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1 Introduction

In this article we review recent results on expressivity and complexity of first-
order, modal, and propositional dependence logic and some of its variants such
as independence and inclusion logic. Dependence logic was introduced by Jouko
Viidndnen in [56]. On the syntactic side, it extends usual first-order logic by the
so-called dependence atoms

=(X1,..., %),

the meaning of which is that the value of x, is functionally determined by the
values of xj, ..., x,—;. The semantics of dependence logic is defined using sets of
assignments, teams, rather than single assignments as in first-order logic. Since the
introduction of dependence logic in 2007, the area of team semantics has evolved
into a general framework for logics in which various notions of dependence and
independence can be formalized and studied. In this paper we mainly consider
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variants of dependence logic arising by replacing/supplementing dependence atoms
with further dependency notions, and we also study propositional and modal
variants.

In Section 2 we review the basic definitions and results on first-order dependence
logic and its variants (extensions and fragments). It is divided into three subsections
of which the two first ones deal with results related to expressive power and
definability. In particular, results charting the expressive power of certain natural
syntactic fragments of dependence logic and its variants will be discussed in
Section 2.4. Section 2.5 reviews results on the complexity of satisfiability and model
checking in the (first-order) dependence logic context. In Section 3 we turn to modal
and propositional versions of dependence logic. After introducing the basic notions
and logics, we will again first touch expressivity questions and then turn to the
complexity of algorithmic problems arising in this context, mostly the complexity
of satisfiability and model checking. The paper concludes in Section 4 with a list of
open questions.

2 First-order Dependence Logic

2.1 Team semantics

In this section we define the basics of the team semantics as presented in the
monograph [56] by Viindnen. The origins of this definition go back to a paper
by Wilfrid Hodges [35], in which he gave a Tarski-style semantics for Hintikka
and Sandu’s independence-friendly logic JF [34]. Hodges originally used the term
“trump semantics”’, somewhat reflecting the game-theoretic nature of the previously
only known non-compositional semantics for JF.

Definition 1. Let ./ be a structure with domain M, and V a finite set of variables.
Then

e A team X over .# with domain Dom(X) = V is a finite set of assignments
s:V—>M.
e Foratuplev = (vy,...,v,), where v; € V, X(v) := {s(v) : s € X} is an n-ary

relation of M, where s(v) := (s(vy), ..., s(vy)).

e For W C V, X |' W denotes the team obtained by restricting all assignments of
XtoW.

* The set of free variables of a formula ¢ is defined analogously as in first-order
logic, and is denoted by Fr(¢). In particular, all non-first-order atoms considered
in this article (see Definition 3) are treated as atomic formulas, and hence all
variable occurrences in them are considered to be free.
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With the above notions defined, we are now ready to present the semantics
of dependence logic. In this article we consider two variants of the semantics
called the strict and the lax semantics introduced in [16]. The original semantics
given in [56] is a combination of these variants (with the lax disjunction and the
strict existential quantifier). For any logic, e.g., dependence logic, whose formulas
have the downwards closure property of Proposition 4, the two variants of the
semantics are easily seen to be equivalent. On the other hand, for inclusion and
independence logic the semantics are not equivalent [16]. A serious disadvantage of
the strict semantics is the failure of the locality property in the case of inclusion and
independence logic (see Proposition 1).

We will first define the lax version of the team semantics for first-order formulas
in negation normal form. For an assignment s, .# =, o below refers to satisfaction
in first-order logic. We denote by s[m/v] the assignment such that s[m/v](x) = m if
x = v, and s[m/v](x) = s(x) otherwise.

Definition 2 (Lax Semantics). Let .# be a structure, X a team over .#, and ¢ a
formula such that Fr(¢) € Dom(X). Then X satisfies ¢ in M, # =x ¢, if

lit:  For a first-order literal o, . # [=x « if and only if forall s € X, 4 =; .

V: M Ex ¢ V0 ifand only if there are Y and Z suchthat YUZ = X, # |y ¥
and A =7 0.

A M Ex Yy Abifandonlyif #Z =x ¢ and A =x 6.

d: A E=x Fvy if and only if there exists a function F : X — Z (M) \ {0} such
that 4 =xir/v) ¥, where X[F/v] = {s[m/v] : s € X, m € F(s)}.

Vi # Ex Yvy if and only if AZ |[=xm/w ¥, where X[M/v] = {s[m/v] :
seX,me M}

A sentence is a formula without free variables. A sentence ¢ is true in .4
(abbreviated .# |= ¢) if A4 f=(g ¢. Sentences ¢ and ¢’ are equivalent, p = ¢’, if
for all models A, # = ¢ & # = ¢'.

In the strict semantics, the semantic rule for disjunction is replaced by

M Ex Y Vv 0 if and only if, there are Y and Zsuchthat YNZ =0, YU Z = X,
M Ey Yy and A =70,

and the semantic rule for existential quantifier by

A Ex vy if and only if, there exists a function F : X — P (M) \ {0} such
that |F(s)| = 1 forall s € X, and A4 f=x{r/u V.

It is worth noting that functions quantified in the strict semantics version of the
existential quantifier correspond exactly to functions F: X — M. Hence the notation
X[F /v] can be naturally extended to cover also functions F: X — M.
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The meaning of first-order formulas is invariant under the choice between the
strict and the lax semantics. Furthermore, first-order formulas have the following
flatness property:

Theorem 1 (Flatness). Let .# be a structure and X a team of # . Then for a first-
order formula ¢ the following are equivalent:

]' %szq&y
2. Foralls € X, M =5 ¢.

It is worth noting that in [56] also a general notion of flatness of a formula is defined
by replacing the second item above by “For all s € X, 4 =, ¢”.

Next we will give the semantic clauses for the non-first-order atoms and
connectives considered in this paper. We begin with the new atomic formulas:

Definition 3. » Let x be a tuple of variables and let y be another variable. Then
=(x,y) is a dependence atom, with the following semantic rule:

M Ex =(x,y) if and only if for all 5,5 € X, if s(x) = s'(x), then
s() = 5'().

* LetXx,y, and z be tuples of variables (not necessarily of the same length). Then
y Lx z is a conditional independence atom, with the semantic rule

M Ex y Ly z if and only if for all s,5' € X such that s(x) = s'(x), there
exists a s” € X such that 5" (xyz) = s(xy)s’(z).

Furthermore, we will write X L y as a shorthand for x Ly y, and call it a pure
independence atom.

* Let x and y be two tuples of variables of the same length. Then x C y is an
inclusion atom, with the semantic rule

M Ex x Cyif and only if X(x) C X(y).

e Let x and y be two tuples of variables of the same length. Then x | y is an
exclusion atom, with the semantic rule

M Ex x| yif and only if X(x) N X(y) = 0.

We denote the set of all dependence atoms by = (...). Analogously, all indepen-
dence, inclusion and exclusion atoms are denoted by L., , and |, respectively. For
a collection ¥ C {=(...), L., C,|}, we write FO(%) (omitting the set parenthesis
of ¥) for the logic obtained by adding all atoms listed in € to the syntax of
first-order logic. Independence atoms (or independence logic) were first considered
in [21], and inclusion atoms go back to [16]. In our notation, dependence logic,
independence logic, and inclusion logic are denoted by FO(=(...)), FO(L.), and
FO(9), respectively. We also use the notation D as a shortcut for FO(=(...)).
The fragment of independence logic containing only pure independence atoms in
denoted FO(L).

Under the lax semantics, all of the above logics satisfy the following locality
property [16]:
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Proposition 1. Let ¢ € FO(=(...), L, C,|). Then for all models .# and teams X,

M Ex & M Ex ) D

On the other hand, under the strict semantics Proposition 1 fails for inclusion and
independence logic [16].

The aforementioned atoms are particular instances of a general notion of
generalized dependence atom [44]. The semantics of a generalized dependence atom
Ag is determined (essentially) by a class Q of structures and teams over which the
atomic formula Ap(Xi,...,X,) is satisfied (see [44] for details; we will consider
FO-definable generalized dependence atoms as depicted in Table 1).

Next we will define connectives and quantifiers that will also be discussed in the
next section. One of the most natural extensions of dependence logic is obtained by
the classical negation (~) with the usual interpretation:

M Ex~ @ iff A Ex ¢

This extension was introduced in [57], and the logic obtained was called Team
Logic (TL). The classical disjunction @ (also sometimes referred to as intuitionistic
disjunction) has also been considered especially in the modal team semantics
context, see Section 3. The connective @ has the expected interpretation

M 'Zxd)@lﬁlff% |:X¢>or/// IZX W

In [1] two new connectives called the intuitionistic (—) and the linear implication
(—o) were introduced giving rise to an extension of dependence logic called BID:

ME=Ex ¢ — ¢ iff forallY C X, if # =y ¢ then A =y .
M Ex ¢ —oy iff forall Y, if 4 =y ¢ then A E=xuy V.

Quantifiers, other than the familiar 3 and V, have also been studied in the team
semantics setting [12, 13]. From the complexity theoretic point of view, the

following majority quantifier introduced in [7] is interesting:

M E=x Mxg (x) iff for at least |M|X /2 many functions F: X — M, we have
M Exipr ¢().

2.2 Normal forms

In order to analyse the expressive power of dependence logic and to compare it with
other formalisms, it is useful to obtain normal forms such as this one proved in [56].
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Theorem 2. Every dependence logic sentence is equivalent to some sentence of
the form:

¢ := Yy (/\ =(xi,) A )

iel
where I C N, x; is a subsequence of X, and y; is a member of y.

Such a result is an analogue of Skolem normal form for first-order logic.
It separates clearly the functional dependencies introduced between subsets of
variables from the regular part of the formula. It also makes intuitively clear that
to be translated into an extension of first-order logic one would need second-order
quantification to express these dependencies between variables. Refinements of such
a normalization result are at the heart of various characterizations of dependence-
like logics and their fragments. For example, the analogue of Theorem 2 for
independence logic (with dependence atoms replaced by independence atoms)
was shown in [23]. Furthermore, a prenex normal form theorem for formulas of
FO(=(...), L¢, ©) was shown for the strict and the lax semantics in [18] and [26],
respectively.

2.3 Expressive Power

In this section we review results on the expressive power of the variants of
dependence logic of the previous subsections.

As it turns out, the expressive power of sentences of dependence logic corre-
sponds to that of existential second-order logic [56], and hence to the complexity
class non-deterministic polynomial time (NP) via the well-known theorem of Fagin
[14]. In the following, we will not distinguish in notation between a logic and the
classes of models defined by its sentences, and we will use the equality symbol to
denote that logics are equivalent for sentences, and we will use equality for logics
and complexity classes in the same vein.

Theorem 3. D = NP = €80

The direction €8O < D is proved by utilizing the fact that every ESO-sentence
can be transformed to the so-called Skolem normal form. On the other hand, the
direction D < E8O is proved by essentially simulating the team semantics of
dependence logic in £SO with an extra relation symbol interpreting the team.

An interesting consequence of the team semantics of dependence logic is that
Theorem 3 does not immediately settle the question also for open formulas. In fact,
all D-formulas have the following Downwards Closure property:

Theorem 4 (Downwards Closure). Let ¢ be a D-formula. Then for all structures
M and teams X, if M =x ¢ and Y C X, then A =y .
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It was shown in [39] that the open formulas of dependence logic can define exactly
the downward closed properties of teams expressible in ESO (again with an extra
relation symbol for the team). Furthermore, already dependence atoms combined
with disjunction give rise to NP-complete decision problems [37]. Define the
formulas ¢; and ¢, as follows:

* ¢1i= =y V=(u0),
e = =(xy) V=)V =(un).

Then the question of deciding whether a finite team X satisfies ¢, is NL-complete,
and for ¢,, already NP-complete.

As one might expect, the expressive power of dependence logic with the classical
negation (T£) increases to full second-order logic, and hence to the complexity class
Polynomial Hierarchy (PH).

Theorem 5. TL = 8O = PH

This result is already shown in [56], but a direct translation of SO sentences into
TL-sentences was later given in [48]. Furthermore, in [38] it was shown that any
property of teams definable in second-order logic can be expressed in team logic. It
is worth noting that, for example, in general JL-formulas are not closed downwards,
e.g., the formula

~=(x) (1)

expresses that x has at least two distinct values.

Interestingly, the two new connectives (implications) introduced in [1] preserve
downwards closure when added to dependence logic. It was observed in [1] that any
sentence of BID-logic can be translated into second-order logic. In fact, by the result
of [62], already the intuitionistic implication alone increases the expressive power
of dependence logic to full second-order logic.

Theorem 6. D(—) = 8O = PH

This result utilizes the universal quantification implicit in the semantic rule of
the intuitionistic implication. On the other hand, in [7, 8] the extension D (M) of
dependence logic by the majority quantifier M was defined and studied. The main
result of that paper is stated as follows:

Theorem 7. D(M) = CH.

Above CH refers to the complexity class the counting hierarchy CH 2 PH.
Theorems 7 and 5 imply that, for sentences, D(M) is at least as expressive as TL
over finite structures. On the other hand, this result does not extend to open formulas
since D(M)-formulas have the downward closure property unlike T£-formulas (see,
e.g., formula (1)).

The aforementioned results show that dependence logic and its extensions
allow us to logically characterize NP and some of its super classes. In [11]
the question whether PTIME corresponds to a natural fragment of dependence
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logic was considered. For £SO (also 8O) it is known that the so-called Horn
fragment SO3-Horn of £SO captures PTIME over successor structures [19]. In [11]
a fragment D*-Horn equivalent to 8O3-Horn was identified. The formulas of
D*-Horn have the form

VxAy(\ =) A )\ G,
i J

where z; is subsequence of x, the clauses C; (i.e. disjunctions of FO-literals)
are assumed to satisfy a certain Horn condition, and the existentially quantified
variables y; are only allowed to appear in certain identity atoms of C; (see [11]
for the exact definition). The main result of [11] shows that

Theorem 8. Over finite successor structures, D*-Horn = 8O3-Horn.

Theorem 8 implies that
D*-Horn = PTIME

over finite successor structures. In the article [11] the expressive power of open
formulas of D*-Horn is also characterized.

All of the results discussed in this section use the original semantics of
dependence logic. It is easy to check that the results hold also for both variants
of the semantics. Next we will consider the expressive power of inclusion logic.
It turns out that the expressive power of inclusion logic is not invariant under the
choice between the strict and the lax semantics.

The expressive power of inclusion logic under the lax semantics was studied in
[17]. The main result of that paper shows that

Theorem 9. Over the lax semantics,
FO(C) = GFPT,

where GFP™ is the so-called Positive Greatest Fixed Point Logic. It is known that
over finite structures GFP™ is equi-expressive with Least Fixed Point Logic (LFP),
and furthermore for ordered finite structures LFP = PTIME by the famous result of
Immerman [36] and Vardi [60]. Therefore, it follows that

FO(S) = PTIME
over ordered finite structures. In drastic contract with Theorem 9, it was observed in

[18] that, over the strict semantics, inclusion logic is equivalent to £SO and hence
captures NP.
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Theorem 10. Over the strict semantics,
FO(C) = £80.

This result is based on a simulation of dependence atoms in a dependence logic
sentence (in the V*3*-normal form) by certain inclusion logic formulas. This
simulation is not possible in general but only over teams that are generated by
evaluating a V*3*-block of quantifiers with the strict semantics.

2.4 Refining the correspondence with ESO

In this part we investigate how the correspondence between existential second-
order logic and FO(%¥) for subsets € of dependence-like atoms can be refined.
In particular we examine what is the effect of bounding the number of variables and
the so-called arity of atoms which roughly concerns the number of distinct variables
involved in them.

By relating fragments of FO(%) to fragments of existential second-order logic,
one may hope to obtain separation results in dependence logics through hierarchy
theorems in complexity or to give evidence that such results would have non-trivial
consequences in complexity theory. In either way, this provides interesting insight
on the expressive power of these logics.

Let us first define the notion of arity of an atom.

Definition 1. Let k € N.

¢ A dependence atom =(X, y) is of arity k if the length of x is .
* Anindependence atomy Ly zis of arity k if Xyz contains k + 1 distinct variables.
* Aninclusion atom x C y is of arity k if the length of x and y is k.

We now define the corresponding fragments of FO(%’) and existential second-
order logic.

Definition 2. Let ¥ be a subset of {=(...), L., C, |}. Letk € N. Then:

e FO(¥)(k—ary) is the class of sentences of FO(%') in which all atoms of € are
of arity bounded by k.

e FO(¥)(kV) is the class of sentences of FO(%) in which every variable is
quantified exactly once and at most k universal quantifiers occur.

* For convenience, we set by D(k—ary) the class FO(= (...))(k—ary) and by
D(k—ary) the class FO(=(...))(kV).

Definition 3. Letk € N.
o E80(k—ary) is the class of £50O-sentences

X ... 3X, v,

in which the relation symbols X; are at most k-ary and v is a first-order formula.
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* &80f(k—ary) is the class of E80-sentences

3 ... 36,

in which the function symbols f; are at most k-ary and v is a first-order formula.
* E80f(mV) is the class of E80-sentences in Skolem normal form

... 3 Va0 . Y,

where r < m.

Such fragments of £SO have been widely studied and in particular their
relationship with complexity classes. Roughly speaking, controlling the number
of first-order variables in existential second-order logic amounts to control the
polynomial degree in non-deterministic polynomial-time computations. To be more
precise, it is known (see[22]) that, for k > 1:

£80)(k-ary, kV) = E8O(kY) = NTIMEgam (n*).

where NTIMEgawm(n) is the class of problems decidable by a non-deterministic
random access machine in time O(n*). We can now relate the expressive power of
these various fragments.

First, reusing of variables is a key issue in team semantics. It turns out that the
following result is true (see [6]).

Proposition 2. Any sentence of dependence logic is logically equivalent to a
sentence in which at most one variable is universally quantified (possibly several
times).

For what concerns dependence logic, the correspondence with existential second-
order logic for the fragments with bounded arity and bounded number of universal
variables is as follows [6]:

Theorem 11. For all integers k > 1,

* D(k—ary) = E80O(k—ary),
o D(kY) < E8O4(kY) < D(2kV).

Roughly speaking, dependence logic can be seen as existential second-order
logic with functions (dependence atoms) but “without proper names” for these
functions. Hence composition of functions, that can be done freely in existential
second-order logic, can be simulated only by using intermediate variables in depen-
dence logic. So, as long as, only the arity of dependence atoms is fixed, one can
obtain an exact correspondence between the fragments (as stated in Theorem 11).
By contrast an exact correspondence between the fragments D(kV) and E8O,(kV)
seems unlikely (see the second item of Theorem 11). However, it is possible to
establish an exact correspondence between D(kV) and some syntactically restricted
fragment of E80,(kV) (see [6]).
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Because inclusion and independence logic do not have the downward closure
property, the situation is drastically different depending on whether the lax or the
strict semantics are used (see [18, 24-26]).

Theorem 12. Let k > 1. The following holds in the lax semantics:

s FO(Q)(k—ary) < FO(S)(k + 1—ary),

s JO(S)(k—ary) = €8Oy (k—ary) = FO(Lc)(k—ary),
. FO(L)(2Y) = FO(L),

s FO(9AVY) = JFO(9).

For the strict semantics, the following results are true:

o FOS)(KY) = E8O;(kY) = NTIMEgam(n*),
o FO(L)(KY) < ESOL((k + DY),
o £80,(kY) < FO(Lo)(2kY).

The results above imply that there is an infinite expressivity hierarchy for D(kV),
FO(S)(kVY), and FO(L.)(kY). Indeed, it is well known (by a slight adaptation
of classical non-deterministic time hierarchy [5]) that, for any integer k > 1,
NTIMEgam(1¥) is strictly included in NTIMEgam(n**!). Hence, for example,
D(kV) is strictly less expressive than D((k + 1)V).

Similarly, one might ask whether there is a strict hierarchy based on arity for D
or FO(L,). For example, is D(k + 1—ary) strictly more expressive than D (k—ary)
for all (or some) k > 1. Such a hierarchy would imply the existence of a similar
hierarchy for E8Or(k—ary) which is a long-standing open question (for empty
signature, this is known as the Spectrum Arity Hierarchy Conjecture [15]).

Finally, let us examine the situation when exclusion atoms are allowed in the
syntax. It turns out that none of the approach above helps to control the arity
correspondence between the corresponding fragments. By introducing mainly two
new concepts, namely inclusion quantifier (an adaptation of the idea of quantifier
relativization applied to inclusion atoms) and term value preserving disjunction, the
following result is obtained in [51]:

Theorem 13. For all integers k > 1, FO(C, |)(k—ary) = E8O(k—ary).

Note that in this result the correspondence is with the relational fragment of
existential second-order logic: no quantification on functions is allowed.

2.5 Satisfiability and Model Checking

In this section we briefly review results on satisfiability and model checking in the
first-order dependence logic context.
We begin by recalling these problems for a logic .Z":

* The Satisfiability Problem SAT[.Z] is defined as

SAT[.Z] := {¢ € .Z | there is a structure .# such that .Z = ¢}.
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e The Model-Checking Problem is defined as
MC[Z] := {(¢. M) | M = ¢}.

Since, for sentences, dependence logic is equivalent to £SO the classical results
[4, 55] on the Decision Problem (Entscheidungsproblem) of FO imply that SAT[D]
is undecidable (/1 ? -complete). In the case of first-order logic, these negative results
spurred an extensive investigation of decidable fragments of FO. Henkin [33] was
the first to consider fragments of first-order logic with a fixed number of variables.
Satisfiability for the fragments with three or more variables is easily seen to be
undecidable, but for two variables, it is decidable (see, e.g., [3]). The two-variable
fragment of FO is denoted by FO2.

In [40], the two-variable fragment D? (i.e. the sentences of D in which only
variables x and y appear) of dependence logic was studied and the following result
was obtained:

Theorem 14. SAT[D?] is NEXPTIME-complete.

The complexity of the problem remains the same also for finite satisfiability,
although there are sentences of D? having only infinite models (the so-called infinity
axioms). The proof of Theorem 14 is based on a polynomially bounded translation
of sentences of D2 to ¥ 11 (3"062)- sentences, i.e., sentences of the form

AR, ... 3R,

where ¢ is a FOC2-sentence. The logic FOC* extends FO? by counting quantifiers
3=ix¢ (x) expressing that ¢ (x) is satisfied by at least i distinct elements. Theorem 14
then follows from the fact that satisfiability is NEXPTIME-complete for FOC? [50].
It is worth noting that since D? is not closed under classical negation, Theorem 14
does not solve the complexity of the validity problem for D?. In fact, this problem
is still open.

Recently Theorem 14 has been generalized to logics of the form FO?(.<7) that
replace dependence atoms of D? by a certain collections .27 of generalized depen-
dence atoms [41]. The result therein shows that SAT[FO?(<7)] is NEXPTIME-
complete if the atoms in . are themselves X/ (FOC?)-definable. This result can
be used to show, e.g., that the satisfiability and finite satisfiability problems of
the two-variable fragments of inclusion, exclusion, and independence logic are all
NEXPTIME-complete.

The complexity of model checking of dependence logic and its variants has been
studied in [20]. The paper introduces a general model-checking game for logics with
team semantics, and by analyzing the corresponding games, shows several results
on the complexity of model checking in the team semantics framework.

Theorem 15. The model-checking problem for D is NEXPTIME-complete.
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In [20] it is also showed that NEXPTIME is an upper bound for the complexity of
model checking for any variant FO(%) of D such that the atoms in € are PTIME-
computable.

3 Propositional and Modal Dependence Logic

This section will be devoted to the study of team-based logics over Kripke struc-
tures, such as modal dependence logic and, as a special case thereof, propositional
dependence logic. Again, we will survey results on expressiveness of the most
important logics and on the complexity of the satisfiability and model-checking
problems. We will first turn to modal logics and later mention briefly some results
for the purely propositional case.

3.1 Preliminaries

We start by introducing team semantics for usual modal logic. The central semantic
concept here is the Kripke model, which is a tuple K = (W,R, ) where W is
a nonempty set of worlds, R € W x W, and 7: P — 2% where P is a set of
propositional variables. The idea here is that 7 determines which variables hold
(are set to true) in each world. So every world carries a propositional assignment. In
analogy to first-order logic, we want to express dependencies among the values of
certain variables; so we have to evaluate formulas relative to a set of assignments,
hence in our case a set of worlds. A feam of a model K is thus defined to be a set
T < W. The central basic concept underlying Viéninen’s modal dependence logic
and all its variants, that modal formulas are evaluated not in a world but in a team,
is made precise in the definitions to follow below.

Before that, we would like to point out that another formalism, independence-
friendly modal logic, has also be considered. In analogy to Hintikka and Sandu’s
independence-friendly logic JJF [34], the so-called slash modalities are introduced.
Consider the example formula 0y (<, /01)p. It is evaluated like O<Op, but now the
witness for & has to be chosen independently of the witnesses for O; hence the
formula states, when evaluated at w, that there is a world u accessible from all worlds
v that are accessible from w, a kind of “confluence property”. There are several
competing formalisms for modal independence-friendly logic, cf., e.g., [54].

Vidnidnen [58] when introducing modal dependence logic MDL made a step
analogous to the introduction of dependencies in first-order dependence logic by
extending the logical language with atoms =(py,...,p,) to express dependencies
among propositional variables. Caveat: In modal dependencies we can express
dependencies among variables, not among worlds, as one might first expect when
thinking of the standard translation of modal logic into first-order logic.
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In the following, we will define the syntax of the modal logics we consider by
grammars in extended Backus-Naur form (EBNF).

Definition 4 (Syntax of ML).

pu=pl-pl@re)|(pVve)lCp|Dp,

where p is an atomic proposition.

Definition 5 (Semantics of ML ). Let K = (W,R,x) be a Kripke model, let
T € W be a team, and let ¢ be an M L-formula. We define when K, T = ¢ holds
inductively:

o Ifp =p,thenK, T =@ ifandonlyif T C 7 (p).

o Ifp =-—p,thenK,T = ¢ ifand only if T N (p) = @.

e Ifp = YV y for some formulas ¥ and y, then K, T |= g ifandonly if T = T\UT,
withK,T1 E ¢ and K, T E .

e Ifp = Y A y for some formulas ¢ and y, then K, T |= ¢ ifand only if K, T =
and K, T = y.

e If ¢ = Oy for some formula v, then K, T = ¢ if and only if there is some
team T’ of K such that K, T’ = v, for each w € T, there is some w' € T' with
(w,w') € R, and for each w’ € T’, there is some w € T with (w,w’) € R.

o If ¢ = O for some formula ¥, then K, T k= ¢ if and only if K, T’ = v, where
T’ is the set {w' € W | (w,w’) € R for some w € T}.

Team semantics for ML shares the so-called flatness property, see also
Theorem 1:

Lemma 1 (Flatness of ML). ForallK,T,¢, K,T = ¢ ifand only if forallw € T,
we have K, w = ¢.

So there is no essential semantic effect of team semantics compared to the
usual semantics for modal logic. This changes when enriching the language with
dependence atoms.

Definition 6 (Syntax of MDL).

pi=pl=pl=Up.ip) | (@Ar@)|(pVe)|Op|Ogp,

where p is an atomic proposition.

Before defining the semantics of dependence atoms, we introduce a useful
shorthand notation.

Definition 7. Letp = (p1,...,p,) be a sequence of atomic propositions and w, w’
be worlds of a Kripke model K = (W, R, ). Then w and w' are equivalent under 7
over p, denoted by w =, , w/, if the following holds:

N(W) m{pls---spn} = N(W/) ﬂ{Plv---an}-
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Definition 8 (Semantics of MDL). We extend Definition 5 by the following
clause:

* K.T = =(p,q)ifand only if for all wi,wy € T:if w; =5 p wo, then wi =54 wy.

Theorem 16 (Downwards Closure). Let ¢ be a MDL-formula. Then for all
Kripke model K and teams T, if K,T = ¢ andT' C T, then K, T' = ¢.

As in the first-order case, also the independence atom has been introduced into
modal logic, thus leading to modal independence logic [42].

Definition 9 (Syntax of MJL).

pu=pl-plpirLlpirir (@ re) | (Vo) Cp|Op,

where p is an atomic proposition.

Definition 10 (Semantics of MJL). We extend Definition 5 by the following
clause, where p, q, r are sequences of atomic propositions:

* K, T = pl,qifand only if for all w;,w, € T such that w; =, w, there exists
w3 € T such that wy =, w3, w; =5p w3, and wy =5 q ws.

We note that one motivation behind the introduction of MJL was that it can be
used to express security of cryptographic protocols, see [42].

At this point, where we have extended basic modal logic by a dependence as
well as an independence atom, we would like to point out that there is a general
way to introduce such so-called generalized dependence atoms, expressing further
FO-definable properties on teams. To make this precise, consider an FO-formula ¢.
We say that ¢ defines the atom D if

K, T=D@pi,...,pn) < AE o,

where the structure 2 has universe 7" and unary relations APQ? with w € APQ? iff p; €
w(w).

FO-definitions of dependence, independence, and some further team properties
can be found in Table 1. There, boldface symbols denote sequences of propositional
variables.

A further possible extension of the so far considered modal logics is by
introducing additional propositional connectives. In Section 2.1, different forms of
implication and negation have been defined. Here we just define MTL, modal team
logic, to extend ML by a second type of negation, denoted by ~ and interpreted just
as classical negation.

Definition 11 (Syntax of MTL).

pu=pl-pl~ol(@nre)|(pVe)lCp| Oy,

where p is a propositional variable.
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Table 1 Definitions of some generalized dependence atoms

Notation Atom FO-defining formula

=(p,q) Dependence YwVw (/n\ (Ap,. (w) < A, (W ))

i=1
— (4,0 © 4,0")))

pLl:q Independence ~ VwVw' ( A (A, (W) < A, (W)
i=1
— EIW”( A (A (W) < A, (W)

1

AR (00 < 2,00)
A / (Alli(w/,) eAl]i(W,))))
i=1
pCq Inclusion Vwaw’ A (A, (w) < A, (W)
i=1
plq Exclusion VwVw' V (4, w) < —A,W))

i=1

NE Non-Emptiness Iw T

Definition 12 (Semantics of MTL). We extend Definition 5 by the following
clause:

e If ¢ =~ for some formula v, then K, T |= ¢ if and only if K, TH .

We note that usually (see [47]), MTL also contains dependence atoms; however,
since these atoms can be expressed in MTL we omit them in the syntax. To make
clear what the power of classical negation in this context is, we discuss the definition
of dependence as well as some additional propositional connectives in MTL.

First, the classical disjunction @ is readily expressed in MTL: ¢ @ ¥ is logically
equivalent to ~(~@ A ~¥). Next we note that, analogously to the first-order case
[1], the atom =(py, . .., p,) is logically equivalent with

C/\ =0)—> =@,

1<i<n—1
where — is the modal version of the intuitionistic implication with the semantics
K, Tk — yiffforal ' CT:if K,.T' =g thenK, T = .

The connective — has a short logically equivalent definition in MTL (see [47]),
hence so does the atom =(py,...,p,). The intuitionistic implication has been
studied in the modal team semantics context in [63].

We want to mention one final extension of modal dependence logic in this
section, the so-called extended modal dependence logic, EMDL. It allows
ML-formulas instead of atoms inside the dependence atom [10].
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Definition 13 (Syntax of EMDL).

pu=pl-pl=V}3¥) (@A) | (pVe) | CplDg,

where p is an atomic proposition and v is an M. L-formula.

Definition 14 (Semantics of EMDL). We extend Definition 5 by the following
clause:

 K.TE =1,....¥,) if forallwi,wy € T, if K, {wi} | ¥; & K, {w2} E ¥
forl <i<n-—1,thenK,{wi} E V. & K, {wm} &= ¥,

The interest in EMDL stems mainly from the fact, that it allows us to formulate
some basic temporal dependencies. We give only one very simple example:
The formula

=(op. o? v O'pLp)

expresses that “truth of p at this moment only depends on the truth of p in the
previous n time steps” (on frame classes where the relation R denotes a backwards-
oriented time-relation). So in a sense, EMDL can be seen as a basic temporal
dependence logic.

We would like to point out that EMDL shares the downwards closure property
of MDL, but analogously to the first-order case, neither MJIL nor MTL has this

property.

3.2 Expressivity

The first results on expressive power of modal team-based logics are due to
Sevenster [53]:

Theorem 17. I. MDL is strictly more expressive than ML.
2. On singleton teams of evaluation, M DL is as expressive as M L.

While the first result simply follows from the fact that ML is closed under union
(of teams) but M DL is not, the second result requires an interesting proof that we
would like to sketch. Given an MD L-formula ¢, we first use existentially quantified
(Boolean) Skolem functions to replace dependence atoms. Next, we replace the
existential quantifier by a big classical disjunction @ over all possibilities for such
functions. The result now follows since over singleton teams, the interpretations of
the connectives @ and V agree.

This proof sketch points out the importance of classical disjunction. If we add
@ to ML or MDL we obtain the same expressive power, namely that of EMDL
[10, 29]:
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Theorem 18. ML < MDL < ML(Q@) = MDL(Q) = EMDL.
Concerning modal independence logic, the following is known [42]:

Theorem 19. /. ML < MDL < MIL.

2. On singleton teams of evaluation, MIL is as expressive as M.L.

Again, the first result follows from simple closure properties. We will sketch
the proof of the second result, since it will lead us to an important topic. Given an
MIL-formula g, it is clear that on singleton teams it captures a property of Kripke
models that

* is invariant under modal bisimulation (more on that in the next paragraph),
* only depends on the worlds that can be reached in a number of steps bounded by
the modal depth of the formula.

These observations allow us to construct an ML-formula that describes (by a big
disjunction) all possibilities for satisfying Kripke models.

The just given proof can be extended to show that on singleton teams, ML
extended by any FO-definable dependence atoms (see Table 1) is as expressive as
ML.

The ideas used in the just sketched proof go back to a fundamental result by
Johan van Benthem [59], characterizing exactly the properties of Kripke structures
that modal logic ML can define in terms of the so-called bisimilarity. His results
can be generalized to modal team logic, as we describe next.

Definition 15 (k-bisimulation). Let K; = (W;,Ry, 7)) and K, = (W, R, m2)
be Kripke models. We define inductively what it means for worlds w; € W, and
wy € W, to be k-bisimilar, for some & € N, written as (K1, w;)<=(K2, w2).

e (Kj,w1)=0(K3,w,) holds if for each propositional variable p, we have that
Ki,wy [ pif and only if K», w; = p.
e (K1, w1)=k+1(K>, w,) holds if the following three conditions are satisfied:

1. (K1, wi)==0(K2, w2),

2. for each successor w/l of wy in K, there is a successor w’2 of w, in K, such
that (K, w})==¢(K>, w}) (forward condition),

3. for each successor w/2 of w, in K, there is a successor w’l of wy in K; such
that (K1, w})==x(K>. w}) (backward condition).

Full bisimulation is defined analogously as follows:

Definition 16 (full bisimulation). Let K; = (Wy,R;, 1), K> = (W2, R, 5) be
Kripke models and let wy and w; be worlds of K| and K;. Then (K, w;) and (K3, w)
are bisimilar, written as (K, w;)=(K,, w,), if there is a relation Z C W; x W, such
that (wy, w;) € Z, and Z fulfils the following closure property:

e (Ki,wy)=0(K3,w»), forall (wy,w,) € Z,
e for each successor w’l of wy in Kj, there is a successor w’2 of wy in K, with
(W}, w}) € Z (forward condition),
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e for each successor w/2 of wy in K,, there is a successor w’l of wy in K; with
(W), w}) € Z (backward condition).

The famous theorem by van Benthem characterizing the expressive power of
modal logics can now be stated as follows:

A property of pointed models is a class of pairs (K, w), where K is a Kripke
model and w a world of K. For a formula ¢ we say that ¢ expresses the
property {(K,w) | K,w = ¢} (under the usual Kripke semantics). A team property
is bisimulation-invariant if it is closed under bisimulation.

Theorem 20 (van Benthem’s Theorem [59]). Let P be a property of pointed
Kripke structures. There is an ML-formula which expresses P if and only if there is
a first-order formula which expresses P and P is bisimulation-invariant.

The result of van Benthem has been transferred into the field of modal logics
with team semantics, as we want to explain next. First, the notion of bisimulation
can very naturally be lifted to teams.

Definition 17 (team bisimulation). Let K; = (W, R, 1), K» = (W), Ry, 1) be
Kripke models, let 7} and 75 be teams of K| and K;. Then (K, T}) and (K, T3) are
k-bisimilar, written as K, T1 =¢K>, T if the following holds:

¢ for each w; € Ty, there is some w, € T, such that (K, wi)<=(K3, w»),
e for each w, € T, there is some wy € T; such that (Ki, w;)<= (K>, w>).

Analogously, we say that (K, 7)) and (K>, T,) are (fully) bisimilar, written as
K1, T1=K>, T, if the following holds:

e for each w; € Ty, there is some w, € T, such that (K;, w))= (K3, w2),
e for each w, € Ty, there is some w; € T; such that (Kj, w;)= (K, w2).

Now we can characterize the expressive power of some of our modal logics. The
expressive power of a logic here is defined to be the set of properties expressible in
it. More precisely, a team property is a class of pairs (K, T), where K is a Kripke
model and T a team of K. For a formula ¢ we say that ¢ expresses the property
{(K,T) | K, T | ¢}. A team property is bisimulation-invariant if it is closed under
bisimulation.

The following characterizations of the expressive power of EMDL and MTL
were obtained in [29, 43]:

Theorem 21. Let P be a team property.

1. There is an EMD L-formula which expresses P if and only if P is invariant under
k-bisimulation for some k and downwards-closed.

2. There is an MTL-formula which expresses P if and only if P is invariant unter
k-bisimulation for some k.

While the just given result already completely settles the question of expressivity
of EMDL and MTL in terms of bisimulation, the following complete analogue of
van Benthem’s Theorem was finally obtained in [43]:
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Theorem 22. Let P be a team property. There is an MTL-formula which expresses
P ifand only if there is a first-order formula which expresses P and P is bisimulation-
invariant.

It is worth to note that all our extensions of modal logic by further connectives
or generalized dependence atoms define only team properties that are bisimulation-
invariant. Hence the just given theorem implies that modal team logic MTL gives
an upper bound with respect to expressivity for all these logics. In particular,
modal logic with team semantics and classical negation is sufficient to express all
FO-definable generalized dependence atoms. This observation can be strengthened
as follows [43]:

Let ML denote the extension of ML by all generalized dependence atoms
D that are FO-definable without identity, in the extended setting, i.e., dependence
atoms are applied not only to propositions but ML-formulae.

Theorem 23. ML is equally expressive as MTL.

3.3 Complexity

The starting point for complexity studies of modal logic is a paper by Ladner from
1977 [45] in which he proved the following theorem:

Theorem 24. Satisfiability for modal logic ML is PSPACE-complete.

His result easily carries over from the usual modal semantics to team semantics.
The upper bound follows from Ladner’s so-called witness algorithm, which is not
so important for us here. The lower bound is given by a reduction from the standard
PSPACE-complete problem QBF, the evaluation problem for quantified Boolean
formulas, where alternations of modalities are used to force a satisfying Kripke
model to imitate the evaluation tree of the given formula [2].

In a very clever way this was extended by Sevenster [53] as follows:

Theorem 25. Satisfiability for M DL is NEXPTIME-complete.

To prove the upper bound, one has to express the dependencies by Boolean
Skolem functions, similar as in the proof of Theorem 17. Then we can use nondeter-
minism to guess those functions in exponential time, and check satisfiability. For the
lower bound, Sevenster presents a reduction from Dependence-QBF, a variant of the
above-mentioned QBF extended by dependencies among variables [49], a problem
which is NEXPTIME-complete. This reduction is essentially Ladner’s reduction
extended by dependence atoms.

Lohmann and Vollmer [46] extended Sevenster’s result by determining the
complexity of every fragment of MDL, given by any subset of the modalities
O and <, by restricting the allowed propositional connectives to any subset of
{n,V,—, T,L, @} and by considering fragments with and without dependence
atoms. Their results can be summarized as in Table 2. An entry “+” in the table
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Taple 2. Complexity of 06 AV = T L =0 © Complexity
satisfiability for fragments of
modal dependence logic + + + *x + *x *x + * NEXPTIME
+ + + 4+ + *x *x - % PSPACE
+ + + + — % + *x x PSPACE
+ + + - + * *x - + =
+ + 4+ - = *x + x* + 212’
+ + + - + *x *x — — coNP
+ + + — — % + x — coNP
+ - + 4+ 4+ x % * NP
- + 4+ + + *x *x % * NP
+ - + - + *x *x x + NP
-+ + - + * x % + NP
+ - + - + * *x x —  PTIME
-+ + = + x * —  PTIME
+ — + x — % % % * PTIME
- 4+ 4+ x — k% % * PTIME
* ok —  x  kx ok k% * PTIME
* ok x  x  — ok — % *  trivial
- - 4+ + + * x * * NP
- — 4+ x 4+ x x x 4+ NP
— — % — % % %k %k —  PTIME
— — % kx — % %k %k * PTIME

il

means that the syntactic element is allowed, “—” means it is forbidden, and “x”
means that the complexity does not depend on whether the element is present or
not. All rows in the table denote completeness results for the respective complexity
class under polynomial-time many-one reductions, except those for PTIME.

In a similar way, the complexity of the model-checking problem for fragments
of modal dependence logic has been classified in [9]. For some fragments, model
checking is NP-complete, for others it is solvable in polynomial time.

Theorem 26. Model checking for MDL is NP-complete.

We want to turn to the explanation of one special case in Table 2, the complexity
of Poor Man’s Logic. In the context of modal logic, poor man’s formulas are just
formulas that do not contain V. Hemaspaandra [31, 32] showed that poor man’s
modal logic is PSPACE-complete over the class of Kripke structures in which
every world has at most two successors. The proof is again by a reduction from
QBEF, where we express the QBF-tree by alternations of modalities. Important now
is that without disjunction, we cannot express the tree-structure. In fact, satisfiability
for poor man’s modal logic over K (the class of all Kripke structures) is only
coNP-complete. The requirement that in every model each world has at most two
successors is essential for the complexity. Lohmann and Vollmer [46] showed:
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Theorem 27. Poor man’s modal dependence logic, i.e., the fragment of modal
dependence logic allowing only the propositional connectives N and — (besides
the two modalites and dependence atoms), is NEXPTIME-complete.

The proof relies as before on a reduction from Dependence-QBF. We express the
QBF-tree by alternations of modalities. As in the case of Hemaspaandra’s proof we
cannot enforce tree-structure of the Kripke model without disjunction. In this case,
however, we can use dependence atoms to ensure that everything in the model that
does not belong to the tree is essentially nothing else than a copy of a subtree; hence,
in difference to Hemaspaandra, we do not need the requirement about the number
of successors of a world.

Next, we turn to modal independence logic. The following has been proven
in [42]:

Theorem 28. Satisfiability for MIL is NEXPTIME-complete.

While the lower bound follows trivially from the complexity result for M DL,
the upper bound is proven by an embedding of MJL into the Godel-Kalmar-Schiitte
fragment of all FO-sentences with prefix 3*V23* (without function symbols,
without equality) in a satisfiability preserving way. This fragment is decidable in
NEXPTIME [3]. This proof thus is different from the one given by Sevenster (and it
is not clear how to extend his ideas to include the independence atom), but it yields
Sevenster’s result as a corollary.

The embedding into the FO-fragment is even possible in a much more general
context [42]:

Theorem 29. Satisfiability for ML extended by dependence atoms that can be
defined in 3*V?3* is in NEXPTIME.

For a large class of generalized dependence atoms, satisfiability can thus be
placed into the class NEXPTIME, while for a few particular atoms, we have
completeness—above we already mentioned this for dependence and independence,
and in [30], satisfiability for modal inclusion logic MINCZL, i.e., ML extended by
the inclusion atom (see Table 1), was shown to be NEXPTIME-complete as well.

Also the model-checking problem for modal logic extended by generalized
dependence atoms was studied in [42].

Theorem 30. Model checking for ML extended by FO-definable dependence
atoms is in NP.

Recall that by Theorem 26 model checking for MDL (and also for MIL) is
NP-complete.
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3.4 Propositional Logic

Propositional logic with team semantics is nothing else than modal logic with team
semantics but without connections between the team members (worlds). The syntax
is the following:

Definition 18 (Syntax of PL).

pu=pl-pl@Are)|(pVe), whereped.

The semantics is exactly the same as for the modal case. Propositional logic
can now be extended by different generalized dependence atoms (such as those
given in Table 1) as well as different propositional connectives (intuitionistic
implication, classical disjunction, etc.) The expressive power of some of these logics
(i.e. the classes of teams that are definable) has been studied by Yang [63]; in
particular, propositional dependence logic (PL plus dependence atoms) can define
all nonempty downwards-closed team properties, and propositional team logic (P£
plus classical negation) can define all team properties.

Concerning complexity questions, the following results are known:

Theorem 31. [. The satisfiability and the model-checking problems for proposi-
tional dependence logic and propositional independence logic are NP-complete
[9, 27, 46].

2. The satisfiability problem for propositional inclusion logic is EXPTIME-com-
plete [30], while its model-checking problem is in PTIME (Lauri Hella, personal
communication).

3. The model-checking problem for propositional dependence logic extended by
classical negation is PSPACE-complete [47].

4. The satisfiability problem for propositional inclusion logic extended by classical
negation as well as for propositional independence logic extended by classical
negation is complete for the class AEXPTIME(poly) of all problems solvable
by alternating Turing machines in exponential time making only a polynomial
number of alternations; the model-checking problem for both logics is PSPACE-
complete [30].

Besides the above-summarized results, also the validity problem for proposi-
tional logic and some of its extensions have been studied. It is worth noting that,
unlike for classical logics closed under the classical negation, the satisfiability
problem and the validity problem for most of the logics discussed in this article are
not dual to each other. Partial results for axiomatizability have also been obtained
[27,52, 61, 64].
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4 Conclusion

1. A number of complexity questions for fragments of first-order dependence logic
or variants remain unsettled. The complexity of the validity problem for D? is one
example. More generally, one might ask what decidability results for first-order
logic, e.g., for formula classes defined by restricted quantifier prefixes, transfer
into the context of team-based logics.

2. While many expressivity results of modal and propositional logic have been
stated in this survey and this issue is more or less settled in the first-order case,
it has to be mentioned that some very basic cases in modal logic still remain
unsettled. In particular, what is the expressive power of propositional or modal
independence logic? It is worth noting that very recently a version of Theorem 21
for (extended) modal inclusion logic has been shown in [28].

3. In Section 3.2 we stated equal expressivity for many dialects of modal logics.
However, we did not touch the topic of succinctness. As an example, while
on singleton teams of evaluation, MJL equally expressive than ML, it can be
proven that it is exponentially more succinct [42]. Also, in Theorem 18 we stated
that EMDL and ML plus classical disjunction have the same expressive power.
In [29] it was shown that any translation from EMDL to ML with disjunction
necessarily leads to an exponential blow-up in formula size. In most other cases,
the question of succinctness remains unsettled so far.

4. The question of axiomatizability has not been covered in detail in this survey.
We mention that axiomatizability of some sublogics of MTL has been studied,
e.g., in [63] and [52], but remains open for many logics. Related to this is the
complexity of the tautology problem. In particular it remains open if we can
axiomatize MTL.

5. While we mentioned a number of complexity results on modal dependence
logic and some of its extensions, this issue remains unsettled for full MTL.
In particular, what is the complexity of satisfiability and validity of MTL?
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