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Abstract Electric Vehicles (EVs) are touted as the sustainable alternative to reduce
our over-reliance on fossil fuels and stem our excessive carbon emissions. As the use
of EVs becomes more widespread, planners in large metropolitan areas have begun
thinking about the design and installation of charging stations city-wide. Unlike gas-
based vehicles, EV charging requires a significant amount of time and must be done
more periodically, after relatively shorter distances. We describe a KDD framework to
plan the design and deployment of EV charging stations over a city. In particular, we
study this problem from the economic viewpoint of the EV charging station owners.
Our framework integrates user route trajectories, owner characteristics, electricity
load patterns, and economic imperatives in a coordinated clustering framework to
optimize the locations of stations and assignment of user trajectories to (nearby)
stations. Using a dataset involving over a million individual movement patterns,
we illustrate how our framework can answer many important questions about EV
charging station deployment and profitability.
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1 Introduction

In the last decade, electric vehicles (EVs) have been considered a promising solution
for some environmental and economical issues. Fast decline of fossil fuels and global
warming have increased the interest of policy makers in developed countries to use
sustainable approaches to energy production, distribution, and consumption [1]; EVs
have been touted for their potential to dramatically reduce fossil fuel consumption
and CO, emissions [2].

To operationalize and encourage EV usage, charging stations should be installed
in multiple areas of a city. In large metropolitan areas with a significant number
of EVs, charging stations must be installed in carefully selected locations. As a
matter of fact, charging an EV is different from refueling a traditional gas-based
car: EV charging takes much longer and places a significant amount of load on the
electric grid [2]. Furthermore, compared to traditional cars, EVs must be recharged
after relatively shorter distances. Proper placement of charging stations can result in
optimal distribution of electricity load, maximization of revenue of service providers,
and lead to increased availability of charging stations, and reduced range anxiety.

While charging station placement is an important task for EV deployment in
urban areas, there is a relatively small number of prior research in this area (e.g., see
[3-5], and our own work [6]) and all aim to locate charging stations to maximize
the meeting of demands. In a comprehensive planning effort, however, it is crucial
to consider economic factors in design of charging infrastructure for EVs to ensure
financial feasibility as well as long-term economic growth. Various business models
can be considered for EV charging station infrastructure, and in fact, EV charging
infrastructure installation will be driven by models that reflect the economic benefits
on top of policy objectives.

In our previous work [6], we propose a solution for charging station placement
problem without specific assignment of EV's to charging stations. In [6], we developed
a coordinated clustering formulation to identify a set of locations that can be consid-
ered as the best candidates for charging stations. The locations were determined to be
those that have a low electricity load, and where a significant number of EV owners
spend a considerable duration of time. The drawback of our proposed method in [6]
is that it did not consider a concrete economic model for charging station placement.
In fact, in [6], charging stations are placed based on the stay points of EV owners
and distribution of electricity consumption in the city. Therefore, that approach may
result in placements which are economically sub-optimal. Furthermore, in [6], we
did not consider the trajectory of EVs, which in turn results in unacceptable detours.

In this book chapter, we propose a new integrated framework where the cen-
tralized assignment of EVs is addressed simultaneously with the charging station
placement problem. This integrated framework solves an optimization problem that
simultaneously considers revenue of charging station owners and the trajectory of
EV owners. In this work, an economic model is formulated that takes into account
the costs and benefits of installing and operating charging stations from their owner’s
perspective. In this model, charging station owners provide infrastructure, and own
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and operate EV charging stations. No extra incentive is considered for the charging
station owners and it is assumed that they will be charged the same rates as other
mid-sized commercial customers for buying electricity from the utility company.
Charging stations sell electricity to EV owners at a fixed, flat rate. Furthermore,
we use trajectory mining to find routes that could host popular locations where EV
owners might desire to recharge their cars. We applied trajectory clustering on this
dataset which helps us to install charging stations proximal to high-traffic roads, in
order to reduce possible detours to reach charging stations. The trajectory of each
individual in a typical day is derived through the use of APIs such as Google Maps.
The results of this step are integrated to our final optimization equation to situate
charging stations near high-traffic roads in order to reduce possible detours to reach
charging stations. Finally, the economical model, results of trajectory mining, and
information about each individual driving path of EV owners are fed into an integrated
optimization problem. This optimization problem attempts to maximize the revenue
of charging station owners, minimize distances of charging stations to high-traffic
routes, minimize distances of charging stations to stay points of EVs, and minimize
number of failure to find an appropriate charging station for an EV. Furthermore,
using KL-Divergence, the optimization problem tries to place charging stations in a
way that results in a uniform distribution of charging assignments.

We outline a KDD framework, involving coordinated clustering, to design and
deploy EV charging stations over a city. Our key contributions are:

1. Anintegration of diverse datasets, including synthetic populations (capturing over
1.5 million individuals), their profiles, and trajectories of driving, to inform the
choice of locations that are most promising for EV charging station placement.
We solve the ‘How many?’” and ‘Where?’ problem using a coordinated cluster-
ing framework that integrates multiple considerations. We focus on the modeling
of downtown areas since previous studies have shown that public EV charging
infrastructures should be focused on big urban centers [2]. We use trajectory
mining to detect popular roads EV owners are likely to use when they need to
recharge their vehicles, and integrate this information in charging station deploy-
ment. In particular, our framework situates charging stations near high-traffic
roads in order to reduce possible detours to reach charging stations.

2. Unlike our prior work [6], we formulate the EV charging station placement prob-
lem in both economic and user terms: the financial benefits to an EV charging
station owner and the convenience benefits to EV owners are integrated into our
framework. Empirical results reveal key distinctions between taking economic
factors into account versus otherwise.

3. We conduct extensive empirical investigations into the practical feasibility of EV
charging station placement w.r.t. multiple considerations: e.g., how many users in
a population are serviced, how effectively are stations utilized, differences among
varying types of charging infrastructure, and the need for storage units in charging
stations.
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2 Related Work

Charging infrastructure design: Relevant prior work in this area include [3-7].
Frade et al. developed a maximum covering model to locate charging stations to max-
imize demand [3]. In [5], a two-step model is proposed to create demand clusters by
hierarchical clustering, then a simple assignment strategy is used to assign charging
stations to demand clusters. In [4], a game-theoretic approach is used to investigate
interactions among availability of public charging and route choices of EVs. In our
prior work [6], we developed a coordinated clustering formulation to identify a set
of locations that can be considered as the best candidates for charging station place-
ment. The locations were determined to be those that have a low existing load, and
where a significant number of EV owners spend a considerable duration of time. In
[71, behavioral models are developed to predict when and where vehicles are likely
to be parked, and aims to reflect parking demands in the optimization assignment.

Interactions with the smart grid: In addition to the problem of charging station
placement, EV penetration in urban areas has been explored with respect to interac-
tions between grid infrastructure and urban populations. City behavior is simulated
by agent-based systems in terms of agents with a view toward having decentralized
systems and maximizing profits [1]. Swanson et al. in [8] investigated the use of
linear discriminant analysis (LDA) in assessing the probable level of EV adoption.
Energy storage systems, systems that are used when there is not enough power avail-
able from grid, are addressed in [9]. In [10], a solution is proposed to balance energy
production against its consumption. In addition, authors in [11] try to design a general
architecture in smart grid to have a significant gains in net cost/profit with particular
emphasis on electric vehicles.

Mobility modeling: There are many studies that consider mobility of vehicles in
urban areas and in most of the cases, GPS datasets have been used as a popular
source for modeling and mining in urban computing contexts, e.g., [12—14]. Example
applications include anomaly detection [12] and taxi recommender systems [14]. In
taxi recommender systems in particular [14], the ultimate goal is to maximize taxi-
driver profits and minimize passengers’ waiting times. Mining mobility patterns of
cars and people has been used to determine points of interest for tourists [15] and
for routing and route recommendation [16]. In [13], Yuan et al. proposed a method
to discover areas with different functionalities based on people movements. Finally,
in [17], clusters of moving objects in a noisy stadium environment are detected using
the DBSCAN algorithm [18].

To the best of our knowledge, the problem tackled in this paper is unique, and
the methodology we propose integrates a variety of data sources with data min-
ing/optimization techniques.



Installing Electric Vehicle Charging Stations City-Scale: How Many and Where? 153

3 Methodology

The datasets utilized by our approach and the overall methodology are depicted in
Fig. 1. As shown, one of the primary datasets we consider is a synthetic population
dataset representing the city of Portland which contains details of 1,615,860 people
and 243,423 locations out of which 1,779 are located in the downtown area. Detailed
information about this dataset is available at [19]. Next, information about mobility
of people is provided in terms of start and end points and time of travel. Using this
information, we can determine the trajectory of every individual in a typical day
through the use of APIs such as Google Maps. A total of 8,922,359 movements are
available in this dataset. Finally, we have available electricity consumption data to
determine the initial load of each building based on the number of residents of the
building at a specified time (organized by NEC Labs, America).

The first step of our methodology is to discover location functionalities and to
characterize electricity loads. As in our previous work [6], we utilize an information
bottleneck type approach [20] to characterize locations and integrated the electricity
load information to characterize usage patterns across locations. In this step, we
cluster locations based on geographical proximity such that resulting clusters are
highly informative of location functionalities. Then, we integrate information about
electricity load profiles to characterize electricity usage patterns.
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Fig. 1 Overview of our methodology



154 M. Momtazpour et al.

Second, we use trajectory clustering to find routes that could host popular locations
where EV owners might desire to recharge their cars. To determine trajectories, we
define a specific subset of people who are characterized using high-income attributes
(as the likely owners of EVs). After locating the homes of these users, we can
determine their trajectories and their start/stop locations. Based on this data, we can
estimate their travel distances, and in turn estimate charging requirements of EVs,
during a day. Since the maximum distance that a fully charged EV can travel is less
than 100 km [2], it is highly likely that a significant number of them will need to be
recharged en-route to their destinations. By clustering the trajectories, we can plan
to install charging stations proximal to high-traffic roads, in order to reduce possible
detours to reach charging stations.

Third, we develop an economic model that encapsulates costs of purchasing
energy from the grid and other such expenses. Fourth, we identify demands based on
our expectations about how users will behave. Finally, all this information provides
the raw material for defining the charging station placement problem using clustering
and optimization. Each of these stages are detailed next.

3.1 Characterizing Locations and EV Owners

The first step of the proposed data mining approach for EV infrastructure design is
to characterize EV users and locations in the respective area. This step is similar to
that in our previous work [6] and, hence, we provide an abridged summary of it.

Based on current trends, only a small percentage of people (6% of people in
the US) use EVs [21, 22]; in our study we explored a hypothetical scenario that
considers a penetration for EVs in the Portland area to be 6.31 % of 329,218 people in
our dataset. This assumption is realistic if various penetration scenarios in forecasted
EV adoption between years 2012 and 2022 are to be believed [23], and can be easily
modified.

From the synthetic population dataset, we can identify the locations a person vis-
its, the duration of stay at each (stay points), and the purpose of the visit (e.g., work,
leisure). We first begin by characterizing location with a view toward defining the spe-
cific purpose of the location. We focus on 1779 locations in the downtown Portland
area whose attributes are given by a 9-length profile vector P = [py, p2, - .., Pol,
where p; is the number of travels incident on that location for the ith purpose.
Specific purposes of each location (and cluster of nearby locations) can be used
to determine electricity load distribution patterns. To uncover such patterns, we first
cluster locations geographically and then characterize each of the discovered clusters
using typical data available from public data sources such as the California End User
Survey (CEUS). In addition to these kinds of patterns, we compute the electricity
load leveraging the these patterns but w.r.t. our network model of the urban envi-
ronment (by considering the average square footage occupied by one person in each
specific location). Based on some exploratory data analysis, we selected a weekday
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(specifically, 18th March, 2011) and used the electricity load data of this day to map
to the network model. More details are available at [6].

3.2 Trajectory Mining

The emergence of GPS-equipped devices has sprung a veritable cottage industry
in the area of location and trajectory mining. One broad aim of trajectory mining
(clustering) is to find similar routes in a dataset, but other applications have also
been explored (e.g., see [24—26]). Most research in trajectory clustering is inspired
by density-based clustering approaches such as DBSCAN and OPTICS. Leveraging
such clustering methods, the authors in [27] propose a new framework (Traclus) for
trajectory clustering which aims to discover common sub-trajectories. In applica-
tions where we have regions of special interest, finding common sub-trajectories is
beneficial. In Traclus, each trajectory is partitioned into a set of line segments. Then,
similar line segments are grouped together to form clusters of sub-trajectories [27].
This method has been proven to be effective in extracting similar portions of tra-
jectories even when the whole trajectories are not similar. We employ this approach
here to detect potential sub-routes where EV owners are more likely to travel and,
thus, in need of charging.

3.3 Economic Model for Profit Maximization

The principal goal of this paper is to place charging stations in appropriate locations
in order to maximize profits of charging station owners. Tran et al. [28] have studied
cooperation of companies for profit maximization in dynamic systems. They have
used regression and hierarchical agglomerative clustering to reveal optimal organi-
zational substructures. Such approaches are not applicable here since they assume
the locations (of markets) to be known and place restrictive assumptions on pricing
schema.

The primary goal of charging station owners is to maximize revenue and profits
by attracting enough customers during a day. The profit is defined as the differ-
ence between expense and income (revenue). Let us assume that R; is the profit for
charging station (location) i, which is the difference between the payments that the
charging station owner will receive (S;) and the costs spent on providing service to
customers (C;), as shown in Eq. 1. As Eq.2 illustrates, C; in turn consists of two
elements: the static costs Cy, and the dynamic costs C,,.

R =S8 —-C; ey

C,=Cp+Co b
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Static cost, Cy, is the initial cost for setting up a charging station, which includes
the operational cost for installation and for storage units. Here, we calculate these
costs for a single day, and thus assume an amortization function that estimates the
installation cost for one day (e.g. if the installation cost will amortize in six years:
Co= %@’gca”). Dynamic cost Cp, is the cost for the energy that the charging
station will buy from the grid in order to service EV owners. The dynamic cost C,,
consists of two parameters: the cost of buying energy from the grid during the day
(morning to evening), and the costs associated with recharging storage (during the

night). These two parameters are denoted by C;, and C,, respectively.

C,=C,+GCp 3)

3.3.1 Calculating C,

C, is the payment that a charging station owner pays for charging the storage during
the night (if needed). Typically, storage will be charged at night and used during the
day and it should be sized to cover a day’s net load.

Cr = Pouy nignt X StorageSize 4)

where Py,y nign: 18 the price of off-peak hours that storage owner will pay to recharge
the storage. StorageSize is calculated through the following steps.

Suppose f is the load of building after considering EVs. Thus f is the Initial load
of building InitLoad; ,, and the load imposed by EVs. Dload, , is the amount of
electricity needed for user d at time ¢ and n; is the number of EVs receiving service
by charging station i during a day.

f(@) = InitLoad;, + ) (Dloady,) (5)
d=1

In order to calculate the amount of storage for a particular charging station, we
must calculate the number of EVs serviced by this charging station at each partic-
ular hour n;. Here, we assume capacity of each building is constant and equals the
maximum value of load of the building before introducing EVs:

capacity; = 012234 InitLoad,; (6)

The size of required storage should be calculated from the area below the curve of
new electricity load (thatis f) (kW x h) and above the capacity (net peak load)(kW).
X is the difference of load after EVs and capacity of building. Clearly, StorageSize
is a summation of X over time:
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| f@) — capacity; if f(t) > capacity;
X = {O otherwise @
24
StorageSize = / (X(t))dr (8)
0

3.3.2 Calculating C,

Calculation of C; consists of three elements: Basic charges, Energy charges, and
Demand charges [29].

Cb = Cbasic + Cenergy + Cdemand (9)

Basic charges is a constant charge ($240 per month') [29] and energy charges is
a multiplication of energy purchased at time 7 (kWh) in TOU rate at time ¢ ($/kWh):

24
Conergy = i (Y (1) — InitLoad;,) X Py, dt (10)

where Py, ; is determined based on time of the day (TOU rate) and Y is the amount
of load of a building when storage is placed:

capacity; if f(t) > capacity;

Y = [ 1) Otherwise an

Demand charges involves facility capacity charges and on-peak demand charges:

Caemand = CFC/30 + Conpeak demand (12)
Facility capacity charges (Cr¢) for one month is calculated in Eq. 13 [29]:

capacity; x 2.41 if capacity; < 200

482 + (capacity; — 200) x 2.14 otherwise (13)

CFC:[

On-peak demand charges is the maximum on-peak demand of the charging station
(in kW) times per kW monthly on-peak demand rates ($/kW):

COnPeakdemand = max Y(I) x 2.67 (14)
OnPeak t

'In this paper all rates are in US dollar.
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3.3.3 Calculating S;

The income of charging station owner is calculated based on the summation of
energies that he sells to EV owners over a day:

n; 24
Si=>. /t_O(PM,,, x Dload, ;)dt (15)
d=1""—

where Py, is price per kW.
The ultimate goal of charging station owner is to maximize his profit (maxi-
mize R;).

3.4 Modeling Users for Demand Assignment

Before describing how we model users, it is necessary to review the types of charging
stations since it is intricately connected to user behavior. The two basic types are
level 2 chargers (240 V AC charging) and DC chargers (500 V). The former are more
widespread (can even be installed in residential locations), whereas the latter are
speedier to charge (and can be found in business and government buildings). We
model users in the following manner: Let us assume that a user desires to travel from
location A to location B and that he will stay for a certain time in each location. If
during traveling from A to B, he runs out of charge, he will first seek an available
charging station in the neighborhood of A. If he can find such a charging station, he
will charge there, whether he stays at least 4h (to charge with level 2) or less (DC).
Otherwise, if he could not find any charging stations, or if charging stations are fully
occupied at that time, we assume that he is aware of the availability of charging
stations in neighborhood of B. This part is the same as before. If there is no charging
station in A or in B, he has to charge his car by DC somewhere else along his route.
The use of popular routes from trajectory clustering is helpful here where users know
that there are charging stations along popular roads.

There are various strategies to the demand assignment problem. For example, [30]
solved a task assignment problem with linear programming to maximize resource
utilization in load balancing problem in multiple machines. Here, to assign users to
charging stations, we use a typical first-in-first-out approach with the goal of uniform
distribution of users over charging stations. For this purpose, we start from 1:00 AM
to 12:00 AM and we assign each user to the least busy charging station which is
located in its neighborhood. Algorithm 1 shows pseudo-code for assigning demands
to charging stations for a particular hour.
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Algorithm 1: Assignment of Users to Charging Stations

Input: Charging Stations, User Demands
Output: Assignment matrix
for each demand, d; do
for each charging station, CS; do
if distance(d;, CS;) < ro then
| Aij=1
end
end
end
for each charging station, CS; do
Aj = AvailableSlotscs; — 3 ;(Ai j);
end
for k = 1to K do
/* K i1s number of charging stations */;
m = argmax;(4;);
for each demand d; do
if A;,, =1 and AvailableSlotscs, > 0 then

m

Assign d; to charging station m;

AvailableSlotscs, = AvailableSlotscs, — 1;
end
end
Ay = —00;
end

The ultimate goal from the user’s point of view is to maximize the number of
assigned demands as well as reducing costs associated with recharging EVs. Our
user policy attempts to reduce the number of failures, i.e., the number of times that
EV owners run out of charge and need to switch to traditional gas-based fuel. Also,
this policy reduces the cost of charging since charging with level 2 has a higher
priority compared to DC charging.

3.5 Charging Station Placement Using Clustering
and Optimization

In addition to maximizing charging station owners’ profits, we aim to minimize the
number of failed (unassigned) demands. To this end, we aim to place charging stations
next to major arterial roads and nearby stay points to provide better service for future
EVs. Furthermore, we aim to have similar schedules for all charging stations to
reduce very crowded or very under-utilized stations. Based on these goals, we can
formulate an optimization function as a linear combination of several measures:
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K
FX)=—a XZRH-ﬂ X Nyail

i=1
1
v x 2 Dre (& I1U(5))/24

K

1 .
+n x X Z Z Distance(CS;, p)

i=1 pe¢

K
1 ,
+ 60 x X E E Distance(CS;,r). (16)

i=1 ret

where D Kullback Leibler distance and U is the uniform distribution. The goal is to
uniformly distribute demands over charging stations. Here R; is the profit for charging
station i. N4 is the total number of failed demands because either their distance
from their nearest charging stations was more than r or because the nearest charging
stations were fully occupied. T is a set of trajectory representatives and ¢ is set of
stay points. Distance calculates the distance of charging stations to popular roads
and stay points. «, 8, ¥, n, and 6 are constant coefficients. ¢, = [&:(1), ..., §(K)]
captures the distribution of demands over charging stations at time t. {; (i) is computed
as follows:

Wi (i)

2 Wi(@) an

{t(i) =

where W, (i) is the number of assigned demands to charging station i at time t.
In our work, we further focus on a downtown modeling scenario and thus restrict
charging station locations to be in such areas:

Minimize F (X)
(18)
s.t. X; € Downtown
where X = {X|, X5, ..., Xk} contains coordinates of K charging stations.

This set of charging stations contains prototypes of K clusters such that each
charging station will cover a certain area and also, distance between charging stations
will be maximized. Furthermore, in each area, a charging station will be responsible
for future demands in that vicinity.

To optimize the objective function, we first find initial prototypes (representing
charging stations) using the k-means algorithm (with geographic coordination of
locations as features). Next, we use a bound-constrained optimization (simulated
annealing with a maximum iteration of 500) to identify the best prototypes that
minimize the objective function and also satisfy the inequality constraints, i.e. points
must fall into the downtown region. Simulated annealing is used here because the
search space (set of building locations) is discrete. At each iteration of simulated
annealing, assignment of users to current prototypes is done with respect to the
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specified parameters. Calculation of profit and other parameters is done at this step.
After convergence, we calculate the profit, storage size, utilization, and assigned ratio
of trajectories for this final solution.

4 Experiments

Our evaluation is focused on answering the following questions:

1. Which routes are popular among EV owners?
2. How many public charging stations are necessary to serve EV owner needs?
3. What are the load profiles of the designed charging stations?

Table 1 shows parameter settings for our experiments. The price of selling energy
to customer is 49 cents per kilowatt hour [31]. Also, Py, nigh: and Py, ; are calculated
based on [31]. Also, installation cost of storage is set to 100 dollars per kWh and
the installation cost of chargers in charging station is 4000 dollars [32]. For the
time period of amortization, we assume six years based on [2]. We assume that
available slots in each charging station is at most 10 EVs at each hour. We also
assume that people can charge their EVs if they can find a charging station 800 m
(i.e. walking distance) away from their current location (ryp = 800 m). Furthermore,
in our experiments, EV owners are assumed to have chargers in their houses and,
hence, are presumed to use public charging stations during the day (and recharge
again during the night [2]). On-peak hours are determined based on the nature of our

dataset, that is from 6 AM to 10 AM and from 5 PM to 8 PM.

Table 1 Parameter settings used in our experiments

Parameter Value
Time of charging (level 2 (220V)) 4h

Time of charging (DC) 1h

Cy for storage 100 $/kWh
Cy for each charger 4000 $

Chasic $8 per month

Life time of utility 6 years

Number of charger in charging station 10

Electricity load (level 2) 3.3 kW

Electricity load (DC) 50 kW

P 0.49 $/kWh

Ppuy night (5.420+0.277) cents

Ppyy,t 6.454 x on-peak + 5.697 x off-peak cents
ro 800m

o, B,y,0,n

1
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Fig. 2 a Trajectory representatives. b Schematic view of trajectories that assigned (blue) versus
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4.1 Trajectory Clustering

We prune our dataset by removing users that do not enter or cross the downtown
area of Portland. Next, we calculate those major routes that users take when they
need to recharge their vehicles. Based on our previous work [6], a high proportion of
users charge once during their daily travel and hence the probable routes for each user
(when they needs to recharge their car) falls between two sequential stay points of the
user. Our processing leads to 1259 trajectories. After extracting the actual trajectories
from Google Maps, we use the Traclus algorithm [27] (with epsilon equal to 0.01
and minLns equal to 3) to cluster these trajectories. The result consists of 16 clusters.
As Fig. 2a illustrates, representative trajectories mostly fall within the boundaries of
downtown.

4.2 Ideal Number of Charging Stations

In order to compare the performance of charging stations suggested by our proposed
method, we compare it with k-means clustering where only geographic coordinates
of locations are considered. Figure 3 illustrates how the total profit of all charging
stations changed by increasing number of charging stations. It appears that by deploy-
ing a certain number of charging stations, the total profit in our proposed method
is much higher than the location-based algorithm ($5000 per day). Also, profit will
begin to remain stable when the number of charging stations increases up to a certain
threshold (25). It should be noted that, since the location-based k-means algorithm
works solely on geographic coordinates, it will not consider the initial load values
of buildings. This may cause randomness to the results.
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The size of storage and utilization of charging stations (chargers and storages)
are important issues in charging station and storage deployment. Utilization can be
determined as U; = Wj/d] where [ht/#] is the daily time in use of the facility [2]. As
Fig.4a illustrates, time-based utilization of chargers is often less than 50 % but we
assume satisfaction as long as the station profits exceed a certain threshold.

As the number of charging stations increases, we expect the total number of
required storage units also increase. This expectation is shown in Fig. 5. Clearly, the
proposed method works better than location-based k-means since the total profit and
total utilization are higher. While the total storage is higher in our proposed method,
time-based utilization of storages is higher than that of location-based (Fig. 4b). The
time-based utilization measure depicts the percentage of the time storage units are
used in charging stations.

The number of assigned users will not increase as the number of charging stations
goes beyond a certain value (20). This is demonstrated in Fig. 4c. In our method, the
ratio of assigned users is often more than 90 %. This ratio will vary if we change
the radius of users’ attention (r(). As Fig.4d illustrates, by increasing the allowed
distance between the nearest charging station and users (ry), the ratio of assigned
users will increase. Here, number of charging stations is set to 15. This ratio in the
proposed method is higher than location-based k-means because vicinity of charging
stations to the common trajectories were considered in the optimization function.

To explore the profit of charging stations individually, we assess the number of
charging stations with non-positive profit in each setting. As Fig. 6 illustrates, the
number of such charging stations in location-based k-means is greater than in our
proposed method.

Based on our results, the optimum number of charging stations which yields the
highest profit and utilization is 15. For higher penetration rate, this method can be re-
run to find a suitable number of charging stations. Here, we continue our experiments
with 15 charging stations.
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Fig. 4 Comparison of proposed method and location-based method: a Average time-based utiliza-
tion of chargers. b Average time-based utilization of storages. ¢ Total ratio of assigned users and
d Total ratio of assigned users based on distance to charging stations
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4.3 Profile of Individual Charging Station

After determining the charging stations, we can cluster other locations by consid-
ering charging stations to be the prototypes of location clusters. This strategy will
be beneficial to understand which regions are covered by which charging station.
Clusters of locations are shown in Fig. 7. One interesting result here is that charging
stations 2 and 15 are deployed in the same locations, pointing to the potential of this
location.

The daily profit, storage size, and utilization of chargers and storages in charging
stations are shown in Fig. 8. A notable result here is that charging station 8 is not
efficient as others since it has a low profit ($100) due to low storage and low utilization.

Fig. 7 Voronoi diagram of
charging stations and their
associated coverage area 45525 |
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Fig. 8 Performance of charging stations: a Profit of charging Stations. b Storage of charging
stations. ¢ Time-based utilization of chargers and d Time-based utilization of storages

Most of the EVs need to be charged at peak hours (9 AM-8 PM). The number
of EVs at each time slot in each charging station is shown in Fig.9a. Since most
downtown activities occur during afternoon and nights, most of the demands are
concentrated between 12 PM to 8 PM. Also, the number of charging stations for
each type of charging is shown in Fig.9b, c, for level 2 and DC, respectively. Since
those locations that people stay at least 4h are outside of downtown, the demand
for level 2 is lower than that for DC. Based on these results, we can determine the
required number of chargers in each station. In our experiments, we assume that each
charging station is able to have at most 10 chargers. As Fig. 9 illustrates, in charging
station 1, we can organize it to have 2 chargers for level 2 and 9 chargers for DC.
Conversely, for charging station 8, we do not need any level 2 chargers and only
require 3 chargers for level 3 (DC).

Profiles of charging stations can be clustered with respect to their loads at different
times. To this effect, we used the K-SC clustering approach originally proposed for
time series data [33]. Here, the value of electricity load before adding EV, after
adding EV, and after storage deployment during 24 h were considered as a sequence
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Fig. 10 Clustering of load profiles of charging stations

of 24 x 3 elements. Profiles of prototypes of four clusters are shown in Fig. 10. This
figure is important in understanding the behavior of charging stations in order to
make a decision between using a mobile storage versus a stationary one. Locations
in cluster 1 and 3 are places where no one enters them (such as a parking lot).
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Locations in cluster 2 show that the additional demand imposed by EVs lead to use
of storage in 8—12 h and 16-20h. Based on this profile, we can place mobile storage
in locations where storage is needed during a specific time rather than an entire day
(e.g., cluster 4).

5 Conclusion

Effective usage of the next generation of smart grids requires a comprehensive under-
standing of the interactions between networks of urban environments and electric
systems. In this paper, we proposed a framework to design charging and storage
infrastructure for electric vehicles in an urban environment. There is an inherent
trade-off between user expectations and the expectations of charging stations own-
ers, which is captured in our framework and aids in the selection of the number of
charging stations along with their placement. More constraints such as availability of
parking space, effects of charging stations on electrical substations, different pricing
schema in charging stations are being considered for integration into our framework.
Results of this research illustrate the efficiency of our approach in terms of profit
maximization and energy usage. While we studied the effect of different parameters
on the performance of charging station placement, there are other factors that can be
considered in this problem. In this regard, the impact of different EV penetration rates
and the use of probabilistic framework in assignment strategy of drivers to charging
stations can be considered as future works.
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