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Preface

These proceedings contain the papers presented at the 4th MICCAI Workshop on
Clinical Image-Based Procedures: Translational Research in Medical Imaging (CLIP).
CLIP 2015 was successfully held in Munich, Germany, on October 5, 2015, in con-
junction with the 18th International Conference on Medical Image Computing and
Computer-Assisted Interventions (MICCAI).

CLIP focuses on translational research. Therefore, the goal of the works presented in
this workshop is to bring basic research methods closer to clinical practice. In this
sense, CLIP aims to be a meeting point were experts of both fields meet and discuss
current methods and applications.

As in previous CLIP workshops, all submitted papers were peer-reviewed by at least
three experts. CLIP 2015 received 22 submissions (two from Asia, nine from North
America, and 11 from Europe) and 15 of them were accepted for publication. All
accepted papers were presented by their authors during the workshop. During two
keynote sessions, clinical highlights were presented by Prof. Hans-Florian Zeilhofer
(Hightech Research Center of Cranio-Maxillofacial Surgery, University Hospital Basel,
Switzerland) and Prof. Andreas Melzer (Innovation Centre for Computer-Assisted
Surgery, Leipzig University, Germany). These interesting keynotes were followed by
lively discussions in which all attendees were involved. We would like to thank Prof.
Zeilhofer and Prof. Melzer for this big success.

The six papers with the highest review score were nominated to be considered as
best papers. From these, the three best papers were chosen by votes cast by workshop
participants who had attended all six presentations of the nominated papers (workshop
organizers were excluded). Three papers were then awarded. First place went to
Ian J. Gerard, Marta Kersten-Oertel, Simon Drouin, Jeffery A. Hall, Kevin Petrecca,
Dante De Nigris, Tal Arbel, and D. Louis Collins for their work on improving
patient-specific neurosurgical models with intraoperative ultrasound and augmented
reality visualizations in a neuronavigation environment. Second place was given to
Nerea Mangado, Mario Ceresa, Hector Dejea, Hans Martin Kjer, Sergio Vera, Rasmus
Reinhold Paulsen, Jens Fagertun, Pavel Mistrik, Gemma Piella, and Miguel Ángel
González Ballester for their synthetic population-based study on monopolar stimulation
of the implanted cochlea. Third place was conferred on Carles Sanchez, Marta
Diez-Ferrer, F. Javier Sánchez, Jorge Bernal, Antoni Rosell, and Debora Gil for their
contributions in navigation path retrieval from videobronchoscopy using bronchial
branches. We would like to congratulate warmly all the prize winners for their out-
standing work and exciting presentations. Furthermore, we would like to thank our
sponsors MedCom and Exocad for their support.



Finally, we would like to take this opportunity to thank all our Program Committee
members, authors, and attendees who helped CLIP 2015 to be a great success.

December 2015 Cristina Oyarzun Laura
Raj Shekhar

Stefan Wesarg
Miguel Ángel González Ballester

Klaus Drechsler
Yoshinobu Sato

Marius Erdt
Marius George Linguraru
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Accuracy Assessment of CBCT-Based Volumetric
Brain Shift Field
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Abstract. The displacement of the brain parenchyma during open brain surgery,
known as ‘brain shift’, affects the applicability of pre-operative planning and
affects the outcome of the surgery. In this article we investigated the accuracy of
a novel method to intra-operatively determine the brain shift displacement field
throughout the whole brain volume. The brain shift displacement was determined
by acquiring contrast enhanced cone-beam CT before and during the surgery. The
respective datasets were pre-processed, landmark enhanced, and elastically regis‐
tered to find the displacement field. The accuracy of this method was evaluated
by artificially creating post-operative data with a known ground truth deforma‐
tion. The artificial post-operative data was obtained by applying the deformation
field from one patient on the pre-operative data of another patient, which was
repeated for three patients. The mean error that was found with this method ranged
from 1 to 2 mm, while the standard deviation was about 1 mm.

Keywords: Brain shift · Open brain surgery · Craniotomy · Cone-beam CT ·
Elastic registration

1 Introduction

Leakage of the cerebrospinal fluid after craniotomy together with pressure changes and
gravitational effects causes the brain to deform. This deformation is commonly known
as ‘brain shift’, and can amount up to 20 mm [1, 2]. The brain shift is not uniformly
distributed over the brain volume, but varies locally [3]. The brain shift affects the
validity of pre-surgical planning, which is especially of importance when this planning
is employed during neuro-navigation using instrument tracking.

© Springer International Publishing Switzerland 2016
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A high degree of inter-individual variability in brain shift has been observed [3],
which reduces the predictive power of generic models. In the current clinical practice,
the intra-operative brain shift is typically only measured for the (visible) brain surface
[1], if at all. In order to provide an accurate description of the actual brain shift that is
present during surgery, not only at the surface, but throughout the whole brain volume,
we propose a method that relies on intra-procedural image acquisition to provide an in-
situ fully volumetric description of the deformation field.

Hastreiter et al. [4] and Mostayed et al. [5] have proposed intra-procedural magnetic
resonance imaging (MR) to assess and quantify the brain shift deformation field. Disad‐
vantages of MR are the associated significant costs, the necessity of MR compatible
surgical instruments, reduced access to the patient, and the duration of the acquisitions
[6, 7]. Other publications [8–13] have described 3D ultrasound (US) to deal with brain
shift, sometimes in combination with pre-operative MR. The high acoustic impedance
of the skull, limited field of view, and manual annotation of landmark features are
constraints for these approaches. Additionally, when the US probe is placed directly on
the brain surface, it can impose extra brain shift deformation.

Prior studies have proposed to use the vasculature as landmark features to assess
brain shift. Reinertsen et al. [10] and Bucki et al. [11] both have described a multi-modal
approach using vessel segmentation in pre-operative MRI and intra-operative US,
relying on a feature based registration method and a biomechanical model, respectively.

The vasculature and ventricles can be segmented from contrast enhanced cone-beam
computer tomography (CBCT) [14], and can be used as landmark features to intra-
operatively denote the 3D brain shift deformation field [15]. In this article we present
and evaluate an implementation of this approach.

2 Methods

2.1 Data Acquisition and Processing

In order to find the volumetric brain shift deformation field, we acquired for six patients
a contrast-enhanced CBCT directly before the start of the surgery, and another one intra-
procedurally [15]. The CBCT is acquired by an interventional X-ray C-arm (Allura
FD20, Philips Healthcare, Best the Netherlands), which provides excellent patient
accessibility. An acquisition consists of 620 projection images obtained during a rota‐
tional trajectory of 200° in 10 s, and was reconstructed on a 2563 voxel grid, with an
isotropic resolution of 0.98 mm per voxel in each direction.

Several processing steps were performed to the CBCT data, see Fig. 1. First, the
skull and the metal parts were segmented by applying a threshold of 400 HU and
1950 HU respectively. The brain is segmented by inflating a spherical mesh to the skull
boundary, as described by Smith [16].

Consequently, the skull mask was used to align the pre and intra-operative datasets
in a rigid registration step employing a Powell optimizer [17] and sum of squared
differences (SSD) as similarity measure. This step was necessary because the patient’s
head was rotated to enable the surgeon to perform surgery.

2 I. Smit-Ockeloen et al.



Fig. 1. Flowchart of the data processing steps. First, the skull, the brain and metal parts were
segmented in both the pre-operative and intra-operative data. The metal artifacts in the intra-
operative data were then corrected. Next, the datasets were rigidly registered based on the skull
mask. Furthermore, the brain mask was applied on both datasets. A Vesselness filter [19] was
used to highlight the vessels and the ventricles were segmented. These datasets with enhanced
landmarks were used to determine the brain shift deformation field.

Accuracy Assessment of CBCT-Based Volumetric Brain Shift Field 3



The metal streak artifacts in the intra-operative data caused by the stereotactic frame
were reduced in a second pass reconstruction, as described in [18]. Landmark features
were enhanced by applying a Vesselness filter [19] and a segmenting of the ventricles.
These landmarks were combined with the intensities of the brain segmentation and used
for the elastic registration of pre- and intra-operative datasets to obtain the brain shift
deformation field. All voxels inside the ventricle segmentation and the voxels outside
the brain mask were set to zero. The elastic registration algorithm used SSD as similarity
measure while a uniform B-spline driven deformation field was used as spatial mapping
[20]. Moreover, a gradient descent optimizer with variable step size was used as opti‐
mizer. The elastic registration was applied, using a multi-resolution approach that started
in a lower resolution with fewer control points (eight times downscaling), then
proceeded at intermediate resolution (four times downscaling), and finished with a down
sample factor of two and four voxels per control point.

2.2 Validation Method

In the previous subsections, we have described our approach to determining the elastic
brain shift deformation field. A ground truth is needed to quantify the error in the defor‐
mation. Since the brain deformation in post-operative images does not necessarily reflect
the brain shift during the surgery, there is no ground truth for clinical data accurately
representing the brain shift during the surgery. Therefore, we have applied the intra-
operative deformation obtained from one patient to the pre-operative dataset of another
patient. The applied deformation field is now known and can be compared with the
deformation field found after applying the methods described above.

To quantify the error in the deformation field, we performed two experiments. In the
first experiment, the deformation fields delivered by our method on patient 1, 2, and 3
were directly applied to the landmark processed pre-operative images of patient 4, 5,
and 6, respectively. These deformed datasets were then directly used as enhanced post-
operative data in the elastic registration step. The outcome of this process was denoted
as the ‘test’ deformation fields, while the deformation fields of patient 1, 2, and 3 were
considered as ground truth.

In the second experiment, the deformation fields obtained on patient 1, 2, and 3 were
applied to the pre-operative data of patient 4, 5, and 6, before segmentation was applied.
These deformed datasets were then segmented and landmark enhanced, before entering
them into the elastic registration.

The difference between the two experiments allows to evaluate the impact of the
first processing stages. The Euclidian distance of every voxel in the brain mask between
the test deformation and its ground truth is then used to characterize and investigate the
accuracy of the registration process. The mean error, standard deviation and maximum
error are calculated from the Euclidian distances.

4 I. Smit-Ockeloen et al.



3 Results

The effect of the proposed brain shift tracking method is illustrated in Fig. 2 for three
surgical patients.

Fig. 2. Pre- and intra-surgical CBCT data for three patients. Each row shows a patient. Left
column shows the pre-surgical CBCT after rigid registration. Middle column shows the pre-
surgical CBCT after elastic registration. Right column shows the intra-surgical CBCT.

The results of the first validation experiment are shown in Table 1. As can be seen,
the mean error ranges from about 1.0 to 1.9 mm, which corresponds to 1 to 2 voxels,
since the voxel size is 0.98 mm. The standard deviation is between 0.5 and 1.0 mm. The
maximum error ranges from 4.3 to 10.8 mm.

Table 1. Quantification of the error in the deformation field. (a) The deformation of patient 1
was applied to the pre-operative data of patient 4, (b) the deformation of patient 2 was applied to
patient 5, (c) the deformation of patient 3 was applied to patient 6. The deformation was directly
applied on the landmarked dataset which is used for the elastic registration (experiment 1).

Mean error (mm) Standard deviation (mm) Maximum error (mm)
a 1.00 0.45 4.32
b 1.60 0.99 9.87
c 1.87 0.98 10.79

The outcome of the second validation experiment is presented in Table 2. The mean
error ranges in this case from about 1.4 to 2.0 mm, while the standard deviation is
approximately 1 mm. The maximum error ranges here from 7.1 to 10.9 mm. In Fig. 3
the error quantification is visualized using a black body color map. As can been seen,
the largest error is at the location of the ventricles.

Accuracy Assessment of CBCT-Based Volumetric Brain Shift Field 5



The processing steps that are most prevailing in terms of computational complexity
are the segmentation and elastic registration steps. Our implementation of the segmen‐
tation algorithms took 13 s to compute for each patient, and the GPU elastic registration
[20] took 115 s.

Table 2. Quantification of the error in the deformation field. (a) The deformation of patient 1
was applied to the pre-operative data of patient 4, (b) the deformation of patient 2 was applied to
patient 5, (c) the deformation of patient 3 was applied to patient 6. The deformation was applied
to the pre-operative dataset before segmentation and landmark enhancement was applied (experi‐
ment 2).

Mean error (mm) Standard deviation (mm) Maximum error (mm)
a 1.40 0.89 7.11
b 1.84 1.14 10.03
c 2.03 0.99 10.89

Fig. 3. Frontal slices of the deformed pre-operative datasets and the corresponding error
quantification in the deformation field, whereby the magnitude of the error is depicted using a
black-body radiation color map. The right column shows the legend of the color map in
millimeters. (a) The deformation of patient 1 was applied to the pre-operative data of patient 4,
(b) the deformation of patient 2 was applied to patient 5, (c) the deformation of patient 3 was
applied to patient 4. The deformation was applied to the pre-operative dataset before segmentation
and landmark enhancement was applied (experiment 2).

6 I. Smit-Ockeloen et al.



4 Discussion and Conclusions

In this paper we presented a method for finding the brain shift deformation field during
open brain surgery, and assessed its accuracy. The method is based on acquiring contrast
enhanced cone-beam CT before and during the surgery, and processing and registering
these datasets. The experiments have shown that the average errors lay between 1 and
2 mm, while its standard deviation was found to be between 0.5 and 1 mm. Since the
voxel size of the datasets was 0.98 mm and the displacements in the ground truth defor‐
mation fields amounted up to 20 mm, the method appears to be applicable to surgical
applications. Future work needs to confirm this in more cases, also taking various resec‐
tion amounts and locations into account.

The largest errors (up to 10.9 mm) were found around the ventricles. Two reasons
can explain this. The first reason is intrinsic to the approach presented in Fig. 1, and is
associated with the usage of cubic B-splines to model the deformation field. Cubic B-
splines provide a smooth and continuous deformation field, which can model smooth
elastic deformations of tissue very well. However, due to the leakage of cerebrospinal
fluid, the ventricles collapse, which is a non-smooth, non-continuous deformation. The
model, therefore, can only approach the deformation at the location of the ventricles
with a limited precision.

The second reason is connected to the validation approach. Since we take the defor‐
mation field found on one patient and apply it on another one, the location of the ventri‐
cles in the dataset and the location of the deformation caused by the ventricles do not
completely match. We explicitly segment the ventricles and use them as landmark
features. However, in our experiments the location of these landmarks does not really
correspond to the location of the largest and most abrupt deformations. Due to missing
landmarks at the most dominant deformations, the error might be larger than is the case
for a real surgical situation.

The clinical added value of determining the intra-operative brain shift deformation
primarily lies in translating pre-operative diagnostic data and pre-operative planning to
the in-situ context. Once the brain shift deformation field has been found, it can be
applied to transform diagnostic data and pre-operative planning. This would involve a
rigid registration of the diagnostic data (e.g. pre-operative annotated MR) and the pre-
operative cone-beam CT. The elastic deformation field can then be applied to the diag‐
nostic data or pre-operative planning, in order to compensate for the brain shift effect.
It should be mentioned that the error in the registration of the diagnostic data to the pre-
operative cone-beam CT is concatenated to the intra-operative registration error.
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Abstract. In this paper, we introduce the new software environment
CRIMSON: CardiovasculaR Integrated Modelling and SimulatiON. This
software provides a number of tools for medical image data analysis,
preprocessing, segmentation and blood flow simulation. In this paper
we describe the work flow necessary to perform such tasks as well its
implementation in CRIMSON based on multiple well-established open-
source libraries, such as MITK and OpenCASCADE. We show that the
software is easy to use for both experts and non-experts in the field
of hemodynamic modelling. The intuitive and responsive interface of
CRIMSON facilitates learning and speeds up the model building process
by up to a factor of two compared to the existing tool being used for the
same purpose. The overall goal of this work is to produce a feature-rich
and intuitive open-source blood flow modelling framework that can be
used both by engineers and medical personnel.

1 Introduction

According to the World Health Organization, cardiovascular disease is the lead-
ing cause of death worldwide. In recent years, significant resources have been
devoted to cardiovascular research. Computer simulation tools in particular
have been developed to understand the origin and progression of cardiovascu-
lar disease, study normal and pathologic cardiovascular function, and evaluate
in-silico the performance of cardiovascular devices. In all cases, information of
the patients’ vasculature and physiology is required. In particular, the creation
of a computer model from imaging data such as computed tomography (CT)
or magnetic resonance imaging (MRI) is often the first step in the simulation
effort. This task is followed by mesh generation, material and boundary con-
dition specification, and simulation of physics. In this paper, we describe the
design of CRIMSON (CardiovasculaR Integrated Modelling and SimulatiON), a
software framework for patient-specific blood flow simulation. This framework
has two major, albeit contradicting to some extent, goals. First, the framework
should be easy-to-use by medical personnel without large amounts of training.
Secondly, the framework should be flexible and powerful enough to support fur-
ther the research in the field of cardiovascular modelling.
c© Springer International Publishing Switzerland 2016
C. Oyarzun-Laura et al. (Eds.): CLIP 2015, LNCS 9401, pp. 10–18, 2016.
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Given that the second goal implies the use of the system in academic institu-
tions, we further add the need to avoid any commercial components that would
require these institutions to pay significant license fees. In the same spirit of sup-
porting collaboration within and between the users, we aim to keep the software
open-source with a license that does not restrict modification and distribution
of the software.

2 System Design

We aim at developing a software system to support the main tasks of the patient-
specific modelling process - from image processing to assessment of the simula-
tion results. The following major blocks must to be implemented in such a sys-
tem: medical image processing, geometric modelling, boundary condition spec-
ification, mesh generation, blood flow simulation, and assessment of simulation
results.

Medical image processing is relevant to many applications and is therefore
implemented in a wide variety of existing tools, both proprietary and open
source. However, the remaining tasks need to be structured together specifi-
cally for blood flow modelling. In this paper, we focus on the general design of
the framework as well as on the geometric modelling task, which is described in
detail.

3 Background

Existing Software. There are several software systems for patient-specific
blood flow simulation. HemeLB system uses the lattice-Boltzmann method to
allow for high-performance distributed flow simulation [4]. However, the lattice-
Boltzmann method has several drawbacks when applied to blood flow simulation.
For instance, in a lattice-based method the vessel wall boundary is approximated
by a Cartesian grid and therefore important metrics obtained from the simula-
tion results, such as wall shear stress, which plays a significant role in estimating
the severity of several cardiovascular diseases, are error-prone. Therefore, in this
work, we adopt the finite-element method (FEM) which considers a continuous
representation of the underlying physics and can easily work with unstructured
3D meshes.

Another academic tool for patient-specific blood flow modelling is the Sim-
Vascular system1, which allows to solve all the tasks necessary to efficiently use
blood flow simulation in a variety of scenarios [6]. However, despite the flexibil-
ity of the system, the software is hindered by its complex and un-intuitive user
interface which entails a steep learning curve for new users as well as difficulties
in day-to-day use by experienced users. Furthermore, SimVascular is also lim-
ited by several commercial components, notably the solid modeller (Parasolid,
Siemens PLM Software) and the mesh generator (Meshsim, Simmetrix, Inc.).

1 https://simtk.org/home/simvascular.

https://simtk.org/home/simvascular
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Given that our goal is to create a software system capable of supporting the
use of patient-specific blood flow simulation for diagnosis and treatment, it is
mandatory to combine the power of a complex system such as SimVascular with
a modern user interface which hides as much of this complexity as possible from
the user.

Implementation Basis. We adopted the Medical Imaging Interaction Toolkit
(MITK, [9]) as the base framework for our system for several reasons. First, it is
based on widely adopted open source toolkits for visualization (VTK), segmen-
tation and registration (ITK) and versatile DICOM format support (GDCM).
Therefore, MITK provides a significant amount of functionality necessary for
processing and visualizing images stored in multiple image formats. Furthermore,
MITK is a free open source project with a non-restrictive BSD-style license.
MITK is based on the BlueBerry framework and the Common Toolkit2 (CTK)
which allows building highly customized applications. Finally, MITK provides
a familiar interface for medical personnel with readily available multi-planar
reconstruction and 3D views of the data.

Fig. 1. The work flow for patient-specific blood flow simulation. The steps currently
implemented in CRIMSON have a green outline. The analysis of simulation results is
currently performed in ParaView (http://www.paraview.org).

4 Work Flow

The general CRIMSON work flow is outlined in Fig. 1. The major steps of this
work flow are:

Image acquisition involves the choice of imaging modalities as well as their
setup (e.g. MRI or CT protocols that highlight blood and vessel walls [5]).
This step is not in scope of CRIMSON.

Image processing includes various image filtering techniques, such as denoising,
which aim to enhance the image quality and target structure visibility. For
this step, CRIMSON uses the built-in filters provided by MITK.

Segmentation involves extracting the vessel boundary from the image data
in a format suitable for subsequent volumetric meshing. There are several
approaches to vessel wall segmentation and that will be discussed it in more
detail in Sect. 4.1.

2 http://www.mitk.org/BlueBerry; http://www.commontk.org.

http://www.paraview.org
http://www.mitk.org/BlueBerry
http://www.commontk.org
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Volumetric meshing is required to discretize the volume of interest for the
blood flow simulation using the finite-element method (FEM).

Boundary condition specification is required to define a well-posed problem
for the FEM. This includes a variety of patient-specific properties such as
vessel wall stiffness, inflow waveforms, flow splits, pressure measurements,
etc.

FEM simulation. In this step, the computation of the solution to the incom-
pressible Navier-Stokes equations is performed. The main quantities (e.g.
blood velocity and pressure) as well as derived quantities (e.g., blow, wall
shear stress, etc.) can then be extracted and rendered to the medical profes-
sional to assist in diagnosis or treatment planning.

Many of these steps have multiple approaches to be completed. In this paper,
we discuss a set of particular decisions already implemented in CRIMSON. Note,
however, that the overall goal is to allow the user multiple choices of available
techniques for each step depending on the task at hand, for example a choice of
automatic 3D segmentation for high quality images instead of manual segmen-
tation techniques for lower quality ones.

Fig. 2. Overview of the customizable user interface of CRIMSON with Vessel Reslice
(1), Contour Modelling (2) and Vessel Blending (3) views.

4.1 Segmentation Step

The vessel wall segmentation method currently implemented in CRIMSON relies
on a path-planning and 2D segmentation paradigm [3,8]. Here, paths are defined
through roughly the centreline of the vessels to be included in the model. Then,
a semi-automatic 2D segmentation operation is performed at multiple locations
along the paths is performed. Lastly, lofted NURBS surfaces are generated to
produce a smooth solid model that must then be meshed. The vessel paths of
anatomical features of interest can also be used to set up 1D simulations of
blood flow, an approach that offers significantly faster simulation times than
those of full-blown 3D Navier-Stokes simulations. 2D segmentation methods,
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albeit requiring a larger degree of user intervention, are more robust than 3D
segmentation approaches in situations of poor image data quality.

Vessel Path Planning. The process of building a geometric model starts with
the specification of a vessel path. The MPR views are used to create the control
points whose coordinates are reflected in the Vessel Path Editing view which
shows the control points of the vessel path selected in the standard MITK Data
Manager view. The interpolation between control points is performed using a
Catmull-Rom spline which limits the interaction only to the control points.

Fig. 3. Contour Modelling View. Segmentation-based and manual contour creation
tools (left and centre). Contour thumbnails (right). The interpolation is made using
a shape-based interpolation algorithm [2]. Contour type may be changed using either
contour rasterization for conversion to 2D image segmentation, or by fitting using the
Geometric Tools library [7].

For each vessel path, we calculate the reference frame at each position using
the algorithm proposed by Bloomenthal [1] which is well defined along the curve
and avoids sudden changes in the reference frame orientation. We then use the
vessel path together with the computed reference frame to provide a Vessel
Reslice view which shows the image data, as well as the image gradient magni-
tude, resliced perpendicularly to the vessel path. Note, that the Vessel Reslice
view can be used to modify the spline itself by moving the control points within
the slice, e.g. to position the control point at the vessel centre.

Vessel Contour Modelling. The Vessel Reslice view is used to create the
vessel contours. The contour can be created using two techniques – by manually
placing the contour represented as an analytical curve (e.g. circle or smoothed
polygon), or by performing a binary 2D segmentation of the resliced data. The
segmentation is performed using a set of tools provided by MITK, which includes
simple painting operations as well as more complex ones, such as region growing
and live wire segmentation. The segmentation contour is then smoothed using a
windowed sinc filter with user-defined number of iterations.

Model Lofting and Blending. The next step in creating a geometric model
is to interpolate the contours to create the surface of the vessel. This operation
is performed using the OpenCASCADE3 open source solid modelling library.

3 http://www.opencascade.org.

http://www.opencascade.org
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Fig. 4. The lofting algorithm may produce unintended bulges for tortuous vessels (left).
In this case, the sweeping approach allows to avoid them at a cost of need for more
accurate centre line specification (right).

Fig. 5. An example of using various boolean operations for creating a model for simu-
lation with an inserted stent.

If the user is not satisfied with the lofted model, the contours can be easily
changed, created or removed. Alternatively, for very tortuous vessels, the lofting
algorithm may be changed to a sweeping algorithm which takes the vessel path
into account (see Fig. 4) for the lofting operation. Using this iterative process,
the vascular geometric model is refined until a satisfactory result is achieved.

Once models of each vessel are created, they are blended into a single model
representing the patient-specific vasculature (see Fig. 6). We achieved this via
the fusion and filleting operations of the OpenCASCADE library. For each pair
of intersecting vessels, the user specifies the desired fillet size in the Vessel Blend-
ing view. Furthermore, different boolean operations may be specified by the user

Fig. 6. Comparison of the models created with CRIMSON (red), and SimVascular
(blue). Close up views (middle and right) show the vascular models before (top) and
after (bottom) the blending process. Note that CRIMSON can create multi-vessel fil-
lets, a feature not available in SimVascular (see circle detail).
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to simulate virtual deployment of vascular grafts (see Fig. 5). Note, that all the
information regarding the order and type of boolean operations as well as fillet-
ing is preserved and persists through any modifications of the model including
modification, addition or removal of vessels.

4.2 FEM Preparation Step

In order to prepare the geometric model for finite-element simulation, it is nec-
essary to create a volumetric mesh as well as to prescribe initial and boundary
conditions. Currently, volumetric meshing is performed using the MeshSim soft-
ware4, which is the only non-open-source library used in CRIMSON. However, in
the near future an open source alternative, such as Gmsh5 will be incorporated
to the simulation framework.

To preserve the boundary condition specification and the user-prescribed
local mesh properties through the potential modifications of the model, each
face is assigned a unique identifier containing the type of face (inflow, outflow
or a wall), and the list of vessels that have influenced the creation of the face.
For example, for two-way fillets this list contains two vessels and for three-way
fillets, the list contains three vessels.

5 Evaluation

We conducted a two-day workshop at the University of Michigan with 15 par-
ticipants with background in surgery, physiology, biomedical and mechanical
engineering. We compared the participants’ answers to the post-workshop ques-
tionnaire based on their self-reported familiarity with hemodynamic modelling
(on a scale from 0 to 4, values 0 to 2 considered non-experts and 3 and 4 consid-
ered experts). The two one-way tests (TOST) showed that the non-expert and
expert groups were equivalent in assessing the GUI intuitiveness on a scale from
0 to 4 (μe = 3.43, μne = 3.28, δ = 1, α = 0.05, p = 0.0144, where μe and μne are
the mean values for expert and non-expert groups respectively, δ is the equiva-
lence margin in points and α is the significance level) as well as ease to follow
the work flow (μe = 3.25, μne = 3.07, δ = 1, α = 0.05, p = 0.0404). Interest-
ingly, the experts group was more tolerant towards software failures (μe = 3.12,
μne = 2.86, δ = 1, α = 0.05, p = 0.0507) which shows the importance of building
reliable software to be used by non-experts even in a research setting.

In addition, we have asked two expert users of the SimVascular software
(a cardiac surgeon and a biomedical engineer) to compare the vascular model
building process using CRIMSON and SimVascular. The same vascular model
was also created using SimVascular (see Fig. 6). Due to its greatly simplified
user interface, it took approximately 25 min to build the aortic model using
our software as opposed to 45 min using SimVascular. The overall impression of

4 http://simmetrix.com.
5 http://geuz.org/gmsh.

http://simmetrix.com
http://geuz.org/gmsh
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the expert users was highly positive. They estimated that a simpler and more
intuitive interface will reduce the time required to build a complex model by 30 %
to 50 %. In addition, the learning curve to use our software was much smoother,
a very desirable feature in a clinical setting.

6 Conclusions and Future Work

In this paper, we have presented the components of the CRIMSON software
framework for patient-specific blood flow modelling. We have described the over-
all work flow and provided an overview of the geometric model building task.
With CRIMSON users are able to perform blood flow simulations for highly
complex cases starting from image data in a user-friendly integrated environ-
ment. The software will be open-source6 and is based on multiple well-established
open-source software libraries. The response of the prospective users was highly
positive and shows that building vascular models was greatly simplified.

Future work will incorporate the integration of automatic 3D segmentation
approaches (including MITK and VMTK), integration with 1D blood flow FEM
package, a module for specification of tissue properties, and support for sim-
ulation result analysis. With these additions, CRIMSON will become a fully
integrated end-to-end software for patient-specific blood flow modelling.
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Abstract. Transcranial Doppler (TCD) sonography is a special ultra-
sound (US) technique that can image and measure the blood flow within
certain cerebral blood vessels through bone windows of the human skull.
As a relatively inexpensive and portable medical imaging modality, it
has shown great applications in the diagnosis and monitoring of a range
of neurovascular conditions. However, due to the challenges in imag-
ing through the skull, interpretation of anatomical structures and quick
localization of blood vessels in sonograpy can often be difficult. To make
the TCD examination more efficient and intuitive, we propose to employ
a population-averaged human head atlas that includes a probabilistic
blood vessel map and a standard head MRI template to guide the pro-
cedure. Using the system, spatially tracked ultrasound images are aug-
mented with the atlas in a navigation system through landmark-based
and automated US-MRI registration. A case study of a healthy subject
is presented to demonstrate the performance of the proposed technique,
and the system is expected to be applied both in clinics and in training.

1 Introduction

Compared to tomographic imaging methods such as MRI and CT, ultrasound
(US) imaging is an inexpensive, and easily portable imaging modality that can
provide real-time anatomical information with the additional benefit of operat-
ing with non-ionizing radiation. These benefits make US an attractive option in
many diagnostic and surgical applications. A variation of the US modality, tran-
scranial sonography (TCS), operates at a lower frequency (1–5 MHz) compared
to conventional US. In addition to having all the benefits of conventional US,
it also has the ability to image internal brain structures through the bone win-
dows of the human skull. This offers increased flexibility for imaging the brain in
certain neurological diseases. Transcranial Doppler (TCD) sonogoraphy is often
c© Springer International Publishing Switzerland 2016
C. Oyarzun-Laura et al. (Eds.): CLIP 2015, LNCS 9401, pp. 19–27, 2016.
DOI: 10.1007/978-3-319-31808-0 3
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used in combination with B-mode TCS, which provides the necessary anatom-
ical context for navigation, to measure the velocity of the blood flow within
some brain blood vessels. In the clinic, TCD has applications in the diagnosis
of emboli, stenosis, vasospasm from subarachnoid hemorrhage, and many other
pathologies. However, B-mode TCS is usually of lower image quality and more
difficult to interpret than conventional US because of the lower operating fre-
quencies required to penetrate the skull and the sound wave attenuation through
the layers of bone. This makes TCD examination more challenging due to the
difficulty in locating clear and reliable neuro-anatomical landmarks.

We propose a framework that employs a population-averaged human head
atlas that integrates a probabilistic blood vessel map and a standard T1w MRI
template to help locate anatomical features and blood vessels in a TCD examina-
tion. By using custom-made neuro-navigation system IBIS Neuronav [1,2], the
group-averaged MRI atlas information is fused with patient-specific US images
in real-time, making it quicker and easier to interpret the transcranial US images.

2 Methods and Materials

2.1 Methodology Overview

The schematic of the overall proposed system is presented in Fig. 1. In summary,
the spatial correspondence of the atlas, the ultrasound transducer, and the sub-
ject are linked through passive optical trackers and a Polaris camera (Northern
Digital, Toronto, Canada), and all relevant information is displayed in an interac-
tive manner in our custom-made neuro-navigation system, IBIS Neuronav [1,2].
The proposed system works as follows: first, the unbiased population-averaged
head atlas is fitted to the subject’s anatomy with a 12-parameter affine transfor-
mation. This step transfers the information in the atlas to the subject’s anatomy.
Then, the subject’s MRI, together with the deformed atlas is rigidly registered
to the subject space using a facial landmark-based registration. To track the
subject’s head position regardless of movements, the subject is asked to wear a
headband with an optical tracker attached, and the position of the US transducer
is at all time defined relative to the head tracker. To further correct any residual
mis-registration that leads to unsatisfactory US-atlas alignment, an automated
gradient-based registration algorithm [3] is applied between an initial set of B-
mode TCS images and the subject’s MRI. Thus, any subsequent TCD image
will be positioned correctly in the virtual space.

Two real-time visualization schemes are proposed to help locate and identify
the blood vessels. In the first scheme, a 3D rendering of the population-averaged
head atlas, linearly transformed to fit the subject’s anatomy, is displayed and
the tracked US slice is displayed in the virtual space to reveal its position and
orientation with respect to the internal anatomy of the atlas. The second scheme
visualizes information in 2D. In one window, the current US slice is displayed
side by side with the 3D atlas information that is re-sliced in 2D and overlaid on
the US slice. While the 3D approach is helpful in fast localization of a specific
target blood vessel, the 2D method is better for more detailed examination.
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Fig. 1. An overview of system setup.

2.2 Population-Averaged Atlas

For our proposed TCD examination system, an atlas is proposed to mitigate the
reliance on individual data acquisition. As discussed previously [4], a brain atlas
derived from a single subject can be subject to extreme individual anatomical
variability, and thus is often not ideal to sufficiently represent the averaged neuro-
anatomical features of the population of interest. After written informed consent,
MRI data for 20 subjects (10 male & 10 female) with an age range of 24–
35 years (mean±std=29.6±14 yr) were acquired. For each subject, four T1w
MRI scans were obtained using 3D spoiled gradient echo sequence (TR = 22 ms,
TE = 9.2 ms, flip angle = 30◦ , resolution = 1 mm isotropic) on a 1.5 Siemens
Sonata Vision clinical scanner (Siemens Medical Systems, Erlangen, Germany).
In addition, 3D phase contrast gradient echo angiographies (TR = 71 ms, TE =
8.2 ms, flip angle = 15◦ , resolution = 0.47×0.47×0.9 mm3, sagittal acquisition)
were also acquired for all subjects on the same scanner to provide blood vessel
information. To improve the signal-to-noise ratio (SNR) of the T1w images, for
each subject, all T1w MRIs were co-registered and averaged.

The final population-averaged atlas consists of a T1w MRI template and
a probabilistic blood vessel map. The T1w MRI template was made by first
linearly registering all individual’s averaged T1w MRI scans to the Talairach
space, and then applying the unbiased group-wise nonlinear registration tech-
nique introduced by Fonov et al. [4]. Before the nonlinear registration, image
inhomogeneity [5] and image intensity standardization [6] were performed for
all T1w MRI scans. The final T1w template is an averaged representation of
both anatomical and image intensity features of the population of 20 subjects.
The MR angiographies (MRA) were processed with a Frangi vesselness filter [7]
and then thresholded to reveal the tubular blood vessels. To add fuzziness, the
segmented blood vessels were softened by a 3D Gaussian filter with a full-width-
at-half-maximum (fwhm) of 2 mm to produce the individual blood vessel maps.
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Fig. 2. Population-averaged head atlas. A: T1w MRI head template (left), affine prob-
abilistic blood vessel map (middle), and overlay of the two (right). The color map
for the probabilistic vessel map is shown below A. B: 3D rendering of the popu-
lation averaged head atlas. The blood vessel is color-coded (Cyan=anterior artery,
Green=middle artery, Purple=carotid artery, Pink=posterior artery, Red=circle of
Willis, and Blue=sinuses) (Color figure online).

Here, two versions of the probabilistic blood vessel maps were produced for dif-
ferent visualization schemes: affine and nonlinear. To create the affine version,
each probabilistic blood vessel map was resampled with a 9-parameter linear
transformation to the group-averaged T1w MRI template and then averaged on
a voxel-by-voxel basis. Figure 2A shows the affine probabilistic blood vessel map
overlaid on the T1w MRI template. This map is employed in the 2D visualization
scheme. On the other hand, the nonlinear version simply adopted the nonlinear
deformations generated in the creation of the unbiased T1w MRI template. The
result was then thresholded, converted to a 3D mesh object, and color-coded for
each branch of the blood vessels. This is used for the 3D navigation of the TCD
examination. The 3D rendering of the atlas is shown in Fig. 2B. Note that here
only main arteries (detailed description in Fig. 2) appear in the 3D rendering
since the lower operating frequency of TCD and the transmission through bone
layers typically limit the examination to the main blood vessels.

2.3 Atlas-to-subject Registration

The affine probabilistic blood vessel map was deformed to the subject’s anatomy
through the transformation that registers the population-averaged T1w MRI
template to the subject’s T1w MRI with an automatic affine registration using
cross-correlation. Then, to align the image to the patient, 9 facial landmarks
(nose bridge, left and right medial canthi, left and right lateral canthi, left and
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right tragi, and left and right tragus valleys) are identified, and the anatomies
are registered using rigid body landmark-based registration. This method is rou-
tinely used in frameless image-guided neurosurgery [8].

2.4 TCS-MRI Registration

The spatial transformation (3 translations, 3 rotations & 1 global scale) between
the US image and the optical tracker attached to it was obtained through an
ultrasound calibration procedure. The calibration was conducted with an N-wire
phantom [9] in a water bath of 50◦C to match the speed of sound in the brain
tissue (∼1540 m/s). In addition to landmark-based registration, TCS-MRI reg-
istration was used to further correct the position of the MRI atlas in relation to
the US scans. Before the TCD examination, a set of B-mode TCS scans of the
brain are acquired sequentially by slowly swiping the US probe over the bone
window. After reconstructing a 3D volume through the scans, the subject’s MRI
is rigidly registered to the US volume using a gradient-orientation-based regis-
tration algorithm introduced in [3]. In IBIS, both US volume reconstruction and
TCS-MRI registration were implemented as plug-ins to the main IBIS software,
and were optimized with GPU implementation to allow both tasks to complete
in the order of seconds.

2.5 Data Acquisition

After informed consent, a 37 year old healthy male subject was recruited for data
acquisition. The subject was scanned with a T1w MPRAGE MRI sequence on
a 3T Tim Trio Siemens scanner. Following the procedure introduced previously,
we acquired tracked B-mode transcranial ultrasound and color Doppler ultra-
sound images using both the left and right temporal bone windows. Here, the
facial landmark identification root-mean-sqaure error (RMSE) was reported to
be 2.99 mm.

3 Results

3.1 TCS-MRI Registration

The registration result is shown in Fig. 3. Visible incoherence of anatomical fea-
tures can be seen in Fig. 3A and 3C, but after registration, the features are
aligned. More specifically, between Fig. 3A and 3B, after registration, the ante-
rior edge of the brainstem and the right edge of the brain were better matched.
Between Fig. 3C and 3D, the feature alignments for the third ventricle and the
border of the brain are improved.
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Fig. 3. Demonstration of automated TCS-MRI registration with two different axial
views of the brain MRI. The ultrasound images in orange color are overlaid on the
MRI. Before registration are shown in A & C. After registration are shown in B & D.
The white, yellow and blue arrows point to the alignment of the edge of the brain, the
edge of the brainstem, and the third ventricle, respectively (Color figure online).

3.2 Real-Time Data Visualization

In Figs. 4 and 5, we show the examples of TCD for imaging the posterior cerebral
artery and middle cerebral artery, respectively. In both cases, we can see that
the Doppler signal from the TCD overlaid with our atlases correctly, and in
both visualization schemes, the atlases provided easy-to-understand anatomical
context for the examination.

4 Discussion and Future Work

Previously, there have been only a few reports to fuse MRI with transcranial
US for either Doppler [10] or B-mode [11] contrasts. However, we are the first
to apply a probabilistic atlas for the application, and two novel contributions
have been made in our proposed system. First, for TCD examination, unlike
the technique reported in [10], we have mitigated the requirement for additional
angiography data by constructing a probabilistic vessel map. Furthermore, we
added a 3D graphic visualization with color-coded blood vessels to help the user
more easily navigate the anatomy in an interactive manner. Second, in earlier
reports [10,11], the alignment of US and MRI images was achieved by manu-
ally matching the visible anatomical landmarks between modalities. This can be
time-consuming and difficult to achieve considering the challenges in landmark
identification in 2D US images in relation to the 3D space. We have employed
a fast (∼ 2 s) and validated automated registration algorithm [3] for such pro-
cedure, potentially improving the user experience and efficiency. In addition to
linear facial landmark and atlas-MRI registrations, the total image registration
time required to prepare for the guided TCD examination is just about 5 min.

The proposed system is aimed to provide qualitative anatomical guidance for
TCD examination especially when angiographies are not available, and it does
not require high registration accuracy. The automatic registration algorithm [3]
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Fig. 4. Atlas-guided TCD examination for the posterior cerebral artery. The first row
shows the 2D visualization scheme, where the original US slice and the overlay of the
US and the corresponding MRI atlas are shown in parallel. The second row shows the
3D visualization scheme, and a zoom-in view is provided. The white arrow points to
the bright artery signal of the TCD image, which is depicted in black and white.

that was employed to compensate for any residual anatomical mis-alignment
has been previously validated for US-MRI registration of brain volumes, and
yields a mean registration error of 2.57 mm, which is smaller than the average
middle cerebral artery thickness [12]. The unbiased population-averaged atlas
is intended to capture the variability of blood vessels, and the main cerebral
arteries that are of major interest in TCD examinations have relatively high
spatial consistency, resulting in more prominent appearance in the probabilistic
atlas. Thus, affine registration is sufficient for aligning the probabilistic atlas
to the anatomy. For the current implementation, we only obtained 20 subjects
to produce the atlas. In the future, we would like to acquire more subjects
to further enrich our atlas so that the anatomy will be more representative of
a general population, and to eventually completely eliminate the need for the
individual MRI. Note that the atlas can only be used for the conditions that do
not significantly alter the positions of the blood vessels.

In this paper, we have demonstrated two different schemes for navigating
the internal anatomy for TCD examination. In both cases, users can adjust
the transparency of the atlas and the US images during the procedure. In the
future, we would like to obtain more subjects to test our system, and conduct a
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Fig. 5. Atlas-guided TCD examination for the middle cerebral artery. The first row
shows the 2D visualization scheme, where the original US slice and the overlay of the
US and the corresponding MRI atlas are shown in parallel. The second row shows the
3D visualization scheme, and a zoom-in view is provided. The white arrow points to
the bright artery signal of the TCD image, which is depicted in black and white.

thorough user study with both novel and experienced users to improve the data
visualization schemes and work flow for our system.

5 Conclusion

We have proposed a framework for atlas-guided TCD examination, and demon-
strated the application with a case study. The proposed system is expected to
facilitate the examinations in the clinical setting as well as for training purposes.
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Abstract. We present our work to combine intraoperative ultrasound imaging
and augmented reality visualization to improve the use of patient specific models
throughout image-guided neurosurgery in the context of tumour resections.
Preliminary results in a study of 3 patients demonstrate the successful combina‐
tion of the two technologies as well as improved accuracy of the patient-specific
models throughout the surgery. The augmented reality visualizations enabled the
surgeon to accurately visualize the anatomy of interest for an extended period of
the intervention. These results demonstrate the potential for these technologies to
become useful tools for neurosurgeons to improve patient-specific planning by
prolonging the use of reliable neuronavigation.

1 Introduction

Since the introduction of the first intraoperative frameless stereotactic navigation device
by Roberts et al. in 1986 [1], image guided neurosurgery (IGNS), or “neuronavigation”
has become an essential tool for many neurosurgical procedures due to its ability to
minimize surgical trauma by allowing for the precise localization of surgical targets.
Over the past 30 years, the growth of this technology has enabled application to increas‐
ingly complicated interventions including the surgical treatment of malignant tumours,
neurovascular disorders, epilepsy and deep brain stimulation.

Neuronavigation systems provide a surgeon with the tools necessary to better visu‐
alize and interpret patient-specific volumes of anatomical, vascular and functional data
while also being able to understand some of their inter relationships. The integration of
preoperative image information into a comprehensive patient-specific model enables
surgeons to preoperatively evaluate the risks involved and define the most appropriate
surgical strategy. Perhaps more importantly, such systems enable surgery of previously
inoperable cases by helping to locate safe surgical corridors through IGNS-identified
non-critical areas.

For intraoperative use, neuronavigation systems must relate the physical location of
a patient with the preoperative models by means of a transformation that relates the two
through a patient-to-image mapping. By tracking the patient and a set of specialized
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surgical tools, this mapping allows a surgeon to point to a specific location on the patient
and see the corresponding anatomy on the patient specific models. However, the move‐
ment of brain tissue during surgery invalidates the patient-to-image mapping and thus
reduces the effectiveness of using preoperative patient specific models intraoperatively.
In addition, the surgeon is left to merge the virtual models of the patient with the visible
and invisible physical anatomy. As a result, most surgeons use neuronavigation systems
to plan an approach to a surgical target but understandably no longer rely on the system
throughout the entirety of an operation.

Our contribution in this paper is a demonstration combining intraoperative ultra‐
sound (iUS) and intraoperative augmented reality (AR) visualization with traditional
neuronavigation tools to improve intraoperative accuracy and interpretation of patient-
specific neurosurgical models in the context of IGNS of tumours in the presence of brain
shift in 3 patient studies. While other groups have investigated iUS and AR independ‐
ently there are almost no reports of using both technologies to overcome the visualization
issues related with iUS and the accuracy issues related to AR.

2 Materials and Methods

2.1 System Description

All data was collected and analyzed on a custom built prototype neuronavigation system,
the Intraoperative Brain Imaging System (IBIS). This system has previously been
described in [2, 3] in the context of AR for neurovascular surgery and iUS respectively.
The Linux workstation is equipped with an Intel Core i7-3820 @ 360 GHz x8 processor
with 32 GB RAM, a GeForce GTX 670 graphics card and Conexant cx23800 video
capture card. Tracking is performed using a Polaris N4 infrared optical system (Northern
Digital, Waterloo, Canada). The Polaris infrared camera uses stereo triangulation to
locate the passive reflective spheres on both the reference and pointing tools. The ultra‐
sound scanner, an HDI 5000 (ATL/Philips, Bothell, WA, USA) equipped with a 2D
P7-4 MHz phased array transducer, enables intraoperative imaging during the surgical
intervention. Video capture of the live surgical scene was achieved with a Sony HDR
XR150 camera. Both the camera and ultrasound system transmit images using an S-
video cable to the Linux workstation at 30 frames/second. The camera and ultrasound
transducer probe are outfitted with a spatial tracking device with attached passive
reflective spheres (Traxtal Technologies Inc., Toronto, Canada) and are tracked in the
surgical environment.

2.2 Patient Specific Neurosurgical Model

All patients had a gadolinium enhanced T1 weighted magnetic resonance image (MRI)
obtained on a 1.5 T MRI scanner (Ingenia, Philips Medical Systems) at the Montreal
Neurological Institute and Hospital (MNI/H) and was processed in a custom image
processing pipeline [4] involving de-noising [5], intensity non-uniformity correction [6]
and normalization. The MNI/H Ethics Board approved the study and the patient signed
informed consent prior to data collection. Cortical surface segmentation is done using
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the FACE method [7]. After processing, the tumour was manually segmented using ITK-
Snap, and a vessel model was created using a semi automatic intensity thresholding
segmentation, also in ITK-Snap. The processing is done on a local computing cluster at
the MNI and the combined time for the processing pipeline and segmentations takes a
couple of hours. A model of the skin surface was also generated from the processed
images in IBIS using a transfer function to control the transparency of the volume so all
segmented structures can be viewed. The processed images and patient-specific models
are then imported into IBIS. The initial patient specific models for the three patients
investigated in this work can be seen in Fig. 1.

Fig. 1. Preoperative patient-specific models.

2.3 Intraoperative Ultrasound Registration

Once an iUS acquisition has been performed, the collected slices are reconstructed into
a 3D volume, resliced in the axial, coronal, and sagittal views and overlaid on the existing
preoperative images. The current volume reconstruction implementation looks for US
pixels within a given search radius and that are no farther than 1.0 mm away from the
point of interest. Each US voxel is weighted with a gaussian function and normalized
after all US pixels have been accumulated. MRI – iUS registration is performed using
the gradient orientation alignment (GOA) [8] method that maximizes gradients with
minimal uncertainty of the orientation estimates (i.e locations with high gradient magni‐
tude). This can be described mathematically as:

T
∗
= arg max

T

∑
x∈𝛺

cos (𝛥𝜃)2 (1)

where T* is the transformation being determined, 𝛺 is the overlap domain and 𝛥𝜃 is the
inner angle between the fixed image gradient, ∇If , and the transformed moving image
gradient 𝐉𝐓 ⋅ ∇Im:

𝛥𝜃 = ∠
(
∇If , 𝐉𝐓 ⋅ ∇Im

)
(2)

Both the volume reconstruction and registration techniques are incorporated into
IBIS with a graphics processing unit (GPU) implementation allowing for high speed
results (on the order of seconds for reconstruction and linear registration).
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2.4 Augmented Reality

Augmented reality has been proposed as a solution to some of the shortcomings asso‐
ciated with the visualization of preoperative patient specific models in traditional IGNS
systems [2]. AR involves merging virtual objects (patient-specific models) with the real
world (surgical field of view).

Camera Calibration. Computing AR views from images captured by a tracked camera
requires prior calibration of the camera-tracker apparatus. We determine the intrinsic
calibration of the camera using a printed checkerboard pattern fixed on a flat surface
with a rigidly attached tracker tool (Fig. 3). Multiple images are taken while displacing
the pattern in the camera’s field of view and using a modified version of Zhang’s method
to recover the centre of the image as well as the focal length of the camera based on
position of the corners of the pattern followed by calculating the affine transform
between the optical centre of the camera and the attached tracking tool (extrinsic cali‐
bration) [9].

Creating the Augmented Reality View. Once the camera has been calibrated and is
being tracked, the AR view is created by merging virtual objects, such as the segmented
tumour, segmented blood vessels, segmented cortex and iUS images, with the live view
captured from the video camera. In order to create a perception such that the tumour and
other virtual objects appear under the visible surface of the patient, edges are extracted
and retained from the live camera view. This is done applying a Sobel filter implemented
as a GLSL fragment shader to the live video image. Furthermore, the transparency of
the live image is selectively modulated such that the image is more transparent in the
area of the tumour and more opaque elsewhere. For a more detailed description of this
procedure, the reader is directed to [2, 10].

2.5 Operating Room Procedure

All image processing is done prior to the surgical case and the preoperative images and
models are then imported into the IBIS neuronavigation console. Once the patient has
been brought into the OR and anaesthetized, the patient-to-image registration for IBIS
is done simultaneously with the commercial neuronavigation system, a Medtronic
StealthStation (Dublin, Leinster, Republic of Ireland). The surgeon then proceeds to
perform a craniotomy to reveal the dura. iUS data is acquired on the dura and used for
registration. Once the dura has been removed and the cortex exposed, the AR view is
created and showed to the surgeon. The surgeon then takes the tracked pointer and
identifies a landmark of interest (i.e. tumour boundary) on the patient and on the patient
models. The AR view is then updated with the iUS data registration and the improvement
in alignment is assessed. To give a quantitative assessment of the improved AR overlay
the pixel misalignment error [11] was calculated before and after correction with iUS.
An estimation of the target registration error is given by the displacement between the
3D Euclidian distance between the location of the tracked pointer in physical space and
corresponding point in the image space of the chosen landmark before and after regis‐
tration.
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3 Results

We present the results of our three patient studies using iUS and AR to improve the
accuracy and interpretation of patient specific neurosurgical models. A summary of
patient information as well as initial registration errors is in Table 1.

Table 1. Summary of patient and initial registration information

Case Sex Age Tumour Lobe Initital Registration RMS (mm)
IBIS Medtronic

1 F 56 Meningioma L – O/P 3.23 3.07
2 F 72 Metastases L – O/P 3.96 3.54
3 M 49 Glioma L – F/T 2.88 3.22

Figure 2 qualitatively demonstrates improved overlay alignment using iUS regis‐
tration. Table 2 quantitatively summarizes the improvement on registration error and
pixel misalignment error. Figure 3 shows the difference between the surgical, uncor‐
rected, and corrected AR views.

Fig. 2. iUS registration results for each case. Rows from top to bottom are: (1) iUS acquisition,
(2) iUS acquisition overlaid on MRI, (3) iUS acquisition overlaid on registered MRI. Orange
arrows highlight areas where misalignment –and its improvement – can be easy visualized.
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Table 2. Summary of registration and pixel misalignment errors

Case Pre-iUS
Registration
Error (mm)

Post-iUS
Registration
Error (mm)

Pre-iUS Pixel
Misalignment
Error (mm)

Post-iUS Pixel
Misalignment
Error (mm)

1 5.46 1.36 N/A* N/A*

2 7.87 0.75 6.46 1.06
3 6.97 1.80 5.39 1.19

*For Case 1 the camera calibration data was corrupted and we were unable to extract the necessary parameters
to measure misalignment error

Fig. 3. AR results for each case. The avatar represents the orientation of the patient’s head. In
all three cases the AR views were succesfully adjusted to a more accurate position with iUS
registration. Note the size of the tumour on the avatar and AR view may differ depending on the
magnification of the camera as well as the different AR parameters used for a specific view.
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4 Discussion and Conclusion

We were able to successfully create an AR view with preoperative images and
segmented structures that correct for the misalignment between real and virtual objects
with the use of an iUS-based registration during IGNS of a tumour. We were efficiently
able to correct for this misalignment with the iUS data acquired on the dura resulting in
(i) more accurate preoperative images for navigation and (ii) more accurate AR visual‐
ization of the tumour to be resected. A limitation of measuring the accuracy of AR
overlays stems from the lack of a standardized and universal metric in which the error
in AR can be quantified. Some authors use pixel misalignment error, while others use
pixel reprojection error, and many other metrics are also described. The pixel misalign‐
ment error has the implicit assumption that the registration with iUS created a perfectly
aligned image. This assumption is inevitably violated meaning the accuracy measure‐
ment is not perfect and is only an indication of relative error between the two AR views
rather than an absolute error for either view.

One of the drawbacks of the current set up of AR within IBIS is the use of an external
camera to capture images of scene and render the AR view on the workstation. This
means that once the surgical microscope is brought into the working field to assist with
the resection, AR with IBIS can no longer be used without interrupting the workflow of
the surgery. While the use of AR in these particular cases may not have been of highest
necessity due to their close proximity of tumour to cortex, the potential of its use in more
complicated scenarios should not be understated. For smaller tumours located much
deeper within the brain or for tumours near eloquent brain areas, having the ability to
see below the surface with the visualizations offered using AR provide the possibility
of tailoring resection corridors in order to minimize the invasiveness of the surgery. The
benefit of iUS-based registration in extended surgical interventions would be extended
navigation and AR accuracy. Combining this with more accurate tumour segmentations
would assist a surgeon in resecting as much tumorous tissue as possible with minimal
resection of healthy tissue without having to rely solely on a mental map of the patient’s
anatomy and the surgeon’s ability to discriminate tissue types.

In this work we demonstrate the advantages of combining iUS and AR in the context
of IGNS for tumour resections. Our initial results suggest a feasible tool that can improve
on traditional IGNS systems by adding improved visualization of the tissue to be
resected, while simultaneously correcting for patient-image misalignment, allowing for
the extended reliable use of neuronavigation throughout the intervention. With
continued development and integration of the two techniques, the proposed iUS-AR
system has potential for uses in tailoring craniotomies, planning resection corridors and
localizing tumour tissue while simultaneously correcting for brain shift.
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Abstract. In this paper, we present a minimally supervised method for the
identification of the intra-cranial portion of cranial nerves, using a novel, dis-
crete 1-Simplex 3D active contour model. The clinical applications include
planning and personalized simulation of skull base neurosurgery. The centerline
of a cranial nerve is initialized from two user-supplied end points by computing
a Minimal Path. The 1-Simplex is a Newtonian model for vertex motion, where
every non-endpoint vertex has 2-connectivity with neighboring vertices, with
which it is linked by edges. The segmentation behavior of the model is governed
by the equilibrium between internal and external forces. The external forces
include an image force that favors a centered path within high-vesselness points.
The method is validated quantitatively using synthetic and real MRI datasets.

Keywords: Cranial nerves � Centerline � Simplex � Minimal path �
Vesselness � Neurosurgery planning, personalized neurosurgery simulation

1 Introduction

Twelve pairs of cranial nerves (CN I toXII) arise from the brain or brainstem, exit the skull
through the cranial foramina, and innervate various parts of the head and neck as shown in
Fig. 1. They control our sensory functions such as vision, hearing, smell and taste as well
as several motor functions of the head and neck including facial expressions, eye
movement, etc. Often, these cranial nerves are difficult to detect from regular Magnetic
Resonance Imaging (MRI) data due to their thin anatomical structures, low imaging
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resolution as well as image artifacts. Cranial nerves are high-risk structures during neu-
rosurgical procedures in and around the skull base, damage to which is associated with
life-altering morbidity such as the loss of eyesight, hearing or facial paralysis. It is of
paramount importance to delineate cranial nerves in MRI data for the planning and
simulation of neurosurgical procedures, where these critical structures might be at risk, as
well as the treatment of cranial nerve disorders. We present a method to extract centerline
models of the twelve pairs of cranial nerves.

Patient-specific cranial nerve detection is important for skull base neurosurgery
planning, to prevent intra-operative damage to cranial nerves. Antoniadis et al. [1]
reviewed nerve injury in 345 patients and found that 17.4 % of nerve lesions were
iatrogenic. To prevent iatrogenic complications in skull base neurosurgery, planning
and simulation must include explicit patient-specific cranial nerve models.

To the best of our knowledge, there is no existing segmentation tool for cranial
nerves III to XII in MRI data for practical use. Existing whole brain segmentation tools
and brain atlases either do not account for cranial nerves, or only segment larger ones
like the optic nerve. The 3D cranial nerve atlas developed in [2] is a static model based
on high-field (7T) MR images, which is restricted to medical education and is not
intended for patient-specific nerve segmentation.

In this paper, we present a minimally supervised, discrete 3D deformable active
contour model for centerline extraction, which can be applied for the identification of
all twelve pairs of cranial nerves. Our ultimate goal is a probabilistic deformable cranial
nerve atlas based on this 3D contour model. Future plans include the integration of a
statistical shape model to our deformable centerline model to exploit a priori shape
average and variation information when we segment patient data.

2 Background

Cranial nerves can be seen as tube-like structures in the human brain. A vast amount of
research has addressed tubular segmentation algorithms [3]. These are generally
applied to blood vessels, with some exceptions dedicated to the optic nerve [4], one of

Fig. 1. Cranial nerves anatomy. (a) Cranial nerve pathway from brain to different parts of the
body (reproduced from edoctoronline.com); (b) sagittal view of the brainstem embedded with
CNIII to XII nuclei shaded red (reproduced Wikipedia-cranial nerves) (Color figure online).
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the largest cranial nerves. There is a paucity of research on patient-specific segmen-
tations of cranial nerves III to XII, originating from the brainstem, from MRI data. Our
centerline detection algorithm for cranial nerves is a 3D discrete model called the
1-Simplex mesh. The 2-Simplex model, introduced by Delingette [5], is a discrete
deformable model with 3-connectivity for 3D surface segmentation [6]: a k-Simplex is
defined as a k-manifold discrete mesh with k + 1 connectivity. Based on the values of k,
a Simplex mesh represents curves (k = 1), surfaces (k = 2) or volumes (k = 3). Due to
their discrete representation, Simplex meshes can accommodate important features
such as shape statistics [7] and collision detection [6]: these features are the impetus for
this model. Collision detection is vital to prevent overlap between cranial nerves and
blood vessels in the skull base, while shape statistics can hold the key to robustly
detecting small nerves despite partial volume effects.

3 Methods

3.1 Preprocessing and Geodesic Path Computation

We designed a set of procedures to extract nerve centerlines from patient-specific MR
data. This process is called the centerline extraction pipeline, which can be subdivided
into four main steps as shown in Fig. 2.

The raw MRI data is passed through a set of image processing techniques: Gaussian
smoothing, binary thresholding and vesselness filtering. Following Gaussian smooth-
ing, the image is thresholded based on a window of upper and lower threshold values.
Frangi’s vesselness filter [8] was used to enhance tube-like structures in the image,
based on one near-zero eigenvalue of the image Hessian matrix.

The centerline extraction technique presented in this paper is a semi-automatic
process where the user has to provide a pair of start and end points for each of the
cranial nerves. We computed the geodesic path through the user defined seed points
which act as a rough estimation of the nerve’s centerline. We used the Fast Marching
method to compute the Minimal Path [9], based on the minimization of a cost func-
tional defined from an image-based speed function. The speed function is a real-valued

Fig. 2. Centerline extraction pipeline
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image with higher values around the region of the nerve. From the starting seed point a
front is propagated and terminates when it reaches the end seed point. The Minimal
Path is traced by back-propagating from end to start.

3.2 Construction and Deformation of 1-Simplex Contour

In this paper, the centerline of a cranial nerve is represented using the 1-Simplex mesh.
While the 2-Simplex is well published, 1-Simplex 3D curve models have not been
employed for segmenting curvilinear structures. After obtaining the Minimal Path, it is
discretized into an initial 1-Simplex mesh, which produces a 3D deformable curve.
A 1-Simplex mesh is a connected mesh where each non-terminating vertex has two
neighboring vertices as shown in Fig. 3(a). The Simplex is a Newtonian model for
vertex motion based on internal and external forces [5]. This dynamic behavior of a
vertex Pi is represented as in Eq. (1):

m
d2Pi

dt2
¼ �c

dPi

dt
þFint þFext ð1Þ

Here, m is the mass of the vertex, c is the damping factor, Fint and Fext are internal and
external forces, respectively. The local frame of a 3D 1-Simplex vertex can be defined
in a Frenet frame using the tangent, normal and bi-normal vector at that vertex as seen
in Fig. 3. Once the 1-Simplex contour of the shortest path between the two
user-provided seed points is found, the next step is to deform the 1-Simplex contour to
register it with the true centerline path of the nerve. We used internal and external
forces to deform the contour towards the actual centerline of the curve. We imple-
mented two internal forces – a tangential force and a Laplacian force as in [5], where
the tangential force concentrates vertices in areas of high curvature and the Laplacian
force ensures curve smoothness by constraining C1 continuity. The tangential and the
Laplacian forces are defined using Eq. (2).

Fig. 3. 1-Simplex geometry. (a) A 1-Simplex curve with Frenet frame on a point Pi; (b) the
Simplex at a point Pi (reproduced from [5]); (c) Search space of a 1-Simplex vertex.
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FTangent ¼ ~21i� 21ið ÞPN1 ið Þ þ ~22i� 22ið ÞPN2 ið Þ andFLaplacian

¼ 1
2

PN1 ið Þ þPN2 ið Þ
� �� Pi:

ð2Þ

PN1 ið Þ and PN2 ið Þ are the two neighbors of Pi, e1i and e2i are two the metric parameters,
which sum to 1, and ~21i and ~22i represent reference metric parameters. The external
force is used to move the curve toward image points that have a high likelihood of
lying along the centerline of the tube. The vesselness image is used to encode high
centeredness information. To compute the external force at a vertex, we search for the
voxel having a high vesselness value in the normal-binormal plane that is perpendicular
to the tangent plane as shown in Fig. 3. This search is along the four directions in this
plane, which we can label North-N, South-S, East-E, West-W, as well as the four
directions midway between those: NE, SE, NW, SW. We sample in each direction with
a step size s to find the minimal offset j. This minimal offset is eventually used to
minimize the distance between the 1-Simplex curve’s vertex and the voxel having the
highest vesselness value in the image.

4 Results

We applied the centerline tracking algorithm to both synthetic datasets and patient MRI
datasets. For both data sets, a quantitative validation is performed. This validation is
performed in the presence of image noise and partial volume effects. The
algorithm-generated centerline path is compared to the ground-truth centerline path by
computing the average Euclidian distance and the maximum distance.

We created several synthetic tubes of different shapes using analytical expressions
where the detected centerlines of these tubes against the analytical centerline expres-
sions considered as the ground truth. To verify the accuracy and robustness of our
centerline tracking algorithm, we added Gaussian noise of standard deviation σ = 60
and mean µ = 0 to the image, as well as considering different voxel spacing to simulate
partial volume effects. We generated isotropic datasets of tubes having arc, sine-wave
and helical shapes. We created isotropic datasets of tubes having voxel spacing of
0.1 mm, 0.5 mm and 1 mm. The radius of each of these tubes is 1 mm. The arc-shaped
and sine-shaped tube images are shown in Figs. 4 and 5 respectively. The left column
images are the 3D rendering of the tubes, the middle column shows the centerline
(green) and ground-truth paths (red) along axial slices. The right column shows the
sagittal slices that illustrate the distance between the centerline and the ground truth as
well as the voxel spacing of the images. Helical shaped tube volumes are shown in
Fig. 6. For this shape, we created two volumes having isotropic voxel size 0.5 mm and
1.0 mm and each with adding noise. The resulting 1-Simplex centerline curves of the
helical tubes prove that the method can handle high torsion and curvature of 3D tubular
objects and can generate smooth, C1 continuous space curves.

We performed a quantitative analysis by computing the average distance and
maximum distance between each point on the extracted 1-Simplex curve and the
nearest point of the ground truth centerline curve. Table 1 shows the results.
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In each case, the average and maximum distances of the computed 1-Simplex curve
from the ground truth are less than the voxel size which implies subvoxel-accurate path
computation.

We applied this method of extracting cranial nerve centerlines to a MRI dataset of
the brainstem provided by the National Institutes of Health (NIH). This dataset is a
Balanced Fast Field Echo (BFFE) sequence of slice spacing 0.3 × 0.3 × 0.4 mm3,
dimension 256 × 256 × 220, TR = 5.45 ms and TE = 2.175 ms. We show results of two
pairs of cranial nerves here. The end points of the nerves were identified by a

Fig. 4. Results of arc-shaped synthetic tubes; (a) 0.1 mm voxel spacing; (b) 0.5 mm voxel
spacing with Gaussian noise; (c) 1 mm voxel spacing with noise; (d) – (f) Axial slices with
computed (green) and ground-truth centerlines (red); (g)–(i) sagittal slices (Color figure online).

Fig. 5. Results of arc-shaped synthetic tubes; (a) 0.1 mm voxel spacing; (b) 0.5 mm voxel
spacing with Gaussian noise; (c) 1 mm voxel spacing with noise; (d) – (f) Axial slices of the tube
images with computed (green) and ground-truth centerlines (red); (g) – (i) sagittal slices (Color
figure online).
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neurosurgeon, which were used as the seed points of our method. The ground truth for
each nerve is a piecewise-linear path through a set of expert-provided landmarks.

The oculomotor nerve (CN III) originates from the midbrain and exits the skull
through the superior orbital fissure; a pair of end-point was placed by an expert at each

Table 1. Quantitative validation of the method for synthetic datasets

Synthetic
volume

Voxel size
(mm)

Presence of
noise

Average distance
(mm)

Maximum distance
(mm)

Arc 0.10 No 0.0958 0.1591
0.50 Yes 0.3169 0.4760
1.00 Yes 0.2126 0.4308

Sine tube 0.10 No 0.1156 0.3774
0.50 Yes 0.3258 0.3912
1.00 Yes 0.4417 0.8870

Helical tube 0.50 Yes 0.1358 0.4528
1.00 Yes 0.4877 0.8615

Fig. 6. Results of helical-shaped tubes; (a) tube image with Gaussian noise and voxel size
0.5 mm; (c) image slice of a volume having isotropic voxel spacing 1 mm;(b) and (d)extracted
tube centerline curve (green) with the ground truth centerline (red) (Color figure online).

Fig. 7. The Oculomotor nerve tracing: (a) the centerline of the left nerve superimposed on an
axial slice, shown also with the sagittal and coronal slices; (b) the centerline of the right nerve;
the extracted nerve paths (green) compared with the ground truth (red) are shown in inset (Color
figure online).
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anatomical landmark. The computed centerlines of the left and right oculomotor nerves
are shown in Fig. 7(a) and (b). A comparison of the computed (green) and ground-truth
centerlines (red) is displayed in inset for each. A similar validation, shown in Fig. 8,
was conducted for the vestibulocochlear nerve (CN VIII), based on landmarks at the
pons and at the temporal bone.

We carried out a quantitative validation by calculating the average distance and the
maximum distance between the computed centerline and the ground truth centerline.
The outcomes are shown in Table 2. In each case, the mean and maximum distances are
less than the voxel size, which implies subvoxel accurate nerve centerlines.

5 Conclusion

In this paper, we presented a discrete deformable model-based centerline extraction
method for cranial nerves from MRI volume. We compute the Minimal Path between a
pair of user-supplied end points and use it to initialize a 1-Simplex 3D curve model.
Then deformable registration is performed to move the 1-Simplex curve to the true
centerline. We showed a quantitative validation of the method on synthetic and MRI
datasets. The results are promising, indicating that the method is robust in presence of
image noise, partial volume effects while generating centerline paths with subvoxel
accuracy even if the tubes have high torsion and curvature. It represents the centerline

Fig. 8. The vestibulocochlear nerve tracing: (a) the centerline of the left nerve superimposed on
an axial slice, shown also with sagittal and coronal slices; (b) the centerline of the right nerve; the
extracted nerve paths (green) compared with the ground truth (red) are shown at the right (Color
figure online).

Table 2. Quantitative validation of the method for the brainstem MRI dataset

Cranial Nerve Mean distance Max distance

Left CNIII (Oculomotor nerve) 0.0870 0.2849
Right CNIII (Oculomotor nerve) 0.1278 0.3122
Left CNVIII (Vestibular nerve) 0.1647 0.2683
Right CNVIII (Vestibular nerve) 0.1936 0.2620
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of a cranial nerve using the explicit 1-Simplex curve model which is superior to
implicit representations for incorporating prior shape information and collision detec-
tion. We are developing a Statistical Shape Model (SSM), which will integrate shape
information to better identify the smaller nerves such as the trochlear nerve (CN IV).

Acknowledgements. We would like to thank John Butman, M.D., of NIH for contributing
MRI data.
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Abstract. Magnetic resonance guided high intensity focused ultrasound
(MRgHIFU) is a new therapy for treating malignant liver tissues. How-
ever, the motion of the ribs in the beam path may compromise an effec-
tive and safe treatment. Due to poor visibility of bones in MR and US
liver images, tracking them in real time is currently not feasible. We pro-
pose a method for modeling and registration of the respiratory motion of
the ribs. Moreover, we show that it is possible to predict the ribs’ motion
based on a few tracked points in the liver. Our registration had a mean
error of 1.06 mm for deep inhalations with an average motion of 2.71 mm.
We developed subject-specific and population-based modeling methods,
which recover 60 % and 40 % of the respiratory motion extracted through
registration, respectively. To the best of our knowledge, this is the first
time the ribs’ motion due to respiration has been directly studied during
free breathing over a relatively long time (100 breathing cycles).

1 Introduction

MRgHIFU is an emerging minimally-invasive therapy for tumour treatment.
Despite successful interventions in static organs, its application in abdominal
organs such as the liver has remained limited mainly due to respiratory motion
of the target organ and the presence and motion of the organs in the beam path.

Modeling the respiratory motion of abdominal and thoracic organs has
already been studied extensively [6,10]. However, knowledge of organs in the
beam path is also necessary for an effective and safe therapy. Of particular
importance is the ribcage as it encloses parts of the liver and may be overheated
by the ultrasound energy which is absorbed and reflected by bones. This may
additionally cause harm to the surrounding tissues [4].

Since real-time acquisition and quantification of the 3D motion of the ribcage
and the target organ is currently not feasible, partial observations should be
used in combination with prior knowledge about the expected 3D motion. MR
modality seems to be the best choice for acquiring this knowledge. It is the
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available modality in MRgHIFU and long acquisitions are possible as it does not
have any known adverse effects on patients. Hence, it is necessary to detect and
register the ribs in this modality to be able to quantify the respiratory motion
of the ribcage and its correlation with that of the liver in 4D MRIs.

Previously, we developed a detection method for ribs in MRIs, which was
based on learning a geometric model from CT images and an appearance model
from MR images [8]. There, a rib registration method was also proposed by
modifying the detection method to use 2D patch intensity similarities instead of
MR appearance probabilities. The method was tested on pairs of good quality
breath-hold images. Here, we propose a more systematic approach, introduce a
more suitable matching criterion and employ a more robust optimizer to make
this method applicable to 4D MRIs with reduced image quality (see Sect. 3.1).
Finally, we create a joint motion model of liver and ribs based on the registration
results as described in Sect. 3.2.

2 Materials

4D MRIs were obtained from 8 healthy volunteers (5 female, 3 male, average
age 25, range 21–28) using balanced Steady State Free Precession sequence,
SENSE factor 1.7 and halfscan (flip angle 70◦, TR=3.1 ms) [11]. The MR imaging
instrument was an 1.5T Philips Achieva whole body MR system (Philips Medical
Systems, Best, NL) with a 4 channel cardiac array coil. These images covered the
right liver lobe and had a spatial resolution of 1.33 × 1.33 × 4 mm3 in anterior-
posterior (AP), inferior-superior (IS), left-right (LR) direction and a temporal
resolution of 2.6–2.8 Hz.

3 Method

In this study we focused on the 4 ribs enclosing the liver (right ribs 7 to 10).
Each rib is represented by a centerline of 100 points with the first one being the
head of the rib. We detected these centerlines semi-automatically as described
in [8]. We then obtained the motion of these centerlines using the registration
method proposed in Sect. 3.1. Thereafter, we built a joint motion model for these
ribs and 3 surrogate points in the liver, and used it to predict the motion of the
ribs based on these surrogates.

3.1 Registration

We adapted the ITK registration paradigm [3] with its three major components,
the transformation, the matching criterion and the optimization method.

Our transformation model is based on the anatomy of ribs [2]. A rib’s motion
consists of a centered rotation around a fixed point (its medial extremity or so-
called head of the rib). Therefore, we allowed for 6 degrees of freedom (DOF)
for each rib: 3 DOF for the Euler angles defining the rotation around the head
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(a) (b) (c) (d)

Fig. 1. (a-c) Overlay of mask M constructed for the 9th right rib on 3 sagittal slices.
(d) 3D rendering of the same mask M viewed from superior direction.

of the ribs, and 3 DOF for the position of the rotation center. To ensure a fast
and accurate optimization, the registrations were manually initialized with the
approximate position of the heads.

We defined our matching criterion as the normalized cross correlation (NCC)
of the 3D rib region in the following manner. According to [7], ribs 7, 8 and 9
have a cross-section width of 7.4 ± 1.7 mm, 6.5 ± 2.1 mm and 6.6 ± 1.9 mm
and a cross-section height of 12.8 ± 2.8 mm,13.1 ± 3.6 mm and 12.3 ± 3.8 mm,
respectively. Therefore, we first determined the native coordinate system of each
rib by applying PCA on the position of its centerline points and assigning the
x-axis (z-axis) to the principal direction with the most (least) variation. Then,
for each rib r, with centerline r, we built a tubular rib mask M ′

r, in the rib’s
native coordinate system around r with elliptical cross-sections defined by:

M ′
r(q) =

{
1 if ∃p = [px py pz] ∈ r,

(
(qx−px)2

w2 +
(qy−py)2

h2 + (qz−pz)
2

w2

)
≤ 1

0 otherwise,
(1)

for all voxel positions q = [qx qy qz] of M ′
r with h and w being the height

and width of the tube, respectively. Finally, mask Mr was obtained by trans-
ferring M ′

r from the rib’s native coordinate system into the world coordinate
system. Figure 1 illustrates a mask constructed as described for a right 9th rib.
We applied a conservative w = 5 mm to ensure no lung or liver structures are
included in our mask, as these have a different motion pattern. Conversely, we
used a larger height than reported (h = 14mm) to include the edge features
on the borders between the ribs and the intercostal muscles, which have a sim-
ilar motion as the ribs. NCC between the mask region M in image I and the
corresponding region in image J under transformation φ, is defined by:

NCC(I, J,M, φ) =
1
n

∑

p∈M

(
I(p) − ĪM

)(
J(φ(p)) − J̄M,φ

)

σIM
σJM,φ

, (2)
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where, n is the number of voxels in M , and ĪM , J̄M,φ, σIM
and σJM,φ

are the
mean and standard deviation values of the corresponding regions.

Initial experiments with gradient based optimizers resulted in convergence
problems or high errors. Therefore, we chose the particle swarm optimization
(PSO) method [5], which is more robust to initialization and more suitable for
our highly nonconvex optimization problem. We used PSO to find the optimal
transformation φ between reference image Iref and the image at time point t (It)
with respect to NCC(Iref , It,Mr, φ) and constrained φ to a plausible parameter
space (Euler angles ∈ [−10, 10]o).

3.2 Joint Modeling of Respiratory Motion of Liver and Ribs

In this study we used the motion of three points in the liver as surrogates for rib
motion prediction and assumed that they can be tracked during therapy. These
surrogates included a point on the diaphragm, the entrance point of the portal
vein into the liver, and a point in the center of the liver.

Initially, we computed the correlation between the mean motion magnitude of
these surrogate liver points and the motion magnitude of the most anterior point
of the ribs, which displays the largest displacement, for the 8 studied subjects.
Motivated by the high correlation between the points in the liver and ribs (see
Table 1), we created a subject-specific and a population liver-rib motion model.

Subject-Specific Liver-Rib Respiratory Motion Model. To capture the
relationship between the respiratory motion of the ribs and the liver, we created
a combined PCA model from the motion vector of the surrogate liver points,
and the motion vector of the rib centerline points similar to [9]. The motion at
t was computed as the displacement of these points from Iref to It.

Population Model of Liver-Rib Respiratory Motion. To create a popu-
lation model, we had to establish correspondence between the motion data of
different subjects. While the points’ positions on the ribs were already in corre-
spondence due to the way the ground truth centerlines were created (see [8]), we
needed to also find the corresponding motion directions. Analysing the three
Euler angles in a population is problematic as the axes of the second and
third rotations are dependent on their previous rotations. A closer study of the
anatomy suggests that the ribs are constrained and we hypothesized that the
main motion is only a rotation around the axis from the head to the articular
part of the tubercle. The image resolution and visibility of ribs in MRI do not
allow for defining this axis robustly from a single image as the anatomical land-
marks are hard to determine. Therefore, we computed this axis from the rotation
matrices of all the time points t (t ∈ [1,≈ 1200]) as follows. If we denote each
of these rotations by Rt, and their axis of rotation by ν, we have in the absence
of noise: Rtν = ν, for all t = 1..T . In practice one determines v by minimizing∑T

t |Rtv−Iv|2, where I is the 3×3 identity matrix. The optimum is determined
by singular value decomposition. We refer to the resulting right singular vectors,
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Table 1. Correlation coefficient between the motion magnitude of the ribs’ most ante-
rior point, and the mean motion magnitude of the liver surrogates.

ordered according to descending singular values, as the ribs kinematics axes.
Next, for each rib its rotation matrices were decomposed into rotations around
these kinematics axes. Consequently, the corresponding Euler angles were com-
puted. It was observed that the first angle, in contrast to the other two angles,
had a high correlation with the mean of the motion magnitude of the liver sur-
rogates (see Table 2), which suggests that it can be predicted based on the liver
surrogates. Finally, we constructed a PCA liver-rib model similar to [9] from
concatenation of the motion vector of the 3 liver surrogates and the angle of
rotation around ν.

Table 2. Correlation coefficient between the Euler angles of the rotation around the
ribs’ kinematics axes, and the mean motion magnitude of the liver surrogates over the
population.

Angle Rib 7 Rib 8 Rib 9 Rib 10

1 0.80 0.86 0.82 0.81

2 −0.01 −0.05 −0.15 0.10

3 -0.07 −0.07 −0.25 −0.19

4 Experiments and Results

4.1 Registration

We created ground truth rib centerlines by interpolating manual selecting points,
see [8]. We report two error measures, namely the 3D location accuracy (Dis-
tanceError) and the clinically relevant error (OutOfPlaneError). DistanceError
was defined as the shortest Euclidean distance between a point on the registered
and the ground truth centerline. Clinically only the 2D error projected onto the
ribcage surface matters when deciding which FUS transducer elements should
be active for treatments through the ribcage [1]. Hence, we define OutOfPla-
neError as the projection of the DistanceError on the z-axis of the ribs’ native
coordinate system.



50 G. Samei et al.

The registration was performed between a reference end-exhalation (EE)
image Iref and a target image It, which were both from the 4D MR images.
The resulting centered rotations were applied to the ground truth centerlines in
the reference image (Gref,r) and registration errors were computed with respect
to the corresponding ground truth centerlines of the target image GIt,r. We
summarized the results by the mean, standard deviation and 95th percentile of
the distribution created by pooling all results per subject (4 ribs with 100 rib
points each) or over all subjects.

For all 4D MR images, the motion amplitude of rib points during breathing
under rest conditions were on average 1 mm (see Table 3). Since it was difficult to
evaluate displacements below the image resolution, we evaluated the registration
on deep end-inhalation (EI) images in the following manner.

1. For all EIc images of the cycles c ∈ 1, ..., 100, we extracted the magnitude of
the motion of the most anterior rib point mEIc , after registering EIc to Iref .

2. Next, we determined the distribution of mEIc
for all EIc images.

3. Among EIc, we selected those whose mEIc were larger than the 95th percentile
of this distribution (5 EI image per subject).

To generate the ground truth centerlines for these selected EI images, we
used the following scheme. In each EI image, instead of densely selecting points,
only a limited number of points were placed on a rib r. Gref,r was moved rigidly
to fit these points based on the iterative closest point algorithm [13]. We refer to
the resulting ground truth centerlines for rib r in EIc image as G∗

EIc,r. The errors
were computed between G∗

EIc,r, and the results of the registration, φ(Gref,r). The
errors and the motion between Gref,r and G∗

EIc,r for the 8 subjects are presented
in Table 4.

4.2 Joint Motion Modeling

For each subject, we created a subject-specific model from the data of the first
20 breathing cycles (≈ 1 min), and used this model and the 3 liver surrogates
to predict the motion of the rib points for the remaining 80 cycles. The results
of the prediction in terms of the DistanceError along with the corresponding
3D motion are presented in Table 3. It can be observed that the subject-specific
models are able to compensate for 60 % of the respiratory motion on average.

To validate the performance of our population motion model, we performed
leave-one-out experiments where a liver-rib model was created based on 7 sub-
jects, and the rotation angle around ν was predicted for the left-out-subject
based on its liver surrogate motion vector. The summary statistics of the result-
ing DistanceError is shown in the last column of Table 3. The population model
is able to compensate on average 40 % of the motion. This is 20 % less than the
subject-specific model, and requires identification of the axis of rotation. How-
ever, this model has the advantage that it could be built without the need for
the patient’s own motion data.
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Table 3. Statistics ( mean ± std (95 %)) of the rib motion due to respiration and the
DistanceError over all four ribs for subject-specific and population models.

Sbj Respiratory motion Subject-specific Model Population Model

1 1.38 ± 1.58 (5.09) 0.51 ± 0.46 (1.68) 0.71 ± 0.65 (2.38)

2 0.82 ± 0.93 (2.72) 0.24 ± 0.25 (0.69) 0.60 ± 0.53 (1.01)

3 0.82 ± 0.68 (2.19) 0.32 ± 0.32 (0.95) 0.42 ± 0.34 (1.15)

4 1.26 ± 1.25 (3.72) 0.36 ± 0.39 (1.26) 0.54 ± 0.57 (1.69)

5 0.96 ± 1.14 (3.95) 0.40 ± 0.74 (2.97) 0.85 ± 1.20 (3.50)

6 1.59 ± 1.84 (5.79) 0.60 ± 0.51 (1.70) 1.20 ± 1.30 (5.27)

7 0.68 ± 0.77 (2.46) 0.34 ± 0.41 (1.42) 0.48 ± 0.54 (1.92)

8 1.03 ± 1.03 (3.63) 0.22 ± 0.21 (0.62) 0.36 ± 0.39 (1.37)

mean 1.02 ± 1.27 (3.74) 0.42 ± 0.57 (1.23) 0.62 ± 0.63 (1.71)

Table 4. Summary of ribs’ motion and registration error statistics ( mean ± std (95 %))
for 4 ribs, 100 points each, from EE to selected deep inhalations in mm. The projected
motion denotes the projection of this displacement on the z-axis of the ribs’ native
coordinate system.

Sbj Full 3D Motion Registration DistanceError Projected Motion Registration OutOfPlaneError

1 4.11 ± 1.24 (5.65) 0.59 ± 0.52 (1.70) 1.21 ± 0.67 (2.35) 1.18 ± 0.48 (2.02)

2 2.64 ± 1.16 (4.85) 1.14 ± 0.68 (2.53) 0.89 ± 0.79 (2.29) 0.42 ± 0.39 (1.25)

3 1.61 ± 1.11 (3.64) 0.84 ± 0.43 (1.68) 0.54 ± 0.42 (1.52) 0.42 ± 0.37 (1.29)

4 1.94 ± 1.13 (3.56) 1.01 ± 0.53 (1.82) 1.11 ± 1.02 (2.92) 0.57 ± 0.52 (1.47)

5 1.41 ± 1.04 (3.12) 0.77 ± 0.49 (1.58) 0.51 ± 0.56 (1.91) 0.36 ± 0.43 (1.35)

6 4.31 ± 2.13 (7.09) 1.65 ± 0.92 (3.06) 2.16 ± 1.68 (5.15) 0.98 ± 0.79 (2.58)

7 1.61 ± 1.00 (3.20) 0.75 ± 0.41 (1.38) 0.64 ± 0.66 (2.09) 0.36 ± 0.28 (0.77)

8 1.93 ± 1.52 (4.66) 0.56 ± 0.32 (1.22) 0.72 ± 0.82 (2.74) 0.36 ± 0.28 (0.93)

mean 2.71 ± 1.75 (5.85) 1.01 ± 1.00 (2.85) 1.06 ± 0.69 (2.46) 0.53 ± 0.52 (1.56)

5 Conclusion and Discussion

We have proposed a method to register each rib based on a constrained rotation
centered at the rib’s head and on maximizing NCC for a tubular rib mask, and
achieved a registration accuracy of 1.01 mm for 4D MRIs.

We analysed the respiratory motion of the ribs during free-breathing. As
expected, we observed a high correlation between the motion of ribs and liver
during respiration. We built PCA models which could predict the motion of the
ribs with sub-millimeter mean accuracy using liver surrogate observations.

Respiratory motion of ribs has been described in the literature by two rota-
tions: so-called pump and bucket handle [12]. Yet, our 3D analysis shows that
these are the decomposition of a single rotation into two rotations, which ease 2D
analysis and illustration. We extracted the associated main axis through analysing
the rotation matrices from 100 cycles. However, according to anatomical descrip-
tions, this main axis connects the head of the rib to its articular tubercle, and
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hence should be identifiable on the rib based on its shape rather than its motion.
We believe that finding this axis automatically from the extracted rib centerlines
is possible, but needs further investigation. This would allow the adaption of the
population liver-rib model to a subject based on a 3D MRI instead of 4D MRI
training data. However, if a short 4D MRI of the patient is available, a more accu-
rate subject-specific model can be created which on average compensates for 60 %
of the ribs’ motion.

In combination with a previously proposed rib detection method [8], our pre-
sented work can be used to automatically detect ribs and predict their motion
for MRgHIFU interventions. To avoid introducing errors due to automatic detec-
tion into the motion models, we manually extracted rib centerlines in the refer-
ence images. We believe this is worth the extra effort, as this task is performed
only once during the offline model-building process and is not repeated during
the intervention. Our results suggest that even though the respiratory motion
of the ribs during quiet breathing might not pose a serious problem (mean
1.1 mm), during deep inhalations and for the rib end-points this motion cannot
be neglected (95 % 5.85 mm) and hence needs to be predicted and accounted for
if necessary.
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Abstract. Advances in medical image applications have led to mount-
ing expectations in regard to their impact on neuroscience studies. In
light of this fact, a comprehensive application is needed to move neu-
roimaging data into clinical research discoveries in a way that maximizes
collected data utilization and minimizes the development costs. We intro-
duce BRAINS AutoWorkup, a Nipype based open source MRI analysis
application distributed with BRAINSTools suite (http://brainsia.github.
io/BRAINSTools/). This work describes the use of efficient and extensi-
ble automated brain MRI analysis workflow for large-scale multi-center
longitudinal studies. We first explain benefits of our extensible work-
flow development using Nipype, including fast integration and validation
of recently introduced tools with heterogeneous software infrastructures.
Based on this workflow development, we also discuss our recent advance-
ments to the workflow for reliable and accurate analysis of multi-center
longitudinal data. In addition to Nipype providing a unified workflow,
its support for High Performance Computing (HPC) resources leads to
a further increased time efficiency of our workflow. We show our success
on a few selected large-scale studies, and discuss future direction of this
translation research in medical imaging applications.

Keywords: MRI · Brain · Pipeline · Large-scale · Longitudinal data ·
HPC/HTC

1 Introduction

Multi-center longitudinal neuroimaging has great potential to provide efficient
and consistent biomarkers for research of neurodegenerative diseases and aging.
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In rare disease studies it is of primary importance to have a reliable tool that per-
forms consistently for data from many collection sites to increase study power.
Numerous automated applications for such large-scale longitudinal data have
been proposed to the medical imaging community. So far, however, moving
state-of-the-art technical developments into scientific imaging discoveries and the
delivery of population-level research benefit have always been slow and difficult
at best. The outstanding proliferation of medical image applications has created
a need for efficient and extensible way to integrate and validate such methods.
In this paper we introduce BRAINSTools AutoWorkup (BAW), an efficient and
extensible workflow that is tested for reliable identification of brain structures for
large-scale multi-center human MRI using high performance/throughput com-
puting (HPC/HTC) resources.

Our BAW workflow is an Nipype based [1] workflow providing an automated
procedure for reliable and sensitive volumetric measurements from large-scale
multi-center longitudinal MRI. The workflow consists of a noise reduction, spa-
tial normalization, bias-field correction, tissue classification, and structural seg-
mentation. Each of applications is carefully tested and throughly adjusted for
the large-scale multi-center data analysis. Our recent integration of a multi-atlas
labeling approach lead to a much smoother volumetric trajectory from longi-
tudinal MRI. In addition, for effective integration of heterogeneous tools and
for efficient processing of large-scale data, we constructed our BAW workflow
using Nipype infrastructure. We have successfully applied the developed work-
flow into multiple studies, PREDICT-HD (large-scale multi-center longitudinal
data), TRACK-HD (large-scale, multi-center, longitudinal data), NeuroPD (a
single site data), and Kids-HD (an ongoing longitudinal single-site data).

This paper is organized as follows. We overview a BRAINSTools Auto
Workup workflow that provides an effective solution for large-scale data process-
ing using HPC/HTC resources as well as state-of-the-art tools. We explain how
we glue all the tools with heterogeneous interfaces together using Nipype. We
then describe a role of each component in our workflow with brief discussion
based on our experience. We conclude this paper with the contribution of the
paper along with the limitations of the current work, while pointing to future
research directions. Although the ideas presented here are not unique, our care-
fully integrated BAW workflow has not been discussed previously in relation to
several population-wide studies. We hope that this discussion of our workflow
provides a useful agenda for translating human MRI from the tool development
to improve health outcomes for individuals and populations.

2 Methods

The BAW workflow is housed under BRAINSTools suite, which aims to develop
a sensible and reliable MRI analysis application to be used in clinical and health
practice for predictive, diagnostic, or prognostic testing. The BRAINSTools suite
and BAW are open source applications that have been developed over a decade
[2–7]. The simplified BAW workflow is described in Fig. 1. In this section, we will
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describe details of each components focusing on contribution to robust large-scale
data processing.

Fig. 1. BRAINS Auto Work Up Overview

2.1 Key Features of BAW

Backbone of the BAW Workflow: Nipype [1]. All the tools in our BAW
workflow was assembled through Nipype. Nipype provides interfaces to existing
neuroimaging software with uniform usage semantics and facilitate interaction
between packages using Workflows. Currently, BAW consists of six main stages
(Fig. 1) with numerous small units from different applications, including ANTs
package, BRAINSTools suite, shell scripts, and SimpleITK scripts. In addition
to supporting the seamless construction of our BAW workflow from these het-
erogeneous interfaces, Nipype’s ability to efficiently leverage clusters of compute
resources enabled the development team to do timely integration and validation
of several state-of-the-art tools.

A Key to the Accurate Transformation: ANTs Package. ANTs package
is utilized in the BRAINSTools suite to provide an accurate inter- and intra-
subject registration. The registration approach from ANTs package provides a
high-quality, easy-to-tune, easy-to-integrate (Nipype interface) software imple-
mentation for human brain MRI. In BRAINSTools suite, the symmetric image
normalization (SyN)-based ANTs registration package plays an important role
in processing vastly different human brain MRI. The registration technique has
been independently evaluated and has repeatedly shown its superior performance
in medical image processing [8,9]. Remarkable reliability of the ANTs SyN-based
registration for large-scale data processing was further tested and proved at our
team using large-scale multicenter PREDICT-HD and TRACK-HD studies.
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For Personalized Anatomical Analysis: Subject-specific Template.
Anatomical modeling of multi-site data for different stages of disease progression
requires a-priori initialization for tissue or regional segmentations. Using a single
population reference template1 is convenient, but often introduces undesirable
measurement bias towards that chosen template. The BAW longitudinal strat-
egy takes a 3 phase approach avoid bias associated with using a common global
template for all subjects. In phase 1, an initial segmentation is performed using
rough prior information from a common global template to produce a set of
posteriors per longitudinal time point. Phase 2 combines all time point posterior
information for one subject into an template with specificity to the anatomical
topology and measurement variability specific to that particular subject. Finally,
in phase 3 each time point is processed using the subject specific reference tem-
plate.

Reliable Structural Segmentation. Recently, we advanced segmentation reli-
ability and accuracy using two independent approaches, BRAINSCut and MALF
as described in the following:

Random-Forest Based Sub-cortical Segmentation: A machine-learning
based segmentation approach has evolved over last decade using BRAIN-
SCut framework [4,7]. The excellent robustness and confirmed validity of
the latest BRAINSCut are achieved by employing (1) random forest, (2)
a STAMP-based normalization, and (3) a series of validation studies that
occurred repeatedly together with the software development to validate its
robustness and reliability. Our study showed that judicious choice of ML and
normalization methods can significantly enhance an ML-based segmentation
framework in terms of accuracy and generalizability.

Whole Brain Segmentation using Multi-atlas Labeling Approach: Multi-
atlas labelingmethodology that accommodates awide range of brain differences
has been recommended to identify structures from brain images. Although the
concept of multi-atlas labeling was introduced to overcome the bias of sin-
gle atlas-based method years ago, it has only recently gained popularity with
advanced computational power. In particular, our recentwork [10] suggests that
improved segmentation quality canbe achievedusingmulti-atlas labelingmeth-
ods for adult HD studies. ANTs MALF, one of the exceptional implementations
that we tested, is utilized and adjusted for large-scale MRI processing to extract
volume measurements that are sensitive to personalized changes.

The key to the success of large-scale multi-center MRI processing is related
to the generalizability of the tool, i.e. the ability of the tool to robustly process
increasingly heterogeneous data as sites are added. The boosting theory in

1 We understand that a reference template and atlas are often used interchangeably.
To avoid the confusion of terminology in this paper, we use template for a set of MRI
images inlcuding tissue probability priors for tissue classification and atlas for a set
of MRI image including reference structural segmentation for multi-atlas labeling
method.



58 R.E. Kim and H. Johnson

machine-learning can be used to explain above two success regarding superior
reliability when using the multi-atlas labeling approach as well as random forest.
According to this theory, a collection of weak learning algorithms, which inde-
pendently perform only slightly better than random guesses, can be converted
into a highly accurate and generalizable algorithm (a better bounded generaliza-
tion error [11]). Thus, recent success on segmentation in broad disciplines seems
to be in line with the formation of strong learners based on several weak learners.
That is, the random forest based BRAINSCut and multi-atlas labeling method,
where each of methods can be analogous to a collection of weak learners, can
outperform other methods.

2.2 BRAINSTools AutoWorkup Procedure

In this section, we explain each components following our BAW workflow. Due
to the extensive number of modules involved in the workflow, we introduce a few
of core components with related references. Please note that all the applications
and procedure is publicly available through our GitHub repository.

Input. All the repeated scans in one MRI session are processed together, i.e.,
repeated T1-weighted, T2-weighted, and/or PD-weighted MRI. The quality of
each MRI, whether each MRI is suitable for further processing, is determined
by human raters and then ordered by high to low quality.

As mentioned previously, the choice of reference template can be important
for unbiased personalized modeling of brain MRI. Our BAW allows to choose
either the global population, the subject-specific, or a user-defined template
depending on the study focus. BRAINSTools suite provides a global population
template in the package and BAW workflow supports the subject-specific tem-
plate generation from a set of longitudinal scans. The user can also plug in any
custom template to the BAW workflow for owns specific needs.

1. Denoise. Recently, we integrated an efficient nonlocal mean (NLM) filter
implementation [12] which showed improved performance. Denoising MRI is an
important step in any medical image processing to increase signal-to-noise ratio.
The choice of denoise filters, however, is easily overlooked since it is routinely
done. The NLM algorithm has became increasingly popular and its fast ITK
implementation of NLM enabled timely integration of the algorithm into our
workflow and application for large-scale data processing. Each MRI scans are all
denoised using the ITK NLM filter.

2. Spatial Normalization using Landmark Detection and Initialization.
Our highly accurate fiducial detecting algorithm [13] identifies a series of prede-
fined landmarks from the denoised best quality T1-w MRI. A set of the detected
landmarks is then used to spatially align along the anterior commissure (AC)
and posterior commissure (PC). This spatial normalization process increases
stability of the further processing in general.

3. Intra-subject Alignment, Tissue Classification and Bias-Field
Correction. BRAINSABC [6] provides an automated bias field correction with
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integrated intra-subject multi-modal scan registration, and integrated tissue
classification. Each of the raw input scans is independently correct for field
inhomogeneities. The set of intra-subject scans are jointly evaluated to iden-
tify distinct anatomical tissue types using a hybrid Expectation Maximization
(EM) and KNN fuzzy classifier. In the final processing, BRAINSABC averages
repeated scans of the same modality to increase SNR after bias-field correction.
For one MRI session, outputs of BRAINSABC include the averaged per-modality
MRI scans, tissue probability spatial posteriors, and discrete tissue segmenta-
tion labels. Our extended tissue definition [6] precisely identifies an intracranial
volume (ICV) measure that consistently extends to the pial surface inside the
cranium (including surface blood and CSF). Obtaining a stable and precise ICV
is crucial when it is often used a proxy to global body size for normalizing mea-
sures for evaluation across groups of subjects.

4. Structure Segmentation. As mentioned above, our BAW workflow provides
two reliable segmentation approaches: BRAINSCut and ANTs MALF. BRAIN-
SCut targeted for sub-cortical segmentation and widely tested for multi-center
large-scale data analysis [7]. ANTs MALF has recently utilized in conjunction
with whole brain segmentation atlases from neuromorphometrics (http://www.
neuromorphometrics.com/). Our preliminary results showed very promising out-
comes.

2.3 Applications

While performance of each component is highly valuable as presented in our
previous independent studies [6,7,13], clinical validation is equally important
aspect of medical image processing evaluation. Our BAW workflow is currently
used in clinical studies and a number of population-focused, application-specific
evaluations are ongoing and will be valuable future work. As shown in Table 1,
our BAW workflow showed very high success rates in three different medium-
to large-scale studies, illustrating how generalizable our workflow is across study
dsciplines as it currently stands.

3 Concluding Remarks

We have presented an overarching workflow for translation research for moving
advanced MRI techniques to neuroimaging discoveries for delivery of both pop-
ulation and personalized level research benefits. We utilized Nipype as an accel-
erated strategy that is needed for rapid integration and validation of cutting
edge tools. Although it is difficult to estimate how generalizable our workflow is,
our success rates across different disciplines are high in general as presented in
Table 1. Indeed, application-specific validation may require for subject-specific
anatomical modeling to better support research planning or clinical interven-
tions.

Flexibility of our BRAINSTools suite and BAW workflow is a more of gen-
eral advantage, which extends beyond the scope of this descriptive report. Our

http://www.neuromorphometrics.com/
http://www.neuromorphometrics.com/
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Table 1. Success rate of BRAINSTools Auto Workup. Outcomes are visually inspected
at random.

Successa (N, %) Predict-HD Track-On NeuroPD [14] Total

Bias Corrected T1-w 1158 (98.30%) 1109 (99.91%) 80 (100.0%) 2347 (99.11%)

Caudate Left 1134 (96.26%) 985 (88.74%) b80 (100.0%) 2199 (92.86%)

Right 1095 (92.95%) 962 (86.67%) b80 (100.0%) 2137 (90.24%)

Putamen Left 1156 (98.13%) 1101 (99.19%) b80 (100.0%) 2337 (98.69%)

Right 1155 (98.05%) 1093 (98.47%) b80 (100.0%) 2328 (98.31%)

# Random QC Check 1178 1110 80 2368

# Total Processed 4106 2103 80 6289
a Success for the study means the output can be used as it is or requires only minor
manual intervention, which takes a few minutes per structure instead of hours of manual
tracing.
b NeuroPD data, Parkinsons disease study, was processed using only T1-weighted
images instead of multimodal. Due to the lack of the supporting information from the
T2-weighted MRI, the outputs undergo complete visual inspection and minor revision.

parameters for the workflow are specifically investigated and identified working
alongside the large-scale multi-discipline in-vivo MRI analysis. This includes not
only machine-learning based segmentation (BRAINSCut) and multi-atlas label-
ing (MALF) integration, as reported in this work, but BAW workflow also highly
tested in conjunction with Nipype’s HPC/HTC interfaces which lead us rapid
identification of parameters and error analysis for the large-scale in-vivo MRI
processing. The BRAINSTools suite and BAW workflow are freely available to
the public. We hope that the utilization of our BAW workflow will minimize
duplication of development efforts for testing a series of the emerging techniques
in imaging analysis.
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Abstract. Bronchoscopy biopsy can be used to diagnose lung cancer
without risking complications of other interventions like transthoracic
needle aspiration. During bronchoscopy, the clinician has to navigate
through the bronchial tree to the target lesion. A main drawback is
the difficulty to check whether the exploration is following the correct
path. The usual guidance using fluoroscopy implies repeated radiation of
the clinician, while alternative systems (like electromagnetic navigation)
require specific equipment that increases intervention costs. We propose
to compute the navigated path using anatomical landmarks extracted
from the sole analysis of videobronchoscopy images. Such landmarks
allow matching the current exploration to the path previously planned
on a CT to indicate clinician whether the planning is being correctly
followed or not. We present a feasibility study of our landmark based
CT-video matching using bronchoscopic videos simulated on a virtual
bronchoscopy interactive interface.

Keywords: Bronchoscopy navigation · Lumen center · Brochial
branches · Navigation path · Videobronchoscopy

1 Introduction

Lung cancer is a frequent and serious malignancy with a 5-year global survival
rate in patients in the early stages of the disease of 38% to 67% and in later
stages of 1% to 8% [1]. Early diagnosis has increased survival rates from 44%
to 80% in men and from 28% to 52% in woman from the 70’s to the 2000’s [2].
This fact emphasizes the importance of early cancer detection and treatment
with curative intention, and this is a challenge in many countries [3]. Computed
tomography (CT) screening programs may significantly reduce the risk of lung
cancer death, but diagnostic of solitary peripheral lesions is still suboptimal [4]
and requires further surgical intervention. Such lesions can be diagnosed via
bronchoscopy biopsy without risking complications of other interventions like
c© Springer International Publishing Switzerland 2016
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transthoracic needle aspiration [5]. However, navigation with a flexible broncho-
scope is a difficult task in case of solitary peripheral small lesions and according
to the Am. Coll. Chest Phys., diagnostic sensitivity of lesions is 78%, but drops
to 34% for lesions < 2 cm [4].

One of the main drawbacks of flexible bronchoscopy when exploring lung
periphery is the difficulty to predict the correct pathway to a potential lesion.
In this sense, several technologies have been proposed to aid clinician in this
task, such as CT Virtual Bronchoscopy (VB) or the analysis of pure videobron-
choscopy information.

CT VB is a non-invasive method that can precede flexible bronchoscopy for
navigating inside the respiratory tract to assess the optimal path to a lesion. VB
is a computer simulation of the video bronchoscope image from the bronchoscope
camera [3] which is created from the 3D CT volume, with the same view angle
and zoom settings. During exploration, VBs should accurately guide the opera-
tor across the planned path to the biopsy point. To display the correct position of
the bronchoscope and tools in the CT-derived maps (structural maps of airways),
scope and tools position and orientation need to be tracked in real time. Stan-
dard protocols relying on fluoroscopy have a diagnostic yield around 60 % and
require repetitive radiation during intervention [6]. Existing alternatives like VB
LungPoint (Broncus Medical, Inc), NAVI (Cybernet Systems) or electromagnetic
navigation (inReachTM,SPinDrive) are far from meeting clinician expectations.
Systems based on standard bronchoscopes (e.g. LungPoint, NAVI) require man-
ual intra-operative adjustments of the guidance system [7,8]. Electromagnetic
navigation systems require the use of specific gadgets [9], altering the standard
operating protocol and increasing, both intervention time and patient anxiety.
Finally, they all require exhaustive personnel training and increase intervention
complexity and cost.

In spite of increasing research interest, the potential of image process-
ing in enhancing guiding capabilities has not been fully explored. In image-
based/video-based tracking, the position of the bronchoscope tip is found by
comparing and matching VB virtual view to the videobronchoscope current
frame [10,11]. Current solutions [3,12] are mostly based on multimodal regis-
tration of CT virtual projections to the actual videobronchosocpy frame and
are still far from reliable deployment [13]. A main disadvantage is that the view
from the bronchoscope can be obscured by blood or mucus, causing the tracking
between the video images and the virtual images to be disrupted. Also, the lack
of depth and rotation information from the bronchoscope camera view hinders
their performance.

An alternative to image registration is the use of anatomical landmarks as ref-
erence in coordinate systems [14]. The use of anatomical landmarks as reference
systems is a fast alternative to volume-based registration methods for matching
anatomical data across patients and 3D scans. Identification of bronchial tree
key-points in, both, CT scans and videobronchoscopy frames should also provide
accurate matching between off-line planed path and the current endoscopic nav-
igation. Landmark extraction in interventional videobronchoscopy is challenging
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due to the large variety of illumination and camera position artifacts, as well as,
the unpredicted presence of surgical devices. Recent works [15] have developed
efficient video processing methods to extract airways lumen that minimize the
impact of non-bronchial structures such as instrumentation, shines, folds and
vessels.

In this paper, we propose to reproduce a bronchial navigation path by using
the lumen centers as anatomical landmarks in both CT and videobronchoscopy.
Selection and tracking of such centers together with detection of branching points
is used to do correspondences between VB planing and images of the current
exploration. We present an exploratory study to test on the feasibility of a land-
mark base CT-Video matching on video sequences simulated on a VB interface
platform. Our first results indicate that there is enough evidence supporting a
guide system based on tracking of landmarks.

2 CT-Video Anatomical Matching

The bronchial tree has a tubular geometry and, thus, it is described as far as its
central line (corresponding to the airway lumen center) and walls (luminal area)
are extracted. In the case of bronchial navigation, the path can be described
by means of the lumen center position and their branching points defining the
bronchial tree structure.

Our CT-video path matching locates the current position of the scope by com-
paring the bronchial tree extracted from the CT used to plan the intervention to
a bronchial structure generated from the tracking of lumen centers extracted from
videobronchoscopic images during intervention time. Both anatomical structures
can be computationally encoded by means of a binary tree [16] with nodes given by
the bronchial branching levels. The matching between CT-video bronchial struc-
tures is then given by comparing the two binary trees.

2.1 Bronchial Anatomy Encoding from the CT Scan

The whole bronchial tree to be matched to the current exploration navigation
path is encode from a segmentation of the CT volume as follows. First, the
skeleton of the segmented CT volume is obtained using the method described
in [17] which allows a pruning of skeleton spurious branches depending on the
branch length. In order to ensure that we encoded the highest bronchial levels
as possible, the branch pruning length was set to the maximum trachea radius.

The CT skeleton represents the center airway line and, thus, an ideal scope
motion if the clinician follows a central navigation thought lung airways. In
order to define the binary tree that encodes the bronchi branching anatomy, we
identify the skeleton branching points and label each branch according to their
bronchial level and orientation (left, right) with respect the splitting branch at
the previous level. The binary tree top node corresponds to the tracheal entry
point and it is labelled “1”. At each new branch, two nodes are added labelled
“1” or “2” depending on the anatomical branch orientation (“1” for left, “2”
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for right). We note that by using such a node labelling, a given path corresponds
to a sequence of nodes traversing the binary tree.

Figure 1 shows the encoding in a binary tree of the bronchial anatomy from a
segmented CT. We show the segmented CT scan (top-right image) and its skele-
ton that represents the center airway line (top-left image) and the final binary
tree data structure for the first 3 bronchial levels (bottom-left). We have labelled
the skeleton branching points according to their corresponding binary tree nodes,
so that the green path would correspond to the node sequence (1, 2, 1, 2, 1, 2, 1).

Fig. 1. CT-Video Anatomical Matching. Codification of the bronchial anatomy from
CT branch points (top images) and binary tree coding for identification of the navigated
path inside the bronchial tree (bottom images) (Color figure online).

2.2 Bronchial Path from Exploration Videos

The extraction of the navigated path has two different stages: lumen center
tracking and matching of the center path to the CT bronchial tree.

Tracking of the lumen centers is based on an appearance and geometry likeli-
hood map [18] that achieves maximum values at the center of the lumen. In case
of multiple lumen at branch points, the map local maxima should correspond to
each branch center. Local maxima are tracked across frames accounting for its
spatio-temporal consistency to discard false detections.
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In order to track local maxima, we keep a state vector that evolves across
video frames and that contains, for each frame at time t the position in pixels
of the NLMt local maxima, (Xi

t)
NLMt
i=1 = (xt, yt)NLMt

i=1 , the total number of
frames each local maxima has hold, (N i

t )
NLMt
i=1 , and the gap of consecutive frames

that it has disappeared, (Gi
t)

NLMt
i=1 . The state variable is updated to incorporate

the local maxima, NLMt+1, at frame t + 1, (Xj
t+1)

NLMt+1
j=1 , depending on their

distance to the maxima at time t. If such distance is less than a radius R, the
position Xi

t is updated using the closest point in (Xj
t+1)

NLMt+1
j=1 , otherwise the

position is kept and new state vectors are added with the remaining maxima
found at t+1. That is, for the existing state vectors their values are updated as:

if ∃Xj
t+1 such that d(Xi

t ,X
j
t+1) ≤ R

Xi
t+1 = Xj

t+1, N i
t+1 = N i

t + 1, Gi
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and for the remaining (Xj
t+1)

NLMt+1
j=1 that can not be matched to a previous

state because, d(Xi
t ,X

j
t+1) > R, ∀j = 1, . . . , NLMt+1 we create a new state

with values:

Xj
t+1 = Xj

t+1, N j
t+1 = 1, Gj

t+1 = 0

We use a threshold on the length of the frame gap, Gi
t, and frame appearance,

N i
t , to decide whether a local maxima is a strong candidate or it should be

discarded and eliminated from the final output navigation path. For the sake
of notation simplicity, the position of the selected local maxima describing the
final navigation path will be also noted by (Xi

t)
NLMt
i=1 .

In order to match the navigation path to the binary tree encoding CT
bronchial anatomy, it suffices to identify frames traversing a higher bronchial
level (binary tree level) and orient the entering branches allowing to chose the
tree node. A given frame can be categorized from the multiplicity of the lumen
centers as:

– Frame within same bronchial level if NLMt+1 = NLMt.
– Frame approaching a bronchial level if NLMt+1 > NLMt.
– Frame traversing a bronchial level if NLMt+1 < NLMt.

Starting at the top node of the binary tree, each time a frame traverses a
bronchial level, the tree level is increased and the path node sequence is updated
by adding “1” or “2” depending on the entering branch orientation. The center
point with highest likelihood is considered to be the scope current position and
defines the entering branch. Its orientation (left or right) is defined by its relative
position with respect the disappearing centers. If the x-coordinate is larger than
the average x-coordinate of the vanishing points, we consider that the node is
labelled “2” (right) and “1” (left) otherwise.
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Figure 1 bottom, illustrates the identification of lumen centers (right images)
and its matching to the binary tree (left image) representing exploration
bronchial path. In right, lumen centers are plotted in green, crosses for strong
center candidates and dot for the one corresponding to the scope current posi-
tion. We show two representative cases of frame within same bronchial level (top
images) and a traversing frame (bottom images). The node sequence associated
to these frames is shown on the left tree in green.

3 Experimental Setup and Results

In order to explore the feasibility of the proposed anatomical matching, we have
tested our methodology on virtual explorations of a CT volume from a patient
coming from Hospital de Bellvitge [19]. The CT volume was segmented using the
software AMIRA and a triangular mesh in .obj format was created for navigation
path simulation [19]. Virtual explorations were exported generated using the
simulation software Unity, which allows the modelling of the scope camera and
an interactive camera point of view navigation. Unity virtual explorations were
in .bmp video frames for the extraction of the bronchial path based described
in Sect. 2.2. The camera position inside the bronchial tree was also exported to
define the codification of the Ground Truth path in the binary tree.

A total number of 5 virtual explorations were defined starting from the tra-
chea and following different branching paths and bronchial levels. The binary
tree node coding for the ground truth camera position was compared to the
coding extracted from the virtual videos. Node path coding has been compared
in terms of True Positives Nodes (TPN) and True Path Representations (TPR).
For a given exploration, a node is considered to be a TPN if its label indicating
the chosen branch (“1” for left, “2” for right) coincides with the GT node label
at the corresponding bronchial level. If all nodes are TPN, then the whole path
has been correctly encoded and it is considered a TPR.

Table 1 shows the node codes for GT and navigation paths (NaviPaths)
extracted from the 5 virtual explorations. A dash indicates that the tracking
algorithm stopped because it reached a leave node of the binary tree mainly due
to a wrong choice in an earlier branch. The total number of TPN is 19/24 = 80%
and in 3/5 = 60% = TPR cases the whole path was correctly encoded. Naviga-
tion errors are mainly due to either not having a complete visualization of the
branch or having a upper/lower branch. Figure 2 shows the qualitative results
for the 1st case (top images)which is all nodes TPN and the 3rd case (bottom

Table 1. Node code for GT and navigation paths for the 5 virtual explorations

Case1 Case2 Case3 Case4 Case5

GT 112121 11112 12112 1222 11111

NaviPath 112121 1112- 122– 1222 11111
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Fig. 2. Qualitative results for the 1st (top) and 3rd (bottom-right) cases (Color figure
online).

images) having only the first nodes as TPN. We show the CT skeleton in solid
black line, the GT path in blue and the navigated path in green. We also show
a snapshot of the simulated video with the tracheal lumen centers plotted in
green, crosses for strong center candidates and dot for the one corresponding to
the scope current position. In the third case we show the snapshot of the branch
point not detected because center miss-detection (red cross).

The failing in the third case arises at the 3rd level of the left bronchial tree
that has a lower branch that can not be visualized in bronchoscopic explorations
in central navigation, so, our algorithm loses this sort (upper/lower branches) of
branch points.

4 Conclusions and Future Work

Diagnostic of solitary peripheral lesions in lung cancer can be diagnosed via
bronchoscopy biopsy without risking complications of other interventions. New
endoscopy techniques (virtual bronchoscopy assisted procedures or electromag-
netic techniques) can reach an overall diagnostic yield of 70 %, but still could be
improved if technology would be able to better detect and guide the broncho-
scopist to the target lesion. This paper presents a novel lumen center tracking
as a landmark in order to know in which part of the bronchial tree the camera is
situated. Preliminary results in virtual images show the feasibility of retrieving
a navigation path from anatomical landmarks tracking and encourage further
research to enable the use of this strategy in a real images.

Before having a method ready to perform on true explorations, several issues
should be improved. One of the processing tools we will include will be the use
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of Kalman and particle filters for the centers tracking [20]. Another issue is to
enlarge the computational description of the bronchial tree to handle branches
going to upper/lower lobes.
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Abstract. Atrial fibrillation is the most common cardiac arrhythmia
and a major cause of ischemic stroke. It is believed that measurements
of the thickness of a patient’s left atrial wall can improve understand-
ing of the patient’s disease state, as well as assist in treatment planning
for radiofrequency catheter ablation. Left atrial wall thickness can be
measured and visualized from segmented contrast-enhanced cardiac CT
images, but segmentation itself is challenging. Here we present a pipeline
for segmenting the left atrial wall, using a hierarchical constraint struc-
ture in order to distinguish between the atrial wall and other muscular
structures. Using this approach, the left atrial wall was successfully differ-
entiated from adjacent structures such as the aortic wall. The method was
compared to manual segmentation on ten clinical CT images of patients
undergoing radiofrequency catheter ablation for atrial fibrillation. Sim-
ilarity between the methods, by Dice coefficient, was found to be 0.79,
and the rMSE of the epicardial segmentation was found to be 0.86 mm.
A roadmap to automation for clinical translation is also presented.

Keywords: Left atrial wall thickness · Segmentation · Hierarchical
constraint · Max flow · Radiofrequency catheter ablation planning

1 Introduction

Atrial fibrillation is a cardiac arrhythmia that is caused by irregular electrical
impulses in the upper chambers of the heart. It is the most common cardiac
arrhythmia and a major cause of ischemic stroke [4]. In the context of this dis-
ease, left atrial wall thickness (LAWT) is of clinical interest for two reasons.
First, it is suspected that LAWT is related to the disease itself and may provide
clinically relevant information on a patient’s disease state [12]. Second, evidence
is emerging that implicates greater LAWT as a contributor to radiofrequency
catheter ablation failure [10]. Radiofrequency catheter ablation is a percuta-
neous, image-guided intervention wherein transmural lesions are created in the
atrial wall, and is currently performed without patient-specific LAWT informa-
tion. Since there is a great deal of both intra- and inter-patient variability in
LAWT [5], each patient must be measured individually, and at many locations
across the atrium.

c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-31808-0 9
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Contrast-enhanced computed tomography (CT) is the most common modal-
ity for preoperative imaging of patients undergoing catheter ablation for atrial
fibrillation. Compared to methods such as magnetic resonance imaging, CT
imaging is faster, less expensive and features better spatial resolution, but suf-
fers from poor soft-tissue contrast. Once a preoperative CT is segmented, LAWT
measurement and visualization is a straightforward process [6], but the segmen-
tation itself remains challenging.

Progress towards robust left atrial wall segmentation has been made [3,7],
but a comprehensive solution remains elusive. A specific difficulty in segmenting
the left atrial wall in CT is that many nearby structures cannot be distinguished
from atrial wall based on voxel intensity alone. Structures of concern include
the esophagus, the aorta, the pulmonary artery, and the right atrium. Extensive
manual correction is often needed in these areas in order to achieve an acceptable
segmentation. While these structures create challenges for segmentation, they
also provide context that can be used to assist in classifying muscle tissue as
atrial wall or not. For example, a muscle voxel that is adjacent to the atrial blood
pool is likely to represent atrial wall, whereas a muscle voxel that is adjacent to
the aortic blood is likely to represent the aortic wall.

Hierarchical max-flow (HMF) [2] is a segmentation framework that uses hier-
archical relationships between segmentation labels to bias the classification of
voxels. Thus, tissues of similar image intensity can be classified differently based
on the classification of other nearby tissues. This method has been shown to be
promising for segmenting the left ventricle, but atrial wall segmentation has not
been attempted.

In this paper, we describe an approach to segmenting the left atrial wall using
HMF (implemented through the SEGUE interface [1]) as the primary algorithmic
component. Since the anatomy of the left atrium also creates additional chal-
lenges that preclude direct application of HMF, a pipeline approach is used with
two applications of HMF, linked together with intermediate processing stages.
The segmentation results are validated against manual segmentations of ten
patient CT images generated using standard clinical protocols. The feasibility
of automating this pipeline is discussed along with a roadmap to implementing
it in a clinically usable form.

This study was approved by the University’s Research Ethics Board.

2 Segmentation Method

2.1 Contrast-Enhanced Cardiac CT

Contrast-enhanced cardiac CT images are acquired as part of the treatment
protocol for atrial fibrillation by radiofrequency catheter ablation. The images
used in this study have isotropic axial-slice pixel spacing of 0.488 mm and slice
thickness of 0.625 mm. The images were gated to the cardiac cycle and iodinated
contrast agent was used to enhance the contrast between the heart muscle and
veins, and the blood.
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2.2 Hierarchical Max-Flow

The SEGUE interface [1] makes use of a combination of the HMF segmenta-
tion framework [2,9], NVIDIA’s Compute Unified Device Architecture (CUDA)
for GPU-accelerated computation, Kitware’s Visualization Toolkit (VTK), and
the Qt interface development library. SEGUE allows segmentation labels to be
organized in a hierarchy, allowing for more flexible regularization. The specific
energy being optimized is:

E(u) = min
u

∑

L

(
∫

Ω

DL(x)uL(x) + RLa,Lb
(x)|∇uL(x)|dx)

where DL(x) is the ‘data term’ representing the cost of assigning voxel x to label
L. RLa,Lb

(x) is the ‘regularization term’ representing the cost of placing the
boundary between labels La and Lb at voxel x. The complexity of the algorithm
is O(lvn) where l is the number of labels, v is the image size in voxels, and n
is the number of iterations to converge. Although n = O(v) in the worst case
scenario, in practice, the computation converges much faster (n = O( 3

√
v)).

The data terms are Bayesian, using the seeded regions to estimate the inten-
sity distribution of each object. The data terms also constrain seeded regions by
giving other labels an infinite cost. This can be expressed mathematically as:

DL(x) =

⎧
⎨

⎩

−ln(P(I(x)|L)) if x is not a seed
0 if x is a seed of L
∞ else

The regularization terms depend on the labels of the two voxels that lie on
either side of the boundary, and their positions in the label hierarchy. Each node
in the hierarchy is assigned a smoothness term S(Ln). The regularization term
for a boundary between two labels La and Lb is determined by summing together
all smoothness terms of the ancestors of La and ancestors of Lb, up to, but not
including, the closest common ancestor. This can be expressed as:

RLa,Lb
(x) =

Lc−1∑

i=La

Si +
Lc−1∑

j=Lb

Sj

The smoothness terms encourage smooth boundaries with no explicitly defined
spatial preference.

2.3 Segmentation Pipeline

The segmentation pipeline combines two applications of HMF-based segmenta-
tion with supporting image-processing steps:

Cropping: The 3-dimensional (3D) CT image is roughly cropped around the
heart so that it contains the entire left atrium, some portion of the nearby blood-
filled structures, and enough fat near the apex to obtain a reasonable fat sample.
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Tissue sampling: Four regions of the CT image representing different tissue
types (fat, muscle, blood, and lung) are sampled using a paintbrush. Fat is
sampled near the apex, muscle is sampled in a thick portion of the ventricular
wall, blood is sampled in the left atrium, and lungs are sampled in any relatively
uniform lung section.

Solving for the blood label: Based on the samples, image characteristics for
the four tissue types are calculated and seed a four-region hierarchy (Fig. 1 top).
HMF is then used to solve the segmentation problem. Although all tissue types
are segmented, only the blood label will be used in the next stage. Regularization
is weak at this stage due to the strong contrast between blood and other tissue
types.

Fig. 1. Top: First segmentation hierarchy. Bottom: Second segmentation hierarchy.

Left atrium isolation: The segmented blood is divided into two sections – the
left atrial blood and other blood – using an ad hoc process of manual editing
and connected component analysis.

Solving for atrial wall: A six-region hierarchy (Fig. 1 bottom) is used to solve
for the atrial wall. The isolated left atrial blood and other blood labels are used
to directly seed their respective regions. The lung and fat seeds from before are
reused and the muscle seed from is used to seed the other muscle label. This
label represents all non-atrial-wall muscle. The left atrial wall label is newly
seeded by sampling near the other muscle sample in similar tissue, but the image
characteristics are manipulated so that the label has a weaker data term in the
target tissue types. Given no hierarchical constraint, this would cause the max
flow solver to preferentially select muscle tissue as non-atrial.

Post-processing: Due to the smoothing effect of max-flow-based segmentation,
the new left atrial blood label from the previous step will be dilated and repre-
sent a mix of atrial blood pool and atrial wall. Small imperfections and obvious
segmentation errors may also appear. Thus, the newly segmented left atrial wall
and atrial blood labels are combined, and the original left atrial blood label
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Fig. 2. Left: Original axial slice image of left atrium. Right: Segmented image of left
atrium. The central red label is left atrial blood. The other blood label leaks into
neighbouring areas due to classification of most blood as other blood, but the strong
left atrial blood label forces nearby muscle tissue to be classified as atrial wall (Color
figure online).

(derived in the left atrium isolation step) is used to mask the central blood por-
tion of the combined label in order to achieve an atrial wall-only segmentation.
Isolated islands of voxels labeled as left atrial wall, and those that lie more than
ten voxels from the original left atrial blood label are masked out as well.

3 Results

3.1 Qualitative Evaluation

Segmentation results show that in the areas where the left atrial wall is adjacent
to lungs or thicker fat, muscle is correctly classified as atrial wall. Left atrial
wall was successfully differentiated from aortic wall, and much of the esophagus
was also segmented out. The right atrium was largely differentiated from the left
atrial wall as well, but segmentation in this region was less accurate due to highly
variable contrast (the contrast agent in this area mixes non-uniformly, creating
a region of high variability in image intensity). An example of a segmented CT
slice is shown in Fig. 2.

3.2 Comparison to Manual Segmentation

Segmentations using the proposed method were compared for consistency with
manual segmentations. Ten gated, contrast-enhanced cardiac CT images of
patients with atrial fibrillation were obtained. Subsequent to imaging, all patients
were treated with radiofrequency catheter ablation. HMF computation took from
3–11 mins, depending on the image size, on a graphics workstation (dual 3.33
GHz Intel Xeon CPU, 48 GB RAM, NVIDIA Tesla C2070 for GPU computa-
tions). One observer manually segmented the left atrial walls in all images in
3D, using the pre-computed blood pool segmentation as a guide to regions that
were in-scope. The similarity, based on mean Dice similarity coefficient (DSC),
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Table 1. Segmentation statistics by patient. Rows are: Dice similarity coefficient
(DSC), Ratio of segmented pixels – proposed method/manual, Epicardial rMSE – pro-
posed method vs. manual, Mean LAWT derived from manual segmentation.

Patient 1 2 3 4 5 6 7 8 9 10 mean

DSC 0.77 0.83 0.85 0.75 0.81 0.77 0.78 0.81 0.81 0.72 0.79

Ratio 1.35 0.92 1.00 0.90 1.18 0.86 1.16 1.22 1.14 1.52 1.13

rMSE (mm) 0.80 0.77 0.72 1.04 0.79 0.87 0.82 0.91 0.78 1.13 0.86

LAWT (mm) 1.42 1.68 1.93 1.88 1.70 1.71 1.39 1.47 1.51 1.65 1.63

was 0.79, and the mean rMSE of the atrial wall segmentation (epicardial side
only) was 0.86 mm. On average, the proposed segmentation pipeline generated
segmentations that were 13 % larger than manual segmentation. These results,
broken down by test case are given in Table 1. Mean LAWT derived from manual
segmentations are also shown for reference purposes.

4 Discussion

4.1 Contributions

A major contribution described in this paper is the development of a pipeline
approach to segmenting the left atrial wall. This approach combines standard and
pre-existing components to segment a structure that cannot be segmented based
on image intensity alone, and without examples to form an atlas. Segmentation
accuracy results are comparable to the variation between experts [7] and to
similar work on ventricles [8] despite the lack of manual correction and minimal
interaction.

The use of HMF to leverage negative information provided by the blood
present in other structures allows the segmentation method to distinguish
between atrial wall and other nearby muscular structures. Due to the iodinated
contrast agent present in the patient’s blood, segmenting of blood is a much
easier task than segmenting the atrial wall. This alleviates the need for much of
the manual correction required by methods that do not bring this context into
the final segmentation.

4.2 Future Improvements

In the testing presented here, the parameters selected for the HMF solver were
chosen in an ad hoc manner and applied to all cases. Better results may be
obtained by selecting a patient/image specific parameter set based on some a
priori parameters (such as contrast-to-noise ratio), or optimized through an algo-
rithmic process.

The proof of concept presented here leaves room for other improvements. For
example, the weakening of the left atrial wall label in the second HMF application
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was done by deliberately sampling inside the left atrial blood pool. The ability
to directly control the weakening of a data term is currently not implemented,
but would allow finer control over the competitive nature of the labeling.

4.3 Automation and Clinical Translation

Sufficiently automating the segmentation pipeline for clinical translation requires
the reduction of technician time and attention, but due to safety and reliability
concerns, removing the human entirely from the process is neither feasible nor
desirable. By limiting manual processing to fast, simple tasks at the start and
end of the pipeline, the technician is free to perform other tasks (e.g. preparing
the patient, equipment, data logs) during the segmentation process. A similar,
interactive approach [9] requires that the technician interact with the software
and recompute the HMF multiple times.

The pipeline presented in this paper was constructed in an ad hoc manner and
contains multiple data exchanges, computations and manual components. Data
exchanges and execution of computational components are easily automated,
but three of the manual processes – cropping, tissue sampling, and left atrium
isolation – require non-trivial solutions for automation.

Cropping and sampling fall under the category of “fast, simple tasks” that
can be done at the very beginning of the process. This does not preclude full
automation of these tasks, but it is not necessary. Isolation of the left atrium
blood from the rest of the blood label is a more complex task with no trivial solu-
tion. However, this is analogous to left atrial endocardium segmentation, which
is an active research area. Many methods of automatic endocardium segmenta-
tion were explored in the MICCAI STACOM 2013 challenge [11], generally with
good results for CT. Such a technique can be incorporated into the pipeline.

4.4 Limitations

While the results presented here are promising, the accuracy of the segmenta-
tion has not been rigorously validated. More testing with images that span the
range of clinical image quality and variability in cardiac anatomy is required.
Since ground truth manual segmentations can be unreliable, multiple readers are
required to reach a consensus standard.

It is impossible to judge the acceptable threshold for segmentation accuracy
as the clinical requirements of LAWT measurement accuracy have not yet been
established. It is also not yet clear how measurements made on static CT images
relate to the dynamic in vivo LAWT in live patients, although it is expected that
LAWT varies with the patient’s heart rhythm. The establishment of a reliable
LAWT measurement method is a first step towards determining these thresholds.

Finally, automation of this pipeline has been discussed but has not yet been
implemented. Development of clinically usable software and integration into the
current clinical workflow may require addressing factors not yet considered.

Acknowledgements. This research was funded Canadian Institutes for Health
Research (CIHR) grant #27790.
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Abstract. Colorectal cancer is a major cause of mortality. As the dis-
ease progresses, adenomas and their surrounding tissue are modified.
Therefore, a large number of samples from the epithelial cell layer and
stroma must be collected and analyzed manually to estimate the poten-
tial evolution and stage of the disease. In this study, we propose a novel
method for automatic classification of tumor epithelium and stroma in
digitized tissue microarrays. To this end, we use discrete Tchebichef
moments (DTMs) to characterize tumors based on their textural infor-
mation. DTMs are able to capture image features in a non-redundant way
providing a unique description. A support vector machine was trained to
classify a dataset composed of 1376 tissue microarrays from 643 patients
with colorectal cancer. The proposal achieved 97.62 % of sensitivity and
95 % of specificity showing the effectiveness of the methodology.

Keywords: Colorectal cancer · Tchebichef moments · Tissue microar-
ray · Tumor classification · Support vector machine

1 Introduction

Colorectal cancer (CRC) is the third most common type of cancer worldwide with
more than 1.4 million cases registered in 2012 [4]. As population aging continues
growing more people are susceptible to CRC: around 70 % of cancer mortality
occurs among adults over 65 years [7]. Furthermore, almost half of the population
will develop at least one benign intestinal tumor during its lifetime [10]. In most
cases, CRC begins as a benign polyp or adenoma, which is characterized by
accumulation of cells at the epithelial layer of the gastrointestinal track. A small
fraction of polyps evolves through accumulation of genetic alterations yielding
carcinomas. Such a sequence is called adenoma-carcinoma sequence (ACS) [17].

Cancer progression through lymphatic or blood vessels (metastasis) to the
liver and lungs is the principal cause of death and occurs in up to 25 % of
c© Springer International Publishing Switzerland 2016
C. Oyarzun-Laura et al. (Eds.): CLIP 2015, LNCS 9401, pp. 79–87, 2016.
DOI: 10.1007/978-3-319-31808-0 10
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Fig. 1. Samples of colorectal cancer in digitized tissue microarrays (only red channel)
from the database used in [12]. First row shows pure tumor epithelium and second row
shows tumor stroma extracted from a paraffin block.

patients [2]. In contrast to ACS, colorectal metastasis is not strongly associ-
ated with alterations in any genes but with the healthy cells that surround the
tumors. Such cells, called stroma, are usually composed of connective tissue.
They are essential for the maintenance of both normal epithelial tissue and their
malignant counterpart. Oncogenic changes in the epithelial tissue modify the
stromal host compartment, which is responsible for establishing and enabling a
supportive environment and eventually promotes growth and metastasis. Hence,
stroma plays a fundamental role in allowing development and progression of the
disease [1,2,8].

Tissue microarrays (TMAs) are the gold standard for determining and moni-
toring the prevalence of alterations associated with colorectal carcinogenesis [19].
This procedure collects small histological sections from unique tissues or tumors
and places them in an array to form a single paraffin block, (see Fig. 1). Typical
TMAs may contain up to 1000 spots that are used for simultaneous interpretation.
Hence, the large amount of information is the main drawback of the manual assess-
ment and the motivation of this study. In addition, the identification of regions of
interest depends on visual evaluation of histology slide images by pathologists,
which introduces a bias.

Texture analysis has been used in segmentation of epithelial tissue in digital
histology previously. For instance, Wang [20] proposed a Bayesian estimation
method for classification of tumoral cells in tissue microarrays of lung carcinoma.
Tumor and stroma from prostate tissue microarrays were classified in [3,9,11].
Foran et al. [6] developed a software platform to compare expression patterns
in tissue microarrays using texton-based descriptors and intensity histograms.
To the best of our knowledge, automated analysis of CRC in tissue microarrays
is relatively new. Linder et al. [12] used a methodology based on local binary
patterns (LBPs) [18] and contrast information called (LBP/C) to classify tumor
epithelium and stroma. Here, we use the same dataset and propose a novel
descriptor based on discrete Tchebichef polynomials.

Next, we present a detailed description of the methodology. A comparison
between our proposal and LBPs was also performed using k-NN and support
vector machine (SVM) as classifiers.



Classification of Tumor Epithelium and Stroma in Colorectal Cancer 81

Fig. 2. Set of scaled Tchebichef kernels. (a) 1-D discrete Tchebichef polynomials of
order s from 0 to 5. (b) Ensemble of 2-D discrete Tchebichef polynomials. The mag-
nitude of the moment of order s is calculated by summing of the correlation indexes,
p, q so that s = p + q. Graphically, the sum is carried out diagonally.

2 Materials and Methods

We propose a methodology composed of three stages. First, for each image,
feature extraction is performed on overlapped sliding windows using discrete
Tchebichef polynomials. Then, all the local Tchebichef vectors from a single
image are grouped and characterized by statistic moments in order to build a
single vector of 234-bins length that can be viewed as the texture signature.
Finally, a SVM is trained using a subset of 656 samples, whereas the perfor-
mance of the proposal is assessed on an independent set of 720 tissue microarray
samples.

2.1 Dataset

We used the dataset provided and described in detail in [12], which consists
of 1376 samples of tissue microarray of tumor epithelium and stroma from 643
patients with CRC annotated by expert pathologists, (see Fig. 1). The samples
were divided into two parts. The training subset is composed of 656 images:
400 samples representing tumor epithelium and 256 representing tumor stroma.
A separate subset, consists of 425 images of tumor epithelium and 295 images
that represent tumor stroma, was used as validation set. The dataset does not
contain private information of patients.

Prior to extract Tchebichef feature vectors, the tissue samples were scaled
by a 0.5 factor, the mean was subtracted, and only the red channel was used.
Blue and green channels were discarded because they do not have relevant
information.
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2.2 Discrete Tchebichef Moments

Generally speaking, moments are scalar quantities that characterize a function
of interest. They are computed as projections between the function f(x, y) and a
polynomial basis rpq(x, y) within the region Ω : Tpq =

∫∫
Ω

rpq(x, y)f(x, y) dxdy
where p and q are non-negative integers and s = p+q represents the order of the
moment. Therefore, Tpq measures the correlation between the function f(x, y)
and the corresponding polynomial rpq(x, y) [5].

Discrete Tchebichef moments (DTMs) were originally proposed by Mukun-
dan et al. [15] to overcome limitations of conventional orthogonal moments such
as Zernike and Legrendre. DTMs are based on a normalized version of discrete
Tchebichef polynomials scaled by a factor that depends on the size of the image
N , (see Fig. 2a).

The scaled discrete Tchebichef polynomials, t̂p, can be generated using the
following recurrent relation:

t̂0 (x) =
1√
N

,

t̂1 (x) = (2x + 1 − N)

√
3

N (N2 − 1)
, and

t̂p (x) = K1xt̂p−1 (x) + K2t̂p−1 (x) + K3t̂p−2 (x)

(1)

with x = 0, 1, . . . , N − 1.

K1 = 2
p

√
4p2−1
N2−p2 , K2 = 1−N

p

√
4p2−1
N2−p2 , and K3 = p−1

p

√
2p+1
2p−3

√
N2−(p−1)2

N2−p2 are
the coefficients that ensure stability in case of large order polynomials [14].

DTMs are computed by projecting a given image, I(x, y), onto the basis of
t̂p. The moment Tpq is calculated according the following formula:

Tpq =
N−1∑

x=0

N−1∑

y=0

t̂p(x)t̂q(y)I(x, y) (2)

Tpq quantifies the correlation between the image, I(x, y), and the kernel t̂p(x)t̂q(y),
see Fig. 2b.

One way to understand this relationship is that the greatest the magnitude
of Tpq, the greatest the similarity between the given image and the polynomials
t̂p that oscillate at similar rates to the image. Hence, it is possible to build a
feature vector, M(s), that captures similarities along X- and Y-axes as follows:

M (s) =
∑

p+q=s

|Tpq| (3)

with s = 1, . . . , 2N − 2.
M(s) provides a unique description in the expanded Tchebichef space by

capturing oscillating behavior of all textures that constitute the image.



Classification of Tumor Epithelium and Stroma in Colorectal Cancer 83

Fig. 3. DTM signatures. (a) Average, (b) standard deviation, and (c) contrast vectors
obtained from tumor epithelium (black) and stroma (gray)tissues.

2.3 Feature Extraction

Feature extraction with DTMs was introduced by Marcos et al. [13] on synthetic
textures and used by Nava et al. [16] on emphysematous tissues. However, they
compute a single vector using the whole image, which implies calculating high-
order moments. According to [15], large Tchebichef vectors may introduce an
error due to stability in the oscillations. Here, we present a modification based
on sliding windows by implementing the following steps:

The scaled images are processed using a window of 40×40 pixels; the accuracy
was used as the performance measure to evaluate the optimal window’s size. The
window is moved from the upper-left corner to the lower-right corner by 20 pixels
per iteration, this means an overlap of 50%.

The corresponding M(s) vectors are calculated on each window position.
After this process is conducted over all possible windows, we obtained a set of
vectors Mi(s) where i indicates the window position. Since the images in the
dataset are not the same size, then i varies among images. The feature vector is
build as follows:

∀i ∈ the given image:

t̄ = [μ(Mi(1)), σ(Mi(1)), β(Mi(1)), . . . ,

μ(Mi(2N − 2)), σ(Mi(2N − 2)), β(Mi(2N − 2))]
(4)

where μ and σ are the mean and the standard deviation respectively. The oper-
ator β is the defined as: β(x) = σ(x)

κ(x)1/2
and κ is the kurtosis.

Equation (4) represents a novel way to describe texture characteristics. Note
that the moment of order s = 0 is not used because it represents the mean value
of the image. Furthermore, correlated coefficients between tumor epithelium and
stroma are discarded by applying the p-test. The test reflects statistically sig-
nificant differences (p < 0.001) between both groups, the features with a p-value
greater than the threshold p are not included. The average Tchebichef signatures
for both classes are shown in Fig. 3.
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2.4 Classifier

A SVM and a k -NN classifier were implemented to validate our proposal. The
classifiers were trained using a subset of 656 images and a different set with 720
images was used in the validation stage. Both image datasets were processed
in the same manner described previously and the accuracy was the measure to
assess the performance of the proposal.

3 Experimental Results

Using a standard linear SVM classifier, our proposal labeled incorrectly 25
images out of 725, it means an accuracy of 96.53%. 15 images were wrongly
classified as epithelium, whereas 10 samples were labeled as tumor stroma incor-
rectly. We computed the performance using k -NN with k = 11; the number of
neighbors was not relevant in the classification performance. The best results
are shown as confusion matrices in Fig. 4.
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10Stro. 285
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Fig. 4. Final classification results. Epi. and Strom. stand for tumor epithelium and
tumor stroma, respectively. (a) DTMs with SVM. (b) DTMs with k -NN; and (c)
LBPs with SVM.

Table 1. Comparison and classification results. All the data are expressed in (%). Bold
values represent the best results.

Method Precision Sensitivity Specificity F1-Score

DTMs/SVM 96.47 97.62 95 96.94

DTMs/KNN 94.12 94.79 91.61 94.45

LBPs/SVM 90.35 89.1 85.81 89.72

LBPs/KNN 91.53 83.48 85.83 87.32

LBP/C [12] 95.53 99.02 93.87 97.19

For comparison purposes, the LBP descriptor described in [18] was imple-
mented. For each image, on every window position a feature vector was built
by concatenating LBP8,1 and LBP16,2 histograms. Then, all the LBP feature
vectors from a single image were grouped and characterized by the first two sta-
tistic moments: mean and standard deviation. Furthermore, we include results
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reported in [12] where the same database was used. Linder et al. propose a
combined LBP/C descriptor to characterized the tumor texture.

We also computed the ROC curve for our proposal, (see Fig. 5). The
area under the ROC curve (AUC) is 0.9847, such a value is pretty similar
to the AUC reported by Linder et al. Finally, we calculated the F1-Score
= 2 ∗ Precision∗Sensitivity

Precision+Sensitivity and all the results are summarized in Table 1.

Fig. 5. ROC curve for DTMs/SVM proposal. The achieved AUC is 0.9847.

4 Conclusions

We propose a novel method based on discrete Tchebichef Moments to classify
tumor epithelium and stroma in a large database of colorectal cancer collected
from TMAs. We have shown that Tchebichef moments possess the ability to
describe textures by projecting the image of interest onto a polynomial basis
where its sinusoidal-like behavior provides a suitable representation of all the
textures that constitute the image. The sliding window approach improves the
descriptor stability by discarding high-order moments and avoids the curse of
dimensionality.

As in [12], our proposal achieved an accuracy rate above 96% (only 2 images
below the LBP/C descriptor). Our method classifies better the epithelium tissue
than LBP/C. Nevertheless, it is not possible to claim that there is a better
performance because the difference between accuracies is only 0.28%. DTMs
performance is about 6 % better than LBPs, which indicates that our proposal
captures texture variations in a better way. Furthermore, our proposal does not
use contrast information, therefore, it is not necessary to quantize the images to
get the local variance.
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Abstract. During percutaneous ablations, interventionalists currently
rely on subjective assessments of procedural images to determine if the
ablation is successful and the extent of injury to the surrounding tis-
sues. In order to provide an objective assessment of these images, we
developed a unified software package for monitoring MRI-guided cryoab-
lation in real-time. We assessed its feasibility and functionality within
the workflow of renal tumor cryoablation procedures using images from
13 MRI-guided renal tumor cryoablation procedures. This retrospective
study demonstrated that the software package met the real-time require-
ments with 92% success. We were therefore able to develop a compre-
hensive, real-time, interventionalist-friendly software package for quanti-
tative monitoring of MRI-guided percutaneous cryoablation procedures,
which aides in the assessment of tumor eradication and is compatible
with the clinical workflow of these procedure. This tool has the poten-
tial to minimize damage to surrounding parenchyma and nearby critical
structures, thereby enhancing patient safety and treatment success.

Keywords: Computerized monitoring · Cryoablation · Graphical user
interface · MRI

1 Introduction

The incidence of renal cell carcinoma (RCC) has increased by 126 % over the
past 50 years in the United States [10] with an associated increase in mortal-
ity from this disease [2]. Surgical options for RCC are either total nephrectomy
or laparoscopic partial nephrectomies for appropriate patients; however, beyond
surgical techniques, there is a great need for and progression towards novel, min-
imally invasive treatments for RCC. Image-guided percutaneous cryoablation
has become one of the most promising and prevailing of these minimally inva-
sive treatment techniques [5,9,11]. Combination of Magnetic Resonance Imaging
(MRI) and cryoablation provides excellent visibility for monitoring the ablation
c© Springer International Publishing Switzerland 2016
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zone, as well as, the tumor and adjacent structures [4] when compared to other
modalities, such as Computed tomography (CT). It is with this superior visu-
alization that the percutaneous eradication of the target tumor can be most
successful, while minimizing the ablation of surrounding normal parenchyma
and reducing the risk of injury to nearby critical structures.

Intra-procedural monitoring is currently based on a qualitative assessment
of images by the interventionalist. During this review, the interventionalist cog-
nitively evaluates the percent coverage of the tumor and the extent of inclusion
of normal surrounding parenchyma by evaluating the slowly growing ice ball on
intraprocedural images. This task must be interleaved with many other aspects
of the procedure, such as probe placement, keeping the skin entry site warm
to avoid superficial thermal necrosis and monitoring the patients vital signs.
Reviewing 2D images in multiple planes every few minutes during the 15 min
freezing cycle of a cryoablation can be a difficult, time consuming task while
simultaneously tending to other procedural tasks. Due to potential intraproce-
dural respiratory motion, images acquired at different time points in the pro-
cedure must be registered with each other to determine procedural changes. In
addition to the potential oversights that can occur as a result of multi-tasking,
inaccurate registration can lead to the omission of subtle regions of non-ablated
tumor. The qualitative percent coverage assessment and damage to adjacent
normal parenchyma is further complicated by the fact that the developing ice
ball obscures the margin between tumor and adjacent parenchyma. Accurate
assessment of the ice ball with respect to the tumor and adjacent anatomy is
essential as non-ablated tumor could lead to recurrence and ablation of adja-
cent critical structures could lead to significant complications [12]. Quantitative
computerized monitoring of ablation performance in real time could reduce the
multi-tasking and subjective assessments involved in these procedures, as well as
expedite detection, potentially avoiding significant complications and increasing
efficacy of the ablation.

Previous efforts had already developed software components for automatic
segmentation of the ice ball on intra-procedural images [6,7] and automatic
probe detection algorithms [8]. However, a functional integration of these com-
ponents as well as display of real time results was needed in order to make these
tools functional for the interventionalist within the clinical workflow of ablation
procedures.

2 Materials and Methods

We developed a unified graphical user interface (GUI), Fig. 1, for monitoring of
MRI-guided cryoablation procedures in real-time and assessed its feasibility and
functionality within the workflow of renal tumor ablation cases. The GUI inter-
acts with many background software components, all of which have unique data
formats that have to be unified. The GUI passes input data, such as user seg-
mented tumor volumes, segmented adjacent critical structures, and depth to the
tumor from the skin surface (target depth) to support pieces of software. Com-
puted results for automatically detected probes and automatically segmented ice



90 J. Scalera et al.

ball volumes are returned to the ablation package and displayed for the inter-
ventionalist. This integrated tool also computes and displays quantitative data
such as ablation coverage metrics (percent tumor coverage and Dice similarity
coefficient (DSC) [1,3]) and warnings when critical structures are approached by
the ice ball margin. Furthermore, the software package assists the interventinal-
ist in probe placement by displaying the predicted ice ball volume at different
timepoints based on experimental results and the probe locations. In addition
to the challenges of combining independently developed pieces of software and
creating an interventionist friendly GUI with clinical functionality, we estab-
lished an interface with the MRI scanner for extracting images in real time and
communicating them through the monitoring software. The computation speed
and ease of use of the software package was preliminary evaluated using images
from thirteen MRI-guided renal tumor cryoablation procedures in a retrospective
fashion.

Fig. 1. Screenshot of ablation monitoring GUI after 15min of cryoablation (lower left).
(a) Predicted 15min ice ball volume (blue) based on probe locations. (b) Overlays on
the intra-procedural images after 15min of Cryoablation showing the segmented ice
ball (blue), segmented tumor (red) and ablation margrin (amber). Shortest distance to
a critical structure is shown as a thin yellow line overlay and reported in the console
(d). (c) Graphical and (d) textual display of percent coverage (blue) and DSC (green)
are shown (Color figure online).

Figure 2 illustrates the workflow of a standard MRI-guided cryoablation proce-
dure at our institution. There are three major clinical phases to these procedures:
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Planning phase, Probe Placement Phase and Therapy Phase. During the Planning
Phase, initial images are acquired that areused todetermine thevisibility of the tar-
get tumor, to assess the appropriate skin entry site and probe placement approach,
andtoestablishthedepthof thetumoralongtheplannedapproachpathway.During
the Probe Placement phase, two to seven cryoprobes are sequentially placed under
image-guidance.Once theprobeshavebeenplaced, a setof images is acquired,using
the same imaging parameters employed during the Therapy Phase. The Therapy
Phase typically consists of a 15 min freeze cycle, followed by a 10 min passive thaw
period, and then a second 15 min freeze cycle. During the freeze cycle, the iceball
growth is closely monitored with repeated T2-weighted acquisitions every 3 min.
Between theseacquisitions, the interventionalist qualitativelyassesses the coverage
of the tumor by the ice ball and possible involvement of adjacent critical structures.

Fig. 2. Clinical and ablation monitoring workflows shown as timelines with first task
at the top and last task at the bottom.

The integrated cryoablation monitoring software package was designed to be
interleaved with the traditional clinical workflow phases of cryoablation proce-
dures at our institution. That is, this software is able to provide this real time
data within the corresponding conventional time allocations of the clinical steps
of these procedures. Figure 2 illustrates how the real time computations of our
software package were integrated into the clinical cryoablation procedure steps.
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Figure 3 illustrates the system design of our integrated software package and
the associated relationships between each of the components. Parenthetical text
indicates software/programming language used to implement the given compo-
nent. Exchange of data between software components was mainly through files.
This exchange permitted easier debugging and preserves intermediate datasets
for future analysis and research. Experiments were performed on a commercially
available workstation (Dell T7500n; Intel Xeon CPU X5660, 62.8 GHz, 12 GB
RAM; Red Hat Enterprise Linux 6.0).

Fig. 3. Ablation monitoring system design. Parenthetical text indicates soft-
ware/programming language used to implement the given component.

Although previous testing confirmed the software’s ability to communicate
with the MRI scanner, this offline retrospective study was conducted to ensure
that it met the realtime requirements prior to employing it during active cryoab-
lations. The study was performed with an Institutional Review Board (IRB)
approved protocol. Consent was waived because the study was performed as a
retrospective study using anonymized images from prior cryoablation procedures.

Thirteen MRI-guided kidney tumor cryoablation procedures (6M/7F; age
60–87) with tumor diameter 1.3–4.0 cm (single tumor for all cases) were inves-
tigated. All procedures had been performed using a 3 Tesla (T) wide-bore MRI
scanner (Siemens Verio, Erlangen, Germany). Body matrix coil (receive; six
channel) and spine coils (receive) embedded in the table-top were used in all
cases. Axial T2-weighted breath-hold half-Fourier acquisition single shot turbo
spin echo (HASTE) sequence (echo time [TE] 200 ms, 320 x 272 voxels/slice,
slice thickness of 3–4 mm, in-plane resolution of 1.0625 mm, no gap between
slices, interleaved slice order, 16–20 slices, acquisition time of 16–20 s, 28–34 cm
field of view) was used. MRI-compatible alloy cryoprobes, IceSeed and IceRod
from Galil Medical Inc. (Arden Hills, MN), which are both 17 gauge in diameter
and 17.5 cm in total length, were used.
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For each of the simulated cases, probe detection and manual tumor segmenta-
tion were performed. Subsequently, registration, ice ball segmentation and metric
computations were performed for each of the 3–5 min intra-procedural monitor-
ing steps for the two freeze cycles. Computation times for probe detection, reg-
istration, ice ball segmentation and metric computations were recorded. Time
for the intraventionalist, a radiology fellow with 7 years experience, to manually
segment the tumor was also recorded.

3 Results

Real-time computation times were dictated by the pre-existing clinical workflow
of these procedures at our institution. Pre-ablation probe detection computation
and manual tumor segmentation were allocated 5 min, while intra-procedural
monitoring calculations (registration, ice ball segmentation and metric compu-
tations) were required to be completed within 1–2 min (Table 1). This allows suf-
ficient time to review the results between monitoring images, which are acquired
every 3–5 min. Of note, manual tumor segmentation was performed in parallel
with automatic probe segmentation and always took less than the time required
for automatic probe segmentation to execute. In 92 % of cases (12/13), this soft-
ware executed rapidly enough so that imaging and ablation could proceed with
no delays to the standard procedure. In one case of the 13 cases studied, the
probe segmentation software took 322 s to detect 6 probes, which was 22 s longer
than it was allocated. Therefore, with the exception of one case that exceeded
the real time requirements by a small and inconsequential margin, computations
were performed in real time.

Table 1. Computation Requirements vs. Measured Computation Times

Task Allocated
Time

Measured Computation
Time

Auto-Probe Segmentation 300 s Mean 137 s (80–322 s)

Registation/Auto-Ice ball Seg./Metric Comp 60–120 s Mean 30 s (17–40 s)

4 Discussion

This study presents results supporting the feasibility of using an integrated soft-
ware package for quantitative monitoring of MRI-guided percutaneous cryoab-
lation procedures to increase their safety and success. This study proves that
the developed software package can be successfully integrated into the clinical
workflow model.

This software lessens the monitoring burden on the interventionalist and
transforms an imprecise, subjective task to a quantitative, objective assessment.
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With the guidance of the interventionist, this software produces accurate met-
ric assessments of percent coverage, DSC and distance of ice ball to critical
structure(s). In conjunction with critical clinical metrics, these computed met-
rics serve as objective input to the interventionalist in determining whether to
continue, modify or complete a given cryoablation procedure. As an aside, our
retrospective study also found that metric results made subtle regions of non-
ablated tissue conspicuous, which could have been overlooked by the interven-
tionalist while managing multiple aspects of these complex procedures. These
results speak to the strength of the chosen display format and its potential to
enhance procedural safety.

Moreover, since this software was designed by interventionalists, its inter-
face and user interactions were optimized to fit into the pre-established clinical
workflow at our institution. Great effort was placed on automating portions of
the software and to limit the number of required interactions necessary by the
interventionalist to limit the additional burden on the interventionalist. Consen-
sus at our institution based on this preliminary study is that the likely benefits
of safety and procedural success, far outweighs the minimal additional tasks it
requires.

Given that the ablation monitoring package incorporated pre-existing pieces
of software, it was built with a modular architecture. The major efforts of this
work provided interoperability, user input to and display of results of these
components. This modular structure allows components of the system to be
exchanged in the future if new algorithms are employed. For instance, if future
study were to determine that non-rigid registration is superior to rigid registra-
tion, this component could be replaced with minimal changes to the ablation
monitoring package. Furthermore, this modularity permits the monitoring pack-
age to potentially be used with other modalities. That is, if a segmentation
algorithm were to be developed for computed tomography, it could replace the
current MRI segmentation module and the ablation monitoring package could
be employed in CT guided ablation procedures.

5 Conclusion

We developed a comprehensive, versatile, integrated software package for quan-
titative monitoring of MRI-guided percutaneous cryoablation. Our study found
that it could be feasibly incorporated into the clinical workflow of these proce-
dures and shows promise in enhancing accurate eradication of tumor, minimizing
damage to surrounding parenchyma and preventing damage to nearby critical
structures. Computation times met the demands of the clinical procedure in 92 %
of cases. This verifies that this software could be used in real-time. Future studies
are needed to validate this software in a prospective trial to determine the extent
to which these computed metrics influence intraprocedural decision-making and
improve the success and safety of cryoablation procedures.
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Abstract. Cochlear implantation is carried out to recover the sense of
hearing. However, its functional outcome varies highly between patients.
In the current work, we present a study to assess the functional outcomes
of cochlear implants considering the inter-variability found among a pop-
ulation of patients. In order to capture the cochlear anatomical details, a
statistical shape model is created from high-resolution human µCT data.
A population of virtual patients is automatically generated by sampling
new anatomical instances from the statistical shape model. For each vir-
tual patient, an implant insertion is simulated and a finite element model
is generated to estimate the electrical field created into the cochlea. These
simulations are defined according to the monopolar stimulation protocol
of a cochlear implant and a prediction of the voltage spread over the
population of virtual patients is evaluated.

1 Introduction

Over 5 % of the worldwide population over the age of 45 years suffer from severe
hearing impairment, being considered eligible for cochlear implantation (CI)
surgery [17]. However, there is a high variability in the outcomes of CI due to
the influence of patient-specific on the level of hearing restoration. Consequently,
an accurate prediction of the surgery outcome of the patient is needed to esti-
mate the performance of the cochlear implant. Although computational models
have not been applied as a common technique into the clinical practice of CI,
some authors have reported promising results predicting its outcomes [2,10,14].
Specifically, we have previously presented in-silico studies with promising results
for patient-specific cases, where the outcomes of a personalized CI model were
assessed [2,3,8]. However, the developed automatic framework has the potential
to predict CI outcomes not only for patient-specific cases, but also for a more com-
plete virtual study of the population. This is specially useful to carry out evalua-
tions on the implant performance among a group of patients in order to be able to
optimize CI electrode array design to the widest range of the population possible.
c© Springer International Publishing Switzerland 2016
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In this work, a statistical shape model (SSM) has been created from high-
resolution µCT data to capture inter-patient variability and to provide a com-
putational tool for virtual patient sampling. Special attention has been given
to the insertion depth of the electrode array of the cochlear implant since it
highly contributes to the variability in CI outcomes [12]. We presented a virtual
insertion algorithm which physically deform the electrode array according to the
geometry of the cochlear anatomy of the patient. It allows controlling surgical
insertion parameters, such as the depth of insertion of the electrode array [4,9].
This virtual insertion approach is included within the automatic framework pro-
posed which allows obtaining a full finite element model of the CI. Finally, the
computational electrical simulations are carried out [8].

We have improved the computational method by using a more detailed model
of the cochlea with respect to our previous work [2]. In addition, we obtain an
accurate insertion by using a surgical simulator software to compute the final
position of the electrode. Thus, we believe that a more realistic virtual insertion is
achieved and consequently, more accurate results of the electrode stimulation can
be obtained. This complete framework allow us to assess the nerve stimulation
zones in a group of virtual patients by means of realistic CI models and voltage
spread prediction. This provides valuable information for electrode design and
stimulation parameters optimization.

Fig. 1. Three virtual patients from the statistical shape model are overlapped to show
the inter-patient variability on the cochlear shape.

2 Generation of Computational Models

The framework includes a cochlear Statistical Shape Model (SSM), to generate
virtual patient anatomies (Fig. 1), a virtual insertion algorithm, to place the
electrode array inside the cochlea, and a mesh generation step to create the
volumetric finite element (FE) models. Additional background information is
found in [8].
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Firstly, the SSM is generated from a more suited anatomical reference and
with an improved registration procedure [6], allowing the SSM to capture the
cochlear population variability in a more satisfactory manner. Most notably, the
semi-circular canals are no longer included. The model extends far enough into
the vestibule to include the oval and round window. Even though the ending
in vestibule is rough and abrupt, the change to the new reference model is
motivated and justified by the addition of the well-defined cochlear partition (i.e.
a basilar membrane approximation) present in this particular dataset [1]. This
provides additional realism to the anatomical model, and facilitates a change to
the procedure for virtual placement of the electrode array.

The electrode position of the real cochlear implantation procedure has been
computed by means of a planning simulator software. It consists on real-time
simulations based on a deformation model which includes the mechanical prop-
erties of both electrode and cochlea and a collision model [16]. Afterwards, the
virtual insertion algorithm is applied over the original electrode geometry. This
algorithm allows obtaining a deformation for the electrode array according to
this surgical insertion position [4,9]. Thus a final electrode mesh is obtained
with a realistic placement of the implant for the given patient. This electrode
array mesh consisted in a Med-EL Flex28 design, with 12 stimulating channels
(electrodes) and a length of 28 mm.

Within the automatic framework, 100 nerve fiber bundles were generated
according to the patient’s anatomy and an outer box was created to model
as the surrounding bone of the cochlea. Finally all elements were merged and
transformed into a single volumetric mesh (Fig. 2). This procedure was repeated
in an automatic way for each of the virtual patients sampled from the SSM.

Fig. 2. Finite element mesh obtained for a single patient. A cut of the element faces
is displayed for visualization purpose.

3 Finite Element Simulation: Electrical Model and
Stimulation Protocol

For the FE electrical simulation, the static current conduction solver of the open
source multiphysics Elmer software has been used [11]. Maxwell’s equations are
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defined in the quasi-static approximation and the electrical potential is obtained
by solving the Poisson equation. Both Dirichlet or Neumann boundary conditions
can be used to describe the electric potential, describing the potential and the
current values on the boundary, respectively.

Three stimulation protocols can be set up in a cochlear implant according
to the electrode configuration. In this work, we have used the monopolar (MP)
stimulation (Fig. 3). In this configuration, one electrode is activated emitting
current while the bone surrounding the cochlea has been set to ground. For
all models, the value of the current stimulation was 1mA [2]. The conductivity
parameters of the cochlea structures defined for the electrical simulation were
chosen according to [13]. Each simulation was run in steady state formulation and
comprised one activated electrode, thus resulting in 12 simulations per virtual
patient.

Fig. 3. Illustration of the monopolar stimulation. The first electrode has been activated
and the volume current direction is shown.

4 Results

A total of 30 virtual patients were sampled randomly from the SSM and studied
under a MP stimulation. The electrical simulation framework was run automat-
ically, thus 30 electrical simulations were finally obtained. Since the cochlear
shape varies between patients, different lengths of virtual insertion depth were
obtained. The length obtained was 25.2 ± 1.2 mm with a number of turns of 1.56
± 0.04, corresponding to 563 ± 15o. The virtual insertion algorithm was success-
fully run in all cases. However, changes in the element area of the electrode array
mesh were observed, which prompted us to further quantify these local geometry
changes (see Fig. 4). The average changes of element area for all virtual patients
evaluated were -4.6 ± 3.9%. The generation of the computational CI model took
228 ± 18 seconds, obtaining a volumetric mesh of 1.2×106 ± 7×104 of tetrahe-
dral elements with a mesh quality of 0.785 ± 0.001. The mesh quality of each
model was assessed by computing the aspect ratio of each element, expressed
in a range from 0 to 1, corresponding to nearly degenerated mesh element and
regular tetrahedral one, respectively [7].
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Fig. 4. Local changes on the area of each electrode mesh element after the deformation
by the virtual insertion. (a) Changes are represented over the surface of the electrode
in a scale of -1 to 1, being the maximum decrease and increase, respectively, compared
to the area before the deformation. (b) Central mark of the box is the median and
its edges the 25th and 75th percentiles of the element area changes of each of the 30
virtual patients.

12 electrical simulations were run for each model, for a total of 360 runs.
Figure 5 shows the electric field for each nerve fiber under the stimulation of
the 12 MP stimulation protocols. It can be observed that some zone with a
high voltage spread are located far from the perfect diagonal. This implies that
each electrode does not exclusively activate the most nearby nerve fiber. This
effect is called cross-talk and it is a reason of discrepancy between electrical
hearing perceptions in patients with a cochlear implant and normal acoustical
hearing. All these virtual patients have in common the cross-talk presented in
the apical part of the cochlea. Therein, the nerves located in the basal part
are nonspecifically activated by electrodes number 10 to 12 (see Fig. 5). This
corresponds to cross-turn stimulation. We show in Fig. 6(a) the mean excitation
spread along the spiral ganglion (anatomical structure composed of soma for all
neural fibers). Each curve corresponds to one of the 12 MP stimulation protocol.
Figure 6(b) shows in detail the excitation spread of the MP stimulation 6 for all
30 patients, where the sixth electrode has been activated.
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Fig. 5. Potential (V) generated for each stimulation protocol (horizontal axis) in each
nerve fibers (vertical axis). (a) Mean and (b) standard deviation of the voltage spread
for all virtual patients evaluated. (c) Examples of the voltage spread for a single patient,
where differences can be appreciated due to changes in cochlear anatomy. Patient ID
shown in (c) are respectively 1,2,9,11,15,17,23 and 30.

Fig. 6. (a) Mean excitation spread measured along the spiral ganglion. (b) Excitation
spread of MP stimulation protocol 6 for all virtual patients.
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5 Discussion and Future Work

The main contribution of this work is the CI assessment on a population of vir-
tual patients sampled from a SSM. As far as we know, this is the first population-
based study to evaluate the results of a CI electrical simulation. Additionally, we
have improved the CI model with respect to our previous work [2], providing a
more realistic finite element model based on high-resolution data, real electrode
array design and virtual surgical placement. The virtual insertion has proved to
be consistent in all cases tested, so a realistic mesh deformation after the virtual
insertion is obtained. Simulations have been run successfully in all cases, obtain-
ing results in agreement with previous reported clinical results [15], including
the cross-talk zones [5].

Nonetheless, our work has some limitations. The mean excitation spread eval-
uated along the spiral ganglion has some discrepancies compared to literature
[13]. Even though the behaviour is similar and shows a general tendency, we
believe that some work needs to be done regarding the geometrical nerve gener-
ation since their position could modify the results obtained from the electrode
stimulation. Despite this, we do believe that this work is a step closer to the
accurate prediction of the nerve activation.

The results obtained help to better explain the behaviour of the excitation
spread within a group of patients, observing the variations obtained accounting
for the inter-patient anatomy variability. This framework has promising potential
to optimize stimulation parameters and electrode placement that better fit the
anatomy and level of impairment of each patient. Therefore, we could provide
the best functional outcome possible. In future work, other sources of variability
will be taken into account. For example, the implant placement or the electrode
array configuration which would provide additional valuable information in the
process of optimizing the CI.
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Cochlear implant planning, selection and simulation with patient specific data.
In: Proceedings of Computer Assisted Radiology and Surgery (2015)

17. World Health Organization: Deafness and hearing impairment (2012)



Partitioned Shape Modeling with On-the-Fly
Sparse Appearance Learning for Anterior Visual

Pathway Segmentation

Awais Mansoor(B), Juan J. Cerrolaza, Robert A. Avery,
and Marius G. Linguraru

Children’s National Medical Center, 111 Michigan Avenue NW,
Washington, DC 20010, USA
awais.mansoor@gmail.com

Abstract. MRI quantification of cranial nerves such as anterior visual
pathway (AVP) in MRI is challenging due to their thin small size, struc-
tural variation along its path, and adjacent anatomic structures. Segmen-
tation of pathologically abnormal optic nerve (e.g. optic nerve glioma)
poses additional challenges due to changes in its shape at unpredictable
locations. In this work, we propose a partitioned joint statistical shape
model approach with sparse appearance learning for the segmentation
of healthy and pathological AVP. Our main contributions are: (1) opti-
mally partitioned statistical shape models for the AVP based on regional
shape variations for greater local flexibility of statistical shape model;
(2) refinement model to accommodate pathological regions as well as
areas of subtle variation by training the model on-the-fly using the initial
segmentation obtained in (1); (3) hierarchical deformable framework to
incorporate scale information in partitioned shape and appearance mod-
els. Our method, entitled PAScAL (PArtitioned Shape and Appearance
Learning), was evaluated on 21 MRI scans (15 healthy + 6 glioma cases)
from pediatric patients (ages 2–17). The experimental results show that
the proposed localized shape and sparse appearance-based learning app-
roach significantly outperforms segmentation approaches in the analysis
of pathological data.

Keywords: Shape model · Hierarchical model · Deformable segmenta-
tion · Sparse learning · Anterior visual pathway · Cranial nerve pathway ·
MRI

1 Introduction

MRI is a widely used non-invasive technique for studying and characterizing
diseases of the optic pathway such as optic neuritis, multiple sclerosis, and optic
pathway glioma (OPG) [1]. OPGs are low grade astrocytomas inherent to the
AVP (i.e., optic nerve, chiasm and tracts). OPGs occur in 20% of children with
neurofibromatosis type 1 (NF1), a very common genetic disorder that carries
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increased risk of tumors in the nervous system. The disease course is variable,
as these tumors may demonstrate several distinct periods of growth, stability
or regression. Currently, no quantitative imaging criteria exist to define OPGs
secondary to NF1. Non-invasive computer-aided quantification of these changes
can not only eliminate excessive physicians effort to segment these regions but
also increases the precision of volume measures. However, automatic segmenta-
tion of cranial nerve pathways including AVP from MRI is challenging due to
their thin-long shape and varying appearances. A few non-invasive automated
methods to segment AVP from radiological images have been reported in the lit-
erature previously with modest success. Bekes et al. [2] proposed a geometrical
model based approach; however, their approach’s reproducibility is found to be
less than 50%. Noble et al. [3] presented a hybrid approach using a deformable
model with level set method to segment the optic nerves and the chiasm; how-
ever, the method was tested only on healthy cases. Recently, Yang et al. [4]
developed a partitioned approach to healthy AVP segmentation by dividing the
pathway into various shape homogenous segments and modeling each segment
independently. The local appearance information in their approach was encoded
using the normalized derivatives, three class fuzzy c-means, and spherical flux.
The approach was the first attempt to accommodate local shape and appearance
variation for healthy AVP segmentation; the method, although promising, did
not provide any objective criteria on the optimal number of partitions. More-
over, the approach did not accommodate local appearance characteristics along
the nerve boundary that are particularly important in pathological cases.

Depending on severity, pathological AVPs can have a drastically different
local shape and appearance characteristics than healthy ones, thus failing the
shape model based segmentation methods in cranial nerve pathways. To illus-
trate, Fig. 1(a) demonstrates a healthy optic nerve along with a contralateral
optic nerve having OPG. Figure 1(b), (c) show the renderings of cases with
OPG in optic nerve region. In this paper, we propose, PAScAL, an optimally
partitioned statistical shape model with sparse appearance learning for the seg-
mentation of AVPs for both healthy and pathological cases. The challenge of
segmenting larger anatomical structures with pathologies have been addressed
numerously in the literature [5]. However, development of similar approaches for
smaller vascular structures, such as the AVP, have traditionally been ignored. By
illustrating the robustness of PAScAL to segment AVP with OPG, we demon-
strate the applicability of the proposed method in segmenting other anatomical
structures of similar characteristics.

2 Methods

We propose a hierarchical joint partitioned shape model and sparse appearance
learning to automatically segment the AVP from MRI scans of the head. During
the training stage automatically selected landmarks from healthy cases are
first clustered into various shape-consistent overlapping partitions thus creating
individual simplistic shape and appearance models for each partition. The indi-
vidually learned models are used to produce the initial segmentation of AVP
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Fig. 1. (a) MRI scan with a healthy (left) and a gliomic (right) optic nerve. The
maximum diameter of OPG nerve is 9.54 mm and 1.15 mm for the healthy nerve of the
same patient. (b), (c) renderings of typical OPG cases in the optic nerve. (b) shows
OPG in the distal region of left optic nerve, (c) shows one in the proximal region. (d)
Shape consistent partitioning of a healthy AVP produced by PAScAL.

Fig. 2. Flow diagram of the PAScAL approach to optic nerve segmentation.

using the partitioned active shape model (ASMp) described in Sect. 2.2. In the
testing stage, the learned ASMp is iteratively fitted to new data using the
appearance guided model. A refinement stage follows to accommodate local
appearance features particularly important in cases with pathologies (e.g. OPG):
a sparse local appearance dictionary is learned on-the-fly from the testing image
for each partition using the initial segmentation as training data acquired from
the test image in real-time. Through these steps, PAScAL is adapting to each
testing set to compensate for the difficulties with off-line training for patholog-
ical cases due to the unpredictable location, shape, and appearance of OPG.
PAScAL is summarized in Fig. 2. Details of the proposed method are provided
in the subsequent sections.

2.1 Shape Consistent Agglomerative Hierarchical Landmark
Partitioning

In the beginning, the annotated landmarks are grouped by using a modification
of the agglomerative hierarchical clustering method proposed by Cerrolaza et al.
[6], minimizing the following objective function:

J (Ω) = α

∫

Ω

( |VΩ × Vl|
|Vl|

)2
Lmax

|Vl| dl

︸ ︷︷ ︸
Colinearity term

+ (1 − α)

⎛

⎝1 −

∫

Ω

dl

∫

S

dl

⎞

⎠

︸ ︷︷ ︸
Maximum area constraint

(1)
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where S is the set of all landmarks over the AVP and Ω ⊂ S denotes the local
shape to be sub-partitioned into optimal set of clusters. VΩ denotes the domi-
nant direction in Ω. Vl is the deformation vector for landmark l obtained through
well known point distribution model by Cootes et. al [7] over S. α ∈ [0, 1] is the
coefficient that controls the relative weights (α is set to 0.8 in our experiments)
and Lmax = max

S
{‖Vl‖}. We define the optimal number of partitions based on

shape similarities calculated using a tailored Silhouette coefficient score. Specifi-
cally, let Ωp denotes the set of landmarks for the shape partition p containing the
landmark l and Ωp−l denotes the set of landmarks for the same shape p with land-
mark excluded then the contribution of the landmark l in partition p is defined as
ap,l = J(Ωp)−J(Ωp−l) ∈ {0, 1}. A large ap,l denotes higher dissimilarity between
the landmark l and the shape Ωp. The cost of including landmark l to a partition
p is similarly defined as bp,l = J(Ωp+l) − J(Ωp). Then the optimal number of

partitions popt are found by maximizing: maximize
Ω

1
|l|

|l|∑

p=1

fp(bl) − fp(al)
max(fp(al), fp(bl))

,

where f(.) is the logistic sigmoid function, |l| is the total number of landmarks.
To ensure that adjacent partitions are connected, an overlapping region is intro-
duced by sharing the boundary landmarks of these partitions. During the shape
model fitting, the shape parameters of the overlapping landmarks are calculated
using the parameters of the overlapping shapes. Figure 1(d) demonstrates the
proposed agglomerative hierarchical landmark partitioning approach.

2.2 Landmark Weighted Partitioned Active Shape Model Fitting

Once the shape partitions are generated, ASMp is performed on the individual
shapes in the partitioned hyperspace. In order to adapt to local appearance char-
acteristics, following set of appearance features are used to create overlapping
partitioned statistical appearance models for each partition: (i) the intensities of
neighboring voxels of each landmark, (ii) the three-class fuzzy c-means filter to
robustly delineate both tissues in dark as well as bright foregrounds (as explained
before, the AVP passes through neighboring tissues of varying contrasts), and
(iii) spherical flux to exploit the vessel-like characteristics. AVP has varying con-
trast in different regions (i.e., fatty regions has better contrast appearance with
optic nerve than gray matter) thus we assigned different levels of confidence for
the reliability of landmarks. Specifically, for each landmark in the training set,
the covariance Σ of these features is calculated across the training examples
under the assumption that the lower the variance of the appearance profile of a
landmark, the higher would be our confidence in the landmark. The weight wl of
a landmark l can therefore be calculated as: wl = 1

(1+tr(Σl))
, where tr() denotes

the trace of a matrix. The shape parameters for a partition p can be computed
as bp =

(
ϕT

p Wpϕ
T
p

)−1
ϕT

p Wp (xp − xp), where ϕp is the eigenvector matrix, xp is
the aligned training shape vector, xp is the mean shape vector, and Wp is the
diagonal weight matrix of landmarks belonging partition p.
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2.3 On-the-Fly Sparse Appearance Learning

Pathologies can result in changes in shape and appearance of AVP at unpre-
dictable locations (Fig. 1). Statistical shape models have been very successful in
segmenting healthy organs; however, they struggle to accommodate cases where
the shape of the target structure cannot be predicted through training, such
as in the cases of OPG. Feature-based approaches have demonstrated superior
performance in segmentation of pathological tissues [5]; however, off-line feature-
based training of pathological cases mostly fails due to large variations, in both
shape and appearance, for pathological cases. To address these challenges, we
present a novel on-the-fly learning approach by using the initial delineation of
the test image obtained in the previous section as training to learn an appear-
ance dictionary in real-time. Specifically, let Rv(p) be a m × m × k image patch
extracted from within the initial partition p centered at voxel v ∈ R

3. Equal num-
ber of patches are extracted from each partition. The 2D co-occurrence matrix
on every slice of the patch is then calculated from Rlp,i(p) and the following
gray-level features are extracted: (1) autocorrelation, (2) contrast, (3) cluster
shade, (4) dissimilarity, (5) energy, (6) entropy, (7) variance, (8) homogeneity,
(9) correlation, (10) cluster prominence, and (11) inverse difference. To reduce
the redundancy in the features, we use k-SVD dictionary learning [8]. A dictio-
nary Dp for every partition p ∈ P is learned. Specifically, we begin by extracting
the centerline of the initial ASMp segmentation using the shortest path graph.
Afterwards, we choose the point cp,i on the centerline that is closest to the land-
mark lp,i in l2-norm sense. Subsequently, co-occurrence features are extracted
from the patch Rcp,i(p). The likelihood of voxels belonging to the optic nerve is
determined by using sparse representation classification (SRC) [9]. In SRC frame-
work, the classification problem is formulated as: argmin

β
‖f ′ − Dpβ‖22 + λ‖β‖1,

where f ′ is the discriminative feature representation of the testing voxel, β
is the sparse code for the testing voxel, λ is the coefficient of sparsity, and
rp = f ′ − Dpβp is the reconstruction residue of the sparse reconstruction. The
likelihood h of a testing voxel y is calculated with the indicator function h(ν)
with h(ν) = 1 if rp

y ≤ rp
y+1 and −1 otherwise, rp

y is the reconstruction residue
at testing voxel y and rp

y+1 is the reconstruction residue at the neighboring
next voxel to y in the normal direction outwards from the centerline. To move
landmark lp,i on the surface of the segmentation, we search in the normal direc-
tion. A position with the most similar profile pattern to the boundary pattern
is chosen as the new position of the landmark using the following objective

function, argmax
h

(
argmin

δ

(∥∥∥Ph
{−1,1}

(
cp,i + δ.

−−−→
Ncp,i

)
− P

h

{−1,1}
∥∥∥
2

)
+ 1

|h|

)
|δ ∈

[0, A] , where P
h

{−1,1} =

⎡

⎢⎣−1,−1, ...,−1︸ ︷︷ ︸
|h|

, 1, 1, ..., 1︸ ︷︷ ︸
|h|

⎤

⎥⎦ is the boundary pattern, A is

the search range, Ncp,i is outward normal direction at point cp,i, δ is the position

off-set to be optimized and P
h

{−1,1} is the desired boundary pattern. The length
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of the boundary pattern |h| is desirable to be maximized to mitigate the effects
of noise and false positives in the pattern.

2.4 Hierarchical Segmentation

In order to enhance the robustness of the proposed method, we adopted a hier-
archical segmentation approach by incorporating scale dependent information.
The idea is that the coarser levels handles robustness while the finer-scale con-
centrates on the accuracy of the boundary. The segmentation at a coarser scale
is subsequently used to initialize the finer scale. To achieve the hierarchical joint
segmentation the following steps are adopted: (1) The number of shape parti-
tions are dyadically increased from the coarsest to the finest scale. The number
of partitions nj at the coarser scales j are calculated as: nj = �2−jGJ�, where
GJ is the number of partitions at the finest scale J . (2) The patch size used
to calculate the appearance features (Sect. 2.3) are dyadically decreased from
coarser to finer scales.

3 Results

After Institutional Review Board approval, 15 pediatric MRI scans with healthy
AVPs and 6 with OPG were acquired for this study. The acquired data were T1
weighted cube with Gadolinium contrast enhancement having spatial resolution
between 0.39 × 0.39 × 0.6mm3 to 0.47 × 0.47 × 0.6mm3. The manual ground
truth for optic pathway segmentation was created by an expert neuro-radiologist
and an expert neuro-ophthalmologist. During the training stage, the dataset
was affinely registered to a randomly chosen reference image using a two-stage
hierarchical approach: first by optimizing the registration parameters for the
entire brain and later by optimizing over the region of interest around the optic
nerve. The surfaces for each training instance were computed using the tetrahe-
dral mesh generation approach followed by point set registration to the reference
surface. Based on our training set, optimal number of partitions were found to
be 12. Three hierarchical scales for shape model and appearance were used. The
refinement model was learned on-the-fly from the initial segmentation using a
patch of size 11×11×11 voxels at the coarsest level. The normalized derivative,
the tissue intensity probability, and the tubular structure probability were used
together as a unified feature set of size 33 to train the refinement model. To
learn the sparse dictionary, co-occurrence features were extracted with an offset
of 1 and four directions (0, π

4 , π
2 , 3π

4 ). The co-occurrence features presented in
Sect. 2.3 are then calculated for each direction. During the testing stage, the
test image was first registered to the randomly selected reference set followed by
automatic overlapping partitioning. The mean shape of the training set was used
to initialize the shape model. Figure 3 shows the qualitative results of PAScAL
against the ground truth manual segmentation.

For quantitative evaluation, the Dice similarity coefficient (DSC) and Haus-
dorff distance (HD) were calculated between the segmentation obtained using



110 A. Mansoor et al.

Fig. 3. Segmentation results for a representative healthy (left) and OPG case (right).
Blue label shows overlap area of manual and automated segmentation, red label shows
the manual label while the green label shows the automated segmentation (Color figure
online).

PAScAL and the expert generated ground truth. The quantitative results based
on the leave-one-out evaluation are reported in Fig. 4. An average DSC of 0.32 for
ASM, 0.53 for Yang et al.’s approach [4], and 0.68 for PAScAL is obtained, show-
ing significant improvement by PAScAL over both methods (p-value (Wilcoxon
signed rank test): ASM=< 0.001, Yang’s partitioned ASM=0.015).

3.1 Automatic Optic Pathway Glioma Detection

The demonstrated of the AVP is used to establish the clinical biomarker of the
OPG based on the radius profile of the optic nerve. Specifically, the average
radius of the optic nerve only (ref. Fig. 1(c)) is calculated along the center-line
of the training data set for healthy and OPG cases. A statistically significant
difference between the average radii of the two classes was found based on the

Fig. 4. Quantitative comparison of PAScAL with traditional ASM and partitioned
ASM method presented by Yang et al. [4].
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ground truth data (healthy optic nerve (0.401 ± 0.050 mm), optic nerve with
OPG (0.800 ± 0.293 mm), p-value< 0.001). No significant correlation between
the average radius and the patient age, head circumference, and brain volume
was found. To date, no established nomogram exist for the assessment of OPG;
however, according to the World Health Organization osteopenia is diagnosed if
the T score is < 1 standard deviation (σ) from the mean of healthy population,
osteoprosis is defined as < 2.5σ from the mean [10]. Adopting similar approach,
we define the detection of OPG in the optic nerve if the mean radius > 2.5σ
from the mean of healthy population. Based on the adopted criteria, all 21 cases
(15 healthy + 6 OPG cases) were classified with accuracy demonstrating the
PAScAL to automatically detect pathologies of the optic nerve.

4 Conclusion

We presented an automated technique, PAScAL, for the segmentation of ante-
rior visual pathway from MRI scans of the brain based on partitioned shape
models with sparse appearance learning. Our work addresses the challenge of
segmenting cranial nerve pathways with shape and appearance variations due
to unpredictable pathological changes. Experiments conducted using 21 T1 MRI
scans, containing instances of both healthy and pathological cases, demonstrated
superior performance of PAScAL over existing approaches. The application of
PAScAL in segmenting anterior visual pathway shows its potential in analyzing
other long and thin anatomical structures with pathologies.
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Abstract. Statistical shape models are widely used in medical image
segmentation. However, getting sufficient high quality manually gener-
ated ground truth data to generate such models is often not possible due
to time constraints of clinical experts. In this work, a method for auto-
matically constructing statistical shape models from incomplete data is
proposed. The incomplete data is assumed to be the result of any seg-
mentation algorithm or may originate from other sources, e.g. non expert
manual delineations. The proposed work flow consists of (1) identifying
areas of high probability in the segmentation output of being a bound-
ary, (2) interpolating between the boundary areas, (3) reconstructing
the missing high frequency data in the interpolated areas by an itera-
tive back-projection from other data sets of the same population. For
evaluation, statistical shape models where constructed from 63 clinical
CT data sets using ground truth data, artificial incomplete data, and
incomplete data resulting from an existing segmentation algorithm. The
results show that a statistical shape model from incomplete data can be
built with an added average error of 6 mm compared to a model built
from ground truth data.

Keywords: Statistical shape models · Segmentation · Incomplete data ·
Outlier detection · Liver · Principal component analysis

1 Introduction

Statistical shape models (SSMs) play an important role in medical image seg-
mentation. They have been successfully applied to model all major organs and
bone structures as well as interrelations between different anatomical structures
in the context of multi-organ shape modeling and articulated shape models. They
have also been applied to images from all important imaging modalities like CT,
MRI, 2D and 3D ultrasound and other. However, the majority of statistical shape
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models created in such studies is based on a limited set of training data. This is
due to the fact that the creation of manual delineations is very time consuming
and therefore costly. On the other hand, image data itself is abundant in clinics
from daily routine.

The idea of this work is that the statistics inherent in such data can be
exploited without the need of time consuming manual interaction. Existing seg-
mentation algorithms can be used to generate a set of shapes from a particular
organ of interest. Depending on the algorithm, the output will contain errors
to a higher or lower degree. In order to account for these errors, areas of low
probability of being a boundary should be excluded from the training of the
statistical shape model. Many incomplete training shapes with missing data are
therefore generated. Assuming a Gaussian distribution of the shape of the organ
or structure of interest, the missing data of a single shape can be statistically
reconstructed from corresponding areas in other data sets such that a statistical
shape model of high quality can be built as long as sufficient data is used to
cover the whole anatomical variance.

Statistical shape modeling using incomplete data is a rarely covered topic
in the literature. However, handling outliers and missing data is a well known
problem in the field of statistical investigation [7,10]. A common manipulation is
to allow only complete data and discard corrupted values from the data vectors.
For cases with only a few missing components, this provides acceptable results.
However, the higher the amount of missing values, the more information gets lost
which may induce bias. In [9], Lüthi et al. identify corrupted data by warping
a reference surface to match the shape of a target surface. Missing parts yield
to unnatural deformation and thus can be identified as outliers. These parts
are completely excluded from the model and the outlier parts are reconstructed
from remaining data. Instead of ignoring outliers and missing values for model
training, imputation methods exist [4], where each uncertain point is replaced
with a reasonable guess, for example the mean. These methods carry out the
analysis as if there was no corrupted data. Another promising approach to handle
incomplete data is robust PCA [1], where outliers are automatically detected
and separated from the meaningful data. Recently, robust PCA was successfully
applied in the medical imaging domain to reconstruct missing slices in CT scans
of the skull [11]. The drawback of the method is that non-outlier high frequency
information may get lost.

In this work, we propose a framework for automatically creating statistical
shape models from the output of any existing segmentation algorithm. In the
output, each boundary point is assigned a probability using a simple boundary
quality measure. Subsequently, an imputation method is proposed to sort out
outliers and to iteratively create a statistical shape model.

2 Methods

Figure 1 gives an overview of the proposed work flow. An existing segmentation
algorithm can be used to create initial segmentations of the structure of interest.
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Fig. 1. Process diagram of the proposed method. The boundary quality of input meshes
is assessed and low quality boundary points are shifted towards the mean. Afterwards,
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Here, a liver segmentation algorithm was chosen [5] since the data bases used
for evaluation contain CT liver scans. The segmentation is transferred to a mesh
representation, e.g. by using Marching Cubes.

A groupwise consistent shape parametrisation [8] is used to generate shapes
with N corresponding landmarks (cf. Fig. 1, 1st step). Using the original image
data, each landmark point pi is assigned a boundary probability Piboundary

.
A box b of size B = n × n × n is sampled around each landmark.

Piboundary
= (1 − α)

(
1
Q

·
B∑

v=1

Φ(v)g(v)

)
/gmax + α ((T − δ(v))/T ) (1)

δ(v) =

∣∣∣∣∣

(
1
W

B∑

v=1

Γ (v)HU(v)

)
− HUmean

∣∣∣∣∣ (2)

Φ(v) is 1 if the boundary distance map for voxel v is in [−1, 1] and 0 otherwise.
A negative sign in the distance map means the voxel is inside the binary seg-
mentation. δ(v) is the Euclidean distance between the mean HU value of organ
voxels inside the box and the global mean HUmean inside the organ. δ(v) is
clamped to 0 if the function is above a threshold T and 1 if δ(v) is 0. Γ (v) is 1
if the boundary distance function for v is in (−∞,−1] and 0 otherwise. Q and
W are the number of voxels where Φ(v) and Γ (v) are 1, respectively. g(v) is
the norm of gradient magnitude for voxel v and gmax is the maximum gradient
over all landmarks. Piboundary

therefore is higher if the landmark is on a strong
edge and the HU in the interior of the organ around the landmark is close to
the global mean HUmean inside the organ (cf. Fig. 1, 2nd step). Afterwards, all
shapes are aligned using the Procrustes method. Note that the above equation
only works for organs with certain homogeneity near the boundary.

2.1 Outlier Handling

The goal is to substitute outliers in a shape with reasonable points from the
remaining data. Those outlier points belong to low probability values Piboundary

.
The proposed procedure is divided into two parts, weighted shifting and iterative
model building. For a point pi, the weighted mean of all m corresponding points
in the other meshes is computed:

pimean
=

1
m∑
j=1

Piboundary
(j)

·
m∑

j=1

Piboundary
(j) · pj (3)

That means, that points with low probability have less influence on the mean
than points with high probability. pi is then shifted towards this mean weighted
with its own probability (cf. Fig. 1, 3rd step). The probability has to be inverted,
because a high probability point from the segmentation is already a good result
and should stay unchanged:
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pishift
= pi + (1 − Piboundary

(i)) · pimean
(4)

Thus, a single point is almost completely replaced by the weighted mean if its
probability is low. The second part is an iterative leave-one-out model building
approach (cf. Fig. 1, 4th step). Starting with the first mesh, an SSM is built from
all shapes except for the first one. Principle Component Analysis (PCA) [2] is
applied to capture the statistics of these training shapes, i.e. the eigenvectors and
eigenvalues of the according covariance matrix C are computed. The smallest
dimension t is chosen such that

∑t
i=1 λi captures 95% of the variance of the

training data set, where λ1 ≥ . . . ≥ λ3N are the eigenvalues of C. The set of
shapes modeled by the SSM are all shapes x̂ in the form x̂ = x̄ + Eb, where
E = (e1| . . . |et) is the matrix of retained eigenvectors and x̄ is the geometric
mean. The shape parameters bi are restricted to be in the interval [−3

√
λi, 3

√
λi].

Then, the omitted shape is projected back onto the model but the transforma-
tion to the backprojected mesh is only applied at points with a low probability,
i.e. the back projection is weighted with probabilities again. In the next iteration,
the newly formed mesh is used for model building with all other shapes except
for the second mesh. This procedure is performed until each shape was projected
back onto the model. The overall process is repeated until convergence.

3 Evaluation

In this work, the liver is used as the target organ for evaluation. In order to test
whether the assumption holds that the anatomical variance follows a Gaussian dis-
tribution, 220 shapes of the liver have been used to build a SSM. Figure 2 shows
the projection of the training shape set to the first two principle components. The
shading encodes the probability of a shape to be a plausible liver shape accord-
ing to the log-likelihood function of the shape energy. The training shapes cluster
around the point with the highest probability. That means, the mean shape is very

Fig. 2. Projection of a training shape set of the liver to the first two principle compo-
nents. It shows the single projected training shapes and the log-likelihood function of
the shape energy in the background. A brighter shading means higher probability of a
shape to be a plausible liver shape.
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representative for the distribution of the training shapes. A Gaussian modeling of
the distribution can therefore be assumed to be sufficient.

For evaluation of the proposed method described in Sect. 2, 63 clinical CT
scans together with ground truth data have been used: 19 data sets were taken
from the public 3D-IRCAD data base (www.ircad.fr), 17 training data sets were
taken from the MICCAI07 liver challenge [6]. 27 additional non public data sets
were used. First, a SSMGT is built using all ground truth data sets. The SSM
evaluation measures specificity S and generalization G [3] are used to measure
the quality of the SSM. They are defined as

S =
1
ns

ns∑

A=1

maxi(Ψ(A, i)) and G =
1
M

M∑

i=1

maxA(Ψ(A, i)). (5)

Ŷ = {yA : A = 1, ...ns} is a set of shapes sampled from the model’s probability
density function. In all tests, 10000 samples each were generated. X̂ = {xi : i =
1, ...M} is the set of ground truth training shapes. Ψ(A, i) denotes a function
to compare shape yA with xi. Here, the Euclidean distance is used. In order to
evaluate the quality of a SSM created from incomplete data using the boundary
probability estimation (box size 7×7×7, α = 0.7, T = 70), another SSMboundary

is built based on the output meshes of the proposed method. Note that specificity
and generalization are also calculated using the ground truth training shapes as
reference in order to see how well the probability density function can recon-
struct the ground truth data. In order to see how well the boundary assessment
correlates with the real error of the used input segmentation algorithm, the prob-
abilities Pidistance

were also calculated based on the Euclidean distance of the
input meshes to the ground truth. This means step 2 of Fig. 1 is exchanged by
the computation of Pidistance

. Therefore, the minimum distance for each point
in R

3 is computed and clamped to a threshold U . To get the probabilities the
resulting values are normalized by U and inverted, i.e. higher distances between
the input shape and the corresponding ground truth leads to lower probabili-
ties. For evaluation a threshold of U = 10mm is used. The proposed method
is applied to these weighted meshes and a SSMdistance is created. A compar-
ison between the probabilities used for SSMdistance and SSMboundary yielded
an average deviation of 20%. Figure 3 shows the results for all generated SSMs
for the first 8 modes. SSMboundary and SSMdistance show similar performance
while the reconstruction accuracy for SSMGT is about 6 − 8 mm better.

4 Discussion

The results show that a statistical shape model of the liver can be created with
a reasonable accuracy compared to a model that has been created using manual
ground truth data. The method only works for Gaussian distributed data where
the mean is representative. This does not hold for more complex data, e.g. if
a combined model for different vertebrae should be built. The edge assessment
used is rather simple and the use of more sophisticated boundary assessment

www.ircad.fr
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Fig. 3. Generalization and specificity for the built SSMs. Lower values mean better
performance.
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methods could improve the results. In the tests, though, there was no significant
difference compared to the ground truth boundary probability. It can also be
argued that the output of the segmentation algorithm used to create the input
segmentations may already be of good quality. Other segmentation algorithms
might lead to more missing data and hence a poorer shape model, e.g. with
outliers systematically in similar regions. However, both types of segmentation
algorithms could benefit from using a shape model that is created of potentially
hundreds or thousands of incomplete shape data. For example, the resulting
shape model could be integrated into the segmentation algorithm and the pro-
posed work flow could be applied iteratively to improve the quality of the shape
model. Furthermore, in future studies, it would be interesting to see how many
data sets are needed in order to create a shape model of the same or better
quality than a shape model generated from a limited number of data sets.

5 Conclusion

A work flow for automatic creation of statistical shape models has been proposed
which does not require manually delineated ground truth data as input. Instead,
the output of existing segmentation algorithms is assessed to create shape frag-
ments which are accordingly used to create a shape model. Evaluation on 63 liver
CT data sets showed that the method allows to create a shape model of good
quality compared to a model that is created using manual ground truth data.
The proposed method could therefore be applied to make use of large clinical
imaging data bases to quickly create statistical shape models of high quality.
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Abstract. Accurate sampling of cancer suspicious locations is critical in targeted
prostate biopsy, but can be complicated by the motion of the prostate. We present
an open-source software for intra-procedural tracking of the prostate and biopsy
targets using deformable image registration. The software is implemented in 3D
Slicer and is intended for clinical users. We evaluated accuracy, computation time
and sensitivity to initialization, and compared implementations that use different
versions of the Insight Segmentation Toolkit (ITK). Our retrospective evaluation
used data from 25 in-bore MRI-guided prostate biopsy cases (343 registrations
total). Prostate Dice similarity coefficient improved on average by 0.17
(p < 0.0001, range 0.02–0.48). Registration was not sensitive to operator varia‐
bility. Computation time decreased significantly for the implementation using the
latest version of ITK. In conclusion, we presented a fully functional open-source
tool that is ready for prospective evaluation during clinical MRI-guided prostate
biopsy interventions.

Keywords: Prostate cancer · Image-guided interventions · Magnetic resonance
imaging · Image registration · Software evaluation · 3D slicer

1 Introduction

Prostate cancer (PCa) remains a leading cause of cancer mortality in the USA and
worldwide [1]. A critical question in management of PCa is in distinguishing aggressive
cancer from indolent disease. Characterization of tumor aggressiveness relies on histo‐
pathological analysis of biopsy samples [2]. In the recent years, targeted sampling of
suspected cancer areas have emerged as an effective personalized alternative to the
systematic sextant biopsy [3]. Such targeted approaches require multiparametric MRI
(mpMRI) for localizing suspected regions, which are then re-identified by means of
image registration in the intra-procedural imaging. MRI can also be used as the intra-
procedural imaging modality, as it provides superior visualization of the needle,
anatomy and suspicious regions [4]. However, prostate motion during the course of
biopsy, which can last for over an hour for in-bore procedures, can complicate locali‐
zation of the suspected lesion. Continuous tracking of the prostate may thus be required
to enable accurate targeting. In this paper we present an open-source platform to facilitate
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re-identification of the cancer targets and their tracking throughout the course of the
procedure.

The most commonly used approach to targeted prostate biopsy relies on intra-proce‐
dural transrectal ultrasound (TRUS) registered (fused) with the diagnostic MRI [5] for
target definition. In an alternative approach, the patient is positioned inside the MR
scanner bore throughout the procedure, potentially allowing for improved targeting
accuracy [4]. In this paper we focus on the latter approach. The clinical procedure can
be subdivided into a pre-procedural planning, and an intra-procedural biopsy phase. The
tumor-suspicious biopsy targets are defined using the pre-procedural mpMRI. At the
time of the biopsy, a lower resolution T2 image is obtained to visualize prostate anatomy
and biopsy needle. In order to spatially correlate biopsy targets and the intra-procedural
scan, we use deformable image registration to compensate for the high deformation of
the prostate that occurs when an endorectal coil is used during the pre-procedural
imaging. Applying deformable registration and visually evaluate the results is a time-
consuming and complex task, requiring specialized expertise and remains challenging
for clinical staff.

Our contribution is the development and integration of a software solution to support
in-bore MR-guided biopsy, developed for a clinical operator. Some of the individual
algorithms and components we used were presented and evaluated elsewhere. Further‐
more, some of these components, such as the deformable registration between pre- and
intra-procedural MRI proposed by Fedorov et al. [6], have been used to support over a
hundred of clinical research cases as discussed in [4]. However, these existing compo‐
nents are not designed for the end user (such as a nurse or technologist supporting the
procedure), and are utilizing versions of the foundation tools that are no longer main‐
tained (i.e., 3D Slicer1 [7] version 3 and Insight Segmentation and Registration Toolkit
version 32 (ITKv3) [8]). These issues affect clinical utility of the registration tools, and
complicate their validation, improvement and maintenance. Here we present an end-to-
end open-source platform that utilizes the currently supported, widely used versions of
both 3D Slicer (version 4) and Insight Toolkit version 4 (ITKv4).

This work has potentially wider impact to support accurate sampling of suspected
cancer tissue and accurate correlation of the pathology findings with the pathology,
genomics and emerging radiomics biomarkers. Our contribution is novel: while in-bore
MRI-guided prostate biopsy is used by several groups, the existing workflows typically
rely on visual re-identification of the cancer suspicious targets, which may affect accu‐
racy and reproducibility of the procedure [9, 10].

2 Methods

We first present the overall setup and clinical workflow of the targeted in-bore MRI-
guided prostate biopsy to establish the requirements for the software development and
discuss the details of image acquisition. We follow with the description of our approach

1
http://www.slicer.org.

2
http://www.itk.org.
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to the development of the platform. Finally, we present our evaluation approach, which
is concerned with the accuracy, consistency and computational performance of the
registration.

In-bore Targeted MRI-Guided Prostate Biopsy. In-bore transperineal targeted MRI-
guided biopsy protocol involves two stages. First, mpMRI is acquired prior to the proce‐
dure and the cancer suspicious targets are localized using 3D Slicer. Prostate gland is
contoured on the T2-weighted image. During the procedure, the patient is immobilized
on the table top with velcro wrap and sedated. Imaging involved two types of imaging
sequences: (1) axial T2w MRI (voxel size 0.5 × 0.5 × 3 mm, imaging time ~ 4 min)
obtained in the beginning of the biopsy procedure for the purposes of target identification
and (2) a series of lower resolution T2w MRI needle confirmation images (voxel size
0.75 × 0.75 × 3 mm, imaging time ~ 1 min) collected after needle placement to visually
assess targeting accuracy. The purpose of image registration is to assist the interven‐
tionalist in re-identification of the cancer suspicious targets in the intra-procedural
images.

Requirements. In order to support the clinical workflow described above, the developed
software needs to meet the four following requirements: (1) Well-defined workflow A
proper guided software process must indicate in which working step the user is currently
situated and what task must successfully be accomplished to continue. No user action
should allow to break out of the workflow. (2) High user transparency Crucial steps in
the workflow should directly give feedback to the user to confirm their functionality. (3)
High registration quality Registration results should be accurate, robust towards
changing image quality, require short computation time, and be reproducible. Hence,
effects of inter-user variability should be minimized. (4) High failure transparency
Registration failures and subsequent errors in the results should be visible to the user to
allow subsequent troubleshooting.

Image Registration. The most critical component of the workflow is the registration
step, since its result may have direct effect on the accuracy of biopsy sampling. Our
custom deformable image registration strategy requires limited user interaction and is
based on the earlier developed methodology [6, 11]. As described in Fig. 1, prostate
gland is contoured manually in the higher resolution T2w scan as part of intra-procedural
workflow, but registration of subsequent needle confirmation images is done automat‐
ically. Registration step is implemented in the BRAINSFit3 module of 3D Slicer, which
is using a hierarchical approach that includes 6, 9, and 12 degrees of freedom transfor‐
mations, followed by b-spline deformable transformation, with mutual information as
the similarity metric and is based on ITK [6]. In the case of registration failure due to
large prostate motion, software workflow allows for manual segmentation of the needle
image.

3
https://github.com/BRAINSia/BRAINSTools.
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Fig. 1. Outline of the registration process. Initial T2w prostate image is contoured semi-
automatically, and the result is propagated to the subsequent needle confirmation images using
the chain of transformations.

Description of the Software. Figure 2 shows the clinical workflow implemented in our
software. As a pre-procedural step, the patient is selected from the database and the
diagnostic data can be reviewed in order to confirm target positions. Data connection
between the research workstation and the clinical workstation is established in order to
receive intra-procedural DICOM data. After the first planning scan is received, a coarse
manual segmentation of the prostate gland is prepared using semi-automated procedure
(this segmentation is used for the initialization of the registration algorithm and does
not need to be very accurate [6]). Upon completion of the registration, registered images
and pre-procedural targets are examined side-by-side with the capability to switch
between different registration stages. Intra-procedural registration and evaluation are
applied every time a needle confirmation scan is received.

Fig. 2. Steps of the procedural workflow. The developed software platform provides support for
the intra-procedural phase of the workflow.

Evaluation. Our evaluation included three components. First, we evaluated registration
accuracy and computational performance. Registration quality was first evaluated using
visual assessment for each image pair, since annotation of images for quantitative
assessment would be very time-consuming due to the large number of images. Quanti‐
tative evaluation was done using Dice Similarity Coefficient (DSC) between the
manual segmentation of the high-resolution T2w image propagated to the last needle
confirmation image through the chain of registration transformations, and the manual
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segmentation of the last needle image. The segmentations used for DSC assessment
were prepared by an expert radiologist with specialization in abdominal imaging, and
were not used in the registration process. Second, we evaluated sensitivity of registration
to the variability in segmentation of the prostate gland. This was done by comparing
registration results performed by two readers with different level of training. Neither of
the readers had medical training. First reader had multi-year hands-on experience in
prostate gland contouring, while the second reader had a brief training and no prior
experience. Finally, we compared the results obtained using ITKv3 and the current
ITKv4. This is important for our application, because components of the workflow
currently used during clinical procedures are based on ITKv3. Evaluation was done
retrospectively using datasets collected during clinical MR-guided prostate biopsy
procedures.

3 Results

The software was implemented as a module within the 3D Slicer extension SlicerPros‐
tate4, which provides a collection of modules to facilitate (1) processing and manage‐
ment of prostate image data, (2) utilizing prostate images in image-guided interventions
and (3) development of the imaging biomarkers of prostate cancer. Functionality and
user interface are not discussed here due to the lack of space, and demonstrated in the
videos available online5. Imaging data was collected in compliance with the human
subject protection regulations. Informed consent was obtained from each patient in
advance of the procedure. A total number of 343 needle confirmation images from
N = 25 clinical cases with the median of 15 needle confirmation images (range 2–26)
were used in the evaluation of the registration functionality. In 8 clinical cases large
prostate motion for at least one of the needle confirmation images caused registration
failure and manual segmentation of the needle confirmation image was required (i.e., in
15 out of 343 needle confirmation images). Improved alignment of the prostate gland
between the registered planning scan and the needle confirmation images was confirmed
visually for all 343 registrations. We provide an interactive website that can be used to
visually assess the registration quality for each of the image pairs6. Registration quality
was characterized as excellent in 227 images (example is case 18 needle image 6, or
c18-n6), good in 88 images (e.g., c19-n7), moderate in 26 images (e.g., c12-n14) and
poor in 2 images (e.g., c15-n9). Figure 3a shows assessment of the gland segmentation
overlap before and after registration for the final needle confirmation image. We
observed improved DSC in all 25 cases, with the average improvement by 0.17
(p < 0.0001) and a range from 0.02 (Case 22) to 0.48 (Case 28). Figure 3b shows the
summary of gland segmentation overlap (DSC) before and after registration for the final
needle confirmation image using two different sets of non-expert segmentations with
different levels of training (average difference in DSC of 0.01 and maximum difference

4
https://github.com/SlicerProstate.

5
https://vimeo.com/user41145541.

6
http://slicerprostate.github.io/ProstateMotionStudy/.
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of 0.06 (p > 0.05)). Mean ± standard deviation (SD) of the computation time for regis‐
tration of one needle confirmation image was 17.83 ± 6.98 s (range 5.22–43.92), which
is compatible with the clinical constraints of the workflow. Figure 4a shows the distri‐
bution of computation times across 25 cases and Fig. 4b illustrates the computation time
for every needle confirmation image comparing ITKv3 and ITKv4 implementations.
DSC improved from 0.68 ± 0.13 (range 0.31–0.89) before registration to 0.84 ± 0.06
(range 0.67–0.93) for ITKv4 and 0.84 ± 0.06 (range 0.68–0.93) for ITKv3. No signifi‐
cant difference in DSC was observed between ITKv3 and ITKv4 results.

Fig. 3. a: Summary of gland segmentation overlap (DSC) before and after registration for the
final needle confirmation image; b: Gland segmentation overlap (DSC) after registration for the
final needle confirmation image comparing two sets of non-expert segmentations with different
levels of training.

Fig. 4. a: Summary of the computational time for registration of all needle confirmation images
across all 25 cases using ITKv4 (median, lower and upper quartiles (bottom and top 25 % of the
data) and the extreme values within the 1.5 × interquartile range); b: computation time for
registration of all needle confirmation images comparing ITKv3 and ITKv4 implementations.
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4 Discussion and Conclusions

Our study was motivated by the practical need for a tool to support intra-procedural
biopsy workflow and enable motion compensation for cancer suspicious targets tracking,
addressing clinical users. We presented an open-source end-user solution, implemented
as an extension to the widely used 3D Slicer software, for intra-procedural tracking of
the prostate gland and the biopsy targets throughout the procedure. We evaluated the
underlying registration approach and demonstrated an improvement of gland alignment
in all 25 cases. Our evaluation showed that the registration approach is not sensitive to
the differences in initialization due to the variability in segmentation of the prostate gland
by different readers. Furthermore, we demonstrated that the use of ITKv4 led to signif‐
icant reduction in the computation time as compared to the earlier implementation that
was based on ITKv3. We note however, that registration results with ITKv4 showed
moderate to high irregularities in a subset of cases (approximately 28 of 343 images,
e.g., see c15-n9). We could sharply reduce those irregularities by using a dilated version
of the propagated mask for deformable registration phase within our ITKv4 implemen‐
tation.

Evaluation of registration results is always a challenging problem. The two
commonly used approaches rely on evaluation of the overlap of the segmented struc‐
tures, captured by DSC or a similar metric, and on the Landmark Registration Error
(LRE). It has been recognized that the use of structure overlap may not characterize the
performance of a registration method well [12]. Manual annotation of the images with
anatomical landmarks is time-consuming (especially when hundreds of images need to
be annotated), and is particularly difficult in the prostate that has limited number of
salient points. Neither DSC nor LRE can capture unrealistic or inaccurate deformations
within the outlined regions or in the areas with no landmarks. These observations moti‐
vated us to develop an online resource that enables visualization of the registration
results for each of the 343 registrations.

To illustrate the points above, the results website can be used to observe that c11-
n34 shows good alignment in the peripheral zone based on the alignment of the dark
spots corresponding to the brachytherapy seeds (specifically, see the last image in the
middle row with and without registration). Improvement in DSC of the total gland
segmentation is large: from 0.49 to 0.79. However, alignment of the anterior portion of
the gland is not perfect, and would be difficult to quantify due to the lack of clear land‐
mark points.

Our study has several limitations. Although design of the software was performed
in coordination with the target clinical users, we have not evaluated it prospectively
during biopsy procedures. Our evaluation was limited to the intra-procedural motion
compensation step. As with any open-source software, the functionality will be refined
in the course of its applications in clinical trials.

In conclusion, we presented a fully functional open-source tool, that we believe is
ready for prospective evaluation during clinical research MRI-guided prostate biopsy
procedures. Further studies evaluating the complete workflow in a prospective setting
under the guidance of a clinical operator is warranted. Although the motivating appli‐
cation for this development was prostate biopsy, we aim to investigate other use cases
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to make the software more generic for other procedures that require intra-procedural
motion compensation.
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