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Abstract. Due to non-associativity of floating-point operations and
dynamic scheduling on parallel architectures, getting a bit-wise repro-
ducible floating-point result for multiple executions of the same code
on different or even similar parallel architectures is challenging. In this
paper, we address the problem of reproducibility in the context of matrix
multiplication and propose an algorithm that yields both reproducible
and accurate results. This algorithm is composed of two main stages: a
filtering stage that uses fast vectorized floating-point expansions in con-
junction with error-free transformations; an accumulation stage based
on Kulisch long accumulators in a high-radix carry-save representation.
Finally, we provide implementations and performance results in parallel
environments like GPUs.
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1 Introduction

In many fields of science and engineering, the process of finding the solution for a
specific problem requires solving a system of linear equations, or a least squares
problem, or eigenvalue problem. A common approach is to develop solvers for
each specific task and then spend a tremendous amount of time on tuning them.
However, best practice suggests to use already optimized solver-routines con-
tained in linear algebra libraries.

The development of linear algebra libraries began in the early 1970s. Since
that time many libraries have been released. With the influence of common HPC
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computers, which were based on vector processors, in 1979 a first set of Basic
Linear Algebra Subprograms (BLAS-1) was designed as a set of basic vector
operations. In 1988 the idea of BLAS was developed further, yielding a second
set of routines for matrix-vector operations (BLAS-2). For those routines the
amount of data required and floating-point operations (Flops) performed have
quadratic complexity.

When architectures with multiple layers of cache memory appeared, the per-
formance of both BLAS-1 and BLAS-2 operations became an issue: for these
routines the ratio between the numbers of Flops and memory accesses is only
O(1). In order to attain high performance on architectures with a hierarchical
memory system, in 1990 the third level of BLAS (BLAS-3) with matrix-matrix
operations was defined. These routines perform O(n3) Flops over O(n2) data,
giving the opportunity to hide memory latency and offer performance close to
the achievable peak.

A generic implementation of the BLAS specification is provided since the
announcement of the library in 1979. This reference implementation is equipped
with the complete functionality, but it is not optimized for any architecture.
Thus, processor manufacturers as well as scientists developed tuned implemen-
tations of the BLAS for each architecture. Prominent examples of these imple-
mentations are Intel MKL, AMD ACML, IBM ESSL, ATLAS, and GotoBLAS
(now OpenBLAS). ATLAS [1] is based on an auto-tuned empirical approach
while GotoBLAS [2] is a hand-tuned machine-specific implementation of the
BLAS. Due to the raising popularity of GPUs for high-performance computing,
NVIDIA provided a GPU-version of the BLAS (cuBLAS).

The core of the BLAS library is xGEMM1, which is a BLAS-3 routine, that
computes the matrix-matrix products as

C := αop(A)op(B) + βC, (1)

where α and β are scalars; op(A), op(B), and C are general matrices with op(A)
a m × k matrix, op(B) a k × n matrix, and C a m × n matrix; op(X) repre-
sents either a non-transposed X or a transposed XT matrix. xGEMM performs
2mnk floating-point operations over mk + kn + mn data. All the other BLAS-3
routines can be expressed in terms of xGEMM. Moreover, when different imple-
mentations of BLAS are compared, the first criteria used for this comparison is
the performance of xGEMM.

The profitable ratio between the computation and the memory references
of the BLAS-3 routines has a strong impact on the design and automatic gen-
eration of linear algebra algorithms. For instance, in order to exploit the opti-
mized BLAS implementations, the Linear Algebra PACKage (LAPACK) builds
its blocked algorithms on top of the BLAS-3 operations. Furthermore, scientists
either try to generate algorithms relying more on the BLAS-3 routines, in par-
ticular xGEMM, or try to rewrite their algorithms in order to benefit from the
performance provided by the BLAS-3 routines [3].
1 In general, x stands for four different formats, but in the scope of this article we

consider x to correspond to single (S) or double (D) precision.
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In general, matrix-matrix products relies on optimized version of parallel
reduction and dot-product involving floating-point additions and multiplications
which are non-associative operations. Hence, as the order of operations may vary
from one parallel machine to another or even from one run to another [4], repro-
ducibility of results is not guaranteed. These discrepancies worsen on heteroge-
neous architectures – such as clusters composed of standard CPUs in conjunction
with GPUs and/or accelerators like Intel Xeon Phi – which combine together
different programming environments that may obey various floating-point mod-
els and offer different intermediate precision or different operators [5,6]. In
some cases, such non-reproducibility of floating-point computations on paral-
lel machines causes validation and debugging issues, and may even lead to
deadlocks [7].

By reproducibility, we mean getting a bit-wise identical floating-point result
from multiple runs of the same code on the same data. Numerical reproducibility
can be addressed by targeting either the order of operations or the error resulting
from finite arithmetic. One solution consists in providing the deterministic con-
trol over rounding errors by, for example, enforcing the execution order for each
operation. However, these approach is not portable and/or does not scale well
with the number of processing cores. The other solution aims at avoiding cancel-
lation and rounding errors by using, for instance, a long accumulator such as the
one proposed by Kulisch [8]. This solution increases the accuracy at the price of
more operations and memory transfers per output data. Because of that, for a
long time, it was considered too expensive for the little benefit it was providing.

To enhance reproducibility, Intel proposed a “Conditional Numerical Repro-
ducibility” (CNR) in its Math Kernel Library (MKL). Although, CNR guaran-
tees reproducibility, it does not ensure correct rounding, meaning the accuracy
is arguing. Additionally, the cost of obtaining reproducible results with CNR is
high. For instance, for large arrays the MKL’s summation with CNR is 85−93 %
slower than both the regular MKL’s and our reproducible summation; the later
two deliver comparable performance. The performance gap between the MKL’s
reproducible matrix multiplication and its classic implementation is even higher
and is roughly 3 − 4 times.

Demmel and Nguyen introduced a family of algorithms for reproducible sum-
mation in floating-point arithmetic [9]. They have extended this concept to
reproducible BLAS routines (covering, mainly, the BLAS-1 routines) that are
distributed in the ReproBLAS library2.

Recently, we introduced in [10] an approach to compute deterministic sums
of floating-point numbers. Our approach is based on a multi-level algorithm
that combines efficiently floating-point expansions and long accumulators. The
proposed implementations on recent Intel desktop and server processors, on Intel
Xeon Phi co-processors, and on both AMD and NVIDIA GPUs, showed that
the numerical reproducibility and bit-perfect accuracy can be achieved at no
additional cost for large sums that have dynamic ranges of up to 90 orders of

2 http://bebop.cs.berkeley.edu/reproblas/.

http://bebop.cs.berkeley.edu/reproblas/
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magnitude. This speed-up is possible thanks to arithmetic units that are left
underused by the standard reduction algorithms.

In this article, we propose an approach to ensure both reproducibility and
accuracy (rounding-to-nearest) of the product of two matrices composed of
floating-point numbers. The derived algorithm is based on the standard non-
deterministic xGEMM and our deterministic summation algorithm. Moreover,
we provide implementations of this algorithm on GPU accelerators. To our
knowledge, this is the first work on reproducible matrix-matrix multiplication.

The paper is organized as follows. Section 2 reviews related aspects of floating-
point arithmetic and highlights floating-point expansions and long accumulators.
Section 3 presents our approach to derive exact, meaning both reproducible and
accurate, matrix-matrix product. In Sect. 4, we expose implementations and per-
formance results on GPU accelerators. Finally, we draw conclusions in Sect. 5.

2 Background

Without loss of generality, in the rest of this article, we will consider double
precision format (binary64) from the IEEE-754 standard [11]. Floating-point
representation of numbers allows to cover a wide dynamic range. Dynamic range
refers to the absolute ratio between the number with the largest magnitude
and the number with the smallest non-zero magnitude in a set. For instance,
binary64 can represent positive numbers from 4.9 × 10−324 to 1.8 × 10308, so
it covers a dynamic range of 3.7 × 10631.

Non-associativity of floating-point addition implies that the result depends
on the order of the operations. For example, in double precision (−1⊕1)⊕2−100

is different from −1 ⊕ (1 ⊕ 2−100) where ⊕ denotes the result of a floating-
point addition. Thus, the accuracy of a floating-point summation depends on
the order of evaluation. More details about this phenomenon can be found in
the main references [12,13].

Two approaches exist to execute one floating-point addition without intro-
ducing rounding error. The first solution aims at computing the error which
occurred during rounding using floating-point expansions in conjunction with
error-free transformations, see Sect. 2.1. The second solution exploits the finite
range of representable floating-point numbers by storing every bit in a very long
vector of bits, see Sect. 2.2.

2.1 Floating-Point Expansion

Floating-point expansions represent the result as an unevaluated sum of floating-
point numbers, whose components are ordered in magnitude with minimal over-
lap to cover a wide range of exponents. Floating-point expansions of sizes 2 and
4 are described in [14,15], accordingly. They are based on error-free transfor-
mation. Indeed, when working with rounding-to-nearest, the rounding error in
addition or multiplication can be represented as a floating-point number and can
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also be computed in floating-point arithmetic. The traditional error-free trans-
formation for addition is TwoSum [16], see Algorithm 1, and for multiplication is
TwoProduct, see Algorithm 2. For TwoSum, it means that r + s = a + b with
r = a⊕ b and s, which is a floating-point number that corresponds to the round-
ing error. For TwoProduct, we use the fused multiply and add (FMA) instruction
that is widely available on modern architectures. FMA(a, b, c) makes it possible
to compute a × b + c with only one rounding. Thus, we have r + s = a × b
with r = a ⊗ b and s = FMA(a, b,−r), where ⊗ stands for floating-point
multiplication.

Algorithm 1. Error-free transformation for sum of two floating-point
numbers.
Function [r, s] = TwoSum(a, b)

r ← a + b
z ← r − a
s ← (a − (r − z)) + (b − z)

Algorithm 2. Error-free transformation for product of two floating-point
numbers.
Function [r, s] = TwoProduct(a, b)

r ← a × b
s ← FMA(a, b,−r)

Adding one floating-point number to an expansion is an iterative operation.
The floating-point number is first added to the head of the expansion and the
rounding error is recovered as a floating-point number using an error-free trans-
formation such as TwoSum. The error is then recursively accumulated to the
remainder of the expansion.

With expansions of size p – that correspond to the unevaluated sum of p
floating-point numbers – it is possible to accumulate floating-point numbers
without losing accuracy as long as every intermediate result can be represented
exactly as a sum of p floating-point numbers. This situation occurs when the
dynamic range of the sum is lower than 253·p in case of binary64.

The main advantage of expansions is that they can be placed in registers
during the whole computation. However, the accuracy is insufficient for the
summation of numerous floating-point numbers or sums with large dynamic
ranges. Moreover, the complexity of this algorithm grows linearly with the size
of expansion.

2.2 Long Accumulator

An alternative algorithm to floating-point expansions uses very long fixed-point
accumulators. This accumulator can be viewed as a projection of the set of
floating-point numbers from minimum (emin) to maximum (emax) exponents
into a long register, where each spot covers numbers with a certain exponent
range. The length of the accumulator is selected in such a way that it represents
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Fig. 1. Kulisch long accumulator.

every bit of information of the input format, e.g. binary64; this covers the range
from the smallest representable floating-point value to the largest one, indepen-
dently of the sign. For instance, Kulisch [8] proposed to use an accumulator of
4288 bits to handle the dot product of two vectors composed of binary64 values.
The summation is performed without loss of information by accumulating every
floating-point input numbers in the long accumulator, see Fig. 1. The long accu-
mulator is the perfect solution to produce the exact result of a very large amount
of floating-point numbers of arbitrary magnitude. However, for a long period this
approach was considered impractical as it induces a very large memory overhead.
Furthermore, without dedicated hardware support, its performance is limited by
indirect memory accesses that makes vectorization challenging.

3 Exact Matrix-Matrix Multiplication

In order to achieve best performance for linear algebra kernels, machine-specific
hand tuning of those kernels is often applied; a good example is the Goto’s imple-
mentation of xGEMM. Scientists aim at optimizing this process for existing and
upcoming architectures through the automatic generation of linear algebra ker-
nels. As the matrix-matrix multiplication is the core of the BLAS library, in
several works [1,17] the problem of optimizing this routine for a given architec-
ture was tackled by applying the automatic generation approach. For instance,
the ATLAS project [1] provides a very good implementation of BLAS by tuning
routines for various architectures; those are centralized around a highly tuned
matrix-matrix product that is automatically optimized for different levels of
memory hierarchy. The idea of auto-tuning was extended to GPUs architectures
applying different programming models such as CUDA and OpenCL. Apart from
both code generation and heuristic search in conjunction with OpenCL, Mat-
sumoto et. al. [17] proposed to store data in memory not only in a standard
row-/column-major order, but also in a block-major order. We revise these
ideas and employ some of them in our implementations of exact xGEMM,
which is described in Sect. 4.1. Therefore, we combine together auto-tuning for
standard non-deterministic xGEMM and machine-specific hand tuning for our
reproducible approach.
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3.1 Hierarchical Approach for Matrix-Matrix Multiplication

We introduced in [10] a hierarchical superaccumulation scheme for the summa-
tion of floating-point numbers (parallel reduction) that relies on floating-point
expansions with error-free transformations and long accumulators as described
in Sect. 2. Thanks to the latter, this approach guarantees both reproducible and
accurate results. This allows us to propose a reproducible and accurate matrix
multiplication scheme that divides computations into three stages: filtering, pri-
vate superaccumulation, and rounding. This decomposition is suitable for the
nested parallelism of modern architectures and it makes a full use of SIMD and
multi-threads.

In the first stage, each partial product is computed using error-free trans-
formation. In order to ensure accuracy, this steps generates two floating-point
numbers, see Algorithm 2: the result and the rounding error. Both resulting
floating-point numbers are accumulated using Algorithm 1 into an expansion of
size p (p ≥ 3) that is stored in registers or private memory for each threads. This
step benefits from vectorization and pipelining by maintaining one expansion per
GPU thread.

In case the accuracy provided by floating-point expansions for product and/or
summation is not enough, meaning a non-zero residue x still remains after filter-
ing, each residue x is added to a long accumulator. We also propose an optimized
version of floating-point expansions of size p that relies on the stopping crite-
ria (x ≡ 0) in the accumulation loop. This technique is called early-exit and
exhibits performance which depends on the distribution of input numbers and
the ability of the architecture to handle irregular branches.

A trade-off between speed and usage of the hardware resources lies in the
proper choice of the size p of the floating-point expansion. A small value of p will
lead to numerous transfers from the expansion towards the long accumulators,
which will slow down the computation. A large value of p will lead to the overuse
of registers and eventually to the register spilling.

Once all the input number are accumulated, each floating-point expansion
is flushed to a long accumulator, independently of the parameter p. Hence, the
second stage is based on superaccumulation, meaning summation to long accu-
mulators, and it is involved either when the accuracy provided by expansions
is not enough or at the end of the computation. Depending on the amount of
memory available, long accumulators are stored in either fast local memory, e.g.
cache or shared memory, or global memory.

In the third stage, rounding of private long accumulators back to the desired
floating-point format is performed in order to obtain reproducible and correctly
rounded results.

4 Implementations and Experimental Results

This section presents our implementations of the multi-level reproducible matrix
multiplication and their evaluation on both NVIDIA and AMD GPUs, see
Table 1 for the detailed description of these GPU architectures. We compared
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Table 1. Hardware platforms used for the experiments.

A NVIDIA Tesla K20c 13 SMs × 192 CUDA cores 0.705 GHz
B AMD Radeon HD 7970 32 CUs × 64 units 0.925 GHz

the accuracy of our implementations with results produced by the multiple
precision library MPFR on CPUs; the MPFR library is not multi-threaded
and does not support GPUs. In case of binary64, we used 4196 bits (2 ×
(emin + emax + mantissa) = 2 × (1022 + 1023 + 53)) within MPFR in order
to guarantee the bit-wise reproducibility as well as the accuracy of the results
independently of rounding errors and dynamic ranges.

4.1 Implementations

We follow the strategy proposed by Matsumoto et al. [17] regarding their matrix
partitioning technique in order to exploit multi-level memory hierarchies on GPU
architectures, see Fig. 2. An adequate matrix partitioning improves significantly
the reuse of data and keeps the computational units busy while performing
memory transfers.

Our solution is different from Matsumoto’s one, as we divide memory space
among matrices, floating-point expansions, and long accumulators. The latter
may require 76 (76 × 64 bits is the size of each long accumulator) times more
storage, because the matrix C is entirely composed of long accumulators in the
non-optimized case, meaning when long accumulators are not reused. Thus, we
use two levels of blocking in our matrix multiplication algorithms to amortize
the cost of data accesses to the three levels of memory on GPUs, namely private
(registers), local or data caches, and global. The first level of blocking focuses
on enhancing the access latency between the global and local memories for each
group of threads (or warp or work-group on GPUs). We assume that ml, nl, and
kl are three block sizes multiple of m, n, and k, respectively. Figure 2a represents
the partitioning of the matrices C,A, and B into blocks of sizes ml × nl, ml × kl,
and kl × nl, accordingly. Each ml × nl block of C is computed by a work-group
that involves an ml × k panel of A and a k × nl panel of B

This panel-panel multiplication iterates k/kl times in the outermost loop
of our xGEMM algorithm using the block-block multiplication. Thus, on each
iteration the work-group updates each resulting ml × nl block of C with the
product of an ml × kl block of A by a kl × nl block of B. This second level
of blocking optimizes the use of private memory for each thread (work-item on
GPUs). Figure 2b shows further partitioning of matrices within their blocks in
such a way that each work-item in the work-group is responsible for updating
an ms × ns sub-block of C through the multiplication of an ms × kl sub-panel
of A by a kl × ns sub-panel of B.

In order to ensure both reproducibility and accuracy of xGEMM, we
use one floating-point expansion with error-free transformation per thread.



134 R. Iakymchuk et al.

Fig. 2. Partitioning of matrix-matrix multiplication.

When the accuracy provided by these expansions is not enough, we switch to long
accumulators that are allocated for each thread of a given work-group. However,
this induces pressure on the memory hierarchy due to the required storage. So,
we reuse both floating-point expansions and long accumulators for computing
multiple elements of the resulting matrix.

Our implementations attempt to get the maximum performance by using
all resources of the considered GPU architectures: SIMD instructions, fused
multiply-add, private and local memory as well as atomic instructions. We devel-
oped both unique and hand-tuned OpenCL implementations for NVIDIA and
AMD GPUs.

We use a long accumulator of finite length that represents the whole range of
double precision floating-point numbers (4196 bits in case of binary64). We use
such a long accumulator to avoid partial over/underflow that may occurs while
accumulating partial product of the same sign. For instance, for matrices of size
n × n, only n partial-products need to be summed per resulting element, which
leads to only log2(n) carry bits. With matrix size of 220 × 220 that requires 8
Terabytes, only 20 extra bits are necessary to ensure that this phenomena will
not occur.

4.2 Performance Results

As a baseline we consider the vectorized and parallelized non-deterministic dou-
ble precision matrix multiplication. We prefer our tuned implementation to the
one from cuBLAS and base our ExGEMM on it, because cuGEMM squeezes
every percent of the architecture performance and does not leave a room for our
approach. Figures 3a and b present the measured time achieved by the matrix
multiplication algorithms as a function of the matrix size n on two GPUs, see
Table 1. Apart from “Parallel DGEMM”, all implementations are ours: “Super-
acc” corresponds to our matrix multiplication algorithm that is solely based
on long accumulators and it is the slowest due to its extensive memory usage;
“FPEp + Superacc” stands for algorithm with floating-point expansions of size
p (p = 3 : 8) in conjunction with error-free transformations and long accumu-
lators; “FPE4EE + Superacc” represents an optimized version of the expansion
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Fig. 3. The matrix-matrix multiplication performance results on GPUs, see Table 1.

of size 4 with the early-exit technique. The implementations with expansions
obtain better performance than with long accumulators only. However, due to
switching to the long accumulator at the final stage of computing each element
of the resulting matrix C as well as when the accuracy of expansions is not
enough, the performance of implementations with expansions is bounded and it
is at most 12 and 16 times off the DGEMM’s performance on NVIDIA and AMD
GPUs, respectively. We believe that there is a possibility to tune these prelim-
inary implementations in order to be within 10 times slower. Nevertheless, our
matrix multiplication algorithm delivers constantly reproducible and accurate
results.

5 Conclusions and Future Work

xGEMM is the core of the BLAS library and all the other BLAS-3 routines are
virtually built on top of it. Furthermore, the development and automatic gener-
ation of linear algebra algorithms are driven by the goal of achieving best per-
formance on various architectures. One step towards this goal is made by using
blocked versions of algorithms that are capable to obtain much higher perfor-
mance compared to non-blocked algorithmic variants. This is achieved thanks
to the usage of BLAS-3 routines, in particular xGEMM. Understanding such
importance of the matrix multiplication routine, we targeted xGEMM and for
the first time delivered a multi-level reproducible approach along with implemen-
tations. Even though the performance, which corresponds to roughly 5 % of the
efficiency, can be argued (we think that a 10 times overhead at most for repro-
ducible compute-bound algorithms is reasonable), the output of ExGEMM is
consistently bit-wise reproducible and accurate, in terms of rounding-to-nearest,
independently of threads scheduling, instruction set, and data partitioning.

Our ultimate goal is to apply the multi-level approach to derive a repro-
ducible, accurate, and fast library for fundamental linear algebra operations –
like those included in the BLAS library – on new parallel architectures such as
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Intel Xeon Phi many-core processors and GPU accelerators. Moreover, we plan
to conduct a priori error analysis of the derived ExBLAS (Exact BLAS) routines.
More information on the ExBLAS project as well as its sources can be found
at https://exblas.lip6.fr.
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