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Abstract. We deal with an interval parametric system of linear equa-
tions, and focus on the problem how to find an optimal preconditioning
matrix for the interval parametric Gauss—Seidel method. The optimality
criteria considered are to minimize the width of the resulting enclosure,
to minimize its upper end-point or to maximize its lower end-point.
We show that such optimal preconditioners can be computed by solv-
ing suitable linear programming problems. We also show by examples
that, in some cases, such optimal preconditioners are able to significantly
decrease an overestimation of the results of common methods.
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1 Introduction

Consider an interval linear system of equations
Ax=b, A€ A beb,

where

are an interval matrix and an interval vector, respectively. The solution set is

defined as

Y ={xeR"JAc A, Fbeb: Az =b}.

Since it is nonconvex in general, the problem is usually to compute an interval
vector enclosing the solution set. Computing the smallest enclosure is an NP-hard
problem [1], so the known polynomial-time methods overestimate more-or-less
the optimal enclosure. There are, however, plenty of methods varying in time

complexity and tightness of the resulting enclosures [1,4,11].
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Notation. The midpoint and the radius matrices corresponding to an interval
matrix A are defined respectively as
c 1 A A 1 —
Af = §(A+A), A = §(A —A).
Similarly we define interval vectors and intervals. The ith column of a matrix
C € R™ " is denoted by C.,;.

Preconditioning. Many methods for enclosing the solution set use precondi-
tioning. Let C' € R™*™. Then the interval system (1) preconditioned by C' reads

Az =¥, A e(CA), b € (Cb),

where CA and Cb are calculated by interval arithmetic [11]. The solution set
corresponding to the preconditioned system contains the original one as a subset,
so by preconditioning we do not miss any solution. Even though the solution set
inflates by preconditioning, most of the methods used perform better when the
system is preconditioned by a suitable matrix.

It is commonly recommended to use the preconditioner C' = (A¢)~! or its
numerical approximation. Some theoretical properties justifying this choice were
stated by Neumaier [10,11]. This does not mean, however, that the midpoint
inverse preconditioner yields the best results for each method and for each input
data.

Kearfott [5] initiated a research in constructing an optimal preconditioning
matrix [6-8]. The authors investigated the interval Gauss—Seidel method with an
application in nonlinear equation solving by the interval Newton method. They
showed that the optimal precodnitioner for the interval Gauss—Seidel method
can be formulated in terms of a linear programming, so it is polynomially com-
putable. A hybrid preconditioning strategy combining the midpoint inverse and
a certain kind of optimal preconditioners was proposed by Gau and Stadtherr
[2], and some numerical tests and an application in global optimization were
presented by Lin and Stadtherr [9)].

The Interval Gauss—Seidel Method. Let us recall the interval Gauss—Seidel
method briefly. Let & O X be an initial enclosure of the solution set. One interval
Gauss—Seidel iteration for the preconditioned system is based on the operations

1
2= (Cb); — Y (CA)iz; |,
(CA); ;

T, i=x; N Zi,

fori=1,...,n.
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Interval Parametric Systems. An interval linear parametric system of equa-
tions is a family of systems

A(p)xr =0b(p), peEpD,

where the constraint matrix and the right-hand side vector linearly depend on
parameters pi,...,PK,

K K
A(p) =) AFpp, b(p) =D bpr.
k=1 k=1
Herein, A',... AK € R™ " are given matrices, b',...,bX € R" are given vec-
tors, and p = (pq,...,Pk) is a given interval vector. The corresponding solution

set is defined as
Yy ={zeR" Ipep:Alp)zr =b(p)}.

Methods for computing an enclosure of the solution set were discussed, e.g.,
in [3,17]. A parametrized version of interval Gauss—Seidel iteration in particular
was addressed in Popova [13]. For parametric systems, preconditioning is applied,
too.

In principle, a parametric system can be relaxed and the problem reduced to
solving the standard interval system

Ar=b, A€ A beb,

where

K
Akpkv b:= Z bkpk

k=1 k=1

M=

A =

are evaluated by interval arithmetic. For a preconditioned system by C' € R™"*",
the tightest relaxation is done by evaluating

K K
A:=> (CAMp,, b:=) (CHh)p,.

k=1 k=1

Notice that a relaxation leads to overestimation of the solution set in general
since we lose information about dependencies between the interval parameters.

The interval Gauss—Seidel iteration for preconditioned parametric system
reads

1 K K
zi = Z(C’bk)ipk - Z (Z(CAk)ijpk> Zj | (2)

(2521(0/1'“)1'1'131@) k=1 j#i \k=1

xT; = x; Nz,

fori=1,...,n.
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For parametric systems, a residual form of enclosures is often employed. Let
20 € R, for example the solution of A(p®)z = b(p°). Then the residual form
enclosure of X, has the form of & = 20 + gy, where y encloses the solution set to
the parametric system

A(p)x =b(p) — A(p)z°, pep.

The interval Gauss—Seidel iteration (2) for this system works in the same man-
ner as for the original system, only the vectors b* are replaced by b¥ — AFz0,
k=1,....K.

Goal. The purpose of this paper is to extend the above mentioned results to
interval parametric systems of linear equations by designing an optimal precon-
ditioner for the parametric interval Gauss—Seidel method.

2 Optimal Preconditioners

In this section, we show how to construct an optimal preconditioner for (2). We
focus on the direct version only since for the residual form it works analogously.

Since the ith step of (2) depends only on the ith row of C, we will design C
row by row. For this purpose, let ¢ € {1,...,n} be fixed, and consider the ith
row of C', denoted by c.

Optimality of the preconditioner can be viewed from diverse perspectives;
see various criteria surveyed in Kearfott et al. [7,8]. We will be concerned with
the following objectives

~ minimize the resulting width, that is, the objective is min 227,
— minimize the resulting upper bound, that is, the objective is minz;,
— maximize the resulting lower bound, that is, the objective is max z;.

If we apply both the second and the third preconditioners, we obtain the
smallest interval as a result after the intersection. This observation relies on
standard interval arithmetic. Provided we allow division by zero-containing inter-
vals and utilize generalized arithmetic, then tighter results are possible; see
S-preconditioners in [7,8].

In the following, we will discuss the first and the second criteria only since
the third criterion is easily reduced to the second one.

2.1 Minimal Width

Now, we deal with the first mentioned criterion — to minimize 2214. Suppose that
0 € x and 0 € z;. This is the case, for instance, when we apply the residual form
and z° € Y. However, the resulting preconditioner seems to perform well even
if the assumption is not satisfied despite it needn’t be optimal.

In order that z; is bounded, we will assume that the denominator in (2) does
not contain the zero. Moreover, we will normalize ¢ such that the denominator
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has the form of [1, r] for some r > 1. Then, from our assumptions it follows that
the operation in (2) is simplified to

Z(cbk)pk - Z (Z(CAZ)I’/C) T

k=1 j#i \k=1

Denote

Wb = (Zle(CAf:j)pk> xj, JF i

Then our objective function reads

K
min Y 2p Bk + Y (n; — ). (3)
k=1 i

Now, we set up the constraints. By the definition of (i, we have
B > cb®, B, > —cb*, k=1,...,K. (4)

Since ) is minimized in the objective function, at least one of the inequalities
will hold as equation, whence 3 = |cb*|. Similarly for o, we obtain

k k
ajr > Ay, ajp > —cAy;,

j=1,....n, k=1,...,K. (5)

The condition that the denominator is has the form of [1, 7] is formulated as the
equation

K K
¢y Alpi =) pilaa = 1. (6)
k=1 k=1

Eventually, we reformulate conditions on 7; and ;. Since 0 € x;, the upper
end-point of the interval product in the definition of 7, is attained either by the
product of their upper end-points or their lower end-points. Thus, we get

K K

n>ey Abpiz, = pizep, j#i, (7)
k=1 k=1
K K

n ey ANpiE + > pRTiag, § AL (8)

k=1 k=1
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Similarly for v,

K K

wj < CZA’ijpi% + Zp}?&jaj/m J 7é i, (9)
k=1 k=1
K K

by < ey ALpiT = pREiegk,  j# i (10)
k=1 k=1

Since 7; is maximized and v; is minimized in the objective function, at least
one of the inequalities is fulfilled as equation. Analogous considerations hold for
aji. Therefore, we gathered all the constraints to formulate the optimization
problem.

Optimization Problem. The optimal preconditioner of the first type is found
by solving the optimization problem (3) under the constraints (4)—(10). This as
a linear programming problem with Kn + K + 3n — 2 unknowns ¢, Bk, ok, 15,
and v¢;, and 2Kn + 2K + 4n — 3 constraints.

Notice that for standard interval linear Eq. (1), our approach would require
approximately n> variables as there is a quadratic number of parameters. This
is more than the linear programming formulation from Kearfott [6,7] using only
a linear number of variables. His method, however, cannot be directly extended
to parametric systems.

Overall, to determine the optimal preconditioner C', we have to solve n linear
programs, which is a polynomial time problem. Moreover, C' needn’t be calcu-
lated in a verified way since any matrix can serve as a preconditioner.

On the other hand, solving n linear programs requires some computational
effort, so it would be inefficient to compute an optimal C' in each iteration of the
interval Gauss—Seidel method. It seems more suitable to call the standard version
using midpoint inverse preconditioner (or any other method), and after that to
tighten the resulting enclosure by running several iterations with an optimal C'.

2.2 Minimal Upper Bound

Herein, the criterion is to minimize Z;. Suppose first that Z; > 0. Using definitions
of ¢, Bk, ok, and v; from the previous section, the objective is formulated as

K K
minchkpZ + ZpkAﬂk - Zw]
k=1 k=1 i
The constraints (4)—(6), (9)—(10) are employed in this problem, too. In addition,

we have to take into account the remaining two possibilities for which 1); can be
attain, and hence we involve also the inequalities
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K K

k - A . .

vy <ed Abpiz; = pizop, §#
k=1 k=1

K K
_ A— - -
% <c E A’jjpixj + E Pr Tjjk, ] # i
k=1 k=1

If Z; <0, then we just replace (6) by the equation
K K
ey ALpi+ Y pRan =1, (11)
k=1 k=1

which normalizes the denominator in (2) to have the form of [r,1] for some
r € (0,1]. In this case, we have to include the condition r > 0, which draws

K K
k A
ey AEDE = pRair > 0.
k=1 k=1

The situation r = 0 makes practically no harm (even theoretically by realizing
what will be the result if extended arithmetic is used).

The weak point is that we do not know a priori whether z; > 0 or not. We
recommend to use the condition T; > 0 instead. It means, if ; > 0, then we use
(6), otherwise we use (11). The only possible fail may occur when z; < 0 andZ; > 0.
In this case, the optimization problem does not find the optimal solution, however,
the optimal value would be non-positive. Therefore, the upper bound is reduced
substantially (with respect to sign change) from T; > 0 to a non-positive value.

The resulting linear program has less variables by n — 1 than the previous
one from Sect. 2.1, and the number of constraints is the same. That is why the
time complexities are almost the same.

3 Examples

The examples below show how optimal preconditoners behave for various initial
enclosures, for various optimality criteria and for both versions (direct and resid-
ual) of the Gauss—Seidel method. For the residual form of the interval Gauss—
Seidel iteration, we employed the minimal width approach (Sect. 2.1), and for the
direct version, we used both the minimum upper and maximum lower bounds
preconditioners.

The main purpose if the examples is to illustrate that while in some cases
an optimal preconditioner makes no improvement, in another cases it may sig-
nificantly reduce the overestimation. The computations were done in MATLAB
with help of the interval toolbox INTLAB v7.1 (see Rump [16]).

Ezample 1. Consider Example 4 from Popova [12], where

A= (). voi= (). pep=(01 -4 02"

D1 P2 b3
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The initial enclosure of Y, is obtained by calling the verifylss function from
Intlab on the relaxed system A(p)z = b(p),

x = ([—4.4849, 6.6667], [—5.3334,4.9697])T .

First, we call the residual form of the interval parametric Gauss—Seidel method.
For the center £* := x¢ and the residual interval vector y := @ —x°, one iteration
yields the same result

y' = ([-5.3940, 5.3940], [~4.1516,4.1516])

for the respectively midpoint inverse and the minimal width preconditioners

ev—1 _ (09091 0.1818 (102
(497 = (0.1818 —0.3636) » U= <0.5 —1) '

The corresponding contracted enclosure is
x' = ([—4.3031, 6.4850], [—4.3334, 3.9698])7 .

In contrast, the direct interval parametric Gauss—Seidel iteration with mid-
point inverse preconditioning gives

@? = ([~4.2668, 6.6668], [—4.3334, 3.3334)) ",

which tightened about 13.77% of the interval width on average, whereas the
optimal preconditioners yields

x® = ([~4.0308, 6.6283], [—3.8769, 2.6812])T,

which tightened about 20.38 % of the interval width on average. This enclosure
was computed by calculating separately the upper and the lower end-points by
using respectively the preconditioners

W (1 02115 ;[ 1 0.1889
¢ _<0.5978 -1 > ¢ _<0.4022 -1 >

Comparing ! and 3, we see that no one is better than the other one w.r.t.
inclusion.

It is interesting to consider the interval hull of the relaxed system, z* =
([0,4],[—2,2))T, as an initial enclosure, too. For the residual form method, the
midpoint inverse preconditioner does not improve this enclosure, but the optimal
preconditioner reduces it to

x® = ([0.0000, 3.8182], [~2.0001, 1.7686])” .

For the direct version, the midpoint inverse preconditioner also fails to tighten
x*, whereas the optimal preconditioner reduces the second component by half
to

x® = ([0,4], [-2,0)".
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Ezample 2. In Example 5.2 from Popova and Kramer [15], a resistive network
was considered with uncertain resistances. The output voltage was computed by
solving the interval parametric system

30 —10 —10 —10 O 1
—10 10 4 p1 + p2 —p1 0 0 0
A(p) .= | —10 —p1 5+pi+ps =5 0], bp):=1]0]{,
—10 0 -5 154+p40 0
0 0 -5 5 1 0

where p € p = [8,12] x [4, 8] x [8,12] x [8,12].

We will consider the enclosure computed by the residual and the direct inter-
val Gauss—Seidel method with the inverse midpoint preconditioner and initiated
by the verifylss enclosure for the relaxed system.

The residual form yields the enclosure

x' = (]0.0595,0.0851], [0.0262,0.0587], [0.0247,0.0514],
[0.0251,0.0479], [—0.0352,0.0499])T,
which is no further improved by the optimal preconditioner.
The direct form yields in 0.2194 s the enclosure
x? = (0.0575,0.0871], [0.0268,0.0660], [0.0247,0.0557],
[0.0267,0.0491], [—0.0527,0.0674])%".
Using the optimal preconditioner, it takes 1.2535 s to reduce the enclosure radii
by 15% on average, and the resulting enclosure is
x* = (]0.0626, 0.0862], [0.0293,0.0646], [0.0273,0.0541],
[0.0276,0.0482], [—0.0359,0.0573])%".
For comparison, verifylss enclosure for the system preconditioned by the
inverse midpoint reads
x* = ([0.0576,0.0871], [0.0187,0.0662], [0.0202,0.0558],
[0.0240,0.0491], [—0.0525,0.0672])%".

Hence, our enclosure &3 has by about 22 % (on average) smaller radii than x*.

4 Conclusion

We proposed a linear programming based method to compute an optimal pre-
conditioning matrix for the parametric interval Gauss—Seidel iterations. Even
though large numerical studies would be needed, some illustrative examples show
that the optimal preconditioner can sometimes reduce the ubiquitous overestima-
tion. Besides that, future research may be addressed to other types of optimality
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(S-preconditioners, pivoting preconditioners, and others), or to directly focus on
the interval Newton method (as done in Kearfott [5,6,8]). It would be also inter-
esting to investigate optimality of various preconditioners in generalized interval
systems, for instance for AE solutions of (non)-parametric interval systems [14].
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