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Sustainable Development
and Computing—An Introduction

Jörg Lässig

Abstract Computational Sustainability is the computer scientific branchof the inter-
disciplinary field of sustainability research, an applied science about the research in
sustainable solutions and their implementation. This introductory chapter describes
the origins and the development of common and current sustainability goals and the
development of sustainability science as separate field of research. It points out the
relevance of Computer Science in many fields and gives an overview of the state of
the art research in Computational Sustainability as well as about the content of this
edited volume and about the case studies that are addressed in subsequent chapters.

1 Introduction

The world wide situation concerning resource consumption and environmental
impact of human actions becomes most apparent when looking at the development
of the world population and the world energy consumption. Both entered a steep
increase at around 1900, growing steeper and steeper, faster and faster. While the
world population has tripled in about 100 years, we consumed around the year 2000
around 15 times the amount of energy compared to 1900 [8]. In particular the growth-
based development of the recent decadeswas accomplished by various environmental
threats such as pollution, acid rain, deforestation, the destruction of the ozone layer,
climate change, etc. The refinement of natural resources such as coal, oil, natural gas
or uranium produce pollutants, toxins and other residues into the earth, air and water
causes serious environmental effects, risks and problems.

In the past, technical developments have mainly been evaluated by technical
aspects as functionality, quality, safety and economic aspects, such as profitability.
Looking at the apparent developments as mentioned above, sustainable development
in terms of sustainable technologiesmeans to think in terms of environment, economy
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2 J. Lässig

and society together, including besides the mentioned evaluations, also an evaluation
of environmental, human and social aspects as well as inter- and intragenerational
justice.

The term “Sustainable Development” goes back to the 1987 report of the Brundt-
land Commission [1], which has been established by the United Nations (UN) in
1983, having its name from the chairman of the commission, former Prime Minister
of Norway, Gro Harlem Brundtland. The decision to work on this topic was caused
by the insight of the UN in the 1980s, that the natural resources would not be avail-
able for future generations if they are not managed and applied in a more sustainable
way to protect the environment and the natural resources themselves.

Economic development has to be either strongly limited or decoupled from
resource consumption and the connected environmental damage. Hence, given this
insight, major directions of research and development in the subsequent years and
decades were the analysis of reasons for the observed negative developments, the
discussion and development of shared sustainability goals, and the suggestion of
solutions for sustainability problems to resolve this situation and to gain control.

The outcome of this development are the following central aspects of sustainable
development, which are also up-to-date today1:

1. long-term environmental strategies for achieving sustainable development
2. co-operation among developing countries and between countries at different

stages of economic and social development
3. common and mutually supportive objectives which take account of the interrela-

tionships between people, resources, environment and development
4. ways and means by which the international community can deal more effectively

with environmental concerns
5. efforts to deal successfully with the problems of protecting and enhancing the

environment
6. a long-term agenda for action during the coming decades.

Of central importance are the areas of population, food security, the loss of species
and genetic resources, energy, industry, and human settlements [1]. Poverty reduc-
tion, gender equity, and wealth redistribution have been identified as important pre-
requisite for environmental conservation.

The central and most common definition is to consider sustainable development
as development that meets the needs of the present without compromising the abil-
ity of future generations to meet their own needs. More systematic definitions of
sustainability are e.g. given by Jischa, Fig. 1.

1http://www.un.org/documents/ga/res/38/a38r161.htm.

http://www.un.org/documents/ga/res/38/a38r161.htm
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Fig. 1 Sustainability matrix according to Jischa [8]

The developments of COP 21 in December 2015 in Paris (United Nations Frame-
work Convention on Climate Change, 21st Conference of the Parties, see2) further
push current initiatives all over the world and establish the 2◦ goal—if possible
1.5◦—in an international climate contract involving 194 countries.

The edited volume at hand shows best practice examples of contemporary sustain-
ability science in particular in the field of Computer Science and data drivenmethods.
In Sect. 2 we describe the initial need for sustainability science as a separate field of
research and how it has been established. Section3 in particular describes the role of
engineering as a subject that gained increasing importance in this context and why
Computer Science plays a key role today. Also we show key research work in the
field of Computational Sustainability in Sect. 4. We continue with an overview of the
chapters in this volume in Sect. 5. After a short conclusion in Sect. 6 the technical
part of the book starts.

2 Sustainability Science as Research Field

Based on the ideas of the Brundtland commission, sustainability research has been
build up, an interdisciplinary and applied science about the research in sustainable
solutions and their implementation. In June 1992, at the United Nations Confer-
ence on Environment and Development in Rio de Janeiro, the role of research in
the endeavor for sustainable development has been emphasized the first time [6].
Important in the context of sustainability science is the need for new paradigms and
disciplines in order to master the challenges of sustainable development. Going back

2https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.

https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf
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to Snow (1959) [18], sustainability research also has to connect the two cultures,
human and social sciences, and on the other hand, the natural and engineering
sciences, thinking about solutions creating a sustainable future.

Sustainability Science has the following corner stones and basic concepts [6]:

1. Sustainability Science develops a scientific foundation for sustainable practice
and actions. Concerning the goals, values and norms and to balance them, it is
normative, while Sustainability Science is a descriptive research concerning the
instruments of implementation or when it comes to causes for missing sustain-
ability.

2. Sustainability Science is multi- or transdisciplinary. Sustainable development
surmounts by far the potential of one single scientific discipline.

3. Sustainability Science is primarily a practical science. It is meant to solve exis-
tential problems of the world society and the system earth. Practically the man-
agement of sustainability and sustainable development are central issues.

4. Sustainability Science is based on the responsibility of science and of the single
scientist regarding future generations in the life system earth.

The necessity for the existence of Sustainability Science is given by the fact, that
a researcher of one discipline usually hits the borders of the discipline. The need
for Sustainability Science comes from this multidisciplinarity and the challenge to
secure assertions profoundly by the involved research fields.

According to the Forum on Science and Technology for Sustainability (Harvard
University), “The world’s present development path is not sustainable. Efforts to
meet the needs of a growing population in an interconnected but unequal and human-
dominated world are undermining the earth’s essential life-support systems.Meeting
fundamental human needs while preserving the life-support systems of planet earth
will require a world-wide acceleration of today’s halting progress in a transition
towards sustainability.”

Looking for the most urgent problems to be solved, the German Advisory Council
on Global Change [22] a mentions the following Sustainable Development Goals:

• climate change
• ocean acidification
• loss of biological diversity and ecosystem services
• land and soil degradation
• risks posed by long-lived and harmful anthropogenic substances
• loss of phosphorus as an essential resource for agriculture and therefor also for
food security.

3 The Role of Engineering and Computer Science

According to Jischa [7], engineering takes place in three dimensions: process—how
is something processed, tool—how is the processing taken into action, andmedium—
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ismaterial, energy or information processed. In human history, various developments
have changed our way of action, from being hunters, farmers, industrialized soci-
eties and finally the globalized service society. Accordingly, the source of value and
manipulation was changing as well—from nature, to farmland, to capital, and finally,
to information. The development takes place on a logarithmic scale concerning cap-
ital involved and concerning the dimension time, considered as acceleration. The
effect is according to Lübbe [12] also known as shrinking of the present. Defining
the present as length of time of constant life and working conditions, our stay in the
present is constantly decreasing. The unknown future moves constantly closer and
closer to the present. This brings decision makers in the modern world in a challeng-
ing situation: While we never before in history had a time in which societies knew
as little as today about their near future, the number of innovations, which change
our life situation structurally and irreversibly, is constantly growing.

This goes in engineering conform with the Collingridge dilemma, according to
which, the (social) consequences of technology cannot be predicted early in the life of
a technology. Instead, the consequences are discovered over time, but, unfortunately,
by that time they are often already somuch part of the economy and social fabric, that
its control is difficult: When change is easy, the need for control cannot be foreseen,
but when the need for change becomes apparent, it has become expensive, difficult
and time consuming, Jischa [7].

Leggewie and Welzer [11] declare in this sense the end of the world we have
known: “Our perception limps behind the speed of transformation in a globalized
world. This is obvious at all levels of our existence, regarding to critical develop-
ments concerning energy, environment and climate as well as economic and financial
crises”.

How this situation can be resolved is unclear, but in general the role of Computer
Science in the multi-disciplinary field of sustainability research—called Computa-
tional Sustainability—comes from its increasing importance and frombeing involved
in many fields. Kenneth Birman, Cornell University, describes it as follows: “The
importance of Computer Science has never been greater. We are discovering ways
to build just about everything out of small, simple mechanisms glued together with
software, so no matter what you do, Computer Science tends to be inside. And the
scope of this new Computer Science is amazing: We are at the center of the action
in biology, nanotechnology, particle physics. If society is ever going to slash med-
ical costs, Computer Science will play the key role. I see Computer Science as a
sort of universal science. We are beginning to pervade everything.” Looking at the
recent developments in the SiliconeValley and the large IT companies that constantly
invent the innovations of tomorrow, this is very true. So the conclusion, that Com-
puter Science can play an important role in guiding the progress and research towards
a sustainable development and the development goals as described, is coherent.

In this sense, the vision of Carla P. Gomes about the role of Computer Science
in the sustainable development process, which she formulated in 2008, is straight-
forward: “Computer scientists can—and should—play a key role in increasing the
efficiency and effectiveness of the waywemanage and allocate our natural resources,
while enriching and transformingComputer Science.” In this sense,Gomes addresses
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only a subset of the sustainable development efforts, but probably the subset where
Computer Science is most helpful. Interesting and important at the same time is the
fact, that she also mentions developments within Computer Science. This includes

• energy efficient hardware combined with centralization, consolidation and virtu-
alization

• better algorithms and processes for more efficiency, e.g. fleet management and
logistics

• in place work and communication, new work models
• monitoring and sensors in buildings, awareness as key
• autonomic cars and new approaches in logistics
• dematerialization: e.g. storage of information in files, cloud and service computing.

Worth to mention in the struggle to reduce energy consumption is the progress
in optimization science and algorithms; here an example: In the 2010 Report to the
President and Congress [of the USA], Designing a Digital Future: Federally Funded
Research and Development in Networking and Information Technology, on page 71,
algorithmic progress is mentioned. Martin Grötschel (Zuse Institute Berlin) reports
about a benchmark for production planning with LP algorithms, that it took current
hardware and LP algorithms of 1988 82 years to find the solution. In 2003, 15 years
later, the problem is solved in roughly one minute. This is equivalent to a factor
of 1,000, which is due to better hardware and a factor of 43,000, due to algorithm
improvement.

4 Development in the Field of Computational Sustainability

Since the term Computational Sustainability has been coined, there is vivid research
going on in the field. This edited volume gives an overview.

Watson et al. [20] describe energy informatics and new directions for the com-
munity, proposing ways for the Information Systems (IS) community to engage in
the development of environmentally sustainable business practices. IS researchers,
educators, journal editors, and association leaders are dedicated to demonstrate how
the transformative power of IS can be leveraged to create an ecologically sustain-
able society. Substantial research has been done in this application context of energy
informatics, covering various directions towards better energy efficiency, energy
management, and control approaches as in the smart grid context [16]. The authors
argue that the value of smart grids will become fully visible once the collected data
in the grid is ingested, processed, analyzed and translated into meaningful decisions.
As applications of the information, forecast electricity demand, respond to peak
load events, and improved sustainable use of energy by consumers are described.
As technologies pattern mining and machine learning over complex events as well
as integrated semantic information processing, distributed stream processing, cloud
platforms and privacy policies to mitigate information leaking are addressed. See
also [24] for more results in the smart grid context.
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Also in the context of single buildings IT applications are considered, e.g. by
Lawrence et al. [10]. Leveraging energy informatics the authors propose a new con-
cept for howbuildings and their systems are designed and operated. The authors break
down the approach to the simple formula ‘Energy + Information = Less Energy’. Dif-
ferent scales of application are considered, ranging from single equipment items up to
whole regions or countries. It is in particular also considered how cross-realty con-
cepts can be applied in the training of students and professionals in the operation of
complex building systems. A good overview on energy informatics as a field is given
by [4].

Modern IT technologies with different focus have been utilized in the context
of energy informatics and computational sustainability. While many works have a
particular focus on machine learning and data mining, also the application of other
techniques is reported. E.g. [17] develop a cloud based software platform for data
driven smart grid management. Their article describes the application of cloud tech-
nologies used in a scalable software platform for the Smart Grid. Dynamic Demand
Response (D2R) is reported as challenging problemwith the goals to perform intelli-
gent demand-side management and to relieve peak load. Considered are hybrid cloud
setups, including IaaS and PaaS. Typical requirements are on-demand provisioning,
massive scaling, and manageability.

Pernici et al. [15] describe, what IS can do for environmental sustainability in
a report from the CAiSE’11 panel on green and sustainable information systems.
The panel report describes the panelists’ views on using information systems for
improving sustainability and on improving the energy efficiency of the data centres
on which information systems are based. The current topics of research, possible
contributions of the IS community, and future directions are discussed. In a broader
view, the study searches an information strategy for environmental sustainability,
seeking solutions for a problem of change [21].

Of increasing importance today is also the establishment of e-mobility solutions,
e.g. described by Wagner et al. [19]. In the smart grid context, renewable energies
such as wind and solar power increase fluctuations in the grid due to changing
weather conditions. This raises the need for additional supply and demand, reserved
to compensate for fluctuations. The authors describe an approach to use electric
vehicles as distributed storage devices that draw or supply power to the grid during
frequency fluctuations. Based on simulations and real data the article shows that this
approach is able to support power grid stability while generating substantial revenues
for the operating intermediary.

Also more theoretically oriented work has been done in the field, describing, e.g.
dynamic sustainability games for renewable resources [3]. The authors consider a
dynamic Nash game among firms harvesting a renewable resource and propose a
differential variational inequality (DVI) framework for modeling and solving such
a game. The results consider myopic planning versus long-term perspectives. Com-
putationally efficient algorithms are applied for the solution of the game.

The field of Computational Sustainabiliy is very broad and there is an ample num-
ber of publications in the field, e.g. onmethodologies and systems for green house gas
inventories and the related software systems [5, 23] or energy efficiency benchmark-
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ing [9]. For further topics and work we refer to surveys in the field. Milano et al. [13]
conclude that Computational Sustainability specifically considers the major problem
domains that impact global sustainability. They describe key sustainability issues and
how they translate into decision and optimization problems that fall within the realm
of computing and information science. Chande [2] argues that Computational Sus-
tainability is an emerging research and academic discipline. The author makes the
attempt to view Computational Sustainability as an academic and research subject
and suggests how it could be incorporated as a course in academic programmes.

An introduction particularly to data mining for sustainability is given by Morik
et al. [14]. The article describes challenges in the field of data mining for sustain-
ability such as scalability, integration of data, distributed data mining, real-time
prediction or the processing of spatio-temporal data as well as the understandability
of data and the analysis itself. Also typical application fields as disaster management,
climate applications and the conservation of natural resources are mentioned. The
work continues describing (research) tasks and techniques in more detail. Further-
more, organizations, projects, repositories and tools in the field of data mining for
sustainability are described. In particular for the field of computational intelligence
also a book covering various research directions and approaches is available [25].

5 Organization of the Book

The volume at hand is now organized as follows:
InChap.2, wind power predictionwithmachine learning is described. The chapter

focuses on prediction models for a reliable forecast of wind power production to
successfully integrate wind power plants into the power grid. The prediction task
is formulated as regression problem. Different regression techniques such as linear
regression, k-nearest neighbors and support vector regression are tested and evalu-
ated. By analyzing predictions for individual turbines as well as entire wind parks,
the machine learning approach yields feasible results for short-term wind power
prediction.

Chapter3 focuses on the application of statistical learning for short-term photo-
voltaic power predictions. Due to changing weather conditions, e.g. clouds and fog,
a precise forecast in a few hour range can be a difficult task. On the basis of data sets
of PV measurements, methods from statistical learning based on data with hourly
resolution are applied. Nearest neighbor regression and support vector regression are
applied, based on measurements and numerical weather predictions. Also an hybrid
predictor that uses forecasts of both employed models is presented.

Again renewable energy prediction is the topic of Chap.4, but in this case for
improved utilization and efficiency in datacenters and backbone networks. Data-
centers are one of the important global energy consumers and carbon producers.
However, their tight service level requirements prevent easy integration with highly
variable renewable energy sources. Short-term green energy prediction can mitigate
this variability. Predictions are leveraged to allocate and migrate workloads across

http://dx.doi.org/10.1007/978-3-319-31858-5_2
http://dx.doi.org/10.1007/978-3-319-31858-5_3
http://dx.doi.org/10.1007/978-3-319-31858-5_4
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geographically distributed datacenters to reduce brown energy consumption costs.
The results show that prediction enables up to 90% green energy utilization.

A completely different field is addressed in Chap. 5. A hybrid machine learning
and knowledge based approach is utilized to limit the combinatorial explosion in
biodegradation prediction. The work focuses on the prediction of the environmental
fate of products, i.e., their degradation products and pathways of organic environmen-
tal pollutants. In the chapter, a hybrid knowledge-based and machine learning-based
approach to overcome limitations of current approaches in the context of the Uni-
versity of Minnesota Pathway Prediction System (UM-PPS) is proposed.

Feeding theworldwith big data by uncovering spectral characteristics and dynam-
ics of stressed plants is the topic of Chap.6. The work addresses the problem of min-
ing hyperspectral images to uncover spectral characteristic and dynamics of drought
stressed plants to showcase that current challenges in the field can bemet and that big
data mining can—and should—play a key role for feeding the world, while enriching
and transforming data mining.

Global monitoring of inland water dynamics is the application field of Chap.7.
Inland water is an important natural resource that is critical for sustaining marine
and terrestrial ecosystems as well as supporting a variety of human needs. Remote
sensing datasets provide opportunities for global-scale monitoring of the extent or
surface area of inlandwater bodies over time. The authors present a survey of existing
remote sensing based approaches for monitoring the extent of inland water bodies
and discuss their strengths and limitations. Furthermore, an outline of the major
challenges that need to be addressed for monitoring the extent and dynamics of
water bodies at a global scale are addressed, discussing how to overcome them and
motivating future research in global monitoring of water dynamics.

The installation of electric vehicle charging stations—how many and where—is
the topic of Chap. 8. Electric Vehicles (EVs) are touted as the sustainable alternative
to reduce our overreliance on fossil fuels and stem our excessive carbon emissions.
The chapter describes a KDD framework to plan the design and deployment of EV
charging stations over a city. The framework integrates user route trajectories, owner
characteristics, electricity load patterns, and economic imperatives in a coordinated
clustering framework to optimize the locations of stations and assignment of user
trajectories to (nearby) stations.

Chapter9 has its focus on the computationally efficient design optimization of
compact microwave and antenna structures. While conventional optimization algo-
rithms (both gradient-based and derivative-free ones such as genetic algorithms) nor-
mally require large numbers of simulations of the structure under design, which may
be prohibitive, considerable design speedup can be achieved by means of surrogate-
based optimization (SBO) where a direct handling of the expensive high-fidelity
model is replaced by iterative construction and re-optimization of its faster represen-
tation, a surrogatemodel. In this chapter, someof the recent advances and applications
of SBO techniques for the design of compact microwave and antenna structures are
reviewed.

Next, in Chap.10, we focus on sustainable industrial processes that are achieved
by embedded real-time quality prediction. Sustainability of industrial production

http://dx.doi.org/10.1007/978-3-319-31858-5_5
http://dx.doi.org/10.1007/978-3-319-31858-5_6
http://dx.doi.org/10.1007/978-3-319-31858-5_7
http://dx.doi.org/10.1007/978-3-319-31858-5_8
http://dx.doi.org/10.1007/978-3-319-31858-5_9
http://dx.doi.org/10.1007/978-3-319-31858-5_10
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focuses on minimizing greenhouse gas emissions and the consumption of materi-
als and energy. The chapter describes how embedding data analysis (data mining,
machine learning) enhances steel production such that resources are saved, where a
framework for processing data streams is used for real-time processing. New algo-
rithms that learn from aggregated data and from vertically distributed data as well as
two real-world case studies are described.

From steel production we change to relational learning for sustainable health in
Chap.11. Sustainable healthcare is a global need and predictive models have the
opportunity to greatly increase value without increasing cost. Concrete examples
include reducing heart attacks and reducing adverse drug events by accurately pre-
dicting them before they occur. The chapter examines how accurately such events
can be predicted presently and discusses a machine learning approach that produces
accurately such predictive models.

The final chapter of the book does focus on Compute Science itself as applica-
tion domain. In Chap.12, ARM clusters for performant and energy-efficient storage
are considered. Low power hardware—such as ARM CPUs—combined with novel
storage concepts—such as Ceph—promise scalable storage solutions at lower energy
consumptions than today’s standard solutions like network attached storage (NAS)
systems. Its performance as well as its energy consumption is compared to typical
NAS storages. The goal of the study is to outline paths for energy efficient storage
systems.

6 Conclusion

This first chapter gave a brief introduction to Computational Sustainability and its
development as a separate research field. Sustainability in general is by construction
an interdisciplinary science—so it is a bit surprising that something like Computa-
tional Sustainability exists. The term is pragmatically born from the desire of the pro-
tagonists to positively influence the process of sustainable development in the world.
Most problems addressed in this book of course cannot be solely solved by the appli-
cation of computer scientific methods, but it is indeed illustrated how comprehensive
and diverse computer scientific methods can be in order to push sustainable develop-
ment forward. Computational Sustainability is understood as the share that Computer
Science can contribute to intelligent, often data driven approaches to reduce energy
and resource consumption in certain processes. This volumeComputational Sustain-
ability understands itself as compilation of case studies and best practices that show,
how Computer Science and Data Mining are key concepts on the way to a more
sustainable world. This is our all goal and gave rise to this book project. The covered
application fields, methods and approaches do not claim completeness—there may
be many more application fields and scientific methodologies which would be worth
to mention here.

http://dx.doi.org/10.1007/978-3-319-31858-5_11
http://dx.doi.org/10.1007/978-3-319-31858-5_12
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Wind Power Prediction with Machine
Learning

Nils André Treiber, Justin Heinermann and Oliver Kramer

Abstract Better predictionmodels for the upcoming supply of renewable energy are
important to decrease the need of controlling energy provided by conventional power
plants. Especially for successful power grid integration of the highly volatile wind
power production, a reliable forecast is crucial. In this chapter, we focus on short-
term wind power prediction and employ data from the National Renewable Energy
Laboratory (NREL), which are designed for a wind integration study in the western
part of the United States. In contrast to physical approaches based on very complex
differential equations, our model derives functional dependencies directly from the
observations. Hereby, we formulate the prediction task as regression problem and
test different regression techniques such as linear regression, k-nearest neighbors and
support vector regression. In our experiments, we analyze predictions for individual
turbines as well as entire wind parks and show that a machine learning approach
yields feasible results for short-term wind power prediction.

1 Introduction

The strong increase in renewable energy causes some problems induced by high
fluctuations in production. A precise prediction is the key technology for successful
integration of the wind power into the grid because it allows planning reserve plants,
battery loading strategies and scheduling of consumers.

Generally, there are two model classes for prediction tasks. Most prediction
approaches are based on physical models employing numerical weather simula-
tions, see e.g., [3]. These models are used for short- and long-term forecasts in the
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range of hours. The other class of prediction methods is formed by machine learning
algorithms that are implemented more frequently in recent years. Since these sta-
tistical models derive functional dependencies directly from the observations, they
are also known as data-driven models. They can be used for predictions that target
a time horizon from seconds to hours and therefore are important for balancing the
electrical grid with its different authorities.

In this chapter, we build models that are exclusively based on wind power time
series measurements. We formulate the prediction task as a regression problem and
compare the accuracy of different regression techniques by employing the two simple
regression methods linear regression and k-nearest neighbors (kNN), and the state-
of-the-art technique support vector regression (SVR). In our studies we make pre-
dictions for individual turbines and then for entire wind parks. The latter predictions
can be made with various feature aggregation combinations of the corresponding
time series that we also compare. This chapter extends our preliminary workshop
paper [21] on the workshop Data Analytics for Renewable Energy Integration on the
European Conference on Machine Learning (ECML 2013).

2 Related Work

In their review, Costa et al. [2] present a broad overview of various methods and
mathematical, statistical and physical models employed in the last 30years for short-
term prediction. Soman et al. [19] give an extensive survey of the possible techniques
for different forecast horizons. Past results have shown that methods from statisti-
cal learning are powerful approaches for short-term energy prediction. For example,
Juban et al. [8] presented a kernel density estimation approach for a probabilis-
tic forecasting for different wind parks. Foresti et al. [5] employed multiple kernel
learning regression as an extended support vector model that autonomously detects
the relevant features for wind speed predictions. Also neural networks have been
applied to wind power prediction in the past, e.g., by Mohandes et al. [13], who
compared an autoregressive model with a classical backpropagation network. In this
line of research, Catalao et al. [1] trained a three-layered feedforward network with
the Levenberg-Marquardt algorithm for short-term wind power forecasting, which
outperformed the persistence model and ARIMA approaches. Further, Han et al.
[7] focused on an ensemble method of neural networks for wind power prediction.
Regarding the aggregation of wind turbines, Focken et al. [4] studied the decrease
of the prediction error of an aggregated power output caused by spatial smooth-
ing effects. From the perspective of electrical engineers, Pöller and Achilles [16]
explored, how different wind turbines can be aggregated to a single generator.

The spatio-temporal wind power prediction approach that is basis of our line of
research has been introduced in [10] with a more extensive depiction in [11]. In [20],
we presented an approach for preselection of turbines for kNN-based prediction.
As the optimization problem is difficult to solve, we proposed an evolutionary
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blackbox method for an efficient feature selection, which corresponds to a selection
of appropriate turbines. In [6], we proposed an ensemble approach for SVR, where
small subsets of training data are randomly sampled and the predictions of multiple
SVRs are combined to a strong classifier. As wind power ramps are difficult events
for the integration into the grid, we considered this problem in a separate work [12].
We treat ramp prediction as classification problem, which we solve with SVMs.
Recursive feature selection illustrates how the number of neighbored turbines affects
this approach. The problem of imbalanced training and test sets is analyzed with
regard to the number of no-ramp events. In practice, sensors might fail for various
reasons and the prediction models cannot be applied. In [17], we compared various
missing data methods for the imputation problem. A new contribution of this work
is a kNN-based regression method, which is used as geo-imputation preprocessing
step by taking into account the time series of the neighbored turbines. Last, in [22]
we extended the repertoire of prediction methods with a cross-correlation weighted
k-nearest neighbor regression (x-kNN) variant. The kNN-based similarity measure
employs weights that are based on the cross-correlation of the time series of the
neighboring turbines and the target. If the cross-correlation coefficient is high, the
turbine gets a major influence for the prediction by expanding the corresponding
dimension in the regression model.

3 Wind Data Set

The models are evaluated based on the National Renewable Energy Laboratory
(NREL) western wind resources data set [14], which is part of the Western Wind and
Solar Integration Study, a large regional wind and solar integration study initiated
by the United States. The data set has been designed to perform temporal and spatial
comparisons like load correlation or estimation of production from hypothetical (i.e.,
simulated) wind turbines for demand analysis and planning of storage based on wind
variability. The data set consists of three years of wind energy data from numerical
simulations that are mainly based on real-world wind measurements. It consists of
32,043 turbines in thewestern area of theUS, and can be downloaded from theNREL
website.1 The whole model employs a total capacity of 960 GW of wind energy. A
GUI allows to select turbines, and to download their corresponding time series data.
Based on a time-resolution of ten minutes, 52,560 entries per year and per turbine
are available for 2004, 2005, and 2006, respectively.

In Fig. 1, four different wind situations in a park near Tehachapi are illustrated.
One can observe spatio-temporal correlations between thewind speed of the turbines.
But it can also be noticed, that occasionally high wind speeds can occur locally.

1http://www.nrel.gov/.

http://www.nrel.gov/
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(a) (b)

(c) (d)

Fig. 1 Visualization of the wind speeds (m/s) in a park near Tehachapi (California) at four time
steps with a temporal difference of 20min. The turbines are colorized with regard to the wind
strength, from low in blue to strong in red. a 2004-01-25 00:40, b 2004-01-25 01:00, c 2004-01-25
01:20, d 2004-01-25 01:40

4 WINDML

For addressing the challenge to couple machine learning and data mining meth-
ods to wind power time series data, we developed the Python-based framework
WindML [9], which aims at minimizing the obstacles for data-driven research in the
wind power domain. It allows the simplification of numerous steps like loading and
preprocessing large scale wind data sets or the effective parameterization of machine
learning and datamining approaches.With a framework that bounds specializedmin-
ing algorithms to data sets of a particular domain, frequent steps of the data mining
process chain can be re-used and simplified. The WindML framework is released
under the open source BSD 3-Clause License.
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TheWindML framework provides a data server, which automatically downloads
requested data sets to a local cache when used for the first time. The system only
downloads the data for the requested wind turbines and associated time range. The
local copies on the user’s hard disk are stored in the Numpy [24] binary file format,
allowing an efficient storage and a fast (recurrent) loading of the data. The data set
interface allows the encapsulation of different data sources, resulting in a flexible and
extendible framework. A complete documentation describing the modules and the
overall framework in more detail is openly available. Further, documentations and
examples are available, e.g., for the tasks of wind power prediction or visualization,
whose outputs are rendered with text and graphics on theWindML project website.

The application of machine learning and data mining tools to raw time series data
often requires various preprocessing steps. For example, wind power prediction for
a target wind turbine using turbines in the neighborhood affords the composition of
the given power values as feature vector matrix. TheWindML framework simplifies
such tasks and offers various methods for assembling corresponding patterns. It also
effectively supports the imputation of missing data as well as other sophisticated
processes including the computation of high-level features. In addition, the frame-
work also provides various small helper functions, which, for instance, address the
tasks of calculating the Haversine distance between given coordinates or selecting
the wind turbines in a specified radius. The WindML framework contains various
supervised and unsupervised learning models. Most of the employed machine learn-
ing and data mining implementations are based on scikit-learn [15], which offers
a wide range of algorithms. The methods are continuously extended with own devel-
opments, see Sect. 2.

5 General Times Series Model

Our model makes predictions with past wind power measurements. For this task,
we formulate the prediction as regression problem. Let us first assume, we intend to
predict the power production of a single turbine with its time series. The wind power
measurement x = p(t) (pattern) is mapped to the power production at a target time
y = pT (t + λ) (label) with λ ∈ N

+ being the forecast horizon. For our regression
model we assume to have N of such pattern-label pairs that are the basis of the
training set T = {(x1, y1), . . . , (xN , yN )} and allow, via a regression, to predict the
label for a unknown pattern x′.

One can assume that this model yields better predictions if more information of
the time series will be used. For this reason, we extend the pattern x by considering
past measurements pT (t − 1), . . . , pT (t − μ)with μ ∈ N

+, see Fig. 2. In addition, it
might be helpful to take differences of measurements pT (t) − pT (t − 1), . . . pT (t −
(μ − 1)) − pT (t − μ) into account. Since we aim to catch spatio-temporal correla-
tions, we add further information to our patterns from m neighboring turbines, see
Fig. 3. Their attributes can be composed in the same way like for the target turbine
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Fig. 2 Section of a time series. The pattern x ismapped to label y. The time horizon of the prediction
is λ, and the number of additional past measurements is μ

Fig. 3 Setup with four neighboring turbines and the target turbine itself. For each turbine, the
current and two past measurements are considered, resulting in a (4 + 1) · 3 = 15-dimensional
input vector x

(e.g., power values and differences). Finally, we determine the accuracy of the pre-
dictionmodel by computing the error E of the prediction, which is measured asmean
squared error (MSE):

E = 1

N

N∑

i=1

( f (xi ) − yi )
2 (1)

6 Regression Techniques

In this section, we introduce the implemented regression techniques. Generally, the
goal is to find a function f that provides appropriate predictions to unseen patterns
x′. In the following, we explain linear regression, the basic idea of SVR and k-nearest
neighbor regression.
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6.1 Linear Regression

First, we focus on linear regression. In this model, the prediction value f (x) is
expected to be a linear combination of the input variables:

f (w, x) = w0 + w1x1 + · · · + wN xN (2)

The goal is to find coefficients w = (w1, . . . , wN )
T that minimize the residual sum

of the squares between the observed labels y and the responses predicted by the
linear approximation. The problem has the form:

min
w

‖Xw − y‖2 with X =
⎛

⎝
x1,1 . . . . . . x1,N
. . . . . . . . . . . .

xd,1 . . . . . . xd,N

⎞

⎠ (3)

6.2 Support Vector Regression

Support vector regression is one of the state-of-the-art techniques for prediction tasks.
It is based on support vector machines (SVMs) that were proposed by Vapnik [23] in
1995. For the training of the regressor, we aim at finding weights w by minimizing
the following problem, formulated by Vapnik with an ε-sensitive loss function:

minimize
1

2
‖w‖2 + C

N∑

i=1

(ξi + ξ∗
i ) (4)

subject to

⎧
⎪⎨

⎪⎩

yi − 〈w, xi 〉 − b ≤ ε + ξi

〈w, xi 〉 + b − yi ≤ ε + ξ∗
i

ξi , ξ
∗
i ≥ 0

In this formulation, C > 0 is a constant chosen by the user that is used as a parameter
that penalizes only those errors which are greater than ε. The so-called slack variables
ξ∗

i are introduced to provide a soft margin instead of a hard decision border.
To give good results on non-linear separable data as well, kernel functions are

used. A kernel function can be seen as a similarity measure between patterns and is
especially useful for non-linear regression tasks. In our experiments, we employ an
RBF-kernel:

k(x, x′) = exp

(
−||x − x′||2

2σ2

)
(5)
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(a) (b) (c)

Fig. 4 Visualization of kNN regression. The figures show how the choice of the neighborhood size
k determines the character of the regression. a k = 1, b k = 6, c k = 18

6.3 k-Nearest Neighbor Regression

In opposition to theSVR, the kNNmodel is one of the simplest of allmachine learning
algorithms. Nevertheless, this technique is very effective for many applications and
often offers a better performance than using SVR. The outcome of kNN given a
new pattern x′ depends on the k-nearest neighbored patterns in a training set. These
patterns are found by calculating the distance between the pattern and all existing
patterns dist (x, x′) using the Euclidean metric:

dist (x, x′) =
( d∑

i=1

(xi − x ′
i )
2
)1/2

(6)

With set Nk(x′) that contains the indices of the k-nearest neighbors of x′, the target
value is given by:

fkNN(x′) = 1

k

∑

i∈Nk (x′)

yi , (7)

if we intend to calculate the arithmetic average of the other k target values. Here,
the number of considered neighbors determines the form of the resulting regression
function. Given a small value, the model fits the data but is also strongly influenced
by outliers, whereas large k might build up models that are too simple, see Fig. 4.

7 Wind Power Prediction for a Single Turbine

In this first experimental section, we want to predict the power output of a single
wind turbine for a time horizon of 30min.
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7.1 Setup and Evaluation

For this prediction, neighboring turbines must be selected whose time series features
are used in our multivariate time series model. For this sake, we arbitrarily pick
15 turbines that surround the target turbine within a radius of 10km. For the determi-
nation of the distance between turbines, we use the Haversine formula [18]. Finally,
every model is trained by using the data from the year of 2005. To accelerate the
training process, only every fourth time-step is taken into account. Despite a smaller
training set, it is guaranteed that wind conditions at different seasons are included.
For the evaluation we test our models on the year 2006 by determining the MSE of
the forecasts f (x) with the measured power outputs yi for N forecasts, see Eq.1. In
our experiments we use five turbines at different locations that are distributed over
the western part of the United States.

7.2 Persistence Model

In our studies, forecasts are compared to the persistence model (PST). This model is
based on the assumption that the wind power in the time horizon λ does not change
and is as strong as at the present time, i.e. f (pα(t)) = pα(t + λ). Although this
naive approach seems to be trivial, its predictions are quite successful for short time
horizons and temporally relative constant wind situations, shown for example by
Wegley et al. [25]. In our studies, this model achieves mean squared errors, shown
in Table1.

Since it is an important challenge for balancing the grid to predict ramps of chang-
ingwind, ourmodels shouldoutperform thepersistencemodel,whichunderstandably
fails in such situations.

7.3 Accuracy of the Linear Regression Prediction Model

The experimental results of the linear regression are shown in Table2. Here the
mean squared errors are given for predictions that, on the one hand, are achieved

Table 1 Mean squared error E of the PST model in [MW 2] for the five target turbines
Turbine E [MW 2]
Tehachapi 9.499

Lancaster 11.783

Palmsprings 7.085

Cheyenne 9.628

Casper 12.555

It is noticeable that the errors of the individual turbines are quite different
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Table 2 Mean squared errors E of the linear regression model in [MW ]2
Turbine E [MW 2]

Absolute Absolute+changes

μ = 2 μ = 3 μ = 4 μ = 2 μ = 3 μ = 4

Tehachapi 7.441 7.334 7.321 7.470 7.348 7.365

Lancaster 8.610 8.479 8.488 8.631 8.536 8.536

Palmsprings 5.533 5.372 5.347 5.533 5.374 5.346

Cheyenne 7.666 7.691 7.701 7.702 7.704 7.716

Casper 9.984 10.026 10.067 9.982 10.039 10.108

The results shown on the left side are achieved with features only presenting past absolute mea-
surements of the wind power. On the right side, the corresponding differences of the measurements
are also taken into account

only with the absolute measurements of the generated power and, on the other hand,
are produced with the absolute values and their corresponding changes. From the
table one cannot decide which of the two feature vectors is more suitable for the
prediction. It is also not clear how many past steps should be considered. The main
result is that our linear regression predictions can clearly outperform the persistence
model.

7.4 Results of the SVR Prediction

The SVR model requires an appropriate choice of its parameters. We implement
a grid search with a three-fold cross validation and test values of the trade-off
parameter C = 0.1, 10, 100, 1000, 2000 and the kernel bandwidth σ = 10−i with
i = 2, 3, . . . , 7. The Fig. 5 shows an arbitrarily chosen section of the time series
of a turbine near Tehachapi and allows to compare the persistence and the SVR
prediction. The quantitative results are concluded in Table3.

The results show that the SVR technique even achieves better results than the
linear regression if one takes only the absolute measurements as features and selects
the number of past steps carefully.

7.5 Results of the kNN Model

The kNN model is tested with three different values for k. The mean squared errors
of the predictions are shown in Table4. The accuracy of kNN model is not as high
as in the other two methods. In contrast to the SVR technique, this model requires
inputs for its best predictions that also contain the corresponding differences of the
measurements.
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Fig. 5 Visualization of the SVR prediction for a turbines in Tehachapi. The top left plot compares
the SVR and the persistence predictions to the actual wind power measurements. The bottom left
plot shows the differences of the corresponding models. The plots on the right hand side show the
actual and predicted measurement pairs. The absolute prediction errors is the deviation to the main
diagonal

Table 3 Results of the prediction using the SVR model

Turbine E [MW 2]
Absolute Absolute+changes

μ = 2 μ = 3 μ = 4 μ = 2 μ = 3 μ = 4

Tehachapi 7.093 7.074 6.984 7.131 7.096 7.012

Lancaster 8.364 8.108 8.157 8.397 8.339 8.342

Palmsprings 5.303 5.231 5.209 5.387 5.251 5.256

Cheyenne 7.670 7.713 7.646 7.679 7.702 7.694

Casper 9.644 9.493 9.507 9.798 9.628 9.539

In comparison to the previous results, a higher accuracy is achieved

8 Prediction for a Wind Park

Since the power output of a single turbine is generally not high enough to cause
relevant effects on the electric grid, we want to analyze the power output of an entire
wind park. The objective of this section is to compare different features and various
feature aggregation combinations of the turbines belonging to the park.
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Table 4 Prediction errors of the kNN model

Turbine k E [MW 2]
Absolute Absolute+changes

μ = 2 μ = 3 μ = 4 μ = 2 μ = 3 μ = 4

Tehachapi 5 9.957 10.101 10.115 9.380 9.785 9.932

25 9.296 9.720 9.906 8.887 9.399 9.725

50 9.643 10.117 10.339 9.241 9.799 10.133

Lancaster 5 11.340 11.266 11.541 10.569 10.665 11.099

25 10.837 10.848 11.016 10.058 10.296 10.698

50 10.929 11.216 11.488 10.229 10.628 11.115

Palmsprings 5 7.292 7.403 7.628 6.903 7.176 7.396

25 6.812 7.136 7.404 6.521 6.864 7.250

50 6.900 7.340 7.666 6.649 7.102 7.523

Cheyenne 5 9.749 10.014 10.171 9.526 9.897 10.181

25 9.041 9.388 9.633 8.864 9.308 9.636

50 9.135 9.539 9.860 9.010 9.480 9.858

Casper 5 13.033 13.371 13.698 12.409 12.951 13.440

25 12.440 12.985 13.414 11.943 12.619 13.189

50 12.835 13.440 13.925 12.348 13.127 13.723

It is expected that a tuning of parameter k should partially lead to slightly better predictions

8.1 Definition of a Wind Park

In our experiments, we intend to predict the power production of an entire wind
park. Since parks are not explicitly given in the data set, we define a park by a
central turbine, identified with a certain ID, and some neighboring turbines. To get
these further turbines, we determine all turbines in a particular radius rin around
the central turbine. Since at least one of the considered aggregations should benefit
from spatio-temporal relationships in a park, we choose a radius in an interval of
rin = 7 − 12 km to ensure that the park covers substantial region. Finally, we select
z = 25 from all turbines within the selected radius.

8.2 Feature Aggregations

We test the three feature aggregation types.

8.2.1 Park Prediction as Sum of All Single Predictions

One possibility to make predictions for a park is to sum up the predictions of all z
wind turbines. While here many different approaches for the individual predictions
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are possible, we only concentrate on two. First, we use the implementation for each
turbine in the park by considering only some features of its own time series, resulting
in a pattern with a dimension dst . This setup is called AG-1.

Second, we also respect additional information ofm arbitrarily selected neighbor-
ing turbines in the park for the individual predictions to get spatio-temporal informa-
tion. Hereby, the extra features x j are generated in the same way as in our studies of
the individual prediction in the sections before. Eventually, one has a pattern with a
dimension d = (1 + m) dst , which is stillmapped only to the power output pT (t + λ)
of the target turbine T . This implementation is defined as setup AG-2.

8.2.2 Park Prediction with All Features of All Turbines

In this implementation, all time series features of all z turbines in the park are
considered at once. The high-dimensional pattern includes the features of each
turbine and thus has a dimension of d = z · dst . The label y is no longer the
output power of an individual turbine, but rather the accumulated power of the park
y park = ∑z

j=1 p j (t + λ). This setup defines AG-3.

8.2.3 Park Prediction with One Aggregated Time Series

Finally, we use the aggregated power not only as label, but also for the patterns by
computing one overall time series whose features are extracted as before. We label
this model with AG-4:

xpark =
⎛

⎝

∑z
j=1 p j

(
t)

· · ·∑z
j=1 p j

(
t − μ

)

⎞

⎠ −→ y park =
z∑

j=1

p j
(
t + λ

)

A question is which feature aggregations yield the best predictions with regard to the
MSE (see Eq.1). We will experimentally compare the introduced aggregations after
the explanation of the evaluation details.

8.3 Prediction with Support Vector Regression

For the SVR training process we employ a three-fold cross-validation and a grid
search for the parameters in the interval C = 10i with i = 2, 3, 4 and σ = 10−i with
i = 4, 5. These intervals have been manually restricted to accelerate the training
process. In our first studies, we employ the SVR model with different aggregations.
We compare the precision of the forecast with patterns that consist only of absolute
values ofwindmeasurements byusing the actualmeasurement (μ = 0), the actual and
two past measurements (μ = 2), and the actual and six past measurements (μ = 6).
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Table 5 Employing a 30min forecast for a park with 25 turbines with the SVR model

E∗ [MW 2]
Absolute Absolute+changes

μ = 0 μ = 2 μ = 6 μ = 1 μ = 2 μ = 3

AG-1 280.7 282.3 275.8 289.1 280.6 275.7

AG-2 281.1 237.9 237.4 243.1 238.0 238.0

AG-3 278.6 223.8 223.4 224.0 220.9 218.6

AG-4 282.1 213.7 213.3 219.3 212.4 211.2

The values show the validation errors with regard to the square loss E∗ = E/105 [MW2]. The
persistence model achieves an error of E∗ = 280.6

Furthermore, we test patterns that again contain the differences of the corresponding
measurements for μ = 1, 2, 4. In this way, it is possible to compare the results for
μ = 2 with and without wind power changes. In addition, we can compare the error
when the patterns have the same dimensionality, which is the case for μ = 6 and
μ = 3 when using only absolute values and changes respectively.

We train every model using the first nine months of 2006. For the quantitative
evaluation on the last quarter of 2006, we determine the MSE E of the forecasts
f (xpark) with the measured power outputs y park . Again, we compare our results
with the persistence model PST that achieves an error of E = 280.6 · 105[MW 2].

The two parts of the Table5 show that the prediction is more precise for the
aggregations AG-1, AG-3 and AG-4 and for (μ ≥ 2) if the patterns include the cor-
responding changes. It appears that the sum of the individual simple predictions
(AG-1) leads to the worst results, comparable with those of the persistence model.
If the individual predictions are made with neighboring turbines (AG-2), the persis-
tencemodel is clearly outperformed. The aggregation considering all features at once
(AG-3) leads to an even better accuracy than AG-2. The best results for prediction is
achieved by aggregation AG-4, which builds up one time series for the entire park by
summing the power values of the single turbines. As we focus on prediction models
for a park, this aggregation step pays off. Another advantage is the fact that the data
set is reduced and the used regression technique needs a much shorter runtime than
using all individual features.

8.4 Prediction with k-Nearest Neighbors

The best parameter for the kNNmodel is determinedwith a four-fold cross-validation
by testing neighborhood sizes of k = {3, 10, 20, 40, 80}. Table6 serves as a direct
comparison to Table5. For the aggregations AG-1, AG-3 and AG-4, including the
changes of measurements into the patterns is helpful when using kNN regression.
While the results for AG-2 are slightly worse than for AG-1 with μ ≥ 2, no good
predictions are achieved by the setup AG-3.
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Table 6 Employing a 30min forecast for a park with 25 turbines with kNN

E∗ [MW 2]
Absolute Absolute+changes

μ = 0 μ = 2 μ = 6 μ = 1 μ = 2 μ = 3

AG-1 292.1 281.4 290.6 283.0 278.8 280.4

AG-2 275.0 295.1 339.0 269.3 281.5 296.0

AG-3 288.8 332.5 394.1 292.9 315.2 335.9

AG-4 282.7 215.7 241.5 220.0 213.5 216.6

The table shows the validation error E∗ = E/105 [MW2]. For the error of the persistence model,
see caption of Table5

In conclusion, one should note that here the AG-4 achieves the highest accuracy,
too. The errors achieved are almost as low as for the SVR technique. This is remark-
able, since kNN performed significantly worse in the prediction for a single turbine,
see Sect. 7.

9 Conclusions

A precise short-term wind power prediction is important for a safe and sustainable
balancing of the electricity grid. This work focuses on the statistical wind power
forecast for an individual turbine and an entire park with a horizon of 30min. The
most important result is that predictions with the highest accuracy are achieved for
both setups with the SVR technique. For the park, it is with respect to the accuracy
and the performance of the prediction advantageous to build one aggregated times
series, formed by the summation of the power outputs of all individual turbines.

A direct comparison of our results to other models is a quite difficult undertaking,
in particular, because other models would have to use exactly the same data. Further,
there is no standard formeasuring the performance ofwind energy predictionmodels,
which has often been criticized in literature [2]. However, the objective of prediction
models is to generally outperform the persistence model in terms of MSE. We do
this in a convincing way: Our final approach for the park achieves an accuracy that
is 24% better than the persistence model. We expect that tuning parameters of the
SVR models further improves the results. This will be subject to our future research
activities.
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Statistical Learning for Short-Term
Photovoltaic Power Predictions

Björn Wolff, Elke Lorenz and Oliver Kramer

Abstract A reliable prediction of photovoltaic (PV) power plays an important part
as basis for operation and management strategies for a efficient and economical
integration into the power grid. Due to changing weather conditions, e.g., clouds and
fog, a precise forecast in a few hour range can be a difficult task. The growing IT
infrastructure allows a fine screening of PV power. On the basis of big data sets of PV
measurements, we apply methods from statistical learning for one- to six-hour ahead
predictions based on data with hourly resolution. In this work, we employ nearest
neighbor regression and support vector regression for PV power predictions based
on measurements and numerical weather predictions. We put an emphasis on the
analysis of feature combinations based on these two data sources. After optimizing
the settings and comparing the employed statistical learning models, we build a
hybrid predictor that uses forecasts of both employed models.

1 Introduction

In Germany, with an installed capacity of more than 38.5 GW at the end of 2014, PV
power prediction services are already an essential part of the grid control. On the local
scale, storagemanagement and smart grid applications define a sectorwith increasing
need for PV power forecasting to mitigate the impact of the highly fluctuating PV
power production.
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Fig. 1 PV measurement time series example of one week with different weather conditions. There
are example pictures from a sky imager camera showing corresponding cloud situations on both
sides of the time series

An example PV measurement time series of one week with changing PV power
outputs is given in Fig. 1. These fluctuations are caused by varying weather condi-
tions, mainly due to the formation and movement of clouds and by the deterministic
course of the sun that causes the typical diurnal and seasonal variation. Two typical
weather scenarios that can bee seen in Fig. 1 are overcast (on Sep 18, 2011) and clear
sky conditions (on Sep 24, 2011).

As the benefit of using a forecast is directly related to the forecast accuracy,
continuous research is performed to enhance PV power predictions.

The aim of this work is the analysis of training sets, features andmodel parameters
for accurate short-term (up to six hours) predictions with hourly resolution based on
nearest neighbors regression and support vector machines on 87 PV systems with
real-world data.

An early approach for PV power prediction is the autoregressive integrated mov-
ing average (ARIMA) model [5]. A related comparison of models is given by
Reikard [15]. Popular prediction models are based on neural networks, see Mel-
lit [13]. Similar to our approach, Cao and Cao [3] and Bacher et al. [1] employ
forecasts from numerical weather predictions as input of their models. Chakraborty
et al. [4] use nearest neighbor regression in combination with a Bayes model to
predict PV power output; Fonseca et al. [6] employ support vector regression for
power predictions of a 1-MW photovoltaic power plant in Kitakyushu, Japan. In
preceding works by Kramer and Gieseke [10], they use support vector regression
on wind energy outputs with promising prediction results. Many approaches are
based on cloud motion vectors [9] and numerical weather predictions [11]. For a
comprehensive survey, we refer the interested reader to the overview by Lorenz and
Heinemann [12].

In contrast to the mentioned approaches, we analyze the performance of support
vector machines and nearest neighbors on a larger and spatially more distributed set
of PV systems. While nearest neighbor regression is one of the simplest machine
learning algorithms, it is able to create relatively accuratemodels in a short amount of
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time by adjusting only one parameter. Support vector regression is a prominent choice
for non-linear modeling. One of its advantages is the ability to handle high dimen-
sional input, without the need of dimensionality reduction efforts in preprocessing
steps (unlike, e.g., neural networks), but in return needs proper adjustment to the
given task. The flexibility of nearest neighbors and the robustness of support vector
regression is helpful as we are concentrating on the combination of meteorological
and statistical knowledge by selecting features from different data sources.

This chapter is structured as follows: In Sect. 2, we present the data sets we employ
in our experimental analysis. In Sect. 3, we shortly introduce the employed methods,
i.e., uniform andweighted K-nearest neighbors (KNN) and support vector regression
(SVR). An analysis of training sets, model parameters and features for both models
are presented in Sect. 4. A comparison of both methods is introduced in Sect. 5. In
Sect. 6, we present a hybrid model of KNN and SVR, and the most important results
are summarized in Sect. 7. This chapter is an extension of a contribution to the ECML
DARE workshop [18].

2 Data Sets

Our forecasts are based on the combination of past PV power measurements with
numerical weather predictions (NWP). Bacher et al. [1] have shown that for fore-
casts under a two-hour horizon, the most important features are measurements while,
for longer horizons, NWPs are appropriate. We combine both types of features for
our analysis to produce forecasts up to six hours ahead. The data sets we employ
consist of hourly PV power measurements (from PV monitoring provider Meteo-
control GmbH [14]) and predictions from the Integrated Forecast System (IFS), a
global NWP model of the European Centre for Medium-Range Weather Forecasts
(ECMWF) [7]. Here, we use the IFS output with a temporal resolution of three hours
and a spatial resolution of approximately 25 km × 25 km. Predictions of the NWP
model are converted to hourly data with a simple linear interpolation.

For PV prediction, we use the following features organized by their origin:

• PV measurements

– P: relative PV power in % of nominal power

• NWP data

– Temp: temperature forecast
– I: irradiance forecast
– CC: cloud cover forecast

• Additional features

– T: time of day
– CS: modeled clear sky power
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Fig. 2 Locations of PV
systems in the eastern part of
Germany. Red points mark
the systems that are basis of
the 10-systems model
parameter experiments

The 87 PV systems that are basis of our analysis are plotted in Fig. 2. The red dots
mark the positions that are employed in a 10-systems experiments for detailed model
setup. All PV power measurements of these PV systems have passed an automated
quality control so that, for each time step, reasonable measurement data can be
assumed. For each of these 87 PV systems, a forecast for a predefined time period is
generated and the average of resulting errors is analyzed.

The clear sky PV power (CS) describes the expected power for cloudless weather
conditions,which is calculated for every locationwith a clear skymodel.Anoverview
on clear sky modeling methods is given in Lorenz and Heinemann [12].

The test set consists of three distinct weeks of hourly PV time series, i.e., from
2011-07-13 to 2011-07-19, from 2011-08-20 to 2011-08-26, and from 2011-09-18 to
2011-09-24 (see Fig. 1). These weeks, covering different possible weather conditions
from cloudy to clear, have been selected to reduce possible overfitting effects on the
predictors. In total, the test time series has a length of 504 hours/data points. The
different training sets for our experiments are defined in Sect. 4.

For training of the regression models that aim at predicting the PV power at time
t for time step t + n, where 1 ≤ n ≤ 6 denotes the prediction horizon in hours, we
can only employ the information we have at time t . This is, the time information and
the power at time t , as well as clear sky power and NWP predictions (temperature,
irradiance and cloud coverage) for time t + n. For the construction of a training
pattern, the corresponding label is the PV power at time t + n. In the test setting, this
is the target value we want to predict. In Sect. 4, we concentrate on the selection of
feature subsets that result in an optimal forecast.
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3 Statistical Learning Methods

In this section, we introduce the machine learning methods KNN and SVR that
are basis of our PV prediction system. In general, the basis for training appropriate
models is a test set T = {(x1, y1), . . . , (xN , yN )} ⊂ R

d × Y consisting of patterns
xi = (x1, . . . , xd) and their associated labels yi . For classification settings, the space
Y of labels is discrete (e.g.,Y = {−1,+1} for the binary case). For regression
scenarios, the space Y is given by R; here, the goal of the learning process is to
find a prediction function f : X → R that maps new patterns x ∈ R

d to reasonable
real-valued labels, in our case PV power outputs.

3.1 Nearest Neighbors

Nearest neighbor predictions are based on the labels of the K -nearest patterns in
data space. The prediction of the uniform KNN regression model is defined as
fK N N (x′) = 1

K

∑
i∈NK (x′) yi with the set NK (x′) containing the indices of the K-

nearest neighbors of x′. A distance-weighted variant has been introduced by Bailey
and Jain [2] to smooth the prediction function by weighting the prediction with the
similarity Δ(x′, xi ) of the nearest patterns xi , with i ∈ NK (x′), to the target x′

fwK N N (x′) =
∑

i∈NK (x′)

Δ(x′, xi )∑
j∈NK (x′) Δ(x′, x j )

yi . (1)

Patterns close to the target should contribute more to the prediction than patterns that
are further away. Here, we define the similarity with the distance between patterns by

Δ(x′, xi ) = 1/‖x′ − xi‖2, (2)

where the model fwK N N produces a continuous output.

3.2 Support Vector Regression

For PV power prediction, we also employ one of the most popular tools in the field of
machine learning, i.e., support vector machines, which can be used for classification,
regression, and a variety of other learning settings [8, 16, 17]. The resulting prediction
model f can be seen as a special instance of problems having the form

inf
f ∈H ,b∈R

1

N

N∑

i=1

Lε

(
yi , f (xi + b)

) + λ|| f ||2H , (3)
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with λ = 1/2NC , where C > 0 is a user-defined real-valued parameter, L : R ×
R → [0,∞), a loss function (e.g., the ε-insensitive loss: Lε(y, t) = max(0, |y −
t | − ε), ε ∈ R, ε > 0), and || f ||2H the squared norm in a so-called reproducing
kernel Hilbert space H ⊆ R

X = { f : X → R} induced by an associated kernel
function k : X × X → R. In this case, the RBF-kernel with another user-defined
parameter γ ∈ R, is applied. The space H contains all considered models, and the
term || f ||2H is a measure for the complexity of a particular model f [8]. Forecasts
based on machine learning models require large data sets and advanced knowledge
about the underlying data mining process chain. Important aspects are model selec-
tion, data preprocessing, definition of learning sets, and parameter tuning.

4 Experimental Study

In the following section, we present the results of our experimental study.Wewant to
answer the questions, (1) howmany hours/days of data are appropriate for the training
sets, (2) which model parameters to choose, and (3) which features are important for
accurate short-term PV power predictions.

To measure the quality of a forecast, we use the root mean square error (RMSE):

RMSE(z, z′) = 1√
N

√√√√
N∑

i=1

(zi − z′
i )
2, (4)

with measured PV power output time series z and predicted PV power output time
series z′. The RMSE is commonly used in the evaluation of solar and wind power
predictions. It is more sensitive to large forecast errors and hence suitable for applica-
tions where small errors are more tolerable and larger errors cause disproportionately
high costs, which is the case for many applications in the energy market and for grid
management issues.

The bias, corresponding to systematic prediction errors, is expected to be
neglectable when applying statistical learning algorithms for time series prediction.

By using the relative power in percentage of the nominal power, the power output
of different PV systems becomes comparable. Concerning the analysis, it is important
to mention that the training and test sets include patterns at night-time with zero PV
power.

The changes in performance of the twomachine learningmodels in comparison to
previous optimization steps is evaluated with improvement scores. They are defined
as the difference of the RMSE for the model before (RMSEref ) and after (RMSEopt )
the optimization divided by RMSEref , so that the RMSE improvement score IS is
given as:

I S = RMSEref − RMSEopt

RMSEref
(5)
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Furthermore, we use the IS in Sect. 5 to compare the different prediction models.
The experiments are performed with a prediction horizon of one hour for all

87 single PV systems. For each one hour time step a new model is trained and a
prediction is calculated.

4.1 Training Set

This section concentrates on the choice of a proper training set size for KNN and
SVR. For this task, we choose default parameter settings for both models.

ConsideringKNN,we employ the uniformmodel with K = 5; the default settings
for the SVR model are choosen as follows: C = 100, γ = 0.0 and ε = 0.1. In both
cases, all available features are used, i.e., time of day (T), PV power measurement of
the previous hour (P), clear sky power (CS), temperature (Temp), irradiance (I) and
cloud cover (CC). For this analysis the predictions of all 87PVsystems are considered
and the mean RMSE for each training set size is calculated. The results are presented
in Fig. 3, showing the runtime and the corresponding RMSE for increasing training
set sizes. The runtime describes the average time needed to build the regression
models and perform the prediction of one week.

In both cases, the RMSE can be reduced while the runtime is increasing for a
growing training set size. Especially the overproportional runtime increase of the
SVR can be problematic for large PV data set sizes. The training set should at least
cover 500 hours of data to enable both models to calculate reasonable predictions.
A good trade-off between prediction quality and runtime is attained by selecting the
past 1680 hours (70 days) as training data for both models.

The yielding results w.r.t the RMSE and runtime are shown in Table1. At this
stage—without model parameter tuning—the KNN model is able to generate better
PV power predictions than the SVR.

(a) (b)

Fig. 3 TheRMSE and runtimew.r.t. an increasing training set size using (a) KNNand (b) SVR. The
RMSE is rapidly decreasing in the beginning and the improvement in prediction quality saturates
with bigger training set sizes, the runtime steadily increases in both cases
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Table 1 Resulting RMSE and runtime with a training set size of 1680 hours (70 days) for both
models

Training set, 87-systems

RMSE (%) Runtime (s)

KNN 7.16 102

SVR 10.99 718

(a) (b)

Fig. 4 Analysis of neighborhood size K in terms of RMSE for uniform and distance-weighted
KNN on (a) the 10-systems setting and (b) on all 87 PV systems

4.2 Model Parameters

After choosing an appropriate training set size, the model parameters of KNN and
SVR are adjusted for PV power prediction. Again, we are using all available features
in our analysis and applying the training set size of 70 days as mentioned above.
For both models, we are performing a wide parameter search on the 10-systems
setting to reduce the search space of the experiments on all 87 PV systems. In
the model parameter analysis of KNN, we compare uniform and distance-weighted
KNNand various settings for K . In Fig. 4, increasing neighborhood sizes K are tested
regarding uniform and distance-weighted KNN for (a) 10-systemswith K ∈ [1; 100]
and (b) 87-systems on a more restricted search space where the optimum is expected
(K ∈ [10; 30]). The distance-weightedmodel is outperforming the uniformmodel in
both experiments, although the difference between the two models is less significant
for the 87-systems setting. This shows the importance to use as many PV systems as
possible for parameter tuning, as the individual PV systems perform quite differently.
The distance-weighted KNN model shows almost equal results w.r.t. the RMSE in a
range from K = 17 to 22, with an optimum for K = 21.

For the SVR, we tune three different model parameters: C , γ and ε. To minimize
the complexity of this task, ε is tuned after optimal settings for C and γ are found. In
Fig. 5, the RMSE is plotted as a function ofC and γ on logarithmic scales. As before,
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Fig. 5 SVR model parameter study of C and γ for the (a) 10-systems setting and (b) on a reduced
search space with 87-systems

Table 2 Resulting RMSE and runtime after tuning the corresponding model parameters of both
models

Model parameters, 87-systems

RMSE (%) Runtime (s)

KNN 6.84 (0.04) 113 (−0.11)

SVR 6.26 (0.43) 515 (0.28)

The IS values, in comparison to the results after determining training set sizes, are denoted in
parentheses

we initially analyze the model parameters on (a) the 10-systems setting (Fig. 5 (a))
to reduce the search space for an analysis on (b) all 87 PV systems (Fig. 5 (b)).

The RMSE space employs large plateaus of high errors for improper parameter
combinations, but good results for C in the range of 102 to 105 and γ = 10−3 to
10−5 for the 10-systems setting. This parameter range is tested on all 87 PV systems,
resulting in an array of parameter combinations that produce applicable predictions.
From these optimized settings, the combination C = 104 and γ = 10−4 is selected
due to runtime considerations. The analysis on the parameter ε leads to an optimal
setting of 0.15.

Detailed information about the resulting errors and runtimes of both models are
presented in Table2. The large improvement (43%) of the SVRw.r.t. the RMSE indi-
cates the parameter sensitivity of the SVR predictor. With tuned model parameters,
the SVR model is now able to produce better predictions than KNN.

4.3 Features

The next step is to analyze which features are useful for PV power predictions.
For this sake, we employ the training set size and model parameters from the last
experiments and test all 26 − 1 = 63 possible feature combinations. The ten best
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(a) (b)

Fig. 6 Ranking of the ten best (out of 63 possible) feature combinations for (a) KNN and (b) SVR
utilizing the model parameters of the prior analysis

Table 3 Resulting RMSE and runtime of KNN and SVR with optimized patterns

Features, 87-systems

RMSE (%) Runtime (s)

KNN 6.80 (0.01) 63 (0.44)

SVR 6.22 (0.01) 365 (0.29)

The IS values, in comparison to the results after tuningmodel parameters, are denoted in parentheses

feature combinations for PV predictions sorted w.r.t. the resulting RMSE for (a)
KNN and (b) SVR are listed in Fig. 6.

The best results are achieved by using the feature set T, P, C S, CC for the KNN
model and T, P, C S, I, CC for SVR. In both cases, the pattern containing all avail-
able features (i.e., T, P, C S, T emp, I, CC) is not the best choice. Hence, by utilizing
less features, we are able to improve the runtime of the models considerably and even
score a slightly better RMSE (see Table3). Furthermore, we can observe that either
time of day (T) or clear sky power (CS) or both—in combination with the PV power
of the previous hour (P)—are present in all of the best feature combinations. It seems
that these features are directly related to the diurnal course of PV energy.

Aside the overall best feature combinations, we selected the best patterns with
either (1) only measurement data or (2) only NWP data features, i.e., (1) T, P, C S
and (2) T, I, CC for both models. All these settings are employed in the model
comparison of the following section.

5 Comparison

After the analysis of training sets, parameterization of the models and features, we
compare KNN and SVR on a larger evaluation time series that consists of 4.5 months
in 2011, i.e., from 2011-06-15 to 2011-10-29, with optimized settings. We further
compare our SVR models a comparatively simple model called persistence. This
persistence model uses a constant ratio between power measurement P and clear



Statistical Learning for Short-Term Photovoltaic Power Predictions 41

Fig. 7 Comparison between PV measurements (meas), the KNN and SVR prediction with opti-
mized settings and the persistence model (Per) on (a) clear sky and (b) cloudy weather conditions
for a single PV system

sky power C S, thus the expected PV power output at the time step to predict can be
described as:

Pper (t + n) = P(t)

C S(t)
· C S(t + n), n ∈ N (6)

For predictions before sunrise with zero P and C S, we calculate the mean PV mea-
surement at the same time of day with data of the previous 15 days and use this as
Pper (t + n).

Figure7 demonstrates example PV measurement time series (black) with the cor-
responding KNN (blue) and SVR (red) predictions, as well as the persistence model
(grey), for a prediction horizon of one hour. We can observe that all predictions are
able to capture the main curvature of the PV energy on clear sky scenarios (Fig. 7a)
and, with some delay that is adjusted to the diurnal course, on cloudy weather con-
ditions (Fig. 7b).

First, we compare the different data sources. In Fig. 8, predictions using the three
sources (1) PV power measurements, (2) NWP model, and (3) combinations of
both are compared on all six prediction horizons. Similar to the results of Bacher et
al. [1], for forecasts under a two- to three-hour horizon, the most important features
are measurements while, for horizons over two or three hours, the use of NWP
models is appropriate. The combined features produce good forecasts on all applied
horizons, however, are not able to generate better results than the NWP models on
longer prediction horizons. This most likely derives from optimizing the models
for a prediction horizon of one hour. In the following comparisons we focus on the
combined features.

The RMSE of all three models on all 87 PV systems, with prediction horizons
up to six hours, is presented in Table4. As expected, the persistence model is only
competitive for a prediction horizon of one hour due to the decreasing autocorrela-
tion of cloud situations. On all prediction horizons, the SVR can compute the best
predictions w.r.t. the RMSE.
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(a) (b)

Fig. 8 Comparison of patterns with different data origins, e.g., measurements (meas), NWPmodel
(nwp) and combinations of both (comb), for (a) KNN and (b) SVR on different prediction horizons.
The persistence (Per) is used as a reference model

Table 4 Comparison of RMSE values of the persistence model (Per), KNN and SVR prediction
with optimal settings on all 87 PV systems available

RMSE (%)

Prediction horizons

1 2 3 4 5 6

Per 6.64 8.94 10.63 11.88 12.68 13.10

KNN 6.47(0.03) 8.12(0.09) 9.12(0.14) 9.98(0.16) 10.71(0.16) 11.32(0.14)

SVR 6.10(0.08) 7.56(0.15) 8.76(0.18) 9.67(0.19) 10.07(0.21) 10.40(0.21)

The comparison is done for a prediction horizon up to six hours, the improvement (IS) over the
persistence model is inside the parentheses

Fig. 9 Scatter plots of (a) KNN and (b) SVR predictions versus corresponding PV measurements
with a prediction horizon of one hour

Scatter plots of KNN and SVR predictions with a prediction horizon of one hour
(see Fig. 9) indicate a tendency of the KNN predictor to overestimate low PV power
outputs, while underestimating higher outputs. This causes more generalized predic-



Statistical Learning for Short-Term Photovoltaic Power Predictions 43

tions in comparison to the SVRpredictor and results in higherRMSEerror values (see
Table4). The highest deviations between PV power measurements and predictions
are observed in a range from 20% to 60% of the measurement for both predictors
(Fig. 9), which is most likely the result of changing weather situations due to cloud
movements that are difficult to capture (compare Fig. 7b).

6 Hybrid Model

To utilize advantages of the two models and to produce a more robust predictor, we
combine KNN and SVR predictions creating a hybrid model of both. The predictions
of a hybrid model fhybrid at time step t , consisting of the models fK N N and fSV R ,
can be defined as

fhybrid(t) = η fK N N (t) + (1 − η) fSV R(t), (7)

with 0 ≤ η ≤ 1. The parameter η is optimized w.r.t. the RMSE on the test time series
(see Sect. 2). After the optimization, the obtained settings are used on the evaluation
time series.

Table 5 Comparison of the RMSE values of the hybrid model with optimized settings for all 87
PV systems available

Prediction horizons

1 2 3 4 5 6

η 0.21 0.20 0.37 0.44 0.36 0.32

RMSE (%) 6.08(0.08) 7.53(0.16) 8.61(0.19) 9.31(0.22) 9.80(0.23) 10.16(0.22)

The comparison is done on prediction horizons up to six hours. The IS values, in comparison to the
persistence model, are denoted in parentheses

Fig. 10 Comparison of
KNN, SVR and hybrid
model predictions (Hyb) as
well as the results of the
persistence model (Per) on
all six prediction horizons
w.r.t. the RMSE with
predictions of all 87 PV
systems
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Table5 shows the results of the hybrid model with an optimized η for all six
prediction horizons. At longer prediction horizons, the hybrid model is increasingly
profiting from the KNN predictions, hence the increase of η.

Figure10 demonstrates the improvement and stabilizing effect of the hybridmodel
on the RMSE on all six prediction horizons.

7 Conclusion and Outlook

The prediction of PV power plays an important part in smart grids. Our experi-
ments have demonstrated that the often employed persistence model based on clear
sky models already achieves good results for very short-term horizons, but we could
improve short-term PV power forecasts with statistical learningmethods. The quality
of the predictions significantly depend on the proper choice of training sets, features,
and model parameters. We analyzed the predictions with this regard and identified
recommendations, in particular for model parameters K for KNN and C , γ and ε

in case of SVR. Furthermore, we compared different data sources, i.e., PV power
measurements and NWP features, and selected suitable patterns for PV power pre-
dictions. These recommendations are tailored to the employed data sets andmay vary
for other settings and scenarios. Still, these parameters and features were compara-
tively robust in our experimental line of research. The comparison of both models
indicates that the SVR outperforms KNN and the persistence model w.r.t. the RMSE,
but for fast results KNN is still a reasonable choice. A hybrid model takes advantage
of the capabilities of both implemented models and combines them to build a robust
model that produces more accurate PV power predictions.

As futurework,weplan to performexperimental studies on the different prediction
horizons using larger data sets with higher temporal resolution. Furthermore, we plan
to increase the set of NWP features and test different data sources like satellite images
and cloud-motion vectors. To create even better predictions, we will build hybrid
models by directly integrating physical models, e.g., PV simulation models. This
also enables the comparison between more complex physical and machine learning
models on longer time series with a higher temporal resolution.

Another step is to use these models at the operational level, where the prediction
system has to deal with problems like missing or false data. This requires the devel-
opment of a preprocessing unit that is able to identify such occurrences and handle
them accordingly. All these further tasks can be processed by statistical learning
methods similar to the ones already implemented.
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Renewable Energy Prediction for Improved
Utilization and Efficiency in Datacenters
and Backbone Networks

Baris Aksanli, Jagannathan Venkatesh, Inder Monga
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Abstract Datacenters are one of the important global energy consumers and carbon
producers. However, their tight service level requirements prevent easy integration
with highly variable renewable energy sources. Short-term green energy prediction
can mitigate this variability. In this work, we first explore the existing short-term
solar and wind energy prediction methods, and then leverage prediction to allocate
andmigrateworkloads across geographically distributed datacenters to reduce brown
energy consumption costs. Unlike previous works, we also study the impact of wide
area networks (WAN) on datacenters, and investigate the use of green energy predic-
tion to powerWANs. Finally, we present two different studies connecting datacenters
and WANs: the case where datacenter operators own and manage their WAN and
the case where datacenters lease networks from WAN providers. The results show
that prediction enables up to 90% green energy utilization, a 3× improvement over
the existing methods. The cost minimization algorithm reduces expenses by up to
16% and increases performance by 27% when migrating workloads across datacen-
ters. Furthermore, the savings increase up to 30% compared with no migration when
servers aremade energy-proportional. Finally, in the case of leasing theWAN, energy
proportionality in routers can increase the profit of network providers by 1.6×.
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1 Introduction

As the demand for computing increases globally, the number of datacenters has
increased to meet the need. Recent studies indicate that the total power consumption
of all datacenters in the world has increased by 56% from 2005 to 2010 [1], with
associated global carbon emissions and an estimated annual growth rate of 11%.
Their energy needs are supplied mainly by non-renewable, or brown energy sources,
which are increasingly expensive as a result of availability and the introduction of
carbon emissions taxes [2]. Consequently, several datacenter operators have turned
to renewable energy to offset the energy cost.

The integrationof renewable energy is complicatedby the inherent variability of its
output. Output inconsistency typically leads to inefficiency due to lack of availability
or sub-optimal proportioning, which carries an associated financial cost. These costs
aremitigated in various ways: several datacenter owners, such as EmersonNetworks,
AISO.net, and Sonoma Mountain Data Center supplement their solar arrays with
utility power, and other datacenter owners, such as Baronyx Corporation and Other
World Corporation, have been forced to augment their input power with other forms
of energy or through over-provisioning, respectively [3]. Previous investigation into
the existing methods in datacenter green energy demonstrates that variability results
in low utilization, on average 54%, of the available renewable energy [4].

A number of publications investigated the best strategy to manage renewable
energy as a part of datacenter operation. The work in [3] reduces the peak datacen-
ter power with local renewable sources and power management algorithms. They
investigate power capping, both of individual servers using dynamic frequency scal-
ing, and of server pools by reducing the number of machines utilized in each pool.
However, they have significant quality-of-service (QoS) violations when limiting
peak power. The study in [4] explores brown energy capping in datacenters, moti-
vated by carbon limits in cities such as Kyoto. The authors leverage distributed
Internet services to schedule workloads based on electricity prices or green energy
availability. By defining workload distribution as a local optimization problem, the
authors demonstrated 35% lower brown energy consumption with a nominal (10%)
hit on service level agreement (SLA) violations. Similarly, [5] optimizes for energy
prices, to reduce overall energy consumption by distributing workloads to datacen-
ters with the lowest current energy prices. The insight is that renewable sources
such as solar energy are actually cheapest during the day, when workloads are at the
highest and utility sources are most expensive. Job migration is then modeled as an
optimization problem, and the authors identify a local minimum energy cost among
the available datacenters that still meets deadlines. The results demonstrate that their
algorithm performs within 5.7% of the optimum distribution, a significant improve-
ment over established greedy algorithms. The authors of [6] analyze the opportuni-
ties and problems of using supply-following loads tomatch green energy availability.
When green energy is insufficient, workloads are terminated or suspended, restart-
ing or resuming when availability returns. However, the results show very low green
energy efficiency and a failure to meet required service-level guarantees.
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The above datacenter examples demonstrate the high cost and necessary precau-
tions needed to successfully use highly variable green energy, at the cost of efficient
utilization. However, an important means of reducing such variability remains over-
looked in datacenters: green energy prediction. In [7], we investigated the existing
methods in solar and wind energy prediction, developing prediction algorithms suit-
able for the datacenter domain. We implemented and evaluated our algorithms in a
case study, leveraging prediction to improve green energy utilization in datacenters
by 90%, a 3× improvement over the existing methods.

Previous publications concerned with energy costs primarily propose a “follow
the sun” cost-management strategy [3, 6, 8–11] and generally neglect the cost of
wide area net-working (WAN) incurred by job migration between datacenters. This
assumption is reasonable for small datacenter networks that own the WAN and incur
low network costs. Consequently, related work has WANs used to increase system
performance via load balancing [12–14] or improve energy efficiency by migrating
jobs [8, 9, 11]. However, these arguments are not applicable for large WAN costs
and datacenters that lease the network.

Datacenters lease theWANby agreeing to pay a certain price for a fixed bandwidth
usage. However, asWANusage increases, network owners [15, 16] offer Bandwidth-
on-Demand services, especially for datacenter applications [17]. Additionally, the
WAN may take up to 40% of the total IT energy cost, and is expected to continue
growing as demand for distributed data processing continues to rise [18] and as the
server hardware becomes more energy efficient [19]. With the increasing importance
of managing energy consumption in the network, WAN providers can charge users
not just on the amount of bandwidth they use, but also the time of day when they
use it. For example, using the network in a peak hour may be more expensive than
when it is idle, reflecting electricity market prices [20]. Additionally, with the intro-
duction of carbon taxes, WAN providers can also vary energy prices depending on
the energy source. Consequently, datacenters might be open to longer, less expensive
paths on the network. For example, a datacenter may request a path that uses green
energy to avoid paying extra carbon emission taxes, or a less-utilized path to avoid
extra utilization costs. Our work uniquely considers both the costs of geographically
distributed datacenters and the profits of the network provider. We analyze different
network cost functions, along with the analysis of new technologies that would allow
using more energy-proportional routers in the future.

In this chapter, we first evaluate the advantages of short-term green energy pre-
diction on the datacenter scale. We explore the existing in short-term solar and wind
energy prediction methods, applying each to real power traces to analyze the accu-
racy. Using green energy prediction in local renewable energy sites and varying
brown energy prices, we propose an online job migration algorithm among data-
centers to reduce the overall cost of energy. While such job migration has been
studied extensively before, we uniquely consider network constraints such as avail-
ability, link capacity and transfer delay at the same time. By including these con-
straints in our framework, we model the impact of the network and create a more
holistic multi-datacenter model. Additionally, we investigate the impact of two
aspects of datacenter operation typically overlooked in previous work: tiered power
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pricing, which penalize the datacenter for exceeding certain level of power restric-
tions with as much as 5× higher energy costs [21], and WAN leasing costs/cost
models, which leverage energy-aware routing. Both play a significant impact in
datacenter job scheduling, reflected in our results.

We also analyze the impact of new technologies in datacenter WAN, such as
energy-proportional routing, green energy aware routing, and analyze leasing ver-
sus owning the WAN. Our work is the first analyzing different WAN properties in
a job migration algorithm involving both mixed energy sources and prediction. We
observe that green energy prediction helps significantly increase the efficiency of
energy usage and enables network provisioning in a more cost effective way. Simi-
larly, we show that using aWAN to transfer workloads between datacenters increases
the performance of batch jobs up to 27% with our performance maximization algo-
rithm, and decreases the cost of energy by 30% compared to no data migration with
our cost minimization algorithm. Unlike previous works, we show the potential for
green energy to go beyond simply cost reduction to improving performance as well.
Our analysis of leasing WAN shows that network providers can increase profits by
charging datacenter owners by bandwidth, but datacenters can still benefit by using
dynamic routing policies to decrease their energy costs. Furthermore, as servers and
routers become more energy proportional, we demonstrate increases in both data-
center cost savings and network provider profits.

2 Green Energy Prediction and Datacenters

2.1 Solar Energy Prediction

Solar energy algorithms exploit the daily pattern of solar irradiance, a primary fac-
tor in determining power output. The simplest algorithms are based on exponential
weightedmoving average (EWMA) [22]. Several extensions to theEWMAalgorithm
have been proposed, incorporating multiple days’ predictions to derive a more rep-
resentative average value in variable weather [23, 24]. Extended EWMA, eEWMA,
[23] uses previous days’ measurements to account for the error of each slot. The
weather-conditioned moving average (WCMA) algorithm [24] takes into account
the actual values from previous D days and the current day’s previous N measure-
ment slots. It averages the values for the predicted slot from previous days and scales
it with a GAP factor, which represents the correlation of the current day against the
previous days:

E(d, n + 1) = α · E(d, n) + G APk · (1− α) · MD(d, n + 1) (1)

where MD(d, n + 1) represents the median of previous days’ values, and G APk

represents the scaling of the current day against the previous days. The inclusion of
both patterns frommultiple previous days aswell as the use of values from the current
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Table 1 Solar power prediction algorithm comparison

Algorithm Absolute mean error (%)

Consistent conditions Inconsistent conditions Severely inconsistent
conditions

EWMA 12.7 32.5 46.8

eEWMA 4.9 23.4 58.7

WCMA 4 9.6 18.3

day itself help WCMA provide a better pattern for the performance of solar panels.
The three algorithms discussed above are tested using real solar power traces from
the UCSD Microgrid. Absolute mean error is calculated against the measured data,
shown in Table1. The optimal parameter values have been determined empirically
for each algorithm. The results demonstrate the importance of incorporating recent
data to reduce error. TheWCMA algorithm provides a significant improvement over
EWMA and extended EWMA algorithms due to its highly adaptive nature, and its
effective use of the GAP factor to scale future intervals based on the deviation from
previous days.

2.2 Wind Energy Prediction

Wind prediction algorithms may use physical or statistical models. Physical models
use spatial equations for wind speed at the locations of each turbine, and then pre-
dict wind power with theoretical or measured power curves [25]. Statistical models
aggregate measured or forecasted meteorological variables and develop a relation-
ship between the variables and the output power.

Several data-mining models have been used to predict the wind speed based
on the meteorological variables collected from SCADA data acquisition units at
each wind turbine [26]. The heuristics developed for wind speed prediction are then
applied towind power prediction, demonstrating 19.8%mean error for 10min-ahead
prediction. Nearest-neighbor tables (k-NN) algorithm reduces this error to 4.23%
by mapping wind speed to wind power [27]. However, when forecasted wind speed
is used, the power prediction error grows to 27.83%.

Power curves, which describe the output power of wind turbines mapped against
wind speed, form the basis of many predictors [25, 26, 28]. The work presented in
[29] analyzes power curves and demonstrates their inaccuracy. Instead, the paper
uses a dynamic combination of several statistical predictors, most notably the Auto-
regressive Moving Average (ARMA) model with past wind power, speed and direc-
tion as inputs. The results show a 50% reduction in power prediction error, with
ability to reduce error levels between prediction horizons of 2–45h.
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The above algorithms pose difficulties in implementation: unlike the solar predic-
tion algorithms, which only require past power data, the wind prediction algorithms
require various types of high-overhead input. Instead,we dramatically lower the over-
head with our new wind energy predictor: we construct weighted nearest-neighbor
tables based on the twomost correlated variables contributing to wind energy output:
the wind speed and direction [7]. The weighted tables show preference to the most
recent results and allow the algorithm to adapt to gradual changes, while the power
curves, based on both wind speed and direction, provide versatility. The algorithm
to add a new entry to the table is in Eq.2, where Pnew(v, d) is the new power curve
table entry for a given wind velocity v and direction d, Pold(v, d) is the existing
value, and Pobs(v, d, t) is the observed value at time t . Future interval prediction is
determined by Eq.3.

Pnew(v, d) = α · Pobs(v, d, t) + (1− α) · Pold(v, d) (2)

Ppred(v, d, t + k) = P(v(t + k), d(t + k)) (3)

The algorithms described above have been tested using real power data from a
Lake Benton,MNwind farm, and themeteorological data was provided by published
reports from the National Renewable Energy Laboratory (NREL). For better com-
parison, we have all the predictors use the same inputs: wind speed and direction.We
also include the commonly used baseline—persistence prediction, which assumes
that the future interval is the same as the current one.

Persistence has a high error at 137%, affected by the high variability of the wind
farm power. The data-mining algorithm’s error is at 84%, despite using the twomost-
correlated variables. This can be attributed to the unreliability of using forecasted
wind speed for a region as opposed tomeasuredwind speeds at each turbine level. The
ARMA model performed better, at 63% error, but the accuracy is hampered by the
limited input data available. The wind-speed-based nearest-neighbor predictor, the
kNN algorithm, performed the best, with an error of 48%, which can be attributed
to the higher variance of the Lake Benton wind farm than the wind farm in the
original work. Our custom nearest-neighbor predictor, which uses both wind speed
and direction to develop a relationship with wind farm energy output, has only 21%
mean error as it is more adaptive to recent conditions and as a result is 25% better
than the next-best algorithm (Table2).

3 Datacenter and WAN Models

Multiple datacenters increase the capacity, redundancy, and parallelism of computa-
tion, but a fast, reliable inter-datacenter network is essential tomaintain performance.
Since large datacenters consume a lot of power, they usually undergo a tiered power
pricing. The tier level depends on the overprovisioned input power to avoid high
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Table 2 Wind power prediction algorithm comparison

Algorithm Mean error (%) Std. dev. (%)

Persistence 137 340

Data-mining [26] 84 101

ARMA model [29] 63 12

kNN predictor [6] 48 32

Our NN predictor [7] 21 17

prices in-peak periods [21]. This can be seen as a power budget. In this work, we
also study the effects of different power tier levels and how these levels can affect
the job migration decisions and network utilization. To avoid power tier violations,
datacenters may deploy several techniques: CPU capping, virtual CPU management
and dynamic voltage and frequency scaling (DVFS), all of which incur performance
overhead. If the power goes beyond the tier level, it is charged at higher rates, which
can be 3×–10× higher than the base cost [5, 8]. One way to remedy this problem
is to leverage a network of globally distributed datacenters along with renewable
energy prediction for peak power reduction. In the next subsections, we present our
datacenter and backbone network models, which we then use in our frameworks for
managing renewable-powered globally distributed datacenters and related WAN.

3.1 Backbone Network Model

Our network topology is a subset of the LBNL Esnet [30], containing 5 datacenters
and 12 routers in total, distributed over the USA (Fig. 1), where each link has a
predefined capacity from 10 to 100Gbps. A portion of this capacity is normally

Fig. 1 Network topology;
squares datacenters, circles
routers
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Fig. 2 Router energy
proportionality schemes

reserved for background traffic (10% in our experiments). When calculating the
network energy cost, we consider the router power and add a fixed offset for the link
power consumption. The power consumption of the router can be estimated using a
simple linear model [31] based on bandwidth utilization.

Current router’s idle power is very close to active power. In our previous work,
we investigatemethods for designingmore energy-proportional routers and construct
representative power proportionality models [30]. Figure2 reflects our findings: the
non-proportional curve represents an actual state-of-the-art router [32], and the step
function depicts shutting down idle line cards. Smooth proportionality is a linear
correlation of the step function, while ideal proportionality reflects an idle router
with no idle power cost.

In our model, we account for the network transfer delay as an increase in the
total response time of a job. The state-of-the-art is Dijkstra’s Shortest Path Routing
(SPR). For comparison, we use our own Green Energy Aware Routing algorithm
(GEAR), whichminimizes the amount of brown energy used [30]. GEAR is a power-
and performance-constrained dynamic routing algorithm that performs online path
computation and constructs virtual circuits [33]. We use different price models to
calculate the network lease costs including, fixed bandwidth (BW) cost, where cost
does not increase with utilization; and linear BW cost increase, which assumes that
cost of operation and revenue are proportional to usage. These two options represent
the different models that network operators might incorporate in their service level
agreements (SLAs). In the results section, we show how the total cost is affected by
these cost schemes.

3.2 Datacenter Model

In order to represent a multi-datacenter network more accurately, each datacenter
is modeled separately based on actual measurements. Each includes computation
models to represent servers and how they interact with each other and the workloads
they execute. For eachdatacenter inFig. 1,we implement a detailedmodel designed to
faithfully represent a fully populated set of datacenter containers. Each container has
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8 racks populated with 250W Intel XeonQuad coremachines [34].We create and run
multiple virtual machines using Xen VM [35], and measure run-time characteristics
such as CPU, memory, and power consumption. We use these measurements to
construct our datacenter model for simulation.

The workload is divided into two representative categories: service and batch
jobs, both of which are run on our servers. We model the former with RUBiS [36]
and the latter with MapReduce [37]. Short-running service jobs have tight latency
constraints, and the longer-running batch jobs represent the background tasks (i.e.
indexing results or correlating data) and need to maintain a certain level of through-
put. Their inter-arrival time distributions are modeled with a lognormal distribution
based on measured values [7]. We model service and batch job arrival to the system
independently, and place them in separate local job queues. Each MapReduce job
consists of multiple tasks and multiple tasks are dispatched from an active job and
put in different servers.

Servers run the jobs assigned to them, and prioritize service jobs over batch jobs
because of their response time requirements. These requirements are indicators for
the quality of service (QoS) a datacenter has tomaintain to ensure its profitability.We
alsomeasure the interference of running different types of jobs simultaneously on the
same server. Since these jobs have different resource requirements, the interference
of one on the othermight lead to performance degradation for either job. In our exper-
iments, we observe that service requests have negligible impact onMapReduce jobs,
but MapReduce jobs are detrimental to both service jobs and other MapReduce jobs.
In order to meet QoS of service jobs and maintain the throughput hit of batch
jobs to less than 10%, we limit the total number of simultaneous MapReduce jobs
on a single server. The baseline of this study is established in [7].

We calculate the server power consumption with a linear CPU-utilization based
equation [38] and scale the aggregate server power cost using power usage effective-
ness (PUE) metric, which is set to 1.15 [39], to find the total power of the datacenter
as a function of overheads related to cooling, powering, and other loads [40]. The
deviation between our simulations and measurements is 3% for power consumption,
6% for service job QoS and 8% for MapReduce job performance.

4 Relocating Jobs to Improve Efficiency

4.1 Background

Multi-datacenter networks offer advantages for improving both performance and
energy. As each datacenter is in a different location, its peak hours and energy prices
vary. A datacenter with high electricity prices may need to migrate work to another
datacenter with a lower price, incurring some performance and power cost due to data
migration. The live migration of virtual machines over high-speed WAN has made
this idea feasible, as it offers fast transmission with limited performance hit [41].
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However, the migration costs through WAN need to be considered. For example,
WAN may be leased, with lease costs quantified per increment of data transferred,
and thus might be too high to justify frequent migration of jobs between datacenters
[42]. Furthermore, datacenters often undergo a tiered power pricing scheme. The
energy under a specific level may cost a fixed amount and this fixed price changes
depending on the location, so it is beneficial to run jobs in a datacenter at a lower
fixed price. Data migration should not increase the total power consumption to more
than the amount specified by the specific tier level. Otherwise, extra power costs are
calculated using higher prices, generally much higher than the fixed price.

Table3 summarizes and compares the key state of the art contributions for man-
aging distributed datacenters in order to minimize an objective function, e.g. the
overall cost of energy. Buchbinder et al. [5], Qureshi et al. [42] and Rao et al. [11]
relocate jobs to where the energy is cheaper to minimize the energy cost. They do
not model different energy types; perform detailed workload performance analysis
and different routing options for both WAN providers and datacenters. Le et al. [44]
solves a similar problem including green energy in their model but they assume a
centralized dispatcher and do not analyze network latency or cost. Liu et al. [14] and
Mohsenian-Rad et al. [43] minimize the brown energy usage or carbon footprint.
They either do not consider the variability of green energy or do not have a network
model. Aksanli et al. [30] solve a load-balancing problem bymodeling network prop-
erties, but do not consider energy costs. As we can see from this analysis, previous
studies do not consider all the important aspects of multi-datacenter networks simul-
taneously in their models. As we show in this chapter, this can lead to overestimated
cost savings or overlooked performance implications due to not considering both the
requirements of different types of applications and WAN characteristics.

In this chapter, we generalize the problem of migrating jobs among datacenters to
minimize the cost of energy and analyze the effects of usingWANfor the transfer.Our
design considers both brown and locally generated green energy, and variable energy
market pricing. We simultaneously investigate energy proportionality of routers and
servers and tiered energy pricing, which are at best considered individually in previ-
ous works. Additionally, we account for the latency and cost of the WAN, the costs
of leasing or owning the WAN, and the impact of different routing algorithms. Our
work is also the first showing the potential of green energy to improve performance
in addition to addressing environmental concerns or reducing energy costs.

4.2 Cost Minimization and Performance Maximization
Algorithms

We now describe our cost minimization algorithm, which considers the proper-
ties of both the datacenters and the backbone network simultaneously. Our algo-
rithm performs in discrete time steps of 30 minutes. Each datacenter has its own
workload distributions that represent different types of applications in a datacenter
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environment. The properties of these distributions are determined by applying statis-
tical analysis on real datacenter traces (Sect. 3.2 outlines the distributions and Sect. 5
presents the real workloads we use).

The goal of our algorithm is to determine which workloads we need to transfer
among different datacenters during each interval to minimize the energy cost. The
current algorithm assumes a centralized implementation for control for jobmigration
decisions, though each datacenter generates its ownworkloads.We assume that green
energy is generated and used locally, and is prioritized over brown energy tominimize
the total cost, as green energy is a fixed, amortized cost. Thus, we transfer workloads
to datacenters which have available capacity and extra green energy. Because of
datacenters’ energy pricing scheme, energy in a particular location may have a fixed,
low cost up to a specified amount of peak power capacity. After this level, energy
becomes much more expensive. Therefore, our goals include maintaining utilization
in datacenters such that we do not increase the power consumption further than the
power tier levels.

Figure3 illustrates our cost minimization algorithm. Each interval begins with the
calculation of the amount of energy required by each datacenter, incorporating the
previous and incoming load rates. The former represents the active jobs at a given
time, and the latter is determined by the statistical distributions of real applications.
We estimate the green energy availability using prediction (Sect. 2), obtain the current
brown energy pricing, and check power restrictions. Based on the energy need and
green energy availability, each datacenter determines if it has surplus green energy.

Fig. 3 High-level overview of the algorithm
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The key assumption is that if brown energy has already been within the lower price
region, it makes sense to use it for running jobs, while green energy can be used to
both reduce power consumption and to run extra jobs which otherwise might not be
scheduled.

Then workloads are transferred from the datacenters with the highest need to
those with the highest available green energy. The workload that can be transferred
from a datacenter is determined by what is migrateable, while the workload that
can be transferred to a particular datacenter is limited by the amount of additional
green energy and WAN availability. This process continues until every datacenter is
analyzed. If there areworkloads remaining in any datacenters at the end, the algorithm
focuses on datacenterswith the cheapest brown energy cost. It movesworkloads from
the datacenters with higher energy costs to thosewith the cheapest brown energy. The
amount of data that can be transferred is limited by receiving datacenter’s peak power
constraints and tiered power levels. If there are still unscheduled jobs remaining at
the end of this process, they are scheduled in datacenters where the market electricity
prices are the lowest.

We can also modify this iterative part of our algorithm to maximize the perfor-
mance of the workloads instead of minimizing the total cost of energy. In this case,
we transfer the jobs that are actively waiting in the execution queue to datacenters
with excess green energy availability. The iterative process of the cost minimization
algorithm is also valid here, but the migration depends only on green energy avail-
ability, i.e. jobs are not migrated to datacenters with cheaper brown energy prices
because extra brown energy would be required for these additional jobs. We denote
this process as performance maximization as it runs additional jobs with surplus
green energy.

At the end of this iterative process, we obtain a matrix representing workload
transfers among datacenters. This transfer matrix is then provided to the network-
ing algorithm, which calculates the paths to be used and the amount of bandwidth
that needed by each selected path. In our study, we analyze different path selec-
tion algorithms, such as shortest path routing (SPR), green energy aware routing
(GEAR), and network lease based routing. A detailed description of SPR and GEAR
implementations is in [30]. Network lease based routing selects the path with the
least per-bandwidth price in the case the WAN is leased. In our results, we analyze
different network cost functions as well. If a selected path in the transfer matrix is
unavailable due to network limitations, the job is rescheduled with a limitation on
target datacenters.

Our algorithm is similar to those proposed in previous studies, but it minimizes the
cost of energy more comprehensively. This is because it has a more complete view
of datacenter energy costs, modeling both fixed energy costs under fixed amounts
and variable, higher tier energy prices. This helps us to calculate the energy cost
savings in a more accurate way. Second, it considers the side effects of the WAN,
analyzing both the performance implications of different routing algorithms and
additional leasing costs if necessary. This is key whenmulti-datacenter systems lease
the WAN. Job migration may not be feasible for those systems if the cost of leasing
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the network is too high. Third, the green energy availability information is enhanced
by using prediction which can provide information 30-min ahead and thus help us
allocate the workloads across multiple datacenters in a more effective manner. Last
but not the least; our algorithm is flexible in the sense that it can perform for both
cost minimization and performance maximization purposes. Also, we are the first to
show that green energy can be used to maximize the performance rather than just
minimizing the total cost of energy of geographically distributed multi-datacenter
systems.

5 Methodology

We use an event-based simulation framework to analyze and compare the results
of our solution to the problems described above. The inputs to our simulator are
derived from measurements performed on our datacenter container (Sect. 3.2) and
data obtained from industrial deployments. This section discusses how we construct
the simulation environment, including the datacenter loads, simulation parameters,
green energy availability, and brown energy prices.

5.1 Datacenter Load

We analyze real datacenter workload traces to accurately capture the characteristics.
We use a year of traffic data from Google Orkut and Search, reported in the Google
Transparency Report [39], to represent latency-centric service jobs and reproduce
the waveform in Fig. 3 of [45] to represent MapReduce workloads in order to model
throughput-oriented batch jobs. In Fig. 4, we show a sampleworkload combination of
these jobs. We use this data to find the parameters of the statistical workload models
fed into our simulator (Sect. 3.2), listed in Table4. We also only migrate batch jobs
due to the tight response time constraints of service jobs.

Fig. 4 Sample datacenter
load ratio with different job
types
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Table 4 Simulation parameters

Parameter Value Parameter Value

Mean web request inter-arrival time
per client

5ms Average # tasks per MR job 70

Mean web request service time 20ms Avg. throughput level per
MR job

0.35

Service request SLA 150ms Servers in a datacenter 1000

Mean MR Job inter-arrival time 2min Number of datacenters 5

Mean MR task service time 4min Number of routers 12

Idle server power 212.5W Idle router power 1381W

Peak server power 312.5W Peak router power 1781W

Single link capacity 100Gbps Average batch VM size 8GB

5.2 Green Energy Availability

In Fig. 5, we show a subset of the green energy availability measurements. Solar data
is gathered from the UCSD Microgrid and wind data is obtained from a wind farm
in Lake Benton, MN, made available by the National Renewable Energy Laboratory.
The representative outputs for the other various locations in our experiments (San
Francisco, Chicago, etc.) are obtained by scaling and time-shifting the measured
results from our available sources to published average availability data for the target
areas [46, 47].

Fig. 5 Solar and wind energy availability
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Fig. 6 Daily brown and amortized green energy cost (¢/kWh)

5.3 Brown and Green Energy Costs

Datacenters contract power from utilities to obtain competitive prices for their
expected loads. This can be seen as a tiered pricing scheme. If a datacenter exceeds
the tiered amount in an interval, it is relegated to higher prices, sometimes even
market prices. We obtain sample fixed pricing for the midwest, the east and the
west coasts [48]. Since market prices change over time, we use the California ISO
[49] whole-sale pricing database to obtain brown energy prices for various Califor-
nia locations, and time-shift and scale those values for the other locations based on
published averages [50]. Figure6 shows daily pricing values for brown energy in
comparison to fixed costs. The straight lines correspond to fixed, under-tier prices
and the others show samples of variable, market prices which can be used to charge
datacenters that go over their tiered amounts.

Local green energy costs are typically amortized over the lifetime of an installa-
tion, incorporating the capital and the maintenance costs. This is represented by a
fixed offset to our cost model. We use data from [4] to obtain the capital and oper-
ational expenses of several solar and wind farms, amortized over their lifetimes, as
representative solar and wind costs per interval.

We list our simulation parameters in Table4 and present our network topology and
green energy locations in Table5. Green energy is scaled to 80% of peak datacenter
and router energy needs.

6 Results

This section presents the simulation results for the base case of no migration, and the
workload migration policies for performance maximization and cost minimization.
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Table 5 Available renewable energy type for each location

Location Node Type Location Node Type

Chicago DC + router Wind New York DC + router Wind

Atlanta DC + router Solar San Diego DC + router Solar

Kansas Router – El Paso Router Solar

Nashville Router Wind Cleveland Router Wind

San Francisco DC + router Solar and
wind

Houston Router Solar

Denver Router – Washington
DC

Router –

6.1 No Migration

In this scenario, each datacenter runs its own workload using only locally available
green energy. This is the baseline for our comparisons, as it represents the nominal
brown energy need and quantifies the performance of batch jobswithout the overhead
of migration. A power tier level accounts for 85% of datacenter’s power needs, while
the rest, when needed, is provided at variable market prices. We allow service and
batch jobs to run on the same servers while ensuring that they meet quality of service
(QoS) requirements (service job QoSratio < 1), and find that the average MapRe-
duce job completion time is 22.8 min. Only 59% of the total green energy supply is
consumed by datacenters locally, motivating the distributed policies described pre-
viously. The next two sections quantify the impacts of performance maximization
and cost minimization policies.

6.2 Performance Maximization Using Migration

In this algorithm, we leverage migration to complete more batch jobs than previ-
ously possible. Datacenters with high utilization transfer jobs to locations with low
utilization or where there is excess green energy, effectively completing more work
in the same amount of time.

Most MapReduce jobs (representative of batch jobs) complete within 30 min [7],
which becomes the threshold for both the green energy prediction interval and the
interval for checking datacenter utilization. At each interval, the controller retrieves
the resource usage and green energy profiles of each datacenter and optimizes the
system by initiating extra workloads in datacenters with green energy availability
while still meeting under-tier power constraints. It calculates the available transfer
slots between each end-point pair, and selects the tasks to be executed remotely
from each datacenter’s active batch jobs. Once the tasks finish execution in a remote
datacenter, the results are sent back to the original center. The key to this policy is
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Fig. 7 Normalized performance maximization algorithm costs for datacenters and network

that waiting tasks are migrated, as opposed to active tasks, resulting in more jobs
executed overall (Sect. 4).

Our simulation results show that the average completion time of MapReduce
jobs is 16.8 min, 27% faster than the baseline, with no performance hit for service
requests. Furthermore, since we are leveraging all available green energy for extra
workloads, the percentage of green energy used is 85%, significantly higher than the
baseline.

Figure7 reports the total cost normalized against the no migration case with dif-
ferent tier levels specified as a percentage of the datacenter’s peak power capacities
and network lease options. Without tiered energy pricing (where all the consumption
is charged using market prices), we demonstrate a 25% increase in the total energy
cost. However, when we do include tiered energy pricing, we see more accurate
results, with a cost increase of only 12% for a 70% level, and a total cost increase
of 6% for an 85% level.

Since theWANmay not be owned by a datacenter, we also analyze the case where
the network is leased. In this case, a bandwidth-dependent cost is incurred. Figure7
shows the results of this analysis over different cost functions that network providers
use. For linear increase (Sect. 3.2), we see that the network cost can be up to 40%
of the datacenter cost. This ratio increases with tiered energy pricing from <1% to
25%, since this pricing scheme reduces datacenter power consumption andmagnifies
the network cost.

For this policy, we also calculate the profit of network providers based on the
energy costs associated with the WAN. Table6 shows the profit normalized against
fixed bandwidth cost and non-energy-proportional routers. Energy proportionality of
routers enables up to 37%more profit for network providers with ideal power curves
and 20% with step proportionality WAN router power curve. We also observe that
different power tier levels do not affect the savings of the network provider because
the migration is based only on green energy availability in other locations.
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Table 6 Profit of network providers for performance maximization with different router energy
proportionality schemes

Network cost
function

Profit

Non-prop Step Smooth Ideal

Fixed cost 1× 1.2× 1.2× 1.4×
Linear increase 4.5× 6.7× 6.8× 6.9×

6.3 Cost Minimization Using Migration

The main goal of the cost minimization policy is to maximize green energy usage
and then leverage as much as possible inexpensive brown energy. Also, we show
the impact of energy-proportional servers to quantify the policy’s benefit in future
systems.

Unlike performance maximization, cost minimization does not transfer extra jobs,
and thus, does not obtain any performance improvement. Furthermore, the overhead
of network transfer decreases the performance of MapReduce jobs. We observe
23.8min average job completion time for MapReduce jobs, 4.5% worse than the no
migration case with green energy efficiency of 66%, a 7% improvement over no
migration, with no performance overhead for service jobs.

In Fig. 8, we show the impact of energy proportionality and tiered energy pricing
to our model, normalized against the no migration case. We observe a 10% decrease
in total cost when tiered energy pricing is incorporated into themodel. Cost reduction
grows to 15% when energy-proportional servers are used. This shows the potential
of cost minimization method in the future when servers become more energy pro-
portional.

Fig. 8 Normalized cost minimization algorithm costs with different power tier levels and energy
proportionality
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Fig. 9 Normalized total cost and utilization for cost min. with different power tier levels and
network lease options using energy-proportional servers

We also analyze how the total cost of datacenters changes if the network is leased.
Unlike the performance maximization policy, we prevent migration if the cost is
higher than the potential savings. Figure9 shows the results of this analysis, and
additionally incorporates server energy proportionality. We use the same coefficients
for the network cost functions as in the previous case. Neglecting the cost of network
leasing can result in up to 15% error. The network costs are up to 17% of the
datacenter cost, which is significantly less than results we saw with the performance
maximization, where it is up to 40%. This is mainly because this policy sacrifices
a potential increase in performance if the cost of a data transfer outweighs the cost
savings. Figure9 also shows how bandwidth utilization changes with different power
tier levels and network lease options. First, as network costs become more dominant,
bandwidth utilization decreases due to a growth in unfeasible data transfers. As a
result, if the lease cost is not modeled, the average bandwidth utilization has up to
60% error. Introducing tiered power levels decreases network utilization because
they create amore balanced energy cost scheme across datacenters. Table7 shows the
normalized profit of the network providers. The cost minimization policy inherently
limits network profits, since it only allows financially profitable transfers.

Table 7 Profit of network providers for cost. min. with different router energy proportionality and
with server energy proportionality

Network cost function Profit

Non-prop Step Smooth Ideal

85% 70% 85% 70% 85% 70% 85% 70%

Fixed cost 1× 1.2× 1.2× 1.4× 1.2× 1.4× 1.4× 1.6×
Linear increase 2.2× 2.45× 3.26× 3.6× 3.4× 3.8× 3.5× 3.9×
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Fig. 10 Comparison between SPR and GEAR energy consumption of routers and network profit
with different energy proportionality schemes

6.4 Cost Minimization Using a Green Energy Aware Network

We now investigate the cost minimization policy incorporating green energy aware
routing (GEAR). Instead of simply selecting the shortest path between two datacen-
ters, GEARchooses the pathwith the least brown energy need. Aswe only change the
network routing policy for this scenario, datacenter cost values are similar compared
to the previous case. An energy-aware network provides several benefits. Reduc-
ing brown energy costs of the WAN improves overall networking costs for both
providers and datacenters. It also provides a viable alternative for datacenters, opting
for cheaper green energy at the cost of GEAR’s slightly increased network latency.
Also, as network elements becomemore energy proportional in the future, we expect
the energy savings obtained by GEAR to be more prominent.

Figure10 compares SPR and GEAR in terms of router energy consumption and
network provider profit, using fixed cost per bandwidth. GEAR with energy pro-
portionality increases profits by 50% compared to the base case (non-proportional,
SPR), and provides profit for all proportionality schemes. Without energy propor-
tional routers, GEAR’s brown energy consumption is slightly lower than SPR (62
vs. 65% of SPR) with a 3% increase in network delay as a result of occasionally
choosing a longer path, though with negligible overall effect on the job completion
time.
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7 Discussion

In this section, we first recap the most important results of the above case studies. We
then compare our methodology with previous work, and explore the lessons learned
with our analysis. Table8 shows the comparison among the methods discussed in the
previous sections. Our performancemaximization algorithm uniquely leverages both
workload and green energy differences across distributed datacenters to maximize
both throughput (27% improvement) and green energy efficiency (44% increase).
We also demonstrate that the same variations in workloads and green energy can be
leveraged for cost minimization, where our algorithm utilizes tiered energy pricing,
and both migration and green-energy-aware routing. The results show up to 19%
reduction in energy cost and 7% improvement in green energy usage while meeting
QoS of latency sensitive applications, and increasing job completion time of batch
jobs by only 4%. Additionally, the comprehensive and novel aspects of our model
provide a level of realistic simulation that previous models do not exhibit to make a
complete analysis.

Green Energy Prediction and Workload Migration Green energy prediction mit-
igates the inefficiency caused by the variability of renewable sources. We further
improve inefficiency by matching our prediction horizon to the long-running batch
jobs. The result is better decision making, and as the results indicate, up to 26%
improvement in green energy efficiency. Previous work [43, 48] only uses green
energy as a method to reduce carbon footprint, and deploy workload migration to
improve performance considering load balancing and resource availability [14]. In
contrast, we show green energy can also be used to improve performance. We ini-
tially propose the idea in [7] for a single datacenter, but now leverage prediction and
availability across a network to run extra batch jobs in remote locations. We obtain
27% better batch job completion time compared to no migration with only a 6–12%
increase in total energy cost. Ourwork is the first to demonstrate the potential of green
energy not only as a resource for environmental concerns, but also a means of per-
formance improvement. While cost minimization precludes all potential migrations
due to network costs, it still has 7% improvement in green energy usage.

WAN Ownership and Leasing Related work assumes that WAN is part of the
datacenter network, or applies static bandwidth costs. However, the WAN may be
leased or owned, typically with bandwidth-dependent pricing. Our work is the first
to accurately consider such costs. Our first observation is that higher network cost
reduces the bandwidth utilization. Secondly, despite increasing network costs with
larger cost functions, datacenters can obtain 2–19% cost savings by checking the
financial feasibility of each potential migration. In contrast, when the datacenter
owns the network, disregarding the initial WAN cost, it achieves up to 22% cost
savings.

Tiered Energy Pricing Previous work on minimizing total energy cost, [5, 11, 45]
uses grid electricity pricing as either fixed or variable with load. Others [3] attempt
to limit datacenter peak load but do not consider how different power levels can
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affect overall energy cost. Not modeling different cost regions for data center energy
consumption may not be correct due to large power consumption of the datacenters.
We demonstrate that proposed improvements might be overestimated by up to 20%
when accurate pricing is taken into account. Both of our algorithms inherently attempt
to remain below tiered power levels in order to avoid higher energy prices, and only
exceed those limits when inevitable, i.e. when all datacenters are over-provisioned.
Consequently, while our algorithms’ performance and cost benefits are tempered by
the incorporation of tiered energy pricing, we can still show up to 15% cost savings.

Energy-Proportional Routing We investigate the future of datacenter communica-
tion, analyzing the impact of energy proportionality of routers on network provider
profit, which has not been explored before. We show that dynamic, green energy
aware routing (GEAR) policies can improve energy efficiency by reducing brown
energy consumption up to 65%.We quantify that energy proportionality can increase
the profit of networkproviders up to 35 and57%withfixed and linear policies, respec-
tively. The difference in profit between an implementable proportionality scheme
(i.e. step-function) and the ideal case is between 5–17% and decreases with increas-
ing network lease costs. The key observation is that router energy-proportionality
schemes can increase profits significantly if deployed, and that GEAR can decrease
network brown energy use up to 3×with energy proportionality [30] with negligible
performance impact.

Power-Proportional Computing for Future Systems Current datacenter hardware
is highly non-energy proportional, resulting in power-inefficient systems. There has
been recent work [51] on designing energy-proportional elements. Our work quan-
tifies the benefits of this trend in both major aspects of a datacenter network: servers
and network elements. We show the benefit of optimizing the components individu-
ally and together into an ideal energy-proportional system, with up to 30% energy
savings despite being limited by tiered energy pricing and network contracts. Table8
quantifies both the impact of such systems, and the continued benefit of our algo-
rithms in a power-proportional environment.

8 Conclusion

Energy efficiency and green energy usage in datacenters and their networks has
gained importance as their energy consumption, carbon emissions, and costs have
increased dramatically. Previous work leverages geographically-separated datacen-
ters by migrating workloads over WAN, leveraging demand and price differences.
However, the work neglects several key cost and energy contributions: the finan-
cial network, and consequently, data migration costs, focusing solely on latency and
QoS costs. Additionally, these publications assume a simpler, and ultimately inaccu-
rate, model for datacenter energy costs. To counteract this, we explore tiered energy
pricing for datacenters, network cost models and the costs of owning/leasing a data-
center WAN.We then quantify the inaccuracy of conclusions (25–40% error) drawn
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when these two are omitted. We solve the variability problem of green energy by
using novel prediction algorithms, and subsequently develop algorithms for energy
management, focusing on (1) performance maximization, and (2) cost minimiza-
tion. With the performance maximization algorithm, we demonstrate the ability to
leverage green energy to actually improve workload throughput, rather than simply
reducing the operational costs. We explore and quantify up to 22% cost savings
when realistic WAN costs are incorporated, and up to 65% reduction in network
costs when deploying Green Energy Aware Routing (GEAR).We further explore the
viability of our new algorithms in the face of emerging technologies in datacenter
infrastructure, showing continued benefit of both the performance maximization and
the cost minimization algorithms in the presence of energy-proportional computing
and communication. Our results show that our performance maximization improves
batch job performance by 27% while meeting the QoS of services, and that our cost
minimization policy decreases overall energy cost by 16%, even when tempered by
realistic energy pricing schemes and networking contracts. In future work, we will
look to merge the two algorithms to create a balance between the performance gains
and cost reduction, for an optimal cost-performance tradeoff for different datacenter
configurations.
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A Hybrid Machine Learning and Knowledge
Based Approach to Limit Combinatorial
Explosion in Biodegradation Prediction

Jörg Wicker, Kathrin Fenner and Stefan Kramer

Abstract One of the main tasks in chemical industry regarding the sustainability
of a product is the prediction of its environmental fate, i.e., its degradation prod-
ucts and pathways. Current methods for the prediction of biodegradation products
and pathways of organic environmental pollutants either do not take into account
domain knowledge or do not provide probability estimates. In this chapter, we pro-
pose a hybrid knowledge-based and machine learning-based approach to overcome
these limitations in the context of the University of Minnesota Pathway Prediction
System (UM-PPS). The proposed solution performs relative reasoning in a machine
learning framework, and obtains one probability estimate for each biotransforma-
tion rule of the system. Since the application of a rule then depends on a threshold
for the probability estimate, the trade-off between recall (sensitivity) and precision
(selectivity) can be addressed and leveraged in practice. Results from leave-one-out
cross-validation show that a recall and precision of approximately 0.8 can be achieved
for a subset of 13 transformation rules. The set of used rules is further extended using
multi-label classification, where dependencies among the transformation rules are
exploited to improve the predictions. While the results regarding recall and precision
vary, the area under the ROC curve can be improved using multi-label classifica-
tion. Therefore, it is possible to optimize precision without compromising recall.
Recently, we integrated the presented approach into enviPath, a complete redesign
and re-implementation of UM-PPS.

J. Wicker (B) · S. Kramer
Institut für Informatik, Johannes Gutenberg-Universität Mainz,
Staudingerweg 9, 55128 Mainz, Germany
e-mail: wicker@uni-mainz.de

S. Kramer
e-mail: kramer@informatik.uni-mainz.de

K. Fenner
Eawag, Swiss Federal Institute for Aquatic Science and Technology,
CH-8600 Dübendorf, Switzerland
e-mail: kathrin.fenner@eawag.ch

© Springer International Publishing Switzerland 2016
J. Lässig et al. (eds.), Computational Sustainability,
Studies in Computational Intelligence 645,
DOI 10.1007/978-3-319-31858-5_5

75



76 J. Wicker et al.

1 Introduction

In chemical industry, one of the most challenging tasks concerning the sustainability
of a newproduct, i.e., a newchemical, is the prediction of the environmental fate of the
chemical. All chemicals eventually end up in the environment, e.g., drugs developed
by pharmaceutical companies or cosmetics are released via canalization into the soil
or rivers. Important for the sustainability of each chemical is the biodegradation of
the chemical. Chemicals can degrade quickly into harmless compounds, but theymay
also be difficult to degrade or degrade fromharmless compounds to toxic compounds.

In silico methods to predict products and pathways of microbial biotransforma-
tions of chemical substances are increasingly sought due to rapidly growing data
requirements for regulatory chemical risk assessment at the European (cf. REACH
[16]) and global level. Existingmethods for the prediction of biotransformation prod-
ucts and pathways can be categorized as either knowledge-based ormachine learning-
based approaches. Each of the two approaches have strengths and weaknesses.
Knowledge-based approaches such as METEOR for the prediction of mammalian
metabolism [9] or the University of Minnesota Pathway Prediction System (UM-
PPS) for microbial biodegradation [11] utilize expert knowledge on the basis of sets
of transformation rules. However, they run the risk of including potentially overly-
general, incomplete, or inconsistent rules. In contrast, machine learning approaches
produce accurate probability estimates on the basis of empirical data, but often lack
the ability to incorporate prior domain knowledge. Also, recent machine learning
approaches for biotransformation prediction only predict quite general classes.

The goal of this chapter is to combine the two approaches:We assume a given set of
biotransformation rules and learn the probability of transformationproducts proposed
by the rules from known, experimentally elucidated biodegradation pathways. Only
twocomparable systems currently exist:META[14]which is similar in spirit, but uses
a less advanced problem formulation and machine learning approach than the one
presented here; and CATABOL [5], the only rule-based method explicitly aiming for
probability estimates. However, the CATABOL system works with a fixed pathway
structure for training, which is different from the approach presented here, working
on the basis of individual rules.

Rule-based systems, such as UM-PPS, work on the basis of rules that are gen-
eralizations and abstractions of known reactions. In the case of UM-PPS, it is the
underlying Biocatalysis/Biodegradation Database (UM-BBD) [6]. UM-BBD is a
manually curated compilation of over 200, experimentally elucidated microbial bio-
transformation pathways encompassing enzymatic reactions for roughly 1,000 par-
ent compounds and intermediates. If certain functional groups of a query substrate
match with any of the biotransformation rules in UM-PPS, then its structure is trans-
formed into one or several products according to the rule(s). These rules are typi-
cally relatively general, either to cover all known reactions or because there is not
enough information known to restrict them. As a consequence, UM-PPS produces a
large number of possible reaction products, especially when used to predict several
subsequent generations of transformation products. This combinatorial explosion
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is a phenomenon also known from other rule-based systems and approaches. It is
particularly aggravated for the structurally more complex contaminants of current
concern, e.g., pesticides, biocides or pharmaceuticals. Potential users of such a sys-
tem, e.g., environmental microbiologists, risk assessors, and analytical chemists, are
overwhelmed by the number of possible products, and find it difficult to identify the
most plausible products.

In an effort to restrict combinatorial explosion, some of the knowledge-based
approaches to metabolic prediction employ what is called relative reasoning [2]. In
relative reasoning, the possibility to apply a rule depends on the presence of other
applicable rules. Practically, this requires additional rules for the prioritization of
rules and the resolution of conflicts. These meta-rules, or relative reasoning rules,
express that some reactions take priority over others, and vice versa—that some
reactions only occur if others are not possible.

Relative reasoning rules have been derived automatically for the set of UM-PPS
biotransformation rules and have been successfully implemented into the working
UM-PPS [7]. However, although reductions in the number of predicted products in
one prediction step of about 20% were achieved, the selectivity (precision) of UM-
PPS still remained rather low, at approximately 16–18%. Thus, the question remains
howwe can further refine the process of selecting and accepting those rules that most
likely lead to observed products, when a set of rules applies to the structure of a given
substrate.

In this chapter, we propose a solution that transfers the idea of relative reasoning
to a machine learning setting [25, 26] to further improve the system’s selectivity.
Rule probabilities are to be estimated such that they depend not only on all other
rules that are applicable but also on the structure of the substrate. The priorities are
learned statistically from data on known biodegradation pathways. In our solution,
one classifier is learned for each rule, generalizing over the molecular substructures
of the substrate and the “activation patterns” of the rules as given by the set of all
other rules that are triggered by the same substrate.

The prediction ofmultiple transformation products at once can be considered from
a multi-label perspective. Multi-label classifiers exploit the dependencies among
multiple target values to improve the prediction. In the case of the prediction of
biodegradation products, there clearly exists dependencies between the target val-
ues. When a compound is degraded, similar reactions will occur and other reactions
will be prevented. Using these dependencies, we are able to increase the number of
transformation rules on which the expert and machine learning-based approach per-
forms well, simultaneously increasing the performance on all transformation rules.

Most multi-label classifiers predict probabilities for the predicted target values.
Given the availability of such probabilistic classifiers, the decision to accept a product
or not canbemadedependent on a probability threshold:The application of individual
rules can be tuned such that only transformations with a probability above a certain
threshold are accepted. In this way, one can also control the generality of whole rule
sets and the overall number of products. Thus, it is simple to address the fundamental
trade-off between the completeness and the accuracy of predictions. In technical
terms, we can analyze the performance of both individual rules and the entire system
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in recall-precision space, and visualize their performance in two-dimensional plots.
Moreover, it is possible to explicitly choose a suitable point in recall-precision space
by setting the probability threshold for accepting a rule to a certain level.

2 A Hybrid Knowledge and Machine Learning-Based
Approach

To illustrate the problemand the proposed solution,we startwith an example shown in
Fig. 1a: Given a new compound cnew, several rules of the UM-PPS are applicable and
suggest possible transformation products. In the example, a subset of rules r1, r2, r5,
etc. triggers for the given input structure. In the illustration, triggering rules are
indicated by solid arrows and rules that are not triggering by dashed arrows. As
mentioned above, the problem is that the rules of the system are overly-general, i.e.,
they suggest a wide range of possible products, many of them false positives.

To restrict the number of possible products, it would be desirable to score the
proposed transformations by estimated probabilities. In this way, it would also be
possible to tune the number of products depending on a user-defined threshold: If the
estimated probability of a transformation exceeds a threshold, it is accepted, other-
wise it is discarded. The probability for each rule ri is estimated by a corresponding
function fi . Function fi indicates how likely a transformation suggested by rule ri

is, depending on the structure of the input compound and all other triggering rules.
This is illustrated in Fig. 1b: Function f1 estimates that the probability of obtaining a
correct product from applying r1 to substrate cnew is 0.6, given the molecular struc-
ture of cnew and the other applicable rules (r2, r5, . . . , r179). The dependency of the
decision on all other transformation options reflects that, under certain conditions,
one reaction should be given priority over another. If the cut-off was set to 0.5 in the
example, we would only accept the transformations proposed by r1 and r5.

The problem is to derive suitable probability scores. In this chapter, the solution
is based on a training set of examples and machine learning. In Fig. 2a, a sample
of three compounds from a hypothetical training database is shown. For the three
training compounds, we assume that we not only know which rules are applicable,
but also which rule applications lead to observed products. In the figure, the observed
transformation products are indicated by a checkmark,whereas the spurious products
are indicated by a cross. Given this information, it is possible to learn under which
conditions the suggested product of a transformation rule can actually be observed.
As a classifier is only needed when a rule triggers, the training set for a rule also
includes only those compounds for which the rule suggests a product. Figure2b,
c show two training sets constructed from the three training compounds c1 to c3,
one for rule r1 (upper table) and one for rule r2 (lower table). The first group of
features (s1, . . . , sm) is a fingerprint-based representation of the structure of the input
compound. The second group of features (all r1, . . . , r179 except the rule for which
the classifier is built) indicates which other rules are applicable to the compound, for
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(a)

(b)

Fig. 1 a Indicates the rules applicable to an input compound cnew by solid arrows, rules not triggered
are given by dashed arrows. b Illustrates the use of one classifier for each rule to determine the
probability of obtaining a valid product, depending on the structure and other applicable rules

example a feature is set to +1, if the corresponding rule fires, and 0, otherwise. As
explained above, the training set for f1 does not contain an entry for c2, because rule
r1 is not applicable to that compound. Similarly, c1 is not listed in the training set for
f2, because rule r2 cannot be applied. Also note that c3 is a positive example for f1,
while it is a negative example for f2. Given such training sets, any machine learning
algorithm for classification can be applied to induce a mapping from the structural
and rule descriptors to the target variable, i.e., whether a rule generates an observed
product.
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(a)

(b)

(c)

(a)

(b)

(c)

Fig. 2 Figure (a) gives examples for the construction of two training sets, one for f1 (b) and one
for f2 (c). Observed products are indicated by a check mark, spurious products are indicated by a
cross

To be more precise (amongst others, to enable reproducibility) we introduce some
notation: In the following, C denotes the set of compounds ci , and R the set of rules
r j . tr iggers(r j , ci ) is a predicate indicating whether r j triggers on compound ci .
observed(r j , ci ) is a predicate indicating that rule r j fires and provides an observed
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degradation product. For instance, we have the following list of facts for c1 and c2,
and r1 to r3 from Fig. 2a:

triggers(r1, c1). (1)

triggers(r3, c1). observed(r3, c1). (2)

triggers(r5, c1). observed(r5, c1). (3)

triggers(r2, c2). observed(r2, c2). (4)

triggers(r4, c2). (5)

Finally, S denotes the set ofmolecular substructures sl , andpredicateoccurs(sl , ci )

checks the occurrence of a substructure sl in a compound ci .
To prepare for training we need two transformation operators, one for the con-

struction of individual examples, and one for the construction of whole training sets.
The first one, τinstance, is defined as follows:

τinstance(ci , k) = xi , such that

xi, j = occurs(s j , ci ) for 1 ≤ j ≤ |S| ∧
xi, j = triggers(r j − |S|, ci ) for |S| < j ≤ |S| + k − 1 ∧
xi, j = triggers(r j − |S| + 1, ci ) for |S| + k − 1 < j ≤ |R| + |S| − 1

(6)

This means that operator τinstance(ci , k) constructs the description of an individual
example without its class information. It takes a compound ci and constructs a fea-
ture vector (see the example above), taking into account substructures and applica-
ble rules. Parameter k is used to exclude the information for the kth rule, which
is convenient for our purposes because it constitutes the target for training. With
τinstance(ci , k) we are ready to define a transformation operator generating a training
or test set for rule k from a given set of compounds C : τset takes a compound ci from
C and checks whether rule k triggers. Only if this is the case, a training example
(xi , yi ) is constructed:

τset (C, k) = {(xi , yi )|ci ∈ C ∧ tr iggers(rk, ci ) ∧ xi = τinstance(ci , k) ∧
yi = 1 i f observed(rk, ci ), yi = 0 otherwise}

(7)

In the example above, τset ({c1, c2, c3..., c718}, 1) gives the training set for classifier
f1 shown in the table of Fig. 2b and τset ({c1, c2, c3..., c718}, 2) gives the training set
for f2 in the table of Fig. 2c. A training procedure train returns the classifiers needed
for the restriction of the rules based on such training sets. As already indicated above,
classifiers are represented as functions f j returning class probability estimates for
given examples.

Given those preliminaries, we can explain how training and testing is performed
andhow it is embedded into theworking system (seeAlgorithm1 for the pseudocode).
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Algorithm 1 Pseudocode for training and testing classifiers for biotransformation
rules.
Input: Training data DT rg , rules r , test instance cnew , threshold θ

Output: Predicted products of cnew
/* training one classifier per rule */

1 foreach rule rk do
2 Dk

T rg ← τset (CT rg, k) fk ← train(Dk
T rg)

/* testing for a new test compound cnew */
/* the cut-off for acceptance is given by parameter θ */

3 foreach rule rk do
4 if tr iggers(rk , cnew) then
5 if fk(τinstance(cnew, k)) > θ then
6 classify as “product of k”
7 else
8 classify as “no product of k”

In the training phase, a classifier is trained for each rule in turn. In the testing phase,
we first obtain a list of rules applicable to each test compound using the UM-PPS.
If a rule triggers, we apply the rule’s classifier to the instance, where information
from the molecular structure and all competing rules is taken into account to obtain
a probability estimate. If this estimate exceeds a threshold θ , the product suggested
by rule rk is accepted, otherwise the proposed transformation is rejected.

3 Using Multi-label Classifiers and Extended Encoding

Clearly, there are dependencies between the rules. If one rule is correctly applied to
a structure, other rules might not be applicable or supported by this transformation.
Nevertheless, the method proposed above does not exploit the dependencies for the
training.Multi-label classifiers can exploit the dependencies betweenmultiple binary
target values. This changes the method in a way that we do not learn one function
per transformation rule, but one predicting a set of probabilities for all rules. The
advantage of this is the potential improvement in the prediction quality due to the
additional information gained from the other transformation rules.

There exists a wide range of multi-label classifiers.1 Each classifier has certain
qualities, we decided to use two main classifiers: (i) ensembles of classifier chains
(ECC) [18] and (ii) MLC-BMaD [27]. ECC proved to be a fast and well-performing
multi-label classifier which performs well on typical multi-label data sets and is
flexible due to the possibility to select a base classifier. MLC-BMaD proved to be
capable of trainingwell-performingmodels on data sets with a large number of labels

1For an overview of multi-label classification see the paper by Tsoumakas et al. [23].
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and a rather small number of instances. Compared to other multi-label data sets, the
number of labels in this data set is rather large and the number of instances rather
small, hence, MLC-BMaD should be capable of training well-performing models.

Preliminary experiments showed that multi-label classification could slightly
improve the performance of the models. Nevertheless, analysis of the experiments
showed that the selected data structure in this setting could be improved. The default
approach is to use all triggered transformation rules as features, together with the
structural features, and information if the rule is triggered correctly as labels. If a
rule is not triggered at all, the corresponding label is set to be missing.

Hence, we changed the encoding of the target information to improve the classi-
fication and make the problem more suitable for multi-label classifiers. An overview
of themapping is given in Table1, an example data set is given in Table2. The first set
of labels for the classifiers was set to binary values describing if the corresponding
rule was triggered correctly or not. If a rule was not triggered at all, this value was
set to be missing. Additionally, the second set of labels provided information about
the activation (triggering) of rules: if the rule is incorrectly triggered or not triggered
(negative label), or if triggered correctly (positive label). While this encoding of the
information might seem redundant and not intuitive, multi-label algorithms seem to
benefit from this redundant information. The second set of labels describes if a rule
should be used for the compound or not, regardless whether they are triggered or not.
The latter means that the environmental fate strictly is predicted on a machine learn-
ing basis, leaving the expert-based knowledge aside. The expert-based knowledge is
given by the features indicating if a rule is triggered or not. For the final prediction,
we used a combination of the two labels per rule. For each rule, we combined the
predicted probability of each set using the mean of the predictions. For the evaluation
process, we only used the label set that tells if a label is correctly triggered. Only
from them, evaluation measures are calculated, which are the same values on which
the single-label approach is evaluated.

Table 1 Extended encoding for multi-label classification

Correctly triggered Incorrectly triggered Not triggered

Label 1 (λi )/correctly
triggered

1 0 ?

Label 2 (λ′
i )/known

product
1 0 0

Feature (xi )/triggered 1 1 0

“?” indicates amissing value,which is ignored by the classifiers and evaluation. The data is translated
into three new attributes, two are used as labels as they store the target information if a rule is
triggered correctly. The third attribute is used as feature which is used for the predictions. For the
final prediction, a combination of the probabilities of label 1 and label 2 is used. However, for the
evaluation, only label 1 is used
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Table 2 Example data set for the multi-label encoding

s1 … s547 x1 x2 … x179 λ′
1 λ′

2 … λ′
179 λ1 λ2 … λ179

c1 +1 … 0 1 0 … 0 1 0 … 0 1 ? … ?

c2 +1 … +1 1 1 … 0 0 1 … 0 0 1 … ?

c3 0 … +1 1 0 … 1 0 0 … 1 0 ? … 1

… … … … … … … … … … … … … … … …

c718 0 … 0 0 1 … 1 0 0 … 0 ? 0 … 0

c1 correctly triggers rule 1, rule 2 and 179 are not triggered. c2 incorrectly triggers rule 1, rule 2 is
triggered correctly, rule 179 is not triggered. c3 incorrectly triggers rule 1, rule 2 is not triggered, and
rule 179 is correctly triggered. c718 does not trigger rule 1, rule 2 and 179 are incorrectly triggered.
Note that in this encoding, training and test use an identical schema. The only difference is that the
prediction does not produce missing values

4 Data and Implementation

It is possible to validate the procedure described above by running a cross-validation
over the compounds of the UM-BBD database. The running time can be optimized
considerably if the predicates triggered, observed, and occurs are pre-computed once
for all compounds and stored for later use. In our implementation, we pre-computed a
|C | × |R| table indicating the rules’ behavior on theUM-BBDcompounds: The value
+1 of an entry encodes that a rule is triggered and produces an observed product,
0 encodes that a rule is triggered but the product is not observed, and −1 encodes
that the rule is not triggered for a given compound. Simple database and arithmetic
operations can then be applied to extract training and test sets, e.g., for (leave-one-
out) cross-validation. Additionally, we learned the classifiers on the complete data
set and tested the proposed approach on an external validation set of 25 xenobiotics
(pesticides) whichwas also used in previous work [7].2 Pesticide biodegradation data
is the largest cohesive data set available because these compounds are made to be put
into the environment and are among the most heavily regulated class of chemicals.

The matrix encoding described above was applied to the UM-BBD/UM-PPS
from July 24, 2007, containing 1,084 compounds and 204 biotransformation rules
(btrules). Of these, 366 compounds did not trigger by any rule (terminal compounds
of reported pathways, compounds containing metals or other compounds whose
biodegradation should not be predicted) were removed. Likewise, 25 strictly anaer-
obic (unlikely or very unlikely) btrules and btrules not triggered by any compounds
in the UM-BBD were removed. Finally, 48 transformation rules triggered by only
one structure were removed from the set as well. The remaining 718 UM-BBD com-
pounds were submitted to 131 UM-PPS btrules. The predicate triggered was then

2Those 25 pesticides were also tested in our previous experiments investigating the sensitivity and
selectivity of the method (see Table6 in [7]). In addition, 22 other xenobiotics (pharmaceuticals)
were only used for determining the reduction of predictions (see Table4) because their degradation
products are not known.
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Fig. 3 Characteristics of data sets for rules: size (number of triggered compounds) and class
distribution (fraction of correctly triggered compounds). The 13 transformation rules used in the
subset are marked. The dotted lines are the cutoffs (Number = 35, Fraction = 0.15) used to select
the subset

defined to be true if a rule applied to a compound, and observed was defined to be
true if the product could be found in the database.

The class distribution in the data set is very diverse (see Fig. 3). There are few
transformation rules with both a balanced class distribution and a sufficient number
of structures triggering them. Thus, we decided to implement single-label classifiers
for a subset of the transformation rules. We chose rules that provide at least a certain
amount of information for the construction of the classifiers. The transformation rules
needed to be triggered by at least 35 structures.On the other hand, for the ratio of “cor-
rect triggers”, we set a minimum of at least 0.15. These parameters seem sufficient
to cover a sufficient number of cases and exclude overly-skewed class distributions.
Varying the parameters in further experiments did not lead to an improvement of the
results. However, multi-label classifiers are able to exploit dependencies among the
labels and, hence, use more information in the training process which leads to an
improvement of the prediction in the remaining labels. Thus, multi-label classifiers
are able to train well-performing models on all transformation rules.

Of the 131 transformation rules in the training set, this leaves 13 rules for the
validation process (see Table3). Considering the class distribution and number of
examples of the remaining rules, it is not reasonable to learn classifiers for these
transformation rules. However, to compare the results with previous work and to
evaluate all transformation rules, we generated a default classifier (DC) for these
rules which predicts the ratio of positive examples as the probability to produce
a correct product. Thus, if the chosen threshold is below the ratio of positive
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Table 3 List of the 13 transformation rules in the subset used for prediction

Rule Description

bt0001 primary Alcohol → Aldehyde

bt0002 secondary Alcohol → Ketone

secondary Alcohol → Ester

bt0003 Aldehyde → Carboxylate

bt0008 vic-Dihydroxybenzenoid → extradiol ring cleavage

bt0029 organoHalide → RH

bt0036 aromatic Methyl → primary Alcohol

bt0040 1-Aldo/keto-2,4-diene-5-ol → Carboxylate + 1-ene-4-one

bt0055 1-carboxy-2-unsubstituted Aromatic → Catechol derivative

bt0060 vic-Hydroxycarboxyaromatic → Catechol derivative

vic-Aminocarboxyaromatic → Catechol derivative

bt0063 primary Amine → Aldehyde or Ketone

secondary Amine → Amine + Aldehyde or Ketone

tertiary Amine → secondary Amine + Aldehyde or Ketone

Methylammonium derivative → Trimethylamine + Aldehyde or Ketone

bt0065 1-Amino-2-unsubstituted aromatic → vic-Dihydroxyaromatic + Amine

bt0254 vic-Dihydroxyaromatic → intradiol ring cleavage

vic-Dihydroxypyridine → intradiol ring cleavage

bt0255 vic-Dihydrodihydroxyaromatic → vic-Dihydroxyaromatic

examples, all structures are predicted as positive, i.e., they are predicted to trigger
this transformation rule correctly.

For the multi-label classification setting, only one classifier can be chosen for the
base classification. Hence, we only used a setting where a learned classifier is applied
to all 131 transformation and no default classifier is used.

For the computation of frequently occurring molecular fragments, we applied
the FreeTreeMiner system [19] as it builds on a cheminformatics library to handle
structures and substructures conveniently. It produces fingerprints by searching for
frequently occurring acyclic substructures in the set of structures.

5 Performance Measures

Clearly, we are facing a fundamental trade-off also found in many other applications
of machine learning and classification: If the rules are too general, we will not miss
many positive examples, but we might also include too many false positives. If the
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rules are too specific, we probably have few false positives but we will potentially
miss too many positives. It is convenient to think of this trade-off in terms of recall
(sensitivity) and precision (selectivity). If the overall system predicts an observed
product for a given substrate, we can count this as a true positive. If the system
predicts a product that is not observed, we have a false positive. If a product is
missing for a substrate, we have a false negative.3 The number of true positives is
denoted by TP, the number of false positives by FP, and the number of false negatives
by FN. Then the standard definitions of recall (sensitivity) and precision (selectivity)
can be applied:

Recall = Sensi tivi t y= T P

T P + F N
(8)

Precision = Selectivi t y = T P

T P + F P
(9)

The overall number of products predicted by the system critically depends on the
cut-off parameter θ . To evaluate the performance of the system, this parameter does
not need to be fixed in advance. Instead, the parameter can be varied over the entire
range from 0 to 1, and the resulting values for recall and precision can be plotted in
two dimensions: recall is plotted on the x-axis, and precision on the y-axis. Precision-
recall plots (see Figs. 4 and 5) offer a simple and intuitive visualization of the trade-
offs involved in choosing a certain value of θ . Also the results of approaches without
cut-off parameters (e.g., relative reasoning as discussed above) appear as single data
points in precision-recall space.

Precision-recall analysis can be performed on the system level as well as on the
level of individual rules. In principle, one could set the threshold individually for
each rule, but this would introduce a large number of parameters. For simplicity, we
chose to visualize the system’s performance below by applying the same threshold
for all rules. Also, as individual classifier schemes should be sensitive and adaptive
to different class distributions, one parameter for all should work reasonably well in
the first approximation.

In addition to precision-recall analysis, we measure the area under the receiver
operating characteristic (ROC) curve, which indicates the capability of a classifier
to rank the examples correctly [3].

3We count the false negatives in a slightly different way than in a previous paper [7], as we only
consider products that are suggested by any of the biotransformation rules. In other words, we
do not take into account products of reactions that are not subsumed by any of the rules. This is
done because only for the products suggested by the UM-PPS, the method proposed here becomes
effective—the classifiers can only restrict the rules, not extend them.
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Fig. 4 Precision-recall plots from a leave-one-out cross-validation using the random forest classi-
fier (a and b) and support vector machines (c and d). On the left hand side (a and c), only the results
of classifiers on a subset of the rules are shown. On the right hand side (b and d), classifiers were
generated for the same subset and a default classifier is used for the remaining rules. The subset
was chosen by using transformation rules with at least 35 triggered examples and a minimum ratio
of known products of 0.15. Using these parameters, 13 transformation rules were selected. The
threshold θ is given in ten steps per plot. Note that the points in precision-recall space are connected
by lines just to highlight their position. In contrast to ROC space, it is not possible to interpolate
linearly. a Random forests on 13 rules. b Random forest on 13 rules, default classifier on remaining
rules. c SVM on 13 rules. d SVM on 13 rules, default classifier on remaining rules

6 Experimental Results

In the following, we present the experimental results obtained with the proposed
approach. After introducing various learning schemes and settings, we present the
results on the xenobiotics test set and, more importantly, our main results from a
leave-one-out cross-validation over the UM-BBD structures.

For the 13 transformation rules in the subset and 131 transformation rules in the
case of multi-label classifiers, we applied the random forest algorithm [1] in the
implementation of the Weka workbench [10], because it gave acceptable probability
estimates in preliminary experiments. As a second classifier, we used support vector
machines trained using sequential minimal optimization [15] in the implementation
of the Weka workbench. We automatically adjusted the complexity constant of the
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Fig. 5 Precision-recall plots from a leave-one-out cross-validation using different multi-label clas-
sifiers on all rules as labels. The threshold θ is given in ten steps per plot, except in plots (d) and
(e) where the lower thresholds values are too close to each other to differentiate among them in the
plots. Note that the points in precision-recall space are connected by lines just to highlight their
position. In contrast to ROC space, it is not possible to interpolate linearly. a Ensembles of classifier
chains. b Multi-label classification using Boolean matrix decomposition. c Include labels. d Label
powerset. e Calibrated label ranking. f Binary Relevance2. g MLkNN
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Support Vector Machine for each transformation rule separately. We used a 10-fold
cross-validation to generate the data for the logistic models [15] to obtain well-
calibrated class probability estimates.4 As a default classifier on the remaining 118
transformation rules, we used the ZeroR algorithm of the Weka workbench.

Multi-label classifiers were used in the implementation of the Mulan library [24].
We evaluated ensembles of classifier chains (ECC), multi-label classification using
Boolean matrix decomposition (MLC-BMaD), include labels (IL) [22], label pow-
erset (LP), binary relevance 2 (2BR) [21], and calibrated label ranking (CLR) [8],
which all use random forests (RF) as base classifiers. In addition, multi-label k near-
est neighbor (MLkNN) [28] was evaluated, however it does not require any base
classifier.

In total, we evaluated four variants:

(a) 13 learned classifiers (LC) (i.e., random forests or SVMs) only,
(b) 13 learned classifiers (LC) and 118 default classifiers (DC),
(c) 131 learned classifiers (LC) (without default classifiers), and
(d) one learned multi-label classifier on 131 labels, equivalent to 131 learned single

label classifiers (LC).

The idea of (a) is to evaluate the performance of the machine learning component
of the systemonly. In (b), the overall performance of the system is evaluated,where 13
classifiers are complemented by 118 default classifiers. The purpose of (c) is to reveal
whether the default classifiers are sufficient, or whether learned classifiers should
be used even when samples are very small and classes are unequally distributed.
(d) gives the results of extended multi-label evaluation on the data set. Multi-label
classifiers can increase the total performance by exploiting label dependencies. The
goal is to use all the rules for learning and gain the maximum performance. All
the results are shown in terms of manually chosen points in precision-recall space
(e.g., before inflection points) as well as the area under the ROC curve (AUC). The
possibility to choose thresholds manually is one of the advantages of working in
precision-recall and ROC space; Instead of fixing the precise thresholds in advance,
it is possible to inspect the behavior over a whole range of cost settings, and set the
threshold accordingly. Finally, we compare the results to the performance of relative
reasoning.5

For compatibility with a previous paper [7], we start with the results of training
on all UM-BBD compounds and testing on the set of 25 xenobiotics. The results are
given in the upper part of Table4. Note that in this case the default classifiers were
“trained” on the class distributions of the UM-BBD training data and subsequently
applied to the external xenobiotics test set.

4Note that any other machine learning algorithm for classification and, similarly, any other method
for the computation of substructural or other molecular descriptors could be applied to the problem.
5We cannot compare our results with those of CATABOL because the system is proprietary and
cannot be trained to predict the probability of individual rules—the pathway structure has to be
fixed for training (for details we refer to Sect. 7). This means that CATABOL addresses a different
problem than the approach presented here.
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Table 4 Recall and precision for one threshold (on the predicted probability of being in the positive
class) of the machine learning approach and for relative reasoning

Method Variant LC DC θ Recall Precision AUC

Xenobiotics RF (a) 13 0 0.417 0.400 0.333 0.505

RF (b) 13 118 0.296 0.525 0.447 0.676
RF (c) 131 0 0.35 0.475 0.404 0.664

SVM (a) 13 0 0.023 0.800 0.235 0.389

SVM (b) 13 118 0.296 0.475 0.463 0.674
SVM (c) 131 0 0.157 0.410 0.390 0.599

RR – – – – 0.950 0.242 –

UM-BBD RF (a) 13 0 0.600 0.777 0.788 0.902

RF (b) 13 118 0.308 0.595 0.594 0.842
RF (c) 131 0 0.485 0.653 0.632 0.857

SVM (a) 13 0 0.329 0.813 0.771 0.903

SVM (b) 13 118 0.294 0.582 0.588 0.841
SVM (c) 131 0 0.250 0.632 0.623 0.833

ECC/RF (d) 131 0 0.510 0.630 0.628 0.894
MLC-
BMaD/RF

(d) 131 0 0.500 0.615 0.457 0.821

IL/RF (d) 131 0 0.499 0.623 0.620 0.863

MLkNN (d) 131 0 0.477 0.557 0.553 0.844

LP/RF (d) 131 0 0.700 0.223 0.190 0.597

2BR/RF (d) 131 0 0.500 0.605 0.482 0.841

CLR (d) 131 0 0.497 0.629 0.631 0.873

RR – – – – 0.942 0.267 –

The columns LC and DC indicate the number of transformation rules used for the learned classifiers
(LC), SVMs or random forests, and the default classifiers (DC) ZeroR. The value of the threshold
θ is determined manually considering the trade-off between recall and precision. We chose the
threshold manually at an approximate optimum for recall and precision to provide a comparison to
previous work [7]. Area under ROC Curve (AUC) is threshold-independent and only given for the
newapproach. The columnwith the variant refers to the assignment of rules to the different classifiers
and is explained in the text. The multi-label classifiers are given with their used base classifier, in
the case one was required. Ensembles of classifier chains (ECC), Multi-Label Classification using
Boolean Matrix Decomposition (MLC-BMaD), Include Labels (IL) [22], Label Powerset (LP),
Binary Relevance2 (2BR), and Calibrated Label Ranking (CLR) all use random forests (RF) as
base classifiers. Multi-Label k Nearest Neighbor (MLkNN) does not require any base classifier. RR
refers to relative reasoning, which was used in previous work

First, we observe that ROC scores are on a fairly good level. The results in
precision-recall space indicate that variant (b) is as good as variant (c). However,
with an AUC of around 0.5 and having 13 learned classifiers, only variant (a) per-
forms on the level of random guessing. An in-depth comparison of the two sets of
structures (UM-BBD and xenobiotics) shows that this can be attributed to (i) the
low structural similarity between the two sets, and (ii) the fact that a very limited set
of rules trigger for the xenobiotics (a consequence of (i)). The average number of
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free tree substructures per compound is 48.76 in the xenobiotics data set, whereas
it is 65.24 in the UM-BBD data set. Due to this structural dissimilarity, the transfer
from one data set to the other is a difficult task. Therefore, we decided to perform a
leave-one-out cross-validation over all UM-BBD compounds, where the structural
similarity between test and training structures is higher than in the validation with
the 25 xenobiotics as test structures.

Ourmain results from leave-one-out over theUM-BBDcompounds are visualized
in the precision-recall plots of Fig. 4 and shown quantitatively in Table4. In Fig. 4,
the top row (a and b) shows the plots of the random forest classifiers, the bottom row
(c and d) displays the results of the Support Vector Machines. The left hand side (a
and c) shows the results of the classifiers on the 13 transformation rules in the subset,
the right hand side (b and d) uses the default classifier for the remaining rules. The
plots tend to flatten when including predictions of the default classifier.

The overall performance does not differ much between random forest and Sup-
port Vector Machines. Using both classification methods, we can achieve recall and
precision of slightly less than 0.8 (see Fig. 4 and also the values for variant (a) in
the lower part of Table4) for the LC only in a leave-one-out cross-validation. The
quantitative results in Table4 also show that the performance of random forests
and support vector machines are on a similar level. Also, in this case, the perfor-
mance of learned classifiers complemented by default classifiers is comparable to
the performance of the learned classifiers for all rules, supporting the idea of having
such a mixed (LC and DC) approach.6 However, as expected, the machine learning
component consisting of 13 learned classifiers only performs better on average than
the overall system with 118 default classifiers added in this case. In summary, the
AUC scores are satisfactory and the precision-recall scores of approximately 0.8 of
the machine learning component indicate that improvements in precision are possi-
ble without heavily compromising recall. Therefore, the machine learning approach
provides some added value compared to the relative reasoning approach developed
previously [7].

To evaluate the enhancement of using both the structural information and the
expert knowledge in the transformation rules,we applied the newmethod individually
to the data set leaving out the structure and, in a second run, the transformation rules.
As it tends to give smoother probability estimates, here and in the remainder of the
section we focus on random forest classifiers. Using only the structural information
gives an AUC of 0.895, whereas the transformation rules only give an AUC of
0.885. Taken together, we can observe an AUC of 0.902, which despite the apparent
redundancy for the given data set, marks an improvement over the results of the
individual feature sets.

In the multi-label experiments, we could improve the overall performance. We
used seven multi-label classifiers to predict the probability of the biodegradation
rules. Due to the higher complexity of the algorithms, the experiments are limited
to random forests as base classifiers where needed. SVMs increase the running time
of multi-label classifiers drastically. Ensemble of classifier chains (ECC) by Read

6In other words, it shows that informed classifiers do not pay for the rest of the rules.
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et al. [17] showed the most promising results. Using all 131 rules in the prediction,
the algorithm almost gained the same performance level regarding the area under
the ROC curve as single-label SVMs on only the 13 selected rules. This provides
the possibility to include a greater number of rules in the classification with some
benefit. Single-label classifiers do not give better than random performance on the
additional 118 rules.

The other multi-label classifiers all achieve a good performance with only the
exception of label powerset. This algorithm does not perform that well on data sets
with a large number of unique label combinations. Given the size of the data set
and the rather large number of labels, this is the case for this data set. This explains
the almost random performance of this classifier. The advantages of multi-label
classifiers also can be seen regarding recall and precision. ECC raises both values
compared to the single-label SVM case while simultaneously using more labels in
the prediction. None are as biased towards one of the measures as Relative Reason-
ing. The precision-recall plots (see Fig. 5) give smoother plots than the single-label

Fig. 6 Application of the new method to Amitraz, a compound from the xenobiotics data set. For
each transformation rule triggered by this structure, an example product is given. Some of the trans-
formation rules can produce more than one product from this structure. We applied random forest
classifiers to the structure. The numbers indicate the predicted probability that the corresponding
transformation rule produces a known product. From the transformations predicted by the UM-PPS,
only bt0063 produces a known product. As shown in the figure, this is the only transformation rule
with a relatively high predicted probability
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predictions. In all but one case a threshold for addressing the trade-off between the
measures is apparent and can be selected. The LP method again shows that it cannot
perform well on this data set.

An example prediction of the biotransformation of a structure is given in Fig. 6.
We applied the single label approach toAmitraz, a pesticide from the xenobiotics data
set. The incorrectly triggered transformation rules all obtain a rather low probability
whereas bt0063, a correctly triggered rule, is the only transformation rule being
predicted with a probability higher than 0.53. As the xenobiotics data set is small,
we generated random forest classifiers for every transformation rule triggered by this
structure for the purpose of the example.

7 Discussion and Conclusion

In this chapter, we presented a combined knowledge-based and machine learning-
based approach to the prediction of biodegradation products and pathways, which
performs relative reasoning in a machine learning framework. One of the advantages
of the approach is that probability estimates are obtained for each biotransformation
rule. Thus, the results are tunable and can be analyzed in precision-recall space. In
making the trade-off between recall (sensitivity) and precision (selectivity) explicit,
one can choose which is more important. This obviously depends on the application
scenario. In certain cases, it is more important to identify as many potential degrada-
tion products as possible with only discarding obvious wrong products, for example
when trying to find potential toxic products. On the other hand, one might only be
interested in certain products, e.g., predicting the most probable outcome and risk of
one compound.

This provides a tool for the chemical industry and public agencies to identify the
risk of chemicals being released in the environment. A produced chemical might be
harmless and no threat to the environment, yet its biodegradation products can cause
problems due to toxicity. By providing a probability for degradation products, the
combinatorial explosion can be limited and more probable degradation products can
be taken into account.

In contrast to CATABOL, the approach works on the level of rules and not on
the level of pathways. In CATABOL, the structure of pathways must be laid out
in advance in order to solve the equations based on the training data. To make the
computations more stable, reactions must be grouped using expert knowledge. In
contrast, we apply the rules to the training structures to extract a matrix, which is the
basis for the creation of the training sets for each rule.

Our results illustrate that using multi-label classifiers and, hence, assigning a
probability to each transformation rule, we can achieve a high precision for selecting
correctly triggered transformation rules. By exploiting dependencies between the
target values with multi-label classification, we can cover a broad range of transfor-
mation rules and incorporate rules with skewed class distribution and few examples
triggering the rule. Consequently, we increase the predictive performance on a broad
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range of transformation rules and provide a method to limit the combinatorial explo-
sion of the expert-based systems while keeping correct transformation products in
the predicted biodegradation pathway.

Initial experiments indicated that the standard multi-label approach did not result
in any significant improvement compared to the single-label case. Nevertheless,
including a pseudo label λ′

i for each transformation rule λi , helped improve the
multi-label predictions. The use of a pseudo label λ′

i splits the learning task into two
problems: (i) The prediction is that a transformation rule produces a known product,
and (ii) if that transformation rule is correctly triggered. The improvement in this
case is mainly related to the missing values in the target label λi . In the standard
multi-label approach, λi is missing if the transformation rule is not triggered. Hence,
if xi = 0 (i.e., rule i is not triggered), no model is learned. Hence, if, in the test case,
a rule is not triggered and missing, the learned model can predict any probability
independent of the information that it is triggered or not. While this is not a problem
for this particular label λi , as it is ignored in the evaluation due to the missing value,
the classifiers using this as an input might be confused by the prediction. In the case
of using an additional label λ′

i , the predicted label λ̂i is in most cases set to 0, as there
is a strong correlation between λ′

i = 0 and λi = 0. This is actually closer to the reality
than the first case, as this is definitely not a correctly triggered rule. Furthermore,
classifiers can reconstruct the information of a missing value from λ′

i and xi . The
training task for the models is still the same. In the case of using a default multi-label
approach, it is to predict λi from xi and all other labels; in the case of using pseudo
labels, it is to predict λ′

i from xi . The prediction of λi from λ′
i and xi is trivial. This

procedure can be understood as an imputation step. It levels out the effects of having
missing values in the training data, which results in predictions that distort the input
data for other classifiers.

In this domain, the run times of the algorithms are not that important. The data
sets rarely change, hence the training process does not have to be repeated too often.
The application of the models, of course, needs to be done fast. But this step is fast,
independent of which classifier is chosen. Regarding the training of the models, in
the case of the basic, single-label algorithm, the complexity depends linearly on the
complexity of the base classifiers, in our experiments, Random Forests and Support
Vector Machines. In case of the multi-label classification, it additionally depends on
the multi-label classifiers. E.g. MLC-BMaD has a complexity of O(kn2) depending
on the number of labels (n) and latent labels (k). Ensembles of Classifier Chains
behave similarly to the basic algorithm, depending only on the complexity of the
base classifiers.

CATABOL learns parameters for a fixed pathway structure, whereas the approach
proposed here learns classifiers for (individual) transformation rules. During test-
ing, only the pathways laid out for training can be used for making predictions in
CATABOL. In contrast, the approach presented here predicts one transformation
after the other according to the rule’s applicability and priority determined by the
classifiers. Overall, the training of CATABOL requires more human intervention
than our approach, e.g., for grouping and defining hierarchies of rules (see Dimitrov
et al. [4]).
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One might speculate (i) which other methods could be used to address this prob-
lem, and (ii) where the proposed solution could be applied elsewhere. Regarding (i),
it appears unlikely that human domain experts would be able and willing to write
complex relative reasoning rules as the ones derived in this work. Alternatively, other
machine learning schemes could be used to solve the problem, for instance, methods
for the prediction of structured output [13]. These methods should be expected to
require a large number of observations to make meaningful predictions. Also, with
the availability of transformation rules, the output space is already structured and
apparentlymuch easier to handle than the typically less constrained problem of struc-
tured output. Regarding (ii), the approach could be used wherever expert-provided
over-general transformation rules need to be restricted and knowledge about transfor-
mation products is available. It would be tempting to use the same kind of approach
for other pathway databases like KEGG, if they were extended towards pathway pre-
diction systems like the UM-BBD. Our extended pathway prediction system could
also be used as a tool in combination with toxicity prediction, as the toxicity of
transformation products often exceeds the toxicity of their parent compounds [20].
The procedure would be first to predict the degradation products and then use some
(Q)SAR model to predict their toxicity.

Recently, we integrated the presented approach into enviPath [12], a complete
redesign and re-implementation of UM-PPS. In the future, it may become necessary
to adapt the method to more complex rule sets, e.g., (super-)rules composed of other
(sub-)rules. Such complex rule sets should be useful for the representation of cascades
of reactions.
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Abstract Modern communication, sensing, and actuator technologies as well as
methods from signal processing, pattern recognition, and data mining are increas-
ingly applied in agriculture, ultimately helping to meet the challenge of “How to
feed a hungry world?” Developments such as increased mobility, wireless networks,
new environmental sensors, robots, and the computational cloud put the vision of a
sustainable agriculture for anybody, anytime, and anywhere within reach. Unfortu-
nately, data-driven agriculture also presents unique computational problems in scale
and interpretability: (1) Data is gathered often at massive scale, and (2) researchers
and experts of complementary skills have to cooperate in order to develop models
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and tools for data intensive discovery that yield easy-to-interpret insights for users
that are not necessarily trained computer scientists. On the problem of mining hyper-
spectral images to uncover spectral characteristic and dynamics of drought stressed
plants, we showcase that both challenges can be met and that big data mining can—
and should—play a key role for feeding the world, while enriching and transforming
data mining.

1 Introduction

Facing a rapidly growing world population, answers to the daunting question of
“How to feed a hungry world?” are in dire need. Challenges include climate change,
water scarcity, labor shortage due to aging populations, as well as concerns as to ani-
mal welfare, food safety, changes in food consumption behavior, and environmental
impact. Water scarcity is a principle global problem that causes aridity and serious
crop losses in agriculture. It has been estimated that drought can cause a depreciation
of crop yield up to 70% in conjunction with other abiotic stresses [11, 48]. Climate
changes and a growing human population in parallel thus call for a sincere atten-
tion to advance research on understanding of plant adaptation under drought. A deep
knowledge of the adaptation process is essential in improvingmanagement practices,
breeding strategies as well as engineering viable crops for a sustainable agriculture in
the comingdecades.Accordingly, there is a dire need for crop cultivarswith highyield
and strong resistance against biotic and abiotic stresses. Addressing this issue and
the other ones mentioned above, agriculture –arguably the oldest economic endeavor
of humankind– is receiving a technological makeover and information technology
makes its appearance in the fields.

Agricultural information is gathered and distributed by means of smartphones,
portable computers, GPS devices, RFID tags, and other environmental sensors.
Farming companies are working on automation technologies such as GPS steer-
ing to operate tractors and other agricultural machines [5]. Aiming at increased
food safety, RFID technologies are used to track animals in livestock; for example,
since 2010, European sheep farmers are required to tag their flocks and the Euro-
pean Commission has suggested to extend this to cattle. RFID technologies also
provide new possibilities for harvest asset management. For instance, by adding
RFID tags, bales can be associated with measured properties such as weight and
moisture level [5]. In general, mobile communication networks and technologies
which are now commonly deployed in many areas around the world have become
a backbone of pervasive computing in agriculture. Researchers and practitioners
apply them to gather and disseminate information as well as to market products or
to do business [12, 69]. As Farmers need to obtain and process financial, climatic,
technical and regulatory information to manage their businesses, public and private
institutions cater to their needs and provide corresponding data. For example, the
U.S. Department of Agriculture, supplies information as to prices, market condi-
tions, or newest production practices. Internet communities such as e-Agriculture



Feeding the World with Big Data: Uncovering Spectral Characteristics … 101

allow users to exchange information, ideas, or procedures related to communication
technologies in sustainable agriculture and rural development [5].

Agriculture is thus rapidly becoming a knowledge and data intensive industry. So
far, however, much of the research and development in this regard has focused on
sensing and networking rather than on computation. In this chapter, we survey our
recent efforts on big data mining in agriculture [31, 32, 55, 65, 68]. We point out
specific research challenges and opportunities—big data and reification—and hope
to increase awareness of this new and exciting application domain.

2 Computational Sustainability in Agriculture

Looking at the scientific literature on precision farming, it appears that, most efforts
so far were focused on the development and deployment of sensor technologies
rather than on methods for data analysis tailored to agricultural measurements. In
other words, up to now, contributions to computational intelligence in agriculture
mainly applied off-the-shelf techniques available in software packages or libraries
but did not develop specific frameworks or algorithms. Yet, efforts in this direction
are noticeably increasing and in this section we survey some recent work on data
mining and pattern recognition in agriculture.

Computational sustainability in agriculture involves different areas of computer-
and information science. Here, we focus on key areas such as knowledge and infor-
mation management, geo-information systems, and signal processing. Vernon et al.
[67] highlight the importance of information systems for sustainable agriculture.
While early work in this direction was focused on the design of (relational) data-
bases, more recent approaches consider semantic web technologies for instance for
pest control [42], farm management [61], or the integration of molecular and phe-
notypic information for breeding [7]. Others consider recommender systems and
collaborative filtering to retrieve personalized agricultural information from the web
[34] or the use of web mining, for instance, in localized climate prediction [15].
Geo-information processing plays a particular role in computational agriculture and
precision farming. Research in this area considers mobile access to geographically
aggregated crop information [35], region specific yield prediction [57], or environ-
mental impact analysis [22]. It is clear that, in addition to information infrastructures,
applications like these require advanced remote sensing or modern sensor networks.
Distributed networks of temperature and moisture sensors are deployed in fields,
orchards, and grazing land to monitor growth conditions or the state of pasture [12,
69]. Space- or airborne solutions make use of technologies such as Thermal Emis-
sion and Reflection Radiometers or Advanced Synthetic Aperture Radar to track
land degradation [8] or to measure and predict levels of soil moisture [39]. Other
agricultural applications include plant growth monitoring [38] and automated map
building [59]. A particularly interesting sensing modality consists in airborne or
tractor-mounted hyper-spectral imaging which records spectra of several hundred
wavelengths per pixel. With respect to plant monitoring this allows, for instance,
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for assessing changes of pigment and chemical composition (water, starch, lign-
ing et ist auch dabei) and information about plant architecture and leaf structure.
This in turn allows for remotely measuring phenotypic and physiological reactions
of plants due to biotic or abiotic stress [43]. Recently, hyper-spectral imaging is
being increasingly used for near range plant monitoring in agricultural research. It
enables basic research, for example regarding the molecular mechanisms of photo-
synthesis [50, 51], but is also used in plant phenotyping, for instance as an approach
towards understanding phenotypic expressions of drought stress [4, 33, 55]. Clas-
sical image analysis and computer vision techniques are being used in agriculture,
too. Examples include automated inspection and sorting in agricultural production
facilities [36, 53], the detection of the activity of pests in greenhouses [6], or the
recognition of plant diseases [45, 58]. Finally, artificial intelligence techniques are
increasingly applied to address questions of computational sustainability [24]. Work
in this area considers algorithmic approaches towards maximizing the utility of land
[23], enabling sustainable water resource management [47], or learning of timber
harvesting policies [17].

3 Plant Phenotyping: A Big Data and Reification
Challenge

A common theme of the work just reviewed is that they require algorithms and archi-
tectures that can cope with massive amounts of data. Owing to the increased use of
modern sensors, corresponding solutions have to cope with exploding amounts data
recorded in dynamic and uncertain environments where there typically are many
interacting components [24]. However, it appears that most work in this area so far
did not involve specifically trained data scientists and that, from the point of view
of computational intelligence, more efficient and accurate methods seem available.
Yet, computer scientists entering the field must be aware that methods they bring
have to benefit researchers and practitioners in agriculture. Practitioners “out in the
fields” are in need of methods and tools that yield results with concrete connection
to running mobile devices, i.e. under constrained computational resources, and in
real time in order to help them in their daily work. From the perspective of farming
professionals, problems are natural and real phenomena that may be addressed using
scientific methods and advanced computing. To them purely theoretic concepts or
mathematical abstractions are of little use. The world’s food producers are highly
technology-oriented people but with a purpose. Even if they may not be adequately
trained in information technology, they actually do not need to be. They know their
business and if a new technology does not fit into their work flows they will either
ignore it or wait until it meets their needs. In the next sections, we present our
approaches to meet these big data and reification challenges in plant phenotyping.
We shall use these examples to underline the above challenges and to illustrate practi-
cal solutions for large-scale data. More precisely, we present results from an ongoing
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efforts on recognizing and predicting levels of drought stress in plants based on the
analysis of hyper-spectral images. There are estimates that drought in conjunction
with other abiotic stresses causes a depreciation of crop yields of up to 70% [11, 48].
Because of global warming this trend is expected to increase, so that an improved
understanding of how plants adapt to drought is called for to be able to breed more
resistant varieties. Yet, mechanisms of stress resistance are characterized by com-
plex interactions between the genotype and the environment which lead to different
phenotypic expressions [46]. Progress has been made towards the genetic basis of
drought related traits [37, 41] andmodern data analysis has lead tomolecular insights
into drought tolerance [1, 27, 49]. However, as genetic and biochemical research are
time consuming and only moderately successful in predicting the performance of
new lines in the field, there are increased efforts on phenomic approaches.

Hyper-spectral imaging provides an auspicious approach to plant phenotyping
[50, 51]. In contrast to conventional cameras, which record only 3 wavelengths per
pixel, hyper-spectral cameras record a spectrum of several hundred wavelengths
ranging from approximately 400nm to 2500nm (see Fig. 1). These spectra contain
information as to changes of the pigment composition of leafs which are the result of
metabolic processes involved in plant responses to stress. Supervised classification
of hyper-spectral signatures can thus be used to predict biotic stress before symptoms
become visible to the human eye [54, 56].

However, scale poses a significant challenge in hyper-spectral image analysis,
since the amount of phenotyping data easily grows into TeraBytes if several plants
aremonitored over time. For instance, each individual hypers-spectral recording con-
sidered below consists of a total of about 2 (resp. 5.8)Billionmatrix entries.Manually
labeling such data as well as running established supervised classification algorithms
therefore quickly becomes infeasible. Thus, the main goal of plant phenotyping—
the identification of phenotypic features and complex traits which are relevant for
stress resistance and to understand the underlying causal networks in the interaction
between genotype and environment —poses important and challenging problems for
big data mining: easy-to-interpret, (un)supervised data mining solutions for massive
and high dimensional data over time that scale at most linearly with the amount
of data. This requirement makes it difficult—if not impossible—to use prominent

Fig. 1 While conventional RGB images record only three color values (red, green, and blue) per
pixel, each pixel of a hyper-spectral image records how a whole spectrum of visible or invisible
light waves is reflected from a scene. (best viewed in color)
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Fig. 2 Pipeline for generating interpretable summaries from hyper-spectral imaging data. (Best
viewed in color). a Simplex Volume Maximization. b Distribution on the Simplex. c Dirichlet
Aggregation Regression. d Summary of Dynamics

statistical classification or clustering techniques such as SVD, kMeans, (convex)
NMF, NMF with volume constraints (see e.g. [3, 44, 60] and references in there),
and SVMs, which typically scale at least quadratically with the amount of data if no
form of approximation is used that is often accompanied by information loss, may
require label information, and/or do not provide easy-to-interpret features/models;
they typically produce features that aremathematical abstractions computable for any
data matrix. As Mahoney and Drineas argue, “they are not ‘things’ with a ‘physical’
reality” [40] and consequently it might be difficult—if not impossible—to provide
the plant physiological meaning of, say, an eigenvector.

Addressing these challenges, we have developed novel data mining methods for
plant phenotyping that we will review in this chapter. They make only weak assump-
tion on the generating distribution of observed signatures. For instance, one key
ingredient is a recent linear time, data-driven matrix factorization approach to repre-
sent hyper-spectral signatures bymeans of convex combinations of only few extreme
data samples. Practical results show that the resulting pipeline can predict the level
of drought stress of plants well and in turn stress before it even becomes visible to the
human eye. Moreover, it can provide an abstract and interpretable view on drought
stress progression. In the following we will go through the main ingredients of our
pipeline as illustrated in Fig. 2: (1) detecting informative hyper-spectral signatures,
(2) modeling distributions over these signatures, (3) smoothing and predicting the
evolution of these distributions over time, and (4) summarizing these dynamics using
graphical sketches.

4 Interpretable Factorization of Hyper-Spectral Images

Scientists working on plant phenotyping regularly need to find meaningful patterns
in massive, high dimensional and temporally diverse observations. For instance, in
one of our projects hyper-spectral data of resolution 640 × 640 × 69 were taken of
10 (resp. 12) plants l at 7 (resp. 20) days t . Each record can thus be viewed as a data
matrix Xt,l ∈ R

m×n with m = 640 × 640 and n = 69. Horizontally stacking the data
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Fig. 3 Data analysis using matrix factorization. (Left) Given an integer k ≤ min {m, n}, two factor
matrices W ∈ R

m×k and H ∈ R
k×n are determined such that X ≈ WH. (Right) Doing so can be

viewed as latent factor analysis respectively dimensionality reduction. For each x j ∈ R
m , there is

a h j ∈ R
k expressing x j in terms of the found latent factors W = [w1, x2, . . . , wk ] . (Best viewed

in color)

Algorithm 2 Interpretable matrix factorization
Input: Matrix X ∈ Rm×n, integer c
Select c columns from X and construct W ∈ R

m×c Compute reconstruction matrix H ∈ R
c×n such1

that the Frobenius norm ||X − HW|| is minimized with respect to 1t h j = 1, i.e., all rows of H sum
to one Return W and H with X ≈ WH

matrices recorded in all experiment then results in a single matrix X with about 2
(resp. 5.8) Billion entries. Matrix factorization is commonly used to analyze such
data. As illustrated in Fig. 3, it factorizes of a matrix X into a product of (usually) two
matrices. That is, X is approximated as X ≈ WH where the matrix of basis elements
W ∈ R

m×k , the coefficient matrix H ∈ R
k×n , and k � min{m, n}. It’s useful to think

of each column vector in W as a kind of discoveredthe original data matrix X. A
column inH represents an original data point in terms of the discovered features. This
allows for mapping high dimension al data X to a lower dimensional representation
H and can thus mitigate effects due to noise, uncover latent relations, or facilitate
further processing and ultimately help finding patterns in data.

A well known low-rank approximation approach consists in truncating the Singu-
larValueDecomposition (SVD),which expresses the data in terms of linear combina-
tions of the top singular vectors. While these basis vectors are optimal in a statistical
sense, the SVD has been criticized for it less faithful to the nature of the data at
hand. For instance, if the data are sparse the compressed representations are usu-
ally dense which leads to inefficient representations. Or, if the data consists entirely
of non-negative vectors, there is no guarantee for an SVD-based low-dimensional
embedding to maintain non-negativity. However, the data mining practitioner—as in
our application—often tends to assign a “physical” meaning to the resulting singular
components.

A way of circumventing these problems, which also hold for other classical tech-
niques such as NMF, kMeans, and sub-space clustering, consists in computing low-
rank approximations from selected columns of a data matrix [26] as sketched in the
vanilla “interpretable” matrix factorization Algorithm 2. Corresponding approaches
yield naturally interpretable results, since they embed the data in lower dimensional
spaces whose basis vectors correspond to actual data points. They are guaranteed
to preserve properties such as sparseness or non-negativity and enjoy increasing
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popularity in the data mining community [19, 20, 29, 40, 63, 66] with important
applications to fraud detection, fMRI segmentation, collaborative filtering, and co-
clustering.

But how do we select columns in Line 1? A prominent approach is based on
the statistical leverage score [40, 63]. We first compute the top-k right/left singular
vectors Vk×n of X. Then, the statistical leverage score πi for a particular column i is
computed by summing over the rows of the singular vectors, i.e. πi = 1

k

∑k
j=1 v2

j,i .
The scores πi form a probability distribution over the columns, and we essentially
select columns using that score as an importance sampling probability distribution.
Thereby, columnswhich capture the dominant part of the spectrum ofX are preferred
and assigned a higher importance score/probability, cf. [40]. As an alternative, it was
shown that a good subset of columnsmaximize their volume [13, 25]. That iswemax-
imize the volume of the parallelepiped (the value of the determinant det W) spanned
by the columns of W. Given a matrix Xm×n , we select c of its columns s.t. the volume
V ol(Wm×c) = |det W| is maximized, where Wm×c contains the selected columns.
The criterion, however, is provably NP-hard [13]. Thurau et al. [66] introduced
recently an approximation, called Simplex Volume Maximization and illustrated in
Fig. 4, thatwas empirically proven to be quite successful. For a subsetW of c columns
from X, let �(W) denote the c − 1-dimensional simplex formed by the columns in
W. Now, the volume of the c-simplex Vol(�(W)) is Vol(�(W))2c = θdetA where
θ = −1c+1

2c(c!)2 and det A is the so-called Cayley-Menger determinant [9] that essentially

only involves the squared distance d2i, j between the vertices i and j (or columns i
and j of W), see [9, 66] for details. As Thurau et al. have shown, since the distance
geometric formulations is entirely based on vector norms and edge lengths, it allows
for the development of an efficient greedy algorithm.

Specifically, finding a globally optimal subset W that maximizes the volume
requires the computation of all pairwise distances among the columns in W. For
large data sets, this is ill-advised as it scales quadratically with the number n of
data points. To arrive at an iterative, approximative O(cn) procedure, Thurau et al.
proceed greedily: Given a simplex S consisting of k − 1 vertices, we seek a new

Fig. 4 (From left to right) Didactic example of how Simplex Volume Maximization iteratively
determines basis vectors for representation of a data sample by means of convex combinations.
(Best viewed in color)
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Algorithm 3 Simplex Volume Maximization (SiVM) as introduced in [65].
Input: Matrix X ∈ R

m×n, integer c, interger l
Randomly select r from 1, 2, . . . , n z = argmax j d(X∗,r , X∗, j ) for j = 1 . . . n do2

p j ← log(d(z, X∗, j )); Φ0, j ← n j ; �0, j ← n2
j ; �0, j ← 03

a = max j (p j ) for i = 2 . . . c do4
for j = 1 . . . n do5

p j ← log(d(wi−1, X∗, j ));Φi, j ← Φi−1, j + p j ;�i, j ← �i−1, j + p2j �i, j ← �i−1, j +6

p j ∗ Φi−1; p j ← a ∗ Φi, j + �i, j − (i−1)
2 �i, j

select = argmax j {p j } wi = X∗,select W∗,i = X∗,select7

Return W ∈ R
m×k8

vertex xπ ∈ X such that xπ = argmaxk Vol(S ∪ xk)
2. Thurau et al. have shown that

this leads to the following heuristic

vπ = argmaxk

(
log(a)

∑n

i=1
log(di,k) +

∑n

i=1
j=i+1

log(di,k) log(d j,k) − n − 1

2

∑n

i=1
log2(di,k)

)
.

that locally increases the volume of the simplex in each iteration. Simplex Volume
Maximization (SiVM) is illustrated in Fig. 4 and summarized in Algorithm 3. For
the first data point to select, we simply take the two points, which are most likely
furthest away from each other. In later iterations, we select points in lines 9-18.
Pairwise distances computed in one iterations can be reused in later iterations so
that, for retrieving c columns, we need to compute distances from the last selected
column to all other data points exactly c + 1 times. As c is constant, we have an
overall running time ofO(n). Finally, we note that SiVM is more efficient than other
deterministic methods as it supersedes the need for expensive projections of the data.
Nevertheless, it aims for solutions that are similar to a greedy algorithm due to Civril
and Magdon-Ismail [14] as the projection and orthogonality constraint is implicitly
part of the distance geometric objective function.

To summarize, SiVM can be used for selecting columns in Line 1 of Algorithm 2
inO(cn) time. Then we compute the coefficients H in Line 2 by solving constrained
quadratic programs [10]. This is O(cn) = O(n) since c is a constant. Thus, applied
to a data matrix X resulting from a stacked set of hyper-spectral images, SiVM can
be used to detect few representative hyper-spectral signatures W in time linear of
the number of hyper-spectral signatures. This fast plant phenotyping using SiVM
is illustrated in Fig. 5. Next to exhaustive lab experiments, field experiments have
shown that it can distinguish subtle differences of crop traits in the field [55]. The
key to this success is that SiVM paves the way to statistical machine learning.
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(a)

(b) (c)

Fig. 5 Fast plant phenotyping using SiVM. From left to right: (a) actual examples of RGB images
of plants on the fourth measurement day; corresponding hyper-spectral images were recorded from
the same point of view and under the same conditions; (b) actual examples of different extreme
high-dimensional spectra determined within the hyper-spectral recordings; each of these spectra
corresponds to a hyper-spectral pixel and shows the fraction of light reflected at differentwavelength;
the automatically determined extreme spectra belong to images of “dry” (red) and “healthy” (green)
leafs; it is noticeable that dry and healthy plants are not necessarily distinguishable from looking at
the RGB images in (a); (c) didactic example of how any sample point can be expressed as a convex
combination of selected extremes (see previous figure); while points inside of the convex hull of
selected basis elements can be reconstructed exactly, points on the outside are approximated by
their projection onto its closest facet; (best viewed in color)
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Fig. 6 Bridging geometry and probability. The coefficient vectors h j are stochastic, i.e., they sum
to one. Hence the coefficient hi j can be thought of as p(x j |wi ) as shown for k = 4 (the darker the
less probable). (best viewed in color). a k = 3. b k = 4

5 From Geometry to Probability: Densities
over Signatures

From a geometric point of view, as illustrated in Fig. 6, the columns h1, . . . , hn

of H are data points (signatures) that reside in a simplex spanned by the extreme
elements inW. On this simplex spanned by the extremes, there are natural parametric
distributions to characterize the density of the hi . The best known one is the Dirichlet

D(hi |α) = B(α)
∏c

j=1
h

α j −1
i j (1)

where α = (α1, α2, . . . , αc). The normalization constant B(α) = Γ (S(α))/∏c
j=1 Γ (α j ) where Γ (·) is the gamma function and S(α) = ∑c

j=1 α j . This dis-
tributional view on hyper-spectral data provides an intuitive measure of e.g. the
drought stress: the expected probability of observing a healthy spot, which we call
the “drought stress level” of a plant. This “drought stress level” is a distribution. To
see this, given α, we note that the marginal distribution of the j-th reconstruction
dimension follows a Beta distribution D(α j , S(α) − α j ) and the expected value of
the j-th reconstruction dimension is μ j = α j/S(α). Thus, each α j controls “aggre-
gation” of mass of reconstructions near the corresponding column c j which explains
the term Dirichlet aggregation. Now assume that each dimension was labeled either
“background”, “healthy”, or “dry”. Averaging the expected values of “healthy” or
“dry” dimensions and treating them as parameters of a Beta distribution yields the
drought stress level of a plant. As shown in [55], this can be used to detect drought
stress up to 1.5 weeks earlier than by the naked eye.

An alternative to the Dirichlet is the log-normal distribution as e.g. proposed by
Aitchison [2] or so-called logratio transformations also due to Aitchison. The latter
transform the reconstructions from the simplex sample space to the Euclidean space.
In the transformed space, we can then use any standard multivariate method such
as estimating multivariate Gaussian distributions Normal (μ,�) with mean μ and
covariance matrix �. Doing soalternative. Under a Dirichlet, the components of the
proportions vector are nearly independent. This leads to the strong and unrealistic
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modeling assumption that the presence of one extreme point is not correlatedwith the
presence of another. A logratio transformation together with Gaussian distributions
overcome this problem and may provide a richer view on the interactions of selected
columns.

In any case, what do we gain by having distributions on the simplex induced
by SiVM? In general, it opens the door to statistical data mining at massive scale.
For instance, one could embed the hyper-spectral images into a low-dimensional
Euclidean space. This yields easy-to-interpret representations of the relationships
among the images and in turn among the plants (over time). Probably the most clas-
sical examples are multidimensional scaling (MDS) [16] and IsoMap [64]. Whereas
MDS uses pairwise distances Di, j only to find an embedding that preserves the inter-
point distances, IsoMap first creates a graph G by connecting each object to l of
its neighbors, and then uses distances of paths in the graph for embedding using
MDS. For plant phenotyping with images over time, one can strike a middle ground
taking the temporal relations among plant images into account. The main step, how-
ever, is to compute distance metric among the densities Dirichlets. To do so, one
could for instance employ the Bhattacharyya distance that is commonly used in data

Fig. 7 Improved drought stress detection using DAR. From left to right: (1) Dirichlet traces for
2010 (two groups of measurements) without and (2) with DAR smoothing. (3) Dirichlet traces
for 2011 (three groups of measurements) without and (4) with DAR smoothing. Colors indicate
controlled/stressed plants; numbers denote the measurement days
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mining to measure the similarity of two probability distributions [30]. It is computed
by integrating the square root of the product of two distributions. Figure7 shows
Euclidean embeddings of hyper-spectral images computed using the Bhattacharyya
distance between the induced Dirichlet distributions. Since the images were taken
over time, we call this Dirichlet traces. Moreover, as we will show next, we can use
more advanced machine learning methods to smooth and even predict the drought
levels over time.

6 Pre-symptomatic Prediction of Plant Drought Stress

In order to track drought levels over time, we apply Dirichlet-aggregation regression
(DAR) as proposed in [31]. We first select extreme columns from the overall data
matrix X. This captures global dependencies as we represent the complete data by
means of convex combinations extreme data points selected across all time steps.
Then, on the simplex spanned by the extreme points, we estimate Dirichlet distribu-
tions specified byαt,l over all reconstructions per day t and plant l. This captures local
dependencies. Finally, DAR puts a Gaussian process prior on these local Dirichlet
distributions. The prior can be a function of any arbitrary types of observed contin-
uous, discrete and categorical features such as time, location, fertilization, and plant
species with no additional coding, yet inference remains relatively simple. More
precisely, DAR iterates the following steps until convergence:

1. Optimize the logarithm of the complete likelihood w.r.t. the hidden Dirichlet
aggregations αt,l for each plant l.

2. Optimize the log-likelihood of all plants w.r.t. the hyper-parameters ϑ of a com-
mon Gaussian process prior.

For more technical details, we refer to [32].
This non-parametric Bayesian approach can be used for smoothing the estimated

drought level. Figure8 shows drought levels estimated byDAR averaged over groups
of plants in two data sets considered in our project. As one can see, DAR nicely
smoothesSiVM’s “hard” drought level (shownas dots).Having aBayesian regression
model at hand, however, we can also move on to make predictions. To do so, we
iteratively obtain predictions by making repeated one-step ahead predictions, up to
the desired horizon. For the one-step ahead prediction at time t∗, we apply standard
Gaussian process regression [52]. For the multiple-step ahead prediction task we
follow the method proposed in [21]. That is, we predict the next time step using the
estimate of the output of the current prediction as well as previous outputs (up to
some lag U ) as input, until the prediction k steps ahead is made. Thus, the prediction
k steps ahead is a random vector with mean formed by the predicted means of the
lagged outputs.

To summarize, based on hyper-spectral images, drought stress levels of plants can
be predicted as follows: (1) Using SiVM, we compute few extreme signatures, say
50, and label them accordingly. (2) On the simplex spanned by these extremes, we
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Fig. 8 Dirichlet-aggregation regression (DAR) of drought levels over several days in 2010 (left)
and in 2011 (right) using all hyper-spectral images available. Colors indicate controlled/stressed
plants. While the x-axis indicates measurement days, the y-axis indicates the fraction of pixels in
the analyzed hyper-spectral images that show healthy parts or spots of a plant predicted from our
DAR model. Note that experiments in agricultural research cannot seamlessly be repeated at any
time but have to adhere to seasonal growth cycles of plants. Accordingly, data not recorded in an
experiment may not be available until a year later. In this example, in the experiments in 2010,
plants were watered or stressed but not deliberately dried out. In the experiments in 2011, a third
set of data was recorded from dry plants (cf. the experimental procedure in Sect. 9)

Fig. 9 Bayesian drought level predictions (over time indicated in days) for 2010 (left) and 2011
(right). While the x-axis indicates measurement days, the y-axis indicates the fraction of pixels in
the analyzed hyper-spectral images that show healthy parts or spots of a plant. In both experiments,
the drought levels of the second half of measurement days were predicted based on a DAR model
(including the extraction of extreme spectra) obtained from the data gathered in the first half of
measurement days. Colors indicate controlled/stressed plants. Again, for the measurements carried
out in 2010, a control group of dry plants was not available

estimate the latentDirichlet aggregation values per plant and time step usingDAR. (3)
Using the Gaussian process over the latent Dirichlet aggregation values, we compute
the drought levels of each plant and time step using the labels of extreme spectra, i.e.
“background”, “healthy”, and “dry”. (4) Finally, we predict drought levels multiple
steps ahead in time using the above Gaussian process approach. Figure9 illustrates
that this prediction can work well.
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7 Sketching Drought Stress Progression

Indeed, one may argue that using non-parametric Bayesian machine learning contra-
dicts the reification challenge. Practitioners are not necessarily trained statisticians
or data scientists and hence may not be comfortable dealing them. However, as we
will show now, one can compute easy-to-interpret summaries of them.

To create a single sketch describing the hyperspectral dynamics of stressed plants,
we advocate the “Equally-VarianceBinPacking” (EBP)decomposition,whereweare
essentiallymotivated by the sequential bin-packing problem, a version of the classical
bin-packing problem in which the objects are received one by one [28]. However,
since we are in a batch1 setting, we actually face a much simpler instance of the
problem, actually with a linear time complexity: we are looking for a segmentation
of ordered objects in B equally weighted bins which preserves the original ordering
of the objects.

Given amatrixX ∈ R
K×N where the columns denote the hyperspectral signatures

representing different stages of diseases progression, we can achieve and “Equally
Variance Bin Packing” decomposition in B bins as follows: First, we compute the
distances of consecutive spectra (columns) using Euclidean distance and compute
the average bin size as

δ = 1

B

∑N−1

i=1
di(i+1)(X) where di j (X) =

√∑K

k=1
(xk

i − xk
j )

2 (2)

is the Euclidean distance. Then we fill the B − 1 bins successively with the objects
according to the bin size δ. The last bin is filled with the remaining objects.

This decomposition canbeused to drawa single sketch,where the nodes denote the
begin (resp. end) of an period and the length of the edge eb between two consecutive
nodes vb and vb+1 is set relatively to the length of the period covered by the objects
in bin b. An example of the resulting single sketches are shown in Fig. 10 (left) for
drought stressed and actually drying out plants. Each sketch highlight the interesting
periods, where a small edge (between two points) denotes a period of high impact
(change in hyperspectral signature).

To illustrate the generality of this sketching approach, we additionally computed
sketches on a financial dataset. More precisely, inspired by Doyle and Elkan [18],
we applied our approach to financial data to obtain a alternative view of economic
networks than that supplied by traditional economic statistics. The financial crisis
2008/2009 illustrates a critical need for new and fundamental understandings of
the structure and dynamics of economic networks [62]. We computed sketches for
the stock price changes of industrial sectors from the S&P 500 as listed on Yahoo!
Financial. Specifically, our dataset consists of about 10 years worth of trading data
from January 2000 to January 2011. The price of a stock may rise or fall by some
percent on each day. We recorded the daily ups and downs for about 3 consecutive

1In the long run, when plants are monitored over month, the online setting will be relevant.
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Fig. 10 (Left) Sketching the progression of drought stress over time. Each sketch highlight the
interesting periods,where a small edge (between two points) denotes a period of high impact (change
in hyperspectral signature). (Right) Financial sketches during the financial crises in 2008/2009 we
have small periods of high impact on many sectors indicating a huge change in stock market prices.
(Best viewed in color)

Fig. 11 Collective disease progression via Metro Maps of hyperspectral dynamics of diseased
plants for visible-near infrared (VNIR) (top) and short-wave infrared (SWIR) wavelengths (bottom)
taken from [68]. Each disease track from hyperspectral images exhibits a specific route in the metro
map, the direction and the dynamic steps are in correspondence to biophysical and biochemical
processes during disease development. The beginning of all routes is at the same time point/train
station (day of inoculation, gray circle). (Best viewed in color)
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months (columns) for all stocks (rows) into a single data matrix per sector. Then
we proceed as for the drought stress data. The sketches produced are shown in
Fig. 10 (right). As one can see, for the financial crises in 2008/2009 we have small
periods of high impact for many of the sectors, indicating a huge change in stock
market prices.

Finally, as demonstrated in [68], the sketches can be extended to compute struc-
tured summaries of collective phenomena that are inspired by metro maps, i.e.
schematic diagrams of public transport networks. Applied on a data set of barley
leaves (Hordeum vulgare) diseased with foliar plant pathogens Pyrenophora teres,
Puccinia hordei and Blumeria graminis hordei, the resulting metro maps of plant
disease dynamics as shown in Fig. 11 conform to plant physiological knowledge and
explicitly illustrate the interaction between diseases and plants. Most importantly,
they provide an abstract and interpretable view on plant disease progression.

8 Conclusion

Agriculture, the oldest economic venture in the history of humankind, is currently
undergoing yet another technological revolution. Sparked by issues pertaining to sus-
tainability, climate change, and growing populations, solutions for precision farming
are increasingly sought for and deployed in agricultural research and practice. From
the point of view of pattern recognition and data mining, the major challenges in
agricultural applications appear to be the following:

1. Thewidespread deployment and ease of use ofmodern, (mobile) sensor technolo-
gies leads to exploding amounts of data. This poses problems throughputcompu-
tation. Algorithms and frameworks for data management and analysis need to be
developed that can easily cope with TeraBytes of data.

2. Since agriculture is a truly interdisciplinary venture whose practitioners are not
necessarily trained statisticians or data scientists, techniques for data analysis
need to deliver interpretable and understandable results.

3. Mobile computing for applications “out in the fields” has to cope with resource
constraints such as restricted battery life, low computational power, or limited
bandwidths for data transfer. Algorithms intended for mobile signal processing
and analysis need to address these constraints.

In this chapter, we illustrated the first two challenges. More precisely, we consid-
ered the problems of drought stress recognition, prediction and summarization for
plant phenotyping from hyper-spectral imaging. We presented algorithmic solutions
that cope with TeraBytes of sensor recording and deliver useful, i.e. biologically
plausible, and interpretable results. In particular, our approach was based on a distri-
butional view of hyper-spectral signatures which we used for Bayesian prediction of
the development of drought stress levels. Prediction models of this kind have great
potential as they provide better insights into early stress reactions and to identify
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the most relevant moment when biologists or farmers have to gather samples for
invasive, molecular examinations. Moreover, as we have illustrated, even the com-
plex statistical machine learning models can be summarized into easy-to-understand
sketches.

In conclusion, the problem of high-throughput phenotyping shows that methods
from the broad field of artificial intelligence, in particular from data mining and pat-
tern recognition, can contribute to solving problems due to water shortage or pests.
Together with other contributions in the growing field of computational sustainabil-
ity [24], it thus appears that developments such as mobile, wireless and positioning
networks, new environmental sensors, and novel computational intelligence meth-
ods do have the potential of contributing to the vision of a sustainable agriculture
for the 21st century: the dream of big data feeding a hungry world seems not to be
insurmountable.

9 Experimental Setup

Data sets: In the experimental results reported here (that are actually taken from the
corresponding references), we considered two sets of hyper-spectral images. Both
data sets were recorded under semi-natural conditions in rain-out shelters at the
experimental station of the University of Bonn. For the controlled water stress, three
barley summer cultivars Scarlett, Wiebke, and Barke were chosen. The seeds were
sown in 11.5 liter pots filled with 17.5kg of substrate Terrasoil. In 2010 (first data
set) the genotype Scarlett was used in two treatments (well-watered and with reduced
water) with 6 pots per treatment. In 2011 (second data set) the genotypes Wiebke
and Barke were used in pot experiments arranged in a randomized complete block
design with three treatments (well-watered and two drought stressed) with 4 pots
per genotype and treatment. The drought stress was induced either by reducing the
total amount of water or by completely withholding water. In both cases, the stress
was started at developmental stage BBCH31. By reducing the irrigation, the water
potential of the substrate remained at the same level as in the well-watered pots for
the first seven days but decreased rapidly in the following 10 days down to 40% of
the control. For the measurements, the plants were transferred to the laboratory and
illumination was provided by 6 halogen lamps fixed at a distance of 1.6 meters from
the support where the pots where placed to record hyper-spectral pictures. These
were obtained using the Surface Optics Corp. SOC-700 which records images of
640 pixels x 640 pixels with a spectral resolution of approximately 4nm with up to
120 equally distributed bands in the range between 400 and 900 nm. In 2010, images
were taken at 10 time-points, twice per week starting from day four of water-stress.
This provided 70 data cubes of resolution 640 × 640 × 69. We transformed each
cube into a dense pixel by spectrum matrix. Stacking them horizontally resulted in
a dense data matrix with about 2 Billion entries. In 2011 images were taken every
consecutive day starting at the second day of watering reduction. Images were taken
at 11 time-points for the non-irrigated plants and at 20 time-points for plants with
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reduced water amount. Applying the same procedure as for the data from 2010
resulted in a matrix of about 5.8 Billion entries.

Analysis Setup: Where required, we split the data from 2011 (resp. 2010) into a
first half, denoted 2011.A (resp. 2010.A) and a second half, denoted as 2011.B (resp.
2010.B). Then, we extracted 50 extreme signatures from 2011.A (resp. 2010.A)
and determined a DAR regression model on 2011.A (resp. 2010.A). We labeled
the extreme signatures as “healthy”, “dry”, and “background”, computed drought
levels for 2011.A (resp. 2010.A) based on the DAR model, and used them to predict
the drought levels for 2011.B (resp. 2010.B). We also considered the complete 2010
(resp. 2011) data to determine a corresponding DARmodel and computed Euclidean
embeddings as described in [31] using the smoothed αs. Finally, we note that SiVM
can be parallelized so that plant phenotyping from the given data required only
about 30 minutes. Estimating DARmodels and making predictions happened within
minutes.
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Abstract Inland water is an important natural resource that is critical for sustaining
marine and terrestrial ecosystems as well as supporting a variety of human needs.
Monitoring the dynamics of inland water bodies at a global scale is important for:
(a) devising effectivewatermanagement strategies, (b) assessing the impact of human
actions onwater security, (c) understanding the interplay between the spatio-temporal
dynamics of surface water and climate change, and (d) near-real time mitigation
and management of disaster events such as floods. Remote sensing datasets provide
opportunities for global-scale monitoring of the extent or surface area of inland water
bodies over time. We present a survey of existing remote sensing based approaches
formonitoring the extent of inlandwater bodies and discuss their strengths and limita-
tions. We further present an outline of the major challenges that need to be addressed
for monitoring the extent and dynamics of water bodies at a global scale. Potential
opportunities for overcoming some of these challenges are discussed using illustra-
tive examples, laying the foundations for promising directions of future research in
global monitoring of water dynamics.
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Fig. 1 An illustration of the distribution of Earth’s water resources

1 Introduction and Motivation

The abundant availability of liquid water, which is unique to our planet Earth, has
been of paramount importance in sustaining all forms of life.Water helpsmaintain the
hydrological cycle which influences all major atmospheric processes of the Earth.
Water also helps in preserving the biodiversity in water ecosystems by providing
habitats to a plethora of flora and fauna [60, 92, 95].

The presence of inland water reserves plays an equally important role in main-
taining the biogeochemical cycles, since lakes and reservoirs act as important sinks
of nitrogen [34] and their annual storage and uptake of organic carbon is similar in
magnitude to that of the oceans [7, 14, 87]. The availability of freshwater further
plays an essential role in supporting a variety of human needs, such as drinking,
agriculture, and industrial needs [91]. Even though approximately two-thirds of the
Earth’s surface is covered by water, only a small fraction of it is freshwater that is
accessible for human consumption, as highlighted in Fig. 1. Further, available fresh-
water reserves are unevenly distributed across the Earth’s surface, leading to scarcity
of water in some regions and excessive abundance in others, as shown in Fig. 2.

The increasing growth of human population in the recent decades has additionally
put immense pressure on the scarce and unevenly distributed freshwater resources.
It has resulted in a lack of access to safe water and sanitation especially in the
developing countries, which has led to the increase in the severity and frequency
of water-related diseases as reported by the World Health Organization [31]. The
growing demands for water are projected to further increase and together with the
increasing trends of urbanization and water pollution, will lead to severe degradation
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Fig. 2 Map showing the uneven distribution of freshwater at a global scale

of freshwater resources, which will have significant impacts on human and ecosys-
tem sustainability. This calls for a need to take immediate preventive and restorative
actions for conserving inlandwater resources aswell as designing and promoting effi-
cient strategies for water management. A global-scale initiative for managing water
resources is further important since information about the available water resources
is often not freely shared among national and international water monitoring agen-
cies [4, 29, 33], and is thus often accessible only at local scales. This calls for a
global surface water monitoring system that can quantify the available water stocks
across the world and their dynamics over time for effectively managing water risks
at a global scale.

Inland water bodies are dynamic in nature as they shrink, expand, or change their
appearance or course of flow with time, owing to a number of natural and human-
induced factors.Changes inwater bodies have been known to have significant impacts
on other natural resources and human assets, and further influence climate change.
As an example, the Aral Sea has been steadily shrinking since the 1960s due to the
undertaking of irrigation projects, which has resulted in the collapse of fisheries and
other communities that were once supported by the lake, and has further altered the
local climatic conditions [56, 71]. Figure3 shows images of the Aral Sea in 2000
and 2014 available fromNASAEarth Observatory, showing themagnitude of change
encountered by the lake in the last fifty years that has brought the lake on the verge of
extinction. Global mapping and monitoring of the extent and growth of inland water
is thus important for assessing the impact of human actions on water resources, as
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Fig. 3 Images showing the shrinking of Aral Sea between 2000 and 2014, obtained via NASA
Earth Observatory. a August 25, 2000. b August 19, 2014

well as for conducting research that studies the interplay between water dynamics
and global climate change.

An example of the impact of climate change on the health of inland water bodies
includes the melting and expansion of several glacial lakes in Tibet due to the rapidly
increasing temperatures in these regions [62, 74, 94, 98]. It was further mentioned in
[96] that the black soot aerosols deposited on Tibetan glaciers due to the increasing
rate of urbanization and atmospheric pollution in the Tibetan plateau have been one
of the major contributing factors for the rapid glacier retreats. Figure4 provides an
illustrative example of the expansion of Cedo Caka Lake in Tibet from the year 1984
to 2011, using satellite images available via the Google Earth Engine. Monitoring
and understanding the dynamics of such lakes is important as they influence thewater
availability in several major Asian rivers such as Yellow, Yangtze, Indus, Ganges,
Brahmaputra, Irrawaddy, Salween and Mekong [5, 39], and are one of the largest
sources of ice mass reserves, next only to the North and South poles.

Monitoring inland water dynamics is also helpful in obtaining descriptive insights
about the natural processes that shape the landscape of water resources, thus advanc-
ing our understanding of the Earth’s water system. As an example, [30] recently
proposed an advancement in the classical theory of river hydraulics, termed as “at-
many-stations hydraulic geometry”, that enables an accurate estimation of a river’s
discharge solely using remotely sensed information about the river’s width over time.
Monitoring globalwater dynamics can help stimulate similar scientific advancements
in our understanding of physical processes that are related to water resources.

Devising actionable plans for monitoring global water dynamics is also important
for projecting the needs and demands for water resources [60, 75, 83], which can
help in forecasting the water stress and security requirements in the future. It can
help equip the policy-makers with the required information necessary in devising
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Fig. 4 Satellite images of Cedo Caka Lake in Tibet, obtained via the Google Earth Engine, showing
the melting of the ice mass and expansion of the lake from 1984 to 2011. a Cedo Caka Lake in
1984. b Cedo Caka Lake in 2011

strategies for the effective planning and management of water resources at regional
and global scales. Monitoring global inland water dynamics in near-real time is
further important for mitigating and managing disaster events such as floods or
harmful chemical discharges from coal extraction processes [73], which lead to large
losses of human life and property.

The availability of vast and ever-growing volumes of remote sensing data from
satellite instruments at a global scale and at regular time intervals offers a unique
opportunity for the global monitoring of the extent and dynamics of inland water
bodies. Remote sensing datasets provide spatially explicit and temporally frequent
observational data of a number of physical attributes about theEarth’s surface that can
be appropriately leveraged formapping the extent ofwater bodies at a global scale and
monitoring their dynamics at regular and frequent time intervals. In this chapter, we
present a survey of the existing approaches for monitoring water dynamics that vary
in their choice of input datasets, type of algorithm used, and the scale of applicability
of their results. We discuss their strengths and limitations and summarize the major
challenges in monitoring the extent of water bodies at a global scale. We further
present opportunities for overcoming some of these challenges using illustrative
examples, which can be helpful in designing the road-map for future research in
global monitoring of inland water dynamics.

The remainder of this chapter is organized as follows. Section2 provides a survey
of the existing approaches in monitoring the extent of inland water bodies based
on their type of input data, type of application domain, and the type of algorithm
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used. Section3 highlights the important challenges in global monitoring of inland
water dynamics using remote sensing datasets, and presents opportunities in over-
coming some of these challenges using illustrative examples. Section4 summarizes
the contributions of this chapter and provides concluding remarks.

2 Survey of Water Monitoring Approaches

Existing approaches for water monitoring have focused on monitoring a variety of
physical attributes about water bodies, such as their water level or height, quality
of water, or the extent or surface area of water. Techniques that have focused on
monitoring changes in the water level in a given water body have made use of radar
altimetry datasets, measured via satellite instruments [8–11, 62, 94, 98]. However,
radar altimetry datasets are expensive and have limited coverage in space and time,
making them unsuitable for monitoring the dynamics in small to moderately-sized
water bodies. Techniques for monitoring the quality of water have focused on moni-
toring a number of attributes about water bodies, such the clarity of water [2, 44, 45],
suspended particulate matter [19], soil wetness [32, 47, 81], and the trophic status
[13, 69].

Watermonitoring techniques that have focused onmonitoring the extent or surface
area of water bodies have made use of optical or radar remote sensing datasets [1, 27,
55, 80, 90]. These datasets contain discriminatory information about the land and
water classes that can be used for estimating the spatial extent of water bodies. Due
to the availability of optical remote sensing datasets at a global scale and at frequent
time intervals, these methods have the potential of mapping the global surface area
dynamics of water bodies. We primarily focus on techniques for monitoring the
extent or surface area of water bodies, and provide a survey of existing approaches
in this area.

Existing approaches for monitoring the extent of inland water dynamics can be
categorized on the basis of (a) the type of input dataset used, e.g. LANDSAT,ASTER,
MODIS, or SAR, (b) their type of application, e.g. type of water body being mon-
itored and the region or scale of evaluation, and (c) their type of algorithm used,
e.g. supervised, unsupervised, hybrid, or manual. We present a survey of existing
approaches on the basis of each of these three categorizations in the following sub-
sections.

2.1 Based on Type of Input Data

The use of optical remote sensing datasets has been extensively explored formapping
the extent of water bodies, since water and land bodies show distinguishing charac-
teristics in the optical remote sensing signals, such as visible, infrared and thermal
parts of the electromagnetic spectrum. A number of optical remote sensing datasets
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Table 1 Table of references categorizing the existing water monitoring approaches based on the
type of input data used

Input dataset References

IKONOS (1–4m resolution, commercially
available)

[18, 22]

SPOT (1.5–20m resolution, commercially
available)

[12, 84–86]

ASTER (15–90m resolution, via NASA
satellites)

[41, 67, 73]

LANDSAT (30m resolution, via USGS) [21, 25, 26, 36, 38, 42, 46, 49, 53, 57–59, 61,
65–67, 73, 74, 80, 97, 100]

MODIS (250m resolution, via NASA
satellites)

[40, 50, 51, 68, 78, 79, 99]

SAR (via JERS, ScanSAR, TerraSAR-X,
RadarSat, and PolSAR)

[1, 6, 35, 37, 47, 54, 64, 70, 81, 82, 84–86]

have been used for monitoring the extent of water bodies at varying degrees of
spatial resolution, such as the IKONOS, SPOT, ASTER, and LANDSAT at finer
spatial resolutions and the MODIS datasets at relatively coarser resolutions. Fur-
thermore, radar datasets have been used for monitoring glacial lakes, floods, and
wetlands, since they are free from cloud contaminations and have the ability to distin-
guish between water and snow or ice. The synthetically aperture radar (SAR) dataset,
obtained via a number of satellite instruments such as JERS, ScanSAR, TerraSAR-X,
RadarSat, and PolSAR, have been commonly used for monitoring water bodies using
radar datasets. However, the high costs associated with obtaining radar datasets at a
global scale and in a timely fashion limits their usefulness in monitoring the global
surface area dynamics of inland water bodies.

Table1 provides a summary of the various types of input datasets that have been
used in the existing literature for monitoring water bodies.

2.2 Based on Type of Application

Approaches formonitoring the extent ofwater bodies have been applied in a variety of
applications regions, such as lakes, ponds, reservoirs, glacial lakes, thaw lakes, rivers,
river basins, wetlands, mangroves, shallow water, and tidal flats. Table2 provides a
summary of water monitoring approaches that have been used for different types of
water bodies.

A number of existing approaches have been used for monitoring water bodies at
local scales, i.e. monitoring a single water body in a local region. These have been
applied in diverse regions of theworld. Other approaches have focused onmonitoring
water bodies at a regional scale, i.e. monitoring a set of water bodies in a particular
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Table 2 Table of references categorizing the existing water monitoring approaches based on the
type of water body they attempt at monitoring

Water body type References

Lakes and reservoirs [18, 20, 48, 52, 58, 62, 66, 74, 80, 89, 90, 94,
97, 98]

Ponds and watersheds [73, 83]

Glacial lakes [1, 12, 37, 41, 49, 53, 61, 65]

Thaw lakes [26, 36]

Rivers [25, 42, 50, 59, 60, 76, 78, 79]

River basins [23, 24, 82]

Wetlands [6, 35, 38, 46, 54, 57, 84–86]

Mangroves, shallow water, and tidal flats [17, 67, 93]

region of the Earth. Tables3 and 4 provide a summary of the local and regional scale
approaches that have been applied in diverse regions of the Earth. These approaches
have been highlighted on the world map in Fig. 5.

Few attempts have aimed at a global scale monitoring of water bodies, e.g. the
global mapping of the extent of lakes at a global scale for a single snapshot in time in
the year 2000 [89], and the monitoring of water dynamics in 34 reservoirs across the
Earth [28]. However, these approaches either have limited coverage in space [28] or
in time [89], and hence, a global scale monitoring of the dynamics of inland water
bodies across all regions of the world and over long time periods is still missing.

2.3 Based on Type of Algorithm

On the basis of the type of algorithm used for mapping land and water bodies using
remote sensing datasets, the existing approaches for water extent monitoring can be
categorized as follows:

2.3.1 Manual Annotation Based

Manual approaches for watermonitoring involve the use of a human expert that anno-
tates land and water classes using high-resolution optical remote sensing datasets
and satellite images. As an example, the evolution of glacial lakes in the northern
Patagonian icefields was monitored using manual mapping of the extent of water
bodies over multiple time-frames [53]. Mapping the geographical characteristics of
China’s wetland using manual approaches was further carried out in [57]. Glacial
lakes in the Himalayan basin were manually mapped in [41], for monitoring glacial
lake outburst flood (GLOF) events. Although these approaches can potentially pro-
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Table 3 Summary of approaches that have been applied in different regions of the world at a local
scale, arranged in alphabetical order of the name of the study region

Region of study References

1 : Alaknanda River, Himalayas [41]

2 : Erie Lake, North America [18]

3 : Chapala Lake, Mexico [52]

4 : Dongkemadi Glacier, Tibet [37]

5 : Gomso Bay, Korea [67]

6 : Koa Catchment, India [42]

7 : Loisach River, Germany [76]

8 : Mackenzie River, Canada [82]

9 : Murray Lake, Australia [59]

10 : Nangaparbat Massif, Pakistan [12]

11 : New Orleans, USA [78, 79]

12 : Oberaletsch Glacier, Alps [61]

13 : Peace-Athabasca Delta, Canada [84–86]

14 : Powder River Basin, Wyoming [73]

15 : Bayi Lake, China [97]

16 : Pearl River Delta, China [100]

17 : Poyang Lake, China [38]

18 : Rio Negro River, Amazon [24]

19 : Seyfe Lake, Turkey [66]

20 : Terengganu, Malaysia [22]

21 : Tewkesbury, UK [70]

22 : Tiaoxi Watershed, China [43]

23 : Vietnamese Mekong Delta [68]

vide high estimation accuracy, they are time-consuming, labor-intensive, and lack in
reproducibility of their results.

2.3.2 Unsupervised Learning

This includes automated algorithms that do not rely on the use of a reference or
ground-truth information about thewater or land classes, and are thus unsupervised in
nature. Hence, they are not affected by the scarcity of labeled data, which is common
in a number of real-world applications since obtaining plentiful and representative
labeled samples is often time-consuming and expensive. However, unsupervised
methods rely on certain assumptions about the input features and the land and water
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Table 4 Summary of approaches that have been applied in different regions of the world at a
regional scale, arranged in alphabetical order of the name of the study region

Region of Study References

1 : Alaska [26, 36]

2 : Amazon [35, 54]

3 : Australia [17, 46]

4 : Bangladesh [40]

5 : China [57, 80, 94]

6 : Himalayas [49, 65]

7 : Kenya [58]

8 : Mekong River, Asia [23]

9 : Mississippi River, US [50]

10 : Scandinavia [48, 90]

11 : Panama [93]

12 : Patagonia [53]

13 : Southeast Asia [99]

14 : Tibet [62, 74, 98]

15 : Western USA [83]

Fig. 5 A geo-referenced summary of existing local scale approaches (shown in blue and enlisted
in Table3) and regional scale approaches (shown in red and enlisted in Table4) for monitoring the
extent of water bodies

classes, such as the existence of an arbitrary threshold separating land from water
signals, which are obtained using domain understanding at regional scales that may
not generalize at global scales.



Global Monitoring of Inland Water Dynamics … 131

A large number of unsupervised approaches for monitoring water extent make use
of thresholds on remote sensing signals for estimating the land and water classes, a
technique termed as density slicing. Even though density slicing on a single remote
sensing signal, e.g. a discriminatory optical band, is useful in distinguishing between
land andwater classes [25, 59, 67], itmaynot be sufficient for discriminating between
all varieties of land andwater classes [43].Hence, a number of techniques for combin-
ing the information from multiple bands have been explored for improved detection
of the extent of water bodies [54, 65, 68, 77]. This includes the use of non-linear
transformations of multiple optical bands, termed as water indices, which are more
discriminatory in distinguishing between land and water classes than the individual
bands. Some of the indices that have been commonly used for monitoring water
extent include the Normalized Difference Vegetation Index (NDVI) [88], the Nor-
malized Difference Water Index (NDWI) [27], the Modified NDWI (MNDWI) [97],
and the Tasseled Cap Wetness Index (TCW) [15]. Existing approaches have either
used thresholds on a single water index [20, 23, 55], or combinations of multiple
water indices and optical bands using intricately designed hand-coded rule systems
[40, 43, 58, 61].

A major limitation of thresholding based methods is their dependence on the
choice of an appropriate threshold that is commonly obtained using visual inspec-
tion on a small set of reference water bodies in the region of study. Since manual
thresholding techniques and hand-coded rule systems rely on certain assumptions
about the features which may not be generalizable at a global scale, their thresh-
olds vary across different regions in space and lack robustness when applied to large
regions. An approach for the automatic detection of a local threshold for every water
body in the region of study was performed in [49] using an iterative threshold-
ing method. Other automated approaches for the unsupervised detection of water
extent include the use of clustering techniques, such as k-means [28, 99] or ISO-
DATA algorithm [66, 73, 74]. Segmentation approaches that involve region-growing
and agglomerative clustering operations have been explored for water extent map-
ping, using mean-shift segmentation [18], morphological segmentation [16, 64], and
object-based unsupervised classification [35, 80]. In order to account for the hetero-
geneity in the land and water classes, target decomposition into multiple classes,
such as clear, green, and turbid water has been used [80].

Advantages

• Unsupervised approaches are training-free approaches that do not rely on the avail-
ability of labeled data, which is often time-consuming, laborious, and expensive
to obtain.

• Clustering and segmentation based approaches are adaptive in nature to the char-
acteristics of the input dataset and hence offer better generalization abilities than
supervised approaches at local to regional scales.
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Challenges

• Since unsupervised techniques often rely on specific assumptions about the input
dataset and the target application, they have limited applicability in scenarios
where their underlying assumptions are violated. As an example, [28] recently
proposed an unsupervised approach for characterizing water and land bodies as
the two clusters obtained by clustering NDVI values using the k-means algorithm.
This primarily assumes a bi-modal distribution of the data in the feature space,
where each mode corresponds to either the land or the water class. However,
in scenarios where the distribution of land and water classes are multi-modal in
nature due to heterogeneity within the land and water bodies or if the land and
water classes are obstructed due to clouds or aerosols, the underlying assumptions
of such a clustering based technique is violated, leading to poor performance of
the algorithm.

• Since unsupervised approaches do not explicitly model the differences in the char-
acteristics of land and water bodies in different regions of the Earth, they suffer
from poor performance in certain regions of the world that have distinct signa-
tures of land and water classes. The presence of heterogeneity within the land and
water classes further results in a high sensitivity of the model parameters, such as
thresholds and clustering choices, used by unsupervised learning approaches in
different regions and seasons of the world.

• Since thresholding based approaches often involve the manual selection of thresh-
olds that vary from different regions and time-frames, their deployment at a global
scale for large-scale water monitoring is time-consuming and expensive.

2.3.3 Supervised Learning

Supervised approaches for water extent monitoring involve the learning of a concept-
based model of the relationship between remote sensing signals and a target attribute
of interest, e.g. water and land classes or water surface fractions. This is achieved by
theuseof labeled trainingdata for learning amodel of relationshipbetween the remote
sensing signals and the target attribute, which is then applied on unseen test instances
for estimating their target attribute. The performance of supervised approaches is thus
dependent on the choice of the algorithm used for describing the relationship model
as well as on the availability of adequate and representative training instances. Since,
obtaining accurate ground-truth labeled data at a global scale and at frequent time
intervals is time-consuming and expensive, the applicability of such approaches is
generally limited to local to regional scales and at infrequent time-steps.

A range of supervised classification algorithms for mapping water bodies have
been explored in the existing literature, including the maximum likelihood clas-
sifiers [1, 21], decision trees [26, 50, 51, 79, 90], rule-based algorithms [46], k-
nearest neighbor classifiers using the Mahalanobis distance [84–86], support vector
machines [37], artificial neural networks [12, 36, 100], self-organizing maps [2, 3],
and fuzzy classification algorithms [72]. These have been shown to provide better
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performance in monitoring water bodies than unsupervised approaches, especially
in regions where ground-truth is available.

Since supervised learning requires the use of representative training samples, their
applicability has been limited to local and regional scales in space and short durations
in time. A major challenge in applying supervised learning algorithms at a global
scale is the presence of a rich variety in the land and water classes, which is difficult
to capture in the training dataset and exploit in the model learning phase. Existing
approaches for overcoming this challenge of heterogeneity among the land and water
classes include target decomposition techniques, where the land and water classes
are decomposed into multiple target land and water categories [37], thus converting a
binary classification problem to a multi-class classification problem. Similarly, [90]
accounted for the presence of heterogeneity within the land and water categories
by considering 50 classes of water and land categories, which were further grouped
into 4 classes, and eventually to two classes of water and land. Decision trees were
used for multi-class classification and their results were evaluated in Sweden for a
single snapshot in time in the year 2000, when accurate ground-truth information
is available. They further applied their model for performing a global monitoring
of water bodies for the year 2000, using LANDSAT optical imagery at 14.25m
resolution [89].

Advantages

• Since supervised approaches are able to utilize the discriminative information
contained in the labeled training datasets, they generally offer better estimation
accuracy as compared to unsupervised approaches that instead rely on certain
assumptions about the input dataset.

Challenges

• Since a number of application domains suffer from limited availability of training
data, the scope of application of supervised approaches is limited to regions which
have representative samples of labeled data in the training dataset. This limits their
applicability at a global scale and at frequent time-intervals.

• Anumber of supervised approaches involve the learning of a singlemodel using all
training instances, which is considered generalizable over all unseen test instances.
However, due to the presence of heterogeneity within the land water classes at a
global scale, the characteristics of the land and water bodies in the remote sensing
signals vary differently for different regions on the Earth and for different time-
steps. This requires learning different relationships between remote sensing signals
and land andwater classes for different regions in space and at different time-steps,
which is challenging for traditional supervised learning approaches that do not
explicitly model the heterogeneity in the data.
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• Obtaining representative training samples for performing supervised learning is
challenging due to the presence of heterogeneity within the land and water bodies.
Existing techniques for sampling training instances do not take into account the
heterogeneity within the two classes, which can result in an under-representative
set of training instances that may lead to poor generalization performance.

2.3.4 Hybrid Learning

These approaches involve the use of both supervised and unsupervised techniques
in conjunction for mapping the extent of water bodies. As an example, hybrid
approaches for water fraction estimation make use of supervised approaches for
estimating water and land labels, which are then used to compute water fractions
using unsupervised approaches. In this context, Li et al. [51] used decision trees to
estimate land and water classes, which was then used to estimate the water fraction
using an unsupervised dynamic nearest neighbor searching (DNNS) algorithm to
find the nearest pure land and water pixels along with the use of digital elevation
data. Similarly, [78] used linear mixing models to estimate the water fraction at a
pixel, using information about the land and water classes estimated using decision
trees with feature transformations. The use of regression trees to estimate the water
fraction at fine spatial resolutions has been explored in [79].

The use of supervised approaches to guide the behavior of unsupervised algo-
rithms has been explored in [52], where polygons of water and land pixels generated
using active learning schemes were used for obtaining labeled training data, which
was then used as seeds in an unsupervised fuzzy clustering approach. A similar
approach was used in [70], where labeled instances obtained using active learning
schemes were used as seeds in an unsupervised clustering algorithm, that produced
the target maps of land and water classes.

Supervised object-based methods have been explored in [26, 93], that use unsu-
pervised segmentation approaches for constructing objects that are then used in a
supervised learning framework. Instead of performing classification at a per-pixel
level, these approaches use region-growing methods to segment the image into spa-
tial objects, which are then classified into land or water classes on the basis of their
aggregate optical remote sensing properties. This has the advantage of being robust
to noise and outliers, as well as capturing the aggregate phenomena that is difficult
to observe at fine spatial scales. Wang et al. [93] further explored an approach that
combined pixel-based and object-based classification approaches.
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3 Challenges and Opportunities in Monitoring Global
Water Dynamics

We discuss the key challenges in the global monitoring of inland water dynamics
using supervised learning algorithms and opportunities for future research in the
following subsections. We consider supervised learning approaches, since they are
able to provide better estimation performance than unsupervised approaches given
the availability of representative training data.

3.1 Challenges

The major challenges in global monitoring of the extent of water bodies using super-
vised learning approaches can be summarized as follows:

• Presence of noise: Remote sensing datasets are often plagued with noise and
outliers, due to cloud and aerosol contaminations. These can significantly impact
the performance of a classifier and lead to inconsistencies in results. Shadows
of mountains and clouds further show similar characteristics in remote sensing
signals as water bodies, making it difficult to distinguish them from the water
class using optical remote sensing datasets.

• Presence of snow and ice: Distinguishing water from snow, ice, and glaciers is
additionally challenging due to their similar characteristics in optical remote sens-
ing datasets. Furthermore, including training samples from snow and ice may lead
to class confusion between the water class and the snow covered land class in
the feature space, leading to poor performance of the classifier not only in snow
covered regions of the Earth but across diverse regions in space at a global scale.
Even though the use of radar data provides an opportunity for distinguishing water
from snow and ice, radar datasets are expensive to obtain and are not available at
a global scale and at regular time intervals.

• Heterogeneity in space: Due to the existence of a variety of land and water bod-
ies across varying geographies, topographies and climatological conditions of the
Earth, different land and water bodies show varying characteristics in remote sens-
ing signals in diverse regions of the world. This results in a heterogeneity within
the land and water classes at a global scale, which makes the learning of a classi-
fier that distinguishes between all categories of land and water bodies challenging.
Furthermore, the presence of heterogeneity demands the need for obtaining repre-
sentative and diverse training samples from different regions of the world, in order
to learn a classifier that is able to capture the heterogeneity in the data.

• Heterogeneity in time: A large number of land and water bodies further exhibit
a high variability in their characteristics over time, either due to the presence of
seasonal cycles or due to their inter-annual dynamics owing to changes in climate
or due to human impacts. This results in a heterogeneity in the characteristics of
land andwater bodies over different time-steps, as the same land orwater bodymay
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show different characteristics in remote sensing signals at different time-steps. The
presence of heterogeneity within the land and water classes over time restricts the
usefulness of a static classifier that does not adapt its learning with the changing
characteristics in the data over time.

• Lack of representative training data: Since obtaining training data is often time-
consuming and expensive, global-scale ground truth information about the land
and water bodies at frequent temporal scales is difficult to obtain. In the absence of
representative training samples, it is challenging to generalize the performance of
a classifier at a global scale over new varieties of test instances that had not been
observed during the training phase. Furthermore, learning a classifier that can
address the heterogeneity within the land and water classes requires the learning
of models with high overall complexity, which further adds to the challenges of
limited training data, as such models can be prone to over-fitting in the absence of
representative training samples.

3.2 Opportunities

We present the opportunities in addressing some of the challenges in global moni-
toring of water bodies using supervised learning approaches, and demonstrate them
using illustrative examples. In all our experiments presented in this section, we used
the optical remote sensing dataset (MCD43A4) publically available at 500m reso-
lution for every 8 days, starting from Feb 18, 2000, via the MODIS repository. This
dataset has seven reflectance bands covering visible, infrared, and thermal parts of
the electromagnetic spectrum, which can be used as input features for discriminat-
ing between land and water bodies. However, it suffers from the presence of noise,
outliers, and missing values, due to cloud or aerosol obstructions etc.

Ground truth information about the extent of lakes was obtained via the Shuttle
Radar Topography Mission’s (SRTM) Water Body Dataset (SWBD) dataset, which
provides amappingof allwater bodies for a large fraction of theEarth (60 ◦S to 60 ◦N),
but for a short duration of 11 days around Feb 18, 2000 (the closest date at MODIS
scale). The SWBD dataset, publically available through the MODIS repository as
the MOD44W product, thus provides a label of land or water for every MODIS pixel
at 250m for a single date, Feb 18, 2000. Even though the SWBD dataset suffers
from inaccuracies in some regions of the world, it provides a reasonable proxy of
the ground truth that can be used for training and evaluating classification models in
absence of any other high quality global ground truth.

We consider a global set of 180 lakes collected from 33 different MODIS tile
divisions across the globe (highlighted in red in Fig. 6) as our evaluation dataset.
These lakes were selected as they represent diverse categories of land and water
bodies at a global scale, and further have lower numbers of missing values and
ground truth inconsistencies. For each lake, we created a buffer region of 20 pixels at
500m resolution around the periphery of the water body, and used the buffer region
as well as the interior of the water body to construct the evaluation dataset. After
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Fig. 6 The 33 MODIS tile divisions (highlighted as red boxes) that were used for constructing the
evaluation dataset

removing instances at the immediate boundaries of the water bodies for which the
ground truth might not be accurate, and ignoring instances with missing values, the
evaluation set comprised of ≈2.6 million data instances, where every instance had
an associated binary label of water (positive) or land (negative).

We considered Support Vector Machines with a linear kernel (SVM) as the choice
of the classification algorithm in all the experiments presented in this section. The
regularization parameter of SVM was chosen to be 0.5 in all experiments to ensure
adequate regularization. We used the misclassification error rate as the evaluation
metric for assessing the classification performance of an algorithm in distinguishing
between water or land.

3.2.1 Using Local Models for Capturing the Heterogeneity in Space

The use of local models refers to the learning of a separate classification model
distinguishing water and land pixels for every lake in the evaluation dataset, using
labeled instances only within the lake for training. Due to the presence of heterogene-
ity within the land and water classes at a global scale, different lakes have different
compositions of land and water bodies, which vary in their degree of separability in
the feature space in different regions of the Earth. Hence, a classification model that
is trained to distinguish between a particular pair of land and water bodies in a given
lake may have difficulties in classifying the water and land bodies in a different lake,
with widely varying characteristics of land andwater classes in the feature space. The
learning of local models is thus aimed at capturing the local patterns of differences in
the characteristics of land and water classes, which are different for different lakes.
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Demonstration

Wedemonstrate the importance of learning local classificationmodels that are trained
and tested on the same lake by contrasting it with the learning of other classification
models that are trained on a lake and tested on some other lake. Specifically, we
consider 50% of the water pixels and an equal number of land pixels in every lake for
training an SVM classifier for that lake, while the remainder of land and water pixels
in that lake are considered for testing. The learned classifier in a lake, Lake i , can
then be applied on the test instances in a lake, Lake j , to obtain the misclassification
error rate, E(i, j).

Figure7 presents a matrix of the misclassifcation error rates, E(i, j), for every
pair of lakes, (Lake i , Lake j), in the evaluation dataset comprising of 180 lakes.
Note that the diagonal entries in the matrix correspond to E(i, i), which represent the
error rate of a local classifier trained on a particular lake and tested on the same lake.
Figure7 shows that there is a grouping structure among the lakes which show lower
error rates among the groups but high error rates across the groups. This is indicative
of the heterogeneous categories of land and water bodies present at a global scale,
which can be grouped into different categories of land and water bodies across the
180 lakes. It can be further observed fromFig. 7 that the error rates of local classifiers,
E(i, i), are always lower than the error rates of classifiers trained on a particular lake
and tested on a different lake. Further, even though the classifiers for a number of
lake pairs, (Lake i , Lake j), show similar error rates as the local classifiers, there
exists multiple groups of lake pairs with significantly higher error rates than the local
classifiers. This highlights the fact that for such pairs of lakes, (Lake i , Lake j), the
training instances in Lake i are not representative of the test instances in Lake j ,
leading to poor generalization performance, E(i, j).

Fig. 7 Matrix of
misclassification error rates
where the entry at the i th
row and j th column, E(i, j),
denotes the misclassification
error rate of the classifier
learned using training
instances from Lake i , when
evaluated on the test
instances in Lake j
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Fig. 8 False color composites (using the 7, 5 and 4th bands, as red, green and blue colors respec-
tively) of Lake Tana and Lac La Ronge Lake. Error rate of the classifier learned in Lake Tana and
tested in Lac La Ronge Lake is 0.67, and the error rate of the classifier learned in Lac La Ronge
Lake and tested in Lake Tana is 0.48. a Lake Tana, Ethiopia. b Lac La Ronge Lake, Saskatchewan,
Canada

We explore one such pair of lakes that are illustrative of the heterogeneity within
the land and water bodies across the 180 lakes. Figure8 shows an example of a pair
of lakes, Lake Tana in Ethiopia (Fig. 8a) and Lac La Ronge Lake in Saskatchewan,
Canada (Fig. 8b), which show an error rate of 0.67 when the learned classifier from
Lake Tana is applied on Lac La Ronge Lake, and an error rate of 0.48 when the
vice-versa is applied. The high magnitutdes of these error rates is indicative of the
differences in land and water bodies across the two lakes that have been collected
from diverse regions of the Earth. This motivates the need for learning local models
that cater to the local characteristics of water and land categories in a given lake, and
thus are able to capture the heterogeneity within the land and water classes in space.

3.2.2 Using Global Models for Capturing the Heterogeneity in Time

The heterogeneity in the characteristics of land and water bodies across time can
either be attributed to seasonal cycles of the Earth or dynamic intra-annual changes
occurring in the water body due to climate change or human-induced factors. This
often leads to the emergence of different land and water categories at a future time-
step that were not observed on a particular date in the year 2000 for which the SWBD
ground truth data is available. Using a local model for a lake that only considers the
training instances in the lake for a single date in the year 2000 can potentially lead to
the incorrect classification of the emerging land and water categories at future time-
steps, since the training data in the year 2000 is not representative of such classes.
However, by obtaining adequate number of training samples from a diverse set of
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lakes at a global scale, as opposed to using local training samples from a single
lake, we can expect to observe a broad variety of land and water categories that
can potentially cover the new land and water categories that emerge at future time-
steps. Such a model can be termed as a global classification model, which captures
sufficient diversity of land and water bodies at a global scale in its training dataset.

Demonstration

Since the ground-truth information about the 180 lakes is available via the SWBD
dataset for a single date in the year 2000, we do not have labeled data to validate the
classification performance of a classifier at any of the 180 lakes going forward in time.
However, we can still visually explore the differences in the results of comparative
algorithms at a given lake at a particular time-step and compare themwith false color
composite images [63] of the lake using information in the optical datasets at the
same time-step. We consider two classification algorithms: (a) a global model that
uses training samples from all the 180 lakes in the evaluation dataset, and (b) a local
model that uses training samples only from its respective local lake. We monitor
the performance of the global and local SVM classifiers for the Mar Chiquita Lake,
which is a salt lake in Argentina that has been slowly diminishing in area since 2003.
Both the global and local classifiers are trained using equal number of≈8000 positive
(water) and negative (land) training samples.

Figure9 shows the performance of the global and local classifiers at Mar Chiquita
lake on September 21, 2000, when the shrinking of the lake extent had not begun
and the characteristics of land and water bodies were in agreement with the training
instances available on Feb 18, 2000. In fact, the differences between the classification
output of the global classifier (Fig. 9b) and the classification output of the local
classifier (Fig. 9c) is small and only occurs at the periphery of the lake as shown in
Fig. 9d. However, Fig. 10 shows the performance of the global classifier (Fig. 10b)
and the local classifier (Fig. 10c) for this lake on January 1, 2012, which can be seen
to be significantly different in Fig. 10d. It can be seen from the false color composite
image of the lake at this time-step (Fig. 10a) that the lake has undergone a major
reduction in its surface area from 2000 to 2012. This has lead to the emergence of a
new category of barren land around the shrinking periphery of the lake, which had
not been observed by a local classifier at the same lake in the year 2000. Hence,
the local classifier incorrectly classifies a large fraction of the new land category as
water as shown as red in Fig. 10d. However, the results of the global classifier can
be observed to be in better agreement with the false color composite. This can be
attribute to the fact that the global classifier had observed training samples from a
diverse set of lakes across the world, which was representative of the new category
of land class that emerged in this lake in 2012. The global classifier was thus able to
accurately map the extent of the lake in 2012 and thus identify the shrinking of this
lake, as opposed to the local classifier that is unable to detect the shrinking of this
lake.
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Fig. 9 Performance of global and local classifiers at Mar Chiquita Lake, Argentina on September
21, 2000. Color code for figures b and c: green—land, blue—water, and white—missing from
evaluation. Color code for figure d: blue—pixels detected by both global and local classifiers as
water, red—pixels detected only by the local classifier as water; andwhite—everything else. a False
color composite. b Results of global. c Results of local. d Differences in results

4 Conclusion

In this chapter, we discussed the importance of monitoring the dynamics of inland
water bodies at a global scale and its impact on human and ecosystem sustainability.
We presented a survey of the existing efforts in monitoring the extent of water bodies,
and categorized themon the basis of the type of input dataset used, the type of applica-
tion considered, and the type of algorithm used.We highlighted the major challenges
in monitoring the extent of inland water bodies at a global scale and further presented
opportunities for using supervised learning approaches in overcoming some of these
challenges, which can be helpful in framing future directions of research in this area.

A major challenge in the global monitoring of inland water dynamics is the pres-
ence of heterogeneity within the land and water classes in different regions across
the world and at different time-steps. Since supervised learning approaches require
the use of labeled training data, it is important to devise sampling strategies for
obtaining training instances that are representative of the variety of water and land
classes at a global scale. For example, active learning approaches that are cognizant
of the heterogeneity within the classes while obtaining training instances can be
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Fig. 10 Performance of global and local classifiers at Mar Chiquita Lake, Argentina on January
1, 2012. Color code for figures b and c: green—land, blue—water, and white—missing from
evaluation. Color code for figure d: blue—pixels detected by both global and local classifiers as
water, red—pixels detected only by the local classifier as water; andwhite—everything else. a False
color composite. b Results of global. c Results of local. d Differences in results

explored. The importance of learning local and global models for monitoring global
water dynamics had been presented in Sect. 3.2 using illustrative examples. Future
research can focus on developing classification models that strike a balance between
the local and global models, and appropriately leverage the advantages of both of
these approaches by utilizing information about the context of classification. As an
example, local models that can adapt themselves to the characteristics of the unla-
beled test instances at a given lake and at a particular time-step could be explored
using semi-supervised learning approaches.

Classical schemes for evaluating the performance of a classifier consider the over-
all classification performance over all test instances in the dataset, using evaluation
metrics such as accuracy, precision, recall, or receiver-operating curves. For the prob-
lem of global monitoring of inland water bodies, this corresponds to evaluating the
performance of the classifier over all locations and time-steps across all lakes in
the world. Such an evaluation would tend to be biased towards few very large lakes
with large interior portions of water that are easily distinguishable from land. How-
ever, the presence of heterogeneity in land and water classes is most prominent at
the peripheries of small or moderately sized lakes, and such lakes tend to be more
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dynamic as compared to larger lakes, making their monitoring equally important
from an operational perspective. Hence, it is important to devise evaluation proce-
dures that perform a lake-wise analysis of the classification performance, as opposed
to evaluating the overall classification performance.
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Abstract Electric Vehicles (EVs) are touted as the sustainable alternative to reduce
our over-reliance on fossil fuels and stem our excessive carbon emissions. As the use
of EVs becomes more widespread, planners in large metropolitan areas have begun
thinking about the design and installation of charging stations city-wide. Unlike gas-
based vehicles, EV charging requires a significant amount of time and must be done
more periodically, after relatively shorter distances.Wedescribe aKDDframework to
plan the design and deployment of EV charging stations over a city. In particular, we
study this problem from the economic viewpoint of the EV charging station owners.
Our framework integrates user route trajectories, owner characteristics, electricity
load patterns, and economic imperatives in a coordinated clustering framework to
optimize the locations of stations and assignment of user trajectories to (nearby)
stations. Using a dataset involving over a million individual movement patterns,
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1 Introduction

In the last decade, electric vehicles (EVs) have been considered a promising solution
for some environmental and economical issues. Fast decline of fossil fuels and global
warming have increased the interest of policy makers in developed countries to use
sustainable approaches to energy production, distribution, and consumption [1]; EVs
have been touted for their potential to dramatically reduce fossil fuel consumption
and CO2 emissions [2].

To operationalize and encourage EV usage, charging stations should be installed
in multiple areas of a city. In large metropolitan areas with a significant number
of EVs, charging stations must be installed in carefully selected locations. As a
matter of fact, charging an EV is different from refueling a traditional gas-based
car: EV charging takes much longer and places a significant amount of load on the
electric grid [2]. Furthermore, compared to traditional cars, EVs must be recharged
after relatively shorter distances. Proper placement of charging stations can result in
optimal distribution of electricity load, maximization of revenue of service providers,
and lead to increased availability of charging stations, and reduced range anxiety.

While charging station placement is an important task for EV deployment in
urban areas, there is a relatively small number of prior research in this area (e.g., see
[3–5], and our own work [6]) and all aim to locate charging stations to maximize
the meeting of demands. In a comprehensive planning effort, however, it is crucial
to consider economic factors in design of charging infrastructure for EVs to ensure
financial feasibility as well as long-term economic growth. Various business models
can be considered for EV charging station infrastructure, and in fact, EV charging
infrastructure installation will be driven by models that reflect the economic benefits
on top of policy objectives.

In our previous work [6], we propose a solution for charging station placement
problemwithout specific assignment ofEVs to charging stations. In [6],wedeveloped
a coordinated clustering formulation to identify a set of locations that can be consid-
ered as the best candidates for charging stations. The locations were determined to be
those that have a low electricity load, and where a significant number of EV owners
spend a considerable duration of time. The drawback of our proposed method in [6]
is that it did not consider a concrete economic model for charging station placement.
In fact, in [6], charging stations are placed based on the stay points of EV owners
and distribution of electricity consumption in the city. Therefore, that approach may
result in placements which are economically sub-optimal. Furthermore, in [6], we
did not consider the trajectory of EVs, which in turn results in unacceptable detours.

In this book chapter, we propose a new integrated framework where the cen-
tralized assignment of EVs is addressed simultaneously with the charging station
placement problem. This integrated framework solves an optimization problem that
simultaneously considers revenue of charging station owners and the trajectory of
EV owners. In this work, an economic model is formulated that takes into account
the costs and benefits of installing and operating charging stations from their owner’s
perspective. In this model, charging station owners provide infrastructure, and own
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and operate EV charging stations. No extra incentive is considered for the charging
station owners and it is assumed that they will be charged the same rates as other
mid-sized commercial customers for buying electricity from the utility company.
Charging stations sell electricity to EV owners at a fixed, flat rate. Furthermore,
we use trajectory mining to find routes that could host popular locations where EV
owners might desire to recharge their cars. We applied trajectory clustering on this
dataset which helps us to install charging stations proximal to high-traffic roads, in
order to reduce possible detours to reach charging stations. The trajectory of each
individual in a typical day is derived through the use of APIs such as Google Maps.
The results of this step are integrated to our final optimization equation to situate
charging stations near high-traffic roads in order to reduce possible detours to reach
charging stations. Finally, the economical model, results of trajectory mining, and
information about each individual driving path ofEVowners are fed into an integrated
optimization problem. This optimization problem attempts to maximize the revenue
of charging station owners, minimize distances of charging stations to high-traffic
routes, minimize distances of charging stations to stay points of EVs, and minimize
number of failure to find an appropriate charging station for an EV. Furthermore,
using KL-Divergence, the optimization problem tries to place charging stations in a
way that results in a uniform distribution of charging assignments.

We outline a KDD framework, involving coordinated clustering, to design and
deploy EV charging stations over a city. Our key contributions are:

1. An integration of diverse datasets, including synthetic populations (capturing over
1.5 million individuals), their profiles, and trajectories of driving, to inform the
choice of locations that are most promising for EV charging station placement.
We solve the ‘How many?’ and ‘Where?’ problem using a coordinated cluster-
ing framework that integrates multiple considerations. We focus on the modeling
of downtown areas since previous studies have shown that public EV charging
infrastructures should be focused on big urban centers [2]. We use trajectory
mining to detect popular roads EV owners are likely to use when they need to
recharge their vehicles, and integrate this information in charging station deploy-
ment. In particular, our framework situates charging stations near high-traffic
roads in order to reduce possible detours to reach charging stations.

2. Unlike our prior work [6], we formulate the EV charging station placement prob-
lem in both economic and user terms: the financial benefits to an EV charging
station owner and the convenience benefits to EV owners are integrated into our
framework. Empirical results reveal key distinctions between taking economic
factors into account versus otherwise.

3. We conduct extensive empirical investigations into the practical feasibility of EV
charging station placement w.r.t. multiple considerations: e.g., howmany users in
a population are serviced, how effectively are stations utilized, differences among
varying types of charging infrastructure, and the need for storage units in charging
stations.
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2 Related Work

Charging infrastructure design: Relevant prior work in this area include [3–7].
Frade et al. developed amaximum coveringmodel to locate charging stations tomax-
imize demand [3]. In [5], a two-step model is proposed to create demand clusters by
hierarchical clustering, then a simple assignment strategy is used to assign charging
stations to demand clusters. In [4], a game-theoretic approach is used to investigate
interactions among availability of public charging and route choices of EVs. In our
prior work [6], we developed a coordinated clustering formulation to identify a set
of locations that can be considered as the best candidates for charging station place-
ment. The locations were determined to be those that have a low existing load, and
where a significant number of EV owners spend a considerable duration of time. In
[7], behavioral models are developed to predict when and where vehicles are likely
to be parked, and aims to reflect parking demands in the optimization assignment.

Interactions with the smart grid: In addition to the problem of charging station
placement, EV penetration in urban areas has been explored with respect to interac-
tions between grid infrastructure and urban populations. City behavior is simulated
by agent-based systems in terms of agents with a view toward having decentralized
systems and maximizing profits [1]. Swanson et al. in [8] investigated the use of
linear discriminant analysis (LDA) in assessing the probable level of EV adoption.
Energy storage systems, systems that are used when there is not enough power avail-
able from grid, are addressed in [9]. In [10], a solution is proposed to balance energy
production against its consumption. In addition, authors in [11] try to design a general
architecture in smart grid to have a significant gains in net cost/profit with particular
emphasis on electric vehicles.

Mobility modeling: There are many studies that consider mobility of vehicles in
urban areas and in most of the cases, GPS datasets have been used as a popular
source formodeling andmining in urban computing contexts, e.g., [12–14]. Example
applications include anomaly detection [12] and taxi recommender systems [14]. In
taxi recommender systems in particular [14], the ultimate goal is to maximize taxi-
driver profits and minimize passengers’ waiting times. Mining mobility patterns of
cars and people has been used to determine points of interest for tourists [15] and
for routing and route recommendation [16]. In [13], Yuan et al. proposed a method
to discover areas with different functionalities based on people movements. Finally,
in [17], clusters of moving objects in a noisy stadium environment are detected using
the DBSCAN algorithm [18].

To the best of our knowledge, the problem tackled in this paper is unique, and
the methodology we propose integrates a variety of data sources with data min-
ing/optimization techniques.
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3 Methodology

The datasets utilized by our approach and the overall methodology are depicted in
Fig. 1. As shown, one of the primary datasets we consider is a synthetic population
dataset representing the city of Portland which contains details of 1,615,860 people
and 243,423 locations out of which 1,779 are located in the downtown area. Detailed
information about this dataset is available at [19]. Next, information about mobility
of people is provided in terms of start and end points and time of travel. Using this
information, we can determine the trajectory of every individual in a typical day
through the use of APIs such as Google Maps. A total of 8,922,359 movements are
available in this dataset. Finally, we have available electricity consumption data to
determine the initial load of each building based on the number of residents of the
building at a specified time (organized by NEC Labs, America).

The first step of our methodology is to discover location functionalities and to
characterize electricity loads. As in our previous work [6], we utilize an information
bottleneck type approach [20] to characterize locations and integrated the electricity
load information to characterize usage patterns across locations. In this step, we
cluster locations based on geographical proximity such that resulting clusters are
highly informative of location functionalities. Then, we integrate information about
electricity load profiles to characterize electricity usage patterns.

Fig. 1 Overview of our methodology
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Second,weuse trajectory clustering to find routes that could host popular locations
where EV owners might desire to recharge their cars. To determine trajectories, we
define a specific subset of people who are characterized using high-income attributes
(as the likely owners of EVs). After locating the homes of these users, we can
determine their trajectories and their start/stop locations. Based on this data, we can
estimate their travel distances, and in turn estimate charging requirements of EVs,
during a day. Since the maximum distance that a fully charged EV can travel is less
than 100 km [2], it is highly likely that a significant number of them will need to be
recharged en-route to their destinations. By clustering the trajectories, we can plan
to install charging stations proximal to high-traffic roads, in order to reduce possible
detours to reach charging stations.

Third, we develop an economic model that encapsulates costs of purchasing
energy from the grid and other such expenses. Fourth, we identify demands based on
our expectations about how users will behave. Finally, all this information provides
the rawmaterial for defining the charging station placement problem using clustering
and optimization. Each of these stages are detailed next.

3.1 Characterizing Locations and EV Owners

The first step of the proposed data mining approach for EV infrastructure design is
to characterize EV users and locations in the respective area. This step is similar to
that in our previous work [6] and, hence, we provide an abridged summary of it.

Based on current trends, only a small percentage of people (6% of people in
the US) use EVs [21, 22]; in our study we explored a hypothetical scenario that
considers a penetration for EVs in the Portland area to be 6.31% of 329,218 people in
our dataset. This assumption is realistic if various penetration scenarios in forecasted
EV adoption between years 2012 and 2022 are to be believed [23], and can be easily
modified.

From the synthetic population dataset, we can identify the locations a person vis-
its, the duration of stay at each (stay points), and the purpose of the visit (e.g., work,
leisure).Wefirst begin by characterizing locationwith a view toward defining the spe-
cific purpose of the location. We focus on 1779 locations in the downtown Portland
area whose attributes are given by a 9-length profile vector P = [p1, p2, . . . , p9],
where pi is the number of travels incident on that location for the i th purpose.
Specific purposes of each location (and cluster of nearby locations) can be used
to determine electricity load distribution patterns. To uncover such patterns, we first
cluster locations geographically and then characterize each of the discovered clusters
using typical data available from public data sources such as the California End User
Survey (CEUS). In addition to these kinds of patterns, we compute the electricity
load leveraging the these patterns but w.r.t. our network model of the urban envi-
ronment (by considering the average square footage occupied by one person in each
specific location). Based on some exploratory data analysis, we selected a weekday
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(specifically, 18th March, 2011) and used the electricity load data of this day to map
to the network model. More details are available at [6].

3.2 Trajectory Mining

The emergence of GPS-equipped devices has sprung a veritable cottage industry
in the area of location and trajectory mining. One broad aim of trajectory mining
(clustering) is to find similar routes in a dataset, but other applications have also
been explored (e.g., see [24–26]). Most research in trajectory clustering is inspired
by density-based clustering approaches such as DBSCAN and OPTICS. Leveraging
such clustering methods, the authors in [27] propose a new framework (Traclus) for
trajectory clustering which aims to discover common sub-trajectories. In applica-
tions where we have regions of special interest, finding common sub-trajectories is
beneficial. In Traclus, each trajectory is partitioned into a set of line segments. Then,
similar line segments are grouped together to form clusters of sub-trajectories [27].
This method has been proven to be effective in extracting similar portions of tra-
jectories even when the whole trajectories are not similar. We employ this approach
here to detect potential sub-routes where EV owners are more likely to travel and,
thus, in need of charging.

3.3 Economic Model for Profit Maximization

The principal goal of this paper is to place charging stations in appropriate locations
in order to maximize profits of charging station owners. Tran et al. [28] have studied
cooperation of companies for profit maximization in dynamic systems. They have
used regression and hierarchical agglomerative clustering to reveal optimal organi-
zational substructures. Such approaches are not applicable here since they assume
the locations (of markets) to be known and place restrictive assumptions on pricing
schema.

The primary goal of charging station owners is to maximize revenue and profits
by attracting enough customers during a day. The profit is defined as the differ-
ence between expense and income (revenue). Let us assume that Ri is the profit for
charging station (location) i , which is the difference between the payments that the
charging station owner will receive (Si ) and the costs spent on providing service to
customers (Ci ), as shown in Eq.1. As Eq.2 illustrates, Ci in turn consists of two
elements: the static costs C0, and the dynamic costs C p.

Ri = Si − Ci (1)

Ci = C p + C0 (2)
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Static cost, C0, is the initial cost for setting up a charging station, which includes
the operational cost for installation and for storage units. Here, we calculate these
costs for a single day, and thus assume an amortization function that estimates the
installation cost for one day (e.g. if the installation cost will amortize in six years:
C0 = I nstallationCost

6×365 ). Dynamic cost C p, is the cost for the energy that the charging
station will buy from the grid in order to service EV owners. The dynamic cost C p,
consists of two parameters: the cost of buying energy from the grid during the day
(morning to evening), and the costs associated with recharging storage (during the
night). These two parameters are denoted by Cb and Cr , respectively.

C p = Cr + Cb (3)

3.3.1 Calculating Cr

Cr is the payment that a charging station owner pays for charging the storage during
the night (if needed). Typically, storage will be charged at night and used during the
day and it should be sized to cover a day’s net load.

Cr = Pbuy,night × StorageSize (4)

where Pbuy,night is the price of off-peak hours that storage owner will pay to recharge
the storage. StorageSize is calculated through the following steps.

Suppose f is the load of building after considering EVs. Thus f is the Initial load
of building I ni t Loadi,t , and the load imposed by EVs. Dloadd,t is the amount of
electricity needed for user d at time t and ni is the number of EVs receiving service
by charging station i during a day.

f (t) = I ni t Loadi,t +
ni∑

d=1

(Dloadd,t ) (5)

In order to calculate the amount of storage for a particular charging station, we
must calculate the number of EVs serviced by this charging station at each partic-
ular hour ni . Here, we assume capacity of each building is constant and equals the
maximum value of load of the building before introducing EVs:

capacityi = max
0≤t≤24

I ni t Loadi (6)

The size of required storage should be calculated from the area below the curve of
new electricity load (that is f ) (kW× h) and above the capacity (net peak load)(kW).
X is the difference of load after EVs and capacity of building. Clearly, StorageSize
is a summation of X over time:
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X (t) =
{

f (t) − capacityi if f (t) > capacityi

0 otherwise
(7)

StorageSize =
∫ 24

0
(X (t)) dt (8)

3.3.2 Calculating Cb

Calculation of Cb consists of three elements: Basic charges, Energy charges, and
Demand charges [29].

Cb = Cbasic + Cenergy + Cdemand (9)

Basic charges is a constant charge ($240 per month1) [29] and energy charges is
a multiplication of energy purchased at time t (kWh) in TOU rate at time t ($/kWh):

Cenergy =
∫ 24

0
(Y (t) − I ni t Loadi,t ) × Pbuy,t dt (10)

where Pbuy,t is determined based on time of the day (TOU rate) and Y is the amount
of load of a building when storage is placed:

Y (t) =
{

capacityi if f (t) > capacityi

f (t) Otherwise
(11)

Demand charges involves facility capacity charges and on-peak demand charges:

Cdemand = CFC/30 + COn Peak demand (12)

Facility capacity charges (CFC ) for one month is calculated in Eq.13 [29]:

CFC =
{

capacityi × 2.41 if capacityi ≤ 200
482 + (capacityi − 200) × 2.14 otherwise

(13)

On-peak demand charges is themaximum on-peak demand of the charging station
(in kW) times per kW monthly on-peak demand rates ($/kW):

COn Peak demand = max
On Peak t

Y (t) × 2.67 (14)

1In this paper all rates are in US dollar.
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3.3.3 Calculating Si

The income of charging station owner is calculated based on the summation of
energies that he sells to EV owners over a day:

Si =
ni∑

d=1

∫ 24

t=0
(Psell,t × Dloadd,t )dt (15)

where Psell is price per kW.
The ultimate goal of charging station owner is to maximize his profit (maxi-

mize Ri ).

3.4 Modeling Users for Demand Assignment

Before describing howwemodel users, it is necessary to review the types of charging
stations since it is intricately connected to user behavior. The two basic types are
level 2 chargers (240V AC charging) and DC chargers (500V). The former are more
widespread (can even be installed in residential locations), whereas the latter are
speedier to charge (and can be found in business and government buildings). We
model users in the following manner: Let us assume that a user desires to travel from
location A to location B and that he will stay for a certain time in each location. If
during traveling from A to B, he runs out of charge, he will first seek an available
charging station in the neighborhood of A. If he can find such a charging station, he
will charge there, whether he stays at least 4h (to charge with level 2) or less (DC).
Otherwise, if he could not find any charging stations, or if charging stations are fully
occupied at that time, we assume that he is aware of the availability of charging
stations in neighborhood of B. This part is the same as before. If there is no charging
station in A or in B, he has to charge his car by DC somewhere else along his route.
The use of popular routes from trajectory clustering is helpful here where users know
that there are charging stations along popular roads.

There are various strategies to the demand assignment problem. For example, [30]
solved a task assignment problem with linear programming to maximize resource
utilization in load balancing problem in multiple machines. Here, to assign users to
charging stations, we use a typical first-in-first-out approach with the goal of uniform
distribution of users over charging stations. For this purpose, we start from 1:00 AM
to 12:00 AM and we assign each user to the least busy charging station which is
located in its neighborhood. Algorithm 1 shows pseudo-code for assigning demands
to charging stations for a particular hour.
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Algorithm 1: Assignment of Users to Charging Stations
Input: Charging Stations, User Demands
Output: Assignment matrix
for each demand, di do

for each charging station, C S j do
if distance(di , C Sj ) ≤ r0 then

Ai, j = 1;
end

end
end
for each charging station, C S j do

Δ j = AvailableSlotsC S j − ∑
i (Ai, j );

end
for k = 1 to K do

/* K is number of charging stations */ ;
m = arg max j (Δ j );
for each demand di do

if Ai,m = 1 and AvailableSlotsC Sm > 0 then
Assign di to charging station m;
AvailableSlotsC Sm = AvailableSlotsC Sm − 1;

end
end
Δm = −∞;

end

The ultimate goal from the user’s point of view is to maximize the number of
assigned demands as well as reducing costs associated with recharging EVs. Our
user policy attempts to reduce the number of failures, i.e., the number of times that
EV owners run out of charge and need to switch to traditional gas-based fuel. Also,
this policy reduces the cost of charging since charging with level 2 has a higher
priority compared to DC charging.

3.5 Charging Station Placement Using Clustering
and Optimization

In addition to maximizing charging station owners’ profits, we aim to minimize the
number of failed (unassigned) demands. To this end,we aim to place charging stations
next to major arterial roads and nearby stay points to provide better service for future
EVs. Furthermore, we aim to have similar schedules for all charging stations to
reduce very crowded or very under-utilized stations. Based on these goals, we can
formulate an optimization function as a linear combination of several measures:
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F(X) = − α ×
K∑

i=1

Ri + β × N f ail

+ γ ×
∑

t

DK L(ζt || U (
1

K
))/24

+ η × 1

K

K∑

i=1

∑

p∈φ

Distance(C Si , p)

+ θ × 1

K

K∑

i=1

∑

r∈τ

Distance(C Si , r). (16)

where DK L KullbackLeibler distance andU is the uniformdistribution. The goal is to
uniformly distribute demands over charging stations.Here Ri is the profit for charging
station i . N f ail is the total number of failed demands because either their distance
from their nearest charging stations was more than r0 or because the nearest charging
stations were fully occupied. τ is a set of trajectory representatives and φ is set of
stay points. Distance calculates the distance of charging stations to popular roads
and stay points. α, β, γ, η, and θ are constant coefficients. ζt = [ζt (1), . . . , ζt (K )]
captures the distribution of demands over charging stations at time t. ζt (i) is computed
as follows:

ζt (i) = Wt (i)∑
i Wt (i)

(17)

where Wt (i) is the number of assigned demands to charging station i at time t.
In our work, we further focus on a downtown modeling scenario and thus restrict

charging station locations to be in such areas:

Minimize F(X)

s.t. Xi ∈ Downtown
(18)

where X = {X1, X2, . . . , X K } contains coordinates of K charging stations.
This set of charging stations contains prototypes of K clusters such that each

charging stationwill cover a certain area and also, distance between charging stations
will be maximized. Furthermore, in each area, a charging station will be responsible
for future demands in that vicinity.

To optimize the objective function, we first find initial prototypes (representing
charging stations) using the k-means algorithm (with geographic coordination of
locations as features). Next, we use a bound-constrained optimization (simulated
annealing with a maximum iteration of 500) to identify the best prototypes that
minimize the objective function and also satisfy the inequality constraints, i.e. points
must fall into the downtown region. Simulated annealing is used here because the
search space (set of building locations) is discrete. At each iteration of simulated
annealing, assignment of users to current prototypes is done with respect to the
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specified parameters. Calculation of profit and other parameters is done at this step.
After convergence, we calculate the profit, storage size, utilization, and assigned ratio
of trajectories for this final solution.

4 Experiments

Our evaluation is focused on answering the following questions:

1. Which routes are popular among EV owners?
2. How many public charging stations are necessary to serve EV owner needs?
3. What are the load profiles of the designed charging stations?

Table1 shows parameter settings for our experiments. The price of selling energy
to customer is 49 cents per kilowatt hour [31].Also, Pbuy,night and Pbuy,t are calculated
based on [31]. Also, installation cost of storage is set to 100 dollars per kWh and
the installation cost of chargers in charging station is 4000 dollars [32]. For the
time period of amortization, we assume six years based on [2]. We assume that
available slots in each charging station is at most 10 EVs at each hour. We also
assume that people can charge their EVs if they can find a charging station 800m
(i.e. walking distance) away from their current location (r0 = 800m). Furthermore,
in our experiments, EV owners are assumed to have chargers in their houses and,
hence, are presumed to use public charging stations during the day (and recharge
again during the night [2]). On-peak hours are determined based on the nature of our
dataset, that is from 6 AM to 10 AM and from 5 PM to 8 PM.

Table 1 Parameter settings used in our experiments

Parameter Value

Time of charging (level 2 (220V)) 4h

Time of charging (DC) 1h

C0 for storage 100 $/kWh

C0 for each charger 4000 $

Cbasic $8 per month

Life time of utility 6 years

Number of charger in charging station 10

Electricity load (level 2) 3.3 kW

Electricity load (DC) 50 kW

Psell 0.49 $/kWh

Pbuy,night (5.420+0.277) cents

Pbuy,t 6.454×on-peak + 5.697×off-peak cents

r0 800m

α, β, γ , θ , η 1
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(a) (b)

Fig. 2 a Trajectory representatives. b Schematic view of trajectories that assigned (blue) versus
others (red)

4.1 Trajectory Clustering

We prune our dataset by removing users that do not enter or cross the downtown
area of Portland. Next, we calculate those major routes that users take when they
need to recharge their vehicles. Based on our previous work [6], a high proportion of
users charge once during their daily travel and hence the probable routes for each user
(when they needs to recharge their car) falls between two sequential stay points of the
user. Our processing leads to 1259 trajectories. After extracting the actual trajectories
from Google Maps, we use the Traclus algorithm [27] (with epsilon equal to 0.01
and minLns equal to 3) to cluster these trajectories. The result consists of 16 clusters.
As Fig. 2a illustrates, representative trajectories mostly fall within the boundaries of
downtown.

4.2 Ideal Number of Charging Stations

In order to compare the performance of charging stations suggested by our proposed
method, we compare it with k-means clustering where only geographic coordinates
of locations are considered. Figure3 illustrates how the total profit of all charging
stations changed by increasing number of charging stations. It appears that by deploy-
ing a certain number of charging stations, the total profit in our proposed method
is much higher than the location-based algorithm ($5000 per day). Also, profit will
begin to remain stable when the number of charging stations increases up to a certain
threshold (25). It should be noted that, since the location-based k-means algorithm
works solely on geographic coordinates, it will not consider the initial load values
of buildings. This may cause randomness to the results.
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Fig. 3 Total profit of
charging stations
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The size of storage and utilization of charging stations (chargers and storages)
are important issues in charging station and storage deployment. Utilization can be
determined as Ui = td

24[h/d] where
td

[h/d] is the daily time in use of the facility [2]. As
Fig. 4a illustrates, time-based utilization of chargers is often less than 50% but we
assume satisfaction as long as the station profits exceed a certain threshold.

As the number of charging stations increases, we expect the total number of
required storage units also increase. This expectation is shown in Fig. 5. Clearly, the
proposed method works better than location-based k-means since the total profit and
total utilization are higher. While the total storage is higher in our proposed method,
time-based utilization of storages is higher than that of location-based (Fig. 4b). The
time-based utilization measure depicts the percentage of the time storage units are
used in charging stations.

The number of assigned users will not increase as the number of charging stations
goes beyond a certain value (20). This is demonstrated in Fig. 4c. In our method, the
ratio of assigned users is often more than 90%. This ratio will vary if we change
the radius of users’ attention (r0). As Fig. 4d illustrates, by increasing the allowed
distance between the nearest charging station and users (r0), the ratio of assigned
users will increase. Here, number of charging stations is set to 15. This ratio in the
proposed method is higher than location-based k-means because vicinity of charging
stations to the common trajectories were considered in the optimization function.

To explore the profit of charging stations individually, we assess the number of
charging stations with non-positive profit in each setting. As Fig. 6 illustrates, the
number of such charging stations in location-based k-means is greater than in our
proposed method.

Based on our results, the optimum number of charging stations which yields the
highest profit and utilization is 15. For higher penetration rate, this method can be re-
run to find a suitable number of charging stations. Here, we continue our experiments
with 15 charging stations.
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Fig. 4 Comparison of proposed method and location-based method: a Average time-based utiliza-
tion of chargers. b Average time-based utilization of storages. c Total ratio of assigned users and
d Total ratio of assigned users based on distance to charging stations

Fig. 5 Total storage size in
charging stations
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Fig. 6 Number of charging
stations with loss
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4.3 Profile of Individual Charging Station

After determining the charging stations, we can cluster other locations by consid-
ering charging stations to be the prototypes of location clusters. This strategy will
be beneficial to understand which regions are covered by which charging station.
Clusters of locations are shown in Fig. 7. One interesting result here is that charging
stations 2 and 15 are deployed in the same locations, pointing to the potential of this
location.

The daily profit, storage size, and utilization of chargers and storages in charging
stations are shown in Fig. 8. A notable result here is that charging station 8 is not
efficient as others since it has a lowprofit ($100) due to lowstorage and lowutilization.

Fig. 7 Voronoi diagram of
charging stations and their
associated coverage area
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Fig. 8 Performance of charging stations: a Profit of charging Stations. b Storage of charging
stations. c Time-based utilization of chargers and d Time-based utilization of storages

Most of the EVs need to be charged at peak hours (9 AM–8 PM). The number
of EVs at each time slot in each charging station is shown in Fig. 9a. Since most
downtown activities occur during afternoon and nights, most of the demands are
concentrated between 12 PM to 8 PM. Also, the number of charging stations for
each type of charging is shown in Fig. 9b, c, for level 2 and DC, respectively. Since
those locations that people stay at least 4h are outside of downtown, the demand
for level 2 is lower than that for DC. Based on these results, we can determine the
required number of chargers in each station. In our experiments, we assume that each
charging station is able to have at most 10 chargers. As Fig. 9 illustrates, in charging
station 1, we can organize it to have 2 chargers for level 2 and 9 chargers for DC.
Conversely, for charging station 8, we do not need any level 2 chargers and only
require 3 chargers for level 3 (DC).

Profiles of charging stations can be clusteredwith respect to their loads at different
times. To this effect, we used the K-SC clustering approach originally proposed for
time series data [33]. Here, the value of electricity load before adding EV, after
adding EV, and after storage deployment during 24h were considered as a sequence
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Fig. 9 a Number of EVs getting charged at each time slot. b Number of EVs getting charged at
each time slot by level 2. c Number of EVs getting charged at each time slot by level 3 (DC)
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Fig. 10 Clustering of load profiles of charging stations

of 24 × 3 elements. Profiles of prototypes of four clusters are shown in Fig. 10. This
figure is important in understanding the behavior of charging stations in order to
make a decision between using a mobile storage versus a stationary one. Locations
in cluster 1 and 3 are places where no one enters them (such as a parking lot).
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Locations in cluster 2 show that the additional demand imposed by EVs lead to use
of storage in 8–12 h and 16–20h. Based on this profile, we can place mobile storage
in locations where storage is needed during a specific time rather than an entire day
(e.g., cluster 4).

5 Conclusion

Effective usage of the next generation of smart grids requires a comprehensive under-
standing of the interactions between networks of urban environments and electric
systems. In this paper, we proposed a framework to design charging and storage
infrastructure for electric vehicles in an urban environment. There is an inherent
trade-off between user expectations and the expectations of charging stations own-
ers, which is captured in our framework and aids in the selection of the number of
charging stations along with their placement. More constraints such as availability of
parking space, effects of charging stations on electrical substations, different pricing
schema in charging stations are being considered for integration into our framework.
Results of this research illustrate the efficiency of our approach in terms of profit
maximization and energy usage. While we studied the effect of different parameters
on the performance of charging station placement, there are other factors that can be
considered in this problem. In this regard, the impact of different EV penetration rates
and the use of probabilistic framework in assignment strategy of drivers to charging
stations can be considered as future works.
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Computationally Efficient Design
Optimization of Compact Microwave
and Antenna Structures

Slawomir Koziel, Piotr Kurgan and Adrian Bekasiewicz

Abstract Miniaturization is one of the important concerns of contemporary wire-
less communication systems, especially regarding their passive microwave com-
ponents, such as filters, couplers, power dividers, etc., as well as antennas. It is
also very challenging, because adequate performance evaluation of such compo-
nents requires full-wave electromagnetic (EM) simulation, which is computationally
expensive. Although high-fidelity EM analysis is not a problem for design verifica-
tion, it becomes a serious bottleneck when it comes to automated design optimiza-
tion. Conventional optimization algorithms (both gradient-based and derivative-free
ones such as genetic algorithms) normally require large number of simulations of
the structure under design, which may be prohibitive. Considerable design speedup
can be achieved by means of surrogate-based optimization (SBO) where a direct
handling of the expensive high-fidelity model is replaced by iterative construction
and re-optimization of its faster representation, a surrogate model. In this chapter, we
review some of the recent advances and applications of SBO techniques for the design
of compact microwave and antenna structures. Most of these methods are tailored
for a design problem at hand, and attempt to utilize its particular aspects such as a
possibility of decomposing the structure. Each of the methods exploits an underlying
low-fidelity model, which might be an equivalent circuit, coarse-discretization EM
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simulation data, and approximation model, or a combination of the above. The com-
mon feature of the presented techniques is that a final design can be obtained at the
cost of a few evaluations of the high-fidelity EM-simulated model of the optimized
structure.

Keywords Microwave engineering · Simulation-driven design · Surrogate model-
ing · Surrogate-based optimization · Compact structures · Expensive optimization
problems

1 Introduction

Small size is one of the most important requirements imposed upon modern wire-
less communication system blocks, with particular emphasis on microwave passive
components [1, 2], including, among others, filters [3–6], couplers [7–10], power
dividers [11–14], as well as antennas [15–18]. Satisfying strict electrical perfor-
mance specifications and achieving compact size are normally conflicting objectives
[19–22]. These difficulties can be alleviated to some extent, e.g., through replac-
ing conventional transmission lines by their more compact counterparts such as
slow-wave resonant structures (SWRSs) [23–26], or, in case of antennas, by intro-
ducing certain topological modifications (e.g., stubs and slits in ground planes of
ultra-wideband antennas [27–29]). At the same time, the use of traditional design
techniques based on equivalent circuit models does not lead to reliable results due
to considerable electromagnetic (EM) couplings between circuit components within
highly compressed layouts that cannot be accurately accounted for at the network
level. Reliable evaluation of the structure performance is only possible by means of
CPU-intensive and time-consuming full-wave EM simulations.

Unfortunately, EM analysis may be computationally expensive, even when using
vast computing resources: simulation time with fine discretization of the structure
may be from 15–30 min for simple passive microwave circuits and small antennas
[24, 25, 28], to a few hours for more complex structures (e.g., miniaturized Butler
matrix [30]). This creates a serious bottleneck for automated, EM-simulation-driven
design optimization of compact circuits: conventional optimization methods (such
as gradient-based routines [31, 32], or derivative-free methods, e.g., pattern search
[33] or population-based metaheuristics [34–36]) normally require large number of
objective function evaluations, each of which is already expensive. The use of adjoint
sensitivities [37, 38] allows—to some extent—for reducing design optimization cost,
however, this technology is not yet widespread in microwave and antenna commu-
nity, especially in terms of its availability through commercial simulation software
packages (with some exceptions, e.g., [39, 40]). Heuristic simulation-based design
approaches, typically exploiting parameter sweeps guided by engineering experi-
ence, tend not to work for compact structures because the latter are characterized by
many designable parameters as well as optimum parameter setups are often counter-
intuitive.
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Reducing the computational efforts of microwave/antenna design processes, espe-
cially in the context of compact structures, is of fundamental importance for design
automation and lowering the overall design cost (both in terms of computational
resources and time), which, consequently, has implications for economy, environ-
mental protection, as well as the quality of life. Thus, it is important from the point
of view of computational sustainability.

Probably the most promising approach in terms of computationally efficient
design is surrogate-based optimization (SBO) [41, 42]. In SBO, direct optimiza-
tion of the expensive high-fidelity simulation model is replaced by iterative updating
and re-optimization of its computationally cheap representation, the surrogate. As a
result of shifting the optimization burden into the surrogate, the overall design cost
can be greatly reduced. The high-fidelity model is referenced rarely, to verify the pre-
diction produced by the surrogate and to improve the latter. Various SBO methods
differ mostly in the way the surrogate is created. There is a large class of function
approximation modeling techniques, where the surrogate is created by approximating
sampled high-fidelity model data. The most popular methods in this group include
polynomial approximation [43], radial basis function interpolation [44], kriging
[43, 45], support vector regression [46], and artificial neural networks [47, 48].
Approximation models are very fast but a large number of training samples are neces-
sary to ensure reasonable accuracy. Also, majority of approximation techniques suffer
from the so-called curse of dimensionality (i.e., an exponential growth of required
number of training samples with the dimensionality of the design space, [36]).
Depending on the model purpose, this initial computational overhead may (e.g.,
multiple-use library models) or may not (e.g., one-time optimization) be justified.

An alternative approach to creating surrogate models is by correcting an under-
lying low-fidelity (or coarse) model. The latter is a simplified representation of the
structure (system) under design. It can be obtained, among others, by using a dif-
ferent level of physical description of the system (e.g., equivalent circuit versus
full-wave electromagnetic simulation in case of microwave or antenna structures),
or through the same type of simulation as utilized by the high-fidelity model but
with coarser structure discretization, relaxed convergence criteria, etc. As opposed
to approximation models, low-fidelity models are stand-alone models embedding
some knowledge about the system of interest [49]. Therefore, physics-based surro-
gates normally exhibit much better generalization capability [25, 50]. Consequently,
considerably smaller amount of training data is required to ensure sufficient accu-
racy of the model. Some more or less known SBO techniques exploiting physics-
based surrogates include approximation model management optimization (AMMO)
framework [51], space mapping (SM) [52, 53], manifold mapping [54, 55], and
simulation-based tuning [56, 57].

In this chapter, we review some of the recent advances and applications of SBO
techniques for the design of compact microwave and antenna structures. While some
of the discussed methods are rather standard (e.g., space mapping with additive
response correction utilized for ultra-wideband antenna optimization), others are
more tailored for a design problem at hand, and attempt to utilize its particular
aspects such as a possibility of decomposing the structure of interest. Each of the
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methods exploits an underlying low-fidelity model, which might be an equivalent
circuit, coarse-discretization EM simulation data, and approximation model, or a
combination of the above. The common feature of the presented techniques is that
a final design can be obtained at the cost of a few evaluations of the high-fidelity
EM-simulated model of the optimized structure.

The chapter is organized as follows. In Sect. 2, we briefly highlight the design
challenges for miniaturized microwave and antenna components and emphasize the
necessity of using—in the design process—high-fidelity electromagnetic simula-
tions, as well as the need for computationally efficient techniques aimed at reducing
computational cost of the process. In Sect. 3, we formulate the microwave design
optimization problem, discuss electromagnetic simulation models, and introduce the
concept of surrogate-based optimization (SBO). Sections 4, 5, and 6 showcase three
selected case studies concerning the design of compact branch-line couplers, com-
pact radio frequency (RF) components, and miniaturized ultra-wideband antennas.
While each of these sections describes optimization techniques exploiting the SBO
paradigm, methodological details are developed to handle problem-specific design
challenges. We also present numerical results, as well as comparisons with bench-
mark techniques. An emphasis is on computational savings that can be obtained
by using a suitable combination of surrogate-modeling and variable-fidelity simula-
tions (both at the equivalent circuit and full-wave electromagnetic level). Section 7
concludes the chapter.

2 Challenges of Compact Microwave Structure Design

Reliable development of compact microwave circuits is the subject of intense research
in the field of microwave and antenna engineering [58–60]. Miniaturized microwave
and antenna components can be extensively utilized as fundamental building blocks
of modern wireless communication systems that are continuously challenged with
ever more severe specifications: higher performance, smaller size, lighter weight, and
lower cost. The fundamental problem of small-size microwave and antenna structure
development process is to find a design that satisfies a given specification, within
a tight computational budget, and providing highly accurate results. However, the
accomplishment of this goal poses extremely difficult obstacles from the method-
ological point of view.

A typical microwave circuit with a compact footprint is constructed from non-
uniform transmission lines that mimic the electrical performance of their conven-
tional counterparts in a limited frequency range, but at the same time offer reduced
physical dimensions, which can lead to a smaller size of the circuit [59–81]. Most
commonly, T-networks [59, 61–67] or π -networks [59, 65, 68–73] are chosen for
the purpose of non-uniform transmission line realization. Such simple circuits can
be analyzed with ease by means of transmission line theory, which leads to relatively
accurate results, assuming the lack of cross-coupling effects and a negligible influ-
ence of other high-frequency phenomena (e.g., anisotropy of the substrate, current
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crowding, etc.) on the performance of a microwave component. This supposition,
however, is valid only for conventional circuits [80]. It should be underlined that—in
case of highly compact microwave and antenna structures with complex and closely
fit building blocks within a layout—the use of simplified theory-based models is
limited to providing initial design solutions that indispensably require further EM
fine-tuning [7, 61–66, 71, 72, 76, 77, 79]. In order to produce accurate results, it is
preferable to apply a high-fidelity EM analysis from the early stages of the design
process of miniaturized microwave components [81, 82]. Similarly, the use of the-
oretical models in contemporary antenna engineering is an outdated practice that
cannot provide information on complex EM phenomena taking place in the antenna
structure under consideration. This is particularly true in case of unconventional
antennas with complex and compact footprints. For the above-mentioned reasons,
EM-simulation-driven design is nowadays a necessity in computer-aided design of
microwave and antenna devices [79, 83].

On the other hand, exploitation of EM simulation tools, either throughout the
entire design process or in the design closure eventually leads to high demands on
enormous computational resources. The main issue here lies in the numerical cost
associated with the high-fidelity EM analysis of the entire compact component. In
case of conventional EM-driven design approaches, based either on laborious para-
meter sweeps [9] or direct single-objective optimization [79, 83] (gradient-based or
derivative-free), this becomes impractical or even prohibitive when handling com-
putational demands of miniaturized passives. The problem becomes even more pro-
found when the design process is realized in more general setting, i.e., when it
entails adjustment of designable parameters of the structure to satisfy multiple, often
conflicting objectives such as size, bandwidth, phase response, etc. [20], in case
of microwave components, and size, return loss, gain, etc., in case of antenna struc-
tures [84]. This, however, illustrates a multi-objective optimization problem, which is
far more challenging than the single-objective one. For typical examples of compact
microwave or antenna structures—that are characterized by a number of designable
parameters—the design process aimed at finding a set of trade-offs between conflict-
ing objectives cannot be accomplished using traditional multi-objective algorithms
such as population-based metaheuristics [34, 35], because these require a massive
number of objective function evaluations (thousands or tens of thousands), which
in case of high-fidelity EM models is prohibitive within a reasonable time-frame
[36, 84].

3 Optimization Problem Formulation. Electromagnetic
Models. Surrogate-Based Optimization

In this section, we formulate the microwave/antenna optimization problem, discuss
various types of models utilized in microwave engineering, as well as recall the basics
of surrogate-based optimization (SBO) [32]. The specific SBO techniques developed
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and utilized for expedited design of compact microwave and antenna structures are
discussed in Sects. 4 through 6.

3.1 Microwave Optimization Problem

The microwave design optimization problem can be formulated as

x∗ = arg min
x

U
(
Rf(x)

)
(1)

where Rf(x) ∈ Rm , denotes the response vector of a high-fidelity (or fine) model of
the device or system of interest. In microwave engineering, the response vector may
contain, for example, the values of so-called scattering parameters [1] evaluated over
certain frequency band. The objective function U : Rm → R is formulated so that a
better design corresponds to a smaller value of U . Often, the design specifications
are formulated in a minimax sense [85], e.g., in the form of minimum/maximum
levels of performance parameters for certain frequency bands.

In many situations, it is necessary to consider several design objectives at a time
(e.g., gain, bandwidth, layout area). The objectives usually conflict with each other
and the design process aims at finding a satisfactory trade-off between them. How-
ever, genuine multi-objective optimization exceeds the scope of this chapter. Thus,
although multiple objectives are actually present in all the design cases discussed
in Sects. 4–6, they are handled by a priori preference articulation, i.e., selecting the
primary objective and controlling the others either through appropriately defined
constraints or penalty functions [13].

3.2 Simulation Models in Microwave Engineering

The most important simulation models utilized in microwave/antenna engineering
include equivalent circuit (or network) models and electromagnetic (EM) simulation
ones.

For decades, circuit models have been important tools microwave structure design.
They provide a simplified structure representation by means of analytical equations
that origin from the transmission line theory. The behavior of a structure is described
using its complex impedance, capacitance and/or inductance [1, 86]. Construction
of a circuit model representation of a structure is based on interconnection of basic
building blocks (i.e., transmission lines, coupled lines, bends, tees, etc.) in such a
way that the behavior of a model mimics the behavior of a real structure [87, 88],
i.e., coupled lines represents the coupling within the circuit and tee represents the
interconnection between transmission lines within a circuit, etc. Such a representa-
tion is very useful for variety of structures characterized by modular construction
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(e.g. filters, couplers, matching transformers, etc.). Unfortunately, limited diversity
of building blocks prohibits the design of unusual geometries. Moreover, circuit mod-
els are inaccurate that forces the utilization of electromagnetic simulations for final
tuning of the structure. Another problem is that they lack of capability to estimate
radiation field, which turns them useless for the design of antenna structures.

Antenna structures can be modeled using quasi-static representation [89]. Uti-
lization of such models allows for i.e., estimation of antenna operating frequency,
radiation pattern, and/or impedance matching. Empirical models are particularly
useful if antenna design requires tremendous number of model evaluations (e.g., in
multi-objective optimization [21, 84]). Despite fast evaluation, quasi-static represen-
tation suffers from considerable inaccuracy. Moreover, it is available only for some
conventional designs, which turns empirical antenna representation not very popular
nowadays.

The most generic and accurate way of representing microwave/antenna struc-
tures is full-wave electromagnetic simulation. The electromagnetic solvers utilize
advanced meshing techniques aimed at discretization of the design into a set of sub-
problems, which are evaluated by solving Maxwell’s equations [89, 90]. Despite
its accuracy, such a representation suffers from considerable computational cost.
Reduction of the simulation time can be obtained by introducing certain simplifica-
tions into the EM model, e.g., sparse mesh, modeling of metallization as infinitely
thin sheet, neglecting losses of dielectric substrate, or utilization of perfect electric
conductor instead of finite-conductivity metals. Usually the simplified model is 10
up to 50 times faster than the high-fidelity one. Coarse-mesh EM models are useful
auxiliary tools utilized by many surrogate-based optimization methods [15, 91].

A conceptual illustration of a high- and low-fidelity EM model as well as a circuit
model of an exemplary structure is provided in Fig. 1.

(a) (b) (c)

Fig. 1 Various representations of the same rat-race coupler structure. a High-fidelity EM model
representation; b simplified low-fidelity EM model (simplifications include: lack of connectors,
coarse mesh, neglected metallization thickness and dielectric losses, as well as perfect conductivity
of metallization); c circuit representation of the coupler—the fastest, yet the most inaccurate
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3.3 Surrogate-Based Optimization

Our major concern is to reduce the cost of solving the optimization problem (1). As
mentioned before, in many cases, direct handling of the high-fidelity model Rf is not
even possible either due to the high individual cost of evaluating Rf or very large num-
ber of model evaluations when solving (1). Therefore, we are interested in surrogate-
based optimization (SBO) [32] methods, where the sequence x(i), i = 0, 1, . . ., of
approximate solutions to (1) is found by means of an iterative procedure [92]

x(i+1) = arg min
x

U
(
R(i)

s (x)
)

(2)

Here, x(i+1) is the optimal design of the surrogate model R(i)
s , i = 0, 1, . . ..R(i)

s is
assumed to be a computationally cheap and sufficiently reliable representation of the
high-fidelity model Rf, particularly in the vicinity of the current design x(i). Under
these assumptions, the algorithm (2) is likely to produce a sequence of designs that
quickly approach x∗.

Because Rf is evaluated rarely (usually once per iteration), the surrogate model is
supposedly fast, and the number of iterations for a well-performing algorithm is sub-
stantially smaller than for most conventional optimization methods, the process (2)
may lead to substantial reduction of the computational cost of solving (1). Moreover,
if the surrogate model satisfies zero- and first-order consistency conditions with the
high-fidelity model [51], i.e., R(i)

s (x(i)) = Rf(x(i)) and J(i)
Rs(x

(i)) = JR f (x(i)) with J
being a Jacobian of the respective model (verification of the latter requires Rf sen-
sitivity data), and the algorithm (2) is embedded in the trust region framework [93],
then it is provably convergent to a local optimum of original problem (1). Conver-
gence can also be guaranteed if the algorithm (2) is enhanced by properly selected
local search methods [31].

Various SBO techniques mostly differ by the way of constructing the surrogate
model. The specific techniques utilized to handle the design cases presented in this
chapter are elaborated on in Sects. 4–6. Interested reader is referred to the literature
(e.g., [19, 22, 85]) to find out more about other possible options.

4 Case Study I: Expedited Design of Compact Branch-Line
Couplers

In this section, we present a design methodology based on [94], dedicated to effi-
cient solving of complex and numerically demanding design problems of popular
microwave components, i.e., branch-line couplers with compact footprints. This tech-
nique enables a cost-efficient and accelerated design optimization of the microwave
component of interest together with high accuracy of the results. The desired perfor-
mance of the circuit under design as well as its miniaturized layout are achieved by
adjusting designable parameters of the non-uniform building blocks of the structure.
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The proposed method can be divided into two separate stages: (i) concurrent EM
optimization of non-uniform constitutive elements of the branch-line coupler (so-
called composite cells), where cross-coupling effects between the adjacent cells
are absent, and (ii) fine-tuning of the entire branch-line coupler exploiting space-
mapping-corrected surrogate model, constituted by cascaded local response surface
approximation models of the separate cells. The first stage is realized at a low com-
putational cost (just a few evaluations of the entire branch-line coupler), because the
mutual EM coupling between the cells is not taken into account. The second stage,
in turn, accounts for any cross-coupling phenomena and other interactions between
building blocks of the structure under design. We showcase the efficiency of the
proposed technique by a numerical case and its experimental validation.

4.1 Design Problem and Coupler Structure

Microstrip branch-line couplers (BLCs) are vital components widely used in many
practical microwave and radio frequency circuits, such as balanced mixers [95],
Butler matrixes [42], and others. An ideal BLC offers perfect transmission charac-
teristics at a the operating frequency: an equal power splitting between the output
ports with 90◦ phase shift, perfect matching with system impedance Z0, and per-
fect isolation. In the vicinity of the operating frequency, usually within the 10 %
bandwidth, the performance of the circuit is still acceptable, however not ideal. A
conventional BLC is composed of four quarter-wavelength uniform transmission
lines, two of which are defined by Z0 characteristic impedance, while the rest are
determined by 0.707 · Z0 characteristic impedance. In this case study, the task is
to design a 3-dB BLC for operating frequency f0 = 1 GHz using Taconic RF-35
(εr = 3.5, h = 0.508 mm, tanδ = 0.0018) as a dielectric substrate. The intended
bandwidth is 0.96–1.04 GHz with return loss and isolation |S11|, |S41| ≤ –20 dB. For
comparison purposes, a conventional BLC has been designed on the basis of [82]. Its
exterior dimensions are: 45.6 mm × 48.1 mm. We use BLC parameterization shown
in Fig. 2. It can be observed that the complementary building blocks almost com-
pletely fill the interior of the BLC. Dimensions of horizontal and vertical cell (denoted
Cell1 and Cell2, respectively) are given by vectors x1 and x2. All parameters of Cell1,
x1, x2, . . ., x7, are independent, whereas Cell2 is described by both independent,
x8, x9, . . ., x12, and dependent, y1, y2, y3, parameters. The latter depend on specific
parameters of Cell1 and the predefined distance d between the cells. Parameteri-
zation of Cell1 and Cell2 is given by: f1(x) = f1([x1 x2 . . . x12]T ) = [x1 x2 . . . x7]T

and f2(x) = f2([x1 x2 . . . x12]T ) = [x8 x9 . . . x12 y1 y2 y3]T , where y1 = 0.5 · (x7 +
d/2 − x8 − 2 · x10 − 2.5 · x12), y2 = x1 + x3 + x4 + x6 − d − x12 and y3 = x8 +
x12 − d. Geometrical dependence between the non-uniform building blocks enables
the preservation of consistency of the dimensions and a high miniaturization of the
entire structure. In this example, d = 0.2 mm.
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Fig. 2 Parameterized BLC composed of Cell1 (dark gray color, port impedance Z0 = 35.35 �)

and Cell2 (light gray color, port impedance Z0 = 50 �)

4.2 Design Methodology

In this section, we present a specific surrogate-based optimization scheme dedi-
cated for solving computationally complex design problems of compact branch-line
couplers. In particular, we provide a general description of the proposed approach,
together with a mathematical formulation of its subsequent steps, i.e., concurrent cell
optimization, response surface approximation model construction, and surrogate-
based design refinement.

4.2.1 General Design Scheme

An overview of the proposed design method is shown in Fig. 3a. The numerical effi-
ciency of this technique stems from concurrent optimization detached non-uniform
building blocks of a compact BLC, and subsequent surrogate-based fine-tuning of
the entire component. The first stage is aimed at arriving at the optimized design
of composite cells treated separately. It is noteworthy that the non-uniform building
blocks of the compact coupler are geometrically dependent (to ensure the design con-
sistency and size reduction of the BLC), but electromagnetically isolated (to lower
the evaluation cost of their high-fidelity EM model). This has proven to be exception-
ally beneficial from the numerical standpoint as it enabled the embedment—within a
single optimization procedure—of two high-fidelity, yet reasonably cheap EM mod-
els representing BLC building blocks of interest instead of one CPU-intensive EM
model of the entire BLC under development. The use of ultimately accurate sim-
ulation tool available for an engineer ensures us that the solution obtained in this
manner lies in the neighborhood of the BLC optimized design.
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Fig. 3 a Proposed design procedure of highly miniaturized BLCs; b Objective function evaluation
for concurrent cell optimization

The following fine-tuning of the BLC is accomplished as a surrogate-based opti-
mization process with the underlying low-fidelity model being a cascade of local
response surface approximations (RSAs) of the optimized non-uniform building
blocks of the BLC. Formally, this is an iterative process, however, as given by the
case study (cf. Sect. 4.3), one iteration is completely sufficient.

The main benefit of the proposed method lies in the low computational cost
required to obtain the optimized design, which is realized within a single and
fully automated process. The most expensive model in the design problem under
consideration—namely, high-fidelity EM model of the entire compact BLC—is eval-
uated only twice, i.e., at the initial design produced by the first stage, and for the
verification of the final design.

4.2.2 Concurrent Cell Optimization

The simulation-driven design methodology discussed in this section offers a fully
automated development of compact BLCs. However, it requires a manual setup of
non-uniform building blocks of a miniaturized BLC. Wide collections of such com-
posite cells can be found in the literature, e.g., in [82]. A typical BLC is composed
of quarter-wavelength uniform transmission lines of Z0 and 0.707·Z0 characteristic
impedances to achieve an equal power split between the output ports, where Z0 is
the system impedance [80].
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Thus, in order to construct a small-size BLC, two complementary constitutive cells
are needed. These are separated by a predefined distance d and intended to fill the
interior of the BLC in a highly efficient manner. Geometry parameters of the cells are
encoded in a parameter vector x. Some designable parameters are independent; others
are dependent to ensure geometrical fit of the cells. Formally, we describe this relation
as x1 = f1(x) and x2 = f2(x). In practice, f1 is a projection (i.e., x1 is composed of
selected elements of the vector x), whereas f2 determines clearly specified geometry
constraints to make both composite cells fit into a compact coupler layout. Specific
realizations of these functions are shown in Sect. 4.1.

During the concurrent cell optimization stage of the entire design process, we
exploit two separate high-fidelity EM models to take into consideration all internal
electromagnetic effects present inside of a non-uniform cell, but neglecting any cross-
coupling phenomena between adjacent cells. Such a formulation of the design task
allows for performing a CPU-cheap concurrent optimization of both composite cells.
The aggregated objective function U (x) for the cells is evaluated using given design
specifications and cell response vectors Ri (xi ), i = 1, 2 (cf. Fig. 3b).

Design specifications pertaining to the cells under concurrent optimization are
imposed by the transmission line theory [80]. We aim at obtaining a required phase
shift φc, arg(S21) at the operating frequency f0 as well as to minimize the return loss
|S11| at f0 and around it. The task is formulated as follows:

x∗
c = arg min

x
U (x) (3)

where
U (x) = max

f0−d f ≤ f ≤ f0+d f
{|S11.1(x1; f )|, |S11.2(x2; f )|}+

+β
∑2

i=1

[
arg(S21.i (xi ; f0)) − φc

]2 (4)

Here, x is a vector of all designable parameters, xi , i = 1, 2, is a geometry para-
meter vector of the i th cells, β is a penalty factor (here, we use β = 104), whereas
S11.i (xi ; f ) and S21.i (xi ; f )denote explicit dependence of S-parameters on frequency
for the i th cell. Therefore, the process (3) aims at minimizing |S11| in the vicinity
of f0 (in practice, at three frequency points: f0 – df, f0, and f0 + df), while forcing
arg(S21) to obtain the value of φc. The value of β is set to ensure that even small
violation of the phase requirement results in a meaningful contribution of the penalty
function. Here, for β = 104, deviation of arg(S21.i ) from φc by 0.01◦ results in the
penalty function value of 1, which is a few percent of the primary cost function
value; for deviation by 0.1◦, the penalty function becomes a dominant component
of U . Thus, formulation (4) allows for obtaining the required phase shift with good
accuracy. The use of three frequency points is motivated by the necessity of ensur-
ing an adequate reflection response not only at the operating frequency but also in
some vicinity of it. Moreover, minimization of (4) leads to obtaining more or less
symmetric response around f0 with |S11| being equal (or almost equal) at both f0 –
df and f0 + df. The problem (3) is solved using a pattern search algorithm (cf. [33]).
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4.2.3 Response Surface Approximation (RSA) Models

Local RSA models of the non-uniform building blocks of a compact BLC, exploited
during the fine-tuning process (cf. Sect. 4.2.4), are developed in the neighbor-
hood of their optimized designs, xc.i

∗, i = 1, 2, defined as [xc.i
∗ – dxi , xc.i

∗ +
dxi ]. Each model uses 2ni + 1(ni = dim(xi )) EM simulations for each compos-
ite cell at x(0)

c.i = xc.i
∗ and at the perturbed designs x(k)

c.i = [xc.i.1
∗. . .xc.i.�k/2�∗ +

(−1)kdxi.�k/2�. . .xc.i.ni
∗]T , k = 1, . . ., 2ni , where xc.i.k

∗ and dxi.k are kth elements
of the vectors xc.i

∗ and dxi , respectively. The RSA model Rc.i (x) of the i th cell is a
simple second-order polynomial without mixed terms

Rc.i (x) = c0.i +
∑n1

k=1
ck.i xi.k+

∑n1

k=1
c(n+k).i x

2
i.k (5)

with the parameters determined as least-square solution to the linear regression prob-
lem Rc.i (x

(k)
c.i ) = R f.i (x

(k)
c.i ), k = 0, 1, . . ., 2ni , where R f.i denotes the EM model of

the i th non-uniform building block of a compact BLC. The RSA model Rc of the
entire coupler is subsequently constructed by cascading Rc.i using ABCD matrix
representation [1]. The particular choice of the RSA model comes from the fact that
S-parameters of the individual cells are not highly nonlinear (the modeling is carried
out for complex responses), and the model needs to be valid only in the vicinities of
the optimized cell geometries.

4.2.4 Surrogate-Assisted Design Refinement

In order to account for cross-coupling effects between the adjacent BLC building
blocks, as well as other phenomena (e.g., T-junction phase shifts), it is required to
perform a final fine-tuning of the entire BLC. The tuning procedure is realized as a
surrogate-based optimization process

x(i+1) = arg min
x

H
(
R(i)

s (x)
)

(6)

Vectors x(i), i = 0, 1, . . ., approximate the solution of the direct design problem x∗ =
argmin{x : H(R f (x))} (H encodes design specifications for the coupler), whereas
R(i)

s is the surrogate model at iteration i. R(i)
s is constructed from the RSA model Rc

using input space mapping [42]

R(i)
s (x) = Rc(x + q(i)) (7)

where q(i) is the input SM shift vector acquired through the usual parameter extrac-
tion procedure q(i) = argmin{q : ||Rf(x(i)) − Rc(x(i) + q)||}, aiming at minimization
of misalignment between the Rc and the EM model R f of the structure under con-
sideration. Upon completion of parameter extraction, the surrogate model becomes
a very good representation of the high-fidelity model in the vicinity of the current
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design so that it can be successfully used to find the optimum design of the latter.
Note that the high-fidelity model Rf is not evaluated until the fine-tuning stage. In
practice, a single iteration (6) is sufficient. The overall cost of the coupler design
process is therefore very low and usually corresponds to a few simulations of the
entire structure of interest, including cell optimization and the cost associated with
the development of the RSA models.

4.3 Results

Here, we use Sonnet em [96] to conduct all high-fidelity EM simulations, where the
grid size is set to 0.025 mm × 0.0025 mm to provide sufficient accuracy of composite
cell design solutions. EM simulations are performed on PC with 8-core Intel Xeon
2.5 GHz processor and 6 GB RAM. With this setup, single frequency simulation of
an individual non-uniform building block of a compact BLC is, on average, 15 and
18 s. Simulation time of the entire BLC is approximately 90 min.

First, we perform concurrent optimization of the cells of Fig. 2. Design require-
ments, imposed on each constitutive cell, are theory-based [80]. Therefore we aim at
finding appropriate cell designs that approximate electrical parameters of theoretical
BLC building blocks. More specifically, |S11| ≤ –20 dB at 0.96, 1, and 1.04 GHz,
when loaded with 35.35 � and 50 � resistances, respectively, and the phase shift
φc = −90◦ at f0. Both cells of Fig. 2 have been subjected to concurrent optimiza-
tion, yielding x∗

c = [0.45 1.9 3.325 0.225 1.55 0.125 8.05 0.1 1.15 0.1 0.41]T . Corre-
sponding constrained optima for individual cells are f1(x∗

c) = [0.45 1.9 3.325 0.225
1.55 0.125 8.05]T mm, and f2(x∗

c) = [0.1 1.15 0.1 0.4 1 2.675 2.925 0.9]T mm. The
EM evaluation of the entire coupler structure at the design produced in this step
illustrates a degraded performance due to cross-coupling effects that occur between
adjacent cells. This issue is addressed by the fine-tuning procedure. For that pur-
pose, we develop local RSA models of the respective optimized cells and use them
to construct the coarse model of the entire coupler (by cascading ABCD matrices of
the corresponding building blocks). Next, we execute the surrogate-assisted design
refinement algorithm.

The differences between pre- and post-tuning coupler design solution are depicted
in Fig. 4a, b. One can notice that the final post-tuning BLC, given by f1(x∗) =
[0.475 1.9 3.25 0.225 1.5 0.125 8.05]T mm, and f2(x∗) = [0.125 1.15 0.125 0.375
0.95 2.7 2.925 0.875]T mm, shows perfect transmission characteristics in contradic-
tion to the pre-tuning BLC design. The final design solution has been manufactured
and measured.

Measurement results presented in Fig. 4c are in agreement with the simulated
BLC performance. Minor discrepancy between simulation and measurement results
is most likely due to the smooth metal surface and dielectric anisotropy included in
EM simulation [97], as well as fabrication inaccuracy.
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Fig. 4 a–b pre-tuning
(dashed) versus post-tuning
(solid) BLC S-parameters;
c post-tuning BLC
broadband
performance—simulation
versus measurement
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It should be emphasized that the final BLC has reached a significant 83.7 % scale of
miniaturization in comparison to a conventional BLC, together with ideal characteris-
tics confirmed by measurement data—all at a low computational cost corresponding
to about 5.6 full-wave analyses of the final compact BLC high-fidelity EM model.
The design cost breakdown is as follows: concurrent cell optimization (150 cell
evaluations at three frequencies each, ∼225 min in total), simulation data for RSA
model construction (21 cell evaluations at 10 frequencies each, ∼105 min in total),
and two simulations of the entire coupler (∼180 min). The overall design cost of the
proposed method is ∼510 min. One should bear in mind that a direct optimization
would require several hundred such evaluations, which is virtually infeasible.

5 Case Study II: Fast Design of Compact RF Circuits Using
Nested Space Mapping

Design and optimization of microwave/RF circuits for space limited applications is
a challenging task. Miniaturization of a structure is usually obtained by replacing
its fundamental building blocks with composite elements that should be adjusted to
obtain compact geometry [6, 7]. Unfortunately, implementation of such elements
within a circuit significantly increases its complexity, and therefore a considerable
amount of simulations is needed to find the optimum design. Consequently, direct
utilization of high-fidelity EM simulations in the design process is usually prohibitive.
This issue can be partially resolved by using equivalent circuit representations of
the structure which are, however, of limited accuracy [2, 10]. In this section, we
discuss a so-called nested space mapping (NSM) methodology that aims at using
suitably corrected circuit models as well as structure decomposition for fast EM-
driven design of compact microwave structures. NSM provides two levels of structure
representation, i.e., inner- and outer-layer surrogate models. The former is applied at
the level of each sub-circuit in order to provide their good generalization capability.
The latter is utilized at the level of entire complex design to account for couplings
between sub-circuits.

5.1 Design Problem and Matching Transformer Structure

Consider a impedance transformer realized in microstrip technology aimed to match
50-Ohm source to 130-Ohm load. The structure is supposed to ensure reflection
|S11| ≤ –15 dB within 3.1 GHz to 10.6 GHz frequency. A circuit is designated to oper-
ate on a Taconic RF-35 dielectric substrate (εr = 3.5, tanδ = 0.0018, h = 0.762).

A conventional design that is sufficient to satisfy the aforementioned design speci-
fications is composed of four 90◦ transmission line sections of various impedances [1].
The geometry of a structure and its circuit representation with highlighted sections
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Fig. 5 Conventional 50-Ohm to 130-Ohm matching transformer: a circuit representation; b geom-
etry of a structure
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Fig. 6 A double-T composite structure: a circuit representation; b geometry with highlighted
dimensions

are illustrated in Fig. 5. The simplicity of the design allows for its decomposition
into four transmission line sections that could be substituted with composite ele-
ments of increased functionality [2]. A single, versatile component in the form
of double-T composite may be utilized to construct miniaturized matching trans-
former [98]. The structure of interest is described by four independent design para-
meters: y = [l1 l2 w1 w2]T (variables l3 = 0.2 and w3 = 0.2 are fixed). Moreover,
solution space for the component in the form of the following lower/upper l/u
bounds: l = [0.1 1 0.1 0.1]T and u = [1 5 1 1]T is defined to account for technol-
ogy limitations (i.e., minimum feasible width of the composite element lines and
the gaps between them equal to 0.1 mm). A high-fidelity model of the double-T
composite element (∼200,000 mesh cells and average evaluation time of 60 s) is
implemented in CST Microwave Studio [39], whereas its circuit representation is
constructed in Agilent ADS simulator [99]. Figure 6 illustrates a circuit and EM
model of a double-T composite structure.

5.2 Optimization Methodology

Let y stand for the geometry parameters of a composite element, whereas R f.cell(y)
and Rc.cell(y) denote the responses of EM and circuit models, respectively. The nested
space mapping method [25, 98] constructs a surrogate model of a miniaturized struc-
ture starting from the level of each composite element (a so-called local level space
mapping). Consider Rs.g.cell(y, p) as a generic surrogate model, constructed using
Rc.cell and suitable space mapping transformations. Vector p denotes extractable
space mapping parameters of the surrogate. The Rs.cell model is obtained using the
following transformation
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Rs.cell(y) = Rs.g.cell(y, p∗) (8)

where
p∗ = arg min

p

∑Ncell

k=1
||Rs.g.cell(y(k), p) − R f (y(k))|| (9)

Here, y(k), k = 1, . . ., Ncell , are the training designs obtained using a star-distribution
scheme. The base set is composed of Ncell = 2n + 1, where n is a number of inde-
pendent design variables. A surrogate model Rs.g.cell is usually constructed using a
combination of input SM, implicit SM and frequency scaling [24] in such a way that
Rs.cell is accurate within entire solution space of the model.

Let Rf(x) and Rc(x) denote the EM and circuit models of the entire com-
posite structure with x being a vector of geometry parameters. Additionally, let
Rs.g(x, P) stand for a surrogate model of the entire compact structure, constructed of
surrogate models of composite elements, i.e., Rs.g(x, P) = Rs.g([y1; . . .; yp], P) =
F(Rs.g.cell( y1, p∗), . . ., Rs.g.cell(yp, p∗), P). Function F realizes a cascade connec-
tion of individual composite element responses [2, 98], whereas the vector x is a
concatenation of component parameter vectors yk (where k = 1, . . ., p). The outer
layer surrogate model parameter vector P is usually defined as a perturbation with
respect to selected space mapping parameters p∗ of each composite element.

An outer space mapping correction is applied at the level of entire compact struc-
ture Rs.g(x, P), so that the final surrogate R(i)

s utilized in the i th iteration of the
surrogate-based optimization scheme (2) is as follows

R(i)
s (x) = Rs.g(x(i), P(i)) (10)

where
P(i) = arg min

P
||Rs.g(x(i), P) − Rf(x(i))|| (11)

Generally, vector P utilized in NSM approach is composed of considerably smaller
number of space mapping parameters than in competitive techniques, which is due
to good alignment of Rs.cell and R f.cell provided by the inner SM layer. For more
detailed description of nested space mapping methodology see e.g. [25, 98].

5.3 Results

For demonstration purposes, a compact 50-Ohm to 130-Ohm impedance transformer
composed of a cascade connected double-T composite elements [98] is considered
for optimization with respect to the design specifications of Sect. 5.1. A surrogate
model Rs.cell is constructed using a total of 16 space mapping parameters including:
8 input space mapping, 6 implicit space mapping, and 2 frequency scaling ones
[25, 41, 92]. Subsequently, a 9-point parameter extraction based on star-distribution
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Fig. 7 Responses of
double-T composite element
at the selected test designs:
coarse model (· · ··), fine
model (—), NSM surrogate
after multipoint parameter
extraction (◦ ◦ ◦). The plots
indicate very good
approximation capability of
the surrogate
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scheme is performed. Figure 7 illustrates a comparison of the model responses before
and after multi-point parameter extraction step.

An outer layer surrogate model Rs.g of the compact matching transformer is
composed of interconnected surrogate models of composite elements Rs.cell . Its
corresponding Rf counterpart is prepared in CST Microwave Studio (∼1,060,000
mesh cells and average simulation time of 10 min). The initial set of design para-
meters is: x = [0.55 3.75 0.65 0.35 0.55 3.75 0.65 0.35 0.55 3.75 0.65 0.35 0.55 3.75
0.65 0.35]T . Next, the NSM technique of Sect. 5.2 is utilized to obtain the final design.
Optimized compact matching transformer is represented by the following vector
of design parameters: x = [1.0 3.52 0.85 0.2 0.8 4.1 0.58 0.1 0.8 3.09 0.1 0.25 1 2.32
0.13 0.1]T . Schematic representation of Rs model of compact structure in the form of
cascade connection of Rs.cell models and geometry of a circuit are illustrated in Fig. 8.

The optimized design that satisfies all assumed requirements, i.e., provides
50-Ohm source to 130-Ohm load matching and |S11| ≤ –15 dB within defined oper-

y1 y2

x P*

p1 p2* *1 * y3 p3 ** y4 p4 **

(a)

(b)

Fig. 8 A compact matching transformer: a schematic diagram of double-T composite element
interconnections; b geometry of an optimized structure
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Fig. 9 Reflection response
of the optimized compact
matching transformer
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ational bandwidth is obtained after only 3 iterations of nested space mapping algo-
rithm. One should note that the optimized structure exhibits 15 % broader bandwidth
than the assumed (lower and upper operating frequency is 2.7 GHz and 10.8 GHz,
respectively). Moreover, reflection level for 3.1 GHz to 10.6 GHz bandwidth is below
–16.2 dB, which is almost 15 % lower than the assumed value. Reflection character-
istic of the optimized design is shown in Fig. 9.

The total cost of compact matching transformer design and optimization is about
40 min and it includes: 9 simulations of Rf.cell model during multi-point parameter
extraction, 3 evaluations of the Rf model, and simulations of surrogate models that
corresponds to a total of 0.2 Rf. It should be emphasized that NSM technique out-
classes other competitive methods, i.e., implicit space mapping [100], and sequential
space mapping [2]. The results indicate that the computational cost of the method is
almost 70 % smaller in comparison to implicit space mapping and sequential space
mapping. For the sake of comparison, a direct optimization driven by pattern search
algorithm [33] has been also conducted; however algorithm failed to find a design
satisfying given specifications and it was terminated after 500 iterations. Table 1
gathers detailed data concerning the computational cost of techniques utilized for
transformer optimization.

Table 1 Four section unconventional MT: design and optimization cost

Model type Optimization algorithm

NSM ISM SSM Direct search

Rs.cell 0.1 × Rf N/A N/A N/A

Rf.cell 0.6 × Rf N/A N/A N/A

Rs 0.1 × Rf 5.1 × Rf 1.7 × Rf N/A

Rf 3 7 10a 500b

Total cost 3.8 × Rf 12.1 × Rf 11.7 × Rf 500b × Rf

Total cost [min] 38 121 N/A 5000
aThe algorithm started diverging and was terminated after 10 iterations
bThe algorithm failed to find a geometry satisfying performance specifications
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6 Case Study III: Simulation-Driven Design of Small UWB
Antennas

Antennas are crucial components in mobile communication systems. They play a
role of an interface between the wireless medium and the transmission lines. Ultra-
wideband (UWB) antennas are of particular interest, because they can provide high
data transmission rates, and their broadband properties could be useful for reduction
of transceiver section complexity [28]. On the other hand, such antennas are charac-
terized by considerable footprint, which is a serious drawback: rapid development of
handheld devices imposes strict requirements upon miniaturization of contemporary
antenna structures. Miniaturization of ultra-wideband antennas is troublesome, since
their performance—especially for lower frequency range—depends on the wideband
impedance and current path within the ground plane [28]. While the former may be
accounted for by appropriate construction of the feeding line, the latter requires com-
plex modifications within the ground plane. Unintuitive and asymmetrical geometries
of compact UWB antennas significantly influence the evaluation cost of their EM
models, which varies from half an hour up to several hours. These problems make the
design and optimization of compact ultra-wideband antennas a challenging task. In
particular, their simulation-driven design directly based on high-fidelity EM models
is impractical [84]. On the other hand, lack of theoretical insight for such structures
makes EM simulators the only reliable tools for their performance evaluation. In this
section, a design of compact UWB antenna with modified ground plane and feed
line is discussed. Computational efficiency of the optimization process is ensured
by the utilization of high- and low-fidelity EM models. Discrepancy between model
responses is addressed using adaptively-adjusted design specification (AADS) tech-
nique [85].

6.1 Antenna Structure and Design Problem

Consider a conventional planar monopole antenna [101] consisting a circular shape
radiator and a feeding structure in the form of 50-Ohm microstrip line. The structure
is characterized by a considerable size of 45 × 50 mm2, which is necessary to achieve
wideband impedance matching and sufficient current path within ground plane. The
structure can be miniaturized by introduction of a tapered feed line and modification
of the ground plane by means of a L-shaped ground plane stub [102, 103]. Geometry
of a conventional monopole and its compact counterpart with modified geometry is
illustrated in Fig. 10.

The antenna is described by seven independent design variables: x = [g0 g1 l1

rg2 c0 w1]T , whereas w0 = 2.35, l0 = 8 remain fixed; c1 = c0/2 (all dimen-
sions in mm). It is designated to work on Taconic TLP-5 dielectric substrate
(εr = 2.2, tanδ = 0.0009, h = 0.762 mm). In order to utilize AADS method-
ology for the design and optimization, two models of an antenna have been prepared
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Fig. 10 Monopole UWB
antenna: a initial design
[101]; b a compact structure
with modified geometry [28]

42

50 g0

(a) (b)

and simulated in CST Microwave Studio transient solver. The high-fidelity model
Rf is represented by ∼2,577,000 mesh cells and average evaluation time of 30 min,
whereas its low-fidelity counterpart Rc is composed of ∼75,000 mesh cells and its
average simulation time is 47 s.

Two design cases are considered: (i) reduction of antenna footprint defined as a
rectangle R = A × B, where A = g0 and B = l0 + l1 + 2r , and (ii) minimization
of antenna reflection. One should note that operational properties of an antenna
optimized within the former criteria, i.e., |S11| ≤ –10 dB are enforced by sufficiently
defined penalty factor. Both objectives are considered within 3.1 GHz to 10.6 GHz
frequency band.

6.2 Optimization Methodology

In order to provide reliable prediction of the antenna response, a misalignment
between Rf and Rc responses is accounted for by means of adaptively adjusted design
specifications (AADS) technique [85]. Majority of available surrogate-based opti-
mization techniques (e.g., [22, 56, 100]) perform enhancement and corrections of
the Rc model in order to minimize its misalignment with respect to Rf. The AADS
methodology utilizes knowledge about discrepancy between responses of Rc and
Rf in order to modify design specifications so that they account for the response
differences. AADS works very well for a problems that are defined in a minimax
sense, e.g., |S11| ≤ –10 dB over a defined operational frequency, which is the case
for the design of UWB antenna structures. A conceptual explanation of the method
with highlight on the determination of characteristic points is provided in Fig. 11,
whereas the algorithm flow is presented below:

1. Modify the original design specifications to account for the difference between
the responses of Rf and Rc at their characteristic points.

2. Obtain a new design by optimizing the low-fidelity model Rc with respect to the
modified specifications.
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Fig. 11 Design optimization through AADS [85] on the basis of a bandstop filter Rf (—) and
Rc (- - -): a initial responses and the original design specifications, b characteristic points of the
responses corresponding to the specification levels (here, –3 and –30 dB) and to the local maxima,
c responses at the initial design as well as the modified design specifications. The modification
accounts for the discrepancy between the models: optimizing Rc w.r.t. the modified specs corre-
sponds (approximately) to optimizing Rf w.r.t. the original specs

In the first step of algorithm, the specifications are altered in such a way that
specifications for Rc model corresponds to the desired frequency properties of the
high fidelity one. In the second stage, the Rc model is optimized with respect to the
redefined design specifications. The optimal design is an approximated solution to
the original problem defined for Rf model. Although the most considerable design
improvement is normally observed after the first iteration, the algorithm steps may
be repeated if further refinement of design specifications is required. In practice, the
algorithm is terminated once the current iteration does not bring further improvement
of the high-fidelity model design. One should emphasize that determination of appro-
priate characteristic points is crucial for the operation of the technique. They should
account for local extrema of both model responses, at which specifications may not
be satisfied. Moreover, due to differences between Rf and Rc models, redefinition of
design specifications may be necessary at each algorithm iteration.

6.3 Results

The initial design of a compact monopole antenna of Sect. 6.1 is x0 = [24 14.5 7 6.5
6 1 0.9]T and corresponding footprint of a structure is 672 mm2, whereas its max-
imal reflection within frequency band of interest is –10.8 dB. The design para-
meters of a structure optimized with respect to minimization of reflection are
x(i) = [26.58 13.83 6.19 6.24 7.79 0.330.7]T . The design is obtained after 3 itera-
tions of the AADS algorithm. The second design—optimized towards minimization
of footprint—has been obtained after only 2 iterations of the algorithm and the corre-
sponding dimensions are x(i i) = [19.78 13.63 5.81 5.84 7.89 0.33 0.72]T . The foot-
print of a structure is only 504 mm2. It should be emphasized that the design optimized
with respect to reflection is characterized by a maximal in-band |S11| = −13.5 dB
which is 20 % lower in comparison with the reference structure. Additionally, the
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Fig. 12 Reflection response of optimized compact UWB monopole antennas. Initial design (· · · ·),
first iteration (– – –), final result (——): a design (i); b design (ii)

Table 2 Design of a compact UWB antenna: optimization results

Antenna design AADS Direct-search (pattern search)

Design (i) Design (ii) Design (i) Design (ii)

Rc 300 200 N/A N/A

Rf 4 3 97 107

Total cost 11.8 × Rf 8.2 × Rf 97 × Rf 107 × Rf

Total cost [h] 5.9 4.1 48.5 53.5

antenna optimized with respect to minimization of the lateral area is 25 % smaller
than the reference one. It should be also highlighted that the variation of size between
both optimized structures is 29 %, whereas their maximal in-band reflection varies by
26 %. Frequency responses of both optimized antenna designs are shown in Fig. 12.

The optimization cost for the first case corresponds to 11.8 Rf (∼5.9 h) and it
includes: a total of 300 Rc evaluations for the design optimization and 4 Rf simu-
lations for the response verification. The cost of obtaining the second design cor-
responds to about 8.2 Rf model simulations (∼4.1 h): 200 Rc simulations for the
design optimization and 3 Rf model evaluations. For the sake of comparison, both
designs have been optimized using direct-search approach driven by pattern search
algorithm [33]. The cost of design optimization towards minimum reflection and
footprint miniaturization is 97 Rf and 107 Rf, respectively. Design costs for these
two cases are over 8 and over 13 times lower compared to direct search. A detailed
comparison of design and optimization cost of both designs is gathered in Table 2.
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7 Conclusion

This chapter highlighted several techniques for rapid EM-simulation-driven design
of miniaturized microwave and antenna structures. Techniques such as nested space
mapping, design tuning exploiting structure decomposition and local approximation
models, or adaptively adjusted design specifications, can be utilized to obtain the
optimized geometries of compact circuits in reasonable timeframe. The key is a
proper combination of fast low-fidelity models, their suitable correction, as well as
appropriate correction-prediction schemes linking the process of surrogate model
identification and optimization. In all of the discussed schemes, the original, high-
fidelity model is referred to rarely (for design verification and providing data for
further surrogate model enhancement). In case of compact microwave structures, it
is also usually possible to exploit structure decomposition, which further speeds up
the design process. In any case, it seems that tailoring the optimization method for a
given design problems gives better results than taking off-the-shelf algorithm. One of
the open problems in the field discussed in this chapter include design automation,
such as automated selection of the low-fidelity model, as well as controlling the
convergence of the surrogate-based optimization process. This and other issues will
be the subject of the future research.
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Sustainable Industrial Processes
by Embedded Real-Time Quality Prediction

Marco Stolpe, Hendrik Blom and Katharina Morik

Abstract Sustainability of industrial production focuses on minimizing gas house
emissions and the consumption ofmaterials and energy. The iron and steel production
offers an enormous potential for resource savings through production enhancements.
This chapter describes how embedding data analysis (datamining, machine learning)
enhances steel production such that resources are saved. The steps of embedded data
analysis are comprehensively presented giving an overview of related work. The
challenges of (steel) production for data analysis are investigated. A framework for
processing data streams is used for real-time processing. We have developed new
algorithms that learn from aggregated data and from vertically distributed data. Two
real-world case studies are described: the prediction of the Basic Oxygen Furnace
endpoint and the quality prediction in a hot rolling mill process. Both case studies
are not academic prototypes, but truly real-world applications.

1 Introduction

The United Nations Conference on Sustainable Development took place in Rio de
Janeiro, Brazil, 20years after the 1992 Earth Summit in Rio. Sustainability is defined
as guaranteeing a decent standard of living for everyone todaywithout compromising
the needs of future generations. Climate change, disasters and conflicts, ecosystem
management, environmental governance, chemicals and waste, environment under
review, and resource efficiency are the United Nations’ Environment Programmes.
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To each of these topics, there exists a large variety of scientific studies and to many of
them, data analysis contributes insights. Investigating climate change clearly needs
to be based on data, their analysis and simulation, but also agriculture, biodiver-
sity, resilience of water, soil, and air are to be based on reliable data. A low-carbon,
resource-efficient economy was discussed as one important approach to “the future
we want” as is the name of the United Nations Sustainable Development Knowledge
Platform. In this chapter, we contribute to resource efficiency, namely in production
processes. We focus on the industrial sector, because it uses more energy than any
other end-use sector, with iron and steel production being the second largest con-
sumer after the chemical industry [4]. There, even achieving only a small factor of
enhancement in the production process leads to enormous resource savings.

In the remainder of the introduction, we present definitions of sustainable indus-
trial processes and resilient systems (Sect. 1.1). Based on a discussion of relatedwork,
we then argue in favor of a full integration of real-time data analysis into existing
technical systems (Sect. 1.2). At the end of this section, we give an outlook of the
chapter.

1.1 Sustainability of Industrial Processes

Sustainability is often regarded an environmental issue focussing on emission col-
lections, cleaning and waste management. For instance, the CO2 emissions from
steelmaking are investigated [74]. Recycling in the iron and steel making indus-
try has early been handled [81]. The greenhouse gas emissions are considered an
important indicator of sustainability (cf. Martins and colleagues [58]). The second
indicator is the energy intensity. This has also been carefully studied for steelmaking,
e.g. in [21], where a comprehensive reference process, from the coke oven and sinter
plant over blast furnace, basic oxygen furnace and continuous casting to hotstrip
mill, is analyzed with respect to energy consumption and supply by the reference
power plant and the use of waste heat. Martins et al. state material efficiency as the
third and the existence of an environmental management system as the fourth indi-
cator of a sustainable industrial process. Today’s steel companies operate certified
environment management including recycling.1

The CO2 emission and the energy and material consumption are to be minimized
while at the same time the product quality and the economic value are to be maxi-
mized. The importance of the objectives are often weighted. If the ecological factor
is greater than the economic factor, the solutions of the optimization save more
resources. If the economy outweighs the ecology, solutions of the optimization cre-
ate more value. In an evolutionary approach, the orthogonal objectives, resource use
and created value, are optimized delivering a Pareto front of all possible weights for
the objectives [23]. Depending on the needs of the society, there might be particular

1ISO 14001 for environment and ISO 50001 for energy management certify today’s standards.
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bounds of the two objectives. For instance, there might be a strict bound on the
greenhouse gas emission, the energy, and the material consumption, which are not
to be exceeded regardless of the economic value produced. On the other hand, there
might be a certain number of products so necessary, that they have to be produced
regardless the resource efficiency. Such bounds limit the overall Pareto front further.
This optimization problem expresses the issue of sustainable industry, in general.
In this chapter, we are not investigating this macro level of steel production in gen-
eral, but focus on how to reduce the resource consumption in a steel factory through
embedded data analysis.

Making processes traceable has been demanded for enhancing their sustainabil-
ity [10]. The first and important step is to measure the processes [70]. A complete
and sound collection of data allows to generate some overview of the process per-
formance. Aggregating performance indicators allows the engineers to analyze the
process [39]. However, working on the factory processes themselves requires an
analysis on the basis of more detailed data. With respect to control, Alghazzawi
and colleagues have put forward to monitor a process based on its data [3]. The
stored measurements are a necessary prerequisite for evaluating processes on the
basis of sound data. The importance of grounding steel processes on data has been
put forward, by, e.g. Kano et al. [38]. They argue that quality improvement in steel
industry becomes possible because of the analysis of data. Recording the data of
the process allows to compare the engineering knowledge about the process with
its actual operation. This comparison is one of the reasons for cyber-physical sys-
tems, which distributedly sense and interact with their environment, thus linking the
cyber and physical worlds. Cyber-physical systems not only sense some factors of
the production process (data acquisition), but may also perform local computations
for data enhancement (cleansing, feature extraction) and finally interact with the
controlling personnel or even control it partially themselves (model employment).
Cyber-physical systems acquire and process local data at distributed sources. The
value of the distributed data is created by their analysis.Hence, in this chapter,we deal
with machine learningmethods for the analysis of production data. Moreover, we not
only deliver analysis results to the engineers, but directly influence the production
process.

Sustainability is supported by quality prediction in two ways. First, quality pre-
diction allows to stop processing as soon as the desired quality can no longer be
achieved so that no work is vainly invested into material of insufficient quality. This
saves energy and materials. Second, quality prediction allows to stop processing at
the right moment. Stopping before having produced the optimal quality may require
additional work that is more costly than to continue the process until the optimum.
Stopping after the optimum may decrease the quality again, thus wasting resources.
In this chapter, we present a case study for each types of quality prediction supporting
sustainability.
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1.2 Related Work on Sustainable Steel Factories

Steelmaking is based onmetallurgical knowledge about the rawmaterials, knowledge
about the processes and furnaces, and knowledge about process control and process
variants. Thermodynamic and kinetic models of converter steelmaking are used for
simulations that explain, for instance, the composition of the slag at the end of process
[54]. An overview shows diverse blast furnace models ranging from first principles
models to specialized models, e.g. for the charging programs or the gas flow [30].
The authors point out that in the end, it is decisive that the models are integrated into
the plant control and data acquisition system (cf. [30], p. 214ff). Similarly, Simon
Lekakh and colleagues identify the three levels of modeling [50]:

Level 1: process understanding,
Level 2: designing better processes and equipment,
Level 3: controlling the entire steelmaking process online “when several models

need to be integrated in a fast-working algorithm, communicating with sensors
and process control devices.”

The majority of work is about levels 1 and 2. Most models are based on engineering
knowledge and are not verified on real data. Some approaches support the model
building by machine learning methods. For instance, an artificial neural network was
trained to predict the yield of steel, i.e. the efficiency of the steelmaking process
[48]. Another approach trains the energy cost prediction on the basis of data. 4years
of monthly reports from a steelmaking process allow to map the input raw material
and the steel output value to energy costs [5]. Another approach integrates a neural
network with qualitative reasoning for predicting the silicon content in pig iron as an
indicator of the thermal state of a blast furnace [14]. Note, that although the authors
train neural networks on real world data, the learned model serves as input into a
human decision process and is not integrated into the production process.

Some use of machine learning has been integrated more closely into the process.
Training an artificial neural network on real data was successful for predicting how
much oxygen should be blown andwhat the coolant requirements are in the end-blow
period of the steelmaking process [18]. An approach to end-point prediction of basic
oxygen furnace (BOF) turns the visual perception of the flame into a set of features
which are input to a support vector machine (SVM) that estimates the carbon in the
molten iron [89]. Others have combined fuzzy network models with a variant of the
SVM. The fuzzy classifier decides whether cooling material is to be added and the
fuzzy regression model determines how much oxygen and coolant should be given
[31]. These papers argue in favor of a certain learning method, be it SVM or robust
relevance vector machine or neural networks. They show that their method delivers
one model that shows a good performance on a certain data set. In this chapter, we
move beyond learning one model. The feature extraction is more important than the
particular learning method for the model’s quality. Each learning algorithm favors
different features. Several studies have shown that changing the data representation
changes the ranking of learning methods, substantially, e.g. [62, 63]. Hence, there
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is not one best method, but one best pair of method and representation. Moreover,
we believe that processes change over time. In the BOF process, for instance, the
refractory linings of the converter are slowly reduced and the lance frays over a
series of uses. This changes the process. Then, a different model is better suited
for prediction. Also the sensors may wear off so that the model should be changed.
Hence, we propose a method of learning, storing, and using several models. Thus,
we provide users with a system that learns and stores models, not just with one
learned model. Although general, the system is not a general learning toolbox as
is RapidMiner [61], which it may use, but specialized to the application, including
sensor readings, feature extractions, modeling, model storage, andmodel application
in real time.

1.3 Outlook

This chapter is about making industrial processes sustainable through embedding
data analysis directly into the production process. On the one hand, the production
process must be ready for embedded data analysis. Section2 describes the challenges
for the production domain. We’ll show steps of a preparation process that is often
underestimated. On the other hand, data analysis methods from machine learning or
dataminingmust be ready for the real-world data and control. Section3 looks into the
steps of data analysis. The data acquisition, cleansing, the choice of its representation
and extracting the right features are at least as important as the model building (i.e.
the learning) step. Particular challenges arise from distributed and streaming data.
Our contributions in model building are:

• Distributed data mining: In contrast to the common horizontally partitioned data,
where each partition has exactly the same set of features, the data from diverse
sources are heterogeneous, each with its own set of features. They realize a stream
of vertically partitioned data. We present a general method for the analysis of
vertically partitioned data that is resource-aware in its own right.

• Label proportions: A special challenge in hot mill applications is that the quality
prediction refers to groups and not to individuals, e.g. the quality evaluation states
how many steel blocks of some customer order had defects, but not which of
them. The labels not deficient and deficient are assigned by the quality control as
proportions for a set of blocks, not as a label for an individual block. This means,
that learning is to be based on label proportions or aggregations. We present an
efficient algorithm that solves this new data analysis task.

• A framework for processing data streams offers the right level of abstraction for
developing real-time processing. It eases the integration of diverse computations
executed at different compute nodes, e.g. at the factory and at the engineer’s office.
Based on user-given configurations, it glues diverse contributions of data analysis
and model application together to form an application.
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We are happy to present real-world case studies in Sect. 4, starting with the
production process and the data acquisition until the model building and model
application. The case studies started as academic studies, but have moved far beyond
over the years. The first case study is about the BOF end point prediction (Sect. 4.1).
For the first time, not only one appropriate model is created, but a system that covers
all the steps of data analysis, eases to learn models, and stores them. The system is
embedded into the steel production where a selected model is applied in real time to
the converter process.

The second case study is about the hot rolling mill process (Sect. 4.2). This study
guides the development of decentralized methods for the real-time analysis of sensor
data. It underpins again the importance of feature extraction and selection. The system
is developed in close collaboration with experts in machining, production, and the
steel mill.

The conclusion summarizes our findings and gives an outlook to further research.

2 Challenges for the Domain

Before any data about a production process can be analyzed at all, it must be made
available and transformed into a format that is suitable for the analysis task. Based on
experiences from the two case studies presented in Sects. 4.1 and 4.2, the following
sections discuss typical problems that are usually encountered when trying to embed
data analysis in a production environment.

2.1 Proprietary Systems and Heterogenous Data Sources

Quality assurance, certification according to well-defined standards and customer
demands require the documentation of steps that were taken inmanufacturing. There-
fore, data about the processing of products is usually already recorded. However, the
data sometimes is not directly accessible for the automated processing required by
real-time analysis. In some cases, the data might not even be available electronically.
In other cases, proprietary systems might allow for entering and displaying data on
screen, but not for exporting the data. Then, the accompanying systems don’t neces-
sarily provide an programmer’s interface for direct access. Therefore, an important
first step is to make as much data as possible electronically available and accessible.
This potentially requires a change in existing IT infrastructures.

Another challenge may be the heterogeneity of data stemming from different
sources. Steps in a production process are often maintained by different departments,
where each can have their own terminology and standards for recording data. The
integration of data from different sources is a common problem in data mining
projects. For an offline analysis, it is often only done once and manually. For the
continuous analysis of data during a running production it is even more demanding,
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because the process requires the fully automatic fusion of data. Here, open standards
for data and meta data description, like XML and according schemas, support the
unification of heterogenous data formats, making them easier accessible for data
analysis.

2.2 Installation and Maintenance of Sensors

Some production processes are already equipped with monitoring sensors, but with
respect to data analysis, it may turn out that not all of them are relevant for the
prediction task, while others may be missing. The first step therefore is to gain an
understanding of the process chain and assess the available sensors. The next step
is the identification of potential decision points, i.e. points in the process that could
allow for taking quality-related actions. Based on that information, it can be decided
which sensors need to be exchanged, what additional types of sensors are needed
and where they should be installed.

Maintenance tasks include the monitoring of sensors for deviations and failures,
regular recalibration and potential reinstallation. Such maintenance tasks become
especially challenging and expensive when leading to a temporary halt of the
whole production process. The continuous gathering of high-quality sensor data
thus requires new types of machinery which allow for a non-invasive maintenance
and measurement of process parameters.

2.3 Definition and Measurement of Quality Deviations

If quality deviations can be detected early enough, parameters of subsequent process-
ing steps may be changed in order to reach a desired quality level. If the detection
is to be learned from data, labeled examples are necessary (see also Sect. 3.5.1),
i.e. historical records of parameters for the processing of individual steel blocks and
associated quality measurements. However, it is not always clear how the quality
measurements on final products relate to intermediate production units.

In case of the hot rolling mill process described in Sect. 4.2, the quality is assessed
onbars that are cutted from larger steel blocks. For each of the bars, differentmeasures
of quality are available. Predictions during the running process, however, are to be
made on the larger steel blocks. Formethods predicting a single label, it thus becomes
necessary to aggregate information about the bars to a single label for each steel block.
Which aggregations are meaningful and how to calculate them can only be decided
by domain experts.

Even more complicated is the case in which, for technical or organizational rea-
sons, the quality has only been assessed on a small sample of the bars or the rela-
tionship between steel blocks and bars is lost. Then, quality information is only
available as group statistics, e.g. for whole customer orders, but not for individual
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units. Learning from such aggregate outputs or label proportions is an exciting new
field of machine learning research and we have developed a method to solve the
problem (see also Sect. 3.5.4). For a successful application of data analysis it is nev-
ertheless advantageous to establish a continuous end-to-end tracking of units through
the whole process chain.

2.4 Encoding of Domain Knowledge

Processes in the chemical and steel industry usually can be characterized by an
abundance of partially interdependent process parameters which may potentially
influence the quality of the final product, resulting in high-dimensional learning
and optimization tasks. Both types of tasks may benefit from restricting the search
space of relevant parameters according to already existing background knowledge,
from experts or physical and chemical laws. Similarly, known models may guide
unsupervised data mining methods to interesting patterns.

Currently, the incorporation of background knowledge, e.g. in the form of search
constraints, is usually done manually and based on interviews with domain experts.
However, a truly adaptive analysis of data would require the electronic storage and
continuous maintenance of background knowledge according to well-defined for-
malisms. Similar to the problem of data representation facing heterogenous sources,
standards should be established for the description of knowledge about production
processes which then could automatically be accessed and used by data analysis
methods.

3 Challenges and Methods for Embedded Data Analysis

Even if all of the aforementioned requirements were met, the nature of industrial
processes or technical restrictions still poses challenges for data analysis [85]. Sen-
sors and machines will fail at some time, processing steps may be optional and
products may take different routes through a process chain. With such events, diffi-
cult questions arise how data should be preprocessed, represented and what features
may be relevant for the prediction task. Moreover, the distributed nature of sensors
and the real-time processing of all data may require the development of new data
analysis methods. The following sections will discuss such problems and available
methods in more detail, for each step of the data analysis process.

3.1 Data Acquisition

We illustrate process chains and associated sensor measurements by an example.
Figure1 shows how two different steel blocks, A and B, might have moved through
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several processing stations: a heating furnace, a block roll, two finishing rolls, a
station for cutting the blocks, and two cooling stations. Each station, except the
cutting station, has sensors attached. Steel block A is first heated up, rolled and then
moves through the first finishing roll. It is then cutted into four parts. Three of such
parts move through the first cooling station while one moves through the second one.
Steel block B moves through the second finishing roll instead, is cutted into two parts
afterwards, and such parts then move through the cooling stations in parallel. The
measurements that might have been recorded by each sensor over time are shown in
Fig. 2.

During time intervals [t1, t2], [t5, t6] and [t7, t8], steel block A has moved from
one processing station to the other, as well as steel block B during time intervals
[t1, t2], [t4, t5] and [t6, t7]. For steel block A, the recording at the block roll starts
with sensor 3, while sensor 2 has a time lag of t3 − t2 and sensor 4 a lag of t4 − t2.
Similar lags occur during the processing of steel block B. Sensor 4 is an example of
a sensor whose values are not continuous, but discrete.

The continuous measurements of sensors form an indexed stream of countably
infinite data items xi . Every data item contains an index, for example a timestamp,
and can contain arbitrarily many different values and value types, like images, strings
or numbers.

A segment of this stream with length n and only numerical values form a value
series which can be defined [60] as a mapping x : N → R × C

m, m ∈ Nwhere each
element xi of a value series with length n is an ordered pair (di , wi ). di ∈ N is called
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Fig. 2 Sensor measurements for blocks A and B

the index component andwi ∈ R × C
m the value component. It is called a time series

if the index dimension represents a temporal order.
The repeating patterns inmany of the time series, for instance at the rolls, represent

different rolling steps, i.e. a single steel block could move several times through a
roll. For instance, according to the measurements of sensor 2, steel block A moved
four times through the block roll and steel block B five times. Since A moved through
the first finishing roll, there are no measurements for the second roll, while for B,
there are values for the second roll, but none for the first.

3.2 Cleansing of Sensor Measurements

In real production environments, sensors might provide wrong readings or might
fail entirely [68]. At least, their readings are noisy. Equipment could be exchanged
and machines will fatigue. Time series may contain irrelevant readings, be wrongly
aligned or have different resolutions.When analyzing the data offline, such cases can
simply be excluded from the analysis. In contrast, the embedded real-time analysis
of data must somehow detect such cases automatically and react accordingly. The
first analysis step therefore usually consists of cleaning the sensor readings.

3.2.1 Detection and Handling of Faulty Sensor Readings

Faulty sensor readings can only be handled if they are detected. Such detection is
easiest in cases in which sensor readings lie outside physically meaningful ranges,
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as defined by accompanying meta data. But there are also non-trivial cases, in which
faulty readings overlap with the normal data, requiring the automatic detection of
faulty patterns. If such patterns cannot be defined based on knowledge about the
underlying hardware [35], or based on visual inspection, they might be derived auto-
matically by supervised learningmethods (see also Sect. 3.5.1). However, if the faults
are highly irregular or not frequent, it is difficult to learn their detection on the basis of
given training examples.Models for the detection of anomalies in production settings
often describe only the normal data, marking patterns as anomalies that deviate from
the learned description (see also Sect. 3.5.2). Nevertheless, the correct definition of
parameters, like threshold values, remains difficult with only a few negative exam-
ples. Moreover, it can be difficult even for domain experts to identify such negative
examples correctly.

Once faulty readings or missing values are detected, there are different possible
ways to handle them. A simple strategy for the replacement of single or only a few
faulty values is to replace them by their predecessor value or based on ARMA (auto-
regressive moving average) models [9]. In other cases, faulty values can be imputed
based on prediction models that were trained on other existing values. However, if
many relevant values are missing or whole sensors fail, the quality of the predictions
may either decrease or it might become impossible to provide a prediction at all. The
challenge here is to estimate the confidence of predictions correctly, since it is not
always clear how missing or faulty values in the raw sensor data will influence later
preprocessing and model building steps. Another challenge is that different types of
sensors may require different strategies for the handling of faults and that knowledge
about the best strategy is often scarce.

Finally, even correctly working sensors usually have some level of noise, which
may also be introduced by the production process itself, like sensors moving due to
vibrations. If the underlying noise model is known, it should be used. Otherwise,
measurements can be filtered and smoothed. Finding the correct parameters for fil-
tering is not necessarily trivial, since it also interacts with subsequent preprocessing
and model building steps.

3.2.2 Detection and Handling of Changes

Sensor readings that deviate from what is already known may also be caused by
intended changes in the underlying hardware, like new production equipment and
new or differently calibrated sensors. It is vital that the prediction engine is informed
about such changes and, if possible, also provided with new meta data. Otherwise, it
may happen that correct newpatterns arewrongly identified as faulty ones.Moreover,
based on the type of changes, it must be decided which of the previously trained
models need to be updated and how.

Unintended changes are usually caused by machine fatigue. Without any models
describing such changes, methods for concept drift detection are needed and it has
to be decided if already trained prediction models must be updated, or alternative
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models be applied. In contrast, incremental trainingmethods, like streamingmethods
(see Sect. 3.5.6), can incorporate such changes into their models, automatically.

3.2.3 Irrelevant Readings and Different Alignments

Sensor readings may be entirely irrelevant for the prediction. Such parts can then
be stripped from recorded time series or be skipped in the online processing. For
example, production processes may include phases in which materials are just trans-
ported or posititioned for the next processing step, but sensors nevertheless provide
readings. Ideally, the data management would clearly mark such events. Whenever
this is not possible, however, such phases must be detected automatically, facing
similar challenges as the detection of faulty sensor readings.

Similarly, the time series or data streams of different sensors may have different
resolutions, lengths and offsets. Depending on the prediction task andmethods, it can
be necessary to scale and align time series correctly before they are further processed.
This task is not to be underestimated.

3.3 Representation of Value Series

As shown in Sect. 3.1, a single run through the process chain can be represented by a
set of time series with different lengths and offsets, which may overlap in time, may
contain different numbers of segments at different levels of granularity, may stem
from different machines and sensors and may also be entirely missing for processing
steps that are optional.

Many common data analysis methods cannot work directly on such sets of time
series, but expect all observations to be represented by fixed-length feature vectors.
Instead of inventing specialized methods for the handling of multivariate sensor
readings, the question arises if the raw data can be transformed into a representation
that can be used by standard data analysis methods. While Sect. 3.4 deals with the
extraction of features fromvalue series, not necessarily resulting in value series again,
here we discuss how the raw series values can be rearranged and transformed for the
use with different distance measures.

3.3.1 Mapping of Series Values to a Fixed-Length Vector

Wewant to represent the sensor data in fixed-length vectors in order tomake standard
learning techniques applicable. The basic idea is to reserve enough space for the
readings of each sensor in a single fixed-length numerical vector. Original series
values are then projected to appropriate (predefined) positions in this vector, as
shown in Fig. 3. Themapping works, if the maximum number of time series recorded
is fixed and known beforehand. This is usually the case, as long as the process
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Fig. 3 The value series from different sensors as a single fixed-length vector

and sensor setups do not change. For the projection, the original time series might
need to be rescaled, e.g. by interpolation, and possibly shifted. Once mapped, it
becomes possible to use the resulting vectors with most distance-based data analysis
algorithms.

Themost difficult question iswhat values to assign to portionswhere noprocessing
happened (the question marks in Fig. 3), e.g. for optional processing steps. A simple
approach might fill missing portions with zeros or the last recorded value. However,
filling with zero values can easily lead to problems with several distance measures.
For example, how similar are two value series, where steel block A moved through
a different finishing roll than did steel block B? When filling with zeros, both series
would be marked as highly dissimilar by Euclidean distance, although both blocks
could well lead to a similar final quality of the steel blocks. In such a case, the
desired correspondence between similar feature vectors and similar labels would
be lost. Reserving the same portion for both finishing rolls (sensors 5 and 6) in
the fixed-length vector seems to solve the problem, but it doesn’t take into account
that both finishing rolls might have somewhat different properties, e.g. value scales,
which usually require a careful normalization. Moreover, the solution would not be
transferable to a situation where parts of a steel block are processed in parallel, like
at the cooling stations (sensors 7 and 8).

3.3.2 Concatenation of Value Series

Instead of mapping all series values to a fixed-length vector by rescaling, another
option is to use distance measures that can handle value series with different lengths,
like the Dynamic Time Warping (DTW) [66] or Longest Common Subsequence
(LCSS) [19] distance.

In principle, there are two approaches for transforming the original time series
appropriately. The first approach simply concatenates all time series belonging to
the processing of a single steel block. The resulting series might then be compared
with one of the aforementioned distance measures. Given data about the processing
of two steel blocks, A and B, the second approach calculates distance values for each
time series of each sensor independently and then sums them up to a total distance.
However, also these approaches do not indicate how to handle optional or parallel
processing steps.
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A transformation of raw series values to coarse grained patterns like processing
modes, offers another path to further analysis (see Sect. 4.2.3).

3.4 Extraction and Selection of Features

Instead of working on the raw data stream directly, we can describe production
processes by a restricted set of features which are calculated from the raw data, a
step that is called feature extraction.

In general, the problem of feature extraction consists of finding a transformation
of the raw data into a feature vector such that the prediction performance on the
feature vectors of unknown observations is maximized. The problem is very chal-
lenging, since the search space of possible transformations in general is infinite. Even
restricting the types of allowed transformations to a finite set easily leads to search
spaces of exponential size. Also the simpler problem of selecting the best subset of
features for a given classification task has an exponential search space, namely that
of all possible subsets of features. A fast ensemble method has been developed [78]
and successfully applied in high volume data sets.

The following sections present a non-exhaustive list of transformation and fea-
ture extraction methods looking especially promising in the context of production
processes.

3.4.1 Aggregation and Summarization

Aggregation and summarization methods for time series or data streams reduce the
amount of raw data as much as possible, while at the same time trying to keep its
most important characteristics. The amount of feasible reduction depends on the
prediction task.

The simplest type of aggregation is the calculation of summary statistics, like
minimum andmaximum values, themean, median, standard deviation, percentiles or
histograms. Such simple global features can already be sufficient and oftentimes per-
formed better thanmore sophisticatedmethods in the first case study (see Sect. 4.1.3).

More sophisticatedmethods try to represent a given time series as the combination
of a (usually fixed number) of basis series, like the Discrete Fourier Transform
(DFT) [25] or the Discrete Wavelet Transformation (DWT) [59]. Kriegel et al. [45]
approximate time series Y by a model Y = f (X,α) + ε, where f is an arbitrary
mathematical function and X a fixed set of basis functions. The basis functions can
be derived, for example, by clustering (see Sect. 3.5.3), while the coefficientsα can be
determined, for example, by least squares, such that the random error ε is minimized.
Instead of representing time series by their rawvalues, they can then be represented by
a fixed-length coefficient vector. A disadvantage is that such coefficients are usually
much harder to interpret than the aforementioned simpler summary statistics.



Sustainable Industrial Processes by Embedded Real-Time Quality Prediction 215

3.4.2 Segmentation

In the area of image classification, the images are often first divided into parts, a
process that is called segmentation. There, the borders of segments usually indi-
cate significant changes in basic properties of the pixels, e.g. their color. Once the
segments are determined, features can be extracted from them, like their average,
minimum and maximum color, gradients or textural features. SIFT features [53],
which are translation, rotation and scale invariant, have almost become a standard
for the meaningful description of images.

The salient features approach by Candan et al. [11] transfers ideas from the seg-
mentation of two-dimensional images and the extraction of SIFT features to the
space of one-dimensional value series. Salient points in the series, which are points
that deviate much from their surrounding values, are used for segmenting the series.
Then, from each segment, characterizing features are extracted. The method deter-
mines salient points at different resolutions, allowing for a description of value series
at different levels of granularity.Another promising approach byRakthanmanon et al.
[72] not only automatically divides time series into their segments, but also clusters
them.

A segmentation approach developed in the context of the second case study (see
Sect. 4.2) determines segments basedon expert knowledge and signals frommachines
in the process chain [51]. As shown in Fig. 4, the value series are divided into different
meaningful segments, e.g. rolling steps.

In the first case study (see Sect. 4.1) the data stream is segmented in real-time.
Multiple events are detected online, for example the start of the process itself or the
start of the so called combustion phase. Every pair of event can define a segment of
the data stream.

Once segmented, different statistics are calculated on the segments’ values, like
the mean, the standard deviation, minimum and maximum values. Other features are
differences between values and histograms. Of course, it would also be possible to
use the coefficient-based summerizationmethods introduced in Sect. 3.4.1.All values
calculated are then assigned to predefined portions of a fixed length feature vector,
similar to the mapping of raw values described in Sect. 3.3.1. In addition, statistics
across segments and on the whole value series are calculated, for representing the
series at different levels of granularity.

1 2 3 4 5 6 7 8

xA = (. . . , 0.75, 0.2, 0.0, 0.9, . . . , 0.55, 0.19, 0.0, 0.9, . . .)

mean   std. deviation   minimum   maximum

Fig. 4 Segmentation of value series and encoding of descriptive statistics about these segments in
a fixed-length feature vector. Alternating gray values indicate the segments
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The biggest advantage of such an approach is that it is multivariate in the sense
that features from different value series and their parts, at different levels, may be
combined in a highly interpretable manner. For example, a classification rule that is
formed based on such features may read like “Predict a steel block as defect if it was
heated less than one hour at 900 degree Celsius and the maximum rolling force in the
first rolling step exceeds the value of 10,000”. The approach already has been used
successfully for the identification of coarse grained patterns, like processing modes
(see Sect. 4.2.3).

3.4.3 Symbolic Representation

SAX (Symbolic Aggregate Approximation) [52] first determines the elements of a
sequence C = (c1, . . . , cn) by piece-wise aggregate approximation and maps them
to a new sequence C’ with w < n:

c′
i = n

w

n
w i∑

j= n
w (i−1)+1

c j

The elements c′
i are then discretized by mapping them to a fixed number of sym-

bols, preserving the upper boundedEuclidean distance between all series. A gradient-
based approach for the symbolization of streaming sensor data was introduced by
Morik and Wessel [64].

The symbolization of time series data bridges the gap between numerical methods
and those that work on symbols, like frequent item set mining [1] or text processing.
For example, frequencies of symbols, sequences or words are length-invariant fea-
tures that already have been used successfully in areas such as text classification or
intrusion detection.

3.4.4 Sequential Patterns and Motifs

Once time series are symbolized (see Sect. 3.4.3), several algorithms working on
individual symbols or sequences of symbols can be applied. The KRIMP method
by Siebes et al. [79] compresses a database of binary transactions by code tables.
An open research question is if such code tables could also be used as a condensed
representation of time series. The AprioriAll algorithm [2] finds frequent sequential
patterns in transactions of items, e.g. subsequences in symbolized time series. Its
extension GSP (General Sequential Patterns) [82] can also respect constraints on the
patterns. Similarly, the WINEPI algorithm by Mannila et al. [57] can find frequent
episodes in event sequences.While in a production setting, themost frequent patterns
are not necessarily those that are relevant for the quality (see Sect. 4.2.3), they might
help to define what is not interesting.
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Algorithms for motif discovery, like a probabilistic one by Keogh et al. [16], not
necessarily require a symbolic representation of time series, but try to find frequent
reoccurring subsequences directly. An interesting new direction is the supervised
discovery of motifs, like the shapelet approach [90], which can also take given class
labels into account.

3.4.5 Method Trees

Potentially, all of the aforementioned methods, with different parameterizations and
combinations, may be useful for the extraction of relevant features from value series.
Instead of trying and combining all such methods and their parameters manually,
Mierswa and Morik [60] propose to learn promising combinations of preprocessing
methods and their parameters. The method is based on a structure of all possible
features which offers a unifying framework. Basis transformations, filters, mark-ups
and a generalized windowing cover elementary methods that can be combined in the
form of amethod tree. The tree applies the operators (nodes) in a breadth-first manner
thus transforming a time series, or even more general, a value series. The root of each
tree represents a windowing function, while the children of each parent node form
operator chains consisting of basis transformations, filters and a finishing functional.
Learning the feature extraction tree is done by a genetic programming algorithm.
In each iteration, their algorithm generates a new population of method trees, by
mutation and crossover operators that change and combine respective subtrees. The
fitness of each method tree can be determined by an arbitrary inner classifier. The
approach has been used successfully for the classification of music by genre or the
personal music taste. In principle, it might also be used for the analysis of time series
from production processes. However, its demand for stratified data sets with respect
to the labels is not met by the production data. Also, the amount of production data
is prohibitive.

3.5 Model Building

In the past, myriads of methods have been developed for data analysis and the auto-
matic building of prediction models. The following sections give a short overview
of commonly used methods and research areas that we consider to be especially
relevant for the embedded data analysis in production processes.

3.5.1 Supervised Learning

The probably most common task of supervised learning is the derivation of functions
from labeled examples, also known as function learning.
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Definition 1 (Function Learning from Examples) Let X be a set of possible instance
descriptions, Y be a set of possible target values and D be an unknown probability
distribution on X, Y . Let further H be a set of possible functions. Given examples
(x, y) ∈ X × Y , drawn from D, where y = f (x) for an unknown function f , find a
function h ∈ H : X → Y , such that the error errD(h, f ) is minimized.

In the case of production processes, an instance x ∈ X could be a description
of the sensor measurements recorded for a single steel block and y ∈ Y would be
a related quality label to be predicted. As already discussed in Sects. 3.3 and 3.4,
instances are often expected to be represented by fixed-length vectors, consisting
of discrete or numerical features. The prediction of numerical target values is also
called regression, that of discrete values classification.

Rule-based learners, among them Decision Trees, decide on the target value by
testing for the values of different features and connecting such tests by logical oper-
ators. Given an unknown instance x , instance-based methods, like k-NN, search for
the k most similar instances they have previously seen, according to a given distance
function, and predict the average or majority label of such k nearest neighbors.While
k-NN needs to store the whole training set, the Support Vector Machine (SVM) only
stores the support vectors of a hyperplane that separates the examples of both classes
with a large margin. Naïve Bayes, a probabilistic method, makes assumptions about
the probability distribution D and tries to fit parameters based on the given training
examples and labels. For a detailed in-depth overview over such methods, see Hastie
et al. [32].

In comparison to the incremental and streaming methods described in Sect. 3.5.6,
the aforementioned methods (at least in their original form) expect all training exam-
ples to be available on batch. As such, they cannot be trained during the running
process, and their models need to be retrained if concepts change. However, in cases
were all sensor measurements are recorded and stored at a central location and con-
cepts do not change too often, models can be trained offline, but used online.

3.5.2 One Class Learning

The previously mentioned supervised classifiers are trained on two or more classes.
However, their accuracymay suffer if the distribution of observations over the classes
is highly imbalanced. For example, production processes with high quality standards
usually can be expected to output more high quality goods than ones with defects.
Similarly, certain events, likemachine or sensor failures,mayonly occur very seldom.
In such cases,many positive examples are available, but only fewor even no examples
of the negative class.

The task of one class learning [65] is to find a model that well describes a set of
observations. Tax and Duin [86] propose a Support Vector Data Description (SVDD)
which computes a spherical boundary around the given data points. The diameter of
the enclosing ball and thereby the volume of the training data falling within the ball
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can be chosen by the user. Observations inside the ball are then classified as normal
whereas those outside the ball are treated as outliers or anomalies.

More formally, given a vector space X and a set T = {x1, . . . , xn} ⊆ X of training
instances, the primal problem is to find a minimum enclosing ball (MEB) with radius
R and center c around all data points xi ∈ T :

min
R,c

R2 : ||c − xi ||2 ≤ R2, i = 1, . . . , n

For non-spherical decision boundaries, all observationsmay be implicitlymapped
to another feature space by the use of kernel functions [77]. The center in this feature
space is then described by a linear combination of support vectors lying on the bound-
ary or outside of the ball. The MEB problem is solved as a quadratic optimization
problem.

Schölkopf et al. [76] instead have proposed the 1-class ν-SVM, which separates
all training examples with a maximum margin from the origin. For certain kernel
functions, however, 1-class ν-SVM and SVDD can be shown to yield equivalent
results.

Tsang et al. [88] proposed a fast (1 + ε) approximation algorithm, the CoreVector
Machine (CVM). A set of points C ⊆ T is called a core set if its MEB is only Rε

smaller than the MEB around T . Such a core set can be constructed by first choosing
two points far away in feature space and then iteratively adding the point that is
furthest away from the current center. If nopoints inC lie outside the currentMEB, the
algorithm stops. It can be shown that the algorithm reaches a (1 + ε)-approximation
of the MEB around T with constant time and space requirements. The algorithm can
also work incrementally. Moreover, a distributed version of this algorithm has been
developed in the context of the second case study (see Sect. 3.5.5).

3.5.3 Unsupervised Learning

If no labels are given at all, unsupervised learning methods may be used to find most
striking patterns in the given data. Cluster analysis [34] tries to group observations,
usually by their distance or density, such that similar observations lie in the same
group and dissimilar observations lie in different groups. Often, the number of clus-
ters k to be foundmust be specified by the user.Well-known clustering algorithms are,
for example, k-Means [55] and DBSCAN [24]. Frequent item set mining [1] assumes
a binary database of transactions and finds frequent patterns and relationships in the
data. For use with numerical data, like sensor measurements, the data usually must
be discretized (see Sect. 3.4.4). Dimensionality Reduction techniques, like princi-
pal component analysis (PCA) [37], aim at simplifying high-dimensional data sets.
Some of them may be used for visualization, like Self-Organizing Maps (SOMs)
[43], which map a set of high-dimensional input vectors to a low-dimensional grid.
If successful, vectors that are similar to each other in the input space are lying close
to each other on the grid. SOMs have also been used for analysing the data in the
second case study (see Sect. 4.2).
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The biggest disadvantage of unsupervised methods is that, without any labeled
data, their results often can only be validated by domain experts. As such, they are not
well-suited for the automatic real-time analysis of data, especially when concepts
change. If at least some labeled examples and many unlabeled observations are
available, semi-supervised learning methods [13], like the transductive SVM [36],
can however perform very well.

3.5.4 Learning from Aggregate Outputs and Label Proportions

The problem of learning from aggregate outputs (which is the regression task) or
from label proportions (which is the classification task) is different from all of the
aforementioned settings in so far as labels are not given for individual observations,
but summarized label information is given for groups of observations. For example,
it might be known how many steel blocks belonging to some customer order had
defects, but not which of them. Given several of such customer orders and features
of the related blocks, the goal is to train a prediction model that assigns the correct
label to each individual steel block.

Definition 2 (Learning from Label Proportions) Let X be an instance space com-
posed of a set of features X1 × · · · × Xm and Y = {y1, . . . , yl} be a set of categori-
cal class labels. Let P(X, Y ) be an unknown joint distribution of observations and
their class label. Given is a sample of unlabeled observationsU = {x1, . . . , xn} ⊂ X ,
drawn i.i.d. from P , partitioned into h disjunct groups G1, . . . , Gh . Further given are
the proportions πi j ∈ [0, 1] of label y j in group Gi , for each group and label. Based
on this information, we seek a function (model) g : X → Y that predicts y ∈ Y for
observations x ∈ X drawn i.i.d. from P , such that the expected error

ErrP = E[L(Y, g(X))] (1)

for a loss function L(Y, g) is minimized. The loss penalizes the deviation between
the known and predicted label value for an individual observation x .

Since its introduction byMusicant et al. [67], severalmethods for the problemhave
been developed. The authors of [67] present first modified versions of well-known
regression algorithms, like k-NN, neural networks and the linear SVM.

For the classification from label proportions, Quadrianto et al. [71] proposed
the Mean Map method, which models the conditional class probability P(Y |X, θ)

by an exponential model. The parameter vector θ is estimated by maximizing the
likelihood log P(Y |X, θ), which depends on the unknown labels by the empirical
mean μXY . The mean is estimated from the groups and given label proportions. It
is shown that Mean Map reaches a higher prediction accuracy than kernel density
estimation, discriminative sorting andMCMC [46]. Rüping [73] proposes an Inverse
Calibration method which scales the outputs of a regression SVM (SVR) such that
they can be interpreted as probabilities. The constraints of the SVR optimization
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problem are modified to include information about the given label proportions. The
empirical results demonstrate that Inverse Calibration yields significantly higher
accuracy than MeanMap on different standard datasets from the UCI repository.
Under the assumption that clusters correspond to classes, the AOC Kernel k-Means
algorithm by Chen et al. [15] instead extends the optimization problem of kernel
k-Means, trying to find an assignment of labels to clusters such that the difference
to the given label proportions is minimized in each iteration. Newer algorithms are
the ∝-SVM [91] and a Bayesian network approach [33].

The LLP (Learning From Label Proportions) algorithm [84] developed in the
context of the second case study (see Sect. 4.2) follows a similar idea as AOC and is
described in more detail here. Figure5 shows the label proportions πi j , conveniently
written as a h × l matrix Π = (πi j ). The proportion of label y j over sample U can
be calculated from Π :

η(Π, y j ) = 1

n

h∑

i=1

|Gi | · πi j (2)

Bymultiplication of πi j with its respective group size |Gi |, one gets the frequency
counts μi j of observations with label y j ∈ Y in group Gi .

For any model g(X) applied to all xi ∈ U , the label proportions induced by the
model can be calculated by counting the number of observations xi with g(xi ) = y j

for each label y j ∈ Y in each group and dividing the counts by the particular group
size. This results in a matrix Γg:

Γg = (γ
g

i j ), γ
g

i j = 1

|Gi |
∑

x∈Gi

I (g(x), y j ), I =
{
1 : g(x) = y j

0 : g(x) 	= y j
(3)

The deviance (i.e. loss) between the given label proportions Π and Γg can then
be defined, for instance, as the average squared error over all matrix entries:

ErrMSE(Π, Γg) = 1

hl

h∑

i=1

l∑

j=1

(πi j − γ
g

i j )
2 (4)

G1 = {(x1, 1), (x3, 1), (x7, 0)}
G2 = {(x2, 0), (x4, 0), (x5, 1), (x6, 1)}
G3 = {(x8, 0), (x9, 0)}

Labeled examples (unknown)

SampleU(known)

G1 = {x1, x3, x7}
G2 = {x2, x4, x5, x6}
G3 = {x8, x9}

Π =
⎛
⎝

0.33 0.67
0.50 0.50
1.00 0.00

⎞
⎠

Label proportions (known)

y1 y2

η

|G1| = 3
|G2| = 4
|G3| = 2

Y = {0, 1}

n = 9

0.56 0.44
h = 3
l = 2

Fig. 5 Example for a given label proportion matrix Π
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Algorithm 1: The LLP algorithm
Data: Label proportion matrix Π , sample U , groups G1, . . . , Gh , parameters (e.g. k)
Result: Model of labeled centroids and feature weight vector
create new population of random weight vectors ;
repeat

copy population ;
apply mutation and crossover operators on copy ;
foreach weight vector in population do

cluster instances in U by k-Means with weighted Euclidean distance ;
foreach possible labeling of centroids do

calculate ErrMSE ;
update model if current one is the best seen so far ;

end
fitness of current weight vector ← min ErrMSE ;

end
prune population according to fitness values ;

until fitness can’t be improved;

Instead of incorporating the loss as additional term into the k-Means optimization
problem, as AOC does, LLP first clusters the given observations as usual and then
minimizes the ErrMSE by trying all possible combinations of labels. Such an exhaus-
tive search is feasible, because often it can be assumed that k ∝ |Y | and the number
of classes |Y | is small. The advantage in comparison to AOC is that k may also differ
from the number of classes, allowing for an explicit control of the trade-off between
bias and variance: The higher the number of clusters k, the better irregular class
borders may be captured.

It is well-known that clustering results can much differ based on different weight-
ings of features. The aforementioned labeling step is therefore combined with an
evolutionary weighting of attributes, significantly improving the accuracy of LLP,
whose basic steps are shown in Algorithm 1. Despite the exhaustive search for the
best labeling of centroids, empirically the algorithm shows a much lower run-time
than MeanMap, Inverse Calibration and AOC, while providing a similar or even
better accuracy [84].

3.5.5 Distributed Data Mining

Several methods for distributed data mining follow the paradigm of speeding up
computations by solving subproblems in parallel and merging their results. Their
focus is mostly on solving big data problems with a large cluster of machines or in
the cloud, were the size of the data is so big that it cannot be handled anymore by
a single machine. In such a scenario, usually a large bandwidth and an unlimited
amount of energy are assumed, the main focus being on speeding up computations.
In contrast, distributed data mining algorithms in wireless sensor networks (WSNs)
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focusmostly on a reduction of energy [6], being themost valuable resource of battery
powered devices.

Though in most production settings, the available bandwidth is high and the
energy consumption of wired sensors is neglectable, centralized IT infrastructures
can be hard and costly to maintain when facing changes such as new sensors being
attached or reconfigured. Therefore, at least over the long run, we would expect
an increase in wireless and more flexible sensors, which ideally could configure
and find themselves and communicate with each other automatically. With battery
powered sensors, however, distributed methods are needed that are energy-aware
and resemble those used in WSNs. Since sending or receiving data is usually among
the most energy draining operations [12], the reduction of communication between
sensor nodes may lead to a longer lifetime of the whole sensor network.

Regarding the previously presented process chains, which and how much data
needs to be sent will depend on how far the final quality is determined by patterns
occuring at different processing stations. In the best case, it might be possible to
decide about the quality only based on locally available features, requiring no com-
munication at all. In the worst case, the value series from all processing stations
might be required for correct predictions. If the exact dependencies between the
label and features were already known, only the relevant features would need to be
communicated. However, since such dependencies are usually found as a result of
the data analysis step, methods are needed that can work in a distributed fashion,
without communicating too much data with other nodes.

The distribution of sensors across different processing stations is mostly vertical
(see Fig. 6), meaning that the processing of a single steel block is characterized by
measurements from different network nodes. Considering potential dependencies
between features from different nodes, reducing communication in this scenario can
be particularly difficult.

Definition 3 (Vertically Partitioned Data Scenario) Let P1, . . . , Pk be a set of local
nodes and P0 be a central node, potentially with more computational power. The data
at node Pi (∀i > 0) is denoted by Ti = [x(i)

1 . . . x(i)
n ]T consisting of n rows where

x(i)
j ∈ R

mi and mi is the number of features recorded by the i th node. The global set

of features A is the vertical concatenation of allm = ∑k
i=1 mi features over all nodes

and is defined as A = [A1 A2 . . . Ak]. Hence, the global data T is the n × m matrix
defined as the union of all data over all nodes, i.e. T = [x1 . . . xn]T with x j ∈ R

m .

Fig. 6 Vertically partitioned
data scenario
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The challenge here is to learn a global model of the data (e.g. for classification,
regression or anomaly detection) without transferring all available (or even more)
data to other nodes.

The vertically partitioned data scenario has been especially examined in the con-
text of privacy preserving data mining. For example, Kumbhar and Kharat [47]
review distributed association rule mining for the scenario, while Kianmehr and
Koochakzadeh [41] present a ranking method. Mangasarian et al. [56], Yu et al. [92]
as well as Yunhong et al. [93] present a privacy preserving support vector machine.
However, since the focus of such methods is on the preservation of privacy, they care
less or not at all about the amount of communication between network nodes.

Teffer et al. [87] learn a temporal model for Gaussian mixture models. Forero
et al. [26] propose a distributed SVM, based on the alternating direction method of
multipliers (ADMM), but for the horizontally partitioned scenario. ADMM in princi-
ple can also work on vertical data partitions, at least with separable kernel functions.
However, asKimet al. [42] remark, due to its large communication overhead,ADMM
is not well-suited for wireless sensor networks. In general, distributed optimization
methods based on gradient descent usually need several iterations over the whole
dataset until convergence, potentially leading to large communication among the
nodes.

Lee et al. [49] approach the scenario by solving the primal SVMproblem locally at
each node with stochastic gradient descent. The global prediction is then a weighted
sum of the local predictions. During training, no data needs to be communicated,
and during application, only the local predictions need to be transferred. However,
optimizing the weights of the local classifiers would require such local predictions
to be sent in several iterations.

Das et al. [20] have proposed a synchronized distributed anomaly detection algo-
rithm based on the 1-class ν-SVM. A local 1-class model is trained at each node and
points identified as local outliers are sent to the central node P0, together with a small
sample of all observations. A global model trained on the sample at node P0 is used
to decide if the outlier candidates sent from the data nodes are true global outliers
or not. The method cannot detect outliers which are global due to a combination of
attributes. However, the algorithm shows good performance if global outliers are also
local outliers. Moreover, in the application phase, the algorithm is highly communi-
cation efficient, since the number of outlier candidates is often only a small fraction
of the data. A drawback is that the fixed-size sampling approach gives no guarantees
or bounds on the correctness of the global model. Moreover, during training, no other
strategies than sampling are used for a reduction of communication costs.

The Vertically Distributed Core Vector Machine (VDCVM) [83], developed in
the context of the second case study, addresses such issues. Here, the global 1-class
SVM is replaced by theCVM,which incrementally samples from the network only as
many data points as needed to reach a (1 + ε) approximation of the MEB with high
probability. Replacing the non-linear RBF kernel by a sum of local RBF kernels
allows for a distribution of the furthest point calculation, effectively reducing the
communication overhead in each iteration to a single value per node, instead of
having to transfer all attributes. Empirical results on several synthetic and real-world
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data sets show that the VDCVM may reach a similar accuracy as the distributed
1-class ν-SVM, but with lower communication during training.

3.5.6 Stream Mining

To build and apply models on data streams every step of the analysis should be
executed in an online fashion, for example all features should be extracted and all
events should be detected online. Usually, learning algorithms will either update the
model with every new data item that arrives or learn a model on a batch of the most
actual data items [29]. In addition to online algorithms, offline learning algorithms,
like the Support Vector Machine [80], could be used.

The biggest difference between classical stream mining scenario and production
processes is, that the labels are usually only measured at the end of the process. For
example, in the context of the first case study, quality measures at the end of the
process, like the temperature, have to be predicted.

The obvious approach to learn models in this setting is to redefine the data stream
as a stream of pairs (x, y) ∈ X × Y of stream segments or time series x ∈ X and
labels y ∈ Y . The model will then describe a function f ({φ1(x), . . . , φp(x)}) = y of
p extracted features of the stream segment or time series x ∈ X . As a consequence,
predictions and model updates are only possible when all relevant features of the
actual process pi are extracted.

There are several approaches to soften the restriction on the possibility of in
process prediction. Let ti0 be the start, tie the end and ti∗ the actual index of the
process pi .

One possible approach is to segment the time series and learn an individual model
for every segment. If it is possible to identify events that exists in every process, for
example the start of the combustion phase of the BOF-process tic, every feature that
can be extracted from the segment [ti0, tic] can be used to learn a model. Therefore
it would be possible to do a first prediction of the label if ti∗ > tic.

A second approach is to only use a combination of static and statistical features,
like the minimum, maximum or average, of the time series. The static data won’t
change over the complete process and the probability of change of the statistical
features will decrease to the end of the process. That means, that there exists an index
tis , where the prediction error is bounded by ( f̂ ({φ1([ti0, tis]), . . . , φk([ti0, tis])} −
y)2 < ε.

Another approach would be to use one or a set of algorithms, that predict the set
of features for the yet unseen segment of the process [ti∗, ti.e.]. The model on the full
feature set could be used to predict the labels at the end of the actual process. The
overall prediction quality will therefore be strongly influenced by the quality of the
feature prediction.
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4 Case Studies

The content of the previous sections is based on our experiences with improving the
sustainability of two real-world steel production processes, being the focus of two
case studies presented in the following.

4.1 Real-Time Quality Prediction in a Basic Oxygen Furnace
Process

The first case study is taken from a project with SMS Siemag,2 in which a novel
data-driven prediction model for BOF Endpoint [75] was developed.

There are several routes to produce steel products. For details on themost common
steel production processes and the metallurgical backgrounds see [27]. The primary
route, with almost 70% of the world steel production, includes four major processes
and is usually conducted in an so called integrated steel mill (Fig. 7). The given
primary energy consumptions are from an energy analysis based on a hypothetical
reference plant [22]. This should only give a brief insight on the relations of energy
consumption of the different steps in the production processes.

In the first process step, iron ore is smelted to pig iron by the addition of preheated
blast air, coke and slagging agents. The coke is used as source of energy and as an
reduction agent. Themain chemical reaction in the blast furnace is: Fe2O3 + 3CO →
2Fe + 3CO2. In this redox reaction the oxygen of the oxides in the ore are bounded
to the carbon from the added coke. Additionally a slagging agent, e.g. dolomite
is used to bind the unwanted contents of the ore. At the end of the process liquid
raw iron is produced, but with a too high amount of carbon, phosphor and sulfur
(amongst other things). In addition to a high primary energy consumption (Fig. 7)
the process produces a lot of CO2, because carbon is used as the reduction agent.
In the second step, the amount of the unwanted contents in the raw iron is reduced
in a Basic Oxygen Furnace (Fig. 8). The BOF is charged with around 150 tons of
raw iron, around 30 tons of different types of scrap metal and a slagging agent. The
amount of unwanted contents will be reduced by blowing pure oxygen (99%) on the
raw iron and scrap metal with an oxygen lance for 15–20min. In this process the
raw iron will be heated from around 1,200 ◦C up to 1,600 ◦C. The needed energy
is created through the combustion of the contained carbon in the raw iron. With an
intelligent off gas treatment, the process could even produce energy (Fig. 7). Further
ways of controlling the temperature is the insertion of heating agents, like FeSi or
cooling agents, like scrap metal. The reduction process is enhanced by bottom gas
injection or purging with nitrogen or argon. In the third process the crude steel is
refined further and casted into large blocks in a continuous caster. These blocks are
rolled and shaped in the last process to flat or long products.

2http://www.sms-siemag.com.

http://www.sms-siemag.com
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Fig. 7 Primary energy consumption for a integrated primary steel mill 3–5 million tonnes per year
before and after improvement [22]

4.1.1 The BOF-process and Data Analysis

The BOF-process has a high impact on the efficiency and the overall quality of the
steel products. There are possibilities to measure the quality during the process, like
so called quick bombs or sub-lances [17], but in the given example the quality is
determined at the end of the process, only. The most important quality measures
are the temperature, the carbon content, the phosphorus content of the steel, and
the iron content of the slag. The following steps in the production process usually
need a pre-specified quality of the crude steel, and therefore the overall quality of
the BOF-process is defined by the difference of the target values and the measured
values.

If the process is stopped too early, the steel could have too low a temperature or
the wrong chemistry and the process has to be restarted. In a similar BOF shop from
ArcelorMittal (shop 7 in [17]), 22.6% of the processes are restarted. This so called
reblow reduces the productivity of the BOF and increases the energy consumption. If
the process is stopped too late, the combustion of iron will start. This will reduce the
amount of produced steel and the productivity of the BOF. It is also possible that the
temperature of the crude steel is too high. This will delay the next process, because
the raw steel needs to cool down.
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The optimal control of the BOF-endpoint plays therefore a crucial role for the
quality of the BOF-process. Additional possibilities to control the quality of the
process are the amount of cooling or heating agents, the height of the oxygen lance,
or the bottom purging strategy. To reduce the duration and the addition of heating or
cooling agents it is necessary to intervene as early as possible in the process, based
on a well funded prediction/expectation of the outcome at the end of the process. It
is standard to combine a thermodynamic model for determining the needed amount
of oxygen, that results in the desired chemical composition, and a set of rules that
monitor whether or not the BOF-endpoint is reached. Usually, the thermodynamic
models can only use information of the composition of the used materials, like the
contents of the pig iron and the heating and cooling agents. They incorporate only
the physics of the BOF-process itself, but no information about the context of the
process. The context of the process, e.g. the wear of the used plant components, time
differences between process steps or other sensor data, can not be used. Contrary to
thermodynamic models, data mining models can cope with almost arbitrary features
and data.
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We now go through the steps described above. It starts with the sensor readings.
In particular, data from different sensors and subprocesses with different sampling
rates need be aligned.

The sensor readings can be divided into three groups. The first group are event
based data. These data will only be measured when an event will occur, like the
analysis of the temperature and the contents of the pig iron after the transport from
the blast furnace or when cooling, heating or slagging agents are added. The second
group are sensor readings with a fixed sample rate data, like the oxygen rate or the
off gas temperature. The third group of data contains all the data concerning the used
plant components, like the id and the age of the used oxygen-lance and the age of
the refractory lining of the BOF. To complicate it further, the huge dimensions of the
factory and the sensor distribution over the factory makes it impossible to co-relate
the different sensor readings directly. For example, the analysis of the BOF-gas will
take longer than the measurement of the temperature of the oxygen-lance cooling
water andwill be conducted dozens ofmeters above theBOF. Therefore, the available
sensor readings will represent the process at different points in time (Fig. 9).
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Fig. 9 Sensor streams with different sample rates and frequencies
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4.1.2 Data Processing and Storage

In the first phase of the project a prototype of online application was implemented.
It had to cope with the common problems of the integration of legacy systems. The
application and the learning of data mining models had two completely different
sets of interfaces to the data. In a first step, data were gathered to find good features
for. The event based data and the plant component data where exported manually
via a legacy system as a CSV-file. Due to security compliances, the high frequency
data could not be accessed directly. A read-only connection was established via
a ibaPDA3 and the data were stored in a proprietary file per BOF-process. After
manually preprocessing the proprietary files with a processing chain in Java and
Matlab the data were stored in a CSV file per process. The time information was
lost in the transformation process and the correct co-relation of events and the high
frequency data was nearly impossible. After that, the data from the two different files
could be loaded into popular data mining tool RapidMiner4 [61] and the data could
be preprocessed, features could be extracted and a model could be learned.

In a second step a prototype of the online application of the learned model was
implemented. The high frequency data are accessed via the OPC-interface.5 This
interface is only stable for sample rates under 5Hz. The event based data are accessed
via key-value files. That are two completely different data accessmethods than for the
offline access of the data. The two data sources are combined and integrated in a data
stream framework. The streams-Framwork [8] can easily extend with arbitrary data
sources and can handle sample rates over 100kHz [28]. To apply the learned model
all the used feature extractions and preprocessing steps had to be reimplemented for
the online application and prediction.

The implementation of the second phase of the project will remove the manual
process steps, the problems with the co-relation of events and high frequency data
in the offline processing and the redundant feature extractions. As an additional
requirement, sensors with a higher sample rate should be integrated. To achieve all
of this, the offline processing was reduced to a minimum and all raw data are stored
in plain files. As a new interface to the sensor data, memory mapped files were
used and the maximal sample rate was increased to 1kHz. This limit is imposed by
Windows and could be extended with additional hardware to 20kHz. Each line of
the file represents at least the sensor readings with the highest sample rate and all the
other sensor readings and event based data, that where available at that point in time
(see Fig. 9). In addition to this sparse file format, the files are compressed to reduce
the file size. The initial file size of 4GB per hour of data was reduced to 40MB.

For an easy access of the data, the files are indexed with the ids of the contained
BOF-processes. This indexwas implementedwithin a PostgreSQL6 database system.

3http://www.iba-ag.com/.
4http://rapidminer.com.
5http://openscada.org/projects/utgard/.
6http://www.postgresql.org.

http://www.iba-ag.com/
http://rapidminer.com
http://openscada.org/projects/utgard/
http://www.postgresql.org
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The data are stored on the local file system, but the system could be easily extended
with a distributed file system or object storage and a distributed data base system.

In this new implementation, preprocessing steps and feature extractions have to
be implemented just once. If a new feature should be extracted from historical data,
the files are read line by line and the whole recorded data stream of the historical
BOF-process can be accessed in the original order. The newly implemented feature
extraction and preprocessing steps can be used directly in the online application of
the learned model.

4.1.3 Feature Extraction and Model Learning

In difference to the usual data mining problems, the BOF-process has two heteroge-
nous but not independent data sources. The possible influence of events on the sensor
data, like the addition of heating agents will influence the off gas temperature, is not
negligible. Sensor readings with a fixed sample rate and event based data have to be
combined into one data mining model. The features have to have minimal latency,
minimal time difference between them and be extracted online and as early as possi-
ble in the BOF-process. Especially, the time dependency of the addition of heating,
cooling or slagging agents impose additional complexity on the modeling process. In
general, the task is to extract features online to build a batch/offline learning model,
which is applied online again.

The basic features for all the models are the amounts of pig iron, the chemical
composition of the pig iron, the amounts of different types of scrap and the amount
of used oxygen. In addition to preexisting events, like the addition of heating and
slagging agents, new ones were created. Especially durations of periods, for example
tab-to-tab times or the duration from the measurement of the temperature of the pig
iron and the start of BOF-process, helped to characterize the process further.

Even though multiple common time series feature extractions have been tried, the
best prediction results have been achieved with the extraction of “global” features
over the whole BOF-process. These global features, like the average deviation of
the median of a time series or the total amounts of used heating and cooling agents
will lead to good prediction results, but only if the BOF-process is almost finished.
Features like the position and value of a maximum of a time series, like the off gas
temperature, can be influenced by the addition of heating agents. This contradicts the
efforts to be able to have a relatively good prediction of the quality as early as possible
in the BOF-process. Further work will include the development of a time-invariant
phase model or time series segmentation [40]. Each BOF-process has a different
duration and therefore a time-based segmentation is not possible. If it is possible to
develop an online segmentation that is reproducible over multiple BOF-processes, it
could be possible to learn a prediction model for each segment and start to predict
as early as possible.

If the features are extracted once, they could be stored directly for a later use
in new data mining models. In the second phase of the project the value and the
extraction time of each feature in relation to the id of the BOF-process is stored
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automatically in the aforementioned database. In combination with the new raw data
storage arbitrary new features can be added afterwards.

The first phase of the project has shown, that the selection of features had an higher
impact on the prediction quality than the used data mining method. Due to highly
non-linear relations of the used features and the quality measurements, the used
method should be able to model non-linear relationships. For the sake of simplicity
a Support Vector regression [80] was used for each of the quality measurements.

4.1.4 Feature and Data Selection and Model Evaluation

In the first phase of the projects, the features were only selected in the learning step
via a cross validation and the resulting prediction quality.Onemodelwas selected and
evaluated online. Due to the two different sets of interfaces and the slightly different
sets of features in the offline and the online processing of the data, it is not certain
if the expected quality of the prediction will be reached in the online application of
the model. Since the online application was only a prototype, the prediction quality
had to be analyzed manually.

An important feature of the new implementation of the online application is, that
without any manual steps new models can be learned, applied and evaluated. If a
query of a set of features of a set of BOF-processes is stated, the corresponding
data will be exported as a CSV-file. Automatically a RapidMiner process will be
started and as a result a new data mining model will be exported and indexed in the
aforementioned database. If the learning process is finished, the new model will be
applied online and evaluated automatically.

In combination with the interpretation of the production process as a stream of
differences between target quality measurements and actual quality measurements,
this approach presents a wide variety of new opportunities. In the first phase of
the project it was shown, that the validity of the one learned prediction model was
limited. If the creation of new data mining models is not scheduled manually, but,
for example, by Concept Drift algorithms [69], the prediction models should have
a higher prediction quality and no manual intervention is necessary. Additionally,
it is possible to evaluated multiple data mining models in parallel and to select the
one model with the best prediction quality over the last BOF-processes. Even online
ensemble methods [7] are applicable. Furthermore, it is possible to select arbitrary
subsets of BOF-processes. If, for example, a clustering of the BOF-processes based
on the scrap types or the position in the maintenance cycle is created, the models
can be adapted much better to the actual conditions of the BOF-process. In general,
the in-stream evaluation of data mining models will reflect the characteristics of the
BOF-process much better than the offline cross validation and will lead to better
average prediction quality.
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Fig. 10 Hot rolling mill process with prediction and decision/control modules

4.2 Real-Time Quality Prediction in a Hot Rolling Mill
Process

In project B3 of the Collaborative Research Center SFB 876,7 the Artificial Intelli-
gence Group (LS 8) and the chair of Production Systems and Industrial Engineering
(APS) of the institute for production systems (IPS) at TU Dortmund University
research new data mining and machine learning techniques for interlinked produc-
tion processes. The current main focus is on a hot rolling mill case study, i.e. the
last processing step in Fig. 7. Here, steel blocks move through a process chain as
the one shown in Fig. 10. Already casted blocks are first heated for up to 15h in five
different heating zones of a furnace. They are then rolled at the block roll and the first
finishing roll. The rolling in the second roll is optional. Each block usually moves
back and forth through a single roll for several times, where each of the rolling steps
takes only about a few seconds. The blocks are finally cutted into smaller bars whose
quality is assessed by ultrasonic tests several days later.

Different sensors attached along the process chain provide online measurements
about how a steel block is currently processed. For example, in the furnace, every
5min sensors measure the air temperature in each of the five zones. From such
measurements, the core temperature of the blocks can be estimated by an already
existing mathematical model. At each roll, sensors provide measurements such as
rolling force, rolling speed and the height of the roll, with 10 values per second.
Additional signals provide meta information about the process itself, like the cur-
rent number of rolling steps. The ultrasonic test results indicate the number of bars
tested and, for each bar, the amount of material containing defects, though not their
exact position. Moreover, due to technical reasons, most often it is not possible to
reconstruct which of the final bars belonged to which of the cutted steel blocks.

According to the current technical state of the art, it is impossible to assess the
physical quality of hot steel blocks or smaller bars at intermediate steps of the process
chain. The blocks first must cool down before their final quality can be tested. In
cases where some of the blocks are, for example, already wrongly heated, energy,
material and humanwork force are wasted if blocks below a desired quality threshold
nevertheless move through the whole process chain. Considering potential material

7http://sfb876.tu-dortmund.de/SPP/sfb876-b3.html.

http://sfb876.tu-dortmund.de/SPP/sfb876-b3.html
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and energy savings for the rolling step as estimated from Fig. 7, the goal of the case
study is the identification of quality-related patterns in the sensor data, and to predict
the final quality of steel blocks as early as possible in real-time during the running
process. Energy savings are already to be expected if, depending on the predictions,
blocks with defects could be sorted out of the process early enough. For one thing, all
of the following processing steps could be spared. For another thing, blocks might be
reinserted into the heating furnace while still being hot, sparing the energy needed for
a complete reheating. A reinsertion into the heating furnace might even be entirely
spared if, depending on the predictions, parameters of subsequent processing stations
could be adjusted such that the aimed-at final quality level would still be reached.
Concepts for the integration of prediction models with control have already been
developed by our project partners [44].

Themain research focus of projectB3 is the development of decentralizedmethods
for the real-time analysis of sensor data. Another research area are methods for
learning from label proportions. As such methods (LLP and VDCVM) already have
been presented in Sect. 3.5, in the following it is described in more detail instead
which sensor measurements are recorded and how they are stored, preprocessed and
analyzed in the context of the given case study.

4.2.1 Assessment and Storage of Sensor Data

During the period of 1year, over one billion measurements from 30 different sensor
types have been recorded during the processing of about 10,000 steel blocks, together
with according quality information. Among the readings are the air temperature for
each furnace zone, the rolling speed, force, position and temperature, which domain
experts consider to be the most relevant quality-related parameters. For validation
purposes and guaranteeing the reproducibility of results, all data has been stored in
a single SQL database.

Figure11 shows an excerpt of the database schema, representing the most impor-
tant tables and relationships. The steel blocks resulting from a single cast can be
divided according to different customer orders. Steel blocks from a single order are
usually inserted into the furnace together. For each order, quality information about
the bars that were cutted from each block is available. Each row consists of the test
results for several bars. In only a few cases it is possible to relate the bars back to the
steel block they originally were cutted from, based on the last two digits of their ID.
For such cases, our project partners have introduced a mapping that derives a single
label from multiple types of quality information available for all bars [44].

A tool developed in the Java programming language allows for reading in the
raw data delivered in different files and formats and transforming them into the
shown database schema. Once imported, sensormeasurements can be exported based
on filters written in SQL. Exported are several CSV files, where each contains all
measurements recorded by a particular sensor during the processing of a single steel
block.
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Cast
cast_id: int
material_nr: int
casting_type: int

Order
order_id: int
cast_id: int
format: int
nr_blocks: int
nr_bars: intBlock

block_id: int
order_id: int

Quality Check
result_id: int
order_id: int
date: datetime
nr_blocks_ok: int
...

QC Results
result_id: int
block_id: int
nr_of_bars: int
error_type: int
...

Furnace
block_id: int
sensor_id: int
segment_nr: int
nr_values: int
avg: real
stddev: real
min: real
max:real

Block Roll
block_id: int
...

Fin. Roll 1
block_id: int
...

Fin. Roll 2
block_id: int
...

Sensor
sensor_id: int
name: varchar
unit: int
resolution: real
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Fig. 11 Database schema for hot rolling mill case study

For the preprocessing of time series in production environments, a highly mod-
ular process has been developed in collaboration with our project partners [51] and
implemented with RapidMiner. The process handles most time series stored in the
CSV files independently from each other and is thus well-suited for a decentral-
ized preprocessing of time series. The following sections provide a summary of the
procedure and results already presented in [51].

4.2.2 Preprocessing and Feature Extraction

At first, all value series are cleansed. Cleansing consists of cutting away irrele-
vant parts where no processing happened, as discussed in Sect. 3.2. Then, measure-
ments lying outside meaningful value ranges are marked as outliers and replaced by
their predecessor value. Optionally, values are rescaled and normalized to the [0, 1]
interval.

Afterwards, the value series are segmented based on background knowlegde, as
already described in Sect. 3.4.2. In case of the heating furnace, for instance, the
five different heating zones make up natural borders for the segments. Similarly,
individual rolling steps seem to be natural divisions for all series stemming from the
three different rolls. At the block roll, a change in the signal counting the number of
rolling steps directly indicates the beginning of a new division. At the finishing rolls,
due to the aforementioned signal not being available, the rolling force can be used
accordingly, as longer segments with zero force indicate the period of no processing
between rolling steps. It should be noted here that in practice, even seemingly simple
tests like the ones described are not always easy to implement. For example, the
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rolling force sensor will catch vibrations of the roll, even without any processing
happening. Therefore, it will not deliver values exactly equaling zero, but values
that oscillate around zero instead. In such cases, it sometimes can be difficult to
manually devise global thresholds that separate valid signals from background noise.
Therefore, even despite having background knowledge, it can become necessary to
use learning methods already at early stages of the whole data mining process, like
the data preprocessing step.

Once segmented, each segment is described by several statistics, as described
in Sect. 3.4.2, and mapped to portions of a fixed-length vector. Thereby, the up to
60,000 raw series values recorded for each steel block are aggregated to about 2,000
features. The resulting data table can then be input into common feature selection
and learning algorithms.

4.2.3 Data Analysis and Prediction Results

The feature vectors of 470 processes for which the relation between steel blocks and
the bars cutted from them could be established were first analyzed with different
learning methods, like Naïve Bayes, Decision Trees, k-NN and the SVM. It soon
turned out that including features about the individual segments decreases accuracy in
comparison to only including global information about the value series and segments.
Features of individual segments were therefore excluded for the following analysis,
resulting in 218 remaining features. However, even with the reduced feature set,
none of the classifiers mentioned before could reach a significantly better prediction
accuracy than the baseline, which predicts the majority label.

For getting a better impression of the data, the feature vectors were mapped to a
two dimensional SOM and colored according to different types of meta information
(see Fig. 12). As mentioned in Sect. 3.5.3, points lying close to each other on the map
have similar feature vectors. The shading indicates a weighted distance between the
points, where lighter shades represent a larger distance.

1V 2V 3V 4V 5V 6V 7V 8VOK NOK

40x30 SOM, Final quality of steel blocks 40x30 SOM, Final size of steel blocks

Fig. 12 Similarity relationships between feature vectors
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In the SOM on the left hand side, the points represent the feature vectors of
production processes and their color the final quality of the resulting steel bars as
discretized values, “okay” (OK) and “not okay” (NOK). In many cases, processes
leading to a low final quality of the bars are lying very close to processes resulting
in a high quality (see also the zoomed area in Fig. 12), meaning they have highly
similar feature vectors. As it seems, the features extracted so far do not suffice to
distinguish well between low and high quality processes, explaining the previously
mentioned prediction results.

In comparison, the SOM on the right hand side of Fig. 12 shows the final size
of the resulting steel bars. Here, processes resulting in the same size form large
continuous areas on the SOM, i.e. their feature vectors are similar. As it seems, the
features extracted are thus highly correlated with distinct operational modes for the
different bar sizes produced. The hypothesis could be verified by training a decision
tree on features of the first finishing roll (see Fig. 13). The accuracy as estimated by
a tenfold cross validation is 90%, while k-NN (k = 11) even achieves 97%. Most
important for the decision is the position of the roll (sensor 501). Domain experts
have verified that the results reflect the real modes of operation in the rolling mill.
Similar results have also been achieved later, by concatenating raw series values and
comparing them with Dynamic Time Warping, as described in Sect. 3.3.2. While
the analysis of raw series values has the advantage of not requiring any background
knowledge about the segmentation, the results were a lot harder to interpret. More-
over, the distance-based approach took much longer than summarizing the values of
segments.

503_sum_mean_diff_mean

505_max501_mean

501_min

501_length501_mean_mean

501_mean_mean

2V

> 0.14  0.14

> 0.21  0.21

> 0.42  0.42

> 0.21  0.21 > 0.79  0.79

8V 5V 3V

> 0.46  0.46

6V 7V

4V 1V

> 0.32  0.32

Fig. 13 Decision tree for predicting the final size of steel bars
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As the results demonstrate, data analysis methods are able to detect meaningful
patterns in production processes. As the results also show, finding exactly those
features that are relevant for the prediction task sometimes is not straightforward,
as already discussed in Sect. 3.4. Especially, results from the first case study, where
global features were successfully used, are not transferable to the rolling process,
where deviations from the global patterns might play a bigger role. Another approach
that has been tried without success so far is the genetic programming of method trees,
extended by a SAX operator and a frequency representation of the resulting symbols.

However, each insight into the data might provide new ideas for the extraction of
better features. Future experiments will show if the newly gained ability to quantify
themost striking patternsmight helpwith normalization and the extraction of features
mainly representing differences to the normal patterns that were detected. Hopefully,
with improved prediction results, it will also become possible to quantify potential
energy savings in the hot rolling mill process more exactly.

5 Conclusion

In this chapter, we gave an overview of data analysis for sustainability in steel
processing and described our contributions. The first sections offer guidelines for
applications similar to ours. In Sect. 1, we presented the needs and requirements
for embedding data analysis into production processes in order to reduce material
and energy consumption. In particular, real-time quality prediction allows to save
resources. The clear and comprehensive summary of how to prepare a factory for
the good use of data analysis gives readers a guideline for new applications (Sect. 2).
Carefully going through all the steps of a data analysis process in Sect. 3 presents a
large variety of methods for each step. We stress the importance of feature extraction
and selection and show some transformation methods. The modeling step includes
not only classification learning but also one class learning and unsupervised learning.
Three algorithmic contributions are described here:

• Learning from aggregate outputs, especially our learning from label proportions,
is an important learning method for factory processes where the object identity is
not given over all steps of the process as is the case in, e.g. a hot mill process.

• The streams framework for integrating diverse subroutines and sensor readings
allows to apply learning results in real-time.

• Distributed mining of several sensor data, each with different features, is the verti-
cally partitioned data scenario. Our method of Vertically Distributed Core Vector
Machines approximates the minimum enclosing balls using little communication.

These methods are particularly relevant for the production scenario, but are general
and applicable to other domains, as well.

The chapter presents two real world case studies in Sect. 4. Along the steps
described, the real-time quality prediction is characterized for the two real world
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applications: the endpoint prediction of the Basic Oxygen Furnace process (Sect. 4.1)
and the quality prediction in a hot mill process (Sect. 4.2).

The case studies make possible investigations at themacro level: since all data and
models are stored, the fit of prediction and actual values, the benefit for the resource
saving can be investigated in more detail. We shall inspect regularities in changes
of fit. Are they due to machine fatigue or sensor faults or special situations which
were not yet included in the training data? Further work will use the experience
from the case studies to the management of several models. Since the machine
fatigue will occur in cycles, the models from different parts of the cycle can be used
when appropriate. The concept drift will be recognized and the appropriate model
be selected. Also typical failure situation, e.g. missing sensor reading, can be coped
with by particular models. The management of several models is new and promising.
It presupposes the completion of all the steps which we characterized in this chapter.
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Relational Learning for Sustainable Health

Sriraam Natarajan, Peggy L. Peissig and David Page

Abstract Sustainable healthcare is a global need and requires better value–better
health–for patients at lower cost. Predictive models have the opportunity to greatly
increase value without increasing cost. Concrete examples include reducing heart
attacks and reducing adverse drug events by accurately predicting them before they
occur. In this paperwe examine howaccurately such events can be predicted presently
and discuss a machine learning approach that produces accurate such predictive
models.

1 Introduction

Details of sustainable processes likely look very different for varying aspects of
the interrelated issues of energy, transportation, health, food production, housing,
commerce, and government. Therefore, disparate creative processes are likely needed
in order to develop different aspects of a sustainable planet in what many scholars are
now calling the “anthropocene” era—the era in which human decision-making is the
single largest influence on the state of the planet. Are there any guiding principles for
these disparate processes?We claim there are at least two: prediction and evaluation.
To develop a sustainable process, we must be able to predict the effects of current
and proposed processes on scales varying from microscopic to global, and beyond.
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Once a process is implemented, we need to evaluate how accurate our predictive
models are, how well the process is working, and the extent to which we need to
revise our predictive models and the process itself. This paper studies these issues
of prediction and evaluation specifically in the context of sustainable health.

For an individual, the most important health-related predictions are: “What dis-
eases or events am I likely to suffer if I continue living as I do,” “What changes
(lifestyle or treatment decisions) can I make to possibly improve this future,” and
“What other events might these changes cause, both desirable and undesirable?” For
a healthcare system, a nation, or the world, the questions are similar but involve more
focus on cost. Notice, though, that cost for a nation or the planet necessarily takes
into account providing good care to individuals, because good health should result
in higher satisfaction and productivity. Important questions are: “What is healthcare
likely to cost us over the next 10 years operating as we do,” “What changes can
we make to increase profit—reduce costs while increasing health and income?” and
“What unanticipated effects could these changes have?” For questions of the first
type, we show that we can use existing machine learning algorithms to analyze exist-
ing electronic health record (EHR) and clinical data to answer reasonably accurately
in some cases. Nevertheless, questions of the second and third type require reasoning
about causality. We do not focus on causality in this chapter.

Froma clinical perspective, accurate predictivemodels ofmajor health events have
many more potential applications. First, such models can be incorporated into the
EHR to provide prompts to clinicians such as, “your patient is at high risk for an heart
attack and is not currently on an aspirin regimen.” Second, the models themselves
can be inspected to identify surprising connections, such as a correlation between the
outcome and the use of certain drugs, which might in turn provide important clinical
insights. Third, these models can be used in research to identify potential subjects
for research studies. For example, if we want to test a new therapy for its ability
to prevent an event such as heart attack, it would be most instructive to test it in a
population of high-risk subjects, which a predictive model can accurately identify.

We focus on three different clinical prediction problems that can have a long-term
impact on developing sustainable health care. First is the problem of predicting car-
diovascular events in older adults by using the data from their youth. It allows the
subject to take control of their cardiovascular health early in adulthood thus prevent-
ing serious risks later. Developing plans early to mitigate or minimize the risk will
significantly reduce the costs associated with the treatment for the individual and
society. Second is the problem of predicting if a subject is at risk for Alzheimer’s
disease. This prediction is performed using MRI images of the subjects’ brain. As
with the previous case, detecting early if a patient will potentially have Alzheimer’s
disease can have a significant impact in reducing treatment costs and potentially
improve the cognitive ability of the subject. The final problem is that of predict-
ing adverse events of drugs from Electronic Health Records (EHRs). If made with
reasonable accuracy, this prediction has the potential of developing patient specific
plans (i.e., personalized medicine) by considering their medical history thus reduc-
ing costs associated with specialized tests. Mining adverse events from EHRs can
also potentially shape clinical trials to focus on specific diseases making it possible
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Fig. 1 This figure shows a possible future EHR interface for the physician that includes AI
predictions and recommendations. The system suggests that the patient is at elevated risk for specific
diagnoses. In other tabs the system recommends the collection of additional health information such
as laboratory assays, provides optimal drug regimens, and reports details on temporally-extended
treatment plans

to reduce major events that might otherwise prove costly to the subject in particular
and society in general.

We envision immense potential for such prediction problems and present a poten-
tial interface for EHRs of the future in Fig. 1. When a patient meets with physicians
andhas a diagnosis, the systemcanpotentiallymakepredictions based on the patient’s
medical history and current lab measurements, then present these predictions unob-
trusively to the physician. In addition, it can also potentially suggest further lab tests,
drugs and doses and even assist in developing patient-centric treatment plans. This
potential scenario arguably reduces the costs associated with developing treatments.

In this chapter, we focus on employing advanced machine learning methods that
operate on relational data. Collectively known as Statistical Relational Learning
(SRL) [15], these methods go beyond the standard learning methods by relaxing the
need for a single feature vector and allow formodeling complex relationships between
objects of interest. The advantage of thesemodels is that they can succinctly represent
probabilistic dependencies among the attributes of different related objects leading
to a compact representation of learned models. The presence of rich, relational noisy
data in health care problems motivates the use of SRLmodels. Along with exhibiting
superior empirical performance, these methods also result in easily interpretable
models and perform automatic feature selection.

The rest of the chapter is organized as follows: after explaining the need for
relational models, we consider the three case studies—predicting early onset of
cardiovascular events from a clinical study data, predicting occurence of Alzheimer’s
from MRI data and predicting adverse drug events from EHRs. We conclude by
summarizing the lessons learned and motivating future research directions.

2 Need for Richer Analysis

Why statistical relational analysis? Consider a classic Artificial Intelligence dream of
developing a clinical decision-support system that can aid a clinician in developing
personalized treatment plans for patients. Such a system must represent and reason
using EHRs that include data about drugs, diagnoses, lab tests, imaging data such
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as CT scans, MRIs, and even genetic data. Conventionally, one could design such
a system using either statistical AI [28] (such as support vector machines [5]) or
logical AI (such as inductive logic programming [24]).

Purely statistical approaches [1, 5, 28, 29, 40] assume data is in the form of
feature vectors, forcing homogeneity on the data and ignoring their natural represen-
tation [14, 16, 23]. Real-world domains such as health care problems, in fact, contain
inherent structure—they aremultimodal (e.g., lab tests, prescriptions, patient history)
and highly relational. A flat feature representation for learning is highly limiting as
it ignores structure and does not faithfully model this task. Advances in logical
AI address these issues by explicitly representing structure through trees, graphs,
etc., and reasoning with propositional and first-order logic [24, 38] in a principled
manner. However, these approaches assume a deterministic, noise-free domain and
cannot faithfully model noise or uncertainty. Again, in the decision-support system
example, patient data is noisy and can even be incomplete or missing. The world is
relational and noisy, and this is inherent in the tasks we model everyday: they consist
of objects with diverse and non-uniform properties, which interact with each other in
complex and noisy ways. Such domains are ubiquitous: information mega-networks,
linked open data and triple stores, streaming data, heterogeneous bibliographic, orga-
nizational and social networks, drug-disease-gene interactions, complex molecules,
human behavior and so on.

In recent years, Statistical Relational Learning (SRL) methods [15] (present at the
top corner of Fig. 2) have been proposed that combine the expressiveness of first-order
logic and the ability of probability theory to handle uncertainty. SRL approaches,
unlike what is traditionally practiced in statistical learning, seek to avoid explicit
state enumeration, through a symbolic representation of states. The advantage of
these models is that they can succinctly represent probabilistic dependencies among

Fig. 2 Landscape of
Artificial Intelligence
research w.r.t three
dimensions—learning,
representation and
uncertainty
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the attributes of different related objects leading to a compact representation of
learned models that allow sharing of parameters between similar objects. Given that
the health care data is highly relational (multiple measurements and multiple data
types corresponding to every patient) and temporal, these methods are very powerful
in building predictive models for health care data.

As an example, consider a statement such as Friends have similar smoking habits.
In any population, every person has a different number of friends. Tomodel this using
classical methods, we need to consider the specific identities of the individuals. On
the other hand, it can be simply captured using a rule in predicate logic:

∀x, yFriends(x, y) ⇒ (Somkes(x) ⇐⇒ Smokes(y)) (1)

The above equation specifies that if x and y are friends, then they have exactly the
same smoking habit. Of course, since this is not always true, we can “soften” this
rule by adding a numeric weight. Higher the weight, higher is the probability of the
rule being true in the domain. An example of such a formulation is Markov Logic
Networks [10]. There are efficient learning algorithms for learning these weights
(parameters) and the rules themselves.

There are several justifications for adopting statistical relational analyses for the
purposes of analyzing health care data. First, the data consists of several diverse fea-
tures (e.g., demographics, psychosocial, family history, dietary habits) that interact
with each other in many complex ways making it relational. Without extensive fea-
ture engineering, it is difficult—if not impossible—to apply propositional approaches
to such structured domains. Second, the data could have been collected as part of
a longitudinal study, i.e., over many different time periods such as 0, 5, 10, years
etc., making it temporal. Third, most data sets from biomedical applications, contain
missing values i.e., all data are not collected for all individuals. Fourth, the nature
of SRL algorithms allows more complex interactions between features. Clearly, a
single, flat feature representation will not suffice here. Fifth, the learned models must
be generalized across different sub-groups of populations and across different pop-
ulations themselves. Finally, the relational models are very easily interpretable and
hence enable the physician and policy-maker to identify treatable risk factors and
plan preventative treatments.

Next, we present the three case studieswhere relationalmethods have led to highly
predictive models and provide reason and hope for sustainable health care.

3 Case Study I—Predicting Early Onset of Cardiovascular
Conditions

The broad long-term objective of this case study is to reduce deaths and nega-
tive health consequences of cardiovascular diseases (CVD) which comprehensively
include diseases related to the heart and blood vessels. Coronary heart disease (CHD)
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is a major cause of death and illness worldwide. Successful and established lifestyle
intervention can prevent the development of risk factors especially when applied
early in life. The National Heart, Lung and Blood Institute’s Coronary Artery Risk
Development in Young Adults (CARDIA) Study is a longitudinal cohort study with
25 years of data examining the development and determinants of clinical and sub-
clinical cardiovascular disease and its risk factors in black and white Americans.
CARDIA study is a longitudinal study of cardiovascular risk factors that began in
1985–86. There were several risk factors measured in different years (2, 5, 7, 10,
15, 20) respectively. The purpose of this project is to understand the relationship
between the measured risk factors and the development of CVD and overall plaque
burden. As the cohort ages and sufficient clinical events occur, this work will allow
us to apply state-of-the-art machine learning techniques to hard clinical events such
as heart attack, heart failure and premature death. In particular, our prior work [33]
uses the longitudinal data collected from the CARDIA participants in early adult life
(ages 20–50 years), to develop machine learning models that can be used to predict
the Coronary Artery Calcification (CAC) amounts, a measure of subclinical CAD,
at years 25 given the measurements from the previous years. CAC is a measure of
advanced atheroma and has previously been demonstrated to add to risk factor in
the prediction of heart attack in men, women and four major ethnic groups [8]. We
present this work briefly in this section.

We used known risk factors such as age, sex, cholesterol, bmi, glucose, hdl level
and ldl level of cholesterol, exercise, trig level, systolic bp and diastolic bp that are
measured between years 0 and 20 across the patients. Our goal is to predict if the
CAC-levels of the patients are above 0 for year 20 given the above mentioned factors
over all the years. Predicting the CAC-levels for year 20 using the measurements
from previous years allows us to identify sub-groups of populations that are to be
monitored early and identified for treatment and counseling. Any CAC-level over 0
indicates the presence of advanced coronary atheroma and elevated risk for future
heart disease. So, we are in a binary classification setting of predicting 0 versus non-0
CAC levels. In our data set, most of the population had CAC-level of 0 (less than
20% of subjects had significant CAC-levels) in year 20. Hence, there is a huge skew
in the data set where there is a very small number of positive examples.

We used data from 3600 subjects and performed 5-fold cross validation. We
compare the results (area under the curve of the ROC curves) of the SRL methods
(presented below) against traditional regression methods such as linear and logistic
regression. We also compare against standard machine learning methods such as
Naive Bayes [20], Support Vector Machines [6], Decision trees [36] (J48) and a
propositional boosting method (AdaBoost) [11]. We employed two versions of SRL
models that have been proven to be very successful.

In the first version, we learned relational regression trees (RRTs) [2]. These trees
upgrade the attribute-value representation usedwithin classical regression trees. Each
RRT can be viewed as defining several new feature combinations, one corresponding
to each path from the root to a leaf. These regression trees are learned directly from
relational data. In the second version, we boosted a set of RRTs using functional-
gradient boosting (RFGB) [9, 12, 18, 32, 34]. The benefits of a boosting approach
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Fig. 3 AUC ROC values for
the different algorithms

are: First, being a nonparametric approach the number of parameters grows with
the number of training episodes. In turn, interactions among random variables are
introduced only as needed, so that the potentially large search space is not explicitly
considered. Second, such an algorithm is fast and straightforward to implement.
Existing regression learners can be used to deal with propositional, continuous, and
relational domains in a unified way. Third, the use of boosting for learning SRL
models makes it possible to learn the structure and parameters simultaneously, which
is an attractive feature as structure learning in SRL models is computationally quite
expensive. Finally, given the success of ensemble methods in machine learning, it
can be expected that our method is superior in predictive performance across several
different tasks compared to the other relational probabilistic learning methods. As
we had demonstrated in our earlier work [21, 32, 34] such a learning method has
been successfully employed in social network prediction, citation analysis, movie
ratings predictions, discovering relationships, learning from demonstrations, and
natural language processing tasks. We employed this highly successful technique for
learning to predict CAC levels in adulthood.

This is essentially a “rediscovery experiment” in that it uses known risk factors for
predicting CAC levels. Preliminary results on CAC prediction task are presented in
Fig. 3. Measuring accuracy over the entire data set can be misleading [19], hence, we
also compute the area under the curve for the Receiver Operating Characteristics curv
(AUC-ROC). The AUC-ROC has long been viewed as an alternative single-number
measure for evaluating the predictive ability of learning algorithms. This is because
the AUC-ROC is independent to the decision threshold and invariant to the priors on
the class distribution. As can be easily observed, the relational methods (RPT and
RFGB) have a superior performance over the rest of the methods. In particular, the
gradient boosting method (RFGB) exhibits more than 20% increase over the best
standard method. Our results are consistent with the published results [4, 11, 37] in
that with approximately 25 trees, we can achieve the best empirical performance.
We refer to our work [33] for more details.

Figure4 presents a part of one tree learned. We are not presenting the entire tree
and indicate the missing branches by dots. The first argument a of every predicate is
the subject’s ID and the last argument of every predicate (except sex) indicates the
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Fig. 4 Learned Tree for predicting CAC-level greater than 0. The leaves indicates P(cac(a)) > 0.
The left branch at any test corresponds to test returning true while the right branch corresponds to
false

year of measurement. The left branch out of every node is the true branch, the right
branch the false branch. The leaves indicate the probability of CAC-level (say p)
being greater than 0. We use _bw in predicates to indicate that the value of a certain
variable is between two values. For instance, ldl_bw(a, b, 0, 100, 10) indicates that
the LDL level of the person a is b and is between 0 and 100 in year 10. The leaves
indicate the probability (p) of that subject having a non-zero CAC level in year 20.
For example, the left branch states that if a person is male, he is of middle age in
year 7 (i.e., between 35 and 45 years) and has a high ldl level, p = 0.79. Similarly
the right branch indicates that if the subject is a female and has not smoked in year
5, p = 0.05.

We performed an additional experiment—we first used only year 0 data and
learned a single tree. Now using this tree, we learned the second tree using year 5
data and so on. So the goal is to see how AUC-PR changes with adding more obser-
vations in future yeas and can be seen as the progress of the risk factor over time.
The results are presented in Fig. 5 (solid). As expected from the previous experiment,
year 0 has a substantial leap and then adding individual years increases performance
until year 7 and then plateaus beyond that. This is again a significant result. Our ini-
tial results show that beyond ages 25–37 of a person, there is not much significant
information from the risk factors.

Only family history and drug use data: Since the above experimentswere essen-
tially “rediscovery experiments”,wewere interested in finding hownon-standard risk
factors such as family history and drug use can affect the CAC-levels i.e., can we
unearth a new discovery? Thus, we used only these two sets of features in our next
experiment. These diverse features included the age of the children, whether the par-
ticipant owns or rents a home, their employment status, salary range, their smoking
and alcohol history, etc. There were approximately 200 such questions that were con-
sidered. Again, as with the previous case, we used the 3600 subjects and performed
5-fold cross validation. Initial experiments showed that we were able to predict the
CAC-levels reasonably with an AUC-ROC value of around 0.75. An example rule
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Fig. 5 The impact of the
measurements in different
years in the CAC-level at
year 20

says that if the person was in school 5 years earlier, had smoked regularly in their 20s,
was not paying for their residence then and had children at home, then their chance
of having a significant CAC-level is higher than someone who never smoked and
was married during that time. While the results are preliminary, they reveal striking
socioeconomic impacts on the health state of the population, factors that have long
been speculated on, but which can now be conclusively quantified. Future investiga-
tions are necessary to uncover more informative and correct relationships between
social and economic factors on the cardiovascular health state of populations.

Application to a Real EHR: We have made an initial attempt of evaluating
our algorithm on a real EHR [44, 45]. EHRs are an emerging data source of great
potential use in disease prevention. An EHR effectively tracks the health trajecto-
ries of its patients through time for cohorts with stable populations. We analyzed
de-identified EHR data on 18,386 subjects enrolled in the Personalized Medicine
Research Project (PMRP) at Marshfield Clinic [26, 27]. The PMRP cohort is one of
the largest population-based bio-banks in the United States and consists of individ-
uals who are 18 years of age or older, who have consented to the study and provided
DNA, plasma and serum samples along with access to their health information in
the EHR. Most of the subjects in this cohort received most, if not all, of their med-
ical care through the Marshfield Clinic integrated health care system. We included
major risk factors such as cholesterol levels (LDL in particular), gender, smoking
status, and systolic blood pressure, as well as less common risk factors such as his-
tory of alcoholism and procedures for echocardiograms and valve replacements. The
best cross-validated predictor of primary MI according to AUC-ROC was the RFGB
model as with the earlier case. It is of note that the RFGB and RPT models sig-
nificantly outperformed their direct propositional analogs (Boosted Tree and Tree
models, respectively) emphasizing the need for richer relational models for such
challenging tasks.

Summary: In theU.S., heart disease is responsible for approximately one in every
6 deaths with a coronary event occurring every 25s and about 1 death every minute
based on data current to 2007 [39]. Heart diseases are the number one cause of death
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and disability. This results in an estimated annual U.S. expenditure of $425 billion.
This case study provides an opportunity to investigate the possibility of predicting
later cardiac events by analyzing the young adulthood data. Our experiments reveal
that the relational learning methods are more suited for this task due to their ability
to handle multi-relational data. It also appears that the risk factors from the early
adulthood of the subjects seem to be the most important ones in predicting risks at
later years. This allows the populations to take control of their cardiovascular health
and develop preventive treatment plans that avoids potential cardiovascular events
later. Initial experiments with socioeconomic risk factors appear to demonstrate that
these risk factors are as predictive as clinical risk factors. This opens up another
potential avenue for developing sustainable health care for cardiovascular risks—
improving the living standards of the society as a whole.

4 Case Study II—Predicting Mild Cognitive Impairment

Alzheimer’s disease (AD) is a progressive neurodegenerative condition that results
in the loss of cognitive abilities andmemory, with associated high morbidity and cost
to society [42]. Accurate diagnosis of AD, as well as identification of the prodromal
stage, mild cognitive impairment (MCI) is an important first step towards a cure and
has been a focus of many neuroimaging studies. Structural MRI has been widely
used to identify changes in volume and size of specific brain regions, as well as
regional alterations in gray matter, white matter and cerebrospinal fluid (CSF) on a
voxel-by-voxel basis [46]. Recently, there are several approaches that either employ
network analysis [42, 43] or machine learning [3, 46] on the voxel data. These
approaches, however, only consider the binary classification problem, that of AD
versus CN (cognitively normal), in which a clear decision boundary between these
categories can be easily obtained. In reality, the progression to Alzheimer’s disease
is a continuum, with subjects spanning different stages from being normal to MCI
to AD, making classification much more difficult. In fact, this distinction is most
important, as identifying the subjects who are MCI but at a higher risk of moving to
AD can potentially have a high impact in developing sustainable health care plan for
these subjects. This is more effective compared to waiting until the onset of AD to
begin treatment for the individual.

We have recently proposed a pipeline approach that performs three-way
classification—AD versus MC versus CN [30, 31]. The pipeline is presented in
Fig. 6 and consists of three stages—first is the MRI segmentation stage that takes
volumetric brain MRI data as an input and segments the brain into clinically rel-
evant regions. Second is a relational learning stage that considers the segmented
brain to be a graph to build a series of binary classifiers. The final stage is the
combination stage that combines the different classifiers. The idea underlying this
pipeline is simple and is based on the idea of classical mixture of experts: rather
than choose a single segmentation technique, we combine multiple segmentation
techniques and different imaging data. In our previous work, we used two different
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Fig. 6 Graphical representation of the pipeline

types of segmentation algorithms—atlas based segmentation (AAL) which divides
the brain into 116 regions and EM [7] based unsupervised segmentation that could
result in different number of segments for different subjects depending on their brain
characteristics.

In order to handle the relational (graph) data, we employed the previously out-
lined RFGB algorithm [34]. Given the importance of the brain network connectivity
in identifying AD, this particular SRL algorithm becomes a natural choice due to its
ability tomodel relations such as neighborhood information and the fact that we learn
the parameters and structure of the graphical model simultaneously. Note that if we
employ a propositional classifier, we have to assume that all the subjects have equal
number of segments, which is not the case in EM segmentations. As illustrated, our
methods outperform propositional classifiers. Also, the ability to use domain knowl-
edge is one of the attractive features of SRL algorithms and is an essential attribute
from a medical imaging perspective since the knowledge gained from decades of
medical research can be incredibly useful in guiding learning/mining algorithms.

SRL approaches based on first-order logic mostly employ predicate logic that
essentially performs binary classification. Our goal, on the other hand, is the more
challenging three-way classification. We took the popular approach of converting
this classification as a series of binary classification tasks (i.e., AD vs. CN, AD vs.
MCI and MCI vs. CN) also called One-versus-One (OvO) classification approach
[13, 22]. The results are compared against a One-versus-all strategy (OvA) where
a classifier is learned for each class separately and each class is discriminated from
the others. The key idea in OvO is to divide the multi-class classification problem
into a series of binary classification problems between pairs of classes, then combine
the outputs of these classifiers in order to predict the target class. We use SRL-based
classifiers for each binary classification and later combine them using a few different
techniques (weighted combination, a meta-classifier, etc.). The results are compared
against an OVA where a classifier is learned for each class separately and each class
is discriminated from the other classes.

We evaluate the pipeline on a real-world dataset, namely the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database of 397 subjects. It should be mentioned
that in the experiments we report no subject selection took place (i.e., we did not
carefully choose the subjects for the study) and instead we used the complete set of
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Fig. 7 Classification performances in terms of “Area under the ROC curve” of the different algo-
rithms: a propositional classifiers (blue) compared against the relational AALB (red) algorithm

subjects. This particular group was selected based upon having both structural MRI
and functional metabolic positron emission tomography data as part of a separate
study. Similarly, we do not employ a careful feature selection but rather simply use
resulting average tissue-type volume measurements obtained from the segmentation
algorithms as features for our classification. Our results demonstrate that we have
comparable or better performance than the current methods based upon individual
binary and collective classification tasks with minimal feature engineering.

To illustrate the need for relational models, we compared the propositional clas-
sifiers with AAL segmentation. We now present the results in Fig. 7. All these clas-
sifiers used AAL segmentation to construct a feature vector and then performed
classification using one of the standard machine learning methods (J48—decision
tree, NB—Naive Bayes, SVM—Support Vector Machine, AdaBoost and Bagging—
ensemble classifiers). We used Weka’s multi-class classification setting. For each of
the classifiers, we used 5-fold CV to select the best parameters. As can be seen, the
propositional algorithms do not show a good performance when compared to AALB
which is the SRL method (RFGB) used on top of the AAL segmentation method.
We also present the results of running LibSVM on the voxel data (i.e., without any
segmentation—SVMMG). The results demonstrate that the performance is slightly
better but still is not comparable to the performance of AALB. As with the previous
case study, we present AUC-ROC instead of accuracy.

Recall that we converted a 3-class classification problem into 3 binary classifica-
tion problems. To understand how the successful methods performed on individual
classification tasks (AD vs. CN, AD vs. MCI, MCI vs. CN), we also present the
confusion matrices in Table1. We include a single confusion matrix for each of the
three binary classifiers that used RFGB as their classifier while employing AAL
segmentation. These matrices clearly show that, while we can achieve a relatively
high true positive rate (TPR) and true negative rate (TNR) when classifying AD v
CN and AD v MCI, classification of MCI v CN is a more difficult task. Hence, we
see a proportionally larger number of false negatives in the third confusion matrix. It
appears that while we are tackling the difficult challenge of 3-class classification, it
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Table 1 Confusion matrices
for the three classifiers

Confusion matrices

AD v CN AD v MCI MCI v CN

Pos Neg Pos Neg Pos Neg

Pos 64 18 27 60 149 44

Neg 16 86 30 168 76 26

also helps in the two-class classification case. More precisely, learning in the more
difficult task helps the classifiers to improve on the less difficult task.

Summary: The total costs of care of Americans with Alzheimers above the age
of 65 is projected to increase to $1.08 trillion per year in the next 40 years.1 Hence,
it is crucial to identify subjects that are at risk for Alzheimer’s early and isolating
the subjects who appear to have MCI currently is a first step in this process. To this
effect, we have shown that relational models are quite effective in isolating the MCI
subjects. The next logical step is in estimating the number of theseMCI subjects who
would go on to develop Alzheimer’s. This is a challenging problem as the human
expertise in predicting this is still not fully realized. Nonetheless, this problem has
potentially a very important effect in developing a sustainable society whose costs
are balanced between the treatment to the individual patients and keeping the costs to
the society as low as possible. Identifying and developing patient centric Alzheimer’s
treatment plans can largely contribute towards realizing this goal.

5 Case Study III—Predicting Adverse Drug Events

Adverse drug events (ADEs) are estimated to account for 10–30% of hospital admis-
sions, with costs in the United States alone between 30 and 150 billion dollars annu-
ally [25], and with more than 180,000 life threatening or fatal ADEs annually, of
which 50% could have been prevented [17]. Although the U.S. Food and Drug
Administration (FDA) and its counterparts elsewhere have preapproval processes
for drugs that are rigorous and involve controlled clinical trials, such processes can-
not possibly uncover every aspect of a drug. While a clinical trial might use only a
thousand patients, once a drug is released on the market it may be taken by millions
of patients. As a result, additional information about possible risks of use is often
gained after a drug is released on the market to a larger, more diverse population.

This particular task poses several key challenges to machine learning techniques
that require development of more advanced relational learning techniques—(1) The
adverse events associated with the drugs are not known in advance (unanticipated
adverse events) and hence it is not possible to learn from labelled data. (2) The

1http://www.alz.org/alzheimers_disease_trajectory.asp.

http://www.alz.org/alzheimers_disease_trajectory.asp
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data is multi-relational since they are learned from EHRs. (3) The data is non-i.i.d.,
as the data cannot be represented using a fixed feature vector. (4) The number of
features associated with a data point are arbitrary—the number of diagnosis, visits
and prescriptions. (5) Finally, there is a necessity to explicitly model time. Some
drugs taken at the same time can lead to events while in some cases, drugs taken
after one another cause adverse events.

The task of identifying previously unanticipated ADEs is similar to an unsuper-
vised learning task: without a hypothesized ADE, how can we run a supervised
learner? As an example, without knowing in advance that Myocardial Infraction
(MI) is an ADE for Cox2 inhibitors, how can we provide supervision such that the
algorithmwill predict thatMI risk is raised by these drugs? In our prior work [35], we
show that the problem can be addressed by running supervised learning in reverse,
to learn a model to predict who is on a Cox2 inhibitor (Cox2ib). This seems coun-
terintuitive, but if we can predict some subgroup of Cox2ib patients based on the
events occurring after they start Cox2ib, this can provide evidence that the subgroup
might be sharing some common effects of Cox2ib. When addressed by covering-
based Inductive Logic Programming systems such as Aleph [41], it is equivalent to
relational subgroup discovery.We anticipate this same reverseML approach can also
be applied to other situations where the real class variable of interest is not measured.
We referred to this as reverse machine learning.

Suppose we did not know that Cox2ib doubled the risk of MI, but we wondered
if these drugs had any associated ADE. Our reverse ML approach is to treat patients
on Cox2 inhibitors as our cases, or positive examples, and to treat age- and gender-
matched controls as the negative examples. Specifically, for each positive example,
a control is a patient of the same age and gender who is not on a Cox2ib. (Controls
could be selected to be similar to the cases in other ways age and gender are just
the most common such features in clinical studies). For example, if we have on the
order of 200 positive (P) patients who suffer an MI, we expect on the order of 100
negative (N) patients who suffer anMI. The following rule would have a strong score
of P − N = 100 and hence would be returned by Aleph unless a different rule scores
even better.

cox2ib(Patient) IFmi(Patient)

This rule says that a patient was likely on a Cox2ib if they suffered an MI.
Another advantage of relational subgroup discovery, comparedwith ordinary sub-

group discovery, is that the body (precondition) of the rule does not have to be a single
condition, but it could be combination of conditions and lab results, possibly in a
particular temporal order. Hence, in principle ADEs can be discovered that do not
neatly correspond to an exact pre-existing diagnosis code. Furthermore, the body of
the rule can involve other drugs, so that in principle ADEs caused by drug interac-
tions can be captured. For example, it has recently been observed that patients on
Plavix have an increased risk of stroke (ordinarily prevented by Plavix) if they are
also on Prilosic. This can be represented by the following rule
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plavix(Patient) IF prilosic(Patient) ∧ stroke(Patient)

We evaluated the approach onMarshfieldClinics PersonalizedMedicineResearch
Project [27] (PMRP) cohort consisting of approximately 19,700+ subjects. The
PMRP cohort included adults aged 18years and older who reside in the Marshfield
Epidemiology Study Area. Marshfield has one of the oldest internally developed
EHRs (Cattails MD) in the US, with coded diagnoses dating back to the early 1960s.
Prior to runningAleph, the de-identifiedEHRdatabasewas converted into Prolog for-
mat. For analysis, medicated subjects were identified (referred to as positive cases P)
by searching through the medications database and selecting those subjects having
an indicated use of Cox2ib. An equal number of subjects (referred to as negative
controls N) were randomly selected from a pool of controls that were matched to
the cases based on gender and age. The controls could not have any indicated use of
Cox2ib drug in the medications database.

We ran on two drugs, Warfarin and Vioxx. For Warfarin the approach easily
rediscovered the known ADE of bleeding, together with the common treatment for
Warfarin-induced bleeding (Phytonadione, or Vitamin K1).

warfarin(X) ← bleeding(X, D1) ∧ phytonadione(X, D2) ∧ after(D1, D2)

Vioxx is a drug that was recalled from the market because it was found to double
the risk of heart attack, or myocardial infarction (MI). Our aim was to test whether
Aleph would uncover this link with MI if the link were unknown. Vioxx belongs to a
larger class of drugs called Cox2 inhibitors. The overall goal was to identify possible
ADEs caused by Cox2ib. In our reverse ML approach, the specific goal of the Aleph
run was to learn rules to accurately predict which patients had an indicated use of
Cox2ib. These rules would then be vetted by a human expert to distinguish which
were merely associated with indications of the drug (diseases or conditions for which
the drug is prescribed) and which constituted possible ADEs (or other interesting
associations, such as off-label uses for the drug).We validated our methodology with
a run in which only diagnoses are used and rules are kept as short as possible—one
body literal (precondition) per rule.

Myocardial infarction (MI) is a known adverse event of Cox2ib we wanted to test
if the method would uncover MI automatically. In Table2, we show the ten most
significant rules identified by Aleph for a single run. Note that the penultimate rule
(highlighted) identifies the diagnosis of 410 (MI) as a possible ADE of Cox2. The
fact that this ADE can be learned from data demonstrates that our method is capable
of identifying important drug interactions and side-effects.

In some cases, a drug may cause an ADE that does not neatly correspond to an
existing diagnosis code (e.g., ICD9 code), or that only occurs in the presence of
another drug or other preconditions. In such a case, simple 1-literal rules will not
suffice to capture the ADE. We now report a run in which all of the background
knowledge was used, including labs, vitals, demographics and other drugs. Table3
shows the top ten most significant rules. The use of ILP yields interpretable rules.
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Table 2 Aleph rules generated for Cox2 inhibitor use (Single Diagnosis)

Rule Pos Neg Total P-value

diagnoses(A,_,‘790.29’,‘Abnormal Glucose Test, Other
Abn Glucose’,_)

333 137 470 6.80E-20

diagnoses(A,_,‘V54.89’,‘Other Orthopedic Aftercare
’,_)

403 189 592 8.59E-19

diagnoses(A,_,‘V58.76’,‘Aftercare Foll Surg Of The
Genitourinary Sys’,_)

287 129 416 6.58E-15

diagnoses(A,_,‘V06.1’,‘Diphtheria-Tetanus-
Pertussis,Comb(Dtp)(Dtap)’,_)

211 82 293 2.88E-14

diagnoses(A,_,‘959.19’,‘Other Injury Of Other Sites Of
Trunk ’,_)

212 89 301 9.86E-13

diagnoses(A,_,‘959.11’,‘Other Injury Of Chest Wall’,_) 195 81 276 5.17E-12

diagnoses(A,_,‘V58.75’,‘Aftercare Foll Surg Of Teeth,
Oral Cav, Dig Sys’,_)

236 115 351 9.88E-11

diagnoses(A,_,‘V58.72’,‘Aftercare Following Surgery
Nervous Syst, Nec’,_)

222 106 328 1.40E-10

diagnoses(A,_,‘410’,‘Myocardial Infarction’,_) 212 100 312 2.13E-10

diagnoses(A,_,‘790.21’,‘Impaired Fasting Glucose ’,_) 182 80 262 2.62E-10

Fisher’s exact test indicated that many rules demonstrated a significant difference in
identifying positive cases over chance.

Summary This case study resulted in several important lessons to be learned.
First, learning in reverse is a good alternative for unsupervised learning problems—
when the labels are not known in advance as in the case of adverse events. Censoring
of the data based on the learning task is important. It is important to censor (omit)
data about patients before they started the drug. Left censoring is important but not
guaranteed that our learned models describe only ADEs. Finally, given the multi-
relational nature of the data, it is necessary for algorithms that directly operate on
relational data without flattening the data. Hence, relational methods are a natural
choice for modeling such tasks which are essential in developing a sustainable soci-
ety. Identifying potential side-effects of drugs in the first few years after they are
released to a wider population has the possibility of reducing treatment costs, focus-
ing clinical studies, reducing hospital admissions and preventing catastrophic events
on individuals thus realizing the goal of sustainable health care.
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Table 3 Aleph rules generated for Cox2 inhibitor use

Rule Pos Neg Total P-value

gender(A,‘Female’), hasdrug(A,_,‘IBUPROFEN’), 509 177 686 4.25E-38

diagnoses(A,_,‘305.1’,‘Tobacco Use Disorder’,_)

diagnoses(A,B,‘462’,‘Acute Pharyngitis’,_), 457 148 605 1.27E-37

hasdrug(A,B,‘IBUPROFEN’)

hasdrug(A,_,‘NORGESTIMATE-ETHINYL ESTRA-
DIOL’),

339 88 427 8.12E-36

gender(A,‘Female’)

diagnoses(A,_,‘V70.0’,‘Routine Medical Exam’,_), 531 199 730 1E-35

hasdrug(A,B,‘IBUPROFEN)

diagnoses(A,B,‘724.2’,‘Lumbago’,_) 433 144 577 1.44E-34

diagnoses(A,_,‘462’,‘Acute Pharyngitis’,_), 502 186 688 2.02E-34

gender(A,‘Male’)

diagnoses(A,_,‘89.39’,‘Nonoperative Exams Nec’,_), 415 135 550 4.12E-34

diagnoses(A,_,‘305.1’,‘Tobacco Use Disorder’,_)

hasdrug(A,_,‘CYCLOBENZAPRINE HCL’), gen-
der(A,‘Male’)

493 189 682 3.6E-32

hasdrug(A,_,‘FLUOXETINE HCL’)

gender(A,‘Female’). l_observations(A,B,‘Calcium’,9.8), 487 189 676 3.28E-31

diagnoses(A,B,‘724.5’,‘Backache Nos’,_)

diagnoses(A,_,‘V71.89’,‘Other Specified Suspected
Condi10/00’,_),

492 193 685 5.35E-31

gender(A,‘Male’)

6 Discussion and Conclusion

For a sustainable society, it is important to develop personalized health plans for the
population. In order to do so, it is crucial to developmethods that can predict the onset
of critical events before they happen. In this chapter, we addressed three important
such problems—that of predicting cardiovascular events years in advance, predicting
the subset of population that needs to be monitored for the onset of Alzheimer’s and
predicting adverse events of drugs based on the attributes of the patients and the drug
regiment that they are on. The three prediction problems all focus on isolating the
set of subjects that are at risk rather than waiting for the event to happen and then
develop a treatment plan. Planning after an event has occurred can prove to be costly
to both the individual and society as a whole.
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In order to perform such predictions, it is crucial to develop learning methods that
can naturally handlemulti-relational, uncertain, noisy andmissing data. To this effect,
we proposed the use of advanced relational learning algorithms including statistical
relational learning that can faithfully model the rich structured data while being able
to handle noise and uncertainty. We also demonstrated how a rule learning algorithm
can be used to handle imperfect observations in EHRs. The experimental results
were consistent across all the case studies—relational learning algorithms were able
to outperform the propositional (standard) machine learning algorithm with minimal
feature engineering. We claim that these initial results along with other results from
our groups and others demonstrate the potential of these rich algorithms on devel-
oping models tailored to subgroups of populations possibly leading to realizing the
grand vision of personalized medicine.

In the future, it is important to develop learning algorithms that handle multiple
modalities of data—EHRs, drug tests, X-rays, MRI, CT scans, genetic information
and natural language text. Machine learning algorithms in general and relational
learning algorithms in particular have been applied to individual modalities in the
past. They must be extended to handle sub-sets of the data types in order to make
effective predictions. The lessons learned fromone study or one group of a population
must be validated across multiple groups to draw useful inferences that can be gen-
eralized across multiple populations. With successes in other fields when employing
machine learning, it appears that it will not be long before we realize the grand vision
of personalized medicine leading to sustainable health care practices.

References

1. Bishop, C.: Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer, Secaucus (2006)

2. Blockeel, H.: Top-down induction of first order logical decision trees. AI Commun. 12(1–2),
119–120 (1999)

3. Chen, K., Reiman, E.M., Alexander, G.E., Bandy, D., Renaut, R., Crum, W.R., Fox, N.C.,
Rossor, M.N.: An automated algorithm for the computation of brain volume change from
sequential mris using an iterative principal component analysis and its evaluation for the assess-
ment of whole-brain atrophy rates in patients with probable Alzheimer’s disease. Neuroimage
22(1), 134–143 (2004)

4. Craven, M., Shavlik, J.: Extracting tree-structured representations of trained networks. In:
NIPS, pp. 24–30 (1996)

5. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other
Kernel-Based Learning Methods. Cambridge University Press, New York (2000)

6. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

7. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the
EM algorithm. J. Roy. Stat. Soc. B. 39(1), 1–38 (1977)

8. Detrano, R., Guerci, A.D., Carr, J.J., et al.: Coronary calcium as a predictor of coronary events
in four racial or ethnic groups. N. Engl. J. Med. 358, 1338–1345 (2008)

9. Dietterich, T.G., Ashenfelter, A., Bulatov, Y.: Training conditional random fields via gradient
tree boosting. In: ICML (2004)



Relational Learning for Sustainable Health 263

10. Domingos, P., Lowd, D.: Markov Logic: An Interface Layer for AI. Morgan & Claypool, San
Rafael (2009)

11. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: ICML, pp. 148–156
(1996)

12. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29,
189–1232 (2001)

13. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble
methods for binary classifiers in multi-class problems: experimental study on one-vs-one and
one-vs-all schemes. Pattern Recogn. 44, 1761–1776 (2011)

14. Getoor, L., Friedman, N., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In:
Dzeroski, S., Lavrac, N. (eds.) Relational Data Mining (2001)

15. Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge
(2007)

16. Glesner, S., Koller, D.: Constructing flexible dynamic belief networks from first-order prob-
abilistic knowledge bases. In: Froidevaux, C., Kohlas, J. (eds.) Proceedings of the Euro-
pean Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty
(ECSQARU’95), pp. 217–226. Springer, Berlin (1995)

17. Gurwitz, J.H., Field, T.S., Harrold, L.R., Rothschild, J., Debellis, K., Seger, A.C., Cadoret, C.,
Fish, L.S., Garber, L., Kelleher, M., Bates, D.W.: Incidence and preventability of adverse drug
events among older persons in the ambulatory setting. JAMA 289, 1107–1116 (2003)

18. Gutmann, B., Kersting, K.: Tildecrf: conditional randomfields for logical sequences. In: ECML
(2006)

19. Huang, J., Ling, C.X.: Using auc and accuracy in evaluating learning algorithms. IEEE Trans.
Knowl. Data Eng. 17(3), 299–310 (2005)

20. John,G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh
Conference on Uncertainty in Artificial Intelligence, pp. 338–345. Morgan Kaufmann (1995)

21. Khot, T., Natarajan, S., Kersting, K., Shavlik, J.: Learningmarkov logic networks via functional
gradient boosting. In: ICDM (2011)

22. Knerr, S., Personnaz, L., Dreyfus, G.: Single-layer learning revisited: a stepwise procedure
for building and training a neural network. In: Soulié, F.F., Hérault, J. (eds) Neurocomputing:
Algorithms, Architectures and Applications, vol. F68, pp. 41–50. Springer (1990)

23. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Proceedings of the 13th Annual
Conference onUncertainty in AI (UAI), pp. 302–313, (1997).Winner of the Best Student Paper
Award

24. Lavrac, N., Dzeroski, S.: Inductive Logic Programming—Techniques and Applications. Ellis
Horwood Series in Artificial Intelligence. Ellis Horwood, New York (1994)

25. Lazarou, J., Pomeranz, B.H., Corey, P.N.: Incidence of adverse drug reactions in hospitalized
patients: a meta-analysis of prospective studies. JAMA 279, 1200–1205 (1998)

26. McCarty, C.A., Peissig, P., Caldwell, M.D., Wilke, R.A.: The marshfield clinic personalized
medicine research project: 2008 scientific update and lessons learned in the first 6 years.
Personalized Med. 5(5), 529–542 (2008)

27. McCarty, C.A., Wilke, R.A., Giampietro, P.F., Wesbrook, S.D., Caldwell, M.D.: Marshfield
clinic personalized medicine research project (pmrp): design, methods and recruitment for a
large population-based biobank. Personalized Med. 2(1), 49–79 (2005)

28. Mitchell, T.: Machine Learning, 1st edn. McGraw-Hill Inc., New York (1997)
29. Murphy, K.: Machine Learning: A Probabilistic Perspective. MIT Press (2012)
30. Natarajan, S., Joshi, S., Saha, B., Edwards, A., Khot, T., Moody, E., Kersting, K., Whitlow,

C., Maldjian, J.: A machine learning pipeline for three-way classification of alzheimer patients
from structural magnetic resonance images of the brain. In: IEEE Conference on Machine
Learning and Applications (ICMLA) (2012)

31. Natarajan, S., Joshi, S., Saha, B., Edwards, A., Khot, T., Moody, E., Kersting, K., Whitlow, C.,
Maldjian, J.: Relational learning helps in three-way classification of alzheimer patients from
structural magnetic resonance images of the brain. Int. J. Mach. Learn. Cybern. (2013)



264 S. Natarajan et al.

32. Natarajan, S., Joshi, S., Tadepalli, P., Kersting, K., Shavlik, J.: Imitation learning in relational
domains: a functional-gradient boosting approach. In: IJCAI, pp. 1414–1420 (2011)

33. Natarajan, S., Kersting, K., Ip, E., Jacobs, D., Carr, J.: Early prediction of coronary artery
calcification levels using machine learning. In: Innovative Appl. AI (2013)

34. Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based boosting for
statistical relational learning. Relational Depend. Netw. Case MLJ (2012)

35. Page, D., Natarajan, S., Costa, V.S., Peissig, P., Barnard, A., Caldwell, M.: Identifying adverse
drug events from multi-relational healthcare data. In: AAAI (2012)

36. Quinlan, J.: C4.5: Programs for Machine Learning (1993)
37. Quinlan, J.R.: Bagging, boosting, and c4.5. In: AAAI/IAAI, vol. 1, pp. 725–730 (1996)
38. De Raedt, L.: Logical and Relational Learning: From ILP toMRDM (Cognitive Technologies).

Springer, New York (2008)
39. Roge, V.L., Go, A.S., et al., Lloyd-Jones, D.M.: Heart disease and stroke statistics-2011 update:

a report from the american heart association. Circulation 123, e18–e209 (2011)
40. Schapire, R., Freund, Y.: Boosting: Foundations and Algorithms. The MIT Press (2012)
41. Srinivasan, A.: The Aleph Manual (2004)
42. Sun, L., Patel, R., Liu, J., Chen, K., Wu, T., Li, J., Reiman, E., Ye, J.: Mining brain region

connectivity for alzheimer’s disease study via sparse inverse covariance estimation. In: KDD
(2009)

43. Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic
functional brain connectivity in Alzheimer’s disease. PLoS Comput. Biol. 4(6), e1000100
(2008)

44. Weiss, J., Natarajan, S., Peissig, P., McCarty, C., Page, D.: Statistical relational learning to pre-
dict primary myocardial infarction from electronic health records. In: Innovative Applications
in AI (2012)

45. Weiss, J., Natarajan, S., Peissig, P., McCarty, C., Page, D.: Statistical relational learning to
predict primary myocardial infarction from electronic health records. In: AI Magazine (2012)

46. Jieping, Y., Gene, A., Eric, R., Kewei, C., Wu, T., Jing, L., Zheng, Z., Rinkal, P., Min, B., Ravi,
J., et al.: Heterogeneous data fusion for alzheimer’s disease study. In: KDD, p. 1025 (2008)



ARM Cluster for Performant
and Energy-Efficient Storage

Diana Gudu and Marcus Hardt

Abstract Low power hardware—such as ARM CPUs—combined with novel
storage concepts—such as Ceph—promise scalable storage solutions at lower energy
consumptions than today’s standard solutions like network attached storage (NAS)
systems. We have set up an ARM cluster, built of Cubieboards, which uses Ceph for
storage management. We compare its performance as well as its energy consumption
to typical NAS storages. The energy considerations include networking equipment,
storage, as well as computing equipment. Ceph is a novel storage system which pro-
vides unified access to distributed storage units. It is a performant and fault tolerant
solution for object and block storage, using commodity hardware. This allows a very
flexible choice of hardware to support wide ranges of use-cases. The goal of the
study is to outline paths for energy efficient storage systems.

1 Introduction

The goal of this chapter is to evaluate performance and energy consumption of
storage. We will focus on the power of the storage controller. We will not include the
power consumption of spinning disks, because in principle, any hard drive can be
connected to all the different controllers under consideration. Furthermore, the power
consumption of disks does not vary greatly across the models. We will therefore
assume a fixed power consumption of “disk” and will relate power consumption on
controllers and number of disks rather than storage capacity. That said, hard drive
manufacturers are working on reducing the power consumption of their drives, like
for example the HGST ultrastar He6 drive [1].

According to a detailed analysis of power consumption [2] in data centres world-
wide, the electrical power usage is growing over time. Due to power efficiency
efforts, the overall data centre power consumption is growing slower than previously
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Table 1 Share and power consumption of storage devices in computer centres worldwide

Year Share of storage (%) Energy per year (TWh)

2000 7.9 5.6

2005 9.8 15.0

2010 17.1 38.2–68.0

Cooling is included in the figure given. The range given for 2010 is the boundary of the range given
by four different prognoses [2]

anticipated. The share of the overall power required for storage is growing. Table1
shows the values for 2000, 2005 and those projected for 2010 in 2007. Unfortunately,
recent data is difficult to obtain, because especially large commercial data centres are
reluctant to publish their power consumption numbers.However, the trend can clearly
be seen. According to [2], storage equipment in data centres accounted for 38.2–68
TWh in 2010. Using the average price of electric power for industries within the
European Union in the same year of 9.1 ct

kWh [3], this corresponds to e3.4–6 billion
for storage related electricity (including cooling). Every percent of power consumed
less for storage corresponds to e34–60 million per year.

In an effort to make data centres more efficient by bringing application services
closer to storage media, HGST has developed the Open Ethernet Drive Architec-
ture [4]: the new disk drives also have integrated ARM-based CPU, RAM and Eth-
ernet, being thus connected to the data centre fabric directly and appearing on the
network as Linux servers. Software-defined storage solutions, such as Ceph, Gluster
or OpenStack’s Swift, can run unmodified on this new architecture. However, this is
still in the development stage.

In this contribution we will therefore analyse if using low-energy storage servers
based on ARM CPUs (such as found on the Raspberry Pi [5]) as storage servers
can provide a viable alternative to existing network attached storage solutions. The
distributed object store Ceph is the enabling technology we use for this, because it
promises [6] and provides [7] a very good scalability over large amounts of resources.
Based on this work, we want to find out if our initial test-ARM cluster will scale
to the physical limits of the attached network, and if the power consumed for this
is lower than for other storage services. We will compare the measured power and
performance values to data from other NAS products obtained from literature.

Furthermore, big data applications and some data analysis cases, for example
in high-energy physics, depend on the throughput per core rather than the CPU
performance. In such cases, processing local data on an ARMCPUmay be beneficial
from the energy point of view.

The remainder of this chapter is organised into a coarse overview of existing
storage technologies and their characteristic power consumption and throughput in
Sect. 2, the description of our ARM cluster in Sect. 3, including energy and perfor-
mance measurements in Sect. 4, and a discussion of the results in Sect. 5.
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2 Network Attached Storage (NAS)

NAS [8] (Networked Attached Storage) is a network appliance that provides file-
storage services to other devices over the network. It contains one ormore hard drives
that are combined internally via RAID controllers to provide an internal redundancy.
Typical interfaces include FTP, NFS, SMB but also higher level interfaces based on
HTTP.

2.1 QNAP

The NAS vendor [9] chosen to serve as an example is QNAP [10]. QNAPwas chosen
because they offer energy efficient devices together with well documented energy
consumption and throughput numbers. The values shown in here are those published
byQNAP. They offer a variety ofNAS solutions ranging from2 to 16 disks, combined
to different RAID levels. Hardware specifications for four selected QNAP products
are listed in Table2.

2.2 SONAS

SONAS [13] is a highly scalable and performant NAS implementation developed
by IBM. It is based on IBM’s clustered filesystem GPFS [14]. The architecture
consists of one controller and several disk enclosures, each enclosure containing
multiple disks. Rough performance and power values for a SONAS set-up in use
at the Karlsruhe Institute of Technology (KIT) are listed in Table 3. The controller
overhead per disk amounts to 7.78W per disk in the KIT installation chosen for
comparison.

Table 2 Power consumption, performance and price (without disks) of selected QNAP NAS prod-
ucts [11, 12]

Product Number of
disks

Power (W) Power with
disks (W)

Read
throughput
(MB/s)

Write
throughput
(MB/s)

Price (e)

TS-EC1680U-RP 16 82.84 166.58 448 448 5499

TS-EC880U-RP 8 73.38 133.88 444 448 3464

TS-EC1679U-RP 16 89.1 229 445 448 4969.51

TS-421 4 13 26 105 79 399.9
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Table 3 Power consumption of an IBM SONAS installation at KIT

Type Number Power (W) Throughput (MB/s)

Enclosure 60 disks 400

Controller 9 enclosures 600 5000

3 Cubieboard Cluster

We propose a scalable energy-efficient storage solution by combining low-power
ARM-basedhardware (Cubieboard [15])with anovel storage technology (Ceph [16]).

Due to the power consumption as low as 4W per Cubieboard, it is possible to
build low power storage clusters. We therefore aim to obtain similar performance as
current standard storage systems, but at lower energy consumption.

In our case, we have built a storage cluster consisting of 16 Cubieboards and 16
disks, as pictured in Fig. 1. Due to a broken board and the assignment of another
board as monitor node (without disk storage), only 15 boards and 14 disks were
in use throughout the measurements. The set-up also included a network switch
and two power supplies. The price of the entire set-up (15 boards and a network
switch, without disks) amounts to onlye1705. We considered here the Cubieboard2
version of the ARM board and the Enterasys A4H124-24 network switch, which
will be described in Sects. 3.1 and 3.3, respectively. We did not include the disks
in the total price calculation, since we only focus on the storage controllers in our
evaluation. However, unquantifiable costs are also involved but not included in the
price calculation, such as certain skills required to assemble all the components into
the cluster depicted in this chapter.

3.1 Cubieboards

Cubieboard is a low-cost ARM-based single-board computer that uses the AllWinner
A20SoC.Thedetailed hardware specificationof theCubieboardversion thatweused,
Cubieboard2, is presented in Table4. Although similar to Raspberry Pi [5] and other
single-board computers, the key difference of the Cubieboard is the SATA interface,
which is essential for a performant storage system. A 3.5-inch Seagate Baracuda ES
hard disk drive (HDD) with a capacity of 750GB is connected via SATA.

3.2 Ceph

Ceph is an emerging open-source distributed storage system that offers high scal-
ability and reliability through its innovative design, while using commodity hard-
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Fig. 1 The Cubieboard
cluster, consisting of 16
Cubieboards (left), 16 disks
(right), a network switch
(bottom) and two power
supplies (bottom left). Only
15 boards and 14 disks are in
use

ware. Ceph is built on the premise that failures in large-scale storage systems are
omnipresent; therefore, it uses different mechanisms to ensure fault tolerance, such
as replication and erasure coding.

Ceph’s core component is RADOS—the Reliable Autonomic Distributed Object
store—which is scalable because it allows individual nodes to act autonomously in
order to manage replication, failure detection and recovery.

There are different types of nodes in a Ceph cluster: Object Storage Daemons
(OSD) andMonitors. OSDs are usually constructed from commodity hardware (con-
sisting of CPU, network interface and disk). Objects are stored across a Ceph clus-
ter on the OSDs’ local filesystems using the pseudo-random distribution algorithm
CRUSH (Controlled Replication Under Scalable Hashing). This allows OSDs and
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Table 4 Full hardware
specification of
Cubieboard2 [18]

CPU ARM® Cortex™-A7 Dual-Core

GPU ARM® Mali400MP2, complies with
OpenGL ES 2.0/1.1

Memory 1GB DDR3 @960M

Storage 4GB internal NAND flash, 8GB microSD,
750GB on 2.5 SATA disk

Power 5V DC input 2A or USB OTG input

Networking 10/100 Ethernet, optional wifi

USB Two USB 2.0 HOST, one USB 2.0 OTG

Other One IR

Price e70 [17]

clients to compute object locations instead of looking them up in a centralised table,
thus interacting directly with the OSDs for I/O. This promises, at least in theory,
extreme scalability. Monitor nodes maintain a copy of the cluster map and work
together to ensure high availability.

In addition to direct access to RADOS through different software libraries, Ceph
offers a block device interface to the storage, built on top of RADOS—the RADOS
BlockDevice (RBD).Blockdevice images are stored as objects, automatically striped
and replicated across the cluster. RBD is supported in several virtualisation platforms,
such as OpenStack [19], OpenNebula [20] and CloudStack [21].

Ceph’s architecture is illustrated in Fig. 2.

Fig. 2 A simplified diagram
of the Ceph architecture.
RADOS, the core
component, consists of OSD
and Monitor nodes. Clients
can access the object storage
directly through the librados
library. Ceph offers three
other access interfaces: the
RBD block interface, the
POSIX-compliant CephFS
filesystem and the RESTful
RadosGW object gateway
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Table 5 Specification, power consumption and price for different network switches [24, 25]

Model Number of ports Power (W) Price (e)

Cisco WS-C2960G-24 24 75 1487.5

Cisco WS-C2960G-48 48 140 2007.48

Enterasys A4H124-24 24 31 655.06

Enterasys A4H124-48 48 63 1218.21

From the point of view of maintenance costs, once installed, Ceph runs without
attention, just like an enterprise system. However, it requires skills to be acquired at
install time.

3.3 Network

The network gear used with the Cubieboard cluster was a Cisco [22] switch with 48
ports and 1 GE uplink (WS-C2960G-48), which has a power consumption of 140W.
However, several lower power alternatives are listed in Table5.

Since the cluster consists of only 15 boards, a network switch with 24 ports would
be sufficient. For production we would use an Enterasys [23] A4H124-24 switch,
which consumes only 31W. This is the power value we used for calculation in our
evaluation.

4 Measurements

To evaluate the energy efficiency of the Cubieboard cluster, we measured the per-
formance of the Ceph storage system, as well as the total power consumption (the
power drawn by the boards and the disks) under different workloads.

We measured the I/O throughput using the same benchmarks described in our
previous work evaluating Ceph [7]: multiple clients performing, in parallel, sequen-
tial read/write operations of 4MB objects. Random I/O tests were also performed on
the Ceph block device.

Figure3 shows the results of these tests for both the underlying object store of
Ceph (RADOS) and the block device interface (RBD), with up to 4 clients. The
total read throughput that the Cubiecluster can sustain reached 133MB/s in our tests,
while the total write throughput reached 108MB/s. These values should be read with
respect to the maximum throughput that the underlying hardware can provide, i.e.
the Cubieboards, the disk and the network. The limiting factor for the Cubiecluster’s
performance was the 100 Mbit Ethernet connection on Cubieboard2, which can
maximally provide 12.5MB/s throughput per OSD. Given our cluster configuration
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Fig. 3 I/O throughput of the Cubiecluster, measured at the Ceph RADOS and RBD levels, with
different number of clients continuously writing/reading 4MB objects

Table 6 Cluster throughput theoretical limits (with 14 OSDs) and the performance achieved with
the Cubiecluster

Operation Theoretical throughput
limit (MB/s)

Maximum measured
throughput (MB/s)

% of theoretical limit

Read 14 × 12.5 = 175 133.5 76

Write 14 × 12.5 = 175 108.9 62

of 14 OSDs, we would expect [7] a maximum theoretical throughput of 175MB/s.
It results that the Cubiecluster achieved 76% and 62% of the theoretical upper limit
imposed by the hardware, for read and write, respectively. This is summarised in
Table6.

Moreover, wemeasured the total power consumption of the cluster under different
workloads:

• Idle: only Ceph daemons were running on every node, but no other operations.
• CPU intensive workload: all the cores were under 100% load, no I/O operations.
• I/O intensive workload: sustained read and write operations on every disk in the
cluster using dd.

• Ceph benchmark: the performance benchmark described above, with 5 clients
doing I/O operations in parallel to the cluster.

The power measurements are listed in Table7. The switch power consumption
of 31W has to be added to these measurements in order to obtain the total power
consumption of the storage cluster. For the Ceph benchmark, we also measured
the power consumption of the boards only, separately from the disks. Therefore,
in our next comparison of the Cubiecluster with NAS storages, we used the power
consumption of the storage controller (only Cubieboards and network switch) from
the Ceph benchmark workload (41.7+ 31 = 72.7 W).
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Table 7 Power measurements for Cubieboard cluster under different workloads

Workload Power with disks (W) Power (W)

Idle 150.1

CPU intensive workload 172.6

I/O intensive workload 174.1

Ceph benchmark 170.8 41.7

Table 8 Energy efficiency of the Cubiecluster and current storage solutions

Storage system Capacity metric
(GB/W)

Read throughput
metric (MB/Ws)

Write throughput
metric (MB/Ws)

Cubiecluster 144.43 1.84 1.50

QNAP TS-EC1680U-RP 144.86 5.41 5.41

QNAP TS-EC880U-RP 81.77 6.05 6.11

QNAP TS-EC1679U-RP 134.68 4.99 5.03

QNAP TS-421 230.77 8.08 6.08

SONAS 96.43 1.19 1.19

The literature defines several metrics to quantify the energy efficiency of a storage
system from an operational point of view [26, 27]. We selected the following two
metrics:

Capacity metric = Storage space (GB)

Power used (W)
(1)

Data transfer throughput metric = Data transfer rate (MB/s)

Power used (W)
(2)

Thesemetrics allow for a fair comparison of theCubiecluster’s energy efficiencywith
existing storage solutions, as shown in Table8. We used the above performance and
powermeasurements of the Cubiecluster and comparedwith typical values for power
consumption (of storage controller) and throughput for the other storage solutions.
For the capacity metric, we assume all the storage systems have the same disks of
750GB capacity; increasing the disk capacities would only increase the capacity
metric by the same factor for all systems. Nevertheless, all the systems presented
in this chapter (including the Cubieboard cluster) support any disk model of any
capacity that can be connected via SATA. Moreover, the power consumption of
disks does not vary greatly across models or disk capacities.
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5 Discussion

Our measurements revealed that the Cubieboard cluster is a viable and performant
storage solution, that can provide read and write throughput of 76% and 62% of
the network bandwidth, respectively. The I/O throughput was primarily limited
by the Cubieboard’s 100Mb network, therefore upgrading to 1Gb Ethernet would
bring a significant performance improvement. A newer version of the Cubieboard
(Cubietruck or Cubieboard3 [28]) is now available with 1Gb Ethernet.

Furthermore, the power drawmeasuredduringour benchmarks of theCubiecluster
without disks (72.7W) was lower than the typical values—reported by vendors—
of other storage solutions with a comparable number of disks (82.84 or 89.1W for
QNAP NAS servers with 16 disks).

Even though the low power consumption is a good indicator of energy efficiency,
we used several other metrics for a more comprehensive comparison of different
storage systems, which include both performance and power consumption: capacity
metric (GB/W) and data transfer throughput metric (MB/Ws) [26]. Assuming disks
of the same size in all six storage systems we compared, the Cubiecluster has a
comparable capacity metric value, being surpassed only by two storage systems. The
throughput metric values, although better than what SONAS offers and in the same
order ofmagnitude as the other systems (atmost 5 times lower), are relatively low due
to the hardware limitations of the Cubieboard’s network, as previously explained. A
hardware upgrade to the newer, slightlymore expensiveCubieboard3 [28] (e89 [29]),
that would increase the board’s network bandwidth 10 times, coupled with Ceph’s
inherent scalability [7], has the potential of bringing the Cubiecluster to the top of
the list when using the throughput metric for energy efficiency.

6 Conclusions and Future Work

We proposed a novel storage solution that brings together low-cost, low-power ARM
hardware and scalable distributed storage software, to achieve good performance and
energy efficiency. We compared it to currently used NAS storages and found that it
is similar or better in terms of power consumption and capacity metric for energy
efficiency (GB/W). The limiting factor in achieving a good throughput metric value
(MB/Ws) was the Cubieboard’s network connection.

In the future, we will compare an upgraded version of the Cubiecluster (using
newer Cubieboard hardware with better hardware specification, notably a 1Gb net-
work) to measured (not typical) performance and power values of different NAS
solutions.
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Nevertheless, our study shows that new technologies can be successfully com-
bined to tackle the increasing energy consumption of storage in computer centres
worldwide, in order to reduce operation costs.
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