
Springer Series in Reliability Engineering

Shigeru Yamada
Yoshinobu Tamura

OSS Reliability
Measurement
and
Assessment

Springer Series in Reliability Engineering

Series editor

Hoang Pham, Piscataway, USA

More information about this series at http://www.springer.com/series/6917

http://www.springer.com/series/6917

Shigeru Yamada • Yoshinobu Tamura

OSS Reliability Measurement
and Assessment

123

Shigeru Yamada
Department of Social Management
Engineering

Tottori University
Tottori
Japan

Yoshinobu Tamura
Yamaguchi University
Ube
Japan

ISSN 1614-7839 ISSN 2196-999X (electronic)
Springer Series in Reliability Engineering
ISBN 978-3-319-31817-2 ISBN 978-3-319-31818-9 (eBook)
DOI 10.1007/978-3-319-31818-9

Library of Congress Control Number: 2016934956

© Springer International Publishing Switzerland 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG Switzerland

Preface

We have been energetically proposed several reliability assessment methods for an
open-source software in the last decade. Its measurement and management tech-
nologies for open-source software are essential to produce and maintain
quality/reliable system by using open-source software. This book will serve as a
textbook and reference book for graduate students and researchers in reliability for
open-source software and modeling. Several methods of reliability assessment for
open-source software are introduced. Our aim is to present state of the art of
open-source software reliability measurement and assessment based on the
stochastic modeling approach and recent research on this subject over the last 10
years. For example, the component-oriented reliability analysis based on AHP,
ANP, and NHPP models, the stochastic differential equation models, and the hazard
rate models are presented.

Chapter 1 introduces several aspects of software reliability, open-source soft-
ware development paradigm, and its applications. Also, the basic concept of a
mathematical model based on probability theory and statistics required to describe
the software fault-detection or the software failure-occurrence phenomena and to
estimate the software reliability quantitatively are introduced. Chapters 2 and 3
describe several methods of component-oriented reliability assessment based on
AHP and ANP in order to consider the effect of each software component on the
reliability of entire system under the distributed open-source development
paradigm.

In case of the open-source software, it is necessary to grasp the situation of
registration for bug tracking system, the degree of maturation of open-source
software, and so on. Chapters 4–7 describe the methods of reliability assessment
based on several stochastic models considering such characteristics from the
standpoint of software reliability growth models. Chapters 8−10 provide several
software tools for open-source software reliability assessment. These tools will be
useful for software managers and engineers to assess the reliability of open-source
software and embedded system software. Chapter 11 shows several numerical
examples for the proposed methods of OSS reliability assessment based on several

v

http://dx.doi.org/10.1007/978-3-319-31818-9_1
http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_3
http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_7
http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_10
http://dx.doi.org/10.1007/978-3-319-31818-9_11

actual data sets reported in the bug tracking systems for open-source projects. Also,
Chap. 12 as the final part presents the performance illustrations for the developed
tools.

We would like to express our sincere appreciation to Prof. Hoang Pham, Rutgers
University, and editor Anthony Doyle, Springer-Verlag, London, for providing us
with an opportunity to author this book.

Tottori, Japan Shigeru Yamada
February 2016

vi Preface

http://dx.doi.org/10.1007/978-3-319-31818-9_12

Contents

1 Software Reliability . 1
1.1 Introduction. 1
1.2 Definitions . 3
1.3 Software Reliability Measurement and Assessment 5
1.4 Open Source Software Reliability . 9

1.4.1 Brief Summary of Open Source Software 9
1.4.2 The Characteristics of OSS . 10
1.4.3 Development Paradigm of OSS 11

References . 13

2 NHPP Model and AHP for OSS Reliability Analysis 15
2.1 Component Reliability Analysis of OSS 15

2.1.1 Reliability Assessment Based on SRGM 15
2.1.2 Exponential SRGM . 16
2.1.3 Inflection S-Shaped SRGM . 16
2.1.4 Goodness-of-Fit Evaluation Criteria for Applied

Model . 16
2.1.5 Weight Parameter for Each Component

Based on AHP. 17
2.2 Reliability Analysis for Entire OSS System 19

2.2.1 Logarithmic Execution Time Model 19
2.2.2 Reliability Assessment Measures 19

References . 20

3 NHPP Model and ANP for OSS Reliability Analysis 21
3.1 Reliability Assessment for Each Software Component. 21

3.1.1 Reliability Assessment Based on SRGM 21
3.1.2 Exponential SRGM . 22
3.1.3 Inflection S-Shaped SRGM . 22

vii

http://dx.doi.org/10.1007/978-3-319-31818-9_1
http://dx.doi.org/10.1007/978-3-319-31818-9_1
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_1#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_2#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_3
http://dx.doi.org/10.1007/978-3-319-31818-9_3
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec4

3.1.4 Goodness-of-Fit Evaluation Criteria for Applied
Model . 22

3.1.5 Weight Parameter for Each Component
Based on ANP. 23

3.2 Reliability Assessment for Entire System 24
3.2.1 Inflection S-Shaped SRGM . 24
3.2.2 Software Reliability Assessment Measures. 25

References . 25

4 Stochastic Differential Equation Models for OSS Reliability
Analysis . 27
4.1 Introduction. 27
4.2 Stochastic Differential Equation Modeling 28
4.3 Method of Maximum-Likelihood . 29
4.4 Software Reliability Assessment Measures. 30

4.4.1 Expected Numbers of Detected Faults
and Their Variances . 30

4.4.2 Mean Time Between Software Failures 31
4.4.3 Coefficient of Variation . 32

References . 32

5 Hazard Rates for Embedded OSS Reliability Analysis 33
5.1 Introduction. 33
5.2 Flexible Hazard Rate Model for Embedded OSS 34
5.3 Reliability Assessment Measures . 35
References . 36

6 Reliability Analysis for Open Source Solution 39
6.1 Introduction. 39
6.2 Stochastic Differential Equation Model 40
6.3 Method of Maximum-Likelihood . 41
6.4 Software Reliability Assessment Measures. 42

6.4.1 Expected Numbers of Detected Faults 42
6.4.2 Mean Time Between Software Failures 43
6.4.3 Coefficient of Variation . 43

References . 43

7 Reliability Analysis for Mobile OSS . 45
7.1 Introduction. 45
7.2 Hazard Rate Model Depending on the Change

of Network Traffic . 46
7.3 Reliability Assessment Measures . 47
7.4 Estimation of Network Traffic Density 49
7.5 Parameter Estimation . 51
References . 52

viii Contents

http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_3#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_4#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_5
http://dx.doi.org/10.1007/978-3-319-31818-9_5
http://dx.doi.org/10.1007/978-3-319-31818-9_5#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_5#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_5#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_6
http://dx.doi.org/10.1007/978-3-319-31818-9_6
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_6#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_7
http://dx.doi.org/10.1007/978-3-319-31818-9_7
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_7#Bib1

8 Reliability Analysis Tool for Embedded OSS 53
8.1 Introduction. 53
8.2 Hazard Rate Model for Embedded OSS Porting Phase 54
8.3 Reliability Assessment Measures . 55
8.4 Optimal Release Problem for the Porting-Phase 56
8.5 Reliability Assessment Measures . 57
8.6 Reliability/Portability Assessment Tool 59

8.6.1 Specification Requirement . 59
8.6.2 Software Reliability Assessment Procedures. 61

References . 62

9 Reliability Analysis Tool for Open Source Solution 65
9.1 Introduction. 65
9.2 Stochastic Differential Equation Modeling 66
9.3 Method of Maximum-Likelihood . 68
9.4 Software Reliability Assessment Measures. 69
9.5 Comparison of Goodness-of-Fit . 69
9.6 Procedures of Reliability Analysis . 70
9.7 Reliability Analysis Tool. 71

9.7.1 Specification Requirement . 71
9.7.2 Software Reliability Assessment Procedures. 71

References . 74

10 Reliability Analysis Tool for Mobile OSS 75
10.1 Introduction. 75
10.2 Hazard Rate Model for Mobile OSS . 77
10.3 Reliability Assessment Measures . 78
10.4 Parameter Estimation . 78
10.5 AIR Application for Reliability Analysis Considering

the User Experience Design. 79
10.5.1 Specification Requirement . 79
10.5.2 User Experience Design . 80

References . 80

11 Actual Data and Numerical Examples of OSS Reliability
Assessment . 83
11.1 NHPP Model Based on AHP. 83

11.1.1 Reliability Assessment for Each Component 83
11.1.2 Reliability Assessment for Entire System. 108
11.1.3 Discussion for the Method of Reliability Assessment

Based on AHP. 111
11.2 NHPP Model Based on ANP. 111

11.2.1 Reliability Assessment for Each Component 111
11.2.2 Reliability Assessment for Entire System. 113
11.2.3 Discussion for the Method of Reliability Assessment

Based on ANP. 114

Contents ix

http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_8#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_9
http://dx.doi.org/10.1007/978-3-319-31818-9_9
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_9#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_10
http://dx.doi.org/10.1007/978-3-319-31818-9_10
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_10#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_11
http://dx.doi.org/10.1007/978-3-319-31818-9_11
http://dx.doi.org/10.1007/978-3-319-31818-9_11
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec8

11.3 Stochastic Differential Equation Models 115
11.3.1 Data for Numerical Illustrations 115
11.3.2 Reliability Assessment . 115
11.3.3 Sensitivity Analysis in Terms of Model Parameters . . . 115
11.3.4 Results of Goodness-of-Fit Comparison. 117
11.3.5 Discussion for the Method of Reliability Assessment

Based on Stochastic Differential Equation Models 125
11.4 Hazard Rates for Embedded OSS . 126

11.4.1 Embedded OSS . 126
11.4.2 Reliability Assessment . 126
11.4.3 Comparison of Goodness-of-Fit 131
11.4.4 Prediction Accuracy After the End of Fault-Report 132
11.4.5 Optimal Software Release Problem

for the Porting-Phase of Embedded OSS 133
11.4.6 Discussion for the Method of Reliability Assessment

Based on Hazard Rates for Embedded OSS 136
11.5 Applied Examples for Open Source Solution 137

11.5.1 Data for Numerical Illustrations 137
11.5.2 Reliability Assessment . 138
11.5.3 Discussion for the Method of Reliability Assessment

on the Open Source Solution 144
References . 144

12 Performance Illustrations of Software Tool 145
12.1 Embedded OSS . 145

12.1.1 Applied Data . 145
12.1.2 Optimal Release Problem with Reliability

of Embedded OSS . 152
12.1.3 Discussion for the Software Tool 154

12.2 Open Source Solution . 154
12.2.1 Applied Data . 154
12.2.2 Discussion for the Software Tool 155

12.3 Mobile OSS . 162
12.3.1 Applied Data . 162
12.3.2 Discussion for the Software Tool 176

References . 181

13 Exercises . 183
13.1 Exercise 1 . 183
13.2 Exercise 2 . 183
13.3 Exercise 3 . 183
13.4 Exercise 4 . 184

x Contents

http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec10
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec10
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec11
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec11
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec12
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec12
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec13
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec13
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec14
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec14
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec14
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec15
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec15
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec16
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec16
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec17
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec17
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec18
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec18
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec22
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec22
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec23
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec23
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec23
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec27
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec27
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec27
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec28
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec28
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec29
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec29
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec30
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec30
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec31
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec31
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Sec31
http://dx.doi.org/10.1007/978-3-319-31818-9_11#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_12
http://dx.doi.org/10.1007/978-3-319-31818-9_12
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec5
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec6
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec7
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec8
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec9
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec10
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Sec10
http://dx.doi.org/10.1007/978-3-319-31818-9_12#Bib1
http://dx.doi.org/10.1007/978-3-319-31818-9_13
http://dx.doi.org/10.1007/978-3-319-31818-9_13
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec1
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec2
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec3
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec4
http://dx.doi.org/10.1007/978-3-319-31818-9_13#Sec4

Chapter 1
Software Reliability

1.1 Introduction

In recent years, many computer system failures have been caused by software faults
whichwere introduced during the software development process. This is an inevitable
problem since a software system installed in the computer system is an intellectual
product consisting of documents and source programs developed by human activ-
ities. Then, total quality Management (TQM) is considered to be one of the key
technologies to produce more highly reliable software products. In case of TQM
for software management, all phase of the development process, i.e. specification,
design, coding, and testing, have to be controlled systematically to prevent software
fault-introduction as much as possible and to detect the introduced faults in the soft-
ware system as early as possible. Basically, the concept of TQM means to assure
the quality of the intermediate products in each phase to the next phase. Particularly,
quality control executed at the testing phase which is the last stage of the software
development process is very important. During the testing phase, the product quality
and the software performance during the operation phase are evaluated and assured.
Concretely, a lot of software faults introduced in the software system through the first
three phases of the development process by human activities are detected, corrected,
and removed. Figure1.1 shows a general software development process so-called a
water-fall diagram.

Under a software development process based on TQM, it is necessary to define
and measure the software quality. Generally, software quality realized through the
development process can be distinguished between product quality and process qual-
ity. The former is the attributes of the products resulting from the software devel-
opment. This includes the clarity of the specification documents, the design docu-
ments, and the source code, the traceability, the reliability, and the test coverage. The
latter is the attributes contributed by the software development environment. This
includes the rigor of the production technology, the productivity of the development
tools, the ability or skill of the development persons, the communicativeness among
the development team, and the availability of the development facilities. From the

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_1

1

2 1 Software Reliability

F
ig

.1
.1

A
ge
ne
ra
ls
of
tw
ar
e
de
ve
lo
pm

en
tp

ro
ce
ss

(w
at
er
-f
al
lp

ar
ad
ig
m
)

1.1 Introduction 3

Fig. 1.2 The elements of software quality based on a cause-and-effect diagram

measurement point of view, software quality can be distinguished between dynamic
quality and static quality. The former is the attributes confirmed by executing the
program on the computers and examining the dynamic behavior. The latter is the
attributes validated by reviews and inspections at each phase without executing the
program. These elements of software quality are summarized by a cause-and-effect
diagram in Fig. 1.2.

Recently, recognizing the importance of standardizing quality characteristics, ISO
(International Standard Organization) has studied and summarized six quality char-
acteristics: functionality, reliability, usability, efficiency, maintainability, and porta-
bility. Particularly, the characteristic of reliability is important as “must-be quality.”
From the view points of product quality and dynamic quality above, software reli-
ability is defined as the probability that a software will not cause the failure of a
system for a specified time under specified conditions.

1.2 Definitions

We compare the characteristics of software reliability with those of hardware relia-
bility as follows:

4 1 Software Reliability

Software Reliability

1. Software failures can be due to no wear-out phenomenon.
2. Software reliability is, inherently, determined during the earlier phase of the devel-

opment process, i.e., specification and design phases.
3. Software reliability cannot be improved by redundancy with identical versions.
4. A verification method of software reliability has not been established.
5. Amaintenance technology is not established since themarket of software products

is rather recent.

Hardware Reliability

1. Hardware failures can be due to wear.
2. Hardware reliability is affected by deficiencies injected during all phases of the

development, operation, and maintenance.
3. Hardware reliability can be improved by redundancy with identical units.
4. A testing method of hardware reliability is established and standardized.
5. A maintenance technology is advanced since the market of hardware products is

established and the user environment is seized.

Generally, a software failure caused by software faults latent in the software
system cannot occur expected for a special occasion when a set of special data is put
into the system under a special condition, i.e. the program path including software
faults is executed. Therefore, the software reliability is determined by the input data
and the internal condition of the program. We summarize the definitions of the terms
related to the software reliability in the following.

A software system is a product which consists of the programs and documents as
a result of the software development process discussed in previous section. Specifi-
cation derived by analyzing user requirements for the software system is a document
which describes the expected performance of the system. When the software perfor-
mance deviates from the specification and the output variable has an improper value
or the normal processing is interrupted, it is said that a software failure occurs. That
is, software failure is defied as a departure of program operation from the program
requirements. The cause of software failure is called a software fault. Then, software
fault is defined as a defect in the program which causes a software failure. The soft-
ware fault is usually called software bug. Software error is defined as human action
that results in the software system containing a software fault. Thus, the software
fault is considered to be a manifestation of software errors.

Based on the basic definitions above, we can describe the software behavior as
Input (I)-Program (P)-Output (O) model as shown in Fig. 1.3. In this model, the
program is considered as a mapping from the input space constituting input data
available on use to the output space constituting output data or interruptions of normal
processing. Testing space T is an input subspace of I , of which the performance can
be verified and validated by software testing. Software faults detected and removed
during the testing phasemap the elements of input subspaceE into an output subspace
O′ constituting the events of a software failure. That is, the faults detected during

1.2 Definitions 5

Fig. 1.3 An Input-Program-Output model for software behavior

the testing phase belong to the intersection of subspaces E and T . Software faults
remaining in the operation phase belong to the subspace E but not to the testing
space T .

In this chapter, software error may be used tomean a defect detected and corrected
during the testing or operation phase without distinction from software fault.

1.3 Software Reliability Measurement and Assessment

Generally, amathematicalmodel based on probability theory and statistics is useful to
describe the software fault-detection phenomena or the software failure-occurrence
phenomena and estimate the software reliability quantitatively. During testing phase
in the software development process, software faults are detected and removed with
a lot of test-effort expenditures. Then,the number of remaining faults in the soft-
ware system is decreasing as the testing goes on. This means that the probability
of software failure-occurrence is decreasing so the software reliability is increas-
ing and the time-interval between software failures becomes longer with the testing

6 1 Software Reliability

time. A mathematical tool which treats such software reliability aspect is a software
reliability growth model [1].

Based on the definitions discussed previous section, we can make a software
reliability growth model based on the assumptions for actual environments during
the testing phase or the operation phase. Then, we can define the following random
variables on the number of detected faults and the software failure-occurrence time.

N(t) the cumulative number of detected software faults (or the cumulative number
of observed software failures) up to testing time t,

Si the ith software failure occurrence time (i = 1, 2, . . . ; S0 = 0),
Xi the time-interval between (i − 1)st and ith software failures (i = 1, 2, . . . ;

X0 = 0).

Figure1.4 shows occurrence of event {N(t) = i} since i faults have been detected
up to time t. From these definitions, we have

Si =
i∑

k=1

Xk, Xi = Si − Si−1. (1.1)

Assuming that the hazard rate, i.e. the software failure rate, for Xi (i = 1, 2, . . .),
zi(x), is proportional to the current number of residual faults remaining in the system,
we have

zi(x) = (N − i + 1)λ(x), i = 1, 2, . . . , N; x ≥ 0, λ(x) > 0, (1.2)

Fig. 1.4 The stochastic quantities related to a software fault detection phenomenon or a software
failure occurrence phenomenon.

1.3 Software Reliability Measurement and Assessment 7

where N is the initial fault content and λ(x) the software failure rate per fault remain-
ing in the system at time x. If we consider two special cases in Eq. (1.2) as

λ(x) = φ, φ > 0, (1.3)

λ(x) = φxm−1, φ > 0, m > 0, (1.4)

then two typical software hazard rate models, respectively called the Jelinski–
Moranda model and the Wagoner model can be derived, where φ and m are constant
parameters. Usually, it is completely fault free or failure free. Then, we have a soft-
ware hazard rate model called the Moranda model for the case of the infinite number
of software failure occurrences as

zi(x) = Dki−1, i = 1, 2, . . . ; D > 0, 0 < k < 1, (1.5)

where D is the initial software hazard rate and k the decreasing ratio, Eq. (1.5)
describes a software failure-occurrence phenomenon where a software system has
high frequency of software failure occurrence during the early stage of the testing
or the operation phase and it gradually decreases thereafter, Based on the software
hazard rate models above,we can derive several software reliability assessment mea-
sures. For example,the software reliability function for Xi (i = 1, 2, . . .) is given as

Ri(x) = exp

[
−

∫ x

0
zi(x)dx

]
, i = 1 , 2, (1.6)

Further, we also discuss NHPP models, which are modeled for random variable
N(t) as typical software reliability growth models, In the NHPP models,a nonho-
mogeneous Poisson process (NHPP) is assumed for the random variable N(t),the
distribution function of which is given by

Pr{N(t) = n} = H(t)n

n! exp[−H(t)], n = 1, 2, . . . ,

H(t) ≡ E[N(t)] =
∫ t

0
h(x)dx,

(1.7)

where Pr[·] and E[·] mean the probability and expectation,respectively. H(t) in
Eq. (1.7) is called a mean value function which indicates the expectation of N(t),
i.e., the expected cumulative number of faults detected (or the expected cumulative
number of software failures occurred) in the time interval (0, t], and h(t) in Eq. (1.7)
called an intensity function which indicated the instantaneous fault-detection rate
at time t. From Eq. (1.7), various software reliability assessment measures can be
derived. For examples, the expected number of faults remaining in the system at
time t is given by

n(t) = a − H(t), (1.8)

8 1 Software Reliability

where a ≡ H(∞), i.e., parameter a denotes the expected initial fault content in the
software system. Given that the testing or the operation has been going on up to
time t, the probability that a software failure does not occur in the time-interval
(t, t + x](x >= 0) is given by conditional probability Pr{Xi > x|Si−1 = t} as

R(x|t) = exp[H(t) − H(x + t)], t ≥ 0, x ≥ 0. (1.9)

R(x|t) in Eq. (1.9) is a so-called software reliability. Measures of MTBF (mean time
between software failures or fault detections) can be obtained follows:

MTBFl(t) = 1

h(t)
, (1.10)

MTBFc(t) = t

H(t)
. (1.11)

MTBFs in Eqs. (1.10) and (1.11) are called instantaneous MTBF and cumulative
MTBF, respectively. It is obvious that the lower the value of n(t) in Eq. (1.8), the
higher the valueR(x|t) for specified x in Eq. (1.9), or the longer the value ofMTBFs in
Eqs. (1.10) and (1.11), the higher the achieved software reliability is. Then, analyzing
actual test data with accepted NHPPmodels, there measures can be utilized to assess
software reliability during the testing or operation phase, where statistical inferences,
i.e. parameter estimation and goodness-of-fit test, are usually performed by amethod
of maximum-likelihood.

To assess the software reliability actually, it is necessary to specify the mean value
function H(t) in Eq. (1.7). Many NHPP models considering the various testing or
operation environments for software reliability assessment have been proposed in
the last decade. As discussed above, a software reliability growth is described as the
relationship between the elapsed testing or operation time and the cumulative number
of detected faults and can be shown as the reliability growth curve mathematically.

Among the NHPP models, exponential and modified exponential software reli-
ability growth models are appropriate when the observed reliability growth curve
shows an exponential curve. Similarly, delayed S-shaped and inflection S-shaped
software reliability growth models are appropriate when the reliability growth curve
is S-shaped.

In addition, as for computer makers or software houses in Japan, logistic curve
and Gompertz curve models have often been used as software quality assessment
models, on the assumption that software fault-detection phenomena can be shown
by S-shaped reliability growth curves. In these deterministic models, the cumulative
number of faults detected up to testing t is formulated by the following growth
equations:

L(t) = k

1 + me−at
, m > 0, α > 0, k > 0, (1.12)

G(t) = ka(bt), 0 < a < 1, 0 < b < 1, k > 0. (1.13)

1.3 Software Reliability Measurement and Assessment 9

In (1.12) and (1.13), assuming that a convergence value of each curve (L(∞) or
G(∞)), i.e., parameter k, represents the initial fault content in the software system,
it can be estimated by a regression analysis.

1.4 Open Source Software Reliability

1.4.1 Brief Summary of Open Source Software

All over the world people can obtain the information at the same time by growing rate
of Internet access around the world in recent years. In accordance with such a pene-
tration of the Internet, it is increasing public awareness of the importance of online
real-time and interactive functions. Therefore, the distributed software development
paradigm based on the information technologies are expanding at an explosive pace.
Especially, new development paradigm such as client/server system, web program-
ming, object-oriented development, and also on distributed development paradigm
by using network technologies have been in heavy usage by the software developers
[2–5].

At present, there are a number of development paradigms within the same com-
pany, the development environment joined hands with several software company, the
collaborative development based on consortia formation in terms of the distributed
development environment. Furthermore, a software development paradigm based on
an open source project is rapidly spreading [6, 7].

The open source project contains special features so-called software composition
that the geographically-dispersed several components are developed in all parts of
the world. The successful experience of adopting the distributed development model
in open source projects includes GNU/Linux operating system,1 ApacheWeb server,
and so on.2 Especially, OSS (open source software) is frequently applied as server
use, instead of client use. Then, such an open source system development is still
ever-expanding now.

A computer-software is developed by humanwork, thereforemany software faults
must be introduced into the software product during the development process. Thus,
these software faults often cause complicated break-downs of computer systems.
Recently, it becomesmore difficult for the developers to produce highly-reliable soft-
ware systems efficiently because of the diversified and complicated software require-
ments. Therefore, it is necessary to control the software development process in terms
of quality and reliability. Note that a software failure is defined as an unacceptable
departure of program operation caused by a software fault remaining in the software
system as mentioned in Sect. 1.2. Basically, software reliability can be evaluated by
the number of detected faults or the software failure-occurrence time. Especially,

1Linux is a Registered Trademark of Linus Torvalds.
2Other company, product, or service names may be trademarks or service marks of others.

10 1 Software Reliability

software reliability models which can describe software fault-detection or failure-
occurrence phenomena are called software reliability growth models (SRGM’s) [1].
The SRGM’s are useful to assess the reliability for quality control and testing-process
control of software development.

On the other hand, the effective testing management method for distributed devel-
opment environment as typified by open source project has only a few presented
[8–11]. In case of considering the effect of a debugging process on entire system
in the development of a method of reliability assessment for distributed develop-
ment environment, it is necessary to grasp the deeply-intertwined factors, such as
programming path, size of component, skill of fault reporter, and so on.

1.4.2 The Characteristics of OSS

At present, OSS (Open Source Software) systems serve as key components of crit-
ical infrastructures in the society. OSS projects possess a unique feature known
as software composition by which components are developed by teams that are
geographically-dispersed throughout the word. Successful OSS projects includes
Apache HTTP server, MySQL database server, OpenStack cloud software, Firefox
Web browser, and GNU/Linux operating system. However, poor handling of quality
issues and customer support has limited the progress of OSS, because the develop-
ment cycle of OSS has no testing phase. For example, mobile OSS has been gaining
a lot of attention in the embedded system area, i.e., Android, BusyBox, Firefox OS,
etc. However, the installer software developed under the third-party developers indi-
rectly effects the reliability of a mobile device. Therefore, it is difficult for many
companies to assess the reliability of a mobile OSS, because a mobile OSS includes
several software versions. Another closely related issues is that of software vulnera-
bility posed by the open source nature of the code, raising the possibility of security
loopholes. For the above mentioned reasons, it is difficult for software managers to
assess the reliability of OSS.

We compare the characteristics of software development under the OSS and the
proprietary software paradigms as follows:

OSS

1. The specification continuously changes with each version upgrade.
2. OSS has no specific testing phase.
3. Several versions of OSS are uploaded to the website of the OSS project.
4. It is difficult to clearly distinguish between developers and users.
5. Many OSS possess different licenses.

Proprietary Software

1. The specification is fixed in the initiation phase.
2. The proprietary software has a specific testing phase.
3. The delivery of software is specified as is the software release time.

1.4 Open Source Software Reliability 11

4. The user cannot access the source code. The maintenance is performed by the
software engineers.

5. The user of proprietary software must contract with the software development
company.

In particular, OSS have several licenses as follows:

1. GPL (GNU General Public License).
2. LGPL (GNU Lesser General Public License).
3. BSD License.
4. X11 License.
5. Apache Software License.

There are many software licenses in a variety of OSS project areas. Therefore, it is
known that it is difficult for software managers to use the OSS for the commercial
software.

1.4.3 Development Paradigm of OSS

Atpresent,manyOSSare developed under several open source projects. For example,
the Firefox Web browser, Firefox OS, and Thunderbird mailer are developed and
managed under the Mozilla.org project. Also, Apache HTTP server, Tomcat, and
Flex are developed and managed under the Apache software foundation. These open
source projects control the development phase of many open source projects. The
typical development cycle of open source projects is shown in Fig. 1.5. On the other
hand, Fig. 1.6 shows thewater fallmodel of typical software development. Figures1.5
and 1.6 show that the open source project has no the specific testing phase. Also, the
specification of OSS continuously changes with the version upgrade, the because the
software of several versions are uploaded to the website of OSS project.

It is difficult for software managers to assess OSS reliability because of the dif-
ferences among the development style of OSS and traditional software. Therefore, it

Fig. 1.5 The development cycle of open source project

12 1 Software Reliability

Fig. 1.6 The water fall
model of typical software
development

is important to assess and manage considering the characteristics of the OSS devel-
opment paradigm.

In particular, OSS have several versions of the development process as follows:

1. Bug fix version (most urgent issue such as patch).
2. Minor version (minor revision by the addition of a component and module).
3. Major version (significant revision for specification).

Also, the version number of OSS is generally described as the “(Major version num-
ber. Minor version number. Revision number. Build number)”, e.g., (2.1.2103.1104).
There are several versions for each OSS. Therefore, it is known that it is difficult for
software managers to select the appropriate OSS, because several OSS are uploaded
to the website of open source project.

This book focus on the reliability ofOSSwith the abovementioned characteristics.
Several methods of reliability assessment for OSS are presented in this book. Also,
several numerical examples for each method of reliability assessment are given by
using actual fault data of OSS. These method introduced in this book may be useful
for software managers to assess the reliability of a software system developed using
the OSS paradigm.

References 13

References

1. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,
2014)

2. R.S. Pressman, Software Engineering: A Practitioner’s Approach, 4th edn. (McGraw-Hill,
New York, 1982)

3. A. Umar, Distributed Computing and Client-Server Systems (Prentice Hall, New Jersey, 1993)
4. L.T. Vaughn, Client/Server System Design and Implementation (McGraw-Hill, New York,

1994)
5. M.Matsumoto,M.Koyamada, T.Matsuodani, Technique of Software Development Verification

(in Japanese) (IEICE, Tokyo, 1997)
6. M. Takahashi, The Method of Effort Estimation under Client/Server System Development:

Models and Applications (in Japanese) (Soft Research Center, Tokyo, 1998)
7. T. Akahane, Testing Method of Client/Server System (in Japanese) (Soft Research Center,

Tokyo, 1998)
8. A. MacCormack, J. Rusnak, C.Y. Baldwin, Exploring the structure of complex software

designs: an empirical study of open source and proprietary code. Inf. J. Manag. Sci. 52(7),
1015–1030 (2006)

9. G. Kuk, Strategic interaction and knowledge sharing in the KDE developer mailing list. Inf. J.
Manag. Sci. 52(7), 1031–1042 (2006)

10. Y. Zhoum, J. Davis, Open source software reliability model: an empirical approach. Proc.
Workshop Open Source Softw. Eng. (WOSSE) 30(4), 67–72 (2005)

11. P. Li, M. Shaw, J. Herbsleb, B. Ray, P. Santhanam, Empirical evaluation of defect projection
models for widely-deployed production software systems, in Proceeding of the 12th Interna-
tional Symposium on the Foundations of Software Engineering (FSE-12) (2004), pp. 263–272

Chapter 2
NHPP Model and AHP for OSS Reliability
Analysis

In this chapter, we focus on the X desktop environment of which the product is the
software system developed under the open source project. There are many X desktop
environments operating on UNIX-like operating systems which are known as free
softwares. Such an X desktop environment is known as the software which offer the
interface, design, operationality to users. The purpose of X desktop environment is
to improve operationality by providing the graphical user interfaces on UNIX-like
operating systems. At present, the representative examples include GNOME and
KDE. Especially, GNOME and KDE have the characteristics of flexible and easy-
to-use GUI and a long-use history. On the other hand, these are pointing out as the
hefty operationality, a lot of library, complexities of dependence, and so on.

In order to consider the effect of each software component on the reliability of a
system developed in a distributed environment, we apply the AHP which well estab-
lished decision making methods. Moreover, we propose the method of reliability
assessment based on an SRGM incorporating the interaction among each software
component. We also show several numerical examples of software reliability assess-
ment by using the actual data.

2.1 Component Reliability Analysis of OSS

2.1.1 Reliability Assessment Based on SRGM

Many SRGM’s have been used as a conventional methods to assess the reliability,
quality control, and testing-process control of software development. Among others,
nonhomogeneous Poisson process (NHPP) models have been discussed by many
researchers, since these NHPP models can be easily applied during software devel-
opment. In this section, we discuss NHPPmodels to analyze software fault-detection
count data.

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_2

15

16 2 NHPP Model and AHP for OSS Reliability Analysis

According to the growth curve of the cumulative number of detected faults, we
assume that the software reliability in each software component is assessed by apply-
ing the following SRGM’s based on the NHPP [1]:

• Exponential SRGM.
• Inflection S-shaped SRGM.

The NHPP models have been discussed by many researchers, since the models can
be easily applied in actual software projects. Moreover, we apply the method of
maximum-likelihood to estimate the model parameters. Below are the expressions
for various software reliability assessment measures from the NHPP models.

2.1.2 Exponential SRGM

The mean value function of the exponential SRGM is given as follows:

Ei(t) = ai(1 − e−bit) (ai > 0, bi > 0), (2.1)

where Ei(t) represents the expected cumulative number of faults detected up to the
module testing time t (t ≥ 0) is mean value functions for the ith software component.
In Eq. (2.1), ai(i = 1, 2, . . . , n) is the expected number of initial inherent faults for
the ith software component, and bi(i = 1, 2, . . . , n) the software failure rate per
inherent fault for the ith software component.

2.1.3 Inflection S-Shaped SRGM

The mean value function of the inflection S-shaped SRGM is given as follows:

Di(t) = ai(1 − e−bit)

(1 + ci · e−bit)
(ai > 0, bi > 0, ci > 0), (2.2)

where ai(i = 1, 2, . . . , n) is the expected number of initial inherent faults for the ith
software component, and bi(i = 1, 2, . . . , n) the software failure rate per inherent
fault for the ith software component. Moreover, ci(i = 1, 2, . . . , n) represents the
inflection rate for the ith software component.

2.1.4 Goodness-of-Fit Evaluation Criteria for Applied Model

In this chapter, we compare the model goodness-of-fit of two conventional SRGM’s
for the observed data set. We use the following goodness-of-fit evaluation criteria,

2.1 Component Reliability Analysis of OSS 17

i.e., the Akaike’s information criterion (AIC) and the mean square error (MSE).
Suppose that K data pairs (tk, yk)(k = 1, 2, . . . , K) are observed during the system
testing-phase, where yk is the cumulative number of software failures observed in
the time interval (0, tk].
(A) AIC
AIC helps us to select the optimal model among ones estimated by the method of
maximum-likelihood. It is given by

AIC = −2 · (the logarithmic maximum-

likelihood) + 2 · (the number of

free model parameters). (2.3)

Differences among AIC values are significant, not the value themselves. A model
possessing the smallest AIC best a data set when the difference between two models
is greater than or equal to 1. However, there are no significant difference among two
models in the case where the differences of AIC’s are less than 1.

(B) MSE
The mean square error can be obtained by dividing the sum of square errors between
the observed value, yk , and its estimate, ŷk , by the number of pairs of data, n. That
is,

MSE = 1

n

n∑

k=1

(yk − ŷk)
2. (2.4)

ŷk in Eq. (2.4) is obtained from ŷk = Ĥ(tk)(k = 1, 2, . . . , n). A small mean square
error indicates that the selected model fits the observed well.

We compare the two conventional SRGM’s by using the above-described
goodness-of-fit evaluation criteria. Concretely speaking, AIC is the first goodness-
of-fit evaluation criterion, and MSE is the secondary goodness-of-fit measure, i.e.,
we select the appropriate model when the difference of value in AIC are greater than
or equal to 1, otherwise we select the appropriate model based on the value of MSE.

2.1.5 Weight Parameter for Each Component Based on AHP

TheAHPdeveloped in the 1970s is utilizedwidely inEurope and theUnited States for
management issues, energy problems, decision-making, urban planning. The AHP
is considered to be one of the most effective methods for decision-making support
[2, 3].

18 2 NHPP Model and AHP for OSS Reliability Analysis

When considering the effect of debugging process on an entire system in the
development of a software reliability assessment method for distributed develop-
ment environment, it is necessary to grasp the deeply-intertwined factors, such as
programming path, size of a component, skill of fault reporter, and so on.

Also, it is rare that collected data sets entirely contain all the information needed
to assess software reliability, although these data sets for deeply-intertwined factors
completely collected from the bug tracking system. Therefore, it is difficult to esti-
mate the effect of each component on the entire system by using the collected data
sets only.

In this chapter, we propose a reliability assessment method based on the AHP
to estimate the effect of each component on the entire system in a complicated
environment. Specifically, we can assess the importance level of faults detected for
each component, the size of component, the skill of fault reporter and so on, as
evaluation criteria for the AHP.

Let wi(i = 1, 2, . . . , n) be the weight parameters for evaluation criteria of the
AHP. Then, the pair comparison matrix is given as follows:

A =

⎡

⎢⎢⎢⎣

w1
w1

w1
w2

· · · w1
wn

w2
w1

w2
w2

· · · w2
wn

...
...

. . .
...

wn
w1

wn
w2

· · · wn
wn

⎤

⎥⎥⎥⎦ . (2.5)

We can obtain the weight parameter αi for each evaluation criterion from the above
pair comparison matrix by using the following geometric average:

αi = n

√√√√
n∏

j=1

xij,

xij = wi

wj
.

(2.6)

Therefore, the total weight parameter for each evaluation criterion is given by the
following equation:

βi = αi∑n

i=1
αi

. (2.7)

By using the weight parameter βi in Eq. (2.7), we can obtain the total weight
parameter pi which represents the level of importance for each component.

2.2 Reliability Analysis for Entire OSS System 19

2.2 Reliability Analysis for Entire OSS System

2.2.1 Logarithmic Execution Time Model

The operating environment of OSS possesses characteristics of the susceptible to
various application softwares. Therefore, it is different from a conventional software
systemdevelopedbyan identical organization.Then, the expectednumber of detected
faults continues to increase from the effect of the interaction among application
softwares, i.e., the number of detected faults can not converge to a fixed value.

As mentioned above, we apply the logarithmic Poisson execution time model
based on the assumption that the number of detected faults is infinity. Thus, we
consider the following structure of the mean value functionμ(t) for the entire system
because an NHPP model is characterized by its mean value function:

μ(t) = 1

θ − P
ln[λ0(θ − P)t + 1] (0 < θ, 0 < λ0, 0 < P < 1), (2.8)

where λ0 is the intensity of initial inherent failure, θ the reduction rate of the fail-
ure intensity rate per inherent fault. Moreover, we assume that the parameter P in
Eq. (2.8) represents the following weighted average in terms of the weight parameter
pi estimated by the AHP and the software failure rate per inherent fault bi for the ith
software component in Eqs. (2.1) or (2.2):

P =
n∑

i=1

pi · bi, (2.9)

where n represents the number of software components and pi(i = 1, 2, . . . , n) the
weight parameter for each component.

2.2.2 Reliability Assessment Measures

We can give the following expressions as software reliability assessment measures
derived from the NHPP model given by Eq. (2.8):

• Software reliability
The software reliability can be defined as the probability that a software failure
does not occur during the time-interval (t, t+x](t ≥ 0, x ≥ 0) after the testing-time
t. The software reliability is given by

R(x|t) = exp[μ(t) − μ(t + x)], (t ≥ 0, x ≥ 0). (2.10)

20 2 NHPP Model and AHP for OSS Reliability Analysis

• Instantaneous mean time between software failures
The instantaneous mean time between software failures (MTBFI) measures the
frequency of software failure-occurrence, and is given by

MTBFI(t) = 1
dμ(t)

dt

. (2.11)

• Cumulative mean time between software failures
The cumulativemean time between software failures (MTBFC) is given as follows:

MTBFC(t) = t

μ(t)
. (2.12)

References

1. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,
2014)

2. T. Satty, The Analytic Hierarchy Process (McGraw-Hill, New York, 1980)
3. E. Kinoshita, Introductory AHP (in Japanese) (JUSE Press, Tokyo, 2000)

Chapter 3
NHPP Model and ANP for OSS Reliability
Analysis

In this chapter, in order to consider the effect of each software component on the
reliability of an entire system in a distributed development environment, we apply
the ANP (Analytic Network Process) which is a popular decision-making method.
Moreover, we propose a method of reliability assessment based on the SRGM incor-
porating the interaction among software components. Also, we discuss a method of
reliability assessment for OSS projects as a typical case of a distributed development
environment.

3.1 Reliability Assessment for Each Software Component

3.1.1 Reliability Assessment Based on SRGM

Many SRGM’s have been used as the conventional methods to assess the reliability
for quality control and testing-process control during software development. Among
others, nonhomogeneous Poisson process (NHPP) models have been discussed by
many researchers since the NHPP models can be easily applied during software
development. In this chapter, we analyze software fault-detection count data based
on an NHPP model.

According to the growth curve of the cumulative number of detected faults, we
assume that the software reliability for each software component can be assessed by
applying the following SRGM’s based on NHPP [1]:

• Exponential SRGM
• Inflection S-shaped SRGM

The NHPP models have been discussed by many researchers since the models can
be easily applied in the software development. Moreover, we apply the method of
maximum-likelihood to estimate the unknown model parameters. We can give the
expressions for various software reliability assessment measures from the NHPP
models with specified mean value functions.

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_3

21

22 3 NHPP Model and ANP for OSS Reliability Analysis

3.1.2 Exponential SRGM

The mean value function of the exponential SRGM is given as follows:

Ei (t) = ai (1 − e−bi t) (ai > 0, bi > 0), (3.1)

where Ei (t) is the mean value function for the i th software component, which is
the expected cumulative number of faults detected up to the module testing-time
t (t ≥ 0). In Eq. (3.1), ai (i = 1, 2, . . . , n) is the expected number of initial inherent
faults for the i th software component, bi (i = 1, 2, . . . , n) the software failure rate
per inherent fault for the i th software component.

3.1.3 Inflection S-Shaped SRGM

The mean value function of the inflection S-shaped SRGM is given as follows:

Di (t) = ai (1 − e−bi t)

(1 + ci · e−bi t)

(ai > 0, bi > 0, ci > 0), (3.2)

where Di (t) is the mean value function for the i th software component, which is
the expected cumulative number of faults detected up to the module testing-time
t (t ≥ 0). In Eq. (3.2), ai (i = 1, 2, . . . , n) is the expected number of initial inherent
faults for the i th software component, bi (i = 1, 2, . . . , n) the software failure rate
per inherent fault for the i th software component. Moreover, ci (i = 1, 2, . . . , n)

represents the inflection rate for the i th software component.

3.1.4 Goodness-of-Fit Evaluation Criteria for Applied Model

In this chapter, we compare the goodness-of-fit of models applied in Sects. 2.1.2 and
2.1.3 with existing two conventional SRGM’s for the observed data set. We also
use the following goodness-of-fit evaluation criteria, i.e., the Akaike’s information
criterion (AIC) and the mean square error (MSE).

• AIC
AIC helps us to select the optimummodel among models estimated by the method
of maximum-likelihood.

• MSE
MSE can be obtained by dividing the sum of square errors between the observed
value, yk , and its estimated one, ŷk , by the number of data pairs, n.

http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2

3.1 Reliability Assessment for Each Software Component 23

3.1.5 Weight Parameter for Each Component Based on ANP

To consider the effect of debugging process on entire system in the development of
a software reliability assessment method for distributed development environment,
it is necessary to grasp the deeply-intertwined factors, such as programming path,
size of a component, skill of fault reporter, and so on.

Also, it is difficult to consider that collected data sets entirely contain the informa-
tion in terms of software reliability, although these data sets for deeply-intertwined
factors completely collected from bug tracking system. Therefore, it is difficult to
estimate the effect of each component on the entire system by using the collected
data sets only.

In this chapter, we propose the reliability assessment method based on the ANP
[2, 3] to estimate the effect of each component on the entire system in a complicated
situation. Specifically, we apply the importance level of faults detected for each com-
ponent, the skill of the fault reporter, and the skill of the fault repairer as evaluation
criteria for the ANP.

Figure3.1 shows the network structure in this chapter. “Severity”, “Assigned to”
and “Reporter” are evaluation criteria, whereas “general”, “other”, “xfce4”, “xfdesk-
top”, “xffm”, and “xfwm” are components. The super-matrix is given as follows:

S =
[

A1 0
B21 A2

]
(3.3)

(
A1 = 0, B21 =

[
v

0

]
, A2 =

[
0 W
U 0

])
.

Then, Ai is the evaluation matrix in cluster i , and B21 the evaluation matrix from
cluster 1 to cluster 2.Moreover, v is the level of importance of each component,U the

Fig. 3.1 Network structure of ANP

24 3 NHPP Model and ANP for OSS Reliability Analysis

evaluation matrix which influences from each component to evaluation criteria, and
W the evaluationmatrixwhich influences fromevaluation criteria to each component.

First, in order to standardize a matrix, the maximum eigenvalue λ1 and λ2 of the
partial matrix in a diagonal block A1 and A2 is calculated as

Ai = 1

λi
Ai (i = 1, 2), (3.4)

B21 = 1

λ1
B21. (3.5)

Then, let λi be 1 if Ai = 0. Then, the super-matrix is given as follows:

S =
[

A1 0
B21 A2

]
. (3.6)

And,
[

B21 A2
]
extract from Eq. (3.6). The number of the positive factor of the i th

line of this matrix is set to n2i , and the matrix which divided each factor of the i th
line by n2i is set to

[
B̂21 Â2

]
. Thereby, we can calculate b̂2 as follows:

b̂2 = B̂21u1. (3.7)

When cluster 1 consists of one element, it is estimated that it is u1 = 1. b̂2 is an
evaluation value given from cluster 1 to cluster 2.

The parameters pi representing the level of importance of each component for
entire system reliability can be estimated by using u2 expressed with Eq. (3.8) from
the above mentioned results:

b̂2 + Â2u2 = u2. (3.8)

3.2 Reliability Assessment for Entire System

3.2.1 Inflection S-Shaped SRGM

Weapply the existing inflection S-shaped SRGMfor reliability assessment entire sys-
tem. Thus, we consider the following structure of mean value function S(t) because
an NHPP model is characterized by its mean value function:

S(t) = a(1 − e−bt)

1 + C · e−bt
(a > 0, b > 0, C > 0), (3.9)

wherea is the expected number of initial inherent faults, andb the software failure rate
per inherent faults. Moreover, we assume that C represents the following weighted

3.2 Reliability Assessment for Entire System 25

average in term of weight parameter pi estimated by ANP and inflection rate ci in
Eq. (3.10):

C =
∑n

i=1
pi · ci

∑n

i=1
pi

=
∑n

i=1
pi · ci , (3.10)

where n represents the number of software component, pi the weight parameter for
each component, and ci the inflection rate for the i th software component.

3.2.2 Software Reliability Assessment Measures

We can give the following expressions as software reliability assessment measures
derived from NHPP model given Eq. (3.10):

• The expected number of remaining faults
The expected number of faults remaining in the system at testing-time t , which
is obtained as the expectation of random variable {N (∞) − N (t)}, is given as
follow:

Nc(t) ≡ E[N (∞) − N (t)] = a − S(t). (3.11)

• Software reliability
The software reliability can be defined as the probability that a software failure
does not occur during the time-interval (t, t + x](t ≥ 0, x ≥ 0) after testing-time
t . The software reliability is given by

Rc(x |t) = exp[S(t) − S(t + x)] (t ≥ 0, x ≥ 0). (3.12)

References

1. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,
2014)

2. E. Kinoshita, Introductory AHP (in Japanese) (JUSE Press, Tokyo, 2000)
3. E. Kinoshita, Theory of AHP and Its Application (JUSE Press, Tokyo, 2000)

Chapter 4
Stochastic Differential Equation Models
for OSS Reliability Analysis

4.1 Introduction

Network technologies have made rapid progress with the dissemination of computer
systems in all areas. These network technologies become increasingly more complex
in a wide sphere. The mainstream of software development environment is the devel-
opment paradigms such as concurrent distributed development environment and the
so-called open source project by using network computing technologies. Especially,
an OSS (open source software) system is used all over the world. Such OSS systems
which serve as key components of critical infrastructures in our society are still ever-
expanding now. The open source project contains special features so-called software
composition by which several geographically-dispersed components are developed
in all parts of the world. The successful experience of adopting the distributed devel-
opment model in such open source projects includes GNU/Linux operating system,1

Apache Web server, and so on.2 However, the poor handling of the quality and cus-
tomer support prohibit the progress of OSS.We focus on the problems in the software
quality, that prohibit the progress of OSS.

Especially, software reliability growth models (SRGM’s) [1] have been applied to
assess the reliability for qualitymanagement and testing-progress control of software
development. On the other hand, the effective method of dynamic testing manage-
ment for newdistributed development paradigmas typified by the open source project
has only a few presented [2–5]. In case of considering the effect of the debugging
process on entire system in the development of a method of reliability assessment
for OSS, it is necessary to grasp the situation of registration for bug tracking system,
degree of maturation of OSS, and so on.

In this chapter, we focus on an OSS developed under the open source project.
We discuss a useful software reliability assessment method in open source project
as a typical case of new distributed development paradigm. Especially, we propose

1Linux is a Registered Trademark of Linus Torvalds.
2Other company, product, or service names may be trademarks or service marks of others.

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_4

27

28 4 Stochastic Differential Equation Models for OSS Reliability Analysis

a software reliability growth model based on stochastic differential equations in
order to consider the active state of the open source project. Especially, we assume
that the software failure intensity depends on the time, and the software fault-report
phenomena on the bug tracking system keep an irregular state. Also, we analyze
actual software fault-count data to show numerical examples of software reliability
assessment for the OSS. Moreover, we compare our model with the conventional
model based on stochastic differential equations in terms of goodness-of-fit for actual
data. We show that the proposed model can assist improvement of quality for OSS
systems developed under the open source project.

4.2 Stochastic Differential Equation Modeling

Let S(t) be the number of faults in the OSS system at testing time t (t ≥ 0). Suppose
that S(t) takes on continuous real values. Since latent faults in the OSS system are
detected and eliminated during the operational phase, S(t) gradually increases as
the operational procedures go on. Thus, under common assumptions for software
reliability growth modeling, we consider the following linear differential equation:

dS(t)

dt
= λ(t)S(t), (4.1)

where λ(t) is the intensity of inherent software failures at operational time t and is a
non-negative function.

In most cases, the faults of OSS are not reported to the bug tracking system at the
same time as fault detect but rather reported to the bug tracking system with the time
lag of fault detection and report. As for the fault report to the bug tracking system,
we consider that the software fault-report phenomena on the bug tracking system
keep an irregular state. Moreover, the addition and deletion of software component
is repeated under the development of OSS, i.e., we consider that the software failure
intensity depends on the time.

Therefore, we suppose that λ(t) in Eq. (4.1) has the irregular fluctuation. That is,
we extend Eq. (4.1) to the following stochastic differential equation [6, 7]:

dS(t)

dt
= {λ(t) + σγ (t)} S(t), (4.2)

where σ is a positive constant representing a magnitude of the irregular fluctuation
and γ (t) a standardized Gaussian white noise.

We extend Eq. (4.2) to the following stochastic differential equation of an Itô type:

dS(t) =
{
λ(t) + 1

2
σ 2

}
S(t)dt + σS(t)dW(t), (4.3)

4.2 Stochastic Differential Equation Modeling 29

where W(t) is a one-dimensional Wiener process which is formally defined as an
integration of the white noise γ (t) with respect to time t. The Wiener process is a
Gaussian process and it has the following properties:

Pr[W(0) = 0] = 1, (4.4)

E[W(t)] = 0, (4.5)

E[W(t)W(t′)] = Min[t, t′]. (4.6)

By using Itô’s formula [6, 7], we can obtain the solution of Eq. (4.2) under the
initial condition S(0) = v as follows [8]:

S(t) = v · exp
(∫ t

0
λ(s)ds + σW(t)

)
, (4.7)

where v is the number of detected faults for the previous software version. Using
solution process S(t) in Eq. (4.7), we can derive several software reliabilitymeasures.

Moreover, we define the intensity of inherent software failures, λ(t), as follows:

∫ t

0
λ(s)ds = (1 − exp[−αt]), (4.8)

where α is an acceleration parameter of the intensity of inherent software failures.
FromEq. (4.7), we can confirm that the number of detected faults can not converge

to a finite value as the following equation.

lim
t→∞ S(t) = ∞. (4.9)

The operating environment ofOSS has the characteristics of the susceptible to var-
ious operational environments. Therefore, it is different from conventional software
systems developed under the identical organization. Then, the expected number of
detected faults continues to increase from the effect of the interaction among various
operational environments, i.e., the number of detected faults can not converge to a
finite value [9–11].

4.3 Method of Maximum-Likelihood

In this section, the estimation method of unknown parameters α and σ in Eq. (4.7)
is presented. Let us denote the joint probability distribution function of the process
S(t) as

P(t1, y1; t2, y2; . . . ; tK , yK)

≡ Pr[N(t1) ≤ y1, . . . , N(tK) ≤ yK |S(t0) = v], (4.10)

30 4 Stochastic Differential Equation Models for OSS Reliability Analysis

where S(t) is the cumulative number of faults detected up to the operational time
t (t ≥ 0), and denote its density as

p(t1, y1; t2, y2; . . . ; tK , yK) ≡ ∂K P(t1, y1; t2, y2; . . . ; tK , yK)

∂y1∂y2 . . . ∂yK
. (4.11)

Since S(t) takes on continuous values, we construct the likelihood function l for the
observed data (tk, yk)(k = 1, 2, . . . , K) as follows:

l = p(t1, y1; t2, y2; . . . ; tK , yK). (4.12)

For convenience in mathematical manipulations, we use the following logarithmic
likelihood function:

L = log l. (4.13)

The maximum-likelihood estimates α∗ and σ ∗ are the values making L in Eq. (4.13)
maximize. These can be obtained as the solutions of the following simultaneous
likelihood equations [8]:

∂L

∂α
= ∂L

∂σ
= 0. (4.14)

4.4 Software Reliability Assessment Measures

4.4.1 Expected Numbers of Detected Faults
and Their Variances

We consider the mean number of faults detected up to operational time t. The density
function of W(t) is given by:

f (W(t)) = 1√
2π t

exp

{
−W(t)2

2t

}
. (4.15)

Information on the current number of detected faults in the system is important to
estimate the situation of the progress on the software operational procedures. Since
it is a random variable in our model, its expected value and variance can be useful
measures. We can calculate them from Eq. (4.7) as follows [8]:

4.4 Software Reliability Assessment Measures 31

E[S(t)] = v · exp
(∫ t

0
λ(s)ds + σ 2

2
t

)
, (4.16)

Var[S(t)] = E[{S(t) − E[S(t)]}2]
= v2 · exp

(
2

∫ t

0
λ(s)ds + σ 2t

)

· {
exp(σ 2t) − 1

}
, (4.17)

where E[S(t)] is the expected number of faults detected up to time t.

4.4.2 Mean Time Between Software Failures

The instantaneousmean timebetween software failures (denoted byMTBFI) is useful
to measure the property of the frequency of software failure-occurrence.

Instantaneous MTBF is approximately given by:

MTBFI(t) = 1

E
[

dS(t)
dt

] . (4.18)

Therefore, we have the following instantaneous MTBF.

MTBFI(t) = 1

/{
v

(
λ(t) + 1

2
σ 2

)

· exp
(∫ t

0
λ(s)ds + σ 2

2
t

)}
. (4.19)

Also, Cumulative MTBF is approximately given by:

MTBFC(t) = t

E[S(t)] . (4.20)

Therefore, we have the following cumulativemean time between software failures
(denoted by MTBFC).

MTBFC(t) = t

v · exp
(∫ t

0
λ(s)ds + σ 2

2
t

) . (4.21)

32 4 Stochastic Differential Equation Models for OSS Reliability Analysis

4.4.3 Coefficient of Variation

Also, we can derive the following coefficient of variation from Eq. (4.7):

CV(t) ≡
√
Var[S(t)]
E[S(t)] . (4.22)

References

1. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,
2014)

2. A. MacCormack, J. Rusnak, C.Y. Baldwin, Exploring the structure of complex software
designs: an empirical study of open source and proprietary code. Inf. J. Manage. Sci. 52(7),
1015–1030 (2006)

3. G. Kuk, Strategic interaction and knowledge sharing in the KDE developer mailing list. Inf. J.
Manage. Sci. 52(7), 1031–1042 (2006)

4. Y. Zhoum, J. Davis, Open source software reliability model: an empirical approach. Proc.
Workshop Open Source Softw. Eng. (WOSSE) 30(4), 67–72 (2005)

5. P. Li, M. Shaw, J. Herbsleb, B. Ray, and P. Santhanam, Empirical evaluation of defect pro-
jection models for widely-deployed production software systems, in Proceeding of the 12th
International Symposium on the Foundations of Software Engineering (FSE-12) (2004), pp.
263–272

6. L.Arnold, Stochastic Differential Equations-Theory and Applications (Wiley,NewYork, 1974)
7. E. Wong, Stochastic Processes in Information and Systems (McGraw-Hill, New York, 1971)
8. S. Yamada, M. Kimura, H. Tanaka, S. Osaki, Software reliability measurement and assessment

with stochastic differential equations. IEICE Trans. Fundam. E77-A(1), 109–116 (1994)
9. Y. Tamura, S. Yamada, Comparison of software reliability assessment methods for open source

software, inProceedings of the 11th IEEE International Conference on Parallel and Distributed
Systems (ICPADS2005)–Volume II, Fukuoka, Japan, 20–22 July 2005, pp. 488–492

10. Y. Tamura, S. Yamada, A method of user-oriented reliability assessment for open source soft-
ware and its applications, in Proceedings of the 2006 IEEE International Conference on Sys-
tems, Man, and Cybernetics, Taipei, Taiwan, 8–11 October 2006, pp. 2185–2190

11. Y. Tamura, S. Yamada, Optimisation analysis for reliability assessment based on stochastic
differential equation modelling for open source software. Int. J. Syst. Sci. 40(4), 429–438
(2009). Taylor & Francis, United Kingdom

Chapter 5
Hazard Rates for Embedded OSS Reliability
Analysis

5.1 Introduction

Network technologies have made rapid progress with the dissemination of computer
systems in all areas. These network technologies become increasingly more com-
plex in a wide sphere. Then, software development environment has been changing
into new development paradigms such as concurrent distributed development envi-
ronment and the so-called open source project by using network computing tech-
nologies. The case of success includes OSS (Open Source Software) systems which
serve as key components of critical infrastructures in our society. The open source
project contains special features so-called software composition by which several
geographically-dispersed components are developed in all parts of the world. The
successful experience of adopting such open source projects includes Apache HTTP
server [1], Firefox Web browser [2], and GNU/Linux operating system. However,
the poor handling of quality problem and customer support has limited the progress
of OSS. Because the development cycle of OSS has no testing-phase. We focus
on software quality/reliability problems that can prohibit the progress of embedded
OSS.

In particular, software reliability growth models (SRGM’s) [3–5] and hazard rate
models [6–9] have been applied to assess the reliability for quality management and
testing-progress control of software development. On the other hand, the effective
method of dynamic testing management for new distributed development paradigms
as typified by the open source project has only a few presented [10–12]. In case of
considering the effect of the debugging process on entire system in the development
of a method of reliability assessment for OSS, it is necessary to grasp the situation
of registration for bug tracking system, the degree of maturation of OSS, and so
on. In particular, an embedded OSS known as one of OSS’s has been gaining a
lot of attention in the embedded system area, i.e., Android, BusyBox, TRON, etc.
However, the poor handling of quality problem and customer support has limited
the progress of embedded OSS. Also, it is difficult for developers to assess the
reliability and portability of embedded OSS on a single-board computer. The term

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_5

33

34 5 Hazard Rates for Embedded OSS Reliability Analysis

“porting-phase” means the rebuilding process in which the developers create an
OS/application developed for the specific computer system to suit another computer
system. From above mentioned problems, many companies have been hesitant to
innovate the embedded OSS.

Many fault-counting type SRGM’s have been applied to assess the reliability for
qualitymanagement and testing-progress control of software development. However,
it is difficult to apply the SRGM’s to the OSS, because the number of detected faults
in the OSS project can not converge to a finite value [13, 14]. In fact, there are several
SRGM’s that can be applied in the situation discussed above, i.e., the Weibull and
Log-logistic SRGM’s, and so on [3]. In particular, in case that the number of detected
faults can not converge to a finite value, it is difficult to assess whether the porting
phase will succeed by using reliability assessment measures derived from SRGM’s.
Also, the hazard rate model’s have the simple structure.

As another more challenging aspect of the embedded OSS project, the embedded
OSS includes several software components in terms of hardware such as a device
driver. An application OSS features that the number of detected faults can not con-
verge to a finite value. Therefore, we can apply SRGM’s based on such assumption.
On the other hand, the characteristics of embedded OSS include that the number of
detected faults can not converge to a finite value. However, it is difficult to apply
the conventional SRGM’s to embedded OSS, because the embedded OSS includes
several software components in terms of hardware such as a device driver.

For abovementioned reason, it is difficult to apply the conventional infinite failure
SRGM’s to embedded OSS. Therefore, we apply the SRGM’s based on a software
failure hazard rate (abbreviated as the hazard rate model) in place of the fault-
counting type SRGM to the embedded OSS.

In this chapter, we propose a method of software reliability assessment based on
a flexible hazard rate model for embedded OSS. Also, we derive several assessment
measures from themodel. In particular, we show several numerical results of reliabil-
ity assessment for our hazard rate model. Moreover, we compare the goodness-of-fit
of our model discussed in this chapter with the conventional hazard rate models.
Furthermore, we discuss the optimal software release problem for the porting-phase
based on the total expected software maintenance cost.

5.2 Flexible Hazard Rate Model for Embedded OSS

In this chapter, we assume that the software failures occurring in the porting-phase
of embedded OSS are categorized in the following types:

A1. the software failure caused by the latent fault in the embedded OSS,
A2. the software failure caused by the latent fault in the specific software compo-

nents (i.e., device driver).

In the assumption above, A1 is selected by probability p and A2 selected by
probability (1−p). Also,we can not distinguish betweenA1 andA2 software failures.

5.2 Flexible Hazard Rate Model for Embedded OSS 35

The time interval between successive faults of (k −1)th and kth is represented as the
random variable Xk (k = 1, 2, . . .). Therefore, we can define the hazard rate function
zk(x) for Xk as follows [15, 16]:

zk(x) = p · z1k(x) + (1 − p) · z2k (x) (k = 1, 2, . . . ; 0 ≤ p ≤ 1), (5.1)

z1k(x) = D(1 − α · e−αk)k−1 (k = 1, 2, . . . ; −1 < α < 1, D > 0), (5.2)

z2k (x) = φ{N − (k − 1)} (k = 1, 2, . . . , N; N > 0, φ > 0), (5.3)

where the notations in Eqs. (5.1)–(5.3) are represented as follows:

z1k(x) the hazard rate for the A1 software failure,
α the shape parameter representing the active state of OSS project,
D the initial hazard rate for the 1st software failure,
z2k (x) the hazard rate for the A2 software failure,
N the number of latent faults in the specific software components,
φ the hazard rate per inherent fault,
p the weight parameter for z1k(x).

Equation (5.2) means the hazard rate for a software failure-occurrence phenom-
enon for the embedded OSS. On the other hand, Eq. (5.3) represents the hazard rate
for a software failure-occurrence phenomenon for the specific software components.
Thus, our model simultaneously describes both the software failure occurring at the
embedded OSS installed to embedded system by Eq. (5.2) and the software failure
occurring at the specific software components such as the device driver.

In particular, our model includes both the modified Moranda model [8] and
the conventional Jelinski–Moranda(J-M) model [7]. Equation (5.2) based on the
Moranda model means that the initial hazard rate for the 1st software failure geo-
metrically decreases with the active state of OSS. Also, we assume that the active
state of OSS grows exponentially.

5.3 Reliability Assessment Measures

In porting-phase of embedded OSS, the distribution function of Xk(k = 1, 2, . . .)

representing the time-interval between successive faults of (k − 1)th and kth is
defined as:

Fk(x) ≡ Pr{Xk ≤ x} (x ≥ 0), (5.4)

where Pr{A} represents the occurrence probability event A. Therefore, the following
derived function means the probability density function of Xk:

fk(x) ≡ dFk(x)

dx
. (5.5)

36 5 Hazard Rates for Embedded OSS Reliability Analysis

Also, the software reliability can be defined as the probability which a software
failure does not occur during the time-interval (0, x] after the porting-phase. The
software reliability is given by

Rk(x) ≡ Pr{Xk > x} = 1 − Fk(x). (5.6)

From Eqs. (5.4) and (5.5), the hazard rate is given by the following equation:

zk(x) ≡ fk(x)

1 − Fk(x)
= fk(x)

Rk(x)
, (5.7)

where the hazard rate means the software failure rate after the porting-phase when
the software failure does not occur during the time-interval (0, x].

Therefore, we can obtain the software reliability assessment measures from our
hazard rate model in Eq. (5.1). The probability density function can be derived as

fk(x) = {
pD(1 − α · e−αk)k−1 + (1 − p)φ(N − k + 1)

}

· exp
[

−
{

pD(1 − α · e−αk)k−1

+ (1 − p)φ(N − k + 1)
}

· x

]
. (5.8)

Also, the software reliability represents the following equation:

Rk(x) = exp

[
−

{
pD(1 − α · e−αk)k−1

+ (1 − p)φ(N − k + 1)
}

· x

]
. (5.9)

Moreover, the mean time between software failures(MTBF) is given as follows:

E[Xk] = 1

/{
pD(1 − α · e−αk)k−1

+ (1 − p)φ(N − k + 1)
}
. (5.10)

References

1. The Apache HTTP Server Project, The Apache Software Foundation, http://httpd.apache.org/
2. Mozilla.org, Mozilla Foundation, http://www.mozilla.org/
3. M.R. Lyu (ed.), Handbook of Software Reliability Engineering (IEEE Computer Society Press,

Los Alamitos, 1996)

http://httpd.apache.org/
http://www.mozilla.org/

References 37

4. J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Applica-
tion (McGraw-Hill, New York, 1987)

5. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,
2014)

6. G.J. Schick, R.W. Wolverton, An analysis of competing software reliability models. IEEE
Trans. Softw. Eng. SE-4(2), 104–120 (1978)

7. Z. Jelinski, P.B. Moranda, Software reliability research, in Statistical Computer Performance
Evaluation, ed. by W. Freiberger (Academic Press, New York, 1972), pp. 465–484

8. P.B. Moranda, Event–altered rate models for general reliability analysis. IEEE Trans. Reliab.
R-28(5), 376–381 (1979)

9. M. Xie, On a Generalization of the J-M model. Proc. Reliab. ’89 5, Ba/3/1–5 Ba/3/7 (1989)
10. Y. Zhoum, J. Davis, Open source software reliability model: an empirical approach. Proc.

Workshop Open Source Softw. Eng. (WOSSE) 30(4), 67–72 (2005)
11. P. Li, M. Shaw, J. Herbsleb, B. Ray, P. Santhanam, Empirical evaluation of defect projection

models for widely-deployed production software systems, in Proceeding of the 12th Interna-
tional Symposium on the Foundations of Software Engineering (FSE-12) (2004), pp. 263–272

12. J. Norris, Mission-critical development with open source software. IEEE Softw. Mag. 21(1),
42–49 (2004)

13. Y. Tamura, S. Yamada, Comparison of software reliability assessment methods for open source
software, inProceedings of the 11th IEEE International Conference on Parallel and Distributed
Systems (ICPADS2005), vol. II, Fukuoka, Japan, 20–22 July 2005, pp. 488–492

14. Y. Tamura, S. Yamada, A method of user-oriented reliability assessment for open source soft-
ware and its applications, Proceedings of the 2006 IEEE International Conference on Systems,
Man, and Cybernetics, Taipei, Taiwan, 8–11 October 2006, pp. 2185–2190

15. Y. Tamura, S. Yamada, Reliability assessment based on hazard rate model for an embedded
OSS porting phase. J. Softw. Test. Verif. Reliab. 23(1), 77–88 (2013). doi:10.1002/stvr.455.
(Article first published online: 17 March, 2011), Wiley

16. Y. Tamura, S. Yamada, Performability analysis considering debugging behaviors for open
source solution. Int. J. Perform. Eng. 9(1), 13–21 (2013)

http://dx.doi.org/10.1002/stvr.455

Chapter 6
Reliability Analysis for Open Source Solution

6.1 Introduction

At present, there is growing interest in the next-generation software development
paradigm by using network computing technologies such as a cloud computing.
Considering the software development environment, one has been changing into new
development paradigms such as concurrent distributed development environment and
the so-called open source project by using network computing technologies.

The successful experience of adopting the distributed development model in such
open source projects includes GNU/Linux operating system, Apache HTTP server,
and so on. However, the poor handling of the quality and customer support prohibits
the progress of OSS. We focus on the problems of software quality, which prohibit
the progress of OSS. Especially, a large-scale open source solution is now attracting
attention as the next-generation software development paradigm. Also, the large-
scale open source solution is composed of several OSS’s.

Many software reliability growth models (SRGM’s) [1] have been applied to
assess the reliability for qualitymanagement and testing-progress control of software
development. On the other hand, the effective method of dynamic testing manage-
ment for newdistributed development paradigmas typified by the open source project
has only a few presented [2–5]. In case of considering the effect of the debugging
process on entire system in the development of a method of reliability assessment
for open source solution, it is necessary to grasp the situation of registration for bug
tracking system, the combination status of OSS’s, the degree of maturation of OSS,
and so on.

In this chapter, we focus on an open source solution developed under several
OSS’s. We discuss a useful method of software reliability assessment in open source
solution as a typical case of next-generation distributed development paradigm.Then,
we propose a software reliability growthmodel based on stochastic differential equa-
tions in order to consider the active state of the open source project and the component
collision of OSS. Then, we assume that the software failure intensity depends on the
time, and the software fault-report phenomena on the bug tracking system keep an

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_6

39

40 6 Reliability Analysis for Open Source Solution

irregular state. Also, we analyze actual software fault-count data to show numerical
examples of software reliability assessment for the open source solution. Especially,
we derive several reliability assessment measures from our model. Then, we show
that the proposed model can assist improvement of quality for open source solution
developed under several OSS.

6.2 Stochastic Differential Equation Model

Let S(t) be the number of detected faults in the open source solution by testing
time t (t ≥ 0). Suppose that S(t) takes on continuous real values. Since latent
faults in the open source solution are detected and eliminated during the testing-
phase, S(t) gradually increases as the testing procedures go on. Thus, under common
assumptions for software reliability growth modeling, we consider the following
linear differential equation:

d S(t)

dt
= λ(t)S(t), (6.1)

where λ(t) is the intensity of inherent software failures at testing time t and is a
non-negative function.

Generally, it is difficult for users to use all functions in open source solution,
because the connection state among open source components is unstable in the
testing-phase of open source solution. Considering the characteristic of open source
solution, the software fault-report phenomena keep an irregular state in the early
stage of testing-phase. Moreover, the addition and deletion of software components
are repeated under the development of an OSS system, i.e., we consider that the
software failure intensity depends on the time.

Therefore, we suppose that λ(t) in Eq. (6.1) has the irregular fluctuation. That is,
we extend Eq. (6.1) to the following stochastic differential equation [6, 7]:

d S(t)

dt
= {λ(t) + σμ(t)γ (t)} S(t), (6.2)

where σ is a positive constant representing a magnitude of the irregular fluctuation,
γ (t) a standardized Gaussian white noise, and μ(t) the collision level function of
open source component.

We extend Eq. (6.2) to the following stochastic differential equation of an Itô type:

d S(t) =
{
λ(t) + 1

2
σ 2μ(t)2

}
S(t)dt

+ σμ(t)S(t)dW (t), (6.3)

where W (t) is a one-dimensional Wiener process which is formally defined as an
integration of the white noise γ (t) with respect to time t . The Wiener process is a
Gaussian process and it has the following properties:

6.2 Stochastic Differential Equation Model 41

Pr[W (0) = 0] = 1, (6.4)

E[W (t)] = 0, (6.5)

E[W (t)W (t ′)] = Min[t, t ′]. (6.6)

By using Itô’s formula [6, 7], we can obtain the solution of Eq. (6.3) under the initial
condition S(0) = v as follows [8]:

S(t) = v · exp
(∫ t

0
λ(s)ds + σμ(t)W (t)

)
, (6.7)

where v is the total number of detected faults for the applied OSS’s. Using solution
process S(t) in Eq. (6.7), we can derive several software reliability measures.

Moreover, we define the intensity of inherent software failures in case of λ(t) =
λ1(t) and λ(t) = λ2(t), and the collision level function μ(t) as follows:

∫ t

0
λ1(s)ds = (1 − exp[−αt]), (6.8)

∫ t

0
λ2(s)ds = (1 − (1 + αt) exp[−αt]), (6.9)

μ(t) = exp[−βt], (6.10)

where α is an acceleration parameter of the intensity of inherent software failures,
and β the growth parameter of the stability of open source solution.

6.3 Method of Maximum-Likelihood

In this section, the estimation method of unknown parameters α, β and σ in Eq. (6.7)
is presented. Let us denote the joint probability distribution function of the process
S(t) as

P(t1, y1; t2, y2; . . . ; tK , yK)

≡ Pr[N (t1) ≤ y1, . . . , N (tK) ≤ yK

|S(t0) = v], (6.11)

where S(t) is the cumulative number of faults detected up to the testing time t (t ≥ 0),
and denote its density as

p(t1, y1; t2, y2; . . . ; tK , yK)

≡ ∂K P(t1, y1; t2, y2; . . . ; tK , yK)

∂y1∂y2 . . . ∂yK
. (6.12)

42 6 Reliability Analysis for Open Source Solution

Since S(t) takes on continuous values, we construct the likelihood function l for the
observed data (tk, yk)(k = 1, 2, . . . , K) as follows:

l = p(t1, y1; t2, y2; . . . ; tK , yK). (6.13)

For convenience in mathematical manipulations, we use the following logarithmic
likelihood function:

L = log l. (6.14)

The maximum-likelihood estimates α∗, β∗ and σ ∗ are the values making L in
Eq. (6.14) maximize. These can be obtained as the solutions of the following simul-
taneous likelihood equations [8]:

∂L

∂α
= ∂L

∂β
= ∂L

∂σ
= 0. (6.15)

6.4 Software Reliability Assessment Measures

6.4.1 Expected Numbers of Detected Faults

We consider the expected number of faults detected up to testing time t . The density
function of W (t) is given by:

f (W (t)) = 1√
2π t

exp

{
−W (t)2

2t

}
. (6.16)

Information on the cumulative number of detected faults in the system is important
to estimate the situation of the progress on the software testing procedures. Since
S(t) is a random variable in our model, its expected value can be a useful measure.
We can calculate them from Eq. (6.7) as follows [8]:

E[S(t)] = v · exp
(∫ t

0
λ(s)ds + σ 2μ(t)2

2
t

)
, (6.17)

where E[S(t)] is the expected number of faults detected up to time t . Also, the
expected number of remaining faults at time t can obtain as follows:

E[N (t)] = v · e − E[S(t)], (6.18)

where v is the total number of detected faults for the applied OSS’s, and e means
exp(1).

6.4 Software Reliability Assessment Measures 43

6.4.2 Mean Time Between Software Failures

The instantaneousmean timebetween software failures (denoted byMTBFI) is useful
to measure the property of the frequency of software failure-occurrence. Then, the
instantaneous MTBF is approximately given by:

MTBFI(t) = 1

E
[

d S(t)
dt

] . (6.19)

Also, the cumulative MTBF is approximately given by:

MTBFC(t) = t

E[S(t)] . (6.20)

6.4.3 Coefficient of Variation

Also, we can use the coefficient of variation as the measure of variation without
the effect of mean value. We can derive the following coefficient of variation from
Eq. (6.7):

CV(t) ≡
√
Var[S(t)]
E[S(t)] . (6.21)

References

1. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,
2014)

2. A.MacCormack, J. Rusnak, C.Y. Baldwin, Exploring the structure of complex software designs:
an empirical study of open source and proprietary code. Inf. J. Manag. Sci. 52(7), 1015–1030
(2006)

3. G. Kuk, Strategic interaction and knowledge sharing in the KDE developer mailing list. Inf. J.
Manag. Sci. 52(7), 1031–1042 (2006)

4. Y. Zhoum, J. Davis, Open source software reliability model: an empirical approach. Proc. Work-
shop Open Source Softw. Eng. (WOSSE) 30(4), 67–72 (2005)

5. P. Li,M. Shaw, J.Herbsleb, B. Ray, P. Santhanam, Empirical evaluation of defect projectionmod-
els for widely-deployed production software systems. in Proceeding of the 12th International
Symposium on the Foundations of Software Engineering (FSE-12), pp. 263–272, 2004

6. L. Arnold, Stochastic Differential Equations-Theory and Applications (Wiley, New York, 1974)
7. E. Wong, Stochastic Processes in Information and Systems (McGraw-Hill, New York, 1971)
8. S. Yamada, M. Kimura, H. Tanaka, S. Osaki, Software reliability measurement and assessment

with stochastic differential equations. IEICE Trans. Fundam. E77-A(1), 109–116 (1994)

Chapter 7
Reliability Analysis for Mobile OSS

7.1 Introduction

At present, OSS (Open Source Software) systems serve as key components of crit-
ical infrastructures in the society. The open source project contains special features
so-called software composition by which several geographically-dispersed compo-
nents are developed in all parts of the world. The successful experience of adopting
such open source projects includes Apache HTTP server, MySQL database server,
OpenStack cloud software, FirefoxWeb browser, and GNU/Linux operating system,
etc. However, the poor handling of quality problem and customer support has limited
the progress of OSS, because the development cycle of OSS has no testing-phase.
We focus on software quality/reliability problems that they can prohibit the progress
of embedded OSS. In particular, an embedded OSS known as one of OSS’s has been
gaining a lot of attention in the embedded system area, i.e., Android [1], BusyBox [2],
Firefox OS [3], etc. However, the installer software developed under the third-party
developers indirectly effect on the reliability in area of amobile device. Also, it is dif-
ficult for developers to assess reliability and portability of the porting-phase in case of
installing the embedded OSS on a single-board computer. The term “porting-phase”
means the rebuilding process in which the developers create anOS/application devel-
oped for the specific computer system to suit another computer systems in terms of
portability. From above mentioned problems, many companies have been hesitant to
innovate the embedded OSS, because an OSS includes several software versions.

Especially, software reliability growth models (SRGM’s) [4–6] and the related
hazard rate models [7–10] have been applied to assess the reliability for quality
management and testing-progress control of software development. On the other
hand, the effective method of dynamic testing management for a new distributed
development paradigm as typified by the open source project has only a fewpresented
[11–13]. In case of considering the effect of the debugging process on entire system
in the development of a method of reliability assessment for the software developed
under the third-party developers, it is necessary to grasp the situation of installer

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_7

45

46 7 Reliability Analysis for Mobile OSS

software, the network traffic, the installed software, etc. Then, it is very important
to consider the status of network traffic in terms of the reliability assessment in the
following standpoint:

• In case of the open source, the weakness of reliability and security becomes a
significant problem via a computer network.

• By using the installer software, the various third-party software are installed via
the network.

• In case of the mobile device, the network access devices are frequently used by
many software installed via the installer software.

Many fault-counting type SRGM’s have been applied to assess the reliability for
qualitymanagement and testing-progress control of software development. However,
it is difficult to apply the SRGM’s for assessing quality/reliability of the software
developed under the third-party developers such as OSS. In other words, the testing-
phase is nonexistent in the open source development paradigm. In fact, there are
several SRGM’s that can be applied in the above situation, i.e., the Weibull and
Log-logistic SRGM’s, and so on [4]. In particular, in case the software developed
under the third-party developers, it is difficult to assess both the software failure and
network traffic affected by using the installer software. As another more challenging
aspect of the embedded OSS project, the embedded OSS includes several software
components in terms of hardware such as a device driver [14, 15].

In this chapter, we propose a method of software reliability/portability assessment
based on a hazard rate model and neural network for the mobile device. Also, we
derive several assessment measures. In particular, we analyze actual software failure-
occurrence time data to show numerical examples of software reliability/portability
assessment for the mobile device. Then, we show that our model may assist quality
improvement for mobile device systems development. Furthermore, we investigate
a useful software reliability assessment method for the actual mobile device system
development.

7.2 Hazard Rate Model Depending on the Change
of Network Traffic

The time-interval between successive software failures of (k − 1)th and kth is rep-
resented as the random variable Xk (k = 1, 2, . . .). Therefore, we can define the
hazard rate function zk(x) at time x during the porting-phase for Xk as follows:

zk(x) = wk(x){N − (k − 1)} (k = 1, 2, . . . ,α; φ > 0), (7.1)

wk(x) = φe−pk (N > 0, φ > 0, −1 < pk < 1), (7.2)

7.2 Hazard Rate Model Depending on the Change of Network Traffic 47

Fig. 7.1 The basic concept of network traffic density

where we can define the each parameter as follows:

zk(x) the hazard rate for the whole embedded software,
wk(x) the hazard rate per inherent fault considering the network traffic density,

N the number of latent faults,
φ the hazard rate per inherent fault,

pk the changing rate of the network traffic density.

Equation (7.1) means the hazard rate for a software failure-occurrence phenomenon
for the embedded software. Also, we assume that the hazard rate per inherent fault
exponentially depends on the network traffic density in terms of the number of
software failures k as shown in Fig. 7.1. In particular, the network traffic changes with
the number of installed software and the addition of device drivers. Our model can
describes the fault-detection phenomenon detected at among the installed software
and device driver softwares installed to embedded system by the changing rate of
network traffic density pk included in Eq. (7.2). Thus, the embedded system shows a
reliability regression trend if pk is negative value. On the other hand, the embedded
system shows a reliability growth trend if pk is positive value.

7.3 Reliability Assessment Measures

In porting-phase of embedded OSS, the distribution function of Xk(k = 1, 2, . . .)
representing the time-interval between successive software failures of (k − 1)th and
kth is defined as:

48 7 Reliability Analysis for Mobile OSS

Fk(x) ≡ Pr{Xk ≤ x} (x ≥ 0), (7.3)

where Pr{A} represents the occurrence probability of event A. Therefore, the follow-
ing function means the probability density function of Xk :

fk(x) ≡ d Fk(x)

dx
. (7.4)

Also, the software reliability can be defined as the probability which a software
failure does not occur during the time-interval (0, x] after the porting-phase. The
software reliability is given by

Rk(x) ≡ Pr{Xk > x} = 1 − Fk(x). (7.5)

From Eqs. (7.3) and (7.4), the hazard rate is given by the following equation:

zk(x) ≡ fk(x)

1 − Fk(x)
= fk(x)

Rk(x)
, (7.6)

where the hazard rate means the software failure rate after the porting-phase when
the software failure does not occur during the time-interval (0, x].

Therefore, we can obtain the software reliability assessment measures from our
hazard rate model represented by Eq. (7.1). The probability density function can be
derived as

fk(x) = {
φe−pk (N − k + 1)

}

· exp
[

−
{
φe−pk (N − k + 1)

}
· x

]
. (7.7)

Especially, we can give the following expressions as software reliability assess-
ment measures derived from our hazard rate model:

• MTBF
Themean time between software failures(MTBF) is useful tomeasure the property
of the frequency of software failure-occurrence, and is given by

E[Xk] = 1

φe−pk (N − k + 1)
. (7.8)

• Software reliability
Also, the software reliability can be defined as the probability which a software
failure does not occur during the time-interval (t, t + x] (t ≥ 0, x ≥ 0) given that
the debugging progress time of porting-phase is t . The software reliability is given
as follows:

7.3 Reliability Assessment Measures 49

Fig. 7.2 The structure of
3-layered neural networks

Rk(x) = exp

[
− φe−pk (N − k + 1) · x

]
. (7.9)

7.4 Estimation of Network Traffic Density

The structure of the neural networks applied in this chapter is shown in Fig. 7.2.
In Fig. 7.2, w1

i j (i = 1, 2, . . . , I ; j = 1, 2, . . . , J) are the connection weights from
i th unit on the sensory layer to j th unit on the association layer, and w2

jk(j =
1, 2, . . . , J ; k = 1, 2, . . . , K) denote the connection weights from j th unit on the
association layer to kth unit on the response layer. Moreover, xi (i = 1, 2, . . . , I)
represent the normalized input values of i th unit on the sensory layer, and yk(k =
1, 2, . . . , K) are the output values.

In Fig. 7.2, the input-output rules of each unit on each layer are given by

h j = f

(
I∑

i=1

w1
i j xi

)
, (7.10)

yk = f

⎛

⎝
J∑

j=1

w2
jkh j

⎞

⎠ , (7.11)

50 7 Reliability Analysis for Mobile OSS

where a logistic activation function f (·) which is well-known as a sigmoid function
given by the following equation:

f (x) = 1

1 + e−θx
, (7.12)

where θ is the slant of sigmoid function. We apply the multi-layered neural networks
by back-propagation in order to learn the time series data in terms of the network
traffic density [16]. We define the error function for Eq. (7.11) by the following
equation:

E = 1

2

K∑

k=1

(yk − dk)
2, (7.13)

where dk(k = 1, 2, . . . , K) are the target input values for the output values. We
apply the normalized values of the time series data for network traffic density to the
target input values dk(k = 1, 2, . . . , K) for the output values, i.e., we consider the
estimation and prediction model so that the property of the network traffic density
accumulates on the connection weights of neural networks.

The rules for changing weights among units are shown as follows:

w2
jk(r + 1) = w2

jk(r) − ε
∂E

∂w2
jk

= w2
jk(r)

+ε(yk − dk)

· f ′
⎛

⎝
J∑

j=1

w2
jk(r)h j

⎞

⎠ h j , (7.14)

w1
i j (r + 1) = w1

i j (r) − ε
∂E

∂w1
i j

= w1
i j (r)

+ε

K∑

k=1

(pk − dk) f ′
⎛

⎝
J∑

j=1

w2
jk(r)h j

⎞

⎠

·w1
i j (r) f ′

(
I∑

i=1

w1
i j (r)xi

)
xi , (7.15)

where ε is a positive constant for learning in neural networks, and r represents
the iteration of calculation symbolically, w1

i j (r + 1) and w2
jk(r + 1) are the new

7.4 Estimation of Network Traffic Density 51

approximate values of connectionweights.w1
i j (r) andw2

jk(r) are also the prespecified
values of connection weights.We estimate the new approximate values of connection
weights w1

i j (r + 1) and w2
jk(r + 1) by Eqs. (7.14) and (7.15) repeatedly, until the

approximate values satisfy the following convergence conditions:

∣∣∣∣∣
w2

jk(r + 1) − w2
jk(r)

w2
jk(r)

∣∣∣∣∣ ≤ ξ, (7.16)

∣∣∣∣∣
w1

i j (r + 1) − w1
i j (r)

w1
i j (r)

∣∣∣∣∣ ≤ ξ. (7.17)

From the above mentioned results, the estimated network traffic density is applied
to the parameter pk included in the proposed hazard rate model.

7.5 Parameter Estimation

Suppose that n data pairs xk(k = 1, 2, . . . , n) are observed during the porting-phase,
where x (n) = (x1, x2, . . . , xn) is the time-interval between successive (k − 1)th and
kth software failures. Then, the logarithmic likelihood function of the hazard rate
model with zk(x) of Eq. (10.1) is given by

LLF(N ,φ; xn) =
n∑

k=1

log
{
φe−E[pk](N − k + 1)

}

−
{
φe−E[pk]

n∑

k=1

(N − k + 1)xk

}
. (7.18)

The maximum-likelihood estimates N̂ and φ̂ for the unknown parameters N and φ
can be obtained by solving the following simultaneous likelihood equations
numerically:

∂LLF

∂N
= ∂LLF

∂φ
= 0. (7.19)

In particular, we assume that pk(k = 1, 2, . . . , n) are estimated by using neural
network. Then, the mean value of the estimated p̂k is used in this parameter estima-
tion. The procedures of reliability/portability analysis based on the proposed model
for mobile device are shown as follows:

http://dx.doi.org/10.1007/978-3-319-31818-9_10

52 7 Reliability Analysis for Mobile OSS

1. The embedded software developers process the data file in terms of the software
failure-occurrence time data in the porting-phase of the embedded system for
reliability/portability analysis.

2. The embedded software developers estimate the unknown parameters pk(k =
1, 2, . . . , n) included in our hazard rate model by using the neural network.

3. The embedded software developers estimate the unknown parameters N and φ
included in our hazard rate model by using the method of maximum-likelihood.

4. It is useful for embedded software developers to understand the debugging
progress in porting-phase of embedded system development by using the MTBF
in Eq. (7.8) and software reliability in Eq. (7.9) considering the change of network
traffic as software reliability/portability assessment measures.

References

1. Open Handset Alliance, Android. http://www.android.com/
2. E. Andersen, BusyBox. http://www.busybox.net/
3. Firefox OS, Marketplace, Android–Partners–mozilla.org, Mozilla Foundation. http://www.

mozilla.org/firefoxos/
4. M.R. Lyu (ed.), Handbook of Software Reliability Engineering (IEEE Computer Society Press,

Los Alamitos, 1996)
5. J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Applica-

tion (McGraw-Hill, New York, 1987)
6. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,

2014)
7. G.J. Schick, R.W. Wolverton, An analysis of competing software reliability models. IEEE

Trans. Softw. Eng. SE-4(2), 104–120 (1978)
8. Z. Jelinski, P.B. Moranda, Software Reliability Research, in Statistical Computer Performance

Evaluation, Freiberger (Academic Press, New York, 1972), pp. 465–484
9. P.B.Moranda, Event–alteredRateModels forGeneral ReliabilityAnalysis. IEEETrans. Reliab.

R-28(5), 376–381 (1979)
10. M. Xie, On a Generalization of the J-MModel, Proceedings Reliability ’89, 5, Ba/3/1–5 Ba/3/7

(1989)
11. Y. Zhoum, J. Davis, Open source software reliabilitymodel: an empirical approach, inProceed-

ings of the Workshop on Open Source Software Engineering (WOSSE), vol. 30, no. 4 (2005),
pp. 67–72

12. P. Li, M. Shaw, J. Herbsleb, B. Ray, P. Santhanam, Empirical evaluation of defect projection
models for widely-deployed production software systems, in Proceeding of the 12th Interna-
tional Symposium on the Foundations of Software Engineering (FSE-12) (2004), pp. 263–272

13. J. Norris, Mission-critical development with open source software. IEEE Softw. Mag. 21(1),
42–49 (2004)

14. K.Y. Cai, D.B. Hu, C. Bai, H. Hu, T. Jing, Does software reliability growth behavior follow a
non-homogeneous Poisson process. Inf. Softw. Technol. 50(12), 1232–1247 (2008)

15. Y. Tamura, S. Yamada, Reliability assessment based on hazard rate model for an embedded
OSS porting phase. J. Softw. Test. Verif. Reliab. 23(1), 77–88 (2013)

16. E.D. Karnin, A simple procedure for pruning back-propagation trained neural networks. IEEE
Trans. Neural Netw. 1, 239–242 (1990)

http://www.android.com/
http://www.busybox.net/
http://www.mozilla.org/firefoxos/
http://www.mozilla.org/firefoxos/

Chapter 8
Reliability Analysis Tool for Embedded OSS

8.1 Introduction

Considering software development environment, there is growing interest in the
next-generation software development paradigm by using network computing tech-
nologies such as an open source project and a cloud computing. The open source
project contains special features so-called software composition by which several
geographically-dispersed components are developed in all parts of the world. The
successful experience of adopting such open source projects includes Apache HTTP
server [1], Firefox Web browser [2], and GNU/Linux operating system.

Especially, software reliability growth models (SRGM’s) [3–5] and the related
hazard rate models [6–9] have been applied to assess the reliability for quality
management and testing-progress control of software development. On the other
hand, only a few effective methods of dynamic testing management for new distrib-
uted development paradigms as typified by the open source project have presented
[10–12]. In case of considering the effect of the debugging process on entire system
in the development of a method of reliability assessment for Open Source Software
(OSS), it is necessary to grasp the situation of registration for bug tracking system, the
degree of maturity of OSS, and so on. Especially, an embedded OSS known as one of
OSS’s has been gaining a lot of attention in the embedded systems area, i.e., Android
[13], BusyBox [14], TRON, etc. However, the poor handling of quality problem
and customer support prohibits the progress of embedded OSS. Also, it is difficult
for developers to assess reliability and portability of the porting-phase in case of
installing the embedded OSS on a single-board computer. The term “porting-phase”
means the rebuilding process in which the developers create anOS/application devel-
oped for the specific computer system to suit the another computer system. From
above mentioned problems, many companies have been hesitant to introduce the
embedded OSS.

Many fault-counting type SRGM’s have been applied to assess the reliability for
quality management and testing-progress control of software development. How-
ever, it is difficult to apply the SRGM’s for assessing quality/reliability of the OSS,

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_8

53

54 8 Reliability Analysis Tool for Embedded OSS

because the number of detected faults in the OSS project can not converge to a finite
value [15, 16]. In other words, the testing-phase is nonexistent in the open source
development paradigm. In fact, there are several SRGM’s that can be applied in the
above situation, i.e., the Weibull and Log-logistic SRGM’s, and so on [3]. Espe-
cially, in case that the number of detected faults can not converge to a finite value,
it is difficult to assess whether the porting phase will succeed by using reliability
assessment measures derived from SRGM’s. As another more challenging aspect of
the embedded OSS project, the embedded OSS includes several software compo-
nents in terms of hardware such as device driver. Therefore, it is difficult to apply
such conventional SRGM’s to embedded OSS. Therefore, we apply the SRGM’s
based on a software failure hazard rate (abbreviated as the hazard rate model) in
place of the fault-counting type SRGM to the embedded OSS.

In this chapter, we propose a method of software reliability assessment based on
a flexible hazard rate model for embedded OSS. Also, we derive several assessment
measures. Especially, we also develop the software reliability/portability assessment
tool for the porting-phase of embedded system development by using Java program-
ming language. Then, we analyze actual software failure-occurrence time-interval
data to show numerical examples of software reliability/portability analysis for the
porting-phase of embedded system development by using the proposed tool. Espe-
cially, we develop the tool considering optimal release problem based on a hazard
rate model for the embedded open source software. Also, we add a new feature to
our tool in order to compare our model with the existing models. Moreover, we show
that the proposed tool can assist quality improvement for embedded OSS systems
development.

8.2 Hazard Rate Model for Embedded OSS Porting Phase

In this chapter, we assume that the software faults detected at the porting-phase of
embedded OSS include the following two types:

A1. the software failure caused by the latent fault of embedded OSS
A2. the software failure caused by the latent fault of unique software components

(e.g., device driver).

In the assumption above, A1 is selected by probability p and A2 selected by
probability (1−p). Also, we can not distinguish between assumptions A1 and A2 in
terms of the software faults. The time-interval between successive faults of (k − 1)st
and kth is represented as the random variable Xk (k = 1, 2, . . .). Therefore, we can
define the hazard rate function zk(x) for Xk as follows:

zk(x) = p · z1k(x) + (1 − p) · z2k (x) (k = 1, 2, . . . ; 0 ≤ p ≤ 1), (8.1)

z1k(x) = D(1 − α · e−αk)k−1 (k = 1, 2, . . . ; −1 < α < 1, D > 0), (8.2)

z2k (x) = φ{N − (k − 1)} (k = 1, 2, . . . , N; N > 0, φ > 0), (8.3)

8.2 Hazard Rate Model for Embedded OSS Porting Phase 55

where each parameter is defined as follows:

z1k(x) the hazard rate for the assumption A1,
α the shape parameter representing the active state of OSS project,
D the initial hazard rate for the 1st software failure,
z2k (x) the hazard rate for the assumption A2,
N the number of latent faults in unique software components,
φ the hazard rate per inherent fault,
p the weight parameter for z1k(x).

Equation (8.2) means the hazard rate for a software failure-occurrence phenom-
enon for the embedded OSS. On the other hand, Eq. (8.3) represents the hazard
rate for a software failure-occurrence phenomenon for the unique software com-
ponents. Thus, our model defined by Eq. (8.1) simultaneously describes both the
faults detected at the embedded OSS installed to embedded system by Eq. (8.2) and
detected at the unique software components such as the device drivers.

In particular, our model includes both the modified Moranda model [8] and
the conventional Jelinski–Moranda(J-M) model [7]. Equation (8.2) based on the
Moranda model means that the initial hazard rate for the 1st software failure geomet-
rically decreases with the active state of OSS. Also, we assume that the active state
of OSS grows exponentially in accordance with the decreasing value of parameter α.

8.3 Reliability Assessment Measures

In porting-phase of embedded OSS, the distribution function of Xk(k = 1, 2, . . .)

representing the time-interval between successive software failures of (k − 1)st and
kth is defined as:

Fk(x) ≡ Pr{Xk ≤ x} (x ≥ 0), (8.4)

where Pr{A} represents the occurrence probability of event A. Therefore, the follow-
ing function means the probability density function of Xk:

fk(x) ≡ dFk(x)

dx
. (8.5)

Therefore,we canobtain software reliability assessmentmeasures fromour hazard
rate model represented by Eq. (10.1) as follows. The probability density function can
be derived as

fk(x) =
{

pD(1 − α · e−αk)k−1 + (1 − p)φ(N − k + 1)
}

· exp
[

−
{

pD(1 − α · e−αk)k−1 + (1 − p)φ(N − k + 1)
}

· x

]
. (8.6)

http://dx.doi.org/10.1007/978-3-319-31818-9_10

56 8 Reliability Analysis Tool for Embedded OSS

Also, the software reliability is given by the following equation:

Rk(x) = exp

[
−

{
pD(1 − α · e−αk)k−1 + (1 − p)φ(N − k + 1)

}
· x

]
. (8.7)

Moreover, the mean time between software failures(MTBF) is given as follows:

E[Xk] = 1

pD(1 − α · e−αk)k−1 + (1 − p)φ(N − k + 1)
. (8.8)

8.4 Optimal Release Problem for the Porting-Phase

We find the optimal release time of porting-phase by minimizing the total expected
software cost in this section. Then, we discuss about the determination of optimal
software release times minimizing the total expected software cost [17, 18]. We
introduce the following cost parameters:

c1 the testing cost per porting-time (c1 > 0),
c2 the fixing cost per fault during the porting-phase (c2 > 0),
c3 the fixing cost per fault after the release (c3 > c2).

Then, the expected software cost of OSS can be formulated as:

C1(l) = c1

l∑

k=1

E[Xk] + c2l, (8.9)

where l is the number of software failure-occurrence.
Also, we can define the expected software cost for software components as fol-

lows:

C2(l) = c3 (N − l) . (8.10)

Consequently, from Eqs. (8.9) and (8.10), the total expected software cost is
given by

C(l) = C1(l) + C2(l). (8.11)

From l∗ obtained by minimizing l, we can estimate the optimum software release
time

∑l∗
k=1 E[Xk].

8.5 Reliability Assessment Measures 57

8.5 Reliability Assessment Measures

We can give the following expressions as software reliability assessment measures
derived from our hazard rate model:

• MTBF
The MTBF is useful to measure the property of the frequency of software failure-
occurrence, and is given by Eq. (8.8).

• Software reliability
Also, the software reliability can be defined as the probability which a software
failure does not occur during the time-interval (t, t + x] (t ≥ 0, x ≥ 0) given that
the testing-time of porting-phase is t. The software reliability is given by Eq. (8.7).

• Porting stability
Moreover, we can estimate the porting stability from our hazard rate model. We
define the porting stability as the value of model parameter w1.

• MSE
TheMSE (mean square error) can be obtained by dividing the sum of square errors
between the observed value, yk , and its estimated one, ŷk , by the number of data
pairs; n. That is,

MSE = 1

n

n∑

k=1

(yk − ŷk)
2. (8.12)

ŷk (k = 1, 2, . . . , n) in Eq. (8.12) is obtained from the estimated value. The mean
square error indicates that the selected model fits better to the observed data as
MSE becomes small. We compare the proposed flexible hazard rate model for
embedded OSS with the following typical conventional hazard rate models:

for Moranda model:

zk(x) = Dck−1

(D > 0, 0 < c < 1; k = 1, 2, . . .), (8.13)

E[Xk] = 1

Dck−1
. (8.14)

for Jelinski–Moranda(J-M) model:

zk(x) = φ(N − k + 1)

(N > 0, φ > 0; k = 1, 2, . . . , N), (8.15)

E[Xk] = 1

φ(N − k + 1)
. (8.16)

The model parameters in Eqs. (8.13) and (8.15) are defined as follows:

58 8 Reliability Analysis Tool for Embedded OSS

D the initial hazard rate for 1st software failure,
c the reduction factor of hazard rate,
φ the hazard rate per remaining fault,
N the latent fault in software system.

• Predicted relative error
Furthermore, we adopt the value of the predicted relative error as comparison
criteria of goodness-of-fit in our tool. The predicted relative error is defined as a
relative error between the predicted and observed values of the software failure-
occurrence time-interval. It is given by

Rp = Â(tq) − q

q
, (8.17)

where tq is the termination time of the porting and q the observed number of faults
detected in the time-interval [0, tq). Â(tq) in Eq. (8.17) is the estimated value of
the MTBF at the termination time tq where A(t) is estimated by using the actual
data observed up to arbitrary porting time tp(0 ≤ tp ≤ tq).

• Optimum software release time
Moreover, we can estimate the optimal software release time minimizing the
expected total software cost based on our hazard rate model.

• Total expected software cost
We can estimate the total expected software cost in case of the estimated optimum
software release time

∑l∗
k=1 E[Xk]

• Laplace trend test
Also, we use the Laplace trend test [19] of the data set to determine which hazard
rate models are useful to investigate. In case of the software failure-occurrence
time-interval data, the Laplace trend test statistic u(i) is given by the following
equation [19].

u(i) =
1

i−1

∑i−1

n=1

∑n

j=1
θj −

∑i

j=1
θj

2
∑i

j=1
θj

√
1

12(i − 1)

, (8.18)

where i is the software failure number, θj means the jth the software failure-
occurrence time-interval.

8.6 Reliability/Portability Assessment Tool 59

Fig. 8.1 The structure of reliability/portability assessment tool for embedded OSS

8.6 Reliability/Portability Assessment Tool

8.6.1 Specification Requirement

The specification requirement of the reliability/portability assessment tool for embed-
ded OSS are shown as follows:

1. This tool should be operated by clicking the mouse button and typing on the
keyboard to input the data through GUI system.

2. An object-oriented language, Java, should be used to implement the program.
This tool is developed as a stand-alone application on Windows,1 Unix,2 and
Macintosh3 operating system.

3. This tool treats the hazard ratemodel for embeddedOSS, and illustrate theMTBF,
software reliability, porting stability, and predicted relative error as software
reliability/portability assessment measures.

4. In case of the fault detection time-interval data, the Laplace trend test statistic is
illustrated.

5. This tool calculate the MSE for several existing models.

1Windows is a registered trademark licensed to Microsoft Corp.
2Unix is a registered trademark licensed to the Open group.
3Macintosh is a trademark of Macintosh Laboratory, Inc. licensed to Apple Computer, Inc.

60 8 Reliability Analysis Tool for Embedded OSS

Fig. 8.2 The activity diagram of reliability/portability assessment tool for embedded OSS

8.6 Reliability/Portability Assessment Tool 61

8.6.2 Software Reliability Assessment Procedures

The procedures of reliability/portability assessment built into the proposed tool for
embedded OSS are shown as follows:

1. This tool processes the data file in terms of the software failure-occurrence
time-interval data in the porting-phase of the embedded system for reliabil-
ity/portability assessment.

Fig. 8.3 The sequence diagram of reliability/portability assessment tool for embedded OSS

62 8 Reliability Analysis Tool for Embedded OSS

2. Using the data obtained from the porting-phase, we analyze the data for input
data.

3. This tool estimates the unknown parameters included in our hazard rate model.
We assume as w1 = pD and w2 = (1 − p)φ for the simplification technique.
Moreover, we define w1 and w2 as the scale of the porting stability. Moreover,
MSE for several existing model are calculated.

4. This tool illustrates theMTBF, software reliability, porting stability, and predicted
relative error as software reliability/portability assessment measures.

5. This tool illustrates the Laplace trend test statistic of the data set.
6. We focus on optimal software release problems based on our hazard rate model

for the porting-phase. Especially, the expected total software cost and the optimal
software release time minimizing the cost for our model are plotted on the CRT.

This tool is composed of several function components such as fault analysis,
estimation of unknown parameters, goodness-of-fit test for the estimated model,
graphical representation of fault data, and results of estimation. The structure of reli-
ability/portability assessment tool for embedded OSS is shown in Fig. 8.1.Moreover,
we show the activity diagram and the sequence diagram for designing our tool in
Figs. 8.2 and 8.3.

References

1. The Apache HTTP Server Project, The Apache Software Foundation, http://httpd.apache.org/
2. Mozilla.org, Mozilla Foundation, http://www.mozilla.org/
3. M.R. Lyu (ed.), Handbook of Software Reliability Engineering (IEEE Computer Society Press,

Los Alamitos, 1996)
4. J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Applica-

tion (McGraw-Hill, New York, 1987)
5. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,

2014)
6. G.J. Schick, R.W. Wolverton, An analysis of competing software reliability models. IEEE

Trans. Softw. Eng. SE-4(2), 104–120 (1978)
7. Z. Jelinski, P.B. Moranda, Software reliability research, in Statistical Computer Performance

Evaluation, ed. by W. Freiberger (Academic Press, New York, 1972), pp. 465–484
8. P.B. Moranda, Event-altered rate models for general reliability analysis. IEEE Trans. Reliab.

R-28(5), 376–381 (1979)
9. M. Xie, On a generalization of the J-M Model, in Proceedings of the Reliability ’89, vol. 5,

Ba/3/1–5 Ba/3/7 (1989)
10. Y. Zhoum, J. Davis, Open source software reliability model: an empirical approach, in Pro-

ceedings of the Workshop on Open Source Software Engineering (WOSSE), vol. 30(4) (2005),
pp. 67–72

11. P. Li, M. Shaw, J. Herbsleb, B. Ray, P. Santhanam, Empirical evaluation of defect projection
models for widely-deployed production software systems, in Proceeding of the 12th Interna-
tional Symposium on the Foundations of Software Engineering (FSE-12) (2004), pp. 263–272

12. J. Norris, Mission-critical development with open source software. IEEE Softw. Mag. 21(1),
42–49 (2004)

13. Open Handset Alliance, Android, http://www.android.com/
14. E. Andersen, BusyBox, http://www.busybox.net/

http://httpd.apache.org/
http://www.mozilla.org/
http://www.android.com/
http://www.busybox.net/

References 63

15. Y. Tamura, S. Yamada, Comparison of software reliability assessment methods for open source
software, inProceedings of the 11th IEEE International Conference on Parallel and Distributed
Systems (ICPADS2005), vol. II Fukuoka, Japan, 20–22 July 2005, pp. 488–492

16. Y. Tamura, S. Yamada, A method of user-oriented reliability assessment for open source soft-
ware and its applications, Proceedings of the 2006 IEEE International Conference on Systems,
Man, and Cybernetics, Taipei, Taiwan, 8–11 October 2006, pp. 2185–2190

17. S. Yamada, S. Osaki, Cost-reliability optimal software release policies for software systems.
IEEE Trans. Reliab. R-34(5), 422–424 (1985)

18. S. Yamada, S. Osaki, Optimal software release policies with simultaneous cost and reliability
requirements. Eur. J. Oper. Res. 31(1), 46–51 (1987)

19. P.A. Keiler, T.A. Mazzuchi, Enhancing the predictive performance of the Goel–Okumoto soft-
ware reliability growth model, in Proceedings Annual Reliability and Maintainability Sympo-
sium (IEEE Press, 2000), pp. 106–112

Chapter 9
Reliability Analysis Tool for Open Source
Solution

9.1 Introduction

Open source software (OSS) systems which serve as key components of critical
infrastructures in the society are still ever-expanding now. Many OSS’s are devel-
oped in all parts of the world, i.e., Firefox, Apache HTTP server, Linux, Android,
etc. Also, there is a growing interest in the next-generation software development
paradigm by using network computing technologies such as a cloud computing. The
successful experience of adopting the distributed development model in such open
source projects includes GNU/Linux operating system, Apache HTTP server, and
so on. However, the poor handling of the quality and customer support prohibits the
progress of OSS. This chapter focuses on the problems of software quality, which
prohibit the progress of OSS. Especially, a large scale open source solution is now
attracting attention as the next-generation software development paradigm because
of the cost reduction, quick delivery, and work saving. Also, the large scale open
source solution has such a unique feature that it is composed of several OSS’s. There
is no testing phase for the development cycle of each OSS. However, the open source
solution has the testing phase such as the binding phase of OSS’s with debugging
process. Then, it is important to be able to connect several OSS components.

Many software reliability growth models (SRGM’s) [1] have been applied to
assess the reliability for qualitymanagement and testing-progress control of software
development. On the other hand, the effective method of dynamic testing manage-
ment for newdistributed development paradigmas typified by the open source project
has only a few presented [2–5]. In case of considering the effect of the debugging
process on entire system in the development of a method of reliability assessment
for open source solution, it is necessary to grasp the situation of registration for bug
tracking system, the combination status of OSS’s, the degree of maturation of each
OSS, etc. Moreover, if the size of the software system is large, the number of faults
detected during the testing phase becomes large, and the changes of the number of
faults which are detected and removed through each debugging become sufficiently
small compared with the initial fault content at the beginning of the testing. There-

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_9

65

66 9 Reliability Analysis Tool for Open Source Solution

fore, in such a case, a stochastic process model with continuous state space can be
used in order to describe the stochastic behavior of the fault-detection process such
as the large scale open source solution.

This chapter focuses on an open source solution developed under several OSS’s.
Also, a useful method of software reliability assessment in open source solution
as a typical case of next-generation distributed development paradigm is discussed
in this chapter. Then, this chapter propose an SRGM based on stochastic differ-
ential equations in order to consider the component collision of OSS. Then, the
proposed model assumes that the software fault-detection rate depends on the time,
and the software fault-report phenomena on the bug tracking system keep an irregular
state. Especially, the reliability analysis tool for open source solution is developed
in this chapter. Also, a set of actual software fault-count data is analyzed in order
to show numerical examples of software reliability assessment for the open source
solution. Moreover, several numerical examples of reliability assessment for each
OSS component are shown. Furthermore, several reliability assessment measures
are derived from the proposed model. Then, this chapter shows that the developed
reliability analysis tool can assist the improvement of quality for an open source
solution developed under several OSS’s.

9.2 Stochastic Differential Equation Modeling

Let N (t) be the number of faults detected in the open source solution by testing
time t (t ≥ 0). Suppose that N (t) takes on continuous real values. Since latent faults
in the open source solution are detected and eliminated during the testing phase,
N (t) gradually increases as the testing procedures go on. Thus, under common
assumptions for software reliability growth modeling, it is assumed the following
linear differential equation:

dN(t)

dt
= b(t){a − N(t)}, (9.1)

where b(t) is the software fault-detection rate at testing time t and a non-negative
function.

Generally, it is difficult for software managers to use all functions in open source
solution, because the connection state among OSS components is unstable in the
testing-phase of open source solution. Considering the characteristic of open source
solution, the software fault-report phenomena keep an irregular state in the early
stage of testing-phase. Moreover, the addition and deletion of software components
are repeated under the development of each OSS system, i.e., the proposed model
considers the software failure occurrence phenomenon depending on the time.

Therefore, Eq. (9.1) can be extended to the following stochastic differential equa-
tion [6, 7]:

9.2 Stochastic Differential Equation Modeling 67

dN(t)

dt
= {b(t) + σγ (t)μ(t)}{a − N (t)}, (9.2)

where a is the expected number of the initial inherent faults, σ a positive constant
representing a magnitude of the irregular fluctuation, γ (t) a standardized Gaussian
white noise, and μ(t) the collision level function of OSS component.

Equation (9.2) is extended to the following stochastic differential equation of an
Itô type:

dN(t) =
{

b(t) − 1

2
σ 2μ(t)2

}
{a − N (t)}dt + σ {a − N (t)}dW (t), (9.3)

where W (t) is a one-dimensional Wiener process which is formally defined as an
integration of the white noise γ (t) with respect to time t . The Wiener process is a
Gaussian process and it has the following properties:

Pr[W (0) = 0] = 1, (9.4)

E[W (t)] = 0, (9.5)

E[W (t)W (t ′)] = Min[t, t ′], (9.6)

where Pr[·] and E[·] represent the probability and expectation, respectively.
By using Itô’s formula [6, 7], the solution of Eq. (9.3) under the initial condition

N (0) = 0 can obtain as follows [8]:

N (t) = a

[
1 − exp

{
−

∫ t

0
b(s)ds − σμ(t)W (t)

}]
. (9.7)

Several software reliability measures can be derived by using solution process N (t)
in Eq. (9.7).

Moreover, the proposed model is defined as the software fault detection rate per
fault in case of b(t) ≡ b1(t) and b(t) ≡ b2(t), and the collision level function μ(t)
defined as:

b1(t) =
d Ne(t)

dt

ae − Ne(t)
.=

d He(t)
dt

ae − He(t)
= b, (9.8)

b2(t) =
d Ns (t)

dt

as − Ns(t)
.=

d Hs (t)
dt

as − Hs(t)
= b2t

1 + bt
, (9.9)

μ(t) = exp[−ωt], (9.10)

where He(t) and Hs(t) mean the exponential SRGM and the delayed S-shaped
SRGM, respectively, based on nonhomogeneous Poisson process (NHPP) [1]. Also,
b is the software failure rate per inherent fault, and ω the parameter of stability for
the open source solution.

68 9 Reliability Analysis Tool for Open Source Solution

Therefore, the cumulative number of detected faults of these two models with
He(t) and Hs(t) are obtained as follows, respectively:

Ne(t) = a
[
1 − exp {−bt − σμ(t)W (t)}] , (9.11)

Ns(t) = a
[
1 − (1 + bt)exp {−bt − σμ(t)W (t)}] . (9.12)

9.3 Method of Maximum-Likelihood

In this section, the estimation method of unknown parameters, a, b, ω, and σ in
Eq. (9.7) is presented. Let us denote the joint probability distribution function of the
process N (t) as

P(t1, y1; t2, y2; . . . ; tK , yK)

≡ Pr[N (t1) ≤ y1, . . . , N (tK) ≤ yK |N (t0) = 0], (9.13)

where N (t) is the cumulative number of faults detected up to the testing time t (t ≥ 0),
and denote its density as

p(t1, y1; t2, y2; . . . ; tK , yK)

≡ ∂K P(t1, y1; t2, y2; . . . ; tK , yK)

∂y1∂y2 · · · ∂yK
. (9.14)

Since N (t) takes on continuous values, the likelihood function l for the observed
data (tk, yk)(k = 1, 2, . . . , K) is constructed as follows:

l = p(t1, y1; t2, y2; . . . ; tK , yK). (9.15)

For convenience inmathematicalmanipulations, the following logarithmic likelihood
function is used:

L = log l. (9.16)

The maximum-likelihood estimates, a∗, b∗, ω∗, and σ ∗ are the values making L
in Eq. (9.16) maximize. These can be obtained as the solutions of the following
simultaneous likelihood equations [8]:

∂L

∂a
= ∂L

∂b
= ∂L

∂ω
= ∂L

∂σ
= 0. (9.17)

9.4 Software Reliability Assessment Measures 69

9.4 Software Reliability Assessment Measures

It is useful for software managers to estimate the expected number of faults detected
up to testing time t . The density function of W (t) is given by:

f (W (t)) = 1√
2π t

exp

{
−W (t)2

2t

}
. (9.18)

Information on the cumulative number of detected faults in the system is important
to estimate the situation of the progress on the software testing procedures. Since
N (t) is a random variable in the proposed model, its expected value can be a useful
measure. The expected number of faults detected up to time t can be calculated from
Eq. (9.7) as follows [8]:

E[N (t)] = a

[
1 − exp

{
−

∫ t

0
b(s)ds + σ 2μ(t)2

2
t

}]
. (9.19)

where E[N (t)] is the expected number of faults detected up to time t . Therefore,
the expected number of detected faults, E[Ne(t)] and E[Ns(t)] for Eqs. (9.11) and
(9.12), are given by the following equations, respectively:

E[Ne(t)] = a

[
1 − exp

{
−bt + σ 2μ(t)2

2
t

}]
, (9.20)

E[Ns(t)] = a

[
1 − (1 + bt) exp

{
−bt + σ 2μ(t)2

2
t

}]
. (9.21)

Also, the expected number of remaining faults at time t can obtain as follows:

E[M(t)] = a − E[N (t)]. (9.22)

Also, the mean time between software failures is useful to measure the property of
the frequency of software failure-occurrence. Then, the cumulative MTBF(denoted
by MTBFC) is approximately given by:

MTBFC(t) = t

E[N (t)] . (9.23)

9.5 Comparison of Goodness-of-Fit

The software managers can compare the goodness-of-fit of the proposed sto-
chastic differential equation models (SDE models) in case of b(t) ≡ b1(t) and
b(t) ≡ b2(t), with the conventional exponential SDEmodel [8], and the conventional

70 9 Reliability Analysis Tool for Open Source Solution

S-shaped SDE model [8]. The developed tool is adopted the value of the Akaike’s
information criterion (AIC) as one of comparison criteria of goodness-of-fit. AIC
helps software managers to select the optimal model among ones estimated by the
method of maximum-likelihood. It is given by

AIC = −2 · (logarithmic maximum-likelihood)

+2 · (the number of free model parameters). (9.24)

Differences among their values are significant for AIC, not their values themselves.
It can be judged that the model having the smallest AIC fits best to the actual data set
when their differences are greater than or equal to 1. However, there are no significant
difference among themodels in the case where the difference of AIC’s are less than 1.

The MSE (mean square error) can be obtained by dividing the sum of square
errors between the observed value, yk , and its estimated one, ŷk , by the number of
data pairs; n. That is,

MSE = 1

n

n∑

k=1

(yk − ŷk)
2. (9.25)

ŷk(k = 1, 2, . . . , n) in Eq. (11.10) is obtained from the estimated value. The MSE
indicates that the selected model fits better to the observed data as MSE becomes
small. The developed tool can compare the proposed SDEmodels for the open source
solution with two typical conventional SDE models [8].

Moreover, the developed tool is adopted the value of the predicted relative error
as comparison criteria of goodness-of-fit in the proposed SDEmodels. The predicted
relative error is a relative error of the predicted values and observed data of the number
of detected faults that will be discovered by fault-detecting end time tK when having
estimated for any time tk . If the predicted relative error at time tk is represented as
PRE[tk], it is calculated by

PRE[tk] = ŷ(tk; tK) − yK

yK
, (9.26)

where ŷ(tk; tK) is the estimated number of detected faults in fault-detecting end time
tK for the observed data until time tk and yK observed data of the number of faults
by fault-detecting end time tK .

9.6 Procedures of Reliability Analysis

The procedures of reliability analysis based on the proposed SDEmodels for an open
source solution are shown as follows:

http://dx.doi.org/10.1007/978-3-319-31818-9_11

9.6 Procedures of Reliability Analysis 71

1. The softwaremanagers process the fault data in terms of the cumulative number of
detected faults in the testing-phase of open source solution for reliability analysis.

2. The software managers estimate the unknown parameters a, b, ω and σ included
in the proposed SDE model by using the method of maximum-likelihood.

3. The software managers can compare the proposed SDE models with two typical
conventional SDEmodels [8] by usingAIC,MSE, and the predicted relative error.

4. It is useful for the software managers to understand the debugging progress in
testing-phase of open source solution development by using the expected number
of detected faults, the sample path of detected faults, the expected number of
remaining faults, and MTBF’s as software reliability assessment measures.

9.7 Reliability Analysis Tool

9.7.1 Specification Requirement

The specification requirement of the reliability analysis tool for open source solution
are shown as follows:

1. This tool should be operated by clicking the mouse button and typing on the
keyboard to input the data through GUI system.

2. Open source Flex SDK [9] should be used to implement the program. This tool
is developed as a stand-alone Adobe Air application on Windows,1 Unix,2 and
Macintosh OSX3 operating system. Also, this tool operates as Web application.

3. This tool treats the proposed SDE models for open source solution and the con-
ventional SDE models, and illustrate the expected number of detected faults, the
sample path of detected faults, the predicted relative error, the expected number
of remaining faults, and the cumulative MTBF as software reliability assessment
measures.

9.7.2 Software Reliability Assessment Procedures

The procedures of reliability analysis built into the proposed tool for open source
solution are shown as follows:

1. This tool processes the data file in terms of the software fault-detection count data
in the testing-phase of the open source solution for reliability analysis.

2. Using the data set obtained from the testing-phase, the data for input data is
analyzed.

1Windows is a registered trademark licensed to Microsoft Corp.
2Unix is a registered trademark licensed to the Open group.
3Macintosh is a trademark of Macintosh Laboratory, Inc. licensed to Apple Computer, Inc.

72 9 Reliability Analysis Tool for Open Source Solution

3. This tool estimates the unknownparameters included in the proposed SDEmodels
and the conventional SDE models. Also, the estimation results of model parame-
ters are shown on the menu window of the developed tool.

4. This tool illustrates the expected number of detected faults, the sample path of
detected faults, the predicted relative error, the expected number of remaining
faults, and the cumulative MTBF as software reliability assessment measures.

This tool is composed of several function components such as fault analysis, esti-
mation of unknown parameters, graphical representation of fault data, and results of
estimation. Moreover, the activity diagram and the sequence diagram of the devel-
oped tool are shown in Figs. 9.1 and 9.2.

Fig. 9.1 The activity diagram of reliability analysis tool for open source solution

9.7 Reliability Analysis Tool 73

F
ig

.9
.2

T
he

se
qu
en
ce

di
ag
ra
m

of
re
lia
bi
lit
y
an
al
ys
is
to
ol

fo
r
op
en

so
ur
ce

so
lu
tio

n

74 9 Reliability Analysis Tool for Open Source Solution

References

1. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,
2014)

2. A.MacCormack, J. Rusnak, C.Y. Baldwin, Exploring the structure of complex software designs:
an empirical study of open source and proprietary code. Inf. J. Manag. Sci. 52(7), 1015–1030
(2006)

3. G. Kuk, Strategic interaction and knowledge sharing in the KDE developer mailing list. Inf. J.
Manag. Sci. 52(7), 1031–1042 (2006)

4. Y. Zhoum, J. Davis, Open source software reliability model: an empirical approach. Proc. Work-
shop Open Source Softw. Eng. (WOSSE) 30(4), 67–72 (2005)

5. P. Li,M. Shaw, J.Herbsleb, B. Ray, P. Santhanam, Empirical evaluation of defect projectionmod-
els for widely-deployed production software systems, in Proceeding of the 12th International
Symposium on the Foundations of Software Engineering (FSE-12) (2004), pp. 263–272

6. L. Arnold, Stochastic Differential Equations-Theory and Applications (Wiley, New York, 1974)
7. E. Wong, Stochastic Processes in Information and Systems (McGraw-Hill, New York, 1971)
8. S. Yamada, M. Kimura, H. Tanaka, S. Osaki, Software reliability measurement and assessment

with stochastic differential equations. IEICE Trans. Fundam. E77-A(1), 109–116 (1994)
9. Flex.org–Adobe Flex Developer Resource, Adobe Systems Incorporated, http://flex.org/

http://flex.org/

Chapter 10
Reliability Analysis Tool for Mobile OSS

10.1 Introduction

Acloud computing is now attracting attention as the next-generation software service
paradigmbecause of the cost reduction, quick delivery, andwork saving. In particular,
third-party software development paradigm has been gaining a lot of attention in var-
iousmobile software development area, i.e., Android, OpenStack, andApacheHTTP
server, etc. At present, OSS (Open Source Software) systems serve as key compo-
nents of critical infrastructures in the society. The open source project contains special
features so-called software composition by which several geographically-dispersed
components are developed in all parts of the world. The successful experience of
adopting such open source projects includes Apache HTTP server, MySQL database
server, OpenStack cloud software, Firefox Web browser, and GNU/Linux operating
system, etc. However, the poor handling of quality problem and customer support has
limited the progress of OSS, because the development cycle of OSS has no testing
phase.

In particular, a mobile OSS known as one of OSS has been gaining a lot of
attention in the embedded system area, i.e., Android [1], BusyBox [2], Firefox OS
[3], etc. However, the installer software developed under the third-party developers
indirectly effect on the reliability in area of a mobile device. Therefore, it is difficult
for many companies to assess the reliability in mobile clouds, because a mobile OSS
includes several software versions, the vulnerability issue, the opened source code,
the security hole, etc.

Many Software reliability growth models (SRGM’s) [4–6] and the related hazard
rate models [7–10] have been applied to assess the reliability for quality management
and testing progress control of software development. On the other hand, the effective
methods assisting dynamic testing management for a new distributed development
paradigm as typified by the open source project have only a few presented [11–13].
Also, several research papers [14–18] have been proposed in the area of mobile
cloud computing. However, these papers focus on the security, service optimization,
secure control, resource allocation technique, etc. The research papers in terms of

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_10

75

76 10 Reliability Analysis Tool for Mobile OSS

reliability for mobile clouds have only a few presented. In case of considering the
effect of the debugging process on entire system in the development of a method of
reliability assessment for the software developed under the third-party developers,
it is necessary to grasp the situation of installer software, the network traffic, the
installed software, etc. Then, it is very important to consider the status of network
traffic in terms of the reliability assessment in the following standpoint:

• In case of the open source, the weakness of reliability and security becomes a
significant problem via a computer network as shown in Fig. 10.1.

• By using the installer software, the various third-party software are installed via
the network.

• In case of the mobile device, the network access devices are frequently used by
many software installed via the installer software.

In particular, the bidirectional arrows in Fig. 10.1 show the effects on each factor.
For example, the opened source code has an effect on the reliability and security,
because the user and cracker can see the source code of software. Also, the change of
reliability has an effect on the source code and security, because the source code and
security are improved by upgrading to the bug-fix version. Moreover, the security is
influenced by the reliability and source code, because the change of the number of
detected faults has an effect on the security level, and the opened source code can
increase the discoverability of security hole.

Many fault-counting type SRGM’s have been applied to assess the reliability for
quality management and testing progress control of software development. However,
it is difficult to apply the SRGM’s for assessing quality/reliability of the software
developed under the third-party developers such as OSS. In other words, the testing
phase is nonexistent in the open source development paradigm. In fact, there are
several SRGM’s that can be applied in the above situation, i.e., the Weibull and Log-
logistic SRGM’s, and so on [4]. In particular, in case the software developed under the
third-party developers, it is difficult to assess both the software failure and network

Fig. 10.1 The relationship between reliability and network

10.1 Introduction 77

traffic affected by using the installer software. As another more challenging aspect of
the embeddedOSSproject, the embeddedOSS includes several software components
in terms of hardware such as a device driver [19, 20].

From above discussed points, we consider that all factors of open source software,
installer software, and network access have an effect on the mobile clouds, directly
and indirectly. In other words, the mobile clouds have a deeply complex issue in
terms of the reliability. Therefore, it is very important to consider the network envi-
ronment from the point of view of the reliability for mobile clouds, i.e., it will be
able to keep the stable operation of mobile clouds if we can offer several reliability
assessment measures considering the network traffic in terms of all factors of open
source software, installer software, and network access.

In this chapter, we focus on the method of reliability analysis for the mobile
clouds. Then, we propose a method of software reliability analysis based on a hazard
rate model and neural network for the mobile clouds. Also, we derive several assess-
ment measures. In particular, we develop an AIR application for reliability analysis
based on the proposed method. AIR means Adobe Integrated Runtime. The AIR
application can perform on the cross platform, e.g., Windows, Mac OS, and Linux,
some mobile operating systems such as BlackBerry Tablet OS, iOS and Android.
Our application for reliability assessment is a flexible tool, because our application
is developed as AIR application performed on AIR. Moreover, we show the perfor-
mance examples of the developed AIR application to analyze the method of software
reliability assessment for the mobile clouds. Then, we show that the developed AIR
application may assist quality improvement for mobile clouds.

10.2 Hazard Rate Model for Mobile OSS

The time-interval between successive software failures of (k − 1)-th and k-th is
represented as the random variable Xk (k = 1, 2, . . .). Therefore, we can define the
hazard rate function zk(x) at time x during the testing phase for Xk as follows:

zk(x) = wk(x){N − (k − 1)} (k = 1, 2, . . . , N ; N > 0), (10.1)

wk(x) = φe−pk (φ > 0, −1 < pk < 1), (10.2)

where we can define the each parameter as follows:

zk(x) the hazard rate for the whole embedded software,
wk(x) the hazard rate per inherent fault considering the network traffic density,
N the number of latent faults,
φ the hazard rate per inherent fault,
pk the changing rate of the network traffic density.

Equation (10.1) means the hazard rate for a software failure-occurrence phenomenon
for the embedded software. Also, we assume that the hazard rate per inherent fault
exponentially depends on the network traffic density in terms of the number of

78 10 Reliability Analysis Tool for Mobile OSS

software failures k as shown in Fig. 7.1. In particular, the network traffic changes
with the number of installed software and the addition of device drivers. Our model
can describe the fault-detection phenomenon considering the network environment
by the changing rate of network traffic density pk included in Eq. (10.2). Thus, the
embedded software shows a reliability regression trend if pk is negative value. On the
other hand, the embedded software shows a reliability growth trend if pk is positive
value [21].

10.3 Reliability Assessment Measures

From the hazard rate model for mobile OSS, the software reliability is given by the
following equation:

Rk(x) = exp

[
−

{
φe−pk {N − (k − 1)}

}
· x

]
. (10.3)

Moreover, the MTBF is given as follows:

E[Xk] = 1

φe−pk {N − (k − 1)} . (10.4)

10.4 Parameter Estimation

We assume that pk(k = 1, 2, . . . , n) are estimated by using neural network. Then,
the mean value of the estimated p̂k is used in the estimation of parameters N and φ.
The procedures of reliability analysis based on the proposedmodel for mobile clouds
are shown as follows:

1. The software managers process the data file in terms of the software failure-
occurrence time data and the network traffic data in the testing phase of the
embedded software for reliability analysis.

2. The software managers estimate the unknown parameters pk(k = 1, 2, . . . , n)

included in our hazard rate model by using the neural network.
3. The software managers estimate the unknown parameters N and φ included in

our hazard rate model by using the method of maximum-likelihood.
4. It is useful for the software managers to understand the debugging progress in

testing phase of mobile clouds by using theMTBF in Eq. (5.10) and software reli-
ability in Eq. (5.9) considering the change of network traffic as software reliability
assessment measures.

Above described methods of the parameter estimation are shown in the following
subsections.

http://dx.doi.org/10.1007/978-3-319-31818-9_7
http://dx.doi.org/10.1007/978-3-319-31818-9_5
http://dx.doi.org/10.1007/978-3-319-31818-9_5

10.5 AIR Application for Reliability Analysis Considering … 79

10.5 AIR Application for Reliability Analysis Considering
the User Experience Design

10.5.1 Specification Requirement

The specification requirement of the reliability analysis tool for mobile clouds are
shown as follows:

1. This tool should be operated by clicking the mouse button and typing on the
keyboard to input the data through GUI system. In particular, the user experience
design is adopted as the important element of our tool.

2. Open source Apache Flex SDK [22] should be used to implement the program.
This tool is developed as a stand-alone Adobe AIR application on Windows,1

Unix,2 and Mac OS X3 operating system. Also, this tool operates as Web appli-
cation.

3. The method of maximum-likelihood is used as the estimation of unknown para-
meters in ourmodel. Also, the neural network based on typical time series analysis
is used as the estimation of the network traffic density. Then, we assume that the
input data xi (i = 1, 2, . . . , t) is the set of network traffic data at the number of
software failures k. Then, we assume the training phase as follows:

Input Data: (x1, x2, . . . , xk−1),

Training Data: (x2, x3, . . . , xk).

Moreover, we consider the prediction phase based on the learned weight parame-
ters as follows:

Input Data: (x2, x3, . . . , xk),

Prediction Data: (x3, x4, . . . , xk+1).

The network traffic data sets xk+2 after the number of software failures k + 1 are
repeatedly estimated by using the previous data sets as the input data sets.

4. This tool treats the proposed hazard rate model considering the network traffic
for mobile clouds, and illustrate the MTBF, the network traffic, and the software
reliability as software reliability assessment measures.

1Windows is a registered trademark licensed to Microsoft Corp.
2Unix is a registered trademark licensed to the Open group.
3Macintosh is a trademark of Macintosh Laboratory, Inc. licensed to Apple Computer, Inc.

80 10 Reliability Analysis Tool for Mobile OSS

10.5.2 User Experience Design

It is known the following items as the elements of user experience design.

“The elements of user experience design”
Visual Design; Information Architecture; Information; Structuring, Organization and Label-
ing; Finding and Managing; Interaction Design; Usability; Accessibility; Human-Computer
Interaction.

We focus on the “Visual Design” and “Interaction Design” as the user experience
design. “VisualDesign” and “InteractionDesign” can easily implement by using Flex
programming language, because Flex includes the following effect components.

• Blur: <mx:Blur — />
• Fade: <mx:Fade — />
• Glow: <mx:Glow — />
• SeriesSlide: <mx:SeriesSlide — />

We develop the dynamic reliability analysis tool based on “Visual Design” and
“Interaction Design” by using the animation effects of Flex.

References

1. Open Handset Alliance, Android, http://www.android.com/
2. E. Andersen, BusyBox, http://www.busybox.net/
3. Firefox OS, Marketplace, Android–Partners–mozilla.org, Mozilla Foundation, http://www.

mozilla.org/firefoxos/
4. M.R. Lyu (ed.), Handbook of Software Reliability Engineering (IEEE Computer Society Press,

Los Alamitos, 1996)
5. J.D. Musa, A. Iannino, K. Okumoto, Software Reliability: Measurement, Prediction, Applica-

tion (McGraw-Hill, New York, 1987)
6. S. Yamada, Software Reliability Modeling: Fundamentals and Applications (Springer, Tokyo,

2014)
7. G.J. Schick, R.W. Wolverton, An analysis of competing software reliability models. IEEE

Trans. Softw. Eng. 4(2), 104–120 (1978)
8. Z. Jelinski, P.B. Moranda, Software reliability research, in Statistical Computer Performance

Evaluation, (Freiberger, Academic Press, New York, 1972), pp. 465–484
9. P.B. Moranda, Event–altered rate models for general reliability analysis. IEEE Trans. Reliab.

28(5), 376–381 (1979)
10. M. Xie, On a generalization of the J-M model, in Proceedings Reliability ’89, 5, Ba/3/1–5

Ba/3/7, 1989
11. Y. Zhoum, J. Davis, Open source software reliabilitymodel: an empirical approach. inProceed-

ings of the Workshop on Open Source Software Engineering (WOSSE) vol. 30(4), pp. 67–72
2005

12. P. Li, M. Shaw, J. Herbsleb, B. Ray, P. Santhanam, Empirical evaluation of defect projection
models for widely-deployed production software systems. in Proceeding of the 12th Interna-
tional Symposium on the Foundations of Software Engineering (FSE-12), pp. 263–272, 2004

13. J. Norris, Mission-critical development with open source software. IEEE Softw. Mag. 21(1),
42–49 (2004)

http://www.android.com/
http://www.busybox.net/
http://www.mozilla.org/firefoxos/
http://www.mozilla.org/firefoxos/

References 81

14. J. Park, H.C. Yu, E.Y. Lee, in Resource allocation techniques based on availability and move-
ment reliability for mobile cloud computing. Distributed Computing and Internet Technology,
Lecture Notes in Computer Science, vol. 7154 (Springer, Berlin, 2012), pp. 263–264

15. H. Suo, Z. Liu, J. Wan, K. Zhou, Security and privacy in mobile cloud computing,
in”Proceedings of the 9th International Wireless Communications and Mobile Computing
Conference, (Cagliari, Italy, 2013), pp. 655–659

16. A. Khalifa, M. Eltoweissy, Collaborative autonomic resource management system for mobile
cloud computing, in Proceedings of the Fourth International Conference on Cloud Computing,
GRIDs, and Virtualization, (Valencia, Spain, 2013), pp. 115–121

17. R. Gabner, H.P. Schwefel, K.A. Hummel, G. Haring, Optimal model-based policies for com-
ponent migration of mobile cloud services, in Proceedings of the 10th IEEE International
Symposium on Network Computing and Applications, (Cambridge, MA, USA, 2011), pp. 195–
202

18. N. Park, in Secure data access control scheme using type-based re-encryption in cloud environ-
ment, Semantic Methods for Knowledge Management and Communication, Studies in Com-
putational Intelligence, vol. 381 (Springer, Berlin, 2011), pp. 319–327

19. K.Y. Cai, D.B. Hu, C. Bai, H. Hu, T. Jing, Does software reliability growth behavior follow a
non-homogeneous poisson process. Inf. Softw. Technol. 50(12), 1232–1247 (2008)

20. Y. Tamura, S. Yamada, Reliability assessment based on hazard rate model for an embedded
OSS porting phase. J. Softw. Test. Verif. Reliab. 23(1), 77–88 (2013)

21. Y. Tamura, S. Yamada, Reliability analysis based on network traffic for a mobile computing, in
Proceedings of the IEEE International Conference on Industrial Engineering and Engineering
Management, (Bangkok, Thailand, 2013), 10–13 December, CD-ROM (RM1)

22. Flex.org–Adobe Flex Developer Resource, Adobe Systems Incorporated, http://flex.org/

http://flex.org/

Chapter 11
Actual Data and Numerical Examples
of OSS Reliability Assessment

11.1 NHPP Model Based on AHP

11.1.1 Reliability Assessment for Each Component

We focus on the Xfce desktop environment [1] which is one of the software system
developed under open source project. The Xfce is a lightweight desktop environment
for UNIX-like operating systems. It aims to be fast and lightweight, while still being
visually appealing and easy to use. The data used in this chapter are collected in
the bug tracking system on the website of Xfce which consists of 6 components
(called general, other, xfce4, xfdesktop, xffm, and xfwm) in November 2004 [1].
Tables 11.1, 11.2, 11.3, 11.4, 11.5 and 11.6 show actual data sets used in this section.
“general” means the panel and utility, etc., “other” is the other components, “xfce4”
is core components, “xfdesktop” is the background manager of desktop, “xffm” is
the file manager, and “xfwm” is the window manager.

We show the cumulative number of detected faults in each component for actual
data in Fig. 11.1. Also, the cumulative number of detected faults in the entire system
for the actual data is shown in Fig. 11.2. We use the AIC and the MSE in terms
of comparing the goodness-of-fit of the existing SRGM’s in Sects. 2.1.2 and 2.13,
respectively. The AIC and MSE for each component are shown in Tables 11.7 and
11.8, respectively.

The estimated result of the weight parameter pi(i = 1, 2, . . . , n) for each compo-
nent based on the AHP in Sect. 2.15 is shown in Table 11.9. Especially, the adopted
evaluation criteria are the importance level of faults detected for each component
(Severity), the fault repairer (Assigned to), and the fault reporter (Reporter). From
Table 11.9, we can find that the level of importance for “other” component is the
largest. On the other hand, we can find that the level of importance for “general”
component is the smallest.

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_11

83

http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2

84 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.1 The actual data of general component in Xfce

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2003/11/16 2 2003/12/26 18

2003/11/17 3 2003/12/27 19

2003/11/18 5 2003/12/28 19

2003/11/19 7 2003/12/29 20

2003/11/20 7 2003/12/30 20

2003/11/21 8 2003/12/31 20

2003/11/22 8 2004/01/01 20

2003/11/23 9 2004/01/02 20

2003/11/24 9 2004/01/03 20

2003/11/25 9 2004/01/04 20

2003/11/26 9 2004/01/05 20

2003/11/27 9 2004/01/06 20

2003/11/28 9 2004/01/07 20

2003/11/29 9 2004/01/08 21

2003/11/30 9 2004/01/09 21

2003/12/01 9 2004/01/10 22

2003/12/02 9 2004/01/11 22

2003/12/03 9 2004/01/12 22

2003/12/04 9 2004/01/13 23

2003/12/05 9 2004/01/14 24

2003/12/06 11 2004/01/15 25

2003/12/07 11 2004/01/16 25

2003/12/08 12 2004/01/17 25

2003/12/09 13 2004/01/18 25

2003/12/10 13 2004/01/19 26

2003/12/11 13 2004/01/20 26

2003/12/12 14 2004/01/21 26

2003/12/13 14 2004/01/22 27

2003/12/14 14 2004/01/23 27

2003/12/15 14 2004/01/24 27

2003/12/16 14 2004/01/25 30

2003/12/17 16 2004/01/26 30

2003/12/18 16 2004/01/27 31

2003/12/19 17 2004/01/28 31

2003/12/20 17 2004/01/29 31

2003/12/21 17 2004/01/30 31

2003/12/22 17 2004/01/31 34

2003/12/23 17 2004/02/01 34

2003/12/24 17 2004/02/02 34

2003/12/25 17 2004/02/03 34

(continued)

11.1 NHPP Model Based on AHP 85

Table 11.1 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/02/04 36 2004/03/13 47

2004/02/05 36 2004/03/14 47

2004/02/06 36 2004/03/15 47

2004/02/07 36 2004/03/16 47

2004/02/08 37 2004/03/17 48

2004/02/09 37 2004/03/18 54

2004/02/10 37 2004/03/19 55

2004/02/11 37 2004/03/20 55

2004/02/12 37 2004/03/21 56

2004/02/13 37 2004/03/22 56

2004/02/14 37 2004/03/23 56

2004/02/15 38 2004/03/24 56

2004/02/16 38 2004/03/25 57

2004/02/17 38 2004/03/26 57

2004/02/18 39 2004/03/27 60

2004/02/19 39 2004/03/28 60

2004/02/20 39 2004/03/29 60

2004/02/21 39 2004/03/30 62

2004/02/22 39 2004/03/31 62

2004/02/23 41 2004/04/01 62

2004/02/24 42 2004/04/02 62

2004/02/25 42 2004/04/03 62

2004/02/26 42 2004/04/04 62

2004/02/27 44 2004/04/05 62

2004/02/28 44 2004/04/06 62

2004/02/29 44 2004/04/07 62

2004/03/01 44 2004/04/08 63

2004/03/02 44 2004/04/09 63

2004/03/03 44 2004/04/10 63

2004/03/04 45 2004/04/11 63

2004/03/05 46 2004/04/12 64

2004/03/06 47 2004/04/13 64

2004/03/07 47 2004/04/14 64

2004/03/08 47 2004/04/15 65

2004/03/09 47 2004/04/16 65

2004/03/10 47 2004/04/17 66

2004/03/11 47 2004/04/18 67

2004/03/12 47 2004/04/19 67

(continued)

86 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.1 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/04/20 67 2004/05/29 82

2004/04/21 68 2004/05/30 82

2004/04/22 68 2004/05/31 84

2004/04/23 68 2004/06/01 88

2004/04/24 69 2004/06/02 88

2004/04/25 69 2004/06/03 89

2004/04/26 69 2004/06/04 89

2004/04/27 69 2004/06/05 89

2004/04/28 69 2004/06/06 90

2004/04/29 69 2004/06/07 92

2004/04/30 69 2004/06/08 92

2004/05/01 69 2004/06/09 93

2004/05/02 70 2004/06/10 94

2004/05/03 72 2004/06/11 94

2004/05/04 72 2004/06/12 95

2004/05/05 72 2004/06/13 95

2004/05/06 72 2004/06/14 96

2004/05/07 73 2004/06/15 96

2004/05/08 73 2004/06/16 96

2004/05/09 73 2004/06/17 96

2004/05/10 73 2004/06/18 97

2004/05/11 73 2004/06/19 97

2004/05/12 74 2004/06/20 98

2004/05/13 75 2004/06/21 100

2004/05/14 75 2004/06/22 100

2004/05/15 76 2004/06/23 104

2004/05/16 76 2004/06/24 104

2004/05/17 77 2004/06/25 106

2004/05/18 78 2004/06/26 106

2004/05/19 78 2004/06/27 107

2004/05/20 78 2004/06/28 108

2004/05/21 79 2004/06/29 108

2004/05/22 81 2004/06/30 108

2004/05/23 81 2004/07/01 108

2004/05/24 81 2004/07/02 108

2004/05/25 82 2004/07/03 108

2004/05/26 82 2004/07/04 108

2004/05/27 82 2004/07/05 108

2004/05/28 82 2004/07/06 108

(continued)

11.1 NHPP Model Based on AHP 87

Table 11.1 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/07/07 108 2004/08/15 124

2004/07/08 108 2004/08/16 124

2004/07/09 108 2004/08/17 124

2004/07/10 108 2004/08/18 124

2004/07/11 110 2004/08/19 124

2004/07/12 110 2004/08/20 124

2004/07/13 111 2004/08/21 125

2004/07/14 112 2004/08/22 128

2004/07/15 113 2004/08/23 128

2004/07/16 113 2004/08/24 130

2004/07/17 113 2004/08/25 130

2004/07/18 113 2004/08/26 132

2004/07/19 113 2004/08/27 134

2004/07/20 113 2004/08/28 135

2004/07/21 115 2004/08/29 135

2004/07/22 115 2004/08/30 135

2004/07/23 116 2004/08/31 135

2004/07/24 116 2004/09/01 135

2004/07/25 116 2004/09/02 135

2004/07/26 118 2004/09/03 135

2004/07/27 118 2004/09/04 136

2004/07/28 119 2004/09/05 136

2004/07/29 119 2004/09/06 136

2004/07/30 119 2004/09/07 136

2004/07/31 120 2004/09/08 136

2004/08/01 120 2004/09/09 137

2004/08/02 121 2004/09/10 138

2004/08/03 122 2004/09/11 138

2004/08/04 122 2004/09/12 139

2004/08/05 123 2004/09/13 140

2004/08/06 123 2004/09/14 140

2004/08/07 124 2004/09/15 140

2004/08/08 124 2004/09/16 141

2004/08/09 124 2004/09/17 142

2004/08/10 124 2004/09/18 142

2004/08/11 124 2004/09/19 142

2004/08/12 124 2004/09/20 142

2004/08/13 124 2004/09/21 142

2004/08/14 124 2004/09/22 142

(continued)

88 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.1 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/09/23 143 2004/10/22 151

2004/09/24 143 2004/10/23 152

2004/09/25 143 2004/10/24 152

2004/09/26 144 2004/10/25 152

2004/09/27 144 2004/10/26 152

2004/09/28 144 2004/10/27 152

2004/09/29 144 2004/10/28 152

2004/09/30 144 2004/10/29 152

2004/10/01 144 2004/10/30 153

2004/10/02 144 2004/10/31 153

2004/10/03 144 2004/11/01 155

2004/10/04 145 2004/11/02 159

2004/10/05 149 2004/11/03 159

2004/10/06 150 2004/11/04 160

2004/10/07 150 2004/11/05 161

2004/10/08 150 2004/11/06 161

2004/10/09 150 2004/11/07 161

2004/10/10 150 2004/11/08 162

2004/10/11 150 2004/11/09 162

2004/10/12 150 2004/11/10 162

2004/10/13 150 2004/11/11 162

2004/10/14 150 2004/11/12 163

2004/10/15 151 2004/11/13 163

2004/10/16 151 2004/11/14 163

2004/10/17 151 2004/11/15 164

2004/10/18 151 2004/11/16 164

2004/10/19 151 2004/11/17 164

2004/10/20 151 2004/11/18 165

2004/10/21 151

11.1 NHPP Model Based on AHP 89

Table 11.2 The actual data of other component in Xfce

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/09/25 1 2004/10/23 14

2004/09/26 2 2004/10/24 14

2004/09/27 2 2004/10/25 14

2004/09/28 2 2004/10/26 14

2004/09/29 2 2004/10/27 14

2004/09/30 2 2004/10/28 14

2004/10/01 2 2004/10/29 14

2004/10/02 2 2004/10/30 14

2004/10/03 3 2004/10/31 15

2004/10/04 4 2004/11/01 19

2004/10/05 5 2004/11/02 19

2004/10/06 5 2004/11/03 20

2004/10/07 7 2004/11/04 20

2004/10/08 9 2004/11/05 21

2004/10/09 9 2004/11/06 21

2004/10/10 9 2004/11/07 21

2004/10/11 12 2004/11/08 21

2004/10/12 12 2004/11/09 22

2004/10/13 12 2004/11/10 22

2004/10/14 13 2004/11/11 24

2004/10/15 13 2004/11/12 24

2004/10/16 13 2004/11/13 24

2004/10/17 13 2004/11/14 24

2004/10/18 13 2004/11/15 25

2004/10/19 13 2004/11/16 27

2004/10/20 13 2004/11/17 28

2004/10/21 13 2004/11/18 29

2004/10/22 14 2004/11/19 30

90 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.3 The actual data of xfce4 component in Xfce

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2003/11/12 1 2003/12/21 14

2003/11/13 1 2003/12/22 14

2003/11/14 1 2003/12/23 14

2003/11/15 2 2003/12/24 14

2003/11/16 2 2003/12/25 14

2003/11/17 4 2003/12/26 14

2003/11/18 5 2003/12/27 14

2003/11/19 6 2003/12/28 14

2003/11/20 6 2003/12/29 14

2003/11/21 6 2003/12/30 14

2003/11/22 6 2003/12/31 14

2003/11/23 6 2004/01/01 14

2003/11/24 6 2004/01/02 14

2003/11/25 6 2004/01/03 14

2003/11/26 6 2004/01/04 14

2003/11/27 6 2004/01/05 14

2003/11/28 6 2004/01/06 15

2003/11/29 6 2004/01/07 15

2003/11/30 6 2004/01/08 15

2003/12/01 6 2004/01/09 15

2003/12/02 6 2004/01/10 15

2003/12/03 7 2004/01/11 15

2003/12/04 8 2004/01/12 15

2003/12/05 8 2004/01/13 15

2003/12/06 10 2004/01/14 15

2003/12/07 10 2004/01/15 15

2003/12/08 11 2004/01/16 15

2003/12/09 11 2004/01/17 16

2003/12/10 11 2004/01/18 16

2003/12/11 11 2004/01/19 16

2003/12/12 12 2004/01/20 16

2003/12/13 12 2004/01/21 17

2003/12/14 12 2004/01/22 17

2003/12/15 12 2004/01/23 17

2003/12/16 12 2004/01/24 17

2003/12/17 14 2004/01/25 17

2003/12/18 14 2004/01/26 17

2003/12/19 14 2004/01/27 17

2003/12/20 14 2004/01/28 17

(continued)

11.1 NHPP Model Based on AHP 91

Table 11.3 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/01/29 18 2004/03/08 22

2004/01/30 18 2004/03/09 22

2004/01/31 19 2004/03/10 22

2004/02/01 19 2004/03/11 22

2004/02/02 20 2004/03/12 22

2004/02/03 20 2004/03/13 22

2004/02/04 20 2004/03/14 22

2004/02/05 21 2004/03/15 22

2004/02/06 21 2004/03/16 22

2004/02/07 21 2004/03/17 22

2004/02/08 21 2004/03/18 23

2004/02/09 21 2004/03/19 24

2004/02/10 21 2004/03/20 24

2004/02/11 21 2004/03/21 24

2004/02/12 21 2004/03/22 24

2004/02/13 21 2004/03/23 24

2004/02/14 21 2004/03/24 24

2004/02/15 21 2004/03/25 24

2004/02/16 21 2004/03/26 24

2004/02/17 21 2004/03/27 25

2004/02/18 21 2004/03/28 26

2004/02/19 21 2004/03/29 26

2004/02/20 22 2004/03/30 26

2004/02/21 22 2004/03/31 26

2004/02/22 22 2004/04/01 26

2004/02/23 22 2004/04/02 26

2004/02/24 22 2004/04/03 26

2004/02/25 22 2004/04/04 26

2004/02/26 22 2004/04/05 26

2004/02/27 22 2004/04/06 26

2004/02/28 22 2004/04/07 26

2004/02/29 22 2004/04/08 26

2004/03/01 22 2004/04/09 26

2004/03/02 22 2004/04/10 26

2004/03/03 22 2004/04/11 26

2004/03/04 22 2004/04/12 26

2004/03/05 22 2004/04/13 26

2004/03/06 22 2004/04/14 26

2004/03/07 22 2004/04/15 27

(continued)

92 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.3 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/04/16 27 2004/05/25 35

2004/04/17 27 2004/05/26 35

2004/04/18 27 2004/05/27 36

2004/04/19 27 2004/05/28 36

2004/04/20 27 2004/05/29 36

2004/04/21 27 2004/05/30 36

2004/04/22 27 2004/05/31 36

2004/04/23 27 2004/06/01 38

2004/04/24 27 2004/06/02 38

2004/04/25 28 2004/06/03 38

2004/04/26 28 2004/06/04 38

2004/04/27 28 2004/06/05 38

2004/04/28 28 2004/06/06 38

2004/04/29 28 2004/06/07 38

2004/04/30 28 2004/06/08 38

2004/05/01 28 2004/06/09 38

2004/05/02 28 2004/06/10 38

2004/05/03 29 2004/06/11 38

2004/05/04 29 2004/06/12 38

2004/05/05 29 2004/06/13 38

2004/05/06 29 2004/06/14 38

2004/05/07 30 2004/06/15 38

2004/05/08 31 2004/06/16 38

2004/05/09 31 2004/06/17 38

2004/05/10 31 2004/06/18 39

2004/05/11 31 2004/06/19 39

2004/05/12 32 2004/06/20 39

2004/05/13 32 2004/06/21 39

2004/05/14 32 2004/06/22 40

2004/05/15 32 2004/06/23 40

2004/05/16 32 2004/06/24 40

2004/05/17 32 2004/06/25 41

2004/05/18 32 2004/06/26 41

2004/05/19 32 2004/06/27 41

2004/05/20 32 2004/06/28 41

2004/05/21 32 2004/06/29 42

2004/05/22 32 2004/06/30 42

2004/05/23 33 2004/07/01 42

2004/05/24 33 2004/07/02 42

(continued)

11.1 NHPP Model Based on AHP 93

Table 11.3 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/07/03 42 2004/08/11 50

2004/07/04 42 2004/08/12 50

2004/07/05 42 2004/08/13 51

2004/07/06 42 2004/08/14 51

2004/07/07 43 2004/08/15 51

2004/07/08 43 2004/08/16 51

2004/07/09 43 2004/08/17 51

2004/07/10 43 2004/08/18 51

2004/07/11 43 2004/08/19 52

2004/07/12 43 2004/08/20 52

2004/07/13 43 2004/08/21 52

2004/07/14 43 2004/08/22 52

2004/07/15 44 2004/08/23 53

2004/07/16 44 2004/08/24 53

2004/07/17 44 2004/08/25 53

2004/07/18 44 2004/08/26 53

2004/07/19 44 2004/08/27 53

2004/07/20 45 2004/08/28 53

2004/07/21 46 2004/08/29 53

2004/07/22 46 2004/08/30 53

2004/07/23 46 2004/08/31 53

2004/07/24 46 2004/09/01 53

2004/07/25 46 2004/09/02 53

2004/07/26 47 2004/09/03 54

2004/07/27 47 2004/09/04 54

2004/07/28 48 2004/09/05 54

2004/07/29 48 2004/09/06 54

2004/07/30 48 2004/09/07 54

2004/07/31 48 2004/09/08 54

2004/08/01 48 2004/09/09 54

2004/08/02 48 2004/09/10 54

2004/08/03 49 2004/09/11 54

2004/08/04 49 2004/09/12 54

2004/08/05 49 2004/09/13 54

2004/08/06 49 2004/09/14 54

2004/08/07 49 2004/09/15 54

2004/08/08 50 2004/09/16 54

2004/08/09 50 2004/09/17 54

2004/08/10 50 2004/09/18 54

(continued)

94 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.3 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/09/19 54 2004/10/20 79

2004/09/20 54 2004/10/21 80

2004/09/21 55 2004/10/22 81

2004/09/22 56 2004/10/23 81

2004/09/23 56 2004/10/24 81

2004/09/24 56 2004/10/25 81

2004/09/25 56 2004/10/26 81

2004/09/26 60 2004/10/27 82

2004/09/27 61 2004/10/28 82

2004/09/28 61 2004/10/29 82

2004/09/29 61 2004/10/30 82

2004/09/30 61 2004/10/31 83

2004/10/01 62 2004/11/01 83

2004/10/02 63 2004/11/02 85

2004/10/03 64 2004/11/03 87

2004/10/04 66 2004/11/04 88

2004/10/05 70 2004/11/05 90

2004/10/06 71 2004/11/06 90

2004/10/07 72 2004/11/07 90

2004/10/08 72 2004/11/08 90

2004/10/09 73 2004/11/09 91

2004/10/10 74 2004/11/10 91

2004/10/11 76 2004/11/11 91

2004/10/12 76 2004/11/12 91

2004/10/13 76 2004/11/13 91

2004/10/14 76 2004/11/14 91

2004/10/15 76 2004/11/15 92

2004/10/16 77 2004/11/16 92

2004/10/17 78 2004/11/17 95

2004/10/18 78 2004/11/18 96

2004/10/19 78

11.1 NHPP Model Based on AHP 95

Table 11.4 The actual data of xfdesktop component in Xfce

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/07/21 1 2004/08/29 3

2004/07/22 1 2004/08/30 3

2004/07/23 2 2004/08/31 3

2004/07/24 2 2004/09/01 3

2004/07/25 2 2004/09/02 3

2004/07/26 2 2004/09/03 3

2004/07/27 2 2004/09/04 3

2004/07/28 2 2004/09/05 3

2004/07/29 2 2004/09/06 3

2004/07/30 2 2004/09/07 3

2004/07/31 2 2004/09/08 3

2004/08/01 2 2004/09/09 3

2004/08/02 2 2004/09/10 3

2004/08/03 2 2004/09/11 3

2004/08/04 2 2004/09/12 3

2004/08/05 2 2004/09/13 3

2004/08/06 2 2004/09/14 3

2004/08/07 2 2004/09/15 3

2004/08/08 2 2004/09/16 3

2004/08/09 2 2004/09/17 3

2004/08/10 2 2004/09/18 3

2004/08/11 2 2004/09/19 3

2004/08/12 2 2004/09/20 5

2004/08/13 2 2004/09/21 5

2004/08/14 2 2004/09/22 5

2004/08/15 3 2004/09/23 6

2004/08/16 3 2004/09/24 6

2004/08/17 3 2004/09/25 6

2004/08/18 3 2004/09/26 7

2004/08/19 3 2004/09/27 7

2004/08/20 3 2004/09/28 7

2004/08/21 3 2004/09/29 7

2004/08/22 3 2004/09/30 8

2004/08/23 3 2004/10/01 8

2004/08/24 3 2004/10/02 8

2004/08/25 3 2004/10/03 8

2004/08/26 3 2004/10/04 8

2004/08/27 3 2004/10/05 8

2004/08/28 3 2004/10/06 11

(continued)

96 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.4 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/10/07 11 2004/10/30 17

2004/10/08 11 2004/10/31 18

2004/10/09 11 2004/11/01 21

2004/10/10 11 2004/11/02 22

2004/10/11 11 2004/11/03 22

2004/10/12 12 2004/11/04 22

2004/10/13 12 2004/11/05 22

2004/10/14 12 2004/11/06 22

2004/10/15 12 2004/11/07 22

2004/10/16 14 2004/11/08 22

2004/10/17 14 2004/11/09 22

2004/10/18 15 2004/11/10 22

2004/10/19 15 2004/11/11 22

2004/10/20 16 2004/11/12 25

2004/10/21 16 2004/11/13 25

2004/10/22 16 2004/11/14 25

2004/10/23 16 2004/11/15 25

2004/10/24 16 2004/11/16 27

2004/10/25 16 2004/11/17 27

2004/10/26 16 2004/11/18 27

2004/10/27 17 2004/11/19 27

2004/10/28 17 2004/11/20 28

2004/10/29 17

11.1 NHPP Model Based on AHP 97

Table 11.5 The actual data of xffm component in Xfce

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2003/11/12 1 2003/12/21 13

2003/11/13 1 2003/12/22 13

2003/11/14 1 2003/12/23 14

2003/11/15 4 2003/12/24 14

2003/11/16 4 2003/12/25 15

2003/11/17 4 2003/12/26 16

2003/11/18 4 2003/12/27 17

2003/11/19 5 2003/12/28 18

2003/11/20 5 2003/12/29 18

2003/11/21 5 2003/12/30 19

2003/11/22 5 2003/12/31 20

2003/11/23 5 2004/01/01 20

2003/11/24 5 2004/01/02 20

2003/11/25 6 2004/01/03 20

2003/11/26 6 2004/01/04 22

2003/11/27 6 2004/01/05 22

2003/11/28 6 2004/01/06 22

2003/11/29 6 2004/01/07 22

2003/11/30 6 2004/01/08 22

2003/12/01 7 2004/01/09 22

2003/12/02 8 2004/01/10 22

2003/12/03 8 2004/01/11 22

2003/12/04 8 2004/01/12 22

2003/12/05 8 2004/01/13 23

2003/12/06 9 2004/01/14 23

2003/12/07 9 2004/01/15 28

2003/12/08 9 2004/01/16 30

2003/12/09 9 2004/01/17 33

2003/12/10 11 2004/01/18 33

2003/12/11 11 2004/01/19 33

2003/12/12 12 2004/01/20 33

2003/12/13 13 2004/01/21 35

2003/12/14 13 2004/01/22 35

2003/12/15 13 2004/01/23 35

2003/12/16 13 2004/01/24 35

2003/12/17 13 2004/01/25 35

2003/12/18 13 2004/01/26 35

2003/12/19 13 2004/01/27 35

2003/12/20 13 2004/01/28 35

(continued)

98 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.5 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/01/29 35 2004/03/08 42

2004/01/30 35 2004/03/09 42

2004/01/31 35 2004/03/10 42

2004/02/01 36 2004/03/11 43

2004/02/02 37 2004/03/12 43

2004/02/03 39 2004/03/13 43

2004/02/04 39 2004/03/14 44

2004/02/05 39 2004/03/15 44

2004/02/06 40 2004/03/16 44

2004/02/07 40 2004/03/17 44

2004/02/08 40 2004/03/18 45

2004/02/09 40 2004/03/19 45

2004/02/10 40 2004/03/20 45

2004/02/11 40 2004/03/21 45

2004/02/12 40 2004/03/22 45

2004/02/13 40 2004/03/23 45

2004/02/14 40 2004/03/24 45

2004/02/15 40 2004/03/25 45

2004/02/16 40 2004/03/26 45

2004/02/17 40 2004/03/27 45

2004/02/18 40 2004/03/28 46

2004/02/19 40 2004/03/29 46

2004/02/20 41 2004/03/30 46

2004/02/21 42 2004/03/31 46

2004/02/22 42 2004/04/01 46

2004/02/23 42 2004/04/02 46

2004/02/24 42 2004/04/03 46

2004/02/25 42 2004/04/04 47

2004/02/26 42 2004/04/05 47

2004/02/27 42 2004/04/06 47

2004/02/28 42 2004/04/07 47

2004/02/29 42 2004/04/08 47

2004/03/01 42 2004/04/09 47

2004/03/02 42 2004/04/10 47

2004/03/03 42 2004/04/11 47

2004/03/04 42 2004/04/12 47

2004/03/05 42 2004/04/13 47

2004/03/06 42 2004/04/14 47

2004/03/07 42 2004/04/15 47

(continued)

11.1 NHPP Model Based on AHP 99

Table 11.5 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/04/16 47 2004/05/23 52

2004/04/17 47 2004/05/24 52

2004/04/18 47 2004/05/25 52

2004/04/19 47 2004/05/26 52

2004/04/20 47 2004/05/27 52

2004/04/21 47 2004/05/28 52

2004/04/22 47 2004/05/29 52

2004/04/23 47 2004/05/30 52

2004/04/24 48 2004/05/31 52

2004/04/25 48 2004/06/01 53

2004/04/26 48 2004/06/02 53

2004/04/27 48 2004/06/03 53

2004/04/28 48 2004/06/04 53

2004/04/29 48 2004/06/05 53

2004/04/30 48 2004/06/06 53

2004/05/01 48 2004/06/07 53

2004/05/02 48 2004/06/08 53

2004/05/03 48 2004/06/09 53

2004/05/04 50 2004/06/10 53

2004/05/05 50 2004/06/11 53

2004/05/06 50 2004/06/12 53

2004/05/07 50 2004/06/13 53

2004/05/08 50 2004/06/14 53

2004/05/09 50 2004/06/15 54

2004/05/10 50 2004/06/16 54

2004/05/11 50 2004/06/17 55

2004/05/12 50 2004/06/18 55

2004/05/13 50 2004/06/19 55

2004/05/14 50 2004/06/20 55

2004/05/15 50 2004/06/21 55

2004/05/16 51 2004/06/22 55

2004/05/17 51 2004/06/23 55

2004/05/18 52 2004/06/24 55

2004/05/19 52 2004/06/25 55

2004/05/20 52 2004/06/26 55

2004/05/21 52 2004/06/27 55

2004/05/22 52 2004/06/28 56

(continued)

100 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.5 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/06/29 56 2004/08/07 60

2004/06/30 56 2004/08/08 60

2004/07/01 56 2004/08/09 60

2004/07/02 56 2004/08/10 60

2004/07/03 56 2004/08/11 60

2004/07/04 56 2004/08/12 60

2004/07/05 56 2004/08/13 60

2004/07/06 57 2004/08/14 60

2004/07/07 57 2004/08/15 60

2004/07/08 57 2004/08/16 60

2004/07/09 57 2004/08/17 60

2004/07/10 57 2004/08/18 60

2004/07/11 57 2004/08/19 60

2004/07/12 57 2004/08/20 60

2004/07/13 57 2004/08/21 60

2004/07/14 57 2004/08/22 60

2004/07/15 57 2004/08/23 61

2004/07/16 57 2004/08/24 61

2004/07/17 58 2004/08/25 61

2004/07/18 58 2004/08/26 61

2004/07/19 58 2004/08/27 61

2004/07/20 58 2004/08/28 61

2004/07/21 59 2004/08/29 61

2004/07/22 59 2004/08/30 61

2004/07/23 59 2004/08/31 61

2004/07/24 59 2004/09/01 61

2004/07/25 59 2004/09/02 61

2004/07/26 60 2004/09/03 61

2004/07/27 60 2004/09/04 61

2004/07/28 60 2004/09/05 61

2004/07/29 60 2004/09/06 61

2004/07/30 60 2004/09/07 61

2004/07/31 60 2004/09/08 61

2004/08/01 60 2004/09/09 61

2004/08/02 60 2004/09/10 61

2004/08/03 60 2004/09/11 61

2004/08/04 60 2004/09/12 61

2004/08/05 60 2004/09/13 61

2004/08/06 60 2004/09/14 61

(continued)

11.1 NHPP Model Based on AHP 101

Table 11.5 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/09/15 61 2004/10/17 68

2004/09/16 61 2004/10/18 68

2004/09/17 61 2004/10/19 68

2004/09/18 61 2004/10/20 68

2004/09/19 61 2004/10/21 68

2004/09/20 62 2004/10/22 68

2004/09/21 62 2004/10/23 68

2004/09/22 62 2004/10/24 68

2004/09/23 62 2004/10/25 69

2004/09/24 62 2004/10/26 71

2004/09/25 62 2004/10/27 71

2004/09/26 64 2004/10/28 71

2004/09/27 65 2004/10/29 71

2004/09/28 65 2004/10/30 71

2004/09/29 65 2004/10/31 71

2004/09/30 65 2004/11/01 72

2004/10/01 65 2004/11/02 72

2004/10/02 65 2004/11/03 72

2004/10/03 66 2004/11/04 72

2004/10/04 66 2004/11/05 72

2004/10/05 66 2004/11/06 72

2004/10/06 66 2004/11/07 72

2004/10/07 66 2004/11/08 72

2004/10/08 66 2004/11/09 72

2004/10/09 66 2004/11/10 74

2004/10/10 66 2004/11/11 74

2004/10/11 68 2004/11/12 74

2004/10/12 68 2004/11/13 74

2004/10/13 68 2004/11/14 74

2004/10/14 68 2004/11/15 74

2004/10/15 68 2004/11/16 75

2004/10/16 68

102 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.6 The actual data of xfwm4 component in Xfce

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2003/11/15 1 2003/12/24 7

2003/11/16 1 2003/12/25 7

2003/11/17 1 2003/12/26 7

2003/11/18 2 2003/12/27 7

2003/11/19 2 2003/12/28 7

2003/11/20 2 2003/12/29 7

2003/11/21 2 2003/12/30 7

2003/11/22 2 2003/12/31 7

2003/11/23 2 2004/01/01 7

2003/11/24 3 2004/01/02 7

2003/11/25 3 2004/01/03 7

2003/11/26 3 2004/01/04 7

2003/11/27 3 2004/01/05 7

2003/11/28 3 2004/01/06 10

2003/11/29 3 2004/01/07 11

2003/11/30 3 2004/01/08 11

2003/12/01 3 2004/01/09 12

2003/12/02 3 2004/01/10 12

2003/12/03 3 2004/01/11 12

2003/12/04 3 2004/01/12 13

2003/12/05 3 2004/01/13 13

2003/12/06 3 2004/01/14 13

2003/12/07 3 2004/01/15 14

2003/12/08 4 2004/01/16 14

2003/12/09 5 2004/01/17 14

2003/12/10 5 2004/01/18 14

2003/12/11 5 2004/01/19 14

2003/12/12 6 2004/01/20 14

2003/12/13 6 2004/01/21 15

2003/12/14 6 2004/01/22 15

2003/12/15 6 2004/01/23 15

2003/12/16 6 2004/01/24 15

2003/12/17 6 2004/01/25 15

2003/12/18 6 2004/01/26 15

2003/12/19 6 2004/01/27 15

2003/12/20 6 2004/01/28 15

2003/12/21 6 2004/01/29 15

2003/12/22 6 2004/01/30 15

2003/12/23 6 2004/01/31 15

(continued)

11.1 NHPP Model Based on AHP 103

Table 11.6 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/02/01 15 2004/03/11 21

2004/02/02 15 2004/03/12 21

2004/02/03 15 2004/03/13 21

2004/02/04 15 2004/03/14 21

2004/02/05 15 2004/03/15 21

2004/02/06 15 2004/03/16 22

2004/02/07 15 2004/03/17 23

2004/02/08 16 2004/03/18 25

2004/02/09 16 2004/03/19 25

2004/02/10 16 2004/03/20 25

2004/02/11 16 2004/03/21 25

2004/02/12 16 2004/03/22 25

2004/02/13 17 2004/03/23 25

2004/02/14 18 2004/03/24 26

2004/02/15 18 2004/03/25 26

2004/02/16 18 2004/03/26 27

2004/02/17 18 2004/03/27 29

2004/02/18 18 2004/03/28 29

2004/02/19 18 2004/03/29 30

2004/02/20 18 2004/03/30 30

2004/02/21 18 2004/03/31 30

2004/02/22 18 2004/04/01 30

2004/02/23 18 2004/04/02 30

2004/02/24 18 2004/04/03 31

2004/02/25 18 2004/04/04 31

2004/02/26 18 2004/04/05 32

2004/02/27 18 2004/04/06 32

2004/02/28 18 2004/04/07 32

2004/02/29 19 2004/04/08 32

2004/03/01 19 2004/04/09 32

2004/03/02 19 2004/04/10 32

2004/03/03 19 2004/04/11 33

2004/03/04 20 2004/04/12 34

2004/03/05 21 2004/04/13 34

2004/03/06 21 2004/04/14 34

2004/03/07 21 2004/04/15 34

2004/03/08 21 2004/04/16 34

2004/03/09 21 2004/04/17 34

2004/03/10 21 2004/04/18 34

(continued)

104 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.6 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/04/19 34 2004/05/27 36

2004/04/20 34 2004/05/28 36

2004/04/21 34 2004/05/29 36

2004/04/22 34 2004/05/30 36

2004/04/23 34 2004/05/31 36

2004/04/24 34 2004/06/01 36

2004/04/25 34 2004/06/02 36

2004/04/26 34 2004/06/03 36

2004/04/27 34 2004/06/04 36

2004/04/28 34 2004/06/05 37

2004/04/29 34 2004/06/06 37

2004/04/30 34 2004/06/07 37

2004/05/01 34 2004/06/08 37

2004/05/02 34 2004/06/09 37

2004/05/03 35 2004/06/10 37

2004/05/04 35 2004/06/11 37

2004/05/05 35 2004/06/12 38

2004/05/06 35 2004/06/13 38

2004/05/07 35 2004/06/14 38

2004/05/08 35 2004/06/15 38

2004/05/09 35 2004/06/16 39

2004/05/10 35 2004/06/17 39

2004/05/11 35 2004/06/18 39

2004/05/12 35 2004/06/19 39

2004/05/13 35 2004/06/20 39

2004/05/14 35 2004/06/21 39

2004/05/15 36 2004/06/22 39

2004/05/16 36 2004/06/23 39

2004/05/17 36 2004/06/24 39

2004/05/18 36 2004/06/25 39

2004/05/19 36 2004/06/26 39

2004/05/20 36 2004/06/27 40

2004/05/21 36 2004/06/28 41

2004/05/22 36 2004/06/29 41

2004/05/23 36 2004/06/30 41

2004/05/24 36 2004/07/01 41

2004/05/25 36 2004/07/02 41

2004/05/26 36 2004/07/03 41

(continued)

11.1 NHPP Model Based on AHP 105

Table 11.6 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/07/04 41 2004/08/11 54

2004/07/05 41 2004/08/12 54

2004/07/06 41 2004/08/13 56

2004/07/07 42 2004/08/14 57

2004/07/08 42 2004/08/15 57

2004/07/09 44 2004/08/16 57

2004/07/10 45 2004/08/17 57

2004/07/11 45 2004/08/18 57

2004/07/12 45 2004/08/19 57

2004/07/13 45 2004/08/20 57

2004/07/14 45 2004/08/21 57

2004/07/15 45 2004/08/22 57

2004/07/16 45 2004/08/23 57

2004/07/17 45 2004/08/24 57

2004/07/18 45 2004/08/25 57

2004/07/19 45 2004/08/26 57

2004/07/20 46 2004/08/27 57

2004/07/21 46 2004/08/28 57

2004/07/22 47 2004/08/29 57

2004/07/23 48 2004/08/30 57

2004/07/24 48 2004/08/31 57

2004/07/25 49 2004/09/01 57

2004/07/26 49 2004/09/02 57

2004/07/27 50 2004/09/03 57

2004/07/28 50 2004/09/04 57

2004/07/29 51 2004/09/05 57

2004/07/30 51 2004/09/06 57

2004/07/31 52 2004/09/07 57

2004/08/01 52 2004/09/08 57

2004/08/02 52 2004/09/09 58

2004/08/03 52 2004/09/10 58

2004/08/04 52 2004/09/11 58

2004/08/05 52 2004/09/12 58

2004/08/06 52 2004/09/13 58

2004/08/07 53 2004/09/14 58

2004/08/08 53 2004/09/15 58

2004/08/09 53 2004/09/16 58

2004/08/10 53 2004/09/17 58

(continued)

106 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.6 (continued)

Date (Year/Month/Day) Cumulative
number of
detected faults

Date (Year/Month/Day) Cumulative
number of
detected faults

2004/09/18 58 2004/10/19 76

2004/09/19 58 2004/10/20 76

2004/09/20 58 2004/10/21 76

2004/09/21 59 2004/10/22 79

2004/09/22 59 2004/10/23 79

2004/09/23 59 2004/10/24 79

2004/09/24 59 2004/10/25 79

2004/09/25 60 2004/10/26 79

2004/09/26 62 2004/10/27 81

2004/09/27 63 2004/10/28 81

2004/09/28 63 2004/10/29 82

2004/09/29 63 2004/10/30 82

2004/09/30 63 2004/10/31 83

2004/10/01 64 2004/11/01 88

2004/10/02 64 2004/11/02 89

2004/10/03 64 2004/11/03 89

2004/10/04 66 2004/11/04 90

2004/10/05 66 2004/11/05 90

2004/10/06 67 2004/11/06 91

2004/10/07 68 2004/11/07 91

2004/10/08 70 2004/11/08 92

2004/10/09 71 2004/11/09 93

2004/10/10 71 2004/11/10 93

2004/10/11 71 2004/11/11 93

2004/10/12 73 2004/11/12 94

2004/10/13 75 2004/11/13 94

2004/10/14 75 2004/11/14 94

2004/10/15 75 2004/11/15 95

2004/10/16 76 2004/11/16 96

2004/10/17 76 2004/11/17 96

2004/10/18 76 2004/11/18 97

11.1 NHPP Model Based on AHP 107

Fig. 11.1 The cumulative number of detected faults in each component for actual data

 0

 200

 400

 600

 0 100 200 300 400 500

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

L
T

S

TIME (DAYS)

Actual

Fig. 11.2 The cumulative number of detected faults in the Xfce for actual data

108 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.7 Comparison of the AIC for each component

Exponential SRGM Inflection S-shaped SRGM

General 675.03 675.80∗

Other 112.29∗ 113.60

xfce4 480.96 466.39∗

xfdesktop 151.01 138.69∗

xffm 403.51∗ 1258.4

xfwm 482.64 468.11∗

(∗means the selected model)

Table 11.8 Comparison of the MSE for each component

Exponential SRGM Inflection S-shaped SRGM

General 13.796 8.3644∗

Other 3.5658∗ 3.5482

xfce4 178.13 36.933∗

xfdesktop 28.886 1.6298∗

xffm 20.400∗ 858.17

xfwm 149.91 27.499∗

(∗means the selected model)

Table 11.9 The estimated
results of the weight
parameter for each
component based on AHP

Component Weight parameter pi

General 0.055219

Other 0.44820

xfce4 0.091727

xfdesktop 0.18165

xffm 0.11970

xfwm 0.10351

11.1.2 Reliability Assessment for Entire System

On the presupposition that unknown parameters of SRGM’s applied to each com-
ponent are estimated by using the method of maximum-likelihood, we show numer-
ical examples for reliability assessment of Xfce desktop environment. The esti-
mated number of detected faults in Eq. (2.8), μ̂(t) is shown in Fig. 11.3. Figure 11.4
shows the estimated software reliability in Eq. (2.10), R̂(x|t). Moreover, the estimated
MTBFI in Eq. (2.11), ̂MTBFI(t) and the estimated MTBFC in Eq. (2.12), ̂MTBFC(t)
are also plotted in Figs. 11.5 and 11.6, respectively.

http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2
http://dx.doi.org/10.1007/978-3-319-31818-9_2

11.1 NHPP Model Based on AHP 109

 0

 200

 400

 600

 0 100 200 300 400 500

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

L
T

S

TIME (DAYS)

Actual
Fitted

Fig. 11.3 The estimated number of detected faults, μ̂(t)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

SO
FT

W
A

R
E

R
EL

IA
B

IL
IT

Y

TIME (DAYS)

Fig. 11.4 The estimated software reliability, R̂(x|t)

110 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Fig. 11.5 The estimated MTBFI, ̂MTBFI (t)

Fig. 11.6 The estimated MTBFC, ̂MTBFC(t)

11.1 NHPP Model Based on AHP 111

11.1.3 Discussion for the Method of Reliability Assessment
Based on AHP

We have focused on the Xfce desktop environment which is one of the desktop envi-
ronment, and discussed the method of reliability assessment for distributed develop-
ment paradigm based on an open source project. Especially, we have applied SRGM’s
on AHP which is known as one of the method of decision-making in order to con-
sider the effect of each software component on the reliability of entire system under
such distributed development environment. By using the AHP, we have proposed
the method of reliability assessment incorporating the interaction among software
components. The AHP, exponential SRGM and inflection S-shaped SRGM applied
in this section have the simple structure. Therefore, we can easily apply our method
to actual distributed software development project.

In case of considering the effect of debugging process on entire system in the
development of software reliability assessment methods for distributed development
environment, it is necessary to grasp the deeply-intertwined factors. In this chapter,
we have shown that our method can grasp such deeply-intertwined factors by using
the weight parameters of evaluation criteria for each component in AHP. Additionally,
we have presented several numerical examples for the actual data collected in the bug
tracking system on the website of Xfce. Moreover, we have given several estimated
reliability assessment measures based on the proposed method.

Finally, we have focused on an OSS developed under open source projects. Dis-
tributed development environment typified by such open source project will evolve at
a rapid pace in the future. Our method is useful as the method of reliability assessment
incorporating the importance of each component for entire system.

11.2 NHPP Model Based on ANP

11.2.1 Reliability Assessment for Each Component

We show the cumulative number of detected faults in each component for actual
data in Fig. 11.7. We use the Akaike’s information criterion (AIC) and the mean
square error (MSE) in terms of comparing the goodness-of-fit of existing SRGM in
Sect. 3.1.4. The AIC and MSE for each component are shown in Tables 11.10 and
11.11.

The estimated result of weight parameter pi(i = 1, 2, . . . , n) for each component
based on ANP in Fig. 11.7 is shown in Table 11.12. Especially, the applied evaluation
criteria are the importance level of faults detected for each component (Severity),
the fault repairer (Assigned to), and the fault reporter(Reporter). From Table 11.12,
we find that the level of importance for “other” component is largest. On the other
hand, we find that the level of importance for “general” component is the smallest.

http://dx.doi.org/10.1007/978-3-319-31818-9_3

112 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Fig. 11.7 The cumulative number of detected faults in each component for actual data

Table 11.10 Comparison of the AIC for each component

Exponential SRGM Inflection S-shaped SRGM

General 675.03 675.80∗

Other 112.29∗ 113.60

xfce4 480.96 466.39∗

xfdesktop 151.01 138.69∗

xffm 403.51∗ 1258.4

xfwm 482.64 468.11∗

(∗means the selected model)

Table 11.11 Comparison of the MSE for each component

Exponential SRGM Inflection S-shaped SRGM

General 13.796 8.3644∗

Other 3.5658∗ 3.5482

xfce4 178.13 36.933∗

xfdesktop 28.886 1.6298∗

xffm 20.400∗ 858.17

xfwm 149.91 27.499∗

(∗means the selected model)

11.2 NHPP Model Based on ANP 113

Table 11.12 The estimated
results of the weight
parameter for each
component based on ANP

Component Weight parameter pi

General 0.0550295

Other 0.444284

xfce4 0.093274

xfdesktop 0.1827720

xffm 0.122944

xfwm 0.101697

11.2.2 Reliability Assessment for Entire System

On the presupposition that the unknown parameters of SRGM applied to each com-
ponent are estimated by using a maximum-likelihood estimate method, we show
numerical examples for reliability assessment of Xfce desktop environment. The esti-
mated cumulative number of detected faults in Eq. (3.9), Ŝ(t), is shown in Fig. 11.8.
Figure 11.9 shows the estimated software reliability in Eq. (3.12), R̂c(x|t).

Fig. 11.8 The estimated cumulative number of detected faults, Ŝ(t)

http://dx.doi.org/10.1007/978-3-319-31818-9_3
http://dx.doi.org/10.1007/978-3-319-31818-9_3

114 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Fig. 11.9 The estimated software reliability, R̂c(x|t)

11.2.3 Discussion for the Method of Reliability Assessment
Based on ANP

We have focused on the Xfce desktop environment which is one of the desktop envi-
ronment, and discussed the method of reliability assessment for distributed devel-
opment paradigm based on open source project. Especially we have applied ANP
which is known as one of the method of decision-making in order to consider the
effect of each software component on the reliability of entire system under such
distributed development environment. By using ANP, we have proposed the method
of reliability assessment incorporating the interaction among each software compo-
nent. ANP and the inflection S-shaped SRGM applied in this chapter have the simple
structure. Therefore, we can easily apply our method to actual distributed software
development project.

In case of considering the effect of debugging process on entire system in the
development of a method of software reliability assessment for distributed devel-
opment environment, it is necessary to grasp the deeply-intertwined factors. In this
section, we have shown that our method can grasp such deeply-intertwined factors by
using weight parameter of evaluation criteria for each component in ANP. Further,
we have presented several numerical examples for the actual data collected in the bug
tracking system of the website of Xfce. Moreover, we have given several estimated
reliability assessment measures based on the proposed method.

11.3 Stochastic Differential Equation Models 115

11.3 Stochastic Differential Equation Models

11.3.1 Data for Numerical Illustrations

We focus on the Fedora Core Linux [2] which is one of the operating system devel-
oped under an open source project. The Fedora project is made up of many small-size
projects. Fedora is a set of projects, sponsored by Red Hat and guided by the Fedora
Project Board.1 These projects are developed by a large community of people who
strive to provide and maintain the very best in free, open source software and stan-
dards.

The fault-count data used in this section are collected in the bug tracking system
on the website of Fedora project in October 2006. Especially, we focus on the Kernel
component of the Fedora Core Linux. Table 11.13 shows actual data sets used in this
section.

11.3.2 Reliability Assessment

The estimated expected number of detected faults in Eq. (4.16), Ê[S(t)], is shown
in Fig. 11.10. Also, the sample path of the estimated numbers of detected faults in
Eq. (4.7), Ŝ(t), is shown in Fig. 11.11 approximately.

Figure 11.12 shows the estimated variance of the number of faults in Eq. (4.17),
V̂ar[S(t)]. In Fig. 11.12, it is shown that the variance of the number of detected faults
grows as the time elapses after the evaluated version of Fedora Core 6 has been
released.

Moreover, the estimated MTBFI in Eq. (4.19), ̂MTBFI(t), and the estimated
MTBFC in Eq. (4.21), ̂MTBFC(t), are also plotted in Figs. 11.13 and 11.14, respec-
tively. These figures show that the MTBF increases as the operational procedures go
on. Figure 11.15 shows the estimated coefficient of variation. Figure 11.15 means a
decrease in stability.

11.3.3 Sensitivity Analysis in Terms of Model Parameters

From the results of the former sections, we have verified that our model can be applied
to assess quantitatively software reliability in the operational phase of the OSS. In this
section, we show some behavior of software reliability assessment measures if we
change the parameters σ and α which are the magnitude of the irregular fluctuation
and the acceleration parameter of the intensity of initial inherent failure.

1Fedora is a trademark of Red Hat, Inc. The Fedora Project is not a supported product of Red Hat,
Inc.

http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_4
http://dx.doi.org/10.1007/978-3-319-31818-9_4

116 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.13 The actual data in Fedora Core Linux

Unit Time (Days) Cumulative number of
detected faults

Unit Time (Days) Cumulative number of
detected faults

0 41 29 90

1 41 30 91

2 41 31 95

3 47 32 97

4 51 33 100

5 56 34 101

6 59 35 102

7 61 36 102

8 62 37 103

9 64 38 104

10 69 39 104

11 71 40 106

12 71 41 109

13 72 42 114

14 72 43 116

15 72 44 119

16 74 45 121

17 77 46 126

18 77 47 127

19 79 48 129

20 81 49 129

21 81 50 129

22 83 51 130

23 86 52 132

24 87 53 133

25 88 54 134

26 90 55 135

27 90 56 136

28 90

In addition to the case of α = 0.046482 and σ = 0.10192 in the former section, we
represent the estimated mean value function with changing the value of parameters
σ and α at regular intervals are illustrated in Figs. 11.16 and 11.17, respectively.

Moreover, we show the estimated reliability assessment measures with changing
the value of the parameter σ and α at regular intervals are illustrated in Figs. 11.18,
11.19, 11.20 and 11.21, respectively.

11.3 Stochastic Differential Equation Models 117

 0

 50

 100

 150

 200

 0 20 40 60 80

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

L
T

S

TIME (DAYS)

Actual
Fitted

Fig. 11.10 The estimated number of detected faults, Ê[S(t)]

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

L
T

S

TIME (DAYS)

Actual
Sample Path

Fitted

Fig. 11.11 The sample path of the estimated cumulative number of remaining faults, Ŝ(t)

11.3.4 Results of Goodness-of-Fit Comparison

We show the reliability assessment results for the other OSS in terms of the perfor-
mance evaluation of our model. We focus on the Apache HTTP server [3] which is
the most popular HTTP server developed under an open source project. The Apache

118 11 Actual Data and Numerical Examples of OSS Reliability Assessment

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80

V
A

R
IA

N
C

E
 O

F
R

E
M

A
IN

IN
G

 F
A

U
L

T
S

TIME (DAYS)

Fig. 11.12 The estimated variance of the number of detected faults, V̂ar[S(t)]

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

In
st

an
ta

ne
ou

s
M

T
B

F

TIME (DAYS)

Fig. 11.13 The estimated MTBFI, ̂MTBFI (t)

11.3 Stochastic Differential Equation Models 119

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

C
um

ul
at

iv
e

M
T

B
F

TIME (DAYS)

Fig. 11.14 The estimated MTBFC, ̂MTBFC(t)

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80

C
O

E
FF

IC
IE

N
T

 O
F

V
A

R
IA

T
IO

N

TIME (DAYS)

Fig. 11.15 The estimated coefficient of variation, CV (t)

120 11 Actual Data and Numerical Examples of OSS Reliability Assessment

 0

 100

 200

 300

 400

 0 20 40 60 80

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

L
T

S

TIME (DAYS)

α=0.001, σ=0.11385, v=69
α=0.01, σ=0.11385, v=69
α=0.03, σ=0.11385, v=69
α=0.1, σ=0.11385, v=69
α=0.5, σ=0.11385, v=69

Fig. 11.16 Dependence of model parameter α

 0

 100

 200

 300

 400

 0 20 40 60 80

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

L
T

S

TIME (DAYS)

σ=0.001, α=0.035567, v=69
σ=0.01, α=0.035567, v=69
σ=0.03, α=0.035567, v=69

σ=0.1, α=0.035567, v=69
σ=0.5, α=0.035567, v=69

Fig. 11.17 Dependence of model parameter σ

11.3 Stochastic Differential Equation Models 121

 0

 2000

 4000

 6000

 8000

 10000

 0 20 40 60 80

V
A

R
IA

N
C

E
 O

F
R

E
M

A
IN

IN
G

 F
A

U
L

T
S

TIME (DAYS)

α=0.001, σ=0.01
α=0.01, σ=0.1
α=0.03, σ=0.2
α=0.1, σ=0.3
α=0.5, σ=0.5

Fig. 11.18 Dependence of model parameters for the variance of the number of detected faults

 0

 0.5

 1

 1.5

 2

 0 20 40 60 80

In
st

an
ta

ne
ou

s
M

T
B

F

TIME (DAYS)

α=0.001, σ=0.01
α=0.01, σ=0.1
α=0.03, σ=0.2
α=0.1, σ=0.3
α=0.5, σ=0.5

Fig. 11.19 Dependence of model parameter for the MTBFI

122 11 Actual Data and Numerical Examples of OSS Reliability Assessment

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

C
um

ul
at

iv
e

M
T

B
F

TIME (DAYS)

α=0.001, σ=0.01
α=0.01, σ=0.1
α=0.03, σ=0.2
α=0.1, σ=0.3
α=0.5, σ=0.5

Fig. 11.20 Dependence of model parameter for MTBFC

 0

 2

 4

 0 20 40 60 80

C
O

E
FF

IC
IE

N
T

 O
F

V
A

R
IA

T
IO

N

TIME (DAYS)

α=0.001, σ=0.01
α=0.01, σ=0.1
α=0.03, σ=0.2

α=0.1, σ=0.3
α=0.5, σ=0.5

Fig. 11.21 Dependence of model parameter for the coefficient of variation

11.3 Stochastic Differential Equation Models 123

Table 11.14 The actual data in Apache HTTP Server

Unit time (Days) Cumulative number of
detected faults

Unit time (Days) Cumulative number of
detected faults

0 9 29 37

1 11 30 38

2 11 31 39

3 12 32 39

4 15 33 39

5 17 34 41

6 18 35 41

7 18 36 41

8 18 37 42

9 20 38 42

10 21 39 43

11 24 40 45

12 24 41 45

13 25 42 45

14 26 43 47

15 26 44 49

16 26 45 49

17 27 46 49

18 28 47 50

19 31 48 51

20 31 49 51

21 31 50 53

22 32 51 53

23 32 52 53

24 32 53 55

25 32 54 57

26 33 55 59

27 35 56 60

28 35

HTTP Server Project2 have developed and maintained an open-source HTTP server
for modern operating systems including UNIX and Windows NT. The goal of this
project is to provide a secure, efficient and extensible server that provides HTTP
services in sync with the current HTTP standards. Table 11.14 shows actual data sets
used in this chapter.

2The Apache HTTP Server is a project of the Apache Software Foundation.

124 11 Actual Data and Numerical Examples of OSS Reliability Assessment

The sample path of the estimated numbers of detected faults in our model and
existing model [4], Ŝ(t), are shown in Figs. 11.22 and 11.23, respectively. From
Figs. 11.22 and 11.23, we have found that the magnitude of the irregular fluctuation
in Fig. 11.22 is larger than the one in Fig. 11.23, i.e., the software failure intensity in
our model depends on the time.

 0

 25

 50

 75

 100

 0 20 40 60 80

C
U

M
U

LA
TI

V
E

N
U

M
B

ER
 O

F
D

ET
EC

TE
D

 F
A

U
LT

S

TIME (DAYS)

Actual
Fitted

Fig. 11.22 The estimated number of detected faults in our model

 0

 25

 50

 75

 100

 0 20 40 60 80

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

L
T

S

TIME (DAYS)

Actual
Fitted

Fig. 11.23 The estimated number of detected faults in existing model

11.3 Stochastic Differential Equation Models 125

Table 11.15 Comparison of
the mean squared errors for
the cumulative number of
detected faults

Compared models MSE

Our model 1.5447

Conventional model 4.1234

Moreover, we compare the goodness-of-fit of our model with the existing model
[4] based on stochastic differential equations for the observed data set. We adopt
the value of the Mean Square Error (MSE) as comparison criteria of goodness-of-fit.
Suppose that K data pairs (tk, yk)(k = 1, 2, . . . , K) are observed during the operation
phase where yk is the cumulative number of software faults observed in the time-
interval (0, tk]. MSE can be obtained by dividing the sum of square errors between
the observed value, yk , and the estimated one, ŷk , by the number of data pairs, K .
That is,

MSE = 1

K

K∑

k=1

(yk − ŷk)
2, (11.1)

where ŷk in Eq. (11.1) is obtained from estimated expected values. MSE indicates
that the selected model fits better to the observed data as the MSE becomes small.

Table 11.15 shows the result of goodness-of-fit comparison in terms of the MSE
for our model and the existing model based on stochastic differential equations. We
find that our model fits better than the existing model with respect to MSE.

11.3.5 Discussion for the Method of Reliability Assessment
Based on Stochastic Differential Equation Models

We have focused on the Fedora Core Linux operating system and the Apache HTTP
Server software which are known as the OSS, and discussed the method of reliability
assessment for the OSS developed under an open source project.

Moreover, we have proposed a software reliability growth model based on sto-
chastic differential equations in order to consider the active state of the open source
project. Especially, we have assumed that the software failure intensity depends on
the time, and the software fault-report phenomena on the bug tracking system keep
an irregular state. Also, we have analyzed actual software fault-count data to show
numerical examples of software reliability assessment for the OSS. Moreover, we
have compared our model with the conventional model based on stochastic differen-
tial equations in terms of goodness-of-fit for actual data.

Finally, we have focused on an OSS developed under open source projects. New
distributed development paradigm typified by such open source project will evolve at
a rapid pace in the future. Our method is useful as the method of reliability assessment
after the release of the evaluation version of OSS.

126 11 Actual Data and Numerical Examples of OSS Reliability Assessment

11.4 Hazard Rates for Embedded OSS

11.4.1 Embedded OSS

There are many open source projects around the world. In particular, we focus on the
embedded OSS in order to evaluate the performance of our method, i.e., Android [5]
and BusyBox [6]. BusyBox includes 4 components. We show numerical examples
by using the data after “Android 1.5 NDK, Release” and “BusyBox 1.10.1 (stable)”
as Figs. 11.24 and 11.25.

In this section, we focus on the Android OS developed for mobile phone. In
particular, we consider the case of installing BusyBox to Android as the porting
environment. Thus, we illustrate the method of reliability assessment for the porting-
phase.

11.4.2 Reliability Assessment

We analyze the actual data in terms of software failure-occurrence time-interval.
Based on our flexible hazard rate model, the following model parameters have been
estimated:

ŵ1 = 0.49840, ŵ2 = 0.13419,

α̂ = 0.024757, N̂ = 99.4456,

where we assume as w1 = pD and w2 = (1 − p)φ for the simplification technique.
Moreover, we define w1 and w2 as the scale parameters of the porting stability. We
find the degree of maturation of Android OS means the low level from the estimation
results of our model parameters. Thus, the degree of maturation of OSS means the
low level, if w1 is large. On the other hand, it means the high level, if w2 is large.

First, Fig. 11.26 shows the behavior of the estimated MTBF for Android in
Eq. (8.2). From Fig. 11.26, we find that the proposed hazard rate model for embedded
OSS fits better than the conventional Schick-Wolverton [7] model with respect to
MTBF.

Next, the estimated MTBF in Eq. (8.3) is shown in Fig. 11.27. Using the BusyBox
data, the estimated hard rate model in Fig. 11.27 is applied for the specific software
component in this chapter.

Moreover, we show the estimated MTBF in Eq. (8.1) in case of installing Android
onto BusyBox in Fig. 11.28. From Fig. 11.28, we can confirm that the MTBF grows
as porting procedures go on. Also, the estimated software reliability R30(x) is shown
in Fig. 11.29.

http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8

11.4 Hazard Rates for Embedded OSS 127

F
ig

.1
1.

24
T

he
pa

rt
ia

ls
ou

rc
e

da
ta

in
A

nd
ro

id

128 11 Actual Data and Numerical Examples of OSS Reliability Assessment

F
ig

.1
1.

25
T

he
pa

rt
ia

ls
ou

rc
e

da
ta

in
B

us
yB

ox

11.4 Hazard Rates for Embedded OSS 129

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80

M
T

B
F

(D
A

Y
S)

FAILURE NUMBER

Actual
Fitted (Our model)

Fitted (S-W model)

Fig. 11.26 The estimated MTBF in Android (Up to 30 days of data)

 0

 0.5

 1

 1.5

 2

 0 10 20 30

M
T

B
F

(D
A

Y
S)

FAILURE NUMBER

Actual (BusyBox 1.10.1)
Estimate

Fig. 11.27 The estimated MTBF in BusyBox

130 11 Actual Data and Numerical Examples of OSS Reliability Assessment

 0

 0.1

 0.2

 0.3

 0 20 40 60

M
T

B
F

(D
A

Y
S)

FAILURE NUMBER

Actual
Estimate (Our model)

Fig. 11.28 The estimated MTBF in case of installing Android onto BusyBox (Up to 30 days of
data)

 0

 0.25

 0.5

 0.75

 1

 1.25

 0 0.25 0.5 0.75 1

SO
FT

W
A

R
E

 R
E

L
IA

B
IL

IT
Y

TIME (DAYS)

Estimate (Our model)

Fig. 11.29 The estimated software reliability

11.4 Hazard Rates for Embedded OSS 131

11.4.3 Comparison of Goodness-of-Fit

11.4.3.1 Compared Hazard Rate Models

We compare our flexible hazard rate model for embedded OSS with the following
typical conventional hazard rate models:

(for Schick–Wolverton(S-W) model)

zk(x) = φ(N − k + 1)x

(N > 0, φ > 0; k = 1, 2, . . . , N), (11.2)

E[Xk] =
√

φ

2(N − k + 1)φ
. (11.3)

(for Jelinski–Moranda(J-M) model)

zk(x) = φ(N − k + 1)

(N > 0, φ > 0; k = 1, 2, . . . , N), (11.4)

E[Xk] = 1

φ(N − k + 1)
. (11.5)

(for Moranda model)

zk(x) = Dck−1

(D > 0, 0 < c < 1; k = 1, 2, . . .), (11.6)

E[Xk] = 1

Dck−1
. (11.7)

(for Xie model)

zk(x) = λ0(N − k + 1)α

(N > 0, λ0 > 0, α ≥ 1;
k = 1, 2, . . . , N), (11.8)

E[Xk] = 1

λ0(N − k + 1)α
. (11.9)

The model parameters in Eqs. (11.2)–(11.9) are defined as follows:

N the latent fault in software system,
φ the hazard rate per remaining fault,
D the initial hazard rate for 1st software failure,
c the reduction factor of hazard rate,

λ0 the hazard rate per remaining fault considering α,
α the constant parameter.

132 11 Actual Data and Numerical Examples of OSS Reliability Assessment

11.4.3.2 Comparison Criteria of Goodness-of-Fit

We adopt the Mean Square Error (MSE) as a comparison criterion of goodness-of-fit.
MSE can be obtained from dividing the sum of square errors between the observed

value, yk , and the estimated one, ŷk , by the number of data pairs, K . That is,

MSE = 1

K

K∑

k=1

(yk − ŷk)
2, (11.10)

where ŷk in Eq. (11.10) is obtained from estimated E[Xk], (k = 1, 2, . . . , K) for
each hazard rate model. The MSE indicates that the selected models fit better to the
observed data as the MSE becomes small.

11.4.3.3 Performance Evaluation of Our Model

Table 11.16 shows actual data sets.
We compare the goodness-of-fit of the our hazard rate model with that of the

conventional S-W model [7], J-M model [8], Moranda model [9], and Xie model
[10] after the end of fault-detection report up to 30 days. The estimated mean time
between software failures of our model, S-W model [7], J-M model [8], Moranda
model [9], and Xie model [10] are shown in Fig. 11.30, respectively. From Fig. 11.30,
we can confirm that the our hazard rate model for embedded OSS fits better than the
conventional hazard rate models with respect to MTBF after the end of fault-detection
report up to 30 days.

11.4.4 Prediction Accuracy After the End of Fault-Report

We compare the goodness-of-fit of the hazard rate models after the end of fault-
detection report.

We analyze the prediction accuracy based on the data from the beginning of
porting-phase of embedded system to the end of fault-detection report in embedded
OSS. Table 11.17 shows the comparison results of the MSE for the mean time between
software failures in terms of the compared models. The values of MSE in Table 11.17
represent the estimate until the end of 30 days and 50 days.

From Table 11.17, we find that our model is rarely different from the conventional
hazard rate models in terms of the value of MSE until 30 days. In particular, our
model fits better than the conventional hazard rate models in terms of the value of
MSE until the end of 50 days. Moreover, we can confirm that the our model fits better
for the long-term prediction accuracy. Thereby, we can conduct effective software
reliability prediction for the porting-phase of embedded system development.

11.4 Hazard Rates for Embedded OSS 133

Table 11.16 The actual MTBF data in Android and BusyBox

Failure number MTBF (Days) Failure number MTBF (Days)

1 0.06667 26 0.10442

2 0.07407 27 0.10757

3 0.07500 28 0.11111

4 0.06557 29 0.11027

5 0.06667 30 0.11029

6 0.07059 31 0.10839

7 0.07447 32 0.11034

8 0.07273 33 0.11111

9 0.07317 34 0.11371

10 0.07299 35 0.11589

11 0.07383 36 0.11538

12 0.07692 37 0.11563

13 0.07927 38 0.11656

s14 0.08284 39 0.11642

15 0.07979 40 0.11730

16 0.07882 41 0.11816

17 0.07763 42 0.11966

18 0.07930 43 0.11944

19 0.08017 44 0.11796

20 0.09479 45 0.11780

21 0.09767 46 0.11795

22 0.09865 47 0.11839

23 0.09746 48 0.11707

24 0.09959 49 0.11779

25 0.10121 50 0.11765

11.4.5 Optimal Software Release Problem for the
Porting-Phase of Embedded OSS

11.4.5.1 Formulation of Total Software Cost

Recently, it becomes more difficult for software developers to produce highly-reliable
software systems efficiently, because of the more diversified and complicated soft-
ware requirements. Thus, it has been necessary to control the software development
process in terms of reliability, cost, and delivery time [11, 12]. Especially, it is dif-
ficult for software developers to manage the porting-phase of the embedded system
development using the embedded OSS. Also, it is very important in terms of software
management that we decide for the optimal length of the porting-phase for embed-
ded OSS. We find the optimal release time of porting-phase by minimizing the total

134 11 Actual Data and Numerical Examples of OSS Reliability Assessment

 0

 0.1

 0.2

 0.3

 0.4

 0 20 40 60 80

M
T

B
F

(D
A

Y
S)

FAILURE NUMBER

Actual
Our model

S-W model
J-M model

Moranda model
Xie model

Fig. 11.30 The estimated MTBF for each hazard rate models

Table 11.17 Comparison of the MSE for the estimated MTBF

MSE (30 days) MSE (50 days)

Our model 4.8467×10−5 6.2665×10−5

S-W model 1.9268×10−5 0.007146

J-M model 1.9545×10−5 0.001010

Moranda model 2.2923×10−5 0.0002023

Xie model 0.007381 0.04178

expected software maintenance cost in this section. We formulate a maintenance cost
model based on our proposed hazard rate model for the embedded OSS. It is interest-
ing for the software developers to predict and estimate the time when we should stop
bug fixing in order to develop a highly reliable software system efficiently. Then, we
discuss about the determination of optimal software release times minimizing the
total expected software cost. We define the following:

c1 the testing cost per porting-time (c1 > 0),
c2 the fixing cost per fault during the porting-phase (c2 > 0),
c3 the fixing cost per fault after the release (c3 > c2).

Then, the expected software cost of OSS can be formulated as:

C1(l) = c1

l∑

k=1

E[Xk] + c2l, (11.11)

where l is the number of software failure-occurrence.

11.4 Hazard Rates for Embedded OSS 135

Also, we can define the expected software maintenance cost for ith software
component as follows:

Ci
2(l) = c3 (N − l) . (11.12)

Consequently, from Eqs. (11.11) and (11.12), the total expected software cost is
given by

C(l) = C1(l) + C2(l). (11.13)

From l∗ obtained by minimizing l, we can estimate the optimum software release
time

∑l∗
k=1 E[Xk].

11.4.5.2 Numerical Illustration of Optimal Software Release Time

We show numerical examples of reliability assessment for Android [5] and Busy-
Box [6]. Figure 11.31 shows the estimated total expected software cost where
c1 = 1, c2 = 2, and c3 = 3. We assume that c1, c2, and c3 are estimated by the
software managers. From Fig. 11.31, we find that the estimated number of failure-
occurrence, l∗, which minimizes the estimated total expected software cost is 96.
Then, the optimal software release time t∗ = ∑l∗

k=1 E[Xk] is 20.473 days. From the
result, the total expected software cost C(l∗) is 222.5.

 200

 210

 220

 230

 240

 250

 80 85 90 95 100 105

TO
TA

L
EX

PE
C

TE
D

 S
O

FT
W

A
R

E
C

O
ST

FAILURE NUMBER

Fig. 11.31 The estimated total expected software cost

136 11 Actual Data and Numerical Examples of OSS Reliability Assessment

11.4.5.3 Optimal Release Problem with Reliability of Embedded OSS

Also, we consider that the developer of embedded system can estimate the optimal
release time with considering reliability by combining the total expected software
cost with the reliability in the Sect. 5.3. We assume that the reliability requirement
as follows:

Rk(1) = 0.7.

We obtain the reliability R101(1) = 0.7 when the optimum release time is t′∗ =
31.191 days where l′∗ = 101. Then, we need to lengthen the porting-time, which is
shown in Fig. 11.32 as (t′∗ − t∗) = 31.191 − 20.473 = 10.718 days. Figure 11.32
illustrates the optimum release time with reliability objective R101(1) = 0.7.

From Fig. 11.32, we have found that the optimum release time become lengthen,
and the total expected software cost increases. When the porting time and the relia-
bility objective are assumed as Rk(1) = 0.7, we obtain t′∗ = 31.191 from l∗ = 101.
Then, the total expected software cost is 224.9.

11.4.6 Discussion for the Method of Reliability Assessment
Based on Hazard Rates for Embedded OSS

We have discussed the method of software reliability assessment based on flexi-
ble hazard rate model for embedded OSS. In particular, we have derived several
assessment measures based on our hazard rate model. By using our flexible hazard
rate model, we can incorporate the complicated situation of the embedded system
used OSS, the degree of maturation of OSS, uniquely software components such as
device driver, etc. In case of considering the effect of debugging process on software
reliability assessment for open source projects, it is necessary to grasp the deeply-
intertwined factors. In this section, we have shown that our model can describe such
deeply-intertwined factors.

Moreover, we have compared the goodness-of-fit of our model discussed in this
chapter with the conventional hazard rate models. Then, we have shown that the pro-
posed model can assist improvement of quality for embedded OSS systems devel-
opment. Thereby, our hazard rate model will reduce some efforts to select a suitable
model for the collected data sets.

Furthermore, we have formulated the total expected software cost based on our
hazard rate model. We have found that our method can evaluate the optimum software
release time in the porting-phase of the embedded system development by applying
embedded OSS.

By using our method, the embedded software developer can conduct an effective
software reliability prediction for the porting-phase of embedded system develop-
ment.

http://dx.doi.org/10.1007/978-3-319-31818-9_5

11.5 Applied Examples for Open Source Solution 137

Fig. 11.32 The optimum software release time with reliability requirement, t
′ ∗

11.5 Applied Examples for Open Source Solution

11.5.1 Data for Numerical Illustrations

We focus on a large-scale open source solution based on the Apache HTTP Server
[3], Apache Tomcat [13], MySQL [14] and JSP (JavaServer Pages). The fault-count

138 11 Actual Data and Numerical Examples of OSS Reliability Assessment

Table 11.18 The actual data
in open source solution

Time (Weeks) Cumulative number of
detected faults

0 24

1 27

2 31

3 32

4 37

5 38

6 39

7 42

8 44

9 46

10 48

11 50

data used in this section are collected in the bug tracking system on the website of
each open source project. Table 11.18 shows the actual data set.

11.5.2 Reliability Assessment

The estimated expected cumulative numbers of detected faults in Eq. (9.19), Ê[S(t)]’s,
in case of λ(t) = λ1(t) and λ(t) = λ2(t) are shown in Figs. 11.33 and 11.34, respec-
tively. Also, the sample paths of the estimated numbers of detected faults in Eq. (9.7),
Ŝ(t)’s, in case of λ(t) = λ1(t) and λ(t) = λ2(t) are shown in Figs. 11.35 and 11.36,
approximately. Moreover, the estimated expected cumulative numbers of remaining
faults in Eq. (9.22), Ê[N(t)]’s, in case of λ(t) = λ1(t) and λ(t) = λ2(t) are shown in
Figs. 11.37 and 11.38, respectively.

Furthermore, the estimated MTBFC’s in case of λ(t) = λ1(t) and λ(t) = λ2(t) are
plotted in Figs. 11.39 and 11.40, respectively. These figures show that the MTBFC

increase as the testing procedures go on. Also, CV (t)’s in case of λ(t) = λ1(t)
and λ(t) = λ2(t) are shown in Figs. 11.41 and 11.42, respectively. From Figs. 11.41
and 11.42, we can confirm that the estimated coefficient of variation approaches the
constant value. We consider that the coefficient of variation is useful measure to
compare several fault data sets in the past system development projects.

http://dx.doi.org/10.1007/978-3-319-31818-9_9
http://dx.doi.org/10.1007/978-3-319-31818-9_9
http://dx.doi.org/10.1007/978-3-319-31818-9_9

11.5 Applied Examples for Open Source Solution 139

TIME (WEEKS)

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

LT
S

0

20

40

60

80

100

0 5 10 15 20 25 30

DATA

Actual

Estimate

Fig. 11.33 The estimated cumulative number of detected faults, Ê[S(t)], in case of λ(t) = λ1(t)

TIME (WEEKS)

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

LT
S

0

20

40

60

80

100

0 5 10 15 20 25 30

DATA

Actual

Estimate

Fig. 11.34 The estimated cumulative number of detected faults, Ê[S(t)], in case of λ(t) = λ2(t)

140 11 Actual Data and Numerical Examples of OSS Reliability Assessment

TIME (WEEKS)

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

LT
S

0

20

40

60

80

100

0 5 10 15 20 25 30

DATA

Actual

Sample Path

Fig. 11.35 The sample path of the estimated number of detected faults, Ŝ(t), in case of λ(t) = λ1(t)

TIME (WEEKS)

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
D

E
T

E
C

T
E

D
 F

A
U

LT
S

0

20

40

60

80

100

0 5 10 15 20 25 30

DATA

Actual

Sample Path

Fig. 11.36 The sample path of the estimated number of detected faults, Ŝ(t), in case of λ(t) = λ2(t)

11.5 Applied Examples for Open Source Solution 141

TIME (WEEKS)

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
R

E
M

A
IN

IN
G

 F
A

U
LT

S

0

20

40

60

80

100

0 5 10 15 20 25 30

DATA

Actual

Estimate

Fig. 11.37 The estimated cumulative number of remaining faults, Ê[S(t)], in case of λ(t) = λ1(t)

TIME (WEEKS)

C
U

M
U

L
A

T
IV

E
 N

U
M

B
E

R
 O

F
R

E
M

A
IN

IN
G

 F
A

U
LT

S

0

20

40

60

80

100

0 5 10 15 20 25 30

DATA

Actual

Estimate

Fig. 11.38 The estimated cumulative number of remaining faults, Ê[S(t)], in case of λ(t) = λ2(t)

142 11 Actual Data and Numerical Examples of OSS Reliability Assessment

TIME (WEEKS)

C
um

ul
at

iv
e

M
T

B
F

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

Fig. 11.39 The estimated MTBFC, ̂MTBFC(t), in case of λ(t) = λ1(t)

TIME (WEEKS)

C
um

ul
at

iv
e

M
T

B
F

0.0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25 30

Fig. 11.40 The estimated MTBFC, ̂MTBFC(t), in case of λ(t) = λ2(t)

11.5 Applied Examples for Open Source Solution 143

TIME (WEEKS)

C
O

E
FF

IC
IE

N
T

 O
F

V
A

R
IA

T
IO

N

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

Fig. 11.41 The estimated coefficient of variation, CV (t), in case of λ(t) = λ1(t)

TIME (WEEKS)

C
O

E
FF

IC
IE

N
T

 O
F

V
A

R
IA

T
IO

N

0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30

Fig. 11.42 The estimated coefficient of variation, CV (t), in case of λ(t) = λ2(t)

144 11 Actual Data and Numerical Examples of OSS Reliability Assessment

11.5.3 Discussion for the Method of Reliability Assessment
on the Open Source Solution

We have focused on the open source solution which is known as the large-scale
software system, and discussed the method of reliability assessment for the open
source solution developed under several OSS’s.

Moreover, we have proposed a software reliability growth model based on sto-
chastic differential equations in order to consider the active state of the open source
project and the collision among the open source components. Especially, we have
assumed that the software failure intensity depends on the time, and the software
fault-reporting phenomena on the bug tracking system keep an irregular state. Also,
we have analyzed actual software fault-count data to show numerical examples of
software reliability assessment for the large-scale open source solution. Moreover,
we have derived several reliability assessment measures from our model.

At present, a new paradigm of distributed development typified by such open
source project will evolve at a rapid pace in the future. Especially, it is difficult for
the software testing managers to assess the reliability for the large-scale open source
solution as a typical case of next-generation distributed development paradigm. Our
method may be useful as the method of reliability assessment for the large-scale open
source solution.

References

1. Olivier Fourdan, Xfce—Desktop Environment, http://www.xfce.org/
2. Fedora Project, sponsored by Red Hat. Online, Available: http://fedora.redhat.com/
3. The Apache HTTP Server Project, The Apache Software Foundation. Online, Available: http://

httpd.apache.org/
4. S. Yamada, M. Kimura, H. Tanaka, S. Osaki, Software reliability measurement and assessment

with stochastic differential equations. IEICE Trans. Fundam. E77-A(1), 109–116 (1994)
5. Open Handset Alliance, Android. Online, Available: http://www.android.com/
6. E. Andersen, BUSYBOX. Online Available: http://www.busybox.net/
7. G.J. Schick, R.W. Wolverton, An analysis of competing software reliability models. IEEE

Trans. Softw. Eng. SE-4(2), 104–120 (1978)
8. Z. Jelinski, P.B. Moranda, Software reliability research, in statistical computer performance

evaluation, Freiberger (Academic Press, New York, 1972), pp. 465–484
9. P.B. Moranda, Event–altered rate models for general reliability analysis. IEEE Trans. Reliab.

R-28(5), 376–381 (1979)
10. M. Xie, On a Generalization of the J-M model. Proc. Reliab. ’89 5, Ba/3/1–5 Ba/3/7 (1989)
11. S. Yamada, S. Osaki, Cost-reliability optimal software release policies for software systems.

IEEE Trans. Reliab. R-34(5), 422–424 (1985)
12. S. Yamada, S. Osaki, Optimal software release policies with simultaneous cost and reliability

requirements. Eur. J. Oper. Res. 31(1), 46–51 (1987)
13. Apache Tomcat, The Apache Software Foundation. Online, Available: http://tomcat.apache.

org/
14. MySQL, Oracle Corporation and/or its Affiliates. Online, Available: http://www.mysql.com/

http://www.xfce.org/
http://fedora.redhat.com/
http://httpd.apache.org/
http://httpd.apache.org/
http://www.android.com/
http://www.busybox.net/
http://tomcat.apache.org/
http://tomcat.apache.org/
http://www.mysql.com/

Chapter 12
Performance Illustrations of Software Tool

12.1 Embedded OSS

12.1.1 Applied Data

In this section, we analyze a set of actual software failure-occurrence time-interval
data to showperformance illustrations of software reliability/portabilitymeasurement
for application of our tool.1 We show numerical examples for reliability/portability
assessment of the porting-phase of embedded system development by using embed-
ded OSS. In this section, we analyze actual software failure time data to show numer-
ical examples of software reliability measurement and assessment for application of
our tool.

Especially, we focus on the embedded OSS in order to evaluate the performance
of our tool, i.e., Android [2] and BusyBox [3]. BusyBox includes 4 components.
Then, we show numerical examples of software reliability analysis for the Android
OS developed for mobile phone. Also, we consider the case of installing BusyBox
to Android as the porting environment. We use the data collected from the version
in terms of “Android 1.5 NDK, Release 1” and “ BusyBox 1.10.1 (stable)” as shown
in Figs. 11.24 and 11.25. Thus, we illustrate the estimation results of our tool for the
porting-phase assumed the above-mentioned porting environment.

The estimated result of the unknown parameters of our hazard rate model and the
calculated result of MSE are shown in Fig. 12.1. From Fig. 12.1, our model fits better
than the conventional hazard ratemodels in terms of the value ofMSE.Also, Fig. 12.2
shows the porting stability. From Fig. 12.2, we find that the degree of maturity of
Android OS means the low level from the estimated model parameters. Here, the
degree of maturity of OSS means the low level, if w1 is large. On the other hand, it
means the high level, if w1 is small.

1Reliability/Portability Assessment Tool for Embedded OSS (RPAT for Embedded OSS), URL:
http://sourceforge.net/projects/rpatforeoss/ [1].

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_12

145

http://dx.doi.org/10.1007/978-3-319-31818-9_11
http://dx.doi.org/10.1007/978-3-319-31818-9_11
http://sourceforge.net/projects/rpatforeoss/

146 12 Performance Illustrations of Software Tool

Fig. 12.1 The estimated results of the unknown parameters of our model

Also, the estimated MTBF’s for our model in Eqs. (8.1)–(8.3), Moranda model,
and J-Mmodel are shown in Fig. 12.3. From Fig. 12.3, we can confirm that theMTBF
grows as porting procedures go on.Moreover, Fig. 12.4 shows the estimated software
reliability in Eq. (8.7). From Fig. 12.4, if the embedded system is operated after the
28 software failures, the software reliability at 2 days after from the beginning of its
operation is calculated as about 0.15. Therefore, we find that at least one software
failure may occur with the probability of 50% within 0.5 day. Next, Fig. 12.5 shows
the behavior of the predicted relative error in Eq. (8.17). As shown in Fig. 12.5, the
variation of the modeling estimation becomes stable when the porting progress ratio
exceeds 75%.

Moreover, the estimation result the Laplace trend test statistics in Eq. (8.18) is
shown in Fig. 12.6. From Fig. 12.6, the Laplace trend test shows a reliability regres-
sion trend in all area before failure No. 5. On the other hand, the Laplace trend test
shows a reliability growth trend in all area after failure No. 5. We find that Fig. 12.6
includes both the reliability regression and growth trend. This implies that it is dif-
ficult to apply the conventional hazard rate models.

http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_8

12.1 Embedded OSS 147

F
ig

.1
2.

2
T
he

es
tim

at
ed

po
rt
in
g
st
ab
ili
ty

148 12 Performance Illustrations of Software Tool

F
ig

.1
2.

3
T
he

es
tim

at
ed

M
T
B
F

12.1 Embedded OSS 149

F
ig

.1
2.

4
T
he

es
tim

at
ed

so
ft
w
ar
e
re
lia

bi
lit
y

150 12 Performance Illustrations of Software Tool

F
ig

.1
2.

5
T
he

re
su
lts

of
th
e
pr
ed
ic
te
d
re
la
tiv

e
er
ro
r

12.1 Embedded OSS 151

F
ig

.1
2.

6
T
he

re
su
lts

of
th
e
L
ap
la
ce

tr
en
d
te
st

152 12 Performance Illustrations of Software Tool

12.1.2 Optimal Release Problem with Reliability
of Embedded OSS

Also, we consider that the developer of embedded system can estimate the optimal
release time by combining the total expected software cost with the reliability. We
assume that the reliability requirement as follows:

Rk(0.1) = 0.5.

We obtain the reliability R51(0.1) = 0.462 when the optimum release time is
t ′ = 6.6 days where l ′ = 51. Then, we need to lengthen the porting-time, which is
shown in Fig. 12.8 as (t ′ − t∗) = 8.8 − 6.6 = 2.2 days. Figure12.8 illustrates the
optimum release time with reliability objective R61(0.1) = 0.5.

From Figs. 12.7 and 12.8, we have found that the optimum release time become
lengthen, and the total expected software cost increases. When the porting time and
the reliability objective are assumed as Rk(0.1) = 0.5, we obtain t ′∗ = 8.8 from
l∗ = 61. Then, the total expected software cost is 1502.8. Above-mentioned results
are expressed as the tooltip of GUI in our tool.

Fig. 12.7 The estimated results of the optimum software release time

12.1 Embedded OSS 153

F
ig

.1
2.

8
T
he

op
tim

um
so
ft
w
ar
e
re
le
as
e
tim

e
w
ith

re
lia

bi
lit
y
re
qu

ir
em

en
t,

t′∗

154 12 Performance Illustrations of Software Tool

12.1.3 Discussion for the Software Tool

It is important for software developers to control the porting-phase in embedded
system development by using software reliability/portability assessment tool with-
out knowing the details of the process of the software failure data analysis. In this
section, we have developed a software reliability/portability assessment tool con-
sidering the optimal release problem based on the hazard rate model for embedded
system development by using Java programming language.

We have shown that our method can grasp both the embedded OSS and the unique
software components such as the device driver. Additionally, we have presented sev-
eral performance illustrations for the actual data. Moreover, it is useful for embed-
ded software developers to understand the debugging progress in porting-phase of
embedded system development by using a software reliability/portability assessment
tool without knowing the details of the process of the software failure data analysis.
Furthermore, our tool proposed here is useful for embedded system developers in
terms of the management of the debugging process in the porting-phase of embedded
system development. The results of data analysis are represented simply and visually
by GUI and this tool prepares expandability, portability, and maintainability by using
Java.

Finally, we have focused on the reliability/portability under the porting-phase of
an embedded system development by using the embedded OSS. Distributed devel-
opment environment typified by such embedded OSS will evolve at a rapid pace in
the future. Our reliability/portability assessment tool may be useful as a method of
reliability/portability assessment to solve the problems that many companies have
been hesitant to innovate the embedded OSS.

12.2 Open Source Solution

12.2.1 Applied Data

A set of actual software fault-detection count data is analyzed to show performance
illustrations of software reliability measurement for application of the developed
tool.2 This tool [4] is developed byusing open sourceFlexSDK.The open sourceFlex
is a powerful application framework that allows developers to easily build mobile
applications for iOS, Android, and BlackBerry Tablet OS, as well as traditional
applications for the browser and the desktop by using the same programming model,
the same tool, and the same code base [5].

2Reliability Analysis Tool Based on Stochastic Differential Equation Models for Open Source
Solution (RAT Based on SDE Models for OSSol), URL: http://sourceforge.net/projects/ossol/.

http://sourceforge.net/projects/ossol/

12.2 Open Source Solution 155

Several numerical examples for reliability analysis of the debugging-process of
open source solution development are shown in this section. Moreover, the esti-
mation results of the developed tool are illustrated by using the data sets assumed
the debugging environment. Considering the realities of the field use, we show the
numerical examples by using the data sets in terms of the Apache HTTP server [6],
Apache Tomcat [7], and MySQL [8].

The estimated result of the unknown parameters of the proposed SDE models
is shown in Fig. 12.9. Figure12.9 shows that the proposed SDE models fit better
than the conventional SDE models in terms of AIC and MSE. Also, the estimated
expected number of detected faults in Eqs. (9.11) and (9.12), and the conventional
ones are shown in Fig. 12.10. From Fig. 12.10, the S-shaped growth curves rapidly
converge as debugging procedures go on. On the other hand, the exponential growth
curves slowly converge.

Figures12.11 and 12.12 show the estimated sample path of detected faults. In
particular, Fig. 12.11 means that the complexity of component collision is large in
the early debugging-process of open source solution. On the other hand, Fig. 12.12
shows that the noise becomes large as debugging procedures go on. Abovementioned
results, Fig. 12.11 has the characteristic of the binding-phase of open source solution.

Also, Fig. 12.13 shows the behavior of the predicted relative error in Eq. (8.17).
As shown in Fig. 12.13, the variation of all modeling estimations becomes stable
when the debugging progress ratio exceeds 50%.

Furthermore, it is important for software managers to assess the expected number
of remaining faults. The expected number of remaining faults for each model are
shown in Fig. 12.14. Especially, the estimated expected number of remaining faults
in terms of S-shaped growth curve are estimated optimistically.

12.2.2 Discussion for the Software Tool

This section focuses on the open source solution which is known as the large scale
software system, and discusses the method of reliability assessment for the open
source solution developed under several OSS’s.

The method of software reliability analysis based on SDE models has been pro-
posed in order to consider the collision among the OSS components. Then, the
proposed models have assumed that the software fault-detection rate depends on
the time, and the software fault-report phenomena on the debugging-process keep
an irregular state. Especially, the reliability analysis tool based on SDE models in
order to consider the interesting aspect of the collision status in the binding phase
of OSS’s has developed. Also, a set of actual software fault-count data has been
analyzed to show numerical examples of software reliability analysis for the open
source solution.

At present, a new paradigm of distributed development typified by such open
source project will evolve at a rapid pace in the future. Especially, it is difficult for
the softwaremanagers to assess the reliability for the large scale open source solution

http://dx.doi.org/10.1007/978-3-319-31818-9_9
http://dx.doi.org/10.1007/978-3-319-31818-9_9
http://dx.doi.org/10.1007/978-3-319-31818-9_8

156 12 Performance Illustrations of Software Tool

F
ig

.1
2.

9
T
he

es
tim

at
io
n
re
su
lts

of
m
od

el
pa
ra
m
et
er
s,
A
IC

,a
nd

M
SE

12.2 Open Source Solution 157

F
ig

.1
2.

10
T
he

es
tim

at
ed

ex
pe
ct
ed

nu
m
be
r
of

de
te
ct
ed

fa
ul
ts

158 12 Performance Illustrations of Software Tool

F
ig

.1
2.

11
T
he

sa
m
pl
e
pa
th

of
cu
m
ul
at
iv
e
nu

m
be
r
of

de
te
ct
ed

fa
ul
ts
in

th
e
pr
op

os
ed

SD
E
m
od

el
s

12.2 Open Source Solution 159

F
ig

.1
2.

12
T
he

sa
m
pl
e
pa
th

of
cu
m
ul
at
iv
e
nu

m
be
r
of

de
te
ct
ed

fa
ul
ts
in

th
e
co
nv
en
tio

na
lS

D
E
m
od

el
s

160 12 Performance Illustrations of Software Tool

F
ig

.1
2.

13
T
he

es
tim

at
ed

pr
ed
ic
te
d
re
la
tiv

e
er
ro
r

12.2 Open Source Solution 161

F
ig

.1
2.

14
T
he

es
tim

at
ed

ex
pe
ct
ed

nu
m
be
r
of

re
m
ai
ni
ng

fa
ul
ts

162 12 Performance Illustrations of Software Tool

as a typical case of next-generation distributed development paradigms.Theproposed
method may be useful as the method of software reliability assessment for the open
source solution.

12.3 Mobile OSS

12.3.1 Applied Data

A set of actual software fault-detection count data is analyzed to show performance
illustrations of software reliability analysis for application of the developed tool.
This tool [9] is developed by using open source Apache Flex SDK. The open source
Apache Flex is a powerful application framework that allows developers to easily
build mobile applications for iOS, Android, and BlackBerry Tablet OS, as well as
traditional applications for the browser and the desktop using the same programming
model, the same tool, and the same code base [5]. Several numerical examples for
reliability analysis of the operation-phase of mobile clouds environment are shown
in this section. In particular, we focus on Firefox OS [10] in order to evaluate the
performance of our method and tool. In this section, we show numerical examples by
using the data sets for Firefox OS of OSS mobile software. This data are collected in
the bug tracking system on the website of Mozilla as Firefox OS project. Table12.1
shows actual data sets.

Also, we focus on the network traffic as the characteristics ofmobile clouds. Then,
we consider that the network traffic changes as depending on the environment for the
usage of mobile clouds. In particular, we assume the following random number for
the change as the network traffic density in order to aim at assessing the performance
of proposed method, because it is difficult to obtain actual network traffic data in
mobile clouds used several mobile software simultaneously.

• Normal Random Number
(Mean :0.0, Standard Deviation: 0.5)

Then, we focus on two cases of version 1.1 and 1.2 in Firefox OS.
We show the main screen in case of version 1.1 of the developed dynamic reli-

ability analysis tool in Fig. 12.15. For examples of dynamic reliability analysis, it
is important for software managers to understand the trends of reliability growth or
regression in terms of the number of detected faults according to the change in the
network traffic. Then, Fig. 12.16 show the estimated network traffic density. Also, the
estimated MTBF in Eq. (10.4) is shown in Fig. 12.17. From Figs. 12.16 and 12.17,
we find that the mobile software of version 1.1 is under the influence of network
environment in the early debugging-process of mobile clouds. Moreover, the mobile
clouds in case of version 1.1 tends to show the trend of reliability regression because
the estimated MTBF is nearly unchanged. Furthermore, Fig. 12.18 shows the esti-
mated software reliability in Eq. (10.3) in case of version 1.1. The horizontal axis

http://dx.doi.org/10.1007/978-3-319-31818-9_10
http://dx.doi.org/10.1007/978-3-319-31818-9_10

12.3 Mobile OSS 163

Table 12.1 The actual MTBF data in Firefox OS

Failure number MTBF (Days) Failure number MTBF (Days)

1 40.2590162 40 2.222743056

2 0.065416667 41 2.771863426

3 0.003900463 42 3.033171296

4 0.031006944 43 6.515335648

5 0.000729167 44 0.008425926

6 1.558958333 45 0.003252315

7 22.02296296 46 0.001238426

8 13.54936343 47 0.003576389

9 0.442013889 48 0.000844907

10 5.431226852 49 0.000763889

11 20.11006944 50 0.000671296

12 6.572094907 51 0.000740741

13 14.09141204 52 0.000856481

14 3.334606481 53 0.002071759

15 5.527094907 54 0.006365741

16 0.629259259 55 0.004664352

17 6.252430556 56 0.006990741

18 0.764722222 57 0.327291667

19 2.643587963 58 1.717696759

20 0.884675926 59 5.71556713

21 0.295405093 60 0.059594907

22 0.621388889 61 0.859201389

23 0.779710648 62 6.872789352

24 1.025358796 63 0.016736111

25 0.794548611 64 0.004791667

26 1.101215278 65 1.35806713

27 2.453101852 66 5.848252315

28 0.330613426 67 1.783587963

29 0.50630787 68 0.790173611

30 0.321828704 69 2.495358796

31 0.090509259 70 0.005949074

32 0.012881944 71 4.276087963

33 0.072314815 72 5.475706019

34 0.749305556 73 0.822719907

35 0.061701389 74 0.255115741

36 0.122743056 75 5.923206019

37 1.312372685 76 3.86837963

38 0.368564815 77 0.192141204

39 2.932361111 78 0.048391204

(continued)

164 12 Performance Illustrations of Software Tool

Table 12.1 (continued)

Failure number MTBF (Days) Failure number MTBF (Days)

79 0.886458333 118 0.011875

80 0.872476852 119 0.03525463

81 0.664340278 120 0.083229167

82 0.020300926 121 0.004351852

83 0.343263889 122 0.00412037

84 0.093402778 123 0.003854167

85 0.148865741 124 0.128217593

86 0.698831019 125 0.00474537

87 0.251238426 126 0.272314815

88 0.027615741 127 2.003101852

89 0.017662037 128 0.640266204

90 0.070219907 129 0.988958333

91 0.024212963 130 0.062928241

92 0.831956019 131 0.024849537

93 0.194965278 132 1.10099537

94 0.528599537 133 0.09412037

95 1.016736111 134 0.117037037

96 0.021226852 135 0.029861111

97 0.049247685 136 0.706412037

98 0.004340278 137 0.146539352

99 0.19962963 138 0.834583333

100 0.010462963 139 1.127523148

101 0.062962963 140 0.393472222

102 0.010671296 141 0.036909722

103 0.133946759 142 2.277013889

104 0.012974537 143 0.508668981

105 0.007731481 144 0.196956019

106 0.449328704 145 0.055509259

107 0.075185185 146 0.01525463

108 0.363611111 147 0.967581019

109 0.208483796 148 0.386770833

110 0.293888889 149 0.135833333

111 0.277800926 150 0.198564815

112 0.1628125 151 1.073553241

113 0.617731481 152 0.526261574

114 0.008333333 153 0.036539352

115 0.012303241 154 0.413993056

116 0.011064815 155 0.579155093

117 0.059282407 156 2.435104167

(continued)

12.3 Mobile OSS 165

Table 12.1 (continued)

Failure number MTBF (Days) Failure number MTBF (Days)

157 0.393344907 196 0.004456019

158 0.098009259 197 0.007430556

159 0.006898148 198 0.005972222

160 0.004050926 199 0.081365741

161 0.670520833 200 0.003263889

162 1.040752315 201 0.034166667

163 0.057002315 202 0.200775463

164 0.815023148 203 0.125729167

165 0.086377315 204 0.011099537

166 0.060034722 205 0.027233796

167 0.009027778 206 0.449224537

168 0.085949074 207 0.046689815

169 0.449143519 208 0.035891204

170 2.597303241 209 0.394143519

171 0.185868056 210 0.029664352

172 0.072604167 211 0.093668981

173 0.059375 212 0.366319444

174 0.582395833 213 2.238564815

175 0.014074074 214 0.047384259

176 0.199907407 215 0.006099537

177 0.123773148 216 0.007094907

178 0.011921296 217 0.000659722

179 0.273136574 218 0.031481481

180 0.463078704 219 0.021319444

181 0.19525463 220 0.038206019

182 0.024513889 221 0.01224537

183 0.007939815 222 0.049780093

184 0.001331019 223 0.008113426

185 0.004571759 224 0.00431713

186 0.009618056 225 0.066145833

187 0.048402778 226 0.016863426

188 0.034212963 227 0.583449074

189 0.019965278 228 0.242453704

190 0.078391204 229 0.027638889

191 2.31E-05 230 0.022083333

192 0.302222222 231 0.013912037

193 0.093518519 232 0.03318287

194 0.003449074 233 0.031840278

195 0.065729167 234 0.10599537

(continued)

166 12 Performance Illustrations of Software Tool

Table 12.1 (continued)

Failure number MTBF (Days) Failure number MTBF (Days)

235 0.019421296 274 0.193599537

236 0.697696759 275 1.106076389

237 0.127962963 276 0.139965278

238 0.462337963 277 0.032997685

239 0.20931713 278 1.144363426

240 0.017939815 279 0.224722222

241 0.146076389 280 1.448414352

242 0.017986111 281 0.870532407

243 0.045150463 282 0.053819444

244 0.024016204 283 0.653171296

245 0.02349537 284 0.258958333

246 0.118240741 285 0.05099537

247 0.097222222 286 0.08337963

248 0.146747685 287 0.005162037

249 0.601284722 288 0.167083333

250 0.736863426 289 0.120763889

251 0.054560185 290 0.002569444

252 0.211458333 291 0.010162037

253 0.326064815 292 0.003576389

254 0.014375 293 0.002569444

255 1.595127315 294 0.004282407

256 0.00625 295 0.034953704

257 0.011296296 296 0.104814815

258 0.096967593 297 0.16099537

259 0.083564815 298 0.084710648

260 0.017534722 299 0.159722222

261 0.039212963 300 0.36462963

262 0.000810185 301 0.116296296

263 0.321122685 302 0.009259259

264 0.234895833 303 0.089791667

265 0.047025463 304 0.076388889

266 0.068287037 305 0.029131944

267 0.027013889 306 0.006585648

268 0.031516204 307 0.391770833

269 0.111712963 308 0.066863426

270 0.330474537 309 0.242060185

271 0.328229167 310 0.030752315

272 0.201053241 310 0.030752315

273 0.036145833 311 0.065717593

(continued)

12.3 Mobile OSS 167

Table 12.1 (continued)

Failure number MTBF (Days) Failure number MTBF (Days)

312 0.178298611 351 0.09212963

313 0.4440625 352 0.055300926

314 0.132650463 353 0.021215278

315 0.190034722 354 0.070763889

316 0.047939815 355 0.331875

317 0.135127315 356 0.20037037

318 0.56724537 357 0.070613426

319 0.006678241 358 0.292858796

320 0.002638889 359 1.97625

321 0.004618056 360 0.106550926

322 1.700821759 361 0.137777778

323 0.2578125 362 0.003923611

324 0.039212963 363 0.318935185

325 0.310451389 364 0.158715278

326 0.102835648 365 0.033391204

327 0.548541667 366 0.013414352

328 0.178148148 367 0.040891204

329 0.18994213 368 0.013113426

330 0.08724537 369 0.339456019

331 0.101145833 370 0.045358796

332 0.354467593 371 0.48625

333 0.018009259 372 0.080925926

334 0.022789352 373 0.262453704

335 0.294733796 374 0.008622685

336 0.024699074 375 0.022303241

337 0.864699074 376 0.034606481

338 0.013831019 377 0.072233796

339 0.105150463 378 0.037222222

340 0.005231481 379 0.00625

341 0.002453704 380 0.026400463

342 0.006180556 381 0.451527778

343 0.005150463 382 0.393854167

344 0.001527778 383 0.007002315

345 0.001550926 384 0.17787037

346 0.002534722 385 0.007349537

347 0.059641204 386 0.087766204

348 0.284780093 387 0.008217593

349 0.005023148 388 0.180844907

350 0.047141204 389 0.068831019

(continued)

168 12 Performance Illustrations of Software Tool

Table 12.1 (continued)

Failure number MTBF (Days) Failure number MTBF (Days)

390 0.169212963 429 0.135474537

391 0.051030093 430 0.004814815

392 0.053611111 431 0.053958333

393 0.002476852 432 0.157800926

394 0.014155093 433 0.100358796

395 0.005196759 434 0.29412037

396 0.004409722 435 0.097777778

397 0.014398148 436 0.104895833

398 0.0075 437 0.039965278

399 0.000150463 438 0.017881944

400 0.002592593 439 0.063055556

401 0.004537037 440 0.016770833

402 0.076064815 441 0.117361111

403 0.003020833 442 0.213263889

404 0.128483796 443 0.117546296

405 0.113020833 444 0.466643519

406 0.242662037 445 0.149907407

407 0.555208333 446 0.175601852

408 1.066539352 447 1.373831019

409 0.794861111 448 0.270972222

410 0.036770833 449 0.044606481

411 0.062743056 450 0.210532407

412 0.006921296 451 1.724652778

413 0.015196759 452 0.131400463

414 0.033101852 453 0.011111111

415 0.020925926 454 0.074027778

416 0.023368056 455 0.051412037

417 0.024479167 456 0.677604167

418 0.009618056 457 0.09599537

419 0.091643519 458 0.004166667

420 0.000324074 459 0.070636574

421 0.007928241 460 0.096087963

422 0.014340278 461 0.015104167

423 0.203657407 462 0.280173611

424 0.175069444 463 0.4975

425 0.162662037 464 0.050393519

426 0.084467593 465 0.05287037

427 0.035648148 466 0.007997685

428 0.073194444 467 0.002511574

(continued)

12.3 Mobile OSS 169

Table 12.1 (continued)

Failure number MTBF (Days) Failure number MTBF (Days)

468 0.00630787 507 0.196296296

469 0.069305556 508 0.641030093

470 0.270162037 509 0.032858796

471 0.236053241 510 0.013148148

472 0.377106481 511 0.022233796

473 0.04193287 512 0.008090278

474 0.038842593 513 0.020625

475 0.046076389 514 0.01244213

476 0.172615741 515 0.001701389

477 0.102152778 516 0.002905093

478 0.123703704 517 0.034456019

479 0.107337963 518 0.009953704

480 0.256342593 519 0.016782407

481 0.008078704 520 0.067662037

482 0.120729167 521 0.077013889

483 0.050231481 522 0.149618056

484 0.053622685 523 0.061365741

485 0.09775463 524 0.051458333

486 1.872766204 525 0.072465278

487 0.703819444 526 0.304918981

488 0.098553241 527 0.01125

489 0.206469907 528 0.066041667

490 0.038888889 529 0.001226852

491 0.044259259 530 0.00318287

492 0.138194444 531 0.014421296

493 0.395543981 532 0.022303241

494 0.007256944 533 0.016122685

495 0.018831019 534 0.069224537

496 0.057048611 535 0.057349537

497 0.018275463 536 0.006666667

498 0.044166667 537 0.233564815

499 0.018333333 538 0.210138889

500 0.068773148 539 0.192418981

501 0.038055556 540 0.114826389

502 0.002974537 541 0.01275463

503 0.013240741 542 0.004247685

504 0.022638889 543 0.085636574

505 0.022800926 544 0.001643519

506 0.02662037 545 0.156886574

(continued)

170 12 Performance Illustrations of Software Tool

Table 12.1 (continued)

Failure number MTBF (Days) Failure number MTBF (Days)

546 0.025856481 585 0.079837963

547 0.076666667 586 0.327361111

548 2.468645833 587 0.042696759

549 0.253900463 588 0.086053241

550 0.057581019 589 0.201342593

551 0.358148148 590 0.159780093

552 0.038043981 591 0.069236111

553 0.230335648 592 0.000763889

554 0.04724537 593 0.020752315

555 0.194421296 594 0.045868056

556 0.026550926 595 0.157037037

557 0.19462963 596 0.056365741

558 0.246527778 597 0.000416667

559 0.063402778 598 0.00625

560 0.193738426 599 0.072199074

561 0.045138889 600 0.073703704

562 0.312581019 601 0.548333333

563 0.029027778 602 0.422569444

564 0.093206019 603 0.00681713

565 0.002476852 604 0.564872685

566 0.098483796 605 0.061493056

567 0.0296875 606 0.909722222

568 0.095277778 607 0.322800926

569 0.082662037 608 0.146597222

570 0.016886574 609 0.231377315

571 0.052951389 610 0.495405093

572 0.073449074 611 0.234236111

573 0.057835648 612 0.722291667

574 0.311296296 613 1.050196759

575 0.120775463 614 0.12787037

576 0.157638889 615 0.045717593

577 0.047083333 616 0.023993056

578 0.342291667 617 0.860925926

579 0.30025463 618 0.098321759

580 0.198969907 619 0.025081019

581 0.249189815 620 0.582835648

582 0.318819444 621 0.067280093

583 0.021631944 622 0.266643519

584 2.132916667 623 0.56650463

(continued)

12.3 Mobile OSS 171

Table 12.1 (continued)

Failure Number MTBF (Days) Failure Number MTBF (Days)

624 0.399548611 660 2.757511574

625 0.007337963 661 0.156435185

626 0.200393519 662 0.055844907

627 0.135648148 663 1.002106481

628 0.323020833 664 2.845694444

629 0.352233796 665 4.194606481

630 2.684571759 666 1.6359375

631 0.259803241 667 1.234837963

632 0.050787037 668 2.952777778

633 0.626203704 669 15.03015046

634 0.088784722 670 66.01752315

635 0.755520833

636 0.128252315

637 0.184710648

638 1.635243056

639 0.580752315

640 0.005914352

641 0.070601852

642 0.100023148

643 2.733310185

644 1.448136574

645 0.936076389

646 0.780092593

647 1.053865741

648 2.729907407

649 0.011423611

650 0.008784722

651 0.003900463

652 0.022951389

653 0.1159375

654 0.104918981

655 0.590972222

656 1.156006944

657 0.312199074

658 0.253796296

659 1.596875

172 12 Performance Illustrations of Software Tool

F
ig

.1
2.

15
T
he

m
ai
n
sc
re
en

of
th
e
de
ve
lo
pe
d
A
IR

ap
pl
ic
at
io
n
in

ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
1)

12.3 Mobile OSS 173

F
ig

.1
2.

16
T
he

es
tim

at
ed

ne
tw
or
k
tr
af
fic

de
ns
ity

in
ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
1)

174 12 Performance Illustrations of Software Tool

F
ig

.1
2.

17
T
he

es
tim

at
ed

M
T
B
F
in

ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
1)

12.3 Mobile OSS 175

F
ig

.1
2.

18
T
he

es
tim

at
ed

so
ft
w
ar
e
re
lia

bi
lit
y
in

ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
1)

176 12 Performance Illustrations of Software Tool

of Fig. 12.18 means the elapsed time after the end of the detected faults k = 669.
From Fig. 12.18, if the embedded software is operated after the under the same strict
conditions as the debugging-process after the 669 faults, the software reliability after
27h after from the beginning of its operation shows about 0.2. Therefore, we find
that at least one software failure may occur with the probability of 80% within 27h.

Similarly, the main screen in case of version 1.2 of Firefox OS is shown in
Fig. 12.19. Figure12.19 shows, the estimated parameters, the calculation button, etc.
Also, Figs. 12.20, 12.21 and 12.22 show the estimated network traffic density, the
estimated MTBF, the estimated software reliability, respectively. In particular, from
Fig. 12.21, we find that the mobile software of version 1.2 is under the influence of
network environment in the early debugging-process of mobile clouds. Moreover,
the mobile clouds in case of version 1.2 tends to show the trend of reliability growth
because the estimated MTBF becomes large with the operating procedures go on.
Furthermore, Fig. 12.22 shows the estimated software reliability in Eq. (10.3) in case
of version 1.2. The horizontal axis of Fig. 12.22 means the elapsed time after the
end of the detected faults k = 323. From Fig. 12.22, if the embedded software is
operated after the under the same strict conditions as the debugging-process after the
323 faults, the software reliability after 27h after from the beginning of its operation
shows about 0.4. Therefore, we find that at least one software failure may occur with
the probability of 60% within 27h.

12.3.2 Discussion for the Software Tool

It is important for software developers andmanagers to control the debugging-process
in mobile system development considering the mobile clouds. We have proposed the
method of software reliability measurement and assessment considering the net-
work traffic based on the hazard rate model and neural network for mobile clouds
environment.

In particular, it is difficult to assess the reliability of the operation phase according
to the installed software in the future, because the mobile device includes the soft-
ware installer from the characteristics of third-party development paradigm. Then,
we have proposed the method of reliability measurement and assessment for the
mobile clouds. Moreover, we have developed the AIR application based on the pro-
posed method. Additionally, we have presented several performance examples of the
developed AIR application and the proposed method for the actual data. Moreover, it
is important for software managers to assess the reliability according to the change of
network traffic in the mobile device. We have shown the estimated MTBF and soft-
ware reliability considering the change of network traffic. Thereby, we have found
that the developed AIR application can assess integrated reliability considering both
software failure and network traffic.

http://dx.doi.org/10.1007/978-3-319-31818-9_10

12.3 Mobile OSS 177

F
ig

.1
2.

19
T
he

m
ai
n
sc
re
en

of
th
e
de
ve
lo
pe
d
A
IR

ap
pl
ic
at
io
n
in

ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
2)

178 12 Performance Illustrations of Software Tool

F
ig

.1
2.

20
T
he

es
tim

at
ed

ne
tw
or
k
tr
af
fic

de
ns
ity

in
ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
2)

12.3 Mobile OSS 179

F
ig

.1
2.

21
T
he

es
tim

at
ed

M
T
B
F
in

ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
2)

180 12 Performance Illustrations of Software Tool

F
ig

.1
2.

22
T
he

es
tim

at
ed

so
ft
w
ar
e
re
lia

bi
lit
y
in

ca
se

of
Fi
re
fo
x
O
S
(v
er
si
on

1.
2)

12.3 Mobile OSS 181

Finally, we have focused on the reliability for mobile clouds environment. The
developed AIR application for reliability analysis in mobile clouds will be useful as
a software tool of reliability analysis to solve the quality problems in mobile clouds.
Moreover, it is useful for software managers to understand the debugging process
and network traffic progress in operation phase of mobile clouds.

References

1. Y. Tamura, S. Yamada, Reliability and portability assessment tool based on hazard rates for an
embedded open source software, J. Softw. 9(10) (Academy Publisher, 2014), pp. 2546–2556

2. Open Handset Alliance, Android. [Online]. http://www.android.com/
3. E. Andersen, BusyBox. [Online]. http://www.busybox.net/
4. Y. Tamura, S. Yamada, Reliability analysis tool based on stochastic differential equationmodels

for an open source solution. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6), 78–85 (2013)
5. Flex.org–Adobe Flex Developer Resource, Adobe Systems Incorporated. http://flex.org/
6. The Apache HTTP Server Project, The Apache Software Foundation. http://httpd.apache.org/
7. Apache Tomcat, The Apache Software Foundation. [Online]. http://tomcat.apache.org/
8. MySQL, Oracle Corporation and/or its affiliates. [Online]. http://www.mysql.com/
9. Y. Tamura, S. Yamada, AIR application for reliability analysis considering debugging process

and network traffic in mobile clouds, J. Simul. Model. Pract. Theory, (Elsevier B.V.). doi:10.
1016/j.simpat.2014.03.010, Accessed 24 Apr 2014

10. FirefoxOS,Marketplace, Android–Partners–mozilla.org,Mozilla Foundation. [Online]. http://
www.mozilla.org/firefoxos/

http://www.android.com/
http://www.busybox.net/
http://flex.org/
http://httpd.apache.org/
http://tomcat.apache.org/
http://www.mysql.com/
http://dx.doi.org/10.1016/j.simpat.2014.03.010
http://dx.doi.org/10.1016/j.simpat.2014.03.010
http://www.mozilla.org/firefoxos/
http://www.mozilla.org/firefoxos/

Chapter 13
Exercises

This chapter shows several exercises for understanding the reliability assessment
measures for OSS reliability measurement and assessment, e.g., MTBF, predicted
relative error, and remaining faults. The following problems will be useful for soft-
ware managers to evaluate OSS quality/reliability.

13.1 Exercise 1

Figure13.1 shows the estimated MTBF in Eq. (10.4) based on the hazard rate model.
Discuss the reliability trend of OSS in Fig. 13.1.

Brief Solution

It is important for software managers to understand the trends of reliability growth
or regression. Figure13.1 tends to show the trend of reliability growth because the
estimated MTBF becomes large with the operating procedures go on.

13.2 Exercise 2

Figure13.2 shows the estimated predicted relative error in Eq. (8.17). Discuss the
goodness of fit of the estimated each model in Fig. 13.2.

Brief Solution

As shown in Fig. 12.13, the variation of all modeling estimations becomes stable
when the debugging progress ratio exceeds 50%.

13.3 Exercise 3

Figure13.3 shows the estimated sample path of stochastic differential equationmodel
in Eq. (9.19). Discuss the stability of the estimated sample paths in Fig. 13.3.

© Springer International Publishing Switzerland 2016
S. Yamada and Y. Tamura, OSS Reliability Measurement and Assessment,
Springer Series in Reliability Engineering, DOI 10.1007/978-3-319-31818-9_13

183

http://dx.doi.org/10.1007/978-3-319-31818-9_10
http://dx.doi.org/10.1007/978-3-319-31818-9_8
http://dx.doi.org/10.1007/978-3-319-31818-9_12
http://dx.doi.org/10.1007/978-3-319-31818-9_9

184 13 Exercises

Fig. 13.1 The estimated MTBF based on the hazard rate model

Fig. 13.2 The estimated predicted relative error

Brief Solution

Figure12.11 means that the complexity of software component collision is large in
the early debugging-process of open source solution.

13.4 Exercise 4

Figure13.4 shows the estimated numbers of remaining faults in Eq. (9.22). Discuss
the remaining faults on 15 days for each model in Fig. 13.4.

http://dx.doi.org/10.1007/978-3-319-31818-9_12
http://dx.doi.org/10.1007/978-3-319-31818-9_9

13.4 Exercise 4 185

Fig. 13.3 The estimated sample path of stochastic differential equation model

Fig. 13.4 The estimated remaining faults

Brief Solution

In Fig. 13.1, the estimated numbers of remaining faults is about 50 faults in case of
“Estimate (S-shape)” on 15 days.

	Preface
	Contents
	1 Software Reliability
	1.1 Introduction
	1.2 Definitions
	1.3 Software Reliability Measurement and Assessment
	1.4 Open Source Software Reliability
	1.4.1 Brief Summary of Open Source Software
	1.4.2 The Characteristics of OSS
	1.4.3 Development Paradigm of OSS

	References

	2 NHPP Model and AHP for OSS Reliability Analysis
	2.1 Component Reliability Analysis of OSS
	2.1.1 Reliability Assessment Based on SRGM
	2.1.2 Exponential SRGM
	2.1.3 Inflection S-Shaped SRGM
	2.1.4 Goodness-of-Fit Evaluation Criteria for Applied Model
	2.1.5 Weight Parameter for Each Component Based on AHP

	2.2 Reliability Analysis for Entire OSS System
	2.2.1 Logarithmic Execution Time Model
	2.2.2 Reliability Assessment Measures

	References

	3 NHPP Model and ANP for OSS Reliability Analysis
	3.1 Reliability Assessment for Each Software Component
	3.1.1 Reliability Assessment Based on SRGM
	3.1.2 Exponential SRGM
	3.1.3 Inflection S-Shaped SRGM
	3.1.4 Goodness-of-Fit Evaluation Criteria for Applied Model
	3.1.5 Weight Parameter for Each Component Based on ANP

	3.2 Reliability Assessment for Entire System
	3.2.1 Inflection S-Shaped SRGM
	3.2.2 Software Reliability Assessment Measures

	References

	4 Stochastic Differential Equation Models for OSS Reliability Analysis
	4.1 Introduction
	4.2 Stochastic Differential Equation Modeling
	4.3 Method of Maximum-Likelihood
	4.4 Software Reliability Assessment Measures
	4.4.1 Expected Numbers of Detected Faults and Their Variances
	4.4.2 Mean Time Between Software Failures
	4.4.3 Coefficient of Variation

	References

	5 Hazard Rates for Embedded OSS Reliability Analysis
	5.1 Introduction
	5.2 Flexible Hazard Rate Model for Embedded OSS
	5.3 Reliability Assessment Measures
	References

	6 Reliability Analysis for Open Source Solution
	6.1 Introduction
	6.2 Stochastic Differential Equation Model
	6.3 Method of Maximum-Likelihood
	6.4 Software Reliability Assessment Measures
	6.4.1 Expected Numbers of Detected Faults
	6.4.2 Mean Time Between Software Failures
	6.4.3 Coefficient of Variation

	References

	7 Reliability Analysis for Mobile OSS
	7.1 Introduction
	7.2 Hazard Rate Model Depending on the Change of Network Traffic
	7.3 Reliability Assessment Measures
	7.4 Estimation of Network Traffic Density
	7.5 Parameter Estimation
	References

	8 Reliability Analysis Tool for Embedded OSS
	8.1 Introduction
	8.2 Hazard Rate Model for Embedded OSS Porting Phase
	8.3 Reliability Assessment Measures
	8.4 Optimal Release Problem for the Porting-Phase
	8.5 Reliability Assessment Measures
	8.6 Reliability/Portability Assessment Tool
	8.6.1 Specification Requirement
	8.6.2 Software Reliability Assessment Procedures

	References

	9 Reliability Analysis Tool for Open Source Solution
	9.1 Introduction
	9.2 Stochastic Differential Equation Modeling
	9.3 Method of Maximum-Likelihood
	9.4 Software Reliability Assessment Measures
	9.5 Comparison of Goodness-of-Fit
	9.6 Procedures of Reliability Analysis
	9.7 Reliability Analysis Tool
	9.7.1 Specification Requirement
	9.7.2 Software Reliability Assessment Procedures

	References

	10 Reliability Analysis Tool for Mobile OSS
	10.1 Introduction
	10.2 Hazard Rate Model for Mobile OSS
	10.3 Reliability Assessment Measures
	10.4 Parameter Estimation
	10.5 AIR Application for Reliability Analysis Considering the User Experience Design
	10.5.1 Specification Requirement
	10.5.2 User Experience Design

	References

	11 Actual Data and Numerical Examples of OSS Reliability Assessment
	11.1 NHPP Model Based on AHP
	11.1.1 Reliability Assessment for Each Component
	11.1.2 Reliability Assessment for Entire System
	11.1.3 Discussion for the Method of Reliability Assessment Based on AHP

	11.2 NHPP Model Based on ANP
	11.2.1 Reliability Assessment for Each Component
	11.2.2 Reliability Assessment for Entire System
	11.2.3 Discussion for the Method of Reliability Assessment Based on ANP

	11.3 Stochastic Differential Equation Models
	11.3.1 Data for Numerical Illustrations
	11.3.2 Reliability Assessment
	11.3.3 Sensitivity Analysis in Terms of Model Parameters
	11.3.4 Results of Goodness-of-Fit Comparison
	11.3.5 Discussion for the Method of Reliability Assessment Based on Stochastic Differential Equation Models

	11.4 Hazard Rates for Embedded OSS
	11.4.1 Embedded OSS
	11.4.2 Reliability Assessment
	11.4.3 Comparison of Goodness-of-Fit
	11.4.4 Prediction Accuracy After the End of Fault-Report
	11.4.5 Optimal Software Release Problem for the Porting-Phase of Embedded OSS
	11.4.6 Discussion for the Method of Reliability Assessment Based on Hazard Rates for Embedded OSS

	11.5 Applied Examples for Open Source Solution
	11.5.1 Data for Numerical Illustrations
	11.5.2 Reliability Assessment
	11.5.3 Discussion for the Method of Reliability Assessment on the Open Source Solution

	References

	12 Performance Illustrations of Software Tool
	12.1 Embedded OSS
	12.1.1 Applied Data
	12.1.2 Optimal Release Problem with Reliability of Embedded OSS
	12.1.3 Discussion for the Software Tool

	12.2 Open Source Solution
	12.2.1 Applied Data
	12.2.2 Discussion for the Software Tool

	12.3 Mobile OSS
	12.3.1 Applied Data
	12.3.2 Discussion for the Software Tool

	References

	13 Exercises
	13.1 Exercise 1
	13.2 Exercise 2
	13.3 Exercise 3
	13.4 Exercise 4

