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Abstract. In cloud computing, cloud service providers always provide
two resource provisioning manners to cloud consumers, reservation and
on-demand. Costs can be reduced using these two manners. In this paper,
we consider deadline constrained cloud workflow scheduling problem with
total resource renting cost minimization by integrating the two manners.
An integer programming model of the problem is constructed. A mal-
leable earliest and finish time heuristic is proposed for the problem under
study. Experimental results verify the effectiveness of proposed algorithm
on instances with different scales and resources with different discounts.

Keywords: Workflow scheduling · Resource provisioning · Cost
minimization · Cloud computing

1 Introduction

Complex workflow applications are widespread in scientific experiments and busi-
ness analysis. Cloud computing provides high quality computing and storage
resources for workflow applications [3]. Two resources provisioning manners are
usually offered by Cloud Service Providers (CSP): the long-term reservation
and the short-term on-demand. With the long-term reservation, users can get
resources from CSP with a significant discount. However, they possess the resource
during the entire renting period, which usually leads to poor resources utilization.
The short-term on-demand enables users to rent and release computing capacity
according to their demands. The average unit cost of the short-term on-demand
is usually higher than that of the long-term reservation. The hybrid resource pro-
visioning method of the two manners reduces the average unit cost and improves
the flexibility of resources. Figure 1 shows the workflow scheduling with the hybrid
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Fig. 1. Workflow scheduling with the hybrid resource provisioning manner.

resource provisioning manner. First, users send parameters of workflows (dead-
lines, tasks, runtimes) to the workflow scheduling module. The module gener-
ates scheduling plans according to the parameters. Each plan includes two parts:
the workflow scheduling sequence and the cloud resource renting plan. Users rent
resources and schedule tasks based on the scheduling plan. Resources are rented
from the CSP using the long-term reservation and/or the short-term on-demand.

In this paper, we consider the deadline constrained cloud workflow schedul-
ing problem to minimize the total resource renting cost using hybrid resource
provisioning manners, which is NP-hard. To the best of our knowledge, no atten-
tion has been paid on this problem. The malleable earliest-finish-time heuristic
is proposed for the problem under study. First, the task allocation sequence is
created based on priorities. In terms of free time periods, reserved and/or on-
demand resources are allocated to the tasks in the sequence. New sequences are
discovered by a variable neighborhood search.

The rest of the paper is organized as follows. Related works are described
in Sect. 2. Section 3 gives the mathematical model for the considered problem.
In Sect. 4, we describe the proposed method and illustrate it using an exam-
ple. Computational results are presented in Sect. 5, followed by conclusions and
future works in Sect. 6.

2 Related Works

Workflow scheduling has been studied for many years. Recently, malleable task
(tasks can be executed on multiple machines) scheduling in parallel [2] is a hot
topic, which first determines the number of machines available for the malleable
tasks. Makespans and renting costs minimizing are two common objectives of
workflow scheduling problems.

Resources are limited on grids. HEFT [11] and CPA [13] are effective algo-
rithms for workflow scheduling with makespan minimization. Singh et al. [12]
used genetic algorithms to map tasks to resources with the objective of mini-
mizing both the renting cost and makespan. Resources are limited and available
between different time windows.
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In cloud computing, resources are assumed to be unlimited and available all
the time. Yu et al. [15] proposed a genetic algorithm to minimize the renting costs,
which can minimize the cost with constrained deadline or minimize makespan
with limited cost. The time complexity of this algorithm is closely related to
the service scale. While a large number of alternative services were provided,
the algorithm was not good and with high time complexity. Byun et al. [4] pro-
posed a Balanced Time Scheduling (BTS) algorithm to minimize resource rent
costs. The algorithm assumes that the number of hosts are unchanged during the
implementation of the entire workflow, and only one type of resource is consid-
ered. BTS did not take into account renting on-demand resources either. All the
resources are obtained through the long-term reservation. Even if a resource uses
only one unit of time, it is paid all the renting time. In their later work [5], a new
algorithm Partitioned BTS (PBTS) was proposed, which divides the workflow
implementation process into sections according to the total amount of resources.
Chaisiri et al. [6] proposed a new algorithm OCRP to optimize the resource pro-
vision cost in cloud computing. OCRP considered both reserved and on-demand
resources. Tasks are supposed to be independent with known resource require-
ments. However, for the actual workflow scheduling problem, tasks are precedence
constrained. The resource renting method and the resource requirements inter-
act with each other. Abrishami et al. [1] proposed a method to assign workflow
tasks to different resources in IaaS clouds. Juan et al. [8] considered to allocate
resources to scientific computing workflows with multi-objective in Amazon EC2.
Both resource renting cost and makespan were considered. However, they did not
consider the problem with different resource provisioning methods.

In summary, there is no work considering both malleable tasks and hybrid
resource provisioning though they can reduce the cost for the implementation of
the workflow significantly, which is considered in this paper.

3 Mathematical Model

A workflow application can be represented by an activity-on-node Directed
Acyclic Graph (DAG) G(V,E), in which V = {v0, . . . , vn} is the set of tasks
in G. E = {(vi, vj)|vi ∈ V, vj ∈ V, i < j} defines the precedence relationships
between tasks, which indicates that vi must be finished before vj starts. Each
node vi represents a task. vi is processed on several Virtual Machines (VM).
As the computing capacity of a virtual machine is usually in proportion to the
price, only homogeneous resources are considered in this paper (i.e., different
capacities can be normalized). The processing time of task vi on a single virtual
machine is Pi. All tasks are classified into two types: malleable tasks (the set is
denoted as M) and rigid tasks (the set is denoted as R), i.e., V = M∪R. A mal-
leable task can be allocated to malleable virtual machines, i.e., it has multiple
execution modes. Each malleable task could be executed by different numbers
of machines with different processing times. Let vi ∈ M be a malleable task.
If mi virtual machines are allocated to vi, the processing time pi is calculated
by pi = �Pi/mi�, which is varying with the scheduling process. However, the
number of virtual machines mi allocated to a rigid task vi (vi ∈ R) are fixed.
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The execution mode and the processing time pi = �Pi/mi� of a rigid task keep
unchanged once they are determined. Tasks v0 and vn are dummy nodes, which
represent the start and the end of the workflow. Processing times of the two
dummy nodes are 0. Let D be the deadline of the workflow application.

Both of the two resource provisioning manners are adopted to rent resources
for workflows. Let H be the total amount of rented resources, Hr represents the
amount of long-term reserved resources and H0

t denotes the amount of short-
term on-demand resources at time t. Cr and C0 are the unit costs of a virtual
machine with the long-term and the short-term resource provisioning. The ratio
of Cr to Co means the discount of a resource. i.e., discount = Cr/C0. The total
renting cost of resources includes both the reserved cost and the on-demand cost.
The considered problem can be mathematically modeled as follows:

min(fn × Hr × Cr +
fn∑

t=0

H0
t × C0) (1)

s.t.

xiht =

⎧
⎪⎨

⎪⎩

1 vi is processing on the VM h at time t, ∀i ∈ {0, . . . , n},

∀h ∈ {1, . . . , H}, ∀t ∈ {0, . . . , D}
0 others

(2)

yh =

{
1 h is an on-demand machine, ∀h ∈ {1, . . . , H}
0 h is a reserved machine, ∀h ∈ {1, . . . , H} (3)

mi =
H∑

h=1

D∑

t=0

xiht, ∀vi ∈ M (4)

pi = �Pi/mi�, ∀i ∈ {0, . . . , n} (5)

si =
D∑

t=0

1
mi

H∑

h=1

t × xiht, ∀i ∈ {0, . . . , n} (6)

si + pi � sj , ∀(i, j) ∈ E (7)

fn � D (8)

sj+dj∑

t=sj

n∑

i=0

xiht = 1, if xjhsj = 1 ∀j ∈ {0, . . . , n}, ∀h ∈ {1, . . . , H} (9)

H0
ti =

H∑

h=1

n∑

i=0

ti∑

t=ti−di+1

xihtyh, ∀ti ∈ {0, . . . , D} (10)

Hr =
H∑

h=1

(1 − yh) (11)
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The binary variables xiht = 1 in Eq. (2) means the task vi is processed on the
VM h at time t. The yh in Eq. (3) takes 1 if the VM h rents resources using the
on-demand manner. Equation (4) defines the number of VMs allocated to each
mallable task. The processing time and start time of each task are determined
by Eqs. (5) and (6). Formulas (7) and (8) specify the precedence and deadline
constraints of the workflow. Equation (9) ensures that the execution is consecu-
tive and non-preemptive. The number of reserved and on-demand resources are
calculated by Eqs. (10) and (11).

Because of the discounts of the long term reservation, most tasks are allocated
to the long-term reserved resources. Some other resources are rented using the
short-term on-demand manner to improve the resource utilization.

4 Proposed Heuristic

Rule-based heuristics are common methods for workflow scheduling problems
[13]. In this paper, we propose the malleable earliest finish time method (MEFT)
for the considered problem which is composed of three components: initial sched-
ule construction (ISC), variable neighborhood search (VNS) and schedule recon-
struction (SR).

4.1 Initial Schedule Construction

ISC constructs an initial schedule using three procedures: reservation resources
presetting, task sequencing and schedule constructing.

To preset the number of long-term reserved resources, the upper and lower
bounds are calculated first. The lower bound is defined as the minimum amount
of required resources to accomplish all the tasks with the deadline satisfied
assuming all the resources are fully loaded and the precedence constraints
between tasks are not involved. If the utilization rate of a resource is less than
its discount, the on-demand manner obtains a cheaper cost than the reserved
manner according to Formula (1). The upper bound is defined as the maxi-
mum amount of required resources with the resource utilization rate equal to
the discount. The two bounds are defined as follows:

Hr
min = �∑vi∈V Pi ÷ D�

Hr
max = �∑vi∈V Pi ÷ D ÷ discount�

The reserved resource presetting process starts from the resources with the
lower bound. The reserved resources Hr are initialized as Hr

min. Suppose the
reserved resources with the maximum amount are allocated to malleable tasks,
i.e., pi = �Pi/Hi�, ∀vi ∈ M. The earliest start time esti of vi is calculated accord-
ing to the critical-path based method given in [7]. If the earliest start time estn
of vn is greater than the deadline D, no feasible schedule can be obtained using
the current amount of reserved resources Hr. We increase Hr and try again until
a feasible schedule is found or the upper bound Hr

max is reached.



Hybrid Resource Provisioning for Workflow Scheduling in Cloud Computing 39

Based on the obtained long-term reserved resources Hr, a sequence of tasks
is determined by their priorities which are recursively defined as ranku(vi) =
Pi + maxvj∈succ(vi){ranku(vj)} with ranku(vn) = 0, where succ(vi) is the set of
all successors of vi. If there is more than one task processed in parallel, the task
with the biggest processing time is set the highest priority. Therefore tasks on
the critical path are allocated as early as possible. An initial sequence is obtained
by sorting tasks by the increasing order of their priorities.

Tasks are scheduled according to the task sequence using the free time period-
based schedule construction strategy. Resources are denoted by matrix R =
(rij)D×Hr in which the column represents the time slots and the row represents
the virtual machines, e.g., rij = 1 indicates that virtual machine j is occupied at
time slot i. The execution of a task is denoted by a sub-matrix with all elements
being 1. For example, the sub-matrix R[i

′
, . . . , i

′′
; j

′
, . . . , j

′′
] indicates that the

activity starts at time slot i
′
and finishes at time slot i

′′
and virtual machines j

′

to j
′′

are occupied during this period. The free time period is denoted as a sub-
matrix with all elements being 0, which is a continuous period with a number
of available resources. For example, the virtual machine is free during the time
period between the finish time of the first task and the start time of the second
task if a virtual machine is mapped to two tasks. If some other machines are
also free during this period, a new free time period is constructed by combining
the free time and those on the machines. All possible free time periods are found
between the earliest start time of the current task and the latest finish time of
the scheduled tasks. The process is given in Algorithm 1. All free time periods
are sorted in the increasing order of the start times. The tasks are allocated to
the free time periods. For a rigid task vi, it is tried to be allocated from the first
free time period. If vi cannot be allocated to the current time period, there are
two cases: no sufficient time or no sufficient resource. The first case implies that
the time length of the period is less than that of the task processing time pi. The
current time period is unavailable and the next time period is explored. For the

Algorithm 1. Free Time Slot Searching
1 Input: resource matrix (rij)D×Hr , the earliest start time Esti of task vi, the

latest finish time tlast of allocated tasks.
2 Output: Free time period list idleList.
3 begin
4 idleList ← ∅;
5 for (t = esti;t < tlast;t ← t + 1) do
6 for (h = 0;h < Hr;h ← h + 1) do
7 if (rth == 0) then
8 Check all the free time periods starting from rth;
9 Add the free time period to idleList;

10 Take the time period after tlast as a big free time period;
11 Add the big free time period to idleList;
12 return idleList;
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second case, the least amount of short-term on-demand resources is calculated.
The current free time period would be wasted if it is not allocate to vi. Let the
wasted workload be V and the workload of vi is wi. It is economical to rent some
on-demand resources if V ×discount > (wi−V ). The current task vi is allocated
to the current time period. For a malleable task, the allocation of resources is
more complex because of the change of required resources. If resources of the
current time period are available for the task, the maximum amount of resources
is allocated to the task to make the task finish as early as possible. Otherwise,
the maximum economical on-demand resources are rented. After all tasks are
allocated, new free time periods followed to them are checked. If there are still
some new free time periods, the processing times of the tasks are extended to
reduce the amount of rented resources.

4.2 Variable Neighborhood Search

Usually, the cost of the inial schedule obtained by ISC is not the cheapest. It
is natural to propose a variable neighborhood search (VNS) to adjust the task
sequence, which exerts a great influence on the performance of the MEFT. An
insertion operator I(a, b), (1 < a < n, 1 < b < n, a �= b, b − 1) is adopted to
change the order of tasks. The task at the position a is removed and inserted to
position b in the sequence without violating the precedence constraints between
tasks. Each insertion operator changes a task sequence s̄ to a new one s̄′ . In
addition, we define the r-insertion neighborhood Nr(s̄) is the neighborhood set
performing insertion operator r times on s̄. Therefore N1(s̄) is the set of s̄′ with
only one insertion operator. Suppose the insertion operator is performed at most
K times, i.e., 1 ≤ r ≤ K.

Algorithm 2. Variable neighborhood search
1 Input: task sequence s̄.

2 Output: task sequence s̄′ .
3 begin
4 r ← 0;
5 repeat
6 r ← r + 1;
7 for (i = 0;i < λ;i ← i + 1) do

8 Randomly select s̄′ from Nr(s̄);

9 Calculate the cost C(s̄′);

10 if (C(s̄′) < C(s̄)) then

11 s̄ ← s̄′ ;
12 r ← 0;
13 break;

14 until r � K;

15 return s̄′ ;
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The VNS starts from an initial sequence s. λ solutions are compared for each
scale of neighborhood Nr(s̄). In every time, a new task sequence is obtained.
The above free time period-based schedule construction strategy is adopted to
construct a new schedule. If the cost of the new schedule is cheaper than the
previous one, the new task allocation sequence is set as the new start point. If
no more optimal solution can be found after the K-insertion VNS for a start
point, the algorithm stops. The process is described in Algorithm 2.

4.3 Schedule Reconstruction

The obtained schedule is reconstructed by reallocating tasks with on-demand
resources after the VNS. These tasks are chosen with certain probability ω to
be reallocated to the reservation resources. If a better new solution is obtained,
the current solution is replaced by the new one. If all the tasks with on-demand
resources have been reallocated, the schedule reconstruction (SR) procedure ter-
minates. SR aims at destroying structures of solutions by allocating some tasks
with cheaper resources to reduce the total renting cost. Surely, the utilization
rate of the resources could be decreased during the process. The SR increases
the diversification of the search and increases the probability of finding better
solutions with multiple iterations.

4.4 An Example

To illustrate the process of the proposed MEFT, an workflow example with 7
tasks is shown in Fig. 2. Let the processing time Pi for each task on a single
virtual machine be 3, 1, 2, 2, 2, 2, 2 respectively. v3 and v4 are malleable tasks
with malleable resources and variable processing times. The other tasks are rigid
tasks requiring rigid resources, in which v5 and v6 require two virtual machines
while the remaining rigid tasks require only one virtual machine. Let the deadline
of the workflow be 9 and the discount of the long-term reserved resources be 0.8.

1v

2v

3v

4v 5v
6v

7v

Fig. 2. An example of workflow instance.

The algorithm starts with the least long term reserved resources (Hr = 2).
The priority of each task is calculated first to determine the initial task sequence,
which are (1, 3, 2, 4, 5, 6, 7) in this example. v1 is allocated first. Since there
is only one whole free time period, v1 is allocated to the time period 1, 2, 3 of
virtual machine 1. v3 is allocated next. The time period 1, 2, 3 of virtual machine
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Fig. 3. Task scheduling process and result of MEFT.

2 is the earliest free time period. v3 is allocated to the time period 1, 2 of virtual
machine 2. The next task v2 is allocated to the time period 3 of virtual machine
2. Since v4 is a malleable task and can be processed in parallel, it is allocated
to the time slot 4 of virtual machine 1 and 2 concurrently. Task v5, v6, v7 are
allocated next. Details are shown in Fig. 3. Since no on-demand resources are
used in the schedule, the SR procedure is not performed. After several iterations
of VNS, a new sequence (1, 3, 2, 4, 5, 7, 6) is found. Tasks are reallocated
according to this sequence. While allocating v6, the time slots 6 and 7 of virtual
machine 2 are free which forms a free time period. The discount 0.8 meets the
criteria for on-demand resource renting. A new virtual machine is rented for v6
and v6 is executed on virtual 2 and 3 concurrently.

5 Experimental Results

The considered workflow scheduling problem with both malleable tasks and
hybrid resource provisioning has not been studied yet. The closest problem is
that considered in [4] with only reserved resource provisioning and the number
of reserved virtual machines minimization. BTS was proposed for the problem.
In this paper, we adapted BTS (we call it ABTS in this paper) for the problem
under study in two aspects: BTS does not allocate each task to a specific virtual
machine. The schedule of BTS considers only the start time and the number
of virtual machines for each task. In ABTS, tasks are allocated to a specific
virtual machine after BTS gets a schedule. The task with the longest process-
ing time is allocated to the virtual machines with the smallest index in order
to minimize the renting cost of on-demand resources. If the utilization rate of
a virtual machine is less than discount when calculating the resource renting
cost of ABTS, the cost of this virtual machine is computed using the on-demand
manner. Otherwise, the cost is computed according to the reserved manner.
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The proposed MEFT is compared with ABTS in this paper. All the compared
algorithms are coded in Java and executed on the same virtual machine with Intel
i5-3470 CPU (4 cores, 3.1GHz) and 1GB memory of RAM. Workflow instances
are randomly produced by Rangen [9,10] (benchmark of project scheduling prob-
lem), in which the number of tasks n takes value from {10, 20, 50, 100, 200}, 20
instances are generated for each size of the workflow. The number of resources
is 1 and the network complexity is set as 1.8. The processing time of each task
is randomly generated from the uniform distribution U(10, 100). The deadline
factor of each workflow instance is set as θ = 1.2 according to [14], which means
D = Estn × 1.2 for each instance.

The relative percentage deviation (RPD) is adopted to evaluate the perfor-
mance. Let CF

i denote the cost of instance i obtained by algorithm F , F ∗ be
the best algorithm for instance i. RPD is defined as:

RPD =
CF

i − CF∗
i

CF∗
i

× 100% (12)

Three parameters of MEFT are calibrated: the scale of neighborhood K ∈
{3, 5, 8, 10, 12}, the number of solutions for each scale λ ∈ {6, 8, 10, 12, 14} and
the reconstruction probability ω ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}.

Fig. 4. Means plot with 95 % Tukey HSD
confidence intervals for parameter K.

Fig. 5. Means plot with 95 % Tukey HSD
confidence intervals for parameter λ.

Fig. 6. Interactions with 95 % Tukey HSD
confidence intervals between K and λ.

Fig. 7. Means plot with 95 % Tukey HSD
confidence intervals for parameter ω.
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The multi-factor analysis of variance (ANOVA) technique is adopted to ana-
lyze the performance of the algorithms with different parameter values. RPD
is used as the response variable. First the three main hypotheses (normality,
homoscedasticity, and independence of the residuals) are checked. Since all the
three hypotheses are close to zero, they are acceptable in this analysis.

Figures 4 and 5 show the means plot with 95 % Tukey HSD confidence inter-
vals for parameters K and λ respectively. With the increase of K and λ, RPD
of MEFT decreases because more solutions are searched. However, more CPU
time is required. Furthermore, interactions between K and λ with 95 % Tukey
HSD confidence intervals are shown in Fig. 6. Figure 6 implies that MEFT gets
the best performance when K and λ take value of 12 and 10 respectively. For the
reconstruction probability ω, the means plot with 95 % Tukey HSD confidence
intervals is shown in Fig. 7. Figure 7 means that MEFT gets the worst solution
when ω = 0 (no reconstruction). MEFT gets the best result when ω = 0.6.

By setting the three parameters as 12, 10 and 0.6, MEFT is compared with
ABTS. Instances with different size (n ∈ {10, 20, 50, 100, 200}) and different
discount value (discount ∈ {0.4, 0.5, 0.6, 0.7, 0.8}) are randomly generated. The
means plot with 95 % Tukey HSD confidence intervals of the compared algo-
rithms with different instance sizes is shown in Fig. 8. Figure 8 illustrates that
MEFT is better than ABTS on all instances. When n = 10, the RPD difference
between MEFT and ABTS is 15.2 %. However, the difference becomes smaller
with the increase of n, e.g., the difference is about 4.5 % when n = 200. The com-
parison results of the two algorithms with different discount values are shown
in Fig. 9. MEFT outperforms ABTS for all discount values. Smaller discount
implies better the performance of MEFT. When the discount becomes bigger,
the superiority of MEFT becomes less significant.

Fig. 8. Comparison result of the two algo-
rithms with different instance size.

Fig. 9. Comparison result of the two algo-
rithms with different discount values.

6 Conclusion and Future Work

In this paper, the resource renting problem for workflow applications with hybrid
resource provisioning was considered, which is closer to real cloud computing sce-
narios. Based on both long-term reservation and short-term on-demand resource
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renting manners, a mathematic model was established. A new heuristic MEFT
was proposed and compared with the adapted BTS. Experimental results showed
that MEFT outperforms ABTS when the scale of instances and the discount
are not big. The differences between MEFT and ABTS become smaller with the
increase of the scale of instances and discount.

Scheduling problems with multiple types of virtual machines in the cloud will
be studied. More real scenarios including data locality and data transfer time
between virtual machines are also worth considering.
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