colour and other visual attributes, which is simulated using machine vision method.

To identify different types of diseased plant images in remote-sensing techniques,

different types of vegetative indices are used to represent quantitative measure-

ments indicating the vigour of vegetation. Bannari et al. [26] suggest that over forty

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 283



vegetation indices have been developed during the last two decades and used for

classification of different diseases. Vegetative index based on the visual images are

also proposed in literature where normalised difference greenness index (NDGI)

and redness index (RI) are defined as

NDGI ¼ g� r

gþ r

RI ¼ r þ g

r � g

where r and g represent the red and green value of a pixel, used to identify stress of
the images.

Colour is used not only for disease identification but also as a major feature for

quality, composition and standards of identity of food. Colour features are widely

used for grain quality measurement. Wang et al. [27] developed a real-time grain

inspection instrument to classify durum wheat kernels based on their virtuousness.

To develop the system, acquired images are normalised into 70� 200 size and

converted to HSI colour plane. Here it has been assumed that an artificial neural

network (ANN) would prefer the HSI model over the RGB model because ANNs

are designed based on an analogy to the human neural system. Using various

artificial neural network models, they got accuracy in the range of 58–90%.

12.3.2.4 Shape-Based Features

Shape of the spots created by infection plays an important role for disease identi-

fication. Some simple geometric features are used to describe the shapes of the

infected regions. Usually, the simple geometric features can only discriminate the

shapes with large differences, therefore usually used as filters to eliminate false hits

or combined with other shape descriptors to discriminate shapes. A shape can be

described by different aspects. Shape parameters available in literature are centre of

gravity, axis of least inertia, digital bending energy, eccentricity, circularity ratio,

elliptic variance, rectangularity, convexity, solidity, Euler number, profiles and

hole-area ratio. Different shape parameters are described below:

• The position of centre of gravity should be fixed in relation to the shape [28] and

so used to recognise the shape.

• The axis of least inertia is unique to the shape and serves as a unique reference

line to preserve the orientation of the shape. The axis of least inertia (ALI) of a

shape is defined as the line for which the integral of the square of the distances to

points on the shape boundary is a minimum [29].

• Average bending energy is defined by the average of squared curvature of the

shape and is a useful property of shape [30].

• Eccentricity is the measure of aspect ratio, defined as the ratio of the length of

major axis to the length of minor axis [28].

284 J. Sil and A.K. Das



• Minimum bounding rectangle is also called minimum bounding box, the

smallest rectangle that contains every point in the shape.

• Solidity describes the extent to which the shape is convex or concave [31] and

defined by the ratio of area of the shape region where H is the convex hull area of

the shape.

• Euler number describes the relation between the number of contiguous parts and

the number of holes on a shape [32].

• Circularity ratio represents how a shape is similar to a circle [33]. Three different

definitions are available in literature to measure the circularity. Circularity ratio

is (i) ratio of the area of a shape to the area of a circle having the same

perimeters, (ii) ratio of the area of a shape to the shape’s perimeter square and

(iii) circle variance, ratio of standard deviation and mean of the radial distance

from the centroid of the shape to the boundary points.

• Ellipse variance is a mapping error of a shape to fit an ellipse that has an equal

covariance matrix as the shape [28].

• Rectangularity represents how rectangular a shape is, i.e. how much it fills its

minimum bounding rectangle and defined as a ratio of area of the shape and the

area of the minimum bounding rectangle [28].

• Convexity is defined as the ratio of perimeters of the convex hull over that of the

original contour [34].

• Hole-area ratio (HAR) is defined as the ratio of area of a shape and the total area

of all holes present in the shape. Hole-area is the most effective in discriminating

between symbols that have big holes and symbols with small holes [32].

• Shape-based features for rice disease classification include area, perimeter

length and minimum enclosing rectangle of infected spot as reported in

[35]. The shape features used for grain classification and grading system include

perimeter, area and shape descriptors (kernel circularity and shape compact-

ness), selected to classify group of kernels which are placed in random direction.

Area and perimeter of the spot are calculated using chain code.

12.3.2.5 Texture Features

Texture is one of the most important characteristics of images in identifying defects

or flaws that provides important information for recognition and interpretation of

images. The term texture may be used to characterise the surface of a given object

or region. Success of texture classification depends on the appropriate method of

texture analysis for feature extraction, and selection of such method is a critical one.

Texture features based on the extraction methods are broadly divided into four

categories:

• Statistical features

• Model-based features

• Structural features

• Filter-based features

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 285



Statistical Features

Statistical features are determined by applying statistical procedures. Most common

statistical texture features are based on the co-occurrence matrix. A variety of

concurrence matrix is found in [36, 37]. Most common is the grey label occurrence

matrix (GLCM) [36]. It is a two-dimensional histograms of the occurrence of pairs

of grey levels for a given displacement vector. Based on which 14 features are

calculated such as angular second moment, contrast, correlation, variance, inverse

difference moment, sum average, sum variance, sum entropy, entropy, difference

variance, difference entropy, information measures of co-relation and maximal

correlation coefficient using grey-level co-occurrence matrices.

Model-Based Features

A number of random field models (i.e. models of two-dimensional random pro-

cesses) have been used for modelling and synthesis of texture. If a model is shown

to be capable of representing and synthesising a range of textures, then its param-

eters may provide a suitable feature set for classification and/or segmentation of the

textures. For a model-based approach to be successful, there must exist a reasonably

efficient and appropriate parameter estimation scheme, and the model itself should

be parsimonious, i.e. use the minimum number of parameters. Popular random field

models used for texture analysis include fractals, autoregressive models, fractional

differencing models and Markov random fields.

Autoregressive models have been used to model images as random fields

(two-dimensional random processes) by a number of researchers [38–40]. In the

two-dimensional spatial case, the “previous values” of the time series process are

replaced by the grey values of local neighbourhood pixels. Unlike the temporal

case, there is normally no preferred direction in a lattice, and neighbourhoods are

therefore normally defined to consist noncausal (two-sided) variables. Again the

parameters may be estimated either by using least square error or maximum

likelihood techniques.

Markov random fields (MRFs) have been popular for modelling images. They

are able to capture the local (spatial) contextual information in an image. These

models assume that the intensity at each pixel in the image depends on the

intensities of only the neighbouring pixels. MRF models have been applied to

various image-processing applications such as texture synthesis, texture classifica-

tion, image segmentation, image restoration and image compression.

Structural Features

Structural approaches generally model a texture as the deterministic or stochastic

placement of texture primitives called textons with the emphasis on texton charac-

terisation such as size and shape or both local properties. Structural methods are

based on regular or semi-regular placements of textural primitives. In the case of

observable or visual textures, it is usually quite difficult to extract the primitives and

their placements. Therefore, these approaches are more appropriate only for highly

regular deterministic textures.

286 J. Sil and A.K. Das



Filtered-Based Features

Filter-based texture features are gaining popularity for different classification

purposes due to its ability to represent texture precisely and overcome the draw-

backs of statistical and structural texture features. Filter-based methods can be

grouped into three categories: spatial domain filtering, frequency domain filtering

and spatial-frequency domain filtering.

Texture-based approach can fail where texton primitives are not readily identi-

fiable. Statistical approaches focus on the global spatial relationships between

intensity variations and often fail to capture local properties of the texture. Texture

characterisation requires both local texton primitive and global spatial organisation

description. Neither structural nor statistical methods satisfy this requirement fully.

Statistical methods have been widely accepted over the past two decades.

12.3.3 Position Detection

Another important feature to classify diseases is the position of infection (PSI) with

respect to the top boundary of the leaf. A tree structure method has been described

here to identify the PSI [41]. The background of a segmented image is represented

by grey value, and noninfected region is marked by black, while the infected region

is represented by white as shown in Fig. 12.10. A rectangle is drawn across the leaf

so that it covers the infected region and boundary of the leaf, called image block, as

shown in Fig. 12.10. Image blocks of different infected leaves are standardised to

600� 900 image size. A vertical line from the middle of the length and a horizontal

line from the middle of the width of the rectangle are drawn, which split the image

block into four equal subblocks. Thus, the main image block, say B, is divided into

four subblocks, named as B00, B01, B10 and B11, and a tree is constructed as follows:

• A vertex is considered for each block.

• An edge is drawn from parent block B to subblock Bijwith edge label {ij}, where
ij is marked as combination of 0 and 1.

Fig. 12.10 Splitting of regions

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 287



The subblocks are either non-uniform or uniform. The non-uniform block

contains the mixture of black and white pixels, while uniform block contains either

black or white pixels.

Next, all subblocks are checked for uniformity. The subblocks of a parent block

are considered as leaf nodes of the tree if at most one subblock is the non-uniform

block. Otherwise, each non-uniform subblock of the parent block is divided in the

same way, and the tree is expanded until all leaf nodes are generated. Figure 12.11

shows the tree structure of the block, corresponding to the image shown in

Fig. 12.10. The block B representing the whole image is the root (R) of the tree,

while the non-uniform subblocks are the leaf nodes represented by grey colour. The

leaf nodes with grey colour carry boundary information of the infected region,

while white-coloured leaf nodes, i.e. uniform subblocks, have no importance. The

intermediate nodes including the root node are used only to measure the distance of

the infected region from the top boundary of the leaf. To measure the distance, a

binary string is associated to each node of the graph according to Eq. (12.2).

BS Rð Þ ¼ 0f g
BS Cð Þ ¼ BS pð Þ ijf g; if P is parent node other than root nodeð Þ of child node C

¼ ijf g ; other wise

ð12:2Þ

where {ij} represent the edge label from P to C.
The binary string associated with the non-uniform leaf node (NL) ie BS (NL) is

converted to its decimal equivalent and provides distance in terms of blocks from

the top of the image. The width of the subblock corresponding to non-uniform node

is considered as unit block distance.

Let, for a node T, binary string contain n-components, i.e. BS (T )¼ {i1j1}{i2j2}
{i3j3}. . ...{injn}. The binary code BC(T ) is given as {i1}{i2}{i3}. . ..{in}¼

Fig. 12.11 Tree structure of the image in Fig. 12.10

288 J. Sil and A.K. Das



{i1i2i3. . .in}, whose decimal equivalent is DC(T ). The left most bit of each com-

ponent of the string is considered for binary code generation because most signif-

icant bit carries maximum weight.

For example, in Fig. 12.11, binary string for non-uniform leaf node T is {01}

{11}{11}{01}, and its corresponding binary code is {0}{1}{1}{0}¼ {0110}. It is

6 in decimal code, which implies that subblock T is six block distance apart from

the top of the main block (i.e. the image).

In reality, infected region created by different diseases vary in size, and as a

result a global block with minimum width is used for distance measurement. The

widthW(T ) of a subblock associated with non-uniform leaf T is given by Eq. (12.3).

W Tð Þ ¼ w

2l
ð12:3Þ

where w is equal to 900 representing standard width of the image block and l is the
label of the node T in the quad tree.

The procedure is applied on large number of infected leaves; corresponding trees

and width of non-uniform leaf nodes are calculated using Eq. (12.3). Therefore, all

the non-uniform nodes in the same label of the tree have associated blocks with

same width. Similarly, a node at highest label of the tree has associated block with

minimum width. Say, lmax is the highest label among all trees, so the minimum

width of the block associated to non-uniform node T
0
is obtained using Eq. (12.4).

wmin T
0

� �
¼ w

2lmax
ð12:4Þ

Thus, the actual block distance D(T ) of the subblock T from the top of the image

block is given by Eq. (12.5) considering minimum width subblock as the unit block

distance.

D Tð Þ ¼ DC Tð Þ* W Tð Þ
Wmin T

0� �

¼ DC Tð Þ � 2lmax

2l

¼ DC Tð Þ � 2 lmax� lð Þ

ð12:5Þ

So, if a tree contains b non-uniform leaf nodes {T1, T2, . . .,Tb}, then the position of

the spot in the image from the top is given by Eq. (12.6).

pos ¼ 1

b

Xb
i¼1

D Ti
� � ð12:6Þ

where D(Ti) represents block distance for ith non-uniform leaf node.

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 289



For rice disease identification, a wide variation of features are obtained and

values are acquired over a period of time. The data set represent characteristics of

the images when attacked by different types of diseases. However, the presence of

large number of feature may increase redundancy, and dominance of less important

features reduces classification accuracy. Therefore, feature selection is an important

step for accurately classifying rice diseases; here we have considered five different

diseases. The irrelevant and redundant features are removed using feature selection

methods prior to classify the diseases.

12.4 Conclusions

Systematic and unbiased approach to classification is of great importance, and

therefore, automated discovery of this small and good feature subset is highly

desirable. In this chapter, a novel local search based genetic algorithm approach

has been proposed to select informative feature subset, which classify the dataset

effectively and efficiently. In the second feature selection method, vagueness and

continuous domain dataset is managed using fuzzy-rough approach, and optimum

features are selected using conventional genetic algorithm.

Finally a real-life case study in agricultural domain is illustrated with sufficient

features and large data set. The features are extracted from the objects which are

robust, accurate and independent of transformation variance. Colour-based features

are robust, transform invariant and represent most important visual changes

recognised by human eye. Shape features are used for disease classification, since

depending on the type and severity of infection shape of the infected region varies

considerably. The presence of strips on the plant parts provides texture information,

which are affected by diseases, and so different statistical texture features are also

used for classifications. For disease detection, variability of features plays vital role,

and at the same time complexity of the decision-making system is important for

real-life problem. Genetic algorithm-based optimal feature selection and cleaning

the data set using fuzzy-rough approaches are applied for minimising

misclassification rate.

Feature dependency and context-based feature selection methods can be taken as

future work for dimensionality reduction. More number of classes or diseases can

be considered with an aim to enhance its performance and ability with respect to all

categories of crops at an early stage. Time-series data can be analysed to understand

progression of the disease, and preventive measures could be taken providing

appropriate suggestions to control them.

290 J. Sil and A.K. Das



References

1. Hu H, Wen Y, Chua TS, Li X (2014) Toward scalable systems for big data analytics: a

technology tutorial. IEEE Access 2:652–686

2. Jagadish HV, Gehrke J, Labrinidis A, Papakonstantinou Y, Patel JM, Ramakrishnan R,

Shahabi C (2014) Big data and its technical challenges. Commun ACM 57:86–94

3. Blum A, Langley P (1997) Selection of relevant features and examples in machine learning.

Artif Intell 97(1.2):245–271

4. Knowles JD, David WC (2000) M-PAES: a memetic algorithm for multiobjective optimiza-

tion. In: Proceedings of the 2000 congress on evolutionary computation, 2000, vol. 1. IEEE

5. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn

3.2:95–99

6. Deb K et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans

Evol Comput 6.2:182–197

7. Coello CA et al (2007) Evolutionary algorithms for solving multi-objective problems.

Springer, New York

8. Kim KW, Yun YS, Yoon JM, Gen M, Yamazaki G (2005) Hybrid genetic algorithm with

adaptive abilities for resource constrained multiple project scheduling. Comput Ind 56

(2):143–160

9. Diaz CA, Muro AG, Pérez RB, Morales EV (2014) A hybrid model of genetic algorithm with

local search to discover linguistic data summaries from creep data. In: Proceedings of the

expert system with appllications, 2014, pp 2035–2042

10. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its

application to flowshop scheduling. IEEE Trans Syst Man Cybern 28(3):392–403

11. Sharma S, Mathew TV (2011) Multiobjective network design for emission and travel-time

trade-off for a sustainable large urban transportation network. Environ Plan B: Plan Des

38.3:520–538

12. Kalyanmoy D et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE

Trans Evol Comput 6.2:182–197

13. Pati SK et al (2013) Gene selection using multiobjective genetic algorithm integrating cellular

automata and rough set theory, swarm, evolutionary, and memetic computing. Springer,

Cham, pp 144–155

14. Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86

15. Pawlak Z (1998) Rough set theory and its applications to data analysis. Cybern Syst

29:661–688

16. Pawlak Z (1991) Rough sets – theoretical aspects of reasoning about data. Kluwer Academic

Publishers, Boston/London/Dordrecht, p 229

17. Jensen R, Shen Q (2002) Fuzzy-rough sets for descriptive dimensionality reduction. In:

Procceding of the 11th international conference on fuzzy systems, pp 29–34

18. Moumita S, Sil J (2011) Dimensionality reduction using genetic algorithm and fuzzy-rough

concepts. In: 2011 world congress on information and communication technologies, IEEE, pp

379–384

19. Qinghua H, Daren Y, Zongxia X (2006) Information-preserving hybrid data reduction based

on fuzzy-rough techniques. Pattern Recogn Lett 27(5):414–423

20. Jain A, Murty M, Flynn P (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323

21. Zhigang L, Zetian F, Yan S, Tiehua X (2003) Prototype system of automatic identification of

cotton insect pest and intelligent decision based on machine vision. American Society of

Agricultural and Biological Engineers

22. Qin Z, Zhang M, Christensen T, Li W, Tang H (2003) Remote sensing analysis of rice disease

stresses for farm pest management using wide band airborne data. IEEE 4:2215–2217

23. Gonzalez RC, Woods RE (2007) Digital image processing. Pearson Education, New Delhi

24. Pratt WK (2010) Digital image processing. Wiley, New York

12 Feature Selection for Adaptive Decision Making in Big Data Analytics 291



25. Chan RH, Ho CW, Nikolova M (2005) Salt-and-pepper noise removal by median-type noise

detectors and detail-preserving regularization. IEEE Trans Image Process 14(10):1479–1485

26. Bannari A, Morin D, Bonn F, Huete AR (1995) A review of vegetation indices. Remote Sens

Rev 13(1):95–120

27. Wang N, Dowell FE, Zhang N (2003) Determining wheat vitreousness using image processing

and a neural network. Trans Am Soc Agric Eng 46(4):1143–1150

28. Mingqiang Y, Kidiyo K, Joseph R (2008) A survey of shape feature extraction techniques. In:

Pattern recognition techniques, technology and applications. I-Tech, Vienna

29. Horn B (1986) Robot vision. MIT Press, Cambridge

30. Loncaric S (1998) A survey of shape analysis techniques. Pattern Recogn 31(8):983–1001

31. Cheng C, Liu W, Zhang H (2001) Image retrieval based on region shape similarity. In:

Proceedings of the 13th SPIE symposium on electronic imaging, storage and retrieval for

image and video databases

32. Soffer A (1997) Negative shape features for image databases consisting of geographic sym-

bols. In: Proceedings of the 3rd international workshop on visual form

33. Zhang D, Lu G (2002) A comparative study of fourier descriptors for shape representation and

retrieval. In: Proceedings of the 5th asian conference on computer vision

34. Mukundan R (2004) A new class of rotational invariants using discrete orthogonal moments.

Sixth IASTED international conference on signal and image processing, pp 80–84

35. Yao Q, Guan Z, Zhou Y, Tang J, Hu Y, Yang B (2009) Application of support vector machine

for detecting rice diseases using shape and colour texture features. IEEE International Con-

ference on Engineering Computation, pp 79–83

36. Robert M, Haralick KS, Itshak D (1973) Texture features for image classification. IEEE Trans

Syst Man Cybern SMC-3(6):610–621

37. Weszka JS, Dyer CR, Rosenfeld A (1976) A comparative study of texture measures for terrain

classification. IEEE SMC-6:269–285

38. Kashyap RL, Chellappa R (1983) Estimation and choice of neighbors in spatial interaction

models of images. IT V29:60–72

39. Kartikeyan B, Sarkar A (1991) An identification approach for 2-D autoregressive models in

describing textures. CVGIP Graph Model Image Process 53:121–131

40. Mao J, Jain AK (1992) Texture classification and segmentation using multi resolution simul-

taneous autoregressive models. Pattern Recogn 25(2):173–188

41. Phadikar S, Sil J, Das AK (2012) Feature selection and rule generation to classify rice diseases

by extracting features using empirical methods. J Comput Electron Agric 75:304–312

292 J. Sil and A.K. Das



Chapter 13

Social Impact and Social Media Analysis
Relating to Big Data

Nirmala Dorasamy and Nataša Pomazalová

Abstract Social media is a component of a larger dynamic and complex media and

information domain. As the connection with Big Data grows, its impact in the social

media domain cannot be avoided. It is vital that while the positive impact needs to

be recognized, the negative impact emerging from Big Data analysis as a social

computational tool needs to be recognized and responded to by various agencies.

There have been major investments in the development of more powerful digital

infrastructure and tools to tackle new and more complex and interdisciplinary

research challenges. While there is a need to size the opportunities offered by

continuing advances in computational techniques for analyzing social media, the

effective use of human expertise cannot be ignored. Using the right data, in the right

way and for the right reasons, can change lives for the better, especially if Big Data

is used discriminately and transparently. This chapter analyzes the impact of Big

Data from social media platforms in the social, political, and economic spheres.

Further, the discriminate use of Big Data analysis from social media platforms is

explored, within the context of ethical conduct by potential users and proposes

important imperatives to minimize, if not control, the negative impact of Big Data

analysis from a social perspective.

Keywords Social media • Digital technology • Social networking sites • Database

tools • Big Data • Big Data analysis • Social media services

N. Dorasamy (*)

Department of Public management and Economics, Durban University of Technology,

Durban, South Africa

e-mail: nirmala@dut.ac.za

N. Pomazalová

Department of Regional Development, Mendel University, Brno, Czech Republic

Durban University of Technology, Durban, South Africa

e-mail: natta@atlas.cz

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5_13

293

mailto:nirmala@dut.ac.za
mailto:natta@atlas.cz


13.1 Introduction

Data, or segments of information, have been collected and used throughout history.

However, the potential to collect, store, and analyze data has significantly increased

with the advancement in digital technology. The emergence of Big Data has

escalated its usefulness for decision-making at various levels of analysis, including

individual, group, organizational, and national systems. Organizations have moved

from using data stored in relational databases to using data from data mining in

general ledger packages, weblogs, social media, e-mail, sensors, photographs,

corporate enterprise resource planning (ERP) systems, custom relationship man-

agement (CRM) programs, and social networks. While the growth of Big Data has

accelerated in the last few years, the ability to find useful information within the Big

Data is of crucial importance and requires careful consideration. Managing such

data has to be underpinned by quality, protecting privacy and ethical use.

The rapid growth of the web as a publishing tool and the recent explosion of

social media and social networking sites have generated opportunities and chal-

lenges to social researchers. Currently, there are many types of social media

services (SMS). The Personal SMS like Facebook allows users to create online

profiles and connect with other users, focusing on social relationships and infor-

mation sharing such as one’s gender, age, interests, and job profile. The Status SMS

like Twitter allows users to post short status updates to broadcast information

quickly and publicly with other users. The Location SMS like Foursquare and

Google Latitude, using GPS-based networks, broadcasts one’s real-time location.

The Content-sharing SMS like YouTube and Flickr is designed as platforms for

sharing content, such as music, photographs, and videos [4]. The Shared-interest

SMS like LinkedIn is more a network for a subset of professional users to share

information interests like politics and education. These social media services

provide datasets that have expanded in size and complexity to the extent that

computer-based methods are now required to analyze mass volumes of information.

Data, with datasets whose size can range from a few dozen terabytes (TB) to

multiple petabytes (PB), is beyond the ability of typical database software tools

to capture, process, and store, manage, and analyze. Big Data technologies are

required to economically extract value and meaning from very large volumes of a

wide variety of data, by enabling high-velocity capture, discovery, and

analysis [21].

Today, social media is a key source for Big Data analysis from platforms such as

Twitter, Facebook, and Flickr, especially for businesses that depend on data-driven

intelligence [3, 12]. IT companies such as Google, Amazon, Facebook, and IBM are

fiercely competing in the Big Data analytics market. Social media systems provide

valuable information in terms of its detail, personal nature, and accuracy. Since the

data is not totally private, it is exposed to scrutiny within a user’s network, which
can increase the chances of accuracy when compared to data from other sources.

Big Data integration and predictive analytics can help overcome the challenges of

managing in an environment with increasing rates of change and innovation

[12]. Studies have shown that Big Data analytics has resulted in improvements in

294 N. Dorasamy and N. Pomazalová



retail operating margins, reduction in national healthcare expenditures, and savings

in operational efficiencies. It has great potential, in that it can generate significant

value across sectors, such as healthcare, retail, manufacturing, and the public sector

[12]. However, seeing that data is dynamic, there has to be continuous integration of

existing data with “living data,” if companies want to reap the optimal benefits of

data analytics.

Big Data volume is expanding due to the increase of social media, online data,

and location data, often resulting from the accelerated usage of sensor-enabled

devices. This has resulted in mobile cloud computing being made possible by

focusing on Internet technologies that are built on web-based standards and pro-

tocols. The key drivers for cloud computing are bandwidth increase in networks,

cost reduction in storage systems, and advances in database [12]. It has created a

form of virtualization over the Internet, which involves data outsourcing that can be

provisioned with minimal management effort or service provider interaction, with

no up-front cost and provides just-in-time services. It is a model for enabling

convenient and on-demand network access to a shared pool of computing resources

and eliminates the cost for in house infrastructure [5]. An area of distinctive growth

in the IT ecosystem is social media with smart devices, such as smartphones and

tablets, providing a new communication platform with real-time access for cus-

tomers. Various agencies have recognized such data as an important constituent of

innovation and have developed means to use Big Data to develop solutions to

business, technical, and social problems in innovative and collaborative ways.

While the use of Big Data is invaluable, businesses are challenged by Big Data

because it grows so large that they become awkward to work with using on-hand

database management tools [12].

While the value of Big Data is clear for tackling complex technical and business

problems, the question is on how well Big Data can solve complex social problems?

While, business and science have shown the value of Big Data, the social sector

needs to show how they can adopt this type of decision-making potential into their

operations. The issues that are being addressed in the social sector are more

complex than they are in business or science, making the use of Big Data more

challenging. In addition, greater focus must be given to the rights, privacy, and

dignity of different stakeholders. The large-scale collection, aggregation, analysis,

and disclosure of detailed and triangulated information offer the possibility of

powerful computational social science tools, but carries with it the potential for

abuse by various entities, especially if datasets are not reliable and representative.

In spite of these obstacles, progress continues.

13.2 Using Big Data and Social Media Innovatively

Big Data can encompass information such as transactions, social media, enterprise

content, sensors, and mobile devices. Since Big Data refers to datasets that extend

beyond single data repositories (databases or data warehouses), they are too large

13 Social Impact and Social Media Analysis Relating to Big Data 295



and complex to be processed by traditional database management and processing

tools. New Big Data technologies have helped to capture analyze and store data to

solve problems. Organizations are employing computing power through hardware

and software advances to manipulate huge amounts of data. Some new approaches

include Hadoop, a software that takes a different approach to data management, and

HANA, a hardware approach that handles data manipulation in raw memory to

make real-time analytics of the Big Data a reality [7]. Such advances have enabled

the cost reduction and volume capacity increase of digital storage mediums and

unique ways of manipulating data from social media.

Big Data offers much potential for innovative use, thereby creating value.

Fanning and Grant [7] identified the following ways in which Big Data is valuable:

• Big Data can reveal significant value by making information transparent and

usable at a much higher frequency. More people looking at the data will bring

different perspectives.

• As the data proliferates, there is more accurate and detailed performance infor-

mation that may expose variability and issues that need attention.

• Controlled experiments using Big Data analysis can assist to make better

management decisions regarding tailored products and services.

• Big Data can be used to improve the development of the next generation of

products and services through proactive maintenance and preventive measures

to minimize failures.

13.2.1 Social Media as Advertising and Marketing Medium

Social media platform providers provide numerous metrics for data analysis to

profile users for advertisers by showing the right advertisements to the right people,

using masses of hidden information to model which users are likely to respond to a

particular advertisement. Facebook can optimize advertising revenue by targeting

advertisements to achieve the greatest possible number of clicks. If used scrupu-

lously, valuable information can reach the right users. An additional example is

Amazon, which allows users to exercise some control over their data by allowing

them to flag purchases not to be used to form recommendations [1]. This is useful

both in cases of gift purchases and in cases where the product is of a sensitive

nature. Further, by allowing users to instruct a website not to use a specific piece of

personal data for a particular purpose represents a significant improvement on the

current personal data free-for-all model used by both social networking companies

and their corporate customers [17]. Such platforms can also play a beneficial role in

exposing, predicting, and helping to eliminate disruptive behavior. Computational

social science can serve a positive role in promoting the interests of the community

in a social media platform, provided the ethical considerations are evaluated for

various purposes of use.

296 N. Dorasamy and N. Pomazalová



The impact of Big Data can also be seen in marketing. There is a noticeable

move away from large-scale mailings of catalogues and offers to various individ-

uals, based primarily on purchased mailing lists or phone directories. This is due to

businesses mining Big Data to target individuals based on knowing the preferences

of individuals in the population. For example, Amazon can almost instantaneously

offer additional purchase opportunities to individuals based on what others have

also purchased given a similar purchase showing up in the cart. It can also target

those who in the past purchased a product or those who are searching a particular

topic [2]. Further, Google offers marketers the opportunity to provide relevant

advertisements to individuals based on their search habits.

It is through the improvement in the tools to analyze and collect Big Data that

larger markets can be targeted. According to Fanning and Grant [7], digital mar-

keting uses a combination of push-and-pull Internet technologies to execute mar-

keting campaigns. The use of software vendors such as Adobe allows customers to

make each digital transaction layered, thus allowing the organization to see in real

time how a particular advertising campaign is performing, in terms of what is being

viewed, how often, how long, as well as other actions such as responses rates and

purchases made [8]. This information provides key information for marketers to

make real-time decisions. In addition, the proliferation of mobile phones, tablets,

and other means of accessing the Internet has facilitated multichannel marketing by

companies like Usablenet.

Applications such as Facebook, LinkedIn, and Google are driven by information

sharing that can be used by business clients, government, other users within the

social media platform, and the platform provider itself [7]. For example, business

clients draw on this computational social science to target users based on constructs

that range from age, gender, and geographical location, sexual preferences, educa-

tion level, and employer.

13.2.2 Adding Value for Social Well-Being

The rapid use of mobile phones and Internet usage, especially in developing

economies, gives people the opportunity to improve the quality of their lives. A

mobile phone acts as an individual sensor, collecting pertinent information from its

environment, which when aggregated and analyzed with information from thou-

sands of other mobile phones can provide vital information, which can then be

disseminated back to people on the ground via the same mobile phones. For

example, Cell Life, a South African organization, created a mass messaging mobile

service called Communicate, which reminds patients to take their medications,

links patients to clinics, and offers peer-to-peer support services such as counseling

and monitoring [6].

In addition, most modern mobile phones contain global positioning systems

technology, which identifies the geographic location of the phone, and other

information relating to social media postings. This is important, for example,

13 Social Impact and Social Media Analysis Relating to Big Data 297



when researching migration patterns to understand the spread of infectious diseases

like Ebola and to help stop the disease from spreading. Information on the patterns

of human travel collected from mobile phone usage can be used to develop

predictive models to combat diseases in specific regions [13].

A further consideration is census data collected in different countries, which is

an important source of information for governments. In the 1800s, information from

the national census was logged by hand, microfilmed, and sent to be stored in state

archives, libraries, and universities. It took many years to properly tabulate census

data after the initial collection. In recent years, countries have streamlined their data

collection methods by adopting emerging technologies like geographic information

systems, social media, videos, intelligent character recognition systems, and sophis-

ticated data-processing software and processing tools to survey the populace [6].

Thorough data management during crisis communication can provide major

benefits. The study by Proctera et al. [18] on the 2011 riots in England found that

mainstream media lagged behind crowdsourced (“citizen journalism”) reports

appearing in social media. Further, it was evidenced that collaborative efforts by

large numbers of “producers” of data can provide competing and, at times, better

coverage of events than mainstream media. While evidence cannot always be taken

at face value, social media provides a platform for robust mechanisms for authen-

tication, so that false rumors are identified more quickly. This is supported by

Mendoza, Poblete, and Castillo [16] who noted that users deal with “true” and

“false” rumors differently: the former are affirmed more than 90% of the time,

whereas the latter are challenged (i.e., questioned or denied) 50% of the time.

There are several examples of social media being a valuable tool for information

gathering, for keeping the public informed, and for providing advice during crisis

situations. One such case was the August 2011 riots in England, which began as an

isolated incident in Tottenham. A study by Proctera, Visb, and Vossc [18] revealed

that Twitter was used overwhelmingly for more positive means, especially for the

organization of the riot cleanup. Even the police supported keeping social media

sites open during the crisis. However, the study confirmed the conclusions of other

studies that the police and government agencies in general still need to use social

media platforms like Twitter effectively [18].

13.2.3 Gauging Business Performance

The business community has also been a heavy user of Big Data. For example,

Netflix collects billions of hours of user data to analyze the titles, genres, time spent

viewing, and video color schemes to gauge customer preferences and to give the

customer the best possible experience. Following in the path of e-commerce, the

rise of social media, Big Data, and cloud computing has impacted businesses in the

following ways [11]:

298 N. Dorasamy and N. Pomazalová



• The ability to identify at the earliest opportunity those who are in danger of

leaving organizations and to action the retention of best talent

• The ability to identify the high performers based on “new” live data highlighting

performance and ratings and profitability rather than “old” assumptive data such

as university attended and the grade of their degree

• The ability to measure the real drivers of performance within the business,

thereby identifying “hidden gems” that make a real difference

• The ability to “fine-tune” businesses based on fact and evidence rather than

fiction and emotion

• The ability to understand that datasets can be combined to form a more intricate

and accurate picture from several data sources

13.2.4 Adding Value in Financial Markets

Financial markets have also benefitted from Big Data. Social media has played a

significant role in growing financial markets with respect to the following [11]:

• Significant means by which crowdfunding helps the underserved small- and

mid-sized entities (SMEs) and start-ups to access capital in a cost-effective

manner.

• New technologies fund opportunities for growing segments of the economy not

reached by traditional outlets and also create new jobs in a dynamic, technology-

based business model.

• Algorithms and soft-/hardware technology related to “high-frequency trading”

has exploded over the last 20 years, and the primary beneficiary has been the

market for existing shares and other financial instruments (secondary market).

With new cost-effective mechanisms to raise funds, underserved primary mar-

kets can now enjoy lower funding costs.

• Provides investors with protection from fraudsters through both proactive edu-

cation and appropriate regulation by governments through the creation of a new

and dynamic mechanism for allocating capital from traditional, institutional

stakeholders (such as banks) to individual-driven operations using current and

future technologies to touch millions of individuals looking for investment

opportunities.

13.3 Discriminate Use of Social Media Analysis

There are multiple dimensions to Big Data, which include volume (considers the

amount of data generated and collected), velocity ( refers to the speed at which data

are analyzed), variety (indicates the diversity of the types of data that are collected),

viscosity (measures the resistance to flow of data), variability (measures the

13 Social Impact and Social Media Analysis Relating to Big Data 299



unpredictable rate of flow and types), veracity (measures the biases, noise, abnor-

mality, and reliability in datasets), and volatility (indicates how long data are valid

and should be stored) [15]. The multiple dimensions make data searches and

retrieval more complex, as organizations have to find economical ways of integrat-

ing heterogeneous datasets while allowing for newer sources of data (in origin and

type) to be integrated within existing systems [6]. The proliferation of social

networks and social media requires much of the data being collected to be thor-

oughly analyzed before decision-making, as the data can be easily manipulated. In

view of the high cost of data collection and management, organizations need to

analyze the trade-off between accuracy and the cost of inaccurate data. If the quality

of data is poor and users cannot make sense of it, then the data has limited value

and use.

13.3.1 Unstructured Data

Unstructured data from multimedia networks cannot be categorized or analyzed

numerically, as it uses natural language. The explosive growth of social media

implies that the variety and quantity of Big Data is growing. A great deal of the

growth can be traced to unstructured data. For example, analyzing words and

pictures and then collating everything into meaningful and accurately interpreted

information requires diverse methods and can be time-consuming. The challenge is

exacerbated when time-sensitive issues like monitoring civil riots require data to be

aggregated and analyzed in the shortest time possible [19].

Some authors argue that there is no Big Data in the context of social problems, as

data is highly unstructured and generally not limited to numbers. In the case of child

pornography, the global industry lures thousands of children annually. Increasingly,

the producers of child pornography make use of various Internet platforms like

mobile phones, social media, and online classifieds. Although, many initiatives

exist to curb the problem, few initiatives have attempted to use Big Data. Data from

these technologies could be collected and used to identify, track, and prosecute

offenders. The problem is that the illicit nature of child pornography makes it

difficult to collect reliable primary data for some of the following reasons: there

are no valid indicators to measure antipornographic success and information col-

lected often meets organizational needs and not global needs [6]. In addition,

because of data privacy and security issues, data held by various organizations

are seldom shared in raw form, thereby limiting the creation of global datasets. This

is accentuated by agencies combating social evils often competing with each other

for scarce resources, therefore not being eager to share data.

Different service providers have their own network management systems. Orga-

nizations cannot connect their datasets across other organizations, if such data is

immersed in their administrative systems for operational purposes. One such case is

the US healthcare industry, which is characterized by large volumes of health plans

offered by different service providers with their own network management. This

300 N. Dorasamy and N. Pomazalová



invariably results in data being stored in multiple formats in multiple places. If this

data was more efficiently managed, then massive savings can accrue.

13.3.2 Gaps in Governance Standards

The lack of adequate data governance standards has failed to define how data is

captured, stored, and used for accountability in the social arena. As a result some of

the emergent challenges include integrating different datasets which lack good

metadata (data that describe data), poor quality data, and difficult-to-manipulate

forms such as PDFs or older file formats. As a result, large inconsistencies in the

captured data exist, further complicated by the need to transform data for analysis,

which is costly. The number of publicly available government datasets has accel-

erated, but only limited datasets where there is good metadata, ease of accessibility,

and manipulability are ever used. Further, integrating information from multiple

data sources requires skilled workers. In a report quoted by Fanning and Grant [7],

by 2018 there would be a shortage of 140,000–190,000 people with deep analytical

skills in the USA. This could be a serious problem for the analysis of Big Data to

make effective decisions, if there are no initiatives to develop data analytics skills.

Without clarifying ethical issues on data storage, access, and use by different

stakeholders, advancements in computational social science may put the public at

increased risk. If society is to be protected, then there should be legal and ethical

limitations on how social media as a computational social science tool can be used.

Citing the sentiments of the CEO of Nasdaq, Mark Zuckerberg, to take risks is to

“move fast and break things.” Oboler et al. [17] argue for external constraints to

protect society from the cost of mistakes by social media innovators.

The risk posed by the capacity of computational social science tools and the

explosion in the corpus of data, free of the ethical constraints placed on researchers,

raises serious questions about the impact that those who control the data and the

tools can have on society. Many social media companies are driven by online

advertising revenue which places the individual’s interest in privacy in conflict

with the interest of advertisers in extensive customer profiling. This is facilitated by

Web 2.0 sites which have higher advertising rates for advertisers to target selected

users. The increase in advertisers targeting specific users highlights unexpected

consequences. For example, Target analyzed purchasing patterns to identify poten-

tial customers of baby paraphernalia. The analysis, based on purchasing history of

unrelated items, highlighted potential pregnancies with a high degree of accuracy.

Target sent advertising material to its target market, creating an angry response

from a father whose teenage daughter received the advertising, but not knowing at

the time that she was really pregnant. The daughter was forced to confirm her

pregnancy because the retailer targeted her in the marketing as a result of the data

analysis. This does raise ethical concerns regarding privacy of information [10].

Further, social media sites can scrape a great deal of data from users’ age and

sexual preference to target advertisements for adult products, which can cause

13 Social Impact and Social Media Analysis Relating to Big Data 301



distress or unauthorized disclosure of sensitive personal information. This poses

both technical and ethical questions like: “Is any technically possible use of

personal data ethically acceptable?” [17]. Social networking companies and adver-

tisers need to consider such critical questions. By limiting data acquisition, sharing,

and use and by raising public awareness of the implications of its availability

through ethical considerations, the risk of abuse can be controlled.

13.3.3 Serving Self-Interest

Large volumes of data are not necessarily representative and reliable to solve

problems relating to public interest. Big Data users can exploit Big Data with no

regard for data quality, legality, data meaning, and process quality. For example, in

2011, the Rainforest Action Network in the USA discovered that the American

Petroleum Institute and its oil lobby allies were able to manipulate social media

opinion to show support for a pipeline project to carry oil from Canada to Texas by

using fake Twitter accounts to send large numbers of tweets to show support for the

project, which falsely represented public opinion. The Rainforest Action Network

(RAN) discovered that 14 of 15 accounts were faked and the tweets were generated

by an automated process [6].

Desouza and Smith [6] cite the case when public agencies and a newspaper in

New York released information about gun owners after the Connecticut school

mass shooting. Published information on the names and addresses of licensed gun

owners living in the neighborhood can be used by the wrong people like criminals

to target vulnerable homeowners who do not own guns or to target homeowners

who have guns in order to steal them. According to Oboler, Welsh, and Cruz [17],

methodology and ethics, drawn from the underlying fields of computational and

social sciences, need to be considered. The authors argue that considerations apply

not only to the research context but also to the worlds of government and commerce

where philosophical concerns are less likely to counter immediate practical bene-

fits. Most significantly, these concerns need to be considered in the context of social

media platforms which have become computational social science tools that are

easily accessible to businesses, governments, private citizens, and the platform

operators themselves. Governments can exercise their power when they see social

media acting against their interests. One such example was when the US govern-

ment asked Twitter through a court order for data on WikiLeaks founder Julian

Assange and those connected to him.

Social media can also promote the agenda of governments. Another example

was when the Egyptian government cut off the Internet during the 2011 riots, after it

realized that the US government provided training through the Internet to influence

social change among Egyptian dissidents. Computational social science tools

together with social media data can be used to reconstruct the movements of

activists, to locate dissidents, and to map their networks. Governments and their

security services have a strong interest in this activity [17].

302 N. Dorasamy and N. Pomazalová



13.3.4 Moving Away from Comfort Metrics

The analysis of general trends and the profiling of individuals can be investigated

through social sciences. In this regard, Kettleborough [11] argues against “comfort

metrics,” whereby data that is not relevant and focuses merely on the process is

collected. There is a need to look at data differently and to be prepared to throw

away many old beliefs like forced ranking, which looks at normal distribution to

employee performance, as a good employee performance measurement tool.

According to Kettleborough [11], there is evidence that these approaches have

actually damaged organizations like Microsoft’s lost decade, which was as a direct

result of misplaced or misunderstood data techniques.

Research studies have also shown that many businesses were preselecting and

filtering candidates for employment based on social media. If job applicants do not

protect their reputation online, then this can compromise their applications, if the

interviewer has access to negative attributes posted online. Currently, business and

government control large volumes of data used for computational social science

analysis. The capacity to collect and analyze datasets on a vast scale provides the

magnitude to disclose patterns of individual and group behavior. The potential

damage from inappropriate disclosure of information is sometimes obvious. A lack

of transparency in the way data is analyzed and aggregated, combined with a

difficulty in predicting which pieces of information may later prove damaging,

means that many individuals have little knowledge of potential adverse effects of

the expansion in computational social science [17].

If data is not correctly understood, then massive mistakes can cause harm. Many

employment recruiters are already “looking” at the social media lives of job

applicants Although it is seen as justifiable, especially using work-related sites

such as LinkedIn, in cases where employers seek data from nonwork-related social

media life, there could be some potentially negative consequences. According

to the CIPD, “using social media in recruitment or as part of career progression

carries the risk of a number of different claims if a candidate is not appointed as a

result of information gleaned.” These include the following [11]:

• A breach of the Human Rights Act 1998 (incorporating Article 8 of the European

Convention on Human Rights) to respect private and family life.

• A breach of the Data Protection Act 1998, which states that data controllers such

as prospective employers should not hold excessive information and should

process information in a fair way.

• It has been suggested that the over 50s age group will be more cautious with their

social media presence than the under 30s, resulting in more potential for

negative recruitment decisions for younger people.

• Information about marital status, number of children, and sexual orientation may

incorrectly influence a selection decision.

• Information about physical or mental state, such as revealing depression to

friends on social media, may be a disadvantage.

13 Social Impact and Social Media Analysis Relating to Big Data 303



If life-changing judgments are to be made about people, then quality and

accuracy must be beyond reproach. If employees are hired, promoted or dismissed

based on Big Data discrimination, then there can be legal implications [11].

13.3.5 Using Power to Leverage Outcomes

Governments and powerful data-rich companies have the financial support and

powerful resources to access data. Such organizations, by their nature, tend at

times to assume that the risk of unjustified impacts on individuals is of little

consequence when compared with the potential to avert perceived calamities

[20]. It is easy to manipulate people, like using computational social science to

guide political or product advertising, selling messages that people will favor or

withhold information that may compromise support. Google, for example, can sway

an election by predicting messages that would engage an individual voter (posi-

tively or negatively) and then disseminate content to influence that user’s vote. The
predictions could be highly accurate by making use of a user’s e-mail in their

Google-provided Gmail account, their search history, and social network connec-

tions. The dissemination of information could include “recommended” videos on

YouTube to highlight where one political party agrees with the user’s views – also

articles in Google News could be given higher visibility to help sway voters into

making the right choice [17]. Further, this can be complemented with negative

messages to appear to create a balance, but in reality may have little or no impact.

Such manipulation may not appear obvious, yet powerful to achieve the outcomes

of the manipulator.

13.3.6 Risks Relating to Social Media Platforms

Social media platforms have added to their data either by acquiring other technol-

ogy companies as Google did when acquiring YouTube or by moving into new

fields as Facebook did when it created “Facebook Places” providing a geolocation

service which generates high value information [14]. The value of information can

be maximized by using a primary key that connects this data with existing infor-

mation like a Facebook user ID or a Google account name, where a user is treated as

a single user across all products of the company [14]. One account can connect to

various types of online interactions, exposing greater breadth of a user’s profile. In
such a case all the data is immediately related and available to any query companies

like Facebook and Google may have. This can be alarming as there is little privacy,

since any information can be collected across platforms about users.

Accounts that are identity-verified, frequently updated, and used across multiple

aspects of a person’s life present the richest data and pose the greatest risk. For

example, Facebook’s Timeline feature allows users to mine social interactions that

304 N. Dorasamy and N. Pomazalová



had long been buried. Further, since Timeline is not an option in Facebook, masses

of personal data can be held. Another challenge was the Beacon software which,

developed by Facebook, connected people’s purchases to their Facebook account. It
indicated what users had purchased, where they got it, and whether they got a

discount. It was eventually closed in view of legal, privacy, and ethical consider-

ations. Further, the emergence of massive open online courses under MOOCs is

now causing a stir in the world of Big Data with evidence that student details,

including performance data, is being sold online. Recruiters looking for highly

motivated candidates with wisdom can hunt potential candidates on this

platform [11].

13.3.7 Research Methodology Challenges

The use of social media as a source of social research data can present various

methodological challenges. There can be sampling bias which can distort findings,

as any particular social medium is not representative of the population as a whole.

Avoiding sampling bias in social media sources is a great challenge for researchers

in the social sciences. If computational tools are to be appropriately used in social

research, then it is important that users are aware of the strengths and weaknesses of

such tools. Therefore, it is vital that the capacity of social researchers in developing

skills relating to computational methods and tools is developed, so that they can

decide when and how to apply them responsibly.

Anonymity among employees during surveys is also causing concern. While it is

believed that employee responses will be more truthful if they remain anonymous,

their identity can be traced from the demographic details in their social media

profiles. If used incorrectly, this “honest data” could be turned against the

employees [11]. Employees who are aware of this may not necessarily give the

“correct picture.”

In terms of reliability and validity, decisions cannot be made with incomplete or

incomprehensive data. Rational and fair decisions have to be based on representa-

tion. For example, if 20 people are happy with the service at a state hospital, this

does not exhibit behavior that is statistically significant for the whole population.

As the old adage states, “one swallow does not a summer make.” Data focusing on a

few does not paint a correct picture. Further, Kettleborough [11] contends that

correlation and causation should not be analyzed at face value, since if two items

correlate, it does not mean that one causes the other.

Data mining or scrapping of social media sites can result in personal data being

used against individuals, even if it has been cleaned to remove personal references.

One such example is a study by researchers from the Université Catholique de

Louvain in Belgium who identified “95% of the unique users by analyzing only four

GPS time and location stamps per person.” In addition, researchers at Carnegie

Mellon University were able to create a system to uncover Social Security numbers

13 Social Impact and Social Media Analysis Relating to Big Data 305



from birthday and hometown information listed on social networking sites like

Facebook [11]. Large amounts of data can become the target of the unscrupulous.

13.3.8 Securing Big Data

Big Data, while sourcing data from multiple sources, relies on data that is available.

Further, such data must be secured. The challenge is how the data is collected and

stored. This raises security issues like internal employees adhering to confidential-

ity policies. Cases of storage abuses have occurred at Facebook sites. Data can also

be lost due to hackers and employees. One example is the two Aviva employees

who sold details of people who had accidents to claims companies. The fraud flag

was raised when the claimants received calls from firms persuading them to take

personal injury claims [11]. Information that is not secured can be used for

blackmailing or espionage.

13.3.9 Limitations of Addressing Social Problems

In the social arena, a major gap exists between the potential of data-driven infor-

mation and its actual use in addressing social problems. Certain social problems can

be easily solved using Big Data, such as weather forecasting and areas with high

disease rates. However, pandemic problems like drug trafficking and unemploy-

ment cannot be easily resolved in a sustainable way with Big Data. According to

Desouza and Smith [6], these evil problems are more dynamic and complex than

their technical counterparts, because of the diversity of stakeholders involved and

the numerous feedback loops among the interrelated constituents. Government

agencies and nonprofits are involved in tackling these problems but face the

following challenges: limited cooperation and data sharing among them; inade-

quate information technology resources; their counterparts in the hard sciences

work on technical problems or in business who have ready access to financial,

product, and customer information; missing and incomplete data; and data stored in

silos or in forms that are inaccessible to automated processing. In addition, there are

regulatory constraints like policy relating to data sharing agreements, privacy and

confidentiality of data, and collaboration protocols among various stakeholders

tackling the same type of problem. While various agencies may invest in data

technologies, the return on investment for solving social problems is yet to be

convincing. This impact on the need is to be provided with information and advice

via sources that they can trust in a more timely way.

306 N. Dorasamy and N. Pomazalová



13.4 Imperatives for Big Data Use from Social Media

In decision-making, context is the key; therefore knowledge of the domain such as

social media is crucial. Analysis of Big Data is directly linked to decision-making,

which has to be supported by very intricate techniques using wide and deep

extensive data sources as shown in Table 13.1. Big Data is about massive amounts

of different types of observational data, supporting different types of decisions and

decision time frames. According to Goes [9], analytics moves from data to infor-

mation to knowledge and finally to intelligence. The generation of knowledge and

intelligence to support decision-making is critical as the Big Data world is moving

toward real-time or close to real-time decision-making. Therefore, the need for

context-dependent methodologies that strengthen prediction is pivotal for effective

data analysis.

Big Data analytics from social media has to consider the tools, software, and the

data to ensure quality results. While the technical ability may exist to gather data,

the analytical capacity to draw meaning from such data needs to be developed. For

example, visualization can be produced from real-time information as datasets

emerge from user activity. However, such visualizations can only be considered

powerful representations if visualization specialists are aware of which relation-

ships benefit users. This requires an understanding of how meaning can be created

through and across various datasets in social media platforms.

13.4.1 Responsibility of Analytic Role Players

Big Data has enormous potential to inform decision-making to help solve the

world’s toughest social problems. But for this to happen, issues relating to data

collection, organization, and analysis must first be resolved. Much of this respon-

sibility lies with the major analytic players, as shown in Table 13.2, who offer

valuable services that help users cope with using Big Data effectively.

The aforementioned major analytic players have to ensure effective use of Big

Data from social media platforms. This requires prudent use of analytic tools,

incorporating the following guidelines [7]:

Table 13.1 Big data

analytics
Decisions Analytics Techniques

Real time Visualization Statistics

Close to RT Exploration Econometrics

Hourly Explanatory Machine learning

Weekly Predictive Computational

Monthly Linguistics

Yearly Optimization

Simulation

Adapted from [9]

13 Social Impact and Social Media Analysis Relating to Big Data 307



• Use of in-memory database technology that avoids resources swapping data-

bases between the storage medium and the memory, but rather operating within

memory with only limited accessing of alternative storage mediums.

• The sheer size and complexity of data cannot be handled by traditional technol-

ogies built on relational or multidimensional databases, as there is a need to have

flexibility to have questions answered in real time.

• Use caves of data from unstructured data to improve service levels, reduce

operations costs, mitigate security risks, and enable compliance.

• Use tools that break down traditional data silos and attain operational intelli-

gence that benefits both IT and the business, which is valuable for capturing

machine-generated data into a system that would provide operational real-

time data.

• The need to use technology to efficiently store, manage, and analyze unlimited

amounts of data that can process any type of data differently than relational

databases.

Since information in the various social media platforms is not static, if it is not

updated and cleaned, then “dirty data” will arise. Considering the garbage in,

garbage out syndrome, poor quality data will produce poor results.

Table 13.2 Major analytic players

Firm Products Website

SAP HANA; Applied

analytics

http://www.sap.com/solutions/technology/in-mem

ory-computingplatform/hana/overview/index.epx;

http://www54.sap.com/solutions/analytics/applica

tions/software/overview.html

Splunk Splunk Hadoop Connect,

Splunk enterprise

http://www.splunk.com/

Tibco Spotfire http://spotfire.tibco.com/

Google Big query https://cloud.google.com/products/big-query

IBM Pure data system http://www-01.ibm.com/software/data/puredata

SAS High-performance

analytics

http://www.sas.com/software/high-performance-ana

lytics/index.html

Metamarkets Data pipes; Druid http://metamarkets.com/platform

Oracle Big data appliance;

Exadata; Exalytics

http://www.oracle.com/us/technologies/big-data/

index.html

Tableau Tableau http://www.tableausoftware.com/

Cloudera Hbase http://www.cloudera.com/content/cloudera/en/prod

ucts/clouderaenterprise-core.html

Qliktech QlikView http://www.qlikview.com/

GoodData GoodData bashes http://www.gooddata.com/what-is-gooddata/

Adapted from [7]

308 N. Dorasamy and N. Pomazalová

http://www.sap.com/solutions/technology/in-memory-computingplatform/hana/overview/index.epx
http://www.sap.com/solutions/technology/in-memory-computingplatform/hana/overview/index.epx
http://www54.sap.com/solutions/analytics/applications/software/overview.html
http://www54.sap.com/solutions/analytics/applications/software/overview.html
http://www.splunk.com/
http://spotfire.tibco.com/
https://cloud.google.com/products/big-query
http://www-01.ibm.com/software/data/puredata
http://www.sas.com/software/high-performance-analytics/index.html
http://www.sas.com/software/high-performance-analytics/index.html
http://metamarkets.com/platform
http://www.oracle.com/us/technologies/big-data/index.html
http://www.oracle.com/us/technologies/big-data/index.html
http://www.tableausoftware.com/
http://www.cloudera.com/content/cloudera/en/products/clouderaenterprise-core.html
http://www.cloudera.com/content/cloudera/en/products/clouderaenterprise-core.html
http://www.qlikview.com/
http://www.gooddata.com/what-is-gooddata/


13.4.2 Evidence-Based Decision-Making

In addition, the following four recommendations have the potential to create

datasets useful for evidence-based decision-making [6]:

• The global community needs to create large data banks on critical issues like

homelessness and malnutrition, which must have the capacity to hold multiple

different data types along with metadata that describes the datasets. This requires

multi-sector alliances that promote and create data sharing on sectoral issues. At

the 2012 G-8 Summit, leaders committed to the New Alliance for Food and

Nutrition Security to help 50 million people out of poverty over the next 10 years

through sustained agricultural growth. This is supported by a number of data-

bases like Agrilinks.org, Feed the Future Initiative website, and Women’s
Empowerment in Agriculture Index.

• Citizens and professionals can help create and analyze these datasets. With the

growth of data through open data platforms, citizens are creating new ideas and

products through what has become known as “citizen science.” A bike map and

map of the London tube were created by citizens, using the raw data from the

London Datastore which is managed by the Greater London Authority.

• Big Data cannot be left to the pure sciences and business, but needs analysts in

the social sciences to be statistically equipped to collect data for large-scale

datasets. Skills in data organization, preservation, visualization, search, and

retrieval, identifying networked relationships among datasets, and how to

uncover latent patterns in datasets need to be developed. These are valuable

skills that go beyond simply searching the web for information.

• Virtual experimentation platforms which allow individuals to interact with

different ideas and work collaboratively to find solutions to problems can create

large datasets, develop innovative algorithms to analyze and visualize the data,

and develop new knowledge for tackling social challenges. The use of open

forums such as wikis and discussion groups can help the community share

lessons learned, collaborate, and advance new solutions.

In addition, Oboler et al. [17] argue that social networking has provided a diverse

range of datasets covering large sections of the population, granting researchers,

governments, and businesses the powerful ability to identify trends in behavior

among a large population and to find vast quantities of information on an individual

user. As the industry develops, social media computational tools will increase the

scope, accuracy, and usefulness of such datasets. In view of the ethical and privacy

implications, regulatory barriers restricting the collection, retention, and use of

personal information require consideration. While laws protect human rights, there

is a need for greater protection of the customer.

13.4.3 Protection of Rights

The rights of users need to be protected, as social media platform providers and

various agencies provide innovative services to targeted users. The debate is

13 Social Impact and Social Media Analysis Relating to Big Data 309



whether consumers are protected from preventable harm only after proving damage

or are rules set by law. In the first approach, advertisers have more freedom to mine

data from various social media platforms, data over which the user has no control

especially if it is outdated or hacked by third parties. The safeguarding of personal

rights and freedoms is more favored through the setting of regulations and laws.

This would place the burden on social media to restrict the storage, accessibility,

and manipulation of data in ways that limit its usefulness. This can prevent

unscrupulous use of data. However, this will require legislators to use multilateral

legislating, since websites can freely choose the physical location of their hosting

infrastructure where there is least regulation.

The ethical barriers for data use in the social sciences are much higher than pure

science research as the data collection of personal information is higher in the social

sciences. Oboler et al. [17] illustrate some suggestions to manage ethical use of

social media data, as given below:

• In keeping with the code of ethics developed by professional bodies, example for

engineers, these should be applied to social media as well. Such guidelines

commit members to act in public interest, by not causing harm or violating the

privacy of others. Social media platforms are a form of computational social

science which requires recognition of the ethical concerns in the social sciences.

This can reduce the opportunity for the abuse of a very powerful tool. Users of

social media have an ethical responsibility to one another.

• A code of conduct for producers and consumers of online data which can

highlight the issues to be considered when publishing information. For example,

when a Twitter user uploads photographs, their action may reveal information

about others in their network; the impact on those other people should be

considered under a producer’s code of ethics. A consumer code of ethics is

also needed; such a code would cover users viewing information posted by

others through a social media platform. A consumer code could raise questions

of when it is appropriate to further share information, for example, by

retweeting it.

• Guidelines for principles of engagement can help users determine what they are

publishing and to create awareness of the potential impact of publishing infor-

mation. The power of social media can be used to warn the owner when the

content may pose a risk, especially when accesses open.

• A cultural mind shift is needed to become more forgiving of information

exposed through social media, an acceptance that social media profiles are

private and must be locked down with more intricate filters and used only in

certain settings.

The aforementioned suggestions would change the nature of social media as a

computational social science tool, by filtering what should be included out of the

tools field of observation. As an instrument-based discipline, the way the field is

understood can be changed either by changing the nature of the tool or by changing

the way we allow it to be used.

310 N. Dorasamy and N. Pomazalová



13.4.4 Knowing the Context

Understanding and knowledge of the context is fundamental. For example, mar-

keting depends, to a large extent, on information technology accruing from social

networks. Researchers have to master the collection and analysis of web data and

user-generated content, using advanced techniques. This is necessitated by the

massive amounts of observational data, of different types, supporting different

types of decisions and decision time frames [9]. In this regard, if researchers want

to explain the growth in online shopping among teenagers in developing economies

using social media networks, then it is imperative to use models like longitudinal

models, latent models, and structured models to explain the causes within the

context. Since the Big Data environment is targeting real-time decision-making,

it is imperative that tools employed to analyze social media networks use context-

dependent methodologies that enhance prediction in a valid and reliable way. The

reason being that not only are the networks intricate but also require knowledge of

the complex models. Consideration of these dynamics can produce valuable infor-

mation from Big Data, allowing modeling of individuals at a very detailed level

with a rich proliferation of the environment surrounding them [9].

Big Data analytics has the ability to yield deeper insights and predictions about

the individuals. According to Waterman and Bruening [22], even though data may

be processed accurately, the results may have profound effect on personal life

choices. The authors argue that understanding the sources and limitations of data

is critical to mitigate harm to individuals. This necessitates understanding and

responding to the implications of choices about data and data analytic tools,

integrity of analytic processes, and the consequences of applying the outcomes of

analytic models to information about individuals [22].

13.5 Conclusion

The proliferation of Big Data has emerged as the new frontier in the wide arena of

IT-enabled innovations and opportunities. Attention has focused on how to harness

and analyze Big Data. Social media is one component of a larger dynamic and

complex information domain, and their interrelationships need to be recognized. As

the connection with Big Data grows, we cannot avoid its impact. Without being

familiar with the data, the benefits of Big Data cannot be reaped. Large volumes of

data cannot be analyzed using conventional media research methods and tools. The

current Big Data analytics trend has seen the tools used to analyze and visualize

data getting continuously better. There has been a major investment in the devel-

opment of more powerful digital infrastructure and tools to tackle new and more

complex and interdisciplinary research challenges.

Current programs have seen companies like Splunk, GoodData, and Tibco

providing services to allow their users to benefit from Big Data. Users with the

13 Social Impact and Social Media Analysis Relating to Big Data 311



ability to query and manipulate Big Data can achieve actionable information from

Big Data to derive growth by making informed decisions. Access to data is critical.

However, several issues require attention in order to benefit from the full potential

of Big Data. Policies dealing with security, intellectual property, privacy, and even

liability will need to be addressed in the Big Data environment. Organizations need

to institutionalize the relevant talent, technology, structure workflows, and incen-

tives to maximize the use of Big Data.

It is imperative that apart from the power users in marketing, financial,

healthcare, science, and technical fields, those involved in daily decision-making

must be empowered to use analytics. As more and more analytical power reaches

decision-makers, enhanced and more accurate decision-making will emerge in the

future. While there is a need to size the opportunities offered by continuing

advances in computational techniques for analyzing social media, the effective

use of human expertise cannot be ignored. Using the right data in the right way and

for the right reasons to innovate, compete, and capture value from deep and real-

time Big Data information can change lives for the better. Big Data has to be used

discriminately and transparently.

References

1. Boyd D, Crawford K (2012) Critical questions for big data: provocations for a cultural,

technological, and scholarly phenomenon. Inf Commun Soc 15(5):662–679

2. Brown B, Chui M, Manyika J (2011) Are you ready for the era of ‘big data’? McKinsey Q

4:24–35

3. Bughin J, Chui M, Manyika J (2010) Clouds, big data, and smart assets: ten tech-enabled

business trends to watch. McKinsey Q 56(1):75–86

4. Chen H, Chiang RH, Storey VC (2012) Business intelligence and analytics: from big data to

big impact. MIS Q 36(4):1165–1188

5. Colgren D (2014) The rise of crowdfunding: social media, big data, cloud technologies.

Strategic Financ 2014:55–57

6. Desouza KC, Smith KL (2014) Big data for social innovation. Stanf Soc Innov Rev

2014:39–43

7. Fanning K, Grant R (2013) Big data: implications for financial managers. J Corporate Account

Financ 2013:23–30

8. Gandomi A, Haider M (2014) Beyond the hype: big data concepts, methods, and analytics. Int

J Inf Manag 35:137–144

9. Goes PB (2014) Big data and IS research. MIS Q 38(3):iii–viii

10. Hill K (2012) How target figured out a teen girl was pregnant before her father did. Forbes

(16 February). http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-

teen-girl-was-pregnant-before-her-father-did/. Accessed 9 Dec. 2014

11. Kettleborough J (2014) Big data. Train J 2014:14–19

12. Kim HJ, Pelaez A, Winston ER (2013) Experiencing big data analytics: analyzing social media

data in financial sector as a case study. Northeast Decision Sciences Institute Annual Meeting

Proceedings. Northeast Region Decision Sciences Institute (NEDSI), April 2013, 62–69

13. LaValle S, Lesser E, Shockley R, Hopkins MS, Kruschwitz N (2013) Big data, analytics and

the path from insights to value. MIT Sloan Manag Rev 21:40–50

312 N. Dorasamy and N. Pomazalová

http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/
http://www.forbes.com/sites/kashmirhill/2012/02/16/how-target-figured-out-a-teen-girl-was-pregnant-before-her-father-did/


14. McCarthy J (2010) Blended learning environments: using social networking sites to enhance

the first year experience. Australas J Educ Technol 26(6):729–740

15. McKelvey K, Rudnick A, Conover MD, Menczer F (2012) Visualizing communication on

social media: making big data accessible. arXiv (3):10–14

16. Mendoza M, Poblete B, Castillo C (2010) Twitter under crisis: can we trust what we RT. In: 1st

workshop on Social Media Analytics (SOMA ‘10). ACM Press, Washington, DC

17. Oboler A, Welsh K, Cruz L (2012) The danger of big data: social media as computational

social science. First Monday 17(7):60–65

18. Proctera R, Visb F, Vossc A (2013) Reading the riots on Twitter: methodological innovation

for the analysis of big data. Int J Soc Res Methodol 16(3):197–214

19. Qualman E (2012) Socialnomics: how social media transforms the way we live and do

business. Wiley, New York

20. Wigan MR, Clarke R (2013) Big data’s big unintended consequences. IEEE Comput Soc

2013:46–53

21. Young SD (2014) Behavioral insights on big data: using social media for predicting biomed-

ical outcomes. Trends Microbiol 22(11):601–602

22. Waterman KK, Bruening PJ (2014) Big data analytics: risks and responsibilities. Int Data

Privacy law 4(2):89–95

13 Social Impact and Social Media Analysis Relating to Big Data 313



Index

A
Abnormal patterns, 47, 53

Actuation, 132

Adaptive Boosting, 249

Agglomerative approaches, 58, 59, 64, 65, 67,

71, 74–76

AJAX, 236

AllReduce, 150

Amazon Dynamo, 235

Amazon Machine Images (AMI), 145

Analytics, 225, 242

Analytics-as-a-Service, 126, 127

Anomaly detection, 141, 142, 148

Apache, 140, 148–152

Hadoop, 192, 193, 218

Kafka, 106

Pig, 205, 213

Apple-to-apple records, 167

Apple-to-orange pairs, 163, 164, 166, 175–177,

180–183

Apriori algorithm, 248, 251, 256, 263–266

Artificial neural network, 284

Association rule mining, 246

B
Bacterial blight, 281

Big, 224–234, 238

Big Data, 95–106, 108, 113, 119–128, 131,

132, 134

Big Data analysis, 294, 296

Big Data as a Service (BDaaS), 144

Big Data Interoperability Framework, 6

Big Data scenarios, 59, 65, 70, 71, 74–76

Big Data Science (BDS), 247

Bigtable, 232, 233

Bio-informatics, 120

Blaze, 146

Brown spot symptoms, 279

Bucketing, 193, 198–203

Bug records, 162, 164–166, 176, 177, 179–182,

185

Bulk-synchronous parallel (BSP), 58, 60–61

Business intelligence (BI), 230–232, 235, 242

Business Process Execution Language (BPEL),

13, 21, 25

Business-to-business (B2B), 235

Business-to-consumer (B2C), 235

C
C/C++, 147

Cartesian space, 167

Case study, 271, 290

Characteristics of big data, 120

Chrome bug data, 164

CLARANS, 250

Classification, 141, 142, 148, 246–249, 254,

256, 260, 261, 265, 266

Classification algorithm, 248, 261

Cloud computing, 101, 103, 125, 144, 155,

246, 252–253, 295, 298

Cloudera, 308

Cloudera Impala, 152

Cluster(ing), 58, 64–76, 141, 142, 148,

246–248, 250, 254, 256, 257, 263, 265,

266

Clustering algorithm, 274, 276

Column family databases, 238

Complex event processing, 42–48, 54, 55

© Springer International Publishing Switzerland 2016

Z. Mahmood (ed.), Data Science and Big Data Computing,
DOI 10.1007/978-3-319-31861-5

315



Compliance, 23, 25, 30, 34

Constrained Application Protocol (CoAP), 17

Content based image retrieval (CBIR), 60

Convexity, 285

Cosine similarity, 168, 171

Cost optimization, 162

Crop diseases, 278

Custom relationship management (CRM), 294

Cyber-infrastructures, 95, 96

Cyber physical cloud computing, 127

Cyber physical systems (CPSs), 96, 118, 119,

127, 132, 134

CyberWater, 97, 108–113

Cyber world, 118, 119, 124, 127, 134

D
Data acquisition, 128

Data analysis, 131–132

Data analytics, 119, 125, 223–226, 230, 242

Data-as-a-service, 126

Database, 194–198, 204, 214, 219

Data cleaning, 129

Data compression, 129

Data fusion, 129

Data gathering, 101–102

Data management, 107–108, 119, 125, 126,

128, 130, 131, 134

Data mining, 246–253, 255

Data mining in cloud computing (DMCC)

framework, 246–248, 253–255, 257,

258, 265, 266

Data models, 100

Data Protection Act, 303

Data science, 240–242

Data scientist, 242

Data storage, 130

Data warehousing, 228, 231, 241

Decision-making, 97–99, 103, 108, 113

Decision support systems, 118, 119, 124,

126, 271

Decision Tree, 248, 249, 256, 261, 266

Description Logic, 21

Digital marketing, 297

Digital technology, 294

Dimensionality reduction, 141, 148, 270

Dimension reduction, 271

DIM-RED-GA, 278

Duplicate data records, 162, 163, 185

Duplicate image detection (DID), 60

E
Edge clustering value (ECV), 70, 72

E-health, 95

Ellipse variance, 285

Enterprise architectures, 85–89, 274–278

Enterprise resource planning (ERP), 294

Environmental data, 96, 104

Evidence-based decision-making, 309

Extensible Markup Language (XML), 4, 5, 8,

9, 13, 16–19, 21, 24–26, 29–31, 36, 37,

225, 230, 246, 248

External memory breadth first search

(EM BFS), 63

External memory techniques, 58

F
Facebook, 59, 60, 121, 122, 294, 296, 297,

304, 306

Face recognition, 60

Fast data, 4, 7–30, 34

Fast unfolding algorithm, 64, 68, 72

Feature extraction, 283

FIFO, 49

Fuzzy inference, 274, 276

Fuzzy propagation, 81, 83, 84, 91

G
Gaussian distribution, 249, 261

Genetic algorithm (GA), 272, 274

Geographical information system (GIS), 97,

103, 104, 107

Giraph, 58

Google, 192, 214

GPS, 50, 51

Graph databases, 238

GraphLab abstraction, 247

Graphics processing unit (GPU) framework,

81–83

Greedy algorithm, 80–83, 89–91

Grid computing, 257

H
Hadoop, 4, 8, 36, 121, 140, 145–153, 156, 223,

224, 227, 229, 231–233, 247, 296, 308

Hadoop Distributed File System (HDFS), 193,

197, 198, 201, 204–207, 214, 223, 229,

231–233

HANA, 296, 308

HBase, 193, 196, 214–219, 231–233

HC-PIN algorithm, 71

HDFS. See Hadoop Distributed File System

(HDFS)

Healthcare, 96

Healthcare monitoring, 52, 54

Heterogeneity, 95–97, 102, 108, 113

316 Index



Hive, 145, 146, 193–205, 213, 219, 223,

231, 232

Hive Query Language (HQL), 146

HPC, 103

Hybrid cloud, 252

Hybridizing genetic algorithm, 272

I
Iaa. See Infrastructure as a Service (IaaS)
Image filtering, 282–283

Image processing, 282

IMGPU, 82

Independent cascade model, 91

Information-as-a-service (IaaS), 126

Information retrieval, 164, 165,

178, 183

Infrastructure as a Service (IaaS), 125, 126,

252, 253

INSPIRE, 103

Instagram, 121

Internet of Things (IoT), 4, 6, 25, 26, 32, 35, 36,

42, 54, 96

Interoperability, 4, 5, 7–14, 16–19, 21–25,

28–36

Intrusion detection, 45

IPython, 146

J
Java, 52, 54, 147, 148, 152, 154

Java Enterprise, 235

JavaScript Object Notation (JSON), 4, 5, 8,

13, 16, 18, 19, 21, 24–27, 30, 31, 36,

37, 233

JDBC, 194

Jubatus, 148, 149

K
Kalman filter, 50

K-means, 142, 151, 155, 250–251, 256, 263,

264, 266

algorithm, 250, 263

clustering, 172

K-Medoids, 250

Knowledge discovery, 246, 254

Knowledge discovery in databases, 246

L
Latent Dirichlet Allocation (LDA), 164

Leader follower algorithm, 69, 70

Leaders identification for community detection

(LICOD) algorithm, 65, 72

Linguistics, 307

Linkedin, 294

Local minima, 272, 274

M
Machine learning, 141, 154, 259

Machine-learning-as-a-service (MLaaS),

152, 154

Mahout, 148–151

Mamdani model, 276, 278

Maple, 144

MapReduce, 6, 35, 60, 81, 83, 85–91, 106,

108, 121, 140, 145–147, 149–151,

154, 156, 192, 193, 198, 223, 231,

232, 247, 248

Markov random field (MRF), 82

Massive data sets, 144

Matlab, 143, 147

Memetic algorithms, 271

Message passing interface (MPI), 61

Microsoft Azure, 248, 253, 254

Minimum-sized influential vertices (MIV), 79,

81, 83, 84, 89

MLlib, 148, 150, 151

Mutation, 272, 278

N
Naive Bayes, 248

National Oceanic and Atmospheric

Administration (NOAA), 104

Natural language processing, 141, 163

Nearest neighbor (NN)

classifier, 174

method, 172

Neighbourhood generation method, 273

N-gram based model, 165

NIMBLE, 147, 148

NoSQL, 140, 223, 227, 229, 233–238, 240, 243

databases, 227, 233–236

O
Octave, 143, 144

ODBC, 194

Okapi weighting scheme, 178

Open data, 97, 107

Oracle, 308

Oryx, 148, 151

OWL. See Web Ontology Language (OWL)

Index 317



P
PaaS. See Platform as a Service (PaaS)

Parallel processing, 58–60, 64, 71, 73–76,

81, 82

Parsing, 206–207

Partitioning, 58, 62, 64, 65, 71, 75, 76, 193,

198–203

Partitioning methods, 250

Physical world, 118, 119, 124, 127, 128, 131

Pig, 193, 205–214, 219, 231

Pig Latin, 205–207, 209–211, 213

PIR, 50, 51

Platform as a Service (PaaS), 125, 248,

250–253

Pragmatic, 12, 13, 32

Pregel, 58, 60, 62

Preventability analytics, 185

Private cloud, 252

Probabilistic model, 178

Probability distribution, 273, 274

Public cloud, 252

Python, 140, 143–146, 150, 153, 154

Q
Query processing, 130–131

R
Radio-frequency identification (RFID), 6, 41,

44, 46, 48, 50, 51, 53, 54, 120

Random Forest, 248, 249, 256, 261, 266

Random walks algorithm, 64, 71, 72

RapidMiner, 147

Redness index, 284

Regression, 141, 148

Relational Database Management Systems

(RDBMS), 193, 223

Representational state transfer (REST), 233

RESTful applications, 8, 9, 15, 16, 18

RFID. See Radio-frequency identification

(RFID)

RHadoop, 145

RHive, 145, 146

Rice blast, 279

Rice hispa, 281

RSS feed, 44

R system, 140, 143–145, 148, 150, 153

S
SaaS. See Software as a Service (SaaS)
SAP HANA, 225, 230

Scalability, 119, 133

Scalable algorithm, 81

SCAN algorithm, 69, 72

SCHEMA, 195, 198

SEARUM. See SErvice for Association RUle

Mining (SEARUM)

Sector/sphere framework, 247

Self Organizing Maps (SOM), 250

Semantic intrusion detection system, 42,

48, 49

Sensor Alert Service (SAS), 103

Sensor Event Service (SES), 103

Sensor Observation Service (SOS), 101, 103

Sensors, 118–120, 124, 127–131, 133

networks, 47

web, 97, 98, 101, 105

Seraph, 58, 60, 62–63

Service, 143, 144, 152–155

SErvice for Association RUle Mining

(SEARUM), 248

Service-oriented architecture (SOA), 19, 31,

230

Sheath rot, 280

SIL Public Interface Descriptor (SPID), 26

Simple Object Access Protocol (SOAP), 4, 5,

13, 18, 19, 31

Smart cities, 95, 96

Smart devices, 295

Social media, 95, 96, 245, 294, 296, 299, 302,

304, 310, 311

Social media services (SMS), 294

Social network(ing), 59, 121, 294, 296, 302,

306, 309

Software as a Service (SaaS), 125,

252, 253

Spark, 4, 8, 106, 140, 147, 148, 150–153

SPSS, 143

SQL server, 194

Sqoop, 231

Storm, 106, 148, 151, 152

STRADS, 149

Strong Connected Component (SCC), 82

Structural similarity, 68

Sum of Squared Errors (SSE), 256

SystemML, 147, 148

T
Term frequency-inverse document frequency

(TF-IDF), 164, 169

Textons, 286

Tokenization technique, 172

Twitter, 59, 121, 122, 294, 298, 302, 310

318 Index



U
Unstructured data, 300

User Datagram Protocol (UDP), 17

V
Variety, 6, 59, 98

Vector space model, 164, 167–171, 176

Vehicular ad hoc networks (VANETs),

122–124

Velocity, 6, 59, 99

Veracity, 99

Vicissitude, 99

Visualization, 307

Volatility, 99

Volume, 6, 59, 98

Voter model, 91

W
Water resource, 96

Web 3.0, 95, 96, 104

Web of services, 18

Web Ontology Language (OWL), 13, 21

Web servers, 120

Weighted graph, 79, 81, 83–85

Windows Azure, 151, 153

Wireless body area networks (WBANs),

123–124

Wireless sensor network (WSNs), 105,

120–121

X
XML. See Extensible Markup Language

(XML)

Y
Yahoo, 192, 205, 214

Z
Zephyr BioHarness device, 54

Zookeeper, 231

Index 319


	Preface
	Overview
	Objectives
	Organisation
	Target Audiences

	Acknowledgements
	Other Springer Books by Zaigham Mahmood
	Cloud Computing: Challenges, Limitations and RandD Solutions
	Continued Rise of the Cloud: Advances and Trends in Cloud Computing
	Cloud Computing: Methods and Practical Approaches
	Software Engineering Frameworks for the Cloud Computing Paradigm
	Cloud Computing for Enterprise Architectures

	Contents
	Contributors
	About the Editor
	Part I: Data Science Applications and Scenarios
	Chapter 1: An Interoperability Framework and Distributed Platform for Fast Data Applications
	1.1 Introduction
	1.2 Background
	1.3 Introducing Fast Data
	1.3.1 Motivating Scenarios
	1.3.2 Issues Relating to Interoperability

	1.4 An Interoperability Framework for Fast Data
	1.4.1 Understanding Interoperability
	1.4.2 The Variety Dimension
	1.4.3 The Velocity Dimension
	1.4.4 Modelling with Resources and Services
	1.4.5 Handling the Variety Dimension
	1.4.6 A Service Interoperability Language with Support for Variety

	1.5 A Distributed Interoperability Platform
	1.5.1 Handling the Velocity Dimension
	1.5.2 Architecture of the Platform

	1.6 Usefulness of the Approach
	1.7 Future Research
	1.8 Conclusions
	References

	Chapter 2: Complex Event Processing Framework for Big Data Applications
	2.1 Introduction
	2.2 Complex Event Processing
	2.2.1 CEP Architectural Layers
	2.2.2 Event Modeling

	2.3 Semantic Intrusion Detection Using CEP
	2.3.1 Implementation and Validation

	2.4 CEP-Enabled Geriatric Health Monitoring
	2.4.1 Implementation and Validation

	2.5 Conclusion
	References

	Chapter 3: Agglomerative Approaches for Partitioning of Networks in Big Data Scenarios
	3.1 Introduction
	3.2 Big Data Scenarios and Issues
	3.3 Parallel Processing
	3.3.1 Bulk-Synchronous Parallel (BSP)
	3.3.2 Overview of Pregel
	3.3.3 Overview of Seraph

	3.4 External Memory Operations
	3.4.1 External Memory BFS

	3.5 Agglomeration in Big Data Scenarios
	3.6 Agglomerative Approaches
	3.6.1 Generic Model
	3.6.2 Fast Unfolding
	3.6.3 SCAN
	3.6.4 Leader-Follower
	3.6.5 HC-PIN
	3.6.6 Other Approaches

	3.7 Agglomerative Strategic Changes for Big Data Scenarios
	3.8 Parameter Tuning for Big Data Scenarios
	3.9 Discussion
	3.10 Conclusion
	References

	Chapter 4: Identifying Minimum-Sized Influential Vertices on Large-Scale Weighted Graphs: A Big Data Perspective
	4.1 Introduction
	4.2 Related Works
	4.2.1 Influence Maximization Problem in Social Network
	4.2.2 GPU Framework
	4.2.3 Remarks

	4.3 Graph Model and Problem Definition
	4.3.1 Graph Model
	4.3.2 Problem Definition

	4.4 MapReduce Algorithm for Identifying Individual Zones
	4.4.1 Algorithm 1: Mapper Part
	4.4.2 Algorithm 1: Reducer Part

	4.5 MapReduce Algorithm for Solving MIV
	4.5.1 Algorithm 2: Mapper Part
	4.5.2 Algorithm 2: Reducer Part

	4.6 Conclusion and Future Work
	References


	Part II: Big Data Modelling and Frameworks
	Chapter 5: A Unified Approach to Data Modeling and Management in Big Data Era
	5.1 Introduction
	5.2 Big Data: Heterogeneous Data
	5.2.1 Characteristics, Promise, and Benefits
	5.2.2 Data Models
	5.2.3 Data Gathering
	5.2.4 Open Issues and Challenges

	5.3 Unified Approach to Big Data Modeling
	5.3.1 Unified Data Representation and Aggregation
	5.3.2 Data Access and Real-Time Processing

	5.4 Uniform Data Management
	5.5 CyberWater Case Study
	5.6 Conclusion
	References

	Chapter 6: Interfacing Physical and Cyber Worlds: A Big Data Perspective
	6.1 Introduction
	6.2 Data Generation by Physical Systems: Big Data Sources
	6.2.1 Wireless Sensor Networks
	6.2.2 Social Networks
	6.2.3 Vehicular Ad Hoc Networks
	6.2.4 Wireless Body Area Networks

	6.3 Data in Cyber Systems: Big Data Management
	6.3.1 Cloud Computing Paradigms
	6.3.2 Service-Oriented Decision Support Systems
	6.3.2.1 Data as a Service
	6.3.2.2 Information as a Service
	6.3.2.3 Analytics as a Service


	6.4 Interfacing Cyber World with Physical World
	6.4.1 Data Acquisition
	6.4.2 Data Preprocessing
	6.4.2.1 Data Cleaning
	6.4.2.2 Data Fusion
	6.4.2.3 Data Compression

	6.4.3 Data Storage
	6.4.4 Query Processing
	6.4.5 Data Analysis
	6.4.6 Actuation

	6.5 Future Challenges and Opportunities
	6.6 Conclusion
	References

	Chapter 7: Distributed Platforms and Cloud Services: Enabling Machine Learning for Big Data
	7.1 Introduction
	7.2 Machine Learning for Data Science
	7.3 Distributed and Cloud-Based Execution Support in Popular Machine Learning Tools
	7.4 Distributed Machine Learning Platforms
	7.5 Machine Learning as a Service (MLaaS)
	7.6 Related Studies
	7.7 Conclusion and Guidelines
	References

	Chapter 8: An Analytics-Driven Approach to Identify Duplicate Bug Records in Large Data Repositories
	8.1 Introduction
	8.2 Literature Survey
	8.3 The Proposed System to Identify Duplicate Records
	8.4 Detecting Apple-to-Apple Pairs
	8.4.1 Vector Space Model
	8.4.1.1 Weightage Techniques
	8.4.1.2 Example

	8.4.2 Clustering Approaches
	8.4.2.1 K-Mean Clustering
	8.4.2.2 Algorithm: Cluster Algorithm to Group Similar Bug Data Records
	8.4.2.3 Example
	8.4.2.4 Nearest Neighbor Classifier


	8.5 An Approach to Detect Apple-to-Orange Pairs
	8.5.1 Training Phase
	8.5.1.1 Step 1
	8.5.1.2 Step 2

	8.5.2 Online Phase
	8.5.3 Okapi BM25
	8.5.4 Language Modeling with Smoothing

	8.6 Implementation and Case Study
	8.6.1 Datasets

	8.7 Recurring Bug Prevention Framework
	8.7.1 Knowledge-Enriched Bug Repository
	8.7.2 Identify Groups of Recurring Duplicate Bugs
	8.7.3 Root Cause Analysis and Bug Fix
	8.7.4 Preventability Analytics

	8.8 Conclusions
	References


	Part III: Big Data Tools and Analytics
	Chapter 9: Large-Scale Data Analytics Tools: Apache Hive, Pig, and HBase
	9.1 Introduction
	9.2 Apache Hive
	9.2.1 Hive Compilation and Execution Stages
	9.2.2 Hive Commands
	9.2.2.1 Databases
	9.2.2.2 Tables
	9.2.2.3 Loading Data into Table
	9.2.2.4 Retrieving Data from Table
	9.2.2.5 Drop Command for Database and Tables

	9.2.3 Partitioning and Bucketing
	9.2.3.1 Dynamic Partitioning
	Non-partitioned Table Creation
	Load Data into Non-partitioned Table
	Dynamic Partition Table Creation
	Flag Setting
	Load Data into Partitioned Table

	9.2.3.2 Static Partitioning
	Non-partitioned Table Creation
	Load Data into Non-partitioned Table
	Static Partition Table Creation
	Flag Setting
	Load Data into Partitioned Table

	9.2.3.3 Hybrid Partitioning
	Non-partitioned Table Creation
	Load Data into Non-partitioned Table
	Hybrid Partition Table Creation
	Flag Setting
	Load Data into Partitioned Table

	9.2.3.4 Bucketing

	9.2.4 External Table
	9.2.5 Hive Performance

	9.3 Apache Pig
	9.3.1 Modes of User Interaction with Pig
	9.3.2 Pig Compilation and Execution Stages
	9.3.2.1 Parsing
	9.3.2.2 Compile and Optimize
	9.3.2.3 Plan

	9.3.3 Pig Latin Commands
	9.3.3.1 LOAD Command
	9.3.3.2 DUMP Command
	9.3.3.3 STORE Command
	9.3.3.4 DESCRIBE Command
	9.3.3.5 ILLUSTRATE Command
	9.3.3.6 Expressions
	9.3.3.7 UNION Command
	9.3.3.8 SPLIT Command
	9.3.3.9 FILTER Command
	9.3.3.10 GROUP Command
	9.3.3.11 FOREACH Command

	9.3.4 Pig Scripts
	9.3.4.1 ct.pig
	9.3.4.2 comp.pig

	9.3.5 User-Defined Functions (UDFs) in Pig
	9.3.5.1 Predefined UDF
	9.3.5.2 Customized Java UDFs


	9.4 Apache HBase
	9.4.1 HBase Architecture
	9.4.1.1 Region Server
	9.4.1.2 Master Server
	9.4.1.3 Zookeeper

	9.4.2 HBase Commands
	9.4.2.1 Table Creation
	9.4.2.2 List
	9.4.2.3 Put
	9.4.2.4 Get
	9.4.2.5 Scan
	9.4.2.6 Disable/Enable a Table
	9.4.2.7 Drop
	9.4.2.8 Exit/Quit
	9.4.2.9 Stop


	9.5 Conclusion
	References

	Chapter 10: Big Data Analytics: Enabling Technologies and Tools
	10.1 Introduction
	10.2 Characterizing Big Data
	10.3 The Inherent Challenges
	10.4 Big Data Infrastructures, Platforms, and Analytics
	10.4.1 Unified Platforms for Big Data Analytics
	10.4.2 Newer and Nimbler Applications
	10.4.3 Tending Toward a Unified Architecture
	10.4.4 Big Data Appliances and Converged Solutions
	10.4.5 Big Data Frameworks
	10.4.6 The Hadoop Software Family

	10.5 Databases for Big Data Management and Analytics
	10.5.1 NoSQL Databases
	10.5.2 Why NoSQL Databases?
	10.5.3 Classification of NoSQL Databases
	10.5.4 Cloud-Based Databases for Big Data

	10.6 Data Science
	10.6.1 Basic Concepts
	10.6.2 The Role of Data Scientist

	10.7 Conclusion
	References

	Chapter 11: A Framework for Data Mining and Knowledge Discovery in Cloud Computing
	11.1 Introduction
	11.2 Related Work
	11.3 Data Mining
	11.3.1 Classification
	11.3.1.1 Naive Bayes Classifier
	11.3.1.2 Decision Tree (C4.5)
	11.3.1.3 Random Forest
	11.3.1.4 AdaBoost

	11.3.2 Clustering
	11.3.2.1 K-Means

	11.3.3 Association Rule Mining

	11.4 Cloud Computing
	11.4.1 Deployment Models
	11.4.1.1 Public Cloud
	11.4.1.2 Private Cloud
	11.4.1.3 Hybrid Cloud

	11.4.2 Service Models
	11.4.2.1 Infrastructure as a Service (IaaS)
	11.4.2.2 Platform as a Service (PaaS)
	11.4.2.3 Software as a Service (SaaS)


	11.5 The Proposed DMCC Framework
	11.5.1 Overview
	11.5.2 DMCC Framework Architecture
	11.5.3 DMCC Framework Features

	11.6 Experimental Results
	11.6.1 Dataset Description
	11.6.1.1 EEG Eye State Dataset
	11.6.1.2 Skin Segmentation Dataset
	11.6.1.3 KDD Cup 1999 Dataset
	11.6.1.4 Census Income Dataset

	11.6.2 Classification Results
	11.6.3 Clustering Results
	11.6.4 A Study of Association Rule Mining

	11.7 Conclusion and Suggestions for Future Work
	References

	Chapter 12: Feature Selection for Adaptive Decision Making in Big Data Analytics
	12.1 Introduction
	12.2 Dimension Reductions
	12.2.1 Hybrid Genetic Search Model (HGSM)
	12.2.2 Fuzzy-Rough-Set Approach
	12.2.2.1 Data Preparation
	12.2.2.2 DIM-RED-GA Algorithm


	12.3 Case Study
	12.3.1 Rice Diseases
	12.3.1.1 Leaf Brown Spot
	12.3.1.2 Rice Blast
	12.3.1.3 Sheath Rot
	12.3.1.4 Bacterial Blight
	12.3.1.5 Rice Hispa

	12.3.2 Methodology
	12.3.2.1 Image Filtering
	12.3.2.2 Feature Extraction
	12.3.2.3 Colour Features
	12.3.2.4 Shape-Based Features
	12.3.2.5 Texture Features

	12.3.3 Position Detection

	12.4 Conclusions
	References

	Chapter 13: Social Impact and Social Media Analysis Relating to Big Data
	13.1 Introduction
	13.2 Using Big Data and Social Media Innovatively
	13.2.1 Social Media as Advertising and Marketing Medium
	13.2.2 Adding Value for Social Well-Being
	13.2.3 Gauging Business Performance
	13.2.4 Adding Value in Financial Markets

	13.3 Discriminate Use of Social Media Analysis
	13.3.1 Unstructured Data
	13.3.2 Gaps in Governance Standards
	13.3.3 Serving Self-Interest
	13.3.4 Moving Away from Comfort Metrics
	13.3.5 Using Power to Leverage Outcomes
	13.3.6 Risks Relating to Social Media Platforms
	13.3.7 Research Methodology Challenges
	13.3.8 Securing Big Data
	13.3.9 Limitations of Addressing Social Problems

	13.4 Imperatives for Big Data Use from Social Media
	13.4.1 Responsibility of Analytic Role Players
	13.4.2 Evidence-Based Decision-Making
	13.4.3 Protection of Rights
	13.4.4 Knowing the Context

	13.5 Conclusion
	References


	Index

