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    Chapter 14   
 Proteomic Network Systems Analysis                     

     D.     Kent     Arrell       and     Andre     Terzic     

    Abstract     Proteomics and other high throughput technologies generate extensive 
molecular lists, the scope of which renders their accurate interpretation a daunting 
task. Thus, generalizable approaches by which to extract insight from this complexity 
are indispensable. Network systems biology principles and their application offer a 
modular, interchangeable data analytics pipeline by which to collate, integrate, and 
prioritize such datasets. By understanding the basis and utility of various organizing 
and interpretive profi ling elements including ontological classifi cation, functional 
enrichment and over-representation algorithms, and combining these with pathway 
analysis resources and the versatile tools and applications of complex network analy-
sis, an applied network systems approach yields actionable insights into tackling the 
biology underlying high throughput data. Providing a framework to proteomic new-
comers and experienced practitioners alike, we here outline data analytic approaches 
and provide concrete examples of the pairing of network systems prognostication with 
informed follow-up, through application of complementary physiological experimen-
tation to validate proteomic observations in cardiovascular health and disease.  

  Keywords     Bioinformatics   •   Cardiac   •   Cardiovascular   •   Complex network analysis   
•   Heart disease   •   Network biology   •   Protein   •   Proteome   •   Systems biology  

      Introduction 

 The proteomics fi eld incorporates a diverse array of methods and approaches by 
which to examine consequences of posttranscriptional and posttranslational effects 
on protein abundance, structure, modifi cations, and interactions. Many such ele-
ments are detailed in this manual, with chapters addressing various applications of 
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proteomic methodology, experimental design, data acquisition, and analysis of sub-
cellular compartments and specifi c protein modifi cations to further our understand-
ing of cardiovascular health and disease [ 1 ]. Regardless of this plethora of 
experimental and technical approaches, all proteomic studies share a common 
denominator: their output. Every study yields a compilation of proteins, either as 
simple lists of identities or subsets partitioned by differential expression or modifi -
cation in response to the biological question under investigation. The key to extract-
ing further insight from this output is the implementation of a generalized approach 
to data organization and interpretation. 

 From a logistical standpoint, this commonality – a list of proteins – suggests that 
it should be possible for any proteomic dataset to be examined in a similar manner. 
Unlike reductionist molecular approaches, where detailed functional analysis is 
conducted on a protein-by-protein basis, a more expansive strategy is required to 
account for the sheer volume of data. Indeed, while proteomic methods may be used 
to examine individual or small numbers of proteins, they are designed for and 
applied primarily to large scale analysis of entire proteomes or isolated subpro-
teomes (Table  14.1 ), such that they now typically yield lists of several hundred to 
upwards of a thousand proteins in a single report. As one might anticipate, extract-
ing insight from hundreds of proteins simultaneously is not facile, and can be per-
ceived as altogether unmanageable. These lists can be simplifi ed by narrowing the 
focus to a few choice proteins, such as those exhibiting the greatest extent of change, 
residing within a particular organelle, or executing a particular biological function. 
This offers advantages of reduced complexity and the potential to pinpoint func-
tions germane to the topic of interest, but subjective protein exclusion during down-
stream analysis invariably leads to information loss. Moreover, care must be taken 
to ensure that data reduction decisions are not infl uenced by selection bias, whether 
intentional (e.g. confi rmation bias [ 2 ], expectation bias [ 3 ]) or not. Finally, acquir-
ing a mountain of data and ignoring all but the peak is patently counterproductive to 
an experimental rationale predicated on the capacity to conduct high throughput 
profi ling. As we have emphasized previously [ 4 ], information reduction strategies 
may result in overlooking critical functional interactions and mechanistically 
important processes associated with and evident only upon examination of the com-
plete dataset. In making these assessments, awareness of proteins not changing in a 
system is often just as valuable as detecting those that are altered. Thus, a judicious 
proteomic data analytics strategy should yield the same advantages – reduced infor-
mation complexity and provision of functional insights – while remaining free of 
selection bias and ensuring inclusivity of all detected proteins [ 4 ,  5 ].

   Network systems biology (Table  14.1 ) principles offer an attractive approach for 
comprehensive data analysis. Systems based strategies facilitate objective organiza-
tion, prioritization, and integration of proteomic and other big data in their entirety, 
regardless of abundance, scope or complexity. To this end, a suite of bioinformatic 
and computational applications designed specifi cally to interrogate high throughput 
data is currently available, and in conjunction with protein databases that provide 
ease of access for molecular information retrieval, they harbor the capacity to bring 
clarity and cohesion to proteomic output [ 4 – 6 ]. Various applications and tools can 
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                  Table 14.1    Proteomic network systems analysis glossary   

 Subproteome  Subset of the proteome, often grouped by a shared cellular function, 
alteration by or dependency on a specifi c biological process, or 
components of a particular extracellular or intracellular organelle or 
compartment 

 Systems biology  Analytical high throughput data-inclusive approach to investigating 
and modeling relationships among a system’s components in order to 
understand and predict emergent properties 

 Network or 
Interactome 

 Representation of pairwise collections of interactions and 
relationships, known as a graph in mathematics, which exhibits 
emergent properties based on their topological structure 

 Network systems 
biology 

 Complex network theory applied to the analysis of molecular 
interaction networks, including evaluation and assessment of their 
composition and topology to guide systems biological interpretation 

 Node  Individual subunits that comprise a graph or network via their 
cumulative interactions. In network biology, one or more of proteins, 
genes, metabolites, and endogenous small molecules or drugs are 
typically represented as nodes 

 Edge  An interaction or relationship between two nodes of a network. In 
network biology this might represent a physical complex of protein 
subunits, or a regulatory, genetic, or signaling effect, visualized as a 
line connecting interacting nodes. Based on the relationship, edges 
may also be portrayed as undirected or directed 

 Degree distribution  Node degree, the number of connections each node possesses to other 
nodes in a network, can be used to convey a network’s degree 
distribution, which represents the probability distribution of the 
degrees of all network nodes 

 Scale-free topology  Non-stochastic power law distribution of node connectivity 
characteristic of biological networks, the non-random structure of 
which infl uences subsequent emergent network properties such as 
functional robustness 

 Hub  Network node that is much more highly connected (i.e. a greater 
degree) than would be expected to occur at random 

 Clustering coeffi cient  Extent to which nodes within a network cluster together as a measure 
of neighborhood relatedness, where a node’s clustering coeffi cient is 
defi ned as the proportion of nodes connecting to it that also connect to 
each other 

 Bridging node  Node bridging the shortest direct path between two other nodes or 
modules within a network, often forming the shortest path between a 
high proportion of node pairs, leading to an increased likelihood of 
functional importance due to its position as a network bottleneck 

 Network motif  Patterns of complex network node-edge connections that are observed 
more frequently than expected relative to randomly assembled 
networks 

 Network module  Highly interconnected collection of nodes that nevertheless exhibits 
few interactions with the remaining network, often comprised of 
nodes with a shared function such as subunits of a protein complex or 
members of a metabolic or signaling pathway 

(continued)
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be arranged and organized to suit particular projects and data sources, but in general 
there are four elements that form the basis of a proteomic network systems approach. 
The fi rst component is ontological classifi cation, an initial compartmentalization for 
partitioning high-throughput proteomic data into discrete biological categories. 
This serves to reduce complexity of an initial list of proteins, and enables assess-
ment of the relative frequency or infrequency of occurrence for particular functional 
categories within acquired data relative to a specifi ed reference set or between 
experimental cohorts. The second component, pathway analysis, extends categori-
cal assignment by evaluating proteomic fi ndings in the context of biological path-
ways. In this regard, data is superimposed onto canonical pathways and functional 
annotations, providing further evidence of enrichment properties and establishing 
connections between distinct elements of the measured dataset. Such connections, 
retrieved from pathway analysis resources or via stand-alone molecular interaction 
applications, are vital for the third component, complex network analysis. Networks, 
comprised of proteins connected by their collective functional and structural inter-
actions, position proteins within the context of their local interaction neighborhood. 
Network composition, topology, and positional relevance of specifi c proteins pro-
vide value-added properties for data interpretation extending beyond what can be 
achieved with pathway analysis alone, and these can be exploited for hypothesis 
generation to assist in developing validation experiments to explain mechanistic 
underpinnings of initial proteomic measurements. A fourth and fi nal optional com-
ponent is systems modeling. If suffi cient functional data is obtained relating to spe-
cifi c components, pathways, or network elements, it may be possible to develop 
mathematical or computational models to explain or predict functional outcomes on 
the basis of experimental proteomic fi ndings. This particular element requires both 
extensive additional information to model the system under investigation as well as 
expertise in calculus and mathematics to design and implement. To simplify this 
introduction of proteomic network systems analysis for beginners, modeling will 
thus not be discussed here. The fi rst three components, meanwhile, can be under-
taken with only an initial list of output proteins and their related expression values, 
without any requisite expertise in standard tools of the trade. For those interested in 
further pursuing systems modeling, a recent description of fundamental concepts in 
its comprehension and application for cardiovascular proteomics is available [ 6 ]. 

Table 14.1 (continued)

 Functional robustness  Network property of functional resilience when subjected to random 
removal or inhibition of a single node, based on the low connectivity 
of most nodes and the high degree of a limited proportion of nodes 

 Path length  Distance between two nodes in a network based on the minimum 
number of edges required to connect them. Average path length of 
scale-free networks is extremely small, meaning very few steps are 
required to connect any two nodes 

 Network diameter  Greatest path length required to connect any two nodes of a network 
 Metaboproteome  Subproteome comprised of and involving proteins supporting cell 

metabolism 
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 Bioinformatic and computational network systems analytic approaches are 
prognostic in nature, providing hypothesis generating predictions requiring subse-
quent validation of underlying biological effects for the observed proteomic out-
put. To avoid pitfalls of overestimating the impact of predictions or of statistical 
overfi tting of high throughput data, predictive analytics should therefore be paired 
with complementary experimental data to ensure hypothesis validation. Ideally, 
then, prognosis should be actionable, and if predictions are valid, verifi able. This 
chapter provides a structured description of network systems biology procedures 
by which to address the daunting task of organizing and interpreting proteomic 
output, for generation of “actionable prognostication”, and provides discrete 
examples of how information arising from these tools is paired with complemen-
tary physiological data to validate proteomic observations in cardiovascular 
research. The conceptual approach to proteomic network systems biology described 
herein extends just as readily to the analysis of genomic, transcriptomic, and 
metabolomic data. Thus, these organization and prioritization principles prove 
equally versatile for interrogation and interpretation of data from other high 
throughput molecular profi ling methods, including strategies that integrate multi-
level -omics datasets.  

    Ontological Classifi cation, Functional Enrichment 
and Over-Representation 

 Current large-scale proteomic studies generate datasets exceedingly diffi cult to 
comprehend or interpret without initial data reduction or clustering. This is due to a 
combination of sheer size, i.e. the number of proteins, and an even greater complex-
ity imposed by their associated biological functions and processes. In this regard, 
shared biological properties can and do serve as a useful starting point for data 
comprehension. As noted, when this process is conducted selectively to pare down 
an extensive list and focus immediately on a protein subset rather than the entire 
dataset, inclusivity is bypassed for simplicity and subsequent analysis is compro-
mised by user bias. A more objective rationale involves collation of all detected 
proteins using extant biological information, with prioritization based on subse-
quent assessment and interrogation of the complete dataset. Even selection of statis-
tical cutoffs should not be arbitrary, but rather applied as a reasonable fold change 
and statistical test with suffi cient power to clearly establish a difference between 
experimental cohorts [ 7 ]. Implementing this strategy is aided by knowledge of the 
Gene Ontology (GO) [ 8 ], organized and structured specifi cally to document gene 
and protein properties, and awareness of where to fi nd and access databases con-
taining GO information. 

 In the fi eld of proteomics, the UniProt Knowledge Base [ 9 ] (UniProtKB, 
 accessible at   www.uniprot.org    ) is an established protein sequence repository for 
assignment of spectral data acquired during mass spectrometry. Its current iteration 
emerged from a consortium combining several previous protein databases,  including 
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Swiss-Prot, the Translated European Molecular Biology Laboratory, the Protein 
Information Resource and, more recently, the International Protein Index. Besides 
serving as a mass spectrometry resource, UniProtKB incorporates a wealth of 
 additional information on various protein properties and characteristics, making it a 
useful starting point for in-depth dataset analysis [ 9 ]. Each entry cross-references 
with hyperlinks to a wealth of protein database resources listed under as many as 15 
sub-categories, depending upon extent of protein characterization, and includes all 
available GO information [ 10 ]. As a result, initial ontology classifi cation can be 
achieved by simply parsing GO data from UniProtKB, enabling data reduction to 
cluster proteins without necessitating in-depth or formal knowledge of the GO 
resource. In this way, proteins may be classifi ed and grouped by a specifi c function 
(e.g. kinase, oxidoreductase), by particular biological processes to which they con-
tribute (e.g. glycolysis, muscle contraction), where each protein might execute a 
unique function while working together as a collective within a particular pathway 
or as members of a multi-protein complex, and by their localization within one or 
more discrete cellular components (e.g. mitochondrion, nucleus). 

 It is precisely these concepts – molecular function, biological process, and cel-
lular component – upon which the GO structure is based [ 11 – 16 ]. These are consid-
ered root terms forming ‘domains’ within the controlled vocabulary set out by the 
GO Consortium [ 8 ], and thus all other GO terms fall into one of these three domains. 
Each GO classifi cation is unique, but together they form a loosely hierarchical 
structure, whereby more specialized ‘child’ terms link to one or multiple more gen-
eralized ‘parent’ terms. As such, the structure of related GO terms can be portrayed 
or described as a graph, or network, where every GO term serves as a node, inter-
relationships between pairs of GO terms form edges connecting them (Table  14.1 ), 
and edges in turn form nested connections within the hierarchy, the various ele-
ments of which fan out from their respective domain root terms (Fig.  14.1 ).

   Comprehension of this structure is advantageous for individuals involved in high 
throughput research, as GO categorization is now applied to most cardiovascular 
proteomic studies [ 4 ,  6 ]. Clustering by shared functional properties would be 
straightforward if all proteins were defi ned by single GO terms. However, well 
characterized proteins are often assigned multiple GO associations, either as nested 
molecular functions of increasing specifi city, as a result of participation in multiple 
biological processes, or a combination of the two, whereas a small proportion of 
proteins lack any GO term due to unknown function. Thus, a single protein may be 
included in and defi ned by multiple GO categories simultaneously (Fig.  14.1 ), or 
appear in none at all. 

 Following dataset assignment of protein GO designations, it is then benefi cial to 
determine their categorical frequency of occurrence. On its own, the frequency at 
which a particular GO term appears in a dataset is somewhat meaningless. It must 
be interpreted in the context of an established benchmark such as the known pro-
teome for a species or tissue of interest, or the full extent of proteins detected within 
the constraints of the experimental technology being applied, such as the complete 
set of proteins present on a chip array [ 12 – 19 ]. Statistical assessment is carried out 
by a hypergeometric distribution (Fig.  14.1 ), defi ning the probability of whether GO 
terms appear more or less frequently in an experimental dataset than would be 
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  Fig. 14.1    Proteomic network systems analysis. Systems comprehension requires moving beyond 
simple lists by undertaking their organization, clustering and prioritization to reduce information 
complexity and extract functional insights into the biology underlying acquired proteomic data. 
Subjecting protein lists to ontological classifi cation, pathway analysis, and complex network anal-
ysis, interpretation can be used to generate actionable hypotheses for functional validation. Shown 
as a simplifi ed workfl ow, these elements do not necessarily follow a prescribed sequence, but 
instead serve as interchangeable components to be included as needed, or repeated multiple times 
at different stages of an analysis when warranted. Indeed, the entire process may be cyclical or 
iterative, as experimental validation and insights gleaned from an initial analysis may be further 
refi ned by subsequent proteomic or other high throughput data acquisition and a successive round 
of systems analysis. Abbreviation:  GO  Gene Ontology       
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 anticipated relative to their occurrence within the reference benchmark set. It should 
be noted that overrepresentation and enrichment metrics are useful not only for 
 differential expression analyses in terms of defi ning what classes of upregulated or 
downregulated proteins are overrepresented, but they are also applicable for exami-
nation of a simple list of protein identities. Here, enrichment analysis can be used to 
determine whether an experimental methodology is selective as desired or intended, 
or perhaps biased towards or against detection of a particular subproteome. 

 An alternative approach known as gene (or protein) set enrichment analysis can 
be used for differential comparison to previously published datasets [ 20 – 22 ]. This 
method takes a slightly different tack, avoiding prescribed statistical cutoffs for 
comparison, and instead makes use of rank ordered expression, which is then 
assessed for correlation or anti-correlation to the rank ordered expression of pub-
lished data. This approach can be useful for teasing out subtle ontological differ-
ences between experimental groups, even in the absence of substantial numbers of 
signifi cantly differing proteins. Fortunately, expertise in mathematics is not a pre- 
requisite for conducting any of these tests as they are typically incorporated into 
various commercial and open source applications, including those used for pathway 
and network analysis.  

    Pathway Analysis 

 Efforts to extend proteomic categorization beyond the relative occurrence of, and 
assignment to, particular GO classifi cations are the domain of pathway analysis 
applications. Pathway algorithms facilitate expanded examination of proteomic 
data in the context of established biological pathways, protein functions, and their 
associated structural, functional and regulatory interactions. Proteomic datasets 
may be mapped across one or more specifi c canonical pathways, aiding in determi-
nation of whether particular pathways or pathway segments or branches are simi-
larly or differentially affected, with mapping of proteins and expression level data 
onto pathways facilitating their visualization and representation. Many pathway 
applications enable protein annotation, using embedded information with details 
similar to those available within the UniProtKB, and tie-ins or hyperlinks to current 
knowledge on proteins of interest. As a consequence, many such algorithms also 
support enrichment and overrepresentation analysis, some making use of existing 
GO molecular function, biological process, and cellular component nomenclature, 
while other applications construct and implement platform-specifi c ontology terms 
and classifi ers [ 4 ]. Finally, some pathway resources focus entirely on protein inter-
actions, while others include interaction network generation as one element of a 
suite of functions, such as that offered by commercial pathway tools, e.g. MetaCore 
and Ingenuity Pathways Analysis (IPA). Network generation in these applications 
can then be further scrutinized for functional annotation enrichment or canonical 
pathway overrepresentation in the context of a broader network neighborhood in a 
fashion similar to that which is carried out on initial proteomic input. Beyond an 
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understanding of what pathway analysis entails, other primary issues that beginners 
are faced with are where to fi nd these repositories, potential costs involved in their 
use, if any, and specifi ed data formats, if required, all with the overarching consid-
eration of what benefi cial attributes are present and desirable in specifi c pathway 
analysis algorithms. 

 Even at fi rst glance, it is evident that the extent of information available in indi-
vidual pathway analysis resources varies greatly between applications. In part, this 
may be due to the fact that many pathway databases arose from investigator- 
generated data accumulation. Thus these databases may relate to a specifi c research 
area of interest, sometimes with a focus on only a limited set of pathways or a dis-
crete protein property – such as protein-protein interactions – or an emphasis on 
data from only a single species or particular organelle. Other contributing factors 
are the sheer number of repositories, and their broad applicability to tackle the vari-
ability of biological questions under examination. The latest update of Pathguide, 
the largest online compendium of biological pathway and molecular interaction 
related resources, now lists nearly 550 different pathway applications [ 23 ]. This 
number has almost doubled in the past 3 years [ 4 ], signifying the tremendous growth 
in this fi eld. Pathguide lists eight distinct pathway application categories: protein- 
protein interactions; metabolic pathways; signaling pathways; pathway diagrams; 
transcription factor/gene regulatory networks; protein-compound interactions; 
genetic interaction networks; protein sequence focused databases; and 17 separate 
resources listed under the category of ‘Other’. This site provides detailed informa-
tion about each resource, accessibility (cost and current availability), and whether 
they adhere to or accommodate specifi c bioinformatics language standards, e.g. 
BioPAX [ 24 ], which was designed to enable integration, exchange, visualization 
and analysis of biological pathway data. Many of these databases are freely acces-
sible or free for use by academics, although the more comprehensive resources are 
typically commercial entities with license requirements that can be cost prohibitive 
to some investigators. In general, these resources map current biological knowledge 
to known pathways rather than serving as inference tools to predict theoretical inter-
actions or novel biological outcomes. Some applications are attractive for use 
because of their broad applicability. For example, the MetaCore pathway database 
and the IPA Ingenuity Pathways Knowledge Base harbor suites of functions, 
accounting for these resources being listed in 6 and 5 Pathguide categories, respec-
tively, making them popular choices for cardiovascular proteomic pathway analysis 
[ 11 – 14 ,  25 – 42 ]. Although less versatile, more specialized applications often prove 
highly desirable when matched to user-specifi c needs, for instance, exploiting mito-
chondrial protein interaction databases for bioenergetics research. For those with 
little knowledge of this bioinformatic fi eld, Pathguide is an excellent source of 
information for an informed decision on selecting pathway analysis applications 
that optimally align with experimental needs. 

 Once a pathway analysis platform is selected, implementation may take many 
forms. A quick overview of IPA search parameters provides useful considerations in 
this regard. Input data can range from a number of high throughput experimental 
procedures, including proteomic, mRNA, microRNA, or metabolomic profi ling, as 
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well as RNA-Seq and other next generation sequencing experiments. To enable 
diverse inputs, this application accepts over 20 different types of molecule identifi er. 
As a consequence, this provides users with the potential to combine data from mul-
tiple high-throughput sources, channeling them through a single location for con-
comitant interrogation under identical bioinformatic parameters. This facilitates 
proteomic data integration with high throughput information spanning multiple 
regulatory levels, increasing the potential for comprehensive insight into cellular 
function [ 43 ]. A number of user-specifi ed parameters are then applied to defi ne how 
broad or refi ned an analysis is desired. For proteomic analysis, protein identities are 
generally submitted together with expression level data such as fold change, log 
ratios, or P-values to set prescribed cutoffs for differential expression between 
experimental groups. Subsets of upregulated and downregulated proteins can then 
be examined in isolation, or together as a complete differentially expressed cohort. 
The scope and stringency of input functional relevance is also user controlled, such 
as breadth of species data to interrogate, whether direct and indirect biological rela-
tionships are acceptable, and whether these interactions must be documented rela-
tionships only or if predicted interactions are also acceptable. 

 Pathway analysis output, such as that obtained with IPA and MetaCore, contains 
enrichment analysis functions highlighting specifi c functional annotations, canoni-
cal pathways, diseases, or other adverse effects overrepresented within the exam-
ined dataset (Fig.  14.1 ). Images representing signaling pathways, metabolic 
pathways, or other clusters of interest such as protein complexes, may then be 
opened for inspection, typically with expression data for constituent proteins over-
laid on the image for ease of visual representation. Additional predictive elements 
are now being incorporated to enhance these pathway diagrams. IPA, for example, 
recently introduced tools designed to predict upstream regulatory effectors with the 
greatest likelihood of explaining observed input data, including predicted regulator 
activation states based on observed protein expression values. Moreover, generated 
pathways overlaid with expression data can now be used to infer whether expression 
of other known elements within the pathway might also be altered despite not being 
detected during initial proteomic analysis. Finally, comprehensive pathway analysis 
algorithms also generate protein interaction and regulatory networks (Fig.  14.1 ) [ 4 ], 
which can be tailored by settings for maximum network size, number of networks, 
and whether network nodes are limited to proteins and genes only, or if their com-
position may be expanded to include other bioactive molecules such as drugs, 
endogenous chemicals, and metabolites. 

 What must be kept in mind is that pathway analysis outputs are inferred biologi-
cal consequences arising from or explaining input proteins and their observed 
expression values. As these are predictions and not mechanistic explanations, it is 
best to view pathway analysis as an interpretative tool facilitating hypothesis gen-
eration [ 4 ]. Ideally, these hypotheses are then tested and validated by experimental 
follow-up. With the realization that pathway analysis is operating from the stand-
point of partial information, and the knowledge that quality and reliability of sup-
ported interactions and relationships gleaned from the literature by these applications 
can be highly variable, the quality of which are not readily apparent without  in- depth 
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analyses of all relevant literature, it is best to approach any results with a healthy 
dose of skepticism by designing and executing validation experiments whenever 
possible. Continuous refi nement of pathway analysis applications improves as data 
acquisition increases, but the most convincing systems proteomics studies will 
always complement predictive analytics with supportive experimental validation. 

 Pathway analysis algorithms also harbor limitations with respect to generated 
protein and gene interaction networks [ 4 ]. While these networks can be evaluated 
for enrichment and overrepresentation in a manner similar to that of an unconnected 
protein or gene dataset that served as initial input, pathway applications are not 
designed to characterize additional characteristics such as network topology or 
structure, which imparts additional emergent properties of relevance for particular 
nodes within the network. Moreover, pathway analysis networks are often intended 
for visual esthetics rather than functional interpretation, so these applications tend 
to have upper bounds in their capacity to assemble large networks. As proteomic 
datasets continue to increase in magnitude, this limitation becomes more problem-
atic for network-oriented biological interpretation. To properly exploit network 
structure and composition for proteomic systems analysis, it is therefore essential to 
move beyond pathway network applications and make use of dedicated network 
analysis tools. Comprehension of some basic principles of complex network analy-
sis, including those that confer value-added properties for systems analysis, facili-
tates their use for visualizing and interpreting proteomic data.  

    Complex Network Analysis 

 What, exactly, is a network? As noted for the hierarchical structure of the complete 
assemblage of GO terms, a network, or graph, is a collection of nodes, each con-
necting to one or more additional nodes in a pairwise manner (Table  14.1 ). In pro-
teomics, then, a network serves as a mathematical representation of known or 
predicted biological relationships between collections of proteins. Nodes or vertices 
designate the proteins, while any relationship between two proteins is represented 
by an edge, or line, connecting the two nodes (Table  14.1 ). The number of edges 
connecting a node to other nodes in the network is defi ned as the fi rst node’s degree 
(Table  14.1 ). Networks are now understood to assemble into nonrandom structures, 
where most nodes within the network contain very few connections to other nodes, 
and thus have a small degree, whereas a much smaller proportion of nodes have 
many connections, or a large degree. 

 Once believed to be randomly arranged in terms of connectivity, over the past 15 
years this non-stochastic connectivity tendency in biological networks has become 
better understood. It is now well established that this arrangement of biological 
network degree distribution (Table  14.1 , Fig.  14.1 ) approximates a power law, lead-
ing to a characteristic network topology that is termed scale-free (Table  14.1 ) [ 44 ]. 
Nodes of extremely high degree are defi ned as hubs (Table  14.1 ), and their extensive 
connectivity is often refl ected in these nodes being critical for network  functionality. 
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Another useful network parameter is termed the clustering coeffi cient (Table  14.1 ). 
This is a property of secondary interactions within a network [ 45 ], as the clustering 
coeffi cient for a particular node indicates the proportion of nodes linking to it that 
also connect to each other. In other words, this measure defi nes how interconnected 
are a node’s nearest neighbors. Tightly clustered groups of proteins, which often 
share similar functional attributes or serve as partners in a multi-protein structural 
complex, create local regions of high clustering coeffi cient nodes in a network, and 
in turn, clusters of clusters can be observed in extremely large networks, such that 
the network forms a hierarchical structure. Nodes that bridge two or more regions 
of high clustering within a network are known as bridging nodes (Table  14.1 ). Due 
to their position spanning large numbers of nodes on either side, they form a conduit 
as the shortest path between an inordinately high proportion of node pairs within the 
network. Therefore, bridging nodes often are also critical to overall network func-
tion, like hubs, despite typically being of rather limited degree, unlike hubs. Network 
non-stochasticity also imparts other emergent properties of biological relevance 
beyond that of hubs and bridging nodes, such as network structural motifs, modular-
ity, and functional robustness (Table  14.1 ) [ 46 ,  47 ]. 

 From these rather esoteric descriptions, it may not be readily apparent how net-
works are useful for representation of proteomic data. Proteins carry out the vast 
majority of functions within cells, doing so not in isolation but rather in concert with 
a plethora of other proteins and macromolecules, as components in structural or 
regulatory interactions, or as part of signaling or metabolic cascades. Accordingly, 
arrangement of these interactions in the form of a biological network serves as a 
rational means of assembling complex data in a functional, coherent format. Once 
generated, biological interaction networks can be evaluated on the basis of their 
composition via ontological and functional enrichment analysis, and on the basis of 
network topology or structure, both in terms of its overall architecture as well as by 
mathematical measures identifying nodes with positions of prominence throughout 
the network, e.g. hubs and bridging nodes (Table  14.1 , Fig.  14.1 ) [ 46 ,  47 ]. Because 
proteomic networks are also non-stochastic, regardless of network size or scale, 
they possess predictable structural characteristics that can be useful for functional 
interrogation and hypothesis generation. Importantly, such network topology- 
dependent traits are not readily apparent when their constituent proteins are instead 
arranged only as lists. 

 Methods used to generate networks from biological data can differ widely, 
depending on the source of information used to defi ne interactions, and on underly-
ing presumptions used to evaluate what properties constitute an edge to connect two 
nodes. When produced in conjunction with pathway analysis, proteomic interaction 
networks are most often generated using current biological knowledge to establish 
connectivity. Such networks typically include structural, regulatory, and signaling 
based interactions, comprising both direct and indirect relationships between nodes. 
If only a particular subset of interactions is warranted or desired for network assem-
bly, such as protein-protein interactions, these can be assembled directly from the 
literature or by  de novo  experimental data acquisition. There are also statistically 
guided methods for network construction, connecting nodes on the basis of co- 
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expression or correlation [ 48 ], or by reverse engineering from expression dynamics 
using  ab initio  methods [ 49 ], although these methods require greater detail regard-
ing data input for modeling and prediction of network interactions than is typically 
available from proteomic studies. Thus, networks derived from pathway analysis 
and the accumulated knowledge archived therein is currently the most applicable 
methodology available for proteomic systems analysis. 

 Examining protein networks from both a structure and function standpoint 
requires an understanding of dedicated network analysis and visualization applica-
tions. A prominent example is Cytoscape, developed by a multi-institute consortium 
as an open-source, stand-alone tool for network visualization and evaluation of net-
work structural properties, which over time has added the capacity to access protein 
and gene data directly from other repositories, thus enhancing network comprehen-
sion in biological contexts [ 50 ]. As it is open-source, users and developers are wel-
come to create and contribute new peripherals, or apps, to further advance Cytoscape’s 
utility for network interpretation and interrogation. Newcomers to complex network 
analysis will appreciate the fact that neither bioinformatic profi ciency nor expertise 
in network biology are required to begin using Cytoscape, although its maturation 
and broad appeal has led to a plethora of tools and applications that require a substan-
tial commitment to accurately comprehend and exploit to their full potential. 

 Numerous options exist for visualization of networks constructed in or imported 
into Cytoscape. Besides the basic requirement for a list of pairwise interactions, 
additional attributes can be uploaded and appended, such as protein expression data, 
which can then be superimposed as node or edge attributes or to network layout to 
organize networks visually on the basis of expression information. Thus, extent and 
direction of biological change, i.e. up- or down-regulation, can be conveyed by 
color, shape, or size of nodes and edges, with a variety of optional layouts available 
to assist researchers in emphasizing particular network elements or properties [ 11 –
 14 ]. For example, the layout of nodes in one network can be applied to another in 
order to co-localize nodes shared by both networks in the same relative spatial 
regions, enhancing the visual capacity to compare and contrast related networks 
[ 14 ]. Once attributes are applied to network nodes, this information can also be 
exploited to enable layout co-localization by regional clustering of nodes sharing 
one or more common attributes [ 12 – 14 ]. Unlike pathway analysis network tools, 
these functions can be achieved in Cytoscape without concern for upper bounds on 
network size or structural complexity. 

 Beyond visualization properties, substantial effort has been devoted to Cytoscape 
analysis, interrogation and interpretation tools to examine network structure and 
network functional characteristics. Network Analyzer [ 51 ] was developed soon 
after the introduction of Cytoscape, and was such a popular app for network topol-
ogy analysis that it is now fully integrated as a standard tool on all new platform 
downloads. Analyzer assesses a variety of topological elements for both directed 
and undirected Cytoscape networks, including but not limited to number of nodes 
and edges, number of connected components, degree distribution, clustering coef-
fi cient, average path lengths between pairs of nodes, and network diameter 
(Table  14.1 ) [ 51 ]. These network topological attributes are not addressed by  pathway 
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analysis network functions, making network specifi c applications a valuable addi-
tion to the systems proteomics repertoire. 

 From a network functional enrichment standpoint, the most popular Cytoscape app 
is the Biological Network Gene Ontology (BiNGO) tool [ 52 ]. It was designed to 
acquire current external resources of the GO and apply them internally to fulfi ll net-
work GO analysis within Cytoscape. Thus, BiNGO interprets biological network over-
representation across the breadth of GO domains—biological process, cellular 
component, and molecular function—by comparison to the entirety of a species- 
specifi c reference set, a process similar to enrichment analysis tools in pathway algo-
rithms. BiNGO output can be displayed in two ways. The fi rst is as a signifi cance 
ranked spreadsheet of terms defi ned within a particular GO domain, with domain of 
choice and signifi cance threshold pre-defi ned in user settings. The second is as a nested 
hierarchical ontology network representing GO terms as nodes, parent-child relation-
ships as edges, node coloring graded in relation to the presence and extent of statistical 
signifi cance, and node size scaled to the proportion of initial network nodes mapping 
to each GO network term. Ultimately, BiNGO generates an ontology network defi ning 
the functional attributes of its parent molecular network (Fig.  14.1 ) [ 52 ]. 

 There are now over 250 unique Cytoscape apps designed for specifi c functions, 
including but not limited to, import of networks and their attributes, network infer-
ence, analysis of existing networks, enrichment and ontology analysis, systems 
biology, comparison between networks, and communication and scripting applica-
tions. Cytoscape has become increasingly popular for cardiovascular proteomic net-
work analysis [ 11 – 14 ,  17 ,  25 ] due to the litany of contributors building it into a 
comprehensive program addressing almost every network-oriented concept imagin-
able. While described here extensively to outline dedicated network platform appli-
cations, Cytoscape is not the only useful network analysis program available, and 
readers are encouraged to investigate other network visualization and analysis tools. 
Similar to the Pathguide repository of pathway analysis applications, Graph 
Visualization Software References formerly served as a single site resource provid-
ing information on several dozen network analysis algorithms to enlighten and 
guide software selection [ 53 ], but unfortunately a recent search indicates that this 
database appears to be no longer available. At this time, no comparable resource is 
available to guide newcomers to appropriate tools for network analysis, but investi-
gators are encouraged to seek out and apply network associated applications to 
maximize proteomic systems-oriented data analysis.  

    Putting the Components Together – Actionable 
Prognostication with Experimental Validation 

 Unlike traditional reductionist approaches where hypotheses are formulated and 
subsequently investigated by applying various molecular biology techniques, often 
with an emphasis on characterizing function of only a single protein or biological 
pathway, proteomic and other high throughput techniques are often applied without 
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a preconceived notion of what may or will be detected or discovered. Indeed, the 
biology may not even be suffi ciently well understood to formulate actionable 
hypotheses until after such data is fi rst analyzed and interpreted. Accordingly, high 
throughput analyses are often viewed or approached from a different scientifi c 
standpoint, wherein data analysis serves as the hypothesis generating step that must 
subsequently be validated (Fig.  14.1 ). Thus, acquired proteomic data does not typi-
cally serve as a fi nal answer in and of itself. Instead, delivering on the promise of 
proteomic data often requires the application of actionable prognostication. 

 A case in point is proteomic comprehension of the cardiac implications of ATP- 
sensitive K +  (K ATP ) channel defi ciency, caused by absence of the  KCNJ11 -encoded 
Kir6.2 pore forming subunit of the channel multi-subunit protein complex [ 54 ]. 
Functional consequence of genetic knockout in cardiac myocytes is a loss of K +  
conductance across the cell membrane, but K ATP  channel activity infl uences far 
more, modulating membrane potential-dependent cellular metabolism much like a 
rheostat, adjusting function to match cellular energy demands [ 55 – 58 ]. Even though 
K ATP  channelopathies are implicated in human cardiac disease [ 59 – 61 ],  consequences 
of channel defi ciency predisposing to disease vulnerability escaped broader 
 molecular comprehension, mandating proteomic systems interrogation of channel 
dysfunction in various contexts [ 12 – 15 ]. In the  KCNJ11 -knockout, rather than 
 simply being a case of presence  versus  absence of a single protein, proteomic 
 analysis determined that, even in the absence of superimposed cardiac stress, more 
than 100 proteins were signifi cantly altered in response to chronic K ATP  channel 
defi ciency [ 13 ]. Taking this list of proteins through a network systems analysis is 
particularly revealing for comprehension of the underlying mechanistic conse-
quences of channel dysfunction. 

 Initial ontological classifi cation ( Step 1 of what to do with your proteomic list ) 
indicated that a little over 60 % of differentially expressed proteins could be catego-
rized as having direct involvement in metabolic function, whereas the remainder 
participated in a variety of other cellular processes, including proteolysis, chaper-
ones, cytostructure, oxidoreductases, transcription or translation, and regulation of 
cell signaling [ 13 ]. This abundance of metabolic connections is consistent with the 
known impact of the channel as a metabolic rheostat, the prominence of which was 
reinforced by IPA functional ontology classifi cation ( Step 2 of what to do with 
your proteomic list ) [ 13 ]. Moreover, metabolic relevance was further strengthened 
by subsequent complex network ontology enrichment analysis ( Step 2 applied to 
output acquired from Step 3 of what to do with your proteomic list ). In this 
regard, BiNGO analysis was conducted within Cytoscape to defi ne overrepresented 
biological processes – one of the three primary GO domains – associated with the 
expanded K ATP  channel–dependent metaboproteome (Table  14.1 ) network derived 
from the remodeled proteome. The resultant BiNGO ontology network comprised 
nearly 1,000 distinct GO terms associating with the parental molecular network, yet 
only 55 of these were signifi cantly overrepresented [ 13 ]. Moreover, every one of the 
55 was a metabolic process, collectively forming a highly nested ontology network 
within a limited number of broader metabolic functions. Primarily overrepresented 
were GO terms involved in glycolysis, as well as tricarboxylic acid cycle, fatty acid, 
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and other substrate metabolism branches, along with some degree of protein catabo-
lism enrichment [ 13 ]. 

 These parameters provide a sense of altered proteome functional attributes, but 
not of the biological consequences of proteome remodeling. Pathway analysis was 
thus also applied in a complementary manner to predict potential adverse effects, 
yielding actionable insight into the implications arising from and consistent with the 
altered proteome. Here, “cardiovascular disease” was signifi cantly overrepresented 
at the level of the proteome and, even more extensively, at the interactome 
(Table  14.1 ) level integrating all proteome changes in their broader network neigh-
borhood [ 13 ]. Experimental evidence supporting susceptibility of the K ATP  channel 
defi cient cohort to cardiovascular disease was evident in measures of cardiac mass, 
cardiac function, and survivorship in response to increasing levels of imposed car-
diac stress [ 13 ]. Thus, proteomic network systems analysis here incorporated 
actionable experimental evaluation, validating the predicted functional conse-
quences of observed proteome remodeling ( Step 4, actionable prognostication 
with experimental validation ). 

 Similar systems approaches have also been applied to understand proteomic con-
sequences of K ATP  channel defi ciency in the setting of superimposed cardiac stress 
[ 12 ,  14 ]. For example, prediction of overrepresented adverse effects facilitated 
experimental follow-up in a model of deoxycorticosteroid and salt-induced hyper-
tension, where pathway analysis of proteomic data predicted three adverse effects 
related exclusively to cardiac function – cardiac damage, cardiac enlargement, and 
cardiac fi brosis [ 12 ]. Each effect was subsequently confi rmed by assessment of car-
diac output, measurement of heart-to-body-weight ratios, and evaluation of colla-
gen deposition, respectively, validating predicted detrimental cardiac effects of K ATP  
channel-dependent proteome remodeling in response to physiological stress [ 12 ]. 
Pathway analysis adverse effect screening also proved instrumental in evaluating 
consequences of proteome remodeling in cardiomyopathy and the structural and 
functional remodeling mediated by the response to stem cell therapy in cardiomyo-
pathic hearts [ 14 ]. Here, proteome changes associated with cardiomyopathy were 
subjected to pathway analysis, with  in silico  prediction of both enrichment of car-
diac disease as well as several cardiac adverse effects, which were greatly amelio-
rated or completely absent when evaluating the stem cell treated cardiomyopathic 
proteome [ 14 ]. Prognostication was validated by a range of echocardiographic met-
rics and anatomical measurements, confi rming predicted deleterious structural and 
functional outcomes of disease and their improvement following cell mediated 
therapy [ 14 ]. 

 Further supporting network approaches, a distinct benefi t of extending systems 
analysis to complex networks is their potential to provide value-added elements to 
evaluate implications of the proteomic data in a network-oriented context. Network 
structure, i.e. topology, can be exploited on the basis of identifi cation and targeted 
inhibition of network hubs. While most nodes in scale-free networks possess a low 
degree and can be removed or inhibited without great risk of leading to a loss in 
network functionality, i.e. robustness, the reverse is also true, wherein targeting 
highly connected nodes can be exploited to evaluate whether a predicted network 
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function or other emergent property is dependent on network integrity mediated by 
their hubs [ 62 ]. For instance, such connectivity properties suggest that inhibition of 
one or more primary hubs of an endodermal secretome network might prevent its 
potentiating effect on cardiac differentiation [ 11 ]. This prediction was reinforced by 
 in silico  modulation of composite network generation, whereby prioritization of 
cardiovascular development predicted for the network was demoted after arbitrarily 
removing the most highly connected hub from pathway analysis input data [ 11 ]. 
Indeed, this was demonstrated functionally when application of pharmacological 
inhibitors of the two most highly connected nodes each abolished the cardiac poten-
tiation effect mediated by the secretome. This included the primary hub that was 
detected during initial proteomic analysis as well as the secondary hub that was only 
incorporated during network generation but was noticeably absent from the pro-
teomic data [ 11 ]. Thus, network topology assessment has the potential to provide 
value-added emergent properties for hypothesis generation of intra-network posi-
tional relevance. Moreover, even though network generation increases overall 
molecular complexity by adding more proteins to the initial proteomic list, in doing 
so it also yields further potentially relevant candidates for systems evaluation that 
may be critical contributors to the underlying biology that were nevertheless over-
looked during initial proteomic screening [ 4 ,  5 ,  11 ].  

    Conclusion 

 Continued technological advances, with improved instrument sensitivity and res-
olution combined with expanded, more detailed protein databases, will lead to 
increasingly larger proteomic datasets, each harboring tremendous biological 
intricacy. Network systems analysis strategies will therefore become ever more 
critical for proteomic and other high throughput data deconvolution [ 4 ,  63 ]. 
Herein, guidance is provided on generalized analytic approaches by which to sys-
tematically organize, cluster, and prioritize proteomic datasets in their entirety to 
reduce information complexity while simultaneously yielding functional insights. 
An important qualifi er is that ontological classifi cation, and enrichment, pathway, 
and complex network analyses may be considered as interchangeable modular 
components of a network systems approach. Rather than applying each as a stand-
alone topic or steps that must be adhered to in a prescribed order, these elements 
may be arranged fl exibly and used in a variety of ways, as required to address a 
specifi c biological question. Indeed, the same step may even be repeated multiple 
times at different stages in an analysis. For instance, enrichment analysis can be 
conducted on initial ontological categories, during pathway analysis, or on fi nal 
output networks [ 6 ], potentially revealing shifts in focus at successive points in an 
analysis. When actionable hypotheses are generated via systems analysis and 
examined experimentally, refi nement or modifi cation of the initial interpretation 
may potentially mandate an additional round of high throughput data acquisition. 
Thus, network systems analysis can also be viewed as an iterative process, with a 
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cyclical transition from high throughput data to interrogation, followed by experi-
mentation to validate or refi ne interpretation, ultimately guiding subsequent deci-
sions on additional proteomic or other high throughput experiments (Fig.  14.1 ) [ 5 , 
 6 ]. Comprehension of the basis and utility of these organizing and interpretive 
principles provides a foundation for their application, preparing students, pro-
teomic practitioners, and clinicians alike for effective application of basic and 
translational proteomic network medicine to further our understanding of cardio-
vascular health and disease.     
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