
A Virtual Machine Data Communication
Mechanism on Openstack

Jie Chen1,2(&), Saihong Xu1, Haiyang Zhang1, and Zunliang Wang1,2

1 School of Computer Science, Beijing University of Posts
and Telecommunications, Beijing 100876, People’s Republic of China

chenjie52388@163.com
2 Science and Technology on Information Transmission and Dissemination

in Communication Networks Laboratory, Shijiazhuang, China

Abstract. This article analyzed the advantages and disadvantages of current
data communication mechanism among multiple virtual machines. Combining
the characteristics of the cloud platform openstack, this paper puts forward
a method to make the communication of virtual machines more efficient by
using para-virtualization. Through the shared memory we can break down the
communication barriers among the virtual machines and reduce the number of
data copy times in the process of data transferring. Experiments show that the
communication efficiency of multiple virtual machines gets higher.

Keywords: Communication of multiple virtual machines � Para-virtualization �
Shared memory � KVM � Virtio

1 Introduction

Nowadays, the service provider around the world is adopting virtualization and cloud
computing technology to deploy and deliver virtual network services, namely network
function virtualization (NFV). Deploying services in virtual machines makes the
deployment cost less and efficiency higher. And how to communicate among virtual
machines more efficiently is becoming the focus of attention.

The continuous development of virtualization technology makes the dependencies
of network function and its hardware eliminated. Just as the virtual network function
(VNF) of NFV, it decouples the software and hardware. The most direct benefit is that
we can create multiple independent virtual machines on the same set of physical
hardware. These virtual machines can provide different functions. At present, the most
popular and mature virtualization technologies include KVM, Zen, etc.

At the same time, the cloud computing has a rapid development in recent years.
Cloud computing has become one of the hottest technology. It will combine a variety
of software and hardware to constitute a powerful computing platform which can
provide customers with various services through the network. It includes infrastructure
as a service (IaaS), platform as a service (PaaS) and software as a service (SaaS). We
can manage and schedule the computing resources using these technologies. NFV for
the usage of cloud computing mainly concentrates in the IaaS layer. Here we consider
openstack. We can use it to deploy virtualized environment quickly, and can create

© Springer International Publishing Switzerland 2016
Q. Zu and B. Hu (Eds.): HCC 2016, LNCS 9567, pp. 1–11, 2016.
DOI: 10.1007/978-3-319-31854-7_1



multiple interconnected virtual machines, namely VNF. And users can quickly deploy
applications on the virtual servers.

With the mature of virtualization and cloud computing technology, the virtual
machine is widely used today. Enterprise uses a set of physical resources to create
many virtual machines, not only for their own use, but also providing services to
others, such as economical cloud hosting now. These cloud hosting its essence is a
series of virtual machines. This paper mainly studies the data communication mech-
anism of virtual machines based on openstack.

2 The Communication Scenarios

2.1 Communication Scenarios

Network function virtualization (NFV) has an application scenario, which is IP Multi-
media System (IMS). The IMS system contains many entities. For the sake of simplicity,
here we only consider theMRF.MRF ismainly completed for many calls andmultimedia
conferencing. MRF consists of MRFC (Multimedia Resource Function Controller) and
MRFP (Multimedia Resource Function Processor). They complete the media flow
control and load function respectively. In some improvements of IMS system such as
NCSP [1], there will be an extra MRMS (multimedia resource management system)
entity. The MRMS implements the management function of the whole system as shown
in Fig. 1.

2.2 Communication Requirements

In the multimedia resource management subsystem, MRMS is the manager of the MRF.
It has two big functions: First, it provides query and modify function for the subsys-
tem’s software information of MRF; Followed by operation maintenance function, it is
the main function of MRMS subsystem, providing query function, configuration
function, operation function, authentication and so on.

Fig. 1. MRF

2 J. Chen et al.



The function mentioned above involves a large amount of data communication. In
addition, in 3 GPP’s IMS architecture, for MRFC and MRFP, MRFC is responsible for
interacting with call session control server, receiving the control requirements for the
media dealing from the application layer. And then process the received control
requirements. Call MRFP to deal with media stream. These media stream includes
audio, video, and signal data. So the data to be interacted is very large. Finally MRFP
gives treatment results back to MRFC. We can see the process between MRFC and
MRFP existing large amounts of data communication.

In such a scenario, we create many virtual machines to act as MRMS, MRFC and
MRFP based on the same set of hardware. Facing a large amount of data communi-
cation in these virtual machines, the problem we need to solve is to make the com-
munication as efficient as possible.

3 The Methods of Communication

Nowadays, there is many ways of data communication among virtual machines. Here
we list some and compare them.

3.1 Pipeline

Pipeline is the most basic method of IPC. Usually a pipeline created by a process, and
then the process calls fork to create a child process. Then the father process and the son
process can use the pipeline to communicate. After calling pipe to create a pipeline, it
will receive two file descriptor. One for writing, another is used to read. Due to the
anonymous pipeline is half duplex, if we want to undertake two-way communication,
we will have to build another pipeline.

3.2 Fifo

Also known as the named pipeline, FIFO is represented by a special file. It is longer
limited to kinship between processes. For the communication among many virtual
machines, the approach taken is to create a public FIFO to upload the data. And then to
the public FIFO there is a monitoring process, the monitoring process takes the data
from the pipeline. For every virtual machine in need to establish a dedicated FIFO, the
monitoring process use it to transfer the data obtained from the public pipeline.

3.3 Message Queue

The message queue method uses the communication mechanism of processes. Through
the public system message queue to exchange data among two or more processes, this
way realizes the reliable message receiving and dispatching mechanism. Message
queue technology is a kind of technology for the exchange of information among
distributed applications. Message queue can reside in memory or on disk. Queue stores

A Virtual Machine Data Communication Mechanism on Openstack 3



messages until they are read by applications. Through the message queue, the appli-
cations can perform independently. They don’t need to know the position of each other.

3.4 Shared Memory Channel

In a large amount of data communication scenario, many people use shared memory
way, which has the advantage of high efficiency. Shared memory is part of the physical
memory shared by multiple processes. It is the fastest method for processes to share
data. A process writes the data to the shared memory region, then all other processes
who shared this memory area can soon see its contents. They exchange data through
the shared memory region.

In all communication methods above, using pipeline is the worst. Because its half
duplex communication mode is not convenient. Bidirectional communication need to
build two pipeline which takes more resources; Using FIFO scheme with fewer
pipelines is its advantage, but there is one drawback that it needs to maintain a mapping
table, to record one-to-one correspondence relationship between the user ID and a
dedicated FIFO. So the resource consumption is also big; Compared with the former
two, message queue greatly simplifies the program logic relationship and dynamic
mapping table is omitted which reduced resource consumption. But there is also a
problem that the message queue is system level resources. It will not automatically shut
down and the message will not disappear. Remaining messages in the queue accu-
mulated to a certain degree will cause the performance loss of the system; The shared
memory way, in terms of resource consumption, communication efficiency and flexi-
bility are better than the front several ways. Because the virtual machines are based on
openstack, the virtual machines ard based on the same set of physical hardware.
Through the way of the Shared memory communication between them is possible, so
the proposed method has also adopted the shared memory way. But the most primitive
method of shared memory channel can’t solve the problem of data communication
among multiple virtual machines. It is that it can’t solve the application scenario of
multiple virtual machines communication problems. Because it needs to maintain a
large number of shared memory region, the consumption of resources is too big. On the
basis of openstack using the original shared memory model doesn’t work. So this paper
proposes a method of communication among multiple virtual machines on openstack, it
can allocate shared memory for target virtual machine to read or write, and we can map
dynamically in the building of a link. That can reduce a large amount of shared
memory resource consumption when maintaining the system.

4 Design and Implementation

Openstack supports almost all kinds of hypervisors. The openstack we considered here
is based on KVM, which is usually the default hypervisor. So the virtual machines
created by openstack are a series of KVM virtual machines. However, the inter-domain
communication of virtual machines based on KVM is cumbersome in the processing
procedure. It needs to copy data repeatedly which impacts on the performances greatly.

4 J. Chen et al.



Most of the behaviors of transmitting and receiving data packets in the network I/O
process of a virtual machine client are simulated by the QEMU program in the host
user mode, which equivalents to transfer data between host processes. So we can use
the characteristics of host’s Linux system to design and implement a communication
mode based on shared memory. In order to implement the communication mode of
shared memory among the virtual machines, we need para-virtualization programming
interface virtio to implement equipment to offer direct network access based on shared
memory. This method can reduce data copy times in inter-domain communication and
improve communication efficiency.

4.1 Shared Memory

The above-mentioned virtual machines are created on the same physical machine. So
we can use shared memory approach to implement the data communication among
these virtual machines. The advantage of shared memory is high efficiency, suitable for
the usage in a large number of data communication.

The method adopted in this paper is mapping the shared memory region when
multiple virtual machines need inter-domain communication. The advantage of this
method is that we can allocate a shared memory area and each virtual machine can
dynamically map to it during the establishment of the link. So there is no need to
maintain a large number of shared memory areas. This solves the synchronization issue
of a large amount of data among multiple virtual machines. For the scenarios previ-
ously mentioned, this is a good solution. Greatly improve the efficiency of data
transmission among virtual machines, and the response becomes faster.

For this shared memory architecture, it can be put into two parts in design. First, in
order for scalability, each time creating a virtual machine, when need to communicate
with other virtual machines, allocate a block of memory mapped into its address space,
all virtual machines each correspond to a block of memory. Make these blocks of
memory to form a circular linked list. When given two virtual machines need to
synchronize data, we can find the corresponding block belongs to the peer virtual
machine according to the circular linked list, and inform this virtual machine’s memory
address, both at the same time can write each other’s virtual machine information to the
corresponding memory of the peer side, which can greatly enhance the efficiency of
data synchronization; Second, apply additional block of memory, so that all virtual
machines are mapped into this block, this block of memory’s size varies according to
different scenarios. For the global data that all virtual machines need to synchronize, we
can synchronize through this shared memory. Model is shown in Fig. 2.

4.1.1 The Communication Model
This section describes how to use the shared memory model in the whole process of
communication. Based on the same set of physical hardware, the communication
among virtual machines can be called domain communication. The domain commu-
nication refers to the communication happens on some clients which are on the same
physical machine. The communication model is divided into two parts: the VM agent
and Scanner agent. As is shown in Fig. 3.

A Virtual Machine Data Communication Mechanism on Openstack 5



The agent at the bottom, its main job is to get all virtual machines’ information
using the API of openstack, such as virtual machine’s IP and Mac address, so that the
virtual machine can get the target machine’s information when in need. The commu-
nication model among the virtual machines take the page as the basic unit of the Shared
memory, through a series of pages constituting the block of memory to share [2]. In the
communication model, most of the work is done by client virtual machines’ agent. Its
main task is to:

(1) Get the mac address of target virtual machine
(2) Query the underlying agent to get the id of target virtual machine
(3) Confirm whether the target virtual machine on the same physical machine
(4) Establish the shared memory communication.

4.1.2 The Process of Creating Shared Memory
Then we will list all kinds of communication scenarios among vm1, vm2 and vm3:

(1) Point-to-point Communication (vm1, vm2). According to the aforementioned
shared memory structure and communication model, first vm1 agent send a query
request to share layer agent to detect whether vm1 and vm2 is in the same
physical machine. At the same time, the bottom agent tell vm2 that vm1 want to
communicate with it with vm1’s information appended. Then according to the
information to allocate a piece of memory mem1 and mem2 respectively. Then
vm1 write data to mem2 and vm2 write data to mem1. So can greatly improve the
communication efficiency.

(2) The Communication of Multiple Virtual Machines (vm1,vm2 and vm3). Similar to
the above process, the process of vm1 launched communication is as follows. First,
vm1 through the agent to take a request of communication, then sharing layer agent
determines the communication belongs to multiple virtual machines communica-
tion. Then determine whether all virtual machines are located in the same physical
machine. If it is, apply for a large block of memory, again according to the relevant
information of each virtual machine, the memory mapping to their corresponding

Fig. 2. Shared memory model Fig. 3. Communication model

6 J. Chen et al.



process address space. And then inform each virtual machine the environment is
ready, you can communicate with each other.

(3) The Comparison with Other Communication Model. First, the communication
method this paper presents compared with other not shared memory communi-
cation mode, greatly improves the efficiency of the communication among the
virtual machines, according to the actual situation to use the characteristics of the
virtual machines on openstack; Second, compared with other Shared memory
communication mode, this model not only solves the point-to-point communi-
cation between two virtual machines, it can also act as a more effective com-
munication mode among multiple virtual machines, hoping to provide certain
reference for a more perfect and efficient communication mechanism among the
virtual machines.

4.2 Full Virtualization

Linux full virtualization solution contains hardware virtualization technology mainly
for the extension of the X86 architecture. Full virtualization runs faster than hardware
emulation, but performances less than bare machine, because the hypervisor takes up
some resources. The great advantage of full virtualization is the operating system
without any modification. The only limitation is that the operating system must be able
to support the underlying hardware. From the point of the full virtualization, the whole
process of using KVM is that the bottom of the hardware which supports x86 virtu-
alization extensions (such as AMD and Intel VT- the SVM technology) loads the KVM
kernel module of the Linux kernel as a virtual machine manager. Then use KVM tools
to load the client operating system and use QEMU to simulate virtual equipment and
process the I/O requests.

After intercepting I/O instructions, KVM will redirect and simulate the I/O
instructions. These operations are implemented by QEMU, a slightly modified software.
QEMU simulates card, memory, bus and other hardware components, supplying a
complete I/O model for the clients. Managing the memory by maintaining the mapping
between the client’s physical address and the host’s physical address. In addition,
QEMU will also provide virtual device interface for each client, using these to process
the received requests, the specific process not described in detail here. I have to say,
although the whole KVM virtualization architecture is simple and it takes full advantage
of the performance benefits of Linux system, but in terms of virtual network imple-
mentation, it is far too complicated, especially low in performance when going on
domain communication among virtual machines.

4.3 The Interface Virtio

KVM supports full virtualization and para-virtualization technology. Using full virtu-
alization technology, the domain communication efficiency among virtual machines
performs poorly. So it is hoped that through the para-virtualization mechanism to
achieve better I/O performance. Para-virtualization similar to full virtualization is a
popular virtualization technology. Here we use it to implement shared memory

A Virtual Machine Data Communication Mechanism on Openstack 7



mechanism. It uses the Hypervisor (virtual machine management program) to share and
access the underlying hardware, and the guest operating system has integrated the code
of virtualization. Using para-virtualization mechanism KVM can achieve better I/O
performance. At present, a general efficient I/O para-virtualization mechanism has been
adopted by KVM, implemented by para-virtualization programming interface virtio.
Virtio is a para-virtualization model suitable for multi-platform. The architec-
ture of virtio is illustrated in Fig. 4.

Virtio drivers are designed to be similar to the universal drivers and operating
structures, as shown in Fig. 5. Virtio para-virtualization driver is divided into front
driver and backend driver. It defines two layers to support the communication from the
guest operating system to the hypervisor. The virtio_driver is in the top and it
represents front-end drivers in the guest operating system. The devices matched with
the drivers are encapsulated by the virtio_device in the guest operating system. Each
virtio driver corresponds with back-end virtio device and back-end equipment is
responsible for handling the requests from the interaction of front and end. Vir-
tio_device get functions of receiving, dispatching and configuration by using the data
buffer of virtio_queue object. Finally, each virtio_queue object references the virt-
queue_ops object and the latter defines and deals with the underlying queue operations
of the hypervisor drivers.

In the present of KVM virtual machines, the corresponding virtual bus, virtual
block devices and virtual network devices have been implemented using virtio.
According to the test results, the network throughput is improved about three times.

4.4 Implementing Virtual Devices

In view of the shared memory method mentioned above, the device model is realized
using the programming interface virtio. The front and back-end I/O use 3.5 virtual
queue to be responsible for receiving, sending the packages and the acess to control
area. Besides, there is a structure, which is used to save the data descriptors taken from

Fig. 4. Architecture of virtio Fig. 5. Architecture

8 J. Chen et al.



the virtio_queue. Each virtual machine uses the inter domain channel to communicate,
which uses the interfaces of descriptors buffer to communicate with the virtual device
virtio_inter. Data processing flow is to add buffer descriptors to the virtqueue or remove
from it to transfer the requests. When the data packet is written to the shared memory
channel, the client will call virto_inter_receive method to receive the data. Calling
process is shown in Fig. 6.

5 The Performance Analysis

In this section, we test the communication efficiency among multiple virtual machines,
and analyze the test results with system ubuntu 14.10, I5 processor and Hz 2.53 G. The
main contrast is the two cases: First, the throughput and transmission delay of

Fig. 6. Process

Fig. 7. Results

A Virtual Machine Data Communication Mechanism on Openstack 9



communication of multiple virtual machines through the socket and other conventional
methods to transfer a large amount of data; Second, get the communication results of
multiple virtual machines through the shared memory method. The results are shown in
Fig. 7 above.

From the Figure we can get that the way of shared memory reduce a large amount
of data copy and transmission times, which can reduce the response time delay. As
shown in the figure, the horizontal coordinates represent the size of the data packet and
the unit is Byte. The longitudinal coordinates use receiving and transmission rate on
behalf of the corresponding delay performance and the unit is tranction/s, that is the
number of sending times per second. From the graph, we can see that the way of shared
memory does make the efficiency of data communication higher and the delay lower.

6 Conclusion

This paper proposes a method showing virtual machines on openstack how to com-
municate with the shared memory. It makes use of paravirtualized I/O model virtio to
simulate virtual network devices and corresponding client’s front-end driver, utilizing
the approach of shared memory to transfer data. The results of the test show that this
method can improve the efficiency of data synchronization among virtual machines.
The problems of the scenarios mentioned above can be solved to a large extent.

Acknowledgement. This work was supported by the open project of Science and Technology
on Information Transmission and Dissemination in Communication Networks Laboratory
(ITD-U14002/KX142600009).

References

1. Chen C.L.: Improvements in Functionality and Deployment Structure of MRF in IMS (2012)
2. Shengge, D.I.N.G., Ruhui, M.A., Alei, L.I.A.N.G., Haibing, G.U.A.N: Optimization for

Inter-VMs Communication on KVM with Para-Virtualized I/O Model, September 2011
3. Diakhate, F., Perache, M., Namyst, R., Jourdren, H.: Efficient shared memory message

passing for inter-VM communications. In: César, E., Alexander, M., Streit, A., Träff, J.L.,
Cérin, C., Knüpfer, A., Kranzlmüller, D., Jha, S. (eds.) Euro-Par 2008 Workshops - Parallel
Processing. LNCS, vol. 5415, pp. 53–62. Springer, Heidelberg (2009)

4. Russell, R.: Virtio:towards a de–.factio standard for virtual I/O devices. J. ACM SIGOPS
Oper. Syst. Rev. 42(5), 95–103 (2008)

5. Kivity A., Kamay Y.L., Laor, D. et al.: KVM: the Linux virtual machine monitor. In: Pro-
ceedings of the Linux Symposium, Ottawa, Ontario, pp. 225–230 (2007)

6. Shengzhao, L., Qinfen, H., Limin, X. et al.: Optimizing network virtualization i kernel—based
virtual machine. In: Procedings of the 1st IEEE Internal Conference on Information Science
and Engineering (ICISE 2009), pp. 282–285. IEEE Computer Society, Washington DC
(2009)

7. Chert, G.I., Lai, T.H.: Constructing parallel paths between two subcubes. IEEE Trans.
Comput. 41(1), 118–123 (1992)

10 J. Chen et al.



8. Stankovie, J.A.: Implication of classical heduling results for real-time systems. IEEE Comput.
28(6), 16–25 (1995)

9. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proceedings of the 2005
USENIX Annual Technical Conference (USENIX 2005), Marriott Anaheimm, April 2005.
USENIX Association, Berkeley, CA, USA (2005)

A Virtual Machine Data Communication Mechanism on Openstack 11


	A Virtual Machine Data Communication Mechanism on Openstack
	Abstract
	1 Introduction
	2 The Communication Scenarios
	2.1 Communication Scenarios
	2.2 Communication Requirements

	3 The Methods of Communication
	3.1 Pipeline
	3.2 Fifo
	3.3 Message Queue
	3.4 Shared Memory Channel

	4 Design and Implementation
	4.1 Shared Memory
	4.1.1 The Communication Model
	4.1.2 The Process of Creating Shared Memory

	4.2 Full Virtualization
	4.3 The Interface Virtio
	4.4 Implementing Virtual Devices

	5 The Performance Analysis
	6 Conclusion
	Acknowledgement
	References


