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  Pref ace   

 The proteome, originally defi ned as the protein complement of the genome, can be 
studied by a complex array of technologies commonly encapsulated under the term 
 proteomics . Of these technologies, mass spectrometry has single handedly revolu-
tionized our ability to explore biological systems and provides a major advancement 
for research efforts. The realization that protein post-translational modifi cations are 
heterogeneous, ubiquitous, and dynamic offers an expanded view to examine patho-
physiological processes. This concept has compelling implications for the under-
standing of diseases, particularly those that are sporadic in nature and for which a 
genetic determinant is not readily identifi ed. The low correlation between gene 
expression and phenotype in health and disease can be explained by changes at the 
protein post-transcriptional and post-translational levels. This is particularly rele-
vant in the settings of cardiovascular disease. For instance, increasing evidence sup-
ports the idea that cardiovascular diseases, such as heart failure, are proteinopathies. 
Therefore, there is a clear need to evaluate proteins and their modifi cations, to better 
understand cardiovascular disease at the molecular level. 

 This book is a response to that clarion call. We highlight the remarkable advances 
that have contributed to the development of proteomics over the last two decades. 
Enormous leaps have accompanied the implementation of new instruments and ana-
lytical approaches. As a result, hurdles along the path from data acquisition to bio-
logical insight have been dramatically lowered. The aims of this manual are to make 
these new methods and technologies understandable to scientists who are new to the 
proteomics arena and to accelerate knowledge dissemination. This book covers the 
full measure of topics that defi ne modern cardiovascular proteomics, including but 
not limited to experimental design, sample preparation and separation, mass spec-
trometry technologies, protein identifi cation and quantitation, as well as statistical, 
pathway, and network analyses of proteomics results. 

 While many of the concepts, methods, and technologies presented here can be 
widely applied across fi elds of biomedical research, including cancer and brain 
research, this book has been tailored for the cardiovascular researcher; the many 
facets of cardiovascular disease are refl ected in these chapters. All proteomes are 
not created equal, and cardiovascular proteomics presents a host of unique 
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 challenges, not the least of which is the wide dynamic range of protein abundances 
present in the cardiac muscle and in plasma. This book addresses many of the tech-
nical subtleties to be considered when embarking on a cardiovascular proteomic 
study, which serves as a guide for scientists entering the fi eld. 

 This is the dawn of a new century where technology serves biology in an unprec-
edented way, and the tools currently available in the toolbox provide a rapid means 
to impact cardiovascular research. The contributing authors are among the most 
established scientists in the fi eld of cardiovascular proteomics and have experienced 
the proteomic revolution fi rst hand. We are extremely grateful to all of the authors 
for dedicating their precious time to share their deep knowledge and help us com-
pile this manual. 

 Finally, we are immensely grateful for the strong historical foundation on which 
these chapters are built, laid by scientists pursuing their passion before the term 
proteomics was even coined. Among them, we would like acknowledge Dr. Jennifer 
E. Van Eyk, Dr. Peipei Ping, and Dr. Michael J. Dunn for their rich scientifi c contri-
butions, their enthusiastic mentoring of new generations, and their tireless dedica-
tion to the advancement of proteomics as an essential fi eld of cardiovascular 
discovery. Today, the state of the fi eld is stronger for their efforts, and its vitality is 
directly refl ected in this book. We hope that you fi nd it useful for your research.  

    Baltimore ,  MD ,  USA      Giulio     Agnetti    
 Baltimore, MD, USA     D.     Brian     Foster    
   Jackson ,  MS ,  USA      Merry     L.     Lindsey       
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    Chapter 1   
 A Historical Perspective on Cardiovascular 
Proteomics                     

     Giulio     Agnetti       and     Michael     J.     Dunn    

    Abstract     The “Manual of Cardiovascular Proteomics” is the result of the con-
certed effort of many experts in the fi eld and it addresses the core technologies and 
approaches that have been implemented since its birth. Although each chapter can 
be read or studied independently of the others; depending on the level of interest, 
the whole manual should provide a detailed overview on what is available to the 
modern scientist who wants to embark on a cardiovascular proteomic expedition. 
Chapter 1 provides the historical perspective and describes the landmark discover-
ies that propelled the fi eld forward, along with considerations on how to chose a 
specifi c approach and what the fi rst steps to complete a proteomic experiment suc-
cessfully should be. We hope that you will enjoy the fi rst edition and are looking 
forward to your feedback in order to improve future editions.  

  Keywords     Cardiovascular proteomics   •   History of proteomics   •   Proteomic discov-
eries   •   History of mass spectrometry   

     Introduction: The Renaissance of Protein Biochemistry 

 At the end of the last century, in September 1994 to be exact, a new term was publicly 
announced during a small meeting titled “2D Electrophoresis: From Protein Maps to 
Genomes” held in the charming Tuscan hills ( Siena ,  Italy ). At this meeting, the term 
“Proteome” was defi ned by Marc Wilkins from Sydney as the “ prote in complement 
of the gen ome ”, resulting in the birth of the fi eld of “proteomics”. This rather simple 
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moment defi ned a time in history when the emphasis would slowly but steadily move 
from the role of genes to that of proteins and their modifi cations as defi ning traits of 
the phenotype, both in health and disease. This “Cultural Revolution” was largely 
made possible by the remarkable technological advances in the fi eld of protein bio-
chemistry that were achieved in the latter part of the twentieth century. In 1975 Pat 
O’Farrell and other groups optimized the way to separate and detect over 1100 pro-
teins in a single experiment using two-dimensional polyacrylamide gel electrophore-
sis (2DE) [ 1 ]. Combined with the rapid developments in protein and peptide mass 
spectrometry (MS), and the creation of protein databases which followed, these com-
bined techniques enabled by the late 1990s the separation, quantifi cation and identi-
fi cation of hundreds to thousands of proteins starting from a single biological sample. 
Indeed, the study co-Authored by Marc Wilkins the year following the 1994 Siena 
meeting inaugurated a new era in protein biochemistry [ 2 ]. 

 As we write, we have recently celebrated the 21st birthday of the proteome and 
in retrospect, many things have dramatically improved. To mark this occasion, a 
Special Issue celebrating the 20th birthday of proteomics, dedicated to the memory 
of Vitaliano Pallini (the former Supervisor of the Functional Proteomics group at 
the Molecular Biology Department at the University of Siena, Italy), was recently 
published in the Journal of Proteomics [ 3 ]. We direct the interested reader to this 
special issue for historical references as several scientists that participated in the 
birth of proteomics contributed with their personal views and memories. 

 The “new fi eld” of proteomics (i.e. the complex of technology used to investigate the 
proteome), which could be also termed  advanced protein biochemistry , is the result of 
the incredible technological advances that have allowed protein biochemists to study the 
subjects of their investigation in a more effi cient way. However, along with the techni-
calities, as often happens in scientifi c history, new concepts and ideas arose thanks to the 
availability of these new technologies. Much like the invention of the microscope 
allowed van Leeuwenhoek to see  animalcules , which led to the discovery of pathogens, 
proteomic technologies have revealed an almost unimaginable complexity in terms of 
what are increasingly referred to as  proteoforms  [ 4 ]. Therefore, the impact of proteomics 
is not only technological, but also highly biological in nature. It is likely that the interest 
in genes and transcripts that captured the attention of the scientifi c world (and US 
Congress) in the 1980s, was also fueled by the relative facility by which nucleic acids 
can be amplifi ed, a luxury that is still missing in the fi eld of proteomics. However, thanks 
to the steady advances in protein separation technology, and more recently the imple-
mentation of novel MS confi gurations and protocols, the possibility of mapping the 
proteome, decorated with its countless post-translational modifi cations (PTMs), now 
seems within reach. The outstanding protein scientists who endured long periods of 
anonymity in the genomic era should not be forgotten as it is thanks to them that we are 
now capable of achieving all the wonderful things that proteomics is making possible. 
Thanks to the passion, hard work and dedication of these researchers, the variety and 
complexity of the proteome has fi nally emerged. This realization is having and will 
continue to exert a tremendous impact on modern life sciences and biomedicine and it 
should be born in mind that, as much as proteomics, more so than other global approaches 
(or –omics), relies heavily on technologies, the driving force which will propel pro-
teomics in the future will be its impact on biological sciences and biomedicine. 
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 In this chapter, we will highlight the scientifi c landmarks that made the study of 
the proteome possible, with specifi c reference to the cardiovascular system. It is our 
belief that a thorough understanding of where the proteomic world comes from will 
highlight the path to a prosperous future.  

    A Brief History of Proteomics 

 As mentioned in the introductory paragraph, the “proteomic revolution” could not 
have been possible without the technique, now 41 years old, which was carefully 
optimized by Pat O’Farrell in 1975 [ 1 ]. Although other groups implemented alter-
native versions of orthogonal gel separation, the 2DE protocol optimized by 
O’Farrell was arguably superior at the time it was published [ 5 ]. Indeed, by combin-
ing the best approaches available at the time and with an eye to the future, he was 
able to separate and visualize over a thousand proteins from  E. Coli , while other 
groups could “only” see a few hundred proteins. Part of this success was made pos-
sible by the choice of isotopic labeling to boost sensitivity by about three orders of 
magnitude with respect to other groups who used protein staining (such as 
Coomassie Brilliant Blue) [ 5 ]. This technique, which is still in use today, is based 
on the combination of two independent electrophoretic separation methods applied 
to the sample in an orthogonal fashion. The fi rst separation, commonly referred to 
as the  fi rst dimension , facilitates the separation of proteins according to their charge 
properties (isoelectric point, pI) by isoelectric focusing (IEF) under denaturing con-
ditions. This is followed by the  second dimension , which exploits the denaturing 
properties of charged detergents (typically sodium dodecyl sulphate, SDS) in order 
to separate proteins based on their molecular mass (M r ) (Fig.  1.1 , see Chaps.   2     and 
  7     for details). Both electrophoretic steps are carried out using polyacrylamide gels 
(PAGE) with different properties that were optimized in the course of the following 
decade. In fact, another landmark discovery that allowed 2DE to become widely 
used was the advent of immobilized pH gradients (IPG). The idea, mastered by Pier 

Sample First Dimension,
Isoelectric Focusing (IEF)

Second Dimension, 
SDS-PAGE

+

pH

MS

Mr

+SDS

+
in-gel digestion

  Fig. 1.1    Schematic of 2DE-MS. Proteins are fi rst separated by 2DE according to their pI and 
molecular mass (M r ). The fi rst separation in 2DE (IEF) is commonly referred to as “fi rst dimen-
sion” whereas the second step (SDS-PAGE) is commonly referred to as “second dimension”. After 
in-gel digestion proteins can be identifi ed using MS (see text for details)       
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Giorgio Righetti and colleagues at the University of Milan ( Italy ) and developed 
within a large consortium involving several Universities and established scientists 
as well as an industrial partner (LKB at that time), led to the historical publication 
by Bjellqvist and colleagues in 1982 [ 6 ]. A few years later, based largely on optimi-
zation of the IPG 2DE technique in the laboratory of Angelika Gorg, the industrial 
partner (now Pharmacia) made the technology available at an industrial scale, 
enabling increased intra- and inter-lab reproducibility of 2DE [ 7 ] and the wide-
spread diffusion of 2DE.

   Using 2DE technology, Valerie Wasinger and colleagues were able to generate 
the data disclosed at the’94 Siena meeting and published the following year in the 
journal Electrophoresis [ 2 ]. In what is commonly referred to as the “fi rst proteomic 
paper”, these new technologies were combined with matrix-assisted laser desorp-
tion ionization–time of fl ight MS (MALDI-TOF MS, see Chap.   2    ), for the rapid 
identifi cation of proteins using peptide mass fi ngerprinting (PMF) [ 8 ]. This 
MS-based approach is based on the digestion of the separated proteins with a prote-
ase (e.g. trypsin) and was utilized extensively in the early days of proteomics for the 
rapid identifi cation of proteins. With the more recent popularity of tandem MS (see 
Chap.   2    ), allowing accurate determination of the sequence of peptides of the sepa-
rated proteins, PMF was almost abandoned, only to make a glorious comeback as a 
rapid way to identify pathogens in biomedical labs in recent years [ 9 ] (see Chap. 
  18    ). The last key ingredient that was needed to identify proteins effi ciently was the 
development of databases and algorithms to match the obtained MS spectra with 
protein names. Among the many contributions made by Norman and Leigh 
Anderson (father and son), the creation of one of the fi rst successful algorithms to 
analyze 2DE maps [ 10 ] and the fi rst online protein database (the Human Protein 
Index or HPI) [ 11 ] are two advances that accelerated the much needed creation of 
bioinformatic tools to mine the proteome (see Chaps.   12     and   14    ).  

    Operator Independence Days in Separation Techniques 

 Among the limitations of 2DE, the labor intensive and “artisanal” way they are 
performed paved the way to the success of more automatized techniques. To any-
body who has successfully run a 2D gel, it is obvious how much training and effort 
is required to optimize both the conditions and the manual skills needed to obtain a 
well-resolved protein profi le. With regard to the visual analysis of 2D gels and con-
sidering all of the effort involved in generating them, a parallel with visual arts is 
perhaps not too much a stretch of the imagination. The love-hate relationship of 
proteomic scientists with 2DE has made it something of a romantic journey, as testi-
fi ed for instance by the severe problems with the separation of membrane proteins, 
voiced so passionately by Thierry Rabilloud [ 12 ,  13 ]. 

 Although several protein separation techniques have been implemented over the 
years, liquid chromatography (LC) became extremely popular for several reasons. 
Firstly its direct coupling with an MS instrument is relatively straightforward, 
decreasing the chance of contamination and avoiding a “transfer” step. In the origi-
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nal iteration of what is referred to today as the “shotgun” approach, John Yates and 
colleagues also applied an “orthogonal” peptide separation approach by combining 
strong cation exchange (SCX) and reverse phase (RP) chromatography in sequence 
[ 14 ] (Fig.  1.2 , see Chap.   4     &   7    ). This was in the late’90 and the limitations of shot-
gun approaches, including limited quantitation capabilities, also became evident in 
the following years. The use of isotopic metabolic or post- labeling, was success-
fully applied to improve the quantitation capabilities of LC-MS approaches in the 
decade that followed [ 15 ]. Briefl y, labeling proteins with isotopic aminoacids 
(dividing cells [ 16 ]) or tags (post-mitotic primary cultures, tissues, etc. [ 17 ]), 
allowed resolution of peaks originating from the same peptide but deriving from 
different samples in the MS as a mass shift, in a highly quantitative fashion. Several 
iterations of these reagents resulted in a technique that is now both robust and com-
mercially available (see Chap.   11    ) [ 18 ].

   In a similar fashion, at the end the’90s a labeling approach that improved sensitivity, 
dynamic range and throughput in 2DE was developed by scientists at Carnegie Mellon 
in Pittsburgh [ 19 ]. This technology, currently commercialized by GE Healthcare, 
involves the pre-electrophoretic fl uorescent labeling of protein samples with  N -hydroxy-
succinimidyl-ester derivatives of fl uorescent cyanine (Cy) dyes and is known as two-
dimensional difference gel electrophoresis (DIGE). This approach has the advantage 
that a pair of protein samples can be labeled separately with differently fl uorescing Cy3 
and Cy5 derivatives. The two samples can be mixed and then separated together on the 
same 2D gel. The resulting 2D gel is then scanned to acquire the Cy3 and Cy5 images 
separately using a fl uorescent laser scanner. Furthermore, a sample labeled with a third 
Cy2 dye can be run on each 2D gel and used to normalize the signal among different 
gels. This DIGE approach dramatically reduces technical variability and exploits the 
high dynamic range of  fl uorescent staining for accurate quantitation. The issue of mul-
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  Fig. 1.2    Schematic of LC-MS. In “shotgun” proteomics proteins are fi rst digested into peptides, 
which are generally more stable and soluble. Peptides can be then separated by liquid chromato-
graphic techniques. Classically, Strong Cation Exchange (SCX) and Reverse Phase (RP) chroma-
tography were combined in series to improve resolution. Liquid chromatography can be physically 
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tiple proteins within the same 2DE spot still remains and, therefore, downstream vali-
dation of the changes observed in protein levels by other techniques is still essential. In 
addition, the relatively high price of the dyes and detection systems (a laser scanner 
able to detect the fl uorescent probes) remain limiting factors. 

 As a result of the enormous advances in MS technology, it is nowadays possible 
to create an  in silico , “unbiased” map of the proteome with little sample manipula-
tion prior to MS [ 20 ,  21 ]. The combination of data independent acquisition (DIA) 
and targeted methods, such as multiple reaction monitoring (MRM [ 22 ]), now facil-
itate the accurate quantitation of peptides in the absence of isotopic labeling and in 
a proteome-wide fashion (see Chap.   10     on DIA/SWATH). The higher throughput 
capabilities and automatization of LC  versus  2DE, combined with the increased 
capacity of detecting membrane and basic proteins further contributed to the popu-
larity of LC-MS in the following decade and through to the present day. However, 
one limitation of shotgun approaches that remains to this day is that proteins are fi rst 
digested into peptides, which are more stable, prior to separation by LC. From the 
standpoint of a biologist it is easy to understand how, by operating at the peptide 
level from the outset, important information can be lost. Indeed, so-called “top- 
down” approaches, which allow the analysis of whole proteins by MS (as opposed 
to “bottom-down” approaches, such as shotgun proteomics), are becoming increas-
ingly popular (see Chap.   8     and [ 23 ]). This is also a consequence of the enormous 
amount of data and information generated by a single shotgun experiment, which 
can be challenging to store and analyze. The divide between bottom-up and top- 
down approaches is a blurred one and in fact some argue that 1D (SDS-PAGE or 
IEF) and 2DE techniques may be right in the middle, offering the opportunity to 
separate, or at least reduce the complexity of protein samples to a few intact proteins 
per spot. The capacity to see gross changes in molecular weight (e.g. degradation or 
proteolysis), or isoelectric point (e.g. phosphorylation) prior to digestion, combined 
with the natural propensity of the human brain to recognize patterns, suggest that 
2DE may still have a role to play as a balance between top-down and bottom-up 
approaches, while celebrating its forty-fi rst birthday [ 24 ].  

    Over a Century of Mass Spectrometry 

 Despite MS having a dominant role in proteomics these days, it is not a new tech-
nique. Indeed the fi rst reports of the use of a very distant cousin of a modern MS 
date back to the work of Joseph John Thomson sometime around the turn of the 
twentieth century. Unbeknown to this young theoretical physicist at Cambridge 
University, MS would turn into, arguably, the most revolutionary technology in bio-
medicine over a century later. This embryonic MS, then called a parabola spectro-
graph, was initially used to investigate the very intimate components of matter, for 
which Thomson received a Nobel Prize in 1906 for “discovering the electron” [ 25 ]. 

 It would take seven decades for MS to be able to be used to sequence proteins 
thanks to the work and dedication of Klaus Biemann and colleagues, right around 
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the time when protein biochemists were optimizing 2DE [ 26 ]. Indeed, the possibil-
ity of analyzing large organic molecules using MS was limited by the ability to 
convert them into ions that would be able to “fl y” in the instrument, a requirement 
for MS analysis. MS was initially applied to smaller molecules such as metabolites 
or pharmaceuticals, which could be ionized without being fragmented during the 
process. The way that an MS instrument works can be equated to that of a very 
precise molecular scale, as we will see in details in the following Chapter. To ionize 
large organic molecules represented a major challenge in MS history, because the 
kinetic energy that needs to be transferred to the peptides for them to enter into a gas 
phase as ions and be separated using magnetic selectors, would cause their 
fragmentation. 

 It took the work of several groups and two Nobel prizes to overcome this limita-
tion in the late ‘80s. Two different approaches were pursued starting from either 
solid (crystallized) or liquid samples. Both proved to be effective in the end and 
generated the two sources that are still in use today: electrospray ionization (ESI), 
and matrix-assisted laser desorption ionization (MALDI). As we will learn in the 
next Chapter an MS instrument can be divided in three sections: a source, which 
converts peptides into ions in a gas phase; an analyzer (or multiple analyzers in 
series, as for tandem MS); and a detector to “count” the peptides ions and/or their 
fragments, separated according to their mass (mass over charge or  m / z  to be precise) 
by the analyzer/s (Fig.  1.3 ).

   The Nobel prizes were ultimately awarded to John Fenn (ESI) and Koichi 
Tanaka (MALDI) in 2002, for “their development of soft desorption ionization 
methods for mass spectrometric analyses of biological macromolecuels [ 27 ]”. A 
little known fact about MALDI, is that although the Nobel prize was awarded to Dr. 
Tanaka and his group for their pioneering work on ionizing organic macromole-
cules from solid phase, the MALDI source, as it is currently used, was developed 
by two German scientists, Michael Karas and Franz Hillenkamp, who also named 
the technique [ 25 ]. This is one of the fi rst examples of MS applied to the cardiovas-
cular realm as the two scientists had a specifi c interest in mapping Ca 2+  stores in 
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  Fig. 1.3    Anatomy of a mass spectrometer. A mass spectrometer is best described by its “anatomi-
cal” components: a source, one or more analyzers and a detector (see text and Chap.   2     for details)       
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cardiac cells [ 25 ]. These “soft” ionization methods were fi rst applied to nucleic 
acids. As we will see in the next paragraph, along with the creation of genomic 
database, nucleic acid research indirectly contributed to the development of pro-
teomics. Lastly, as we will see in Chapter   2    , several advances in MS, including the 
creation of new analyzers (such as orbital traps [ 28 ]) and improved fragmentation 
approaches [ 29 ], have remarkably enhanced the capability of modern instruments 
to the point that several thousands of proteins and their modifi cations can be accu-
rately resolved nowadays.  

    Genomic and Proteomic Databases: From Genes to Proteins, 
and Back 

 As mentioned, one of the technologies that was developed during the genomic era 
and which served the proteomic cause very well was the creation of protein data-
bases. In the fi rst proteomic studies, proteins were identifi ed using chemical Edman 
degradation and/or genetic tools which allowed scientists to assign a peptide to a 
protein, by translating it into a genetic sequence and matching it to those available 
in a particular genome. Since the very beginning of protein sequencing by MS, this 
new approach helped to identify open reading frames (ORFs) or sequenced genes 
thus perfecting their publication and annotation [ 30 ]. 

 As mentioned above, the creation of protein databases to mine protein 
sequences was the result of the renaissance mind of the Andersons who created 
the fi rst online protein database (HPI) [ 11 ] and the many implementations which 
followed. The sequencing of the genome of many organisms, including the 
human genome, allowed proteomic scientists to build protein databases predicted 
on the basis of the genetic info and ORFs. On this issue it is interesting to see that 
proteomic studies helped to fi nd limitations in genomic databases [ 31 ]. The quest 
to match peptide spectra was greatly facilitated by the creation of  search and 
retrieval systems  (SRSs), algorithms, such as MASCOT [ 32 ], capable of scan-
ning through a large database and returning the likelihood of a true-positive 
match between the experimental mass spectrum and a protein sequence listed  in 
silico . As can be seen the sequencing of genomes not only allowed proteomics to 
fl ourish but for the former to “pay back” by pinpointing limitations in the algo-
rithms used to predict and annotate genes in the respective databases. Indeed, 
despite genetic information being there it is important to confi rm that it is rele-
vant to the phenotype, or expressed. Even when that is the case, the predictive 
value of genes is highly limited by mRNA stability, alternative splicing and post-
translational modifi cations [ 33 ]. Large-scale proteomic studies are inconceivable 
without the aid of bioinformatics and this fi nally allowed us to break free from 
the “one gene to one protein” dogma [ 34 ]. It is our hope that, as our technologies 
and bioinformatic tools perform more accurately and errors are corrected, the 
detailed picture of the molecular phenotype (aka the proteome) will fi nally reach 
a sublime resolution.  
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    Proteomics with a Heart 

 We already mentioned how, thanks to the work of Michael Karas and Franz 
Hillenkamp in Frankfurt, cardiovascular research was involved with cutting-edge 
proteomic research early on in the history of proteomics. There are many unan-
swered questions in the cardiovascular realm many of which have a deep impact on 
public health due to the widespread incidence of a multiplicity of cardiovascular 
diseases [ 18 ]. Proteomics would be a natural tool to investigate mechanisms, gener-
ate new hypotheses and test the predictive value of novel biomarkers. We are lucky 
to have participated in the development of cardiovascular proteomics. Indeed, the 
fi rst studies on the heart using 2DE anticipated the 1995 publication by Valerie 
Wasinger and colleagues of a much more unpleasant proteome [ 2 ]. Mike Dunn and 
Peter Jungblut were among the fi rst scientists utilizing these methods to study the 
human heart, and published the fi rst human heart 2D maps the same year the pro-
teome was “born” [ 35 ,  36 ]. Shortly after, the same groups utilized MS to identify 
numerous myocardial proteins from 2DE [ 8 ,  37 ]. In their seminal report from 1998, 
Mike Dunn and colleagues compared cardiac biopsies from dilated cardiomyopathy 
(DCM) and ischemic heart disease (IHD) patients and found several signifi cant 
changes that were also monitored at the isolated cell level for fi broblasts, mesothe-
lial and endothelial cells, and cardiac myocytes [ 38 ]. To our knowledge this is the 
fi rst report of a proteomic study addressing cardiovascular disease (Fig.  1.4 ). 
Interestingly, the changes in desmin and the chaperone alpha-B-crystallin fi rst 
reported over 25 years ago are still the object of an intense investigation by several 
scientists (including our group [ 39 ]). Specifi cally, the idea that desmin can form 
preamyloid oligomers in the heart, similar to those found in Alzheimer’s and 
Parkinson’s diseases as well as several other proteinopathies, suggest that protein 
misfolding could play a major role in many diseases affecting the majority of the 
population in westernized societies, including cardiovascular disease. The role of 
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     2DE-MS to study heart disease [8, 37]
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  Fig. 1.4    A Timeline for the history of cardiovascular proteomics. See text for details       
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posttranslational modifi cations in this process is also rapidly emerging [ 40 ]. 
Therefore, proteomics may also help to generate new views and cutting edge idea in 
cardiovascular research.

   With the new century, proteomics started to feature rapidly in the cardiovascular 
fi eld. More pioneers of the caliber of Jennifer Van Eyk and Peipei Ping, started 
exploiting these emerging technologies to address a number of different aspects of 
cardiovascular disease spanning from signaling [ 36 ]. to biomarker discovery [ 41 ]. 
Thanks to the pioneering work of these scientists and others the fi eld grew at an 
almost exponential pace, scoring a total number of 2011 “cardiovascular proteomics” 
publications at the time of writing. Although this does not include all of the work 
done in “specialty areas” and is limited by the searched terms, it does provide a reli-
able estimate of the upward trend of the fi eld for the last 15 years (Fig.  1.5 ). The 
term was used in only fi ve articles in 2000, and in 265 articles in 2014. The appeal 
of using chromatography over 2DE gels has also rapidly increased and several com-
parative studies describing the complementary use of the different approaches to 
achieve more extensive coverage have been published in the last decade. As pro-
teomics evolves, and that is happening very quickly, we are sure that this approach 
will be increasingly incorporated into studies addressing the main unsolved ques-
tions concerning prevention, diagnosis and cure of cardiovascular disease.
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       Historical Crossroads: Pick Your New Technologies Wisely 

 Once proteomics became available to cardiovascular scientists at the beginning of 
this century, an immediate challenge came with it: what technology should they use 
to address a specifi c biomedical question? This is true for both basic and translational 
studies. The number of technological platforms also exploded. To keep up with a 
continuously evolving fi eld is not an easy task, especially when it is as technologi-
cally based as proteomics. In our opinion, one of the responsibilities of the proteomic 
community is to explain these aspects to the ever-increasing number of collaborators 
in a way that is unbiased and comprehensible. Untimely, there is a tendency in some 
scientifi c environments to claim potential benefi ts even if they are only on the hori-
zon of a particular technology. The increasing pressure to obtain research funding at 
a time when the economy is “breathing slowly” may accentuate this tendency. 

 There are several examples of why it is best to under-promise and over-deliver 
than  vice versa . Perhaps one of such example that should be born in mind when 
establishing a collaborative effort or investing in a new technology is the experience 
with SELDI (surface-enhanced laser desorption ionization). This is a modifi ed and 
patented version of MALDI that became quite popular in the early days of pro-
teomics. Despite the promise of accelerating the discovery of new biomarkers, 
when it was fi rst released, the technology was based on a low resolution MALDI- 
TOF instrument with a proprietary technology to fractionate the samples directly 
onto the MALDI (or SELDI) plate, the support that allows samples to enter the 
instrument. Despite the initial “hype” that seems to accompany most new technolo-
gies, the use of SELDI has now rapidly declined, probably because the method did 
not meet initial expectations, possibly due to the high impact of matrix effects, 
limited reproducibility and limited identifi cation capabilities [ 42 ]. 

 This is just one of the many examples that are a feature of the history of pro-
teomics, and probably of many other fi elds. Another lesson learned is that the 
SELDI instrument was originally packaged in a “black box” type of format, claim-
ing a simple sample in/data out operation. This is a very important lesson for new 
and old proteomic scientists alike. The fi eld is complicated, and as much as there is 
a purpose in trying to simplify technologies in order to allow their broader use, cer-
tain aspects simply cannot be simplifi ed. When a technology does not deliver what 
it had promised, the impact on its future tends to be more dramatic, possibly because 
there is a collective memory in the scientifi c community, which tends to adjust to 
new concepts with a certain delay. It is also possible that this fact alone may limit 
the chances of “redemption” for technologies that are initially advertised to address 
more than can be expected from them. The “market” of proteomic technologies is a 
bit like the stock market in that it is extremely volatile, and at times expensive. For 
proteomic beginners it may be wise to rely on the advice of more experienced sci-
entists in the fi eld, and since we all have our passions and beliefs, perhaps diversify-
ing the portfolio of “proteomic brokers” could also prove benefi cial. Last but not 
least, proteomic scientists need to make themselves  understandable to the general 
scientifi c community, avoiding technical jargon when possible and sharing their 
unbiased knowledge. This book represents an effort in this very direction.  
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    What Do We Leave Behind as We Move Forward: Bringing 
the Fun Back into Science 

 This is a tremendously exciting moment in science, including the cardiovascular 
fi eld. The capabilities offered by the latest generation of proteomic technologies are 
almost infi nite. We can see most of the proteome, quantify it and fi nally make sense 
of it. Thinking back on how hard previous generations of scientists had to work in 
order to optimize these technologies should make us feel extremely lucky. It took 
decades to couple an LC with an MS, and decades to analyze peptides and proteins 
using it. It took decades to sequence the genomes that are available today, create the 
corresponding protein databases and the algorithms to exploit them to generate pro-
teomic data. It almost appears that everything had to be optimized for the current 
generation of proteomic scientists to “have fun with it”. Proteomics can be painful, 
as science at large has the tendency to be sometimes. However, it has the potential 
and capability to bring very diverse expertise around the same table: statisticians, 
engineers, biochemists and physicians can fi nd some exciting, common ground to 
move science and medicine forward (hopefully, as is the case with the present 
book). With this also comes the responsibility to actually change medicine and 
translate the impact of all these rich technological gifts back into some good for 
human health. There is an increasing demand for technical expertise and scientists 
that can translate the diffi cult languages of math, engineering, protein biochemistry 
and medicine. It takes time and dedication to have enough knowledge of these lan-
guages to be able to contribute something to the table. However, it is not inconceiv-
able that proteomics will become a curriculum in many undergraduate and graduate 
programs in its own right, as happened previously for biotechnology, molecular 
biology, etc.. In all, these opportunities for collective growth lie just ahead of us 
waiting to be picked like ripe fruit. 

 With such opportunities in prospect, perhaps the best way to move forward is to 
honor those that took us this far by pursuing the best science possible. Of course 
quality and integrity are two pillars of science, or at least should be. As we have 
learned in this chapter, time will tell if what we have fulfi lled these two core prin-
ciples. Moreover, in an era where communication and data access is so rapid it may 
become increasingly easier to get distracted and lose focus of the scientifi c goals. In 
addition, when being exposed to technologies, there is also a risk of falling in love 
with them. In summary, with all these novelties comes the risk of forgetting the 
knowledge generated by other means and during earlier times, when perhaps it took 
longer to separate proteins or to analyze them, but this time could be used to learn 
about the functional aspects of our discoveries, in-depth. Many proteomic scientists 
in the cardiovascular fi eld had to write scientifi c articles explaining why a list of 
proteins, many of which we had not heard about before, change in a coordinated 
fashion. What has been published about the role of these mysterious proteins and 
the biological effect of their known post-translational modifi cations that we see 
changing in a particular disease state are very important aspects of our research. To 
us, another good way to honor the work of the fathers of proteomics would simply 
be to “do our homework”, try to put our observations in the context of what is 
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already known without the need to rewrite science. Lastly, as we stand on the shoul-
ders of the scientists who made us who we are, we honor their legacy by learning 
from their mistakes and endeavoring to match  their successes. 

 Funding: American Heart Association 12SDG9210000 and 16IRG27240002; NIH P01 HL107153; 
RFO University of Bologna to GA     
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    Chapter 2   
 Basic Concepts in Mass Spectrometry 
and Protein Quantitation                     

     Jake     Cosme     *,     Irina     Tchernyshyov     *, and     Anthony     Gramolini     

    Abstract     Mass spectrometry (MS) has provided some paradigm-shifting technology 
to the fi eld of cardiac biology. Recent advances in MS have made protein identifi cation 
into a high throughput analytic tool and improved accuracy and sensitivity of protein 
quantitation. Many of the tools available to scientists trying to answer fundamental 
questions of basic heart function and mechanisms of disease are quite robust and ver-
satile. MS-based cardiac proteomic approaches have developed to such an extent that 
a researcher can design experiments to answer clear hypotheses, but also studies can 
also be ‘hypothesis-generating’, ultimately leading to deeper analyses and consider-
ations. Here, we will outline the basic concepts of MS in an effort to explain the poten-
tial of this technology in investigating cardiac based research questions. Principles of 
how current instrumentation functions and how data is acquired will be introduced. 
Protein quantitation in MS is available in many varieties and applications; this chapter 
will outline current available technologies in protein quantitation such as isotope-
labeled and label-free approaches. With the introductory knowledge of MS and protein 
quantitation, we will examine some key cardiac proteomics studies and discuss how 
these principles have been applied to answer specifi c research questions.  
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fragmentation   •   Quantative proteomics  

       Introduction to Mass Spectrometry 

 Proteins are end-point effectors in cell signaling pathways controlling the majority 
of cellular functions. Identifi cation of basic components of signaling networks and 
their relative abundance provides insights into biological understanding of the 
molecular dynamics of a particular system in health and disease. Mass spectrometry 
has established itself as a key platform for protein analysis and characterization. In 
addition to being able to identify and quantify thousands of proteins in one experi-
ment, mass spectrometry can provide detailed structural information as well, such 
as identifying post-translational modifi cations. Mass spectrometers can generate 
information about molecular mass of a polypeptide. In most cases, the molecular 
mass alone is not suffi cient to establish the identity of the peptide or protein unam-
biguously or to help distinguish isomers (peptides which have the same amino acid 
composition but different amino acid sequence). To obtain detailed information 
about amino acid composition of a protein, including those amino acids that were 
covalently post-translationally modifi ed, an approach called “tandem mass spec-
trometry” is used. To perform tandem mass spectrometry, the ion of interest is bro-
ken into smaller fragments and molecular masses of the resulting products are 
determined by another round of MS. The fragmentation pattern specifi cally refl ects 
the structure of the original ion and is used to reconstruct its identity. Two conceptu-
ally very different strategies are used to identify and characterize proteins: “top-
down” and “bottom-up”. “Top-down” MS approach refers to analysis of the intact 
full- length proteins. This method has a potential advantage for providing the most 
detailed and complete data about protein variants and isoforms. However, while 
there is some notable success in using top-down approach, due to inherent diffi cul-
ties with intact protein separations, ionization and fragmentation, top-down analysis 
still remains a state of the art and prerogative of only a few expert labs [ 1 ]. Some of 
the challenges of top-down proteomics can be addressed by breaking down proteins 
into much smaller peptide molecules by means of proteolysis. This approach is 
commonly referred to as “bottom-up” proteomics. There are a variety of enzymatic 
or chemical methods that can be used for proteolysis. For these reasons, which will 
be discussed and highlighted later in this chapter, sequence specifi c serine protease 
trypsin is most commonly used in proteomics experiments [ 2 ]. Proteolytic digestion 
generates highly complex samples containing of thousands of peptides. Once 
cleaved, peptides then are subjected to some form of liquid chromatography (LC), 
which is commonly used to separate peptides before introduction into a mass spec-
trometer. This method has been successfully applied to proteomes of various com-
plexity, from cataloging proteins, which make-up cells and tissues [ 3 ], to identifying 
changes in extracellular matrix in a context of ischemia-reperfusion injury [ 4 ], to a 
single protein signaling proteome such as phosphoproteome of cardiac myosin 
binding protein-C (cMyBP-C) [ 5 ]. In this chapter, we will outline methods and 
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principles of peptide analysis by mass spectrometry such as peptide ionization and 
peptide fragmentation, describe how different mass spectrometers function, and 
how to obtain quantitative data from a proteomics-based experiment.  

    How a Mass Spectrometer Works 

 Ions of different mass-to-charge ratio (m/z), when placed in electrostatic, magnetic 
or electro-magnetic fi eld, exhibit different patterns of motion. At the basis of ‘Mass 
Spectrometry’ is the ability to separate ions by mass-to-charge ratio, from which 
molecular mass of the analyte can be calculated. Due to recent technological 
advances, numerous types of mass spectrometers became available to the research 
community from various vendors. The diverse equipment employ different physical 
principles and modes of operation, capable of different performance standards and 
can be used to address different analytical questions. However, regardless of instru-
ment confi guration, the fundamental components of a mass spectrometer are the 
ionization source, the mass analyzer, and the detector. The ion source is the com-
partment where sample molecules are converted into ions and introduced into other 
sections of the instrument, namely, the analyzer and the detector. A mass analyzer 
is the part of the instrument in which ions are separated based on their m/z values. 
When ion arrives at the detector, its energy is converted into electrical signal, which 
is transmitted to a computer and recorded in form of a spectrum. A mass spectrum 
is a two-dimensional plot, where a specifi c m/z on the x-axis is plotted against the 
relative abundance of the ion on y-axis. The specifi c type of the detector is usually 
supplied to match the analyzer. On the other hand, different ionization methods and 
analyzers offer great fl exibility to the end user and need to be understood in greater 
detail. In order to better separate ions it is important to avoid accidental collisions 
with air along the ion pass which can disturb an ion’s trajectory. For that reason, the 
analyzer, detector, and in some instrument confi gurations, an ion source, are main-
tained under high vacuum. 

    Methods of Ionization 

 For an analyte to be measured in a mass spectrometer, it needs to be ionized and to be 
brought into a gas phase. Energy needs to be transferred to molecules in condensed 
(solid) phase to make them volatile. It has proven to be challenging to ionize biologi-
cal molecules (i.e. peptides/proteins) without destruction or signifi cant degradation. 
In the late 1980’s two “soft ionization” methods were introduced: Matrix Assisted 
Laser Desorption-Ionization (MALDI) [ 6 ] and Electro-Spray Ionization (ESI) [ 7 ]. To 
date, these methods remain most widely used in ‘Proteomics’. ESI operates from 
solution and is easily coupled to many LC separation platforms. The peptide ions are 
preformed in the liquid phase during chromatographic separation (Fig.  2.1a ). While 
ESI can be used to generate both positive and negative ions, peptides and proteins are 
almost exclusively analyzed as positive ions. Peptide ions leave the LC column 
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through a spray emitter capillary. A high voltage power supply is connected between 
the spray emitter and an inlet into a mass spectrometer. Under these high voltage 
conditions the liquid leaving a capillary assumes a characteristic shape known as 
Taylor cone. Positively charged ions accumulate near the surface at the end of the 
emitter tip, and eventually explode in a mist of fi ne droplets. Each droplet consists of 
peptide ions and solvent molecules. As a droplet moves to the negatively charged inlet 
into the MS, the solvent gradually evaporates. As this happens the droplet becomes 
smaller and smaller, pushing the charged peptide ions closer and closer together, cre-
ating charge repulsion. At some point these repulsion forces overcome the surface 
tension and the ion leaves the droplet, temporarily decreasing charge repulsion. 
Released ions are drawn into the high vacuum region of the mass spectrometer.

Peptide mixture

Spray Emitter

HPLC
Evaporation

region
Mass

Spectrometer

Mass
Spectrometer

Vacuum
Atmospheric

pressure
High

Voltage

Laser
pulse

Desorption Desolvation
Proton
transfer

a

b

  Fig. 2.1    Peptide ionization methods. ( a ) Electrospray ionization source coupled to High 
Performance Liquid Chromatography ( HPLC ) column. Peptide mixture, generated by proteolytic 
digestion, is separated by liquid chromatography, ionized by protonation of basic amino-acid resi-
dues and sprayed from the emitter towards the MS. As solvent evaporates from the surface of the 
droplet, ions are forced closer together until charge repulsion causes peptide ions leave the droplet. 
High voltage potential pulls the ions into the high vacuum region of the mass spectrometer. ( b ) 
Diagram of Matrix Assisted Desorption Ionization (MALDI). For MALDI peptides, peptides ( red 
circles ) are embedded in the dense mesh of matrix molecules ( gray circles ). Intense heat of the 
laser pulse causes matrix to sublime. Evaporating matrix carries non-volatile peptide molecules 
into a gas- phase, where peptides get ionized via proton transfer from matrix       
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   The predominant mechanism of positive ionization is by transfer of protons from 
the solvent at low pH. The typical sites of proton attachment are amino acids with 
the basic side-chains (Arg, Lys, His and N-terminal amine). The charge state of the 
peptide closely correlates with the amount of proton attachment sites. As mentioned 
earlier, proteins are typically cleaved using the digestion enzyme trypsin. Trypsin 
cleaves very specifi cally at peptide bonds following Arginine or Lysine, leaving 
each generated peptide to have at least two proton attachment sites and minimum 
charge +2. An important feature of ESI is that the effi ciency of ionization depends 
on a ratio of sample ions to solvent molecules in a solution (concentration) leaving 
the ionization capillary, not the total amount of sample. Consequently, sensitivity of 
the analysis increases when the fl ow rate decreases. The largest gain in sensitivity is 
demonstrated at nanoliter fl ow rates (nanoESI) [ 8 ,  9 ]. As a result, nano ESI has been 
the most widely used mode of sample introduction in bottom-up proteomics. 

 In MALDI (Fig.  2.1b ), energy required for desorption of sample is generated and 
transferred from matrix molecules. Prior to analysis, dissolved sample is mixed 
with saturated solution of small organic compound (matrix) in large molar excess 
(1:1000) and co-crystallized on a metal sample plate, such that each molecule of 
analyte is completely surrounded by matrix. This embedding reduces interactions 
between analyte molecules and makes them more volatile. Short laser pulses are 
used to very rapidly heat matrix crystals, forcing them to expand and evaporate. The 
sample molecules are then carried into the gas phase by expanding matrix cloud. 
The compounds used as matrices are usually relatively more volatile and require 
less energy to ionize than analyte molecules, whilst preserving analyte molecules 
from extensive fragmentation. While the precise mechanism of ion formation is still 
debated, it is believed that peptide and protein sample molecules ionized by the 
proton transfer from multiple collisions with matrix ions in the vapor phase. Unlike 
electrospray, MALDI generates singly charged ions. Once in a gas phase, ions are 
accelerated by an electrostatic fi eld toward the analyzer. Since the laser pulses are 
very short, ions are released in clusters. For that reason MALDI is usually used in 
combination with pulse type analyzers. (Time-of–fl ight (TOFs), which will be 
reviewed later in this chapter). All the peptides present on the sample plate ionize 
and enter mass spectrometer at the same time. As such, MALDI has been most use-
ful for analysis of relatively simple samples such as gel bands or gel spots from 
one- or two-dimensional gel electrophoresis, which will be discussed later on.  

    Methods of Fragmentation 

 Tandem mass spectrometry (MS/MS) is performed in two stages. During the fi rst stage 
(MS1 or survey scan), the ion of interest (the precursor, or parent ion) is measured, 
isolated from other ions and subjected to fragmentation (MS2). M/z ratios of the result-
ing fragment ions (the product or daughter ions) are determined at the second stage 
(Fig.  2.2 ). Fragmentation pattern is used to gain information about peptide sequence. 
Collision-induced dissociation (CID), higher-energy collision-induced dissociation 
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(HCD), and electron transfer disassociation (ETD), are some of the most widely used 
methods for study of peptides and proteins and will be covered in this section.

   In the process leading to fragmentation (activation), the internal energy of an ion 
increases, chemical bonds start to break, and eventually the ion falls apart. Ion acti-
vation methods differ in the amount of energy transferred to the ion and in the 
means of transfer [ 10 ]. Different activation methods produce different ions and pro-
vide complementary information about the peptide sequence. Types of ions pro-
duced for peptide fragmentation are described in (Fig.  2.3 ). The cleavage in a 
peptide chain can occur in one of the three types of bonds, CH–CO, CO–NH or 
NH–CH; as a result, six different types of fragments can potentially be produced. 
Fragment ions, which retain the amino terminus are labeled as a, b, or c ions and 
those retaining the carboxyl terminus, x, y, or z. This notation was introduced by 
Roepstorrf and Fohlmann [ 11 ] and adopted in the current form by Biemann [ 12 ]. 
Only those fragments that carry at least one charge can be detected. Peptide sequenc-
ing made is possible by the fact that fragmentation of peptide bonds is random, and 
various ions differing in mass by one amino acid are produced. Amino acid residues 
can be determined by mass difference between two successive ions (Fig.  2.2c ).

  Fig. 2.2    Common peptide fragment ions. Shown is a four amino acid peptide. R- represents amino 
acid side chains. The cleavage in a peptide backbone can occur in one of the three types of bonds, 
CH–CO, CO–NH or NH–CH; as a result, six different types of fragments can be produced. 
Fragment ions, which retain the amino terminus are labeled as a, b, or c ions and those retaining 
the carboxyl terminus, x, y, or z (This notation was introduced by Roepstorrf and Fohlmann [ 11 ] 
and adopted in the current form by Biemann [ 12 ]. Only those fragments that carry at least one 
charge can be detected. Structures of immonium and internal ions are also shown)       
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   The most common mode of fragmentation used for peptide analysis in proteomics 
is collision-induced dissociation (CID), also called collisional activated dissociation 
(CAD). As the name implies, the energy required for fragmentation is imparted 
through collisions of analyte and inert neutral gas. Kinetic energy of moving ions is 
converted into vibrational energy, leading to the breaking of covalent bonds. The 
amount of energy transferred in each collision is relatively small, so that typically 
several hundred collisions occur before an ion dissociates [ 13 ]. Low- energy CID 
favors peptide fragmentation at (−CO-NH), a bond that links two amino-acid resi-
dues, which primarily generates ions of b and y types. Different instrument types and 
confi gurations allow for the detection of different type of fragment ions. 
Fragmentation can be performed either in the same device where the ions are trapped 
or in a separate collision cell. Depending on the type of the analyzer, tandem analysis 

a

c

b

  Fig. 2.3    Peptide sequencing by tandem mass spectrometry. ( a ) Peptide ions mass-to-charge ratios 
are measured by MS1 scan. M/z of a peptide ion is plotted on the x-axis over relative intensity on 
the y-axis, which indicative of amount of a peptide ion present in the sample. An ion of m/z 502.78 
is selected for MS/MS (highlighted in  red ). ( b ) Expected fragmentation pattern of doubly charged 
 AAALEFLNR  peptide (from panel A) by low-energy CID. Random fragmentation of peptide back-
bone generates series of b ( red ) – and y ( blue ) – ions. B-ions (and all the other N-terminal frag-
ments) are numbered from the N-terminus. Y-ions (and all the other C-terminal fragments) are 
numbered from the C-terminus. Subscript indicates the number of amino acid residues in the frag-
ment. ( c ) Experimental MS/MS spectrum of the same peptide is acquired in an ion trap. Measured 
mass-to-charge ratio of observed fragments is shown on top of each peak. M/z difference between 
two consecutive ions in the series corresponds to the mass of the specifi c amino acid residue (Amino 
acid residue reference data can be found at   http://www.matrixscience.com/help/aa_help.html    )       
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can either be performed “in space”, by combining several analyzers, or “in time”, by 
using the same ion-trapping device to perform different stages of analysis sequen-
tially. When the tandem-in-space confi guration is used (Triple Quadrupole, 
Quadrupole-Time-of-Flight, etc.), the quadrupole collision cell is placed between 
two analyzers and fi lled with gas. Ions enter the collision cell in the form of a focused 
accelerated beam. An ion traveling through the collision chamber experiences 
numerous impacts with the gas molecules that increase its internal energy and even-
tually lead to dissociation. Newly formed product ions can continue to undergo acti-
vation and dissociation on their way through the collision chamber to the detector. 
B-ions often do not withstand multiple collisions typical for quadrupoles. When 
fragmentation is performed in ion traps, the vibrational motion of the pre-selected 
parent ion population is created by resonant-energy excitation, while the background 
gas in pumped into a trap. Once an ion is fragmented, it becomes unstable and, after 
it is expelled from the trap, its fragments are detected. As a result, only one fragmen-
tation event per ion usually happens. Because of that, peptides with liable PTMs 
(phosphorylation, O-linked glycosylation, citrullination) will fragment preferen-
tially at the PTM site, creating a neutral-loss fragment that dominates the signal. 
Fragments carrying useful information about amino acid sequence will be relatively 
few. Although both types of collisions produce b or y-type fragments, ion trap MS/
MS spectra have more higher-mass b-type ions. Another characteristic feature of 
fragmentation spectra generated in ion traps is a reduced stability of product ions in 
the low- m/z  range, the so-called “one-third rule”. For example, when a precursor ion 
with  m/z  = 900 is dissociated, fragments with  m/z  <300 are not consistently observed 
in the resulting MS2 spectra. This has a very important practical implication for 
quantitative analysis using isobaric tags (iTRAQ and TMT), as will be discussed 
later. These limitations of ion traps in tandem analysis have been overcome in a 
recently introduced beam-type fragmentation on hybrid ion-trap devices; the new 
technology is known as Higher-energy Collision-induced Dissociation (HCD). HCD 
differs from low- energy CID in that ions selected for fragmentation are sent to a 
quadrupole-type collision cell from the ion trap [ 14 ]. According to a study by 
Michalski et al. [ 15 ], HCD spectra are more complex than CID showing more low-
mass immonium ions and internal fragments. Sequence information is obtained 
from predominantly y-ions and low-mass b-ions. Higher-mass b-ions are typically 
underrepresented (Fig.  2.4 ). Low-energy collisional activation has been a main 
workhorse in proteomics. It can be done on any commercially available instrument 
confi guration. However, this method has some notable limitations. Because larger 
polypeptides have a larger number of chemical bonds, more energy needs to be 
transferred to them to cause fragmentation. The rate of CID reaction with its rela-
tively ineffi cient energy transfer becomes too slow on a time scale of the mass ana-
lyzer detection speed. Also, if peptides have basic amino acids in the middle of a 
peptide ion that leads to preferential fragmentation at the site of that amino acid, 
preventing random bond protonation and cleavage. When a PTM is present, it com-
petes with a backbone amide as the preferential site of cleavage, often resulting in 
premature dissociation of a modifying group and inability to establish site of modi-
fi cation. Alternative fragmentation methods are known as Electron Capture 
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Dissociation (ECD) [ 16 ] and its variation Electron Transfer Dissociation (ETD) 
[ 17 ]. ECD involves fragmentation of ions through a reaction of low-energy electrons 
with positively charged peptides. An extra electron is attached to the site of high 
proton density, resulting in rapid migration of the hydrogen radical and the dissocia-
tion of the ion. For ETD, an extra electron is transferred during a reaction of peptide 
cation with a radical anion. Subsequent fragmentation has a mechanism similar to 
that of ECD [ 18 ]. Unlike in CID, electron capture results in the cleavage of an –
NH-CH- bond, generating mostly c- and z- types of ions. Because activation energy 
does not get distributed between many bonds, leading to fragmentation of the weak-
est one, ETD does not cause the loss of PTMs. ETD is most effi cient for character-
ization of peptides with higher charge states (+3 and higher), and for that reason 
ETD has proven to be indispensable for the analysis of intact proteins [ 19 ].

   In summary, each activation method has specifi c strengths and limitations and 
currently no method is universally applicable to every analytical question. Multiple 
studies have been performed to compare the activation methods [ 20 ]. Combinations 
of multiple activation methods have been widely used to gain more extensive and 
often complementary information about the structure of peptides and proteins [ 21 ]. 
In practice, not all of the discussed activation methods have been made commer-
cially available on every instrument confi guration (see the next section) and the 
deciding factor is which instrument is available to the user.  

a

b

  Fig. 2.4    Low-energy CID fragmentation patterns. Shown is MS/MS spectrum of the peptide ion 
m/z 740.40, 2+. Fragmentation was performed in: ( a ) an ion-trap, ( b ) beam-type collision cell (HCD 
in this case). b- and y- ion series are indicated. Note the difference between ion-trap and beam-type 
fragmentation pattern. Ion trap generates more complete b-ion series. On the contrary, only low m/z 
b-type ions are observed in beam-type spectrum. The manifestation of one-third rule is can be clearly 
observed in this example. In ion-trap ( a ) no ions are detected below m/z 250. In beam-type ( b ), that 
region of a spectrum contains low-mass sequence ions ( b2, y1 ) and immonium ions       
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    Orbitrap MS 

 The Orbitrap-class of instruments have become a widely used MS platform since 
their introduction. Orbitraps share the property of using a Orbitrap mass analyzer to 
generate m/z signal [ 22 ]. Typically they are paired with a linear ion trap and/or 
quadroupole to store ions for injection to the Orbitrap, as well as to perform MS2 in 
certain applications. Ions stored in linear ion trap or quadrupole are injected into the 
Orbitrap via a curved-trap (c-trap) that redirects the ions into the ion trap. Orbitrap 
mass analyzers generate m/z signal via the harmonic oscillation of ions between a 
spindle-shaped electrode and the frequency of the ion’s oscillation is converted to its 
m/z signal. Orbitrap MS have a high resolving power with a slightly longer cycle 
time. Generally, the Orbitrap is paired with a linear ion trap where the Orbitrap 
performs a high resolution MS1 while the information is generated to perform DDA 
of MS2 in the linear ion trap that can perform MS2 of multiple ions within one cycle 
of MS1.  

    Time-of-Flight MS 

 TOF is based on the principle that ions exposed to equal high voltage have a m/z-
dependent velocity. Smaller ions will arrive at the detector sooner than larger ions 
and that will be the basis of the m/z measurement generated in TOF MS [ 23 ]. 
Traditional TOF MS is linear but the development of a refl ectron which redirects 
ions to increase the travel time of ions to improve resolution [ 24 ]. A standalone TOF 
MS has applications with MALDI, as ionization of embedded peptides in the matrix 
are readily available for acceleration in an electrical fi eld for TOF measurements. 
This approach has been applicable to cardiac research questions, such as the quan-
tifi cation of myosin heavy chain peptides [ 25 ]. TOF MS can be used for tandem MS 
where an in-line CID collision cell is activated for MS2 scans [ 26 ]. Quadrupole- 
Time of Flight (QTOF) MS uses a hybrid MS setup, where a quadrupole MS and 
TOF MS are paired together [ 27 ], similar to how an Orbitrap MS is paired with an 
ion trap or quadrupole. Ions entering a QTOF MS are guided through quadrupoles 
via the voltage applied to the quadrupoles. The voltage dictates which m/z range 
passes through the quadrupoles and towards the TOF analyzer. The quadrupole pre-
ceding the TOF MS acts as the collision cell where inert gas is used for CID [ 28 ]. 
TOF analysis in a QTOF MS occurs in the same manner as a standalone TOF MS.  

    SRM-MS with Triple Quadrupole MS 

 Selected reaction monitoring MS (SRM-MS) is an approach of targeted MS where 
proteotypic peptides in a complex mixture are absolutely quantifi ed [ 29 ] with 
spiked-in stable isotope standards. When multiplexing ions for quantifi cation, 
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SRM-MS is termed multiple reaction monitoring MS (MRM-MS). This is achieved 
via a triple stage quadrupole MS whereby two stages of mass fi ltering occur in the 
fi rst (Q1) and third (Q3) quadrupoles. This setup allows for increased sensitivity and 
robust detection of low-abundant ions [ 30 ]. Previous MRM-MS based studies on 
cardiovascular disease biomarkers have been assessed in plasma [ 31 ,  32 ].  

    DDA and DIA (SWATH) 

 When acquiring MS2 data in a shotgun proteomics experiment, DDA usually picks 
the most abundant ions in MS1 for fragmentation. DDA inherently biases pro-
teomics studies towards high- and medium- abundant peptides, despite newer 
instrumentation being able to profi le all potential ions after dynamic exclusion, and 
can lead to issues with reproducibility [ 33 ]. Data-independent acquisition (DIA) 
alternatives to DDA have recently been gaining popularity as instrumentation are 
able to overcome some of the issues that originally justifi ed the use of 
DDA. Conceptually, where DDA involves MS2 of top abundant ions identifi ed in 
MS1, DIA aims to perform MS2 on all ions identifi ed in MS1 survey scans regard-
less of abundance. Sequential window acquisition of all theoretical fragment ion 
spectra (SWATH) is one of the emerging DIA technologies used currently. Briefl y, 
All MS1 scans occur within a defi ned m/z window and cycle time. Within that cycle 
time, MS2 is performed on all ions identifi ed in MS1 via segmenting the m/z win-
dow into smaller ‘steps’ with narrow m/z windows that when aligned, will cover the 
entire mass window of MS1 with some overlap. As an example from a proteomics 
study of degenerative mitral valves, researchers were able to perform SWATH DIA 
using a 350–1250 m/z mass window in MS1 paired with a 25 Da ‘step’ totaling 36 
windows for MS2 fragmentation [ 34 ]. DIA application has been driven by increased 
use of DIA-compatible platforms and from a technical aspect, is a balance between 
discovery and targeted approaches.   

    Methods for Protein Quantitation 

    Spectral Counting 

 Spectral counting is a form of quantitation derived from the MS2 spectra generated. 
The spectra count assigned to a peptide is indicative of how many copies were pres-
ent in the sample mixture. Spectral counts between experiments can be compared 
using basic statistics such as t-tests or ANOVA. Additionally, more thorough com-
parisons can be achieved using analysis such as QSPEC [ 35 ] or SAINT [ 35 ], where 
probability-based scoring of spectral counts is employed. QSPEC is designed for 
binary comparisons where a single experimental condition is compared to a control 
condition. Spectral counting through SAINT is particularly useful in application of 

2 Basic Concepts in Mass Spectrometry and Protein Quantitation



26

affi nity proteomics MS where researchers aim to identify interacting proteins of a 
candidate protein. Essentially, multiple bait samples together with negative control 
conditions will be run in an effort to identify putative protein-protein interactions or 
complexes.  

    MS1 Peak Integration 

 When signal is generated from an unfragmented ion during MS1 acquisition, it is 
presented as an intensity distribution peak over time. This peak is one form of quan-
titative data, as the peak’s area under the curve is a measure of its abundance. Peak 
integration is useful in multiplexed experiments where ions of peptides from mul-
tiple conditions can be measured simultaneously. Skyline [ 36 ] is a tool that allows 
for analysis of MS1 peak integration that will allow for experimental design such as 
MRM-MS. Briefl y, MS1 peak integration uses heavy-labeled peptides spiked in 
with an unlabeled experimental sample. When MS1 is performed, both labeled and 
unlabeled peptides will be profi led separately due to m/z shift by the isotope's mass 
difference. MS1 peaks can then be identifi ed after acquisition and analyzed for 
abundance. MS2 data can then be used to confi rm the identity of the peptide quanti-
fi ed [ 37 ]. Multiplexing in MRM-MS is achieved by optimizing gradient conditions 
of the LC to ensure good separation between the peptides being analyzed. Label-
free quantitation (LFQ) is an updated approach of peak integration developed within 
the MaxQuant analysis pipeline [ 38 ]. LFQ in MaxQuant uses ion intensity, reten-
tion time values and an m/z range as well to determine a 3D peak to determine an 
ion’s abundance. Briefl y, 2D peaks of peptides are identifi ed in LC/MS by ion inten-
sity and retention time. 2D peaks are then aligned based on a threshold m/z window 
to create 3D peak that can be quantifi ed.  

    Stable Isotope Labeling by Amino Acids (SILAC) 

 SILAC is a very useful tool that allows for multiplexing in proteomics. It differs 
from the previous techniques that can be multiplexed like iTRAQ and TMT in that 
it does not require a tag and can be used  in vitro  and  in vivo.  SILAC is a metabolic 
labeling strategy where cells  in vitro  are cultured with heavy isotope-labeled amino 
acids that are incorporated into the cell’s proteome as they synthesize proteins 
(Fig.  2.5 ) [ 39 ]. Over multiple passages, the cells preferentially contain the heavy 
amino acid in all their proteins. A simple SILAC workfl ow is where the one cell 
culture condition is performed in a heavy-labeled leucine environment. Lysates are 
prepared and mixed with the control cell culture condition where no SILAC label-
ing is performed. During MS analysis, identical peptides from each condition will 
have m/z differing by the mass difference of the heavy and light amino acids in the 
peptide. Ion intensity curves of MS1 to quantify the abundance of heavy and light 
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samples [ 40 ]. SILAC has advantages over chemical labeling strategies such as ICAT 
or TMT in that the quantitation is dependent on a exogenous chemical reaction to 
bind the tag to the target protein (ICAT) or peptide (iTRAQ and TMT). It is evident 
that SILAC labeling is a metabolically labeling strategy that requires living cells or 
tissues to work, compared to ICAT and isobaric labeling strategies, where chemical 
labeling is performed on the peptides and proteins. Extrapolating the concept of 
metabolically labeling, one can imagine heavy-labeling a living system beyond 
cells  in vitro . Conceptually, an entire organism can be wholly SILAC-labeled. The 
SILAC mouse, a mouse with complete integration of heavy lysine was introduced 
to perform multi-organ proteomics [ 41 ]. The use of SILAC mice can be useful in 
cardiac proteomics as it will allow for labeling of proteins in an  in vivo  
environment.

        Methods of Labeling Protein Quantitation 

    Gel-Based Comparisons 

 Fluorescent two-dimensional gel electrophoresis (2DIGE) is a technique where pro-
tein samples are separated on a SDS-PAGE gel prior to MS analysis [ 42 ]. This is 
achieved via separation of proteins based on isoelectric point and molecular weight. 
In a comparative analysis, proteins of two samples are labeled fl uorescently, typi-
cally with Cy3 and Cy5 labels, mixed together, and separated on the same two- 
dimensional gel. Fluorescent intensity is measured for both dyes using a fl uorescent 
scanner. Gel spots identifi ed to have a differential fl uorescent intensity are then 

  Fig. 2.5    Comparison of labeling strategies for quantitation in proteomics experiments  in vitro . 
There are multiple ways where labeling of samples for proteomics can be achieved. At the cell 
culture level, cells can be labeled metabolically using  SILAC . If labeling at protein level is desired, 
the chemical-labeling  ICAT  strategy is applied. After proteolysis, peptides can be labeled chemi-
cally using either  iTRAQ  or  TMT  labeling. During  LC-MS/MS  analysis, labeled samples will exist 
as higher mass-to-charge ions due to the heavy-isotope labeling. Data analysis and bioinformatics 
are performed using method such as peak integration and spectral counting. With these labeling 
strategies, the quantitation is based on a ratio of heavy to light peptides. One can also use the work-
fl ows to identify and quantify post-translational modifi cations       
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excised and processed for MS analysis. 2DIGE has benefi ts of being able to separate 
internal standards with multiplexed experimental samples on the same gel and 
allows for consistent method of normalization [ 43 ]. 2DIGE has been used in cardiac 
proteomics to study phosphotase substrate activity [ 44 ].  

    Isotope-Coded Affi nity Tag (ICAT) Labeling 

 ICAT is a labeling strategy in proteomics where proteins are labeled with a H 2 - 
labeled tag (heavy) and is compared in parallel with a H 1 -labeled (light) sample. 
ICAT tags possess three components: a biotin tag, linker, and a thiol reactive group 
[ 45 ]. The thiol reactive group facilitates reduction with the cysteines to attach it to 
the protein of interest. The linker contains sites where the heavier deuterium replaces 
the typical hydrogen in the heavy sample. The biotin tag is used in affi nity purifi ca-
tion so that only ICAT-labeled peptides are analyzed in the MS. When peptides are 
introduced into the MS for analysis, the MS1 profi le should contain two peaks rep-
resenting each labeled peptide separated by an m/z related to the mass difference of 
the heavy and light linker regions. Quantitation in ICAT experiments uses the MS1 
peak data of the heavy and light peptide and MS2 data is used to identify the peptide 
in question. ICAT has the benefi t of being able to analyze samples in a binary com-
parison simultaneously, reducing the risk of run-to-run variability.  

    Isobaric Labeling 

 Isobaric labeling is a way of quantifying proteins via the addition of tags to the 
peptides which can be measured against each other in multiplexed samples. The 
tags all behave the same in the MS except for its fragments, where the location and 
number of heavy isotope-labeled elements allow for differing m/z in MS data. 
Isobaric labeling has two popular methods: Isobaric tags for relative and absolute 
quantitation (iTRAQ) and Tandem mass tag (TMT) [ 46 ]. iTRAQ labeling can be 
multiplexed up to eight samples whereas TMT labeling allows for multiplexing for 
up to ten samples. This level of multiplexing is an excellent option in time-course 
proteomics experiments as well as maintaining a robust internal control. iTRAQ 
labeling uses tags with three components: a reporter group, an amine-specifi c reac-
tive group, and a balance group. The reporter group contains a combination of C 13  
and N 15 -labeled elements. To keep the mass of each tag the same, it is balanced by 
either a combination of C 13  and O 18  labeling in the balance region. One can then see 
that each tag behaves the same, while also having different masses for the reporter 
regions. Each sample is individually labeled and mixed together for multiplexing 
the MS analysis. Separation during LC occurs simultaneously, as well as MS1 
scans. When MS2 occurs, the reporter region is fragmented and since each 
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sample’s tag differs in size, their m/z will be distinct and their relative abundance 
can be quantifi ed. Typically, iTRAQ reporter region ions range in size from 114 to 
117 m/z. TMT tags also contain three components: a reporter group, amine reactive 
group, and a balance group, and the principle for quantitation is identical to 
iTRAQ. The reporter group and balance group contain different amounts of C 13  or 
N 15 . The reactive amine group is the structure that will be bind to the tryptic pep-
tide. Each tag has the same number of heavy-isotope labeled elements; the key is 
that the number in the reporter group differs. Samples of each experimental condi-
tion are labeled with a unique TMT tag and mixed together. Since the TMT tags are 
the same size overall, each condition’s peptides elute from the LC simultaneously, 
as well as MS1 is performed simultaneously. When MS2 fragmentation occurs, the 
reporter region is fragmented from the labeled peptide and is quantifi ed. Reporter 
region ions have small m/z and are recorded in the low-mass region of approxi-
mately 130 m/z.   

    Application of MS Technologies to Quantitation in Cardiac 
Proteomics 

 Protein quantitation in cardiac proteomics can be achieved with combining the MS 
technologies with the differing quantitative methods outlined. The combination 
usually will be dictated by the research being asked and the technology available to 
the researcher. Moving forward we will focus on the recent studies in cardiac pro-
teomics and how they were able to achieve protein quantitation. 

 In a study of cardiac extracellular matrix (ECM) proteins [ 47 ], researchers were 
able to identify differentially expressed ECM proteins in the mammalian heart dur-
ing the course of ischemia/reperfusion injury. Samples were separated in two 
dimensions, fi rst at the protein via gel electrophoresis, and then at the peptide level 
via LC. The hybrid MS used for data acquisition was an LTQ Orbitrap instrument. 
Spectral counting was performed after data transformation. Transforming data 
using methods such as log transformation and normalization will allow for lower 
abundant proteins to be assessed. Spectral counting allowed comparison between 
groups in their time course experiments versus their controls. 

 Another interesting question that has been investigated using proteomics has 
been the concept of chamber specifi city, in the context of atrial and ventricular dif-
ferences. It is well-known that atria and ventricle differ at the functional and molec-
ular levels [ 48 ], MS-based proteomics were used to identify and quantify the 
proteomic differences in atria and ventricles [ 49 ] at the large scale. The study used 
a label-free approach to identify the chamber-enriched proteins in the human heart. 
Data was generated on a new generation QExactive MS platform, which is an 
Orbitrap-based hybrid MS. Maxquant LFQ data was used as their metric for quan-
titation. Since a binary comparison was investigated, a  t -test of LFQ values was 
used to identify signifi cantly enriched proteins. Data was also integrated with other 
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large-scale data, including microarray data and other proteomic datasets to identify 
key chamber-enriched proteins.  

    Concluding Remarks 

 Having outlined the basics in MS theory, instrumentation, and quantitation, it is quite 
evident that MS in cardiac proteomics is a very diverse technical fi eld. With inter-
changeable techniques and multiple methods to answer research questions, there is 
enormous potential to uncover further understanding of heart function and disease. It 
is with this diversity that one should be well-versed in the rationale of using one 
quantitative approach or instrumentation setup over another beyond availability. It 
will allow researchers to understand the scope and limitations of the data they are 
generating. MS in general is a very technology-driven fi eld where many instrument 
or computational shortcomings can be resolved or overcome with only a few itera-
tions of technology development. It is a very exciting future for cardiac proteomics 
as instrumentation and analysis becomes more accessible to researchers and that the 
previously diffi cult hypotheses can be investigated with confi dence and accuracy.     
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    Chapter 3   
 How to Design a Cardiovascular Proteomics 
Experiment                     

     Merry     L.     Lindsey     ,     Aldrin     V.     Gomes     ,     Stanley     V.     Smith     , 
and     Lisandra     E.     de Castro Brás     

    Abstract     Proteomics provides the opportunity for the large-scale examination of 
proteins in fl uids or tissue samples, which has signifi cant implications for cardio-
vascular experimental, translational, and clinical research. Proteomic strategies are 
useful as a means to provide catalogues of proteins that are present in a sample at 
the time of evaluation, as a way to quantify complex mixtures and identify proteins 
differentially expressed among groups (whether it is total amounts or differences in 
post-translational modifi cations), and to analyze protein complexes and protein-
protein interactions. A crucial component of a successful proteomics examination is 
the experimental design. In this book chapter, we will discuss how to design a car-
diovascular proteomics experiment for optimal success and provide example work-
fl ows for different types of experiments with strategies to minimize potential 
pitfalls.  
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      Introduction 

 The pathophysiology of cardiovascular disease (CVD) is diverse, due to multiple 
possible aberrations that can occur in a number of cellular processes. Thus, it is vital 
to understand how changes in molecular pathways, particularly at the protein level, 
mediate cellular responses and function. Mass spectrometry (MS)-based proteomic 
strategies have great potential to advance our understanding of CVD mechanisms at 
the systems biology level. The word “proteome” originates from the term PROTEins 
expressed by a genOME, and it refers to all proteins present in a sample at the time 
of evaluation [ 1 ]. 

 Proteomics is an advancement over genomics, providing details in an order of 
magnitude of increased complexity. Each cell has its own proteome, and the pro-
teome (including all of the post-translationally modifi ed forms of each protein) 
undergoes fl uctuations through biochemical interactions with both the genome and 
the environment [ 2 ]. The complexity of individual proteomes makes good experi-
mental design essential for a successful investigation. A researcher that aspires to 
analyze the proteome of either tissue or cells using MS-based methods will face 
experimental challenges. One challenge is the dynamic range across the proteome, 
as the relative abundance of each protein within the same sample can differ greatly. 
In plasma, for example, the dynamic range from the highest to lowest protein con-
centration is ten orders of magnitude [ 3 ]. For this reason, the identifi cation and 
quantitation of low abundance proteins remains a challenge. At the same time, the 
plasma is an easily sampled source, as compared to obtaining biopsies of the left 
ventricle (LV), and techniques have been developed to harness its complexity. 

 The LV has its own layer of complexity. While the LV is comprised primarily of 
cardiomyocytes, which account for 90 % of the LV volume, other cells types of 
importance in cardiac research include smooth muscle cells, endothelial cells, fi bro-
blasts, and infi ltrating leukocytes [ 4 ]. Cardiomyocytes are highly metabolic cells, 
with 30 % of their volume occupied by mitochondria [ 5 ]. Therefore, the relative 
overabundance of mitochondrial proteins in cardiomyocytes masks the relative 
lower abundant proteins, such as cardiac extracellular matrix (ECM) proteins. 
Moreover, many myocardial components contain insoluble proteins, which make 
identifi cation and quantifi cation using cardiovascular proteomics protocols particu-
larly challenging. 

 A good experimental design for cardiovascular proteomics will include the con-
siderations listed in Table  3.1  and follow a strict workfl ow to result in robust and 
reproducible data (Fig.  3.1 ) [ 6 ]. Careful and reproducible sample preparation and 
enrichment steps are important, particularly if the study aim is to identify lower 
abundance components. A successful cardiac study, either at the organ, systemic, 
sub-cellular, or molecular level, can provide researchers with temporal cellular pro-
tein inventories, making it ideal for documenting protein changes between physio-
logical and pathological conditions and through different stages of disease, as well 
as in response to varying treatment regimens. Here, we describe how proteomic 
experiments can be modeled to provide experimental designs tailored to cardiovas-
cular studies.
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  Table 3.1    Major 
considerations for 
experimental design [ 6 ]  

 1. Subject selection criteria 
 2. Sample type and collection 
 3. Sample storage conditions (including duration) 
 4. Data acquisition methods 
 5. Data analysis 
 6. Results documentation 
 7. Replication in independent cohorts 

MS Evaluation

Data Analysis

Software

Instrument

Enrich/Fractionate

Sample Extraction

  Fig. 3.1    Mass spectrometry workfl ow       
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        Overall Considerations 

 Current MS-based proteomic approaches can be used to investigate not only type 
and levels of proteins, but also signaling pathways, protein-protein interactions, 
post-translational modifi cations (PTMs), organelle location, and even protein sub-
strates of enzymes [ 7 ]. The type of data needed – qualitative or quantitative – and the 
biological question asked will dictate which method is the most adequate for a proj-
ect. Proteomic analysis can be costly, laborious, and time consuming; thus, an effec-
tive study design and appropriate approach are critical. Of course, the instrumentation 
available is also a big factor to consider, and many times the approach can be tailored 
to the MS instrument to provide the needed answer(s). Table  3.2  describes common 
approaches used in cardiovascular research that target a particular question.

      What Type of Data Do You Want to Obtain? 

 When studying CVD, three types of biological specimens are frequently used: fl u-
ids (eg, serum, plasma, saliva, or urine), cells, and myocardium. When initiating a 
cardiac study using proteomic-based approaches, the type of sample will have a 

   Table 3.2    Types of cardiovascular disease and mass spectrometry platforms   

 Sample preparation  MS approach  Sample  References 

 Myocardial infarction  Immunoaffi nity 
enrichment 

 SELDI-TOF  Human 
plasma 

 [ 8 ] 

 Isobaric mass tag  LC-MS/MS  Rat 
effl uents 

 [ 9 ] 

 MW fractionation  HPLC-MS  Mouse LV  [ 10 ] 
 Dilated cardiomyopathy  Myocyte organelle 

isolation 
 Gel-free 
shotgun 

 Mouse LV  [ 11 ] 

 None  MudPIT  Human LV  [ 12 ] 
 Hypertrophic 
cardiomyopathy 

 Organelle fractionation  2-DE 
MALDI-TOF 

 Mouse LV  [ 13 ] 

 Immunoaffi nity 
depletion 

 iTRAQ 
4-plex 
labeling 

 Human 
plasma 

 [ 14 ] 

 Heart failure  Porous silicone affi nity 
chip 

 MALDI-TOF  Human 
plasma 

 [ 15 ] 

 None  2-DIGE MS  Human LV  [ 16 ] 
 None  2-DE MS  Rat LV  [ 17 ] 

   MS  mass spectrometry,  SELDI-TOF  surface-enhanced laser desorption/ionization time-of-fl ight, 
 LC  liquid chromatography,  HPLC  high performance LC,  MW  molecular weight,  LV  left ventricle, 
 MudPIT  multidimensional protein identifi cation technology,  2-DE MALDI  two-dimensional elec-
trophoresis matrix assisted laser desorption/ionization,  iTRAQ  isobaric tag for relative and abso-
lute quantitation,  DIGE  difference in gel electrophoresis  
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great impact on the method selected. For example, the study of cardiac cells involves 
considerations such as labeled or label-free methods and whether the cells will be 
cultured or used immediately after isolation, while the study of tissue may include 
fractionation and/or enrichment steps to reduce sample complexity. Additionally, it 
is important to consider the type of data expected: qualitative (identifi cation and 
semi-quantifi cation), quantitative (targeted proteomics), interactions (protein- 
nucleic acid or protein-protein), identifi cation of protein modifi cations, or 
localization. 

    Qualitative or Quantitative 

 Global qualitative proteomics involves large-scale protein profi ling of a pro-
teome or subcellular proteome and offers the simultaneous detection of hun-
dreds to thousands of proteins in a single experiment with rough quantitative 
estimates of relative concentration [ 18 ]. Bottom-up MS strategies, in which 
peptide detection is used to infer protein presence, are commonly used in car-
diovascular proteomics for large- scale or high-throughput analysis [ 7 ]. This 
method is suitable for studies aimed at identifying the composition of a certain 
proteome, while at the same time provides semi-quantitative data that can be 
further validated with other methodologies. Nonetheless, without careful sam-
ple preparation, qualitative MS will mostly identify peptides present at high 
relative abundance, while information regarding low abundance proteins is 
commonly not obtained [ 15 ]. Label-free shotgun MS was used to investigate the 
proteomic changes in transverse aortic constriction (TAC)-induced heart failure. 
The use of this global approach resulted in the identifi cation of 538 proteins that 
were signifi cantly changed after TAC and mapped to 53 pathways, including 
actin cytoskeleton, mitochondrial function, and the citrate cycle [ 19 ]. Huang 
and colleagues utilized bottom-up MS analysis of enriched phosphopeptides to 
identify phosphorylation sites in connexin-43 following  in vitro  phosphoryla-
tion by CaMKII [ 20 ]. They reported 16 CaMKII phosphorylation sites, which 
represented the fi rst study of CaMKII-mediated phosphorylation of connexin- 43 
[ 20 ]. 

 Quantitative/targeted approaches are often the only way to detect very rare pro-
teins; they are faster and require much less sample than bottom-up analysis. 
Quantitative approaches make use of stable heavy isotopes ( 2 H,  13 C,  15 N, and  18 O) 
[ 21 ], chemical labeling (isotopic or isobaric tags) [ 22 ,  23 ], enzymatic labeling (the 
mass tag is introduced in the peptide chain by performing proteolytic digestion in 
the presence of heavy water) [ 24 ], and metabolic labeling (introduced to the whole 
cell or organism) [ 25 ], although label-free methods are also used [ 15 ]. Pan et al. 
developed a new quantitative MS approach to map global Cys-redoxomic in cardio-
myocytes under hypoxia using iodoacetyl-based Cys-reactive isobaric tags coupled 
with LC-MS/MS [ 26 ]. In one single analysis, they reported over 260 Cys sites 
showing signifi cant differences in multiplexed redox modifi cations from hypoxic 
cardiomyocytes [ 26 ].  
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    Protein-Protein Interactions 

 Techniques have become suffi ciently robust that experiments can reliably deter-
mine whether protein-protein interactions occur throughout CVD stages. 
Identifi cation of protein-protein interactions requires the purifi cation of intact sig-
naling complexes from fl uids, cells, or tissue lysates via affi nity purifi cation (AP) 
prior to digestion and MS analysis [ 27 ]. Ping et al .  studied the role of protein 
kinase C (PKC) in protecting the myocardium against ischemia/reperfusion (I/R) 
injury using bottom-up AP-MS to identify PKC signaling complexes in the heart 
[ 28 ]. They identifi ed 36 proteins, including structural, signaling, and stress-acti-
vated proteins, which were physically associated with PKC in the mouse 
myocardium.  

    PTMs 

 Two dimensional electrophoresis (2-DE) gel based approaches are commonly 
used for cardiovascular sample preparation in studies that aim to identify PTMs. 
PTMs can cause changes in the isoelectric point and/or the molecular weight of the 
modifi ed protein, which are readily detected by 2-DE. In addition, top-down MS 
approaches place intact proteins under examination, which decreases sample com-
plexity, and consequently enables a more complete characterization of protein iso-
forms and PTMs than the bottom-up approach [ 29 ]. Top-down proteomics provides 
the direct study of PTMs by displaying mass discrepancy between the measured 
mass and the DNA sequence predicted value. However, the physicochemical 
diversity of intact proteins makes large-scale separation challenging and, thus, 
traditional top- down studies are primarily recommended for the analysis of a sin-
gle or small number of proteins. Jia and colleagues used both bottom-up and 
orthogonal acceleration time-of-fl ight (TOF), for measurement of intact proteins, 
to determine the phosphorylation states of human and murine cardiac myosin 
binding protein-C (cMyBP- C) [ 30 ]. Their strategy identifi ed four PKA phosphor-
ylation sites in both the human and murine isoforms, with the characterization of 
novel sites (Human: Ser 311  and Mouse: Ser 307 ) providing advances for the complete 
characterization of the phosphorylation state of cMyBP-C [ 30 ]. The 2-DE gel 
approach has been used to identify candidate  in vivo  substrates of matrix metal-
loproteinase (MMP)-7 and MMP-9, by focusing on proteins present at lower than 
expected molecular weights or differentially expressed between wild type and 
MMP null mice [ 31 ,  32 ]. 

 While the accurate measurements of intact proteins readily provide protein 
masses that indicate PTMs, it can miss some PTMs due to sub-stoichiometric 
amounts. The bottom-up MS method can provide good sequence coverage and pre-
cise locations of PTM sites. Thus, the combination of these two methods can deliver 
both maximum coverage and precise PTM identifi cation.   

M.L. Lindsey et al.



39

    Your Biological Question Will Defi ne Your Approach 

    Untargeted Approaches 

   2-DE Gels 

 As mentioned above, one strength of using 2-DE approaches is the identifi cation of 
PTMs. This strategy remains a popular proteomics technique and has played a piv-
otal role in providing insights into the physiology of the heart [ 33 ,  34 ] as well as 
elucidating markers of disease [ 35 – 37 ]. The major limitation of 2-DE is its limited 
dynamic range [ 38 ]. 2-DE has an estimated maximum dynamic range of 10 4  magni-
tude [ 39 ], while the dynamic range of protein abundance is estimated at 10 6  for cells 
and tissues and 10 12  for plasma [ 3 ,  40 ]. Nonetheless, coupling 2-DE with subcellu-
lar fractionation methods can reduce sample complexity and increase the range of 
protein abundance [ 41 ]. Research groups have successfully employed 2-DE 
approaches in the proteomic analysis of biomarkers of cardiomyopathy [ 9 ], in car-
diac aging [ 42 ], in the study of mechanisms underlying cardiomyopathy [ 43 ,  44 ], 
and diabetic cardiomyopathy [ 45 ].  

   Gel-Free 

 Gel-free approaches overcome problems of reduced enzyme accessibility to the 
protein (improves peptide digestion) and ineffi cient capture of large peptides 
from the gel leading to decreased protein coverage, and avoids the need to iden-
tify potentially hundreds of individual spots [ 46 ,  47 ]. Gel-free MS couples high-
effi ciency liquid chromatography (LC)-based separation procedures with MS or 
MS/MS, allowing for very large-scale “shotgun” sequencing of complex mix-
tures [ 48 ].  

   Label-Free 

 Even though labeling techniques offer several advantages, one big limitation is 
the number of samples and groups that can be compared. Thus, label-free meth-
odologies hold great interest for the cardiovascular community. The simplest 
approach uses the number of peptide fragmentation events (spectral counts) as 
an estimate of the amount of protein to provide a semi-quantitative measure-
ment [ 49 ,  50 ]. In addition, label-free methods based on the use of ion currents 
have been reported to provide a level of accuracy comparable to labeling 
approaches [ 51 ].  
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   Stable Isotope 

 A common metabolic labeling method is Stable Isotope Labeling by Amino acids in 
Cell culture (SILAC) [ 25 ]. This technique uses essential amino acids, such as argi-
nine and lysine, in light or heavy forms to the two cell populations (e.g. treated 
versus untreated) that are incorporated into each protein after cellular proliferation, 
resulting in a well-defi ned mass difference [ 52 ]. Another popular technique is 
 15 N-labeling, the metabolic incorporation of inexpensive labeled ammonium salts, 
that allows the complete labeling of all amino acids in expressed proteins; however, 
it entails a more diffi cult detection of the peptide pairs, since the mass difference 
depends on the amino acid composition [ 52 ].   

    Targeted Approaches 

   Absolute QUAntifi cation (AQUA) 

 Targeted liquid chromatography mass spectrometry (LC-MS) approaches allow 
confi rmation and relative quantitation of protein candidates. In addition, with more 
resource utilization, absolute protein quantitation using stable isotope labeled pep-
tides (Protein AQUA) of candidates is possible [ 53 ]. Targeted approaches are typi-
cally done either after a discovery experiment has yielded candidates or the candidate 
pool has been narrowed by some other criteria. Targeted approaches can also be 
done using entirely  in silico  information, but this method is a tedious, iterative pro-
cess, and the success rate is variable. The general concept is that, using bottom-up 
techniques, proteolytic fragments (trypsin is most useful) derived from the target 
protein are used to identify/quantify the protein of interest. By having several transi-
tions (precursor/fragment ion pairs) for each protein, coupled with the added 
uniqueness of the fragment retention times via LC, high specifi city and sensitivity 
can be obtained for each protein that is targeted [ 54 ]. For targeted discovery 
approaches, specifi c peptides or transitions (depending on the type of LC-MS sys-
tem you are using) represent the information dependent trigger for subsequent 
experiments involving fragmentation via collision-induced dissociation (CID; also 
known as collision-activated dissociation, CAD) for sequencing and PTM detection 
that yield database searchable information for identifi cation [ 55 ]. Given certain 
assumptions or using certain methodologies, intensities from this type of data can 
be used for quantitation. This combination of sequence information and quantita-
tion is quite useful for streamlining your candidate list and/or for obtaining an over-
view of candidates and relative amounts rather quickly. For scenarios where more 
sensitivity is required and there has already been signifi cant narrowing of the candi-
date list, quantitative proteomics experiments are very viable. The specifi c peptides 
and transitions selected and ion counts or intensities are used to indicate relative 
amounts. Again, coupled with good LC, this approach yields very high sensitivity 
(picogram or lower amounts) and excellent specifi city. If other sources of informa-
tion (empirical data either collected or derived from any of a number of growing 
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MS/MS databases such as   http://www.mrmatlas.org/index.php    ) indicate that there 
are known stable peptides that are LC-MS friendly, heavy-labeled versions of the 
peptides can be spiked into samples for AQUA [ 56 ]. The heavy peptides are moni-
tored the same way as the native peptide with corresponding adjustments for the m/z 
shift (typically 6–10 Da) of the heavy labeled peptide [ 57 ]. By spiking a known 
concentration of the heavy peptide into your sample and comparison to the intensity 
of the native peptide, absolute quantitation is obtained. The elution profi le, ioniza-
tion properties and other features are considered identical to the native peptide. This 
approach is inherently much more costly. Relative quantitation approaches are 
becoming more acceptable as the instrumentation has become more sensitive and 
reproducible. Often with relative quantitation, a quick turnaround of useful data is 
achieved.  

   Single Reaction Monitoring (SRM) or Multiple-Reaction Monitoring (MRM) 

 In an SRM or MRM experiment often the core of a targeted experiment, transitions 
(precursor/fragment combinations) derived from the target protein or proteins, is 
looped together in the MS method coupled with LC [ 58 ]. Tandem MS, either space- 
(Orbitrap instruments) or time-distinct (Quadrupoles and Ion traps), instruments are 
used. Specifi city and sensitivity are obtained as rather than passing all ions of a 
particular m/z and measuring intensities, an SRM experiment looks at only the frag-
ment ions after selection in a multistage mass spectrometer [ 59 ]. MRM is the appli-
cation of SRM to multiple product ions. Ion selection occurs at the front-end, these 
ions enter a CID chamber where they are fragmented; they are then scanned out of 
a second quadrupole or trap [ 60 ]. By looping SRMs, 50–100 different transitions 
are readily measurable. These can represent different protein candidates or be spe-
cifi c for certain PTM states, if care is made to ensure the PTMs are preserved during 
the experiment. Typically for each protein candidate, one or two qualifi er transitions 
are chosen along with one quantifi er. The former helps to ensure that the correct 
peptide has been identifi ed or selected while the latter is typically the most intense 
transition that has been demonstrated to be stable and appropriately concentration 
dependent over the experimental range. Practically, this sets the limits to about 
20–30 different proteins that can be followed after thorough vetting [ 59 ]. If more 
are to be followed, scheduled approaches can be used to maximize instrument time 
by utilizing precise knowledge of LC elution times of peptides. Using scheduling, 
measurable transitions can be increased to 250 or so, therefore increasing the num-
ber of candidates that can be followed.  

   Limitations and Pitfalls to Consider 

 A major assumption of targeted approaches is that with exhaustive proteolytic 
digestion, the amount of each peptide refl ects the amount of the intact protein due 
to the one to one concordance. The assumptions involved, under general 
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standardized digestion conditions, are reasonable. Unique features of the proteins or 
peptides derived from the protein may prove problematic in terms of digestion or 
recovery. Examples are integral membrane or insoluble proteins that are not readily 
digestible; RNA or DNA binding proteins that might be resistant to digestion and/
or recovery; and sticky proteins or peptides that are lost on surfaces. Data must be 
verifi ed and shown to be reproducible, and detection limits and coeffi cients of varia-
tion should be considered. If there is concern about digestion effi ciency and peptide/
protein concordance, a targeted method for a housekeeping protein for which there 
is a commercially available antibody may be useful. Immunoblotting or enzyme-
linked immunosorbent assay (ELISA) can then be used to validate the relative con-
centration and confi rm consistency with the targeted approach used.     

    Study Design (Fig.  3.2 ) 

       Before Starting 

 Since good sample quality is the foundation for analytical success, the importance 
of generating highly reproducible and thorough sample preparation cannot be over-
stated. Prior to initializing your sample preparation you need to consider: (a) con-
trols (positive, negative, and standards) and (b) sample variability. The fi rst needs to 
be representative of the population being studied, comprising age-, sex-, and 
genotype- matched samples, while the latter will include a power analysis so that 
you can calculate the optimal number of samples to ensure an adequate power to 
detect statistical signifi cance. Another critical factor is the source of your samples. 
The use of circulating blood as sample source for CVD diagnosis is very attractive 
since it can be collected without any interventional procedures. As such, the major-
ity of proteomic CVD biomarker discovery studies have been done on circulating 
biomarkers and not on myocardial samples. Although advantageous, the use of 
plasma or serum comes with serious drawbacks, since the discovered biomarkers 
may refl ect the disease state of any organ in the body. On the other hand, access to 
human myocardial samples is invasive and therefore rare, which makes the use of 
animal models essential for the study of CVD.  

    Sample Extraction 

 For accurate and reproducible proteomic analyses, sample extraction and prepara-
tion is of the utmost importance. Sample extraction must be reproducible, avoid 
sample alteration, and be compatible with subsequent methods of protein separation 
and identifi cation [ 61 ]. Here we point out important factors to consider when using 
proteomics analysis of both plasma/serum and myocardium. 
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 For proteomic analysis of plasma and serum samples it is important to consider 
the following points: (1) The type of blood container (e.g. if using serum there is no 
need for anticoagulants). (2) The lag-time prior to sample processing. Hu and col-
leagues reported that the time before sample processing greatly affects sample pro-
teome profi le, in cases rendering it impossible to distinguish between diseased and 
healthy controls [ 62 ]. (3) The presence of proteases that if not inhibited, and with 
several cycles of freezing/thawing, will degrade the plasma proteome. Marshall 
et al .  found that the detected changes in the protein profi les of serum of myocardial 
infarction (MI) patients refl ected the balance of protease and aminopeptidase activi-
ties  ex vivo  rather than a result of the disease processes [ 63 ]. (4) The circulating 
protein of interest may have poor signal-to-noise ratio, which may lead to poor 
predictive value and limited clinical use of the identifi ed protein. To circumvent this 
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  Fig. 3.2    Study design for 
mass spectrometry ( MS ) 
based approaches       
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problem, you can sample the blood at a site more proximal to the diseased tissue, 
where the concentration of the protein of interest may be highest [ 64 ]. (5) The pres-
ence of a wide concentration range and number of proteins. In human plasma, more 
than 10,000 proteins have been identifi ed that range from fM levels to over 600 μM 
[ 65 ]. Highly abundant proteins, such as serum albumin, complement factors, and 
immunoglobulins, will mask quantifi cation of less abundant proteins. Therefore, 
methods that remove these proteins or that enrich for your protein of interest may be 
necessary prior to sample analysis. 

 Heart tissue collection presents different challenges. First, human biopsies are 
rare and harder to acquire. Nevertheless, atrial appendage samples can be obtained 
during surgery for the treatment of atrial fi brillation [ 66 ]. The setback with such 
samples is that underlying pathologies may differ between patients, and additionally, 
healthy controls are more diffi cult to acquire. Animal models of CVD are widely 
used and provide a consistent source for evaluation. The protocol for myocardial 
tissue isolation will depend on your biological question. As with serum and plasma, 
myocardial tissue should be stored with protease inhibitors and frozen immediately 
after extraction. This step will block or inactivate endogenous proteolytic enzymes 
that are released from subcellular compartments during cells lysis that would other-
wise degrade the proteins of interest. [ 67 ] Other key issues include the increase of 
detection sensitivity by reducing complexity of samples and preparation of a protein 
sample that is biologically relevant. Additionally for the study of PTMs, prevention 
of in vitro artifi cial PTM reactions is essential, as well as the use of specifi c inhibi-
tors to limit de-phosphorylation, such as phosphatase inhibitors [ 68 ]. 

 In summary, a set of pre-analytical variables will infl uence the outcome of the fi nal 
analysis and the lack of standardized protocols during sample collection and prepara-
tion may irreversibly affect the sample analysis and provide bias that distorts the results.  

    Protein Preparation/Separation Technique (Gel-Free 
and Gel-Based) 

 As in any MS-based study, the choice of reagent that is used during tissue homog-
enization is critical as it needs to be compatible with the downstream analysis. 
Soluble samples normally do not require the use of a detergent to aid homogeniza-
tion and work well with gel-free techniques. One attractive advantage of gel-free 
approaches is the reduced sample handling and thus decreased potential for sample 
loss. On the other hand, insoluble proteins need further processing, including the 
use of detergents that have a large effect on protein coverage, and may benefi t from 
further separation by electrophoresis [ 69 ]. A gel-based separation is powerful in 
that it can also provide insight into differential protein regulation in the disease 
state. Nonetheless, this technique comes with some drawbacks, including loss of 
protein during gel digestion and peptide capture, bias towards the detection of 
higher abundance proteins, and lower effectiveness at detecting hydrophobic pro-
teins and proteins with extreme isoelectric points and molecular weights [ 18 ,  70 ].  
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    Protein Fractionation (Directly Proportional to Sample 
Complexity) 

 To reduce sample complexity and uncover changes in lower abundance proteins, 
methods for subcellular fractionation can be applied. These methods include dif-
ferential centrifugation, fl ow cytometry, AP isolation, membrane protein enrich-
ment strategies, or density gradient isolation of organelles such as the nucleus or 
mitochondria. For example, in 1998 a study aimed to identify the human cardiac 
mitochondrial proteome using 2-DE analysis coupled with MALDI identifi ed 
merely 46 proteins [ 71 ]. Ten years later, another group used sample pre- fractionation 
to isolate the cardiac mitochondria followed by 1-DE coupled to LC/MS/MS which 
resulted in the identifi cation of 940 distinct mitochondrial proteins [ 72 ]. This exam-
ple demonstrates the power of fractionation to overcome the issue of complexity. As 
mentioned above, plasma is a complex proteome with few highly abundant proteins 
accounting for 90 % of the total protein concentration [ 73 ]. Serum albumin is one 
such abundant protein and thus a leading candidate for selective removal prior to 
proteomic analysis of less abundant proteins in plasma. Various albumin-depletion 
methods are available, including immunoaffi nity commercial kits, ligand chroma-
tography, and isoelectric trapping [ 74 – 76 ]. As a note of caution, some of these kits 
merely dilute the total protein concentration of the sample, such that volume load-
ing would show reduced albumin; this, however, also lowers the concentration of 
low abundance proteins, which makes these kits not useful. In addition, the use of 
depletion methods may result in the inadvertent removal of low abundance proteins 
like cytokines, lipoproteins, and peptide hormones [ 77 ]. New plasma fractionation 
methods have been developed that do not involve sample depletion and can be used 
to measure markers that detect MI or predict outcomes following MI [ 78 ]. 

 Fractionating by molecular weight size, by pH, or by solubility are common 
approaches [ 78 – 80 ]. Similarly in tissue, sub-cellular fractionation selects for pro-
teins of interest and reduces the large dynamic range of proteins found in whole 
homogenates. Decellularization of LV and aorta has been employed to remove highly 
abundant mitochondrial and nuclear proteins and enrich for extracellular matrix pro-
teins [ 79 ,  80 ]. Warren and colleagues used a series of differential centrifugations that 
yielded nuclear, mitochondrial, cytoplasmic, microsomal, and sarcomeric- enriched 
fractions of infarcted and non-infarcted tissue, in a rodent model of MI [ 81 ]. They 
compared non-fractionated samples and the sarcomeric fraction and found that the 
sub-cellular enrichment improved protein identifi cation by 4-fold [ 81 ].  

    Mass Spectrometers 

 Improvements in mass spectrometers over the last decade, as well as lower costs for 
these machines has allowed more research laboratories and shared facilities to pro-
vide more intensive proteomic studies. A summary of several commonly used mass 
spectrometers is shown in Table  3.3 .
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       Protein Identifi cation 

 Several protein sequence databases are commonly used for peptide and protein 
identifi cation. One of the most common databases utilized is the UniProt database, 
consisting of Swiss-Prot and its supplement, TrEMBL [ 82 ]. Other popular data-
bases include the Entrez Protein database (  http://www.ncbi.nlm.nih.gov/Class/
MLACourse/Original8Hour/Entrez/    ) and the reference sequence database (RefSeq, 
  http://www.ncbi.nlm.nih.gov/refseq/    ) both from the US National Center for 
Biotechnology Information (NCBI). The International Protein Index (IPI) database 
was one of the most popular databases used for proteomic investigations, but this 
database is no longer updated (as of 2/8/13). However, some recent publications still 
utilize this database [ 83 ]. 

 Each database differs in terms of the number of protein sequences available, the 
number of redundant sequences, and the degree of sequence annotation. The most 
complete database is the Entrez Protein database; however this database contains 
many redundant sequences and is not well annotated. The best database containing 
annotated, non-redundant, and experimentally validated protein sequences is the 

   Table 3.3    Common mass spectrometry instruments used for peptides and protein identifi cation   

 Type of mass 
spectrometer  Confi gurations  Advantages  Disadvantages 

 Hybrid 
quadrupole- 
orbitrap 

 Q Exactive (thermo 
scientifi c) 

 High-resolution, accurate- 
mass detection 
 <1 ppm mass accuracy 

 Limited mass range 
(mass range to 
6000 m/z) 

 Orbitrap fusion 
lumos tribrid MS 
(thermo scientifi c) 

 High-resolution, accurate- 
mass detection, optimized for 
detection of low level PTMs 
 Intact protein characterization 

 Cost 

 Triple quad  EVOQ elite triple 
quadrupole (bruker) 

 Great for multiple reaction 
monitoring (MRM) assays 

 Lower resolution 
 Lower scanning 
speed 

 6495 Triple 
quadrupole LC/MS 
(agilent) 

 Biomarker validation, price, 
tolerant of high pressure 

 Lower resolution 
 Lower scanning 
speed 

 TSQ Quantiva 
(thermo Scientifi c) 
 5500/6500 QTRAP 
(Sciex) 

 Ultrafast selected-reaction 
monitoring (SRM) of 500 
SRMs 
 High scanning speeds 
Excellent for MRMs 

 Lower resolution 
 Lower scanning 
speed 
 Lower resolution 

 Quadrupole 
time-of-fl ight 
(Q-TOF) 

 TripleTOF 5600+ 
system (Sciex) 

 MS/MS ALL  with SWATH 
acquisition – enables 
comprehensive MS/MS 
quantitation, fast scanning 

 Cost 

 6545 Q-TOF LC/
MS (agilent) 

 High resolving power and 
sensitivity 

 Cost 

 maXis II (bruker)  High resolving power and 
sensitivity 

 Cost 
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Swiss-Prot database. Because the Swiss-Prot database is non-redundant, it only 
contains a single consensus sequence for each protein such that known variants of a 
protein are all contained in a single entry. A good compromise is the UniProt data-
base, which contains a mix of annotated and non-annotated protein sequences. 
Uniprot databases are available for many different species. Using these species spe-
cifi c databases from UniProt allows only proteins from that species to be analyzed, 
reducing false positives. For example when analyzing MS data from human and 
mouse samples, the Uniprot Human Proteome (release 03.04.2013, contained 
87,656 protein entries) and the Uniprot Murine Proteome (release version 3.68 con-
tained 51,389 entries) are popular. 

 Expressed sequence tag (EST) databases and genomic databases translated into 
protein sequences could also be useful for identifi cation of peptide sequences as it 
sometimes allows for the identifi cation of peptides that are absent in other protein 
sequence databases. Genomic data from vertebrate and non-vertebrate species could 
be obtained from the Ensembl and Ensembl Genomes projects respectively. Since 
peptide sequences obtained from genomic databases often contain DNA sequences 
translated in all six frames, the size of the database fi les makes searches computer 
intensive, and these databases should be used with caution because of potential 
sequencing errors. These large databases are best utilized when high quality MS/
MS spectra is available that could not be identifi ed by searching against a protein 
sequence database such as UniProt. The large size of the EST databases also limits 
its use but is a great resource to determine peptides in organisms not well repre-
sented in protein databases. 

 Starting with a relatively small database such as Swiss-Prot, in general the score 
thresholds are higher as the size of the database increases, resulting in some weaker 
peptide sequence matches not being identifi ed. It is also possible to remove known 
contaminants (such as certain keratins and albumin) from the database. Irrespective 
of the database used, the MS data should be analysed using a target-decoy database 
to determine the false discovery rate (FDR) of the samples investigated [ 84 ]. A false 
discovery rate of 1 % for both peptide and protein matches is considered the gold 
standard.  

    Data Interpretation, Quantifi cation, and Analysis 

 Many different commercial software programs are available to analyse MS results. 
Over the last decade the protein identifi cation algorithms used to develop these 
programs have signifi cantly improved (reviewed in [ 85 ]) but many challenges still 
remain. The main challenge is determining the sequence of the large number of 
unidentifi ed peptides in typical proteomic experiments. Some of these unidenti-
fi ed peptides is due to unexpected and novel PTMs. Common search engines 
include Mascot (Matrix Science, Boston, MA), SEQUEST (Thermo-Fisher 
Scientifi c, San Jose, CA), OMSSA (NCBI [ 86 ]), PEAKS (Bioinformatics 
Solutions Inc., Waterloo, Canada), and X! Tandem (  http://www.thegpm.org/    ). 
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Software packages such as Proteome Discoverer (Thermo-Fisher Scientifi c, 
Waltham, MA), Scaffold (Proteome Software, Portland, OR), and Progenesis 
LC-MS (Nonlinear Dynamics, Newcastle, UK) are also available. Proteome 
Discoverer can utilize several search engines such as SEQUEST, calculate the 
FDR, and quantify the peptides detected. While some commercial software 
already have programs that can calculate the FDR, standalone programs that 
determine the FDR are widely available. 

 The rapid development of tagged and label-free quantitative proteomic tech-
niques has allowed the determination of protein expression levels in complex sam-
ples such as myocardial protein extracts. [ 87 ] Peptide labeling allows different 
samples to be labeled, mixed together, and then subjected to MS. Several well estab-
lished labeling protocols are widely utilized including Tandem Mass Tags (TMT), 
Isobaric Tags for Relative and Absolute Quantifi cation (iTRAQ) (each peptide is 
labeled with a different amine-specifi c isobaric tag), and SILAC. The main disad-
vantages of these methods include the high cost of the reagents, the increased com-
plexity of sample preparation, incomplete labeling, and the requirement for more 
advanced analysis software. The two most commonly used label-free quantifi cation 
methods include spectral count-based LC-MS/MS and peak intensity-based com-
parative LC-MS. The main disadvantage of label-free experiments relative to 
labeled peptides is the need for highly reproducible LC and MS to prevent run-to-
run variations in performance of the LC and MS. Label-free quantifi cation using the 
spectral count method correlates well with quantifi cation by isotope-labeling [ 88 ]. 
Hence, either labeled or label-free methods for quantifi cation of cardiovascular 
samples should provide adequate results. 

 An evaluation of the relative quantifi cation of peptides by spectral counts 
using fi ve different statistical tests showed that the Student’s  t -test was the best 
statistical test when at least three replicates are available [ 89 ]. The Fisher’s exact 
test, AC test, and goodness-of-fi t test (G-test) were found to be good statistical 
tests when the number of replications is two or less. Important parameters includ-
ing the precursor ion mass tolerance and product ion mass tolerance depend on 
the instrument being utilized. A common problem in not identifying peptide 
matches is the use of small mass tolerance ranges. The mass accuracy is more 
important than the precision. Typical analysis utilizes up to a maximum of two 
missed protease (most commonly trypsin) cleavage sites and oxidation of methio-
nine residues as dynamic  modifi cation. Since many different post-translational 
modifi cations of amino acids can occur, including some due to artefacts of sample 
handling, inclusion of known modifi cations such as alkylated cysteine as fi xed 
modifi cations, as well as other modifi cations expected in some peptides as vari-
able modifi cations, is important for peptide identifi cation. Unimod (  http://www.
unimod.org    ) is a comprehensive and commonly used database which focuses on 
protein modifi cations relevant to MS. It is important to limit the number of vari-
able modifi cations selected, as higher numbers of variable modifi cations increase 
the number of peptides incorrectly identifi ed and signifi cantly increase computa-
tional time.   
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    Tweaks and Tricks 

 As one works more with proteomics techniques, these experiences provide insight 
that makes future experiments easier to perform. Below, we provide insights into a 
few commonly encountered situations and how to optimize your success with them. 

    Improved Methods of Digestion for Poorly Solubilized Proteins 

 The extraction of myocardial membrane and ECM proteins remains a challenge 
[ 90 ]. ECM components are organized into a complex fi brillar, 3-D matrix that can-
not easily be solubilized or dissociated into component units [ 79 ]. Similarly, protein 
extraction from cell membranes is challenging due to the hydrophobic nature and 
poor solubility of these proteins. Recently the development of protocols using dif-
ferential solubility-based protein fractionation has advanced the study of insoluble 
proteins [ 79 ,  80 ]. 

 Protein digestion is a critical step in sample preparation for bottom-up and 
middle- down MS. Optimal protein digestion will enhance sequence coverage and 
peptide identifi cation. Trypsin is the most widely used enzyme in MS, cleaving at 
the C-terminus of lysine and arginine with both high effi ciency and specifi city [ 91 ]. 
However, the use of trypsin only, or any other single protease, does not provide 
complete proteomic coverage. Additionally, the proximity of proteolytic sites to 
PTMs can alter protease effi ciency at these sites [ 92 ]. Chymotrypsin and the endo-
proteinases Lys-C, Asp-N, and Glu-C have recently gained importance due to 
advancements in MS techniques. Chymotrypsin cleaves most frequently on the car-
boxyl side of the hydrophobic aromatic amino acids phenylalanine, tryptophan, and 
tyrosine and at a lower rate the carboxyl side of leucine. In contrast, endoproteinase 
Lys-C cleaves at the carboxyl side of lysine only. Asp-N preferentially cleaves pro-
teins at the N-terminus of aspartic and cysteic acid, and Glu-C cleaves at the 
C-terminus of glutamic and aspartic residues [ 93 ,  94 ]. Due to their specifi c cleavage 
sites, the use of these proteinases individually or in combination create unique pep-
tide fragments, offer increased protein coverage, and promote high confi dence data 
[ 95 ,  96 ]. Franklin et al .  used a combination of trypsin and chymotrypsin digestions 
and reported a cardiac nuclear proteome of 1048 proteins [ 41 ].  

    High Throughput Proteomics 

 In a way this term is an oxymoron, in that it is diffi cult to be all-inclusive and rapid. 
If the output measurements are numerous, such as during shotgun proteomics, the 
best solution is to keep the input numbers low. For example, limiting the number of 
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comparison groups to ≤4 and increasing the number of biological replicates in each 
group improves the power of the analysis and allows the dataset to be manageable. 
Additional groups, such as further controls, can be added at the immunoblotting or 
ELISA validation stage. If the inputs are numerous, consider using a targeted MS 
approach (e.g., SRM or MRM). Consideration should be given during the design 
stage for the number of inputs and expected outputs, to keep the experiment feasible 
and optimize the change of fi nding results to answer your question.  

    Interacting with a MS Core: How to Achieve Success 

 While the best approach is to invest the time and effort to learn to use proteomic 
technologies fi rst hand, this may not always be possible. Collaborations between 
your laboratory and a proteomics core can be fruitful, and we offer here some guid-
ance on how to maximize the experience. 

 Effective communication is key. Setting up at least one face-to-face meeting 
before the experiment is designed is critical. There needs to be direct and open com-
munication between the individual preparing the samples and the individual run-
ning them on the mass spectrometer. Continued communication throughout the 
analysis is also essential for ensuring the best experimental results. Working with a 
core is a relationship, not a one day affair. In addition to the exact experiment to be 
run, it is also important to discuss project deadlines and terms of the collaboration 
agreement, including whether the core director will be included as an author and 
how the core will be acknowledged. 

 Before the experiment is performed, it is important to defi ne approach. The 
approach used depends on what you want to know. For example, it does not make 
sense to use a shotgun approach to identify 1000 altered proteins in a group analy-
sis, if all you want to know is whether a particular protein of interest is differentially 
expressed. For this, a targeted proteomics approach is more suited to the question 
being asked. Taking the time to contemplate your question early on will strengthen 
the results obtained. For example, focusing on answering a biological question, 
rather than posing an open end let us see what is in the mix question, will increase 
the chance of obtaining mechanistic rather than observational results. Using 
 proteomics to reveal functions rather than mere identifi cations will provide a more 
sophisticated level of results. 

 In designing the experiment, it is important to consider how the samples are 
prepared, how many samples you have, and what controls are needed. The core 
needs to trust that the samples provided are the highest quality possible, and provid-
ing them with information on any anomalies is important. Testing the core to see if 
they can provide you with a certain expected result is not a good strategy, if a long- 
term relationship and trust are wanted. Once these are decided, the mass spectrom-
etry method and instrument used can be decided. Once results are obtained, methods 
to validate the results and approaches to present the results can be determined. 
There are several issues to consider while preparing the results for publication, so it 
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is a good idea to start organizing before you write and continue as the experiment is 
designed and results are acquired. 

 Many journals, particularly proteomics journals, have a set of standards for pub-
lication. The Human Proteome Organization (HUPO) established a Proteomics 
Standards Initiative (PSI) working group that developed a set of guidelines known 
as The Minimum Information About a Proteomics Experiment (MIAPE) [ 97 ]. With 
the increased use of mass spectrometric applications in proteomics research, it 
became clear that it was necessary to establish a set of guidelines for data analysis 
and criteria for data presentation. This guideline defi nes community standards for 
data representation in proteomics to facilitate data comparison, exchange and veri-
fi cation. HUPO-PSI developed guidance modules for reporting the use of proteomic 
approaches to generate MIAPE-compliant reports [ 97 ]. Most proteomics journals 
have adopted MIAPE reporting; thus, keeping detailed experimental records 
throughout the study is critical. MIAPE reporting denotes detailed recording of the 
experimental design and MS acquisition parameters either in the Methods or 
Supplementary sections. For example, the method (s) used to generate peak lists 
from raw MS and MS/MS data should be described, and information on the pro-
grams used for database searching and the selected search parameters should also 
be defi ned [ 68 ]. For quantitative MS approaches, the software for data extraction 
and statistical analysis should be detailed and the results reported. Additionally, any 
extra handling of data such as outlier removal, data normalization, and characteriza-
tion of PTMs has to be described. 

 Many journals also require that MS results be uploaded in a depository such as 
ProteomExchange (  http://www.proteomexchange.org/    ), which has been established 
to provide a single point of submission to proteomics repositories [ 98 – 100 ]. This 
streamlines the process by providing one interface and prevents user confusion 
about which repository to submit. Once submitted to the ProteomExchange entry 
point, the data can be automatically distributed to all other repositories. When 
depositing results, each submission is required to have three components: (1) mass 
spectrometer output fi les, (2) study metadata, and (3) peptide/protein identifi ca-
tions. All submissions will include all three components and will be made to the 
PRoteomics IDEntifi cations database (PRIDE,   http://www.ebi.ac.uk/pride    ) reposi-
tory using data suffi ciency guidelines established by PRIDE. Some software pro-
grams, such as Scaffold, provide an easy template for uploading results into 
PRIDE. Once the results are uploaded, a PX accession number is provided, which 
can be used by reviewers and readers to assess MS results.   

    Concluding Remarks 

 We present here some guidelines on how to design a proteomics experiment that 
will provide best case results. Thinking and planning from the start will prevent 
issues that would become apparent in hindsight. Understanding basic concepts 
involved in mass spectrometry analysis will provide a proactive understanding of 
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what the expected results will be and how these results will inform us about the 
basic mechanisms under evaluation. While using institutional cores or outside ven-
dors to provide total support for the mass spectrometry component of the study may 
be a useful option under certain conditions, investing the time to learn fi rsthand how 
to successfully complete a proteomics experiment will pay dividends. Whichever 
strategy is used, a successful proteomics experiment begins with formulating the 
right question and optimally preparing the sample for analysis.     
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Chapter 4
Organelle, Protein and Peptide Fractionation 
in Cardiovascular Proteomics

Mickey R. Miller, Sarah Franklin, and D. Brian Foster

Abstract  Proteomics experiments are as diverse as the scientists who perform 
them. Goals range from the desire to understand a subcellular structure or an indi-
vidual protein in greater depth, to identification of novel protein-protein interac-
tions. Or perhaps, the goal is to obtain a global protein abundance profile from an 
animal model of cardiovascular disease or from patient biopsies. Regardless of scale 
or objective, inevitably, the tools of organelle isolation, protein purification or pep-
tide fractionation will play an integral role. In this chapter, we survey both time-
honored and state-of-the-art fractionation techniques, with an emphasis on 
underlying physical and chemical principles.
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�Introduction

This may come as a surprise to students or postdoctoral fellows in the midst of 
inculcating themselves in cardiovascular proteomics, but it wasn’t that long ago that 
the tools we take for granted today, including the use of genetically engineered pro-
teins, fast & sensitive mass spectrometers and informative bioinformatic pathway 
analyses, were either novelties or fanciful dreams. Even the term “proteome” is only
about 20 years old [1]. Back in the day, we called ourselves protein biochemists and 
we studied only one, or at most, a few proteins at a time! Reductionism ruled. Fast-
forward to today. We now have the technology to understand proteins in the context 
of broader networks and systems. The number of post-translational protein modifi-
cations (PTMs) has skyrocketed, as has the permutation of potential effects on pro-
tein and protein network function. There has scarcely been a more exciting time to 
study the proteins of the cardiovascular system. The central theme of this chapter is 
that though technologies for the separation and analyses of proteins may change, the 
underlying principles have not. We begin by summarizing a few best practices in 
sample homogenization, then survey the most widely used methods of organellar, 
protein and peptide separation, from the tried-and-true to the cutting edge. By call-
ing attention to first principles, our goal is to inform experimental design and to 
foster an appreciation for how emerging technologies are building on older ones.

�Sample Homogenization

Homogenization of tissue or lysis of cells is the first step in organelle and/or protein
isolation. Priorities at this stage include preservation of the organelles, the proteins 
and, if applicable, their post translational modifications. Accomplishing this requires
attention to a few best practices that can be boiled down to buffer considerations and 
homogenization method. Here we summarize a few basic tenets drawn from an old
standard of protein knowledge, Methods in Enzymology, Guide to Protein Purification
[2], now in its second edition [3], and many articles therein, see [4–6] in particular.

Buffers are often tailored to preserve the organelle of interest. Luckily, for each 
organelle there is a rich history of successful isolation and no shortage of protocols. 
A typical buffer is designed to approximate, albeit crudely, the physiological milieu
in terms of pH, ionic strength and osmolality. Maintaining pH in the range of 7–8
preserves most enzymatic activity (if desired), whereas preserving the ionic strength 
and osmolality minimize soluble protein aggregation and maintain organelle integ-
rity. Other buffer components, such as the presence of divalent cation cofactors or 
detergents, vary depending on the nature of the organelle and whether it is essential 
to preserve biological activity of the proteins. For example, isolation of mitochon-
dria requires an iso-osmotic buffer to prevent their rupture. Alternately, when isolat-
ing myofilaments, it is often desirable to employ a buffer that dissolves membranous 
organelles away with detergents.
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While preserving organelle integrity is a priority, it also essential to minimize 
any biological activity that might compromise protein integrity (e.g. proteolysis) or 
otherwise confound the intended proteomic studies (e.g. in vitro kinase/phosphatase 
activity). An excellent start is to use ice-cold buffers and refrigerated lab equipment
to reduce overall enzymatic activity. Proteolysis in the early stages of isolation can 
subsequently be minimized by inclusion of protease inhibitors that target serine-, 
thiol-, metallo- and acid-activated-proteases. Depending on the goal of the study, it 
may be necessary to preserve the posttranslational profile of the organelle. 
Fortunately, many of the enzymes that add and remove PTMs can be inhibited. For 
example perturbation of protein phosphorylation can be minimized by inclusion of 
phosphatase inhibitors such β-glycerophosphate, orthovanadate and sodium fluo-
ride, while kinase activity is minimized by inclusion of Mg2+-and Ca2+-chelators, 
such as ethylenediaminetetraacetic acid (EDTA).

Once the appropriate buffer has been prepared and chilled, we consider the actual 
homogenization procedure itself. If it is too harsh, organelles may be ruptured or 
sheared and proteins denatured. If homogenization is too mild, overall yield may be 
compromised. Here, the choice of homogenization technique is often tailored to the
tissue under study. Some tissues are amenable to gentle disruption by hand with 
either glass or Teflon Potter-Elvehjem homogenizers, which resemble tight-fitting
mortar & pestles. Others, like the heart, are more fibrous and can be difficult to 
homogenize by hand, in which case, it may be desirable to use a mechanized 
homogenizer that resembles a narrow-bore immersion hand blender. Interestingly, 
as “omic” technologies have emerged, so too have high-throughput homogenization
tools including methods based on cavitation with ball-bearings that enable homog-
enization of many samples simultaneously (e.g. the “Bullet Blender”). These
advances in automated homogenization, are important as they may substantially 
minimize sample-to-sample variability that can confound proteomics experiments.

Cells, particularly from cultures, may be disrupted in a variety of ways. Again
shearing may be used, as in the case of a tight fitting homogenizer, or alternatively 
by passing cells through a narrow aperture at high pressure using a French press or 
a simple syringe needle. Cavitation of cells with high frequency sound waves,
known as sonication, is also effective. Finally cells may also be disrupted by treat-
ment with a mild detergent. As with tissues, care must be taken not to over-homog-
enize to preserve the integrity of the organelles.

Regardless of the buffer or homogenization method used, optimal organellar 
fractionation is only obtained from fresh, rather than frozen, samples. This is not to 
suggest that the frozen tissue is not amenable to proteomic analysis, only that sub-
cellular fractionation is best reserved for fresh tissue/cells. In short, freezing and 
thawing compromises both protein and organelle integrity; proteins often denature 
and organelles may fuse and/or rupture.

Finally, for global-scale peptide-centric proteomics experiments in which 
organelle or protein separation are not a priority, buffer considerations switch from 
preserving biological function to eradicating it as quickly as possible. Instead, a 
premium is placed on preserving the proteins and their PTMs, which is accom-
plished by denaturing pernicious activity. Proteins can be denatured by including 
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high concentrations of chaotropes such as urea and guanidine-HCl, or detergents
such as sodium dodecyl sulfate. Denaturation also results from extreme changes in 
pH or by boiling proteins. Though all of these methods can be used to abolish
unwanted enzymatic activity, each has unique shortcomings with respect to its 
capacity to preserve PTMs or induce in vitro artifacts and must be implemented 
mindfully.

�Separation of Particles

�Why Do We Separate Organelles, Proteins and Peptides?

Though the specific reasons for a particular separation are innumerable, the basic 
motivation is often to understand or characterize organelles, proteins and peptides 
in greater detail. We separate particles of interest, or sets of particles, from the rest. 
In the case of organelle separation, it is often desirable to study proteins and 
processes in the context of a cell’s componentry or subcellular localization. For 
instance, isolation of mitochondria or myofilaments for functional and proteomic 
characterization are critical to advancing our understanding of heart disease. From 
the proteomic standpoint, we understand that mass spectrometers can’t identify all 
the proteins and PTMs in a sample, therefore we subfractionate subcellular compo-
nents to minimize contaminants and maximize discovery within a particular domain.

Alternatively, individual protein purification remains a critical aspect of
proteomics. In this case, the goal is to study a particular protein quite intensively. 
The task then, is to separate it from thousands of other proteins in the cell, while 
preserving native binding partners and PTMs. In some cases, proteins can be geneti-
cally tagged to facilitate protein isolation. In others, tagging may be deleterious to 
function, alter protein folding or subcellular localization, in which case isolating 
native protein is still desirable. This is only possible with a detailed understanding 
of all the available tools of protein separation.

Or perhaps the goal of the experiment is global characterization of nearly all 
proteins in the cell in a case/control design. In that case, one might dispense with 
organellar and possibly protein separation. However, there are technical reasons
why maximizing protein identification would still require extensive separation at 
the peptide level. Briefly, in the parlance of proteomics, we seek to maximize pro-
teome depth, or coverage. The challenge is that peptides (and therefore proteins) of 
low abundance are often difficult to detect. Whereas low abundance DNA or RNA
species can be identified within a complex DNA or RNA sample through amplifica-
tion by polymerase chain reaction, no such amplification step exists for the identifi-
cation of a low abundance protein within a complex protein mixture. In fact, mass 
spectral identification tends to be biased against the identification of rare proteins. 
One reason is that abundant proteins yield more peptides after proteolysis, which in 
the mass spectrometer, yield high parent-ion currents in MS1. In workflows that 
employ data-dependent data acquisition (DDA), these parent-ions are sampled
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preferentially for fragmentation in MS2. In essence, lower abundance proteins are 
under-sampled or masked by the more abundant proteins in the sample [7]. In light 
of this, the key to maximizing peptide identification on a given instrument is to 
decrease sample complexity by optimizing peptide separation.

�First Principles of Particle Separation

Whether isolating intact organelles, purifying a protein, or spreading peptides over 
multiple fractions prior to analysis, the goal is the same – separation, separation, 
separation. In the interests of brevity and clarity, organelles, proteins, and peptides 
will, hereinafter, be described collectively as particles in a solvent. Particle separa-
tion methods can be broadly classified into two types, rate and equilibrium methods. 
Rate methods are based on the principle that particles moving with different veloci-
ties can be separated over time. In contrast, equilibrium methods manipulate the 
interaction between a particle and its environment to affect its end- position relative 
to other particles, irrespective of rate.

�Directed Movement of Particles

In the modern biomedical research laboratory, there are a few main ways to get 
particles to move in a directed fashion (i.e. vectorially). One method is to apply 
tremendous forces, often many times the force of gravity, to move a particle through 
a solvent, as in the case of centrifugation. A second way is to elicit flow of the sol-
vent that contains freely tumbling particles, as in the case of chromatography. A
third way it to apply an electric field to drive charged particles, which is the very 
definition of electrophoresis. Separation technologies have evolved to alter the 
migration of particles by taking advantage of their distinctive combinations of prop-
erties, which include their size, shape, polarity, charge and biological function.

�Diffusion: Undirected Particle Movement and Its Effect on Separation

The extent to which one can separate populations of particles from each other is 
termed resolution. If particles have been completely separated we say they have 
been resolved or that resolution between populations is high. If particle populations 
overlap substantially, the resolution is low. Resolution depends on several factors 
that include intrinsic capabilities of the method and the capacity to modify the prop-
erties of the particle to maximum advantage. These factors are explored in greater 
detail later. There is, however, one particle property that often compromises resolu-
tion if left unchecked – diffusion. Diffusion, the random movement of particles, is 
what prevents particles with identical properties, from migrating vectorially at a 
uniform rate. Instead, a population of identical particles travels at an average 
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velocity, and diffusion contributes to the dispersion of the individual particle veloci-
ties. Large spreads on velocity or the equilibrium position of particles increase the 
likelihood of overlap between populations with marginally different properties. As
you will see in the following sections, limiting particle diffusion to maximize reso-
lution is a recurring theme across the methods of centrifugation and chromatogra-
phy and electrophoresis.

�Centrifugation: The Workhorse of Organellar Separation

�Fractionation by Centrifugation

At its root, centrifugation is a procedure by which particles are separated by impos-
ing large forces on a sample, by spinning it quickly, in a tube or bucket, around a 
fixed axis. Reports of the use of hand-driven centrifuges date back to the mid-
fifteenth century when it was used to separate milk from cream [8]. Today modern 
laboratory centrifuges come in many forms, ranging from compact tabletop models 
to floor-standing ultracentrifuges capable of spinning samples at tens of thousands 
of revolutions per min (RPM). The relationship between the speed of rotation, or 
angular velocity (ω), and relative centrifugal force (RCF) is given by:
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where

ω, the angular velocity in radians/s and
r, the radius of rotation, i.e. distance from the axis
g is earth’s gravitational acceleration

Since angular velocity is most commonly understood in the laboratory in terms 
of RPM we can re-write this as:
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where

rmm is radius of rotation in mm

Centrifugation separates particles in the sample on the basis of size, shape and/
or density by varying the speed of the centrifuge rotor, run time, or the density of the 
medium through which they travel. The utility of two common organellar 
fractionation strategies, differential velocity sedimentation and density gradient 
centrifugation, are outlined briefly here.
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�Differential Velocity Centrifugation

Differential velocity centrifugation (DVC), not surprisingly, is a strategy that capi-
talizes on the fact that applying high forces to particles causes them to migrate at 
differing speeds, largely depending on their size, or technically, their mass. 
Centrifugation causes particles that migrate quickly, to move to the bottom of a tube
or bucket, where they form a semisolid pellet. This is called sedimentation. Lighter, 
slower moving particles are largely confined to the supernatant. Decanting the 
supernatant yields a pellet that is enriched and a supernatant that is depleted of a 
given particle.

DVC therefore depends on the sedimentation rate of particles. The speed of a
particle is determined by the balance of forces imposed on it, which include the 
centrifugal force and the opposing effects of buoyancy and drag. Expressed for-
mally, we see,
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(4.3)

where

MW is the molecular weight of the particle
1- -v r  term accounts for buoyancy where
v-  is the partial specific volume of the particle, the inverse of particle density and
ρ is the density of the solvent
f is the frictional coefficient, or drag term, which reflects particle shape and solvent 

viscosity
NA is Avogadro’s number

Breaking the equation down, we can see that the sedimentation rate is a function 
of angular acceleration (ω2r), which is determined by the experimentalist, and a host 
of particle properties intrinsic to the particle itself in a given solvent. These intrinsic 
properties define a sedimentation propensity or index (s) so,
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In other words, the sedimentation coefficient, s, is simply a function of mass, shape 
and density of the particle, as well as the viscosity and density of the solvent. What 
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this means is that heavier particles will sediment faster than lighter ones. If two 
particles have comparable mass, a compact shape will sediment faster than an 
extended one, due to reduced drag. Likewise, between comparable masses, the 
particle with lower buoyancy will sediment faster than a high buoyancy particle 
(e.g. high lipid content).

In the context of subcellular fractionation, we can see that differential velocity 
centrifugation is a procedure that capitalizes on the fact that organelles have different 
sedimentation coefficients. For instance nuclei are much larger and heavier than 
mitochondria. Mitochondria, in turn, are larger and less buoyant than plasma 
membranes. In practical terms, this means that organelles with high sedimentation 
coefficients can be harvested at lower centrifugation speeds. By conducting 
successive rounds of centrifugation and progressively higher and judiciously chosen 
speeds, it is possible separate heavy organelles from light ones. Figure 4.1 outlines 
the separation of organelles obtained in a sequential centrifugation with increasing 
centrifugation speeds and times. An initial low-speed centrifugation will separate
nuclei from the homogenate. The post-nuclear supernatant (PNS) can then be cen-
trifuged at higher speeds and for longer periods of time to further separate organ-
elles from the sample. The number of centrifugation steps required for a given study 
will depend on the subcellular compartment(s) desired.

It should be noted that while the differential velocity centrifugation method is 
easy to perform and organellar enrichment can be substantial, the purity of the 
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organelles is still somewhat crude for a couple of reasons. Firstly, all the particles 
are fairly homogeneously distributed in the tube or bucket before initiating centrifu-
gation. The second reason is that the sedimentations coefficients for each organelle 
are not discrete, but cover a range. Therefore, organelles with overlapping sedimen-
tation coefficients will co-fractionate in a given solvent. Each of these challenges
can be addressed by additional centrifugation strategies.

�Density-Gradient Centrifugation

Rate Zonal Gradient Density Centrifugation

One reason the differential velocity centrifugation strategy affords only crude 
organellar enrichment, is that prior to centrifugation, biological samples are homo-
geneously dispersed. Upon centrifugation small particles near the bottom of the 
tube will pellet as fast as large particles near the top of the tube, as they have a 
shorter distance to travel. Rate zonal centrifugation solves this problem by changing 
the density and viscosity of the solvent. First, consider a centrifuge tube filled near 
the top with a solvent whose density is greater than a typical tissue homogenate  
(e.g. 10% w/v sucrose). The homogenate can then be applied in a thin layer near the
top of the tube. As a result, all particles in the sample begin their sedimentation from
roughly the same starting point. Larger particles can now outpace smaller ones to 
the bottom of the tube. Rate zonal centrifugation is optimally performed in swing-
ing bucket rotors. A tube that is parallel to the centrifugal force maximizes migra-
tion distance and therefore resolution between particles. To summarize, the judicious 
choice of centrifuge rotor, speed and run time allows organelles of differing sedi-
mentation coefficients to be distributed from the top of the tube to the bottom. In 
practical terms, however, using a single-density solvent is suboptimal, since the 
effects of particle diffusion dampen resolution over the course of centrifugation. 
This problem is alleviated either by using multiple solvents of differing density and 
viscosity (a discontinuous gradient; see Fig. 4.2) or a single continuous gradient. A
typical procedure would be to construct a discontinuous gradient with solvents 
varying from 10 to 40% sucrose. It should be emphasized that as long as the density
of the solvent does not exceed the density of the particle or organelle, fractionation 
proceeds primarily on the basis of particle size, not its density. The density  
(and viscosity) gradient simply increases resolution by limiting diffusion. A corol-
lary of this is that if centrifugation time were extended significantly, all organelles 
would pellet.

Isopycnic (Equilibrium) Gradient Density Centrifugation

The second challenge that confounds standard DVC is that organelles come in a
range of sizes and, therefore, sedimentation coefficients. Organelles with overlap-
ping coefficients can never be fully resolved by rate methods alone. This is where 
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Fig. 4.2 A mitochondrial isolation protocol illustrates the combined use of rate and equilibrium
centrifugation. This strategy was used by Foster et al. [9] to obtain highly-enriched mitochondria 
whose further subfractionation led to identification of a cytoprotective mitochondrial potassium 
channel, mitoROMK (It is based on the work of Taylor et al. [10] and Storrie and Madden [11]). 
Differential velocity centrifugation (DVC) and density boundary centrifugation (DBC) were used
to isolate highly-enriched mitochondria from nearly 1 kg of bovine heart tissue. Following removal
of myofilament and nuclei by low-speed centrifugation, multiple rounds of DVC at 8000×g mini-
mize contamination of particles with non-overlapping sedimentation coefficients (e.g. sarcoplas-
mic reticulum, SR; plasma membrane, PM). Remaining free contamination can only be removed 
by methods that are independent of sedimentation rate. DBC is an equilibrium method that sepa-
rates particles by density. Electron microscopic examination of preparations after two rounds of
DBC reveals that mitochondria are essentially pure. The only (rarely) observable contamination
consists of membranes that remain tethered to the mitochondrial outer membrane
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equilibrium methods distinguish themselves. Remember that an equilibrium method 
depends only on the final spatial resolution of particles, not the rate they travel. The 
key principle of equilibrium methods is that that one can manipulate the particle/
solvent interaction to achieve spatial resolution. Isopycnic centrifugation exempli-
fies this. Specifically, in isopycnic centrifugation, the density of the solvent is 
manipulated relative to the density of the particle. In a continuous high-density gra-
dient, there is a final position where the solvent density equals the density of the 
particle (the isopycnic point). Solvents commonly used in isopycnic centrifugation 
share the intriguing property that they can form self-generated gradients upon cen-
trifugation. Examples would include Cesium chloride solution which is used for
preparation of high-purity DNA, or Percoll is often used for isolation of high purity
mitochondria. When using a self-generating gradient protocol, the sample is mixed 
with the solvent to form a homogeneous solution and upon centrifugation migrates 
to the equilibrium point as the density gradient is established. Centrifugation pro-
ceeds until this equilibrium is reached, which often takes many hours. Indeed, as 
particles near their isopycnic points, they migrate very slowly. For this reason, iso-
pycnic centrifugation is best performed in rotors with vertical or near-vertical tubes 
to minimize the distance the particles must travel to reach equilibrium.

Boundary Gradient Density Centrifugation

Boundary centrifugation is a variant of equilibrium centrifugation performed with a 
discontinuous density ( r ) gradient and is illustrated in Fig. 4.2. The principle is 
that organelles will migrate to the interface of two solvents where

	
r r rsolvent organelle solvent1 2< < .

	

This method is more easily tailored to organelle fractionation than isopycnic 
method. Take, as a specific example, the work of Storrie & Madden, who optimized 
discontinuous gradient to resolve nuclei, mitochondria, endoplasmic reticulum and 
lysosomes [11]. They found that mitochondria have a density greater than 37% w/v
sucrose but less than 50% w/v sucrose, and therefore migrate to the interface or
boundary if the two layers. Initial contaminating endoplasmic reticulum has a den-
sity less than 37% sucrose but above greater than 10% and will migrate to the 10/37
boundary. This method is a highly effective way of increasing the resolution of 
organelles of different densities and the resulting enrichment can be very high. It is 
noteworthy that newcomers to centrifugation frequently confuse this method with 
rate zonal centrifugation. This is understandable since discontinuous density gradi-
ents are used in both cases. However, rate zonal centrifugation uses the gradient to
control the sedimentation velocity and diffusion. In boundary centrifugation, how-
ever, the density gradient is chosen to resolve final position of particles in the cen-
trifuge tube. This is keenly illustrated by the fact that it can be performed by mixing 
the sample with the densest solvent at the bottom of the centrifuge tube before layer-
ing the rest of the discontinuous gradient. Upon centrifugation, the particles float to 
their final position.
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�Evaluating Organelle Enrichment

Knowing the degree of enrichment or purity of an organelle preparation is key to 
understanding what conclusions may safely be drawn from its use. Purity can often 
be assessed qualitatively by electron microscopy and visually inspecting a broad 
field [12]. A nother time-honored quantitative approach is to track the fold-
enrichment of protein known to be found exclusively in the organelle of interest. 
This may be done by measuring enzymatic activity per mg of total protein from 
successive steps of the enrichment protocol. Alternatively immunoblotting may be
used as a proxy for enzymatic activity provided that equal amounts of protein from 
each step of the protocol are analyzed. In addition to enrichment of specific mark-
ers, it is also desirable to track the depletion of contaminants similarly by enzymatic 
or immunoblot analysis. Using mitochondria as example, it would be desirable to 
track the fold-enrichment of an enzyme like citrate synthase, as well as depletion of 
cytosolic, plasma membrane, sarcoplasmic reticulum and nuclear markers [13].

�Choosing an Organellar Enrichment Strategy

Centrifugation is by far the most commonly-used tool for organellar separation.
Procedures may yield either crude or highly-enriched organelles, depending on the 
type of centrifugation used. Which procedures are right for you depends on the goal 
of the experiment. This is because there is an inherent trade-off between organelle 
purity and isolation time. A DVC strategy may yield a cruder product, but it can be
accomplished quickly, which minimizes preparation-induced changes to the pro-
teome that accrue with time, particularly the loss of post-translational modifica-
tions. Therefore, if the motivation behind organelle fractionation is simply to reduce 
sample complexity, crude preparations may be sufficient. On the other hand, if the 
goal is to ascribe a subcellular location to the proteins that are ultimately identified, 
high organelle purity is important. However, high-purity protocols are more compli-
cated and often involve both DVC and either rate-zonal or density boundary cen-
trifugation as illustrated in Fig. 4.2. Isolation can take several hours, over which 
time the proteome may be affected.

�Protein and Peptide Fractionation

Just like organelles, proteins and peptides have distinct physical properties that can 
be harnessed for their separation or isolation. These properties include charge, size 
& shape, hydrophobicity and biological activity. Before the advent of genetically-
engineered high affinity tags, co-opting the properties of the native protein was 
often the only way to purify it to homogeneity. Today, knowledge of protein 
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biochemistry is still relevant, whether the goal is protein purification for intensive 
study, or simply to minimize sample complexity by maximizing protein separation 
for broader-scale proteomic investigation. In this section, we introduce the primary 
methods by which proteins and peptides may be separated. These include precipita-
tion, extraction, centrifugation, chromatography, and electrophoresis.

�Selective Protein Precipitation

Precipitation is one of the oldest tools in protein separation. It capitalizes on the fact 
that soluble proteins may be selectively rendered insoluble by altering the ionic 
strength or pH of the solution [14]. It is essentially a phase separation technique 
where proteins undergo a transition from the soluble to insoluble phase and phases 
are then separated by centrifugation. Here, we focus on selective precipitation from
which proteins can be easily resolubilized and which preserve biological activity. 
Techniques such as acetone, ethanol and trichloroacetic acid precipitation, in con-
trast, are used to precipitate proteins indiscriminately for the purpose of removing 
non-protein impurities, rather than for selective enrichment.

�Ammonium Sulfate Precipitation

In the 1880s Franz Hofmeister analyzed how adding salts to solutions of hen egg
white lysozyme caused the protein to precipitate [15]. Anions and cations were
ranked in decreasing order of their propensity to precipitate protein. The studies 
were extended by others, but the ranking is still known as the Hofmeister series.

Anions: PO4
3− > SO4

2− >CH3COO− >Cl− > Br− >NO3
− >ClO4

− >I−>SCN−

Cations NH4
+ > Rb+ > K+ >Na+ >Cs+ > Li+ > Mg+ >Ca2+ > Ba2+

From that series, one salt in particular, ammonium sulfate ((NH4)2SO4 or AS),
emerged as a particularly useful tool for selective protein precipitation, a frequent 
first step in protein purification of native proteins. Each protein is soluble because of
how it orders water molecules immediately around it - its hydration shell. The pro-
tein-H2O interaction is mediated most strongly by charged (i.e. ionizable) amino 
acids of the protein through ion-dipole interactions. Selective precipitation methods 
work by interfering with a protein’s hydration shell. One way to alter the protein-
water interaction is to dramatically alter the ionic strength of a solution. Briefly, ions 
in solution order the water around them just as proteins do. In other words, ions such 
as NH4

+ and SO4
−2 interact with water more strongly than do neighboring water mol-

ecules. At sufficiently high ionic strength, ions can compete with proteins to order
the water, effectively stripping the hydration shell. A compromised hydration shell
favors both non-specific ionic and hydrophobic protein interactions, which lead to 
formation of high molecular weight aggregates. The aggregates, in turn, can be sepa-
rated from soluble proteins by centrifugation. AS is uniquely suited to protein pre-
cipitation because of its high solubility and ionic strength. The amount of AS added
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to a solution is reported as the fraction present in a saturated solution, which, at a 
sensible working temperature near 0 °C, is 70.6 g/100 g water. For instance, a proto-
col may recommend adding AS slowly to 10% saturation, stirring the solution for a
few minutes, then centrifuging it. In this way, one may fractionate the proteome 
according to protein insolubility by iterative addition of AS and centrifugation. Most
proteins precipitate between 5 and 70% saturation.

�Isoelectric Point Precipitation

A protein’s isoelectric point is defined as the pH at which the protein has no net
charge, and is determined by the relative number of basic and acidic amino acids. A
protein particularly rich in glutamic and aspartic acid will have a low isoelectric 
point (e.g. Acidic leucine-rich nuclear phosphoprotein 32, pI 3.98), whereas pro-
teins rich in lysine and arginine will have high isoelectric points (e.g. Histone H1,
pI 10.8). In practical terms, this means that the pH of the solution can be altered to
render groups of proteins neutral. When a protein is neutral, the ion-water interac-
tions that form the hydration shell are minimized. At the isoelectric point, a protein
is at its most hydrophobic and therefore thermodynamically driven to interact with 
other proteins, aggregate and precipitate. As in AS precipitation, pH may be altered,
and solutions centrifuged, iteratively, to separate proteins of differing isoelectric 
points. Bulk isoelectric precipitation of proteins from solution is rarely used in pro-
teomics today, however capitalizing on isoelectric point of proteins remains rele-
vant, as it is foundational to the practice of isoelectric focusing in 2-dimensional gel 
electrophoresis discussed later.

�Differential Protein Extraction

Protein extraction methods, like precipitation methods, work by manipulating how 
proteins partition between soluble and insoluble phases. Common extractions like
detergent or acid extraction work by selectively increasing protein solubility. In this 
section, we also include methanol/chloroform extraction as a liquid extraction 
method that partitions the major classes of biological molecules on the basis of their 
solubility in solvents of differing polarity.

�Detergent Extraction

Hydrophobic membrane proteins are largely surrounded by lipids to prevent expo-
sure to the local aqueous environment that would otherwise render the proteins 
insoluble. The major challenge of successfully fractionating these proteins is main-
taining their solubility during extraction. Chaotropic agents such as detergents are
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capable of fractionating and extracting membrane proteins while maintaining their 
solubility. Detergents are amphipathic molecules that contain a hydrophilic polar 
head at the end of a long hydrophobic tail. In aqueous solutions, the hydrophobic 
tails of several detergent molecules interact with each other while their polar heads 
form hydrogen bonds with water molecules to form organized structures known as 
micelles. The lowest concentration at which individual detergent molecules aggre-
gate to form micelles defines the detergent’s critical micelle concentration (CMC).
A detergent’s CMC is also the value above which membrane proteins can be
extracted. Furthermore, the number of detergent monomers that aggregate to form 
micelles also affects the detergent’s efficiency in extracting proteins. As each deter-
gent varies in its CMC value and aggregation number, the efficiency in which each
detergent is able to extract soluble proteins also varies. Therefore, proteins can be 
extracted and separated based on their solubility in detergents of increasing solubi-
lization efficiency [16].

Figure 4.3 illustrates the fractionation that occurs upon sequential extractions 
using detergents of increasing extraction efficiency. Starting with a weaker deter-
gent like digitonin, the cells are washed to extract proteins that are most soluble. 
Following centrifugation, the supernatant contains a highly enriched fraction of 
cytoplasmic proteins. The pellet is resuspended in a stronger detergent solution to 
extract proteins that are less soluble. The process continues until the final extraction 
with sodium dodecyl sulfate (SDS) resulting in the solubilization of the remaining 
proteins of the sample. Differential detergent centrifugation typically yields four 
distinct subproteomes enriched in (1) cytosolic, (2) membrane, (3) nuclear, and (4)
cytoskeletal proteins [13]. Unfortunately, due to the wide variety of proteins and 
their interactions, this approach results in only a modest specificity of the subcel-
lular compartments extracted. One exception, however, is the high specificity in the 
extraction of proteins of lipid rafts [16].

�pH-Based Extraction

The IN sequence protein extraction method is a sequential extraction method based
on the solubility of proteins at various pH levels. Proteins in a sample are first
extracted at neutral pH (7.4) in which only the most soluble proteins remain in solu-
tion resulting in a cytoplasmic-enriched extract. The insoluble portion of the first 
extraction is then homogenized in an acidic solution in which more proteins, par-
ticularly myofilament proteins are solubilized and extracted. The remaining insolu-
ble pellet contains mostly membrane proteins. This method is useful in that it can 
serve to deplete cardiac samples of highly abundant myofilament proteins to inves-
tigate the lower abundant cytosolic proteins in samples. IN sequence extraction also
provides extracts compatible for further separation by 2D-PAGE or high-perfor-
mance liquid chromatography (HPLC) [17, 18]. Acid extraction of chromatin frac-
tions provides great enrichment of histone proteins as it isolates proteins tightly 
bound to DNA [19–22].
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�Methanol/Chloroform Extraction

Proteomic cognoscenti would argue that the methanol/chloroform extraction 
method has little place in a discussion of protein fractionation. The method is 
broadly used in proteomics, however, as a means of near-quantitative protein pre-
cipitation and contaminant removal [23], though proteins are not resolved from 
each other. The method entails adding 4 volumes of methanol to 1 volume of aque-
ous biological sample and mixing thoroughly. Chloroform is subsequently added
and also mixed thoroughly. Finally, 3 volumes of high purity water are added, mixed 
thoroughly and centrifuged. Since chloroform is immiscible in methanol/water, 
after centrifugation, the tube contains two solvent phases. The upper phase is the 
polar phase which contains methanol/water. The bottom, denser, phase consists of 
chloroform. The fractionation principle in liquid extraction is that solutes are 
extracted into solvents with like properties. The pertinent property, in this case, is 
polarity or hydrophilicity. Polar hydrophilic substances including metabolites and 
salts are extracted into the upper polar solvent phase. Hydrophobic, low-polarity
species such as long chain aliphatic lipids are extracted into the bottom low polarity 
chloroform phase. Proteins, however, contain amino acids that are both hydrophilic 
(ionic or polar) and hydrophobic (apolar) and therefore migrate to the interface of 
the two solvent phases. The upper layer can be collected at this point. Following 
removal of the upper layer, lipids and proteins can be retrieved by adding 3 volumes 
of methanol to the residual sample, vortexing and centrifuging. Since chloroform is 
miscible in methanol, centrifugation reveals a single liquid phase and a pellet. The 
liquid phase containing methanol chloroform and lipids can be removed. The pro-
tein pellet can then be resolubilized for downstream proteomic applications.

�Liquid Chromatographic Methods

The essence of liquid chromatography is rooted in extraction. However, rather than
partitioning proteins in the liquid phase as in section “Methanol/Chloroform
Extraction”, proteins are extracted by their interaction with a solid phase in a pro-
cess called solid-phase extraction. Chromatography is a widely used laboratory
implementation of solid phase extraction. The distinction is that chromatography 
allows for movement of liquid solvent through a stationary, yet porous solid phase, 
or matrix. This affords continuous partitioning of the solutions that flow through the 
matrix. In practical terms, the matrix is packed into a long column and equilibrated 
by pumping buffer through it before protein solutions are applied. How proteins
partition themselves between the mobile solvent and stationary matrix, is deter-
mined by the physical/chemical properties of each protein, the matrix and the com-
position of solvent buffer used. In this way, the proteins can be separated from each 
other. We begin by briefly introducing the physical and chemical properties of com-
monly used matrices and the principles underlying protein separation in each case.
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�Ion Exchange Chromatography (IEC)

Proteins contain both positive and negative charges at near-physiological pH, both
of which can be used to advantage in ion exchange chromatography [24, 25]. 
Matrices can be derivitized to bear either negatively or positively charged ligands. 
When a positively charged matrix is used to adsorb proteins through their negatively 
charged amino acids, this is called anion-exchange chromatography. Adsorption
through positive amino acids to a negatively charged matrix is called cation-exchange 
chromatography. Both anion- and cation- exchange matrices come in “weak” and
“strong” forms. A weak anion exchange resin is one whose ligand is partially ion-
ized at the working pH, as in the case of diethylaminoethyl (DEAE)-Sepharose. A
strong anion exchanger is fully ionized at the working pH, such as quaternary
ammonium (Q)-Sepharose. Similarly, carboxymethyl (CM) and sulfopropyl (SP)
ligands are examples of weak and strong cation exchangers, respectively.

A typical DEAE anion exchange chromatography experiment is depicted sche-
matically in Fig. 4.4. Assume the column is equilibrated in low salt buffer around pH
7.5, prior to application of protein sample soluble in the same buffer. As a general
rule proteins whose pI <7.5 would bear a degree of negative charge and will adsorb
the positively charged DEAE matrix via ionic interactions. Proteins whose pI >7.5
would bear differing degrees of positive charge and would be less likely to adsorb 
DEAE. These non-adsorbed proteins can be washed away with application of more
equilibration buffer. Elution proceeds when a linear salt gradient is applied. Proteins
with little negative charge are easily displaced by increasing Cl− in the salt gradient 
and elute at a lower retention volume or retention time. Proteins with greater negative 
charge will adsorb more strongly to the column and desorption requires higher salt 
concentrations. These proteins elute at higher retention volumes or retension times.

�Hydrophobic Interaction Chromatography (HIC)

Given the right matrix and buffer conditions, proteins can also be coaxed to adsorb to 
the stationary phase through its hydrophobic residues [26, 27]. Matrices are deriva-
tized with apolar cyclic compounds or short alkyl chains to yield hydrophobic resins, 
as in the case of Phenyl-Sepharose and Octyl-Sepharose respectively. Proteins are 
applied to the column equilibrated in high salt (NaCl or KCl) buffers. This is impor-
tant since hydrophobic interactions, in contrast to ionic interactions, are favored by 
high salt. Unbound protein is washed through with high salt buffer prior to elution of 
bound proteins with either a linear or stepwise gradient with low salt buffer (See 
Fig. 4.4). Hydrophobic interactions also differ from ionic interactions in that they are
also temperature dependent. Hydrophobic interactions are stronger at typical lab
room temperatures (20–25 °C) than at 4 °C. A classic example is the room tempera-
ture isolation of EF-Hand-containing Ca2+-binding proteins including calmodulin 
[28] and caltropin [29], whose retention on Phenyl-Sepharose is dramatically reduced 
at 4 °C [28]. Finally, because binding is favored by high salt, HIC is well suited to
follow IEC or AS precipitation in a multi-step protein purification strategy.
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Fig. 4.4 Chromatographic methods. (a) A simplified schematic of a typical low-pressure chro-
matographic apparatus is shown in silhouette. (b) The principles of four types of chromatogra-
phy are depicted. Proteins are introduced to the column in column equilibration buffer and 
subsequently washed with more buffer; non-adsorbed particles are removed. Elution conditions
vary with the type of chromatography. In IEX, adsorbed proteins are often eluted with a linear
gradient of increasing salt (NaCl, or KCl) concentration. In HIC the equilibration buffer is typi-
cally a high salt buffer and elution proceeds with a linear gradient of decreasing salt. For affinity 
chromatography, competitive elution depends on the concentration of a competing ligand that 
will either bind the matrix or the adsorbed ligand. In SEC, where proteins diffuse within, but do
not adsorb to, the matrix, elution is a function of buffer volume applied to the column. In chro-
matography, protein profiles are typically monitored spectrophotometrically, in real-time, by 
absorbance at 280 nm
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�Size-Exclusion Chromatography

Size exclusion chromatography (SEC) is singular among chromatography
techniques in the sense that the separation of proteins does not result from adsorption 
to the matrix. Instead, the matrix consists of beads of porous gel; protein separation 
results from the diffusion of protein into and out of the pores in the gel [30, 31]. 
SEC, also known as gel filtration or gel permeation chromatography, is one of few
laboratory methods in which particle diffusion can be harnessed to advantage. In 
practice, a small volume of protein solution is applied to a long (1 m) equilibrated
column, buffer flow is immediately resumed and proteins proceed through the resin. 
The principle behind protein separation is that larger proteins cannot easily pene-
trate the pores and are partially or completely excluded from the gel beads. As a
result, they remain mobile and elute from the column in a relatively small volume. 
Smaller proteins are free to diffuse into the pores, which retards their progress 
through the column, and more buffer is required to elute them. Matrices can be 
manufactured to have different pore sizes, to maximize separation over different 
size ranges.

It is noteworthy that SEC does not fractionate the basis of molecular weight per 
se, but rather its effective size in solution, called the Stokes’ radius. This is the same 
property that factors into centrifugal separation, which, as discussed previously, 
depends greatly on the shape of the molecule. In SEC, the Stokes’ radius has oppo-
site effect on the speed of migration. In contrast to centrifugation, where solvent 
friction is significant, in SEC, it is minimal, as proteins tumble with the mobile buf-
fer phase. What matters most, is the extent to which a protein can diffuse into the gel 
pores. Therefore, molecules with compact structures penetrate the gel beads more 
easily than oblong structures that cut a wide swath as they flow.

�Affinity Chromatography

Affinity chromatography (AC) is one of the most powerful tools for protein purifica-
tion. Chosen properly, it can often reduce the isolation of a particular protein to a
single step. Rather than partitioning proteins by general physical/chemical proper-
ties, adsorption is accomplished by harnessing a protein’s biological activity or 
binding proclivity. To do this, the matrix is derivitized or processed to incorporate 
ligands that bind a particular protein or group of proteins of interest. Examples
include enzyme inhibitors or substrate analogs, antibodies, hormones, and specific 
DNA sequences, to name only a few [32, 33]. In a typical experiment, a protein 
solution is applied to the conjugated matrix and buffer is used to wash away unbound 
protein. Buffer composition will depend on whether the goal of the experiment is 
maximal protein purity or preserving any potential interacting proteins. Elution of
the targeted proteins is elicited by interfering with the protein-ligand interaction in 
one of a few ways. A common method is low pH elution, often with the amino acid,
glycine, at pH 2.5. If the protein is eluted into fractions containing a neutralizing
buffer such as ammonium bicarbonate, biological activity can be preserved. If 
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activity is dispensable, strong detergents, like SDS, are used to elute proteins by 
denaturing them.

From a proteomic perspective, however, both low-pH and SDS elution may be
suboptimal, as they also elute proteins that adsorb non-specifically to the matrix 
rather than the ligand. Contamination from nonspecific adsorption is not trivial, and
represents a confounding factor in affinity chromatography, particularly in 
microscale experiments. Therefore, whenever possible, it is preferable to perform a 
specific elution with a competitive inhibitor (CI) of the protein-ligand interaction.
Remember that the bound protein is actually in equilibrium between the stationary 
and mobile phases, determined by its association and dissociation rate constants, kon 
and koff respectively. Competitive elution works by shifting the equilibrium.
Specifically, in the presence of a competitive inhibitor, when a protein briefly dis-
sociates from the matrix ligand, the inhibitor will bind and prevent its reassociation. 
Whether the inhibitor is chosen to bind the protein or the ligand is immaterial, as 
long as the protein-ligand interaction is interrupted. The result is displacement of 
the protein of interest from the column. The two factors that contribute most to the 
success of competitive elution strategies are the concentration of CI used, and its
affinity for either the ligand or protein, which ideally should be greater than that of 
the protein-ligand interaction.

While drugs, inhibitors and analogs are often among the most specific ligands, 
their conjugation to matrices can be challenging. To facilitate the process, manufac-
turers have developed matrices of varying chemistry to permit conjugation to dispa-
rate functional groups on the amino acids of proteins (e.g. N-hydroxysuccinamide
(NHS)-Sepharose, cyanogen bromide-activated Sepharose), or small organic com-
pounds (e.g. Epoxide-activated (EAH Sepharose)). Developed in the days before
protein engineering, these resins remain relevant today, particularly for the purifica-
tion of native proteins. Yet there is little question that in research labs today, affinity 
methods are most commonly used in the context of immunoaffinity purification (IP) 
and purification of proteins bearing engineered epitope tags.

Affinity purification is widely used for large-scale purification of recombinant
fusion proteins and epitope- tagged proteins from expression systems such as E. coli 
or baculovirus. Proteins may be engineered to include protein or peptide sequences 
whose activity or binding properties are easily harnessed. Prominent historical 
examples include engineering of glutathione S-transferase (GST) fusion proteins 
and Histidine (His)-tagged protein. GST-bearing proteins bind to glutathione aga-
rose, can be washed extensively to remove contaminants, and eluted competitively 
with reduced glutathione. His-tagged proteins bind to columns charged with nickel.
The general principle is that of biological metal chelation [34]. Poly-His tracts were
engineered to bind nickel preferentially over iron, magnesium and calcium. Upon 
sample binding, the column can be washed with high salt concentrations to minimize 
nonspecific binding prior to competitive elution with imidazole, a histidine analog.

The chromatography column, while still favored for large scale affinity purifica-
tion, is often eschewed for microscale experiments in favor of batch incubation in a 
microfuge tube, as it requires less matrix and experiments can be easily parallelized. 
Briefly, the affinity resin is incubated with homogenate/lysate for a specified time 
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often at 4°. The resin is then pelleted by low speed centrifugation. The supernatant,
containing unbound proteins, is removed and the matrix is washed by dispersing it 
in fresh buffer. A second round of centrifugation pellets the washed matrix. Washing
is repeated several times. Finally, the matrix is dispersed in a small volume of elu-
tion buffer and centrifuged anew. The supernatant contains the eluted protein. This 
step is usually repeated to maximize yield.

Microscale affinity methods are exemplified by immunoaffinity purification 
(IAP). Many protocols exist for the conjugation of antibodies to commercially-
available matrices. They can be conjugated directly, via traditional NHS or CNBr
chemistries, though these methods offer little control over the crosslinking site on the 
antibody and the orientation of the antibody relative to the mobile phase. Other pro-
cedures use matrices that have been pre-conjugated with high-affinity antibody-
binding proteins such as Protein A or Protein G. Incubating antibody with Protein
A/G-matrices results in stereospecific binding that orients the antibodies with their
antigen-binding interfaces facing away from the matrix and toward the mobile phase. 
The antibody is then crosslinked to Protein A/G, with agents like disuccinimidyl
suberate, to immobilize the antibody and limit antibody contamination in subsequent 
IAP experiments. Working with engineered proteins bearing tags such as FLAG,
c-myc, or hemagglutinin, offers the advantage that conjugated antibody-matrices are 
commercially available, as are peptides that can be used for competitive elution. 
Finally, there are several commercially-available epitope tags that do not require the 
use of antibodies. Examples include streptavidin-binding peptide, calmodulin-bind-
ing peptide, and maltose-binding protein. All are amenable to competitive elution.

Finally, the advent of tandem affinity protein purification (TAP) [35, 36] was a 
watershed advance for the identification of protein-protein interactions. The method 
now has many variants, but, at its root, it entails engineering two high-affinity tags, 
in series, at one of the termini of a protein of interest. Sequential affinity purification 
steps result in highly-purified tagged protein along with stably-bound protein part-
ners. Over the years, considerable effort has been invested to optimize the design of 
the affinity tags to maximize yield of novel specific interactions [37, 38].

�Factors that Affect Chromatographic Separation

The term that describes the extent to which proteins can separated from each other 
is called resolution. When proteins have been completely separated, we say that 
they have been resolved. The resolution of a column purification procedure depends 
on a couple of factors – retention, efficiency and selectivity (Fig. 4.5).

Column efficiency refers its capacity to produced tight symmetrical peaks. This is
determined by several factors, including matrix bead size, uniformity of pore size, col-
umn packing, column length and flow rate. Of these parameters, the ones that have the 
greatest impact on efficiency are bead size and uniformity. Reducing bead size increases 
the functional surface area of the matrix which impacts protein transfer from mobile to 
immobile phases. However, it does so at the expense of increasing resistance to buffer
flow, incurring the need for high pressure pumps. Fast protein liquid chromatography 
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Fig. 4.5 Chromatographic resolution. (Panel 1) Resolution describes the extent to which particle 
populations or chromatographic peaks (monitored spectrophotometrically) have been separated. 
(Panel 2) Chromatographic resolution is dependent on three factors: retention, selectivity and effi-
ciency. Retention is a function of a particle’s propensity to adsorb to the column. Selectivity 
describes the distance between adjacent chromatographic peaks. Efficiency refers to the capacity
of the column to generate narrow chromatographic peaks. (Panel 3) High resolution can be
achieved with modest selectivity if column efficiency is high. Alternatively, resolution of proteins
can also be achieved with only modest column efficiency if selectivity is sufficiently high
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(FPLC) and high performance liquid chromatography (HPLC) are examples of meth-
ods that combine small bead size and high pressure to maximize resolution of proteins 
and peptides, respectively. Column efficiency is quoted in terms of the number of theo-
retical plates (N). This stems from a historical analogy by 1952 Nobel laureates Martin
& Synge, in which efficiency of chromatographic separation was compared to the effi-
ciency of a distillation procedure [39]. In distillation, the effective separation of a mix-
ture of volatile solvents is dependent on the number of condensers or plates, the distance 
between the plates (plate height) and the total length of the distillation chamber. This is 
known as the height equivalent of theoretical plates analogy or HETP.

The selectivity of a column refers to the degree of separation between chromato-
graphic peaks which, in many cases, is a more important factor than high efficiency 
in determining resolution and depends on several factors. For methods based on 
binding, the chemistry and density of the ligand are factors, whereas pore properties 
are important in SEC. The selectivity obviously also depends on the target protein,
buffer conditions and particularly the manner of elution. For instance, application of 
a shallower salt gradient increases the elution volume between adjacent peaks, 
though it may also influence efficiency. Indeed, choosing the right combination 
apparatus and buffer protocols is key to striking a balance between efficiency and 
selectivity for optimal protein resolution.

�Chromatographic Fractionation of Peptides

Peptides pose unique challenges to separation. As they are shorter than full length
proteins, they have fewer amino acids with which they may interact with a matrix. 
Their short length also makes them highly diffusible, which tends to broaden chro-
matographic peaks and compromise resolution. These challenges have largely been 
overcome by the advent of high-pressure or high-performance liquid chromatogra-
phy (HPLC) systems. HPLC columns consist of porous silica beads between 2 and
5 μm in diameter, which makes them highly efficient. However, small bead sizes
provide substantial resistance to solvent flow, which necessitates the use of high 
pressure pumps operating at pressures of up to 60 MPa for standard HPLC or up to
120 MPa for modern ultra-high pressure (uHPLC) systems (beads <2 μm). HPLC
plays an integral role in proteomics, as it is almost universally coupled directly to 
the mass spectrometer (LC-MS and LC-MS/MS). Since the chromatographic prin-
ciples of protein fractionation are equally applicable to the separation of shorter 
peptides, here, we highlight specific method variants that have become mainstays of 
proteomic workflows.

Low-pH Reversed-Phase HPLC

Reversed phase HPLC (RP-HPLC) is the workhorse chromatographic method used
in proteomics, owing to its high efficiency and mass-spectrometry compatible sol-
vent system, usually acidified water and acetonitrile. The term, reversed-phase, 
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refers to the fact that this method employs a stationary phase (matrix) that is sub-
stantially less polar than the solvent running through it. The matrix consists of silica 
covered in alkyl chains, of which the most commonly-used consists of 18 carbons
(C18). RP-HPLC is most commonly performed at low pH, using solvent acidified
with strong acids such as trifluoroacetic acid (TFA) or formic acid (FA). These
acids enhances the hydrophobicity of peptides and, therefore, their adsorption to 
alkyl matrices, in two ways. First, at pH 2.5–2.8, the carboxylic acid sidechains of
aspartic acid and glutamic acid residues are predominantly protonated. Secondly, 
the conjugate bases (e.g. trifluoroacetate or formate) serve as hydrophobic anions 
that bind, and effectively neutralize, the remaining positively charged residues: 
arginine, lysine and histidine [40]. For this reason TFA and FA are called ion pair-
ing agents. FA (0.1 % vol/vol) is favored when RP-HPLC is coupled to mass spec-
trometry, as TFA tends to suppress electrospray-ionization of peptides [41]. So 
peptides bind RP columns on the basis of hydrophobicity, enhanced by ion pairing 
agents. However, in contrast to HIC methods that manipulate salt or detergent con-
centrations to elute proteins, peptides are eluted from RP-HPLC columns by
decreasing the polarity of the solvent, commonly with a linear gradient of increas-
ing acetonitrile.

Two-Dimensional Liquid Chromatography Fractionation Strategies

Two-dimensional liquid chromatography (2D-LC) is one of the most broadly
adopted workflows for global-scale peptide fractionation in proteomics. It entails 
fractionation by successive rounds of HPLC, where the eluted fractions of the first
column are subsequently subjected to RP-HPLC-MS/MS [42]. 2D-LC offers the
advantage that fractionation in the first dimension reduces sample complexity, 
which favors greater resolution in the second. Low sample complexity and high 
resolution reduce the kind of peptide co-isolation in the mass spectrometer that 
compromises identification of low abundance peptides. For 2D-LC strategies to be
effective, the elution behavior (i.e. retention times), of peptides from the two col-
umns should be poorly correlated [43]. Chromatographic methods whose elution is
completely uncorrelated are said to be orthogonal. Maximizing orthogonality (i.e. 
minimizing elution correlation) of peptide separation is the holy grail of 2D-LC
strategies. Weapons in the arsenal include the use of different types of chromatog-
raphy, conducting chromatography at different pH, or pooling eluted fractions in
creative ways.

Increasing Orthogonality Through Different Types of Chromatography

The work of Wolters et al. marked a seminal advance in 2D-LC as applied to pro-
teomics. The authors called their approach Multi-Dimensional Protein Identification 
technology or MUDPIT [42]. The intriguing aspect of their study is that it employed 
tandem online configuration of SCX beads and reversed phase C18 beads. Peptides
were loaded on to SCX resin at low pH and eluted on to the RP column with a
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stepwise salt gradient of ammonium acetate which was washed through the system 
before application of an acetonitrile gradient to elute peptides from RP into the mass 
spectrometer. This was repeated in multiple cycles following successive ammonium 
acetate steps. The online configuration was elegant, but more importantly, the SCX
fractionation was orthogonal, leading to identification of many more peptides than 
by RP-HPLC alone. It has, since, been widely adopted for 2DLC. Many prefer to
perform SCX offline (uncoupled from MS) as it permits greater flexibility to opti-
mize SCX resolution (e.g. linear gradients of NaCl or KCl) without worrying about
the MS-compatibility of the buffer components, since peptides may be easily 
desalted prior to RP-HPLC-MS/MS.

The first hydrophilic interaction liquid chromatography (HILIC) methods 
were published in the 1970s but its use, particularly in proteomic and metabolomic
studies has skyrocketed over the last 10 years. It is a variant of aqueous normal
phase (ANP) chromatography, and thus a conceptual mirror image of RP chroma-
tography. Recall that in RP chromatography, apolar alkyl groups on the matrix parti-
tion peptides on the basis of hydrophobicity. Gradients of increasing apolar solvent 
are used to elute progressively more hydrophobic peptides. In contrast, ANP and
HILIC use polar matrices that partition more polar molecules. ANP is commonly
performed with underivitized silica columns and is used to separate both hydro-
philic and hydrophobic substances. HILIC matrices such as polysulfoethyl A and
TSKgel Amide 80 are optimal only for polar molecules. In HILIC, peptides are
loaded in apolar solvent such as acetonitrile and eluted with a linear gradient of 
increasing aqueous solvent. Separation by hydrophilicity has proven highly effec-
tive for many omic studies. It is particularly well-suited to metabolomic studies 
since many small organic metabolites are polar. In proteomic 2D-LC workflows, the
method is highly orthogonal to RP-HPLC, both in principle and in practice. In fact,
HILIC conducted at pH 4.5 exhibits greater orthogonality than does SCX conducted
at pH 3.25 (see [44, 45]). HILIC is also effective for capturing and resolving pep-
tides bearing hydrophilic PTMs, such as phosphorylation and glycosylation. Such 
peptides generally do not bind well to RP columns and often elute in the void vol-
ume or very early in acetonitrile gradients.

Increasing Orthogonality by Changing Buffer pH

Basic reversed-phase HPLC (bRP-HPLC), as its name would suggest, is simply a
variant of RP-HPLC conducted at a higher pH [46]. The column is equilibrated in 
10 mM triethylammonium bicarbonate (TEAB) pH 8.5, and a typical elution
gradient might range between 5 and 45 % acetonitrile in TEAB. This method has
been made possible with the development of a new generation of silica matrices 
that are stable when pH >8 [47]. The method is orthogonal to low-pH RP-HPLC in
the second dimension of 2D-LC because changing the pH alters the charge on the
ionizable amino acids and, therefore, the overall polarity of the peptides. In turn, 
this affects the strength with which the peptides adsorb to the C18 matrix, the
amount of apolar solvent required for elution, and ultimately the retention time of 
the peptides.
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Increasing Orthogonality Through Creative Pooling

One of the challenges of a 2D-LC strategy is that if many fractions are collected over
the course of elution in the first dimension, this increases the number of RP-HPLC
runs to be performed in the second dimension. Therefore, any 2D LC strategy is a
trade-off between peptide separation in the first dimension and the increased time and 
cost of performing the subsequent LC-MS/MS. It is therefore often desirable to
reduce the number of fractions while preserving orthogonality. Pooling adjacent frac-
tions from the first dimension makes little sense as one could simply have collected 
fewer fractions of greater volume. Moreover, adjacent fractions contain peptides with 
similar properties that may not be resolved in the 2nd dimension. Concatenated pool-
ing is simply the act of pooling fractions at intervals rather than sequentially (e.g. 
pooling elution fractions 1, 16, 31 then 2, 17, 32 then 3, 18, 33 etc.). This reduces the
number of fractions while ensuring the peptide composition is chemically diverse, 
since the original fractions were collected at different retention times. This chemical 
diversity yields better peptide resolution upon subsequent RP-HPLC than one would
obtain from sequential collection of the same number of fractions [48, 49].

�Rate Zonal Centrifugation Revisited

As we have seen, centrifugation may be the workhorse for organellar isolation, but it
can be equally valuable for protein fractionation. Remember that the primary factor 
determining particle fractionation in rate-zonal centrifugation is molecular size. 
Proteins in our cells rarely work in isolation. Often they operate as part of elaborate 
structures – scaffolds and machines – that carry out the business of the cell in pro-
cesses ranging from replication, transcription and translation to protein quality con-
trol and energy production, and specifically in the case of the heart, muscle contraction. 
These protein macrocomplexes are eminently suited to resolution by rate-zonal cen-
trifugation using a discontinuous sucrose gradient. Typical sucrose gradients range 
from 5 to 40% w/v. A classic example of the utility of this method is the fractionation
of mitochondrial respiratory complexes [50]. Following centrifugation, the proteins in 
each sucrose layer can be captured by piercing a hole in the bottom of the centrifuge 
tube (polyallomer) and collecting drops from each layer in separate microfuge tubes.

�Electrophoresis

Electrophoresis simply refers to the movement of particles in an electric field. How
fast each particle moves is determined by the balance of forces acting on it. The 
electrical driving force Fel is

	 F qEel = 	 (4.6)
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where

q is the charge on the particle
E is the electric field strength

As we discussed in the case of centrifugation, when a particle moves through a
solution, there is a counteracting frictional force ( Ff ), or drag, that is a function of 
its size ( r ), shape, viscosity of the medium (h ) and the speed at which the particle 
is moving ( v ). This is known as Stokes’ Law and is given by

	
F rvf = 6ph

	
(4.7)

In a constant electric field, the velocity of a given particle is constant, therefore 
F Fel f= , so

	 qE rv=6ph 	 (4.8)

Then the velocity of the particle is

	
v

qE

r
=
6ph 	

(4.9)

Therefore, in any given electric field, the intrinsic electrophoretic mobility of the 
particle, μel is

	
m
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v

E

q

r
= =

6 	
(4.10)

Electrophoretic mobility, μel, is to electrophoresis what the sedimentation coeffi-
cient is to centrifugation. Simply put, the intrinsic mobility of a particle in an elec-
tric field is determined by the ratio of charge to Stokes radius (size & shape). For 
comparable masses, the particle with greater net charge will move faster than lesser 
charged ones. Larger molecules will migrate more slowly than small ones. Shape 
also matters here, as it does in centrifugation and SEC. Oblong molecules will
migrate slower than spherical particles of the same mass owing to increased drag.

�Gel Electrophoresis

Arne Tiselius is considered the father of particle electrophoresis. It was conducted
in the liquid phase in a U-shaped tube with electrodes immersed at both ends. 
Application of an electric field caused charged particles in the liquid to migrate to
either electrode according to the principles summarized in section on 
“Electrophoresis”. Tiselius was awarded a Nobel Prize in 1948 for his work on the
electrophoresis of colloids (e.g. [51]). Yet despite this major advance in protein 
separation, liquid electrophoresis was fraught by a host of challenges, according to 
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fellow Nobel laureate, Oliver Smithies [52, 53]. First, despite its utility, a drawback 
of liquid electrophoresis was, as noted for centrifugation and chromatography, that 
resolution of migrating particles is compromised by the zone-broadening effects of 
diffusion. Fortunately, as with the other methods, this can be partially alleviated, by 
increasing the frictional force opposing the particle movement. One solution was to 
use a mixed phase separation in which proteins were electrophoresed through satu-
rated filter paper [54]. This was subsequently refined by using sheets of starch gran-
ules [55]. However, the advent of starch gels, in 1955 by Oliver Smithies, is broadly
recognized as a watershed for the electrophoretic resolution of proteins [56]. Gels 
are porous mesh-like stationary phases through which particles are driven by the 
electric field. They increase resolution, not only by dampening diffusion, but also 
act as a molecular sieve, allowing smaller particles to penetrate easily and migrate 
quickly, whereas larger molecules are retarded by the meshwork. Over the years, 
gels have been refined to increase the uniformity of the meshwork and their durabil-
ity, as reflected by the use of agarose gels and polyacrylamide gels [57, 58].

Today, polyacrylamide gels are the most commonly used medium for electropho-
retic movement of proteins. They are formed when a solution of acrylamide and N,
N′-bis-methylene-acrylamide (bis-acrylamide) is mixed with compounds, ammo-
nium persulfate (APS) and tetramethylethylenediamine (TEMED). TEMED cata-
lyzes free-radical formation from APS. The free radicals react with acrylamide
monomers to initiate polymerization. Linear acrylamide chains grow and are punctu-
ated by incorporation of bis-acrylamide, which serves to connect or crosslink adja-
cent acrylamide polymers. Polymerization, therefore, creates a porous polyacrylamide 
meshwork whose density is proportional to the concentration of acrylamide. The 
value of using polyacrylamide lies in the ease with which the one can manipulate the 
density of the polymer network by controlling the extent of crosslinking. A dense
meshwork effectively limits band broadening and is, therefore, highly suited to analy-
sis of small proteins, say 3–20 kDa. However, it is only poorly penetrable by proteins
with higher molecular weights (e.g. >100 kDa). A low density meshwork allows large
proteins to penetrate the gel more easily, at the expense of modest diffusion control 
for small proteins, and even loss of resolution if they migrate with the solvent front.

Denaturing Gel Electrophoresis

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE)

Polyacrylamide gels were already well-established for protein electrophoresis in the 
early/mid-60s [57, 58] when researchers first used the denaturing detergent, sodium 
dodecyl sulfate (SDS) in the preparation of proteins for gel electrophoresis [59]. Its 
early use was motivated by a simple desire to dissociate tightly bound proteins such 
as viral coat proteins, to make them more amenable to electrophoresis. It was only 
later observed that inclusion of SDS also renders protein migration on polyacryl-
amide gels inversely proportional to the log of their molecular weight, not their 
charge/size ratios [60]. The reasons are two-fold. First, dodecyl sulfate binds to both 
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hydrophobic and basic residues on proteins in a way that is remarkably uniform. In 
fact, SDS binds the average protein at a ratio of 1.4 g SDS/1 g protein. This confers
a uniform negative charge to the protein, eliminating charge as a variable in electro-
phoretic mobility. Secondly, SDS destroys the secondary and tertiary structure of 
proteins, effectively stringing out denatured proteins as they migrate under voltage. 
This nullifies the impact of protein shape on migration, leaving size as the only 
determinant of mobility in SDS gels. Some proteins do migrate anomalously in SDS 
gels, however. Very basic proteins (high pI), tend to bind more SDS and their migra-
tion is retarded relative to other proteins of the same size. A classic example would
be cardiac troponin I, whose molecular weight is 24 kDa but migrates closer to
30 kDa in a Tris-glycine buffered gel.

Electrophoresis entails applying an electric field to a set of protein samples.
Clearly, factors like the ionic strength and pH of the buffer system are critical param-
eters. Prior to the early 1970s, buffer systems varied, but one that gained widespread
acceptance was the gel and buffer system of Laemmli [61]. The Laemmli buffer 
system improved gel resolution of proteins in two ways. It was the first system to 
incorporate SDS in both the gels and running buffer, ensuring complete protein 
denaturation throughout electrophoresis. Second, it was one of few “discontinuous”
buffer systems that addressed a major barrier to resolution – that when protein sam-
ples are loaded into their reservoirs and the voltage is applied, not all proteins enter 
the gel at the same time. The Laemmli system is depicted in Fig. 4.6. The system is 
discontinuous in that it uses two abutted gels, each with its own buffer. The upper 
stacking gel serves as a staging area where proteins enter from the sample reservoir 
and are focused into a narrow band prior to entering a separating gel. Briefly, sam-
ples are prepared in a buffer that contains Tris-HCl pH 6.8, 2% w/v SDS, 10% (w/v)
glycerol, a reducing agent (e.g. dithiothreitol) to fully denature proteins and cleave 
covalent disulfide bonds. Samples are then loaded into the sample reservoir and the 
cathode chamber is filled with gel running buffer containing 25 mM Tris 192 mM
glycine, 0.2% SDS w/v. Applying voltage (e.g. 150 V) drives the proteins into a
high porosity stacking gel (pH 6.8). As the proteins proceed through the stacking
gel, they are focused into a single tight band as they are sandwiched between chlo-
ride ions (from the sample and stacking gel buffers) and glycine ions (from the run-
ning buffer). The sandwiching effect is exacerbated as the proteins reach the interface 
of the stacking and separating gels. The proteins, therefore, enter the separating gel 
more or less at the same time, and are subsequently resolved by molecular weight.

Today, SDS-polyacrylamide gels are available commercially that fit just about 
any protein separation application, from highly crosslinked gels to resolve smaller 
proteins to low acrylamide gels to accommodate high molecular weight proteins. 
Moreover, there are even gradient gels that allow optimal resolution of both high 
and low molecular weight proteins on the same gel. While Laemmli gels remain 
popular, the high pH of the separating gel buffer causes progressive hydrolysis of
polyacrylamide and limits shelf life. Newer formulations, such as the now widely-
used Bis-Tris gels are prepared at lower pH (6.4) to extend shelf life. The running
buffers also contain different ions (e.g. morpholinopropanesulfonic acid, MOPS; 
Methylenesulfononic acid, MES) to replace glycine in the running buffer.
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Fig. 4.6  Gel electrophoresis of proteins. (a) Polyacrylamide gels are preferred for most protein 
separations. Free radical-induced polymerization of acrylamide monomers in the presence of bis-
acrylamide yields a porous a gel whose meshwork acts as a molecular sieve for the separation of 
proteins. (b) Stacking and resolving proteins by molecular weight. In a discontinuous gel & buffer 
system, under constant voltage, the stacking gel serves as a staging zone where proteins from the 
sample reservoir are compacted within the first few minutes of electrophoresis such that proteins 
in a sample may enter the resolving gel at the same time. The resolving gel separates proteins as 
they migrate toward the anode. The migration distance of proteins after a given time, relative to the 
solvent front (Rf), is inversely proportional to the log of their molecular weight. (c) Isoelectric 
focusing. A schematic depiction of an IPG strip and its orientation relative to the anode and cath-
ode. Homogeneous protein samples are applied to the strip and under high voltage will migrate and
become a focused band of protein where pI=pH. (d) Following IEF, and equilibration in appropri-
ate buffer, the IPG strip may be placed atop an SDS gel which allows proteins to be resolved by 
mass. The IEF/SDS-PAGE 2D gel offers high resolving power
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Isoelectric Focusing

As previously mentioned, proteins, absent reagents like SDS, migrate through liq-
uid or gel in an electric field on the basis of mass and charge. Remember from sec-
tion “Isoelectric Point Precipitation”. that the charge on a protein can be changed by
altering the pH of the solution. Moreover, there is a pH at which the protein has no
net charge, called the isoelectric point. For this discussion, the salient point is that 
the isoelectric point is also the pH at which a protein is immobile in an electric field.
If one could construct a gel bearing a pH gradient, proteins would migrate, upon
electrophoresis, to their isoelectric points and stop. This is the principle underlying 
isoelectric focusing (IEF) of proteins. Establishing such pH gradients is possible
through the use of carrier ampholytes. Ampholytes are small molecules (300–
600 Da) that contain aliphatic amino and carboxylic acid groups and exist as zwit-
terions across broad pH ranges. When proteins and ampholytes are mixed and
subjected to an electric field, the ampholytes segregate quickly according to their 
charge, and in so doing, establish a pH gradient. Proteins, less mobile owing to their
size, then slowly migrate in the electric field until they reach their isoelectric point. 
The voltage and time required to optimally focus protein is somewhat dependent on 
the length of the IEF gel used, but >5000 V-h was used in work by O’Farrell [62].

Gel-based IEF is primarily an analytical tool. Historically, IEF using carrier
ampholytes suffered from a few complications. The pH gradients tended to be
unstable after about 3  h, owing to the poorly understood phenomenon called 
cathodic drift. Cathodic drift causes acidification of the gel near the anode, deterio-
ration of the pH gradient in the neutral region and loss of bands at the basic end of
the gel. Moreover, proteins could interact with the ampholytes, with the potential to 
interfere with the mobility of each. Finally, because ampholytes were actually com-
plex mixtures of many different compounds, batch-to batch variability could be an 
issue. Many of these challenges were addressed by the development of gel strips in 
which the ampholytes are fixed, so-called immobilized pH gradients (IPG) [63–65]. 
IPG-based IEF is now the preferred method used in 2D gel electrophoresis dis-
cussed shortly hereafter.

IEF can also be performed in the liquid phase. Solution IEF has long been a valu-
able tool in preparative (large-scale) protein purification strategies as a complement 
to column chromatography. Agilent’s Offgel fractionation system is a modern day
variant of traditional liquid phase IEF.

Native Gel Electrophoresis (NGE)

Notwithstanding the power of denaturing gel electrophoresis, there are times when
it is desirable to resolve proteins by the mass of their quaternary or macromolecular 
structure. Doing so requires that denaturing agents, such as SDS, be omitted from 
sample preparation, gels and running buffers. Yet apart from denaturation, SDS 
serves other functions in electrophoresis. It’s a solubilizing agent for hydrophobic 
proteins and its protein-binding properties ensure particle velocity varies inversely 
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with log MW. Maximizing solubility and ensuring separation by molecular weight 
while minimizing denaturation are the major challenges to successful native-gel 
electrophoresis. Early efforts to harness the power of the Laemmli buffer system by
replacing SDS with milder non-denaturing detergents, such as Triton X-100, met
with limited success, particularly when applied to hydrophobic membrane protein 
complexes.

The key innovation, developed by Schägger and von Jagow [66], was to address 
issues of solubility and charge separately. Sample preparation consists of using the 
detergent, lauryl maltoside and aminocaproic acid to maximize protein solubility of 
hydrophobic complexes. Variable protein charge was minimized by masking com-
plexes with Coomassie blue G, a dye which, like SDS, binds proteins at a reason-
ably uniform ratio. There are two variants on the method, one that uses Coomassie
Blue in the cathode buffer (Blue-Native PAGE) and one in which it is omitted
(Native PAGE). Native gels commercially available today are still based on the
methods of Schägger and von Jagow [66], with minor modifications.

2D Gel Electrophoresis– Orthogonal Resolution of Proteins

Protein samples, such as crude tissue homogenates and cell lysates, contain thou-
sands of proteins of differing abundance. Combining gel methods sequentially
affords the opportunity to resolve substantially more proteins than any single method 
in isolation. The concept of differential or orthogonal electrophoresis was first 
applied in the 50s [67, 68]. Markham resolved serum and urine proteins using a two 
dimensional paper electrophoresis technique in which the pH of the running buffers
differed between the first and second dimensions [67]. Smithies and Poulik used a 
combination of paper electrophoresis and starch gel electrophoresis to resolve serum 
globins [68]. These studies demonstrated the power of using methods with uncor-
related protein migration profiles. In the case of the serum globins, the 2D method 
resolved 20 proteins instead of 5 by starch gel electrophoresis alone [52, 68, 69]. 
Today, orthogonal protein separation by 2D gel electrophoresis is one of the 
foundational technologies of proteomics. The most widely used gel combinations 
are IEF/SDS-PAGE and Native PAGE/SDS-PAGE.

2D Gels: IEF/SDS-PAGE

SDS-PAGE and denaturing IEF are two powerful electrophoresis techniques, each
capable of resolving hundreds of proteins. Combining IEF and SDS-PAGE dates
back to the work of O’Farrell [62]. Using 14C-labeling he was able to detect 1100
protein spots across a broad abundance range. Seasoned proteomic practitioners 
will still appreciate the quality of those first 2D gel images, in light of some of the 
challenges associated with carrier ampholyte-based IEF discussed in section
“Isoelectric Focusing”. The 1980s saw the emergence of the immobilized pH gradi-
ent (IPG) [63–65, 70], which exhibited little cathodic drift while exhibiting higher 
resolution and greater sample loading capacity.
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In practical terms, classic 2D gel electrophoresis is defined by separation, in the 
first dimension, by IEF to separate proteins according to their isoelectric points, fol-
lowed by SDS-PAGE, in the second dimension, to resolve proteins by mass. The
principal steps include sample preparation, hydration of the IPG-gel strip, perform-
ing IEF, equilibrating the IEF gel strip in SDS buffer before applying the strip atop
an SDS polyacrylamide gel for the second dimension of electrophoresis. Obtaining 
high-quality well-resolved 2D gels remains an art form that requires painstaking 
commitment to best practices at each step of the process. Newcomers to 2D gels
would be well-served by familiarizing themselves with the work of Görg, Righetti, 
Rabilloud and others [71, 72].

Expertise aside, a major factor that determines the resolving power of 2D gels is
their size. Long IPG strips provide greater spatial resolution for IEF, which is a
near-equilibrium separation method. SDS-PAGE, on the other hand, is a rate-based
method in which protein separation increases with longer run times that are, like-
wise, afforded by larger gels. Today, large format 2D gels can resolve between 2000 
and 5000 protein spots, depending on the method of protein visualization [73].

One of the great strengths of the classic 2D gel is that the combination of IEF and
SDS PAGE is well-suited to resolve multiple post translationally modified variants
of a given protein, called proteoforms. Many PTMs have relatively low mass and 
can be difficult to distinguish by SDS-PAGE. Yet if a modification either confers or
ablates a charge on a protein, it can often be resolved by IEF. An example of the
former would be phosphorylation of serines, threonines or tyrosines whereas lysine 
acetylation and methylation would exemplify the latter. Visualized on a 2D gel, the 
major proteoforms of a protein appear as closely-spaced horizontally-aligned spots, 
like beads on a string.

2D-gels have a long and dignified history in cardiovascular proteomics. They 
were, and to a degree still are, a workhorse platform for the study of the proteomics 
of heart failure, genetic cardiomyopathy, ischemia reperfusion injury and precondi-
tioning. Seminal contributions from the labs of cardiovascular proteomics luminar-
ies including Drs. Michael Dunn [74–76], and Jennifer Van Eyk [17, 77], to name 
only a few, all harnessed the resolving power of 2D gels. Today, the prominence of 
2D gels has waned a bit as the rapid pace of mass spectrometer development has 
made chromatography-based (or gel-free) workflows a prime choice for global 
scale cardiac proteomics. Nevertheless, their resolving power, particularly with
respect to proteoforms, will ensure their utility in the proteomic arsenal for years to 
come.

2D Gels: Native PAGE/SDS PAGE

Another 2D gel format that has proven quite useful combines native and denaturing
gel electrophoresis. If the power of classic IEF/SDS-PAGE lies in its resolution, the
main advantage of native/denaturing PAGE is that it preserves native macromolecu-
lar structure in the first dimension. The procedure entails performing native gels 
according to Schägger and von Jagow [66], excising the gel lane longitudinally and 
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equilibrating it in SDS-containing buffer before setting it atop a denaturing gel. It 
has gained prominence for the study of high molecular weight protein complexes, 
particularly the four mitochondrial respiratory chain complexes and ATP synthase
[66, 78].

Diagonal Gel Electrophoresis –Orthogonal Resolution of Selected Proteins

Over the years, clever 2D gel strategies have proven useful, even when the two gel 
dimensions differ in a specific variable, such that they are orthogonal for only a 
select group of proteins, In this case, most proteins migrate on the diagonal while 
proteins affected by the perturbed variable migrate off the diagonal. The classic 
application of diagonal gels is for mapping of intra and intermolecular disulfide 
bonds (e.g. [78–80]). In this case, SDS-PAGE is performed in both dimensions. The
variable is the absence or presence of a reducing agent, typically DTT for Laemmli 
gels. Proteins are run, un-reduced, in the first dimension. The gel lane is then excised 
longitudinally and equilibrated in buffer containing DTT, to reduce disulfide bonds, 
prior to running the second dimension. The migration of non-disulfide bonded pro-
teins is unaffected by the change in buffer conditions and therefore appear, upon 
staining, as a diagonal line of proteins in the 2D gel. However, proteins joined by
disulfide bonds in the first dimension migrate at a molecular weight that reflects the 
sum of the masses of the tethered proteins. In the second dimension, with disulfide 
bonds cleaved, the proteins run at their individual (lower) molecular weights, off the 
diagonal axis.

3D- and 4D-Gel Electrophoresis: Ultimate Orthogonal Protein Separation

From the methods outlined in section “2D Gel Electrophoresis– Orthogonal
Resolution of Proteins”, we can begin to appreciate that gel electrophoresis of
proteins comes in two principal classes: native and denaturing. Among the dena-
turing methods, this chapter has only scratched the surface. We have introduced 
SDS-PAGE and IEF, but this constitutes only a subset of useful methods (e.g.
urea gels, urea-glycerol, Phos-Tag gels) and subtle variants that fulfill niches in 
protein biochemistry. We have also seen that combining gel methods, to confer 
further protein separation, is often as simple as excising a gel lane and equilibrat-
ing it with a buffer to be used in the subsequent dimension. It should not be sur-
prising then, that three or four rounds of electrophoresis can be linked in 
succession. A prime example can be found again in the work of Schägger and
colleagues, who performed two rounds of BN-PAGE, with and without the deter-
gent dodecyl-maltoside, followed by SDS-Urea-PAGE and, in turn, by SDS-
Tricine PAGE, to identify two novel proteins associated with the mitochondrial
ATP synthase complex [81]. This serves to illustrate that the number of possible 
higher-order electrophoresis strategies is high and may be tailored tractably for 
specific protein projects.
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�Liquid Phase Electrophoresis Revisited: Everything Old Is New Again

As previously mentioned, early liquid phase electrophoresis suffered the drawback
of protein diffusion. Though diffusion can be a problem for any separation tech-
nique, the problem is compounded in electrophoresis because applying high volt-
ages to the aqueous solutions generates heat, which in turn, increases particle 
movement. The technical term for this phenomenon is convection. Advances in liq-
uid electrophoresis have largely been driven by the need to limit convection.

Free-Flow Electrophoresis

Free-flow Electrophoresis (FFE) is a gel-free fractionation method that overcomes
the resolution-compromising effects of convection by making particles literally go-
with-the-flow of the running buffer. Specifically, in FFE, laminar buffer flow runs
perpendicular to the electric field. Protein sample is applied at one end of a long 
flow chamber and particles stream down the chamber as they are subjected to the 
electric field. The separation principal is determined by the choice of buffer compo-
sition. If the pH is constant, it is a zone electrophoresis method that sorts particles
by charge to mass ratio. If a pH gradient perpendicular to flow is used, particles
stream toward their isoelectric point. In contemporary implementations of FFE,
samples are collected into tubes at the end of the chamber and distributed to the 
wells of a 96-well plate. The elegance of the method belies its age, as it dates back 
to the 60s, and was once widely used for cell sorting prior to modern flow cytome-
try. The method has been resurrected and automated for the proteomic era not only 
for protein fractionation, but isolation of organelles [82–84].

Capillary Electrophoresis

Capillary electrophoresis emerged in 1967 as another solution to the convection
problem. Reducing the scale of the liquid electrophoresis apparatus by driving pro-
teins through narrow bore capillaries (300 μm), with high surface-to-volume ratios, 
reduced heat generation while accelerating heat dissipation. In fact, as capillary 
diameter drops, higher voltages can be applied without overheating. Today, voltages 
of 30 kV, applied to a capillary with an internal diameter of <100 μm, yield highly 
efficient separation.

Interestingly, the use of such high voltages and small diameter tubes leads to 
new physical phenomena that have an impact on particle mobility. Electrical
forces are no longer the sole determinants of particle movement; bulk flow of the 
liquid phase emerges as a new factor. The phenomenon is called electroosmotic 
flow (EOF) and is caused by the behavior of molecules at the interface of the solu-
tion and the glass capillary. Briefly, glass is simply fused silica, which contains 
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silanol (SiOH) groups at its surface that are deprotonated (negative) at pH >4.
Positive ions in the running buffer, therefore, migrate to the capillary wall and 
form a double layer. One layer (the Stern Layer) consists of positive ions bound to 
the SiO− in the glass wall. The second, is a loose mobile layer of charge. When 
high voltage is applied, the mobile cations in the second layer migrate toward the 
cathodic end of the capillary. The moving layer interacts with ions and polar 
groups in the bulk aqueous buffer layer, pulling the solution along. Formally, elec-
troosmotic mobility ( mEOF ) is defined as

	
m

ph
zEOF E=


4 	

(4.11)

where

ε is the dielectric constant of the solution,
η is the viscosity of the solution,
E is the field strength, and
ζ is the zeta potential i.e. the potential between the charged double layer, at the cap-

illary interface, and the bulk solution in the capillary

Modern capillary electrophoresis is routinely performed capillaries from 25 to 
75 μm in diameter. Peptide resolution and detection is optimized by combining and 
tweaking both electrophoretic and electroosmotic particle migration.

A schematic representation of a typical capillary electrophoresis system is
depicted in Fig. 4.7. Fundamentally, it consists of a high-voltage power supply, two 
electrodes, a capillary tube, a way of introducing the sample, and a detector. Prior to 
sample application, buffer is flushed through the capillary. Samples are often loaded 
electrokinetically by applying a voltage across the capillary where one end is 
immersed in the sample. After sample loading, both ends of the capillary are
immersed in the running buffer and voltage can be applied for particle separation. 
Particles migrate along the capillary at rates governed by a combination of electro-
phoretic and electroosmotic mobility. Common detector systems include on-column
monitoring using spectrophotometry (i.e. U/V absorbance) or laser-induced fluores-
cence (LIF).

CE, like other separation technologies has many variants that often differ simply
with respect to the buffer employed. The type discussed above is an example of 
liquid capillary zone electrophoresis (CZE), though gels can also be used (capillary
gel electrophoresis, CGE). It should perhaps not be surprising that CE lends itself to
isoelectric focusing (CIEF) and even the kind of particle stacking observed in
Laemmli gels, through a process called capillary isotachophoresis (CITP). Finally,
the advantages of electroosmotic flow can be combined with stationary matrices to 
perform capillary electrochromatography (CEC). CE has also been used to resolve
hydrophobic particles in a process known as micellar electrokinetic chromatogra-
phy (MEKC).
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Fig. 4.7 Capillary electrophoresis. (Upper Panel) Schematic representation of a capillary electro-
phoresis apparatus. (Bottom Panel) Particle mobility in capillary electrophoresis is determined by 
the electrophoretic mobility of the particle, determined by ratio of charge to size, as well as elec-
troosmotic flow. Electroosmotic flow is dependent on the chemistry of the capillary wall and the
ionic composition of the buffer used. Together, they set the zeta potential and the composition of 
the diffuse mobile ion layer that migrates in response to applied high voltage
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CE vs. HPLC: Will CE Replace RP-HPLC as a Front End for MS/MS?

CE has the potential to make a large impact in the field of proteomics. A prime reason
is that the efficiency of CE separation is very high. In the parlance of HETP (see sec-
tion “Factors that Affect Chromatographic Separation”), CE is capable ultra-high reso-
lution owing to an efficiency that routinely exceeds 100,000 theoretical plates. The
efficiency stems from a few factors. Firstly, buffer flow from EOF in CE is more uni-
form than in HPLC. For instance, high pressure causes flow to be faster near the center
of a column than it is at its sides. Moreover, in HPLC, the liquid phase flows through
small silica particles which generates turbulence, or eddy flows, which are absent in 
liquid phase CE. With fewer flow imperfections, longitudinal diffusion is minimized.
A second advantage of CE is that, as a liquid phase separation technique, it is largely
immune from adsorptive losses that occur in HPLC, which limit the MS sensitivity of
peptide detection below 100 ng. Finally, the apparatus is relatively simple compared
with HPLC, and highly amenable to parallel analyses. Together, these strengths have
made CE arrays a workhorse technology for the analysis of DNA fragments.

So why is inline CE-MS/MS not the de facto standard for proteomic workflows? 
After all, CE was rapidly adopted for DNA analysis. In fact, CE has been used for
offline protein and peptide separation, detected by UV absorption, for years. 
Moreover, CE has also been used for protein separation prior to matrix-assisted
laser desorptive ionization (MALDI)-MS. Nevertheless, coupling CE directly to
MS, using electrospray ionization, has historically proven highly challenging [85–
87]. A second issue is that the ultra-high resolution of CE leads to narrow peptide
peaks whose identification require very high MS2 sampling rates. Mass spectrome-
ters with duty cycles fast enough to take full advantage of CE have come to market
only recently. These factors likely explain why it has taken so long for CE-MS/MS
to emerge as a robust tool for analysis of complex proteomes. For now, CE-MS/
MS-based proteomic profiling is still performed, principally, by the pioneers of the 
methods [88–90]. The early results are tantalizing, however, as hundreds of peptides 
can be detected from as little as a single nanogram of protein. This kind of success 
will surely spur commercial investment.

�Putting It All Together: Selected Examples of Subcellular 
Fractionation and Subproteomic Analysis in Cardiac 
Research

Several cardiovascular proteomics studies of various subcellular compartments and/
or organelles have vastly deepened our understanding of the proteins involved under 
both physiological and pathological conditions in the heart. In each study, at least 
one fractionation technique was applied – most studies incorporated multiple frac-
tionation techniques – to investigate the subproteome of interest. We will briefly 
highlight some of the research that has contributed to our understanding of several 
subproteomes in cardiac cells.
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�The Cardiac Sarcomere Subproteome

Sarcomeric proteins are the major molecular components that drive cardiomyocyte 
function. Initial mapping of cardiac sarcoplasmic reticulum proteins was accom-
plished through a combination of subcellular fractionation and specialized detergent 
extraction [91]. The subproteomes of cardiac myofilaments have also been the sub-
ject of several studies. One such study used IN sequence extraction of rabbit ven-
tricular myocytes followed by 2D-PAGE and MS to identify a novel phosphorylation
of myosin light chain 1 [17]. In another study, differential detergent fractionation 
allowed for the isolation of cardiac myofilaments from rat ventricular myocytes in a 
recent proteomics study that revealed the dynamic interplay of kinases and phos-
phatases in regulating the phosphorylation of cardiac myofilaments [92].

�The Cardiac Nuclear Subproteome

Diseased cardiomyocytes undergo significant changes in cellular plasticity through 
global changes in gene expression. These changes must be preceded by alterations in 
chromatin structure. In an attempt to map the entire cardiac nuclear proteome, cardiac 
nuclei were fractionated three different ways to give data for acid-extracted, chromatin-
bound, and nucleoplasmic proteins thus dividing the total protein content of the nucleus 
but increasing the total number of proteins identified in the cardiac nucleus [93]. Acid
extraction of cardiomyocyte nuclear fractions led to a proteomics analysis that revealed 
differential expression of core histones and histone variants as well as the chromatin-
associated protein HMGB2 suggesting important roles in regulation of gene expression
in diseased cardiomyocytes [20]. A follow-up study in which nuclear proteins were
extracted by detergent extraction complemented the previous study by showing that the 
chromatin-associated protein, nucleolin, was also differentially expressed in diseased 
cardiomyocytes adding another regulator of gene expression in cardiac cells [21].

Histone PTMs and their role in changes in gene expression by altering chromatin
structure is a relatively new focus in proteomics. While several proteomics studies 
have examined the enzymes that generate or remove histone PTMs in cardiac cells 
[reviewed in 94–96], very little has been studied in regards to the PTMs themselves. 
One recent study examined the cardiac acetyl-lysine proteome of fractions obtained by 
differential centrifugation followed by MS mapped the cardiac acetyl-lysine proteome 
to both histone and non-histone proteins of the guinea pig heart [97]. With a growing 
understanding of the importance of a histone code in gene regulation, it is expected that 
more proteomics studies of the histone proteome in the heart will be forthcoming.

�The Cardiac Membrane Subproteome

Proteins in the plasma membrane are the starting point of signaling pathways that 
determine a cell’s response to external stimuli. In general, the hydrophobicity of 
membrane-bound proteins has presented a challenge in studying the membrane 

M.R. Miller et al.



99

subproteome. However, fractionation with a non-ionic detergent resulted in the suc-
cessful extraction of hydrophobic cardiac membrane-bound proteins that were iden-
tified by MS [98]. Also, fractions obtained by discontinuous sucrose density gradient
centrifugation from failing and non-failing human heart tissue were delipidated and 
analyzed by 2D-PAGE and MS to successfully characterize the membrane microdo-
main subproteome [99].

�The Cardiac Mitochondria Subproteome

The mitochondria is the center for energy metabolism, and alterations in myocardial 
energy metabolism have been linked to heart disease. An early study of the mito-
chondria purified from bovine heart by a combination of detergent extraction and 
sucrose gradient centrifugation followed by 2D-PAGE provided an early map of the
cardiac mitochondrial subproteome [50]. Later studies isolated mitochondria from 
cardiac tissue by a combination of differential centrifugation and Percoll or metri-
zamide gradient fractionation followed by MS analysis to characterize the proteome 
in cardiac mitochondria both under normal conditions and under stress [10, 100, 
101]. Another significant study used the IN sequence extraction method to examine
the protective effects of preconditioning in the cardiac mitochondrial subproteome 
and identified, for the first time, a subset of enzymes post-translationally modified 
by phosphorylation in cardiac mitochondria [77].

�Concluding Remarks: Frontiers in Fractionation

The purpose of this chapter has been two-fold. Firstly, we hoped to introduce new-
comers to the array of separation technologies at their disposal for the separation of 
organelles, proteins and peptides. Secondly, we wished to provide an overview of 
the basic principles that underlie these methods. Though established long ago, they 
are not only relevant to modern proteomics, but key to troubleshooting existing 
fractionation protocols and designing new separation methods.

Today, the two main drivers of new separation technologies are the quests to 
maximize resolution and to lower detection limits. Advances promise unparalleled
proteome depth. To that end, after years of toil, capillary electrophoresis as a front 
end separation method for tandem mass spectrometry may almost be ready for 
prime-time. Indeed, cutting edge separation, coupled with advances in MS instru-
mentation, have put the prospect of single-cell proteomics on the table. For instance, 
peptide detection and identification from a nanogram of protein by CZE is notable,
since this represents the protein content of about ten eukaryotic cells. Moreover, 
mass cytometry has enabled signal transduction cascades to be queried on a cell-by-
cell basis [102]. Either of these accomplishments would have been considered fan-
ciful only 10 years ago. Over the next 10 years, advances in microfluidic workflows,
including inline single-cell/organelle lysis & proteolysis will, no doubt, extend 
these gains. Stay tuned.
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    Abstract     Atherothrombosis remains one of the main causes of morbidity and 
 mortality in the western countries. The evolution from the initial steps to clinical 
events in atherothrombosis is a continuum of integrated and increasingly complex 
biological processes. To understand a process of such complexity, there is a need of 
developing new techniques, which could help to identify novel mediators of 
 atherothrombosis that could become potential diagnostic, prognostic and/or 
 therapeutic targets. In this chapter, we have described vascular samples including 
cells, tissues and blood (circulating cells, lipoproteins and extracellular vesicles) 
used in proteomic studies, as well as potential challenges and limitations. Following 
this, we made a succinct description of proteomics technologies (gel-based and 
MS-based approaches) applied to vascular samples and we included some examples 
to highlight what proteomics have added to previous techniques and/or concepts. 
On the whole, proteomics, in combination with other complementary approaches, is 
 emerging as a very powerful tool that is expected to improve the diagnosis and treat-
ment of patients at high risk of suffering a cardiovascular event.  
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      Introduction 

 Atherothrombosis remains one of the main causes of morbidity and mortality in the 
western countries. Atherothrombosis is a systemic disease affecting different 
 vascular territories, mainly coronary, carotid, abdominal aorta and iliofemoral arter-
ies. Chronic vascular remodeling is a very complex process involving different 
mechanisms, such as lipid deposition, oxidative stress, infl ammatory cell recruit-
ment,  proliferation, proteolysis, apoptosis, neovascularization, calcifi cation and 
fi brosis. These processes could lead to clinical complications due to arterial wall 
rupture, involving medial and adventitial rupture in abdominal aortic aneurysm 
(AAA) and intimal cap rupture in complicated atherothrombotic plaques [ 1 ,  2 ] 
(Figs.  5.1  and  5.2 ).

    It is well established that atherothrombosis is linked to lipid/lipoprotein 
deposition in the arterial wall, readily observed from the initial stages of the 
disease. Consistently, increased systemic low-density lipoprotein (LDL) and 
reduced high- density lipoprotein (HDL) cholesterol levels are known risk fac-
tors for atherothrombosis. LDL retention in atherosclerotic plaques has been 
related to their modifi cation (mainly by oxidation) and their uptake by scaven-
ger receptors of phagocytes, leading to foam cell formation. However, oxidative 
stress could also produce modifi cations in molecules involved in other processes 
associated to vessel wall remodeling (e.g. nitric oxide- related endothelial dys-
function). Oxidative stress is also involved in AAA progression associated to 
the presence of red blood cells (RBCs) and neutrophils in the intraluminal 
thrombus of human AAA, as well as macrophages in the wall [ 2 ]. The patho-
logical vascular wall remodeling progress to more advanced stages, character-
ized by vascular smooth muscle cell (VSMC) proliferation and migration, 
leukocyte infi ltration and differentiation, angiogenesis, as well as adventitial 
immune infl ammation and fi brosis. Moreover, proteolysis of extracellular matrix 
(ECM) proteins like collagen or elastin, along with VSMC death, is involved in 
both plaque desestabilization and AAA dilatation, potentially favoring their 
rupture. 

 The evolution from the initial steps to clinical events in atherothrombosis is a 
continuum of integrated and increasingly complex biological processes. To 
understand a process of such complexity, there is a need of developing novel 
techniques, which could help to identify novel mediators of atherothrombosis 
that could become potential therapeutic targets. For these purposes, two main 
strategies are being developed: imaging and biomarker discovery. Different 
imaging modalities  (including optical imaging, magnetic resonance imaging, 
and nuclear imaging) are giving clues of the importance of specifi c type of cells 
in the development of  atherothrombosis [ 1 ,  3 ]. In addition, identifi cation of 
novel biomarkers by  high-throughput  techniques (e.g. proteomics) could afford 
the identifi cation of novel mediators involved in disease diagnosis, progression 
and/or treatment [ 4 ]. In this respect, most patients with atherothrombosis are 
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asymptomatic, so early  detection could be key for cardiovascular (CV) preven-
tion. Even when patients are diagnosed, identifi cation of  prognostic biomarkers 
could help to prevent a future CV event. Moreover, we should keep in mind that 
AAA evolution is not linear and thus, the follow-up of these patients based only 
on AAA size is not suffi cient. Finally, biomarkers could also help to tailor 
therapy.  

a b

  Fig. 5.1    Pathogenic mechanisms involved in atherosclerosis. ( a ) Schematic representation of the 
different regions of human atherosclerotic plaques. ( b ) The initial event in the atherosclerotic pro-
cess is endothelial injury and the formation of fatty streaks originated by trapping of lipoproteins 
( LDL ) and the appearance of leukocyte adhesion molecules on the endothelial cells, triggering 
leukocyte infi ltration. Leukocytes migrate into the subendothelial space and differentiate into mac-
rophages. Uptake of LDL (modifi ed as oxidized LDL) via scavenger receptors leads to foam cell 
formation. Interactions between macrophage foam cells and T lymphocytes establish a chronic 
infl ammatory process, with the secretion of cytokines (such as TNF-α) and other proinfl ammatory 
mediators, which promote the proliferation and the change of the phenotype of VSMCs. These 
cells synthesize extracellular matrix proteins that lead to the development of the fi brous cap. The 
more advanced stages of atherosclerosis are characterized by the presence of a lipid-rich necrotic 
core, with presence of neovessels, calcifi cation and intraplaque hemorraghes. Necrosis or apopto-
sis of macrophages and SMCs result in the formation of a necrotic core and accumulation of 
extracellular cholesterol. Red Blood Cells (RBCs), coming from leaky neovesssels, participate in 
both the oxidative process and cholesterol accumulation. Finally, rupture of atherosclerotic plaques 
lead to the formation of a thrombus, giving rise to the most harmful clinical complications (myo-
cardial infarction, stroke)       
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    Samples Analyzed in Vascular Diseases: Challenges 
and Limitations 

    Vascular Sampling 

 The sampling is a critical step in differential proteomics. Samples can be obtained 
from humans (patients with atherothrombosis and controls) or from experimental 
models. Experimental models of hypercholesterolemia (e.g. ApoE −/−  mice, LDL 
receptor −/−  mice) are widely used in the study of the mechanisms of atherosclero-
sis. A common experimental model used in AAA is the elastase perfusion model, 
which in the case of rats, is also able to develop an intraluminal thrombus [ 5 ]. 
Another experimental model refl ecting mainly adventitial infl ammatory processes 
is the AngII model in ApoE −/−  mice. However, there are several differences 
between these animal models that should be taken into account when interpreting 
the results obtained (e.g. time necessary to develop the disease, mechanisms of 
thrombosis, etc) [ 1 ,  6 ]. 

a b

  Fig. 5.2    Pathogenic mechanisms involved in abdominal aortic aneurysms. ( a ) Schematic repre-
sentation of the different regions of human AAA. ( b ) AAA is characterized by the presence of 
intraluminal thrombus, which exerts its pathogenic effect through platelet activation, fi brin forma-
tion and trapping of erythrocytes and neutrophils, leading to oxidative and proteolytic injury of the 
arterial wall. These injuries of the wall favours the depletion of vascular smooth muscle cells 
(VSMC) in the media and an adventitial response characterized by the presence of immune- 
infl ammatory cells, iron deposits, cholesterol crystals, fi brosis and neoangiogenesis       
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 Sampling is directly related to the question raised and should be addressed before 
starting any kind of sample collection and proteomic analysis. For example, if the 
objective of the study is to understand the mechanisms of atherothrombosis, analy-
sis of cell or tissue extracts will be preferred. In contrast, if the aim of the study is 
to discover circulating biomarkers that could be present in plasma or serum, either 
tissue/cell secretome or plasma/serum should be directly investigated (Fig.  5.3 ).

      Vascular Cells and Tissues 

 Proteomic analysis can be performed on vascular cells. However, primary culture of 
vascular cells may produce changes in phenotype due to cell extraction and culture. 
For example, proteases that can be used to dissociate vascular smooth muscle cells 
(VSMCs) from an arterial wall will disrupt all cell-cell and cell-extracellular matrix 
interactions, leading to the induction of expression of adhesion molecules and neo-
synthesis of ECM when the cells are plated in culture dishes. Exploring the pro-
teome of cultured cells will probably provide information on the intrinsic 
pathological potential of the cells and their capacity to respond to a particular stimu-
lus rather than on the original proteome expressed within the arterial wall before 
culture-induced phenotype adaptation. 

 Proteomic analysis can also be performed directly on tissue samples. However, 
this approach is diffi cult since atherosclerotic plaques/AAA are very heterogeneous 
(in lipid content, presence of intraplaque hemorrhage, fi brosis, neovascularization, 
calcifi cation…). Lipids, which are very abundant in the case of atherothrombotic 
tissues, are normally present in the protein extracts, potentially interfering with the 
analysis. Moreover, differential proteomics is based on the comparison between at 
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  Fig. 5.3    Samples analyzed in proteomic studies. Two main sources of samples to analyze poten-
tial mechanisms/mediators involved in vascular diseases are tissues or blood. Tissues can be 
obtained from surgery and then, resident cells can be isolated from these tissues (primary cultures, 
lasser microdissection). On the other hand, different types of samples can be obtained from blood: 
plasma (containing lipoproteins and microvesicles, which can be isolated by serial centrifugation) 
and circulating cells (isolated by different protocols in order to obtain the highest purifi cation)       
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least two conditions and this implies that proteomes from pathological arteries must 
be compared with those of the corresponding healthy arteries, often diffi cult to 
obtain in similar conditions. In this respect, some high-abundant plasmatic proteins 
(e.g. albumin) are present in the pathological tissue in higher amount that in healthy 
arteries and can interfere with the analysis. The retention of those high-abundant 
molecules from the circulation could be due, at least in part, through their  attachment 
to the ECM (mainly to proteoglycans). ECM is modifi ed during vascular  pathological 
remodeling in parallel to the change in the VSMC phenotype (from a contractile to 
a synthetic phenotype). Due to the interest of ECM modifi cation during 
 atherothrombosis, Mayr’s group set up specifi c conditions to study the ECM 
 proteome in normal or vascular pathological conditions [ 7 ,  8 ]. 

 Tissues can be homogenized and subsequently analyzed; however, the informa-
tion provided by this approach will likely be limited to abundant constitutive pro-
teins. Tissues could also be laser-microdissected, which would allow to analyze 
specifi c areas of the plaque (such as the intima, as described in de la Cuesta et al. [ 9 ]) 
or different cells in AAA (such as the subpopulation of macrophages, as described 
in Boytard et al. [ 10 ]), providing valuable spatial information. Another way to 
understand the topology of the vascular tissue and the cells involved is to dissect the 
different parts of the tissues and study them comparatively. For example, advanced 
atherosclerotic plaques can be divided into culprit area and the adjacent non-compli-
cated area, with the possibility to analyze the contribution of activated VSMC, 
infl ammatory cells and RBCs in the pathological mechanisms associated to plaque 
instability (e.g. proteolysis, apoptosis) [ 11 ]. Similarly, AAA tissue can be divided 
into thrombus and wall, and more specifi cally, the wall can be dissected into media 
and adventitia [ 12 ]. The mechanisms and cells involved in AAA media and adventi-
tia are different (e.g. VSMC apoptosis in the media vs immune infl ammatory reac-
tion in the adventitia). However, careful dissection of the tissue must be performed 
by a trained vascular biology/surgeon. As commented before, all these procedures 
must be done rapidly, including fast freezing steps. However, another possibility is 
to analyze plaques/AAA that have been kept in paraffi n. For this purpose, Van Eyk’s 
group described an improved method of protein extraction from aortas by modifying 
both the temperature and the pressure of the protocol. Moreover, they observed that 
for long-term storage, aorta was preserved better by paraffi n- embedding after fi xa-
tion in formalin [ 13 ]. This is also an important aspect that should be considered for 
biobanking, even more when, in some cases, there can be reduced availability of 
tissues in the future due to changes in surgery strategies (e.g. use of endovascular 
prosthesis instead of open surgery for AAA treatment). 

 For both tissues and cells, proteomic analysis can also be performed on condi-
tioned medium. Focusing on conditioned medium will allow one to target more 
specifi cally secreted/released proteins provided that culture conditions do not induce 
necrosis or cell lysis. This approach can be used to discover circulating biomarkers 
[ 14 ]. Moreover, plaque or AAA conditioned culture medium could offer substantial 
advantages in the analytical proteomics of biological fl uids, as they provide a source 
of intact or, more importantly, degraded tissue proteins released by the tissue that 
could serve as potential circulating biomarkers of atherothrombotic disease.  
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    Blood Collection 

 The blood compartment is easily accessible to proteomic analysis in order to  discover 
biomarkers that could be used in diagnosis, prognosis or to evaluate the effi ciency of 
a treatment in a particular disease. Interestingly, there are some conditions where 
only blood can be obtained. For example, as no surgery is indicated for AAA patients 
with aortic diameter between 3 and 5 cm (or in patients with diagnosed carotid 
 stenosis <70 %), human samples from these patients could only be obtained from 
blood, either circulating cells or plasma, in order to analyze mechanisms involved in 
AAA/atherosclerosis evolution towards surgery or occasionally rupture. 

 Blood may refl ect directly or indirectly a cardiovascular pathological state and 
the proteome of circulating cells or of plasma may be modifi ed accordingly. Blood 
sampling must be carried out when it is most appropriate. For example, if the 
 objective is to discover markers of coronary atherosclerosis, the blood should not be 
drawn a few hours after revascularization since stenting likely induces signifi cant 
changes in the blood proteome that could mask markers of atherosclerosis found in 
basal conditions. Ideally, blood should be obtained at a similar time of the day since 
it has been demonstrated that circulating proteins could be modifi ed due to  circadian 
rhythms [ 15 ]. Others factors that could infl uence the proteomic analysis of blood 
components are the presence of hemolysis (e.g. RBC lysis could lead to  oxygen 
radicals release), as well as the conditions when the blood was taken (e.g. if blood 
is taken after anaesthesia, after fasting conditions, etc). 

   Serum Vs Plasma 

 Plasma is obtained by collecting blood in an anticoagulant solution and subsequent 
centrifugation. In contrast, serum is obtained after coagulation, a process that 
involves the activation of proteases in cascade leading to the formation of a clot 
containing activated leukocytes and platelets. These activated blood cells can release 
many proteins and proteases [ 16 ], which, in addition to coagulating proteases, will 
drastically affect the serum proteome. This must be taken into account in order to 
normalize blood sampling (type of anticoagulant, time of clotting for serum, cen-
trifugation speed…). 

 A major challenge for analyzing plasma proteome is the high dynamic range of 
protein concentration. Analysis of crude plasma does not provide information on 
thousands of proteins and peptides that are masked by high- or moderately- abundant 
proteins. Several approaches can be used to eliminate abundant protein interfering 
with proteomic analysis (e.g. immuno-affi nity columns, normally followed by chro-
matographic fractionation). More recently, serial/tandem depletion (using the same 
type of columns) or ultradepletion methods have demonstrated an increase in the 
number of proteins depleted [ 17 ,  18 ]. However, highly abundant protein depletion 
(e.g. albumin) may involve non-specifi c loss of other low-abundance proteins, 
which may refl ect important pathophysiologic pathways, such as cytokines, known 
to participate in atherothrombosis.  
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   Circulating Cells 

 Due to the important role that circulating cells plays in atherothrombosis (neutro-
phils, monocytes, RBCs, platelets), addressing the differential protein profi le of these 
cells could afford valuable information of this systemic pathological setting. However, 
when isolating circulating cells, it must be taken into account that many cells, such as 
polymorphonuclear neutrophils or platelets, may be activated during the isolation 
process (centrifugation, temperature, pipetting…). For example, if the idea is to dis-
cover platelet biomarkers, it is known that preactivation of platelets could infl uence 
the levels of some biomarkers [ 19 ]. Similarly, specifi c isolation of circulating cells by 
using magnetic beads coupled to antibodies could led to activation of some circulat-
ing cells. The purity of the preparation is also critical as the proteome of contaminat-
ing cells may interfere signifi cantly with the proteome of interest (e.g. reticulocytes 
in RBCs preparations [ 20 ]). Likewise, contamination of plasma proteins could also 
happen (mainly in platelets [ 21 ]). For that reasons, standarization of protocols for 
isolation of cells is key to be able to compare the results obtained in different studies. 
Another issue that is relevant in the case of RBCs is the large dynamic range for cel-
lular protein concentration, due to the high concentration of cytosolic Hb (97 %). One 
alternative is analyzing the membrane fraction, which is not devoid of some technical 
diffi culties (e.g. proteins from other compartments) [ 22 ].  

   Lipoproteins/Extracellular Vesicles 

 Another way to circumvent the dynamic problem of plasma protein concentration is 
to analyse plasma subproteomes. Regarding atherothrombosis, and due to the key 
role of lipid homeostasis, lipoproteins can be an interesting target. Among lipopro-
teins, high-density lipoprotein (HDL) is the more protein-rich particle. It is gener-
ally accepted that some of the benefi cial role of HDL in atherothrombosis could go 
beyond their cholesterol effl ux properties, being related to its protein cargo. 
Lipoproteins can be isolated by different procedures, although the more common is 
based on ultracentrifugation. However, this procedure is known to increase the con-
tamination of high-abundance plasmatic proteins (e.g. albumin) and weakly-bound 
proteins could be released due to the high stress conditions applied to the particles. 
In the case of HDL, there exist other isolation methods, like ApoA-1 affi nity col-
umns or gel fi ltration chromatrography, used alone or in combination, although it is 
not clear which of those isolated HDL particles resemble better the in vivo (physi-
ological) situation. Another grade of complexity comes from the fact that there are 
different subpopulations of LDL and HDL particles. In this regard, previous studies 
have shown that proteins distribute throughout the HDL family in distinct patterns 
according to particle density, size and ionic character [ 23 ,  24 ]. 

 Microvesicles (MV), including microparticles and exosomes are membranous 
vesicles released by cells into extracellular fl uids, thereby mediating intercellular 
communication in physiological and pathological processes, among them athero-
thrombosis [ 25 ]. Given the fact that MV proteins represent less than 0.07 % of total 
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protein plasma content, obtaining highly purifi ed microvesicle fractions may 
become diffi cult. In addition, despite the differential centrifugation speeds required 
for each type of MVs (exosomes vs microparticles), cosedimentation is a common 
feature [ 26 ]. Moreover, lipoprotein contamination (mainly very low density lipo-
proteins) is usually present in MVs. In addition, characterization of MV is neither a 
completely solved question, and different methods are usually combined to assure a 
highly enriched MV sample (electron microscopy, nanotracking analysis, 
fl ow-cytometry).     

    Proteomics Approaches Applied to the Study 
of Atherothrombosis 

    Gel-Based Approaches for Quantitative Proteomics 

 A large number of vascular proteomic investigations have employed two- 
dimensional gel electrophoresis (2DE) to separate proteins, combined with quanti-
tative computer analysis to detect differentially expressed proteins and MS 
technologies to identify proteins of interest [ 27 ]. In 2DE, proteins are fi rstly sepa-
rated in the fi rst dimension by isoelectric focusing based on their charge, while in 
the second dimension, proteins are separated according to their molecular mass by 
SDS-polyacrylamide gel electrophoresis (SDS-PAGE). The 2DE technique pro-
vides a comprehensive protein map where protein abundance changes, isoforms, or 
posttranslationally modifi ed proteoforms can be detected [ 28 ]. The 2D differential 
in gel electrophoresis (DIGE) technique was proposed to circumvent the high vari-
ability associated to conventional 2DE by running different samples on the same gel 
[ 29 ]. In DIGE, each sample is labeled with a different fl uorophore; then the samples 
are mixed and run on the same 2D gel, and relative protein abundance is assessed 
based on the use of different fl uorescence excitation wavelengths [ 30 ]. Following 
sample separation, protein spots are visualized using standard protein staining 
methods; these stains must be sensitive, reproducible and compatible with protein 
identifi cation by MS. Once the spots of interest have been selected, they can be 
excised from the gel to be identifi ed by MS. Both MALDI- and ESI-based MS 
methods are used to produce peptide mass fi ngerprints and peptide fragment fi nger-
prints which are matched against the corresponding theoretical fi ngerprints derived 
from sequence databases for protein identifi cation. 

 Successful examples of 2D-DIGE technology applied to cell, tissues or plasma 
subproteomes in atherothrombosis have been published [ 9 ,  31 – 33 ]. In one of those 
studies, the analysis of the intima of coronary plaques by 2D-DIGE allowed the 
identifi cation of several differentially expressed proteins in atherosclerosis, among 
them ferritin [ 9 ]. Interestingly, Lepedda et al. [ 31 ] showed an increase in ferritin 
expression in unstable vs stable carotid atherosclerotic plaques. The increased lev-
els of ferritin indicate higher iron deposits in plaques, which can be associated to 
processes of intraplaque hemorraghe, a main determinant of plaque progression 
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[ 34 ]. Interestingly, intraplaque hemorrhage and increased intraplaque vessel 
 formation are independently related to clinical outcome [ 35 ]. A recent  meta-analysis 
highlights the relation of iron status with atherothrombosis [ 36 ]. Another example 
of the usefulness of 2D/2D-DIGE is the study of AAA thrombus-conditioned media 
in order to fi nd AAA biomarkers. Among proteins identifi ed in thrombus- 
conditioned media, we observed an increase in peroxiredoxin-1 (PRX-1) in the 
luminal part of the thrombus [ 32 ]. PRX-1 was associated to RBCs in the thrombus 
and RBCs incubated with pro-oxidant molecules in vitro released PRX-1 to the 
extracellular medium. Finally, PRX-1 levels were signifi cantly increased in the 
serum of patients with AAA in relation to controls. Interestingly, PRX-1 was 
 associated to both aortic diameter and AAA growth. More importantly, the combi-
nation of PRX-1 and aortic size has signifi cantly additive value in predicting growth 
compared with size alone, the actual parameter used in the follow-up of AAA 
patients. This data highlight the potential value of biomarkers, in conjunction with 
imaging techniques, in the prognosis of patients with AAA.  

    Gel-Free Strategies 

 While gel-based techniques remained the method of choice for high-resolution 
 proteome analysis for a number of years [ 37 ], it suffers from low reproducibility 
issues and is biased against membrane-associated proteins, low abundance proteins, 
or proteins with extreme isoelectric point or molecular weight. But the most 
 important drawback is its limited capacity for protein identifi cation, being only able 
to characterize hundreds of proteins, a number that in most of cases only constitutes 
a minor fraction of total proteome content of biological samples. More recently, 
gel-free approaches have been developed based on the proteolytic digestion of 
whole protein extracts followed by chromatographic separation and on-line MS/MS 
analysis of the resulting peptides. This technique, termed liquid chromatography 
coupled to mass spectrometry (LC-MS) allows the “shotgun” identifi cation of 
 thousands of proteins present in cell or tissue protein extracts [ 38 ]. 

 Several examples of “shotgun” technology applied to vascular samples have 
been recently published [ 12 ,  39 – 42 ]. An interesting example is its application to 
study proteolysis, which is a main mechanism in pathological vascular remodeling, 
both in atherosclerosis and AAA. Proteolysis of ECM proteins (mainly collagen) 
has been linked to plaque rupture of advanced atherosclerotic plaques. Therefore, 
big efforts have been done in order to address the functional role of different 
 proteases, mainly through animal models [ 43 ]. Stegemann et al. globally analyze 
matrix- metalloproteinase (MMPs) substrates in human vasculature by high-
throughput shotgun proteomic analysis [ 39 ]. Interestingly, the authors described 
novel candidates of MMP-3, -9 and -14, including ECM proteins associated with 
the basement membrane, elastic fi bers (emilin-1), and other extracellular proteins 
(periostin, tenascin-X). Proteolysis can also alter the function of many secreted 
 bioactive molecules. In this respect, we recently described by shotgun proteomics 
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approaches complement retention and proteolysis in conditioned media of 
 intraluminal thrombus of AAA [ 12 ]. Since complement proteins are mainly 
 synthesized by the liver, the increased levels observed in the thrombus is due to their 
retention from plasma. The highly enriched proteolytic conditions present in AAA 
thrombus induce the cleavage of complement C3 leading to C3a, which favor the 
recruitment and activation of neutrophils, playing a detrimental role in AAA. 

 Recently, LC-MS technologies have facilitated sensitive and high-throughput 
analysis of post-translational modifi cations (PTMs) in the setting of myocardial 
injury, where key proteins involved in calcium regulation have been found 
 differentially affected by a variety of PTMs (e.g. phosphorylation and oxidative 
modifi cations) [ 44 ]. Due to the low stoichiometry of PTMs, global quantitation 
methods often involve a PTM-enrichment step or a fractionation procedure prior to 
LC-MS analysis [ 45 ]. 

 Despite the development of rigorous statistical analyses to facilitate protein 
quantifi cation in label-free proteomics experiments, stable isotope labeling (SIL) of 
peptides allows a very accurate relative quantitation of proteins and is the method of 
choice to detect changes in protein abundance across several samples. 

    Labeling Techniques for Quantitative Proteomics 

 SIL may be achieved by metabolic, chemical and enzymatic methods. Metabolic 
labeling techniques include stable isotope labeling by amino acids in cell culture 
(SILAC) and amino acid-coded mass tagging (AACM). These techniques 
 incorporate isotopically labeled amino acids into cell culture media lacking their 
unlabeled counterparts. Although direct labeling of proteins within cells allows a 
full control of the experimental conditions, particularly when sample preparation 
requires considerable manipulation, this method requires a complete metabolic 
incorporation of labeled amino acids in cell cultures, and is not amenable to study 
samples that cannot be labeled (i.e. human tissues). In vitro labeling methods are 
based on a chemical reaction by which an isotope label is incorporated into the 
peptides produced by protein digestion. Derivatisation of cysteine residues with an 
isotope coded affi nity tag (ICAT) [ 46 ,  47 ], or enzymatic labeling with  18 O [ 48 ,  49 ] 
are examples of this type of strategy. 

 The employment of isobaric tags for relative and absolute quantifi cation (iTRAQ) 
reagents [ 50 ] is one of the most-widely used chemical labeling approaches. In this 
method, iTRAQ reagents incorporate isobaric mass labels to peptide N-termini and 
lysine side chains. The resulting derivatized peptides belonging to different samples 
are chemically indistinguishable, and having the same total mass are detected 
together as a single peptide ion. However, during MS/MS fragmentation of the pep-
tide ion, the coding agents are cleaved producing reporter ions that have unit mass 
differences for the differentially coded peptides and allow relative protein abun-
dance to be determined. The iTRAQ approach has two main advantages: in one 
hand, the signal intensity of the samples are added up, so that less amount of sam-
ples are required to achieve the same sensitivity. In the other hand, it allows the 
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parallel quantitation of four samples at the same time. Recently, a new version of 
iTRAQ reagents have been developed that allows multiplexed quantitation of 8 
samples [ 51 ]. The TMT approach is another example of stable isobaric labeling 
[ 52 ]; it has the same chemistry than iTRAQ, and allows protein quantitation in 
either 6-plex or 10-plex mode, although the later requires a minimum resolution in 
MS/MS mode that is only affordable in some types of mass spectrometers. 

 Several papers have resorted to stable isotope labeling in combination with  gel- free 
proteomics approaches for the analysis of vascular samples [ 53 – 57 ]. As part of the 
Systems Approach to Biomarker Research in CVD Initiative, Yin et al. [ 54 ] identifi ed 
several plasma protein biomarkers of new-onset myocardial infarction and atheroscle-
rotic CVD in a very large CV cohort analyzed by discovery- (135 patients and 135 
controls by iTRAQ-LC-MS) and targeted-based MS experiments (336 atherosclerotic 
CVD case–control pairs by MRM). This interesting work demonstrated that addition 
of a multiple-marker protein panel associated to risk of myocardial infarction or new-
onset of atherosclerotic CVD increased the predictive value compared with a model 
with clinical risk factors alone. Another recent study has also addressed the proteomic 
profi ling by both discovery and targeted MS analysis of plasma samples from patients 
undergoing a therapeutic planned myocardial infarction [ 58 ]. This is an excellent 
designed study that through improved methodological advances (multiplexed iTRAQ, 
intensive depletion of abundant plasma proteins, optimized fractionation methods, 
along with the use of the latest MS instrumentation) has been able to identify the larg-
est number of proteins to date (around 5000). In this study, the biological variability 
was controlled by using serial samples from the same person at different time points, 
which is key on human studies.  

    Label-Free Shotgun Strategies for Quantitative Proteomics 

 Label-free shotgun approaches rely on the measurement of peptide MS/MS rates 
(spectral counts) or chromatographic peptide peak area (peptide-ion intensities). 
Spectral count-based strategies have been favored by the increase of MS scan speed, 
while the development of high-resolution instruments (e.g. orbitrap) has promoted 
peptide-ion intensity-based methods. Despite that label-free strategies have the 
advantage of a simplifi ed sample preparation, powerful bioinformatic tools are 
required to extract, normalize and organize the highly complex MS data generated 
from this kind of experiments. In the last years, several tools have been developed 
for analyzing spectral count data [ 59 – 61 ] or chromatographic peak areas [ 62 ,  63 ], 
while other tools are able to retrieve and analyze information from both spectral 
counts and chromatographic peak areas [ 64 ,  65 ]. However, the choice of appropri-
ate data analysis methods still remains a major challenge in label-free quantitative 
proteomics [ 66 ]. 

 Label-free shotgun strategies have been used in several studies involving vascu-
lar samples [ 8 ,  44 ,  67 – 69 ]. Didangelos et al. analyzed the changes in ECM and 
associated proteins involved in the pathological remodeling process in AAA by 
means of an LC-MS, label-free approach [ 8 ]. Interestingly, ECM proteins and their 
degradation products were selectively extracted from aneurysmal and control aortas 
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using a solubility-based sub-fractionation methodology. In another study [ 67 ], the 
authors address the proteome of circulating leukocytes of patients with coronary 
occlusion using iTRAQ reagents for the discovery phase followed by validation of 
some biomarker candidates by label free LC-MS/MS. The authors identifi ed a bac-
tericidal/permeability-increasing protein as a potential biomarker for severe athero-
sclerotic coronary stenosis.  

    Selected Reaction Monitoring (SRM) for Quantitative Proteomics 

 MS-based proteomics is a fi eld of intense research mainly due to the need of high- 
throughput validation of biomarkers, given the limitations of targeted methods 
based on antibodies or other affi nity capture techniques. Selected (or Multiple) 
Reaction Monitoring (SRM or MRM) is a highly selective MS scan mode for quan-
tifi cation of low-abundant proteins in protein mixtures and for characterization of 
post-translational modifi cations [ 70 ]. SRM is a powerful method exploiting the 
capabilities of triple quadrupole mass spectrometers to fi lter in specifi c precursor 
peptides from a few interesting proteins (e.g. potential biomarkers) in complex pro-
tein mixtures. In an SRM assay, the so-called transition fi lter is monitored with high 
selectivity: the fi rst quadrupole, which is used as a mass fi lter, focused in the mass 
of the precursor peptide of interest, while a specifi c diagnostic peptide fragment is 
predefi ned in the third quadrupole; peptide fragmentation of the precursor peptide 
is achieved in the second quadrupole. Moreover, the chromatographic retention time 
can be used to increase the confi dence of detection and quantifi cation [ 71 ]. The 
multiplexing ability of SRM enables several precursor-diagnostic transitions to be 
monitored in a single LC–MS run [ 20 ]. 

 Several examples of targeted MS-based proteomics has been recently published 
in the vascular fi eld [ 72 – 74 ]. HDLs are modifi ed during atherothrombosis leading 
to “dysfunctional” HDL particles. Oxidative modifi cations of ApoA1, the main 
constituent of HDL, have been observed in human atheroma [ 75 ]. In an interesting 
study, increased oxidation of ApoA1 has been quantifi ed by SRM in HDL from 
patients with CVD and from control subjects [ 73 ]. In a recent study, we observed by 
SRM that systemic levels of hepcidin were increased in AAA patients compared to 
controls [ 74 ]. Hepcidin is a key peptide in the regulation of iron homeostasis as a 
major determinant of iron retention in phagocytes [ 76 ]. Our data derived from SRM 
experiments let us explain that the localized tissue iron that was overloaded in AAA 
could be associated to increased hepcidin systemic concentrations.    

    Concluding Remarks and Perspectives 

 High-throughput techniques have been used in the search of novel cardiovascular 
biomarkers. The study of vascular cells or tissues by proteomics approaches is 
expected to contribute to the identifi cation of novel biomarkers implicated in the 
pathogenesis of atherothrombosis, as well as of potential therapeutic targets. Blood 
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proteomics may also help unveiling biomarkers that could be used in the diagnosis 
and prediction of cardiovascular events. While proteomics is playing a major role in 
the discovery phase of potential biomarkers, validation has traditionally relied on 
antibody-based methods such as Western Blotting and ELISA. However, MS 
targeted- methods will become a major contributor for the quantifi cation of these 
potential biomarkers and their modifi cations in the validation phase. In any case, 
even when a biomarker does not meet all the criteria to be translated into the clinical 
practice (specifi city, sensitivity), it could be useful to understand the pathological 
mechanisms of the disease and may potentially be used as an imaging and therapeu-
tic target. Due to the complex nature of atherothrombosis, it seems clear that a sin-
gle marker measurement will not be enough to specifi cally detect a disease alone. In 
this respect, a multimarker approach has been suggested to provide higher sensitiv-
ity and specifi city for cardiovascular diseases than is afforded using single markers 
considered individually [ 54 ]. On the whole, proteomics, in combination with other 
complementary approaches like genomics, metabolomics and imaging techniques, 
is emerging as a very powerful tool that is expected to improve the diagnosis and 
treatment of patients at high risk of suffering a cardiovascular event.     
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    Abstract     Recent advances in stem cell and proteomic technology carry tremen-
dous potential to impact our understanding of mechanistic underpinnings and fun-
damental pathophysiology of cardiovascular disease. In this chapter, we introduce 
investigators new to these disciplines to the various types of stem cells relevant to 
cardiovascular biology and how, when combined with state-of-the-art proteomic 
analyses, they may be exploited for mechanistic and translational studies related to 
cardiomyopathies, coronary atherosclerotic disease, and heart failure. Although the 
potential of these emerging technologies is just beginning to be explored, this chap-
ter aims to illustrate how integration of novel stem cell and proteomic technologies 
is poised to make signifi cant contributions to future advanced therapies and diag-
nostics in cardiovascular medicine.  
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      Introduction 

 The fusion of modern mass spectrometry and proteomic strategies with state-of-the- 
art stem cell technologies provides a powerful platform for addressing outstanding 
challenges and questions in cardiovascular medicine and cardiac biology. Investigators 
new to these fi elds may fi nd it daunting to navigate the complexities, especially as 
analytical instrumentation and their respective capabilities are rapidly evolving and 
stem cell culturing and differentiation protocols are continually improving our ability 
to generate better defi ned progeny of diverse lineages. Moreover, as these technolo-
gies and applications to cardiovascular medicine largely remain in their infancy, spe-
cifi c challenges must be recognized and addressed before the full potential of these 
technologies can be realized. In this chapter, we merge basic science and clinical 
perspectives to provide an overview apt for clinicians, students, and scientists alike. 
We begin by defi ning various classes of stem cells relevant to cardiovascular biology, 
subsequently provide clinically-focused examples illustrating the potential impact of 
various stem cell technologies for mechanistic and translational studies, and con-
clude with an overview of state-of-the-art proteomic strategies especially relevant for 
addressing outstanding questions related to stem cell and cardiovascular biology.  

    Unique Properties of Stem Cells 

 Stem cells are defi ned by an ability to self-renew indefi nitely and to differentiate into 
at least one cell type other than itself. Several types of stem cells exist and vary by 
location and niche, developmental stage when they are present, and ability to form 
differentiated progeny. Some stem cell lines are representative of early developmental 
stages and have greater potential to form multiple cell types and organs ( e.g.  embry-
onic stem cells and neuronal stem cells). Other stem cells are present in developed 
adults, but are more limited in their differentiation potential and niche. For example, 
intestinal stem cells are located in intestinal crypts and give rise to four main cell types 
making up intestinal epithelial lining. For scientists new to this fi eld, the number of 
stem cell types, culturing strategies, differentiation protocols, and in some cases, con-
troversy surrounding their existence and defi nition, can appear overwhelming. 
Moreover, despite increasing media attention, the specifi c properties of cells optimal 
for mechanistic and translational studies remain to be fully established. In this section, 
we briefl y outline several stem cell types with particular relevance to the cardiovascu-
lar fi eld and describe their origins, differentiation potential, how they are defi ned, and 
provide an overview of their relevance to cardiovascular pathophysiology. 

    Pluripotent Stem Cells 

 Human pluripotent stem cells (hPSC), which include embryonic and induced pluripo-
tent stem cells, are defi ned by an ability to differentiate into cell types from each of the 
three germ layers ( i.e.  endoderm, ectoderm, mesoderm). Human embryonic stem cells 
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(hESC) are derived from the inner cell mass of the blastocyst stage embryo [ 1 ]. Human 
induced pluripotent stem cells (hiPSC), which have functional potential similar to 
hESC, can be derived from explanted somatic cells ( e.g.  fi broblasts, mononuclear cells) 
by using any one of a number of strategies ( e.g.  virus, protein, mRNA, chemicals) to 
overexpress transcription factors responsible for maintenance of pluripotency [ 2 ,  3 ]. 
While hiPSC were originally generated using retroviral integration of four transcrip-
tion factors [ 4 ,  5 ], modern protocols do not necessitate viral integration into the genome 
[ 6 ,  7 ] and are continually evolving to accommodate reprogramming of a variety of 
somatic cell types (reviewed in Rony et al. [ 8 ]). Currently, hESC and hiPSC are widely 
used  in vitro  to generate various cell types including neural, cardiac, hepatic, and reti-
nal epithelial cells. Of particular relevance to the cardiovascular fi eld, both hiPSC and 
hESC can be used to generate cardiomyocytes, endothelial cells and vascular smooth 
muscle  in vitro  for mechanistic and translational studies. Furthermore, hiPSC can be 
derived from patients to generate cell types containing a specifi c genotype of interest.  

    Adult Stem Cells 

 Found throughout the body, adult stem cells are typically responsible for maintaining 
differentiated cell populations characterized by high turnover ( e.g.  blood, skin, gastro-
intestinal tract). These cells are commonly encountered in a specifi c niche and their 
differentiation potential ranges from multipotent to unipotent ( i.e.  ability to differenti-
ate into multiple or one cell type, respectively). Of the many adult stem cell types 
described, two have received signifi cant attention regarding their utility in cardiovas-
cular research and medicine. Bone marrow-derived mononuclear cells (BMMC) are 
heterogeneous cell populations in the bone marrow defi ned by morphology ( e.g.  
nuclear morphology and cytoplasm without granules). BMMC contain stem cells that 
give rise to hematopoietic cells and can potentially differentiate into non-hematopoi-
etic cells. Furthermore, they are a viable source for generating patient-derived hiPSC 
[ 9 ]. Mesenchymal stem cells (MSC) are an adult stem cell population found in bone 
marrow, but have also been isolated from other tissues ( e.g.  adipose) [ 10 ]. MSC are 
defi ned by their ability to adhere to plastic; expression of cell surface markers CD105, 
CD73, and CD90; and have the capacity to differentiate into osteoblasts, adipocytes, 
and chondroblasts [ 9 ]. MSC and BMMC are relevant to cardiovascular biology and 
therapy based on their effects to modulate immune response, cardiomyocyte cell sur-
vival and remodeling via direct and indirect interactions. Moreover, they are useful in 
mechanistic studies of vascular disease and hypertension [ 11 – 13 ].  

    Other Stem Cell Like Populations 

 Additional cell types of relevance to the cardiovascular fi eld include progenitor 
cells, which are similar to stem cells in that they can differentiate into one or more 
cell types but are incapable of indefi nite self-renewal [ 14 ]. Several populations of 
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adult resident “cardiac stem cells” and “cardiac progenitor cells” have been 
described, including KIT+, ISL1+, SCA1+, side-population, and cardiosphere- 
derived progenitor cells (see recent reviews [ 15 ,  16 ]); however, the defi nition, exis-
tence, prevalence, functional potential, and utility of these populations are not 
entirely defi ned and some are fervently debated [ 17 – 20 ]. Vascular wall progenitor 
cells, including endothelial, smooth muscle, and multipotent vascular progenitor 
cells, are also highly relevant to cardiovascular biology, and their diverse properties, 
functions, roles in disease, and therapeutic potential have been the subject of an 
excellent recent review [ 21 ]. Finally, direct reprogramming – the delivery of cardiac 
transcription factors or miRNA to induce cellular changes in epigenetics and gene 
regulation – can stimulate terminally differentiated fi broblasts to become induced 
cardiomyocytes (iCM) [ 22 ]. This approach is being pursued both for directly repro-
gramming mouse cells  ex vivo  and  in vitro  [ 22 ,  23 ] and human cells  ex vivo  [ 24 ], and 
may avoid concerns such as tumorigenicity associated with hPSC derived cardio-
myocytes. However, variations in effi ciency and reproducibility will need to be 
addressed (reviewed in [ 25 ,  26 ]).    

    Human Pluripotent Stem Cell Derivatives for Studies 
on Cardiovascular Biology and Disease 

 Of the stem cell types relevant to cardiovascular medicine, the most versatile are 
hPSC owing to their differentiation potential and utility for modeling early human 
development. Differentiation strategies for cardiomyocytes (hPSC-CM) have sig-
nifi cantly advanced over the past decade (reviewed in [ 27 ,  28 ]). In general, contem-
porary protocols are capable of reproducibly generating cultures >80 % positive for 
cardiomyocyte markers and are achieved by modulation of Wnt signaling pathways 

 Stem Cell 
 A cell that possesses two fundamental properties: (1) indefi nite self-

renewal – where a cell proceeds through cell division and maintains its undif-
ferentiated state and (2) the ability to differentiate into at least one cell type 
other than itself. Stem cells are classifi ed according to their differentiation 
potential.

   Totipotent: the ability to differentiate into all extraembryonic and embryonic 
cells in an organism (e.g. zygote)  

  Pluripotent: the ability to differentiate into cells from any of the three germ 
layers (e.g. embryonic stem cell)  

  Multipotent: the ability to differentiate into multiple, but limited, cell 
types (e.g. mesenchymal stem cell)  

  Unipotent: the ability to differentiate into a single cell type (e.g. spermato-
genic stem cell)    
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on cells cultured in two and three-dimensional platforms [ 29 – 31 ]. Spontaneously 
contracting cells can be produced in as few as 7–8 days [ 30 ] with early stage cells 
having rounded morphology and later stage cells exhibiting elongated morphology, 
sarcomeric organization, and potential gap junctions [ 32 ,  33 ] (Fig.  6.1 ). Despite 
recent developments in differentiation strategies to produce cells that robustly 
express cardiomyocyte specifi c genes, hPSC-CM cultures are heterogeneous with 
respect to functional subtype identity and fail to generate a phenotype consistent 
with adult cardiomyocytes [ 28 ]. Rather, gene expression and functional phenotypes 
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  Fig. 6.1    ( a ) Summary of  in vitro  approaches for generating cardiomyocytes and their potential 
utility in mechanistic and translational studies. ( b ) Common techniques used to characterize 
hPSC-CM and iCM phenotypes. ( c ) Immunocytochemistry of hPSC-CM on days 18 and 36 of  in 
vitro  differentiation illustrating transition from a rounded phenotype at early stages to a more elon-
gated phenotype at later stages.  Inset  shows overlay of TNNT2 and DNA stain       
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of hPSC-CM mimic cardiomyocytes from the embryonic or fetal heart as evidenced 
by the lack of key features such as T-tubule structure, well-formed sarcomeres and 
gap junctions, and multi-nucleation [ 28 ,  34 – 36 ]. As a result, strategies to drive mat-
uration towards a phenotype more closely resembling cardiomyocytes of the adult 
heart are being pursued, which include mechanical and electrical stimulation, 
manipulation of energy substrates and/or hormones, and co-culturing with vascular 
constructs [ 33 ,  37 – 42 ]. However, a single protocol to effi ciently produce adult-like 
cells has not yet been widely adopted. In addition to cardiomyocytes, protocols for 
generating vascular smooth muscle cells (hPSC-VSMC), endothelial cells (hPSC-
 EC), and pericytes, have also been described [ 43 – 46 ]. Overall, these protocols have 
been successful in generating cells expressing appropriate markers, and phenotypic 
differences between patient and control cells correlate with those found in disease 
(e.g. Hutchinson-Gilford progeria and supravalvular aortic stenosis [ 47 – 49 ]). 
Further efforts to defi ne positive and negative markers for hPSC-VSMCs, hPSC-
 EC, and pericytes will facilitate the use and improvement of differentiation models 
of these cell types. 

 Although differentiation protocols will undoubtedly continue to evolve for all 
hPSC-derivatives, progeny generated with current strategies have already begun 
to demonstrate potential utility for numerous applications (Fig.  6.1 ). First, the 
timing and hierarchy of molecular events during  in vitro  differentiation closely 
mimic those of human development [ 50 ], and thus allow for study of molecular 
dynamics during very early stages of human development impossible to study  in 
vivo . Second, these models generate unlimited numbers of cells that can be used 
for studying cellular biology in normal and disease states [ 45 ,  47 – 49 ,  51 ]. Third, 
as cardiotoxicity studies traditionally employ either animal models or overexpres-
sion systems ( e.g.  CHO cells) to predict potential harmful effects of compounds 
on cardiac function, current evidence suggests it may be possible to use hPSC-
CM for these studies as a more accurate alternative system of assessing potential 
cardiotoxic effects of compounds in pre-clinical studies [ 52 ,  53 ]. In this way, tox-
icity studies could expand to routinely include human cells of diverse genetic 
origins to evaluate drug effi cacy and safety according to genotype and promote 
advancement towards patient- specifi c medical therapy ( i.e.  “personalized medi-
cine”). Fourth, as modern reagents and protocols enable effi cient transfection of 
hPSC [ 54 – 56 ], the use of gene editing strategies ( e.g.  knockout, knockdown) may 
provide a pragmatic alternative to animal models for initial inquiries into func-
tional consequences of genetic mutations during early development and studies of 
novel protein function in a cell type specifi c manner. Fifth, as discussed in more 
detail below, patient-specifi c cells can be used to study cellular phenotypes and 
molecular mechanisms resulting from specifi c genetic mutations and it may 
become possible to use iCM or hPSC-derivatives to repair damaged tissue and 
improve cardiac function by transplanting cells, tissue constructs, or secreted fac-
tors. Independent of whether the goal is revascularization, transplantation of cells 
or tissues that functionally integrate into the host myocardium, or to provide pro-
tective effects against further damage, modern stem cell technologies have the 
potential to revolutionize therapeutic options for cardiovascular disease.
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       Translational Applications of Stem Cell Proteomics 

 Recent advances in stem cell technologies and proteomic technologies carry tre-
mendous potential to impact our understanding of mechanistic underpinnings and 
fundamental pathophysiology of cardiovascular disease, ultimately leading to 
improved clinical care. From less common monogenic disorders such as 
Hypertrophic Cardiomyopathy (HCM) and Congenital Long QT Syndrome (LQTS) 
to highly prevalent polygenic syndromes such as hypertension (HTN), coronary 
artery disease (CAD) and heart failure (HF), stem cells and their derivatives are 
increasingly investigated for their utility in both research and clinical use. Recent 
reviews have comprehensively summarized ongoing efforts in the cardiovascular 
fi eld to generate stem cell derivatives apt for pharmacological testing [ 57 ,  58 ], dis-
ease modeling [ 59 – 62 ], and the current state of stem cell-based clinical trials [ 63 , 
 64 ]. In this section, we provide three clinically-focused examples to demonstrate the 
applicability of various stem cell technologies to address specifi c clinical needs in 
cardiovascular medicine. Within each example, we briefl y outline currently out-
standing questions that could be addressed using proteomic technologies (Fig.  6.2 ). 

    Example 1: Inherited Cardiac Disease 

    Clinical Overview 

 HCM is the most common heritable cardiovascular disorder with an estimated 
 prevalence of 1:500 in the U.S [ 65 ,  66 ]. Transmitted in an autosomal dominant 
 manner, HCM is the most frequent cause of sudden death in young adults [ 66 ]. 
Genetic missense or nonsense mutations in cardiomyocyte sarcomere genes, most 
frequently beta myosin heavy chain or myosin binding protein C, induce 
 cardiomyocyte dysfunction [ 67 ]. Sarcomere mutation induces abnormal calcium 
sensitivity, myofi brillar disarray, hypertrophy, and cardiomyocyte apoptosis. These 
changes manifest clinically with variable penetrance and severity even within a 
single family. Classically, patients develop focal hypertrophy, often confi ned to the 
interventricular septum. Left ventricular outfl ow tract obstruction can occur and 
pathologically elevated fi lling pressures are prominent in some forms of the disease 
resulting in exertional chest pain and dyspnea. Cardiac fi brosis and ventricular 
arrhythmias are also frequent. There are no known therapies to ameliorate either 
pathologic remodeling or occurrence of arrhythmias. 

 Another relatively common genetic disorder is Congenital Long QT syndrome 
(LQTS). Loss-of-function mutations in either the slow rectifying K +  channel 
(KCNQ1 which causes LQTS-1) or the fast rectifying K +  channel (KCNH2 which 
causes LQTS-2) occur in 50–80 % of cases [ 68 ]. These mutations slow repolarization 
of cardiomyocyte action potentials, pathologically prolonging the QT segment. This 
delayed repolarization lengthens the QT portion of the electrocardiogram (ECG) and 
thus predisposes patients to polymorphic ventricular tachycardia and sudden cardiac 
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death. Although beta-blockers may decrease risk of arrhythmia, implantable cardiac 
defi brillators are often indicated. At this time in the U.S., patients are not routinely 
screened by ECG for LQTS or other cardiomyopathies, with the exception of com-
petitive athletes. Tragically, this disease is often discovered only after exposure to 
medications with QT prolonging side effects such as fl uoroquinolone antibiotics.  

  Fig. 6.2    Graphical representations of three major types of cardiovascular disease. For each disease 
type, examples of how stem cells, stem cell derivatives and proteomic technologies may be applied 
to address outstanding questions and challenges in research and clinical applications are illustrated       
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    Stem Cell Applications 

 Though HCM and LQT syndromes are highly prevalent, current therapies are often 
insuffi cient due to limited knowledge of basic mechanical and electrophysiological 
properties of adult cardiomyocytes, such as the defi nition, evaluation and treatment 
of diastolic dysfunction on the cellular and myofi brillar level, impact of fi broblasts 
and fi brosis on cardiomyocyte electromechanics, and physiology of ion channel 
dysfunction and propagation of malignant arrhythmias. Currently, major obstacles 
to using primary human adult cardiomyocytes for  in vitro  studies include technical 
challenges associated with isolating live cells with high yield, they fail to undergo 
cell division, and they are relatively challenging to culture  ex vivo . Thus, there is 
understandable enthusiasm for use of patient-specifi c hiPSC-CM or directly repro-
grammed iCM to study inherited diseases as they carry patient-specifi c gene 
mutation(s) contributing to variable penetrance and phenotype. To date, hiPSC-CM 
and hiPSC-EC lines from numerous inherited cardiomyopathies have been devel-
oped and shown to recapitulate physiological properties of the disease [ 45 ,  62 ,  69 ] 
and reviewed in [ 53 ,  70 ,  71 ]. Accordingly, this approach to modeling cardiovascular 
“disease in a dish” may be used for screening potential pharmacological therapies 
and determining molecular mechanisms of disease similar to seminal studies 
 showing genetic mutations affect localization of KCNQ1 [ 72 ] and effects of 
 pharmacotherapies on calcium transients and action potential duration in hPSC-CM 
containing Timothy syndrome [ 73 ]. One example of ongoing efforts in this area is 
the NIH- sponsored development of a “Biorepository of Human iPSCs for Studying 
Dilated and Hypertrophic Cardiomyopathy” at Stanford University to generate a 
bank of 600 hiPSC lines from control and cardiomyopathy patients for use in genetic 
and drug screening studies and distribution to the scientifi c community.  

    Role of Proteomics 

 Mutations in HCM result in a large range of clinical phenotypes, including 
 heterogeneous chamber morphology, contractile function, and arrhythmic risk. 
Although many specifi c genetic mutations have been identifi ed,  genotype-phenotype 
correlation is variable. Of particular interest are mutations in sarcomere proteins 
myosin heavy chain and troponin carrying increased risk of sudden death [ 74 – 78 ]. 
Coupling patient specifi c hiPSC-CM with proteomic approaches could be used to 
determine if the variable occurrence of sudden cardiac death is related to other 
important processes such as changes in calcium handling or responsiveness to cat-
echolamines [ 79 ,  80 ]. Proteomic approaches, such as top-down analysis of intact 
proteins and quantitative analysis of subcellular proteomes, could be utilized to 
determine how specifi c gene mutations affect protein post-translational modifi ca-
tions and to determine effects on localization of calcium handling proteins to 
uncover pathways leading from myofi bril disarray to impaired relaxation. These 
studies would help to elicit a mechanism for the physiological observations such as 
variations in catecholamine sensitivity and electrophysiological profi les observed in 
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inherited cardiomyopathies and LQTS. Moreover, modern proteomic strategies that 
allow for identifi cation of ligand-receptor interactions could prove invaluable for 
determining which mutations are susceptible to off-target drug effects. Importantly, 
patient- specifi c hiPSC-CM provide a platform to make these studies feasible, pro-
viding suffi cient material for proteomic and molecular studies.   

    Example 2: Coronary Atherosclerotic Disease 

    Clinical Overview 

 Coronary atherosclerotic disease (CAD) is a chronic, progressive, complex poly-
genic disorder with many well-established risk factors including gender, advanced 
age, hypertension, elevated low density lipoprotein levels, low levels of high density 
lipoprotein, diabetes and tobacco use [ 81 ]. In CAD, pro-atherogenic lipoproteins 
infi ltrate the vessel wall and initiate development of lipid-rich plaques. Retained 
lipids subsequently induce a positive feedback loop of chronic infl ammation, pro-
gressive lipid deposition, proteolytic medial degeneration and formation of vulner-
able, thin-capped, lipid-rich atheromas. The presentation of CAD is highly variable, 
ranging from sudden spontaneous plaque rupture and acute myocardial infarction, 
to sub-clinical ischemia, or progressive angina. Questions remain surrounding 
pathogenesis of CAD including outcome prediction in high-risk patient cohorts, 
mechanisms of plaque rupture and reverse cholesterol transport. For example, 
despite contemporary medical therapy for primary and secondary prevention, many 
patients experience progressive increase in plaque burden or recurrent myocardial 
infarction. Thus, improved prediction models and therapies are needed to provide 
benefi t beyond traditional risk models ( e.g.  Framingham [ 81 ,  82 ]) and infl ammatory 
markers ( e.g.  C-reactive protein [ 83 ]).  

    Stem Cell Applications 

 Percutaneous or surgical revascularization improves myocardial blood fl ow and 
reduces mortality in ischemic heart disease. However, despite restoration of epicar-
dial blood fl ow, many patients continue to experience sub-endocardial tissue isch-
emia. To address the need for revascularization, several preclinical and early human 
studies have evaluated the effi cacy of increasing myocardial perfusion or microvascu-
lar density using endothelial progenitor cells and MSCs (reviewed in [ 12 ,  13 ]). These 
studies, in addition to our own study on the use of CD34+ and CD34− BMMC [ 84 ], 
largely demonstrate pre-clinical safety and feasibility of such approaches, albeit with 
modest improvement in capillary density. Interestingly, the most promising effect is a 
trend toward decreased fi brosis and pathologic remodeling, hallmarks of ischemic 
heart disease [ 12 ,  13 ] but the mechanisms underlying these changes are unclear and 
are the subject of ongoing investigations [ 85 ]. In addition, as differentiation protocols 
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continue to improve, hPSC-VSMC and hPSC-EC may become useful for the study of 
vascular disease, including mechanisms of plasticity and studies on the role of 
 endothelial dysfunction, oxidative stress and signaling, autophagy, and accumulation 
of protein aggregates, which are especially relevant to atherosclerosis (reviewed in 
[ 86 – 89 ]). Finally, hPSC-EC and hPSC-VSMC could be used for screening 
 pro-angiogenic drugs [ 90 ] and co-culturing with macrophages could benefi t the study 
of crosstalk between macrophages and smooth muscle cells [ 91 ] to reveal new 
insights into disease mechanisms and targets for therapy.  

    Role of Proteomics 

 In regard to cellular therapies for revascularization, it is yet unknown whether a 
paracrine mechanism of action is responsible for some of the effects observed in 
transplantation of BMMC and MSC. Thus, proteomic analyses could be used to 
identify secreted factors  in vitro  and  in vivo  to reveal key components affecting 
capillary growth, which could ultimately promote development of more selective 
and specifi c molecules than transplanted cells. Strategies to differentiate hPSC into 
VSMC and EC would benefi t from cell-type specifi c cell surface markers to enhance 
identifi cation and selection of cells and tracking cells post-injection [ 92 – 95 ] that 
could be identifi ed using proteomic approaches (discussed below). Finally, mecha-
nisms of protein aggregation, effects of oxidative stress, and epigenetic regulation 
in smooth muscle plasticity [ 96 ] could also be investigated at the proteome level to 
benefi t our understanding of vascular pathology.   

    Example 3: Systolic Heart Failure 

    Clinical Overview 

 The clinical syndrome of heart failure (HF) is defi ned by impaired myocardial func-
tion, ultimately leading to an inability to meet metabolic demand, manifesting as 
dyspnea, fatigue, fl uid retention, and, at worst, impaired end-organ perfusion. In 
response, catecholamine release and renin-angiotensin-aldosterone are upregulated, 
further propagating a vicious cycle of neurohormonal activation, fl uid retention, 
myocardial fi brotic remodeling and cardiac dysfunction. In HF with reduced ejec-
tion fraction (HFrEF), the left ventricular ejection fraction measures <40 % and 
systolic dysfunction results from loss of functional cardiomyocytes and alterations 
of cytoarchitecture and left ventricular geometry ( i.e.  “systolic heart failure”). 
Targeted neurohormonal therapy with beta-blockers, renin-angiotensin and aldoste-
rone inhibitors has proven effective for all etiologies of HFrEF and indeed reduces 
cardiac mortality, morbidity and infrequently normalizes cardiac function. However, 
despite effective therapies, the overall 5-year mortality from HF exceeds 50 % from 
time of diagnosis.  
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    Stem Cell Applications 

 The  in vitro  differentiation process of hPSC to hPSC-CM largely recapitulates 
major events in human embryonic heart development, including the transition from 
an immature, proliferative cellular phenotype to a maturing, non-proliferative phe-
notype. Accordingly, with continued time in culture, hPSC-CM follow a metabolic 
progression from glucose utilization to fatty acid oxidation and demonstrate a shift 
from expression of troponin isoforms robust in human fetal heart ( TNNI1, TNNI2 ) 
to that expressed in the adult ( TNNI3 ) [ 97 ,  98 ]. Altogether, this model may be valu-
able for mechanistic studies of cardiomyocyte dysfunction in HF. Specifi cally, using 
this model to decipher processes involved in cell cycle regulation, including cell 
cycle exit and reentry, cytokinesis, proliferation, and hypertrophy (reviewed in 
Ahuja et al. [ 99 ]), could reveal new strategies to stimulate cell cycle re-entry in 
diseased heart. Furthermore, as cardiomyocytes interact with macrophages, fi bro-
blasts and other cell types , in vitro  co-culture models with hPSC-CM may benefi t 
studies regarding the effects of intercellular interactions on cardiomyocyte function 
[ 100 ,  101 ]. Additionally, as immature hPSC-CM and cardiomyocytes in the failing 
heart display several similarities in regard to fetal gene expression, metabolic regu-
lation, and cellular electrophysiology [ 28 ,  102 – 104 ], early hPSC-CM could serve as 
a platform to study cellular mechanisms in autophagy, arrhythmias and apoptosis as 
they relate to impaired cardiomyocyte function [ 105 – 107 ]. 

 Ultimately, patients suffering from systolic HF may benefi t from cardiomyocyte 
replacement therapies aimed at restoring myocardial morphology and function. Phase 
I/II clinical trials to investigate use of hPSC derivatives in the eye are underway [ 108 ], 
thus enthusiasm regarding the possibility of such approaches for other organ systems 
is warranted. While numerous studies have tested the potential for various bone mar-
row derived stem cells and hPSC-CM to remuscularize the heart in rodent and larger 
non-primate mammalian models of infarction and/or heart failure (reviewed in Chong 
and Murry [ 109 ]), a recent study by Chong et al. [ 110 ] provides the most advanced 
analysis to date in a non-human primate model of myocardial infarction. By surgi-
cally transplanting hESC-CM into infarcted myocardium, this study successfully 
demonstrates important concepts in feasibility of clinical-scale production of hESC-
CM and that transplanted cells can engraft, electromechanically couple, and become 
vascularized within the host myocardium. Importantly, this study also demonstrates 
the need for further efforts to eliminate potential arrhythmias observed in hearts where 
hESC-CM engraft. Though promising, several remaining challenges include potential 
immune-mediated rejection of allogeneic cells, how to standardize implantation pro-
tocols, and ensuring proper electromechanical integration into the host myocardium.  

    Role of Proteomics 

 Cell cycle processes are regulated by tightly choreographed expression of cell cycle 
genes responsible for DNA replication, nuclear division and cell division. These genes, 
in turn, are regulated in part by post-translational modifi cations of histones ( i.e.  epigen-
etic regulation). For example, addition of acetyl groups to histones serves to free DNA 
and prime it for transcription. On the other hand, modifi cations such as acetyl group 
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removal or addition of methyl groups shield DNA from transcriptional machinery. 
Using hPSC-CM models to study cell cycle processes, proteomic analysis of histone 
signatures could potentially identify critical, time-sensitive epigenetic modifi cations 
regulating cardiomyocyte exit from the cell cycle and therefore discover therapeutic 
targets aimed at unlocking the proliferation block in adult cells. With regards to cardio-
myocyte replacement therapies, proteomic analyses of the plasma membrane are poised 
to reveal novel cell surface markers that could provide a non-genetic approach to iden-
tifying and selecting subtype-specifi c cells at the appropriate maturation stage with the 
objective of generating well-defi ned cell populations that pose minimal arrhythmia risk.

        Overview of Outstanding Questions 

 Stem cells and their derivatives carry tremendous potential for providing a relevant 
platform to study disease mechanisms, screen novel pharmacotherapies, and for 
generating cell and tissue products for regenerative medicine. However, major 
remaining barriers need to be overcome to realize the full potential of such 
approaches (reviewed in [ 111 ,  112 ]). As discussed below, proteomic analyses have 
the potential to address many of these challenges. Whether the application is to 
model a disease, discover novel pharmacotherapies, graft tissue with the purpose of 
revascularization, or to increase functional cardiomyocyte mass, the optimal cell 
type and milieu will vary among applications and remains largely undefi ned. For all 
stem cell classes, reproducible strategies to produce and select the appropriate cell 
type in suffi cient scale and purity are imperative. Considering hPSC-CM, future 
studies will need to address heterogeneity, as cultures contain both non-hPSC-CM 
as well as atrial, ventricular and pacemaker cells that may span many stages of 
development [ 30 ,  110 ,  113 – 122 ].  In vitro  differentiation variability and inherent 
differences among hPSC lines exacerbate problems of heterogeneity, which together 
limit translational and clinical application. While a number of strategies have been 
proposed to enrich for hPSC-CM, they either involve a mutagenic insertion of trans-
genes into the genome [ 115 ,  123 ] or are unable to select for a specifi c chamber 
subtype or maturation stage specifi c hPSC-CM [ 124 – 127 ]. Moreover, given the 
tumorigenic potential of hPSC, strategies to eliminate remnants of undifferentiated 
cells will be required for clinical applications [ 128 ].   

 Major Outstanding Questions and Challenges Related to using Stem Cell 
Derivatives for Mechanistic and Translational Studies 

•     Which cell type(s) is most appropriate for each application?  
•   How should cells with the appropriate phenotype be identifi ed and 

selected?  
•   For a particular application, are homogeneous populations or cell mixtures 

most effective?  
•   In the case of hPSC-derivatives, how can we eliminate tumorigenic cells 

that may be present in the culture?    
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    Proteomic Approaches for Addressing Current Needs in Stem 
Cell and Cardiovascular Biology 

 Currently available mass spectrometry instrumentation, sample preparation  strategies, 
biochemical tools, and bioinformatic workfl ows can be combined in an infi nite num-
ber of ways to assess protein content within a sample. Here, we describe three broad 
types of proteomic strategies especially well-suited to addressing outstanding ques-
tions related to applications of stem cells to cardiac biology described above (Fig.  6.3 ). 
Certainly, approaches we did not have space to discuss here will also have an impact 
and readers are directed to other chapters in this volume for additional  relevant con-
tent [ 129 ]. Importantly, although each approach is discussed separately for purposes 
of clarity, it is possible and often advantageous to integrate multiple strategies into a 
single study ( e.g.  quantitative top-down analyses of histone proteins). 

    Cell Surface Proteomics 

    Relevance 

 Cell surface proteins are transmembrane, GPI-anchored, and extracellular matrix 
proteins such as receptors, enzymes, and transporters that participate in inter- and 
intracellular communication, cellular structure, and adhesion. As such, the cell 
 surface proteome is a rich source of markers, drug targets, and molecules involved 
in the dynamic interplay between cells and their microenvironment, rendering this 
class of proteins especially relevant to stem cell biology and cardiovascular applica-
tions. First, cell surface proteins may be exploited as accessible markers of live cells 
for antibody-based cell sorting, termed immunophenotyping. As discussed above, it 
is not expected that a single hPSC-CM phenotype will be universally applicable for 
all research and clinical applications ( e.g.  atrial vs. ventricular; proliferative vs. 
 non- proliferative). However, there is no singular metric for evaluating cardiomyo-
cyte maturation stage; rather, extensive morphological, molecular, and functional 
measurements are required [ 34 ,  42 ] (Fig.  6.1b ). Altogether, without appropriate 
tools to select specifi c subtypes at specifi c maturation stages with high purity, it is 
currently challenging to perform quantitative comparisons to determine which pop-
ulations are optimal for each application. Thus, similar to how immunophenotyping 
has enabled selection of clinically relevant subpopulations within the hematopoietic 
stem cell system [ 130 ], we and others [ 131 – 134 ] have proposed that this strategy 
will be relevant for identifi cation and selection of subtype and maturation stage 
specifi c hPSC-derivatives that can be tested for their utility in research and clinical 
applications. Moreover, development of cell surface marker panels for assessing 
and selecting maturation stage-specifi c cells would be valuable for rapid quantita-
tive comparisons of hPSC-CM generated by various strategies designed to acceler-
ate maturation  in vitro . Although it may eventually be possible to manipulate culture 
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conditions to drive differentiation towards pure populations of cells at select 
 endpoints, cell surface markers will remain important quality control measures for 
non- genetic, live cell analyses. Finally, increased understanding of cell surface 
receptors present at various maturation stages could identify new targets and facili-
tate development of novel methods for driving maturation forward, especially once 
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  Fig. 6.3    Graphical representations of three major types of proteomic strategies highly relevant for 
the study of stem cells and their derivatives within the context of cardiovascular biology and medi-
cine. Illustrated are the major technical aspects and features of the approach       
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the full cell surface proteome of adult  vs  developmentally immature human cardio-
myocytes is defi ned. Overall, application of proteomic technologies for the identifi -
cation and quantitation of cell surface markers could have a signifi cant impact on 
the future utility of stem cell derivatives in cardiovascular science and medicine. 

 Currently, more than 60 % of drug therapies target plasma membrane proteins 
[ 135 ]. Thus, beyond immunophenotyping, cell surface proteomic techniques can 
also be used to discover unknown or off-target receptors of common pharmaco-
therapies to reveal why they have a highly varied response among patients ( e.g.  
beta-blockers, angiotensin converting enzyme inhibitors, aldosterone antagonists) 
and for identifying accessible receptors on live cells for targeted drug delivery. In 
both of these applications, hPSC-CM can be generated in large numbers to support 
the receptor discovery efforts, assuming cells of the appropriate phenotype can be 
generated  in vitro . Subsequently, such ligand-receptor interactions can be validated 
on smaller numbers of explanted primary cells or in tissue sections. Finally, as tran-
script levels are unreliable predictors of surface protein abundance, cell surface pro-
teomic analyses, for example, may more accurately reveal changes in ion channel 
abundance or modifi cations related to catecholamine sensitivity or calcium han-
dling in cardiomyopathies.  

    Approaches 

 The available reagents and proteomic strategies for studying the cell surface pro-
teome have expanded considerably in the past decade (see reviews [ 136 – 138 ]). It is 
now possible to identify, quantify, and characterize cell surface proteins in a way 
that provides experimental evidence of their subcellular localization. Historically, 
cell surface proteins have been challenging to study due to the limited availability 
of antibodies, the relatively low abundance of cell surface compared to intracellular 
proteins, the presence of hydrophobic and heavily glycosylated domains, and the 
challenges in isolating plasma membrane proteins without contamination from 
intracellular membranes. As outlined in Table  6.1 , affi nity enrichment based pro-
teomic approaches are gaining momentum for a vast array of biological applica-
tions, including stem cell biology [ 134 ,  138 – 140 ,  154 ,  160 – 163 ]. There is no 
singular strategy yet that can identify all cell surface proteins, and the approaches 
summarized in Table  6.1  are largely complementary. In general, strategies that 
apply an affi nity capture tag to cell surface proteins while the cells are intact, rather 
than after lysis, offer the highest level of specifi city for plasma membrane proteins 
and can provide experimental evidence of localization, generating a snapshot of the 
cell surface proteome location at a specifi c time or condition. Such strategies there-
fore have the advantage of being independent of database annotations and localiza-
tion and topology prediction algorithms. Another emerging area is the use of novel 
linking agents [ 158 ] for identifying cell surface receptors for specifi c ligands of 
interest whose receptors are currently unknown ( e.g.  biologics, small molecules, 
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    Table 6.1    Mass spectrometry based proteomic strategies for selective identifi cation of cell surface 
proteins   

  Cell surface capture   Oligosaccharide on extracellular domain of protein conjugated to biotin 
 via  hydrazone bond, streptavidin-based enrichment [ 134 ,  139 ,  140 ] 

  Advantages   Highly specifi c for cell surface proteins 
  Limitations   Limited to N-glycoproteins 
  Aniline-catalyzed 
oxime ligation  

 Oligosaccharide on extracellular domain of protein conjugated to 
biotin  via  oxime ligation, streptavidin-based enrichment [ 141 ,  142 ] 

  Advantages   Highly specifi c for cell surface proteins, oxime ligation may be more 
stable than hydrazine bond 

  Limitations   Limited to N-glycoproteins 
  Amine biotinylation   Free amines conjugated to biotin, streptavidin-based enrichment 

[ 143 – 145 ] 
  Advantages   Not limited to glycosylated proteins 
  Limitations   Published results vary in regard to specifi city for plasma membrane 

proteins 
  Lectin affi nity   Glycoproteins or glycopeptides from cell lysate and/or digests 

selectively enriched by lectin affi nity chromatography [ 146 – 149 ] 
  Advantages   Tailored enrichment based on lectin, complementary to chemical 

labeling 
  Limitations   Limited to glycoproteins, often lower yield compared to chemical 

labeling strategies 
  Cationic colloidal silica   Positively charged silica increases density of plasma membrane 

and facilitates physical separation from other cellular components 
[ 150 ,  151 ] 

  Advantages   May be particularly suited to apical vs. basal types of analyses and 
cell types with membranes more permeable to chemical labeling 
approaches 

  Limitations   Often lower yield compared to chemical labeling strategies, 
specifi city for cell surface proteins varies among reports 

  GPI shaving   Metabolic labeling via azido sugar analog, phospholipase release; 
alkyne-based enrichment and phospholipase release followed by 
lectin affi nity enrichment; phospholipase D shaving [ 152 ,  153 ] 

  Advantages   Highly specifi c for cell surface GPI-anchored proteins 
  Limitations   Phospholipase effi ciency may be limited by modifi cations; Lectin 

specifi city may limit range of identifi ed proteins 
  Matrisome   Analysis of insoluble fraction of tissue depleted of other cellular 

components, coupled with bioinformatic fi ltering [ 129 ,  154 ,  155 ] 
  Advantages   Applicable to analysis of extracellular matrix proteins in tissue 
  Limitations   Preparation of insoluble fractions can be challenging to reproduce 

routinely for quantitative analyses 
  Cell shaving   Proteinase K or thermolysin release of extracellular domain [ 156 , 

 157 ] 
  Advantages   Not limited to glycosylated proteins 
  Limitations   Mammalian cells may not be stable in extreme pH for proteinase K 

(continued)
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circulating secreted factors). These technologies offer advantages over yeast-two- 
hybrid and antibody-antigen based immunoprecipitation which may fail to detect 
transient interactions and require high affi nity antibodies, respectively. Finally, rel-
evant to all types of proteomic studies, but particularly those focused on hydropho-
bic transmembrane proteins, is the development of new mass spectrometry 
compatible surfactants. Whereas common laboratory detergents are incompatible 
with mass spectrometry ( e.g.  SDS, Triton X-100, CHAPS, NP-40), the availability 
and diversity of mass spectrometry compatible surfactants is growing and already 
have proven advantageous for analysis of membrane proteins [ 164 – 167 ].

        Histone Proteomics 

    Relevance 

 Post-translational modifi cations within histones affect the ability of the transcription 
machinery to access DNA and thus the extent of gene transcription. The list of modi-
fi ed residues and modifi cation types is growing and includes, but is not limited to 
methylation, acetylation, propionylation, citrullination, deimination, numerous types 
of acylation, crotonyllysine, glycoxidation, and ubiquitination [ 168 ,  169 ]. These his-
tone modifi cations are carefully maintained by tightly controlled expression and post-
translational modifi cation of the proteins responsible for these marks, including 
histone acetyl transferases, deacetylases, methyl transferases, and demethyl transfer-
ases. The commitment to a specifi c cell fate involves tight regulation of gene expres-
sion and increasing evidence suggests that epigenetic marks regulate cellular 
differentiation and commitment to various cell types including cardiomyocytes, 
smooth muscle, and endothelial cells [ 170 – 172 ]. Consistent with these data, epigen-
etic abnormalities have been correlated to both developmental defects and pathologi-
cal mechanisms in adult onset cardiomyopathies (reviewed in [ 173 ,  174 ]). Proteomic 
analyses of histones in hPSC-derived cells in comparison to tissue specimens will be 
critical to determining how closely epigenetic marks acquired  in vitro  recapitulate 
those acquired during human development. Once elucidated, tracking histone marks 
may serve as a quality control metric to indicate when cultured cells have epigeneti-
cally achieved a differentiated phenotype. Moreover, due to the power of epigenetic 

Table 6.1 (continued)

  Ligand-based receptor 
capture  

 Tri-functional molecule bound to ligand interacts with oxidized 
oligosaccharide on extracellular domain of cell surface receptor, 
streptavidin enrichment [ 158 ,  159 ] 

  Advantages   Possible to identify direct interactors and near neighbors; not limited 
by transient interactions or antibody affi nity 

  Limitations   Limited to N-glycosylated receptors 

  Included are major features of the approach, selected references, notable advantages and limita-
tions  
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modifi cation to change cell function, studies of pharmacologic mediators of histone 
modifi cations are underway for cancer. For cardiac disease in which benefi cial effects 
of therapy are more challenging to quickly assess, proteomic analyses of histones in 
hPSC-derived progeny could be used as a platform to evaluate effi cacy and safety of 
histone deacetylase inhibitors currently under consideration for treatment of cardio-
vascular diseases ranging from CAD to HF [ 173 ]. Finally, as epigenetic regulation has 
been linked to arterial calcifi cation [ 175 ,  176 ], histone analyses using hPSC-VSMC to 
elucidate these mechanisms could provide novel targets for management of CAD.  

    Approaches 

 Mass spectrometry is a powerful tool in epigenetic studies as it is possible to iden-
tify and quantify multiple modifi cation types and locations within a single experi-
ment and several approaches have been well-described. First, bottom-up 
discovery-based approaches are suited to the identifi cation of previously unknown 
modifi cations as well as quantitative comparisons among samples [ 150 ,  177 ,  178 ]. 
Second, if the site and type of modifi cation is known or predicted, targeted mass 
spectrometry approaches ( e.g.  multiple reaction monitoring, parallel reaction moni-
toring, see Chaps.   9     and   13    ), can be used to specifi cally monitor modifi cations at 
specifi c sites in a quantitative manner [ 179 ]. Importantly, these assays can be highly 
multiplexed to monitor multiple modifi cations across numerous sites on multiple 
proteins within a single experiment. Third, application of modern top-down pro-
teomic strategies, discussed in Chap.   8     and briefl y below, allow for the stoichiom-
etry of modifi cations within a histone protein to be measured, relationships that are 
largely lost when performing proteolytic digestion as in bottom up approaches 
(Fig.  6.3 ). Importantly, because the masses of several common modifi cations are 
similar ( e.g.  tri-methylation (42.046950) and acetylation (42.010565) are within 
0.036385 Da), high resolution and mass accuracy of modern instrumentation are 
invaluable for the analysis of histone modifi cations.   

    Top Down Proteomics 

    Relevance 

 Post-translational modifi cations, splice isoforms, and products of proteolytic cleav-
age play key roles in a variety of cellular regulatory mechanisms and are increasingly 
recognized as important determinants and indicators of cardiovascular pathologies 
[ 180 ,  181 ]. For a single gene, numerous molecular forms ( i.e.  proteoforms) of the 
protein are possible, arising from any number of combinations of allelic variants, 
alternative RNA splicing,  in vivo  proteolysis, and post-translational modifi cations 
[ 182 ]. A key approach to analyzing proteoforms in biology and disease context is 
termed “top down” proteomics, where intact proteins are fragmented during mass 
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spectrometry analysis to obtain amino acid sequence information [ 183 ,  184 ]. The 
major distinction between this approach and more traditional “bottom up” approaches 
is that the protein does not undergo chemical or proteolytic digestion prior to mass 
spectrometry analysis, but rather the intact protein is measured (Fig.  6.3 ). This 
 preserves the stoichiometry among post-translational modifi cations, proteolytic 
cleavage products, and products of splicing events, among others. Top down 
 proteomics has already made an impact on cardiac biology including the study of 
troponin I [ 185 ] and tropomyosin [ 186 ] in diseased tissue and blood, and 
 apolipoprotein proteoforms in lipoprotein particles [ 187 ]. Recently, this strategy 
revealed previously uncharacterized chamber-specifi c post-translational modifi ca-
tions of cardiomyocyte myofi lament proteins under basal conditions [ 188 ]. Of rele-
vance to stem cell applications described above, top down analyses could assist in the 
study of post-translational changes in sarcomere complexes and myosin isotype 
switching in cardiomyopathy patient-specifi c hiPSC-CM, mapping epigenetic 
changes associated with cardiomyocyte cell cycle regulation, and defi ning secreted 
factors that play a role in paracrine effects associated with stem cell based therapies.  

    Approaches 

 Top down proteomic analyses are becoming more routine in modern mass spectrom-
etry laboratories due to the increasing availability of suitable instrumentation, data 
analysis platforms [ 189 – 193 ], and requisite sample preparation strategies [ 193 ,  194 ]. 
While the specifi c capabilities of available instrumentation and sample and chromato-
graphic quality will ultimately determine the types of analyses possible for a particu-
lar study, in general, proteins up to ~50 kDa can be analyzed on commonly available 
instruments ( e.g.  those with Orbitrap and TOF analyzers) [ 195 ,  196 ], and larger 
(>100 kDa) proteins are possible with more advanced instrumentation and native 
mass spectrometry [ 193 ,  197 ]. For more details, readers are directed to Chap.   8     dedi-
cated to this topic.

         The Future of Stem Cell Proteomics for Cardiovascular 
Biology and Disease 

 Overall, the integration of novel stem cell and proteomic technologies are poised to 
have a tremendous impact on cardiovascular science. While current evidence sug-
gests a promising outlook, signifi cant technical hurdles remain to be overcome. As 

 Proteoform 
 A “specifi c molecular form of a protein product arising from a specifi c 

gene.” Proteoforms arise from combinations of allelic variants, alternative 
RNA splicing,  in vivo  proteolysis, and post-translational modifi cations [ 182 ]. 
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experience has taught us to be mindful of the fundamental details within each disci-
pline, from how pluripotent stem cell culture density affects their susceptibility to 
metabolic inhibition [ 126 ] to how the source of trypsin in a proteomics experiment 
can affect the proteotypic profi le [ 198 ], we are reminded of the adage “ the devil is 
in the detail ”. For these reasons, synergistic efforts among scientists with expertise 
in stem cell biology, protein chemistry, mass spectrometry, bioinformatics, physiol-
ogy, and bioengineering that align with their clinical counterparts are imperative to 
develop truly innovative strategies that transcend convention and have the potential 
to fulfi ll the promise of stem cell-based approaches for expanding our understand-
ing of cardiac biology and developing advanced therapies in cardiovascular 
medicine.     
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    Chapter 7   
 Bottom-Up Proteomics                     

     Dario     Di     Silvestre      ,     Francesca     Brambilla     ,     Giulio     Agnetti     , and     Pierluigi     Mauri    

    Abstract     In this chapter we provide an overview of bottom-up proteomic 
approaches. These allow the identifi cation and characterization of proteins and 
their amino acid sequences, including post-translational modifi cations, by proteo-
lytic digestion prior to mass spectrometry (MS) analysis. Intact proteins can be 
separated by gel electrophoresis followed by in-gel protein digestion to generate 
peptides which are then analyzed by MS. Alternatively, complex protein mixtures 
can be digested directly (an approach referred to as “shotgun”) and the resulting 
peptides can be separated by liquid chromatography prior to MS. Following MS 
analysis, the comparison of the peptides’ spectra with those predicted from 
genomics/proteomics sequence databases, or annotated peptide spectral libraries, 
allows the identifi cation of peptides which are fi nally assigned to corresponding 
proteins. After a description of the separation methods and MS acquisition modes, 
a relevant part of the chapter will be dedicated to data processing pointing to algo-
rithms, computational tools and strategies useful for researchers in the discovery 
process. In particular, liquid-chromatography (LC) based approaches, including 
Multidimensinal Protein Identifi cation Technology (MudPIT), will be taken as ref-
erence and different aspects, ranging from database search engines to protein-pro-
tein interaction (PPI) network analysis, will be addressed. Potential issues will be 
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discussed in the context of cardiovascular research, and specifi cally the last section 
will focus on the translational applications (clinical proteomics) of cardiovascular 
proteomics.  

  Keywords     Liquid chromatography   •   Mass spectrometry   •   Heart   •   Proteomics  
•   MudPIT  

      Introduction 

 Historically, proteomics started with two-dimensional gel electrophoresis (2DE) 
although, in the last two decades a wide range of technologies has been developed; 
separation approaches, such as electrophoresis and chromatography, have been 
paired with identifi cation systems, such as mass spectrometry (MS). In recent years 
MS has evolved rapidly, increasing its impact on proteomic investigations and gen-
erating numerous approaches along with the need to revise and update current clas-
sifi cations. These methods are broadly divided into top-down and bottom-up 
depending on whether whole proteins or the peptides originated from their digestion 
are analyzed in a MS (respectively) [ 1 – 2 ]. The distinction between top-down  vs . 
bottom-up is commonly based on the separation of intact proteins  vs . digested pro-
teins, respectively. However, we think that “top-down” should only be used to defi ne 
those methods where intact proteins are carried through the identifi cation step. 
Another classifi cation is based on the protein separation methods: gel-based  vs . gel-
free. The fi rst uses electrophoresis (mono- or two-dimensional) to separate intact 
proteins; gel-free methods, such as liquid chromatography LC and capillary electro-
phoresis (CE), separate the peptides obtained by enzymatic digestion of proteins. 
More recently LC-MS has been increasingly applied also to intact proteins (top-
down). Classical 2DE separation of proteins, followed by MS analysis of peptides 
obtained from in-gel digestion of single spots is considered a bottom-up approach. 
However, as the information related to the intact protein size is retained, 2DE may 
be right on the blurred line between top-down and bottom-up [ 3 ]. Table  7.1  sum-
marizes the available proteomic technologies and their classifi cation according the 
different criteria described above.

   As mentioned, this chapter provides an overview of bottom-up methods (sec-
tion “ Separation Methods ”) according to the defi nition based on identifi cation, 
while top-down approaches are addressed in detail in Chapter   8    . In section 
“ Acquisition Modes ” we address in detail the workfl ow of the typical MS-based, 
gel-free and bottom-up approaches, commonly referred to as “shotgun”. These 
methods are based on the enzymatic digestion of protein mixtures, followed by 
peptide separation by means of LC (mono- or two- dimensional, LC and LC/LC, 
or 2 DLC, respectively), and coupled to tandem mass spectrometry (MS/MS). 
This approach is broadly  applicable and is also referred to as MudPIT 
(Multidimensional Protein Identifi cation Technology) [ 4 ] or mono long reverse-
phase gradient [ 5 ].  
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     Separation Methods 

 Traditionally, the biological role of proteins has been addressed by studying 
“one protein at a time”. In contrast to this traditional approach, high-throughput 
methods have been developed in the last decades to study large numbers of mol-
ecules, including nucleic acids, proteins, metabolites and others, at once. These 
global “approaches” are usually named by a “-omics” suffi x (e.g., transcrip-
tomics, proteomics, metabolomics, etc). In proteomics, the complete detection 
and reproducible measurement of proteins content in complex samples, such as 
biological fl uids or tissue biopsies, is a necessary goal to address the mecha-
nisms underlying disease, its diagnosis and cure (i.e biomarker discovery and 
elucidation of pathogenic mechanisms). For instance, several strategies have 
been implemented to detect low abundant proteins or those characterized by a 
very wide dynamic range in terms of copy number or concentration. Because 
proteins of biological relevance are often present in very low amount, protein 
fractionation [ 6 – 8 ] for the reduction of sample complexity prior to identifi ca-
tion, represent an important requirement for proteomics analysis. Beside  tailored, 
biochemical fractionation (addressed in Chap.   4    ), the separation of proteins or 
peptides can be achieved by gel-electrophoresis (gel-based) and/or liquid chro-
matography (gel-free). 

    Gel-Based Separation 

 Several different electrophoretic approaches can be used alone (mono-dimen-
sional separation, 1D) or in combination (two-dimensional separation, 2D) to 
separate of proteins. As mentioned above, higher dimensionality translates to 
higher fractionation, resulting in higher selectivity and sensitivity. As sodium 
dodecyl sulphate is arguably one of the best detergents to maintain proteins in 
solution, which is necessary for them to be separated, one of the oldest 

   Table 7.1    Technologies for proteomics and their classifi cation   

 Proteomics steps  Classifi cation 

 Protein treatment  Separation  Identifi cation 
 Gel-
based  MS-based 

 Top-
down 

 Intact  Gel  Position on the map  +  −  + 
 Antibodies  +  −  + 

 In-gel digestion  MS  +/−  +/−  +/− 
 Intact  Protein array  Antibodies  −  −  + 

 Chromatography  MS  −  +  + 
 Digestion before 
separation 

 Chromatography  Mass spectrometry  −  +  − 
 Capillary 
electrophoresis 

 −  +  − 
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electrophoretic method exploits this feature to separate proteins using polyac-
rilamide gel electrophoresis (SDS- PAGE). In SDS-PAGE, proteins are resolved 
based on their size (molecular weight/charge), using the acrylamide matrix as a 
molecular sieve. Albeit this is a robust technique, its resolving power is limited. 
For this reason, in order to separate complex samples, two dimensional electro-
phoresis (2DE) was implemented [ 9 ]. In 2DE, proteins are classically separated 
in the fi rst dimension based on their isoelectric point (pI), commonly by embed-
ding ampholytes in the acrylamide matrix, in order to create a stable pH gradi-
ent. Proteins bear a charge until they reach their pI, by defi nition the pH to 
which a proteins net charge equals zero. The way that is commonly used to 
create a pH gradient is IPG (immobilized pH gradient) [ 10 ]. In the second 
dimension, proteins are separated based on SDS-PAGE [ 11 ]. The combination 
of two separation methods applied orthogonally generates a 2D map [ 12 ]. After 
separation, protein spots can be visualized by several methods such as visible 
(Comassie Blue, Silver Stain, etc.) and fl uorescent staining (there are several 
brand names) [ 13 ]. 

 When protein complexes are the objects of investigation, non-denaturing gel 
electrophoresis (such as blue native) can be employed to separate them. Non-
denaturing gel electrophoresis can be coupled with denaturing SDS-PAGE in “non-
classical” 2DE. This allows to identify the protein components (including 
post-translational modifi cations, PTMs), within a given protein complex [ 14 ]. 

 Gel spots may be identified by means of MS or more classically by immu-
nodetection (such as in Western blot). Indeed antibody-based detection is very 
sensitive [ 15 ]; however, due to the limited knowledge of many PTMs it is very 
difficult to predict their impact on antibodies’s affinity. For these reasons, over 
the years MS became the standard technique for protein identification [ 16 ]. MS 
allows the unbiased identification of proteins from gel bands (1DE) or spots 
(2DE) by digestion, typically with trypsin. The peptides resulting from diges-
tion are free to move out of the gel and into a liquid phase; sodium dodecyl 
sulphate may be a problematic contaminant for MS, however it can be removed 
effectively using organic/acid washes (standard protocols for in-gel digestion 
are well established) [ 17 ]. Classically Matrix Assisted Laser Ionization-Time 
of Flight (MALDI-TOF) MS was initially utilized to quickly identify the 
molecular weight of peptides originated by in-gel digestion of a band or spot 
(see Chap.   2    ). 

 As MS technologies progressed, other types of MS, such as ion trap or 
Q-TOF could be also employed and enable sequencing by means of tandem 
mass spectrometry (MS/MS). In MALDI, extracted peptides are co-crystallized 
with an organic matrix on a metal target. A pulsed laser is used to excite the 
matrix, which causes a rapid thermal heating of the molecules and eventually 
desorption of ions into the gas phase. Singly charged ions of peptides are then 
detected by time-of-flight (TOF) mass analyzer and the corresponding protein 
is identified by “peptide mass fingerprint” on the basis of the  m/z  values of its 
tryptic peptides [ 18 ,  19 ]. The incomplete recovery of the peptides from gel 
represents the main drawback of this procedure: to enhance peptide recovery 
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the incubation of the gel pieces with different concentrations of acetonitrile 
can improve yield. 

 The main advantage and strength of gel based approaches is their widespread use 
(1DE), and, when it comes to 2DE, the type of information on intact mass and the 
direct visual confi rmation of changes in protein/post-translational modifi cations 
(PTMs) abundance. On the other hand, the main limitations with 2DE are that they 
are largely dependent on the skills of the operator, that can deeply impact reproduc-
ibility, as well as being labor intensive. Also, it is diffi cult to separate hydrophobic 
proteins (such as membrane proteins), or those with extreme pI, acidic or basic, and 
high molecular weight; fi nally, narrow dynamic range and low-throughput are other 
disadvantages.  

    Gel-Free Separation 

 In recent years, a number of gel-free proteomics methods to separate proteins/pep-
tides mixtures have been developed to overcome the diffi culties related to gel-based 
approaches. In this context, methods based on protein arrays or chromatography are 
now available. Traditionally, an array coupled with mass spectrometry is SELDI 
(surface enhanced laser desorption ionization), an integrated high-throughput pro-
teomics technique fi rstly introduced in 1993 [ 20 ], which may be considered as a 
variation of MALDI [ 21 ,  22 ]; another gel-free separation approach are protein 
arrays that represents a promising high-throughput approach for a wide variety of 
applications including the study of the biochemical activities of proteins (identifi ca-
tion of protein-protein interactions, protein-ligand interactions, protein-DNA inter-
actions), diagnosis and monitoring of disease states [ 23 – 25 ]. When these data are 
relevant for the investigations, top-down approaches or hybrids may be required 
depending upon the goal of the study and the biological question to be addressed. 

 Liquid chromatography (LC) and capillary electrophoresis (CE) are the two 
most widely used techniques for the liquid separation of proteins and peptides [ 26 ]; 
in particular, in bottom-up proteomics, both technologies are coupled on-line with 
MS/MS to fully characterize peptide mixtures obtained by digestion of proteins. 
Capillary electrophoresis can be based on a number of principles, such as capillary 
gel electrophoresis (CGE), capillary isoelectric focusing (CIEF), capillary isotacho-
phoresis (CIT) and micellar electrokinetic chromatography (MEKC); CE uses very 
small glass capillaries (50–100 μm internal diameter long 25–75 cm) where high 
voltages (10–25 kV) are applied to allow separation of analytes according to their 
ionic mobility [ 27 ]. The rate at which the particles moves is directly proportional to 
the applied electric fi eld: the greater the fi eld strength, the faster the mobility. In CE 
a fast (10–20 min) and effi cient (theoretical plates,  N  > 10 6  plates) separation is 
obtained using a different mechanism from reverse phase [ 28 ,  29 ]; it is highly sensi-
tive due to low dilution and high concentration of analytes. Usually, visible/UV 
detector is used for monitoring separation; moreover, a laser induced fl uorescence 
(LIF) detector enable unparalleled sensitivity. Recently, CE separation system was 
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combined to MS analyzer using a sheath buffer for reducing the ion concentration 
of CE buffer (at millimolar level), but this introduces a signifi cant dilution of the 
analytes (peptides) [ 30 ]. 

    Liquid Chromatography 

 Liquid chromatography (LC) is recognized as an indispensable tool in proteomics 
research since it provides high-speed, high-resolution and high-sensitivity separa-
tion of macromolecules, such as proteins and peptides [ 31 ]. An attractive feature of 
LC is the broad selection of stationary and mobile phases, that makes LC extremely 
versatile to resolve analytes on the basis of different mechanisms of interaction 
between soluble and stationary phases. Each component in the sample interacts dif-
ferently with the stationary phase, causing different retention for different analytes, 
leading to their separation and consequently different elution times (the time the 
analyte spends “dwelling” in the column). The progressive reduction of both the 
column internal diameter (ID) and solvent fl ow rate, from micro-LC to nano-LC, 
radically reduce sample volume and solvent consumption, while it increases effi -
ciency, resolution and sensitivity. 

 Reverse-phase (RP), ion-exchange (IEC), affi nity and size-exclusion liquid chro-
matography (SEC) are the most used separation methods to separate peptides and 
proteins [ 32 ]. In particular, reverse-phase high-performance liquid chromatography 
(RP-HPLC) is the most common gel-free separation method in shotgun proteomics, 
mainly due to its compatibility with mass spectrometry (MS). Reversed-phase chro-
matography uses a hydrophobic stationary phase, constituted by alkyl chains cova-
lently bonded to the solid support, and a polar (aqueous) mobile phase. Hydrophobic 
molecules in the polar mobile phase adsorb to the hydrophobic stationary phase, 
and hydrophilic molecules in the mobile phase will pass through the column and are 
eluted fi rst. Hydrophobic molecules can be eluted from the column by decreasing 
the polarity of the mobile phase using an organic (non-polar) solvent, commonly 
acetonitrile, which reduces hydrophobic interactions. The more hydrophobic the 
molecule, the stronger it will bind to the stationary phase, and the higher the con-
centration of organic solvent that will be required to elute the molecule. Peptide/
protein elution by organic solvent in RP allows a simple coupling to mass spectrom-
etry by means of Electrospray Ionization source. 

 Electrospray Ionization (ESI) is a soft ionization technique capable of imparting 
a charge to peptides with low internal energy and thus in-source fragmentation [ 33 ] 
(also see Chapter   1     for an historical perspective). Electrospray ionization source 
works by generating a fi ne mist of charged analyte droplets at the inlet of the MS at 
atmospheric pressure. Also, ESI sources, assisted by a stream of  external gas (usu-
ally nitrogen), determine the transition of peptides from liquid to gas phase. As the 
liquid evaporates and charge density increases on the surface of the droplets, elec-
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trostatic interactions cause the droplet to “burst” generating multiply charged pep-
tide ions in gas phase (for more details see Chap.   2    ). Then, the mass spectrometer 
measures the mass-to-charge ratio ( m/z ) of analytes (precursor ion), fragments pre-
cursor ions into product ions acquiring MS/MS spectra, and fi nally the detector 
records the number of ions (precursors and fragments) at each  m/z  value. 

 Nano-ESI represents an improvement of ESI for spraying low chromatographic 
fl ow (rate at nanoliter/minute) due to the reduction of the inner diameter (lower than 
0.1 mm) of the RP column. In this case droplet formation occurs more readily and 
it is possible to reduce the electrical fi eld and to improve the spray stability. As 
mentioned above, the nanofl ow rate determines reduction of analytes dilution and 
increases sensitivity. 

 As a recurring theme in proteomics, the combination of two separating proce-
dures increases resolution and decreases sample complexity, resulting in higher sen-
sitivities and higher numbers of identifi ed proteins. In liquid chromatography, this 
is obtained by Multidimensional Protein Identifi cation Technology (MudPIT) 
described in the next section. 

 A wide variety of samples, ranging from tissue or cells protein extracts and bio-
logical fl uids, can be analyzed by LC-MS to detect protein changes related to car-
diovascular diseases [ 34 – 38 ]. As mentioned, the standard preparation for LC-MS in 
shotgun proteomics requires the enzymatic digestion, usually by trypsin, of the ini-
tial protein mixture. It is important that the extracted proteins stay in solution so that 
can be digested effi ciently by trypsin. However, as many detergents can deeply 
affect both LC separation and MS analysis these have to be chosen carefully. The 
most performing belong to a new generation of surfactants: they effi ciently keep 
proteins in solution, and after digestion they are readily decomposed under acidic 
conditions into breakdown products, that do not interfere with LC-MS analysis. 
Among them, RapiGest™ was found to be one of the best detergents to obtain the 
maximum number of protein identifi cations [ 39 ].  

    Multidimensional Chromatography 

 Two-dimensional chromatography (LC/LC), coupled to tandem mass spectrometry 
(MS/MS), also named MudPIT (Multidimensional Protein Identifi cation 
Technology) [ 3 ], was developed to separate and identify a high number of peptides 
resulting from digestion of very complex protein mixtures. This approach combines 
strong cation exchange chromatography (SCX) to reversed-phase chromatography 
(RP). Peptides deriving from the protein sample are loaded on an SCX column and 
separated by increasing salt (NH 4 Cl) concentration steps. Each eluted salt fraction 
is then separated in the second dimension by RP chromatography using a gradient 
of organic solvent (typically acetonitrile at acidic pH). Finally, peptides are directly 
eluted in the MS, ionized by ESI ion source and detected by collection of MS 
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spectra (Fig.  7.1 ). The SCX and RP phases could be packed in a single biphasic 
column or in two separate columns [ 40 ]. When using separate columns, it is possi-
ble to: (1) increase the inner diameter for the fi rst column (the SCX) and therefore 
loading capacity, (2) employ a desalting pre-column before the RP separation col-
umn to decrease the concentration of salt which interferes with MS analysis. 
Multidimensional separation can be performed in a discontinuous fashion by col-
lecting SCX fractions and subsequently subjecting them to RP at a later time; how-
ever this off-line procedure decreases recovery, effi ciency and sensitivity. For these 
reasons, the on-line coupling of SCX to RP, by means of a simple 10 port valve, is 
to be preferred. Of note, using single biphasic column it is mandatory to employ 
ammonium acetate/formiate for eluting peptides from SCX phase, because this buf-
fer is eluted in the MS and it requires to be volatile; on the contrary, by using two 
separated columns it is possible to employ ammonium chloride, that is more selec-
tive during the SCX separation, but it is very aggressive for MS instrument and less 
volatile than ammonium acetate.

   MudPIT analysis requires more time (5–12 h/sample) than mono-dimensional 
chromatography; however, it increases resolution and sensitivity, and it is also 
automatized. On the other hand, recently, some authors use long acetonitrile gradi-
ent (4–8 h) for increasing resolution of monodimensional LC-MS [ 41 ].    

     Acquisition Modes 

 The on-line coupling between LC and MS provides several advantages; however, 
the harmonization of the two instruments is not free from limitations either. It 
takes time for an MS to fragment and analyze peptides (known as duty cycle), 
while peptides are eluted at a constant rate. Due to the stochastic nature of the 
ionization process and the competitive nature of their detection, peptides could go 
undetected due to the duty cycle of the MS; it may cause for peptide to go unde-
tected while the instrument is “busy” fragmenting/analyzing peptides that are in 
the cue, causing “random” coverage of the proteome. This aspect is highly depen-
dent on the reproducibility of LC runs as different experiments can generate dif-
ferent result due to a drift in sampling. The optimization of acquisition modes we 
will discuss in the following paragraph. 

  Fig. 7.1    Multidimensional Protein Identifi cation Technology. Main steps involved in the MudPIT 
approach.  SCX  strong cation exchange chromatography,  RP  reverse phase chromatography       
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    Data Dependent Analysis 

 Traditionally, bottom-up proteomics are based on a strategy known as Data Dependent 
Acquisition (DDA) (Fig.  7.2 ). According to this approach, the selection of peptides 
to be fragmented is controlled by data themselves during the analysis, and automati-
cally the most abundant ions are selected for fragmentation [ 42 ]. In other words, the 
instrument selects the most abundant precursor ions from the fi rst MS scan acquiring 
their tandem mass spectra in the following scans. The constant technological 
advances in MS have generated quicker instruments, with a shorter duty cycle. 
Therefore, the increased speed of MS analysis translates to a higher number of ions 
that are isolated and fragmented (e.g. from 3 to 20 parent ions) for each full and MS/
MS cycle. The defi nition “data dependent acquisition” refl ects the dependence of 
MS/MS spectra acquisition on the intensity of the ions detected in the full scan. This 
means that in DDA approach high-abundant precursor ions are preferentially frag-
mented, while low abundant could be never sampled; however, by performing techni-
cal replicate analyses this phenomenon may decrease. Moreover, to limit the redundant 
fragmentation of the same ions, these can be excluded (dynamic exclusion) so that 
ions selected for fragmentation are temporarily excluded in the following scans, 
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  Fig. 7.2    Mass spectrometry acquisition methods. By DDA, ions are selected and fragmented 
by applying signal intensity and charge state fi lters. Data acquisition is performed in iterative 
cycles and fragment ion scans. By DIA, such as SWATH MS, a group of precursor ions is 
simultaneously selected and fragmented. Precursor ions are sequentially isolated in smaller 
mass windows (typically 25 m/z), and the composite fragment ion spectra are recorded and 
then deconvoluted. By SRM/MRM, precursor ions of a predetermined set of peptides are 
selected, fragmented and the signal intensities recorded over time.  DDA  data dependent acqui-
sition,  DIA  data independent acquisition,  SRM  selected reaction monitoring,  IT  ion trap,  Q  
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over a determined time. This approach improves the number of distinct MS/MS spectra 
and, consequently, the number of identifi ed peptides and proteome coverage [ 43 ]. Even 
though this approach has notably improved DDA methodology, low intensity ions, co-
eluting with high-intensity peptides, are usually excluded from the selection and they 
will not be identifi ed. This is one of the main limitations of DDA, especially in discov-
ery proteomics, which is the initial step in the characterization of unknown samples.

       Data Independent Analysis (DIA) and SWHAT Analysis 

 Alternative methods of acquisition able to generate product ion data (MS/MS 
 spectra) for all co-eluting precursors, regardless of their abundance, have been 
recently developed. For this purpose, data independent analysis (DIA) has emerged 
to address some of the limitations with data-dependent analysis (DDA) and selected 
or multiple reaction monitoring (SRM or MRM, respectively) (Fig.  7.2 ). This last 
approach (SRM and MRM are used interchangeably) is an example of targeted 
proteomics, where the  a priori  knowledge of a peptide mass allows to focus on that 
mass alone, greatly increasing sensitivity and enabling relative and absolute quanti-
tation (for more details see Chapter   9    ). Specifi cally, shotgun proteomics have lim-
ited capabilities on very complex samples mainly due to under- sampling [ 44 ]. In 
contrast, targeted proteomics are limited by the number of measurements (up to a 
few hundreds transitions) per LC-MS/MS run, which is hardly suffi cient to provide 
extensive coverage of the proteome. Data independent acquisition is based on the 
sequential isolation and fragmentation of precursor ions within a defi ned “mass 
window” also named SWATH (sequential window acquisition of all theoretical 
fragment ion spectra) [ 45 ]. In this mode, MS system systematically scans samples 
by acquiring fragmentation spectra of all precursor ions within sequential isolation 
windows, cyclically repeating one full spectrum and selected MS/MS windows over 
a desired  m/z  range. Various implementations of DIA method have been described 
using isolation windows of various widths, ranging from the complete  m/z  range to 
few Daltons (Da), in relation to the acquisition of MS experiments. The setup of the 
MS instrumentation plays an important role as the MS required for DIA are fast; the 
main methods described in the literature consist of 32 windows (called swaths, also) 
of 25 Da [ 46 ] or 20 swaths of 10–20 Da [ 47 ,  48 ]. Data acquired by DIA can thus be 
described as iterative MS/MS maps consisting of the fragment ion spectra from all 
the precursors fragmented in each window. DIA data processing is mainly based on 
a targeted data extraction from MS/MS maps. A more recent multiplex strategy, the 
MSX-DIA has been developed for very fast and high-resolution instruments [ 49 ]. It 
is based on the random selection of fi ve separate 4 Da  m/z  large windows per MS/
MS acquisition; then a de-multiplexing process allows isolating tandem spectra 
from the fi ve  m/z  windows to obtain more clean spectra and to improve the number 
of identifi ed peptides. The identifi cation of peptides has been achieved by using two 
strategies. In the fi rst strategy, called SWATH-MS [ 46 ], data analysis consists of 
targeted data extraction procedure to query the acquired fragment ion maps of spe-
cifi c peptides of interest, using  a priori  information contained in spectral libraries 

D. Di Silvestre et al.

http://dx.doi.org/10.1007/978-3-319-31828-8_9


165

acquired by sequential DDA experiments. The extraction of fragment ion traces, 
from data-independently acquired sample sets (libraries), are used for the quantifi -
cation of formerly identifi ed peptides. The appeal of the approach is that any peptide 
precursor and product ion data within the limit of detection of the instrument can be 
 a posteriori  extracted from acquired data. The second strategy is based on the 
reconstruction of “deduced MS/MS spectra” by the alignment of the retention time 
of product ions, using their extracted ion chromatograms (EIC); co-eluting product 
ions are correlated to one precursor ion. Database searching, as in DDA method, 
completes the procedure [ 47 ,  49 ] together with MSX- DIA and skyline software for 
data processing. 

 DIA combines the robustness of shotgun proteomics with the quantitative power 
of SRM and potentially increases coverage with newer instrumentation. 
Theoretically, this may allow to monitor all peptides present in a complex biological 
sample.   

    Data Handling: From Raw Data to Network Analysis 

 Mass spectrometry-based proteomics, like MudPIT, allow the high- throughput 
analysis of complex samples generating big amount of data per experiments, includ-
ing thousands of spectra, peptides and proteins. These experiments provide a good 
snapshot of the proteome, and the breadth of information obtained poses challenges 
in terms of computational power and interpretation of biologically and clinically 
meaningful information (Fig.  7.3 ). For example, the processing of raw spectra 
involves computational procedures, database searching, protein identifi cation and 
their quantitation, as well as models of sample classifi cation. In addition, peptides 
and proteins (post-search analysis) are useful for the characterization of proteotypic 
peptides, while the integration of protein profi les with protein- protein interaction 
(PPI) databases is used for reconstructing PPI networks and to evaluate the results 
at the biological and topological levels.

      Database Searching Methods 

 A hallmark of bottom-up proteomics is the identifi cation of proteins by database 
searching methods that are continuously implemented by several algorithms and 
specifi c software products [ 50 ]. The experimental masses of the parent peptides and 
their fragments (MS/MS) are compared with those generated  in-silico,  based on the 
available genomic/proteomic sequences or annotated in spectral libraries; in this 
way, peptide sequences are characterized and assembled back into the correspond-
ing proteins (Fig.  7.4 ). Alternatively, the identifi cation of peptides may be carried 
out without the use of a database through “de novo sequencing” [ 51 ]. However, 
these two methods may be used in combination to improve the confi dence in both 
database searches and  de novo  identifi cation [ 52 ].
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  Fig. 7.3    Steps of the discovery process using shotgun proteomic data       

  Fig. 7.4    Database search engines method workfl ow       

 

 

D. Di Silvestre et al.



167

   Among the algorithms for database searching, MASCOT [ 53 ] represents one of 
the most used tools for mass spectra interpretation, while SEQUEST [ 54 ] is one of 
the oldest and best-recognized algorithms: the former became very popular due to its 
free availability on Matrix Science website for the identifi cation of gel- electrophoresis 
spots; the second was originally developed in 1993 in the Yates lab at the University 
of Washington (SEQUEST® is a registered trademark of the University of 
Washington) and licensed to Thermo Scientifi c, that inserted the algorithm in its 
platforms, such as Bioworks. A new version, SEQUEST HT, is now available with 
Proteome Discoverer 2.0 [ 55 ]. Other tools provided by MS instrument manufacturers 
are available and among the most popular belong Protein Pilot from AB Sciex [ 56 ] 
and Spectrum Mill by Agilent [ 57 ]. In addition, a wide range of both proprietary and 
open-source tools have been developed in the last decade. Examples of open source 
tools are X!Tandem [ 58 ], Myrimatch [ 59 ], OMSSA [ 60 ], MS-GFDB [ 61 ], pFind 
[ 62 ] or Protein Prospector [ 63 ]; while among commercial software Peaks DB [ 64 ] 
represents a valid alternative, in particular for the identifi cation of PTMs and for 
 de novo  sequencing. For more details about search engine tools we re-direct the 
interested reader to Chaps.   11     and   12     of this book. 

 The development of several tools to perform database searching was also fuelled 
by the availability of standard MS fi le types. In fact, MS manufacturers initially 
produced raw mass spectra in proprietary fi le formats, making data exchange diffi -
cult. However, over the years, standard formats like mzData, mzXML or mzML 
have been developed [ 65 ], improving exchangeability and promoting the develop-
ment of open-source platforms. The introduction of these fi le formats also enabled 
proteomic scientists to process raw spectra using different search engines and there-
fore improving the confi dence in the identifi cation of peptide spectrum matches 
(PSMs) and overall proteome coverage. As a consequence, many computational 
platforms, including Discoverer 2.0 or Peaks DB, now allow the export the raw 
spectra in these formats and their simultaneous processing with different algo-
rithms. Most of them validate the vast lists of identifi cations by using a Target- 
Decoy Approach (TDA) to impose an empirical False Discovery Rate (FDR) at a 
pre-determined threshold [ 66 ], usually 1–3 %, while different platforms use differ-
ent scoring systems to rank PSMs.  

    Differential Analysis 

 An important goal in basic research and clinical applications is the characterization 
of differentially expressed proteins [ 67 ]; the comparison of samples from healthy 
controls and patients allows to highlight changes in protein levels, useful to deci-
pher disease mechanisms and generate new hypotheses, while new potential protein 
biomarkers could be discovered and validated for early diagnosis and to monitor the 
response to a certain treatment. 

 In 2DE the differential analysis is performed by comparison of the spot abundance 
across groups of gels using tools dedicated to gel image analysis. An improvement of 
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2DE is represented by difference gel electrophoresis (DIGE) [ 68 ], where the use of 
labels carrying different fl uorophores (Cy2, Cy3 and Cy5) for the different samples 
(e.g. control and treated or diseased) can be mixed and separated together within the 
same gel. A laser scanner is then used to record the different signals belonging to dif-
ferent samples and the gel can be post-stained with visible staining or robotic spot 
pickers can be used to carve out protein spots. Protein changes can be quickly visual-
ized and related to the specifi c sample or condition by its color component (Cy3, green, 
or Cy5, red) that will be over represented. Under these conditions, a given protein spot 
will appear red or green depending on sample to dye assignment. DIGE experimental 
variability. 

 As for gel-free approaches, a number of strategies has been developed to allow 
simultaneous protein identifi cation and quantifi cation. These include stable iso-
tope-labelling and label-free approaches [ 69 ,  70 ]. Labelling approaches are based 
on the introduction of isotopic or isobaric tags into peptides to create a specifi c 
mass signature and measure the ratio of the signal intensities between the differ-
ently labelled peptides (Fig.  7.5a ). Two main sub-categories distinguish labelling 
methodologies depending on whether a isotopic or isobaric tag is used to deriva-
tize the proteins before digestion, such as ICAT [ 71 ], iTRAQ [ 72 ] or TMT [ 73 ], 
or whether isotopes are introduced directly in the protein sequence either during 
their synthesis, such as SILAC [ 74 ], or during digestion, such as the enzymatic 
incorporation of  18 O [ 75 ]. All of these are described in greater detail in Chapter 
  11    . The use of both labelling approaches provides highly accurate and reproduc-
ible results along with the possibility of multiplexing, but its cost could represent 
a limitation [ 76 ].

   Label-free approaches represent a simpler and low-cost alternative; a fi rst group 
of them is based on the evaluation of the chromatographic peak area of the identifi ed 
peptides, while other procedures exploit the direct relationship between protein 
abundance and sampling parameters, such as the spectral count (SpC) [ 77 ] 
(Fig.  7.5b ). Although these approaches are considered less accurate due to technical 
variability, several studies have demonstrated their effectiveness in identifying dif-
ferentially expressed proteins [ 45 ,  78 ,  79 ]. A variety of statistical approaches to use 
SpC values for quantitation across different samples have been published. They 
mainly rely on the relationship between the amount of a certain protein and the 
number of times that its peptides are observed [ 80 – 83 ]. Several groups implemented 
statistical methods to infer protein quantity based on the empirical observation that 
more peptides correspond to more protein. Zhang and colleagues compared SpC 
values by means of the statistical G-test [ 84 ]. Washburn and co-authors generated a 
normalized spectral abundance factor (NSAF) [ 85 ], while the protein abundance 
index (PAI or emPAI) [ 86 ], calculated by dividing (for each protein) the number of 
observed peptides for each protein, by the number of all possible detectable tryptic 
peptides, has been proposed. Finally SEQUEST Score and SpC values are pro-
cessed by DAve and DCI algorithms [ 32 ,  37 ,  87 ]. 

 In parallel to the development of biostatistical tools and indices to compare pro-
tein levels from shotgun experiments, the need to automate the identifi cation step 
has driven the development of even more tools. Various software that were initially 
designed for the interpretation of mass spectra have now evolved in complete 
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  Fig. 7.5    Label and label-free quantitative analysis. ( a ) Differently labelled peptides are identifi ed 
and their intensity ratio is calculated by extracted ion chromatogram ( XIC ) of light and heavy 
isotope labelled peptides. ( b ) Relation between spectral count and peak area ratio       
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 platforms, that allow the quantitative and functional evaluation of the identifi ed pro-
teins. As a consequence, the list of products dedicated to label-free quantitative 
analysis is very long. Among the commercial software, Nonlinear Dynamics 
Progenesis LC-MS [ 88 ], Elucidator [ 89 ] and Scaffold [ 90 ] allow a protein quantifi -
cation by both peak intensities and SpC evaluation; while SIEVE [ 55 ], ProteinLynx 
[ 91 ] or Peaks DB [ 52 ] rely mainly on the former. On the other hand, a considerable 
number of software are open-source, which include MsInspect [ 92 ], OpenMs [ 93 ], 
MSQuant [ 94 ], MaxQuant [ 95 ], ProteinQuant Suite [ 96 ],  MAProM a [ 97 ], Census 
[ 98 ], PatternLab [ 99 ] and many others. Among them,  MAProM a, Census and 
PatternLab are of interest for shotgun proteomics experiments.  MAProM a compares 
SEQUEST Score or SpC values in pairwise fashion to up to 125 protein lists. Census 
performs protein quantitation by both peak area and SpC, accepts high-resolution 
MS data and it is designed to analyse both label and label-free data; while PatternLab 
allows different data normalization strategies, including Total Signal, log prepro-
cessing (by ln) or Z normalization, and the identifi cation of protein differences by 
implementing ACFold and nSVM methods. Of note, the systems reported above are 
based on comparison across different samples, representing different conditions, 
and therefore are referred to relative quantitation.  

    Feature Selection and Sample Classifi cation 

 The breadth of information contained in the amount of data generated by bottom-
up proteomics experiments is remarkable; these data are used to develop methods 
for classifying samples according to their phenotype (e.g. treated  vs . untreated, 
healthy  vs . diseased, early  vs . late stage, etc) with the purpose to cure and prevent 
disease, improve diagnosis or monitoring disease progression [ 100 – 103 ]. 
Specifi cally, the procedure for sample classifi cation consists of 4 different steps 
including data pre- processing, feature selection, classifi cation and validation. As 
for MS data, pre- processing is necessary to correct biological and technical vari-
ability; matrix effects, issues with chromatographic alignment or differences in 
signal intensities [ 104 ,  105 ] can be addressed by using dedicated tools, including 
MZmine [ 106 ], MsInspect [ 92 ] or a number of R packages [ 107 ] as stand alone or 
inserted in other software packages, such as Bioconductor [ 108 ]. In a similar way, 
issues that could potentially affect the spectral counting, can be usually corrected 
by data normalization [ 99 ]. 

 Since results derived from MudPIT are multi-dimensional and may be formatted 
in a  m  ×  n  matrix (Fig.  7.6 ), similarly to microarray experiments, many tools, algo-
rithms and strategies for analyzing genomics data are used for proteomics ones as 
well [ 109 ,  110 ]. For example, when dealing with these -omics data, where the 
 number of conditions (n; samples) is far smaller than the number of observations 
(p; thousands genes, proteins, peptides or spectra), a problem called “ curse of 
 dimensionality ” need to be addressed to obtain a lower-dimensional space and 
extracting an informative set of features [ 111 ]. For this purpose, a number of meth-
ods, including support vector machines (SVM), Principal Components Analysis 
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(PCA) artifi cial neural networks (ANN), random forests (RF), Partial Least Squares 
(PLS) and Linear Discriminant Analysis (LDA) have been exploited to process pro-
teomic data [ 112 ]. Finally, in order to test the adequacy/inadequacy of a classifi er, 
its performance is evaluated through a validation set, previously unseen. The most 
common measures to evaluate the performance of a classifi er are based on standard 
indices, such as sensitivity, specifi city, positive predicted values (PPV), negative 
predicted values (NPV) and accuracy values [ 113 ]; alternatively, a receiver operat-
ing characteristic (ROC) can be also applied [ 109 ].

       Proteotypic Peptides 

 Experimental data produced by shotgun proteomics represent a source of infor-
mation for calculating or predicting proteotypic peptides. These are peptides 
that can be observed in MS, in fact not all peptides possess the biophysical 
properties to become ionized, etc. Their characterization is useful for targeted 
proteomics analyses (such as MRM/SRM) as well as for reducing the time 

  Fig. 7.6    Biomarker discovery and samples classifi cation workfl ow using MudPIT data. By pro-
cessing high-dimensional MudPIT data,  linear discriminant analysis  ( LDA ) fi nds a linear combi-
nation of features that best differentiates two or more classes of samples. This method selects 
proteins whose variations are reproducibly repeated in all considered samples. Otherwise, single 
samples or pools may be considered by using other statistical indices, including G-test, NSAF, 
emPAI or DAve and DCI; outlier protein levels might indicate subjective protein levels, and there-
fore personalized mechanisms of disease development and therapeutic response.  LDA  linear dis-
criminant analysis,  DAve  differential average,  DCI  differential confi dence index,  emPAI  
exponentially modifi ed protein abundance index,  NSAF  normalized spectral abundance factor       
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required for the interpretation of MS/MS spectra [ 114 ]; the advantage derives 
from the reduction of the actual database size, which contains a reduced number 
of sequences/spectra. In addition, the simultaneous quantifi cation of multiple 
proteins in a spectrum, such as those generated by data independent analysis 
(DIA), via proteotypic peptides, represents an important fi eld of research that 
needs to be implemented [ 115 ]. 

 Proteotypic peptides were initially defi ned as the most observed peptides by 
established MS-based proteomics approaches [ 116 ], while other authors added 
the condition of uniqueness for a given protein [ 117 ] and a frequency of identifi -
cation of at least of 50 % of all identifi cations of the corresponding parent protein 
[ 118 ]. In other words, a proteotypic peptide should be unambiguously related to 
one specifi c protein, should have been previously identifi ed and its MS/MS frag-
mentation pattern should be known. Based on these defi nitions, proteotyipic pep-
tides could be identifi ed by using experimental data and dedicated software, like 
EPPI [ 119 ]. On the other hand, an increasing number of proteomic studies have 
driven the creation of specialized repositories. The Global Proteome Machine 
Database [ 120 ] is a representative example which allows to compare experimen-
tal data against those previously obtained in other studies. Stored data may be 
queried by different keys with the possibility to restrict search to a specifi c data 
source. Similarly, PeptideAtlas [ 121 ] is a publicly accessible source of peptides 
experimentally identifi ed by tandem mass spectrometry. Users can browse the 
data and select different sources (i.e. different MS platforms) and few of these 
need permission to be accessed. In addition, for each protein, a graphical panel 
indicates unique peptides found and their occurrence, and for each one it is pos-
sible to retrieve information like spectra, modifi cations and genome mapping. 
The PRIDE database [ 122 ] stores experiments, identifi ed proteins and peptides, 
unique peptides and spectra; in addition to protein name and various identifi ers, 
it is possible to browse PRIDE by species, tissues, cell types, gene ontology 
(GO) terms and diseases. In the same way, ProteomeCommons [ 123 ] is a power-
ful open source web application designed for storing and exchanging proteomics 
data. With the same purpose, Proteomexchange [ 124 ] is a web-based environ-
ment that encourages data exchange and dissemination; its consortium has been 
set up to provide a single point of submission for MS data shared with the main 
existing proteomic repositories (at the moment PRIDE, PeptideAtlas and 
Tranche). 

 The increasing amount of data collected by proteomics experiments has also 
allowed the development of tools aiming at predicting and scoring putative proteo-
typic peptides. For example, Peptide Sieve was developed by studying the physico- 
chemical properties of more than 600,000 peptides [ 118 ]. Similarly, the STEPP 
software, based on Support Vector Machine (SVM), uses a descriptor space based 
on 35 amino acids properties [ 125 ]. Neural networks were used by Tang and col-
leagues to develop the Detectability Predictor software that uses 175 amino acid 
properties [ 126 ]; these were used to predict proteotypic peptides generated by 
MudPIT experiments, for a given set of experimental, instrumental and analytical 
conditions [ 127 ].  
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    From Proteomics to Systems Biology 

 The identifi cation of thousands of peptides and proteins provides an high-defi nition 
snapshot of a sample’s proteome and allows to investigate it in a global fashion by 
using accurate models to generate hypotheses for testing [ 128 ]. These approaches, 
called “data-derived”, rely on “-omics” datasets and facilitate the process of  linking 
different data to functional relationships among proteins and other biological mac-
romolecules [ 129 – 132 ]. Recent studies have applied proteomics and other  systems 
biology approaches to the interrogation of mechanisms related to cardiovascular 
diseases [ 133 – 136 ]. The possibility to link protein expression to pathways and pro-
tein-protein interaction networks could highlight functional modules that are differ-
ently regulated under various conditions (Fig.  7.7 ). On the other hand, the topological 
analysis of networks reconstructed from experimental data represent a complemen-
tary approach to identify proteins with relevant biological signifi cance, in the con-
text of a particular disease [ 137 ]. Other interesting applications combined 
experimental proteomic data with weighted gene co-expression network analysis 
[ 138 ,  139 ]. Reconstructed networks provided informative graph properties to deter-
mine modules and molecules that correlate with the investigated biological pheno-
types [ 140 – 142 ]. Network inference procedures and topological analysis are two 
promising approaches to extract new potential biomarkers and a sustainable alterna-
tive to look into the pathogenetic mechanisms that could improve clinical outcomes 
through early diagnosis and risk stratifi cation.

   An excellent collection of resources that can be useful to investigate -omics 
data at the systems biology level is listed on the Pathguide website [ 143 ], which 
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  Fig. 7.7    MudPIT data-derived network analysis. The integration of experimental proteomics data 
and PPI network models is used to identify cluster of functionally related proteins, up- or down-
regulated between different phenotypes. In addition, topological analysis of reconstructed net-
works represents a complementary approach to identify relevant biological nodes       
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contains links and information related to more than fi ve hundreds resources. 
Thanks to methodologies like affi nity purifi cation-MS and two-yeast hybrid 
assays, protein-protein interaction (PPI) datasets are continuously improving and 
reliable data are increasingly available for different organisms, in addition to the 
well-studied  Homo sapiens ,  Mus musculus ,  E. coli ,  Saccharomyces cerevisiae . 
Specialized repositories include String [ 144 ], HPRD [ 145 ], Reactome [ 146 ], 
IntAct [ 147 ] and GeneMania [ 148 ]. A number of computational tools to process 
-omics data, including proteomics ones, are also available. Cytoscape [ 149 ], 
VisANT [ 150 ] and Ingenuity Pathway Analysis [ 151 ] are some of those worth 
mentioning. Cytoscape is probably the most used thanks to a growing community 
of developers which apply the Java technology-based Cytoscape [ 152 ]. Additional 
plugins are freely available to address different questions including network 
import, visualization, topological evaluation or retrieval of GO annotations. For 
example, this last feature is available through plugins like Bingo2.44 [ 153 ], 
Mosaic [ 154 ] or NOA [ 155 ]; others plugins, like MCODE [ 156 ] and ClusterMaker 
[ 157 ], allow to rank nodes by local neighbourhood density and graphically dis-
play the extracted, signifi cant clusters. As for topological analysis, the Cytoscape 
plugin CentiScaPe [ 137 ], computes several centrality parameters (average dis-
tance, diameter, degree, stress, “betweenness”, radiality, closeness, centroid value 
and eccentricity) to identify nodes that display a prominent position in the net-
work architecture.   

    Clinical Proteomics for Cardiovascular Diseases 

 Proteomics started as a set of technologies that, when combined, can provide 
dynamic information about the cellular phenotype as a whole. Its applications to the 
study of the human proteomes, in terms of the sequences that are actually translated 
from the human genome, soon became one of the main focuses. It was calculated 
that the number of human proteins are higher than the estimated 20,000–25,000 
human protein-coding genes [ 158 ], mainly due to alternative splicing and post- 
translational modifi cations (PTMs). The importance of addressing biological mac-
romolecules that relate more closely than genes and transcripts to the phenotype, 
became evident early on to proteomic scientists. Overall, the proteomic community 
could fi rst appreciate the unpredictable complexity and heterogeneity of PTMs and 
therefore the importance of determining the actual level of proteins and their modi-
fi cations, and functional complexes in biological samples. 

 In this context, the detailed characterization of the cardiovascular proteomes 
(such as cardiac and vascular tissues and cells) has greatly improved our knowledge 
of cardiovascular physiology, and has already contributed to the identifi cation of 
key features underlying the onset of many diseases, such as cardiomyopathy. For 
example, Comunian and colleagues [ 34 ] characterized and compared the proteome 
from murine ventricles and atria, and identifi ed and quantifi ed the levels of thou-
sands of proteins, that are differentially expressed among different cardiac cham-
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bers using a label-free MudPIT. Proteins related to atrial natriuretic peptide (ANP) 
were found to be more abundant in the atria than ventricles, whereas titin isoform 
N2B resulted more abundant in the left ventricle and voltage-dependent anion chan-
nel (VDAC) in the right ventricle. 

 Numerous advancements in bottom-up technologies have expanded the objec-
tives of proteomic investigations from mere protein profi ling, to quantitation, iden-
tifi cation of PTMs, characterization of new protein functions and protein-protein 
interactions (Fig.  7.8 ). One of the goals of proteomics is also the identifi cation of 
biomarkers for the early diagnosis and risk stratifi cation in diseased populations, 
along with the improvement of reproducible and quantitative methodologies to trace 
them in clinical specimen with high sensitivity and specifi city. Usually, biomarker 
discovery involved the analysis of biological fl uids that can be collected non-inva-
sively, such as plasma, urine and saliva. Plasma is surely the most popular sample 
for proteomic investigations, including cardiovascular disease (CVD). However, it 
should be underscored that albumin and immunoglobulins represent the vast major-
ity of circulating proteins in terms of abundance. As such, the dynamic range of 
proteins is very wide (the concentrations of plasma proteins span 10 orders of 

  Fig. 7.8    Bottom-up clinical proteomics pipeline. Here are summarized the main steps and infor-
mation obtained by bottom-up proteomics: 1) profi ling and differential analysis for the simultane-
ous identifi cation of biomarkers, useful for diagnosis; 2) cluster analysis to evaluate patients 
stratifi cation and sub-typing diseases; 3) pathway and network analysis to elucidate the molecular 
mechanisms related to disease and/or therapy       
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magnitude), and potential biomarkers could be present in very low amount; these 
are only two of the reasons because the identifi cation of new biomarkers from 
plasma samples can be challenging.

   Over a hundred plasma proteins have already been proposed as candidate bio-
markers for CVD [ 159 ]. Moreover, due to the increased sensitivity and specifi city 
of mass spectrometers, and the creation of new methodologies, the relative and 
absolute quantitation of very low abundant proteins from plasma is now within 
reach using SRM/MRM or SWATH. Sample preparation and experimental design 
are crucial aspects of a proteomic investigation; for example, as many plasma pro-
teins are glycosylated, a remarkable increase in sensitivity can be achieved by sim-
ply enriching for glycoproteins because albumin, the most abundant plasma protein, 
is not glycosylated. 

 Alternative strategies for biomarker discovery involve the analysis of biopsies, or 
 in vitro  studies by means of cellular lines, or primary cultures such as cardiomyo-
cytes. The idea being that biomarkers which are progressively diluted down in the 
bloodstream show higher concentration at the site of production (e.g. cardiac myo-
cytes), and that with  a priori  knowledge of the proteins to be searched, sensitivity 
can be greatly enhanced by using targeted approaches. Tissue biopsies can therefore 
be most informative as the changes in protein levels associated with disease is 
higher; unfortunately, heart biopsies are not always available and this impacts on the 
possibility of designing large-scale studies. As a consequence, researchers often use 
animal models, mainly mouse, though the data obtained in these animal models 
may not always be relevant for humans, due to their heterogeneity and the fact that 
most CVD patients present with comorbidities. 

 As for primary cultures, such as cultured cardiomyocytes and fi broblasts, they 
are necessary to investigate molecular mechanisms and characterizing secreted pro-
teins. The latter could be very important as potential circulating biomarkers detect-
able in plasma or urine. For example, using the MudPIT methodology, Varrone et al. 
performed a proteomic analysis of the secretome from cultured cardiomyocytes 
overexpressing miR-1 [ 36 ]; in this way an inverse relationship between myocardial 
expression of miR-1 and circulating levels of FABP3 was found both  in vitro  and  in 
vivo  under various pathological conditions, and assessment of FABP3 plasma levels 
in human patients may be used to indirectly measure cardiac miR-1 activity. 

 The discovery of biomarkers for early diagnosis is an important goal of cardio-
vascular proteomics, for instance for the differential diagnosis of myocardial infarc-
tion. panel of several proteins may be much more sensitive and specifi c than a single 
biomarker. The identifi cation of disease mechanisms, via the characterizion of pro-
tein functions or regulatory pathways, is also compelling as these could provide new 
therapeutic targets. Simioniuc and colleagues combined  in v ivo magnetic resonance 
imaging (MRI) with proteomic and histological analysis, and demonstrated the 
regenerative potential of pre-treating placenta-derived human mesenchymal stem 
cells (FMhMSCs) with a hyaluronan mixed ester of butyric and retinoic acids 
(HBR) in a clinically relevant animal model of myocardial infarction [ 37 ]. In par-
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ticular, the proteomic data showed that HBR pre-treatment of FMhMSCs allows the 
reduction of extracellular matrix proteins such as lumican, a member of the small 
leucine-rich proteoglycan family which contribute to the assembly of collagen 
fi bers and regulates fi brosis. Moreover, HBR-FMhMSC treatment induce an 
increase of mitochondrial proteins, such as NADH dehydrogenase and cytochrome 
complexes, and a group of proteins that facilitates transport of fatty acid into cardio-
myocytes. On the other hand, recent studies evidenced that the predominant mecha-
nism by which stem cells participate to heart tissue repair is through paracrine 
activity [ 160 ,  161 ]. As reported by Chimenti and colleagues [ 162 ], the therapeutic 
effects of stem cells may be related to secreted molecules (secretome, including 
proteins). Li and colleagues analyzed the secretome of rat cardiomyoblast cells, 
subjected to hypoxia and re-oxygenation, identifying about two thousands proteins 
by means of a label- free proteomic approach; by analyzing the same samples by 
means of iTRAQ, about 900 proteins were identifi ed. The authors suggested a link 
between hypoxia, protein related to angiogenesis, infl ammation and remodeling of 
the extracellular matrix; while re-oxygenation was associated with secreted proteins 
involved in the suppression of infl ammation and reduction of anti-apoptosis pro-
teins. These fi ndings suggest that hypoxia and re-oxygenation act through unique 
cardiomyocytes secretomes in order to reduce cellular injury and promote healing 
[ 163 ]. Other authors, used MRM to monitor the abundance of peptides containing 
oxidized methionine148 (M148) in plasmatic Apo A-I, and reported an increase of 
oxidized M148 peptides in the HDL of CVD patients [ 164 ]. These fi ndings suggest 
a potential relationship between oxidation of M148 and CVD. 

 In conclusion, the identifi cation of disease mechanisms along with the character-
ization of new protein functions and regulatory pathways through new hubs or 
nodes, will greatly enhance our understanding of CVD [ 165 ]. Network analysis is 
allowing to combine proteomic data with those obtained by transcriptomics, metab-
olomics, and other platform, into single models [ 166 ]. Finally, the increased speci-
fi city, selectivity and sensitivity of proteomics coupled to clinical phenotyping will 
improve clinical practice, once the assays are properly validated by means of tar-
geted functional experiments and using large patients cohorts.     
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    Chapter 8   
 Top-Down Proteomics                     

     Nicole     M.     Lane     ,     Zachery     R.     Gregorich     , and     Ying     Ge     

    Abstract     The fi eld of proteomics, particularly top-down mass spectrometry 
(MS), holds great promise for cardiovascular research and diagnosis. Top-down 
MS provides a “bird’s eye view” of the entire protein. This is in contrast to bot-
tom-up MS, which analyzes peptides. By studying intact proteins, more informa-
tion can be gleaned. In particular, top-down proteomics provides valuable insights 
into what modifi cations are present on a protein of interest, including PTMs and 
sequence variations, even when  a priori  knowledge is lacking. PTMs, such as 
 phosphorylation, have increasingly been linked to numerous cardiovascular dis-
eases. Furthermore, changes in the expression levels of certain proteins have also 
been linked to disease. Top-down MS is able to quantify these changes, even 
when doing so necessitates distinguishing between various biologically relevant 
isoforms and proteoforms, which have proven diffi cult to differentiate using other 
methods. This chapter will explore how to prepare samples for top-down MS, the 
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instrumentation required, data analysis, current applications, and future directions 
of this valuable technique.  

  Keywords     Top-down proteomics   •   Mass spectrometry   •   Chromatography methods   
•   Fragmentation methods   •   Cardiovascular disease   •   Post-translational modifi ca-
tions   •   Phosphorylation   •   Myofi lament proteins   •   Cardiac troponin   •   Tropomyosin  

      What Is Top-Down Proteomics? 

 There are two primary mass spectrometry (MS)-based approaches in modern pro-
teomics [ 1 – 3 ]. The conventional peptide-based bottom-up approach, which involves 
protein digestion and MS analysis of the resulting peptides, has been well- developed 
and is now routinely used for protein identifi cation and quantifi cation with high 
throughput and automation [ 4 ]. However, the bottom-up approach has several short-
comings. In particular, the digestion of proteins into peptides increases sample com-
plexity and can result in the loss of information pertaining to the sequence of the 
protein and/or any post-translational modifi cations (PTMs) [ 5 ]. Loss of information 
regarding the protein sequence (i.e., when a single or small number of peptides are 
detected for a specifi c protein) can make it diffi cult to distinguish closely related 
proteins or protein isoforms that have high sequence similarity. Furthermore, PTMs 
are often missed if the sequence coverage is low. Consequently, bottom-up pro-
teomics is sub-optimal for the analysis of proteoforms—a term encompassing the 
myriad protein forms arising from a single gene, including those containing 
sequence variations as a consequence of mutations, polymorphisms, alternative 
splicing, or truncations, as well as those harboring PTMs [ 6 ]. Such modifi cations 
have increasingly been shown to play an important role in many diseases, including 
cardiovascular diseases [ 7 ]. 

 In the protein-based top-down proteomics, intact proteins are analyzed, rather 
than peptides, which provides a “bird’s eye view” of all protein modifi cations [ 5 ,  8 ]. 
Subsequently, intact proteoforms of interest can be isolated and fragmented in the 
gas phase to glean sequence information and localize amino acid changes and 
PTMs. Therefore, top-down proteomics is particularly well-suited to distinguishing 
between proteoforms (even those differing by a single amino acid) and localizing 
key PTMs [ 9 ]. This ability has already been employed in cardiovascular research 
and has provided important insights into the mechanisms of cardiovascular diseases, 
including ischemia, hypertension, and heart failure [ 10 – 12 ]. Nevertheless, due to 
the relatively recent innovation of top-down proteomics, this approach still faces 
many challenges, including diffi culty in solubilizing intact proteins (particularly 
large proteins and very hydrophobic proteins such as membrane proteins), under-
developed protein separation methods, and a lack of comprehensive data analysis 

N.M. Lane et al.



189

tools [ 1 ]. This chapter will expand on top-down proteomics, specifi cally the work-
fl ow and application of this approach to gain insights into the molecular mecha-
nisms that underlie appropriate cardiovascular function and disease, as well as the 
challenges currently facing top-down proteomics.  

    How Do You Prepare Samples for Top-Down Proteomics? 

 With the exception of protein digestion, the general workfl ow used for top-down 
proteomics is similar in nature to that used in bottom-up proteomics (Fig.  8.1 ) [ 1 ]. 
The top-down workfl ow entails protein extraction and separation, followed by MS 
and MS/MS analyses. The resulting MS and MS/MS data are then examined and 
bioinformatics analysis can be performed for protein identifi cation and quantifi ca-
tion. However, the analysis of intact proteins, rather than peptides, in top-down 
proteomics necessitates the use of unique approaches for protein solubilization and 
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  Fig. 8.1    Schematic depicting the basic workfl ow for top-down proteomics as compared with that 
of bottom-up proteomics (With kind permission from Springer Science + Business Media: 
Gregorich et al. [ 1 ])       
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separation, as well as high-resolution mass spectrometers and novel data analysis 
tools. In the following sections this workfl ow will be discussed in greater detail.

      Protein Extraction 

 Proteins to be analyzed by top-down proteomics can be extracted from a variety of 
biological sources, including tissues, cultured cells, and biofl uids [ 5 ]. However, as 
is the case in bottom-up proteomics, many of the traditional buffers (those employ-
ing salt concentrations in excess of 100 mM) [ 13 ] and buffer additives (detergents 
such as SDS) used to extract and solubilize proteins for biological or biochemical 
experiments interfere with the analysis of proteins by MS in several ways. This is a 
less pressing issue for bottom-up MS because protein digestion usually results in at 
least some peptides that are soluble without the addition of surfactant. However, for 
top-down proteomics, if an intact protein is not soluble without surfactant, it is par-
ticularly challenging to analyze. For this reason, buffers employing high concentra-
tions of salt (>100 mM) and/or surfactants are frequently used during sample 
preparation in MS-based proteomics due to the fact that protein solubilization is 
greatly aided [ 1 ]. This is particularly true in the case of membrane-bound proteins 
due to their hydrophobicity [ 14 ]. However, it is essential to remove excess 
MS-incompatible salts and detergents from the solution before MS analysis. This is 
because salts and detergents typically have a higher ionization effi ciency and are 
present in solution at a higher concentration than proteins of interest, thus allowing 
them to outcompete proteins for ionization [ 5 ]. Buffers with a high salt content can 
be removed via a desalting step utilizing offl ine reverse-phase liquid chromatogra-
phy (RPLC: discussed further in Section “Protein Separation”) or buffer exchange. 
Similarly, the biological salts used in extractions can be replaced with MS-compatible 
volatile salt buffers using a buffer exchange method like dialysis or ultrafi ltration 
[ 5 ]. However, these practices consist of extra steps, and therefore extra time, spent 
in sample preparation. They can also increase the opportunities for sample loss. 
Alternatively, some labs have been focusing on developing MS-compatible salts. 
Xiu et al .  identifi ed ammonium tartrate as one such MS-compatible salt, which can 
be used with hydrophobic interaction chromatography (HIC; described in Section 
“Protein Separation”) to provide high-resolution separation of intact proteins [ 15 ]. 

 Detergents, such as SDS, can form adducts that reduce the protein signal, as well 
as outcompete the protein for ionization [ 5 ]. Therefore, they need to be removed 
prior to MS analysis. In bottom-up MS, gel-based methods can also be used to 
remove the surfactant. However, intact protein extraction from gel matrices is tech-
nically diffi cult and, therefore, this method is rarely used in top-down applications 
[ 5 ]. Instead, top- down MS methods precipitate the proteins in a sample using 
organic solvents (e.g., acetone), remove the organic solvent (as well as the  surfactant, 
which is soluble in the organic solvent), and resolubilize the proteins in a detergent-
free buffer [ 16 ]. However, both of these approaches can result in sample loss (espe-
cially as the sample may precipitate out in detergent-free buffer), and require 
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additional time and steps [ 5 ]. Currently, efforts are underway to develop 
MS-compatible detergents to replace those currently in use and eradicate this prob-
lem [ 17 ,  18 ]. Such surfactants currently exist for use in bottom-up MS, including 
RapiGest, ProteaseMAX, and MaSDeS [ 16 ]. Various labs have found other meth-
ods for avoiding this problem. Whitelegge et al .  made use of high concentrations of 
formic acid to maintain protein solubility of membrane proteins [ 19 ]. However, 
prolonged storage in formic acid can introduce artifi cial modifi cations into proteins. 
Carroll et al .  employed a similar principle, using a high percentage of organic sol-
vent with chaotropes, which disrupt hydrogen bonds to weaken the hydrophobic 
effect, to solubilize membrane proteins. They then fractionated in the same solvents 
using hydrophilic interaction chromatography [ 20 ]. The Robinson lab has used non-
ionic detergents to analyze membrane protein complexes via MS [ 21 ]. Unfortunately, 
these surfactants are often weak (they are not able to solubilize proteins to the same 
degree as SDS, the gold standard surfactant), so it is essential to develop stronger 
top-down MS-compatible detergents.  

    Protein Separation 

 The extreme complexity of the proteome necessitates its separation or fractionation 
into smaller subproteomes containing fewer proteins prior to MS analysis [ 5 ,  22 ]. 
Following extraction, proteins can be separated based on their physiochemical 
properties, including biospecifi city, charge, hydrophilicity/hydrophobicity, and 
size. Traditionally, SDS-PAGE has been an important protein separation tool. 
However, as previously mentioned, it is technically diffi cult to extract intact pro-
teins from SDS-PAGE gels, often resulting in a low recovery rate and making it a 
poor choice for protein separation in top-down proteomics [ 23 ]. Instead, numerous 
separation methods for intact proteins have been developed to separate proteins 
based on the above properties, including multiple liquid chromatography (LC) 
methods and electrophoretic methods, specifi cally isoelectric focusing (IEF) and 
the new gel-eluted liquid fraction entrapment electrophoresis (GELFrEE) method 
[ 3 ]. These approaches will be discussed in greater detail below. 

 LC covers a broad range of chromatographic methods that are based on dissolv-
ing the sample in a solvent and then passing that solvent through a second solid or 
liquid phase [ 24 ]. Top-down proteomics has employed numerous LC methods to 
achieve protein separation, including affi nity chromatography, reverse phase liquid 
chromatography (RPLC), and size-exclusion chromatography (SEC) [ 5 ]. Affi nity 
chromatography is a very effective method to separate proteins because it is based 
on specifi c biological interactions (i.e., antibody-antigen) [ 25 ]. This allows for spe-
cifi c proteins or complexes to be separated from a complex mixture [ 26 ]. 
Furthermore, affi nity purifi cation is robust, as the antibodies can be used many 
times with proper column maintenance. Unfortunately, the high specifi city has the 
disadvantage of being low throughput, as only a single or small number of proteins 
can be analyzed at a time. Furthermore, affi nity chromatography is diffi cult to 
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 perform online due to the necessity of a desalting step. This is often accomplished 
by coupling offl ine affi nity chromatography with RPLC, which is based on separa-
tion by hydrophobicity, to provide an additional dimension of separation and to 
desalt the sample prior to MS analysis. RPLC is usually used as the fi nal separation 
step as it has the added benefi t of being able to connect online to the mass spectrom-
eter [ 5 ]. This is because RPLC employs “MS friendly” buffers, which are composed 
of volatile solvents such as methanol or acetonitrile. Of note, SEC is also capable of 
being connected directly to MS [ 27 ]. This is because separation using SEC is based 
solely on molecular weight, so there is no interaction between the proteins and the 
stationary phase. This allows for a wide variety of solvents to be used in the mobile 
phase, including ones that are compatible with MS. Furthermore, use of ultra-high 
pressure SEC results in a relatively high-throughput method of separation for intact 
proteins [ 28 ]. Nevertheless, the resolution of this method is still relatively low in 
comparison to other separation methods, such as RPLC; this, in addition to sample 
dilution, has limited the use of SEC in top-down proteomics analyses. An encourag-
ing new chromatography method is chromatofocusing, which is a promising exten-
sion of salt-gradient ion-exchange chromatography (IEC) [ 29 ]. IEC separates polar 
molecules by their affi nity to an ion exchanger while chromatofocusing separates 
proteins based on differences in their isoelectric points [ 30 ]. Additionally, 
MS-compatible salts have opened up many new possibilities for protein separation 
in top-down proteomics. Notably, the use of HIC for protein separation for top- 
down proteomics has recently benefi ted from MS-compatible salts. HIC separates 
proteins based on hydrophobicity and has the capability to provide high-resolution 
separation of intact proteins; however, the salts typically used are incompatible with 
MS as they result in adductions and other issues. Valeja et al .  used one such 
MS-compatible salt as part of a 3D LC scheme involving HIC (IEC-HIC-RPLC) 
that enabled the detection of 640 proteins from one of 35 IEC fractions from whole 
cell lysate, as compared to only 47 proteins detected using a conventional 2D 
approach (IEC-RPLC) [ 22 ]. 

 Electrophoretic separation methods, in contrast to LC methods, are based on the 
movement of proteins in an electric fi eld, rather than through a stationary phase. IEF 
separates proteins based on their isoelectric point, pI (the pH at which a protein has 
no net charge) [ 31 ]. Zhang et al .  coupled IEF with superfi cially porous silica LC to 
separate cardiac myofi brils, thereby gaining about six-fold increase in the unique 
monoisotopic masses observed below 30 kDa. Additionally, a four-fold increase in 
the mass range allowed for the observation of proteins with masses greater than 
200 kDa [ 32 ]. Recently, IEF has been coupled with elution tube gel electrophoresis 
to produce the promising GELFrEE method developed by Tran et al .  [ 33 ]. GELFrEE 
uses solution-based IEF coupled with a multiplex tube gel electrophoresis separa-
tion device. This allows proteins to be separated based on molecular mass (10–
250 kDa), while providing high-resolution protein separation and high protein 
recovery rates [ 29 ,  34 ]. Unfortunately, this method utilizes the detergent SDS and, 
thus, detergent removal prior to MS analysis is necessary. Despite this limitation, 
GELFrEE has been employed effectively in conjunction with other separation 
methods, as described below. 
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 As has been touched on in the above paragraphs, it is often useful to couple two 
or more methods of separation, producing a multidimensional separation strategy. 
This has several advantages: extra dimensions of separation can serve to reduce 
sample complexity, increase the number of unique proteins observed, and expand 
the mass range covered [ 32 ]. Notably, the Kelleher lab used a 4D method (IEF- 
GELFrEE- nanocapillary LC-MS) to identify 1043 proteins, and 3093 proteoforms, 
including proteins up to 105 kDa proteins and transmembrane proteins, both of 
which are notoriously diffi cult to detect in top-down proteomic analyses [ 35 ]. Two 
years later, they used this same strategy to conduct the largest top-down proteomics 
study to date, identifying 1220 proteins and 5000 proteoforms [ 36 ]. These studies 
clearly demonstrate the power of multidimensional separation methods. 
Unfortunately, separating the sample in this way results in a large number of pro-
teome fractions. To analyze each of these would be incredibly time-consuming. 
Therefore, many studies focus on only one or a few of these fractions [ 1 ]. However, 
this leads to selection bias as to which fractions are analyzed and which are ignored. 
Fortunately, new mass spectrometers provide higher resolution and are able to sepa-
rate more complex mixtures of proteins, combating this issue by requiring fewer 
fractions. For instance, Ge et al .  used a Fourier transform ion cyclotron resonance 
(FT-ICR) mass spectrometer to resolve more than one hundred protein components 
in a single spectrum [ 37 ].   

    What Instrumentation Is Needed for Top-Down MS Analysis? 

 For top-down MS, the need to be able to analyze whole proteins dictates the type of 
fragmentation methods and instrumentation that are commonly used. The ability of 
a given mass spectrometer to accommodate a preferred fragmentation method, as 
well as its resolution, dictate the usefulness of that spectrometer for top-down appli-
cations. For instance, mass spectrometers with electrospray ionization (ESI) are 
preferred over matrix-assisted laser desorption/ionization (MALDI) due to their 
ability to produce multiply charged precursor ions [ 38 ]. This is important for 
electron- based dissociation methods, such as electron-capture dissociation (ECD) 
[ 39 ] and electron transfer dissociation (ETD) [ 40 ], which are able to preserve labile 
PTMs (e.g. phosphorylation, glycosylation, etc.). The fragmentation effi ciency of 
the electron-based dissociation methods increases with increasing charge; thus, 
multiply charged precursors will fragment more effi ciently and yield more fragment 
ions than singly (or low) charged precursors [ 41 ]. If the protein is known, the exper-
imentally determined molecular mass can be compared to the predicted molecular 
mass of the protein (based on the DNA sequence) to determine what, if any, modi-
fi cations are present [ 5 ]. Following MS analysis, proteoforms of interest can be 
isolated and fragmented in a similar way using MS/MS to determine the amino acid 
sequence and localize PTMs or sequence variations. This section will discuss vari-
ous mass spectrometers and fragmentation methods commonly employed in top-
down proteomics. 
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    Commonly Used Mass Spectrometers 

 Traditionally, top-down MS has relied on FT-ICR mass spectrometers [ 42 ]. These 
instruments provide the high-resolution and, therefore, high mass accuracy neces-
sary for intact protein analysis and confi dent protein identifi cation and PTM charac-
terization. This is important because it allows co-eluting proteins with similar 
mass-to-charge ( m/z ) ratios to be distinguished and aids in accurate mass measure-
ments, charge state determination, and quantitation [ 43 ]. Accurate mass measure-
ments of the fragment ions also add valuable information in the identifi cation of 
proteins and PTMs, and the localization of said PTMs and sequence variations. 
Unfortunately, FT-ICR instruments rely on superconducting magnets, which have 
high maintenance requirements. This has limited the use of these instruments to 
specialized labs. However, although FT-ICR remains the gold-standard in terms of 
resolving power, advances in instrumentation, particularly the development of 
Orbitrap mass spectrometers [ 44 ] and high-end time-of-fl ight (TOF) instruments 
[ 45 ], have enabled other mass spectrometers to provide the high resolution and high 
mass accuracy necessary for top-down MS studies [ 8 ]. 

 In addition to the above instruments with a single detector, hybrid mass spec-
trometers, such as the LTQ/FT, the LTQ-Orbitrap, and the QTOF have also been 
used in top-down proteomics [ 5 ]. These advances in instrumentation have opened 
the fi eld of top-down proteomics by providing instruments with resolution that is 
high enough for top-down proteomics analyses, but without the superconducting 
magnet employed in FT-ICR MS, and the associated maintenance and costs [ 43 ]. Of 
note, depending on the research question, high-resolution mass spectrometers may 
not be required. For instance, Coelho Graça et al .  utilized a low-resolution ion trap 
mass spectrometer to distinguish between hemoglobin variants [ 46 ]. One benefi t of 
low-resolution mass spectrometers is the fast scan time, which allows rapid results, 
an important feature for clinical applications, such as Coelho Graça explored.  

    Fragmentation Methods 

 Following MS analysis, specifi c proteoforms of interest can be isolated in the gas 
phase and fragmented using a variety of fragmentation methods. The resulting frag-
ment ions can be detected to obtain sequence information and localize PTMs, even 
when  a priori  knowledge is lacking. There are two main categories of fragmentation 
techniques, as illustrated in Fig.  8.2 . The fi rst is energetic dissociation. This category 
includes collision-induced dissociation (CID) (also known as collisionally- activated 
dissociation, CAD) [ 47 ], high-energy collision dissociation (HCD) [ 48 ], infrared 
multiphoton dissociation (IRMPD) [ 49 ], and post-source decay (PSD) [ 50 ]. All 
energetic dissociation methods result in the cleavage of bonds having the lowest 
activation energy. This normally results in the cleavage of the CO-NH bonds in the 
protein backbone (producing  b  and  y  ions). However, if labile PTMs (such as 
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phosphorylation) are present, these modifi cations will be lost, thus precluding their 
localization [ 1 ]. Recently, the Brodbelt lab modifi ed an ultra-violet photodissocia-
tion (UVPD) method for use with top-down MS [ 51 ]. Although UVPD is a variant 
of IRMPD, it produces many fragments, including  a  . / x ,  b / y , and  c / z  .  ions [ 51 ]. This 
will likely prove useful for the fragmentation of larger intact proteins.

   The second category is electron-based dissociation, which produces  c  and  z  .  ions 
(Fig.  8.2 ). This includes ECD [ 39 ] and ETD [ 40 ]. Fragmentation using these meth-
ods results almost exclusively in the cleavage of NH-CHR bonds in the protein 
backbone, through a mechanism that remains in debate. Thus, the primary benefi t of 
the electron-based fragmentation methods is that labile PTMs are preserved, which 
allows their location(s) to be determined [ 5 ]. Moreover, ECD has been shown to 
produce more cleavages than CID, which enhances top-down MS’s ability to local-
ize PTMs and sequence variants [ 52 ]. Collectively, these benefi ts make electron- 
based dissociation methods the preferred dissociation methods for top-down 
proteomic analyses. Furthermore, ECD has proved very useful in the fragmentation 
of large proteins. Ge et al .  utilized top-down ECD MS/MS to isotopically resolve 
and fragment a 115 kDa fragment of cardiac myosin binding protein C (cMyBP-C) 
[ 53 ]. To date, the largest protein to be isotopically resolved is a ~148 kDa monoclo-
nal antibody (IgG1κ), fragmented using ECD on all charge states simultaneously 
[ 54 ]. Unfortunately, ECD is only available on FT-ICR mass spectrometers. However, 
ETD is available on ion trap mass spectrometers; thus, the development of hybrid 
instruments integrating ion trap mass spectrometers with other MS detectors has 
greatly aided access to these powerful fragmentation methods [ 55 ]. 

 Despite these improvements, the fragmentation of large proteins for top-down 
analysis remains a challenge. The gas phase structures of large proteins can form 
compact “balls of spaghetti”, which prove diffi cult to fragment [ 56 ]. To combat this, 
Han et al .  developed prefolding dissociation, which uses variable thermal and colli-
sional activation directly following ESI to delay the refolding of proteins once in the 

  Fig. 8.2    Cartoon of the peptides produced during energetic dissociation ( above ) vs. electron- 
based dissociation ( below ). This results in fragments containing the N-terminus (fragments  b  or  c ) 
and fragments containing the C-terminus (fragments  y  or  z ) (Reprinted with permission from 
Zhang and Ge [ 5 ])       
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gas phase [ 57 ]. This allowed the authors to fragment proteins greater than 200 kDa 
in mass (although fragmentation was primarily restricted to the N- and C-termini). In 
the same vein, fragmentation effi ciency drops with increasing molecular weight due 
to an increase in intramolecular interactions in the tertiary structure of the proteins 
which make them more stable as MW increases. This contributes to the diffi culty in 
fragmenting large proteins during tandem MS [ 5 ]. Even after the protein backbone is 
cleaved, intramolecular forces may hold large portions of the protein together. Peng 
et al .  used a combination of ECD and CAD fragmentation methods to enhance 
 fragmentation [ 58 ]. 

 Alternatively, strategies that deplete the most highly abundant isotopes or 
increase the charge of electrosprayed proteins (so called supercharging reagents) 
have been explored as potential options for enhancing the detection and fragmenta-
tion of high molecular mass proteins. Depletion of highly abundant isotopes is 
effective, but limited because at high molecular mass, isotopes have a decreased role 
in determining signal-to-noise (S/N), whereas multiple charge states play an increas-
ing role [ 59 ]. Therefore, supercharging, which preferentially forms higher charge 
states, seems more promising [ 59 ]. Unfortunately, many supercharging reagents 
interfere with LC separation [ 14 ]. To address this, Valeja et al .  have identifi ed sev-
eral supercharging reagents that are effective for proteins up to 78 kDa and that do 
not affect LC [ 60 ]. Miladinovic et al .  addressed the problem from a different angle 
by developing a technique, called “in-spray supercharging”, which utilizes dual- 
sprayer ESI to inject the supercharging reagents after LC separation [ 61 ]. Despite 
these advances, most top-down MS research is still limited to focusing on proteins 
below 70 kDa due to diffi culties with fragmentation [ 59 ]. This is, of course, an 
important problem as many proteins in the proteome are larger than this.   

    How Do You Interpret Top-Down Proteomics Data? 

 Large-scale MS-based proteomics experiments generate a large amount of very 
complex data. Therefore, several software tools exist for the analysis of this data to 
aid in the interpretation of the mass and tandem mass spectra, and protein identifi ca-
tion, quantifi cation, and characterization. These fall under one of two categories-
-tools for spectral deconvolution and tools for protein identifi cation and 
characterization. However, although multiple programs exist to do various pieces of 
top-down data analysis, there is a dearth of software that is capable of handling 
deconvolution, identifi cation, quantifi cation, and visual validation within one pro-
gram. This hinders analysis of the complex tandem mass spectra produced by top-
down proteomics [ 1 ]. Therefore, many labs are working to expand and improve the 
existing top-down MS software to address these concerns. The current software, as 
well as looked-for improvements, will be discussed below. 
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    Current Tools and Algorithms for Spectral Deconvolution 

 Software for spectral deconvolution is particularly useful for the analysis of compli-
cated high-resolution ESI mass and tandem mass spectra. ESI produces multiple 
charge states, while MS/MS produces many fragment ions, both of which result in 
very complex spectra. With suffi ciently high resolution, the isotopomer envelopes—
a set of peaks all corresponding to the same protein, but with different numbers of 
chemical isotopes—can be resolved, allowing overlapping fragment ions to be dis-
tinguished [ 62 ]. Spectral deconvolution aims to group MS peaks into isotopomer 
envelopes so that charge state and mass can be determined, simplifying the spectra 
and aiding analysis. Horn et al .  developed the fi rst fully automated computer algo-
rithm for the analysis of high-resolution mass spectra, known as THRASH (thor-
ough high resolution analysis of spectra by Horn) [ 63 ]. THRASH groups peaks into 
isotopomer envelopes and determines the charge of each protein species [ 63 ]. 
Unfortunately, THRASH is not compatible with many common operating systems. 
To combat this, the Smith lab developed Decon2LS [ 64 ] and DeconMSn [ 65 ], 
which are based on THRASH and are Mac and PC compatible. Furthermore, this is 
open-source software, allowing other labs to freely download it and adapt it to their 
own needs [ 64 ]. Guner et al .  used this open-source code to develop the more user- 
friendly MASH Suite, which is able to determine charge state, calculate monoiso-
topic and most abundant masses, and determine how well the experimental isotopic 
distribution fi ts a theoretical model [ 66 ]. Thermo has developed a similar tool called 
ManualXtract [ 5 ]. The Pevzner lab created a new algorithm for their program 
MS-Deconv, which outperformed the THRASH algorithm in terms of true positives 
identifi ed and time [ 67 ].  

    Informatics and Software Tools for the Identifi cation 
of Proteoforms 

 Bioinformatics tools are routinely used in MS-based proteomics experiments to 
not only identify proteins, but also to identify and locate any PTMs that may be 
present. ProSight was developed by the Kelleher lab using the THRASH algo-
rithm and shotgun annotated databases [ 68 ]. It was the fi rst major top-down pro-
teomics search engine and remains the most common. With it, the user queries 
the database using both precursor ion MS and product ion MS/MS data, allowing 
for accurate identifi cations. Furthermore, it allows for the mapping of PTMs 
[ 68 ]. However, ProSight’s database setup is not ideal for identifi cation of 
unknown PTMs and the size of the database greatly reduces search speed. The 
Kelleher lab recently released ProSight Lite to address these concerns [ 69 ]. 
PIITA, developed by Tsai et al .  makes use of a “precursor ion-independent top-
down algorithm” to compare tandem mass spectra to all possible theoretical 
spectra based on a genomic sequence database [ 70 ]. After the protein is 
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identifi ed, differences between the measured and theoretical masses are used to 
identify PTMs and sequence variations, allowing identifi cation even without  a 
priori  knowledge [ 70 ]. MascotTD, or “BIG Mascot”, is an extended version of 
Mascot, software initially designed to aid bottom-up MS, which has been opti-
mized for top-down MS [ 71 ]. The new database includes proteins up to 110 kDa 
in size [ 71 ]. By inputting both precursor and fragment ion data generated in top- 
down MS, BIG Mascot is able to locate both PTMs and sequence variants, 
although these potential modifi cations must be specifi ed before the search [ 71 ]. 
MS-TopDown utilizes spectral alignment to identify the proteins present in a 
given spectrum, allowing for the identifi cation of unexpected PTMs [ 72 ]. 
However, it lacks statistical tools and has a slow search time. MS-Align+ makes 
use of spectral alignment, rather than shotgun annotated databases, and compares 
favorably to software using such methods for protein and PTM identifi cation 
(particularly for unknown PTMs) [ 73 ]. However, MS-Align+, along with the 
other existing software for top-down spectral analysis, cannot integrate identifi -
cation with quantifi cation and PTM characterization and lacks visual output for 
manual validation (which can minimize false-positives and mis-assigned peaks). 
The Ge lab is working to expand their MASH Suite software to MASH Suite Pro, 
in an attempt fi ll these voids. MASH Suite Pro will support multiple deconvolu-
tion methods for mass and tandem mass spectra, characterization of PTMs and 
sequence variants, relative quantitation of proteoforms, visual validation, and 
graphical output [ 74 ].   

    What Can Top-Down Proteomics Be Used 
for in Cardiovascular Research? 

 Due to its ability to provide comprehensive information regarding sequence varia-
tions and PTMs, top-down MS is quickly becoming the method of choice for unrav-
eling the inherent complexities of the proteome. In particular, mutations and altered 
protein activity/function as a consequence of PTMs have been implicated in dis-
eases ranging from cancer, to neurodegenerative disorders, to diabetes, to infectious 
diseases [ 14 ]. This section will focus specifi cally on the use of top-down MS in 
cardiovascular research. It is worth noting that, although many of the applications 
discussed herein are in research settings, top-down MS also holds great promise for 
clinical use. For instance, a number of labs have developed top-down MS-based 
methodologies for the detection of single amino acid mutations in blood proteins 
that are responsible for sickle cell disease and amyloidosis, which have great diag-
nostic potential [ 46 ,  75 ,  76 ]. 
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    Computing Accurate Mass Measurements to Reveal Cardiac 
Protein Complexity 

 Mass accuracy is vital in top-down proteomics—high mass accuracy results in 
higher confi dence in protein and PTM identifi cations. Today’s high-resolution 
mass spectrometers are able to achieve a mass accuracy on the order of a couple 
parts per million (ppm) [ 43 ]. This level of accuracy, at both the intact and frag-
ment ion stages, greatly narrows the list of potential proteins an observed mass 
could correspond to. This allows for the precise determination of the identity of 
a peak of interest with high confi dence, including what modifi cations might be 
present through comparison of the theoretical (when available) and experimen-
tally determined masses. However, to achieve these levels of certainty, it is nec-
essary to have both a high- resolution mass spectrometer and accurate 
deconvolution software. Accurate deconvolution software enables isotopomer 
envelopes to be precisely identifi ed and, therefore, the monoisotopic mass to be 
reliably and quickly calculated. Although this can be done by hand, it is very low 
throughput, prohibitively so for large-scale proteomics analyses. Accurate mass 
measurements are also indispensable for proper protein identifi cation, as well as 
for the localization of PTMs and sequence variations. Using this ability, 
Zabrouskov et al .  were able to identify 36 modifi ed molecular ions in an FT-ICR 
mass  spectrum of commercial cardiac troponin I (cTnI) from healthy human 
hearts [ 77 ]. Although this sample runs as a single band on SDS- PAGE, it is clear 
upon MS analysis that the sample is actually quite complex—containing various 
 truncations, oxidations, and other PTMs. The authors were able to identify each 
of these proteoforms, despite their similar sizes. Figure  8.3  details these results 
and  highlights the ability of top-down MS to distinguish between different 
 proteoforms [ 5 ].

       Identifi cation of Cardiovascular Proteins from Complex 
Mixtures 

 In analyzing complex mixtures, top-down MS has the useful advantage of analyzing 
whole proteins, unlike bottom-up MS. This allows top-down MS to maintain con-
nections between disparate portions of each protein (rather than breaking all pro-
teins present into multiple peptides, as in bottom-up MS), thereby minimizing 
sample complexity and preserving valuable sequence and modifi cation information 
for each protein present in the mixture. This advantage, along with the high mass 
accuracy afforded by FT-ICR MS was put to good use by Peng et al .  to investigate 
the presence of Tm isoforms in human heart [ 78 ]. From cardiac tissue samples, they 
were able to identify α-Tm, β-Tm, and κ-Tm, and were able to determine that the 
relative expression levels and PTMs of each varied in relation to the region of the 
heart the sample was taken from. 

8 Top-Down Proteomics



200

 Despite these encouraging results, top-down MS continues to have diffi culty 
identifying proteins of low abundance in mixtures. This problem is being addressed 
through various enrichment methods. Hwang et al .  developed an enrichment method 
targeting intact phosphoproteins, which uses superparamagnetic nanoparticles cov-
ered in functionalized multivalent ligand molecules that bind phosphate groups 
[ 79 ]. The workfl ow for this method involves binding the phosphoproteins to the 
nanoparticles, removing the unbound proteins, and eluting the phosphoproteins. 
The authors showed that this strategy was compatible with top-down MS and was 

  Fig. 8.3    Top-down MS data from human cTnI. ( a ) Deconvoluted data revealed 36 modifi ed ions 
of human cTnI. These were formed from acetylations, phosphorylations, and truncations. I indi-
cates the full-length protein. II-IV are different truncations. ( b ) SDS-PAGE gel depicting how the 
commercial cTnI ran as a single band. ( c ) Cartoon of the modifi ed forms identifi ed in A to more 
clearly demonstrate the various combinations of modifi cations that were able to be identifi ed using 
top-down MS (Reprinted with permission from Zhang and Ge [ 5 ])       
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able to signifi cantly increase the detection of phosphoproteins in subsequent MS 
analysis. Another method, termed ion parking, was developed by McLuckey et al .  
Ion parking allows an ion’s signal to be concentrated into a single, or a few, charge 
state(s). This increases the S/N ratio, allowing detection of low abundance proteins 
[ 80 ,  81 ]. However, these new methods have not yet been applied to cardiovascular 
samples.  

    Identifi cation and Characterization of Biologically Relevant 
Sequence Variations 

 In addition to simple protein identifi cation, top-down MS may be used to distin-
guish between biologically relevant isoforms and proteoforms, which can otherwise 
be diffi cult to separate. For instance, changes in the relative expression levels of 
α-cardiac actin and α-skeletal actin in the heart have been associated with cardiac 
dysfunction [ 82 ]. However, these two isoforms vary by only 32 Da as a result of 
differences in two juxtaposed amino acids [ 82 ]. Despite this, Chen et al .  were able 
to use top-down MS to distinguish between these isoforms in both human and swine 
heart tissue and thereby accurately measure changes in the relative expression levels 
in healthy hearts and failing hearts with dilated cardiomyopathy (Fig.  8.4 ) [ 83 ]. This 
method, which requires only a small section of tissue, provides rapid, easy, and reli-
able quantifi cation of the relative expression levels of α-cardiac actin and α-skeletal 
actin within human hearts, allowing this to be used as a potential biomarker for 
cardiac dysfunction.
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  Fig. 8.4    LC/MS analysis of actin from human heart samples showing the levels of both αCAA 
and αSKA. Note that the relative level of αCAA is higher under normal conditions (Reprinted with 
permission from Chen et al. [ 83 ])       
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   Additionally, one of the great benefi ts of top-down MS is that it does not require 
 a priori  knowledge of the modifi cations (PTMs or sequence variants) present. For 
instance, Zhang et al .  discovered a previously unknown single amino acid polymor-
phism, V116A, in swine cTnI [ 9 ]. MS analysis of their protein revealed a −28 Da 
difference from the calculated mass based on the cTnI sequence from the database. 
Using MS/MS, Zhang et al .  were able to determine that this discrepancy was located 
between V116-I122. The only modifi cation that could account for this difference in 
molecular mass was the substitution V116A [ 9 ]. Top-down MS is capable of fi nding 
such modifi cations even if the molecular mass is as predicted (due to events that 
result in a net mass difference of 0). This is demonstrated by Sze et al . , who were 
able to distinguish modifi cations to within one residue, allowing them to distinguish 
two compensatory amino acid substitutions [ 84 ]. In another example, Peng et al .  
identifi ed a “novel” swine tropomyosin (Tm) isoform [ 58 ]. Utilizing top-down MS, 
the isoform was determined to exactly match mouse β-Tm. Therefore, the authors 
were able to identify this protein as swine β-Tm.  

    Identifi cation and Characterization of Cardiovascular Disease- 
Related PTMs 

 As mentioned above, top-down MS is also ideal for identifying and localizing the 
full complement of protein PTMs. Figure  8.3 , in addition to showing the sequence 
variations identifi ed by Zabrouskov, also illustrates the various phosphorylation and 
acetylation sites of human cTnI [ 77 ]. Figure  8.5 , below, further explains how 
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  Fig. 8.5    Schematic depicting how top-down MS is able to determine the location of PTMs on a 
hypothetical protein. Three positional isomers with PTMs at either position A, position B, or a mix 
of the two are shown. As can be seen, the MS data for these is the same, as they are all the same 
protein with the same modifi cation, just at different locations. This allows for identifi cation of the 
protein and the modifi cation, but not its location. Subsequent tandem MS data is able to distinguish 
between the three possible locations (Reprinted with permission from Zhang and Ge [ 5 ])       
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top-down MS is able to determine the locations of modifi cations, even for positional 
isomers, which vary only in the position of the modifi cation. MS allows identifi ca-
tion of PTMs present, while MS/MS allows for the identifi cation of the protein, as 
well as the localization of PTMs. Using this ability, researchers have located many 
modifi cations implicated in disease. For instance, Ser43/45 phosphorylation has 
been identifi ed in  in vitro  phosphorylation assays of cTnI [ 85 ]. These are believed 
to be phosphorylation sites of protein kinase C (PKC) and have been linked to car-
diac dysfunction through the use of transgenic mice that overexpress PKC [ 86 ,  87 ]. 
Dong et al .  confi rmed phosphorylation sites at Ser43/45 of cTnI  in vivo  from spon-
taneously hypertensive heart failure rats using top-down MS [ 12 ]. Furthermore, 
Zhang et al .  used a top-down proteomics approach to identify altered cTnI phos-
phorylation as a potential tissue biomarker for chronic heart failure [ 10 ]. Through 
top-down MS analysis of human heart tissue samples, they showed that there is a 
decline in phosphorylation of cTnI correlating with a progression towards heart 
failure. This is an especially promising discovery as cTnI is released into the blood 
following cardiac injury and is thus an easily accessible biomarker for chronic heart 
disease [ 10 ].

   Importantly, top-down MS is able to identify modifi cations that are unexpected. 
As Peng et al .  demonstrated, top-down MS can yield unforeseen results [ 11 ]. In this 
study, the researchers were investigating the phosphorylation of cardiac myofi la-
ment proteins from the hearts of swine with acute myocardial infarction (AMI). In 
addition to noting reduced phosphorylation of cTnI and MLC2, they saw that phos-
phorylation was also signifi cantly reduced in enigma homolog isoform 2 (ENH2), a 
Z-disc protein [ 11 ]. ENH2 was not previously known to be a phosphoprotein. This 
was the fi rst study to implicate the phosphorylation of a Z-disc protein in cardiac 
dysfunction following myocardial infarction. 

 In addition to mapping PTMs, top-down MS allows researchers to determine in 
which order those modifi cations occurred, something that bottom-up MS is incapable 
of doing. This is done by looking at each modifi ed form and determining the site(s) 
of modifi cation. For instance, if a protein exists in un-, mono-, and bis- phosphorylated 
forms, top-down MS can isolate each form and determine the site(s) of phosphoryla-
tion. If the mono-phosphorylated form is always phosphorylated at position A, and 
the bis-phosphorylated form is phosphorylated at both positions A and B, it may be 
concluded that position A must be phosphorylated before position B [ 5 ]. Using this 
logic, Zhang et al .  were able to determine that phosphorylation of cTnI isolated from 
the myocardium of patients with chronic heart failure is fi rst phosphorylated at Ser22 
followed by phosphorylation at Ser23 [ 10 ]. Similarly, Ge et al .  determined the order 
of phosphorylation in recombinant mouse cMyBP-C [ 53 ]. cMyBP-C is located in the 
sarcomere’s thick fi lament and is involved in the regulation of cardiac contractility 
[ 88 ]. Its phosphorylation is known to be altered in heart failure [ 89 ]. Ge et al .  identi-
fi ed the phosphorylation sites in cMyBP-C as Ser283, Ser292, and Ser312, with phos-
phorylation of Ser292 occurring prior to phosphorylation of Ser283 and Ser312 [ 53 ]. 
This is likely due to phosphorylation of Ser292 causing a conformational change that 
allows the two other sites to be accessible [ 90 ]. Interestingly, Ge et al .  discovered that 
truncation infl uenced the sites of phosphorylation in cMyBP-C. The phosphorylation 
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sites in truncated cMyBC-C were determined to be Ser292, Ser312, and Ser484 [ 53 ]. 
Furthermore, for these phosphorylation sites, it appears as though order does not mat-
ter. This fi nding suggests that truncations can alter the PTM state of a protein. 

 Of interest, Borges et al .  applied top-down MS to the pressing issue of type II 
diabetes with concomitant cardiovascular disease [ 91 ]. Certain anti-diabetes drugs 
have been linked to cardiovascular complications in susceptible individuals. 
Therefore, Borges et al .  endeavored to use top-down proteomics to identify biomark-
ers which could distinguish the spectrum of cardiovascular disease and type II diabe-
tes comorbidities. They identifi ed protein oxidation, typically methionine sulfoxidation 
on apoAI and apoCI, as indicative of cardiovascular disease. Conversely, increases in 
RANTES and apoCI protein truncations were indicative of type II diabetes [ 91 ].  

    Quantifi cation of Proteoforms to Elucidate Biologically 
Relevant Changes 

 Top-down MS is considered semi-quantitative due to the ability to compare relative 
amounts of modifi ed and un-modifi ed (or multiply modifi ed) proteoforms present 
within the same spectrum. This is done by comparing relative signal intensities and 
is possible because the addition of PTMs or minor sequence variations have little 
impact on the physiochemical properties of the whole protein, meaning that its ion-
ization effi ciency is not greatly affected [ 5 ]. This is in contrast to bottom-up MS, 
where the addition of modifi cations alters the ionization effi ciency of peptides [ 92 ]. 
Zhang et al .  used this ability to quantify changes between levels of un-, mono-, and 
bis-phosphorylated cTnI in the progression of chronic heart failure [ 10 ]. This revealed 
that as the disease progressed, the level of cTnI phosphorylation decreased. Peng 
et al .  took a similar approach to investigate the phosphorylation levels in several 
myofi lament proteins under conditions of AMI [ 11 ]. Figure  8.6 , below, details their 
results. As can be seen in Fig.  8.6e , the level of phosphorylation decreased in the 
AMI model for multiple vital myofi lament proteins, notably cTnI, MLC2, and ENH2. 
Dong et al .  used the quantifi cation ability of top-down MS to show that phosphoryla-
tion of cTnI, at Ser(22/23) and Ser(42/44), occurs at a higher level in a spontaneously 
hypertensive rat model as compared with normotensive age-matched rats [ 12 ].

   This same method was applied to a slightly different question by Gregorich et al .  
[ 93 ]. The authors investigated whether or not chamber-specifi c or transmural varia-
tions exist in the phosphorylation of myofi lament proteins in the heart. They were 
able to show the basal phosphorylation of certain proteins (cTnI and α-Tm, specifi -
cally) varies in a chamber-specifi c manner. However, they did not see any differences 
based on transmural location in the proteins they investigated. It has been well shown 
that PTMs, especially phosphorylation, play major roles in cardiovascular disease 
[ 93 ]. This study highlights how consistent sampling of cardiac tissue is essential to 
elucidate PTM-associated disease mechanisms and identify disease biomarkers in 
order to minimize unrelated variability which could obscure results (Fig.  8.7 ).
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        Conclusions and Future Directions 

 Top-down MS is an emerging fi eld that holds great promise for proteomics research 
due to its ability to view whole proteins. It can provide information on the PTMs 
present on a protein and their locations, protein sequence variations and truncations, 
and the relative quantity of various proteoforms present, all without  a priori  knowl-
edge. However, it is still a new technology and, therefore, still faces challenges 
before it can reach its full potential. Issues with protein solubility and separation, 
fragmentation and detection of certain proteins (particularly those that are large or 

  Fig. 8.6    Quantitative analysis of myofi lament proteins using high-resolution MS. ( a – d ) 
Representative high-resolution spectra of cTnI ( a ), MLC2 ( b ), Tm ( c ), and ENH2 ( d ) under control 
(CON) and acute myocardial infarction (AMI) conditions. Circles: theoretical isotopic abun-
dances. Ellipses: oxidation. Stars: non-covalent phosphoric acid adducts. ( e ) Relative quantifi ca-
tion of the proteoforms under control and disease conditions. ( f ) Schematic of relevant myofi lament 
and Z-disc protein interactions in the sarcomere (This research was originally published in 
Molecular and Cellular Proteomics. Peng et al. [ 11 ]. © the American Society for Biochemistry and 
Molecular Biology)       
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  Fig. 8.7    Basal cTnI phosphorylation varies regionally but not transmurally in the heart. ( a ) 
Representative MS spectra for cTnI from the four chambers of the heart.  Circles : theoretical isoto-
pic abundance distribution of isotopomer peaks corresponding to assigned mass.  Squares : oxida-
tion.  Stars : potassium adducts. ( b ) Graph showing relative abundances of cTnI,   p  cTnI, and   pp  cTnI 
in the four chambers of the heart. ( c ) Graph showing total cTnI phosphorylation in the left ventricle 
( LV ), right ventricle ( RV ), left atrium ( LA ), and right atrium ( RA ). ( d ) Representative MS spectra 
for cTnI from the three layers of the LV free wall; epicardium ( epi ), myocardium ( myo ), endocar-
dium ( endo ). Stars: potassium adducts. ( e ) Graph showing relative abundances of cTnI,   p  cTnI, and 
  pp  cTnI in the epicardium, myocardium, and endocardium of the LV free wall. ( f ) Graph showing 
total cTnI phosphorylation in the three layers of the LV free wall. Data are from three swine hearts 
with values reported as mean ± SEM. * p  < 0.05, ** p  < 0.001 (Reprinted with permission from [ 93 ])       
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hydrophobic), low throughput, and a lack of comprehensive data analysis tools 
hamper research using top-down proteomics. However, important advances are rap-
idly being made in these areas, allowing top-down MS to provide a wealth of infor-
mation. Ongoing research combining both top-down MS and bottom-up MS data, 
as well as data provided by various other fi elds, such as biomedical research, func-
tional analysis, metabolomics, and transcriptomics, will provide invaluable insights 
into innumerable biological systems and disease processes. Hopefully, this will lead 
to the development of novel therapeutic targets and diagnostic biomarkers, not just 
in cardiology, but in all areas of health. Promisingly, top-down MS has already 
aided in the identifi cation of biomarkers for cardiovascular diseases and has pro-
vided insights into PTM-associated disease mechanisms. Future research and 
advances will undoubtedly lead to even more discoveries.     

Fig. 8.7 Continued
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    Chapter 9   
 Targeted Proteomics (MRM) 
in Cardiovascular Research                     

     Genaro     Pimienta     ,     Mingguo     Xu     ,     Anne     M.     Murphy     , 
and     Genaro     Antonio     Ramirez-Correa     

    Abstract     Multiple reaction monitoring (MRM) is a powerful proteomic technique 
that is hypothesis driven. MRM is gaining increasing attention among cardiovascu-
lar researchers because it has begun to provide mechanistic insights into heart fail-
ure and cardiomyopathies, and promises to develop into assays for clinical 
management. In this chapter we provide an overlook at the background of MRM 
considering basic principles of proteomics workfl ows, instrumentation and basic 
MRM assay design and compare it to shotgun proteomics. As case studies we high-
light how MRM has been successfully employed to quantify myofi lament post- 
translational modifi cations, more specifi cally phosphorylation of cardiac Troponin 
I, myofi lament mutants replacement in cardiomyopathies and as a potential bio-
marker detection pipeline in heart failure.  
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      Brief Introduction to Mass Spectrometry-Based Proteomics 

 The sequence of the human genome indirectly gave birth to the fi eld of proteomics, 
a word that fi rst appeared late mid 1990s and refers – in analogy to genomics – to 
the collective study of all proteins in a system, either a cellular compartment, a cell 
type or an organism [ 1 ]. Liquid chromatography (LC) coupled in-line to electro-
spray ionization (ESI) and tandem mass spectrometry (MS/MS) – (LC-ESI-MS/
MS) – is currently the work-horse in peptide and protein sequencing (Fig.  9.1b ) [ 2 ]. 
For technical reasons most proteomics studies are “bottom-up” experiments 
(Fig.  9.1a ). In a bottom-up experiment one or more proteins are fi rst digested, typi-
cally with trypsin – the preference for Trypsin in protein sequencing is discussed in 
detail in the literature [ 3 – 5 ]. Next, tryptic peptide sequences are determined by MS/
MS and bioinformatics analysis. Based on the MS/MS data generated, bioinformat-
ics tools aided by predefi ned gene model databases are used to identify the protein(s) 
from which the sequenced peptide derived (Fig.  9.1b ) [ 3 ,  4 ].

   A bottom-up proteomics experiment can be of either two types: discovery (shot-
gun)- or hypothesis-based (targeted) [ 6 ]. The two proteomics strategies are rather 
complementary and refl ect the technological advances in the fi eld – shotgun pro-
teomics appeared fi rst, prompted by the genomics era, but was followed by the 
emergence of targeted proteomics, which has made proteomics a hypothesis-based 
experimental tool [ 6 ]. As we will explain in more detail below, current targeted 
proteomics approaches are highly reproducible and quantitative (Figs.  9.2a, b ). 
Discovery based proteome analysis; such as recently reported studies mapping the 
human proteome have used Orbitrap instruments [ 7 – 9 ].

   Shotgun and targeted proteomics experiments each rely on highly sensitive 
instruments. In a discovery-based proteomics experiment, a fast-scanning linear ion 
trap quadrupole (LTQ) is coupled to a high-resolution mass analyzer (Orbitrap) [ 7 ]. 
The experiment entails a so-called “survey scan” in “data-dependent mode” in 
which the mass spectrometer connected in-line to a nano-LC system scans the pep-
tides eluted off the LC capillary column as they are ionized by ESI and selects the 
most abundant precursor (peptide) ions for mass-to-charge ratio (m/z) determina-
tion and downstream collision-induced dissociation (MS/MS) (Fig.  9.3 ) [ 6 ]. In 
complex samples (e.g. eukaryotic proteomes), the data generated is therefore domi-
nated by the most abundant proteins and is subject to the stochastic nature of chro-
matographic elution profi les (peak width and height) that can vary in-between 
technical replicates (Fig.  9.3 ) [ 6 ]. Currently, derivatives of LTQ-Orbitrap instru-
ments are among the best option in discovery-based proteomics, given their high 
scan rate and high mass resolution and accuracy [ 10 ].

   Shotgun proteomics due to its discovery power has expanded the repertoire of 
proteins that can be studied with hypothesis-based biochemistry, which ranges from 
the traditional western-blots to genetic gene deletion/inactivation experiments [ 8 ]. 
Experimental improvements in sample preparation protocols, quantitation strategies 
(either metabolically- and chemically-labeled isotopic reference peptide tags, or 
label-free), and the development of faster-scanning and high mass accuracy mass 
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spectrometers –mainly the ever-advancing series of LTQ-Orbitrap technology – 
have resulted in the deep proteome analysis of key model systems, especially the 
small ones like yeast and bacteria; along with human cell lines and tissues [ 8 ,  9 ,  11 ]. 
A recent major accomplishment in discovery-based proteomics has been the fi rst 
draft of the human proteome [ 8 ,  9 ]. Despite these achievements, shotgun proteomics 
is a global approach that through its discovery power generates hypotheses, but does 
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  Fig. 9.1    Basic proteomics principles. This fi gure shows two major features commonly found in a 
proteomics strategy. Panel ( a ) is a bottom-up proteomics approach summarized as a global work-
fl ow, which includes sample processing (trypsinization, desalting), instrument analysis ( MS and 
MS/MS ) and fi nally the computer-based protein identifi cation. Emphasis is posed on the need for a 
specifi c genome-based database in standard protein identifi cation by mass spectrometry. Panel ( b ) 
depicts peptide electro spray ionization ( ESI ) technique, where regular peptides acquire charge 
after the application of current, which is then followed by collision-induced dissociation ( CID ). 
Here high-energy bombardment is applied to fragment the precursor ions (ionized peptides) into 
parent fragment ions. This is shown as an instrument standard workfl ow regardless of the tandem 
mass spectrometer that would be used to analyze one or more proteins       
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not test them [ 6 ]. Furthermore, the stochastic nature with which data-dependent 
mass spectrometry selects the most abundant peptides eluting off a chromatographic 
LC elution profi le makes shotgun proteomics not suitable for quantifi cation. We 
refer the reader to thorough reviews on the subject [ 6 ,  12 ]. 

 Targeted mass spectrometry has made proteomics a hypothesis-driven high- 
throughput protein identifi cation and quantitation tool [ 6 ]. Originally developed to 
quantify small molecules, the importance of targeted proteomics in life sciences is 
underscored by its highlight as the  “Method of the Year”  at the end of 2012 by 
Nature Methods [ 6 ]. The basic experiment in targeted quantitative proteomics is the 
so-called selected ion-reaction monitoring (SRM) or multiple reaction monitoring 
(MRM) assay (Fig.  9.4 ) [ 12 ,  13 ]. We will use the term MRM for the purpose of this 
chapter. In an MRM experiment, the “ tour de force”  instruments are the derivatives 
of a triple quadrupole coupled to a time of fl ight mass analyzer (QQQ-TOF) [ 12 ]. In 
targeted proteomics the instrument operates in a “data-independent mode”. This 
means that instead of stochastically choosing the most intense peptide ions eluting 
off a capillary LC column, the QQQ-TOF is set to select one or more predetermined 
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  Fig. 9.2    QQQ-TOF mass spectrometer – MRM/SRM. This fi gure depicts in a simplistic manner 
the scheme of a typical QQQ-TOF mass spectrometer. Panel ( a ) is a general sketch an instrument 
in discovery mode, indicating the nano-liquid chromatography that provides the retention or elu-
tion time, coupled to an ion source such as electro spray ionization (ESI). Q0 is the high pressure 
cell from which ions pass a slit on Q1 and is called precursor ion transmission, ions are passed to 
another slit on Q2 and they are fragmented by high-energy bombardment. Finally, fragmented ions 
pass the slit on Q3 and the obtained signal is digitalized after (TOF detector) in the form of ion 
intensities of precursor and fragment (parent) ions as a function of their time of time-of-fl ight 
( TOF ), which is proportional to their mass/charge (m/z) ratio. In Panel ( b ) the same instrument can 
be used in targeted mode, in this type of analysis there is done by linking precursor ions between 
their retention time and mass to charge ration (m/z), the fi rst step of selection occurs at the slit of 
Q1, selected ions undergo collision-induced dissociation (CID) at the fragmentation chamber (Q2) 
and Q3 further refi ne the selection to specifi c ion pairs (transitions). To show how MRM/SRM 
experiments are performed at the TOF detector the selection analysis is depicted as a function of 
retention time and fragment ions intensity       
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  Fig. 9.3    Shot-gun proteomics. QQQ-TOF instruments can also be operated in data-dependent 
mode or shotgun proteomics; using the same instrument scheme as Fig.  9.2  here we show the 
stochastic nature of the data obtained.  a ,  b , and  c  are technical replicates, however due to in- 
between replicates variability in retention time and peptide ions intensity, which in turn infl uences 
the ions that are the most abundant in a data-dependent scan, the proteins identifi ed are not the 
same. The different proteins are represented in different colors. Protein red is identifi ed in panel  a  
and  c , whereas protein orange is detected in  a  and  b  but not  c , etcetera       

  Fig. 9.4    Transition assay. This fi gure depicts the core principle of targeted proteomics, when 
using the instrument best suited for this task, a QQQ-TOF in targeted mode or “data-independent 
mode”. A given parent ion (precursor ion) is selected in Q1 from Fig.  9.2b , its fragmentation in Q2 
from Fig.  9.2b , will give several product ions that are selected in Q3. A pair of precursor ion and a 
product ion is called a transition. A repeated measurement of the ion intensities of a particular 
transition across the chromatographic elution time is a multiple reaction monitoring ( MRM ) or 
selected-ion reaction monitoring ( SRM ) assay       
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precursor ions (ionized peptides), based on their carefully calibrated chromato-
graphic elution retention time and expected m/z value. The selected precursor ions 
are next targeted for downstream fragmentation (MS/MS) and ion intensity quanti-
fi cation [ 12 ]. MRM assays have made mass spectrometry-based protein analysis 
reproducible, truly quantitative (unlike data-dependent discovery mass spectrome-
try) and highly sensitive. The main applications of targeted proteomics are in sys-
tems biology [ 11 ] and biomarker validation [ 13 ].

       Principles of an MRM Experiment 

 Several reviews and tutorials have been published that provide an overview on use 
of MRM [ 14 ,  15 ]. During a typical MRM experiment, the fi rst quadrupole (Q1) of 
a QQQ-TOF is set to monitor one or more pre-defi ned precursor ions (ionized pep-
tides), each chosen based on its expected chromatographic retention time and m/z 
values. Each precursor ion is next guided to the second quadrupole (Q2), where the 
collision-induced dissociation (CID) reaction produces a set of parent ions – the 
fragment products. Next, more than one representative parent ion produced in Q2 is 
isolated in the third quadrupole (Q3), where their m/z and ion intensity are accu-
rately measured. The concomitant measurement of m/z as an identity tag and ion 
intensity of the precursor and parent ions in Q1 and Q3 respectively, is known as the 
transition. 

 Measurements of select transitions are the central principle in targeted pro-
teomics that confers a reproducible quantitative dimension (Fig.  9.4 ). MRM 
assays involve measurements of transitions that produce a plot composed by the 
chromatographic retention time of a selected precursor ion and the ion intensities 
measured in a specifi c transition assay, given the selected parent ions. An advan-
tage of an MRM assay in data-independent mode over a discovery-based experi-
ment is that the pre-selection of parent ions increases the sensitivity of the 
experiment and produces a linear response over a wide dynamic range. This 
allows detection of low abundance proteins in complex mixture samples. In order 
to provide absolute quantifi cation based on transitions in an MRM experiment, an 
assays incorporates an isotopically labeled ( 13 C-,  15 N-) derivative of each proteo-
typic precursor ion chosen to be analyzed in a given targeted proteomics experi-
ment. Attention to the proper selection of proteotypic peptide is an important 
facet of the assay. These peptides must have suitable properties, mainly reproduc-
ible ESI ionization, a single prevalent charge state and at least 2 parent ions with 
good signal [ 12 ]. 

 The isobaric properties of each proteotypic peptide and its isotopically labeled 
reference peptide, implies that if mixed prior to biochemical processing, they will 
be undistinguishable during the sample preparation process and co-elute in the cap-
illary LC step. Due to their isotopic differences however, they will be sorted out 
once they ionize by ESI and are analyzed by MS/MS in a QQQ-TOF instrument.  
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    MRM Assay Development 

 In addition to the excellent methodological papers that address MRM protocols 
[ 14 ,  15 ], an effort is currently underway to document “good practice” guidelines in 
the applications of MRM assays to development of clinical assays [ 16 ]. Briefl y 
speaking, two critical steps need to be carefully optimized, to reliably discriminate 
and quantify the protein being analyzed: (a) Selection of two or more so-called 
proteotypic peptides per protein that reproducibly ionize well by ESI and have an 
m/z value distinguishable from co-eluting peptides; and (b) Selection of 2–4 parent 
ions per precursor ion with optimal ion intensity and reproducibility in the transition 
reaction – typically the most abundant fragment ions [ 14 ,  15 ]. We describe below 
the steps that should be followed when developing an MRM assay. 

    Step 1: Proteotypic Peptide Selection 

 Thorough basic rules have been published for reference peptide selection in targeted 
proteomics [ 14 ,  15 ,  17 ]. A proteotypic peptide is the predominant charged state of 
a precursor ion, that ionizes reproducibly well by ESI, has an average of ten amino 
acids in length and an amino acid composition not too hydrophilic or hydrophobic 
[ 12 ]. Peptides containing a Pro are preferred due to their typical observed intensity. 
Missed-trypsin cleavages that contain contiguous Arg/Lys residues are problematic, 
due to their low abundance and their irregular appearance. The same holds true for 
peptides that contain amino acids prone to oxidation or deamination reactions, such 
as Cys, Met and Trp. Following these rules does however not warranty that the pep-
tide selected to work with, will ionize well by ESI. There are three ways of identify-
ing optimal proteotypic peptides that have detectable ion intensity [ 14 ,  15 ]. (a) 
Experimentally by analyzing the tryptic digest of a pure protein of interest in a 
QQQ-TOF; (b) Manual inspection of shotgun spectra database, such as SRMAtlas 
(  http://www.srmatlas.org/    ) [ 18 ] and (c) by computational prediction tools, in the 
case of proteins not documented in shotgun databases [ 19 ].  

    Step 2: Transition Assay Selection 

 Once two or more different proteotypic peptides per protein have been defi ned, the 
next step is to select the transition reactions that behave the best, based primarily on 
the reproducibility, ion intensity, and m/z value uniqueness of the parental ions per 
precursor analyzed. As we mentioned above, the combined m/z settings on Q1 
(fi lters a precursor ion) and Q3 (fi lters 2–4 parent ions per precursor ion) of the 
QQQ- TOF mass spectrometer are referred to as a transition assay. In other words, a 
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transition assay measures the m/z and ion intensity of the predominant charge of the 
precursor ion in a narrow mass window, typically 1 Da or narrower. This measure-
ment is coupled to the determination of the m/z and ion intensity of the 2–4 best 
parent ions derived uniquely from the precursor ion. While tryptic precursor ions 
commonly have a double or triple charge, CID-derived parent ions are typically 
single charged. To avoid singly charged background artifacts, typically with a mass 
smaller than the precursor ion, a good-practice recommendation is to choose parent 
ions with an m/z larger than the precursor ion. The selection of the transition from 
precursor ion–to-fragment ion pairs is done experimentally and is usually guided by 
computational interfaces. A popular one is SpectraST, which is based on a database 
of data generated by QQQ-TOF instruments [ 20 ].  

    Step 3: Transition Assay Validation 

 After having identifi ed a potentially well-behaved transition reaction, it is important 
to verify that the precursor and parent ions analyzed indeed derive from the protein 
of interest. Verifi cation is important because in a complex biological sample, pep-
tide co-elution is common and may confound the MRM assay, leading to mislead-
ing results [ 14 ,  15 ]. The best practice is to incorporate at the beginning or the end of 
the sample processing protocol an isotopically labeled ( 13 C-,  15 N-) derivative of each 
proteotypic precursor ion analyzed [ 14 ,  15 ]. A complementary option is to acquire 
a full spectrum of the precursor ions produced in Q2. The information produced by 
a full spectrum is next used to verify the peptide sequence by means of a computa-
tional database search [ 14 ].  

    Step 4: Optimization of the MRM Assay 

 Once the specifi city of the transition assay is determined, peptide ESI ionization 
(declustering potential/DP) and dissociation (collision energy/CE) voltages should 
be optimized in order to increase signal sensitivity. It is also important to determine 
the lower limit of detection (LOD) and quantifi cation (LOQ), both active compo-
nents of quantitative accuracy in an MRM experiment. LOD and LOQ are highly 
dependent on the chromatography and instrument used, which have an effect on 
peak width, ionization and fragmentation quality. To determine the LOD and LOQ 
parameters per transition assay, a dilution series of isotopically labeled ( 13 C-,  15 N-) 
derivatives of each proteotypic precursor ion are tested. Ideally, this assay is per-
formed in conditions that mimic the experimental matrix the closest – tissue sample, 
cell lysate, etc. In addition to the protein of interest, approximately housekeeping 
controls should be included to normalize the values quantifi ed. Skyline [ 21 ] or 
MRMer [ 22 ] are freely available software to process data for quantifi cation.  
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    Step 5: Multiplexing MRM Assays 

 In a multi-protein MRM assay, the number of proteins targeted with enough sensi-
tivity and accuracy is dependent on the MRM cycles and dwell time (reviewed in 
[ 14 ,  15 ]). A cycle is the amount of time it takes the QQQ-TOF to assay all transi-
tions programed per chromatographic elution peak. The dwell time is the fraction of 
a second that the instrument spends accumulating data on a given transition every 
MRM cycle and has to be long enough to achieve sensitivity – enough signal. 
Longer dwell times increase the signal-to-noise ratio per transition assay, but com-
promise the number of transitions per protein in each cycle, thus sacrifi cing speci-
fi city. A compromise to optimal cycle and dwell times is the restriction of the 
retention time peak width analyzed .  A good quality transition assay chromato-
graphic trace plot (retention time  vs.  transition assay ion intensity) should have at 
least 8 quantifi cation events across elution profi le [ 14 ,  15 ]. 

 Specialized MRM strategies are optionally used to optimize the experiment, 
such as parallel transition acquisition and MRM-triggered scanning. These special-
ized MRM protocols are helpful when analyzing peptides containing post- 
translational modifi cations (PTMs). When dealing with PTMs the structure and 
mass is required in order to trigger full fragmentation spectrum acquisition in an 
MRM-triggered scanning [ 14 ,  15 ].   

    MRM in Practice: MRM Assay Design for Use in Human 
Failing Myocardium 

 For many applications use of immunoblotting or an established ELISA will be suf-
fi cient to determine changes in selected proteins between normal and diseased tis-
sue. However recognizing that the power of MRM based assays could be applied to 
simultaneously assay for changes in the phosphoproteome of a key myofi lament 
protein our group developed MRM assays to simultaneously assay changes in mul-
tiple phosphorylation sites of troponin I (TnI) in heart failure. In this approach ,  
Zhang and colleagues fi rst used an informatics approach to search for every possible 
phosphorylation site on human cardiac TnI then used LC MS/MS on samples to 
search for and detect all known TnI sites as well as discovering novel sites based on 
theoretical phosphorylation motifs [ 23 ]. Finally specifi c MRM assays were devel-
oped and tested for each phosphorylation site. Following this, a set of samples from 
end stage heart failure patients who had hearts explanted at the time of heart trans-
plant were measured using the MRM assays. In order to accurately quantify each site 
stable isotopically labeled phosphopeptides were utilized to develop standard curves 
for accurate quantifi cation [ 23 ]. Prior physiologic studies provided an understanding 
of the contribution of many sites to the pathophysiology of altered phosphorylation 
of the sarcomere in heart failure [ 24 – 28 ], and new studies since publication have 
elucidated the potential impact of some of some of the novel sites [ 29 ,  30 ]. 
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 More recently other groups have begun to use discovery-based proteomics fol-
lowed by use of MRM assays in plasma related to heart failure. For example, 
Hollander et al. used a proteomic approach to study a cohort of heart failure patients 
pre and post heart transplant as well a control healthy cohort and did a comparative 
analysis of plasma employing iTRAQ mass spectrometry to compare differences. 
[ 31 ]. They then employed MRM assays to further validate protein markers of heart 
function recovery in a different cohort of heart failure patients who demonstrated 
recovery after medical therapy compared to a cohort that did not have recovery with 
treatment. The cohorts were very small and obviously the markers would need fur-
ther validation in additional larger cohorts. This group also applied a similar approach 
to examine plasma biomarkers in Andersen-Fabry disease, an X-linked inherited 
form of cardiomyopathy with differential gender specifi c presentation [ 32 ].  

    Use of Targeted Proteomic Assays in Hypertrophic 
Cardiomyopathy 

 Hypertrophic cardiomyopathy is an autosomal dominant inherited disorder with vari-
able penetrance. In autosomal dominant disorders the mutant allele protein expres-
sion may be depressed due to degradation of transcripts with non-sense codons or 
degradation or diminished sarcomere incorporation of truncated protein. This ques-
tion has been largely unexplored experimentally, though Helms et al. recently pre-
sented data on allele specifi c protein expression in hypertrophic cardiomyopathy 
using both immunoblotting and MRM assays to determine relative ratios of normal 
and mutant protein with synthesized (AQUA) control peptides. This suggested the 
relative content of the mutant sarcomere protein was variable and in some cases the 
mutant sarcomere protein was expressed at relatively low levels [ 33 ]. Preliminary 
proof of concept experiments have suggested that MRM assays might permit accurate 
quantifi cation of the presence of normal and mutant protein in samples from human 
HCM myocardial tissue with truncating mutations of myosin binding protein C [ 34 ].  

    Application of MRM Assays to Clinical Practice: Workfl ow 

 In order to apply MRM assays of proteins or modifi ed sites on proteins several details 
must be considered in the workfl ow towards assay development. First, selection of a 
well-characterized initial cohort of patient samples is crucial. Another crucial factor is 
establishing a standard operating procedure for sample collection and storage. This 
may limit use of established banks of samples from previously conducted clinical tri-
als. The next concern relates to the dynamic range of the proteome and relative abun-
dance of potential markers. This is particularly relevant to serum or plasma markers in 
which low abundance markers may be masked by the high quantity of albumin. 
Methods have been developed to remove albumin, but a caveat is that some potential 
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biomarkers may be bound to albumin [ 35 ]. Discovery cohorts will also need to have 
an appropriate control group, with consideration for appropriate gender, age and 
racial/ethnicity matching. Stage of disease of the cohort may also be relevant to design. 
Prior to expansion to study of a very large population based cohort, it is also necessary 
to perform assays in secondary validation cohorts to confi rm preliminary results.  

    Regulatory and Practical Issues in Use of MRM Type Assays 
in Clinical Laboratories 

 A number of hurdles must be addressed in order to translate targeted proteomic 
assays from small cohort assays performed for initial proof of principle to bio-
marker assays suitable for use in a clinical diagnostic assay. Carr et. al reported on 
a workshop organized by NIH to address this issue [ 16 ]. This group distinguished 3 
tiers of assays; from the lowest tier 3 being discovery based targeted assays for use 
in exploratory studies to tier 1 clinical diagnostic assays. Tier 1 assays must have 
specifi city, precision, reproducibility and quantitative accuracy. High levels of qual-
ity control are necessary in a diagnostic laboratory setting and internal standards 
must be employed. Targeted MRM assays have not yet reached this standard and a 
great deal of product development is necessary to reach this standard.  

    Future of MRM in Cardiovascular Proteomics 

 Despite the many challenges outlined in using targeted proteomics in cardiovascular 
medicine, the application in small pilot clinical or model animal studies is likely to 
provide insight into cardiovascular disease mechanisms. System based proteomics 
employing the results of individual analyte assays from proteomics based targeted 
assays into pathway analysis and transcriptome studies may offer insight into novel 
disease mechanisms. The power of interfacing genomics with proteomics data was 
demonstrated by recent maps of the human proteome, which combine genome data, 
and use of mass spectrometry based tissue profi ling [ 8 ,  9 ]. Quantitative data from 
selected MRM experiments could be integrated into known pathway maps to 
develop testable hypotheses for ongoing experimentation.  

    Conclusions and Summary 

 Targeted proteomics using MRM based assays has begun to provide insight into 
heart failure and cardiomyopathy. These promising early studies however will need 
to be further developed in order to be employed in clinical management. This devel-
opment pathway will involve more robust and larger studies in human cohorts as 
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well as extensive development of assays that are suitable and properly vetted as 
clinical assays. Despite many gaps that have yet to be addressed, there is great 
promise for employment of targeted assays to elucidate disease mechanism as well 
as to serve as clinical/diagnostic tools.     
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    Chapter 10   
 Label-Free Quantifi cation by Data 
Independent Acquisition Mass Spectrometry 
to Map Cardiovascular Proteomes                     

     Sarah     J.     Parker      ,     Ronald     J.     Holewinski     ,     Irina     Tchernyshyov     , 
    Vidya     Venkatraman     ,     Laurie     Parker     , and     Jennifer     E.     Van     Eyk    

    Abstract     The large-scale identifi cation and quantifi cation of proteins by liquid 
chromatography mass spectrometry (LC MS) can be achieved by at least three gen-
eral methods, categorized into targeted, data independent (DIA), and data depen-
dent (DDA) acquisition modes. Each acquisition strategy has its own set of benefi ts 
and drawbacks, and the methods serve complementary purposes for the study of 
protein quantifi cation in biological samples. While not specifi c to research in car-
diovascular physiology, a long-standing but recently popularized proteomic 
approach, termed Data Independent Acquisition Mass Spectrometry (DIA-MS), 
promises unique strengths to complement and extend the existing capabilities of 
traditional “discovery” proteomic profi ling by combining development of a peptide 
library and DIA-MS. In this chapter we will provide background on the DIA-MS 
technique, highlighting its fundamental differences relative to other mass spectrom-
etry methods, and discuss important considerations for researchers interested in 
implementing this technique for their proteomic experiments.  
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      Introduction 

 The traditional approach for large-scale proteomic screening has been to employ 
data dependent acquisition mass spectrometry (DDA-MS) also called shotgun MS, 
to sample peptides derived from a complex protein specimen (e.g., cardiac tissue 
homogenate) as they elute from a high performance liquid chromatography (HPLC) 
column in line with the mass spectrometer. In this conventional acquisition method, 
the mass spectrometer fi rst performs a survey scan (i.e. MS1) to measure the maxi-
mum number of peptides possible at a given sampling time point in the chromato-
gram, and then selects a pre-defi ned number of those peptide ions for fragmentation 
(i.e. MS/MS or MS2) which allows for the peptide amino acid sequence to be deci-
phered by similarity to theoretical spectra predicted from a tryptic digest of the 
genome/proteome databases and then rolled up to identify and estimate expression 
of the protein from which they were originally derived (Fig.  10.1 ). The DDA-MS 
approach has generated phenomenal advances in the descriptive and quantitative 
analysis of protein composition in a multitude of biological samples spanning sim-
ple single-celled organisms to complex disease tissues. While it has been very suc-
cessful and established the foundation of discovery proteomics, there are limitations 
to the DDA-MS approach that continue to hamper its analytical depth and 
reproducibility.

   Several factors contribute to these limitations. The speed at which MS instru-
ments can complete MS/MS scans has been a limiting factor suppressing the num-
ber of peptides that will be fragmented and identifi ed within a complex sample. 
Recent calculations estimate that while over 100,000 different peptide species can 
be observed in MS1 data from a complex sample, fewer than 20 % of these peptides 
are generally ever selected for fragmentation and MS/MS analysis to be subse-
quently sequenced and identifi ed [ 1 ]. Further, the randomness inherent in the 

  Fig. 10.1    Basic schematic of Data Dependent Acquisition Mass Spectrometry (DDA-MS) 
approach to proteome screening. In DDA-MS, all co-eluting peptide ions at a given point in the 
instrument acquisition cycle and HPLC retention time ( RT ) are fi rst surveyed in an MS1 scan, and 
then a subset (depicted in  blue, orange , and  green circles ) of ions are selected and shuttled into a 
collision cell and subsequent detector for fragmentation and MS/MS acquisition. Only the ions 
selected for fragmentation can be searched against a sequence database to match peptide fragment 
spectra to likely peptide sequences. Peptide sequences can then be used for protein inferences       
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 stochastic selection of peptides for MS/MS (especially for peptides with relatively 
lower abundance, despite having adequate signal strength for selection) contributes 
to up to a 30 % discrepancy in the peptides identifi ed between technical replicates of 
the exact same complex sample [ 2 ]. This becomes a particularly frustrating limita-
tion for comparative quantitative analyses of proteomes between multiple biological 
conditions, given that in principle these peptides should be detectable, and is espe-
cially challenging for large-scale quantitative experiments comparing proteomes 
across hundreds of biological samples. Even with some of the most elaborate isoto-
pic labeling designs that enable several experimental samples to be mixed and ana-
lyzed in the same MS run (e.g. iTRAQ, TMT and multiplexed SILAC strategies), 
irreproducibility between LC-MS runs across an experiment reduces the number of 
peptides and proteins that are detected in a suffi cient number of biological replicates 
to be quantitatively compared [ 3 ]. Recent advancements in DDA-MS data analysis, 
especially MS1 fi ltering of precursor ions with chromatographic alignment to allow 
extraction of peptide precursor intensities across all replicates of an experimental 
dataset even in cases where MS/MS data were not triggered in every sample, can 
substantially improve completeness of the quantitative data matrix [ 4 ]. Nevertheless, 
sampling stochasticity remains a fundamental issue, and especially affects iTRAQ 
and TMT labeling experiments since the labels enable quantifi cation at the MS/MS 
level, which requires selection and fragmentation of the labeled peptide ions. 

 Alternatively to DDA-MS, targeted acquisition MS approaches (e.g. selected 
reaction monitoring, SRM, or multiple reaction monitoring, MRM) can be employed 
to maximize sampling of peptide analytes of interest but it is to a limited number of 
analytes/peptides. In these approaches, the acquisition method is designed to spe-
cifi cally fragment only pre-selected MS1 ions, and to collect MS/MS data on key 
fragment ions (termed “transitions”) as precise reporters of the particular peptides 
of interest. Targeted acquisition MS can be performed with essentially any type of 
mass spectrometer, but is best suited to triple quadrupole-type instruments that 
enable narrow m/z selection of precursor ions via the fi rst quadrupole, fragmenta-
tion in the second quadrupole, and m/z selection and measurement of the key frag-
ment ions in the third quadrupole. Because this focus on certain analytes ensures 
their selection for fragmentation, targeted acquisition MS is not subject to the sto-
chasticity limitations of discovery DDA-MS. It also provides high sensitivity and 
signal to noise, allowing detection and quantitation of peptide ions at much lower 
levels than in an untargeted DDA-MS experiment. These two features have made 
targeted acquisition MS the method most commonly employed for application of 
proteomics in clinical labs. However, targeted acquisition MS is limited in scope per 
MS run—the MS cycle time required to select, fragment, and detect fragments from 
individual peptide analytes, combined with the progression of the chromatographic 
timescale, mean that at most a few hundred proteins can be quantifi ed in a given 
targeted run. Compared to the 1000–2000 proteins that can be identifi ed in a well- 
developed DDA-MS experiment, targeted acquisition MS is much less comprehen-
sive for profi ling the breadth of the proteome that should be accessible from a 
typical sample. Targeted assay methods also require extensive development and 
optimization for each analyte of interest relative to either DDA-MS or DIA-MS. 
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 As a complementary approach that bridges the gaps between traditional DDA-MS 
discovery and targeted acquisition MS, emerging analytical and bioinformatic strat-
egies are fueling new enthusiasm for Data Independent Acquisition MS (DIA-MS), 
due to its powerful capabilities for quantitative unbiased sampling of all observable 
peptide ions in a sample that facilitates more reproducible detection of peptides 
across the samples of an experimental dataset. While the implementation of DIA-MS 
is not a new strategy for proteome quantifi cation, recent analytical approaches have 
built off of both DDA-MS and targeted-acquisition MS concepts to make the raw 
data derived from DIA-MS more readily accessible for large-scale quantitative pro-
teome mapping. In this chapter, we will survey the fundamentals of DIA-MS, from 
design of the acquisition methods to the different strategies for analyzing the data to 
identify and quantify proteins.  

    Essentials of Peptide Identifi cation and Quantifi cation by Data 
Independent Acquisition Mass Spectrometry 

 DIA-MS involves designing different strategies for both mass spectrometer acquisi-
tion and post-acquisition data analysis than either DDA-MS or targeted MS. The 
use of DIA-MS for proteome profi ling is not new to the fi eld [ 5 ,  6 ], however recent 
developments in analytical strategies, MS instrumentation and software tools [ 7 ,  8 ] 
are fueling increased interest in the approach. The unique strategy to DIA-MS, is 
that rather than selecting one peptide at a time for MS/MS analysis, all precursor 
peptide ions falling within pre-designated m/z windows (e.g., typically in the range 
of 4–25 m/z) are systematically fragmented as the instrument cycles through a 
broad m/z range (Fig.  10.2a ). Thus, fragment spectra are collected for all observable 
peptide ions (referred to in some implementations as MS/MS all , Fig.  10.2b ), and the 
analytical challenge requires the de-convolution of the chimeric and complex MS/
MS scan data generated from co-eluting peptides that are collectively fragmented 
within a given mass window at each sampling point across the HPLC gradient 
(Fig.  10.2b ). There are currently two popular approaches for deciphering peptide 
species in DIA-MS data, categorized simply as targeted analysis, which borrows 
elements from targeted acquisition MS approaches such as MRM, and untargeted 
analysis, which incorporates aspects of DDA-MS approaches such as MS/MS spec-
tral matching to proteome database entries.

      Targeted Analysis of DIA-MS Data 

 In its most commonly implemented form, the targeted analysis of DIA-MS data 
utilizes a ‘peptide assay library’ to defi ne a set of distinguishing characteristics for 
a specifi c peptide (see below) that are then used to extract fragment ion signals from 
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the complex MS/MS all  spectra for identifi cation and quantifi cation of peptides and 
hence, their corresponding proteins. The peptides in the assay library are defi ned in 
terms of (1) precursor mass, (2) a handful of characteristic fragment or ‘product’ 
masses produced in the collision cell prior to MS/MS detection (i.e., product ions), 
(3) the expected retention time of the peptide on a given chromatographic set up 
(i.e., C18 reverse-phase liquid chromatography column), and (4) the expected “fi n-
gerprint” of relative intensities of peptide fragments used in the assay as they are 
generated by a particular mode of fragmentation (e.g., high energy collision [HCD], 
collision induced dissociation [CID]). An example entry for a peptide from a 
DIA-MS assay library is shown in Table  10.1 .

  Fig. 10.2    Basic schematic of Data Independent Acquisition Mass Spectrometry (DIA-MS) with 
targeted data analysis. In DIA-MS, the instrument systematically selects all co-eluting peptide ions 
within pre-designated mass windows (depicted as  red, orange, green, blue , and  purple lines  on the 
x-axis in ( a ) and ( c ). Co-eluting peptide mixtures of a selected mass range are fragmented in the 
collision cell and detected in complex and chimeric MS/MS spectra ( b ). The instrument systemati-
cally cycles through each pre-designated mass window across the entire chromatogram ( c ), with 
acquisition methods balanced with the HPLC settings to ideally capture a large number of MS/MS 
observations of a given peptide across its elution profi le ( d ). In the targeted analysis strategy, spe-
cifi c peptide fragment masses are queried against the DIA-MS data using a peptide spectral library 
and an extracted ion chromatogram is generated for a given set of peptide fragments within a 
designated window of their predicted chromatographic retention time. The resulting ‘peak group’ 
extracted ion chromatograms (XICs) are then scored against decoy peak group XICs using various 
metrics to distinguish confi dent peptide identifi cations from false positives       
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   Thus, the peptide assay library defi nes peptides in terms of precursor ions and 
specifi c product ions, which is similar to the strategy used to design MRM assays 
for quantifi cation of peptides by targeted acquisition MS. A key distinction 
between MRM and DIA-MS, however, is that since MRM requires targeted acqui-
sition, the data fi les only contain the precursor/product ion information for the 
pre-selected peptide analytes of interest—whereas with DIA-MS, thousands of 
precursor/product ion sets are recorded in the data. The targeting comes after data 
is obtained and is at the level of the bioinformatics. In discovery mode, the num-
ber of molecules targeted is massively expanded but the concepts are the same for 
1 or 5000 proteins, and even if an early targeted analysis of the fi les only involves 
a limited number of proteins in a peptide assay library, the fi les can be subse-
quently re-interrogated at any time with expanded or new peptide assay libraries 
that incorporate additional precursor/product ion targets [ 9 ]. In other words, it is 
not necessary that the peptide assay library be defi ned in advance of DIA-MS data 
generation, and additional peptides/proteins of interest can be added to a peptide 
assay library and the data reanalyzed later to address new hypotheses, providing 
unprecedented scope for potential future use of “digitally archived” sample sets or 
“proteome maps” that can be referred back to in order to ask new biological ques-
tions [ 10 ]. 

 The end result of targeted extraction of peptide library data from a DIA-MS fi le 
is a set of extracted ion chromatograms for the product ions used to defi ne each 
peptide in the assay library, collectively termed ‘peak groups’ (Fig.  10.2d ). To eval-
uate and select correct peptide identifi cations in an automated fashion, the peptide 
‘peak groups’ extracted from a DIA-MS fi le are scored by software tools according 
to multiple criteria, and the scores of ‘target’ peak groups from the library are mod-
eled against the scores generated from a set of ‘decoy’ peak groups. The peak group 
scoring and decoy modeling methods differ slightly between the various software 
packages used for targeted DIA-MS data analysis. A summary of recently released 
software for DIA-MS is provided in Table  10.2 , and a more comprehensive review 
of DIA-MS software dating back to some of the earliest implementations of the 
strategy can be found in Bilbao et al. [ 6 ].

   In general, most scoring criteria include (1) the accuracy of the peptide 
masses extracted, (2) how close to the predicted retention time the peak group 
was observed in the chromatographic gradient (peptide retention times), (3) 
whether the relative intensities of peptide fragments (MS2) extracted match 
their expected ‘fi ngerprint’, (4) whether the apex of each extracted fragment 
peak lines up with the apices other fragments of that peptide (i.e. precision of 
apparent co-elution of the peptides and matching transition fragments), and (5) 
the signal-to-noise ratio of the extracted peaks (ensure peak is above back-
ground). Different software programs employ additional scoring metrics 
designed to confi dently assign peptide identity to an extracted peak group. The 
end product of the targeted DIA-MS analysis is a list comprised of each peptide 
fragment extracted from the library, along with its extracted intensity value 
(typically as area under the curve for the extracted ion chromatogram), and 
information on the false discovery rate (FDR) associated with the peak group 
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score assigned to a given peptide. As will be discussed below,  transition inten-
sity values can then be aggregated to generate peptide level intensities, and pep-
tide intensities aggregated to indicate protein level abundance. 

 The ability of targeted data analysis to de-convolute and assign amino acid 
sequences and identities to the full complement of observable peptide ions and frag-
ment species from the complex spectral data generated from DIA-MS depends on 
having reliable criteria defi ning the characteristics of the peptides of interest (i.e. the 
peptide assay library). While the data fi le from DIA-MS analysis theoretically con-
tains precursor and fragment ion information for all peptides whose intensities fall 
within the dynamic range of the instrument, their identities will only be accessible 
if pre-defi ned fi ngerprints for extraction are available. Intuitively, the depth of pro-
teome coverage achieved using targeted analysis of DIA-MS data is dependent on 
the comprehensiveness of the peptide assay library used to extract peptide peak 
groups for identifi cation. Peptide assay libraries can be obtained by generating them 
in-house with DDA-MS [ 11 ], downloading assay libraries from public data reposi-
tories, or a combination of both [ 12 ]. Extensive fractionation of complex peptide 
samples prior to DDA-MS, as well as merging publically available spectral data 
with locally generated libraries will maximize depth of proteome coverage and will 
ultimately increase the total number of peptides and proteins quantifi ed in subse-
quent DIA-MS analyses of unfractionated samples (Fig.  10.3 ).

   There are several other important factors to consider when building peptide assay 
libraries for targeted DIA-MS analysis, whether from publicly available data or 
sample-specifi c, locally generated DDA-MS datasets. For one, it is important that 
the DDA-MS data used to construct the peptide assay library be generated either on 
the same type of instrument (and preferably same HPLC method, for instance C18 

  Fig. 10.3    Fractionation and expansion of peptide assay libraries increases depth of DIA-MS anal-
ysis. Comparison of peptides and proteins identifi ed in the exact same DIA-MS data fi le following 
targeted analysis against a simple library composed of a single DDA-MS injection of cell lysate 
(small library) versus targeted analysis against an expanded library of the in-house generated 
DDA-MS fi le combined with DDA-MS data from fractionated peptide samples that were down-
loaded from the “PRIDE” mass spectrometry data repository (PRIDE expanded library) (Figure 
reproduced with permission from Parker et al. [ 12 ])       

 

10 Label-Free Quantifi cation by Data Independent Acquisition Mass Spectrometry



236

reverse phase) as for the DIA-MS experiment or at least on an instrument operating 
in a mode that will generate similar peptide fragmentation patterns to that of the 
DIA-MS instrument (e.g., Thermo QExactive with HCD fragmentation or SCIEX 
TripleTOF 5600) [ 13 ]. Additionally, extra stringency in verifying the accuracy of 
peptide spectral matches at the DDA-MS stage should be used so that only the spec-
tral data from high confi dence peptide sequence matches are recorded into the pep-
tide assay library. It is also important to normalize (i.e. align) chromatographic 
retention time (RT) for peptides within the library in a way that allows accurate 
prediction of peptide elution time in a given DIA-MS experiment regardless of 
whether the chromatography is matched between library and DIA-MS experiments. 
Even under the best conditions, peptide retention times are rarely precisely main-
tained from run to run in LC/MS, especially in nanoLC which is subject to fl uid 
dynamics issues that come from the extraordinarily low fl ow rates involved. This 
can create slight retention time differences between replicates, as well as between 
the original DDA-MS runs for peptide assay library generation and DIA-MS runs, 
even when performed on the same column and instrument. Retention times in pep-
tide assay libraries can be normalized using either externally spiked reference pep-
tides [ 14 ] or internal RT reference peptides such as those identifi ed and used as 
described in Parker et al. [ 12 ]. Finally, while in many cases peptides with post- 
translational modifi cations (PTMs) will be readily distinguished in DIA-MS experi-
ments because either their precursor mass is shifted into a different DIA MS1 
window or their retention time is shifted substantially enough to be easily identifi ed 
as a separate analyte, in some circumstances, such as peptides with multiple possi-
ble phosphosites or PTMs of very small mass (e.g., the 1 da mass shift due to citrul-
lination), it is necessary to ensure that the y and b ions capable of distinguishing 
between PTM “isoforms” of a peptide are reliably recorded in the assay library and 
used for targeted data analysis of the DIA-MS fi le. 

 With targeted analysis of DIA-MS data, the extracted peptide identifi cation and 
quantifi cation is limited in terms of both scale and quality by the composition of the 
assay library. Larger, more comprehensive libraries can yield greater depth of 
DIA-MS proteome coverage. As public data repositories become more and more 
comprehensive, it will also be useful to curate the performance of different fragment 
ions for DIA-MS analysis in different organisms and tissue types, and identify the 
best performing fragment sets for a given peptide on a given background proteome. 
The dependence of targeted DIA-MS analysis on  a priori  knowledge of peptide 
targets arguably creates a question about whether the technique qualifi es as a truly 
‘discovery’ method for proteome screening. However, as discussed above, the capa-
bility for iterative re-analysis of DIA-MS data as new targets become of interest or 
become measurable is a unique strength to this approach, and allows for hypotheses 
to be generated from initial screens of the data against generic libraries and then 
follow up hypotheses to be tested with more experiment-specifi c assay lists without 
the need to re-acquire the MS data per se (e.g., see Gillet et al, [ 7 ]).  
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    Untargeted Analysis of DIA-MS Data 

 The untargeted analysis of DIA-MS data fundamentally differs from targeted analy-
sis in that no  a priori  established library of peptide targets is required. Instead, pat-
terns of spectral data in the DIA-MS fi les themselves are used to infer peptide 
information and match co-eluting sets of precursor and fragment masses to peptide 
amino acid sequences (Fig.  10.4 ). Currently, the most commonly used software for 
the untargeted analysis of DIA-MS data is the open source program “DIA Umpire” 
[ 8 ]. In untargeted analysis by DIA Umpire, a likely peptide ion is fi rst identifi ed 
from MS1 data based on characteristic profi les of peptide isotope envelopes. The 
MS1 peak data are then lined up with MS/MS data within an appropriate DIA 
acquisition window, and all of the fragment masses that co-elute along the precise 
retention time profi le together, as well as with a given MS1 peak, are grouped into 
‘pseudo spectra’ comprising the MS1 and MS/MS information representing a set of 
potential peptide fragments. These ‘pseudo spectra’ are then searched against a 
FASTA database in the same way that a DDA-MS fi le is searched and scored. The 
intensity data for peptide sequences matched from ‘pseudo-spectra’ are then 
extracted from the DIA-MS fi le and used to determine the relative abundance of that 

  Fig. 10.4    Schematic depicting the general concept behind untargeted analysis of data independent 
acquisition mass spectrometry data. With untargeted DIA-MS analysis, MS1 and MS/MS spectra 
are carefully aligned to identify perfectly co-occurring peak groups. These peak groups are then 
compiled into clean ‘pseudo-spectra’ that can be searched against sequence databases to match 
fragments to peptide sequences and their corresponding proteins in the same way DDA-MS data 
are analyzed       
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peptide in that sample. Interestingly, the performance of untargeted DIA-MS 
 analysis may be best when the peptide matches from the ‘pseudo spectra’ are 
assembled into a peptide assay library and the corresponding peak groups extracted, 
scored, and quantifi ed in a follow-up targeted re-analysis.

   DIA-Umpire and other emerging tools for untargeted DIA data analysis enable 
systematic acquisition of MS/MS sequence data and subsequent peptide identifi ca-
tion without the requirement of a pre-existing assay library, and have extremely 
powerful implications for discovery-oriented proteomic efforts. Developments in 
the sensitivity and accuracy of these approaches should continue to improve as 
DIA-MS proteomic strategies mature over the next several years.   

    Acquisition Strategies to Maximize Sensitivity and Specifi city 
of Peptide Identifi cation by DIA-MS 

 DIA-MS performance requires optimization of both data analysis strategies (as dis-
cussed above) and acquisition method parameters. In particular, design of appropri-
ate precursor mass window selection parameters is another important factor to 
consider when optimizing a DIA-MS proteome mapping experiment. The key 
parameters for consideration are precursor selection window width and ion accumu-
lation times for product ion detection. While smaller window widths and longer 
dwell times for ion accumulation may be preferable for sensitivity and specifi city of 
the MS/MS signal, this must be balanced against total cycle time to ensure each 
peptide is observed a suffi cient number of times to generate a reliably quantifi able 
extracted ion chromatogram. Different strategies have emerged to approach an ideal 
balance between precursor isolation width, ion accumulation time per window, and 
total cycle time. 

 One strategy is ‘multiplexed acquisition’ [ 15 ], in which the mass range of poten-
tial precursor ions is divided into equally sized small intervals (e.g., 4 m/z). The 
instrument is set to randomly select a given number of these small mass windows 
(e.g., 5) to be analyzed in each MS/MS scan. The acquisition method is then 
designed to scan through the entire mass range within 20 scans, and accumulation 
times are set to ensure an acceptable total cycle time (e.g., approximately 3–4 s). 
Thus, while the detector is collecting spectral information on the equivalent amount 
of ions as would be funneled through a larger, continuous m/z window 
(e.g., 20 m/z), the randomness and discontinuity of the subset of smaller windows 
can be harnessed for later mathematical ‘de-multiplexing’. The result is that pep-
tide observations are captured for each analyte at a frequency equivalent to that for 
a simple, continuous and wide (e.g., 20 × 20 m/z) window strategy, but with the 
capability to mathematically reduce spectral complexity and noise in order to 
achieve the sensitivity and specifi city of substantially smaller precursor window 
fi lters (e.g., 4 m/z). The software needed to design a multiplexed DIA-MS acquisi-
tion experiment and analyze the resulting data are now built into the open source 
Skyline program [ 15 ,  16 ]. 
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 Another strategy is to employ variable window widths, which aims to optimize 
sensitivity and specifi city of peptide identifi cation by using the density of ions 
across the m/z range to dictate the size of a precursor isolation window [ 17 ]. In this 
approach, the desired number of isolation windows is typically pre-specifi ed 
(e.g. 64, 100, etc), and using an initial DDA acquisition fi le the distribution of pre-
cursors masses is determined across the m/z range intended for analysis. The den-
sity of peptide ions tends to be highest in particular mass ranges, and those more 
densely packed m/z ranges are split into much narrower isolation windows than less 
frequently occurring peptide m/z ranges. However, while increasing the number of 
windows across an m/z range will enhance specifi city of the MS/MS spectra, one 
must be aware of the effect this will have on data quality and total cycle time as 
mentioned above. For instance, performing an experiment with 100 variable win-
dows using a cycle time of 30 ms will result in a total cycle time of 3 s, which is 
suffi cient in the majority of cases to give 7–8 points across a peak. However, increas-
ing the number of windows to 200 and keeping the dwell time the same will result 
in greater specifi city but will double the cycle time and reduce the points across the 
peak to 3–4 per peptide. One can overcome this increase in cycle time by decreasing 
the dwell time for each window (in this case 15 ms will give a 3 s cycle time for 200 
windows) but this will adversely affect the data quality, as 15 ms in most cases will 
not be suffi cient enough time to accumulate enough ions (especially for low abun-
dant peptides) to generate good ion statistics. Therefore, care must be taken in the 
experimental design of the method, which will also depend on the sample type and 
its dynamic range and peptide density that is being analyzed and the biological 
question that is being interrogated.  

    Proteome-Scale Label Free Quantitation by DIA-MS 

 Performing DIA-MS on high mass accuracy instruments enables the construction of 
extracted ion chromatograms (XICs) for both (1) the intact precursor ion prior to 
fragmentation and (2) the multiple fragments of each peptide analyte generated dur-
ing MS/MS. The area under the curve of these XICs is the quantitative unit used to 
estimate peptide and protein abundance in a given sample because it represents the 
overall intensity of the analyte of interest (Fig.  10.5 ). The multiple representations 
of a peptide analyte in the DIA-MS data (MS1 and several MS/MS fragment obser-
vations) provide a rich amount of quantitative information for each confi dently 
identifi ed analyte. An ongoing challenge in DIA-MS remains the downstream pro-
cessing of this quantitative information for optimal estimation of peptide and pro-
tein abundances within and between experimental samples. To progress from the 
simple information of MS/MS signal chromatograms to protein level abundance, 
several layers of inference must be addressed. Important factors for consideration 
include (1) normalization of intensity data between separate runs on the mass spec-
trometer, (2) appropriate aggregation of peptide fragment intensities into an esti-
mate of total peptide intensity, (3) proper aggregation of different peptide intensities 
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into an estimate of total protein intensity, [ 4 ] statistical modeling of experimental 
variance in order to identify meaningful differences in protein abundance between 
experimental groups.

   In the fi nal section of this chapter we will summarize some of the issues that a 
researcher must consider when working through the statistical processing of 
DIA-MS datasets. Many of these issues are under vigorous debate in the fi eld, and 
it is likely that no single approach will be appropriate for all experimental designs. 
To make valid and reliable inferences about the biology in the given system under 
study, researchers must be intimately familiar with the structure of their data, their 
experimental design, the sources of variance in their data, and they must also have 
at least a conceptual understanding of the statistical methods and tools that will be 
used to calculate and compare protein level abundances. 

 Data normalization is a critical issue to consider when working with the quantita-
tive output of a DIA-MS experiment both within one run, many runs and between 
many experiments. Ideally, it is important to know and standardize the mass (i.e. 
number of total  µg)  of the complex peptide sample that is loaded onto the LC MS, 
making sure that an equal amount is loaded for each sample and replicate for any 
experimental groups within a single data set. However, even when every precaution 
is taken to ensure equivalent sample mass loaded on column, semi-random fl uctua-
tions in instrument performance and other experimental variables can result in 
inconsistency of overall signal strength from sample to sample – precluding direct, 
non-normalized comparison of raw intensity values between experimental datasets. 
Normalization of raw intensity values of each analyte within a sample to a value 
consistent for the amount of total sample enables a more accurate comparison of 
relative peptide/protein abundance between samples in the dataset. The different 
approaches to DIA-MS data normalization include normalization of each analyte 

  Fig. 10.5    Schematic depicting the peak group extracted ion chromatogram quantifi cation 
approach in DIA-MS. Chromatograms from each MS/MS fragment of a peptide defi ned in the 
assay library are extracted, and the area under the curve (A.U.C.) is calculated as an index of the 
overall intensity of that fragment in that sample       
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signal to the median intensity for all analytes of the sample, the ‘most likely ratio’ 
normalization that uses fold-change ratios between the replicates and experimental 
groups of a dataset (see detailed description in [ 3 ]), normalization to total signal or 
total signal in discrete RT windows [ 18 ] and normalization to internal standards 
(e.g., spiked isotopic standards or other reference peptides). Each of these strategies 
operates under a set of assumptions about the nature of the data, and researchers 
should carefully consider these assumptions and the validity of a given normaliza-
tion approach prior to implementing it for their data set. The effectiveness of the 
normalization should also be verifi ed using quality control plots that visualize sig-
nals for all analytes of each sample across the dataset (e.g., Fig.  10.6 ), ensuring that 
the overall distributions of normalized analyte signals in each sample are 
equivalent.

   In addition to normalization, another consideration is how to utilize peptide frag-
ment data to best estimate overall peptide intensity within the sample. Current strat-
egies most frequently use the MS/MS signals for quantifi cation of peptides by 
DIA-MS, because MS/MS data in DIA-MS may be less susceptible to chemical 
noise and interference (given their somewhat reduced complexity) relative to MS1 
signals. This strategy raises the question of  how many  and  which  fragment XICs 
should be used to best approximate peptide intensity for the sample. Short peptide 
fragments (e.g., y1-3 and b1-3 ions) are often non-specifi c and subject to interfer-
ence from other co-eluting peptides, which could skew intensity estimates for a 
peptide. Accordingly, these more non-specifi c peptide fragments are usually not 
ideal for quantifi cation. Random interference in peptide fragment signals can also 
occur, and is especially problematic if an interfering signal is not uniform across 
sample replicates and therefore affects the calculated intensity of a peptide fragment 
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  Fig. 10.6    Example demonstrating data normalization in DIA-MS experiments. The overall distri-
bution of protein signal intensities, as calculated from peptide signals, are shown without normal-
ization ( left panel ) and following median normalization ( right panel )       
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in one sample disproportionately relative to another (Fig.  10.7a ). The simple sum-
ming of fragment XIC values to estimate peptide intensity does not account for 
these interference issues, and could contribute to problematic increases in variance 
and/or type 1 or type 2 errors when determining proteomic abundance differences 
between experimental groups. One strategy used to mitigate the infl uence of ran-
dom chemical interference is to sum only the top 2 or 3 fragments with the highest 
intensity values to represent a peptide [ 19 ], the assumption being that the highest 
intensity fragments will be more robust to minor interference than lower intensity 
fragments. More mathematically sophisticated approaches are also now emerging 
which include identifying outlier fragments by examining the correlations and 
intensity pattern between fragments of the same peptide, and either down-weighting 
or removing outlier fragments in the calculation of overall peptide abundance [ 18 , 
 20 ,  21 ]. Inclusion of the MS1 XIC for the intact peptide can also provide orthogonal 
quantitative information and aid in the identifi cation and accurate quantifi cation of 
peptides and their outlier fragments [ 22 ].

   Recently released statistical processing tools such as the MSSTATS “R” package 
[ 20 ] provide software workfl ows to process DIA-MS data for peptide or protein- 
level abundance inference, model random and experimental variance, perform 
experimental comparisons and signifi cance analysis, and generate graphical 
 visualization of data for further analysis and dissemination. Each offers options for 
handling some of the major considerations in DIA-MS data analysis discussed 
above. The comprehensiveness and usability of the “MSSTATS” package is an 
important advancement for the fi eld, and provides an excellent framework and 

  Fig. 10.7    Examples of problematic issues for DIA-MS quantifi cation. Informatic processing of 
DIA-MS data should include screening for fragment XICs with obvious interferences ( a ) and situ-
ations where certain fragments are missing completely due, for instance, to low signal strength or 
other interference       
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foundation from which to continue to build and critically test bioinformatic and 
biostatistics approaches for accurate and reproducible proteome mapping by 
DIA-MS. 

 As an additional and exploratory note, the richness of the datasets generated by 
DIA-MS enables not only careful analysis of fragment data for optimized peptide- 
level abundance calculation, but also the potential for detecting systematic changes 
the peptides detected from a given protein. These systematic aberrations may indi-
cate the presence of a novel PTM state or protein isoform in one set of biological 
samples relative to another. This potential in DIA-MS analysis represents a fascinat-
ing capability for proteome analysis and discovery of novel proteoforms unique to 
specifi c disease conditions, genetic backgrounds, or biological treatments. 

 A fi nal issue to consider for quantitative proteomic analysis by DIA-MS is the ques-
tion of how to select the peptides in the library that will be used for estimating protein 
level abundance in the full experimental dataset. One possibility is to include all peptides 
that were observed in a given sample in order to provide protein level intensity, however 
it may be important to take care to only use peptides observed in all replicates of a data-
set for protein level inferences. While in theory the DIA-MS approach results in all 
observable peptides detected in all replicates of a dataset, in practice issues of signal-to-
noise and dynamic range still result in the reliable detection of a peptide in some repli-
cates and/or samples but not others. In these cases it is important to decide whether a 
potential signal should still be extracted and used as a quantitative value for a peptide 
even if that peak group failed to generate a score suffi cient for confi dent identifi cation of 
that peptide in some samples relative to others. This question remains somewhat open in 
the fi eld and the answer may ultimately depend on the statistical methods used to further 
process the data. As with the targeted analysis approach, the statistical processing and 
roll-up of DIA-MS data may borrow somewhat from the targeted fi eld, and strategies for 
the extremely accurate quantifi cation of peptides and their corresponding proteins by 
MRM may be appropriately modifi ed and adapted to large-scale screening by 
DIA-MS. Overall, it should be stated that the approaches and methods for analysis of 
DIA-MS data are still emerging and rapidly evolving, and require continued develop-
ment and implementation of powerful algorithms and computational methods to man-
age variability within the data and accurately capture the similarities and differences in 
peptide and protein abundance between the biological groups of an experiment.  

    Summary and Conclusions 

 Advancements in instrument speed, data acquisition strategies, and data analysis meth-
ods are collectively driving the cutting edge towards new boundaries and capabilities 
for proteome quantifi cation and mapping with mass spectrometry. The recent develop-
ments in DIA-MS provide unique advantages that will complement and extend upon 
the well established and also still rapidly evolving contributions of DDA-MS. Some of 
the strongest enthusiasm for DIA-MS may be derived from its particular strengths and 
potential for high-throughput, reproducible and reliable quantitative mapping of 
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proteome data across extremely large numbers of samples. Minimization of instru-
ment-derived stochasticity in peptide identifi cation with DIA-MS over DDA-MS will 
make even more clear the importance of precision and reproducibility in sample prepa-
ration procedures and appropriate experimental design (e.g., blocking, randomization), 
and researchers setting out to undertake large-scale DIA-MS experiments should con-
sider these factors carefully. Acquisition and analysis methods for DIA-MS proteomics 
are undergoing constant adaptation and optimization, and this process will continue to 
improve sensitivity and specifi city of the method in coming years. Strategies to sum-
marize the quantitative data extracted by DIA-MS in order to provide the most accurate 
and informative estimate of peptide and protein abundance are an open area of focus 
for the fi eld, and there are a number of unanswered questions that must be addressed in 
ongoing research. Researchers should carefully consider the advantages and limita-
tions of DIA-MS relative to other acquisition strategies and select the most appropriate 
method to achieve their experimental goals.     
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    Chapter 11   
 Labeling and Label-Free Shotgun Proteomics 
Quantifi cation in the Research 
of Cardiovascular Diseases                     

     Xiaomeng     Shen     ,     Shichen     Shen     , and     Jun     Qu     

    Abstract     Shotgun proteomics, comprising of labeling and label-free strategies, 
have expanded rapidly in the past decade and substantially advanced cardiovascular 
research. Employing liquid chromatography coupled to tandem mass spectrometry 
as the tool, shotgun proteomics enables unbiased, high-throughput quantitative 
analysis of proteome-wide alterations in protein abundance, and therefore contrib-
utes signifi cantly to the elucidation of the mechanisms underlying cardiovascular 
diseases (CVD) and the discovery of potential cardiac biomarker candidates. 
Promising though, further technical improvements are desirable for overcoming 
technical challenges and ensuring successful application in cardiovascular medi-
cine. Here we elaborate technical aspects of both labeling and label-free shotgun 
proteomics, including fundamental rationales, limitations, and considerations in 
CVD proteomics research. Several major challenges and corresponding solutions 
are also discussed regarding the application of shotgun proteomics in CVD research. 
Furthermore, we illustrate the applications of shotgun proteomics in cardiovascular 
research with the emphasis on disease biomarker discovery and mechanism investi-
gation on both subcellular and whole tissue levels, post-translational modifi cation 
(PTM) characterization.  
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      Introduction: Proteomics and Cardiovascular Disease (CVD) 

 Cardiovascular disease (CVD) represents one of the top causes for morbidity and mor-
tality among global population, imposing tremendous burdens on public health and 
medical resources [ 1 ]. Under such circumstances, investigations to characterize CVD 
mechanisms and to discover effective clinical biomarkers for diagnostic, staging and 
therapeutic purposes are urgently needed, which would signifi cantly ease the diffi cul-
ties in selection of therapies, patient management, and risk stratifi cation [ 2 ]. 
Conventionally, these studies are performed in a hypothesis-driven paradigm based on 
predicted or observed targets in clinical or pre-clinical trials, and ligand binding assays 
(LBA) are often selected as the experimental measure [ 3 ]. Despite the great success 
achieved, such studies turn out to be suboptimal due to their demands for time and 
labor, as well susceptibility to hard-to-predict biases [ 4 ]. In contrast, discovery-based 
“-omics” methods (e.g. genomics, transcriptomics, proteomics) offer a viable alterna-
tive with far more comprehensive and unbiased insights into the molecular basis of 
cardiac physiological and pathological adaptations in normal and disease conditions, 
which may signifi cantly promote the research mentioned above. For instance, genom-
ics and transcriptomics approaches have been utilized to generate data with high-
throughput and large capacity for CVD research [ 5 ]. However, one signifi cant drawback 
for these strategies is that changes on the messenger RNA level may not be well 
refl ected on the protein level [ 6 ,  7 ], rendering the results obtained inaccurate since 
proteins are the fi nal executors of biological functions. Proteomics, on the other hand, 
provides a comprehensive view of proteins on the proteome-wide scale, thus offering 
vital information on top of genomics and transcriptomics analysis. Furthermore, unlike 
genomics and transcriptomics, which derive heavily on sequencing, proteomics char-
acterize various facets of a proteome, including protein identify, protein abundance, 
cellular localization, protein-protein interactions, post-translational modifi cations 
(PTM), and protein turnover in specifi c conditions. While more comprehensive infor-
mation could be obtained, this also renders proteomics substantially more challenging 
[ 8 ]. In the past decade, to address the technical challenges, new liquid chromatography 
(LC)-mass spectrometry (MS) technologies, sample preparation techniques and bioin-
formatics tools have been developed, which remarkably advanced proteomics studies. 

 Benefi ting from the technological advancements, cardiovascular proteomics appears 
to be a highly dynamic and rapidly developing fi eld, dramatically advancing our knowl-
edge of the complex pathophysiological states in hearts with an enormous potential to 
rapidly promote thorough understanding of disease mechanisms and to enhance diag-
nostics. Shotgun proteomics, (i.e. “bottom-up proteomics”) the most common type of 
proteomics strategy employed in cardiovascular proteomics, is conducted by analyzing 
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peptides derived from proteolytic digestion of protein mixtures [ 9 ]. Quantitative shot-
gun proteomics compares the relative protein abundances between case and control 
proteomes based on quantifi cation at peptide level [ 10 ,  11 ]. This hypothesis-free strat-
egy is frequently applied to identify signifi cantly altered proteins in a system undergo-
ing physiological or pathological changes, which could be either spontaneous or 
induced. Such a strategy contributes signifi cantly to CVD biomarker discovery and 
depicts the myocardial “blueprints” underlying pathological conditions such as isch-
emia and myocardial infarction (MI). Strategies involved in quantitative shotgun pro-
teomics and technical challenges/solutions will be discussed in details in the subsequent 
sections, including both label-free and labeling methods. The applications of shotgun 
proteomics in CVD research will also be covered, with an emphasis on the discovery of 
potential biomarkers, characterization of disease mechanisms in subcellular and whole 
tissue proteome, and PTM analysis of CVD proteome.  

    Technical Aspects of Labeled and Label-Free Shotgun 
Proteomics 

 In a typical quantitative shotgun proteomics study, multiple proteomes will be com-
pared with each other to identify signifi cantly altered proteins. Identifi ed with little 
or even no prior knowledge, these proteins could eventually be translated into 
potential biomarker candidates or key regulatory proteins associated with particular 
pathophysiological conditions. To this end, researchers have to fi rst determine the 
quantitative approaches to be used (i.e. labeling or label-free). Peptide samples for 
LC-MS analysis are then prepared by protein extraction, reduction, alkylation and 
digestion. Optional protein/peptide fractionation is introduced either before or after 
protein digestion to increase the depth of the analysis. After LC-MS analysis, pep-
tide/protein identifi cation is fulfi lled by comparing the MS/MS spectra generated 
from fragmented peptides against theoretical MS/MS spectra derived from  in silico  
digestion of a specifi c protein database. Some popular searching engines include 
SEQUEST, MASCOT, OMSSA, MS-GF+, etc. Quantitative information can be 
retrieved by inputting the data into specifi c software depending on the strategies 
determined at the beginning of the study. A generic workfl ow of quantitative shot-
gun proteomics is shown in Fig.   11.1  .

      Labeling Proteomics 

    Labeling Strategies 

 Isotope labeling approaches are ubiquitously employed in quantitative shotgun pro-
teomics. These methods include chemical labeling, isobaric tags labeling, enzy-
matic labeling and metabolic labeling. Chemical labeling conjugates isotope-coded 
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reagents to reactive groups on the side chains of amino acids or to peptide termini, 
including isotope-coded affi nity tag(ICAT) [ 13 ], isotope-coded protein label (ICPL) 
[ 14 ] and dimethyl labeling [ 15 ]. Isobaric tags labeling utilizes specifi cally designed 
tags comprising of a unique mass reporter, and some examples are Isobaric Tags for 
Relative and Absolute Quantifi cation(iTRAQ) [ 16 ], Tandem Mass Tags(TMT) [ 17 ], 
and Neutron-encoded Mass Signatures(NeuCode) [ 18 ]. Enzymatic labeling (i.e.  18 O 
labeling) is a labeling technique in which the carboxyl groups of peptides are labeled 
with  18 O in H 2  18 O [ 19 ]. Metabolic labeling methods take advantage of medium or 
diet enriched in stable isotopes to feed living organisms, in which the isotope-coded 
amino acids are incorporated into the proteome of organisms via protein synthesis. 
Two major types of metabolic labeling strategies include Stable Isotope Labeling by 
Amino Acids in cell culture (SILAC) [ 20 ] and Stable Isotope Labeling of Amino 
acids in Mammals (SILAM) [ 21 ]. The conceptual schemes of the four different 
types of labeling approaches were illustrated in Fig.  11.2 . For most of the labeling 
techniques, the stable isotope labels exhibit considerably similar properties, thus 
enabling the correction of experimental variability during the labeling step. By sam-
ple mixing and prefractionation, in-depth quantitative analysis of samples from 
multiple conditions could be achieved [ 22 ]. Lengqvist et al. have extensively 
reviewed different types of labeling strategies [ 23 ]. In CVD proteomics research, 
chemical labeling methods are the preferred method owing to their capability of 
facile labeling of various types of sample proteomes (e.g. tissues and body fl uids).

       Limitations and Experimental Considerations of Labeling Proteomics 

 Different labeling methods have their innate pros and cons, depending on the physi-
cochemical features of each type of labeling species. For example, ICAT only reacts 
with cysteine; hence using ICAT method can signifi cantly reduce sample complex-
ity. However, this strategy eliminates all non-cysteine-containing peptides, which 
also results in low proteome coverage. Besides, the use of ICAT could cause reten-
tion time shift between light and heavy peptides, mainly because of the deuterium 
labeling [ 24 ]. Dimethyl labeling is an easy and less expensive strategy, which intro-
duces 4 Da mass difference by labeling primary amine (i.e. N-terminus and Lys) 
with dimethyl modifi cation using formaldehyde [ 15 ]. Technical hurdles of dimethyl 
labeling include small mass difference and retention time shift [ 8 ]. iTRAQ and 
TMT compose of three structure elements: a unique mass reporter, a cleavable 
linker and an amine-reactive group [ 16 ,  17 ]. Labels contain a multiplexed set of 
reagents with the isobaric masses but different report ions; after labeling, peptides 
carrying each individual type of label in the mixture represent proteins from sam-
ples under certain biological conditions. During MS/MS scan, the linker is frag-
mented and reporter ions are produced, the intensities of which represent the relative 
abundance of the peptide from individual samples. To be noticed, these labels 
reduce data analysis complexity comparing to non-isobaric labeling techniques, 
since all labeled peptides are co-eluted and co-isolated for MS/MS scan [ 25 ]. Both 
iTRAQ and TMT have relatively large multiplexing capacity (i.e. 8-plex iTRAQ 
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and 10-plex TMT), which allow the comparison of multiple biological samples 
simultaneously. So far TMT and iTRAQ are the most commonly used isotope label-
ing strategies in quantitative proteomics. However, technical drawback still remains 
for iTRAQ and TMT, including lack of quantifi cation accuracy and interference 
from coeluting peptides with close m/z [ 25 ,  26 ]. Strategy to overcome these prob-
lems includes MS3 analysis, as proposed by Ting et al. [ 27 ].  18 O labeling is less 
widely used probably due to the variability in  18 O incorporation and the small mass 
shift of 2 Da, which may not be enough to separate isotope patterns between the 
labeled- and non-labeled peptides and thereby rendering data analysis quite chal-
lenging [ 28 ]. Metabolic labeling is considered to have the highest quantitative accu-
racy, since the samples can be mixed at protein level prior to digestion, which is 
likely to introduce the least experimental biases and variation [ 22 ]. SILAC and 
SILAM can be used in cell cultures, model organisms such as mice, drosophila, 
plants, etc. Nonetheless, metabolic labeling is not as frequently used as the chemical 
labeling methods, because of the high costs of isotope-enriched reagents and infea-
sibility of metabolically labeling human subjects. Additionally, as there are very 
few dividing cell culture systems for ventricular cardiomyocytes, SILAC has lim-
ited application in cardiovascular research using cell lines as sample origins [ 29 ]. 
Examples utilizing metabolic labeling for CVD proteomics in animal models 
include study of cardiac morphogenesis in zebra fi sh [ 30 ] and profi ling of mouse 
heart tissues [ 31 ].   

    Label-Free Proteomics: Ion-Current (IC) and Spectral Counts 
(SpC) 

    Quantitative Strategies of Label-Free Proteomics 

 As an alternative to labeling strategy, label-free approaches abandon sample label-
ing steps and therefore eliminate several drawbacks of labeling approaches, e.g. 
cost-prohibitive labeling reagents and uneven labeling effi ciency. The fundamental 
basis of label-free approaches is that LC-MS intensity features and corresponding 
peptide abundance are linearly correlated [ 32 ]. According to the intensity feature 
chosen for quantifi cation, label-free strategy could be classifi ed into those based on 
MS1 precursor ion intensity (ion current; IC) [ 33 ,  34 ], those based on the frequency 
of identifi ed MS2 product ion scans (spectral counting; SpC) [ 35 ,  36 ], and those 
combining both features [ 37 ,  38 ]. The schematic workfl ow of label-free quantitative 
proteomics is shown in Fig.  11.3 .

   For SpC-based methods, protein quantity is correlated with the frequency of pep-
tide spectral matches (PSM) of a specifi ed protein. Until recently, SpC has been the 
method-of-choice for label-free approaches in cardiovascular proteomics [ 39 ], 
owing to its conceptual simplicity, easiness in implementation, decent tolerance for 
variability in sample preparation steps, and suitability for LC-MS analysis under 
low resolution [ 40 ]. Additionally, SpC employs less complicated normalization and 
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statistical analysis than the IC-based approaches [ 8 ], e.g. protein abundance 
index(PAI) [ 41 ] and exponentially modifi ed protein abundance index(emPAI) [ 42 ] 
were developed to characterize protein abundance using SpC data. Furthermore, the 
needs to perform run-to-run alignment of peptide retention time are eliminated for 
SpC-based methods, which is especially advantageous when the analysis is oper-
ated on a low-resolution mass spectrometer or an LC system with poor reproduc-
ibility. Consequently, several comparative studies employing low-mass-resolution 
LC-MS data have made conclusive remarks that for the detection of protein abun-
dance changes in complex samples, SpC surpasses other label-free methods in 
terms of sensitivity and precision [ 40 ,  43 ]. 

 The procedures of IC-based methods include extraction and integration of all 
chromatographic peak areas belonging to a given protein [ 44 ]. As IC-based meth-
ods work more effi ciently under high mass resolution, the recent rapid-growing 
availability of high-resolution MS analyzers such as Fourier Transform-ion 
Cyclotron Resonance (FTICR) and Orbitrap has dramatically boosted the applica-
tion of this type of label-free methods [ 45 ]. The use of high-resolution analyzers 
allows extraction of peptide IC within a very narrow m/z range (e.g. <0.02 Th), 
substantially reducing chemical noises and improving sensitivity as well as specifi c-
ity of IC-based quantifi cation [ 46 ]. When data is acquired from high-resolution 
LC-MS analysis, IC-based methods are markedly superior to SpC in terms of sensi-
tivity, accuracy, reproducibility and missing data levels [ 39 ,  47 ]. This signifi cant 
discrepancy can be attributed to several defi ciencies of SpC: (1) Dynamic exclusion 
of precursor ions, a widely practiced feature of mass spectrometers to improve the 
sequencing of low-abundance peptides, severely undermines quantifi cation by spec-
tral acquisition; (2) MS/MS acquisition of low abundant peptides is often sup-
pressed by peptides of higher abundance; (3) Quantitative counting for 
lower-abundance proteins/peptides often results in “boundary” counts of “1” and 
“0”, which precludes accurate quantifi cation [ 43 ,  48 ]. In comparison, the IC-based 
quantifi cation method relies on the measurement of the peak areas of precursor 

  Fig. 11.3    Schematics of label-free quantitative strategies: Spectral Counting (SpC) and ion 
current(IC) based method. SpC strategy quantifi es proteins by frequency of peptide spectral 
matches of each protein, while IC- based method utilize chromatographic peak areas associated to 
each protein       
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peptides (i.e. using MS1 signals), thus circumventing the above-mentioned prob-
lems associated with MS/MS scan. 

 To be noticed, data-dependent analysis (DDA), in which the MS selects the most 
abundant ions for product ion scans, are commonly utilized for most MS analysis in 
label-free proteomics. One limitation of this strategy is that it biases against low 
abundance peptides, resulting in low dynamic range and inconsistent identifi cation 
across LC-MS runs [ 8 ]. By comparison, data-independent analysis (DIA) acquires 
MS/MS data based on sequential isolation and fragmentation of defi ned MS1 win-
dow without pre-selection of precursor ions according to their abundance. DIA 
methods on Q-TOF(i.e. SWATH) [ 49 ] or Q-Exactive [ 50 ] MS were developed and 
applied to label-free quantitative proteomics. Though the proteome coverage of 
DIA methods is to be further improved, the approach constitutes a promising branch 
of label-free techniques.  

    Limitations and Experimental Considerations of Label-Free Proteomics 

 Although the basic idea of label-free strategy is quite straightforward, various factors 
must be taken into consideration in order to guarantee accurate and precise quantita-
tion. Furthermore, IC-based strategy is technically more demanding than SpC. As no 
labels are introduced during sample processing and LC-MS analysis, high reproduc-
ibility of these steps is required in order for satisfactory outcomes. As recently demon-
strated by Nouri-Nigjeh et al., utilization of a long column coupled with large ID trap 
achieved highly reproducible and comprehensive LC separation, resulting in very 
small deviation of the retention times of base peaks among 60 consecutive runs (i.e. 
4.1–9 % RSD). The high experimental reproducibility notably contributes to the excel-
lent quality of this large-scale label-free proteomics studies [ 51 ]. Another important 
consideration for label-free quantitative proteomics experiments is the development of 
an optimal data analysis tool for the reliable acquisition of quantitative results. Despite 
the advances in proteomics software, such a package still remains unavailable. A typi-
cal workfl ow of IC-based proteomics data analysis includes chromatogram alignment, 
quantitative feature detection and calculation, matching of quantitative features to iden-
tifi ed spectrums, normalization, summarization and clean-up. All of these steps require 
careful evaluation and optimization. Several commercial software packages include 
Progenesis (Waters), Elucidator (Rosetta Biosoftware) and Expressionist (Genedata). 
Open-source software packages encompass MaxQuant, OpenMS, SuperHirn, Census 
and Skyline. For detailed description of proteomics software available, refer to [ 52 ].   

    General Comparison of Labeling and Label-Free Methods 

 Labeling methods appends universal quantitative references (i.e. internal standards) 
for all peptide species eligible for labeling and detection, thereby offering accurate 
quantifi cation of samples involved given that the labeling step is effi cient and 
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reproducible enough. The use of different internal standards allows sample mixing 
and prefractionation/enrichment prior to LC-MS analysis, which considerably 
reduce sample complexity and dynamic range of protein concentration [ 23 ]. Mixing 
of samples also allow the concomitant analysis of multiple samples in one LC-MS 
run, signifi cantly shortening the instrument time. Labeling strategy is extremely 
useful in applications such as PTM quantifi cation, in-depth proteome discovery 
(e.g. samples subjected to multiple fractionations) and proteome turnover study. 
However, labeling methods fall short in terms of that it is cost-prohibitive and can 
only handle small number of replicates due to the limited tag versions [ 53 ,  54 ]. 
Therefore, labeling proteomics may not be an ideal strategy to investigate a large 
number of biological samples, as usually required in pharmaceutical and clinical 
studies. On the other hand, label-free proteomics is capable to deal with a large 
number of replicates in one set in a cost-effective way and with simpler sample 
preparations [ 37 ,  45 ], while the data analysis and quality control is challenging, 
which needs careful optimization and evaluation.  

    Technical Challenges and Solutions in CVD Proteomics 
Research 

 From a technical perspective, an ideal method for shotgun proteomics should pro-
vide ( i ) extensive proteomics coverage, ( ii ) achieve protein quantitation with high 
sensitivity, accuracy and precision, ( iii ) the ability to reliably compare multiple bio-
logical replicates without missing values ( iv ) low false-positive biomarker discov-
ery. To meet the abovementioned requirements, researchers need to take specifi c 
experimental consideration in the regards of: (1) Sample handling; (2) Sample com-
plexity; (3) Missing value; (4) False positives. This section discusses shotgun pro-
teomics technique with the considerations of above-mentioned aspects, especially 
experimental procedures applied in CVD proteomics research. 

    Sample Handling 

 For shotgun proteomics, exhaustive, effi cient and reproducible extraction of pro-
teins from biological samples despite with diverse physical and chemical properties 
is desired. Preparation of cardiac tissues for proteomics study is particularly chal-
lenging, due to the fact that a large portion of myocytes are made up of membranous 
compartments (e.g. sarcolemma, mitochondrial membrane and sarcoplasmic reticu-
lum), myofi laments and mitochondria [ 29 ]. Approximately 80 % of the inner mito-
chondrial membrane mass is attributed to membrane proteins [ 55 ]. Hence, a sample 
preparation method to effectively disrupt membranous compartments, thoroughly 
extracting membrane-associating proteins, and adequately cleaning the samples 
with minimal levels of peptide loss, is urgently needed. The use of strong lysis buf-
fer encompassing several types of detergents to effi ciently disrupt membranous 
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compartments and denature proteins has been proved successful in several pieces of 
cardiovascular proteomics studies [ 34 ,  56 ]. As the importance of subcellular pro-
teomics becomes increasingly recognized in cardiovascular proteomics, the selec-
tion of appropriate extraction methods for subcellular compartments becomes a 
prominent issue. Traditional subcellular isolation technique is based on sucrose gra-
dient sedimentation [ 57 ]. Subcellular proteome extraction methods specifi cally 
applied to cardiac tissue have also been developed, e.g. the “In sequence” myofi la-
ment protein extraction method [ 58 ] and the reproducible protocol to purify extra-
cellular matrix from heart tissues [ 59 ].  

    Sample Complexity 

 To more comprehensively reveal changes in proteome abundance, high proteome 
coverage, especially for low-abundance proteins playing pivotal regulatory roles in 
cellular functions, becomes a constant pursuit for shotgun proteomics studies. 
However, this is always impeded by sample complexity (i.e. the wide dynamic 
range of protein concentrations in typical proteomes), making the characterization 
of these low-abundance proteins elusive [ 46 ]. For blood plasma and tissues, which 
are frequently used in cardiovascular proteomics studies, this problem appears to be 
more pronounced, due to the dynamic range of protein concentrations in these two 
types of samples (ten orders of magnitude for blood plasma, six for tissues) [ 60 ]. 
This has far exceeded the achievable dynamic range of current shotgun proteomics 
strategy [ 61 ]). To address this problem, protein depletion/equalization and peptide 
fractionation methods are developed and employed prior to LC-MS/MS analysis to 
reduce the dynamic range of the proteome [ 62 ,  63 ]. Selective depletion of known 
high-abundance proteins or equalization of protein concentrations have been dem-
onstrated most useful for plasma or tissue sample analysis. Depletion of abundant 
proteins such as albumin can be achieved by targeted precipitation using sodium 
chloride and ethanol [ 64 ], disulfi de reducing agents [ 65 ], or by antibody-based 
depletion methodologies such as IgY14/Supermix depletion column [ 66 ]. Widely 
practiced though, antibody-based depletion may cause co-depletion of lower- 
abundance proteins and carry-over [ 67 ]; additionally, these methods are often cost- 
prohibitive and suffer from limited depletion effi ciency due to fi nite antibody 
binding capacity. Strategy to adjust protein dynamic range using Combinational 
Peptide Ligand Library(CPLL) serves as a cost-effective approach. CPLL depletes 
high-abundance proteins while simultaneously enriching low-abundance proteins. 
The drawback of this method is that a protein must be able to bind one of the ligands 
in the library in order for retention, which may cause compromised proteome cover-
age. While these compression procedures of protein concentrations signifi cantly 
facilitate that reinforcement of protein coverage in blood plasma, quantitative analy-
sis still remains a daunting challenge due to the lingering high complexity and wide 
dynamic range of the sample [ 29 ]. For tissue samples, the dynamic range is also far 
greater than the achievable one via the majority of quantitative proteomics 
approaches, while most depletion measures are barely usable [ 45 ]. The scenario 

11 Labeling and Label-Free Proteomics in Cardiovascular Research



258

could be even worse for cardiac tissues, which probably have even wider dynamic 
range of protein concentrations compared with most of other tissue types [ 29 ]. To 
cope with this problem, peptide fractionation prior to LC-MS/MS analysis is intro-
duced, which could signifi cantly improve comprehensiveness and reduce dynamic 
range of peptides. Peptides fractionation methods mainly encompass strong anion 
exchange(SCX) [ 68 ], weak anion exchange(WAX) [ 69 ], high-pH RPLC separation 
[ 70 ], and zwitterionic(ZIC)-hydrophilic interaction liquid chromatography(HILIC) 
at median pH [ 71 ]. Combination of fractionation separation in multi dimensions has 
been proved to further enhance proteome coverage [ 72 ].  

    Missing Value 

 According to literature, shotgun proteomics suffers from poor reproducibility in iden-
tifi cation (i.e. overlap of peptide identifi cation across technical replicates is typically 
<60 %) [ 73 ], which leads to high levels of missing values for peptide/protein quantifi -
cation [ 38 ,  50 ]. As a result, datasets collected from complex biological or clinical 
samples in a large batch always have high rate of missing data [ 74 ]. The missing data 
represents a major problem for reliable and comprehensive proteomics analysis, espe-
cially in large-scale clinical investigations. To meet the increasing needs of compre-
hensive quantifi cation of proteomes across a large number of biological or clinical 
replicates, several strategies to address the missing value problem have been pro-
posed: (1) missing value imputation; (2) DIA based strategy; (3) IC-based optimized 
proteomics workfl ow. Missing value imputation is a common practice in proteomics 
data analysis, where researchers use observed values (i.e. lowest or mean) to impute 
the missing data [ 75 ]. Unfortunately, the imputed values do not refl ect the real biologi-
cal variation and may result in inaccurate quantitation. DIA-based method, such as 
SWATH, is popular, due to its data-independent nature that greatly improve identifi ca-
tion reproducibility [ 49 ,  50 ]. However, some limitations of DIA methods also exist: 
DIA data is more diffi cult to analyze than other types of proteomics data [ 76 ]; a com-
prehensive spectral library is required. Moreover, the proteomic coverage by DIA is 
generally poor compared to other methods. IC-based quantitative proteomics work-
fl ow employs MS1 signals as quantitative features, which are acquired in a data-inde-
pendent manner. It has been demonstrated that this strategy has high quantitative 
reproducibility and very low levels of missing data [ 39 ,  45 ,  51 ,  77 ].  

    False Positives 

 False-positive discovery of signifi cantly altered proteins is a common yet severe 
problem for quantitative shotgun proteomics [ 78 ], resulting in false biological leads 
and compromising the validity of the study. Biological and technical variability are 
the main contributing factors to this problem [ 78 ,  79 ]. Biological variability accumu-
lates when variations among individual subjects are high and/or an insuffi cient num-
ber of biological replicates are employed. This type of variability may be further 
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amplifi ed by pooling all biological replicates for quantifi cation, which is commonly 
practiced due to technical limitations such as limited multiplexing capacity for label-
ing techniques, and diffi culties in sustaining analytical reproducibility for a long 
period of time using label-free methods [ 80 ,  81 ]. Technical variability will also exac-
erbate the false-positives discovery problem via (1) The “multiple hypothesis test-
ing” problems when a large number of inter-group signifi cance test are performed 
[ 82 ] and (2) the susceptibility of sample preparation steps and LC-MS analysis 
against intrinsic variations and systematic errors, more frequently observed for 
lower-abundance proteins [ 79 ]. Moreover, the noisy signals acquired for lower-abun-
dance peptides may also result in poor reliability for relative quantifi cation [ 83 ]. 

 In face of the false-positive discovery issue, various measures have been devised to 
alleviate biological and technical variability. For instance, the impacts of biological 
variability may be reduced by involving multiple biological replicates, which can be 
potentially accommodated by label-free methods as discussed previously. The impacts 
of technical variability, on the other hand, may be  diminished by the introduction of 
reproducible and quantitative sample preparation/LC-MS procedures, as well as the 
optimization of data processing procedures. Furthermore, practical measures for the 
estimation and control of false altered protein discovery rate (FADR) needs to be 
developed. In shotgun proteomics, the applicability of parametric algorithms such as 
Benjamini and Hochberg [ 84 ] and q-values method [ 85 ] are to a large extent limited 
[ 82 ], owing to the fact that the assumptions these algorithms rely on are usually not 
fulfi lled in proteomics data [ 86 ,  87 ]. Evaluation of the FADR empirically enables 
estimation of false discoveries by experimentally measuring the negative distribution, 
providing a more reliable alternative to the statistical approaches. Two exemplary 
FADR control methods utilizing this type of strategy are listed below. An experimen-
tal null-based strategy evaluates and controls FADR in proteomics analysis by employ-
ing experimental null experiments (i.e. control vs. control experiments), which is 
described and validated in detail recently [ 88 ]. This method provides a straightfor-
ward and reliable means for the assessment of false- positive discovery rate, mean-
while facilitating the optimization of proteomic methods for biomarker discovery. The 
other method estimates FADR by combining the  experimentally measured null distri-
butions and Bayesian approach in labeling proteomics strategy [ 89 ].    

    Application of Shotgun Proteomics in CVD Research 

    Biomarker Discovery in Tissue and Plasma 

 Feasible to compare protein abundance in multiple proteomes, shotgun proteomics 
offers a viable approach regarding the discovery of potential biomarker candidates 
for diagnostic purposes and therapeutic evaluation. Currently there are fi ve estab-
lished biomarkers used among coronary artery diseases, including (1) cardiac tropo-
nin I and T for acute coronary syndromes and myocardial infarction; (2) c-reactive 
protein for infl ammation in atherosclerosis; (3) B-type natriuretic peptides and its 
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N-terminal form for congestive heart failure. Though fruitful clinical outcomes are 
obtained from the use of these biomarkers, limitations still remain and hence there 
are urgent demands to develop novel biomarkers improving risk stratifi cation and 
management in CVD patient subgroups [ 90 ,  91 ]. 

 Theoretically, samples from human subjects shall be used for biomarker discov-
ery, owing to the fact that the information generated in this way is most 
 clinically- relevant. In reality, however, several major limitations may prevail over 
the advantages if human samples are selected for biomarker discovery, such as large 
individual variability [ 92 ], as well as diffi culties in investigating certain cardiovas-
cular events (e.g. reversible ischemia and hibernating myocardium) in patients [ 93 ]. 
Therefore, several well-established animal disease models serve as the substitutes 
for human patients in biomarker discovery study. These models include mice [ 94 ], 
rat [ 95 ], primate [ 96 ] and swine [ 97 ]. 

    Tissue Biomarkers 

 Due to the technical cumbersomeness of plasma proteomics, myocardial tissues are 
selected as an alternative for biomarker discovery, since proteins may be secreted 
into circulation under pathophysiological conditions [ 98 ]. Myocardial biopsies and 
post-mortem tissues can both be employed for discovery-based investigation. 
Hammer et al. characterized infl ammatory changes in myocardial biopsies from 
patients with dilated cardiomyopathy using label-free proteomics [ 99 ]. 174 proteins 
were determined to be altered between 10 patients vs. 7 healthy counterparts, and 
these proteins were found to be closely involved in mitochondrial and cytoskeleton 
remodeling. Another label-free analysis was conducted in postmortem myocardial 
tissues isolated from patients who succumbed to MI [ 100 ]. Two proteins, sorbin and 
SH3 domain-containing protein 2, were proposed to be potential biomarker candi-
dates for early-stage detection of MI. For biomarker discovery using tissues from 
animal models, there are also a number of reports. For example, Holland et al. inves-
tigated the altered proteomes in cardiac tissues from mouse models of Duchenne 
muscular dystrophy [ 101 ]. Using a label-free method, 67 proteins displayed dys-
regulated levels while drastic changes were observed for 17 proteins, including Ig 
chains, transferrin, laminin, nidogen and annexin. More recently, proteomics analy-
sis of the ventricle compartment from non-human primates was conducted using 
TMT labeling and high pH fractionation, in which ~1300 proteins were identifi ed 
and quantifi ed. A total of 21 proteins showed altered abundance which might be 
induced by isoproterenol treatment [ 96 ]. 

 While in-tissue proteomics analysis has contributed signifi cantly to biomarker 
discovery, in-plasma analysis may still excel in-tissue one in terms of clinical rele-
vance, since our ultimate objective is to discover circulating disease biomarkers. 
Therefore, several studies have validated the in-tissue biomarker candidates in 
plasma samples. For instance, Chugh et al. analyzed tissue samples from a murine 
model of heart failure for corresponding biomarkers, and 4 potential candidates 
were verifi ed in both mouse and human blood plasma [ 102 ].  
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    Circulating Biomarkers 

 As mentioned in the technical challenges section, wide dynamic range of protein 
concentrations [ 22 ], as well as the huge biological variability among clinical patients, 
are the two biggest roadblocks for the discovery of circulating plasma biomarkers. 
As discussed above, depletion of high-abundance proteins and fractionation tech-
niques can be implemented to alleviate the dynamic range problem. Employing a 
tandem affi nity removal spin column, Jing et al. depleted the top three abundant 
proteins from plasma, which further led to the identifi cation of several potential 
biomarker candidates for coronary artery disease in a transgenic mouse model [ 103 ]. 
In order to achieve more comprehensive proteome coverage, the authors also utilized 
a 2-D LC separation, resulting in the discovery of both known biomarkers and novel 
candidates [ 103 ]. Similar depletion strategy has also been applied for the discovery 
of biomarker candidates in MI [ 104 ] and atherosclerosis patients [ 105 ]. Recently, the 
more powerful IgY14-supermix tandem depletion was introduced, which enabled 
exhaustive depletion of high- and medium-abundance proteins. This strategy was 
incorporated into the proteomics workfl ow by Juhasz et al. used to screen predictive 
markers for near-term MI [ 106 ]. With the established workfl ow, decent analytical 
reproducibility as well as the capability of quantifying trivial changes of low-abun-
dance proteins was realized. Chromatographical fractionation can also be applied to 
reduce the dynamic range of the plasma sample, as reviewed in the technical section. 
For instance, using combined fractional diagonal chromatography, Mebazaa et al. 
identifi ed quiescin Q6 as a candidate biomarker for acute heart failure [ 107 ]. 

 As an alternative to using whole plasma samples, plasma-derived microvesicles 
(i.e. microparticle and exosomes) are also an excellent source for the discovery of 
disease biomarkers [ 108 ], in which the problems associated with whole plasma 
samples could be avoided. Microvesicles enter circulatory system after their release 
in response to various types of diseases, and mediate cell-to-cell communication 
under physicochemical conditions [ 108 ]. Microvesicles can be enriched from 
plasma by sequential centrifugation [ 109 ]. Proteomics profi ling studies on plasma- 
derived microvesicles have led to the discovery of promising biomarkers implicated 
in diagnosis of abdominal aortic aneurysms [ 110 ], clinically manifest vascular dis-
ease [ 109 ] and lacunar Infarction [ 111 ]. The proteomics strategies employed in 
these studies are either label-free or iTRAQ.   

    Mechanism Characterization in Subcellular and Whole 
Tissue Proteomes 

    Subcellular Proteomics 

 In cardiovascular research, shotgun proteomics presents a comprehensive bird’s-eye 
view of the cardiovascular system, which prominently advances our understanding 
of cardiac pathology, diagnosis, and disease staging. This would be extremely 
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benefi cial for the development of therapies against CVD. Previously, shotgun pro-
teomics has been employed for the mechanism interrogation of a number of CVD, 
e.g. irreversible ischemia [ 112 ], diabetic cardiomyopathy [ 113 ,  114 ] congestive 
heart failure [ 115 ], hibernating myocardium [ 34 ,  56 ], aging aorta [ 116 ] and cardiac 
amyloid deposition [ 117 ]. 

 Proteomics characterization of subcellular compartments, such as mitochon-
drion, proteasome, extracellular matrix and myofi laments, has always been of keen 
interests to researchers given the critical biological relevance underlying patho-
physiological changes in these compartments, as well as the sample complexity 
of the whole tissue proteome. As mentioned above, methods to isolate subcellular 
fractions include differential centrifugation, immune-based isolation and membrane 
protein enrichment [ 118 ]. Using differential centrifugation and organelle enrich-
ment, Warren et al. successfully isolated proteins from several subcellular compart-
ments (e.g. mitochondria, nuclei, cytoplasmic fractions, microsomes and sarcomere) 
in rat hearts subjected to regional ischemia, and performed further quantitative 
analysis of these subcellular proteomes. Based on the results, they concluded that 
a four-fold increase of the analytical depth was achieved by applying fractionation 
[ 119 ]. Several widely investigated subcellular proteomes in cardiovascular research 
mainly include mitochondria, extracellular matrix (ECM), and proteasomes, 
while less-extensively studied ones include myofi laments [ 120 ] and membrane 
 proteins [ 121 ]. 

  Mitochondrial Proteome     Comparative profi ling of the mitochondrial proteome 
represents one of the most popular areas in cardiovascular proteomics research for 
the last decade [ 122 ]. Accounting for about 40 % of the volume of a healthy cardio-
myocyte, mitochondria is responsible for ATP generation for contractile function 
and regulation of programmed cell death (i.e. apoptosis). Accumulating evidences 
have demonstrated that CVD progression is closely correlated with altered struc-
tural and functional features of the mitochondria [ 123 ,  124 ]. Using modifi ed SpC-
based method, Zhang et al. quantifi ed protein abundance changes in the mitochondrial 
proteome subjected to ischemic stress [ 112 ]. More recently, Qu et al. performed a 
comparative study of the mitochondrial proteomes from swine models with hiber-
nating myocardium vs. sham in a relatively large sample capacity (n = 12 per group). 
Both IC-based label-free proteomics and 2D-electrophoresis were employed in this 
study, and it turned out that the results from the two methods correlated well while 
IC-based label-free method achieved much better proteome coverage [ 56 ]. Labeling 
methods have also been widely utilized. For instance, Julling et al. used iTRAQ to 
quantitatively characterize the cardiac mitochondrial proteome in streptozotocin- 
diabetic rats [ 125 ] and aged spontaneously hypertensive rats [ 80 ]. Mechanisms of 
type I [ 113 ] and type II diabetic cardiomyopathy [ 114 ], pressure overload-induced 
heart failure [ 115 ], and atrial fi brillation [ 126 ] have also been explored by the appli-
cation of comparative mitochondrial proteomes. Alterations in mitochondrial pro-
teome elicited by systemic perturbations have been reported in estrogen defi ciency 
[ 127 ], diabetic hearts with mPHGPx overexpression [ 81 ] and GSK inhibition [ 128 ]. 
Moreover, Kim et al. have studied the dynamics of mitochondrial proteome by 
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 supplying mice with deuterium-labeled water. According to their results, the turn-
over of 458 mitochondrial proteins was characterized in total [ 129 ].  

  Extracellular Matrix (ECM) Proteome     The extracellular matrix (ECM) pro-
teome is another extensively-studied subcellular proteome. ECM has emerged as a 
dynamic component, providing structural support and participating in signaling 
transductions involved in cardiac injury and remodeling [ 130 ]. Investigation of 
cardiac ECM remains challenging because of the poor solubility of ECM proteins, 
unpredictable PTMs, propensity to form protein complexes and relatively low 
abundance of proteins [ 130 ]. Current studies attempting to investigate ECM pro-
teome mainly include: (1) ECM proteins isolated or enriched from tissues; (2) cell 
culture- derived ECM components from cardiac cells (i.e. secretome). In-tissue 
ECM proteome was fi rst characterized in human aortic samples by Didangelos 
et al. using SpC-based methods [ 131 ]. Similar methodologies have been applied to 
characterize ECM remodeling process in abdominal aortic aneurysms [ 132 ], myo-
cardial ischemia/reperfusion injury [ 97 ] and left ventricle subjected to age and 
SPARC change [ 133 ]. Notably, the authors in these studies have developed three-
step, reproducible protein extraction protocol to decellurize the tissue and solubi-
lize ECM components, which improved the quality of ECM proteome analysis. 
Characterization of cell culture-derived ECM proteome also becomes a popular 
option. For example, using iTRAQ, evaluation of ECM proteins secreted from dif-
ferentiating cells was performed [ 59 ]. More recently, the secretome of rat heart 
myoblast in response to hypoxia and re-oxygenation stress has also been character-
ized using both label- free methods and iTRAQ [ 134 ].  

  Proteasome Proteome     Several studies have extensively characterized the cardiac 
proteasome. As proper protein turnover is critical for cardiac homeostasis, protea-
somal functions and related cellular pathways are important to CVD occurrence 
[ 135 ]. Ping’s group have conducted thorough investigation on cardiac proteasome, 
including proteome dynamics and functioning of cardiac 19S proteasomes using 
 18 O labeling [ 136 ], regulation of acetylation impact myocardial proteasome and its 
function in diseased heart [ 137 ], and more recently, lysine ubiquitination and acety-
lation of human cardiac 20S proteasomes [ 138 ].   

    Myocardial Tissue Proteomics 

 Though technically arduous, investigation of the whole cardiac tissue proteome will 
defi nitely provide more comprehensive and unbiased insights into the molecular basis 
of CVD. For example, using label-free methods, Bousette et al. studied the altered 
proteins in heart tissues from mice subjected to cardiac hypertrophy induced by over-
expression of activated calcineurin [ 94 ]. Sample prefractionation allowed the elimina-
tion of high-abundance contractile proteins in cardiac tissue lysates, and this led to the 
discovery of 1918 cardiac proteins, in which 290 was found to be dysregulated. In 
contrast, for comparison, direct analysis of tissue lysates without fractionation resulted 
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in compromised proteome coverage. As shown in a study in 2013, 662 proteins were 
identifi ed in cardiac tissues subjected to radiation [ 139 ]. Recent proteomics studies 
conducted on whole tissue level include proteomics analysis of left ventricle tissue 
from hypertensive rats after exercise training [ 140 ], laser microdissection sample of 
amyloid deposits from >100 cases [ 117 ] and time-series cardiac tissue samples from 
murine animal models subjected to myocardial infarction [ 95 ].   

    Characterization of Post Translational Modifi cations (PTM) 

 The proteome contains abundant information about PTM, which appears to be an 
asset that is not accessible by merely investigating either genome or transcriptome. 
Protein PTM are responsible for the regulation of numerous key molecular path-
ways and thereby analysis of PTM, presumably in a quantitative manner, will pro-
vide highly valuable information for the understanding of disease-related signaling 
cascades. LC-MS-based shotgun proteomics facilitates PTM analysis with enhanced 
sensitivity and throughput, thus rendering the global characterization of myocardial 
PTM possible [ 141 ]. Till now, >400 different kinds of PTM have been identifi ed in 
higher organisms and this number is still accruing [ 142 ]. PTM can be identifi ed by 
mass shifts triggered by the modifi cations, and the specifi c amino acid residue 
where the PTM localizes can be determined by fragment ions with shifted m/z in 
MS2 spectra. Though the technique is promising, PTM analysis is quite challeng-
ing, because modifi ed peptides are in much lower abundance and more diffi cult to 
identify from MS spectra than unmodifi ed peptides [ 143 ]. Therefore, certain enrich-
ment, fractionation, fragmentation and identifi cation procedures are required to 
employ in PTM proteomics experiments. Extensively characterized PTM in CVD 
proteomics encompass phosphorylation, glycosylation, acetylation, oxidative PTM, 
etc. Of note, more in-depth analysis of PTM is usually accomplished by using sub-
cellular fractions of cardiomyocytes [ 142 ]. 

  Phosphorylation     Protein phosphorylation by kinases represents one of the most 
canonical PTM, playing vital roles in a spectrum of signaling pathways associated 
with myocardial diseases, e.g. contractile function, metabolism, and protein 
 degradation [ 144 ]. Thus phosphorylation is the most widely investigated PTM in 
cardiovascular proteomics [ 141 ]. General phosphopeptide enrichment strategies 
include TiO 2  enrichment, Immobilized Metal Affi nity Chromatography (IMAC), 
the combination of TiO 2  with IMAC or a fraction step (e.g. SCX, SAX, HILIC, 
ERLIC) prior to LC-MS analysis [ 8 ]. The fi rst quantitative phospho-proteomics 
study in cardiovascular system was performed by Boja et al. on porcine cardiac 
mitochondria [ 145 ], by utilizing TiO 2  enrichment and iTRAQ/HCD to quantify 
phosphorylated residues. More extensive phosphoproteomics studies have been 
accomplished in recent years. For instance, Chang et al. enriched phosphopeptides 
using IMAC, followed by iTRAQ to quantify the temporal changes of global protein 
phosphorylation in myocardium from pressure-overloaded mice [ 146 ]. Their results 
implicated that Dynamin-related protein 1 might play a potential regulatory role in 
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cardiac hypertrophy rooting from pressure-overload. Scholten et al. employed 
dimethyl labeling coupled with SCX fractionation and CID/HCD fragmentation for 
the identifi cation of putative CaMKII targets in cardiac tissues from animals over-
expressed with a cardiac-specifi c CaMKII inhibitor [ 147 ]. Lundby et al. sought to 
identify phosphosites linked with beta-adrenergic receptor signaling, and 670 
altered phosphosites were quantifi ed [ 148 ]. Furthermore, using TMT labeling plus 
TiO 2  enrichment, Abdul-Ghani et al. identifi ed 30 differentially expressed phospho-
proteins in response to remote ischemic conditioning [ 149 ].  

  Glycosylation     N-linked glycosylation links glycan to Asn residues within cell surface 
and extracellular proteins. There is growing evidence that protein glycosylation plays 
important roles in mediating normal cardiac functions and survival [ 150 ]. Large-scale 
glycoproteomics profi ling is quite challenging due to glycan heterogeneity, which 
makes identifi cation of glycosylated peptides extremely diffi cult [ 8 ]. Similar with phos-
phoproteomics analysis, glycoproteomics analysis also requires an enrichment step, 
which can be realized by methods such as lectin affi nity, hydrazide coupling, HILIC, 
TiO 2  or boronic acid affi nity [ 151 ]. Initial work of glycosylated peptides analysis in 
myocardium has been presented by Parker et al. [ 150 ]. In their study, peptide samples 
that were derived from ECM portions were fi rstly labeled with iTRAQ, enriched using 
a combined strategy incorporating hydrazide capture, TiO 2  purifi cation and HILIC with 
and without an ion-pairing agent, then submitted LC-MS/MS analysis. In total 1556 
non-redundant N-linked glycosylation sites representing 972 protein groups were iden-
tifi ed, while 80 glycosylation sites showed altered abundance. The most recent glyco-
proteomics analysis was carried out in canine plasma samples, which discovered several 
dozen of glycosylated sites accounting for the differences between treatment models vs. 
heart failure models [ 152 ]. The authors used solid phase extraction (SPE) to enrich 
glycopeptides, a similar strategy employed by an earlier study [ 153 ].  

  Other PTM     Other PTM studied in global cardiovascular proteomics include 
S-nitrosylation [ 154 ], ubiquinitation, acetylation [ 138 ], and citrullination [ 155 ]. Via 
labeling peptides with new isotope coded cysteine thiol-reactive multiplex reagent, 
cysTMT6, Murray et al. specifi cally detected and quantifi ed  SNO- modifi cations in 
human pulmonary arterial endothelia cells [ 154 ]. Recently, Fert- Bober et al. charac-
terized citrullination of myofi laments proteins in heart failure for the fi rst time 
employing SWATH-MS [ 155 ].    

    Concluding Remarks 

 Owing to the drastic technical advancements, application of shotgun proteomics in 
CVD investigation becomes increasingly welcomed in recent years. Several exam-
ples include: (1) Recent advances in high-resolution MS (e.g. Orbitrap, FTICR) 
have boosted both proteomic coverage for identifi cation and accuracy for quantita-
tion; (2) A cohort of depletion/equalization, fractionation and subcellular extraction 
techniques remarkably reduced sample complexity of tissue and plasma samples; 
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(3) High-plex approaches such as 8-plex iTRAQ [ 25 ], 10-plex TMT and 18-plex 
NeuCode [ 18 ] have substantially increased the number of biological replicates that 
can be analyzed by isotope-labeling methods; (4) DIA-based proteomics strategy 
provides a promising solution for large-scale, reproducible proteomics analysis. 

 As discussed in this chapter, in-depth quantitative analysis of plasma and cardiac 
tissue proteomes, as well as proteome-wide characterization of PTM in the cardiovas-
cular system, are made possible by the innovations of quantitative shotgun proteomics. 
That being said, a number of issues remain which may markedly hinder progress of 
cardiovascular proteomics research. Here we highlight two major issues: fi rstly, a 
broad gap exists between the identifi ed protein biomarker candidates and clinically 
applicable biomarkers. The diagnostic utility of the biomarker candidates reported by 
many shotgun proteomics studies are speculated to be quite limited [ 90 ,  91 ], which 
may be caused by the lack of a robust pipeline to interface biomarker discovery with 
clinical validation [ 79 ] and lack of large cohorts of well- characterized clinical sam-
ples. The combination of shotgun proteomics-based discovery workfl ow and targeted 
proteomics-based validation workfl ow may potentially mitigate this gap [ 12 ,  39 ,  156 ]. 
Secondly, CVD proteomics research is still in great need of bioinformatics resources 
for effi cient and high-throughput data analysis, which includes but not limited to: 
protein database of non-model mammals, reliable and robust procedure to identify 
and localize PTM, and pathway analysis tools to unravel perplexing molecular signal-
ing. For instance, as the target of CVD proteomics research is primarily the heart, 
some non-model mammals including pig, canine and rabbit are often employed as 
preferred experimental animals. However, reviewed, annotated protein databases of 
these non-model organisms are quite incomplete, which poses technical diffi culties 
for proteomic researchers. Furthermore, PTM study remains challenging due to the 
lack of robust and reliable procedure to identify and localize medications [ 143 ]. 

 In summary, the rapidly evolving proteomics technique has advanced CVD 
research to a new era, by providing an arsenal of valuable techniques pertinent for 
the investigation of CVD mechanisms as well as the discovery of potential clinical 
biomarkers. These new techniques will continue to renew our knowledge on CVD 
and contribute to the development of better measures for disease management, risk 
stratifi cation and treatment.     
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Chapter 12
Analysis of Proteomic Data

Kai Kammers, D. Brian Foster, and Ingo Ruczinski

Abstract  Whether you are a proteomics specialist or simply an end-user of 
proteomic data, the day will come when you sit down with your dataset, typically a 
list of proteins or protein clusters whose abundance change in one or more 
experimental groups. This protein change is often represented as a ratio or fold-
change. When the euphoria wears off, the nagging questions set in. How accurate 
are your data, really? How confident are you in these changes; are they statistically 
significant? If so, by what statistical test? Are you sure the test is suitable for your 
data? How would you know? Or perhaps more importantly, as a graduate student, 
would you spend the next year following up on a proteomic lead? As principal 
investigator, should you reallocate substantial resources to a new line of enquiry? 
Given the risk of squandering time and money on false leads or dismissing a nugget 
that could change existing paradigms, delving more deeply into the principles of 
robust proteomic analysis, however daunting at first blush, is a good investment.
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�Introduction

This chapter addresses some basic concepts in experimental design, quantitation, and 
statistical analysis. They are presented through the lens of labeling-based quantitation 
using isobaric tags for relative and absolute quantitation (iTRAQ) [1] or tandem mass 
tags (TMT) [2], though many of the concepts should be applicable in the label-free 
arena, particularly quantification by precursor ion currents. In section “Quantitation of
Relative Protein Abundance,” we introduce the median sweep algorithm, which pro-
vides a set of principles for robust quantitation, specifically, (1) data transformation
(logarithmic), (2) adopting median reporter ion intensity as an estimator of protein
abundance, and (3) normalizing each iTRAQ or TMT channel to account for differ-
ences in protein load between samples in the multiplex. In section “Statistical
Inference,” we outline how broad-scope proteomic experiments present an interesting 
set of challenges for statistical analysis. Namely, proteomics experiments typically 
elicit long lists of proteins whose abundances are measured (m). Yet because the num-
ber of iTRAQ/TMT channels currently is limited to 8 or 10, the number of biological
replicates (n) per experimental group tends to be small. This is known as the “high m, 
low n” problem, for which the often-used 2-sample t-test is sub-optimal. Instead, we 
introduce the empirical Bayes-modified t-test. In section “Other Practical
Considerations,” we examine two other more issues that beset large proteomic datasets. 
The first is data missingness and how the nature of the missingness affects statistical 
inference. The second is how performing any statistical test for every protein in a large 
dataset necessarily increases the likelihood that a change in protein abundance may be 
declared nominally significant (p<0.05) by chance alone.We describe how the family-
wise error rate (FWER) and the false-discovery rate (FDR) address this multi-hypoth-
esis testing problem differently. Finally, in section “ACase Study,” we put it all together 
and show that for a simulated large proteomic dataset, the statistical power is optimized
by the empirical Bayesian method, and demonstrate that modified p-values and FDR-
controlled q-values provide a robust rationale for follow-up experiments.

�Quantitation of Relative Protein Abundance

Tables of the raw reporter ion intensities associated with each MS2 mass spectrum 
and each reporter channel can be exported from many proteomics software pack-
ages used to summarize the results of the database search. The “median-sweep” is a
simple yet robust algorithm for spectral signal pre-processing prior to statistical 
downstream analysis [3]. The main goal of these pre-processing steps is to mini-
mize technical or procedural sources of variation in the data, and to maximize
chances of extracting biological value from your proteomics experiments. Briefly
then, the median sweep entails (a) logarithmic transformation of spectral intensities,
(b) summarizing individual protein abundances by taking the median value of the
logarithmically transformed intensities for all spectra belonging to that protein, and 
(c) normalizing relative protein abundances across all channels bymedian-centering.
We consider the merits of each step, in turn.
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�Reporter Ion Intensities and Relative Protein Abundances  
Are Best Considered on a Logarithmic Scale

When comparing reporter ion intensities and relative protein abundances between 
groups such as cases and controls, it is easy and convenient to state the findings as 
fold changes. Saying that a protein is twice as abundant in cases compared to con-
trols is equivalent to saying the protein is half as abundant in controls compared to 
cases. Ratios such as protein fold changes are, therefore, best considered on the
logarithmic scale (base 2 being preferred), since this transformation conveniently
allowsforstatisticalinferenceusingfoldchanges.Notethatlog(a/b)= log(a)− log(b)=−
(log(b)− log(a))=−log(b/a), which means that differences between log abundances
are the same as log fold changes. Statistical approaches like t-tests or ANOVAs use
differences between groups and the logarithmic transformation allows for such a 
statistical assessment based on fold changes. For ease of interpretation, the findings
are usually reported as fold changes in the literature by simply mapping the data 
back to the original scale after carrying out the analyses.

The main reason to use a logarithmic transformation in the signal pre-processing 
is the fact that the variation in the reporter ion intensities typically is a function of 
ion intensity itself (Fig. 12.1, left). When variance increases with the magnitude of 
the signal, we say that errors in the data are multiplicative. This scenario violates 
basic assumptions in many statistical tests, which commonly assume that errors are 
additive (i.e. that the variance is not dependent on the signal magnitude), and this
can render the statistical inference invalid. However, the problem can typically be 
resolved by taking the logarithm of the reporter ion intensities (Fig. 12.1, right). In 
this form, the errors are additive [4] and therefore more tractable statistically.

�Median (log2) Spectral Intensity Provides a Robust Estimate 
of Protein Abundance

After the logarithmic transformation (Fig. 12.2, row 1), the next step is to estimate
the abundance of each protein in each of the reporter channels of the multiplexed 
experiment. As you might imagine, many research papers have been written on the 
matter. Which metric best describes the central tendency of individual protein 
abundance? Is it average spectral intensity? Total spectral intensity? A weighted 
average? If so, what weightings? Are there peptide-specific factors to be consid-
ered that require sophisticated modeling? Fortunately, there is one metric that is as
robust as any model and satisfies Occam’s razor – the spectral median. Restated,
the relative protein abundance (PA) estimate for a particular protein, within a chan-
nel (label), is obtained by taking the median value (Fig. 12.2, row 2, open circles) 
of all median-centered log2 reporter ion intensities (Fig. 12.2, row 2, black lines), 
within the channel, assigned to that protein. This is known median summarization.
Note that this method ignores information about the peptides to which the spectra 
were assigned. Empirically, ignoring the peptide information adds additional 
robustness (Fig. 12.2, row 3), as it reduces artifacts caused by interference.
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Median summarization is highly insensitive to outliers; remember the properties of
a median dictate that nearly half of the assembled signals may be complete rubbish 
withoutunduly interferingwith theprotein estimate!Therefore,median summarization
is likely to be the method of choice for the analysis of minimally fractionated complex 
peptide samples characterized by non-trivial levels of peptide co-isolation interfer-
ence. Specifically, co-isolation interference occurs when more than one peptide
sequence is fragmented inMS2 simultaneously, making it difficult to disambiguate the 
reporter ion signals. In complex samples, depending on the quantitation algorithm, 
this can be a significant source of protein estimation inaccuracy.

�Normalizing the “Protein Load” for Each Labeled Channel  
Is Essential

There are two fundamental premises that apply to most global-scale proteomic 
iTRAQ/TMT experiments. The first is that to adequately compare protein levels
across experimental groups, an equal amount of protein must be present in each of 
the channels of the multiplexed experiment. The second assumption is that the 
experimental treatment causes a relatively small subset of proteins to change signifi-
cantly (or at least, less than 50%). It was once thought that channel-to-channel vari-
ability could be minimized by taking painstaking care in the determination of

Fig. 12.1 Distributions of Spectral Intensity and Variation. Sample means (x-axis) versus sample
standard deviations (y-axis) of reporter ion intensities in 10,000 randomly selected reporter ion spec-
tra, observed in a 10-plex TMT.Means and standard deviations were calculated using the raw reporter
ion intensities (left), and after using a log2 transformation of the reporter ion intensities (right). 
A non-parametric smoother was used to highlight the mean-variance relationships (red lines)
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Fig. 12.2  Illustration of the median sweep for the quantitation of relative protein abundances in a 
10-plex TMT experiment, simulated based on actual data. The normalization steps are shown for
four proteins (columns 1–4). Displayed are the absolute reporter ion intensities on the logarithmic
scale (base 2) for all spectra detected for the respective proteins (first row), the same data after 
removal of the spectrum median displayed as fold changes (second row), the relative peptide abun-
dances calculated as the median of the above row 2 values for each channel and peptide (third row), 
and the relative protein abundances after removing the loading effect (fourth row). The gray 
regions (rows 2–4) represent 25% fold changes in relative protein abundances. The data in row 3
are not used in the quantitation of relative protein abundance, and are only displayed to show the 
presence of poorly behaved peptides for every protein, highlighting the need for robust estimators 
such as the median. For proteins 1, 3 and 4, none of the samples shows a fold change larger than
25%. For protein 2 a fold change of about 50% is observed when comparing one condition (chan-
nels 1–5) to the other (channels 6–10), possibly indicating a differentially expressed protein (row 
4). For all proteins, channels 1 and 2, for example, show relatively high intensities and channel 5
shows relatively low intensities (row 2), highlighting the need to remove the “loading effect”
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protein concentration, subsequent enzymatic digest and peptide labeling phases of
sample preparation. This is a tall order, however, given the number of steps involved. 
In truth, it is impossible to know whether each iTRAQ/TMT channel contains the
same amount of protein. In our analysis of sources of variation, protein load issues 
manifest themselves as a channel effect that must be removed prior to assessment of 
protein abundances. If there were any doubt of the need to normalize the channels,
consider the work of Herbrich et al. [3] who showed that inter-channel variability, 
both within and between iTRAQ multiplexes, was one of the largest sources of
error, even when the channels consisted of technical sample replicates.
Fortunately, the data can be normalized. As with PA estimation, there is no short-

age of proposed methods to normalize channel data. Some are implemented earlier
in the workflow, at the spectral level, e.g. by total channel spectral intensity.
However, we advocate normalization by median channel PA. Remember, the effects
of outlier data on PA have been minimized previously by median-summarization.
Therefore by normalizing to median PA, one is normalizing to an already robust
parameter. To be explicit then, channels are normalized by application of “median-
centering”, that is, subtracting the channel median PA from each of the individual
PAs, setting the median PA to zero (Fig. 12.2, row 4). This procedure is repeated for 
all channels and all multiplexes.

The median sweep borrows from a set of tools that have been applied successfully 
to the analysis of DNA microarrays for over a decade. When compared, median-
summarization performed as well or better in terms of both accuracy and precision
than more computationally intensive models of protein abundance quantitation [3]. It 
is noteworthy that labeled proteomic experiments, in general, do not require internal 
standards, not even for inter-experiment comparisons. In a head-to-head comparison 
with a strategy that employed a sample master pool as an internal standard for each 
individual multiplex, the median sweep generated protein abundances yielded 
substantially better results [3]. The median sweep algorithm has been implemented 
in the statistical environment R, and is freely available in source code form under the
terms of the GNU General Public License of the Free Software Foundation at www.
biostat.jhsph.edu/~kkammers/software/CVproteomics/. It is also available in some 
of the commercial software packages, for example as one of the options in the 
Proteome Discoverer software (www.thermoscientific.com).

�Statistical Inference

Congratulations. If you’ve implemented the median sweep, you can be fairly confi-
dent that you have prepared your labeled multiplexed data in a manner that mini-
mizes both signal bias and outlier effects and also accounts for differences in the
amount of protein analyzed in each labeled channel. The bulk of the variance in
your data should now be attributable to the host of fascinating proteins whose abun-
dances are changing between your control and treatment groups. The ensuing ques-
tions then seem simple enough. How large is the fold-change in the abundance of 
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protein X, and is it statistically significant or not? But as we will describe, typical
proteomics experiments present certain statistical challenges. Luckily, we can again 
borrow from the field of DNA microarray statistical analysis to address them.

�The “High m/Low n” Issue Is a Common Challenge 
in Proteomics Experiments

Given the speed and sensitivity of modern mass spectrometers, a labeled proteomics 
experiment may yield thousands of confidently-identified proteins whose abun-
dances are measured (m) across experimental groups. Yet because the number of 
iTRAQ/TMT channels currently is limited to 8 or 10, the number of biological repli-
cates (n) per experimental group tends to be small, even when the data from multiple 
experiments are combined. Thus, many multiplexed studies suffer from the so-called 
“high m/low n” problem. The high m/low n issue is problematic in at least two ways. 
The low number of biological replicates (n) saps statistical power and is discussed 
hereafter, while the large number of measurements (m) ensures that no matter what 
statistical test is used, one is bound to discover a significant fold-change by chance 
alone (a false positive). This is covered in section “Other Practical Considerations”.

�Low n-Values and the 2-Sample t-Test

Standard 2-sample t-tests are frequently used to compare the log2 relative abun-
dances for each protein (PA) across the conditions of interest. As a refresher, let’s
assume a balanced experimental design with n cases and n controls. Let X1p, …, Xnp 
and Y1p, …, Ynp be the PAs for each identified and quantified protein p for the cases 
and controls, respectively, with corresponding group means X p

 and Yp
. Assuming 

the PAs are independent and normally distributed with equal within-group variabil-
ity (departures from the normality assumption are actually of no major concern in a
t-test unless severe outliers are present, Rice, 1995 [6]), the pooled within-group 
standard deviation is given by
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and the test statistic for protein p is given as
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A p-value for tp is derived by referring the test statistic to a t-distribution with 
d np = ´ -2 2  degrees of freedom, as the null distribution, and calculating the prob-
ability that a random draw from said distribution exceeds tp in absolute value.
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One can see how “low n” influences the denominator of the within-group vari-
ability and the estimated standard error, respectively, which in turn affects the 
assessment of statistical significance of the fold-change. A frequent consequence is 
that proteins that exhibit large fold-changes are often declared non-significant 
because of a large sample variance, while at the same time small observed fold 
changes might be declared statistically significant, because of a small sample vari-
ance. In other words, in “low n” scenarios, standard t-tests may yield both more 
false positives and false negatives.

�Introducing Empirical Bayes-Moderated t-Tests for “Low n” 
Experiments

To stabilize these variance estimates, an empirical Bayes (EB) approach can be used
to shrink the observed protein sample variances towards a pooled variance estimate, 
while allowing for a realistic distribution of the underlying biological variances. 
Only the general type of the distribution is hereby assumed, and the shape parame-
ters are estimated from the observed data (thus, empirical Bayes). This method was
first introduced for gene expression studies as LIMMA (“Linear Models for
Microarray Data” [7]) and has now been adapted to mass spectrometry-based 
proteomics experiments [e.g. 8, 9].
Specifically, the EB procedure uses the fact that assuming the log2 relative abun-

dances for protein p are normally distributed, the sample variance for the proteins 
sp

2 follows a scaled χ2 distribution
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where σp
2 denotes the true (unknown) variance, and dp are the degrees of freedom 

determined by the experimental design (e.g. d np = ´ -2 2  in the above described 
balanced design). Under the assumption that these protein variances σp

2 follow a 
so-called scaled inverse χ2 distribution, i.e.
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it follows [6] that the protein sample variances sp
2 are described by a scaled F

distribution given by
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Thus, the parameters d0 and s02 can be estimated from the observed sample vari-
ances using maximum likelihood methods, and the posterior for a protein’s sample 
variance is “moderated”: the sample variance is shrunk towards the common prior 
value s02 using
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This equation shows that the shrinkage amount depends on the relative sizes of
the observed and prior degrees of freedom dp and d0, respectively, and will be most 
pronounced for small sample sizes when dp and thus, λ, are small. The moderated 
t-statistics are calculated by simply replacing the sample standard deviation by the 
moderated sample standard deviation in the denominator of the test statistic, i.e.

t
estimated log fold change

estimated moderated stap moderated[ ] =
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nndard error
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p p
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�Strengths of the Empirical Bayesian Modeling

It is important to note that only the estimated standard errors in the moderated test 
statistics change, whereas the estimated fold changes remain the same. The p-value 
is derived by referring this moderated test statistic to a t-distribution with d dp + 0  
degrees of freedom. In section “A Case Study,” our case study will demonstrate that 
inference based on moderated test statistics is far more stable and powerful com-
pared to inference based on ordinary t-tests – particularly when the sample size is
small. The empirical Bayes procedure allows for pooling information across all
proteins within any linear model framework, generating moderated t-statistics and 
p-values for the contrast(s) of interest, e.g. the fold changes in case–control studies,
but also experiments with multiple group comparisons [7]. It also readily extends to 
settings where the data from multiple iTRAQ or TMT experiments are analyzed [9].
Another strength of this EB approach is that is can be applied to cases in which

there are missing data (section “Other Practical Considerations”). Note that missing 
data, to be expected in any high-throughput mass spectrometry experiment, result in a 
loss of power to detect differentially expressed proteins, but these data can still be 
analyzed using linear models with moderated test statistics, and proper type I error
control. In particular, the amount of shrinkage of the variance terms depends on the 
observed experimental degrees of freedom, with more missing data resulting in stron-
ger shrinkage towards the common prior variance s02 (see Kammers et al. [9] for a 
more detailed discussion). All of this is implemented in the open source limma soft-
ware package, and should not be an obstacle for the laboratory scientist in his or her 
data analysis.

�Other Practical Considerations

�Missing Data

The labeled proteomic workflow has many advantages. It is relatively simple to
perform and its multiplex design helps minimize some of the technical variability.
That said, it is not without minor complications, one of which is missing data. In an 
iTRAQ/TMT design, missing data can usually be ascribed to one or two sources.
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Within a multiplex, you will find spectra for which a signal is missing from one or 
a few channels. This probably best explained by the issues in labeling efficiency. 
Performed properly, the efficiency of peptide labeling with its tags is very high,
though not 100%. This means that there will be a small number of spectra with an
incomplete set of reporter intensities. Generally speaking, this missingness tends to 
correlate with fairly strongly with peptide abundance. In our hands, this accounts 
for <1% of spectra and a small number of novel proteins. Though there are a num-
ber of ways of interpolating missing data, we prefer to simply omit these spectra 
from prior to implementing the median sweep.

The second type of missing data arises in experimental designs that involve more 
than one multiplex run. From the previous chapters, you will be familiar with the
fact that iTRAQ/TMT quantitation is an MS2-based method. To recap, peptides are 
introduced into the mass spectrometer where the parent mass is measured in MS1. 
Masses are then selected or sampled for fragmentation in MS2 where b- and y- and 
reporter ions are released and detected. This is called data-dependent acquisition 
(DDA). DDA is the reason why, even if you run the same complex sample on a mass
spectrometer three times, you will identify three modestly different datasets. It is 
important to note that the number of times a peptide or protein is identified, in itself, 
is not a reflection on the quality or confidence of the identification, simply a function
of sampling. Nevertheless, these run-to-run differences arising from DDA might
appear to pose a problem. Does this mean multiplex experiments are intrinsically
ill-suited for the analysis of large clinical cohorts? How many proteins could pos-
sibly be common to, say, ten 10-plex experiments? Does it matter?

To answer that question it might help first to understand how statisticians classify 
types of data missingness [10]. Data can be missing completely at random (MCAR),
missing at random (MAR), or missing not at random (MNAR). For missing data to
beMCAR, the likelihood of missing must be completely independent of all variables
in an experiment, both observed and unobserved. This is a rare situation and not 
relevant to the realm of mass spectrometry-based quantitation. MNAR applies when
failure to observe the data is intrinsically related to the nature of the variable being 
measured, for example when the rate of missingness in proteomic data is inversely 
related to protein abundance [11]. This kind of missingness poses problems for stan-
dard statistical inference, since simply omitting the missing data can cause strong 
biases in the analysis. Thus, more sophisticated methods such as multiple data impu-
tation are required. MAR on the other hand, perhaps counter-intuitively, describes
missingness that is not necessarily random, but can be reasonably accounted for by 
factors relating to the experiment. In this light, missingness between multiplex runs 
is strongly related to sampling by the instrument (i.e., the experiment itself), rather
than protein or peptide abundance per se (unobserved by definition for all missing
data). This is not to suggest that missingness is not influenced at all by low abun-
dance, merely that stochastic sampling within a multiplex experiment is by far the 
major driver behind missing data. Therefore, missingness between multiplex runs is 
typically well described under the MAR assumption.
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This is important because under the MAR assumption, analyses like the empiri-
cal Bayes-modified t-tests can easily be conducted on data pooled from several
multiplex runs, regardless of how many times a protein is observed, without fear of 
introducing undue bias. Note though that the degree of variance shrinkage afforded 
by EB modeling, and therefore statistical power, drops with the number of experi-
mental degrees of freedom, determined by the n-value. Therefore, inference about a 
protein observed in a subset of multiplex runs will not be as strong as it would for a 
protein observed in all runs.

�Multiple Comparisons

Just as low n-values necessitate special considerations when assessing differential 
protein abundance, so too, do large numbers of compared measurements (high m). 
Let’s consider that for a given statistical test, where we often set the false positive 
rate nominally at 5% (calling abundances significantly different if p <0.05). But
what if we performed the same test on 100 different proteins? We would then
expect to identify 5 proteins as differentially regulated by chance when, in truth, 
they really are not. This is the conundrum of multi-hypothesis testing. In high 
throughput experiments, practitioners typically employ the family-wise error rate 
or the false discovery rate control when testing multiple hypotheses, which are 
different strategies to handle the balance of false positive and false negative 
identifications.

�Use the Family-Wise Error Rate (FWER) to Guard Against Any False 
Positives

The FWER is the probability of generating at least one false positive among all
hypotheses tested, i.e. the probability of incorrectly declaring one or more null pro-
teins differentially expressed. The Bonferroni procedure is the best-known approach
to control the FWER, only declaring proteins with nominal p-values less than α/m 
differentially expressed, where α is the desired FWER (typically, 5%; Fig. 12.3, 
blue line), and m is the number of proteins measured in the mass spectrometry 
experiment. This strong protection against any false positives comes at the expense 
of generating false negatives, that is, a potentially large number of truly differen-
tially expressed proteins are not declared statistically significant (and with small
sample sizes, it is common that no protein achieves differential expression signifi-
cance at the Bonferroni level). This type of error control is appropriate in a setting
where false negatives are of no concern to the investigator, and his or her objective 
is solely to generate a list of proteins he or she firmly believes are differentially 
expressed (even though that list might be very short or even empty).
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�Setting the False-Discovery Rate (FDR): Discover More by Accepting 
Some Risk

More commonly, however, the objective of high-throughput experiments is to detect
as many differentially expressed proteins as possible, subject to a tolerable false 
detection rate. Thus, the FDR is a more desirable parameter in these proteomic set-
tings, devised to control the proportion of false positives among a set of proteins 
declared differentially expressed. The procedure proposed by Benjamini et al. [12] 
arguably is the best-known procedure to control the FDR. To control FDR at a level δ, 
one orders the unadjusted p-values p p pm1 2£ £ £ , and finds the test (i.e. protein)
with the highest rank j for which the p-value pj is less than or equal to j m/ ´d  
(Fig. 12.3, red line). The list of declared differentially expressed proteins includes 
those of rank j or less.

Fig. 12.3  Illustration of three types of error control in a setting with ten hypothesis tests. The 
p-values are ordered left to right from smallest to largest, and shown as actual values (left panel) 
and on the negative log10 scale (right panel). Using the nominal type I error level of 5% to declare
proteins differentially expressed (green line) yields three significant findings in this example, how-
ever, each non-differentially expressed protein has an a priori chance of 5% to be falsely declared
significant. In a mass spectrometry experiment with hundreds or thousands of proteins identified 
and quantified, this yields an unacceptably high rate of false positives. Using the Bonferroni pro-
cedure to control the family-wise error rate at 5% (blue line) yields only one significant finding. 
However, this strong protection against any false positives comes at the expense of potentially 
many false negatives, that is, truly differentially expressed proteins not declared statistically sig-
nificant. In high-throughput experiments where many proteins might be differentially expressed, 
this is often not acceptable either. The FDR, devised to control the proportion of false positives
among a set of proteins declared differentially expressed, is often a more desirable parameter in 
these proteomic settings. Here, the procedure proposed by Benjamini and Hochberg is shown (red 
line), yielding 2 significant findings at a 5% FDR
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�The Positive FDR or “q-Value”

Storey and Tibshirani (2003) [13] extended the Benjamini and Hochberg FDR to the
positive FDR, reported as “q-values”, which have a similar interpretation for the
FDR as p-values have for type-I error control: the q-value for a protein is defined as
the minimum FDR that can be attained when calling that protein differentially
expressed. As an example: if a protein has a q-value of 0.05, the expected proportion
of false positives among the list of differentially-expressed proteins is 5%. The
q-values are calculated from the reported p-values, using a monotone transforma-
tion after estimating the actual proportion of differentially expressed proteins in the 
experiment [13]. Surprisingly, q-values are rarely used to assess differential regula-
tion of proteins despite this intuitive and appealing interpretation. It is noteworthy 
that protein abundance levels are often not independent (i.e., genes are co-expressed),
which actually violates one of the assumptions in the calculations of the FDR, since
the test statistics and resulting p-values are not independent either. However, they 
exhibit “clumpy dependence” (i.e. local and finite), and reassuringly, Storey and
Tibshirani (2003) [13] have shown that the FDR is controlled despite the violation
of the independence assumption, and the estimated q-values conservatively estimate 
the true q-values.

�What Is Your Definition of Differential Abundance?

A popular procedure for assigning proteins as differentially regulated is to con-
sider only proteins that meet some arbitrary thresholds, usually p < 0.05 and a
fold-change larger than 1.5. The rationale stems from the intuitive notion that
when a standard t-test is used to evaluate a proteomic dataset, low p-values may 
sometimes arise from marginal fold changes. By imposing the additional crite-
rion of a 1.5-fold change, we are attempting to weed out some of those false
positives. Though well-intended, the practice reveals a certain level of cognitive 
dissonance. On the one hand, we implement a standard t-test to lend a study the 
imprimatur of statistical rigor, but then proceed to disregard certain p-values 
arising from marginal fold-changes because we don’t really believe they are 
likely to be biologically meaningful. How would one then assess the FDR in that
scenario?
A more rigorous approach would be to be employ EB-moderated t-tests and

positive FDR (q-value) assessment. The empirical Bayes procedure yields moder-
ated p-values that implicitly achieve ends similar to applying thresholds. Specifically,
by shrinking the variance, the net effect of EB is to penalize inference from mar-
ginal fold-changes while typically boosting the significance of proteins with large 
fold changes (see the section below and the companion webpage to this chapter).
Finally, by combining EB analysis with multi-hypothesis correction, like the
q-value, one can obtain a statistically robust list of biologically meaningful protein 
changes with a known FDR.
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�A Case Study

In this section, we illustrate the comparative benefits of EB-moderated t-tests and
q-values over the standard 2-sample t-test, with respect to statistical power and type 
I error control (true and false positives). We simulated data mimicking a 10-plex
TMT experiment with 5 cases and 5 controls, using simulation parameters from
actual proteomic experiments (the experimental details and the code are available
from the companion website at www.biostat.jhsph.edu/~kkammers/software/
CVproteomics/). In brief, log2 relative abundances were generated for 5000 proteins
in 5 cases and 5 controls, with 100 proteins assumed to exhibit a 50% fold change
between cases to controls (and no fold change for the other proteins).

�According to the 2-Sample t-Test

Among the 5000 proteins simulated in the single 10-plex TMT experiment, a total of
340 achieved statistical significance using ordinary t-tests with a nominal 5% type I
error level (p<0.05), including 252 false positive identifications (roughly 5000 × 0.05),
emphasizing the need formultiple comparisons correction. Under a false discovery rate
control of 5% (here, q<0.05), 31 of the initial 340 proteins were declared differentially
expressed (comprised of 28 true and 3 false positive identifications; Fig. 12.4, left).

�According to the EB-Modified t-Test

Though essentially the same number of proteins (337) was significant at a nominal
5% level (p<0.05) using moderated t-statistics, a substantially larger number of pro-
teins (49) was declared differentially expressed at a FDR of 5% (q<0.05), mostly
comprised of true identifications (46 true positives, 3 false positives; Fig. 12.4, right). 
Therefore compared to the 2-sample t-test the EB method yielded 64% more true
positives while the number of false positives was unchanged at the same FDR.

�Overall Assessment

To assess EB performance over a range of FDRs, we averaged over 1000 simula-
tions. For all levels of FDR control between 1 and 10%, the empirical Bayes approach
using moderated test statistic produced substantially larger lists of proteins declared 
differentially expressed, detecting more truly differentially expressed proteins while 
maintaining proper error control (Fig. 12.5, left). On average, at an FDR of 1% (i.e.
q<0.01) only 6 proteins were declared differentially expressed when using ordinary
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test statistics, compared to 18 proteins declared differentially expressed when mod-
erated test statistics were employed (FDR of 5%: 32 and 54 proteins, respectively;
FDR of 10%: 50 and 73 proteins). At equal false positive rates on a receiver operat-
ing characteristic (ROC) curve, the true positive rate is substantially higher when
using moderated test statistics (Fig. 12.5, right). Equivalent results were obtained 
when fold changes and the number of proteins are varied, and when multiple experi-
ments were analyzed simultaneously in the presence of missing data (see Kammers
et al. [9] and the companion webpage to this chapter).

�Conclusion

To review, the goal of this chapter is to introduce some of the pitfalls that often 
compromise or confound relative protein quantitation and statistical analysis. These 
include, but are not necessarily limited to, the influence of outliers, differences in

Fig. 12.4 Inference from one simulated 10-plex TMT experiment with five cases and five con-
trols, based on 5000 proteins. A 50% fold change was simulated for 100 proteins. Left: The vol-
cano plot showing the estimated fold changes (x-axis) versus the− log10 p-values (y-axis) for each 
protein using ordinary 2-sample t-tests. Right: The volcano plot from the inference based on the 
moderated t-statistics. In each panel, proteins with false discovery rate adjusted p-values (i.e.
q-values) smaller than 5% are highlighted in blue (true positives) and red (false positives). False
negatives are highlighted in yellow. Only 31 proteins are declared differentially expressed when
using ordinary test statistics (28 true positives, 3 false positives), compared to 49 proteins (46 true
positives, 3 false positives) declared differentially expressed when moderated test statistics are
employed. Thus, pooling information from the distribution of all proteins improves power to detect 
differentially expressed proteins, and in particular attenuates the statistical significance of proteins 
with small fold changes and small sample variability
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protein load across reporter ion channels, as well as false positive and false negative 
calls of protein regulation. These can be addressed, in turn, by using robust estima-
tion methods, protein normalization, empirical Bayes-modified tests and proper
control for multiple-hypothesis testing.

Note though, that following basic principles of good experimental design is 
imperative for any findings to be trustworthy. For example, it is critically important
that under no circumstances should the outcome of interest (such as the case–con-
trol status) be confounded with the experiment. For example, if all cases are run in
one TMT experiment and all controls are run in another TMT experiment, it is
impossible to detect any fold changes between cases and controls. Assume, for sim-
plicity, that the abundance of some protein the in all cases is twice as large as the 
abundance in the controls. Since quantitation of relative abundance is carried out
within each experiment, the estimates for relative abundance would be equal to one 
in each experiment, masking the fact that this protein is differentially regulated. No 
amount of statistical wizardry can fix this problem. Sometimes practitioners use
reference samples in the experiments to compare abundances across experiments, 
however that practice is strongly discouraged as it results in higher variability and 
thus a loss of power, and can easily be avoided with proper experimental design [3].
In our case study, a single 10-plex TMT experiment with 5 cases and controls,

we have demonstrated that inference based on moderated test statistics is far more 
stable and powerful compared to inference based on ordinary test statistics. These 
findings extend to settings where the data from multiple TMT or iTRAQ experi-
ments are jointly analyzed (see for example [9]), and when more than two groups 
are contrasted using an Analysis of Variance (ANOVA; see for example [7]). 
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Fig. 12.5 Results for detection rates averaged across 1000 simulations. Left: for all levels of false 
discovery rate control targeted (1–10%, x-axis), the empirical Bayes approach using moderated
test statistics produces larger lists of proteins declared differentially expressed (y-axis), thus
detecting more truly differentially expressed proteins while maintaining proper error control. 
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ANOVAs have also been proposed to analyze all proteins simultaneously, in par-
ticular in the context of linear mixed effects models [4, 5], to stabilize variance
estimates. However, this assumes the same biological variability for all proteins (an
assumption that is clearly not correct), and can be viewed as a statistical procedure 
that shrinks all variances to one common value. This approach has also been 
explored in the gene expression literature [14, 15], but eventually abandoned in 
favor of more realistic empirical-Bayes procedures.
Though analyzing raw reporter signals “from scratch”, as we have described, is

not terribly difficult (knowledge of Excel and R will generally suffice), many may
prefer to stick with commercially-available software or established open-source 
proteomic analysis workflows to determine protein ratios and p-values. Hopefully,
however, you are now in a position to understand the issues at hand and assess the 
output by answering the following questions for yourself, in light of key principles. 
How, precisely, does your software package evaluate protein abundance? Has the 
data been normalized for protein load? If so, how? If you would like to merge
multiplex data, does your software allow you to identify and remove batch bias? 
What statistical test was used in the workflow? What are your criteria for differential
protein abundance? And finally, what FDR are you prepared to live with in pursuit of
tantalizing new leads? In proteomicum veritas (tr. in proteomics, there is truth). 
Good luck!
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    Chapter 13   
 Post-translational Modifi cations 
in the Cardiovascular Proteome                     

     Christopher     I.     Murray      ,     Heaseung     Sophia     Chung     ,     Kyriakos     N.     Papanicolaou     , 
    D.     Brian     Foster     , and     Mark     J.     Kohr     

    Abstract     The analysis of post-translational modifi cations is critical for under-
standing the regulation of protein function in the heart. These small, often charged, 
groups are added to a protein’s structure to modulate its activity, localization or 
associations. The development of proteomic technologies has greatly improved the 
identifi cation and subsequent characterization of these modifi cations. However, due 
to the complex nature of the cardiovascular proteome, a particular post-translational 
modifi cation may represent only a tiny fraction of the milieu. Additionally, some 
modifi cations are too labile for mass spectrometry analysis. To address these limita-
tions, a variety of techniques and strategies have been developed to specifi cally 
target and improve the detection of these modifi cations. In the following chapter, we 
review the challenges and solutions to identifying several prominent post- 
translational modifi cations in the cardiovascular system.  
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      Introduction 

 A full understanding of the cardiovascular proteome would not be complete without 
investigation of its post-translational modifi cations (PTM). These alterations to a 
protein’s sequence are not directly encoded in the genome but affect the protein 
after it has been expressed. Most post-translational modifi cations can arise in two 
basic ways: the enzyme catalyzed addition of a chemical group, usually as part of a 
signaling pathway, or by spontaneous interaction with a reactive molecule [ 1 ]. In 
general, enzyme catalyzed modifi cations are the result of evolutionarily refi ned sig-
naling pathways while spontaneous modifi cations tend to be more adventitious in 
nature. These protein modifi cations can result in a conformational change, affecting 
activity, interactions or subcellular localization. Well-studied modifi cations include 
phosphorylation, glycosylation, acetylation, and various oxidations, which are dis-
cussed below; however, to date over 300 different PTMs have been identifi ed each 
with its own regulatory potential. The net effect of these modifi cations in the cell 
has been appreciated as a powerful mechanism in both healthy and disease states. 

 In the heart, PTMs have been found to regulate many critical processes including 
calcium handling, force generation, energy production, the development of heart 
failure and cardioprotection following ischemia reperfusion injury, among others 
[ 2 ,  3 ]. A classic example of this regulation can be found in the phosphorylation of 
phospholamban [ 4 ]. In its unphosphorylated state, phospholamban is an inhibitor of 
the sarcoplasmic reticulum (SR) Ca 2+ -ATPase (SERCA), which sequesters contrac-
tion-triggering Ca 2+  from the cytoplasm to the SR during diastole. Following beta-
adrenergic stimulation, phospholamban is phosphorylated by protein kinase A at 
serine 16, which removes its inhibitory effect on SERCA enhancing uptake of Ca 2+  
to the SR [ 5 ]. The subsequent loading of the SR with Ca 2+  results in an increased 
release for the next heart beat. The overall effect of this modifi cation is to boost both 
relaxation and contractility, improving cardiac output. 

 PTMs have also been found to have deleterious effects on the heart [ 2 ,  6 ]. In the 
cardiovascular system, changes in the oxidative balance can affect many aspects of 
cellular physiology. Depending on the magnitude, fl uctuations in the cell’s produc-
tion of reactive oxygen species can regulate normal metabolic processes, activate 
protective mechanisms, or be cytotoxic. Production of these reactive species can 
result in a variety of reversible and irreversible oxidative protein modifi cations. In 
general, harmful oxidative damage results from the increased presence of irrevers-
ible modifi cations while reversible modifi cations are more likely to be redox- 
signaling events [ 7 ], although reversible modifi cations can signal both adaptive and 
maladaptive cardiac responses [ 8 ]. Increases in oxidative stress have been linked to 
the development of heart disease, including cardiac hypertrophy, ischemia/reperfu-
sion injury and heart failure [ 6 ,  9 ]. In particular, the contractile myofi lament  proteins 
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appear to be particularly sensitive to oxidative modifi cations. S-nitrosation of regu-
latory protein tropomyosin has been linked to heart failure [ 10 ]. In addition, con-
tractile dysfunction has been associated with the oxidation of tropomyosin in both 
ischemia reperfusion injury and microembolism [ 11 ,  12 ]. 

 Over the past three decades signifi cant effort has been expended to systematically 
identify, map and characterize the various PTMs in physiological and pathophysio-
logical states [ 1 ,  13 – 16 ]. The increased power and scale of proteomic technologies 
has been very valuable in this endeavor, signifi cantly increasing the number of iden-
tifi ed sites. In the following chapter, we introduce and review several state-of-the-art 
approaches for preparing, enriching, and identifying several different post-transla-
tional modifi cations: phosphorylation, O-GlcNAcylation, acetylation, and oxidative 
cysteine modifi cations. While this list is by no means comprehensive, it provides an 
introduction to the considerations necessary for any proteomic PTM study.  

    Strategies for Post-translational Modifi cation Identifi cation 

    Phosphorylation 

 Protein phosphorylation is the most common post-translational modifi cation (PTM) on 
serine (~90 %), threonine (~10 %), and tyrosine (~ <1 %) residues [ 17 ], which has been 
best studied due to its key roles in regulating protein structure and function. Since phos-
phorylation has been found to effect critical cellular processes such as protein–protein 
interactions and cell signaling, much energy has been focused on identifying, quantify-
ing and monitoring the temporal changes in phosphorylation in a variety of biological 
systems. However, due to the complexity of the phosphoproteome and the dynamics of 
phosphorylation, it has been challenging to detect and monitor this modifi cation. 

 Over the past few years, mass spectrometry (MS) based methods have emerged 
introducing powerful tools to identify and quantify phosphorylated sites. These 
approaches have allowed the global profi ling of phosphorylated serine, threonine, 
and tyrosine residues in a biological sample of interest. The following section 
describes important considerations for the experimental design of large-scale char-
acterization of phosphorylation. The major steps for phosphoproteomics workfl ow 
are cell fractionation, enrichment and analysis via liquid chromatography (LC) 
coupled with tandem MS. Each of these steps can be further modifi ed to serve the 
purpose of an individual study [ 18 ]. 

    Considerations for Sample Preparation 

 Phosphoproteins represent only a small portion of the total proteome and thus sam-
ples for phosphoproteomic analysis are enriched from the unmodifi ed peptides. For 
this reason, the sample size of the starting material is very large, typically in the 
range of 1–10 mg [ 19 ] and even >20 mg in some studies [ 18 ]. However, with the 
development of effi cient enrichment techniques and highly-sensitive mass spectrom-
eters, it has become possible to start with a few hundred micrograms of protein [ 20 ]. 

13 Post-translational Modifi cations in the Cardiovascular Proteome



296

 Cell and tissue harvesting should be performed rapidly at a low temperature or 
followed by snap freezing. During cell lysis or tissue homogenization, proper pro-
tease inhibitors and phosphatase inhibitors are required to prevent artifi cial prote-
olysis and preserve protein phosphorylation status. Once soluble lysates are 
extracted, intact proteins are digested into peptides using trypsin or alternate prote-
ases such as Glu-C, Lys-N, Lys-C, Asp-N or chymotrypsin in combination with 
trypsin to increase protein sequence coverage, followed by fractionation and enrich-
ment for MS analysis. Alternatively, the protein mixtures can be fractionized using 
a gel-based method, then digested and enriched prior to MS identifi cation.  

    Phospho-Enrichment Strategies 

   Liquid Chromatographic Fractionation 

 Since millions of peptides are potentially generated after proteolytic digest, phos-
phopeptides are nearly impossible to detect in the whole cell lysate or tissue sample. 
Thus, fractionation by liquid chromatographic strategies such as strong cation 
exchange chromatography (SCX), strong anion exchange chromatography (SAX) 
or hydrophilic interaction liquid chromatography (HILIC) are required to reduce 
sample complexity, coupled with further enrichment of phosphopeptides. Different 
fractionation strategies before or after enrichment have been studied to enhance the 
selectivity of phosphopeptides [ 21 – 23 ]. 

 SCX is one of the most powerful approaches to separate phosphopeptides. At low 
pH (<2.6), a typical peptide has a net charge of +2, whereas an identical peptide that 
is phosphorylated would have +1 by the negatively charged phosphate group [ 24 ]. 
SCX separates phosphorylated peptides from nonphosphorylated peptides utilizing 
this charge difference. Using a SCX column, more negatively charged phosphopep-
tides are eluted earlier than more positively charged non-phosphopeptides by increas-
ing ionic strength in the mobile phase. The multi-phosphorylated peptides, which 
have a net zero or even negative charge, can be observed in the fl ow-through fraction 
(unbound). Gygi and coworkers [ 25 ] and Macek et al. [ 24 ] observed highly enriched 
phosphopeptides in the +1 SCX fractions and fl ow-through fraction. 

 HILIC has been reported to be a promising method in large scale proteomics 
[ 23 ]. It separates phosphopeptides based on more hydrophilic nature of phospho-
peptides compared to other peptides: more hydrophilic peptides are eluted in the 
later fraction by gradually decreasing the organic content of the mobile phase 
[ 23 ,  26 ].  

   Enrichment 

 In order to separate low abundance phosphopeptides from unmodifi ed peptides, a 
selective enrichment technique is required to increase the relative abundance of 
phosphopeptides above the threshold for detection by MS. The most common 
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techniques for enrichment are immobilized metal affi nity chromatography (IMAC) 
[ 27 ,  28 ] and metal oxide affi nity chromatography (MOAC) [ 29 ]. 

 IMAC separates phosphopeptides based on the high affi nity coordination of 
phosphate groups to metal ions such as Fe 3+ , Zn 2+ , and Ga 3+ [ 30 ]. A variety of differ-
ent IMAC resins are commercially available in column or magnetic bead formats, 
which show different effi ciencies and specifi cities [ 19 ]. However, the main limita-
tion of the IMAC method is the nonspecifi c binding of acidic peptides. 

 Recently, MOAC-based methods have also been used for phosphopeptide enrich-
ment in large-scale proteomic analysis [ 29 ,  31 ,  32 ]. Among these, titanium dioxide 
(TiO 2 ) has emerged as the most common MOAC-based phosphopeptide enrichment 
method [ 30 ]. The principle of this method is similar to IMAC, thus TiO 2  technique 
is considered to be interchangeable with IMAC depending on the feature of the 
samples (each method has a different bias and selectivity). The advantages of this 
technique are the shorter preparation time and increased capacity compared to 
IMAC [ 30 ]. The nonspecifi c binding of acidic nonphosphorylated peptides can be 
reduced using a quenching agent, such as 2,5-dihydroxybenzoic acid [ 33 ] during 
MOAC enrichment. Commonly, the phosphopeptides fractionated by SCX chroma-
tography are enriched by IMAC or TiO 2  strategy prior to MS characterization. 

 One of the antibody-based methods, immunopurifi cation (IP) using immobilized 
anti-phosphotyrosine antibodies, is also a well-established enrichment approach in 
phosphoproteomics and has been reported to be highly specifi c for targeting tyro-
sine kinase signaling [ 19 ]. However, the specifi city of immunoaffi nity chromatog-
raphy using anti-phosphoserine/threonine antibody was demonstrated to be less 
effi cient compared to an anti-phosphotyrosine antibody [ 19 ,  34 ].   

    MS Acquisition and Data Analysis 

   MS Acquisition 

 Due to the high complexity of phosphopeptide mixtures, phosphopeptides are usu-
ally separated initially on a LC column that is coupled to MS. The effl uent from the 
LC column is directly electrosprayed and analyzed in mass spectrometers, which 
measure the mass-to-charge (m/z) ratio and intensity in a MS1 spectrum [ 24 ]. Then, 
the mass spectrometer dissociates the peptides, which results in fragment ions in a 
so- called MS2 (MS/MS) spectrum [ 24 ]. Several MS acquisition strategies have 
been developed due to the low abundance characteristic and poor fragmentation pat-
terns of phosphopeptides in complex protein digests. 

 Collision induced dissociation (CID) is the standard fragmentation technique to 
induce fragmentation for the analysis of phosphopeptides. However, considerable 
neutral loss (NL) of phosphoric acid (from serine and threonine) from the phospho-
peptide ion is observed in the CID process, which results in uninformative fragment 
ions in MS2 and thus, a major challenge in phosphopeptide identifi cation. To over-
come this problem, the NL ion from an MS2 spectrum can be further subjected to 
an additional CID to generate a so-called MS3 spectrum (MS/MS/MS). This has 
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improved fragment information and has resulted in better identifi cation of 
phosphopeptides. 

 As an alternative fragmentation mode, electron transfer dissociation (ETD) or 
electron capture dissociation (ECD) can be utilized. ECD/ETD utilizes a low frag-
mentation energy that preserves the phosphorylation group to greatly improve site 
assignment [ 35 ,  36 ]. While CID is more sensitive for phosphopeptide identifi cation 
and thus, is the preferable workfl ow for cases with limited sample amounts [ 36 ,  37 ], 
ETD yields more confi dent phosphorylation site assignments [ 36 ,  38 ] and has a 
great potential in global analyses of peptides with multiple charges (3+ and higher) 
and multiple phosphorylation sites [ 24 ]. Complementary application of CID and 
ETD modes have shown good performance in large-scale phosphoproteome analy-
ses [ 39 ,  40 ], for example, by combining CID with ETD for doubly charged peptides 
and for more highly charged peptides, respectively [ 41 ]. Recently, newly developed 
high energy collision dissociation (HCD) provided suffi cient fragmentation of 
phosphopeptides to interpret the peptide sequence without MS3 fragmentation [ 19 ].  

   Data Analysis 

 As it is often diffi cult to validate phosphopeptides and localize (assign) the phosphory-
lation site, especially for multiple phosphorylated peptides, manual assessment of each 
spectrum is necessary. However, this is not a feasible method for large-scale phospho-
proteomic experiments since it is very time consuming. To overcome this issue, bioin-
formatics tools have been developed. For phosphopeptide validation, by selecting the 
appropriate features and corresponding criteria, NL in MS2 spectrum during CID can 
be used as a marker to confi rm the phosphopeptides [ 36 ,  42 ] and the combined infor-
mation from both MS2 and MS3 can improve the validation of the phosphopeptide. 
Recently, a classifi cation fi ltering strategy using different fi ltering for four classes of 
phosphopeptides was developed to identify the phosphopeptide [ 36 ,  43 ]. For ETD 
based-phosphoproteomic experiments, standard search engines (Sequest, OMSSA, 
X!Tandem, or Protein Prospector) have been reported to generate good results [ 44 ]. 

 To localize phosphorylation sites, algorithms with probability based scoring 
strategies such as Ascore or MSQuant have been developed to localize the phos-
phorylation sites. In these algorithms, the spectrum of the peptide is compared to the 
theoretical spectra and the localization score for each (possible) sequence position 
is calculated based on the probability, providing a statistical means for assigning 
individual phosphorylation sites within the peptide sequences [ 24 ,  36 ]. The phos-
phosites are classifi ed according to this localization score [ 45 ] and a cutoff criterion 
is set to evaluate the confi dence of the localization.   

    Conclusion 

 In this section, the basic workfl ow of shotgun phosphoproteomics analysis was 
described. Furthermore, quantifi cation approaches of the phosphorylation can be 
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incorporated into the described standard workfl ow. While further improvement of 
step- specifi c enrichment, the sensitivity and scan speed of the mass spectrometer, 
and the bioinformatics tools may improve the accuracy of phosphoproteomic analy-
sis, the current proteomic strategy is still a very powerful tool and has its advantages 
in providing a high-throughput identifi cation of protein phosphorylation, which 
enables a global perspective in understanding signaling and regulation of cellular 
functions in a broad range of biological research topics.   

    O-GlcNAcylation 

 Another competitor for the hydroxyl groups of Ser/Thr is the O-linked β-D-N- 
acetylglucosamine modifi cation (O-GlcNAcylation). This modifi cation was fi rst 
identifi ed in 1984 by Torres and Hart [ 46 ] as a small monosaccharide that is not 
elongated to complex sugar structures like N-linked glycosylations. O-GlucNAc is 
reversible, highly dynamic and in some cases, can act in a reciprocal relationship 
with phosphorylation. Unlike phosphorylation, which is regulated by numerous 
kinases and phosphatases, only two enzymes control the addition and removal of 
O-GlcNAc: O-GlcNAc transferase (OGT) and β-D-N-acetylglucosaminidase 
(O-GlcNAcase). While O-GlcNAcylation is most prevalent in metazoans, it has 
been found in all mammalian tissues, primarily on nuclear, cytoplasmic and mito-
chondrial proteins [ 47 ]. 

 O-GlcNAcylation plays an important role in a variety of biological processes 
effecting the regulation of protein expression, signaling and stress response [ 47 , 
 48 ]. Levels of O-GlcNAc have been linked to several chronic metabolic diseases 
including diabetes [ 49 ,  50 ], cancer [ 51 ,  52 ], and neurodegenerative disorders [ 53 , 
 54 ]. In the heart, O-GlcNAc is thought to be one of the signals of acute stress. 
Levels have been found to increase with oxidative stress [ 55 ,  56 ]. O-GlcNAc also 
appears to be involved in cardioprotection in ischemia/reperfusion injury since it 
was found to be correlated with reduced infarct size [ 55 ]. This modifi cation has also 
been found to modify proteins of the contractile myofi lament proteins, thereby reg-
ulating function [ 57 ,  58 ]. O-GlcNAc signaling activity has also been found to 
increase in hypertrophy and heart failure [ 59 ]. 

    Considerations for Sample Preparation 

 Like phosphorylation, O-GlcNAcylation represents a relatively small proportion of 
the total proteome. Key O-GlcNAc modifi cations have been found on regulatory 
transcriptions factors and other proteins in the cell that are low in abundance [ 48 ]. 
To account for this, it is often necessary to have a large amount of starting material. 
Some studies have utilized 1–30 mg of starting material although targeted enrich-
ment and modern mass spectrometry techniques have reduced this requirement 
somewhat [ 60 – 63 ]. In addition to having enough starting material, it is important to 
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take steps to preserve the sample’s complement of O-GlcNAc modifi ed sites. 
O-GlcNAcase (OGA) is the only mammalian enzyme known to remove O-GlcNAc 
residues. It can be specifi cally inhibited by PUGNAc [ 64 ], Thiamet-G [ 65 ] or oth-
ers. These inhibitors can be added to cell culture or administered  in vivo  to prevent 
loss of O-GlcNAcylaton prior to homogenization of cells or tissues [ 66 ]. Several of 
the enrichment options discussed below also require removal of N-linked glycosyl-
ation, which can be done by treatment with the Peptide-N-Glycosidase F (PNGase 
F). This prevents cross-reaction with the other class of carbohydrate post- 
translational modifi cations. 

 Another important consideration is the choice of enzyme for digestion. Trypsin 
is the gold standard in proteomic work; however, several functionally important 
O-GlcNAc sites have been identifi ed in Ser/Thr clusters with few Lys/Arg residues 
[ 47 ]. In these cases, digestion with trypsin alone would not produce a viable peptide 
for identifi cations. Chemical cutters, such as cyanogen bromide, can be used in 
combination with other proteases Asp-N, and Glu-C to increase the sequence cover-
age and improve the number of sites identifi ed.  

    Enrichment Strategies 

 Due to relatively low levels of O-GlcNAc in most cells; it is necessary to perform a 
pre-enrichment step prior to mass spectrometry analysis. One technique that has 
been used successfully exploits the affi nity of lectins for glycoproteins. For exam-
ple, wheat germ agglutinin (WGA) will bind O-GlcNAcylated peptides using 
WGA-based lectin affi nity chromatography although affi nity and specifi city can be 
a concern [ 63 ,  67 ,  68 ]. Also, O-GlcNAc specifi c antibodies have been used to enrich 
modifi ed proteins and peptides for MS analysis [ 69 ,  70 ]. 

 An alternate and more specifi c strategy has emerged utilizing an azide modi-
fi ed GlcNAc (UDP-GlcNAz) [ 71 ]. This modifi ed sugar can be supplemented to 
cultured cells or fed to an organism and the glycan biosynthetic pathway via OGT 
will incorporate the UDP-GlcNAz into protein targets. Once labeled, these 
GlcNAz-modifi ed proteins can be covalently derivatized by click chemistry with 
various biochemical probes at the site of the modifi ed sugar [ 62 ,  72 ,  73 ]. The 
most common probe is biotin, which allows for high affi nity capture of GlcNAz 
modifi ed peptides with streptavidin. Since UDP-GlcNAz is a common substrate 
for many glycol- modifi cations, it is important to pretreat samples with PNGase F 
prior to the click reaction to prevent the enrichment of many other glycosylated 
peptides.  

    MS Acquisition 

 Once O-GlcNAc modifi ed peptides have been enriched, one of the challenges in 
identifying the modifi ed sites is that the glycosidic bond is weaker than the bonds 
in the peptide backbone and is much more likely to fragment during high-energy 
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CID [ 74 ,  75 ]. Since the O-GlcNAc group is preferentially lost, it is very diffi cult 
to determine the site of modifi cation [ 47 ]. An alternative to CID has been the 
ECD/ETD fragmentation technique [ 35 ]. ECD/ETD uses a lower fragmentation 
energy that does not break the glycosidic bond, leaving the modifi cation intact for 
analysis. This approach has greatly improved the direct identifi cation of 
O-GlcNAcylated sites [ 76 – 78 ]. However, it should be noted that ECD/ETD is a 
less robust technique than CID and does produce fewer overall peptide 
identifi cations. 

 While the introduction of ECD/ETD has improved identifi cations of peptides 
carrying an intact sugar, a more popular approach has been a replacement strat-
egy. β-elimination followed by Michael addition with dithiothreitol (BEMAD) 
is a procedure where the O-GlcNAc modifi cations are removed by mild 
β-elimination and the formally modifi ed amino acid residue is labeled with DTT 
(see Fig.  13.1 ) [ 79 ,  80 ]. This replaces the labile glycosidic bond with a more 
stable thiol that can be fragmented by CID. One of the advantages of this 
approach is that isopotically heavy and light DTT can be used in the Micheal 
addition to allow relative quantitative analysis of each modifi ed site [ 81 ]. Also, 
the BEMAD approach has been used in combination with UDP-GlcNAz meta-
bolic labeling to fi rst selectively enrich and then derivatize the O-GlcNAc modi-
fi cations to improve site-specifi c identifi cations [ 57 ,  58 ]. It should be noted that 
in some cases, mild β-elimination can react with phosphorylation or other gly-
cosylation sites. To prevent mis-assignments, it is advantageous to pre-treat 
samples with alkaline phosphatase and PNGase F to remove these 
modifi cations.

       Conclusion 

 These types of approaches have been used to successfully identify hundreds of 
O-GlcNAc modifi cations in cardiac tissue. While these improvements have been 
substantial, they are by no means exhaustive. Further targeted investigations are 
likely to reveal many additional regulatory sites in physiological and pathophysio-
logical states.   
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  Fig. 13.1    β-elimination and Michael addition with DTT (BEMAD) reaction for replacing 
O-GlcNAc residue with a more mass spectrometry favorable group. DTT can also substituted for 
a thiol reactive biotin group       
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    Acetylation and Other Metabogenic Modifi cations of Lysine 

    Lysine Acetylation 

 Students of the biological sciences are likely familiar with acetylation that caps the 
N-termini of nearly half of all encoded proteins. First reported over 50 years ago 
[ 82 ], the addition of an acetyl (CH 3 CO) moiety provides stability to the protein, 
making it resistant to proteolysis [ 83 ]. Not long thereafter, a second more labile 
form of protein acetylation was found on the ε-amino group of internal lysine resi-
dues of histones [ 84 ]. The transfer of an acetyl group from acetyl-CoA to the 
ε-amino group neutralizes lysine’s positive charge weakening a histone’s interac-
tion with DNA. This is a critical step in chromatin remodeling and gene regulation 
and is therefore tightly regulated by enzymes: the histone acetyltransferases (HATs) 
and deacetylases (HDACs). These enzymes have garnered much attention in the 
fi eld of cardiac biology as they have been implicated in the gene regulatory pro-
grams underlying both exercise- and disease-induced cardiac hypertrophy [ 85 ].  

    Non-Enzymatic Factors that Infl uence Acetylation: Acetyl-CoA and NAD+ 

 In recent years, it has become apparent that acetylation and deacetylation extend 
beyond histones and the nucleus, thanks in large measure, to advances in mass spec-
trometry and the development of acetylation-specifi c antibodies. Lysine “acety-
lomes” have now been compiled from bacteria and yeast to fruit fl ies and mammals 
[ 86 – 88 ]. In prokaryotes, acetylation tends to target metabolic enzymes and plays an 
important role in determining overall metabolic activity in response to changes in 
the type of nutrient source or availability [ 89 ]. 

 The extent of protein acetylation in mammalian cells is likely infl uenced by lev-
els Acetyl-CoA or at least the Acetyl-CoA/CoA ratio. Acetyl-CoA is the culminat-
ing metabolite of both fatty acid β oxidation and glycolysis, whose product pyruvate 
is converted to Acetyl-CoA by the pyruvate dehydrogenase complex. It is the pri-
mary source of fuel for the tricarboxylic acid cycle. Though made in the mitochon-
dria, it can be exported to the cytoplasm. In the fed state, acetyl-CoA levels accrue, 
and decline in upon fasting or longer-term caloric restriction. 

 It is also noteworthy that some acetylation sites are substrates for a second class 
of deacetylase, the sirtuins, whose activity is also dependent on a metabolite cofac-
tor NAD + . NAD +  may be synthesized  de novo  from dietary tryptophan and nicotin-
ate, or reclaimed through a salvage pathway from nicotinamide, which is the primary 
pathway in mammals. The cell maintains two discrete pools of NAD + , one mito-
chondrial pool and a cytosolic pool that is continuous with the nucleus. In the 
healthy heart, total NAD +  pools do not fl uctuate much. However, NAD +  along with 
NADH forms an important redox couple in both compartments. Therefore the 
NAD + /NADH ratio can be altered by feeding status and, in the case of the heart, 
changes in workload (i.e. heart rate).  
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    Strategy for Identifi cation of Lysine Acetylation 

   Considerations for Sample Preparation 

 As with other PTMs, the acetylation state of proteins varies broadly in terms of 
stoichiometry, and preserving the acetylation state over the course of sample prepa-
ration, is a top priority. Fortunately, acetylation of lysine is a chemically stable 
modifi cation, provided that care is taken to minimize the activity of enzymes that 
add and remove acetyl groups in your cell lysate or tissue homogenate. Therefore, 
the age-old adage of using ice-cold extraction buffer applies yet again, as it reduces 
the catalytic activity of acetyltransferases and deacetylases. Activity is further min-
imized through the use of inhibitors that target the two broad classes of deacetylase, 
the HDACs and the sirtuins. To preserve the acetylome for proteomic studies, it is 
often advisable to use inhibitors whose specifi city is fairly broad. Trichostatin A 
(1 μM) and sodium butyrate (5 mM) would be an example of a broad specifi city 
HDAC inhibitors, whereas sirtuins are effectively inhibited by inclusion of nicotin-
amide (5 mM). Finally, unless one is performing organellar enrichment, it is often 
desirable to perform a protein precipitation step as quickly as possible after cell 
lysis. Precipitation methods such as ice-cold trichloroacetic acid precipitation or 
methanol/chloroform/water extraction simultaneously denature enzymes that 
would alter acetylation, while simultaneously removing necessary cofactors such 
as NAD + . Proteins can then be resolubilized in a strong denaturant such as urea and 
diluted to a concentration amenable to enzymatic digestion (e.g. 1.5–2 M urea), 
typically by trypsin.  

   Acetyl-Peptide Enrichment 

 Like other PTMs, lysine acetylation stoichiometry varies greatly and the proba-
bility of acetyl-peptide identifi cation, from a complex mixture of peptides, is 
enhanced greatly by their enrichment prior to MS. The single most important 
advance on this front has been the development of specifi c antibodies that recog-
nize the acetylated lysine. Specifi cally, the antibodies are conjugated to a matrix 
such as agarose for the purposes of immuno-enrichment. These antibody-resin 
conjugates are now available from several manufacturers. Enrichment is most 
often performed following enzymatic digestion and peptide purifi cation by C18 
reversed-phase solid phase extraction (SPE). The amount of antibody-resin used 
depends on the conjugation density of the antibody (i.e. nmolAb/mg resin) and 
depends on the manufacturer. Typically SPE-purifi ed peptides are dissolved in a 
simple buffer with a pH between 7.5 and 8. Ionic strength should not greatly 
impact the antibody/acetyl-peptide interaction but low ionic strength may result 
in greater non-specifi c adsorption of unacetylated peptides to the resin, and 
therefore the degree of acetylpeptide enrichment. Therefore, phosphate-buffered 
saline and Tris-buffered saline buffers are often used. Incubation of the peptides 
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with the antibody-resin is typically often conducted at 4 °C. After incubation, 
antibody resin by low-speed centrifugation and the supernatant, containing unac-
etylated peptides, is removed. The resin is resuspended in binding buffer and 
re-centrifuged to remove residual supernatant and remove nonspecifi cally 
adsorbed peptides. The procedure is repeated twice more before switching to 
distilled deionized water for the fi nal washes. Acetyl-peptide elution is accom-
plished by using a low pH solution. Protocols differ here. Elution with glycine 
(pH 3) is common if the eluted peptides are re-purifi ed by SPE. Otherwise, ace-
tyl-peptides may be eluted with 0.1 % formic acid, in which case, they are ready 
for LC-MS/MS.  

   Detection of Acetylated Peptides by Mass Spectrometry 

 Detection of acetylpeptides is relatively straightforward. By comparison to phos-
phorylation and O-GlcNacylation, the acetyl-lysine linkage is highly stable. 
Acetylated lysine changes the peptide mass by 42 Da, and can be readily identifi ed 
on b- and y-ions yielded by CID and HCD fragmentation.   

    Beyond Lysine Acetylation: New Metabogenic Modifi cations of Lysine 

   Sources of Low Molecular Weight Acyl-CoA Species 

 If lysine acetylation arises by reaction proteins with acetyl-CoA, does it follow 
that proteins may be modifi ed at lysine by other acyl-CoA species? Indeed, it 
does. Within the last 10 years newly characterized acyl modifi cations of lysine 
include succinylation, malonylation, glutarylation, propionylation, butyrylation 
and crotonylation [ 90 – 95 ] stemming from the reaction of proteins with succinyl-, 
malonyl, glutaryl-, propionyl-CoA, butyryl- and crotonyl-CoA respectively. The 
modifi cations obviously differ from acetylation with respect to the mass of the 
acyl moiety appended to lysine. However, the dicarboxylates, such as succinyl, 
malonyl, and glutaryl moieties also impart a negative charge to the modifi ed site 
at physiological pH. 

 The Acyl-CoA metabolites arise primarily from fatty acid and amino acid 
catabolic pathways. For instance, butyryl-CoA is the penultimate (4-carbon) 
acyl-CoA species generated by beta oxidation of even-number carbon chains. 
Beta oxidation of odd-chain fatty acids ultimately yields propionyl-
CoA. Propionyl-CoA, in turn, is metabolized to succinyl-CoA in the mitochon-
dria. Propionyl-CoA and succinyl- CoA, are also downstream metabolites in 
valine, isoleucine and methionine metabolism, whereas glutaryl- and crotonyl-
CoA belong to lysine and tryptophan catabolic pathways. Only malonyl-CoA is 
generated by a biosynthetic reaction, namely the carboxylation of acetyl-CoA by 
acetyl-CoA carboxylase.  
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   Enrichment and Detection of Lysine Acyl Peptides 

 Advances in this fi eld can be attributed to yeoman’s work by Yingming Zhao and 
colleagues. The original discovery of the modifi cations involved synthesis of acyl-
ated peptides derived from the histones, to serve as standards, then searching for 
spectra that matched those standards. As in the case of acetylation, broad-scale 
identifi cation of the novel lysine acylation has subsequently been greatly facilitated 
through the generation of modifi cation-specifi c antibodies. Acyl-lysine bearing 
peptides are best prepared and enriched essentially as described in the section 
 Strategy for Identifi cation of Lysine Acetylation . 

 The modifi cations mirror acetylation in terms of stability in the mass spectrom-
eter, and while dicarboxylate modifi cations introduce a negative charge at physio-
logical pH, they are fully protonated in low pH MS workfl ows. The modifi cations 
can, therefore, be distinguished by the masses they impart to the modifi ed peptide. 
Propionylation, crotonylation, butyrylation, malonylation, succinylation and glu-
tarylation confer peptide mass shifts of 56, 68, 70, 86, 100 and 114 Da respectively 
[ 90 – 95 ].   

    Conclusion 

 The identifi cation of new acylation modifi cations on internal lysines has fl ourished 
within the present decade. The building blocks for these modifi cations, the various 
acyl-CoAs, operate at a unique node, coupling cellular metabolism to protein func-
tion. Our understanding of the complex relationships between the cell’s metabolic 
state, the quantitative and qualitative characteristics of the modifi cations and their 
impact on protein function is crude at this stage. More work is needed to understand 
the implications of dysregulated protein acylation in the context of cardiac dysfunc-
tion. There is no question that proteomics will continue to provide exciting new 
discoveries, as to the nature of these modifi cations, their favored targets, and their 
impact in diverse cellular functions.   

    Cysteine Modifi cations 

    Nitroso-Redox Equilibrium 

 The nitroso-redox equilibrium is emerging as a crucial regulator of many processes 
that govern normal cellular physiology and pathophysiology [ 96 ]. This equilibrium 
is characterized by a delicate balance that exists between the production of reactive 
nitrogen and reactive oxygen species, which are maintained at low levels through 
the actions of cellular anti-oxidant defenses. At low levels, reactive nitrogen and 
reactive oxygen species play important roles as signaling molecules and second 

13 Post-translational Modifi cations in the Cardiovascular Proteome



306

messengers, in part, via post-translational protein modifi cation [ 97 – 99 ]. There is a 
number of different amino acids that are targeted for redox-dependent post- 
translational modifi cation, including methionine oxidation, tyrosine nitration, and 
lysine or histidine carbonylation, but this section will focus exclusively on cysteine 
thiol modifi cations. Reactive nitrogen and reactive oxygen species typically signal 
at low levels through reversible cysteine thiol modifi cations, including 
 S -nitrosylation,  S -sulfhydration, and  S -glutathionylation [ 6 ]. However, the overpro-
duction of reactive nitrogen and/or reactive oxygen species can induce nitrosative or 
oxidative stress, a common hallmark of many human diseases, including ischemic 
heart disease, diabetes, and stroke [ 100 – 102 ]. Nitrosative and/or oxidative stress 
typically results in the higher order oxidation of cysteine thiols, and these modifi ca-
tions include disulfi de adducts, sulfenylation, sulfi nic acid, and sulfonic acid. The 
widespread oxidation of cysteine thiols can lead to a nitroso-redox imbalance, 
which may alter cellular signaling, induce cellular dysfunction and possibly lead to 
cell death.  

    Sources of Reactive Nitrogen and Reactive Oxygen Species 

 Nitric oxide is one of the primary reactive nitrogen species in the cell, and is produced 
through the action of nitric oxide synthase [ 99 ,  103 ]. The non-enzymatic reduction of 
nitrite is another potential source of nitric oxide, although this typically only occurs 
under conditions of low pH as with ischemia [ 104 ]. Typical reactive oxygen species 
include superoxide and hydrogen peroxide, as well as stronger oxidants like peroxyni-
trite and hydroxyl radicals [ 105 ]. Under physiological conditions, the generation of 
reactive oxygen species occurs via mitochondrial respiration. Under pathological con-
ditions, however, the upregulation of enzymatic electron donors like NADPH oxidase 
and xanthine oxidase can greatly enhance the production of reactive oxygen species; 
uncoupled nitric oxide synthase is another potential source.  

    Redox-Based Cysteine Thiol Modifi cations 

   Reversible Cysteine Thiol Modifi cations 

 Many reversible cysteine thiol modifi cations play important roles as signaling mol-
ecules for reactive nitrogen and reactive oxygen species. The effects of these modi-
fi cations on target proteins are diverse, with potential impacts on protein function 
and stability, protein-protein interaction, and protein localization [ 6 ,  99 ]. These 
modifi cations may also protect the modifi ed cysteine thiol from additional oxidative 
modifi cation [ 106 – 109 ].  S -nitrosylation is one of the most well-described redox- 
dependent cysteine thiol modifi cations. This modifi cation is specifi c and reversible, 
and results from the covalent addition of a nitric oxide moiety to a cysteine thiol 
(RS-NO).  S -glutathionylation is another reversible modifi cation that is more stable 
than  S -nitrosylation, and results from the addition of glutathione to a cysteine thiol 
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(RS-SG).  S -sulfhydration is also a stable and reversible modifi cation that results 
from the interaction between hydrogen sulfi de and a cysteine thiol, leading to the 
formation of a hydropersulfi de moiety (RS-SH). Increased reactive oxygen species 
production can lead to the further oxidation of cysteine thiols, resulting in the for-
mation of disulfi de adducts and sulfenylation. Sulfenylation or sulfenic acid com-
monly results from the oxidation of cysteine thiols by hydrogen peroxide (RS-OH). 
This modifi cation was initially thought to be detrimental to cellular function, but 
recent evidence suggests that the highly reactive and labile nature of this modifi ca-
tion may allow it to serve as a critical intermediate for the formation of other oxida-
tive modifi cations, including disulfi de bonds. Disulfi de bonds (RS-SR) are important 
for the maintenance of protein structure and/or complex formation, and recent stud-
ies suggest that disulfi de adducts may also impact protein function [ 110 ,  111 ].  

   Methods to Assess Reversible Cysteine Thiol Modifi cations 

 To characterize the role of redox-dependent cysteine thiol modifi cations in health and 
disease, a number of proteomic and mass spectrometry-based approaches have been 
developed to identify modifi ed proteins and modifi cation sites. Many of these approaches 
take advantage of reducing agents that target specifi c redox-dependent cysteine thiol 
modifi cations, as well as a large number of cysteine-reactive compounds and labels. 
These approaches range from the use of switch assays with isobaric mass tags for labile 
modifi cations to antibody-based enrichment strategies for more stably modifi ed pro-
teins. These strategies are critical for assessing the role of redox-dependent modifi ca-
tions in the regulation of protein function, and for determining spatial localization, target 
specifi city, and mechanisms for the addition and removal of reversible modifi cations. 

      S-nitrosylation 

 The labile nature of  S -nitrosylation has often made this a diffi cult modifi cation to 
evaluate, as  S -nitrosylation can easily be lost during sample preparation, but a number 
of different approaches have been developed to identify specifi c modifi cation sites and 
assess the biological function of  S -nitrosylation in cellular physiology. These strate-
gies incorporate various measures to prevent the degradation of  S -nitrosylation. 

   Direct Measure with Mass Spectrometry 

 A small number of studies have successfully utilized mass spectrometry to directly 
identify  S -nitrosylated cysteine residues. Unfortunately, these studies were limited to 
the use of purifi ed proteins [ 112 ,  113 ], and the identifi cation of  S -nitrosylated pro-
teins in complex samples has not been reported. This approach remains a challenge 
because  S -nitrosylation tends to degrade upon exposure to the common acidic 
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conditions utilized for liquid chromatography tandem mass spectrometry (LC-MS/
MS). The low level of endogenous  S -nitrosylation is also a confounding factor [ 114 ].  

   Biotin Switch Assay 

 The most common approach for examining protein  S -nitrosylation is the biotin 
switch assay [ 115 ]. This assay circumvents lability issues by replacing modifi ed 
cysteine residues with a pyridyldithiol biotin (biotin-HPDP) label (see Fig.  13.2 ). 
With this approach, free cysteine thiols are blocked with a methylthiolating agent, 
such as methyl methanethiosulfonate (MMTS).  S -nitrosylated cysteine residues are 
then preferentially reduced with ascorbate and labeled with biotin-HPDP. At this 
point, biotinylated proteins can be examined via western blot. Alternatively, bioti-
nylated proteins can be enriched using streptavidin resin for subsequent LC-MS/MS 
analysis. Since the inception of the biotin switch assay, many variations of this 
approach have been developed. These variations include the use of fl uorescent 
labels (i.e., DyLight maleimide, CyDye maleimide) in tandem with two- dimensional 
gel electrophoresis [ 116 – 119 ]. The fl uorescent basis of this approach provides for 
accurate quantitation, as well as a visual representation of protein  S -nitrosylation 
differences between samples. Fluorescent spots can also be picked and modifi ed 
proteins identifi ed via LC-MS/MS. However, this approach is not effective for the 
identifi cation of specifi c modifi cation sites [ 120 ]. Fortunately, there are a number of 
high-throughput approaches that have since been developed for the specifi c identi-
fi cation of  S -nitrosylation sites, including  S -nitrosylation-resin-assisted capture 
(SNO-RAC) [ 107 ,  120 ,  121 ]. SNO-RAC utilizes a thiol-binding resin (i.e., thiopro-
pyl sepharose) instead of biotin-HPDP to capture and enrich for  S -nitrosylated pro-
tein targets. Specifi c modifi cation sites can then be identifi ed using LC-MS/MS, and 
quantifi ed via label-free peptide analysis. Cysteine-reactive isotope-coded affi nity 
tags [ 122 ] and tandem mass tags [ 123 ,  124 ] have also been incorporated into the 
modifi ed biotin switch approach for the identifi cation and quantitation of specifi c 
modifi cation sites using LC-MS/MS. These cysteine-reactive labels confer the 
advantage of multiple isobaric tags (isotope coded affi nity tag: 2-plex; tandem mass 
tag: 6-plex) with reporter ions in defi ned regions of the mass spectra. These labels 
have also been used to assess  S -nitrosylation occupancy, or the percentage of a 
given cysteine residue that is modifi ed via  S -nitrosylation [ 114 ]. In this case, free 
cysteine thiols are blocked with one isobaric label, while  S -nitrosylated cysteine 
thiols are reduced and labeled with a second isobaric label. Additional variations of 
the biotin switch assay include  S -nitrosylation Site Identifi cation (SNOSID) [ 125 ], 
the HIS-TAG switch method [ 126 ], and  S -nitrosothiol capture (SNOCAP) [ 127 ]. As 
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  Fig. 13.2    Biotin switch assay for examining protein  S -nitrosylation.  S-H  free cysteine thiol,  S-NO 
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with any approach, the biotin switch has inherent limitations, namely due to the 
potential of ascorbate to non-specifi cally reduce other cysteine thiol modifi cations 
[ 128 – 130 ]. Although this claim has been refuted [ 131 ,  132 ], appropriate positive 
and negative controls should always be used with this approach.

      Mercuric Chloride 

 An alternative to the biotin switch assay utilizes the reaction between  S -nitrosylation 
and phenylmercury compounds to enrich for  S -nitrosylated proteins [ 133 ]. With this 
approach, free cysteine thiols are blocked with MMTS, and ρ-amino-phenylmercuric 
acetate conjugated to agarose beads is used to capture  S -nitrosylated proteins. 
Following the release of captured peptides, cysteine thiols are then oxidized to sul-
fonic acid to facilitate the site-specifi c identifi cation of modifi ed cysteine residues 
using LC-MS/MS. This approach avoids the use of ascorbate, but appropriate con-
trols should still be used to account for the specifi city of the phenylmercury 
compound.  

   Antibody Enrichment 

 There are a number of commercial antibodies for the detection of protein 
 S -nitrosylation, which may allow for antibody-based enrichment and identifi cation 
via LC-MS/MS. However, many of these antibodies were raised against 
 S -nitrosylated bovine serum albumin, so antibody specifi city may be a potential 
issue with this approach.   

   S-glutathionylation 

  S -glutathionylation is a relatively stable redox-dependent modifi cation in compari-
son to more labile modifi cations like  S -nitrosylation. The primary high-throughput 
approach for examining  S -glutathionylation uses a very similar workfl ow to that 
described for the biotin switch assay, with several notable exceptions [ 134 – 136 ]. 
 S -nitrosylation is fi rst removed via UV-induced photolysis, followed by blocking 
with  N -ethylmaleimide;  N -ethylmaleimide is used instead of MMTS in order to 
form an irreversible linkage that cannot be reduced in the later steps of this protocol. 
 S -glutathionylation is then reduced with recombinant glutatredoxin-1, which pref-
erentially targets mixed disulfi des. Previously modifi ed residues are then enriched 
using phenylmercury capture and identifi ed using LC-MS/MS [ 136 ]. In theory, 
glutaredoxin- 1 can be used to examine  S -glutathionylation in tandem with many of 
the approaches previously described for  S -nitrosylation, including fl uorescent 
maleimide labels for gel electrophoresis and cysteine-reactive tandem mass tags for 
site identifi cation and quantifi cation. There are also a number of commercial 
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antibodies for the detection of protein  S -glutathionylation, which may allow for 
antibody- based enrichment and identifi cation via LC-MS/MS.  

   S-sulfhydration 

  S -sulfhydration is one of the more recently described redox-dependent modifi ca-
tions, and to date, only a small number of  S -sulfhydrated proteins and modifi ca-
tion sites have been identifi ed. A modifi ed version of the biotin switch assay was 
initially developed to identify  S -sulfhydrated protein targets [ 137 ]. With this 
approach, free cysteine thiols are blocked with MMTS. Biotin-HPDP is then 
added to react directly with  S -sulfhydrated residues; ascorbate and other reduc-
ing agents are not used with this approach. Biotinylated proteins can then be 
enriched via streptavidin beads and analyzed using LC-MS/MS. A reverse label-
ing approach has also been developed whereby free and  S -sulfhydrated thiols are 
both labeled with a fl uorescent maleimide tag [ 138 ]. The labeled protein is then 
subjected to reduction with dithiothreitol (DTT), which will only reduce the 
labeled  S -sulfhydrated cysteine thiols. The decrease in fl uorescence intensity is 
reported to correspond the level of  S -sulfhydration for a given protein target.  

   Disulfi de Bonds 

 The identifi cation of disulfi de bonds can be complex, namely due to the involve-
ment of two cysteine thiols within the same protein (intra-protein disulfi de) or 
between different proteins (inter-protein disulfi de). Inter-protein disulfi des are 
commonly examined with gel-based approaches, including diagonal gel electro-
phoresis [ 139 – 141 ]. Modifi ed proteins can then be extracted from the gel and 
identifi ed using LC-MS/MS. Intra-protein disulfi des can be examined using 
compounds such as dibromobimane, which selectively modifi es vicinal thiols 
[ 142 ]. The remaining non-vicinal thiols are reduced and blocked (i.e., with 
 N -ethylmaleimide). Subsequently, dibromobimane-labeled thiols can be reduced, 
labeled, and enriched for LC-MS/MS analysis [ 142 ]. Additional approaches use 
LC-MS/MS to identify disulfi de bonds by comparing the masses of reduced and 
non-reduced protein digests which are proteolyzed with intact disulfi de bonds 
[ 143 ], or with partial reduction and partial alkylation strategies [ 144 ].  

   Sulfenylation 

 Sulfenylation is a highly reactive and unstable modifi cation that can be easily 
lost during sample preparation. However, despite the labile nature of this modi-
fi cation, a number of approaches have been developed to examine sulfenylation. 
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The fi rst approach utilizes a modifi ed version of the biotin switch assay, with the 
exception that the sulfenic acid-specifi c reducing agent arsenite is substituted 
for ascorbate. Following the arsenite-mediated reduction of sulfenic acid, cyste-
ine thiols can be labeled with biotin-maleimide and examined via western blot, 
or enriched with streptavidin resin and analyzed using LC-MS/MS [ 145 ]. 
Isotope coded affi nity tags have also been substituted for biotin-maleimide with 
this approach [ 146 ,  147 ]. A second approach involves the use of dimedone and 
analogs thereof, which convert sulfenylation into a more stable derivative [ 136 , 
 148 – 151 ]. Dimedone-labeled proteins can then be enriched and analyzed via 
LC-MS/MS. An anti-dimedone sulfenic acid antibody is also commercially 
available. 

   Irreversible Cysteine Thiol Modifi cations 

 Sulfi nic acid (RS-O 2 H) and sulfonic acid (RS-O 3 H) result from the further oxida-
tion of sulfenic acid. These modifi cations are extremely stable and considered to 
be irreversible by normal cellular mechanisms. As such, these modifi cations are 
commonly used as markers of oxidative stress [ 152 ], although recent evidence 
suggests that these modifi cations may also play an important role in cellular sig-
naling [ 153 ]. 

 The irreversible nature of sulfi nic and sulfonic acid rules out the possibility of 
using the reduction/labeling/capture approach described for other redox-dependent 
cysteine thiol modifi cations. However, the extreme stability of these modifi cations 
is highly conducive to the direct detection of sulfi nic [ 154 ,  155 ] and sulfonic acid 
[ 152 ,  156 ] via LC-MS/MS. A number of commercial antibodies are also available 
for examining sulfi nic and sulfonic acid, leaving open the possibility for antibody- 
based enrichment strategies.  

    Conclusion 

 There are a number of different proteomic and mass spectrometry-based approaches 
that have been developed for examining redox-dependent cysteine thiol modifi ca-
tions. Many of these approaches are emerging and adaptable, and can be used to 
examine additional redox-dependent modifi cations by simple reagent substitution. 
When selecting a specifi c approach for a particular study, it is important to consider 
the specifi c experimental objectives (i.e., targeted approach vs. high-throughput 
approach). A multi-faceted approach utilizing multiple strategies is likely to yield 
more robust results, avoid the common pitfalls of each of the individual approaches, 
and reduce the probability of false-positive identifi cations. However, as with all 
approaches, suitable positive and negative controls should always be utilized. Non- 
specifi c reducing agents such as tris(2-carboxyethyl)phosphine hydrochloride 
(TCEP) and DTT are useful for reducing a large majority of the redox-dependent 
cysteine thiol modifi cations described previously in order to assesses global changes 
in cysteine thiol oxidation, but the ultimate challenge moving forward will lie in the 
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identifi cation of compounds and strategies to specifi cally reduce individual cysteine 
thiol modifi cations. These targeted strategies will allow for additional and expanded 
mechanistic studies examining the dynamic nature of cysteine thiol modifi cations in 
health and disease.    

    Overall Conclusions 

 Post-translational modifi cations are a central aspect of the dynamic cardiovascular 
proteome. The temporal and spatial regulation of protein function by modifi cations 
can alter tissue function or signal disease. Using the tools of advanced proteomic 
analysis it has been possible to systemically identify and characterize these modifi -
cations with the goal of understanding their role in regulation. In addition to mecha-
nistic insights obtained from these studies, this information has great clinical 
potential. Identifying critical post-translational modifi cations can be used to develop 
new and more effective pharmaceuticals. More recently, proteomic analysis and 
characterization of these modifi cations has been combined with powerful diagnostic 
approaches such as multiple reaction monitoring or data independent acquisition 
techniques. These approaches can screen large numbers of clinical samples for bio-
marker discovery or to stage the progression of disease. Incorporating PTM data 
into these advanced diagnostic platforms will better refl ect the dynamic regulation 
involved in pathophysiological conditions.     
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    Chapter 14   
 Proteomic Network Systems Analysis                     

     D.     Kent     Arrell       and     Andre     Terzic     

    Abstract     Proteomics and other high throughput technologies generate extensive 
molecular lists, the scope of which renders their accurate interpretation a daunting 
task. Thus, generalizable approaches by which to extract insight from this complexity 
are indispensable. Network systems biology principles and their application offer a 
modular, interchangeable data analytics pipeline by which to collate, integrate, and 
prioritize such datasets. By understanding the basis and utility of various organizing 
and interpretive profi ling elements including ontological classifi cation, functional 
enrichment and over-representation algorithms, and combining these with pathway 
analysis resources and the versatile tools and applications of complex network analy-
sis, an applied network systems approach yields actionable insights into tackling the 
biology underlying high throughput data. Providing a framework to proteomic new-
comers and experienced practitioners alike, we here outline data analytic approaches 
and provide concrete examples of the pairing of network systems prognostication with 
informed follow-up, through application of complementary physiological experimen-
tation to validate proteomic observations in cardiovascular health and disease.  

  Keywords     Bioinformatics   •   Cardiac   •   Cardiovascular   •   Complex network analysis   
•   Heart disease   •   Network biology   •   Protein   •   Proteome   •   Systems biology  

      Introduction 

 The proteomics fi eld incorporates a diverse array of methods and approaches by 
which to examine consequences of posttranscriptional and posttranslational effects 
on protein abundance, structure, modifi cations, and interactions. Many such ele-
ments are detailed in this manual, with chapters addressing various applications of 
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proteomic methodology, experimental design, data acquisition, and analysis of sub-
cellular compartments and specifi c protein modifi cations to further our understand-
ing of cardiovascular health and disease [ 1 ]. Regardless of this plethora of 
experimental and technical approaches, all proteomic studies share a common 
denominator: their output. Every study yields a compilation of proteins, either as 
simple lists of identities or subsets partitioned by differential expression or modifi -
cation in response to the biological question under investigation. The key to extract-
ing further insight from this output is the implementation of a generalized approach 
to data organization and interpretation. 

 From a logistical standpoint, this commonality – a list of proteins – suggests that 
it should be possible for any proteomic dataset to be examined in a similar manner. 
Unlike reductionist molecular approaches, where detailed functional analysis is 
conducted on a protein-by-protein basis, a more expansive strategy is required to 
account for the sheer volume of data. Indeed, while proteomic methods may be used 
to examine individual or small numbers of proteins, they are designed for and 
applied primarily to large scale analysis of entire proteomes or isolated subpro-
teomes (Table  14.1 ), such that they now typically yield lists of several hundred to 
upwards of a thousand proteins in a single report. As one might anticipate, extract-
ing insight from hundreds of proteins simultaneously is not facile, and can be per-
ceived as altogether unmanageable. These lists can be simplifi ed by narrowing the 
focus to a few choice proteins, such as those exhibiting the greatest extent of change, 
residing within a particular organelle, or executing a particular biological function. 
This offers advantages of reduced complexity and the potential to pinpoint func-
tions germane to the topic of interest, but subjective protein exclusion during down-
stream analysis invariably leads to information loss. Moreover, care must be taken 
to ensure that data reduction decisions are not infl uenced by selection bias, whether 
intentional (e.g. confi rmation bias [ 2 ], expectation bias [ 3 ]) or not. Finally, acquir-
ing a mountain of data and ignoring all but the peak is patently counterproductive to 
an experimental rationale predicated on the capacity to conduct high throughput 
profi ling. As we have emphasized previously [ 4 ], information reduction strategies 
may result in overlooking critical functional interactions and mechanistically 
important processes associated with and evident only upon examination of the com-
plete dataset. In making these assessments, awareness of proteins not changing in a 
system is often just as valuable as detecting those that are altered. Thus, a judicious 
proteomic data analytics strategy should yield the same advantages – reduced infor-
mation complexity and provision of functional insights – while remaining free of 
selection bias and ensuring inclusivity of all detected proteins [ 4 ,  5 ].

   Network systems biology (Table  14.1 ) principles offer an attractive approach for 
comprehensive data analysis. Systems based strategies facilitate objective organiza-
tion, prioritization, and integration of proteomic and other big data in their entirety, 
regardless of abundance, scope or complexity. To this end, a suite of bioinformatic 
and computational applications designed specifi cally to interrogate high throughput 
data is currently available, and in conjunction with protein databases that provide 
ease of access for molecular information retrieval, they harbor the capacity to bring 
clarity and cohesion to proteomic output [ 4 – 6 ]. Various applications and tools can 
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                  Table 14.1    Proteomic network systems analysis glossary   

 Subproteome  Subset of the proteome, often grouped by a shared cellular function, 
alteration by or dependency on a specifi c biological process, or 
components of a particular extracellular or intracellular organelle or 
compartment 

 Systems biology  Analytical high throughput data-inclusive approach to investigating 
and modeling relationships among a system’s components in order to 
understand and predict emergent properties 

 Network or 
Interactome 

 Representation of pairwise collections of interactions and 
relationships, known as a graph in mathematics, which exhibits 
emergent properties based on their topological structure 

 Network systems 
biology 

 Complex network theory applied to the analysis of molecular 
interaction networks, including evaluation and assessment of their 
composition and topology to guide systems biological interpretation 

 Node  Individual subunits that comprise a graph or network via their 
cumulative interactions. In network biology, one or more of proteins, 
genes, metabolites, and endogenous small molecules or drugs are 
typically represented as nodes 

 Edge  An interaction or relationship between two nodes of a network. In 
network biology this might represent a physical complex of protein 
subunits, or a regulatory, genetic, or signaling effect, visualized as a 
line connecting interacting nodes. Based on the relationship, edges 
may also be portrayed as undirected or directed 

 Degree distribution  Node degree, the number of connections each node possesses to other 
nodes in a network, can be used to convey a network’s degree 
distribution, which represents the probability distribution of the 
degrees of all network nodes 

 Scale-free topology  Non-stochastic power law distribution of node connectivity 
characteristic of biological networks, the non-random structure of 
which infl uences subsequent emergent network properties such as 
functional robustness 

 Hub  Network node that is much more highly connected (i.e. a greater 
degree) than would be expected to occur at random 

 Clustering coeffi cient  Extent to which nodes within a network cluster together as a measure 
of neighborhood relatedness, where a node’s clustering coeffi cient is 
defi ned as the proportion of nodes connecting to it that also connect to 
each other 

 Bridging node  Node bridging the shortest direct path between two other nodes or 
modules within a network, often forming the shortest path between a 
high proportion of node pairs, leading to an increased likelihood of 
functional importance due to its position as a network bottleneck 

 Network motif  Patterns of complex network node-edge connections that are observed 
more frequently than expected relative to randomly assembled 
networks 

 Network module  Highly interconnected collection of nodes that nevertheless exhibits 
few interactions with the remaining network, often comprised of 
nodes with a shared function such as subunits of a protein complex or 
members of a metabolic or signaling pathway 

(continued)
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be arranged and organized to suit particular projects and data sources, but in general 
there are four elements that form the basis of a proteomic network systems approach. 
The fi rst component is ontological classifi cation, an initial compartmentalization for 
partitioning high-throughput proteomic data into discrete biological categories. 
This serves to reduce complexity of an initial list of proteins, and enables assess-
ment of the relative frequency or infrequency of occurrence for particular functional 
categories within acquired data relative to a specifi ed reference set or between 
experimental cohorts. The second component, pathway analysis, extends categori-
cal assignment by evaluating proteomic fi ndings in the context of biological path-
ways. In this regard, data is superimposed onto canonical pathways and functional 
annotations, providing further evidence of enrichment properties and establishing 
connections between distinct elements of the measured dataset. Such connections, 
retrieved from pathway analysis resources or via stand-alone molecular interaction 
applications, are vital for the third component, complex network analysis. Networks, 
comprised of proteins connected by their collective functional and structural inter-
actions, position proteins within the context of their local interaction neighborhood. 
Network composition, topology, and positional relevance of specifi c proteins pro-
vide value-added properties for data interpretation extending beyond what can be 
achieved with pathway analysis alone, and these can be exploited for hypothesis 
generation to assist in developing validation experiments to explain mechanistic 
underpinnings of initial proteomic measurements. A fourth and fi nal optional com-
ponent is systems modeling. If suffi cient functional data is obtained relating to spe-
cifi c components, pathways, or network elements, it may be possible to develop 
mathematical or computational models to explain or predict functional outcomes on 
the basis of experimental proteomic fi ndings. This particular element requires both 
extensive additional information to model the system under investigation as well as 
expertise in calculus and mathematics to design and implement. To simplify this 
introduction of proteomic network systems analysis for beginners, modeling will 
thus not be discussed here. The fi rst three components, meanwhile, can be under-
taken with only an initial list of output proteins and their related expression values, 
without any requisite expertise in standard tools of the trade. For those interested in 
further pursuing systems modeling, a recent description of fundamental concepts in 
its comprehension and application for cardiovascular proteomics is available [ 6 ]. 

Table 14.1 (continued)

 Functional robustness  Network property of functional resilience when subjected to random 
removal or inhibition of a single node, based on the low connectivity 
of most nodes and the high degree of a limited proportion of nodes 

 Path length  Distance between two nodes in a network based on the minimum 
number of edges required to connect them. Average path length of 
scale-free networks is extremely small, meaning very few steps are 
required to connect any two nodes 

 Network diameter  Greatest path length required to connect any two nodes of a network 
 Metaboproteome  Subproteome comprised of and involving proteins supporting cell 

metabolism 
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 Bioinformatic and computational network systems analytic approaches are 
prognostic in nature, providing hypothesis generating predictions requiring subse-
quent validation of underlying biological effects for the observed proteomic out-
put. To avoid pitfalls of overestimating the impact of predictions or of statistical 
overfi tting of high throughput data, predictive analytics should therefore be paired 
with complementary experimental data to ensure hypothesis validation. Ideally, 
then, prognosis should be actionable, and if predictions are valid, verifi able. This 
chapter provides a structured description of network systems biology procedures 
by which to address the daunting task of organizing and interpreting proteomic 
output, for generation of “actionable prognostication”, and provides discrete 
examples of how information arising from these tools is paired with complemen-
tary physiological data to validate proteomic observations in cardiovascular 
research. The conceptual approach to proteomic network systems biology described 
herein extends just as readily to the analysis of genomic, transcriptomic, and 
metabolomic data. Thus, these organization and prioritization principles prove 
equally versatile for interrogation and interpretation of data from other high 
throughput molecular profi ling methods, including strategies that integrate multi-
level -omics datasets.  

    Ontological Classifi cation, Functional Enrichment 
and Over-Representation 

 Current large-scale proteomic studies generate datasets exceedingly diffi cult to 
comprehend or interpret without initial data reduction or clustering. This is due to a 
combination of sheer size, i.e. the number of proteins, and an even greater complex-
ity imposed by their associated biological functions and processes. In this regard, 
shared biological properties can and do serve as a useful starting point for data 
comprehension. As noted, when this process is conducted selectively to pare down 
an extensive list and focus immediately on a protein subset rather than the entire 
dataset, inclusivity is bypassed for simplicity and subsequent analysis is compro-
mised by user bias. A more objective rationale involves collation of all detected 
proteins using extant biological information, with prioritization based on subse-
quent assessment and interrogation of the complete dataset. Even selection of statis-
tical cutoffs should not be arbitrary, but rather applied as a reasonable fold change 
and statistical test with suffi cient power to clearly establish a difference between 
experimental cohorts [ 7 ]. Implementing this strategy is aided by knowledge of the 
Gene Ontology (GO) [ 8 ], organized and structured specifi cally to document gene 
and protein properties, and awareness of where to fi nd and access databases con-
taining GO information. 

 In the fi eld of proteomics, the UniProt Knowledge Base [ 9 ] (UniProtKB, 
 accessible at   www.uniprot.org    ) is an established protein sequence repository for 
assignment of spectral data acquired during mass spectrometry. Its current iteration 
emerged from a consortium combining several previous protein databases,  including 
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Swiss-Prot, the Translated European Molecular Biology Laboratory, the Protein 
Information Resource and, more recently, the International Protein Index. Besides 
serving as a mass spectrometry resource, UniProtKB incorporates a wealth of 
 additional information on various protein properties and characteristics, making it a 
useful starting point for in-depth dataset analysis [ 9 ]. Each entry cross-references 
with hyperlinks to a wealth of protein database resources listed under as many as 15 
sub-categories, depending upon extent of protein characterization, and includes all 
available GO information [ 10 ]. As a result, initial ontology classifi cation can be 
achieved by simply parsing GO data from UniProtKB, enabling data reduction to 
cluster proteins without necessitating in-depth or formal knowledge of the GO 
resource. In this way, proteins may be classifi ed and grouped by a specifi c function 
(e.g. kinase, oxidoreductase), by particular biological processes to which they con-
tribute (e.g. glycolysis, muscle contraction), where each protein might execute a 
unique function while working together as a collective within a particular pathway 
or as members of a multi-protein complex, and by their localization within one or 
more discrete cellular components (e.g. mitochondrion, nucleus). 

 It is precisely these concepts – molecular function, biological process, and cel-
lular component – upon which the GO structure is based [ 11 – 16 ]. These are consid-
ered root terms forming ‘domains’ within the controlled vocabulary set out by the 
GO Consortium [ 8 ], and thus all other GO terms fall into one of these three domains. 
Each GO classifi cation is unique, but together they form a loosely hierarchical 
structure, whereby more specialized ‘child’ terms link to one or multiple more gen-
eralized ‘parent’ terms. As such, the structure of related GO terms can be portrayed 
or described as a graph, or network, where every GO term serves as a node, inter-
relationships between pairs of GO terms form edges connecting them (Table  14.1 ), 
and edges in turn form nested connections within the hierarchy, the various ele-
ments of which fan out from their respective domain root terms (Fig.  14.1 ).

   Comprehension of this structure is advantageous for individuals involved in high 
throughput research, as GO categorization is now applied to most cardiovascular 
proteomic studies [ 4 ,  6 ]. Clustering by shared functional properties would be 
straightforward if all proteins were defi ned by single GO terms. However, well 
characterized proteins are often assigned multiple GO associations, either as nested 
molecular functions of increasing specifi city, as a result of participation in multiple 
biological processes, or a combination of the two, whereas a small proportion of 
proteins lack any GO term due to unknown function. Thus, a single protein may be 
included in and defi ned by multiple GO categories simultaneously (Fig.  14.1 ), or 
appear in none at all. 

 Following dataset assignment of protein GO designations, it is then benefi cial to 
determine their categorical frequency of occurrence. On its own, the frequency at 
which a particular GO term appears in a dataset is somewhat meaningless. It must 
be interpreted in the context of an established benchmark such as the known pro-
teome for a species or tissue of interest, or the full extent of proteins detected within 
the constraints of the experimental technology being applied, such as the complete 
set of proteins present on a chip array [ 12 – 19 ]. Statistical assessment is carried out 
by a hypergeometric distribution (Fig.  14.1 ), defi ning the probability of whether GO 
terms appear more or less frequently in an experimental dataset than would be 

D.K. Arrell and A. Terzic



327

Enriched functions, pathways, 
diseases, other adverse effects 

Complex network analysis 

Pathway analysis 

 

Actionable prognostication 

Protein lists Proteomic data acquisition 
#1192-1192 RT:35.46-35.46 NL: 1.38E4

0 200 400 600 800 1000 1200 1400 1600 1800
m/z

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

R
el

at
iv

e 
A

bu
nd

an
ce

yy9
+1

1040.4

yy3
+1

315.2
yy4

+1

416.2
yy 10

+1

1153.4
yy6

+1

647.3
yy7

+1

810.3

bb 13
+1

1498.4

bb 7
+1

773.3

bb 12
+1

1397.4bb 6
+1

660.2

yy 11
+1

1266.5

bb 9
+1

1003.3
bb 10

+1

1166.4

bb 5
+1

547.1yy5
+1

487.2

yy 12
+1

1337.5

bb 3
+1

363.0

bb 15
+1

1666.6
yy 14

+1

1565.6yy8
+1

911.4

Assign one representative 
GO category per protein 

Ontological 

Hypergeometric distribution to assess
enrichment; GO hierarchical relationships

 
 

classification 

-lo
g 

(p
-v

al
ue

)

6 
5 
4 
3 
2 
1 
0 

p < 0.05 

6
5
4
3
2

0

Pathway representations 
overlaid with expression data 

Protein interaction and 
regulatory networks 

Protein interaction and

Non-stochastic topology, emergent
properties, node prioritization

 
 

Expanded network 
neighborhood 

Composite ontological enrichment
inclusive of proteome + merged nodes

 
 

Intra-network 
positional relevance, 
e.g. node targeting 
( in vitro, in vivo) 

Degree 
Distribution 

Clustering 
Distribution 

Experimental, functional validation  

Hypothesis generation, informed by prior steps 

B
ea

tin
g 

ce
ll 

ar
ea

 (%
) 

Network Hub #1 + + + - - - 
Hub #1 inhibitor + + - - - - 
Hub #2 inhibitor + + - - - - 

0 

10 

20 

30 

40 
Physiological, 
pharmacological 
parameters 

Refine interpretation, iterate proteomic or
other high throughput process if mandated

 
 

Multiple GO allocations
per protein

  Fig. 14.1    Proteomic network systems analysis. Systems comprehension requires moving beyond 
simple lists by undertaking their organization, clustering and prioritization to reduce information 
complexity and extract functional insights into the biology underlying acquired proteomic data. 
Subjecting protein lists to ontological classifi cation, pathway analysis, and complex network anal-
ysis, interpretation can be used to generate actionable hypotheses for functional validation. Shown 
as a simplifi ed workfl ow, these elements do not necessarily follow a prescribed sequence, but 
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at different stages of an analysis when warranted. Indeed, the entire process may be cyclical or 
iterative, as experimental validation and insights gleaned from an initial analysis may be further 
refi ned by subsequent proteomic or other high throughput data acquisition and a successive round 
of systems analysis. Abbreviation:  GO  Gene Ontology       
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 anticipated relative to their occurrence within the reference benchmark set. It should 
be noted that overrepresentation and enrichment metrics are useful not only for 
 differential expression analyses in terms of defi ning what classes of upregulated or 
downregulated proteins are overrepresented, but they are also applicable for exami-
nation of a simple list of protein identities. Here, enrichment analysis can be used to 
determine whether an experimental methodology is selective as desired or intended, 
or perhaps biased towards or against detection of a particular subproteome. 

 An alternative approach known as gene (or protein) set enrichment analysis can 
be used for differential comparison to previously published datasets [ 20 – 22 ]. This 
method takes a slightly different tack, avoiding prescribed statistical cutoffs for 
comparison, and instead makes use of rank ordered expression, which is then 
assessed for correlation or anti-correlation to the rank ordered expression of pub-
lished data. This approach can be useful for teasing out subtle ontological differ-
ences between experimental groups, even in the absence of substantial numbers of 
signifi cantly differing proteins. Fortunately, expertise in mathematics is not a pre- 
requisite for conducting any of these tests as they are typically incorporated into 
various commercial and open source applications, including those used for pathway 
and network analysis.  

    Pathway Analysis 

 Efforts to extend proteomic categorization beyond the relative occurrence of, and 
assignment to, particular GO classifi cations are the domain of pathway analysis 
applications. Pathway algorithms facilitate expanded examination of proteomic 
data in the context of established biological pathways, protein functions, and their 
associated structural, functional and regulatory interactions. Proteomic datasets 
may be mapped across one or more specifi c canonical pathways, aiding in determi-
nation of whether particular pathways or pathway segments or branches are simi-
larly or differentially affected, with mapping of proteins and expression level data 
onto pathways facilitating their visualization and representation. Many pathway 
applications enable protein annotation, using embedded information with details 
similar to those available within the UniProtKB, and tie-ins or hyperlinks to current 
knowledge on proteins of interest. As a consequence, many such algorithms also 
support enrichment and overrepresentation analysis, some making use of existing 
GO molecular function, biological process, and cellular component nomenclature, 
while other applications construct and implement platform-specifi c ontology terms 
and classifi ers [ 4 ]. Finally, some pathway resources focus entirely on protein inter-
actions, while others include interaction network generation as one element of a 
suite of functions, such as that offered by commercial pathway tools, e.g. MetaCore 
and Ingenuity Pathways Analysis (IPA). Network generation in these applications 
can then be further scrutinized for functional annotation enrichment or canonical 
pathway overrepresentation in the context of a broader network neighborhood in a 
fashion similar to that which is carried out on initial proteomic input. Beyond an 
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understanding of what pathway analysis entails, other primary issues that beginners 
are faced with are where to fi nd these repositories, potential costs involved in their 
use, if any, and specifi ed data formats, if required, all with the overarching consid-
eration of what benefi cial attributes are present and desirable in specifi c pathway 
analysis algorithms. 

 Even at fi rst glance, it is evident that the extent of information available in indi-
vidual pathway analysis resources varies greatly between applications. In part, this 
may be due to the fact that many pathway databases arose from investigator- 
generated data accumulation. Thus these databases may relate to a specifi c research 
area of interest, sometimes with a focus on only a limited set of pathways or a dis-
crete protein property – such as protein-protein interactions – or an emphasis on 
data from only a single species or particular organelle. Other contributing factors 
are the sheer number of repositories, and their broad applicability to tackle the vari-
ability of biological questions under examination. The latest update of Pathguide, 
the largest online compendium of biological pathway and molecular interaction 
related resources, now lists nearly 550 different pathway applications [ 23 ]. This 
number has almost doubled in the past 3 years [ 4 ], signifying the tremendous growth 
in this fi eld. Pathguide lists eight distinct pathway application categories: protein- 
protein interactions; metabolic pathways; signaling pathways; pathway diagrams; 
transcription factor/gene regulatory networks; protein-compound interactions; 
genetic interaction networks; protein sequence focused databases; and 17 separate 
resources listed under the category of ‘Other’. This site provides detailed informa-
tion about each resource, accessibility (cost and current availability), and whether 
they adhere to or accommodate specifi c bioinformatics language standards, e.g. 
BioPAX [ 24 ], which was designed to enable integration, exchange, visualization 
and analysis of biological pathway data. Many of these databases are freely acces-
sible or free for use by academics, although the more comprehensive resources are 
typically commercial entities with license requirements that can be cost prohibitive 
to some investigators. In general, these resources map current biological knowledge 
to known pathways rather than serving as inference tools to predict theoretical inter-
actions or novel biological outcomes. Some applications are attractive for use 
because of their broad applicability. For example, the MetaCore pathway database 
and the IPA Ingenuity Pathways Knowledge Base harbor suites of functions, 
accounting for these resources being listed in 6 and 5 Pathguide categories, respec-
tively, making them popular choices for cardiovascular proteomic pathway analysis 
[ 11 – 14 ,  25 – 42 ]. Although less versatile, more specialized applications often prove 
highly desirable when matched to user-specifi c needs, for instance, exploiting mito-
chondrial protein interaction databases for bioenergetics research. For those with 
little knowledge of this bioinformatic fi eld, Pathguide is an excellent source of 
information for an informed decision on selecting pathway analysis applications 
that optimally align with experimental needs. 

 Once a pathway analysis platform is selected, implementation may take many 
forms. A quick overview of IPA search parameters provides useful considerations in 
this regard. Input data can range from a number of high throughput experimental 
procedures, including proteomic, mRNA, microRNA, or metabolomic profi ling, as 
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well as RNA-Seq and other next generation sequencing experiments. To enable 
diverse inputs, this application accepts over 20 different types of molecule identifi er. 
As a consequence, this provides users with the potential to combine data from mul-
tiple high-throughput sources, channeling them through a single location for con-
comitant interrogation under identical bioinformatic parameters. This facilitates 
proteomic data integration with high throughput information spanning multiple 
regulatory levels, increasing the potential for comprehensive insight into cellular 
function [ 43 ]. A number of user-specifi ed parameters are then applied to defi ne how 
broad or refi ned an analysis is desired. For proteomic analysis, protein identities are 
generally submitted together with expression level data such as fold change, log 
ratios, or P-values to set prescribed cutoffs for differential expression between 
experimental groups. Subsets of upregulated and downregulated proteins can then 
be examined in isolation, or together as a complete differentially expressed cohort. 
The scope and stringency of input functional relevance is also user controlled, such 
as breadth of species data to interrogate, whether direct and indirect biological rela-
tionships are acceptable, and whether these interactions must be documented rela-
tionships only or if predicted interactions are also acceptable. 

 Pathway analysis output, such as that obtained with IPA and MetaCore, contains 
enrichment analysis functions highlighting specifi c functional annotations, canoni-
cal pathways, diseases, or other adverse effects overrepresented within the exam-
ined dataset (Fig.  14.1 ). Images representing signaling pathways, metabolic 
pathways, or other clusters of interest such as protein complexes, may then be 
opened for inspection, typically with expression data for constituent proteins over-
laid on the image for ease of visual representation. Additional predictive elements 
are now being incorporated to enhance these pathway diagrams. IPA, for example, 
recently introduced tools designed to predict upstream regulatory effectors with the 
greatest likelihood of explaining observed input data, including predicted regulator 
activation states based on observed protein expression values. Moreover, generated 
pathways overlaid with expression data can now be used to infer whether expression 
of other known elements within the pathway might also be altered despite not being 
detected during initial proteomic analysis. Finally, comprehensive pathway analysis 
algorithms also generate protein interaction and regulatory networks (Fig.  14.1 ) [ 4 ], 
which can be tailored by settings for maximum network size, number of networks, 
and whether network nodes are limited to proteins and genes only, or if their com-
position may be expanded to include other bioactive molecules such as drugs, 
endogenous chemicals, and metabolites. 

 What must be kept in mind is that pathway analysis outputs are inferred biologi-
cal consequences arising from or explaining input proteins and their observed 
expression values. As these are predictions and not mechanistic explanations, it is 
best to view pathway analysis as an interpretative tool facilitating hypothesis gen-
eration [ 4 ]. Ideally, these hypotheses are then tested and validated by experimental 
follow-up. With the realization that pathway analysis is operating from the stand-
point of partial information, and the knowledge that quality and reliability of sup-
ported interactions and relationships gleaned from the literature by these applications 
can be highly variable, the quality of which are not readily apparent without  in- depth 
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analyses of all relevant literature, it is best to approach any results with a healthy 
dose of skepticism by designing and executing validation experiments whenever 
possible. Continuous refi nement of pathway analysis applications improves as data 
acquisition increases, but the most convincing systems proteomics studies will 
always complement predictive analytics with supportive experimental validation. 

 Pathway analysis algorithms also harbor limitations with respect to generated 
protein and gene interaction networks [ 4 ]. While these networks can be evaluated 
for enrichment and overrepresentation in a manner similar to that of an unconnected 
protein or gene dataset that served as initial input, pathway applications are not 
designed to characterize additional characteristics such as network topology or 
structure, which imparts additional emergent properties of relevance for particular 
nodes within the network. Moreover, pathway analysis networks are often intended 
for visual esthetics rather than functional interpretation, so these applications tend 
to have upper bounds in their capacity to assemble large networks. As proteomic 
datasets continue to increase in magnitude, this limitation becomes more problem-
atic for network-oriented biological interpretation. To properly exploit network 
structure and composition for proteomic systems analysis, it is therefore essential to 
move beyond pathway network applications and make use of dedicated network 
analysis tools. Comprehension of some basic principles of complex network analy-
sis, including those that confer value-added properties for systems analysis, facili-
tates their use for visualizing and interpreting proteomic data.  

    Complex Network Analysis 

 What, exactly, is a network? As noted for the hierarchical structure of the complete 
assemblage of GO terms, a network, or graph, is a collection of nodes, each con-
necting to one or more additional nodes in a pairwise manner (Table  14.1 ). In pro-
teomics, then, a network serves as a mathematical representation of known or 
predicted biological relationships between collections of proteins. Nodes or vertices 
designate the proteins, while any relationship between two proteins is represented 
by an edge, or line, connecting the two nodes (Table  14.1 ). The number of edges 
connecting a node to other nodes in the network is defi ned as the fi rst node’s degree 
(Table  14.1 ). Networks are now understood to assemble into nonrandom structures, 
where most nodes within the network contain very few connections to other nodes, 
and thus have a small degree, whereas a much smaller proportion of nodes have 
many connections, or a large degree. 

 Once believed to be randomly arranged in terms of connectivity, over the past 15 
years this non-stochastic connectivity tendency in biological networks has become 
better understood. It is now well established that this arrangement of biological 
network degree distribution (Table  14.1 , Fig.  14.1 ) approximates a power law, lead-
ing to a characteristic network topology that is termed scale-free (Table  14.1 ) [ 44 ]. 
Nodes of extremely high degree are defi ned as hubs (Table  14.1 ), and their extensive 
connectivity is often refl ected in these nodes being critical for network  functionality. 
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Another useful network parameter is termed the clustering coeffi cient (Table  14.1 ). 
This is a property of secondary interactions within a network [ 45 ], as the clustering 
coeffi cient for a particular node indicates the proportion of nodes linking to it that 
also connect to each other. In other words, this measure defi nes how interconnected 
are a node’s nearest neighbors. Tightly clustered groups of proteins, which often 
share similar functional attributes or serve as partners in a multi-protein structural 
complex, create local regions of high clustering coeffi cient nodes in a network, and 
in turn, clusters of clusters can be observed in extremely large networks, such that 
the network forms a hierarchical structure. Nodes that bridge two or more regions 
of high clustering within a network are known as bridging nodes (Table  14.1 ). Due 
to their position spanning large numbers of nodes on either side, they form a conduit 
as the shortest path between an inordinately high proportion of node pairs within the 
network. Therefore, bridging nodes often are also critical to overall network func-
tion, like hubs, despite typically being of rather limited degree, unlike hubs. Network 
non-stochasticity also imparts other emergent properties of biological relevance 
beyond that of hubs and bridging nodes, such as network structural motifs, modular-
ity, and functional robustness (Table  14.1 ) [ 46 ,  47 ]. 

 From these rather esoteric descriptions, it may not be readily apparent how net-
works are useful for representation of proteomic data. Proteins carry out the vast 
majority of functions within cells, doing so not in isolation but rather in concert with 
a plethora of other proteins and macromolecules, as components in structural or 
regulatory interactions, or as part of signaling or metabolic cascades. Accordingly, 
arrangement of these interactions in the form of a biological network serves as a 
rational means of assembling complex data in a functional, coherent format. Once 
generated, biological interaction networks can be evaluated on the basis of their 
composition via ontological and functional enrichment analysis, and on the basis of 
network topology or structure, both in terms of its overall architecture as well as by 
mathematical measures identifying nodes with positions of prominence throughout 
the network, e.g. hubs and bridging nodes (Table  14.1 , Fig.  14.1 ) [ 46 ,  47 ]. Because 
proteomic networks are also non-stochastic, regardless of network size or scale, 
they possess predictable structural characteristics that can be useful for functional 
interrogation and hypothesis generation. Importantly, such network topology- 
dependent traits are not readily apparent when their constituent proteins are instead 
arranged only as lists. 

 Methods used to generate networks from biological data can differ widely, 
depending on the source of information used to defi ne interactions, and on underly-
ing presumptions used to evaluate what properties constitute an edge to connect two 
nodes. When produced in conjunction with pathway analysis, proteomic interaction 
networks are most often generated using current biological knowledge to establish 
connectivity. Such networks typically include structural, regulatory, and signaling 
based interactions, comprising both direct and indirect relationships between nodes. 
If only a particular subset of interactions is warranted or desired for network assem-
bly, such as protein-protein interactions, these can be assembled directly from the 
literature or by  de novo  experimental data acquisition. There are also statistically 
guided methods for network construction, connecting nodes on the basis of co- 
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expression or correlation [ 48 ], or by reverse engineering from expression dynamics 
using  ab initio  methods [ 49 ], although these methods require greater detail regard-
ing data input for modeling and prediction of network interactions than is typically 
available from proteomic studies. Thus, networks derived from pathway analysis 
and the accumulated knowledge archived therein is currently the most applicable 
methodology available for proteomic systems analysis. 

 Examining protein networks from both a structure and function standpoint 
requires an understanding of dedicated network analysis and visualization applica-
tions. A prominent example is Cytoscape, developed by a multi-institute consortium 
as an open-source, stand-alone tool for network visualization and evaluation of net-
work structural properties, which over time has added the capacity to access protein 
and gene data directly from other repositories, thus enhancing network comprehen-
sion in biological contexts [ 50 ]. As it is open-source, users and developers are wel-
come to create and contribute new peripherals, or apps, to further advance Cytoscape’s 
utility for network interpretation and interrogation. Newcomers to complex network 
analysis will appreciate the fact that neither bioinformatic profi ciency nor expertise 
in network biology are required to begin using Cytoscape, although its maturation 
and broad appeal has led to a plethora of tools and applications that require a substan-
tial commitment to accurately comprehend and exploit to their full potential. 

 Numerous options exist for visualization of networks constructed in or imported 
into Cytoscape. Besides the basic requirement for a list of pairwise interactions, 
additional attributes can be uploaded and appended, such as protein expression data, 
which can then be superimposed as node or edge attributes or to network layout to 
organize networks visually on the basis of expression information. Thus, extent and 
direction of biological change, i.e. up- or down-regulation, can be conveyed by 
color, shape, or size of nodes and edges, with a variety of optional layouts available 
to assist researchers in emphasizing particular network elements or properties [ 11 –
 14 ]. For example, the layout of nodes in one network can be applied to another in 
order to co-localize nodes shared by both networks in the same relative spatial 
regions, enhancing the visual capacity to compare and contrast related networks 
[ 14 ]. Once attributes are applied to network nodes, this information can also be 
exploited to enable layout co-localization by regional clustering of nodes sharing 
one or more common attributes [ 12 – 14 ]. Unlike pathway analysis network tools, 
these functions can be achieved in Cytoscape without concern for upper bounds on 
network size or structural complexity. 

 Beyond visualization properties, substantial effort has been devoted to Cytoscape 
analysis, interrogation and interpretation tools to examine network structure and 
network functional characteristics. Network Analyzer [ 51 ] was developed soon 
after the introduction of Cytoscape, and was such a popular app for network topol-
ogy analysis that it is now fully integrated as a standard tool on all new platform 
downloads. Analyzer assesses a variety of topological elements for both directed 
and undirected Cytoscape networks, including but not limited to number of nodes 
and edges, number of connected components, degree distribution, clustering coef-
fi cient, average path lengths between pairs of nodes, and network diameter 
(Table  14.1 ) [ 51 ]. These network topological attributes are not addressed by  pathway 
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analysis network functions, making network specifi c applications a valuable addi-
tion to the systems proteomics repertoire. 

 From a network functional enrichment standpoint, the most popular Cytoscape app 
is the Biological Network Gene Ontology (BiNGO) tool [ 52 ]. It was designed to 
acquire current external resources of the GO and apply them internally to fulfi ll net-
work GO analysis within Cytoscape. Thus, BiNGO interprets biological network over-
representation across the breadth of GO domains—biological process, cellular 
component, and molecular function—by comparison to the entirety of a species- 
specifi c reference set, a process similar to enrichment analysis tools in pathway algo-
rithms. BiNGO output can be displayed in two ways. The fi rst is as a signifi cance 
ranked spreadsheet of terms defi ned within a particular GO domain, with domain of 
choice and signifi cance threshold pre-defi ned in user settings. The second is as a nested 
hierarchical ontology network representing GO terms as nodes, parent-child relation-
ships as edges, node coloring graded in relation to the presence and extent of statistical 
signifi cance, and node size scaled to the proportion of initial network nodes mapping 
to each GO network term. Ultimately, BiNGO generates an ontology network defi ning 
the functional attributes of its parent molecular network (Fig.  14.1 ) [ 52 ]. 

 There are now over 250 unique Cytoscape apps designed for specifi c functions, 
including but not limited to, import of networks and their attributes, network infer-
ence, analysis of existing networks, enrichment and ontology analysis, systems 
biology, comparison between networks, and communication and scripting applica-
tions. Cytoscape has become increasingly popular for cardiovascular proteomic net-
work analysis [ 11 – 14 ,  17 ,  25 ] due to the litany of contributors building it into a 
comprehensive program addressing almost every network-oriented concept imagin-
able. While described here extensively to outline dedicated network platform appli-
cations, Cytoscape is not the only useful network analysis program available, and 
readers are encouraged to investigate other network visualization and analysis tools. 
Similar to the Pathguide repository of pathway analysis applications, Graph 
Visualization Software References formerly served as a single site resource provid-
ing information on several dozen network analysis algorithms to enlighten and 
guide software selection [ 53 ], but unfortunately a recent search indicates that this 
database appears to be no longer available. At this time, no comparable resource is 
available to guide newcomers to appropriate tools for network analysis, but investi-
gators are encouraged to seek out and apply network associated applications to 
maximize proteomic systems-oriented data analysis.  

    Putting the Components Together – Actionable 
Prognostication with Experimental Validation 

 Unlike traditional reductionist approaches where hypotheses are formulated and 
subsequently investigated by applying various molecular biology techniques, often 
with an emphasis on characterizing function of only a single protein or biological 
pathway, proteomic and other high throughput techniques are often applied without 
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a preconceived notion of what may or will be detected or discovered. Indeed, the 
biology may not even be suffi ciently well understood to formulate actionable 
hypotheses until after such data is fi rst analyzed and interpreted. Accordingly, high 
throughput analyses are often viewed or approached from a different scientifi c 
standpoint, wherein data analysis serves as the hypothesis generating step that must 
subsequently be validated (Fig.  14.1 ). Thus, acquired proteomic data does not typi-
cally serve as a fi nal answer in and of itself. Instead, delivering on the promise of 
proteomic data often requires the application of actionable prognostication. 

 A case in point is proteomic comprehension of the cardiac implications of ATP- 
sensitive K +  (K ATP ) channel defi ciency, caused by absence of the  KCNJ11 -encoded 
Kir6.2 pore forming subunit of the channel multi-subunit protein complex [ 54 ]. 
Functional consequence of genetic knockout in cardiac myocytes is a loss of K +  
conductance across the cell membrane, but K ATP  channel activity infl uences far 
more, modulating membrane potential-dependent cellular metabolism much like a 
rheostat, adjusting function to match cellular energy demands [ 55 – 58 ]. Even though 
K ATP  channelopathies are implicated in human cardiac disease [ 59 – 61 ],  consequences 
of channel defi ciency predisposing to disease vulnerability escaped broader 
 molecular comprehension, mandating proteomic systems interrogation of channel 
dysfunction in various contexts [ 12 – 15 ]. In the  KCNJ11 -knockout, rather than 
 simply being a case of presence  versus  absence of a single protein, proteomic 
 analysis determined that, even in the absence of superimposed cardiac stress, more 
than 100 proteins were signifi cantly altered in response to chronic K ATP  channel 
defi ciency [ 13 ]. Taking this list of proteins through a network systems analysis is 
particularly revealing for comprehension of the underlying mechanistic conse-
quences of channel dysfunction. 

 Initial ontological classifi cation ( Step 1 of what to do with your proteomic list ) 
indicated that a little over 60 % of differentially expressed proteins could be catego-
rized as having direct involvement in metabolic function, whereas the remainder 
participated in a variety of other cellular processes, including proteolysis, chaper-
ones, cytostructure, oxidoreductases, transcription or translation, and regulation of 
cell signaling [ 13 ]. This abundance of metabolic connections is consistent with the 
known impact of the channel as a metabolic rheostat, the prominence of which was 
reinforced by IPA functional ontology classifi cation ( Step 2 of what to do with 
your proteomic list ) [ 13 ]. Moreover, metabolic relevance was further strengthened 
by subsequent complex network ontology enrichment analysis ( Step 2 applied to 
output acquired from Step 3 of what to do with your proteomic list ). In this 
regard, BiNGO analysis was conducted within Cytoscape to defi ne overrepresented 
biological processes – one of the three primary GO domains – associated with the 
expanded K ATP  channel–dependent metaboproteome (Table  14.1 ) network derived 
from the remodeled proteome. The resultant BiNGO ontology network comprised 
nearly 1,000 distinct GO terms associating with the parental molecular network, yet 
only 55 of these were signifi cantly overrepresented [ 13 ]. Moreover, every one of the 
55 was a metabolic process, collectively forming a highly nested ontology network 
within a limited number of broader metabolic functions. Primarily overrepresented 
were GO terms involved in glycolysis, as well as tricarboxylic acid cycle, fatty acid, 
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and other substrate metabolism branches, along with some degree of protein catabo-
lism enrichment [ 13 ]. 

 These parameters provide a sense of altered proteome functional attributes, but 
not of the biological consequences of proteome remodeling. Pathway analysis was 
thus also applied in a complementary manner to predict potential adverse effects, 
yielding actionable insight into the implications arising from and consistent with the 
altered proteome. Here, “cardiovascular disease” was signifi cantly overrepresented 
at the level of the proteome and, even more extensively, at the interactome 
(Table  14.1 ) level integrating all proteome changes in their broader network neigh-
borhood [ 13 ]. Experimental evidence supporting susceptibility of the K ATP  channel 
defi cient cohort to cardiovascular disease was evident in measures of cardiac mass, 
cardiac function, and survivorship in response to increasing levels of imposed car-
diac stress [ 13 ]. Thus, proteomic network systems analysis here incorporated 
actionable experimental evaluation, validating the predicted functional conse-
quences of observed proteome remodeling ( Step 4, actionable prognostication 
with experimental validation ). 

 Similar systems approaches have also been applied to understand proteomic con-
sequences of K ATP  channel defi ciency in the setting of superimposed cardiac stress 
[ 12 ,  14 ]. For example, prediction of overrepresented adverse effects facilitated 
experimental follow-up in a model of deoxycorticosteroid and salt-induced hyper-
tension, where pathway analysis of proteomic data predicted three adverse effects 
related exclusively to cardiac function – cardiac damage, cardiac enlargement, and 
cardiac fi brosis [ 12 ]. Each effect was subsequently confi rmed by assessment of car-
diac output, measurement of heart-to-body-weight ratios, and evaluation of colla-
gen deposition, respectively, validating predicted detrimental cardiac effects of K ATP  
channel-dependent proteome remodeling in response to physiological stress [ 12 ]. 
Pathway analysis adverse effect screening also proved instrumental in evaluating 
consequences of proteome remodeling in cardiomyopathy and the structural and 
functional remodeling mediated by the response to stem cell therapy in cardiomyo-
pathic hearts [ 14 ]. Here, proteome changes associated with cardiomyopathy were 
subjected to pathway analysis, with  in silico  prediction of both enrichment of car-
diac disease as well as several cardiac adverse effects, which were greatly amelio-
rated or completely absent when evaluating the stem cell treated cardiomyopathic 
proteome [ 14 ]. Prognostication was validated by a range of echocardiographic met-
rics and anatomical measurements, confi rming predicted deleterious structural and 
functional outcomes of disease and their improvement following cell mediated 
therapy [ 14 ]. 

 Further supporting network approaches, a distinct benefi t of extending systems 
analysis to complex networks is their potential to provide value-added elements to 
evaluate implications of the proteomic data in a network-oriented context. Network 
structure, i.e. topology, can be exploited on the basis of identifi cation and targeted 
inhibition of network hubs. While most nodes in scale-free networks possess a low 
degree and can be removed or inhibited without great risk of leading to a loss in 
network functionality, i.e. robustness, the reverse is also true, wherein targeting 
highly connected nodes can be exploited to evaluate whether a predicted network 
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function or other emergent property is dependent on network integrity mediated by 
their hubs [ 62 ]. For instance, such connectivity properties suggest that inhibition of 
one or more primary hubs of an endodermal secretome network might prevent its 
potentiating effect on cardiac differentiation [ 11 ]. This prediction was reinforced by 
 in silico  modulation of composite network generation, whereby prioritization of 
cardiovascular development predicted for the network was demoted after arbitrarily 
removing the most highly connected hub from pathway analysis input data [ 11 ]. 
Indeed, this was demonstrated functionally when application of pharmacological 
inhibitors of the two most highly connected nodes each abolished the cardiac poten-
tiation effect mediated by the secretome. This included the primary hub that was 
detected during initial proteomic analysis as well as the secondary hub that was only 
incorporated during network generation but was noticeably absent from the pro-
teomic data [ 11 ]. Thus, network topology assessment has the potential to provide 
value-added emergent properties for hypothesis generation of intra-network posi-
tional relevance. Moreover, even though network generation increases overall 
molecular complexity by adding more proteins to the initial proteomic list, in doing 
so it also yields further potentially relevant candidates for systems evaluation that 
may be critical contributors to the underlying biology that were nevertheless over-
looked during initial proteomic screening [ 4 ,  5 ,  11 ].  

    Conclusion 

 Continued technological advances, with improved instrument sensitivity and res-
olution combined with expanded, more detailed protein databases, will lead to 
increasingly larger proteomic datasets, each harboring tremendous biological 
intricacy. Network systems analysis strategies will therefore become ever more 
critical for proteomic and other high throughput data deconvolution [ 4 ,  63 ]. 
Herein, guidance is provided on generalized analytic approaches by which to sys-
tematically organize, cluster, and prioritize proteomic datasets in their entirety to 
reduce information complexity while simultaneously yielding functional insights. 
An important qualifi er is that ontological classifi cation, and enrichment, pathway, 
and complex network analyses may be considered as interchangeable modular 
components of a network systems approach. Rather than applying each as a stand-
alone topic or steps that must be adhered to in a prescribed order, these elements 
may be arranged fl exibly and used in a variety of ways, as required to address a 
specifi c biological question. Indeed, the same step may even be repeated multiple 
times at different stages in an analysis. For instance, enrichment analysis can be 
conducted on initial ontological categories, during pathway analysis, or on fi nal 
output networks [ 6 ], potentially revealing shifts in focus at successive points in an 
analysis. When actionable hypotheses are generated via systems analysis and 
examined experimentally, refi nement or modifi cation of the initial interpretation 
may potentially mandate an additional round of high throughput data acquisition. 
Thus, network systems analysis can also be viewed as an iterative process, with a 
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cyclical transition from high throughput data to interrogation, followed by experi-
mentation to validate or refi ne interpretation, ultimately guiding subsequent deci-
sions on additional proteomic or other high throughput experiments (Fig.  14.1 ) [ 5 , 
 6 ]. Comprehension of the basis and utility of these organizing and interpretive 
principles provides a foundation for their application, preparing students, pro-
teomic practitioners, and clinicians alike for effective application of basic and 
translational proteomic network medicine to further our understanding of cardio-
vascular health and disease.     
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    Chapter 15   
 Sensing and Remembering Cellular States 
Through Chromatin                     

     Shanxi     Jiang       and     Thomas     M.     Vondriska     

    Abstract     Chromatin is the means by which the same genome encodes multiple 
cells: it enables orderly development, normal physiology and, when it goes haywire, 
malfunctioning chromatin is a hallmark of disease. In the cardiovascular system, the 
epigenomic features controlling gene expression have recently become the focus of 
intense research. This chapter examines the principles of chromatin structure, 
details their regulation and identifi es areas of rapid development in our understand-
ing of how the genome is packaged. Also explored are the recent observations 
 indicating that deranged epigenomic features on a genome-wide scale may underpin 
various cardiovascular diseases.  

  Keywords     Heart   •   Vasculature   •   Epigenetics   •   Epigenomics   •   Genomics   • 
  Proteomics   •   Transcription  

      Introduction 

 Around two billion years ago, natural selection for a strategy of information stor-
age that utilized RNA and protein to package DNA presaged the evolution of mul-
ticellularity. To get the same DNA substrate to produce different outcomes, the 
method or conditions of extracting information has to change. Chromatin accom-
plishes this task in all plants and animals: comprised of histone proteins and DNA, 
chromatin is the structural form of the genome in vivo, compacting the enormous 
chromosome molecules for storage in the nucleus. That plants and animals can 
achieve the spectacular range of appearance and function observed in the natural 
world is the result of the ability to produce highly specialized cells and organs. 
This specialization is achieved through chromatin and its regulation, which enables 
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the same genomes to orchestrate diverse phenotypes throughout development and 
into adulthood. 

 The fundamental unit of chromatin is the nucleosome, consisting of two copies 
of four histone proteins (named H2A, H2B, H3 and H4) and entwined by 147 base 
pairs of DNA [ 1 ]. Interesting relationships have emerged relating primary DNA 
sequence to the binding of nucleosomes across a genome: however, it is now recog-
nized that a diverse range of regulatory mechanisms control where nucleosomes 
reside, how they combine with each other to form higher order structures and the 
resulting accessibility (or lack thereof) for transcriptional machinery to interact with 
and express a gene. Broadly construed, DNA can be either accessible for transcrip-
tion, or euchromatic, or inaccessible for transcription, heterochromatic [ 2 ]. As 
depicted in Fig  15.1 , the landscape of chromatin features combine to facilitate or 
prevent gene transcription.

   It is now commonly accepted that chromatin patterns are cell and developmental 
stage specifi c, underlying transcriptome changes that enable phenotype  specifi cation. 
Individual nucleosomes can be modifi ed by swapping the histone variants that com-
prise them, by post-translational modifi cation of those histones, by ATP- dependent 
processes that reorganize groups of nucleosomes in response to environmental stress 
or developmental cue and by alterations to the DNA, cytosine methylation in particu-
lar. Furthermore, RNA and protein can combine with  nucleosomes to form higher 
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order chromatin structures, compacting or relaxing sub- chromosomal regions. With 
the development of the next generation sequencing techniques, there has been an 
explosion in the analysis of how different proteins bind to the genome and the com-
binatorial patterns of protein binding that specify chromatin structure and thereby 
transcriptional behavior at individual loci [ 3 ]. A major challenge for biology and 
medicine is now to decode the logic of chromatin regulation, to enable targeting of 
gene expression programs for therapeutic modulation during disease as well as to use 
epigenomic information for improved patient stratifi cation and diagnoses. 

 This chapter reviews the current understanding of chromatin regulation in dis-
ease with a particular emphasis on the cardiovascular system, describing how genet-
ics and environment are integrated in the epigenome, ultimately controlling disease 
susceptibility and progression.  

    Basics of Chromatin Structure 

    Histone Variants 

 Although they all contain two copies each of four histone family proteins, nucleo-
somes are not homogeneous protein complexes. Mammalian genomes harbor 
 dozens of histone variant genes that, when expressed, can combine to specify a 
range of chromatin features. In the heart, proteomic mass spectrometry has been 
used to quantify histone variants [ 4 ], investigating how these variants change with 
disease [ 5 ]. Much of what is known about the role of individual histone variants 
comes from loss of function studies in animal models. 

 Replacing histone H3, centromere protein A (CENP-A) epigenetically defi nes 
centromere organization through a process that involves RNA interference [ 6 ]. In 
addition to CENP-A, there are several more centromeric histone associated pro-
teins, including CENP-B, CENP-C and CENP-T, that maintain the function and 
structure of CENP-A and promote centromere formation during cell division [ 7 ]. In 
the setting of some cancers, overexpression of CENP-A results in enrichment at 
non-centromeric sites, thereby altering chromatin structure as part of the disease 
pathogenesis [ 8 ]. 

 Another histone H3 variant is H3.3, which is highly conserved, with only four 
amino acid differences from the canonical H3 in eukaryotes [ 9 ]. Localization of 
histone H3.3 corresponds to transcriptionally active chromatin regions with the 
highest turnover rate at RNA polymerase II (RNAP II) binding sites and transcrip-
tion start and end sites, indicating its function in transcription initiation and termina-
tion [ 10 ]. Furthermore, the presence of H3.3 regulates repressive histone marks (e.g. 
H3K27me3) [ 11 ] and histone variants (e.g. H2A.Z) [ 12 ].  De novo  synthesized H3.3 
replaces the canonical histone H3 and remodels donor nuclear chromatin for gene 
activation during oocyte reprogramming and knockdown of H3.3 disrupts the repro-
gramming process [ 13 ]. Complete deletion of H3.3 embryonic lethal due in part to 
p53 activation [ 14 ]. 
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 The N-terminal MacroH2A is 64 % homologous to the canonical histone H2A 
and contains a carboxyl-terminal ~ 30 kDa macrodomain [ 15 ]. MacroH2A had long 
been thought to regulate gene silencing, however recent chromatin immunoprecipi-
tation (ChIP) plus DNA sequencing fi ndings indicate that macroH2A localizes to 
areas of both repressive and active chromatin, having its effects on transcription by 
inhibiting activator binding sites (to cause repression) or inhibiting repressor sites 
(to cause activation) [ 16 ]. 

 Histone variant H2AX, constituting between 2 and 25 % of total H2A protein by 
gel image quantifi cation in mammals [ 17 ], has been functionally implicated in 
mitotic/meiotic division, stem cell development and aging [ 18 ]. Recently, it has 
been reported that H2AX deposition can be serve as an epigenetic mark for quality 
control of induced pluripotent stem cells [ 19 ]. Phosphorylation of H2AX serves as 
a marker of DNA damage. 

 H2A.B is unstable at the protein level and distant in terms of sequence homology 
compared with other histone H2A variants, with ~40–50 % sequence identity [ 20 , 
 21 ]. H2A.B-containing nucleosomes wrap only 116–130 bp of DNA (rather than 
the conventional 147 bp) and as a result transiently associate with the genome dur-
ing processes of DNA replication and repair [ 21 ]. Genome-wide analysis showed 
that H2A.B correlates with DNA methylation (in some scenarios a repressive 
marker itself) and facilitates methylation related to transcription elongation, sug-
gesting a positive role in regulating gene expression [ 22 ]. 

 Histone H2A.Z is a highly conserved H2A variant with about 60 % homology to 
canonical histone H2A, demonstrating both active and repressive transcriptional 
regulation. Recent fi ndings show that H2A.Z associated with gene coding regions as 
well as 3’ and 5’ ends of genes, facilitates cryptic, antisense transcription and RNAP 
II regulated transcription [ 23 – 25 ]. H2A.Z works with Nanog, a key transcription 
factor for stem cell identity, in regulating pluripotency/reprogramming and serves 
as a biomarker for asymmetrically self-renewing cells [ 26 ,  27 ]. Increased protein 
levels of H2A.X cause cardiac hypertrophy, whereas knockdown of H2A.Z prevents 
pathologic cardiomyocyte growth [ 28 ]. 

 Excluded from the nucleosome core, the last family of histone variants, known 
as linker histones, plays an intriguing and incompletely understood role in control-
ling how nucleosomes interact with each other. The lysine-rich linker histone (also 
referred as H1 and H5) contains a highly conserved central globular domain, a short 
amino-terminal tail and a long carboxyl-terminal domain, which are vital to its role 
in higher-order chromatin structure [ 29 ]. The globular domain of chicken linker 
histone H5 and Drosophila linker histone H1 have been shown to possess off-dyad 
and on-dyad binding respectively, perhaps due to differences in key amino acids 
between the proteins [ 30 ]. Linker histones can interact with both core histones and 
other proteins. Through mass spectrometry and microscopy, Histone H1 has been 
found to interact with H2A C-terminus and proteins that are involved in rDNA chro-
matin structure, rRNA processing and mRNA splicing [ 31 – 33 ]. Furthermore, 
knockout of all three H1 isoforms in mouse embryonic stem (ES) cells revealed 
roles for the protein family in gene silencing and nucleosome organization [ 33 ]. The 
main modifi cation of linker histones is phosphorylation by cyclin-dependent kinases 
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(CDK), which is lowest in G1 and highest in G2 and Mitosis [ 34 ]. Infrared spectros-
copy of phosphorylated linker histone with CDK2 showed the induction of 
β-structure that may result in chromatin condensation [ 35 ]. Impaired linker histones 
dynamics can trigger multiple diseases including cancer [ 36 ]. 

 Notable to the heart, triple knockout of H1cH1dH1e of E9.5 showed pericardial 
expansion [ 37 ]. At the mRNA level, these triple knockout mice did not show altera-
tions in cardiac specifi c transcripts such as Nkx2.5 and alpha myosin heavy chain 
[ 38 ]. In an adult model of cardiac hypertrophy, global epigenome remodeling 
involves changes in histone stoichiometry at the protein level: following pressure 
overload, the ratio of linker to core histones was decreased as compared to the 
healthy heart, suggesting a more permissive transcriptional environment. This inter-
pretation is supported by genome-wide transcriptome changes in cardiac hypertro-
phy, which would necessitate relaxed chromatin at multiple loci. Lastly, this change 
was associated with a global shift of histone post-translational modifi cations favor-
ing euchromatin over heterochromatin [ 5 ]. 

 High mobility group proteins, originally shown to be structural components of 
chromatin in the 1970s [ 39 ] have more recently been observed to contribute to car-
diac gene expression in a locus-specifi c manner, facilitating higher order chromatin 
structure [ 5 ]. These proteins may act similar to linker histones, facilitating higher 
order structure of chromatin by binding bent DNA and enabling compaction of 
tracts of nucleosomes.  

    Chromatin Domains 

 While there is widespread agreement on the importance of the nucleosome as func-
tional unit of chromatin and its modulation by chromatin remodelers (discussed in 
detail below), the principles of genome organization beyond this scale are decidedly 
more nebulous. Let’s estimate there are perhaps 20 million nucleosomes in a given 
nucleus and around 3 billion base pairs of DNA: how this molecular morass is orga-
nized for reproducible, timely access and repackaging is of key importance, and 
indeed has been the focus of intense investigation. Early observations of in vitro 
reconstituted DNA and histones revealed the formation of the titular ‘30 nm fi ber’, 
in which the linker histone teams up with several nucleosomes to form intermediate 
domains of packaging. More recently, 10 nm substructures have been identifi ed, 
again comprised of nucleosomes plus linker histones, and suggested to be the func-
tional units of both euchromatin and heterochromatin [ 40 ]. The folding of this 
10 nm nucleosome fi ber has been demonstrated to be irregular and gathered in het-
erogeneous groups, leading to variable chromatin structure, and challenging the 
long held view about a higher order 30 nm fi ber secondary structure [ 41 ]. It has been 
found that chromatin secondary structure is affected by many factors, such as linker 
histones, length of linker DNA and thus spacing of nucleosomes, histone variant 
and histone/DNA modifi cations [ 42 ,  43 ]. In this active area of investigation, novel 
techniques [ 42 ] are continually being brought to bear on the question of whether 
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there is a fi nite intermediate structure of chromatin, larger than a nucleosome and 
smaller than the chromosome. 

 For decades it has been recognized that the genome segments into non-ran-
dom chromosome territories which may play a role (although the direction of a 
causal arrow is unclear in this relationship) in transcriptional programs [ 44 ]. 
Recent advances in next generation sequencing have expanded and textured this 
model in interesting ways. First, innovation in chromosome capture technologies 
have enabled multiple studies [ 45 ] into the endogenous structure of the mam-
malian genome, revealing folding principles, providing higher resolution to 
aforementioned chromosomal territories and establishing the fractal, self-repeat-
ing structure adopted by the cell’s most complex multi-molecular complex. As 
further resolution has been achieved with these studies, topologically associated 
domains (TADs) have been described, accounting for ~90 % of genomic struc-
ture in mouse ES cells genome and averaging 880 kb in size [ 46 ]. The boundary 
regions of TADs are enriched for CTCF, housekeeping genes and short inter-
spersed elements, but not histone modifi cations such as enhancer-related 
H3K4me1 and heterochromatin- related H3K9me3 [ 46 ]. TAD boundaries tend to 
be conserved between cell types, however within these boundaries, the histone 
modifi cations and chromatin structural proteins that decorate chromatin impose 
upon it transcriptional phenotypes, including all variations of active and silenced 
chromatin [ 47 ]. Thus TADs appear to be a structure within which epigenomic 
modifi ers specify the transcriptome. Likewise, TADs correspond to eukaryotic 
replication-timing reprogram, translocating from nuclear interior during DNA 
synthesis (active transcription) to nuclear periphery during later replication 
(repressive transcription) [ 48 ]. Deletion or disruption of TADs by CRISPR/Cas 
genome editing leads to altered gene expression and  de novo  enhancer-promoter 
interactions [ 49 ]. 

 Open questions in chromatin structure include: To what extent is our ability to 
discern intermediate chromatin features limited by the fi xation and sequencing pro-
tocols currently in vogue? If TADs are shared between cell types, what is the role of 
global chromatin structure in cell type specifi c transcriptomes and phenotypes? 
What is the impact of genetic variation, which has been all but ignored in epig-
enomic studies to date, on chromatin structure?   

    Remodeling Chromatin for Development and Disease 

 To accommodate multiple cellular transcriptomes, chromatin accessibility has 
evolved to be highly dynamic throughout normal organismal development. This 
plasticity is also exploited in disease to enact abnormal transcriptional programs. 
Recent advances in understanding how epigenomic memories are created, remem-
bered, erased—and, to extend the metaphor—in some cases hallucinated, has 
advanced our understanding of the basic biology of gene expression and shifted our 
understanding of disease to include aberrant chromatin structure and function. 
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    Histone Tail Modifi cation 

 While the bulk of the histone protein mass is ordered within the core nucleosome 
particle, each of the four variants wears a capricious amino terminus that, resisting 
fi xed structure, is exposed to the nuclear milieu, solicitous of molecular interaction 
and post-translational modifi cation. The ability of enzymes to modify histone tails 
to infl uence transcription in vivo has been known for nearly 40 years [ 50 ,  51 ], but 
recent advances in mass spectrometry has exploded the list of modifi cations docu-
mented on histone tails to include virtually every known type of post-translational 
modifi cation, numbering in some cases over 100 modifi cations on nucleosomes 
from a single cell type and with most but not all occurring on the soluble tails [ 52 ]. 
Methylation (active or repressive transcription) and acetylation (active transcrip-
tion) represent two major classes and coordinate with each other [ 53 ]. Other histone 
modifi cations include phosphorylation, ubiquitination, SUMOylation and crotonyl-
ation. Through computational methods, the relationship between histone modifi ca-
tions and gene expression has been explored [ 54 ]. 

 Some of these principles for histone modifi cation-dependent regulation of gene 
expression and phenotype have been tested in the heart. Methylation and acetyla-
tion of histones with their associated histone modifi ers (such as acetyltransferase, 
histone deacetylases and histone methyltransferases) have been particularly well 
explored [ 55 ,  56 ]. Other modifi cations, such as phosphorylation of histone H3 is 
involved in cardiac hypertrophy through transcriptional elongation [ 57 ]. Moreover, 
hyper-acetylation has been shown to change gene expression through RNA alter-
native slicing, thus affecting cardiac cell growth [ 58 ]. Stimulation of SUMOylation 
may exert a protective function on heart [ 59 ]. Genome wide analyses have identi-
fi ed cooperative functions of active (H3K9ac, H3K27ac, H3K4me3, and 
H3K79me2) and repressive (H3K9me2, H3K9me3, and H3K27me3) histone 
marks [ 60 ]. Using data from the ENCODE Project, Roadmap Epigenomics and 
several other studies, researchers found that E11.5 active enhancers can be accu-
rately predicted by three dimensional analysis of genome-wide H3K27ac and 
H3K4me1 across developmental time, between tissues within an organism and for 
the corresponding tissue within species [ 61 ]. An algorithm named histoneHMM 
(hidden markov model) has been used to predict genomic regions that affect car-
diac hypertrophy, mostly focused on H3K27me3 [ 62 ]. Moreover, histone methyla-
tion levels in the heart have been found to be regulated mostly in trans, prominently 
for H3K4me3 [ 63 ].  

    ATP-Dependent Remodelers 

 Where nucleosomes reside along the genome affects gene expression and is thus a 
highly regulated process. One of the most direct mechanisms to infl uence nucleo-
some positioning in an active, stimulus responsive manner is through ATP-dependent 
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chromatin remodeling enzymes, which are usually subdivided into four groups: 
SWI/SNF (switching defective/sucrose non-fermenting), ISWI (imitation switch), 
INO80 (inositol requiring 80) and CHD (chromodoman, helicase, DNA binding). 
These groups are identifi ed by a specifi c, highly conserved ATPase that belongs to 
the SF2 helicase superfamily and can alter histone-DNA interactions through a pro-
cess that consumes ATP. These proteins infl uence transcription as well as chromatin 
structure by nucleosome translocation [ 64 ], nucleosome (whole nucleosome/H2A- 
H2B dimers) eviction [ 65 ] and histone variant exchange (e.g. H2A.Z) [ 66 ]. 

 In the heart, most studies have focused on SWI/SNF in the setting of develop-
ment and hypertrophy, yet all four groups have been explored in some manner [ 55 ]. 
Chromodomain-helicase-DNA-binding protein 7 (CHD7; from the CHD family) 
and its mutation has been associated with CHARGE syndrome, revealing its novel 
function in calcium excitation-contraction coupling [ 67 ]. Probably the most well 
studied family is that regulated by Brg1, a member of the BAF complex, which has 
been shown to be critical for fetal gene activation (myosin heavy chain switching in 
particular) in the mouse heart following stress [ 68 ].  

    DNA Methylation 

 Not all things chromatin occur on proteins. The fi rst, and perhaps only truly  epigen-
etic  (as defi ned by transgenerational heritability of acquired features) mark, DNA 
methylation is defi ned as the addition of a methyl group (CH 3 ) to the C5 position of 
cytosine and usually occurs within the major groove of DNA at CpG dinucleotides 
The methyl group is transferred by DNA methyltransferase (DNMT) family with 
DNMT1 functioning as the maintenance, and DNMT3a/b as the  de novo , DNA 
methyltransferase [ 69 ]. DNA methylation mostly happens in the promoter region, 
gene body and less in intergenic regions. Across the genome, DNA methylation and 
CpG density follow a bimodal distribution, with high methylation level in CpG- 
poor regions (CpG depletion) and low methylation level in CpG-rich (typically 
entails > 50 % GC) region that are commonly defi ned as CpG islands (CGIs) [ 70 ]. 
CGIs are located mainly in promoter regions and their methylation can initiate vig-
orous, long-term transcription repression such as X-inactivation [ 1 ]. 

 Although DNA methylation usually associated with repressive transcription, 
studies show that DNA methylation, especially in gene bodies, is altered during 
transcriptional elongation [ 71 ]. Another long held view—that DNA methylation is 
highly stable—is also being reconsidered in light of the fi nding of active DNA 
demethylation (higher in gene bodies) through base excision repair proteins such as 
Ten-eleven translocation (TET) [ 72 ]. Interesting, DNA methylation has been 
regarded as a regulator of alternative splicing possibly by infl uencing chromatin 
structure, thus affecting RNAP II recruitment and binding of heterochromatin pro-
tein 1 [ 73 ]. 

 In the heart, DNA methylation infl uences cardiomyopathy and heart develop-
ment. In congenital heart diseases, hypermethylation of MSX1 and GATA4 has 
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been found [ 74 ]. In Tetralogy of Fallot, certain genes such as EGFR and TBX5 have 
shown signifi cant differences in methylation status compared to unaffected indi-
viduals [ 75 ]. In patients with dilated cardiomyopathy, aberrant DNA methylation 
has been found in lymphocyte antigen 75 and adenosine receptor A2A, which has 
been further confi rmed in zebrafi sh [ 76 ]. Also, three angiogenesis-related genes 
(AMOTL2, ARHGAP24 and PECAM1) have been identifi ed that exhibited altered 
methylation status [ 77 ]. During development, only a small fraction of genes showed 
aberrant methylation: this subset, however, were highly related to cardiac specifi c 
processes when comparing developmental day E11.5 to E14.5 [ 78 ]. When compar-
ing adult to developing mouse heart, DNA methylation is increased in active 
enhancers [ 79 ]. When comparing developing, mature and diseased cardiomyocytes, 
DNA methylation is quite dynamic, supporting a role for this modifi cation in pro-
moting, or responding to, condition-specifi c gene expression [ 80 ]. Cardiomyocytes 
treated with endothelin-1 (a hypertrophic agonist) showed increased DNA methyla-
tion; conversely, inhibition of DNA methylation rescued the norepinephrine-induced 
hypertrophy [ 81 ,  82 ]. Therefore, alteration of DNA methylation has been proposed 
as a novel therapeutic target in the heart, although the mechanisms of action, and 
principal targets, remain to be determined.  

    RNA-Based Mechanisms 

 Widespread application of next generation RNA sequencing technologies have dra-
matically increased the portion of the genome that is understood to be transcribed in 
a given cell type, now estimated at ~75 %. The beguiling nature of this observation 
is that most of these newly identifi ed transcripts do not appear to be messenger 
RNAs: instead, they belong to a class of RNAs called, perhaps misleadingly, non- 
coding RNAs (ncRNAs) which may code small peptides/proteins, may function 
independently as RNA scaffolds for various cellular processes or may in fact be, as 
was previously thought, transcriptional noise. ncRNAs can be divided into small 
RNA (<200 nucleotides) and long non coding RNA (lncRNA, >200 nucleotides) 
[ 83 ]. Small RNAs are thought to modulate heterochromatin and gene silencing with 
the help of Argonaut [ 84 ]. They may also participate in alternative splicing and 
transcription together with other epigenetic regulation such as DNA methylation 
and histone modifi cations [ 85 ]. lncRNAs connect chromatin loci with chromatin 
remodelers, transcription factors and other RNAs both in cis and trans [ 86 ,  87 ] by 
binding modules nestled in their secondary structure, leading to changes of chroma-
tin structure and nuclear organization [ 88 ]. Besides their close relationship to 
silenced chromatin, different classes of lncRNAs alternatively contribute to active 
transcription, especially transcriptional enhancer element RNA (eRNA) that binds 
the Mediator complex [ 89 ]. Natural antisense transcripts (NAT), another class of 
lncRNA, are read from the opposite strand of the mRNAs that they regulate in a 
complementary, cis manner. Alternations in lncRNA levels have been implicated in 
cancer, skeletal defects, embryogenesis abnormalities and brain defects [ 90 ]. 
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 Roles for lncRNAs in heart development, differentiation, and disease have 
recently emerged. Depletion of the lncRNA  Braveheart  revealed its role in cardio-
vascular lineage commitment by activating MesP1 (a master transcription factor 
expressed in multipotent cardiac progenitor) and interacting with SUZ12 (a compo-
nent of polycomb repressive complex 2(PRC2)) [ 91 ]. Targeted homozygous deletion 
of  Fendrr  in mouse, another lncRNA, resulted in embryonic lethality and PRC2 
reduction, leading to decreased H3K27me3 and increased H3K4me3 in the promoter 
regions of target genes [ 92 ]. Restoration of repressed myosin heavy-chain- associated 
lncRNA transcripts (abbreviated as  Myheart ) in the setting of pressure overload 
hypertrophy protects the heart from cardiomyopathy by interacting with and inhibit-
ing Brg1 [ 93 ]. Myocardial infarction associated transcript ( Miat ), a potential risk 
factor of myocardial infarction, was discovered through a case–control association 
study of single nucleotide polymorphism markers [ 94 ]. The relationship of microR-
NAs to heart and vascular diseases, has been extensively reviewed [ 95 ,  96 ]. 

 circRNA, a novel class of ncRNA, is formed by backsplicing and features a cova-
lently joined loop structure without free 3′ and 5′ ends [ 97 ]. Circular Antisense 
Noncoding RNA in the INK4 Locus (ANRIL) is the fi rst cardiovascular related cir-
cRNA that correlated with INK4/ARF expression and atherosclerosis risk [ 98 ]. 
Using a statistical method, circular Sodium/Calcium Exchanger (NCX1) was found 
to increase more rapidly during fetal heart development than its linear version [ 99 ]. 
Recently, using human umbilical vein endothelial cells, researchers showed that cir-
cZNF292 is regulated by hypoxia and displays proangiogenic activity [ 100 ], although 
this family of RNAs remains largely unexplored in the cardiovascular system.   

    New Epigenomic Techniques 

    Sequencing-Based Techniques 

 For histone variants, restriction endonuclease digestion of chromatin coupled to 
deep sequencing (RED-seq) offers an unbiased and sensitive method to study chro-
matin accessibility in nucleosome depleted regions, within nucleosome arrays and 
between different histone variants [ 101 ]. RED-seq is performed on permeabilized 
cells using restriction endonuclease digestion, DNA extraction with unbiased soni-
cation, two separate steps of ligation of linkers, PCR amplifi cation and sequencing. 
For tertiary structures such as TADs, Hi-C, that studies in situ DNA-DNA contacts, 
has been applied [ 46 ]. Sub-TAD structure, however, has been explored with the help 
of higher resolution 5C [ 102 ]. Apart from DNA-DNA interactions in shaping the 
three-dimensional arrangement of chromatin, the function of specifi c proteins, 
especially transcription factors, can be identifi ed through chromatin interaction 
analysis with paired end tag (ChIA-PET) that involves immunoprecipitation [ 103 ]. 
ChIA-PET can investigate specifi c proteins that modulate genome organization 
through formaldehyde crosslinking, DNA sonication, ChIP enrichment, followed 
by ligation and sequencing. 
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 For examining the occupancy profi le of nucleosomes along chromatin, mul-
tiple techniques have emerged. For open chromatin, transposase-accessible 
chromatin using sequencing (ATAC-seq) features a simple and sensitive two-
step protocol to explore the nucleosome landscape [ 104 ]. Without fi xation, per-
meabilized gDNA is ligated with the help of Tn5 transposase. After purifi cation, 
open chromatin is amplifi ed and sequenced. Another novel approach named 
methidiumpropyl-EDTA sequencing (MPE-seq) provides a sensitive method for 
detection the upstream open chromatin region of active promoters’ transcription 
start sites, which can be combined with micrococcal nuclease-sequencing 
(MNase-seq) to generate a detailed readout of chromatin structure and regula-
tion [ 105 ]. MPE-seq uses ferrous iron to generate DNA breakage followed by 
sequencing with minimal bias. For histone modifi cations and transcription fac-
tor binding sites, ChIP followed by qPCR or sequencing has been extensively 
used to map the proteins or histone modifi cations bound to DNA with cell fi xa-
tion, DNA sonication and sequencing [ 106 ]. Reduced representation bisulfi te 
sequencing (RRBS) is a commonly used method for DNA methylation (cytosine 
methylation and hydroxylmethylation) analysis. RRBS uses bisulfi te to convert 
unmodifi ed cytosines to uracil, thereby revealing methylation distribution. A 
new technique named methyl-sequencing has been developed that has the abil-
ity to detect the 5- formylcytosine that is resistant to conversion in RRBS, 
 combined with comprehensive methylation detection level by using cytosine-
methylated universal adapters [ 107 ]. For detecting the hydroxylmethylation 
alone, Tet-assisted bidulfi te sequencing (TAB-seq) [ 108 ] and oxidative bisulfi te 
sequencing (oxBS-seq) [ 109 ] can be employed. TAB-seq uses Tet to convert 
methylcytosine to carbomethylcytosine, whereas oxBS-seq applies oxidization 
to convert hydroxymethylcytosine to formylcytosine. For transcriptome and 
alternative splicing, RNA sequencing remains to be the top choice. For the rela-
tionship between lncRNA and chromatin, chromatin isolation by RNA purifi ca-
tion (ChIRP) sequencing can be used [ 110 ]. ChIRP maps the genomic 
localization of a known ncRNA by antibody pull down. Besides RNAs, nascent 
transcripts that bind to RNAP II can be detected through methods such as 
nascent transcript sequencing (NET-seq) [ 111 ]. 

 Through whole genome sequencing, specifi c genes that may affect the con-
genital heart diseases, dilated cardiomyopathy, arrhythmia and other heart-related 
diseases have been detected [ 112 ]. For changes in coding sequences, exome 
sequencing has emerged as a powerful choice due to lower cost and simpler inter-
pretation in contrast with whole genome sequencing. Many heart diseases, such as 
congenital heart diseases [ 113 ], myocardial infarction [ 114 ], and coronary heart 
disease [ 115 ] have been explored with these approaches. Similar to RNA sequenc-
ing, DNA methylation sequencing has been compared with normal and diseased 
conditions, revealing aberrant methylation in genes associated with dilated car-
diomyopathy [ 76 ], cardiac fi brosis [ 116 ], and congenital heart diseases [ 78 ]. 
Numerous proteins have been shown, by ChIP-seq experiments, to alter their 
association with the genome during heart disease, development and regeneration 
[ 93 ,  117 – 126 ].  
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    Microscopy 

 Using microscopy to visualize chromatin structure has tantalizing appeal, but limi-
tations abound with regard to resolution. Light microscopy has a resolution around 
200–300 nm and employs fl orescent probes to visualize living cells. Certain tech-
niques, such as fl uorescence recovery after photobleaching (FRAP) and fl uores-
cence in situ hybridization, can be coupled with light microscopy. For super-resolution 
microscopy, besides the antibody-based methods which have been applied to exam-
ine chromatin structure in cardiac myocytes during disease [ 127 ], new technique 
such as TALENs [ 128 ] and CRISPR/Cas9 [ 129 ] will enable the endogenous gene 
labeling for both proteins and DNA sequences that will give more reliable results 
that can be tailored to a specifi c genetic locus. Other readouts of genomic organiza-
tion including RNA polymerase II, histone modifi cations and nascent RNA have 
been investigated [ 130 ,  131 ]. Imaging of the core histone H2B has also been used to 
reveal the spatial organization of chromatin fi ber [ 132 ]. Cryogenic electron micros-
copy, with around 10 nm resolution, has been used to study chromatin structure, 
revealing the formation of higher-order chromatin features infl uenced by the pres-
ence of H1 [ 42 ]. 

 In the heart, super-resolution microscopy, especially its application in T-tubule 
and calcium signaling, has been reviewed [ 133 ]. Label-free microscopy, generating 
light signals based on molecules’ photo-physiology, has been applied to reveal 
cardiac- vascular interactions [ 134 ]. Intravital microscopy, which is applied to living 
tissues, has been used to investigate the beating heart with single cell resolution dur-
ing cardiac ischemia [ 135 ] and monocyte circulation during myocardial infarction 
[ 136 ]. Atomic force microscopy, a type of scanning probe microscopy with resolu-
tion ranging from 0.1 to 100 μm, allows 3D structural assessment in living cells. 
This method has been used to detect sarcomere lengthening [ 137 ] and valve leafl et 
stiffness [ 138 ]. Different kinds of electron microscopy have enabled the identifi ca-
tion of myocyte morphology [ 139 ], ultrastructure of the intercalated disc [ 140 ], 
morphology of mitochondria [ 141 ] and the interaction of telocytes and myocytes 
[ 142 ]. Frontiers for microscopic analysis of cardiac chromatin will be breached by 
novel labeling reagents as well as by the application of new imaging techniques, 
such as 3D super resolution and light sheet microscopy.   

    Concluding Remarks and Perspective 

 Chromatin is the substrate of cellular memory—it is the way cells, and therefore 
organs, remember what they are. The last decade of research in genomics, epig-
enomics and transcriptomics have revolutionized our understanding of the mecha-
nisms through which these different tiers of biological information interact. Despite 
this progress in the basic science realm, this holistic approach to biology is chal-
lenging for translation: progress requires that we come to utilize cellular networks 
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in similar terms as the EKG…to interpret a readout from ‘omics measurements akin 
to how chest auscultation is employed as an integral part of clinical decision mak-
ing. This advance requires novel approaches to analyzing big data and, most impor-
tantly, investigations of epigenomic regulation and epigenomic susceptibility 
directly in human populations.     
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    Chapter 16   
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to Study Cardiovascular Systems                     
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    Abstract     Investigation of biological systems requires an understanding of the 
crosstalk between complex regulatory processes and how disturbances in these pro-
cesses contribute to the development of a disease phenotype. While proteomic stud-
ies have signifi cantly advanced our understanding of the types and relative amounts 
of proteins in complex samples, these analyses are now being complemented by 
additional -omic platforms. For example, global metabolic investigations are 
increasingly leveraged to determine the underlying mechanisms of cardiovascular 
diseases. These investigations allow the determination and relative quantifi cation of 
metabolites in complex samples. As our ability to analyze and quantify large experi-
mental proteomic and metabolomic data sets continues to improve, combining these 
data sets allows for the identifi cation of pathways and sub-pathways that would not 
be detected if either analytical method was used in isolation. In this book chapter, 
we discuss how to design a cardiovascular metabolomic experiment and how to 
utilize combined proteomic and metabolomic data for a more comprehensive exam-
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ination of biological systems. In the near future, improved software to manage the 
integration of large datasets and development of new bioinformatics tools will help 
to harness the potential of these large datasets and make integrative –omics more 
accessible.  

  Keywords     Proteomics   •   Cardiovascular   •   Mass spectrometry   •   Metabolomics   • 
  Sample preparation   •   Study design   •   Targeted analysis   •   Untargeted analysis  

      Introduction 

    Metabolic Data Complements Proteomic Data 

 While metabolomics, or metabonomics, has only recently emerged as a fi eld of 
investigation [ 1 ,  2 ], metabolic studies have spanned millennia, with observations 
pertaining to “honey urine” in diabetics dating back to 1500 BC [ 3 ]. Traditionally, 
investigators have utilized a targeted approach to examine metabolites within 
specifi c pathways based upon an a priori knowledge of putative metabolic altera-
tions associated with a biological or disease state. The ultimate goal of systems 
biology is to fully integrate the complex biological data obtained from different 
-omic platforms, including proteomics, metabolomics, and transcriptomics [ 4 ]. 
The goal of whole tissue or cell metabolomics is to determine all metabolites 
(30–1500 Da) present in the tissue or cell at the time of evaluation. Metabolite 
profi ling has become a comprehensive method to identify and quantify hundreds 
of metabolites across a variety of tissues and cell types. The use of metabolomics 
in biomarker discovery is increasing in frequency, particularly for cardiovascular 
diseases [ 5 ], and has been utilized to discover critical metabolites in serum or 
plasma (e.g., branched- chain amino acids [BCAAs], acylcarnitines, purines) that 
contribute to underlying mechanisms of cardiovascular disease (CVD) [ 6 ]. As 
one example, metabolite profi ling of serum revealed differences in pathways 
associated with purines, carnitine, and betaine as gender differences in patients 
with myocardial infarction [ 7 ]. While the number of studies integrating the paral-
lel analysis of protein expression and metabolite expression is still relatively 
small compared to genomics and even proteomics, the results from these studies 
highlight the benefi ts of incorporating a variety of data sets [ 8 – 10 ]. For example, 
Mayr et al. utilized a combined proteomic and metabolomic approach to investi-
gate metabolic processes in persistent atrial fi brillation [ 9 ]. A combined 
approached has also been used to investigate congestive heart failure, myocardial 
hibernation, and the role of PKCδ in vascular smooth muscle cells [ 8 ,  11 ,  12 ]. 
These benefi ts include the increased confi dence in identifi cation of altered sig-
naling pathways, increased information on these pathways is revealed, and the 
identifi cation of affected signaling pathways that were not identifi ed with either 
technique alone.  
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    Recent Advances in Metabolomics Studies. 

 Recent developments in the two main techniques used in metabolomics, nuclear 
magnetic resonance (NMR) and mass spectrometry (MS), have led to signifi cantly 
greater knowledge and coverage of the metabolome than was previously possible 
[ 13 ]. In NMR spectroscopy and MS, approaches have been developed to address 
spectra that were poorly aligned between analyses as a result of shifts due to varia-
tions in experimental conditions or performance of the instrument [ 14 – 17 ]. Small 
shifts in spectral alignment can be overcome using bin-based approaches while 
larger shifts are overcome by peak alignment approaches [ 14 ,  17 ]. Some spectral 
shifts can be minimized by changes in sample preparation, such as pH buffering of 
samples for NMR analysis. 

 Signifi cant improvements have been made in the sensitivity and resolution of 
mass spectrometers. MS is usually coupled with chromatography to enhance the 
mass resolving capabilities, with the majority of studies still relying on liquid chro-
matography (LC) or gas chromatography (GC) based separations; however, high 
resolution mass spectrometers are now available such that a chromatography step is 
no longer necessary for low to moderately complex samples. Direct infusion or fl ow 
injection without chromatography can be used to introduce samples, which requires 
less time, leading to higher throughput [ 18 ,  19 ] but also has the disadvantage of 
inducing ion suppression. The balance among parameters needs to be considered 
when optimizing protocols. 

 The increasing knowledge on metabolic data available to researchers has allowed 
them to perform pathway analysis. Metabolites in a metabolic pathway are linked 
by a series of chemical reactions carried out by an enzyme or set of enzymes. 
Knowledge of metabolic pathways enables researchers to utilize pathway-based 
approaches, and many pathway analysis tools are now available to researchers, such 
as Cytoscape and MetaboAnalyst. Pathway analysis allows the researcher to assess 
the effect of changes in metabolite levels on specifi c pathways [ 13 ]. The develop-
ment of large-scale databases has also made this possible [ 18 ].   

    Study Design 

    Importance of Controls 

 Like other -omic technologies, proper quality control is critical for reliable pro-
teomic and metabolomic results. Quality control issues can arise due to the sample 
collection and preparation method, as well as the analytical method employed to 
identify and quantify metabolites. Appropriate quality controls, including experi-
mental runs without sample (blank controls), randomized sample runs, and inclu-
sion of external calibration standards in samples should be incorporated into 
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metabolomics experiments [ 20 ] and are essential for routine, large-scale, untargeted 
metabolomics investigations. External calibration standards are especially impor-
tant to reduce analytical variation in metabolomics experiments, as these standards 
allow signal correction between runs. In addition, it is important to assess the cover-
age and quantifi cation levels of metabolites over time to ensure that the instrument 
is functioning optimally.  

    Designing a Proteomics Experiment 

 Adequate and appropriate experimental design of a proteomic experiment is crucial, 
and the chapter by Lindsey et al. published in this volume, describes how to design 
a successful cardiovascular proteomics experiment [ 21 ]. In that chapter, authors 
discuss important considerations for sample preparation for proteomic experiments, 
protein fractionation, protein MS, peptide and protein identifi cation, and statistical 
evaluation of proteomic experiments. Another good resource for designing a suc-
cessful cardiovascular proteomics experiment is the recent Statement on the trans-
formative impact of proteomics published by the American Heart Association [ 22 ].  

    Designing a Metabolomics Experiment 

 The initial consideration when designing a metabolomics experiment is to deter-
mine the number of metabolites that are expected to be quantifi ed, as the number 
and chemical properties of these metabolites will defi ne the experimental design 
and analytical approach. This distinction separates metabolomics experiments into 
two broad classes: (a) untargeted analysis whereby the goal is to quantify as many 
metabolites as possible to provide a global and unbiased representation of the 
metabolome and (b) targeted analysis whereby a specifi c set of metabolites, ranging 
from tens to hundreds of metabolites, that reside within a small number of related 
intermediary metabolic pathways is quantifi ed [ 19 ,  23 ]. Each approach presents 
unique advantages and disadvantages. Untargeted analysis allows the detection of a 
wide range of metabolites utilizing either a single analytical platform (GC-MS, 
LC-MS, capillary electrophoresis (CE)-MS, or NMR), or a combination of these 
analytical platforms to obtain a comprehensive profi le of the metabolome, while 
targeted analysis allows qualitative and quantitative investigations of one or a few 
chemically similar metabolites. While the untargeted approach provides broader 
coverage and the opportunity to discover novel metabolites and pathways, it requires 
advanced statistical analysis to process and interpret the large datasets and is limited 
by identifi cation and characterization of unannotated metabolites, which can be 
time consuming and challenging [ 24 ]. In contrast, targeted analysis reduces com-
plexity by examining a limited set of metabolites with better quantitation by includ-
ing internal standards and requires less time to process and analyze the raw data 
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[ 24 ]. Researchers can combine untargeted and targeted metabolomics approaches to 
identify information that the other approach alone could not, and gain a better idea 
of how a specifi c pathway or area of interest is affected under different conditions 
[ 25 ,  26 ]. The following section provides an overview of some of the major consid-
erations when designing a metabolomics experiment. More detailed step-by-step 
protocols have been published elsewhere [ 27 – 31 ]. 

    Sample Collection and Processing for Metabolomic Experiments 

 Sample preparation is a critical component of the metabolomics workfl ow, with the 
ultimate goal of producing a metabolic profi le that is representative of the  in vivo  
biological status at the time of sampling. The composition and reproducibility of the 
metabolite profi le are largely dependent on these pre-analytical steps, consisting of 
sample collection/quenching and metabolite extraction. 

   Sample Collection and Quenching 

 Many metabolites have high turnover rates and are extremely labile (e.g., glycolytic 
intermediates and phosphates content can change on the order of milliseconds), 
necessitating quenching of metabolism immediately upon sampling to conserve a 
metabolite profi le that is representative of the time of collection. The quenching 
processes must balance the ability to rapidly inhibit metabolic enzyme activity to 
prevent changes in the metabolite pool, while limiting the possible leakage of intra-
cellular metabolites, which can occur due to cell membrane permeabilization during 
hard quenching protocols. The specifi c protocols are dependent on sample type, but 
largely consist of rapid cooling using liquid nitrogen or cold organic solvents. Some 
recent studies have also utilized rapid heating [ 32 ], although this technique must 
still be validated in large-scale metabolomic studies. 

 For tissue sampling, tissues are isolated, quickly perfused or rinsed with Krebs- 
Henseleit buffer to remove contaminating blood and immediately freeze-clamped 
using Wollenberger clamps precooled to the temperature of liquid nitrogen and 
placed directly in liquid nitrogen. Subsequently, tissues are ground when still fro-
zen using mortar and pestle or ball mill that has been cooled with liquid nitrogen, 
with care taken to prevent thawing of the samples [ 28 ]. For blood samples, serum 
is collected by allowing the sample to clot naturally on ice. Plasma is collected by 
mixing with an anticoagulant followed by centrifugation to remove the clot or 
blood cells and platelets, respectively. Lithium heparin is typically utilized for 
metabolomics studies, as other anticoagulants such as EDTA and citrate can inter-
fere with subsequent metabolite profi ling [ 27 ]. It is best for samples to be aliquoted 
to avoid freeze/thaw cycles, rapidly frozen in liquid nitrogen, and stored at −80 °C 
until analysis. 

 For cells in culture, metabolites can be quantifi ed from both the cells (metabolomic 
fi ngerprinting) and conditioned cell culture media (metabolomic footprinting) [ 33 ]. 
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For adherently grown cells, media can be harvested, centrifuged to remove cells and 
debris, aliquoted and frozen in liquid nitrogen. The cells can be washed with buffered 
saline and frozen directly in liquid nitrogen or alternatively directly quenched, scraped 
and extracted using ice-cold organic solvents [ 34 ]. Although cell detachment to col-
lect adherent cells is commonly utilized, this has potential drawbacks including induc-
ing metabolite leakage [ 35 ]. Suspension cultured cells can be quenched directly using 
precooled solutions such as 60 % methanol with 0.85 % ammonium bicarbonate [ 36 ] 
and collected either by cold centrifugation or fi ltration [ 34 ].  

   Metabolite Extraction 

 For global metabolite profi ling approaches, the extraction protocol should effi ciently 
isolate as many metabolites as possible in an unbiased and non-destructive manner, 
while remaining compatible with downstream analytical approaches. Due to the wide 
variation in chemical properties of metabolites, each extraction protocol will favor 
isolation of specifi c metabolite classes. Therefore, it may be necessary to extract sam-
ples with several protocols in order to maximize the coverage obtained. Polar metabo-
lites are typically extracted using a combination of water and organic solvents such as 
methanol or acetonitrile that simultaneously precipitate proteins and extract metabo-
lites. Alternatively, acidic extractions using perchloric acid can be utilized to extract 
metabolites, yet require an additional step to neutralize the supernatant with potas-
sium carbonate. Although many different extraction protocols have been utilized for 
polar metabolites, a combination of methanol and water extracts the greatest range of 
metabolites [ 37 ]. Extraction of lipophilic metabolites can be enhanced using a metha-
nol/chloroform/water extraction, with the upper methanol/water layer containing 
polar metabolites and the lower chloroform layer containing the lipophilic metabo-
lites. The effi ciency of metabolite extraction can be increased by promoting tissue/cell 
lysis mechanically using a homogenizer, through sonication, or by repeated freeze-
thaw cycles. For polar metabolites, samples are lyophilized or solvents removed using 
a speed vacuum concentrator and stored at −80 °C until analysis.   

    Analytical Techniques 

 A range of analytical platforms has been utilized to target individual classes of 
metabolites including enzymatic analysis, electrochemical detectors, ultraviolet–
visible (UV–VIS) spectroscopy, infrared and Raman spectroscopy, NMR spectros-
copy and MS. Due to their ability to detect a wide range of chemical compounds 
with high specifi city and reproducibility coupled with advances in instrumentation, 
compound databases and bioinformatics tools, NMR and chromatography-coupled 
MS have become the main analytical platforms for metabolomics. Since metabo-
lites have diverse physical and chemical properties, no single platform is capable of 
quantifying the whole metabolome. However, multiplexing of analytical platforms, 
such as NMR and MS, which provide partially overlapping yet distinct metabolite 
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coverage, ultimately increases the metabolite coverage towards quantifying the 
entire metabolome. 

   Mass Spectrometry 

 Beyond the well-established role for MS in proteomics experiments, MS also repre-
sents an major analytical platform for metabolomics due to its high sensitivity 
(picomole to femtomole), ability to quantify a wide range of metabolites and pro-
vide specifi c chemical information [ 38 ]. Although direct MS analysis of crude mix-
tures has been utilized, MS is typically coupled with chromatographic separation 
such as gas chromatography following chemical derivatization or liquid chromatog-
raphy for pre-separation to improve overall metabolite coverage [ 38 ]. With limited 
metabolite overlap, these complementary approaches are often utilized together to 
increase metabolite coverage. 

 GC offers consistent, reproducible, stable, and high-resolution separation. When 
coupled with electron impact ionization (EI), time-of-fl ight or quadrupole mass 
analyzers offer a robust platform that can reliably detect hundreds of metabolites in 
serum or plasma [ 27 ]. Combining reproducible GC retention times/indices with 
consistent and characteristic EI fragmentation patterns enables compound identifi -
cation across instruments through comparison to mass spectral libraries such as 
FiehnLib [ 39 ] or the National Institute of Standards and Technologies database 
[ 40 ]. The major limitation of GC is that it requires volatile and thermally stable 
analytes, criteria which few metabolite classes meet. These limitations can be over-
come through chemical derivatization, typically consisting of an oximation step 
followed by trimethylsilylation, which enables the detection of many classes of 
metabolites within central carbon metabolism [ 27 ]. The drawback of such prepro-
cessing approaches is that they can induce artifacts, increase sample to sample vari-
ability, and may lead to loss of metabolite classes that are not amenable to 
derivatization [ 27 ,  41 – 43 ]. 

 LC-MS has become one of the major analytical platforms for global untargeted 
metabolomics due to the ability to detect thousands of metabolite features within a 
biological sample without the requirement for chemical derivatization [ 44 ]. The 
majority of applications utilize either reverse-phase or hydrophilic interaction chro-
matography, which provide complementary metabolite profi les, coupled with high 
resolution and high mass accuracy instruments such as quadrupole time-of-fl ight 
and Orbitrap mass spectrometers. Electrospray ionization is typically utilized, and 
profi les are often obtained in both positive and negative ion mode to further increase 
the metabolome coverage, as specifi c metabolites are preferentially detected in one 
mode versus the other. The major limitation and bottleneck in untargeted LC-MS 
based metabolomics is metabolite identifi cation. Due to the diffi culty in predicting 
metabolite fragmentation patterns for tandem MS, metabolomics data are often 
acquired in MS mode, in contrast to proteomics where predictable fragment patterns 
are used to identify peptides [ 44 ]. Further impairing metabolite identifi cation, reten-
tion time and mass spectra are not reproducible across systems; hence comparison of 

16 Synergizing Proteomic and Metabolomic Data to Study Cardiovascular Systems



372

accurate masses to metabolite databases such as METLIN [ 45 ] only produce puta-
tive identities that must be compared to retention times and MS/MS data of pure 
compounds run on the same instrument with the same parameters [ 31 ]. Indeed, 
complete identifi cation of metabolite features in biological samples is currently 
not possible, as many features do not match to specifi c metabolites found in data-
bases, thus requiring de novo metabolite identifi cation [ 46 ]. Alternatively, LC-MS/
MS with selected reaction monitoring has been utilized for targeted analysis of 
many metabolites, including carboxylic acids, amino acids, and nucleotides, 
which represent critical constituents of central carbon, nucleotide and amino acid 
metabolism [ 47 ,  48 ].  

   Nuclear Magnetic Resonance Spectroscopy 

 NMR spectroscopy of single compounds or complex mixtures provides detailed infor-
mation about molecular structure in a non-destructive way and has been utilized in 
biological systems to examine macromolecule structure and function, image  in vivo  
anatomical structures and study energy metabolism and bioenergetics [ 49 ]. While the 
theoretical basis of NMR spectroscopy is well established, it is beyond the scope of this 
chapter, and the reader is directed to an excellent overview that has been previously 
published [ 49 ]. Early metabolic applications of proton NMR date back to 1977 when a 
handful of metabolites were assigned and quantifi ed in a suspension of red blood cells 
[ 50 ], with this technique quickly being adapted to study the metabolite composition of 
body fl uids [ 51 ]. Advances in NMR technology, such as development of cryogenic 
probes and increasing instrument magnetic fi eld strength, has improved both sensitiv-
ity and peak dispersion and enabled the simultaneous detection of hydrogen-containing 
metabolites in a complex mixture with a limit of detection in the nanomolar range [ 52 ]. 
NMR requires no pre-separation of metabolites, with sample preparation limited to 
addition of deuterium oxide (D 2 O) as a magnetic fi eld lock signal for the instrument, a 
reference standard such as 3-trimethylsilylpropionic acid (TSP) or 2,2-dimethyl-2-sila-
pentane-5-sulfonate sodium salt (DSS), an internal standard of known concentration 
for absolute quantitation and buffering, as chemical shifts of some metabolites are pH-
dependent. Conventionally, samples have been analyzed using 5 mm or capillary NMR 
tubes; however large-scale studies now utilize robotic liquid handling and fl ow injec-
tion methods to perform analysis in a high throughput manner. Using high-resolution 
spectrometers, metabolites can be detected using acquisition times on the order of sev-
eral minutes with standard NMR pulse sequences that include water pre- saturation to 
suppress the large water signal observed in biological samples (for details of pulse 
sequences please see [ 28 ]). Alternatively, metabolites can also be quantifi ed in intact 
tissues without pretreatment using magic angle spinning NMR spectroscopy, although 
metabolite resolution is reduced compared to tissue extracts [ 53 ]. 

 Metabolite identifi cation remains one of the bottlenecks for NMR-based metabolo-
mics studies [ 54 ]. NMR spectral peaks are initially assigned by comparison with spec-
tra of pure metabolites acquired using a similar solvent system and analytical conditions 
(e.g., pH, temperature, or pulse sequence). A number of open access databases, including 
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the Human Metabolome Database [ 55 ], Biological Magnetic Resonance Bank [ 56 ], 
Madison-Qingdao Metabolomics Consortium Database [ 57 ] and the Birmingham 
Metabolite Library [ 58 ], contain libraries of metabolite spectra that can be downloaded 
and processed in a similar manner to experimental samples to aid in the metabolite 
identifi cation. Commercially available software packages containing proprietary spec-
tral libraries are also available, including Chenomx NMR Suite [ 59 ] and KnowItAll 
Metabolomics Edition, which facilitate compound identifi cation without peak picking 
and querying the databases. For additional NMR-based metabolomics databases and 
software please see this recent review [ 60 ]. To identify unassigned compounds, stan-
dard proton NMR can be complemented with two-dimensional NMR approaches such 
as J-resolved spectroscopy, correlation spectroscopy, total correlation spectroscopy and 
heteronuclear correlation spectroscopy to resolve the connectivity between signals and 
increase signal dispersion [ 49 ]. Ultimately compound assignments are confi rmed by 
spiking samples with solutions containing the putative compounds.  

   Challenges and Limitations 

 Among the most diffi cult challenges in metabolomics is the annotation of unknown 
metabolic signals. The Metabolomics Standards Initiative (MSI) has issued a variety of 
suggestions for reporting minimal experimental parameters to ensure that metabolomic 
data can be used and reproduced by other laboratories [ 61 ]. Importantly, the identifi ca-
tion of metabolites must always be based on at least two orthogonal physicochemical 
characteristics, such as retention index and mass spectrum. Identifi cations that are 
based on authentic chemical standards are generally more trustworthy than annotations 
based on calculated characteristics. Nevertheless, the metabolome itself is an unre-
stricted entity that clearly comprises more than the suite of known compounds that can 
be found in classical textbooks or purchased from chemical manufacturers. The metab-
olome cannot be simply computed from reconstructed biochemical pathways due to 
enzymatic diversity, substrate ambiguity, and variation in regulatory mechanisms. 
Hence, the fi nding of many unknown signals in metabolomic surveys comes as no 
surprise to biochemists. The sheer complexity of natural products, including isomeric 
compounds, renders the use of accurate masses and database queries insuffi cient for 
annotation of metabolites. Instead, novel algorithms are needed to score metabolic sig-
nals based on all available information, from calculated physicochemical characteris-
tics to presence in biochemical databases. Such algorithms might ultimately boost the 
quality of metabolomic data in a similar way as SEQUEST did for proteomic analysis. 
Currently, no software is available to perform this much-needed task.  

   Important Notes and Common Problems to Avoid 

 Although metabolomic workfl ows are similar to proteomic workfl ows, several 
problems remain to be solved to facilitate metabolomics experiments. These prob-
lems include the need for fast and effi cient quenching of metabolic reactions, the 
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lack of clean-up steps or fractionation before analysis, and the identifi cation and 
validation of metabolites. No method is currently available to remove non-metabo-
lites (clean-up) without affecting the amount or types of metabolites in a sample. 
Similarly, the best way to fractionate metabolites is not currently known. 
Fractionation of metabolites may result in metabolite loss and degradation, and may 
introduce bias in metabolites detected as well as their concentrations. Currently, the 
best method for comprehensive metabolite determination of a complex sample is to 
subject the sample to several different analytical methods and combine results. To 
accurately determine differences between experimental and control samples, an 
adequate number of samples and replicates needs to be analyzed so that the normal 
biological variation between the sample sources (such as cells/tissues/organs) can 
be determined and taken into account. As with proteomics, metabolomics analysis 
of unfractionated samples is limited by the wide concentration range of metabolites 
(or proteins in the case of proteomics) present in cells and tissues. One often over-
looked problem is that many metabolites may be altered if enzymatic activity is not 
completely stopped when samples are collected. The sample preparation method 
can also affect metabolites that are sensitive to oxidative changes such as NADH 
and NADPH. 

 The type of mass spectrometer utilized for the metabolomics experiment is 
also important, because some mass spectrometers are better suited to detect cer-
tain types of metabolites. Many secondary metabolites are easier to analyze by 
LC-MS methods, whereas most primary metabolites can readily be quantifi ed by 
GC-MS procedures. It is also important that researchers realize that procedures 
that worked for one organism or tissue may not be adequate for other sample 
types. 

 When using MS-based metabolomics, it is important to realize that ion intensi-
ties and chromatographic retention times often suffer from temporal drift. To mini-
mize internal variation in an experimental study set, sample analysis should be 
randomized and samples all investigated on the same mass spectrometer in the same 
series of runs. The presence of signifi cantly more unknown metabolites than known 
metabolites is also a major problem for metabolomics. Unlike proteomics in which 
the number of theoretical proteins is determined from the genome, the predicted 
total number of metabolites in humans is unknown. The human metabolome data-
base (HMDB,   http://www.hmdb.ca/statistics    , 08/20/2015) lists the total number of 
detected and quantifi ed metabolites as 3,001, while the total number of theoretical 
metabolites having associated proteins (enzymes and transporters) as 22,138, and 
the total number of expected metabolites at 38,220. It is best to use regularly updated 
databases as annotations change frequently. Once the reconstructed network is com-
pleted, it is essential to manually check the network for incorrect annotations. 
Methods are available to test for inconsistencies in the network [ 62 ]. Problems are 
also associated with missing or incorrect annotation of protein subunits, protein 
complexes, and isozymes resulting in some proteins which are enzymes not being 
designated as enzymes. 

 While many metabolomics experimental workfl ows exist, few online resources 
exist to share or obtain metabolomics data sets. Recently, a metabolite Atlas frame-
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work and interface was set up to allow online access to raw mass spectrometry data 
together with information about the molecules detected [ 63 ]. Importantly, this inter-
face allows integration with systems biology tools that permit metabolomics data to 
be linked to biological models [ 63 ].     

    Integrating Results 

    Analysis and Visualization Software 

 Functional data from proteomic and metabolomic experiments can be visualized in 
reconstructed metabolic networks using several programs including PathwayTools 
Omics Viewer [ 63 ]. PathwayTools permits the visualization and analysis of genes, 
enzymes and metabolites and allows the user to add experimental values of enzymes 
and metabolites to any available full pathway map. Many full pathway maps are 
currently available [ 64 ]. Other popular visualization programs include Cytoscape 
[ 65 ] and VANTED (Visualization and Analysis of Networks containing Experimental 
Data) [ 66 ]. Cytoscape is an open source software platform that allows visualization 
of molecular interaction networks and biological pathways and the integration of 
these networks. Besides visualization, VANTED can be used to analyze biological 
networks. VANTED can combine medium- to large-scale experimental data sets 
from different time points/conditions on networks. Software utilized to visualize 
networks is shown in Table  16.1 .

       Metabolic Modeling 

 Genome-scale metabolic models allow detailed and quantitative predictions of 
organism behavior. Although reconstructing genome-scale metabolic models is 
complex, resources such as the Model SEED (  http://www.theseed.org/models/    ) 
[ 74 ], and MetaMerge [ 75 ] are available to facilitate the creation of these models. 
Model SEED is an online resource that signifi cantly speeds up the time and effort 
required to create new metabolic models. Users can utilize the RAST annotation 
system to annotate genome sequences, which are then automatically sent to the 
Model SEED to create the metabolic model. The metabolic network created by 
Model SEED includes networks of metabolic reactions, the gene-protein-reaction 
associations for each reaction, and a model of metabolism that can be simulated 
using Flux Balance Analysis (FBA). Note that these models take a minimum of 2 
days to reconstruct. The usefulness of this approach is that models can be predicted 
for genetic deletion animals by using genomes with the gene removed [ 74 ]. 
MetaMerge is a resource that integrates two existing metabolic network models into 
a single metabolic network model [ 75 ]. It is likely that within the next decade meta-
bolic reconstructions for most genomes will be widely available. These 
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genome- scale metabolic models allow a comprehensive understanding of intracel-
lular molecular mechanisms and are helpful in predicting phenotypes in the investi-
gated organism. The quantitative and qualitative behavior of such networks can be 
carried out by FBA [ 76 ], kinetic modeling using differential equations [ 77 ], or by 
Elementary Mode Analysis [ 78 ]. These methods all allow the identifi cation of sub- 
pathways that can operate at a steady state. For instance, FBA examines the fl ow of 
metabolites through a metabolic network using a mathematical approach, and is 
widely used for genome-scale metabolic network reconstructions [ 79 ]. FBA allows 
the rate of production of metabolites to be predicted, as network reconstructions 
contain all of the known metabolic reactions in an organism. The fl uxes determined 
by the models may be compared with experimental data, and may yield predictive 
models of biochemical networks exposed to different conditions. Advantages of 
FBA include the requirement for less intensive input data than needed for traditional 
model construction, and the speed of performing simulations using FBA, which can 
be carried out for thousands of reactions in a few seconds on typical laboratory 
computers. Programs that are utilized to determine FBA are shown in Table  16.1 .  

    Integration of Proteomics and Metabolomics Data 

 To integrate proteomic and metabolomic data, it is best to perform integrated analy-
sis to determine biological processes or pathway associations. The two main 
approaches to integrate proteomic and metabolomics data are: (1) a data-driven 
approach that determines pathway associations directly from the available data, and 
(2) a knowledge-based approach, which relies on existing information about meta-
bolic and proteomic pathways. 

 A few programs are now available to integrate –omic data, termed integrative 
omics-metabolic analysis (IOMA) [ 72 ], which quantitatively integrate proteomic 
and metabolomic data with genome-scale metabolic models to more accurately pre-
dict metabolic fl ux distributions. Using metabolomic and proteomic data IOMA 
(which utilizes a knowledge-based approach) was able to correctly predict the effect 
of different gene knockouts on metabolic fl uxes in  Escherichia coli  [ 72 ]. IOMA was 
also shown to successfully predict the metabolic state of human erythrocytes [ 72 ]. 
Alternatively, the ProMeTra software allows results from metabolomics to be com-
bined with transcriptomics or proteomics data [ 73 ]. After combining the draft net-
work with a reference network such as found in the KEGG database, the greedy 
algorithm [ 80 ] is used to resolve discrepancies with experimental data (Fig.  16.1 ).

   Manual integration of -omic results is more common (a type of a data-driven 
approach) and very time consuming but has been shown to be a powerful approach to 
uncover important biological pathways. Commonly a pathway analysis tool such as the 
Ingenuity Pathway Analysis program (IPA®,   www.ingenuity.com/    ), Pathway com-
mons (  http://www.pathwaycommons.org/    ), BioCyc  (  http://biocyc.org/ov-expr.shtml    ), 
Database for Annotation, Visualization and Integrated Discovery (DAVID,   https://
david.ncifcrf.gov/home.jsp    ), Reactome (  http://www.reactome.org/    ), METACORE 
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(  http://lsresearch.thomsonreuters.com/    ), or MetaboAnalyst (  http://www.metaboana-
lyst.ca/    ) is used to analyze the metabolomic and proteomic data individually and then 
the results are manually combined. For example, the manual integration of transcrip-
tomic, proteomic, and metabolomics data was utilized to show that Cyclosporine A 
induced stress in human renal epithelial cells is not directly linked to its primary phar-
macology [ 17 ]. 

 Although several statistical analysis programs are available to determine differ-
ences between proteins and metabolites, few programs are currently available to do 
statistical analysis of the integrated dataset. Enzymes and metabolites that are part 
of the same pathway are expected to show some correlation (such as a similar pat-
tern of up or down regulation). The correlation between enzymes and metabolites in 
a network can be determined quantitatively using their Pearson correlation [ 80 ]. For 
time series data, Granger causality testing can be used to detect signifi cant cause 
and effect associations between proteins and metabolites [ 80 ]. Statistical analysis of 
integrated data can also be carried out using several statistical analysis programs 
including R (  http://www.r-project.org/    ), MatLab, and SPSS (SPSS Inc.) [ 80 ].  

  Fig. 16.1    Illustrative example of using proteomics and metabolomics data to create an integrative 
model. Genome data is used to create a draft network. However, the proteomic and metabolomic 
data may contain enzymes and/or metabolites that are not present in the draft network. Combining 
the draft network with a reference network such as that found in the KEGG database results in an 
improved network. The use of the common greedy algorithm which calculates the minimal sets of 
reactions that are needed to make the network compliant with experimental data results in a fi nal 
integrated network. Metabolites levels associated with highly versus lowly detected enzymes can 
be used to predict which reactions are active and which are only partially active or inactive. Any 
hypotheses resulting from the integrated network can be tested experimentally or by 
bioinformatics       
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    Examples of Using Proteomics and Metabolomics to Address 
Biologically Relevant Questions 

 Proteomics and metabolomics in combination have been used in several studies to 
better understand cardiac pathophysiology (Table  16.2 ). Proteomic and metabolo-
mic analysis of atherosclerotic vessels from apolipoprotein E-defi cient mice showed 
potential associations of immune-infl ammatory responses, oxidative stress, and 
energy metabolism [ 81 ]. De Souza, et al. investigated the molecular mechanisms 
involved in congestive heart failure (CHF) using a combined proteomic and metab-
olomic approach [ 12 ]. Protein extracts from left atrial tissue of CHF and control 
dogs were analyzed by tandem MS, and high-resolution NMR spectroscopy was 
used to measure metabolite levels. MS identifi ed several changes in structural pro-
teins and decreases in antioxidants and heat shock proteins. Upregulation of 
enzymes such as malate dehydrogenase (DH), α-/β-enolase and pyruvate dehydro-
genase suggested metabolic stress, which was confi rmed by metabolomic analysis. 
Metabolomics suggested that energy was used less effi ciently in CHF hearts, and 
that oxidative stress potentially due to metabolic disturbances may be contributing 
to the depletion of antioxidant enzymes. Table  16.2  shows a summary of integrated 
metabolomics and proteomic studies used in cardiovascular research and the major 
study fi ndings.

   A combined proteomic and metabolomic approach was used to investigate the 
metabolic processes altered in human atrial fi brillation (AF) [ 9 ]. Atrial tissue from 
AF patients and controls was analyzed by NMR spectroscopy and mass  spectrometry. 
Metabolomics revealed increases in beta-hydroxybutyrate, a substrate in ketone 
body metabolism, as well as ketogenic amino acids. Proteomic fi ndings showed that 
3-oxoacid transferase was differentially expressed in AF. Together proteomic and 
metabolomic results strongly suggested a role of ketone bodies in AF. 

 By integrating proteomic and metabolomic results using a data-driven approach, 
Mayr et al. gained greater insight into the role of PKCδ vascular smooth muscle 
cells (SMCs) than either method would have revealed individually [ 8 ]. Using 
2-dimensional gel electrophoresis followed by mass spectrometry analysis, approx-
imately 30 proteins were identifi ed that were differentially expressed between 
PKCδ +/+  and PKCδ −/−  cells. Many of the changes were in proteins involved in energy 
metabolism, including glycolytic enzymes, triose phosphate isomerase and phos-
phoglycerate kinase, which were increased in PKCδ defi cient SMCs. PKCδ −/−  cells 
also showed elevated expression of  isocitrate dehydrogenase and glucose-6-phos-
phate dehydrogenase, enzymes that have been linked to glutathione (GSH) metabo-
lism. Metabolomics revealed that compared to PKCδ +/+  SMCs, PKCδ −/−  SMCs have 
higher levels of GSH, lower levels of alanine, a marker for glycolytic activity, higher 
lactate, indicative of impaired glucose metabolism, and lower creatine levels. Taking 
the proteomic and metabolomic results together, the authors suggested that PKCδ 
depletion disrupts glucose metabolism, which affects energy reserves, leading to 
upregulation of other energy production pathways. Disrupted glucose metabolism 
appeared to contribute to increased GSH levels, which are likely responsible in part 
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for the observed resistance of PKCδ −/−  SMCs to oxidative stress-induced cell death. 
By combining proteomic and metabolomic fi ndings, the authors were able to deduce 
much more about the effects of PKCδ depletion in SMCs and provide a mechanistic 
explanation for the increase in neointima formation observed in PKCδ defi cient 
mice [ 8 ]. Mayr, et al. also investigated the mechanisms of PKCε-mediated cardio-
protection using transgenic mice with constitutively active or dominant negative 
PKCε using 2DE and MS proteomics coupled with NMR metabolomics [ 82 ]. 

 Transcriptomic, metabolomic, and proteomics datasets were analyzed to investi-
gate the cardioprotective adaptive process in myocardial hibernation [ 11 ]. This 
combined approached showed that anaerobic glycolysis was affected and 
 hypoxia- inducible factor (HIF)-1 activation played a role in metabolic alterations. 
Overall, the results showed that changes occurred at the transcript and protein levels 
to maintain relatively stable metabolite levels. These examples demonstrate the ben-
efi ts of integrating -omics approaches to better understand cardiac biology. 

 Beyond the cardiovascular fi eld, the integration of multiple –omic techniques 
have been adopted in other fi elds. The investigation of the systemic response in 
wild-type  Arabidopsis thaliana  and a starch-defi cient mutant (phosphoglucomutase- 
defi cient) to abiotic temperature stress, analysis of combined proteomic and metab-
olomic data revealed specifi c metabolite-protein co-regulation of this process [ 84 ]. 
Integrated proteomic and metabolomic investigations of kidney fi brosis in a rat 
model revealed changes in complement and coagulation cascades, regulation of 
actin cytoskeleton, and the MAPK signaling pathway [ 85 ]. Another study utilizing 
proteomic and metabolomics data to determine the effect of hyperosmotic stress on 
human conjunctival epithelial cells discovered that activated glycerophosphocho-
line synthesis and O-linked β-N-acetylglucosamine glycosylation are key pathways 
in ocular surface cells under hyperosmotic stress [ 86 ].   

    Conclusion 

 The synergy through integration of data from different -omic platforms, such as 
proteomics and metabolomics, is beginning to provide a more comprehensive view 
of complex biological systems. This holistic view of an organism, organ, or disease 
state will be essential to understand complex regulatory processes in normal physi-
ology and pathophysiology. Although to date a limited number of published studies 
have integrated multiple -omic data sources, these studies indicate that such integra-
tion reveals greater insight into systemic responses of the biological system being 
investigated, beyond simply the sum of its parts. As more powerful and user friendly 
software platforms are developed that allow better and faster integration of pro-
teomic and metabolic data, integrative -omics will become a common method to 
enhance our understanding of biological processes.     

16 Synergizing Proteomic and Metabolomic Data to Study Cardiovascular Systems
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    Chapter 17   
 Clinical Cardiovascular Proteomics                     

     Gemma     Currie     ,     Peter     Matt     , and     Christian     Delles     

    Abstract     Proteomics has the potential to be translated from a research environ-
ment to clinical practice. In the fi rst instance the discovery of novel disease path-
ways and defi nition of druggable targets are promises of clinical proteomics. In 
parallel, clinical proteomics will defi ne new protein-based biomarkers for molecu-
lar defi nition of disease, diagnosis of disease and prediction of events. In cardiovas-
cular medicine the potential applications are manifold and examples are already 
available for conditions throughout the cardiovascular continuum from early risk 
factors to intermediate traits and advanced disease, all of which have been subject 
to proteomic studies. Despite the recent progress most of the available data do not 
fulfi l criteria for novel biomarkers for cardiovascular diseases that are clinically 
applicable. Studies have been small, fi ndings have not been reproduced in indepen-
dent cohorts, plausible links to pathophysiology are not always present and sophis-
ticated technical and bioinformatic requirements in proteomics pose challenges to 
translation of research fi ndings to clinical cardiovascular medicine. Better stan-
dardisation of experiments, coordinated research efforts and close collaboration 
between clinicians and basic sciences will help to ask the right questions and pro-
vide the right answers and solutions in the near future.  
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      Introduction 

 Cardiovascular diseases (CVD) are the major cause of morbidity and mortality in 
Europe, North America and other Western societies. In Europe a north-east to south- 
west gradient in mortality from CVD remains, with age-standardised mortality rates 
ranging from 731 to 1763 per 100,000 [ 1 ]. In the US, CVD accounted for 31.3 % of 
all deaths based on 2011 mortality data [ 2 ]. Recently, incidence and prevalence of 
CVD have also increased in developing countries, making CVD a truly global epi-
demic [ 3 ]. Consequently CVD are associated with signifi cant costs to health care 
systems that are expected to rise further in face of the increasing prevalence of car-
diovascular risk factors, namely obesity and the metabolic syndrome [ 3 ]. 

 Against the background of a global CVD epidemic clinical research currently 
focusses on early and accurate diagnosis of CVD and prediction of adverse out-
come in patients with CVD. A number of cardiovascular risk scores based upon 
a range of traditional risk factors have been developed and validated. It has, 
however, been recognised that modifi cations to these risk scores are required to 
better refl ect risk profi les of specifi c populations. The Framingham model has 
been found to provide reasonable estimates of cardiovascular risk in Northern 
American populations but over-estimates cardiovascular risk in some European 
populations [ 4 ]. The SCORE model with its global European and national ver-
sions is a prime example of such adaptations to cardiovascular risk prediction 
across European regions [ 5 ]. Despite increasingly precise predictive power on a 
population basis, risk scores do not necessarily perform well in individual sub-
jects or in groups of subjects who share certain characteristics and may have 
risk factors but also protective factors that are not represented in risk scores. 
Some of these factors are poorly understood or unknown, but may include 
genetic factors, diet, physical activity and other lifestyle factors. 

 Against this background there is an unmet clinical need for stratifi ed cardio-
vascular medicine. This will include accurate diagnosis of CVD and accurate risk 
prediction in individual subjects with subsequent targeted preventative therapy. 
This approach is considered highly cost effective not only due to prevention or 
delay of onset of CVD related organ damage but also due to the potential savings 
on diagnostic procedures and drug therapy in subjects at low cardiovascular risk 
[ 6 ]. In this chapter we will therefore focus on potential clinical applications of 
proteomics and will review recent developments in the wider context of CVD 
biomarker research.  

    Biomarkers of Cardiovascular Disease 

 A biomarker is defi ned as “a characteristic that is objectively measured and evalu-
ated as an indicator of normal biological processes, pathogenic processes, or phar-
macologic responses to a therapeutic intervention” [ 7 ]. The common denominator 
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of recent studies is that the most promising biomarkers for cardiovascular risk 
refl ect early subclinical organ damage. For example, urinary proteomic studies have 
demonstrated that changes in extracellular matrix composition are a hallmark of 
CVD and that such changes are represented by fragments of matrix proteins in urine 
[ 8 ,  9 ]. These changes occur many years before the onset of overt disease and years 
before signals from other biomarkers can be detected. Another recent example is the 
fi nding that raised serum C-terminal propeptide of type I procollagen levels indicate 
increased myocardial collagen synthesis and precede and parallel the development 
of cardiac fi brosis [ 10 ]. 

    Multiple Roles of Biomarkers 

 Biomarkers can play multiple roles and provide useful clinical information at differ-
ent levels (Table  17.1 ). In general terms, Frank and Hargreaves [ 18 ] have classifi ed 
biomarkers into biomarkers of the natural history of disease (type 0 biomarkers); 
biomarkers of the biological effect of a therapeutic intervention (type 1 biomark-
ers); and surrogate markers for certain aspects of disease that can be used as out-
comes of clinical trials and for regulatory purposes (type 2 biomarkers).

   We will explore the role of proteomics as biomarker for CVD in more detail in 
this chapter but will fi rst outline the development of clinically useful biomarkers in 
general.  

    Phases of Biomarker Development 

 The development of novel biomarkers for clinical use typically follows a number of 
defi ned stages that have been described in detail elsewhere [ 19 ]. In brief the devel-
opment process can be described in four phases:

    1.     Proof of concept.  This phase is characterised by mechanistic  in vitro  and  ex vivo  
studies, studies in experimental models and small-scale studies in humans (typi-
cally patients with a well-defi ned condition and healthy controls) to demonstrate 
the pathophysiological relevance and ability of a novel biomarker to differentiate 
health from disease.   

   2.     Validation in independent cohorts.  Initial data will then be replicated and vali-
dated in larger cohorts with adjustment for confounding factors and often using 
a prospective study design.   

   3.     Demonstration of incremental value over established markers.  This is one of 
the most critical steps in the development of a biomarker. Novel biomarkers 
would normally only be regarded as clinically useful if they provide information 
over and above already existing diagnostic tools. However, biomarkers can also 
be clinically useful if they provide similar information to existing diagnostic 
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tests at lower cost, can be analysed more easily or provide information beyond 
the specifi c disease of interest.   

   4.     Biomarker-guided therapy.  The ultimate usefulness of a novel biomarker can 
only be proven in prospective trials stratifying patients into a biomarker positive 
and a biomarker negative group to explore if outcomes associated with specifi c 

   Table 17.1    Overview of biomarkers in clinical medicine   

 Type of 
biomarker  Explanation  Examples 

 Disease 
defi ning 
biomarkers 

 Used in some diseases as a 
condition to establishing a 
diagnosis 

 Antineutrophil cytoplasmic antibody 
(ANCA)-associated vasculitis is defi ned by 
the presence of ANCA and a diagnosis of 
these diseases can only be made if ANCA 
are present 

 Diagnostic 
biomarkers 

 Used in clinical practice to 
reach a diagnosis so that 
appropriate therapy can be 
initiated. Whilst often linked to 
disease processes diagnostic 
biomarkers do not necessarily 
specifi cally refl ect individual 
pathophysiological pathways 

 Raised serum levels of cardiac troponins 
indicate in the fi rst instance myocardial 
cell death but do not provide disease 
specifi c information [ 11 ]. Raised cardiac 
troponin levels can therefore be sensitive 
for many conditions including myocardial 
infarction, myocarditis or pulmonary 
embolism with right ventricular strain but 
specifi city is limited and depends on 
additional clinical and biochemical 
information 

 Predictive 
biomarkers 

 Used to identify patients at risk 
of developing disease and/or 
adverse disease outcomes 

 Most predictive biomarkers are also 
diagnostic biomarkers with lower 
thresholds being used in clinically 
asymptomatic stages for prediction of 
future overt disease. High sensitivity 
assays have facilitated the use of 
established diagnostic biomarkers such as 
cardiac troponins or C-reactive protein to 
predict future disease and events [ 12 ,  13 ] 

 Biomarkers for 
therapy 
monitoring 

 Used to monitor the effect of 
treatment and to adjust 
therapeutic regimens depending 
on biomarker response 

 This concept is fully established in 
oncology, infectious disease and 
infl ammatory diseases where tumour 
markers, infl ammatory markers and levels 
of autoantibodies help monitoring 
treatment effects and are often the 
immediate target of drug or other 
therapies. In cardiovascular medicine serial 
measurements of cardiac troponins can 
probably help to monitor the effect of 
reperfusion strategies in acute myocardial 
infarction [ 14 ,  15 ] and Brain Natriuretic 
Peptide (BNP) may have a potential to 
monitor treatment in patients with heart 
failure [ 16 ] although such strategies 
remain controversial [ 17 ] 
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therapies are different between the groups. This is a step that not many circulat-
ing biomarkers have reached, although biomarkers in a wider sense have of 
course been used to defi ne entry criteria for participation in clinical trials, e.g. 
reduced left ventricular ejection fraction as a prerequisite for a patient to be 
included in heart failure trials.    

      Pre-test Probability and the Right Test for the Right Patient 

 Most diagnostic and predictive biomarkers will not be 100 % sensitive and 100 % 
specifi c for the condition of interest. Appropriate cut-off values will have to be 
defi ned that lead to an appropriate balance between sensitivity and specifi city 
depending on the intended use of a biomarker. Whilst this can be achieved relatively 
easily for diagnostic biomarkers the establishment of thresholds for predictive bio-
markers is far more challenging. 

 Predictive tests therefore tend to categorise individuals into risk groups ( e.g.  low, 
intermediate and high). Guidelines then focus on the low (no treatment required) 
and the high risk groups (treatment required) whereas guidance for those at interme-
diate risk remains vague. It is often this intermediate risk group that will be subject 
to additional biomarker analysis in the hope that subjects can later be reclassifi ed 
into either of the two extreme groups [ 20 ]. Irrespective of the primary risk assess-
ment method it is clear that pre-test probability must be considered before biomark-
ers are assessed in research studies or further diagnostic tests are performed in 
clinical practice. For any novel biomarker a precise defi nition of its indication in the 
diagnostic work-up is of paramount importance.   

    Proteomics 

 Proteomics is the analysis of a large number of proteins or polypeptides in tissue 
and body fl uids [ 21 ]. Other chapters of this book have defi ned the fi eld in more 
detail. In addition we would like to refer to relevant reviews on clinical proteomics 
in the literature [ 22 – 24 ]. By quantifying a range of peptides and peptide fragments, 
proteomics has the potential of simultaneously detecting changes in the many path-
ways involved in the pathogenesis of CVD. 

 Like any other biomarker, proteomics-based biomarkers can be diagnostic, pre-
dictive and/or disease defi ning. Whilst we will discuss examples in the following 
sections in detail we would like to emphasise that genomics in the fi rst instance 
describes a potential and may play a particularly important role in risk prediction, 
whereas proteomics describes the actual state of the organism that results from the 
complex interplay between genetic and environmental factors, and may therefore 
play a key role in the description of disease processes and the defi nition of disease 
at a molecular level. 
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    Platforms for Clinical Proteomics 

 Proteomic platforms have been described in more detail elsewhere in this book (see 
Chaps.   6    ,   7    ,   8     and   9     for details). Clinical proteomics makes use of the same plat-
forms and techniques but has its own specifi c requirements:

•     Targeted vs non-targeted proteomic techniques.  In biomarker discovery non- 
targeted techniques are generally preferred as they will allow an unbiased 
approach. Non-targeted methods will also have advantages in the molecular defi -
nition of disease as the resolution will be much higher than with the limited 
number of proteins that can be detected with targeted techniques. Once an array 
of relevant biomarkers has been discovered and validated the development of 
targeted assays will be reasonable. These can be single-marker platforms such as 
ELISAs or multiplexing arrays.  

•    Throughput.  Especially for clinical routine but also for larger-scale clinical 
studies high throughput of samples is required. Sample runs of several hours 
with additional preparation and separation steps would not be acceptable in clini-
cal practice.  

•    Reproducibility and Good Laboratory Practice.  Especially in clinical diag-
nostics measurements have to be reproducible and standardised and follow the 
principles of Good Laboratory Practice. Research-oriented laboratories often 
underestimate the logistics required to offer a reliable clinical service.  

•    Simplicity and compatibility.  Proteomics is generally considered a “high tech” 
approach requiring specialist skills. Widespread application in clinical practice 
can only happen if procedures are compatible with routine analysers in clinical 
biochemistry laboratories.  

•    Costs.  Proteomic assays have to be cost effi cient in order to be implemented in 
clinical practice. Full economic costings taking account of infrastructure, ser-
vice, consumables and salaries as well as detailed health economic consider-
ations regarding costs and benefi ts of biomarker analysis including the effect of 
false positive and false negative results on health care systems have to be 
conducted.    

 Currently only targeted proteomic approaches tend to fulfi l these criteria and it is 
up to the proteomic community to pave the way for translation of more comprehen-
sive techniques into clinical practice.  

    Sample Types for Clinical Proteomics 

 As discussed in more detail elsewhere in this book (Chaps.   2     and   3    ) a large number of 
tissues and biofl uids can be subject to proteomic analysis. Clearly, invasive tests (needle 
biopsies, endoscopic sampling, surgical sampling) are more acceptable in case of severe 
and life threatening conditions where precise diagnosis is important,  e.g.  malignant 
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diseases. For risk prediction and in fact for most diagnostic purposes in clinical medi-
cine, non or minimally invasive sampling of body fl uids (e.g. blood, saliva or urine) is 
preferable. In this chapter we will focus on plasma and urinary proteomics and will 
discuss a number of examples in more detail. We will mention tissue proteomics where 
less invasive studies are not available or where they are not suffi ciently robust. 

 Plasma or serum are generally the biofl uids of choice as the blood is in direct contact 
with relevant organs and will contain proteins originating from them. Disadvantages of 
plasma include the high protease activity resulting in altered protein content and com-
position after sampling; the complexity of the plasma proteome with concentrations of 
plasma proteins from picomolar to millimolar range; and protein binding, particularly 
to the highly abundant albumin [ 25 ]. For clinical studies in humans there are advan-
tages of urine over blood for the purpose of proteomics. Urine contains polypeptides 
originating from a large number of biochemical pathways within the body but fi nal 
concentrations in the urine also depend on the glomerular fi lter and tubular secretion 
and absorption processes. In contrast to blood, protease activity in urine is low so that 
urine is generally considered to be much more stable. Analyses are technically less 
demanding and the data can thereby be more robust in urine compared to plasma [ 26 ].   

    The Potential of Proteomics in Cardiovascular Disease 

 The fact that the primary manifestation of CVD is often an acute ischaemic event 
such as myocardial infarction or stroke coupled with the limited predictive value of 
conventional cardiovascular risk factors means that identifi cation of individuals “at 
risk” of an event remains a major challenge and novel tools for accurate risk assess-
ment on an individual basis are required. 

 Atherosclerosis is common to many cardiovascular conditions, and it is now 
widely understood that narrowing of the vessel lumen and subsequent ischaemia are 
preceded by subclinical alterations in several key pathways including: infl amma-
tion; oxidative stress; thrombosis; and vascular remodeling which remain only par-
tially unravelled. In view of this complex pathophysiology a single biomarker is 
unlikely to perform adequately for early diagnosis, prognosis and therapeutic moni-
toring. Clinical application of proteomic strategies to CVD management could 
potentially offer a number of key advantages:

•    Proteomics offers the unique opportunity to disentangle the cellular processes 
that precede transition to overt CVD in a non-targeted and therefore non-biased 
manner;  

•   Such enhanced understanding of the perturbations at cellular level which precede 
overt CVD brings potential to identify novel therapeutic targets and allow an 
integrated view of disease pathogenesis;  

•   A “multi-marker” approach including potential biomarkers involved in each of 
the key pathways listed above may improve the accuracy of cardiovascular risk 
prediction;  
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•   Evaluating changes which are present early in the disease process may aid early 
identifi cation and treatment of “at risk” individuals with more subtle manifesta-
tions of CVD.    

 Despite the potential advantages that could accompany translation of such 
approaches into clinical practice, proteomic research itself remains largely within 
the “preclinical” stage. Making the leap from the specialised laboratory into the 
clinic requires that a proposed biomarker should outperform the current state-of- 
the-art; provide robust and reproducible results; be tested in an adequately-powered 
prospective study; and offer cost-effectiveness, targets which many proteomic bio-
markers have yet to achieve.  

    Examples of Proteomic Studies in Cardiovascular Diseases 

    Atherosclerosis 

 Despite the fact that it is the common precursor to many CVDs, there is relatively 
little published data on application of proteomics in clinical studies of human ath-
erosclerotic disease. 

 At a cellular level a number of groups have reported outcomes of proteomic stud-
ies following stimulation with pro-atherosclerotic factors, giving insight into mech-
anisms underlying disease. The LC-MS platform has been used to compare the 
effects of oxidised versus native low density lipoprotein (LDL) on monocytic cells. 
Proteins upregulated following stimulation with oxidised LDL included cathepsins, 
proteoglycans and urokinase-type plasminogen activator receptor [ 27 ]. Endothelial 
cells are a key component of the atherosclerotic plaque and work on human umbili-
cal vein endothelial cells (HUVEC) in the presence and absence of pro- infl ammatory 
stimulation using 2D gel electrophoresis combined with MALDI-TOF MS identi-
fi ed 35 altered proteins as a result of pro-infl ammatory conditions [ 28 ]. Vascular 
smooth muscle cells (VSMCs) are another integral player in the development of 
atherogenesis and 2D gel studies have revealed that activated cells demonstrate 
altered chaperone phosphorylation, thereby revealing their potential role in VSMC 
activation [ 29 ]. 

 One key limitation of using cultured cells for such studies is that the culture pro-
cess itself can result in a phenotypically altered cell: although we can glean infor-
mation on how these cells respond to stimuli, we cannot probe their precise proteome 
as expressed within the arterial lumen. A more useful approach may be to focus on 
the proteomics of atherosclerotic plaques themselves, a technique employed by a 
number of groups using tissue obtained from carotid artery surgery. Early work 
demonstrated a signifi cant increase in secreted proteins from complex plaques in 
comparison to healthy vessel using 2D-gel electrophoresis [ 30 ]. Later studies have 
identifi ed typical plaque proteins including superoxide dismutase (SOD) and osteo-
glycin [ 31 ]. A number of studies have now reported reduced secretion of heat shock 
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protein 27 (HSP27) from complex ruptured plaques and correlation with lower 
plasma HSP27 levels in patient with known atherosclerosis [ 32 – 34 ]. Despite being 
among the more extensively validated potential biomarkers to emerge from plaque 
proteomics, HSP27 has yet to make the leap into the clinical sphere and its utility as 
predictor of later cardiovascular events remains to be confi rmed [ 35 ]. 

 Taking this work onto a larger scale and moving towards clinical application, the 
Athero-Express study has established a bio-bank cohort including plaques and other 
vascular specimens from almost 3000 patients with longitudinal follow up for mani-
festations of cardiovascular disease. Early studies within this cohort highlighted 
osteopontin (OPN) as one plaque biomarker potentially predictive of cardiovascular 
events [ 36 ]. This fi nding was further validated where patients with plaque OPN 
level within the highest quartile were at increased risk of cardiovascular events. 
Fatty acid binding protein 4 (FABP4) is another plaque biomarker to emerge from 
this cohort [ 37 ] which has been proposed as a potential treatment target [ 38 ].  

    Hypertension 

 Hypertension remains one of the most important risk factors for CVD worldwide 
and its incidence and prevalence continue to increase. In contrast to rarer causes of 
the disease where pathophysiological mechanisms are relatively well-understood, 
the mechanisms underpinning “essential hypertension” which accounts for the 
majority of cases remain to be disentangled. It is generally accepted that essential 
hypertension is the result of interaction between multiple aberrant physiological 
pathways as well as being infl uenced by genetic and environmental factors [ 39 – 41 ]. 
Use of proteomic strategies to identify a broad range of altered proteins and pep-
tides seems ideally suited to investigate some of these as yet unknown mechanisms, 
yet large scale clinical studies are lacking. To date most work has centred on animal 
models of hypertension, with a focus on associated conditions such as left ventricu-
lar hypertrophy (LVH) rather than hypertension as a unique entity. 

 In advance of dissection particular disease pathways it is useful to establish 
strain-specifi c proteomic profi les of these animal models. For example, a number of 
markers have been shown to be differentially expressed in the left ventricular pro-
teome of Dahl salt-sensitive and salt-resistant rats [ 42 ]. Early work using ventricular 
homogenates and 2D gel electrophoresis coupled to MALDI-TOF MS investigated 
the myocardial proteome in early versus late stage hypertension in spontaneously 
hypertensive rats (SHR) in comparison to control animals. Thirteen differentially 
expressed proteins were identifi ed in SHR before the onset of sustained hyperten-
sion, including proteins associated with glycolysis, oxidative stress and cell metab-
olism. Seven proteins were differentially expressed in late stage hypertension, 
presumably due to established disease [ 43 ]. Other groups have used transverse 
 aortic constriction as a model of pressure overload in animal work. Proteins identi-
fi ed from 2D- gel electrophoresis coupled to MALDI-TOF MS using LV homoge-
nates from these animals include fatty acid binding proteins, actin and myosin as 
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well as collagen fragments which appear to be a central component of many pro-
teomic studies [ 44 ]. Perhaps more exciting in these discovery experiments is the 
identifi cation of proteins with as yet unknown functions, providing novel directions 
for future research [ 44 ]. 

 In addition to mechanistic insights and increased diagnostic accuracy, many pro-
teomic studies demonstrate altered peptide patterns in response to various drug 
therapies, highlighting the potential this tool has to offer as a therapeutic monitoring 
strategy. Using 2D-gel electrophoresis coupled to MALDI-TOF MS with LV 
homogenates from SHR and their normotensive counterparts it has been shown that 
antihypertensive therapy led to partial reduction in oxidative stress through altered 
NF-κB activation [ 45 ]. A later project using the same proteomic platform to study 
LV homogenates from rats following induction of LVH by abdominal aortic band-
ing showed that along with reduction in blood pressure and prevention of LVH, 
treatment with the angiotensin receptor blocker Telmisartan was accompanied by 
proteome changes. Peptides specifi cally up-regulated in LVH included actin and 
myosin fragments; changes which were attenuated following antihypertensive ther-
apy [ 46 ].  

    Coronary Artery Disease 

 Clinically silent disease processes such as atherosclerosis and hypertension can 
often be precursors to overt cardiovascular disease, a number of which have also 
been the focus of proteomic research in recent years. 

 Despite advances in both pharmacological and interventional management in 
recent years, coronary artery disease (CAD) remains one of the world’s leading 
causes of mortality. Traditional clinical factors routinely assessed by healthcare 
practitioners can be of limited value in determining risk on an individual patient 
basis, and certain patient populations can develop extensive and life-threatening 
CAD in relative clinical silence [ 47 ]. Identifi cation of biomarkers highlighting indi-
viduals with early stage or asymptomatic disease would allow clinicians to employ 
more aggressive and timely intervention in those deemed to be at higher risk, and a 
number of human studies focussing on clinical utility of proteomics for diagnosis of 
CAD with sample types that can be collected noninvasively have been published. 

    Plasma Studies 

 While discovery of novel biomarkers has historically been based on a “candidate” 
approach in which suspect proteins are assessed on an individual basis, proteomic- 
based biomarker discovery has gained traction; particularly identifi cation of low-
abundance proteins that may highlight as yet unknown disease pathways is an 
exciting concept. LC-MS analysis of plasma samples from 53 patients with 
angiography- proven CAD and 53 healthy control subjects identifi ed 95 peptides 
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which were differentially expressed in those with CAD [ 48 ]. Proteins that were 
upregulated could be grouped broadly into classes including: proteolytic processes; 
immune mechanisms; growth factors; and haemostasis. A number of complement 
components were identifi ed in cases, which seems plausible as complement activa-
tion has been demonstrated in both stable and ruptured atherosclerotic plaques 
[ 49 ]. Proteolytic enzymes such as cathepsin S, which has been associated with 
atherosclerosis [ 50 ], were also identifi ed in plasma of CAD patients; and fi brino-
gen γ chain was among the identifi ed proteins associated with coagulation and 
thrombosis. It has also been shown that some alterations in the plasma proteome 
persist for many months after an acute event. In samples obtained over a 180 day 
period following myocardial infarction a number of proteins belonging to func-
tional groups associated with cardiovascular pathology including coagulation; 
lipid metabolism and infl ammation were shown to be persistently altered [ 51 ]. In 
fact the plasma proteome continued to change in the months following the acute 
event. This highlights the ongoing metabolic disturbance following an ischaemic 
event but also raises the question of the infl uence of drug treatment on the plasma 
proteome and illustrates the potential of proteomic techniques in monitoring treat-
ment response.  

    Urine Studies 

 Although the majority of proteomic studies have been cross sectional in nature and 
remain within the exploratory phase, CAD is an example of a condition where pro-
teomic biomarkers have been evaluated for prognostic as well as diagnostic infor-
mation. Analysis of urine samples from human subjects with angiography proven 
CAD compared to controls using capillary electrophoresis coupled to ESI-TOF MS 
resulted in development of a 15 peptide disease specifi c “signature” with high sen-
sitivity [ 8 ]. Taking this work into a more “real-life” clinical situation, a further proj-
ect used both urine and plasma samples from subjects presenting acutely with chest 
pain of who underwent angiography at a later date during the course of their work-
 up. This time a panel of 17 urinary peptides separated patients who were subse-
quently proven to have CAD at angiography from those without signifi cant disease. 
The majority of these peptides were identifi ed as collagen type I and III fragments, 
fi ndings which were confi rmed by immunohistochemistry of human aortic tissue 
samples. No discriminatory peptides were identifi ed using plasma samples, perhaps 
as a result of latent protease activity [ 52 ]. Data obtained from these previous studies 
was combined to further increase the diagnostic accuracy of this approach. Using 
CE-MS to analyse 586 spot urine samples from individuals with CAD and healthy 
controls a 238-peptide CAD-specifi c pattern was developed which proved to offer a 
greater degree of diagnostic accuracy than the smaller panels [ 9 ]. Component pep-
tides included fragments of alpha-1-antitrypsin; collagens type I and III; and 
fi brinogen- alpha chain; all of which relate to key molecular mechanisms underlying 
CAD. Peptide abundance was unchanged in the shorter term with angiotensin recep-
tor blockade but altered over long-term treatment towards a “healthier” pattern, 
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suggesting that the panel is insensitive to drug treatment itself, but may be refl ective 
of the longer term benefi cial effects of interventions [ 9 ]. 

 As discussed earlier in this chapter, guidelines for biomarker implementation 
suggest testing in longitudinal prospective studies measuring hard clinical endpoints 
[ 19 ,  24 ], a target that can be challenging to achieve due to the length of time taken 
to carry out such projects. An alternative option for prospectively testing a bio-
marker’s performance is application to existing clinical cohorts or bio-banks. Using 
this strategy the CAD238 panel has been applied to baseline urine samples collected 
during a large multicentre randomised controlled blood pressure trial [ 53 ]. Samples 
were obtained from individuals who later suffered a coronary event and matched to 
individuals who remained CAD-free over 5 years of follow up. There was a trend 
towards a healthier peptide pattern at baseline in the healthy control samples, but 
more interestingly on survival analysis the CAD panel was predictive of later car-
diovascular events in patients who were asymptomatic at baseline [ 54 ]. The poten-
tial of multi-marker proteomic panels for detection of subclinical disease is evident, 
it remains to be seen whether the CAD238 panel can outperform other cardiovascu-
lar biomarkers and inform early therapeutic interventions.   

    Heart Failure 

    Tissue Studies 

 Although no large scale clinical studies using proteomic biomarkers in heart failure 
have been published to date, a number of projects have focussed on human samples 
rather than animal or cell models taking the techniques a step closer to the clinical 
realm. 

 A decade ago the fi rst study mapping the human heart proteome was published 
[ 55 ]. Here researchers used a variety of separation and quantifi cation technologies 
including 2D-gel electrophoresis, SELDI and various other MS methodologies in 
an effort to catalogue and identify human heart proteins – a platform from which to 
begin exploration of the healthy heart as well as different disease states. This work 
resulted in identifi cation of 388 peptides from 110 unique proteins. The vast major-
ity of these were mitochondria-associated, whilst a much smaller number than 
expected were involved in muscle contraction and regulation of heart rate [ 55 ]. It is 
clear that the heart has high energy demands, and so the large number of mitochon-
drial proteins may not be entirely unexpected. In addition the processing of tissue 
prior to peptide separation and identifi cation may also have an effect of the pro-
teome-a factor that should be borne in mind when considering the translation of any 
such results into clinical practice. 

 Studies using samples of diseased human heart have also been performed. Using 
2D-gel electrophoresis coupled to MALDI-TOF MS a comparison of the proteome 
of failing myocardium in patients with arrhythmogenic right ventricular cardiomy-
opathy (ARVC) revealed 35 proteins commonly altered in failing hearts, 5 of which 
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were altered by more than 1.5-fold. These proteins belong to a range of functional 
classes including: cytoskeletal and myofi brillar proteins; stress proteins; energy 
metabolism; and antioxidants. The most altered protein was identifi ed as heat shock 
protein 70 (HSP70), belonging to the stress protein family and shown to be increased 
1.64-fold in failing compared to non-failing hearts, and across different underlying 
aetiologies including dilated and ischaemic cardiomyopathy [ 56 ]. This discovery 
based approach highlights the utility of these studies in identifi cation of potential 
novel biomarkers, however as discussed above one must consider the infl uence of 
pre-analytical processing on the human heart proteome, as well as the invasive 
nature of tissue sampling. Utilisation of samples which require less pre-analytical 
processing and can be collected in a minimally invasive manner is more appealing 
when considering clinical application of these techniques.  

    Plasma Studies 

 Human plasma samples have been central to a number of proteomic-based heart 
failure studies. A number of these projects focus on detection of left ventricular 
remodeling following myocardial infarction [ 57 ,  58 ], a strong but clinically silent 
predictor of subsequent heart failure [ 59 ]. As with many other cardiovascular dis-
eases there are a number of mechanisms implicated in this process including fi bro-
sis, proteolytic activity and apoptosis and its pathogenesis remains incompletely 
understood making exploratory proteomic work an attractive prospect for discovery 
of novel disease pathways [ 59 ]. In one such study human plasma samples from 
patients displaying varying degrees of remodeling, and with sequential echocardio-
graphic follow up data available, were processed using SELDI-TOF technology 
coupled with LC-MS. Individuals with the greatest degree of remodeling were char-
acterised by elevated post-translational variants of α1-chain of haptoglobin (Hpα1) 
which were not readily detectable by Western blot or ELISA, whilst traditional 
clinical markers such as creatine kinase (CK) levels did not discriminate between 
those with high versus low remodeling [ 57 ]. Although certainly a useful strategy for 
discovery of novel disease biomarkers, these fi nding must be reproduced and vali-
dated in an independent cohort to prove truly clinically relevant. 

 The majority of the plasma proteome is composed of around 20 highly abundant 
proteins. Analysis of the “deep” plasma proteome, which refers to the many thou-
sands of proteins masked by these more highly abundant proteins, remains chal-
lenging as there is no readily available amplifi cation technique for low-abundance 
proteins and no analytical platform is able to separate and quantify all plasma pro-
teins [ 60 ]. In addition, we now know that immunodepletion of highly abundant 
proteins such as albumin can simultaneously deplete multitude of additional 
albumin- bound proteins [ 61 ]. Combinatorial peptide ligand library (CPLL) is an 
alternative approach through which investigators can simultaneously dilute high- 
abundance proteins and concentrate low-abundance proteins [ 62 ], and has been 
used to investigate the deep plasma proteome in patients with remodelling post 
myocardial infarction. Using human plasma samples CPLL has been shown to be 
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reproducible and offer improved intensity of low abundance proteins; in fact in one 
study the majority of differentially expressed peptides between patients with and 
without remodelling were not detectable in plasma samples prior to CPLL process-
ing. In particular, the N-terminal human albumin fragment was shown to be signifi -
cantly down-regulated in high remodelling patients over a 1-year follow up period 
[ 58 ] and has been proposed as a potential biomarker of left ventricular 
remodelling.  

    Urine Studies 

 Recent years have seen escalating interest in diastolic dysfunction; a condition with 
a prevalence of up to 27 % of asymptomatic patients undergoing echocardiography 
[ 63 ] for which no widely applicable screening test or effective treatment is currently 
available. Clinical proteomic work has been performed with the aim of identifying 
novel biomarkers for early diagnosis of the disease and novel disease mechanisms 
which could inform treatment strategies. Urine represents perhaps the most easily 
collectable and stable sample type for proteomic studies, and requires little in the 
way of pre-analytical processing. Through analysis of the urinary proteome using 
CE-MS, a panel of 85 urinary peptides was compiled which distinguished hyperten-
sive patients with asymptomatic diastolic dysfunction from control subjects with 
69 % sensitivity and 94 % specifi city [ 64 ]. The majority of these peptides were iden-
tifi ed as varying fragments of collagens which certainly seems physiologically plau-
sible given that heart failure is characterised by increased interstitial deposition and 
cross-linking of collagen [ 65 ]. Although combining a larger number of biomarkers 
results in improved accuracy and robustness, these fi ndings will again require fur-
ther validation and prospective testing in a larger scale independent cohort.   

    Cardiovascular Surgery 

 The potential of clinical proteomics has also been evaluated in the context of cardio-
vascular surgery. Pioneering work has been done on investigating heart failure, in 
particular dilated cardiomyopathy [ 66 ,  67 ]. Most forms of heart failure are preceded 
by a clinically silent period of myocardial remodelling which can be reversible if 
detected early and appropriate therapeutic measures are introduced. Beyond this 
stage progressive exhaustion of myocardial energy resources; alterations in the car-
diomyocytes; and changes in the extracellular matrix can lead to more severe heart 
failure. The optimal time for an invasive cardiovascular intervention such as myo-
cardial revascularization, heart valve reconstruction or replacement (mitral and/or 
aortic valve) can be defi ned as the time point in the course of the disease at which 
all myocardial changes are still completely reversible [ 68 ]. Clinical parameters such 
as symptoms, echocardiography or haemodynamic factors do often not precisely 
determine the point at which an individual transitions to irreversible disease. 
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Proteomic techniques might provide an important contribution in determining the 
precise molecular pathways but also the timeline that leads to this specifi c point of 
no return in the development of heart failure 

 Heart transplantation has been the gold standard for patients with severe chronic 
heart failure. Long-term outcome after heart transplantation mainly depends on the 
development of cardiac allograft vasculopathy and rejection. While right ventricular 
endomyocardial biopsy serves as an invasive source for diagnostic analysis, proteomic 
techniques might serve as a powerful non-invasive tool monitoring the cardiac 
allograft and detecting patterns associated with acute and/or chronic rejection [ 69 ]. 
Shortage of donor organs has led to increased use of mechanical left ventricular assist 
devices. These devices have become an important tool to stabilize the condition of 
patients with refractory end-stage heart failure awaiting transplantation, or even as 
defi nitive therapy without further transplantation. It has been suggested that in some 
instances mechanical unloading of the heart provides enough improvement in heart 
function that transplantation is no longer necessary [ 66 ,  68 ]. Again, proteomic tech-
niques could provide a suitable diagnostic, monitoring or even prognostic tool. 

 A number of studies exploring proteomic biomarkers as tools to determine the opti-
mal time-point for invasive therapeutic interventions, e.g. aortic valve replacement/
reconstruction, mitral valve replacement/reconstruction and thoracic aortic replacement 
have already been published [ 68 ,  70 ]. Clinicians mainly focus on serological biomarker 
discovery; identifying peripheral markers which could then serve as an indicator for the 
disease, the prognosis and the likely response to the therapeutic intervention. 

 Biomarkers of upcoming events such as myocardial ischemia or infarction, heart 
failure, aortic aneurysm rupture or dissection are rare but much needed. Such bio-
markers would allow risk stratifi cation for patients who stand to benefi t most from 
further diagnostics and monitoring. Again, proteomics could play a key role in this 
process. A preliminary study on ascending aortic aneurysms revealed that high- 
throughput proteomic analysis identifi ed biomarkers which could potentially indi-
cate imminent aortic dissection or rupture [ 71 ]. Another study found that proteomic 
patterns in preoperatively collected serum samples discriminated between patients 
who developed multisystem organ failure after thoraco-abdominal aortic repair and 
those who did not [ 72 ]. Clinical translation of such biomarkers, if they can be vali-
dated in large cohorts, could translate into a meaningful increase in survival through 
facilitating earlier intervention in “at-risk” individuals. 

 From a surgical point of view, it is fascinating that proteomic methods have the 
potential to improve invasive procedures through characterising molecular changes 
which result from specifi c interventions. For example, a recent study on the use of 
deep hypothermia (<25 °C) during aortic surgery revealed, using iTRAQ labeling 
tandem mass spectrometry, that a signifi cant upregulation of complement activation 
occurs in those with normothermic cardiopulmonary bypass compared to those with 
deep hypothermia [ 73 ]. In contrast, it also showed that rewarming the patient 
 potentially exerts a signifi cant effect on the plasma proteome as well. This could at 
least in part explain some of the diffi culties seen in those with deep hypothermic 
surgery, e.g. hemorrhagic complications, neurological complications, systemic 
infl ammatory response syndrome.  
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    Stroke 

 Prompt and accurate diagnosis is essential for the timely management of stroke, 
particularly in the context of ischaemic events where there is a narrow window of 
opportunity for administration of thrombolytic therapy. The initial diagnosis is 
made based on clinical presentation, however even following specialist assessment 
by a stroke physician up to 20 % of patients are found to have an alternative diagno-
sis [ 74 ]. The ability to accurately confi rm the diagnosis at an early stage in situa-
tions where there is a degree of diagnostic doubt would facilitate timely and 
appropriate intervention; use of proteomics is one possible approach to this unmet 
clinical need however its potential remains largely unexplored in human subjects. 

 The spontaneously hypertensive stroke-prone rat (SHRSP) is a useful animal 
model for exploration of complex cerebrovascular pathology [ 75 ]. Early proteomic 
work using this model highlighted increased urinary excretion of several acute 
phase proteins prior to the onset of cerebrovascular disease, suggesting that a pic-
ture of increased systemic infl ammation may precede clinical events [ 76 ]. 2D-gel 
electrophoresis identifi ed increased abundance of transferrin; α2-HS-glycoprotein; 
α1-antitrypsin and fragments of albumin in these animals [ 76 ]. Over a decade later, 
examination of brain homogenates from Wistar rats exposed to middle cerebral 
artery occlusion using gel electrophoresis with MALDI-TOF MS offered some 
mechanistic insights into the pleiotropic effects of statin therapy in stroke patients. 
Simvastatin was associated with reduced heat shock protein 75 (HSP75) in these 
animals, a fi nding which was later confi rmed in plasma from patients following 
acute stroke [ 77 ], identifying another potential biomarker worthy of more detailed 
exploration in clinical studies. 

 A recent study used CE-MS to analyse urine samples from patients within 24 
h of ischaemic stroke compared to healthy controls with the aim of developing a 
biomarker model to aid in the diagnosis of acute stroke. The resultant panel of 35 
urinary peptides, including uromodulin and a number of collagen fragments, was 
able to separate stroke cases from controls with 93 % specifi city [ 78 ]. Not only do 
these fi ndings indicate that urinary proteomics could become a useful tool in early 
diagnosis of acute stroke, but they demonstrate again the concept that classifi ers 
based on a larger number of biomarkers can offer a high degree of diagnostic 
accuracy.  

    Chronic Kidney Disease 

 The prevalence of chronic kidney disease (CKD) continues to rise fuelled by 
increasing prevalence of conditions such as diabetes and hypertension, however 
only a small proportion of patients progress to end stage renal disease (ESRD) with 
many dying from associated conditions before reaching renal replacement therapy 
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(RRT) [ 79 ]. The presence of CKD is a strong independent predictor of adverse clini-
cal outcomes and cardiovascular disease in particular [ 80 ,  81 ]. Even the earliest, 
preclinical stages of disease confer an increase in cardiovascular morbidity and 
mortality [ 82 ]. The current clinical defi nition of CKD relies upon detecting reduc-
tion in glomerular fi ltration rate (GFR) based on serum creatinine or an increase in 
protein or albumin leak. However by the time such changes are detectable according 
to current clinical thresholds, substantial and irreversible structural damage has 
already occurred in relative clinical silence [ 83 ,  84 ]. Intervention with drug thera-
pies which block the renin-angiotensin system (RAAS) is currently recommended 
as fi rst line therapy for slowing progression of CKD [ 85 ,  86 ] however studies of 
early or more aggressive intervention have generally been disappointing due to a 
large burden of side effects and adverse events [ 87 ]. Development of tools for early 
diagnosis of CKD and prediction of outcomes to allow targeted intervention for 
those who stand to benefi t most in terms of minimising risk of both ESRD and car-
diovascular disease remains an unmet clinical need. Proteomic research appears to 
be a promising strategy to address this issue. 

    Plasma Studies 

 The molecular mechanisms involved in CKD are complex and likely include coagu-
lation defects; vascular calcifi cation; oxidative stress; infl ammation and endothelial 
dysfunction [ 88 ,  89 ]. Many previous studies have reported changes in individual 
plasma proteins in CKD, however a larger scale approach has the potential to bring 
together disparate molecular evidence providing an integrated view of CKD patho-
genesis. Application of untargeted plasma proteome analysis using LC-MS in sam-
ples from patients with CKD recently confi rmed modifi cations to a number of these 
pathways known to be integral to CKD pathogenesis, but also identifi ed increased 
lysosome C and leucine-rich-alpha-2 glycoprotein which are related to vascular dis-
ease and heart failure [ 90 ] therefore contributing to new knowledge of the link 
between the kidney and cardiovascular disease.  

    Urine Studies 

 Urine has proved a particularly useful medium in proteomic studies of CKD. It is more 
stable than blood in terms of proteolytic degradation, requires less pre- analytical pro-
cessing and is largely representative of renal pathophysiology [ 91 ]. An array of urinary 
biomarkers for accurate diagnosis of CKD was fi rst developed in 2010 from urine 
samples from 230 patients with CKD and 379 healthy control subjects analysed by 
using the CE-MS platform. A panel of 273 peptides associated with CKD was identi-
fi ed and combined using support vector machine-based modelling to create a specifi c 
classifi er (CKD273). Validation in a blinded test set resulted in accurate separation of 
cases and controls with high sensitivity and specifi city [ 92 ]. To date, this is the 
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proteomic classifi er whose diagnostic utility has been most rigorously tested in inde-
pendent studies, both case–control and longitudinally. Its component peptides include 
many derived from collagen types I and III, uromodulin, alpha-1-antitrypsin and 
osteopontin and there is signifi cant overlap with other cardiovascular proteomic pan-
els, likely refl ecting the multiple common mechanistic pathways underpinning these 
conditions and providing a framework for moving towards mechanistic hypotheses. 

 The prognostic potential of CKD273 has been evaluated in a number of studies. 
In a cohort of patients attending renal outpatient clinics with diagnosis of CKD, 
baseline CKD273 classifi er score was signifi cantly higher in those who reached the 
primary endpoint of ESRD or death during the subsequent 3.6 year follow up [ 93 ]. 
Of course guidance also requires that proposed biomarkers outperform current clin-
ical practice. A recent analysis of CKD273 in a large cross sectional multicentre 
cohort study showed that CKD273 performed better that urinary albumin excretion 
(UAE) as a predictor of CKD progression. Adding CKD273 to a combination of 
eGFR and UAE signifi cantly improved prediction of CKD risk [ 94 ], suggesting that 
CKD273 has the potential to outperform the current state-of-the-art, although large 
scale prospective studies to formally assess this are lacking.  

    Diabetic Nephropathy 

 Diabetic nephropathy is the most common precipitant of ERSD in the western 
world and has therefore attracted specifi c interest in CKD research. Microalbuminuria 
(MA) is the earliest clinical index of DN and is also associated with signifi cantly 
increased cardiovascular disease burden [ 95 – 97 ] even at levels below the currently 
accepted diagnostic threshold [ 98 ]. The pathogenesis of DN is complex and incom-
pletely understood, sharing multiple common underlying mechanistic pathways 
with cardiovascular disease. Multimarker proteomic approaches are therefore well- 
suited to investigate the disease mechanisms behind DN and to identify potential 
biomarkers for early diagnosis, and are in fact advancing beyond the discovery and 
validation stage into prospective clinical studies in this fi eld. The foresight of many 
research groups has been pivotal to the discovery of disease-specifi c biomarkers and 
the availability of sequential samples from large diabetes cohorts with long follow-
 up has allowed researchers to compare the proteome of patients many years before 
clinically detectable renal insuffi ciency develops. 

 CE-MS analysis of the urinary proteome has been the prominent proteomic strat-
egy for DN biomarker discovery and a number of disease-specifi c peptide panels 
have been described [ 99 – 101 ]. Although developed in samples from patients with 
CKD of diverse aetiology the CKD273 classifi er has proved particularly promising 
in this arena. Not only has it been shown to distinguish CKD from healthy controls 
[ 92 ], but the panel appears to accurately identify DN with high consistency across 
multiple centres, independent of confounding factors such as age and gender [ 102 ] 
and to remain stable even after 3 years of storage [ 101 ]. As with a number of other 
disease-specifi c panels, transition towards a “healthier” proteome has been demon-
strated following 2 years of treatment according to evidence based guidelines [ 103 ]. 
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This classifi er has also been demonstrated to have some prognostic promise, identi-
fying normoalbuminuric subjects likely to progress to overt DN in advance of clini-
cal detection of MA in separate clinical cohorts with between 3 and 15 years follow 
up data available [ 101 ,  104 ]. In terms of outperforming the current state-of-the-art, 
one study has shown that CKD273 had greater sensitivity for detection of DN in 
type 2 diabetes compared to MA [ 101 ]. Its capability for early diagnosis of DN and 
utility in informing therapeutic decision-making now being prospectively tested for 
the fi rst time in a large scale randomised clinical trial [ 105 ].    

    Summary and Perspectives 

 Like other novel approaches to unravel the pathophysiology of CVD and to translate 
such fi ndings to clinical practice clinical cardiovascular proteomics is still charac-
terised by a number of limitations and weaknesses. The major challenges at this 
time are small sample sizes of clinical proteomic studies, failure to verify results 
independently, and lack of expected clinical utility; which all have the potential to 
lead to over-interpretation of data and unjustifi ed enthusiasm. On the clinical side, 
pathophysiological concepts and novel biomarkers that lack of appropriate inter-
ventions, do not take patient factors and patient wishes into account and have an 
unfavourable cost effectiveness will not be considered useful in the management of 
patients with CVD. Nevertheless proteomic strategies have matured in recent years 
and some clinical conditions may soon benefi t from the potential that proteomics 
can offer whereas other conditions will need considerably more time to see clini-
cally relevant proteomic strategies (Table  17.2 ).

   Table 17.2    Current state of proteomic biomarker development in cardiovascular medicine   

 Condition 

 Proof 
of 
concept 
studies 
in 
humans 

 Biomarkers 
validated in 
independent 
cohort 

 Incremental 
value above 
current best 
practice 

 Demonstrated 
clinical utility 

 Impact on 
clinical 
outcomes tested 
prospectively in 
RCT 

 Atherosclerosis  ✓  (✓)  �  �  � 
 Hypertension  �  �  �  �  � 
 Heart failure  ✓  �  �  �  � 
 Stroke  ✓  �  �  �  � 
 Coronary artery 
disease 

 ✓  ✓  �  �  � 

 Chronic kidney 
disease 

 ✓  ✓  (✓)  (✓)  (✓) 

   RCT  randomised clinical trial 
 ✓indicates the presence of at least two independent high quality studies 
 (✓) indicates the availability of one high quality or a number of lower-quality studies 

 � indicates the absence of substantial research output in this area  
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   The proteomic community has made signifi cant progress in defi ning minimal 
standards for reporting of data (minimum information about a proteomics experi-
ment; MIAPE [ 106 ] and criteria for implementation of proteomic biomarkers into 
clinical practice have been defi ned [ 22 ]. It is now important that individual groups 
adhere to such criteria and that high-quality studies will be designed in collabora-
tion between clinicians and proteomic experts to address clinically relevant ques-
tions. Recent examples have demonstrated the potential of proteomics to 
revolutionise clinical medicine and it is now the responsibility of the clinical pro-
teomic community to make it work.     
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    Chapter 18   
 Concluding Remarks: Proteomics AD 2025                     

     Ian     Wright      ,     Giulio     Agnetti     , and     Jennifer     E.     Van     Eyk    

    Abstract     Mass Spectrometry has potentially been one of the most powerful tool 
available to scientists. The future for mass spectrometry lies not only in deep tech-
nological advances in its inherent performance but also in increasing its robustness 
and ease of use, and by reductions in size and cost, that will make it increasingly 
accessible to more users. 

 The power that Mass Spectrometry can bring to science will increasingly be 
maximized through its combination with other data rich “omics” tools. 

 The authors describe how this landscape is changing today and will change in a 
future that is becoming increasingly described in terms of translational, precision 
and personalized medicine which will all require smarter, more “dynamic” diagnos-
tic tools.  
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      A New Picture for Health in 2025 

 Science is increasingly challenged to interpret the complex biology of the human 
body and process it in such a way that we as scientists, clinicians and patients can 
make decisions on our health and well being. We are at the beginning of a new era 
in which we can utilize the opportunities offered by that complexity rather than be 
overwhelmed by it. This newfound optimism comes from the coincident emergence 
of new sets of analytical tools that allow us to dive deeper into an individual’s 
“omes” that composedly make up each of our cell, organs and ultimately, self. The 
challenge, and previously unattainable reward, will come from our ability to make 
sense of that deep quantitative molecular information and combine the results multi 
modally, or as Eric Topol [ 1 ] would say, across the “Panome” to provide a new 
understanding of how our bodies work, or occasionally do not work. 

 Mass spectrometry (MS) and data computation is at the center of this technical 
revolution and it has developed into a key tool set in providing crucial information 
on at least three of the major components of that panome: the metabolome, the 
microbiome and the third and arguably most important, the proteome. This new 
capability allows us to phenotypically describe any biological (physiological and 
pathological) state on any given day and under any specifi c set of conditions. MS 
driven techniques when applied to good clinical questions will give us new insight 
and assistance in predicting, diagnosing, monitoring and treating disease. 

 Cardiovascular disease (CVD) remains our largest health issue however the 
application of MS and the development of complimentary computational tools is 
starting to help us understand the, additive impact and interrelatedness of nutrition 
and lifestyle, diabetes, autoimmunity, infl ammation and oncology to heart disease 
and will hopefully open up new solutions and promising routes to effective 
therapies. 

 The development of a capability to better understand the underlying molecular 
and cellular mechanisms involved and consequently the process underlying cardio-
vascular disease open up the potential to plan new studies involving much larger 
populations, adding specifi c attempts to readdress our knowledge of gender and 
ethnicity differences that have often been poorly served so far. 

 Combining MS based techniques that are used for broad discovery experiments 
(Data Independent Acquisition (DIA, also referred to as SWATH©) and Data 
Dependent Acquisition (DDA, also referred to as shotgun)) with those that target 
specifi c proteins (e.g. SISCAPA©, Selected Reaction Monitoring or SRM, also 
termed Multiple Reaction Monitoring or MRM, and its reiteration called Parallel 
Reaction Monitoring or PRM – see Chaps.   9     and   10     for detailed description) also 
allow for translational programs. This provides an opportunity to speed up and 
make safer our attempts to bring this new found knowledge to the wider public. 
These new approaches and technologies could also help understand the impact of 
changes related to cultural aspects of diet and exercise, and therefore our ability to 
motivate populations to alter lifestyles, comply with treatment or even develop the 
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treatments best suited to a particular individual. These MS methods also have the 
advantage of being able to be used on a larger variety of sample types, e.g. dried 
blood spots, urine, cells and tissue, in a way that traditional immunoassay’s can’t. 
This will allow individuals to relate results their own personalized normal reference 
ranges and utilize the greater diagnostic and predictive value that will come from 
longitudinal measurements. 

 These MS-based technologies and an increasing number of new applications, 
will also improve the fi nancial effectiveness of treatment by allowing us to better 
understand the risk vs. benefi t associated with any individual’s healthcare. By better 
understanding the role of proteins and their post-translational modifi cations (PTMs) 
we will gain insights into disease and “wellness” that have been hidden to us previ-
ously. An analysis of disease versus normal physiological PTMs can be used, as 
could different protein isoforms, to add specifi city and dynamism at the biological 
and personalized level. Understanding molecular regulation via PTMs and being 
able to target and quantify them at the site specifi c level will open up numerous 
applications from drug selection to diagnostics. The advent of individualized and 
personalized understanding of what is ‘normal’ may better help us persuade the 
population generally, and the health economic funders, specifi cally, to take wellness 
seriously. This knowledge will greatly increase the effectiveness and development 
of ‘smart’ solutions for example: fi tness watches, mail-in sample types, remote 
sampling and testing in commercial environments or remote diagnostic testing and 
sampling testing at pharmacies or at home. For those readers who are also plane 
travellers, it may come as a surprise to discover that the machines commonly used 
at every airport for swab tests are indeed MS based. 

 The preceding chapters in this book have described in detail the MS based tech-
niques and approaches that will be the foundation for this “information” revolution. 
We are in an era of transition in the area of health research and clinical application 
where the emphasis, which has been placed so far largely on genes and transcripts, 
is now moving to their products, protein and their regulation. We propose that this 
cultural revolution, largely made possible by technological advances, will allow us 
to correlate much better our intimate molecular make up with our phenotype, both 
in health and disease. The contribution of genetic medicine in discovering new 
pathogenetic pathways and in allowing the early detection of genetic abnormalities, 
particularly in pediatric medicine, is indisputable. However, with the major health 
concerns worldwide, including CVD, being largely sporadic and episodic in nature 
and only partly dependent on genetic mutations, we believe that this revolution is 
necessary. Moreover, while gene therapy has high promise because of the pheno-
typical effect of life-style, diet and aging, it may not be widely applicable. This is to 
say, that these environmental aspects, rather than genes, likely play an important 
role in many modern diseases that affect westernized societies, including CVD. In 
order to decypher the intimate mechanisms underlying these fundamental process 
we have to move on from genes and transcripts, to proteins, their modifi cations and 
folding. We believe that the key elements to draw a new picture of diseases that are 
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relevant for our modern societies reside at this level and that these new proteomics 
technologies will greatly enhance our power to interpret and manipulate new patho-
physiological mechanisms. 

 The capability of using diagnostic and data processing computational power to 
capture, analyze and process huge amounts of genomic, epigenetic, proteomic 
(including isoform and PTM assessment), metabolic and lipidomic, data, amongst 
others, will revolutionize our approach to discovery science and applied medicine. 
The traditional approach has been to look for simple solutions, simple pathways, 
perfect, single, in vitro diagnostic tests. The benefi t of being able to look deeper into 
the proteome through the development of MS techniques such as DIA to better 
understand the impact of PTMs of proteins combined with the ability to look broader 
across “-omics” by developing and integrating new bioinfomatic tools will allow us 
to move from a traditional “static “to a much more useful “dynamic” diagnostics 
and provide essential insight into how we actually function (or don’t). 

 The reality is that traditional diagnostics may have gone about as far as it can. 
Biology is hugely complex, the solutions to biology problems are hugely complex; 
only by embracing and making sense of that complexity can we deliver what is 
needed. If personalized diagnostics and therapeutics are to occur, we will need the 
additional layers of -omic information to tease out the variants within any popula-
tion. Details of an individual’s redox status for example, can explain why one ver-
sion of a drug would be effective and another wouldn’t. This is crucial today where 
late failure of a pharmaceutical development is expensively unacceptable and com-
panies look more towards diagnostics to select those patient groups that precisely 
derive the most benefi t. 

 MS has the great potential to make a difference through its ability to offer a gold 
standard methodology to actually identify and measure, in a very selective way, the 
molecules being studied. MS technology now has the ability to multiplex assays in 
a very effi cient way and the capability to relatively and absolutely quantify analytes. 
On the contrary, classical immunoassays have limitations in their identifi cation 
capabilities either because of the undesired interference from auto antibodies or 
their, sometimes problematic reliance on antibody interaction with complex sites on 
proteins.  

    A New Picture of Proteomics 

 The move from population diagnostics based on single protein diagnostic markers 
of limited utility to individualized diagnostics, most likely using panels of markers, 
which can better describe the dynamic phenotype will shape the next 20 years. 
Pharma companies describe how up to 80 % of their current drug development pipe-
line being dedicated to a “Personalized Medicine” approach. Until now this has 
been mostly a genomic driven activity but there seems to be a general acceptance 
that the next big drive will come from incorporating proteomics into that model. 
The combination of precision medicine specifi cally impacting the correct analyte or 
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pathway targets and personalized medicine where we specifi cally target those indi-
viduals who derive the best risk/benefi t form a treatment creates something new that 
has been referred to as individualized medicine. 

 Understanding the relationship within and between an individual’s proteomes 
(and its individual sub-proteomes such as nucleome, and including PTMs), micro-
biome, metabolome, and lipidome will help us moving from the limited predictive 
power of genetic medicine and allow us to get early indications of new issues, immi-
nent relapse of existing issues and appropriate response to treatment. This also starts 
to get to what a picture of what an individual’s wellness looks like especially if we 
can incorporate any cyclical changes that are perfectly normal for a given individual 
or combinations of small but longitudinal changes to an individual’s –panome, 
using the sum knowledge of the signifi cant multi-omic parameters that refl ect an 
individual’s status at any given time, In addition these changes may be highly sig-
nifi cant for that individual but may be lost when measured against what is “normal” 
for a population. 

 Add to this the potential to combine other information from other sources, for 
example imaging e,g, CPT/PET or staining techniques into the algorithm and we 
move forward signifi cantly. Importantly it should be feasible to have imaging 
reagents that are selective to specifi c disease “status” based on defi ned “panomic” 
phenotypes. However, all of this will be of little value if we do not also see an 
increased effort to tackle the computational and bioinfomatic hurdles of making 
sense of this huge amount of data. 

 As we better understand the underlying processes between diseases it becomes 
clear that infl ammatory and metabolic, changes impact, refl ect and drive many dis-
eases. The links between, for example, cardiovascular, neurological and oncological 
disease become better understood as we acquire better tools, better ability to process 
large data and better designed population studies. Even for perhaps surprising and 
previously unexplained fi ndings such as the increased risk of later life heart disease 
in women due to something as relatively common, such as premature childbirth [ 2 ]. 
Signifi cant institutional and commercial support of this “new” approach to science 
will be required to open the doors to true individualized medicine. 

 These advances, in turn, pose additional challenges for regulatory agencies who 
will also need to move “fast and nimble” so as not to stifl e the opportunity offered 
by these new tools and knowledge. Handling complex quantitative data analysis 
may have to happen “behind the curtains” to enable this new paradigm to translate 
into normal clinical practice. Fortunately, the trend towards seamlessly managing 
large data might provide the input tools that also allow the increased safety and 
security which regulatory groups are challenged to uphold in order to safeguard the 
population as a whole. The potential for using an individual as their own “normal” 
range may prevent the rare cases of abnormal results that a traditional normal “pop-
ulation” reference range based test might miss and the regulatory authorities and 
traditional diagnostic companies spend huge effort and time trying to assure against. 

 Many of the new MS advances and technologies that are currently available are 
addressed in this book. For those at the horizon there is something to be learned 
from the collective experience of proteomic scientists. A good example could be 
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SELDI MALDI TOF ™, which we briefl y address in the introductory chapter as an 
example of a technology that was overpromised and under delivered. Many new 
technologies are promoted before their limitations are widely enough tested on real 
samples/studies. Therefore, this current chapter is also meant to guide informed 
decision on future proteomic and MS investments. We believe that by merging tra-
ditional approaches with cutting-edge, MS technologies we will be able to harness 
the power of both new and established technologies, and that this marriage of inno-
vation and tradition has great promise. A few technologies have followed this trend, 
beginning with DDA/shotgun and DIA which demonstrated the ability to consis-
tently measure large number of proteins or SRM assays which can do so quickly for 
a limited number of proteins when applied to highly focused experiments. When 
coupled with well-established approaches such as affi nity capture [ 3 ] this will pro-
vide an ability to target protein complexes or increase the number of PTMs that can 
currently be studied into a higher throughput method. All of which give more 
dimensional information about an individual and the “panomic” phenotypic state. 

 On the other hand, this technology also addresses a pressing limitation in trans-
lational research, where the limited availability of control tissue is often an obstacle. 
As it is now possible to create, and share, the electronic version of an organ’s pro-
teome, it is conceivable that this new knowledge, when shared, will enable many 
researchers to overcome this limitation by exploiting the limited number of existing 
samples which are collected to proteomic standards [ 4 ]. These are just two exam-
ples that make us confi dent that MS using data dependent acquisition (DDA also 
known as shotgun) will be workable. 

 DIA and DDA/shotgun methods have had a profound effect on proteomics and 
in fact, driven it, along with computational software for handling the complex MS 
data. Yet, the future will be transformed with both DIA and targeted method becom-
ing major players. With various iterations and commercial editions to come, it will 
continue a profound impact on our understanding of complex diseases (e.g. heart 
failure) in the next decade as it is the only method that allows novel changes at an 
individual sample level to be fully understood. 

 Another set of technologies which resulted from the combination of MS with 
existing, established technologies is MALDI TOF imaging [ 5 ]. This approach 
results from the combination of a MALDI source to image proteins, peptides or 
small molecules in tissue sections. Classical imaging techniques, which employ 
antibodies tagged with fl uorophores, are limited by the cross-talk between these 
reporters. In fact 3–4 antigens can be monitored routinely in tissue samples using 
conventional immunostaining. In theory, by creating targeted approaches such as 
inclusion lists that “fi lter” whatever diagnostic peptide we may be interested in, the 
number of antigens that can be detected by a MALDI source is virtually unlimited. 
In this case the limitation would be sensitivity. This burden is currently being 
addressed by Scott Tanner (DVS Sciences Inc.), Gary Nolan (Stanford) and col-
leagues who pioneered the research on metal-labeled antibodies applied to 
 fl ow- cytometry. In their seminal study they were able to use antibodies labeled with 
transition metals to monitor tens of different antigens at once in single cells [ 6 ,  7 ] 
pushing past the number of simultaneous measures per cell compared to traditional 
fl ow cytometry approaches. This was made possible by yet another exciting tech-
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nology, named Mass Cytometry. As the name cleverly suggests this results by the 
combination of conventional fl ow cytometry with MS and allows the detection of 
multiple antigens with little interference due to the resolution of MS detectors and 
the distinct and numerous transition metals that can be used to tag antibodies. These 
are only few examples of the wonderful advances that we are expecting to become 
widely available to the scientifi c and clinical community of the next decade.  

    Technical Advances in Mass Spectrometry 

 Many of the major MS manufacturers are also changing their focus as they realize 
that for MS to really impact clinical practice they must not only improve on their 
ability to provide drive to deeper data through increasing important factors such as 
sensitivity to measure lower abundant, but extremely important proteins, but they 
must also seriously tackle the features that will enable the uptake in the clinical 
laboratory. Topics such as improved ease of use, size, robustness, increased automa-
tion, and the use of robotics were what drove the last revolution in clinical laborato-
ries with the advent of large automatable random access clinical chemistry and 
immunoassay systems. The manufacturers of MS instrumentation, as the ultimate 
detection methodology, will also need to solve these issues if they are going secure 
a winning position in the clinical lab community. 

 It is interesting to notice how the business market has changed over the last decades 
in that, at the beginning of proteomics the emphasis was placed by manufacturer’s on 
improving performance. That is, the market advantage thus far was a measure of 
instrument performance; hence new MS instruments would generally provide better 
measurements in terms of speed, sensitivity, resolution, etc. with some key investment 
into key computational analysis (both at handling MS data but also in the “data to 
knowledge” aspects). However, very much like the computer industry, we now 
reached a stage in the clinical and medical community, where the level of some ele-
ments of performance outran the need of many users. Products that were designed to 
target  pioneering discovery labs are still required, but if there is a movement towards 
using MS as a “common” laboratory tool new tools will need to be developed. 

 From a user’s perspective, at least, it appears that the manufacturing industry is 
now expanding their targeting to intermediate segments of the market, for which 
middle-line instruments would serve just as good. In fact, during the initial boom of 
MS applied to biomedical sciences, a few laboratories worldwide could afford to 
invest on highly performing instrumentation. As normal, scientists who pioneered 
the early benefi ts of MS, benefi ted from having access to cutting-edge technology 
and build their scientifi c productivity on the use of instruments and technologies 
that very few other labs could access. 

 The pioneering work is not fi nished and each new technology development, be it 
MS instrument platform, computational or new tools for enrichment and sample 
preparation opens up new door for gaining biological and clinical insight. There are 
absolutely still technological advances required e.g. in increasing sensitivity to 
allow us to get to the lower abundant proteins and variants required to complete the 
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phentotype picture. Therefore, it is likely that new exciting technologies will still be 
tested at cutting-edge labs as it has been so far, while in the meantime the more 
established technologies, which were cutting-edge just a few years back, become 
the norm for the scientifi c community at large. 

 It is also interesting to see how older technologies are re-purposed and return to 
make a remarkable impact. Many proteomic scientists who made the history of 
proteomics had their fi rst encounter with MALDI-TOF mass spectrometers (see 
Chaps.   1     and   2     for details) via use of 2D gel electrophoresis – even when others 
were pushing for non-gel based approaches using ESI instrumentation. Early in the 
days of manual isotopic spectral de-convolution (i.e. the most abundant isotopic 
peak in a spectrum was chosen manually), proteins were identifi ed by peptide mass 
fi ngerprinting (PMF), which does not require tandem MS that nowadays represent 
the norm. This early approach provides less confi dence in the identifi cation of com-
plex protein mixtures as peptides are not “sequenced” but identifi ed on the basis of 
their mass alone. Although this may be a limitation for complex samples, MALDI- 
TOFs are robust and incredibly fast. A MS spectrum can be acquired in less than a 
second for PMF (plus sample preparation which is now streamlined). It is therefore 
noticeable that these “old” instruments came back to notoriety in recent years for 
the fast identifi cation of pathogens in clinical laboratories [ 8 ]. This is a lesson to be 
learned that may apply to many other techniques: as much as new is generally bet-
ter, “old” isn’t always bad. However, the quality control and reproducibility of the 
sample preparation, data analysis and other process controls are now in place, hope-
fully reducing possibility of error or mistaken identifi cation.  

    Bioinformatics 

 Similar to many fast developing technologies, proteomics has evolved so fast that it 
is diffi cult, but important, to take stock and look at the bigger pictures. There is an 
additional challenge with proteomics in that MS is only one attribute that is needed 
for successful mapping and quantifi cation of proteins, let alone dealing with addi-
tional complexity. Bioinformatics, specifi cally, needed to be developed simultane-
ously to handle the MS data itself, multi-level biostatics, storage, and then the 
interpretation of the data especially when considering the new amount and variety 
of PTMs that are now routinely discovered during an average shotgun proteomic 
investigation. In part, this has also enabled the success of targeted proteomics by 
focusing the depth of MS approaches on a smaller, and highly enriched protein 
sample [ 9 ]. Targeted approaches arguably allow the deepest level of detail and it is 
why these were deemed by Nature Methods to be “method of the Year” in 2013. 

 Indeed, as much as many proteomic scientists are devoted to their science their 
strength may not always be statistical analysis. It requires a thorough, extensive 
training to learn how to deal with all the technical aspects of a proteomic investiga-
tion, let alone MS. It has been an understandable issue of all –omics that bioinfor-
matics has not always been allowed to take a share of the driving. Over the years, 
proteomic scientists, like genomic scientists before them, are increasingly 
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 understanding that partnering with bionformaticians is key to ensuring that maxi-
mum benefi t is gained form these new technologies. For instance, by shortening the 
list of proteins that it is meaningful to discuss in an article, or to be considered in a 
clinical study. All of these aspects have fostered an ongoing discussion and as much 
as there is a desperate need for bioinformaticians that are able to understand the 
unique opportunities and limitations of protein biochemistry (as opposed to that of 
nucleic acids), there are also encouraging signs, such as the recent release of the R 
coding specifi cally for Proteomics [ 10 ]. “R” is an open-source biostatistical tool, 
recently re-equipped with a Windows GUI, but also a worldwide project for the 
implementation and diffusion of biostatistics. Therefore, scientist can tap into the 
freely shared and collective knowledge of many programmers and biostatistician 
and freely download a modular suite which allows almost infi nite data manipula-
tions, plots generation, and statistical tools. 

 For the future it will be essential that we see increased development and the 
accessibility to biostatistical tools in three areas:

    (i)    Bioinformatics that enables MS technology, e.g. by allowing the data gener-
ated by new approaches (such as DIA) to produce maximum benefi t and is 
easily utilized   

   (ii)    Bioinformatics that enables the combining of data from multiple disciplines or 
-omics (panomics)   

   (iii)    Bioinformatics that allows us of link all of this information and processes it in 
a way that truly provides useful tools and education for clinicians that can drive 
changes to clinical practice     

 Our ability to combine metadata from various -omic modalities and also link that 
information to other clinical data will revolutionize how we approach solving com-
plex biological and medical conditions. Add the ability to do this across many clini-
cal and research centers through consortia and partnership and we begin to really 
harness the power of data in a way that we couldn’t previously do. Our knowledge 
of how and why our bodies act and react has gaps that we can start to fi ll in by 
improvements in these three areas.  

    Proteomics 2025 

 As for the approaches described in this book, we are sure that they will continue to 
change and develop and open up new, unpredictable possibilities. The classical bot-
tom-up approaches, defi ned by the fact that proteins are digested prior to MS (see 
Chap.   7     for details), although valuable in some circumstances, may lose some the 
information at the intact protein level. A 40-year old technique: two dimensional 
gels still has a role in the context of small labs and targeted proteomics especially 
when involving PTMs and isolated protein complexes [ 11 ]. Although importantly, 
top-down approaches, which imply the analysis of intact protein by MS are rapidly 
evolving and will have a key role to play in both understanding cross talk between 
PTM and binding partners or protein complexes. 
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 Targeted proteomics, both by mean of traditional biochemical methods com-
bined to proteome-wide analyses or by targeted MS approach (such as SRM/ MRM/
pRM) will become increasingly useful and accessible at the point that it may replace 
western blot and potentially some ELISA allowing analysis of partial or complete 
pathways rather than a smaller subset. The role of DIA as a hybrid approach will 
continue to be developed (see Chaps.   10     and   11    ). 

 The use of induced pluripotent stem cells (IPSCs) combined with MS-based 
analysis and characterization is rapidly becoming a major tool in drug discovery and 
development. Again the complex biology of controlling and monitoring IPSC 
derived applications can benefi t from the type of information that MS can provide. 
IPSCs are creating so much interest as they are expandable in culture, renewable 
and able to made into a number of different cell and organoids. It is clear that this 
relatively young science will revolutionize many basic and applied scientifi c 
approaches, especially in the fi eld of therapeutic and pharmaceutical development. 
A joint approach combining IPSC and proteomics can only help move this faster, 
deeper and with more certainty.  

    The Future for MS in the Clinical Laboratory 

 While these and other emerging approaches will be helpful for the translation of MS 
derived discoveries into actionable clinical decisions there are no short-cuts to 
understand and cure disease. However, a multi-omic approach, including pro-
teomics, will help to defi ne biology and move it into higher throughput methods 
required for translation medicine to be successful. The clinical laboratory offers the 
biggest rewards but posses the biggest challenges for MS. Sensitivity still needs to 
be improved upon if we are going to be able to look at all the proteins we want to 
look at. We still need improvement by a few orders of magnitude of sensitivity if we 
truly want to look at targeted low abundance proteins or peptides. Some of the 
newer immunoassay platform companies will continue to push the boundaries of 
sensitivity for diffi cult or very low abundance biomarkers such as cardiac troponin 
I or interleukins and the MS focused companies will need to catch up in that 
department. 

 Furthermore, MS instruments will need to be made much easier to use and 
become much more robust if they are going to be widely adopted in a modern clini-
cal laboratory world challenged by issues in adequate staffi ng and funding. Most 
clinical labs will gladly trade off a highly fl exible research–mode instrument for a 
detection technology that is never “down” and able to be used by all of their rotating 
staff. Many of the manual process that are currently used with MS allow for unac-
ceptable error to be introduced and will need to be automated to improve both per-
formance and costs. Improvements to sample processing procedures and in the 
ability to link MS, as a detection technology, to automated robotic systems will be 
required. It will most likely require improvement or removal of protein/peptide 
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separation methods, such as liquid chromatography steps online with MS instru-
ment to further simplify and reduce components of time and errors. 

 A new business model that creates more opportunity for funding the acquisition 
of equipment through reagent kits will be required if MS going to be championed 
by the companies that currently have the major share of business in clinical labora-
tories. It is expected that the traditional MS companies and, or, the major IVD com-
panies will fi nd a model that will change that paradigm. 

 It is interesting to lay out what will have to happen if this roadmap to 2025 is to 
actually happen as we have described here- Fig.  18.1 . Of course, this is only a poten-
tial route and one that illustrates the development and maturation of the omics fi eld as 
it moves towards clinical application and use. There will be surprises along the way 
including, hopefully new disruptive technologies which are not yet foreseen.

       Concluding Remarks 

 Finally, while looking forward, it sometimes pays to take a quick look back and no 
one has predicted better what was required as has John Yates at The Scripps 
Research Institute who eruditely and correctly predicted 10 years ago: “What we 
need is to ensure that the cutting-edge technological developments in proteomics 
labs disseminate to all levels of the research community. What we need, in short, is 
the democratization of mass spectrometry” [ 12 ]. MS is a remarkable tool which is 
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unique in being able to reach out to the broader scientifi c community focused on 
discovery as well as the clinical and translational science. However this will require 
MS and computation to move in two different directions, each with different crite-
ria. It can and hopefully will do this successfully as the result will be an improve-
ment in the effi ciency and effectiveness of health care delivery.     
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