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Abstract. The set of interval Hausdorff continuous functions constitutes
the largest space preserving basic algebraic and topological structural
properties of continuous functions, such as linearity, ring structure,
Dedekind order completeness, etc. Spaces of interval functions have impor-
tant applications not only in the construction of numerical methods and
algorithms, but to problems in abstract areas such as real analysis, set-
valued analysis, approximation theory and the analysis of PDEs. In this
work, we summarize some basic results about the family of interval Haus-
dorff continuous functions that make interval analysis a bridge between
numerical and real analysis. We focus on some approximation issues for-
mulating a new result on the Hausdorff approximation of Hausdorff con-
tinuous functions by interval step functions. The Hausdorff approximation
of the Heaviside interval step function by sigmoid functions arising from
biological applications is also considered, and an estimate for the Hausdorff
distance is obtained.

Keywords: Interval functions · Baire semi-continuous functions · Haus-
dorff continuous functions · Dilworth continuous functions · Sigmoid
functions

1 Introduction

Functions having discontinuities are encountered in many situations. A widely
used class of discontinuous functions is the class of Baire upper (lower) semi-
continuous functions [13]. Dilworth restricted the class of Baire semi-continuous
functions up to normal semi-continuous functions [15]. Both classes are con-
veniently reformulated in terms of interval-valued functions using graph com-
pletion operators [3]. For example, when a graph is completed, the Dilworth
normal semi-continuous functions are the Hausdorff continuous interval-valued
functions. Such a reformulation leads to interesting original results oriented to
practical applications.
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It has been shown that the space of Hausdorff continuous functions is the
largest linear space of interval functions [3–5,22]. This space has important appli-
cations in the theory of PDEs and real analysis [1,6–9,12]. Moreover, the space
of Hausdorff continuous functions has a special place in Interval Analysis as well,
more specifically in the analysis of interval-valued functions [2]. It has been also
shown that the practically relevant set, in terms of providing tight enclosures of
sets of real continuous functions, is the set of Dilworth continuous interval-valued
functions [5].

The relation between Baire semi-continuous functions and interval-valued
functions establishes a new paradigm for interval analysis as part of analysis
rather than (or in addition to) the field of numerical methods, where it is cur-
rently classified, see e.g. [23]. This provides a new research direction of applying
interval analysis to abstract mathematical problems. It has been shown that
the spaces of interval-valued functions1 have important applications not only
in the construction of numerical methods but to problems in more abstract
areas like real analysis, set-valued analysis, approximation theory and analysis
of PDEs. Some of the more interesting results are: (i) A generalization of the
order convergence structure on the space of Hausdorff continuous functions to a
convergence structure on the space of minimal upper semi-continuous compact
set-valued (shortly: usco) maps [10]; (ii) All rational extensions and their metric
completions of C(X) are subspaces of the space of Hausdorff continuous func-
tions [11]; (iii) The solutions of large classes of nonlinear systems of PDEs can
be presented with Hausdorff continuous interval functions [6,7]; (iv) The theory
of continuous viscosity solutions of Hamilton-Jacobi equations can be recast in
the setting of Hausdorff continuous functions, where the discontinuous solutions
are accommodated in a natural way [8].

In the next Sect. 2 we summarize some basic results concerning the class
of interval Hausdorff continuous functions and the related classes of interval
functions. Section 3 contains a new result on the Hausdoff approximation of
Hausdorff continuous functions by interval step functions. Section 4 is devoted
to a new result on the approximation of interval step functions by a class of
sigmoid functions arising from biological applications.

2 Classes of Interval Functions: Basic Results

The concept of Hausdorff continuity (H-continuity) generalizes the familiar con-
cept of continuity in such a way that many essential properties of the usual
continuous real functions are preserved. The set C(Ω) of all continuous real
functions defined on a subset Ω ⊂ R

n is a commutative ring with respect to the
point-wise defined addition and multiplication of functions and a linear space
with respect to addition and multiplication by a scalar. Is it possible to extend
the algebraic operations on C(Ω) to the set H(Ω) of H-continuous functions in
a way that preserves these two basic algebraic structures, that is, the set H(Ω)
1 For brevity we shall further write “interval function” instead of “interval-valued

function”.
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to become a commutative ring and linear space with respect to the extended
operations? It turns out that the answer is affirmative as briefly shown in the
sequel.

2.1 Basic Notation and Definitions: Baire Continuous Functions

Definition 1. [13] A real-valued function f is upper (lower) semi-continuous at
a point x0 if the function values for arguments near x0 are either close to f(x0)
or less (greater) than f(x0).

Intervals on the real line R are denoted as a = [a, a] = {x : a ≤ x ≤ a}, and
the set of all intervals is denoted IR = {[a, a] : a, a ∈ R, a ≤ a}; denote also
w(a) = a − a, and |a| = max{|a|, |a|}.

Let Ω ⊆ R
n be an open set. A real or interval function f on Ω is locally

bounded if for every x ∈ Ω there exist δ > 0 and M ∈ R such that |f(y)| <
M, y ∈ Bδ(x), Bδ(x) = {y ∈ Ω : ||x − y|| < δ}. Denote

A(Ω) = {f : Ω → IR, f locally bounded},

A(Ω) = {f : Ω → R, f locally bounded} ⊆ A(Ω).

Definition 2. D is a dense subset of Ω. The lower/upper Baire operators
I(D,Ω, ·), S(D,Ω, ·) : A(D) → A(Ω) are defined for f = [f, f ] ∈ A(D)
and x ∈ Ω by

I(D,Ω, f)(x) = sup
δ>0

inf {f(y) : y ∈ Bδ(x) ∩ D},

S(D,Ω, f)(x) = inf
δ>0

sup {f(y) : y ∈ Bδ(x) ∩ D}.

Definition 3. The graph completion operator F : A(D) → A(Ω) for f ∈ A(D)
is defined as

F (D,Ω, f)(x) = [I(D,Ω, f)(x), S(D,Ω, f)(x)], x ∈ Ω, f ∈ A(D).

For D = Ω we write

I(f) = I(Ω,Ω, f), S(f) = S(Ω,Ω, f), F (f) = F (Ω,Ω, f).

Using end-point presentation of functions: f = [f, f ] ∈ A(Ω) we can write

I(D,Ω, f) = I(D,Ω, f), S(D,Ω, f) = S(D,Ω, f),

F (D,Ω, f) = [I(D,Ω, f), S(D,Ω, f)].

Definition 4. A function f ∈ A(Ω) is S-continuous, if F (f) = f .

Definition 5. A function f ∈ A(Ω) is D-continuous, if for every dense subset
D of Ω, F (D, Ω, f) = f .
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Definition 6. A function f ∈ A(Ω) is H-continuous, if for every function g ∈
A(Ω) such that g(x) ⊆ f(x), x ∈ Ω, F (g)(x) = f(x), x ∈ Ω.

Theorem 1. For every f ∈ H(Ω) the set Wf = {x ∈ Ω : w(f(x)) > 0} is of
first Baire category (that is, H-continuous functions are “thin”).

H-continuous functions do not differ much from the usual real-valued continuous
functions because they assume interval values only on a meagre set2.

2.2 Arithmetic Operations in H(R)

Interval arithmetic operations are denoted as usually: for a = [a, a], b = [b, b] ∈ I R

we have a + b = {α + β : α ∈ a, β ∈ b}, a × b = {αβ : α ∈ a, β ∈ b};
or endpoint-wise: [a, a]+ [b, b] = [a+ b, a+ b], [a, a]× [b, b] = [min{ab, ab, ab, ab},
max{ab, ab, ab, ab}].

For functions f, g ∈ A(Ω), f = [f, f ], g = [g, g], x ∈ Ω, we have [2]

(f + g)(x) = f(x) + g(x) = [f(x) + g(x), f(x) + f(x)],

(f × g)(x) = f(x) × g(x) = [min M,max M ],

M = {f(x)g(x), f(x)g(x), f(x)g(x), f(x)g(x)}.

Example 1. Denote by h ∈ H(R) the (interval) Heaviside step function given by

h(x) =

⎧
⎨

⎩

0, if x < 0,
[0, 1], if x = 0,

1, if x > 0,
(1)

and g = (−1) × h ∈ H(R). For the sum h + g we have

(h + g)(x) = h(x) + g(x) =
{

0, if x < 0 or x > 0
[−1, 1], if x = 0,

showing that h + g /∈ H(R).

Theorem 2. (a) There exists a unique function p ∈ H(Ω) such that p(x) ⊆
(f + g)(x), x ∈ Ω; (b) There exists a unique function q ∈ H(Ω) such that
q(x) ⊆ (f × g)(x), x ∈ Ω.

We define H-addition and H-multiplication of H-continuous functions f, g ∈
H(Ω) via interval operations as follows.

Definition 7. (a) f ⊕ g is the unique H-continuous function p(x) as defined by
Theorem2 (a), that is satisfying (f ⊕ g)(x) ⊆ (f + g)(x), x ∈ Ω ; (b) f ⊗ g
is the unique H-continuous function q(x) as defined by Theorem2 (b), that is
satisfying (f ⊗ g)(x) ⊆ (f × g)(x), x ∈ Ω.
2 In topology, a meagre set, also called a set of first Baire category, is a set that,

considered as a subset of a (usually larger) topological space, is small or negligible.
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Example 2. For the H-sum of the Heaviside step function h ∈ H(R) given by
(1) and g = (−1) × h ∈ H(R) we have (h ⊕ g)(x) = 0, x ∈ R.

Theorem 3. The set H(Ω) is a commutative ring with identity with respect to
the H-operations ⊕ and ⊗.

Remark. Note that the H-operations ⊕ and ⊗ are not point-wise in general. At
a point where both operands have interval values the value of the H-sum ⊕ or
the H-product ⊗ are not determined by the values of the operands only at that
point but rather by the values of the operands in a neighborhood of the point.

In the special case when one of the operands is a real (point) valued function
the operations ⊕ and ⊗ coincide with the point-wise operations, namely we have:

(f ⊕ g)(x) = (f + g)(x) if w(f(x)) = 0 or w(g(x)) = 0,

(f ⊗ g)(x) = (f × g)(x) if w(f(x)) = 0 or w(g(x)) = 0.

More properties of the H-operations can be found in [4].

2.3 The Set of H-Continuous Functions as a Linear Space

Multiplication by a scalar is defined as multiplication by a constant function.
Since the value of this function is a real number this multiplication coincides
with the point-wise multiplication

(α ∗ f)(x) = α ∗ f(x) =
{

[α f(x), αf(x)] if α ≥ 0,

[α f(x), αf(x)] if α < 0.

The set H(Ω) is a linear space with respect to “⊕” and “∗”. Moreover, it is
the largest space of interval functions as stated in the next theorem.

Theorem 4. [5] Let G(Ω) be the set of all D-continuous interval functions.
Assume that the set P ⊆ G(Ω) is closed under inclusion in the sense that

f ∈ P, g ∈ G(Ω)
g(x) ⊆ f(x), x ∈ Ω.

}

=⇒ g ∈ P.

If P ⊆ G(Ω) is a linear space, then P ⊆ H(Ω).

Hence the H-operations “⊕”, “⊗” cannot be extended further than H(Ω) in
a way preserving the algebraic structure of C(Ω).

3 Hausdorff Approximations Using Step Functions

3.1 Hausdorff Distance and Modulus of H-Continuity

Let us recall that the Hausdorff distance (H-distance) ρ(f, g) between two func-
tions f, g ∈ A(Ω), Ω ⊆ R

n, is defined as the distance between their completed
graphs F (f) and F (g) considered as closed subsets of Ω × R [17], [21]. More
precisely,
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ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A − B||, sup
B∈F (g)

inf
A∈F (f)

||A − B||}, (2)

wherein ||.|| is a norm in R
n+1. In technical proofs presented in the sequel

we assume that the norm in R
n+1 is the maximum norm, that is for A =

(a1, ..., an+1) we have ||A|| = max{|a1|, ..., |an+1|}. However, all statements
remain true for any norm due to the equivalence of the norms in R

n+1.
In the space of S-continuous functions on Ω, the H-distance satisfies the

axioms of a metric. There is a natural connection between the H-continuous func-
tions and the H-distance. For example, one can easily see that an S-continuous
function f is H-continuous if and only if ρ(f, f) = 0. Indeed, it follows from
the definition that f is H-continuous if and only if F (f) = F (f) or, equivalently,
ρ(F (f), F (f)) = 0. The link between the two concepts is further discussed below
in terms of the modulus of H-continuity.

For δ > 0, the operators Iδ and Sδ are defined for f ∈ A(Ω) as follows

Iδ(f)(x) = inf{f(y) : y ∈ Bδ(x)}, x ∈ Ω, (3)

Sδ(f)(x) = sup{f(y) : y ∈ Bδ(x)}, x ∈ Ω. (4)

It is easy to see that in terms of Definition 2 we have

I(f)(x) = sup
δ>0

Iδ(f)(x), S(f)(x) = inf
δ>0

Sδ(f)(x), x ∈ Ω.

Definition 8. The modulus of H-continuity τ(f ; δ) for given f ∈ A(Ω) and
δ > 0 is the H-distance between Iδ(f) and Sδ(f), that is

τ(f ; δ) = ρ(Iδ(f), Sδ(f)) = ρ(F (Iδ(f)), F (Sδ(f))).

Theorem 5. [21] An S-continuous function f is H-continuous iff
limδ→0 τ(f ; δ) = 0.

3.2 Interval Step Functions as an Approximation Tool

The usual concept of step-functions of a real argument can be extended to H(Ω)
as follows.

Definition 9. A function f ∈ H(Ω) is called a step function if there exists a
collection {U1, U2, ..., Um} of open subsets of Ω with the following properties

(i) Ui ∩ Uj = ∅ for i �= j,

(ii) the set V =
k⋃

i=1

Ui is dense in Ω,

(iii) for every i ∈ {1, 2, ..., k}, f is a real constant on Ui.

It is easy to see that a step function is completely determined by its values
on the open set V . In fact we have f = F (V,Ω, f |V ). Similarly to the real step
functions, an interval step function f assumes finite number of values, namely the
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constant values on the sets Ui, i = 1, 2, ..., k, and some real intervals with end-
points equal to the constant functional values. Further, we note that the set of
step functions is a linear subspace of H(Ω). Indeed, the sum of step functions is
a step function and so is the product of a step function and a real number. In the
next theorem we establish some approximation properties of the step functions.

Theorem 6. Let f ∈ H(Ω). For every ε > 0 there exists a step function ϕ such
that ρ(f, ϕ) < ε.

Proof. In view of Theorem 5, there exists δ > 0 such that τ(f ; δ) < ε. Then
consider any collection of open sets {U1, U2, ..., Um} with the properties (i) and
(ii) as given in Definition 9 and such that the diameter of each set is smaller
than δ. These can be constructed for example by partitioning Ω via the planes
xl = iδ, i ∈ Z, l = 1, 2, ..., n. Since f assumes interval values only on a meagre
subset of Ω, for every i ∈ {1, 2, ..., k} there exists x(i) ∈ Ui such that f(x(i)) ∈ R.
Define ψ(x) = f(x(i)) for x ∈ Ui, i = 1, 2, ..., k, and ϕ = F (V,Ω, ψ).

We show that ϕ is the required function. First let us note that ϕ is a step
function. Indeed, since ψ is continuous on any Ui, the operator F does not change
the values of ψ on each of these sets, so that ϕ(x) = ψ(x), x ∈ V . This implies
both that ϕ is H-continuous and that it is a step function. Further, from the
definition of ϕ it follows that

Iδ(f) ≤ ϕ ≤ Sδ(f).

Therefore, we have

ρ(f, ϕ) ≤ ρ(Iδ(f), Sδ(f)) = τ(f ; δ) < ε,

which proves the theorem.

In the special case of a real argument, the interval step-functions have a
simple representation in terms of the Heaviside step function h given in (1).
Indeed, when Ω = R, the sets Ui, i = 1, ..., k, associated with an interval step
function f in terms of Definition 9 are open intervals of the form (di−1, di), where
d0 = −∞, dk = +∞, and d1, d2, ..., dk−1 is a finite increasing sequence of reals.
Let f(x) = ci for x ∈ (di−1, di). A familiar rectangular pulse on the interval
[di−1, di], i = 1, ..., k − 1, is represented as

h(x − di−1) − h(x − di)

Then the step function f is given by

f(x)= c1(1−h(x−d1)) ⊕ c2(h(x−d1)−h(x−d2)) ⊕ ... ⊕ ck−1(h(x−dk−2)−h(x−dk−1))

⊕ ckh(x−dk−1) = c1 +

k−1∑

i=1

(ci+1 − ci)h(x−di).

Note that f is discontinuous only at the points d1, ..., dk−1 where it assumes
interval values. More precisely, we have
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f(di) =
{

[ci, ci+1] if ci < ci+1

[ci+1, ci] if ci > ci+1
.

For other approximation properties using Hausdorff metric adapted to reso-
lution analysis one may consult Sect. 6 of [3].

4 Approximation by Sigmoid Functions

Sigmoid functions find multiple applications to neural networks and cell growth
population models [14,20]. A sigmoid function on R with a range [a, b] is defined
as a monotone function s(t) : R → [a, b] such that limt→−∞ s(t) = a, and
limt→∞ s(t) = b. One usually considers continuous (or even smooth) sigmoid
functions. Within the class of H-continuous interval functions, the Heaviside
step function is a particular case of sigmoid function.

4.1 Approximation by Sigmoid Logistic Functions

An important class of smooth sigmoid functions arises from population growth
models. A classical example is the familiar Verhulst population growth model,
also known as logistic model. One can arrive to this model starting from the
reaction equation U + X

k−→ X + X, where U is a nutrient substance, X
is a particular population and k is the specific growth rate of the population.
The biological interpretation ot this reaction equation is that the nutrient U
is utilized by the population X leading to the reproduction of the population.
Denoting the biomass of X by x and the mass (concentration) of U by u and
applying the mass action law, one obtains the dynamical system

du/dt = −kxu,
dx/dt = kxu,
u(0) = u0, x(0) = x0.

Noticing that u′ + x′ = 0, hence u + x = x0 + u0 = const = a, we can substitute
u = a − x in the differential equation for x to obtain the Verhulst differential
equation x′ = kux = kx(a − x). The latter is usually written with a normalized
rate constant k := k/a as

dx

dt
=

k

a
x(a − x) = kx

(
1 − x

a

)
, x(0) = x0. (5)

The solution x to Eq. (5) passing through the point (0, x(0) = x0 = a/2) is the
(basic) logistic sigmoid function:

s0(t) =
a

1 + be−kt
; b =

a − x0

x0
= 1. (6)

In what follows we shall estimate the H-distance between a step function f and
a logistic sigmoid function g. Without loss of generality we can consider the Heav-
iside step function f = ah and the logistic sigmoid function (6): g = s0. Accord-
ing to (2) the H-distance ρ(f, g) between two functions f, g ∈ A(Ω) for Ω ⊂ R
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makes use of the maximum norm in R2 so that the distance between the points
A = (tA, xA), B = (tB , xB) in R2 is ||A−B|| = max(|tA − tB |, |xA −xB |). In that
case the H-distance d = ρ(h, s0) between the Heaviside step function ah and the
sigmoid function (6) satisfies the relations 0 < d < a/2 and a− s0(d) = d, that is

(a − d)/d = ekd, (0 < d < a/2). (7)

Obviously d → 0 implies k → ∞ (and vice versa). From (7), a straightforward
expression for the rate parameter k in terms of d follows:

k =
1
d

ln
a − d

d
= O(d−1 ln(d−1)). (8)

4.2 Estimate for the H-Distance in Terms of the Rate Parameter

Relation (8) gives an estimate of the rate k in terms of the H-distance d. The
following theorem gives a relation for the H-distance d in terms of the rate
parameter k. For simplicity we assume a = 1, denoting thus in the sequel s0(t) =
(1 + e−kt)−1.

Theorem 7. The Hausdorff distance d = ρ(h, s) between the Heaviside step
function h0 and the sigmoid Verhulst function s0 can be expressed in terms of
the reaction rate k as follows:

d =
ln(k + 1)

k + 1

(

1 + O

(
ln ln(k + 1)
ln(k + 1)

))

. (9)

Proof. Assuming a = 1 relation (7) becomes (1 − d)/d = ekd for 0 < d < 1/2.
This implies kd = ln(1/d) + ln(1 − d). In order to express d in terms of k, let us
examine the function

f(d) = kd − ln(1/d) − ln(1 − d), 0 < d < 1/2.

From lim f(d)d→0,d>0 = −∞, lim f(d)d→1/2,d<1/2 = k/2 > 0 we conclude that
f(d) = 0 possesses a solution in (0, 1/2). From f ′(d) = k+1/d+1/(1−d) > 0 we
conclude that function f is strictly monotonically increasing, hence f(d) = 0 has
an unique solution d(k) in (0, 1/2). For k → ∞ we have d(k) → 0, hence ln(1 −
d(k)) = −d(k) + O(d(k)2). Consider then the function g(d) = (k + 1)d − ln(1/d)
which approximates function f with d → 0 as O(d2); in addition g′(d) > 0. So
we can further denote by d(k) the (unique) zero of g and study g instead of f .
We look for two reals d− and d+ such that g(d−) < 0 and g(d+) > 0 (leading
to g(d−) < g(d(k)) < g(d+) and thus d− < d(k) < d+). Trying d− = 1/(k + 1)
and d+ = ln(k + 1)/(k + 1) we obtain g(1/(k + 1)) = 1 − ln(k + 1) < 0 and
g(ln(k + 1)/(k + 1)) = ln ln(k + 1) > 0 proving the estimates 1/(k + 1) < d(k) <
ln(k + 1)/(k + 1). To find a better lower bound we compute

g

(
ln(k + 1)

k + 1

(

1 − ln ln(k + 1)
ln(k + 1)

))

= ln
(

1 − ln ln(k + 1)
ln(k + 1)

)

< 0.
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We thus obtain

ln(k + 1)
k + 1

− ln ln(k + 1)
k + 1

< d(k) <
ln(k + 1)

k + 1
,

which implies (9).

Remark. In the general case a �= 1 one should substitute in (9) k+1 by k+a−1.

5 Conclusions

We briefly summarized some basic results (Theorems 1–5) about H-continuous
functions and their application to problems in abstract areas such as real analy-
sis, approximation theory, set-valued analysis and analysis of PDEs. We then for-
mulated and proved a new result (Theorem 6) on the Hausdorff approximation
of H-continuous functions by interval step functions defined on an open subset of
R

n. Finally we discussed some applications of H-continuous functions to biological
dynamic processes, in particular, we considered the remarkable phenomenon that
certain enzyme kinetic and population growth processes develop almost step-wise
[16,20]. Such processes are usually described or approximated by smooth sigmoid
functions (especially in the theory of artificial neural networks). However, it is
possible that H-continuous step-wise functions can be also conveniently used. To
substitute a sigmoid function by a step function, we need to know the approxi-
mation error (Theorem 7). Biological processes are often very sensitive and can
be effectively studied within the framework of interval analysis [19]. In addition,
the input data coming from biological experiments are usually rather uncertain
and thus can be represented as interval data. If these interval data are guaran-
teed (that is they include the measurement errors), then numerical methods and
programming tools with automatic result verification can be used [18].

The presented results suggest that interval analysis, apart from being cur-
rently associated with numerical analysis, can also be considered as belonging
to the field of real analysis. We may thus consider interval analysis as a bridge
between real and numerical analysis, a bridge that extends both subjects and
unifies them into a common scientific area.

Acknowledgments. RA acknowledges partial support of the National Research
Foundation of South Africa. RA and SM acknowledge partial support by the Institute
of Mathematics and Informatics at the Bulgarian Academy of Sciences. The authors
thank Prof. Kamen Ivanov for the analysis and derivation of formula (9). They are
grateful to the anonimous reviewer for his careful reading and many remarks.

References

1. Anguelov, R.: Dedekind order completion of C(X) by Hausdorff continuous func-
tions. Quaestiones Mathematicae 27, 153–170 (2004)



Hausdorff Continuous Interval Functions and Approximations 13

2. Anguelov, R., Markov, S.: Extended segment analysis, Freiburger Intervall-
Berichte, Inst. Angew. Math, U. Freiburg i. Br. 10, pp. 1–63 (1981)

3. Anguelov, R., Markov, S., Sendov, B.: On the normed linear space of Hausdorff
continuous functions. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005.
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