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In Memory of Walter Krämer

This book is dedicated to Walter Krämer (1952 – 2014), the longtime chair of the
SCAN Scientific Committee.

After having suffered from a long and heavy illness,
Walter Krämer passed away Monday, October 27, shortly
after this conference. His whole (scientific) life was ded-
icated to reliable computing. In the year 1979 he started
his career in reliable floating point computations with a
diploma (master) thesis on the evaluation of standard
functions for the IBM/370 hexadecimal floating point
architecture that became one of the cornerstones of the
IBM ACRITH project. In 1987 he earned his PhD from
the University of Karlsruhe. Six years later he advanced
his topic further by finishing his habilitation on the
calculation of functions and constants in computers. He
worked on several research andmanagement positions at theUniversity ofKarlsruhe until
he became professor at the University of Wuppertal, holding the chair of scientific
computing and software engineering. He provided a great service to the community by
maintaining and further developing C-XSC, one of the most widely used interval arith-
metic packages. He was also active in representing and promoting our field. He was the
chair of the GAMM Activity Group on Computer Arithmetic and Scientific Computing.
After the closing of this group he founded another one with similar content:
Computer-Assisted Proofs and Symbolic Computations. He also was a well-accepted
teacher at the University of Wuppertal and supervised more than 12 PhD theses.
According to his mission to spread the idea of reliable computing, it is not surprising that
several of his PhD students came from abroad, e.g., Brazil or Egypt.

All in all Walter Krämer was one of the most active promoters of our field. He was
never afraid of difficult and time-consuming work when the idea of reliable computing
was to be pushed. He traveled extensively and had contacts with researchers all around
the world. Even in the advanced state of his disease, he tried to keep in touch with his
research group.

The whole community and I in particular will always remember our colleague and
friend Walter Krämer.

March 2016 Jürgen Wolff von Gudenberg

A bibliography of Walter Krämer’s work can be found at the end of this book.
Picture: © Angelika Krämer-Maiss, consent for publication is granted.



Preface

SCAN2014, the 16th GAMM-IMACS International Symposium on Scientific
Computing, Computer Arithmetic, and Validated Numerics, was held in Würzburg,
Germany, September 21–26, 2014. This conference continued the series of interna-
tional SCAN symposia initiated in the late 1980s by the University of Karlsruhe,
Germany, and organized under the joint auspices of GAMM and IMACS. SCAN
symposia have been held in Germany, Europe, the USA, Russia, and Japan. The next
two SCAN conferences are scheduled to be held in Sweden and Japan.

The main concerns of research addressed by SCAN conferences are validation,
verification, or reliable assertions of numerical computations. Interval arithmetic and
other treatments of uncertainty are developed as appropriate tools. In computer science
validation usually means finding the right model, whereas verification means imple-
menting the model correctly. In our context, indeed, we use both validation and ver-
ification when solving real-life problems. It makes sense to consider the mathematical
modeling technology in more detail and to understand what is coupled with this or that
concept. We have:

Real-life ⇒ Field oriented ⇒ Mathematical ⇒ Numerical
phenomenon model model answer

“Validation” applies to the first and second arrows in the scheme, while “verification”
characterizes the third one. Numerical methods, algorithms, and computations are
responsible for the third arrow, too; they are not present in the first and second stages
of the modeling process. This is why in connection with numerical methods “verifi-
cation” is more appropriate. Worrying about whether the thickness of the input inter-
vals correctly captures uncertainty in the physical problem, however, is validation.1

One of the duties of the SCAN conferences is the awarding of the Moore Prize for
the application of interval arithmetic. This year Prof. Kenta Kobayashi was selected for
his research on the wave equation.

The symposium attracted more than 80 participants from 18 countries. The fol-
lowing seven invited lectures were given: Sylvie Boldo (Inria, France) gave a lecture
about formal verification of tricky numerical computations. Ekaterina Auer (University
of Duisburg-Essen, Germany) talked about result verification and uncertainty man-
agement in engineering applications. Bartlomiej Jacek Kubica (Warsaw University of
Technology, Poland) presented interval methods for solving of quantified nonlinear
problems. Interval arithmetic, one of the main subjects of the SCAN conferences, has
been standardized as IEEE Std 1788. Many participants of the symposium were active
in this working group. The technical editor John Price (Cardiff University, UK)
introduced the architecture of this standard in a plenary talk. Andrej Bauer (University

1 Discussion initiated by S. Shary.



of Ljubljana, Slovenia) reported on programming techniques for exact real arithmetic.
John Gustafson (Ceranovo Inc., USA) proposed an energy-efficient and massively
parallel approach to valid numerics, which may replace floating point arithmetic in the
future. Algorithmic and software challenges at extreme scales were the topic of Jack
Dongarra’s (University of Tennessee and ORNL, USA) lecture.

More than 60 contributed talks were given. A strict and careful reviewing process
resulted in the 22 contributions that are collected in this volume. We take the oppor-
tunity to thank all the reviewers for their detailed comments presented in time. A great
help in organizing this review process was offered by Warwick Tucker (Uppsala
University, Sweden), the host of SCAN2016—many thanks.

I further want to thank the members of the Scientific Committee, whoever I asked
gave me immediate feedback, as well as the organizers of the last three meetings,
Vladik Kreinovich (El Paso), Nathalie Revol (Lyon), and Sergey Shary (Novosibirsk)
in particular.

I express a special thanks to all our sponsors, their donations made the conference
possible. Organizing such a conference involves a lot of work, but organizing this
conference was a real pleasure for me, thanks to the tremendous assistance I got from
the Organizing Committee comprising Alexander Dallmann, Fritz Kleemann, Marco
Nehmeier, Anika Schwind, and Susanne Stenglin.

December 2015 Jürgen Wolff von Gudenberg

Country Participants Country Participants
Germany 18 UK 2
Japan 17 Austria 1
France 16 Brazil 1
USA 7 China 1
Russia 6 India 1
Czech Republic 3 The Netherlands 1
Bulgaria 2 Poland 1
Egypt 2 Slovenia 1
Hungary 2 Sweden 1
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Hausdorff Continuous Interval Functions
and Approximations

Roumen Anguelov1,2 and Svetoslav Markov2(B)

1 Deptartment Mathematics and Applied Mathematics,
University of Pretoria, Pretoria, South Africa

roumen.anguelov@up.ac.za
2 Institute of Mathematics and Informatics,

Bulgarian Academy of Sciences, Sofia, Bulgaria
smarkov@bio.bas.bg

Abstract. The set of interval Hausdorff continuous functions constitutes
the largest space preserving basic algebraic and topological structural
properties of continuous functions, such as linearity, ring structure,
Dedekind order completeness, etc. Spaces of interval functions have impor-
tant applications not only in the construction of numerical methods and
algorithms, but to problems in abstract areas such as real analysis, set-
valued analysis, approximation theory and the analysis of PDEs. In this
work, we summarize some basic results about the family of interval Haus-
dorff continuous functions that make interval analysis a bridge between
numerical and real analysis. We focus on some approximation issues for-
mulating a new result on the Hausdorff approximation of Hausdorff con-
tinuous functions by interval step functions. The Hausdorff approximation
of the Heaviside interval step function by sigmoid functions arising from
biological applications is also considered, and an estimate for the Hausdorff
distance is obtained.

Keywords: Interval functions · Baire semi-continuous functions · Haus-
dorff continuous functions · Dilworth continuous functions · Sigmoid
functions

1 Introduction

Functions having discontinuities are encountered in many situations. A widely
used class of discontinuous functions is the class of Baire upper (lower) semi-
continuous functions [13]. Dilworth restricted the class of Baire semi-continuous
functions up to normal semi-continuous functions [15]. Both classes are con-
veniently reformulated in terms of interval-valued functions using graph com-
pletion operators [3]. For example, when a graph is completed, the Dilworth
normal semi-continuous functions are the Hausdorff continuous interval-valued
functions. Such a reformulation leads to interesting original results oriented to
practical applications.

c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-31769-4 1



4 R. Anguelov and S. Markov

It has been shown that the space of Hausdorff continuous functions is the
largest linear space of interval functions [3–5,22]. This space has important appli-
cations in the theory of PDEs and real analysis [1,6–9,12]. Moreover, the space
of Hausdorff continuous functions has a special place in Interval Analysis as well,
more specifically in the analysis of interval-valued functions [2]. It has been also
shown that the practically relevant set, in terms of providing tight enclosures of
sets of real continuous functions, is the set of Dilworth continuous interval-valued
functions [5].

The relation between Baire semi-continuous functions and interval-valued
functions establishes a new paradigm for interval analysis as part of analysis
rather than (or in addition to) the field of numerical methods, where it is cur-
rently classified, see e.g. [23]. This provides a new research direction of applying
interval analysis to abstract mathematical problems. It has been shown that
the spaces of interval-valued functions1 have important applications not only
in the construction of numerical methods but to problems in more abstract
areas like real analysis, set-valued analysis, approximation theory and analysis
of PDEs. Some of the more interesting results are: (i) A generalization of the
order convergence structure on the space of Hausdorff continuous functions to a
convergence structure on the space of minimal upper semi-continuous compact
set-valued (shortly: usco) maps [10]; (ii) All rational extensions and their metric
completions of C(X) are subspaces of the space of Hausdorff continuous func-
tions [11]; (iii) The solutions of large classes of nonlinear systems of PDEs can
be presented with Hausdorff continuous interval functions [6,7]; (iv) The theory
of continuous viscosity solutions of Hamilton-Jacobi equations can be recast in
the setting of Hausdorff continuous functions, where the discontinuous solutions
are accommodated in a natural way [8].

In the next Sect. 2 we summarize some basic results concerning the class
of interval Hausdorff continuous functions and the related classes of interval
functions. Section 3 contains a new result on the Hausdoff approximation of
Hausdorff continuous functions by interval step functions. Section 4 is devoted
to a new result on the approximation of interval step functions by a class of
sigmoid functions arising from biological applications.

2 Classes of Interval Functions: Basic Results

The concept of Hausdorff continuity (H-continuity) generalizes the familiar con-
cept of continuity in such a way that many essential properties of the usual
continuous real functions are preserved. The set C(Ω) of all continuous real
functions defined on a subset Ω ⊂ R

n is a commutative ring with respect to the
point-wise defined addition and multiplication of functions and a linear space
with respect to addition and multiplication by a scalar. Is it possible to extend
the algebraic operations on C(Ω) to the set H(Ω) of H-continuous functions in
a way that preserves these two basic algebraic structures, that is, the set H(Ω)
1 For brevity we shall further write “interval function” instead of “interval-valued

function”.
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to become a commutative ring and linear space with respect to the extended
operations? It turns out that the answer is affirmative as briefly shown in the
sequel.

2.1 Basic Notation and Definitions: Baire Continuous Functions

Definition 1. [13] A real-valued function f is upper (lower) semi-continuous at
a point x0 if the function values for arguments near x0 are either close to f(x0)
or less (greater) than f(x0).

Intervals on the real line R are denoted as a = [a, a] = {x : a ≤ x ≤ a}, and
the set of all intervals is denoted IR = {[a, a] : a, a ∈ R, a ≤ a}; denote also
w(a) = a − a, and |a| = max{|a|, |a|}.

Let Ω ⊆ R
n be an open set. A real or interval function f on Ω is locally

bounded if for every x ∈ Ω there exist δ > 0 and M ∈ R such that |f(y)| <
M, y ∈ Bδ(x), Bδ(x) = {y ∈ Ω : ||x − y|| < δ}. Denote

A(Ω) = {f : Ω → IR, f locally bounded},

A(Ω) = {f : Ω → R, f locally bounded} ⊆ A(Ω).

Definition 2. D is a dense subset of Ω. The lower/upper Baire operators
I(D,Ω, ·), S(D,Ω, ·) : A(D) → A(Ω) are defined for f = [f, f ] ∈ A(D)
and x ∈ Ω by

I(D,Ω, f)(x) = sup
δ>0

inf {f(y) : y ∈ Bδ(x) ∩ D},

S(D,Ω, f)(x) = inf
δ>0

sup {f(y) : y ∈ Bδ(x) ∩ D}.

Definition 3. The graph completion operator F : A(D) → A(Ω) for f ∈ A(D)
is defined as

F (D,Ω, f)(x) = [I(D,Ω, f)(x), S(D,Ω, f)(x)], x ∈ Ω, f ∈ A(D).

For D = Ω we write

I(f) = I(Ω,Ω, f), S(f) = S(Ω,Ω, f), F (f) = F (Ω,Ω, f).

Using end-point presentation of functions: f = [f, f ] ∈ A(Ω) we can write

I(D,Ω, f) = I(D,Ω, f), S(D,Ω, f) = S(D,Ω, f),

F (D,Ω, f) = [I(D,Ω, f), S(D,Ω, f)].

Definition 4. A function f ∈ A(Ω) is S-continuous, if F (f) = f .

Definition 5. A function f ∈ A(Ω) is D-continuous, if for every dense subset
D of Ω, F (D, Ω, f) = f .
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Definition 6. A function f ∈ A(Ω) is H-continuous, if for every function g ∈
A(Ω) such that g(x) ⊆ f(x), x ∈ Ω, F (g)(x) = f(x), x ∈ Ω.

Theorem 1. For every f ∈ H(Ω) the set Wf = {x ∈ Ω : w(f(x)) > 0} is of
first Baire category (that is, H-continuous functions are “thin”).

H-continuous functions do not differ much from the usual real-valued continuous
functions because they assume interval values only on a meagre set2.

2.2 Arithmetic Operations in H(R)

Interval arithmetic operations are denoted as usually: for a = [a, a], b = [b, b] ∈ I R

we have a + b = {α + β : α ∈ a, β ∈ b}, a × b = {αβ : α ∈ a, β ∈ b};
or endpoint-wise: [a, a]+ [b, b] = [a+ b, a+ b], [a, a]× [b, b] = [min{ab, ab, ab, ab},
max{ab, ab, ab, ab}].

For functions f, g ∈ A(Ω), f = [f, f ], g = [g, g], x ∈ Ω, we have [2]

(f + g)(x) = f(x) + g(x) = [f(x) + g(x), f(x) + f(x)],

(f × g)(x) = f(x) × g(x) = [min M,max M ],

M = {f(x)g(x), f(x)g(x), f(x)g(x), f(x)g(x)}.

Example 1. Denote by h ∈ H(R) the (interval) Heaviside step function given by

h(x) =

⎧
⎨

⎩

0, if x < 0,
[0, 1], if x = 0,

1, if x > 0,
(1)

and g = (−1) × h ∈ H(R). For the sum h + g we have

(h + g)(x) = h(x) + g(x) =
{

0, if x < 0 or x > 0
[−1, 1], if x = 0,

showing that h + g /∈ H(R).

Theorem 2. (a) There exists a unique function p ∈ H(Ω) such that p(x) ⊆
(f + g)(x), x ∈ Ω; (b) There exists a unique function q ∈ H(Ω) such that
q(x) ⊆ (f × g)(x), x ∈ Ω.

We define H-addition and H-multiplication of H-continuous functions f, g ∈
H(Ω) via interval operations as follows.

Definition 7. (a) f ⊕ g is the unique H-continuous function p(x) as defined by
Theorem2 (a), that is satisfying (f ⊕ g)(x) ⊆ (f + g)(x), x ∈ Ω ; (b) f ⊗ g
is the unique H-continuous function q(x) as defined by Theorem2 (b), that is
satisfying (f ⊗ g)(x) ⊆ (f × g)(x), x ∈ Ω.
2 In topology, a meagre set, also called a set of first Baire category, is a set that,

considered as a subset of a (usually larger) topological space, is small or negligible.
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Example 2. For the H-sum of the Heaviside step function h ∈ H(R) given by
(1) and g = (−1) × h ∈ H(R) we have (h ⊕ g)(x) = 0, x ∈ R.

Theorem 3. The set H(Ω) is a commutative ring with identity with respect to
the H-operations ⊕ and ⊗.

Remark. Note that the H-operations ⊕ and ⊗ are not point-wise in general. At
a point where both operands have interval values the value of the H-sum ⊕ or
the H-product ⊗ are not determined by the values of the operands only at that
point but rather by the values of the operands in a neighborhood of the point.

In the special case when one of the operands is a real (point) valued function
the operations ⊕ and ⊗ coincide with the point-wise operations, namely we have:

(f ⊕ g)(x) = (f + g)(x) if w(f(x)) = 0 or w(g(x)) = 0,

(f ⊗ g)(x) = (f × g)(x) if w(f(x)) = 0 or w(g(x)) = 0.

More properties of the H-operations can be found in [4].

2.3 The Set of H-Continuous Functions as a Linear Space

Multiplication by a scalar is defined as multiplication by a constant function.
Since the value of this function is a real number this multiplication coincides
with the point-wise multiplication

(α ∗ f)(x) = α ∗ f(x) =
{

[α f(x), αf(x)] if α ≥ 0,

[α f(x), αf(x)] if α < 0.

The set H(Ω) is a linear space with respect to “⊕” and “∗”. Moreover, it is
the largest space of interval functions as stated in the next theorem.

Theorem 4. [5] Let G(Ω) be the set of all D-continuous interval functions.
Assume that the set P ⊆ G(Ω) is closed under inclusion in the sense that

f ∈ P, g ∈ G(Ω)
g(x) ⊆ f(x), x ∈ Ω.

}

=⇒ g ∈ P.

If P ⊆ G(Ω) is a linear space, then P ⊆ H(Ω).

Hence the H-operations “⊕”, “⊗” cannot be extended further than H(Ω) in
a way preserving the algebraic structure of C(Ω).

3 Hausdorff Approximations Using Step Functions

3.1 Hausdorff Distance and Modulus of H-Continuity

Let us recall that the Hausdorff distance (H-distance) ρ(f, g) between two func-
tions f, g ∈ A(Ω), Ω ⊆ R

n, is defined as the distance between their completed
graphs F (f) and F (g) considered as closed subsets of Ω × R [17], [21]. More
precisely,
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ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A − B||, sup
B∈F (g)

inf
A∈F (f)

||A − B||}, (2)

wherein ||.|| is a norm in R
n+1. In technical proofs presented in the sequel

we assume that the norm in R
n+1 is the maximum norm, that is for A =

(a1, ..., an+1) we have ||A|| = max{|a1|, ..., |an+1|}. However, all statements
remain true for any norm due to the equivalence of the norms in R

n+1.
In the space of S-continuous functions on Ω, the H-distance satisfies the

axioms of a metric. There is a natural connection between the H-continuous func-
tions and the H-distance. For example, one can easily see that an S-continuous
function f is H-continuous if and only if ρ(f, f) = 0. Indeed, it follows from
the definition that f is H-continuous if and only if F (f) = F (f) or, equivalently,
ρ(F (f), F (f)) = 0. The link between the two concepts is further discussed below
in terms of the modulus of H-continuity.

For δ > 0, the operators Iδ and Sδ are defined for f ∈ A(Ω) as follows

Iδ(f)(x) = inf{f(y) : y ∈ Bδ(x)}, x ∈ Ω, (3)

Sδ(f)(x) = sup{f(y) : y ∈ Bδ(x)}, x ∈ Ω. (4)

It is easy to see that in terms of Definition 2 we have

I(f)(x) = sup
δ>0

Iδ(f)(x), S(f)(x) = inf
δ>0

Sδ(f)(x), x ∈ Ω.

Definition 8. The modulus of H-continuity τ(f ; δ) for given f ∈ A(Ω) and
δ > 0 is the H-distance between Iδ(f) and Sδ(f), that is

τ(f ; δ) = ρ(Iδ(f), Sδ(f)) = ρ(F (Iδ(f)), F (Sδ(f))).

Theorem 5. [21] An S-continuous function f is H-continuous iff
limδ→0 τ(f ; δ) = 0.

3.2 Interval Step Functions as an Approximation Tool

The usual concept of step-functions of a real argument can be extended to H(Ω)
as follows.

Definition 9. A function f ∈ H(Ω) is called a step function if there exists a
collection {U1, U2, ..., Um} of open subsets of Ω with the following properties

(i) Ui ∩ Uj = ∅ for i �= j,

(ii) the set V =
k⋃

i=1

Ui is dense in Ω,

(iii) for every i ∈ {1, 2, ..., k}, f is a real constant on Ui.

It is easy to see that a step function is completely determined by its values
on the open set V . In fact we have f = F (V,Ω, f |V ). Similarly to the real step
functions, an interval step function f assumes finite number of values, namely the
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constant values on the sets Ui, i = 1, 2, ..., k, and some real intervals with end-
points equal to the constant functional values. Further, we note that the set of
step functions is a linear subspace of H(Ω). Indeed, the sum of step functions is
a step function and so is the product of a step function and a real number. In the
next theorem we establish some approximation properties of the step functions.

Theorem 6. Let f ∈ H(Ω). For every ε > 0 there exists a step function ϕ such
that ρ(f, ϕ) < ε.

Proof. In view of Theorem 5, there exists δ > 0 such that τ(f ; δ) < ε. Then
consider any collection of open sets {U1, U2, ..., Um} with the properties (i) and
(ii) as given in Definition 9 and such that the diameter of each set is smaller
than δ. These can be constructed for example by partitioning Ω via the planes
xl = iδ, i ∈ Z, l = 1, 2, ..., n. Since f assumes interval values only on a meagre
subset of Ω, for every i ∈ {1, 2, ..., k} there exists x(i) ∈ Ui such that f(x(i)) ∈ R.
Define ψ(x) = f(x(i)) for x ∈ Ui, i = 1, 2, ..., k, and ϕ = F (V,Ω, ψ).

We show that ϕ is the required function. First let us note that ϕ is a step
function. Indeed, since ψ is continuous on any Ui, the operator F does not change
the values of ψ on each of these sets, so that ϕ(x) = ψ(x), x ∈ V . This implies
both that ϕ is H-continuous and that it is a step function. Further, from the
definition of ϕ it follows that

Iδ(f) ≤ ϕ ≤ Sδ(f).

Therefore, we have

ρ(f, ϕ) ≤ ρ(Iδ(f), Sδ(f)) = τ(f ; δ) < ε,

which proves the theorem.

In the special case of a real argument, the interval step-functions have a
simple representation in terms of the Heaviside step function h given in (1).
Indeed, when Ω = R, the sets Ui, i = 1, ..., k, associated with an interval step
function f in terms of Definition 9 are open intervals of the form (di−1, di), where
d0 = −∞, dk = +∞, and d1, d2, ..., dk−1 is a finite increasing sequence of reals.
Let f(x) = ci for x ∈ (di−1, di). A familiar rectangular pulse on the interval
[di−1, di], i = 1, ..., k − 1, is represented as

h(x − di−1) − h(x − di)

Then the step function f is given by

f(x)= c1(1−h(x−d1)) ⊕ c2(h(x−d1)−h(x−d2)) ⊕ ... ⊕ ck−1(h(x−dk−2)−h(x−dk−1))

⊕ ckh(x−dk−1) = c1 +

k−1∑

i=1

(ci+1 − ci)h(x−di).

Note that f is discontinuous only at the points d1, ..., dk−1 where it assumes
interval values. More precisely, we have
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f(di) =
{

[ci, ci+1] if ci < ci+1

[ci+1, ci] if ci > ci+1
.

For other approximation properties using Hausdorff metric adapted to reso-
lution analysis one may consult Sect. 6 of [3].

4 Approximation by Sigmoid Functions

Sigmoid functions find multiple applications to neural networks and cell growth
population models [14,20]. A sigmoid function on R with a range [a, b] is defined
as a monotone function s(t) : R → [a, b] such that limt→−∞ s(t) = a, and
limt→∞ s(t) = b. One usually considers continuous (or even smooth) sigmoid
functions. Within the class of H-continuous interval functions, the Heaviside
step function is a particular case of sigmoid function.

4.1 Approximation by Sigmoid Logistic Functions

An important class of smooth sigmoid functions arises from population growth
models. A classical example is the familiar Verhulst population growth model,
also known as logistic model. One can arrive to this model starting from the
reaction equation U + X

k−→ X + X, where U is a nutrient substance, X
is a particular population and k is the specific growth rate of the population.
The biological interpretation ot this reaction equation is that the nutrient U
is utilized by the population X leading to the reproduction of the population.
Denoting the biomass of X by x and the mass (concentration) of U by u and
applying the mass action law, one obtains the dynamical system

du/dt = −kxu,
dx/dt = kxu,
u(0) = u0, x(0) = x0.

Noticing that u′ + x′ = 0, hence u + x = x0 + u0 = const = a, we can substitute
u = a − x in the differential equation for x to obtain the Verhulst differential
equation x′ = kux = kx(a − x). The latter is usually written with a normalized
rate constant k := k/a as

dx

dt
=

k

a
x(a − x) = kx

(
1 − x

a

)
, x(0) = x0. (5)

The solution x to Eq. (5) passing through the point (0, x(0) = x0 = a/2) is the
(basic) logistic sigmoid function:

s0(t) =
a

1 + be−kt
; b =

a − x0

x0
= 1. (6)

In what follows we shall estimate the H-distance between a step function f and
a logistic sigmoid function g. Without loss of generality we can consider the Heav-
iside step function f = ah and the logistic sigmoid function (6): g = s0. Accord-
ing to (2) the H-distance ρ(f, g) between two functions f, g ∈ A(Ω) for Ω ⊂ R
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makes use of the maximum norm in R2 so that the distance between the points
A = (tA, xA), B = (tB , xB) in R2 is ||A−B|| = max(|tA − tB |, |xA −xB |). In that
case the H-distance d = ρ(h, s0) between the Heaviside step function ah and the
sigmoid function (6) satisfies the relations 0 < d < a/2 and a− s0(d) = d, that is

(a − d)/d = ekd, (0 < d < a/2). (7)

Obviously d → 0 implies k → ∞ (and vice versa). From (7), a straightforward
expression for the rate parameter k in terms of d follows:

k =
1
d

ln
a − d

d
= O(d−1 ln(d−1)). (8)

4.2 Estimate for the H-Distance in Terms of the Rate Parameter

Relation (8) gives an estimate of the rate k in terms of the H-distance d. The
following theorem gives a relation for the H-distance d in terms of the rate
parameter k. For simplicity we assume a = 1, denoting thus in the sequel s0(t) =
(1 + e−kt)−1.

Theorem 7. The Hausdorff distance d = ρ(h, s) between the Heaviside step
function h0 and the sigmoid Verhulst function s0 can be expressed in terms of
the reaction rate k as follows:

d =
ln(k + 1)

k + 1

(

1 + O

(
ln ln(k + 1)
ln(k + 1)

))

. (9)

Proof. Assuming a = 1 relation (7) becomes (1 − d)/d = ekd for 0 < d < 1/2.
This implies kd = ln(1/d) + ln(1 − d). In order to express d in terms of k, let us
examine the function

f(d) = kd − ln(1/d) − ln(1 − d), 0 < d < 1/2.

From lim f(d)d→0,d>0 = −∞, lim f(d)d→1/2,d<1/2 = k/2 > 0 we conclude that
f(d) = 0 possesses a solution in (0, 1/2). From f ′(d) = k+1/d+1/(1−d) > 0 we
conclude that function f is strictly monotonically increasing, hence f(d) = 0 has
an unique solution d(k) in (0, 1/2). For k → ∞ we have d(k) → 0, hence ln(1 −
d(k)) = −d(k) + O(d(k)2). Consider then the function g(d) = (k + 1)d − ln(1/d)
which approximates function f with d → 0 as O(d2); in addition g′(d) > 0. So
we can further denote by d(k) the (unique) zero of g and study g instead of f .
We look for two reals d− and d+ such that g(d−) < 0 and g(d+) > 0 (leading
to g(d−) < g(d(k)) < g(d+) and thus d− < d(k) < d+). Trying d− = 1/(k + 1)
and d+ = ln(k + 1)/(k + 1) we obtain g(1/(k + 1)) = 1 − ln(k + 1) < 0 and
g(ln(k + 1)/(k + 1)) = ln ln(k + 1) > 0 proving the estimates 1/(k + 1) < d(k) <
ln(k + 1)/(k + 1). To find a better lower bound we compute

g

(
ln(k + 1)

k + 1

(

1 − ln ln(k + 1)
ln(k + 1)

))

= ln
(

1 − ln ln(k + 1)
ln(k + 1)

)

< 0.
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We thus obtain

ln(k + 1)
k + 1

− ln ln(k + 1)
k + 1

< d(k) <
ln(k + 1)

k + 1
,

which implies (9).

Remark. In the general case a �= 1 one should substitute in (9) k+1 by k+a−1.

5 Conclusions

We briefly summarized some basic results (Theorems 1–5) about H-continuous
functions and their application to problems in abstract areas such as real analy-
sis, approximation theory, set-valued analysis and analysis of PDEs. We then for-
mulated and proved a new result (Theorem 6) on the Hausdorff approximation
of H-continuous functions by interval step functions defined on an open subset of
R

n. Finally we discussed some applications of H-continuous functions to biological
dynamic processes, in particular, we considered the remarkable phenomenon that
certain enzyme kinetic and population growth processes develop almost step-wise
[16,20]. Such processes are usually described or approximated by smooth sigmoid
functions (especially in the theory of artificial neural networks). However, it is
possible that H-continuous step-wise functions can be also conveniently used. To
substitute a sigmoid function by a step function, we need to know the approxi-
mation error (Theorem 7). Biological processes are often very sensitive and can
be effectively studied within the framework of interval analysis [19]. In addition,
the input data coming from biological experiments are usually rather uncertain
and thus can be represented as interval data. If these interval data are guaran-
teed (that is they include the measurement errors), then numerical methods and
programming tools with automatic result verification can be used [18].

The presented results suggest that interval analysis, apart from being cur-
rently associated with numerical analysis, can also be considered as belonging
to the field of real analysis. We may thus consider interval analysis as a bridge
between real and numerical analysis, a bridge that extends both subjects and
unifies them into a common scientific area.
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Abstract. One of the goals for the mathematical function generator is to
produce vectorizable codes. Therefore, in the generated code there should
be no branching. As the most mathematical functions are implemented
with domain splitting procedure and piecewise-polynomial approxima-
tion, there are several if-else statements in the final code to determine
the corresponding polynomial coefficients. In this paper we propose a sim-
ple idea of replacing these if-else statements by the evaluation of a poly-
nomial function. This is a novel approach that may not work for all the
possible function implementation variants, and it needs to be improved
with the use of some more sophisticated methods.

Keywords: Mathematical functions · Branching · Vectorizable code ·
Interpolation · Reconstruction

1 Introduction

Collection of codes to evaluate mathematical function in some programming
language is called a libm. The standard libms provide a limited set of mathe-
matical functions in single and double precisions. Libms contain code usually for
elementary functions (sin, log, etc.) and several “special functions” like Gamma
or Bessel functions [1]. Hardware producers spend a lot of manpower on main-
tenance and optimization of their proprietary libms. The existing Open source
libraries are not flexible enough and do not provide user specific implementations
of mathematical functions [2]. As one can define a huge number of implementa-
tion variants for each mathematical function (different domain, accuracy, degree
of the approximation polynomial, etc.) it is not feasible to implement them all
manually. Thus, we have been developing Metalibm, an automatic code gen-
erator that produces flexible implementations of mathematical functions [10].
Functions variants to be generated are defined by a set of parameters like func-
tion name (or algebraic expression), implementation domain, final accuracy and
maximum degree of its polynomial approximation. The generated code evaluates
the specified function the accuracy bounded by the final accuracy parameter.

Since the prevalence of SIMD instructions on modern processors, the code
generation of vectorizable implementations is of big interest as well. To make

c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 14–22, 2016.
DOI: 10.1007/978-3-319-31769-4 2
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Metalibm produce vectorizable codes, the algorithms without (or almost with-
out) branching have to be used. For exponential and logarithmic functions vec-
torized loop calls reduce the computation time in 1.5–2 times.

Except for some rare cases, mathematical functions in Metalibm are approx-
imated with piecewise-polynomial functions. Thus, in the produced code there is
branching to determine the right polynomial coefficients for each subdomain. We
propose here a method to avoid this branching. We are trying to find a mapping
function (in mathematical sense of word function), that returns corresponding
subdomain indexes for the input values from the implementation domain. This
mapping function may be computed with one of the classical polynomial inter-
polation procedures. The proposed algorithm paves the way for research in gen-
eration of vectorizable functions implementations. We discuss here the weakness
of the proposed method as well as the way to improve it. However, this improve-
ment requires also research in interval arithmetic, basically in solving the linear
systems with bounded variables.

In the next Section we give a short overview on the implementation process
of mathematical functions, in Sect. 3 we explain in details the proposed method,
provide a pseudocode and discuss its future evolution. In Sect. 4 there are the
results of our method and the conclusion.

2 Mathematical Functions Implementation Workflow

The usual implementation workflow of a mathematical function is divided into
three steps: argument reduction, approximation and reconstruction [3]. In Met-
alibm we use a modified Remez algorithm for polynomial approximation [4].
The larger is the approximation domain, the larger will be polynomial degree
to approximate a function with the given accuracy. To save computation time
and to avoid accumulation of errors, the degree of the polynomial has to be low.
Therefore, the implementation domain for the function has to be reduced some-
how. It may be done in two ways: property-based argument reduction [5–7] or
domain splitting [8].

In the first case mathematical properties of the function allow to establish
connection between the initial large domain [a, b] and a small one [α, β]. So, the
approximation is computed for some g(r), r ∈ [α, β] instead of f(x), x ∈ [a, b],
where r is reduced argument. Then on reconstruction step the inverse argument
transition has to be applied. As this approach is based only on function proper-
ties, it is limited and works only for several function families (e.g. exponential,
logarithmic, symmetrical). When the function properties do not allow to reduce
the domain or do not reduce it enough, piecewise-polynomial approximations are
used. In this case, the reconstruction step contains several if-else statements
to pick the right approximating polynomial for the function evaluation. To make
the code vectorizable, branching during the computations of the finite function
values has to be avoided.

Consider here that the domain splitting procedure returns a set of non-
overlapping intervals {Ik}Nk=0, such that Ik = [ak, ak+1], so the adjacent intervals
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Fig. 1. Piecewise-constant mapping function M(x)

have the only point in the intersection Ik ∩ Ik+1 = {ak+1}. The initial imple-
mentation domain is [a, b] = I =

⋃N
k=0 Ik. Then, to compute f(x) we execute

if-else statements to determine subdomain’s index k, where x ∈ Ik.
The code may be written without branches with the use of a mapping function

that returns subdomain’s index for each input value from I:

M(x) = k, x ∈ Ik, k = 0, 1, . . . , N.

The function M(x) is a piecewise-constant function as it is shown on Fig. 1.
For a naive domain splitting, when I is divided into N equal intervals we

may use a linear function m(x) = N
b−a (x − a) and then the mapping function is

easily computed as M(x) = �m(x)�. However, this splitting is not optimal and
a more sophisticated splitting algorithm is used instead [8].

3 Polynomial-Based Reconstruction Technique

3.1 How to Compute Polynomial Mapping

For a non-regular domain splitting as the one that is currently used in Metalibm
the mapping function may be computed with an interpolation polynomial p(x).
This polynomial passes through the points (ak, k), k = 0, . . . , N , where {ak}
are the splitpoints. Once the polynomial coefficients are computed, the mapping
function can be computed as

M(x) = �p(x)�, x ∈ I.

Thereby, we obtain some conditions for this polynomial. Such a polynomial is
shown on Fig. 2.
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Fig. 2. Mapping function and a corresponding polynomial p(x)

3.2 Conditions for the Polynomial

As the mapping function stays constant on a subdomain Ik, the admissible range
for the polynomial values on this subdomain is [k, k + 1). Thus, the task is to
compute an interpolation polynomial p on the points (ak, k), k = 0, . . . , N for
which the following holds:

p(x) ∈ [k, k + 1), x ∈ [ak, ak+1]. (1)

A suitable polynomial p as well as the conditions (1) are shown on Fig. 3.
As the classical interpolation procedures guarantees only that p(ak) = k by
construction of the polynomial, conditions (1) have to be checked a posteriori.
This can be done in Sollya [9] with the evaluation of this polynomial p(x) over
an interval [ak, ak+1].
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Fig. 3. Admissible ranges for the polynomial values.
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There is a certain ambiguity for the values of mapping function in the split-
points {ak}. In splitpoints the two polynomials corresponding to the adjacent
subdomains have the same value pk−1(ak) = pk(ak) = k. To get the index of
the approximating polynomial at the point ak we may admit M(ak) = k − 1 or
M(ak) = k. Only in the “corner” splitpoints a0 and aN there is no ambiguity
for the values of mapping function.

As all the computations are performed in floating-point numbers, the interpo-
lation conditions p(ak) = k are no longer satisfied because of roundings. Taking
into account the ambiguity of the mapping function in the splitpoints, conditions
(1) have to be modified a little. As the set of floating-point numbers is discrete,
for a given floating-point number a it is possible to find its predecessor pred(a)
and successor succ(a). This means that the admissible ranges for polynomial
values from (1) should be narrowed to the following:

p(x) ∈ [k, k + 1), where x ∈ [succ(ak), pred(ak+1)] ⊂ Ik, 0 ≤ k ≤ N − 1. (2)

The conditions for the splitpoints should be added then.

p(x) ∈ [k − 1, k + 1), where x = ak, k = 1, . . . , N − 1 (3)

The modified conditions for the polynomial ranges are shown on Fig. 4 with grey
rectangulars, the range of polynomial values in split points is illustrated with a
red line.

3.3 The Choice of the Interpolation Points

The interpolation points may be chosen in several different ways. With the set
of splitpoints {ak}Nk=0 we compute four different polynomials. First, we may use
“inner” polynomial with N − 1 points {ak}N−1

k=1 . Then we can compute “left”
and “right” polynomial with N points {ak}N−1

k=0 or {ak}Nk=1. And the last variant

a1 a2 a3

succ(a1) succ(a2)
pred(a2)

Fig. 4. Modified floating-point conditions for polynomial (Color figure online).
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here is to compute a polynomial of degree N using all N +1 splitpoints. When a
posteriori conditions are not verified for all the four polynomials (2–3), we may
add some interpolation points. However, as the addition of new interpolation
points raises the degree of the polynomial according to Runge’s phenomenon
it will oscillate in the ends, which means that the conditions (2–3) are rarely
verified.

3.4 Towards a Priori Conditions

As the conditions for the polynomial values are checked only a posteriori, there
is no guarantee that the polynomial for mapping function exists for arbitrary
splitting. Contrariwise, our method finds it only for few splittings. When there
are some points where the polynomial exceeds the admissible range, we can add
them to the interpolation points, recompute the polynomial p(x) and recheck
the conditions (2)–(3). However, due to Runge’s phenomenon the polynomial
begins to oscillate [11] and the conditions are not verified. The choice of the
interpolation points for this polynomial remains an open problem.

However, the ranges for the polynomial values are still checked a posteriori
and there are some values out of the admissible range. These conditions may be
taken into account if we operate intervals instead of points. The classical inter-
polation problem is a system of linear equations with Vandermonde’s matrix:

⎛

⎜
⎜
⎜
⎝

1 x0 · · · xN
1

1 x1 · · · xN
1

...
...

. . .
...

1 xN · · · xN
N

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c0
c1
...

cN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

y0
y1
...

yN

⎞

⎟
⎟
⎟
⎠

, (4)

where (xi, yi), i = 0, . . . , N are the interpolation points and c0, . . . , cN are the
unknown polynomial coefficients. Computing the unknown coefficients means
solving the system (4). When we use intervals instead of points to compute
the interpolation polynomial, we take subdomains on abscissas and intervals
[k, pred(k +1)] on ordinates. Then, the task is almost the same: system of linear
equations with unknown coefficients c0, . . . , cN . Except of the numbers xi, yi we
operate intervals in system (5).

⎛

⎜
⎜
⎜
⎝

1 x0 · · · xN
1

1 x1 · · · xN
1

...
...

. . .
...

1 xN · · · xN
N

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

c0
c1
...

cN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

y0

y1

...
yN

⎞

⎟
⎟
⎟
⎠

(5)

The difference from the classical solution of the interval system is that we
need only one vector (c0, c1, . . . , cN ), but not the set of all suitable coefficients.
We may find the tolerance solution set of the system (5) in polynomial time,
but it can be empty. In this case the united solution set may be found, but
this problem is NP-hard [12]. Anyway, we have connected coefficients in the
system matrix, and the existing methods do not take into account this type of
connection. We leave this transition to a priori conditions for the future work.
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3.5 Algorithm

To summarize the upper-mentioned, here is the pseudocode to obtain a recon-
struction polynomial. Procedure buildInterpolationPoly takes subdomains
from splitting and computes the interpolation with divided differences. We bound
the degree of the reconstruction polynomial with the parameter maxdegree.

Input: domain, maxdegree

N = length(domains);

if (N - 3 > maxdegree) {

print("Even the poly built by inner points has too large degree");

poly = -1;

} else {

innerpoints = extractOnlyInnerPoints(domains);

ypoints = [| 1, ..., N - 1 |];

poly = buildInterpolationPoly(innerpoints, ypoints);

if (!checkConditions(poly, domains)) {

xpoints = merge(inf(domains[0]), innerpoints);

ypoints = [| 0, ..., N - 1 |];

poly = buildInterpolationPoly(xpoints, ypoints);

if (!checkConditions(poly, domains)) {

xpoints = merge(innerpoints, sup(domains[N - 1]));

ypoints = [| 1, ..., N |];

poly = buildInterpolationPoly(xpoints, ypoints);

if (!checkConditions(poly, domains)) {

xpoints = merge(inf(domains[0]), xpoints);

ypoints = [| 0, ..., N |];

poly = buildInterpolationPoly(xpoints, ypoints);

if (!checkConditions(poly, domains)) {

print("It was not possible to build such a polynomial.

Perhaps we need to add an interpolation point");

poly = -1;

}

}

}

}

}

return poly;

4 Conclusion

For the variation of the arcsin function on the domain [−0.6; 0.6] with the tar-
get accuracy ε̄ = 2−54 and maximum degree of the approximation Metalibm
splits the domain into six smaller subdomains. In this case Metalibm achieves
to compute the coefficients for the mapping polynomial. It uses “left” inter-
polation polynomial computed on all the split points except the last one. The
proposed method allows to obtain performance gain in 1.5–3 times. Thus, this
algorithm paves a way for generation of vectorizable function implementations.
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The main disadvantage of the proposed method is that it worked in ∼ 30% of
tested cases. As it was mentioned, the main reason of failures of the algorithm
is the a posteriori condition checking.

We invented a general method that is not based on any specific instructions,
so can be used on a wide range of the machines. The use of the interval arithmetic
may allow to generate vectorizable code for larger range of function variations. As
we mentioned, there are two solutions for the interval system of linear equations
suitable for our task. When the tolerance solution set is empty, we may try
to find the united solution. The second problem is NP-hard but does not have
to be avoided: we are interested not in the set of all the possible polynomial
coefficients, but only in one combination of all the coefficients that gives the
mapping function. Thus, this combination should be easier to find than the whole
set. Furthermore, as this mapping function is computed during the function
generation, there are no strict requirements on complexity and performance of
this algorithm.

The proposed reconstruction technique with polynomial-based mapping func-
tion depends a lot on domain splitting. We tried to build an optimal domain split
in terms of the quantity of subdomains and the polynomial degrees of the approx-
imation on each of the subdomains. Mapping function for the regular splitting is
easy to find but our splitting produces non-regular subdomains and computing
the suitable polynomial for mapping gets impossible in some cases. Besides that,
our splitting algorithm does not control the size (and the corresponding polyno-
mial degree) of the last subdomain. Though practically we have not noticed such
phenomenon, theoretically nothing prevents our splitting algorithm to get small
last subdomain with low corresponding polynomial degree (one or two). This
may be avoided with improving the splitting algorithm: instead of splitpoints
we should get intervals for the possible splitpoint. Then, on the reconstruction
step we fix splitpoints from these “tolerance” intervals so, that our polynomial
for mapping function exists. Thus, the future research on this problem includes
also establishing the compromise between splitting optimality and existence of
polynomial for mapping.
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Abstract. This is a slightly expanded form of the author’s talk of the
same title at SCAN 2014, Würzburg. Angled towards people who use
interval numerical methods little or not at all, it briefly describes how
interval arithmetic works, the mindset required to use it effectively, why
an interval arithmetic standard was needed, the setting up of IEEE Work-
ing Group P1788 for the purpose, the structure of the standard it has
produced, some difficulties we encountered, and the current state of the
P1788 project. During production of these Proceedings the 1788 stan-
dard has been published, but the talk’s original title has been kept.

This article, slightly expanded from the author’s talk of the same title at
SCAN 2014, briefly describes how interval arithmetic works, the mindset required
to use it effectively, why an interval arithmetic standard was needed, the setting
up of IEEE Working Group P1788 for the purpose, the structure of the standard
it has produced, some difficulties we encountered, and the current state of the
P1788 project. During production of these Proceedings the 1788 standard has
been published, but the talk’s original title has been kept.

The references include a recent survey [14], a recent textbook [17], and a
current web site [8], that testify to the liveliness of this area.

1 What Intervals Are and Do

1.1 Basic Ideas

Interval Arithmetic (IA) implements “validated”, also called “verified”, numer-
ical calculation. That is, it can enclose solution components x of a problem in
an interval, i.e. between lower and upper bounds

x ∈ x = [x, x] = { t ∈ R | x ≤ t ≤ x }.

It does this even in finite-precision arithmetic, with roundoff errors present.
E.g. it makes Brouwer’s fixed point theorem:

If K ⊂ R
n is compact convex, and function f is everywhere defined

and continuous on K, and f(K) ⊆ K, then f has a fixpoint in K

c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 23–39, 2016.
DOI: 10.1007/978-3-319-31769-4 3
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verifiable when K is a box (product of intervals) in the sense that during the
evaluation of f , sufficient conditions for “everywhere defined and continuous”
can be found—with ease in favourable cases, but maybe requiring both brute
force and finesse in trickier cases..

The history of interval arithmetic might be traced back to Archimedes, in
the sense that he rigorously proved the bounds

3 10
71 < π < 3 1

7 ,

see Thomas Heath [3]. As a systematic discipline it seems to have begun in
the 20th century: Teruo Sunaga (Japan, 1958) [16]; Leonid Kantorovich (USSR,
1962) [4]. The most influential work of that time was the book by Ramon Moore
(USA, 1966) [11], describing for instance the first implementation of a validated
ODE solver.

Currently significant validated software exists for global optimisation, large
sparse linear systems, particle beam design for the Large Hadron Collider, and
many other applications. Rather than list extensive references we refer to those
in Siegfried Rump’s survey article [14] and in Vladik Kreinovich’s web site [8],
and also to the recent introductory book by Warwick Tucker [17].

1.2 Definition of Interval Operations

Interval operations take all combinations of points in the inputs, i.e.

x • y = {x • y | x ∈ x and y ∈ y }, where • is one of {+ − × ÷}
For ÷, disallow 0 ∈ y for now. In finite precision round outward. With these
definitions one has the following fact, probably first stated by Moore:

Theorem 1 (Fundamental Theorem of Interval Arithmetic). If a func-
tion f(x1, . . . , xn), defined by an expression, is evaluated with interval operations
on interval inputs to get y = f(x1, . . . ,xn) then

y contains the range of f over boxx1 × · · · × xn inR
n.

Example 1. Let f(x1, x2) = x1+x2/x1, suppose 2-digit decimal arithmetic is
used, and let the input intervals be x 1 = [3, 4], x 2 = [3, 5]. We compute

x 1 +
x 2

x 1
= [3, 4] +

[3, 5]
[3, 4]

= [3, 4] +
[
3
4
,
5
3

]
round−→ [3, 4] + [.75, 1.7]

= [3.75, 5.7] round−→ [3.7, 5.7] = f (x 1,x 2) = y .

y does contain the range of f over x 1 × x 2 = [3, 4] × [3, 5], which with a bit of
calculus is found to be [4, 5.25]. ��

2 Why Do Intervals Need New Algorithms?

2.1 Example: Interval Version of Newton’s Iteration

Consider Newton’s method for solving a 1-D nonlinear equation f(x) = 0.
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A Wrong Approach. The usual formula is:

xk+1 = xk − f(xk)
f ′(xk)

A direct interval transcription of this would be

xk+1 = xk − f (xk)
f ′(xk)

where f and f ′ are interval versions of (the computer code for) f and f ′.
Unfortunately addition and subtraction of intervals—in infinite precision—

just adds their widths. In symbols, w(a ± b) = w(a) + w(b). In finite precision
the result is even a little wider owing to roundoff.

So the width of xk+1 equals the width of xk plus that of f (xk)/f ′(xk). The
latter width is usually strictly > 0, so each interval cannot be narrower than the
last, and usually is wider. Convergence of an interval algorithm to a root must
involve the interval becoming smaller. The above simple transcription of Newton
to intervals cannot possibly do that, and is bound to diverge!

A Right Approach. For a sensible solution to this problem, go back to basic
theory. Let f be a C1 function on a real interval I. Then by the Mean Value
Theorem MVT, for any root z and any x, both in the interval, there is some ξ
in the interval such that

f(x) = f(x) − f(z) = (x − z)f ′(ξ) (1)

so provided f ′(ξ) 	= 0, see later,

z = x − f(x)
f ′(ξ)

. (2)

A pointer to the right algorithm is in the quantifiers: ∀ root z, ∀ x, ∃ ξ. These
give a geometric interpretation to Eq. (2), shown in Fig. 1:

For any x ∈ I, a searchlight shone from the point (x, f(x)) on the curve,
its rays bounded by the lowest and highest slopes of f on I, is certain to
illuminate any root z (identified with (z, 0) in the plane) in I.

To convert this to something computable note that in (2):

– f(x) must be computed as an interval, since f is program code, hence liable
to roundoff.

– f ′(ξ) must also be an interval, for two reasons: (a) f ′ is program code; (b) ξ

is only known to exist—its exact position is unknown ( ∃ ).
– However x can be a point. It is an arbitrary programmer-selected point in I

( ∀ )—typically the midpoint is used in practice.
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Fig. 1. Geometric view of Interval Newton: one-sided searchlight.

Hence, ( ∀ ) for any root z ∈ I we also have

z ∈
(

x − [f(x)]
[f ′(ξ)]

)

using classical interval notation that [. . .] means “some interval containing”. In
more current notation, renaming the interval as x

z ∈
(

x − f([x])
f ′(x)

)

=
(

point − interval function of point
interval function of interval

)

(3)

where [x] is 1-point interval {x} and f , f ′ are interval versions of f, f ′. This is
the start of a satisfactory algorithm.

More General Picture. Actually the searchlight shines in both directions, crucial
when the range of slopes includes both positive and negative slopes, see Fig. 2:

 

Fig. 2. Geometric view of Interval Newton: two-sided searchlight.
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The same argument works as before, provided one interprets division as
reverse multiplication, write this as //:

c // b = { all solutions of bx = c} 1788’s mulRev(b,c).

So 0/0 is “whole real line” instead of “undefined”. That is, (3) is replaced by

z ∈
(
x − (

f ([x] // f ′(x )
))

. (4)

This is just a restatement of formula (1), and its controlling quantifiers, two ∀
and one ∃ . That is always valid even when (2) might divide by zero.

Now we enclose all roots even when many exist! However, the searchlight can
“split” I into two pieces, as Fig. 2 shows. 1788 provides a “two-output reverse
multiplication” operation mulRevToPair, adapted to this situation.

Interval Newton Iteration. We assumed the root z is in the interval x so it is
safe to intersect the interval given by (4) with x . This gives the 1983 method
of Hansen and Greenberg [2], later refined by R.B. Kearfott [6], G. Mayer [10],
P. van Hentenryck et al. [18], and others.

We assume the function f is C1 on the initial interval (Fig. 3).

set x0 = initial interval I
for k = 0, 1, 2, . . .

xk = some chosen point in xk

Y k+1 = xk − f([xk]) //f ′(xk) reverse multiplication

xk+1 = Y k+1 ∩ xk can split in two, see below

Fig. 3. One step of Interval Newton method (one-sided searchlight case).
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2.2 Lessons from the Example

Comments on the Algorithm. Here Y k+1, hence xk+1, is potentially a union of
two intervals that can be handled independently.

This structures the computation as a binary tree that progressively divides
root-clusters into smaller sets, trying (but not always succeeding) to isolate each
individual root. This can be done by various tree-traversal methods, exploiting
parallelism if available.

By construction it is clear that all roots in xk must be in Y k+1, hence in
(the possibly split in two) xk+1. However the algorithm has other remarkable
and less obvious properties:

– if xk+1 is empty, then no root exists in xk.
– If 0 /∈ f ′(xk), then at most one root exists in xk (which must be in xk+1).
– If Y k+1 is nonempty, bounded, and contained in xk, then exactly one root
exists in xk.

Comments on the “Interval Mindset”. The analysis leading to the algorithm
wasn’t rocket science—just a careful look at how the quantifiers ∀, ∃ appeared
in a use of the Mean Value Theorem.

In general however, to learn how to convert mathematics to effective interval
algorithms takes time and practice.

3 Genesis of the Interval Standard Project

3.1 The Need

Over the years, dozens of interval software packages have been written, and
several, for instance PROFIL/BIAS, Filib++ and INTLAB, are widely used at
present [7,9,13]. However, they have not quite compatible mathematical foun-
dations, for instance different answers to these questions:

– Should theory, and software, support unbounded intervals and the empty set?
Moore’s interval arithmetic did not.

– Is an interval x a set of numbers? In Kaucher interval arithmetic, an interval
is a set with a two-valued “mode”. [3, 4] is a proper interval, essentially the
normal set. [4, 3] is an improper interval; as a set it has the same value as
[3, 4] but its arithmetic rules are different.

– If x is a set of numbers, are ±∞ allowed to be members of x?
– How to handle operations that are not everywhere defined on their input

intervals, such as the square root of [−2, 2], or division by an interval
containing 0?

In addition, they have different software interfaces. Thus, currently one can-
not write algorithms that are portable at a mathematical level, let alone write
portable software.
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3.2 Setting up a Working Group

In January 2008 at a conference in Dagstuhl, Germany, a project was started
with the aim of producing an IA standard. In July that year it was approved
by the IEEE as Working Group P1788 “A standard for interval arithmetic”. In
September, a conference in El Paso, USA, hosted its first face to face meeting
at which the following officers were appointed.

Nathalie Revol, Chair
R. Baker Kearfott, Vice Chair and Acting Chair
William Edmonson, Secretary
Guillaume Melquiond, Archivist
J. Wolff von Gudenberg, Web Master
George Corliss, Voting Tabulator
John Pryce, Senior Technical Editor

Also during the project Christian Keil acted as Deputy Technical Editor, and
Michel Hack, Vincent Lefèvre, Ian McIntosh, Dmitry Nadezhin, Ned Nedialkov
and J. Wolff von Gudenberg were Assistant Technical Editors. About 140 people
registered on the mailing list, of whom around 45 were regular voting members.

The group approved a final text in May 2014. Further revision, up to publica-
tion, then became the responsibility of the project’s sponsor ballot group (whose
membership overlaps with P1788’s) and of IEEE editorial staff.

4 1788 Interval Principles

4.1 Definition of an Interval

There is a framework—so called flavors—to support alternative mathematical
foundations. The standard currently has just one flavor called Set-Based, in
which

– An interval x is a plain set, whose members are real numbers. This excludes
±∞ as members, so intervals are subsets of the real line R.

– Open or half-open intervals are not allowed, but unbounded intervals are.
– The empty set is an interval.

This amounts to the mathematically simple definition:

Intervalmeans topologically closed and connected subset of R.

A potential alternative flavor is Kaucher (or very similar modal) interval
arithmetic [5]: an interval is not a plain set, but an ordered pair (x, x) of reals:

(x, x) “means”
{

set [x, x] ⊂ R if x ≤ x (“proper” interval)
something other if x > x (“improper” interval).

Another potentially important flavor is Siegfried Rump’s interval arithmetic
[15], which can support open or half-open intervals, and can handle finite
precision under- and over-flow in a consistent and elegant way.
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4.2 The Levels Structure

As in the IEEE floating-point standard 754, the 1788 standard manages com-
plexity by distinguishing four specification levels:

Level 1. Mathematical theory of the set IR of intervals and their operations.
Level 2. Finite precision intervals—datums—and operations, independently of

their representation.
Level 3. Representation of datums by objects, e.g. by a data structure compris-

ing two floating-point numbers.
Level 4. Encoding of Level 3 objects as bit strings.

Inter-level Maps. Maps between levels are crucial—especially those between
Level 1 and Level 2, or L1 ←→ L2 for short. The P1788 group made the following
design decisions, which apply to all flavors:

– Each datum is a mathematical interval, so the map from L2 to L1 is just
inclusion:

L2 datums
identity map−→ L1 intervals (∗)

(Not quite true: the datum also “knows what type it belongs to”, i.e. is
tagged with a unique name of its type. A programming language needs this
information, since different types will be represented differently at L3.)

– Datums are organised into finite sets T called interval types. Thus each T

may be regarded as a finite subset of IR. The implementation has discretion
on what types to provide.

– A L1 interval x maps to an interval of type T—a T-interval or T-datum—by
the T-hull operation

hullT (x ) = smallestT-interval that containsx ,

where “contain” has a flavor-defined meaning (which for Set-Based intervals
is the usual one). This defines the map back from L1 to L2:

L1 intervals T-hull−→ L2 datums of typeT (∗∗)

– To do an operation x • y at L2 on T-datums, in any flavor:

map x ,y to L1 by (*);
do the operation at L1;
map back to L2 by (**).

This specification of the relation between mathematics and finite precision looks
trivial but is not: it defines the whole character of the standard. Not all IA theories
are clear on this issue. Time will tell whether our choice was a wise one.

This choice affects implementations. For instance an arbitrary-precision inter-
val package must be structured as a potentially infinite set of types, each containing
finitely many intervals. It cannot comprise a single type containing potentially infi-
nitely many intervals.
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Maps for Levels 3 and 4. There are two fairly obvious rules:
– L2 ←→ L3: Each L2 datum is represented by at least one L3 object; each L3

object represents at most one L2 datum.
– L3 ←→ L4: Each L3 object is encoded by at least one L4 bitstring; each L4

bitstring encodes at most one L3 object.

5 Exception Handling

5.1 A Hypothetical Scenario

Less than 10 years hence in the Old Bailey, London, . . .
The case Crown versus Google concerns the Google Driverless Car, GDC.

One of them badly injured a pedestrian who stepped into the road in front of it.
The GDC’s emergency stop system is designed to act faster than a good

human driver (undisputed) but is it badly implemented (disputed)?
The software uses an interval algorithm, built on a 1788-conforming library,

which applies Brouwer’s fixed point theorem. Could this have an error? E.g., it
may have thought it had enclosed a root of an equation when it had not.

Depending on what software bugs are found (if any), liability might lie with
the pedestrian’s negligence. Or with GDC’s software implementers. Or with the
1788 library implementers. Maybe even with the mathematicians who claimed
to have proved the design of 1788 is correct?

A lot of money rides on whether 1788-based code might be wrong, when
deciding that a function is defined and continuous on a box.

5.2 Theoretical Context

Basic Problem. How (at Level 1) to treat operations that are not everywhere
defined and/or continuous on their input box? For example

(real) square root
√

x
x

y
floor(x)

√
[−2, 2]

[2, 3]
[−1, 1]

floor([2.5, 4.5])

undefined on −2 ≤ x < 0 undefined if y = 0 discontinuous at x = 3, 4

We decided the default is “evaluate where defined, ignore where undefined”,
called non-stop or loose evaluation. For instance

√
[−2, 2] = {√

x | x ∈ [−2, 2] and x ≥ 0 } = [0,
√

2]

with no error reported. This is similar to IEEE 754 floating-point, which responds
to an invalid operation such as 0/0 or ∞−∞ by returning the result NaN and
continuing to compute.

This is a valid approach for, e.g., many global optimisation methods. It is not
valid when applying Brouwer’s theorem, which needs a guarantee that a function
is everywhere defined and continuous on a box.

It also will not do for some graphics rendering algorithms, which need to
know a function is everywhere defined on a box, but are not bothered about
continuity.
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Tracking Function Properties. One needs a mechanism to track whether a func-
tion has these desirable properties of definedness and/or continuity. This leads to
a powerful extension of the Fundamental Theorem of interval arithmetic based
on well-known theorems of set theory and analysis, which can be summarised:

If for function f given by an expression, each individual library operation
in f is everywhere defined on its input set, then the same holds for f .
The same is true when defined is replaced by defined and continuous.

Example 2. Let f(x) = 1/
√

x, composed of library operations sqrt(t) =
√

t
followed by recip(t) = 1/t. Evaluate z = f (x ) in exact (Level 1) interval
arithmetic. Abbreviate defined and continuous to DAC.

Let the input to f be x = [1, 4]. We do y = sqrt(x ) = [1, 2], followed by
z = recip([1, 2]) = [12 , 1]. Each operation is (everywhere) DAC on its input:
sqrt on [1, 4] and recip on [1, 2]. We conclude f is DAC on this x .

If x is [0, 4] then sqrt is DAC on this x but recip is not DAC on the
resulting y = [0, 2], so we cannot say f is DAC on x .

Similarly, if x is [−2, 4] then sqrt fails to be DAC on this x and again we
cannot say f is DAC on x . ��

In the two last cases of this example it is easy to prove f is definitely not DAC
on x , but for complicated functions in the presence of roundoff, to prove such
a negative—definitely not everywhere DAC—is nearly impossible. Therefore the
1788 system only provides for a definite positive, which is cheap to compute. It
can also say definitely nowhere defined on the input, which is cheap too.

5.3 Decorations

To provide a mechanism to track such properties of functions, we rejected the
IEEE 754 standard’s method of global flags, as being obsolete for today’s mas-
sively parallel platforms. Instead, 1788 provides for decorated intervals. Such an
interval is a pair (y , dy), also written ydy when convenient:

– an ordinary interval y ,
– a tag dy called a decoration, giving data about definedness, continuity, etc.1.

Formally, a decoration d is a label for an assertion (boolean-valued function)
pd(f,x ) about a function f : Rn → R and a box x ⊆ R

n, for arbitrary n. Five
decorations are defined in order of “goodness”, ill < trv < def < dac < com:

ill Label for ill-formed intervals, formally “f is nowhere defined”.
trv (trivial) Always true = “no information”.
def f is everywhere defined on x .
dac As def, plus f is everywhere continuous on x .
com As dac, plus f is bounded on x at Level 2, meaning that no overflow occurred

while computing it2.
1 dy is just a mnemonic, “decoration for y”. It has nothing to do with differentials.
2 com means “common”, see Sect. 6, but also that code can verify it is common.



The Forthcoming IEEE Standard 1788 for Interval Arithmetic 33

Let (y , dy) result from evaluating an arithmetic expression f(x1, . . . , xn)

– on correctly initialised decorated interval inputs (x 1, dx1), . . . , (xn, dxn) (the
programmer’s responsibility),

– using correctly written decorated interval library operations (the implemen-
tation’s responsibility).

Then Moore’s Fundamental Theorem says

y contains the range of f overx 1 × · · · × xn,

and in addition,

the decoration dy makes a true assertion about f overx .

For instance if dy is computed to be def then f has been proved to be
everywhere defined on x .

As with a computed range enclosure, a computed decoration is often not
sharp. E.g. it may be trv (no information) or def (defined) when actually dac
(defined and continuous) is true. Much of the craft of IA is knowing how to
“sharpen” such information, e.g. by cutting an input box into smaller boxes
handled separately.

Example 3. Consider the fixpoint problem, to solve g(x) = x where

g(x) = 2
√

x − 1
2 .

Roots are x = 3
2 ± √

2 = 0.0858 . . . or 2.9142 . . .
We aim to use interval fixpoint iteration

x 0 = initial guess; xn+1 = g(xn) for n = 0, 1, . . .

First, use ordinary undecorated interval arithmetic.
Case A: x 0 = [2, 3]. Then

x 1 =
[
2
√

2 − 1
2 , 2

√
3 − 1

2

]
= [2.3 . . . , 2.9 . . .] ⊂ x 0.

This is genuine and (by Brouwer’s Theorem) it proves a fixpoint exists in x 1.
Case B: x 0 = [−1, 1

16 ]. Then

x 1 = 2
√

[−1, 1
16 ] − 1

2 = 2 [0, 1
4 ] − 1

2 = [0, 1
2 ] − 1

2 = [− 1
2 , 0], again ⊂ x 0 !

But there is no root in x 0, let alone x 1! This is spurious, due to 1788’s (undeco-
rated) square root function discarding the negative part of x 0 without comment.

Now use decorated interval arithmetic. The rule for propagating decorations
is, roughly, that an operation outputs the worst decoration, in the “goodness”
order defined on p. 10, out of the decorations on its operands and the decoration



34 J. Pryce

generated while performing the operation. Showing decorations as subscripts,
Case B gives

x 1 = [2]dac ×
√

[−1, 1
16 ]dac − [ 12 ]dac

= [2]dac × [0, 1
4 ]trv − [ 12 ]dac,

= [0, 1
2 ]trv − [ 12 ]dac = [− 1

2 , 0]trv.

Recall trv = “no information”, so the calculation is, correctly, unable to verify
the conditions of Brouwer’s Theorem. But Case A produces

x 1 = [2.3 . . . , 2.9 . . .]dac,

proving g is DAC on x 0, as well as mapping x 0 into itself—the conditions for
applying Brouwer’s Theorem have been verified. ��

The decoration system is the feature that most distinguishes 1788 from earlier
IA systems. An annex in the Standard contains a rigorous proof of correctness:
a Fundamental Theorem of Decorated Interval Arithmetic.

6 Difficulties the Group Encountered

Certain issues caused long and heated debate. We are grateful for the diplomatic
skills the Chair and Vice-chair sometimes needed to deploy, and the good sense
of IEEE procedural guidelines for “online democracy”. Here are a few examples.

The Choice of Foundational Mathematical Model. Most users of IA are in the
academic community, and most of these use some form of “interval is just a set of
numbers” theory and software. But Kaucher/modal theory—with intervals like
[4, 3]—has its proponents. One of them is Nate Hayes, whose company does high-
quality graphics rendering for the movie industry. For its specialised interpolation
algorithms, Kaucher methods are reported to give tighter enclosures and greater
speed.

The resulting tension between “intervals for knowledge” and “intervals for
profit” was fruitful. Faced with two related kinds of object, it is natural to look
for a theory that supports both, in a tightly coupled sense that lets both exist
in a computer program and inter-operate.

We tried this over a period of many months with set-based and Kaucher
intervals, but failed. For instance, unbounded intervals within Kaucher theory
needed arbitrary restrictions or led to logical contradictions—briefly, Kaucher
cannot handle [3,∞) consistently, and set-based cannot handle [4, 3].

This was the main motivation for the flavor concept. It allows different
theories that are “recognisably 1788” in a loosely coupled sense. The main
requirement is that each flavor’s intervals must include Moore’s original (closed,
bounded, nonempty) real intervals, called common intervals, and a library of
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operations that at Level 1, when acting on common intervals, produce the same
results in all flavors.

A Kaucher standard document was promised but has not materialised yet.
However at least one other theory that holds promise for effective interval com-
putation fits into the flavor mould—that of Rump [15], especially if coupled with
the Gustafson universal numbers system [1] (and see elsewhere in this volume).
So I feel the effort put into this part of the standard has not been wasted.

The Decoration Scheme. The group saw from the start that checking definedness
and continuity of a function can in principle be automated, and early on rejected
global flags in favour of decorating individual intervals. The chosen scheme took
nearly two years, off and on, to decide. Initially we used separate boolean flags
for “defined”, “continuous”, etc. Arnold Neumaier of Vienna first proposed that
decorations should be a linear sequence. Of several such schemes, we nearly
adopted one with 6 decorations, till Guillaume Melquiond pointed out that one of
them gave no information not already available to a programmer, so we removed
it to give the current 5-decoration system.

(We are also indebted to Arnold for his earlier document, the Vienna Proposal
for Interval Standardization [12], from which many ideas in 1788 are drawn.)

Input/Output. I/O is important. A key reason why the Algol 60 language died
and Fortran, its arguably inferior contemporary, thrived is that the latter had a
language-defined I/O scheme and the former did not.

The working group debated at length on what I/O should be required and
how prescriptive the standard should be. Eventually it agreed to specify an
external text representation of intervals, so called interval literals. Examples are
[empty], [1.23,4.56] and the uncertainty form 1.23?4 which means 1.23 ±
(4 units in the last place), i.e. [1.19, 1.27].

An implementation shall provide functions to read such literals in free for-
mat, and write them in either free (e.g., for interactive work) or fixed (for tab-
ulation) format. However we did not standardise the conversion specifiers (such
as C’s %8.3f or Fortran’s F8.3 for output of floating-point numbers), leaving
this implementation-defined, to be standardised at a future revision.

In addition to the above transformations, which generally incur roundoff,
each finite-precision type T shall define an exact text representation, giving loss-
free conversion between T-intervals and text strings. For types based on IEEE
754 numbers, 1788 specifies an interchange encoding, giving loss-free conversion
between T-intervals and bit strings. This last is 1788’s only Level 4 requirement.

What to say About Accuracy? The accuracy issue for intervals is different from
that for floating-point. The result ỹ of an interval library operation must enclose3

the mathematical result y . If not, it is wrong, period. If it does—even if it is the
useless result [−∞,+∞]—it is valid.

3 This has been called the “Thou Shalt Not Lie” principle.
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After much discussion we agreed that tightness—how close ỹ is to the
enclosed y—is a quality-of-implementation issue, barring a few cases where
requiring optimal tightness is reasonable.

So the standard acts as a “regulatory authority” here—it does not specify
an accuracy, but it requires a conforming implementation to state the accuracy
of each of its library operations, in a verifiable way, using a format specified by
the standard. There is typically a trade-off between accuracy and speed, and the
aim is to make it possible for users to make a fair comparison of the merits of
different implementations.

7 Current State

The main text has around 70 pages, of which roughly 60 % are Level 1, 35 %
Level 2, 5 % Level 3, with a half-page of Level 4.

Following approval by a vote of the group in May 2014, the text was exten-
sively reworked with help from IEEE editorial staff to fit their style guidelines.

It was signed off in November 2014 to enter the Sponsor Ballot phase, and
examined by a selected group representative of academia, software develop-
ers, industry, etc., and of geographical regions. They approved it after vari-
ous changes, both editorial and technical. Finally, IEEE Std 1788TM-2015 was
approved by the IEEE Standards Board in June 2015, and published at the end
of that month.

In addition, a Basic Standard for Interval Arithmetic (BSIA) has been writ-
ten by Ned Nedialkov. At around 20 pages it is a cut down version, simpler to
implement and suitable for undergraduate teaching. A program that runs under
an implementation of the BSIA should run and give identical results up to round-
off under an implementation of the full standard. The IEEE have approved a
project, P1788.1, for the BSIA to become a separate but related standard.

A Proof of Interval Newton Properties

This appendix proves the properties stated in Sect. 2.2. It may be of interest
because item (iv) of the Theorem does not seem to have appeared in the literature
before. An interval extension of a real function f of real variables means an inter-
val function f of corresponding interval variables such that y = f(x1, . . . , xn) is
in y = f (x 1, . . . ,xn) whenever xi is in x i for each i = 1, . . . , n.

Theorem 2. Let f : R → R be C1 on an interval x, which may be unbounded.
Let f and f ′ be interval extensions of f and its derivative f ′, and let x be any
point of x. Define the set

Y = x − f([x]) // f ′(x)

where // denotes division in the sense of reverse multiplication. (Thus Y may be
empty, an interval, or the union of two disjoint unbounded intervals.)
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Then

(i) Y contains all zeros of f in x.
(ii) If Y ∩ x = ∅, there are no zeros of f in x.
(iii) If 0 /∈ f ′(x), there is at most one zero of f in x.
(iv) If Y is nonempty, bounded and ⊆ x, there is exactly one zero of f in x.

Proof. (i) Let z ∈ x with f(z) = 0. By the Mean Value Theorem

f(x) = f(x) − f(z) = (x − z)f ′(ξ). (5)

for some ξ ∈ x . By definition of interval extension, f ′(ξ) ∈ f ′(x ) and f(x) ∈
f ([x]). Hence by the definition of reverse multiplication

x − z ∈ f ([x]) // f ′(x ),

that is
z ∈ x − f ([x]) // f ′(x )

as required.
(ii) This is immediate from (i).
(iii) In (5) let both z and x be roots in x . Then we have 0 = f(x) − f(z) =

(x − z)f ′(ξ). By hypothesis 0 /∈ f ′(x ) which implies f ′(ξ) 	= 0. Hence x − z = 0,
x = z, so there is at most one root.

(iv) Write b = f ′(x ), c = f ([x]), both being nonempty by the definition of
interval extension. By hypothesis Y = x − c // b is nonempty and bounded, so
Z = c // b is nonempty and bounded.

I claim 0 /∈ b. For suppose 0 ∈ b. Then 0 /∈ c, for if 0 ∈ c then Z is the
unbounded set R, contrary to hypothesis. Now two subcases arise.
– Either b is singleton [0], making Z empty, contrary to hypothesis.
– Or, b contains 0 and another point, in which case it contains points arbitrarily
close to 0. Since 0 /∈ c 	= ∅, c contains a nonzero point. Together these imply
c // b is unbounded, again contrary to hypothesis.

Thus all the cases of 0 ∈ b give a contradiction, proving 0 /∈ b. Hence by
part (iii) there is at most one root in x and we must show there is at least one.
If f(x) = 0 there is nothing more to prove, so assume f(x) 	= 0.

Let b∗ be the bound of b nearest 0, so it is finite, 	= 0 and in b. Let z∗ be
the intercept on the x-axis of the line through (x, f(x)) with slope b∗, so

z∗ = x − f(x)/b∗, (6)

equivalently

f(x) = (x − z∗)b∗. (7)

Since f(x) ∈ c and b∗ ∈ b, (6) shows z∗ ∈ Y ⊆ x . Also x ∈ x so by the
Mean Value Theorem there is ξ ∈ x with

f(x) − f(z∗) = (x − z∗)f ′(ξ). (8)
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Subtracting this from (7) gives

f(z∗) = (x − z∗)(b∗ − f ′(ξ)) (9)

Now f ′(ξ) is in b by the latter’s definition, so by the definition of b∗ it has the
same sign as b∗ and at least as large absolute value, i.e. f ′(ξ)/b∗ ≥ 1. Dividing
(9) by (7) (recalling f(x) 	= 0) now gives

f(z∗)/f(x) = 1 − f ′(ξ)/b∗ ≤ 0,

so f(z∗) has opposite (in the weak sense) sign to f(x). By the Intermediate
Value Theorem f has a zero z between x and z∗. Since both the latter are in x
we have z ∈ x , and the result is proved. ��
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Abstract. In the paper a new approach to optimization problems with
random input parameters, which is defined as random programming, is
discussed. This approach uses a numerical probability analysis and allows
us to construct the set of solutions of an optimization problem based on
the joint probability density function.

1 Introduction

The studies of many practical problems, including the problem of decision-
making, require the implementation of the optimization approach. The effective-
ness of the solutions depends on several factors. Such factors primarily include
the data necessary for the description and the solution of the problem. One of
the important factors that should be considered when solving such problems is
uncertainty of input data.

We can distinguish three basic models of uncertainty: stochastic, fuzzy and
set-valued (in particular — interval-valued).

The nature of undefined data may be random errors associated with mea-
surement, or the incompleteness of information. This is described as random,
inaccurate, incomplete data.

The paper deals with the numerical probabilistic approach to solving optimiza-
tion problems with random inputs. Using methods of mathematical programming
for these problems, we obtain optimal solutions that depend on these parameters.
In the cases where probability densities of input parameters are known, it is possi-
ble to construct a probability density function of the joint probability of the opti-
mal solutions on the basis of numerical probability analysis. In contrast to the
stochastic programming [6,8], where the optimal solution is a fixed solution, this
approach allows us to obtain the whole set of solutions of an optimization problem
defined by the constructed joint probability density function.

By random programming, we mean the methods for the construction of the
solution set for an optimization problem with random input parameters based
on the application of numerical probabilistic analysis.

It is important to note that after representation of the obtained uncertain-
ties we deal with the problem of choosing a method that allows us to perform
the subsequent calculations in such a way as to get real results without additional
uncertainties [5].
c© Springer International Publishing Switzerland 2016
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DOI: 10.1007/978-3-319-31769-4 4
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To this end, nowadays mathematical tools for uncertain programming are
developed. Uncertain programming is the theoretical basis for solving optimiza-
tion problems for various uncertainty conditions [6].

Since an interval number can be considered as a special case of an imprecise
quantity, interval analysis, interval arithmetic, and interval programming fall
into imprecise programming.

In most of stochastic programming algorithms, the operator of mathematical
expectation is used and averaging procedures are performed.

In this paper, we develop a technique that uses Numerical Probabilistic
Analysis to solve various problems with stochastic data uncertainty [2,4].

The basis of NPA consists of numerical operations on probability density
functions of random variables. They involve the operations “+”, “−”, “·”, “/”,
“↑”, “max”, “min”, as well as binary relations “≤”, “≥” and some others. The
numerical operations of the histogram arithmetic constitute the major compo-
nent of NPA [1].

Using the arithmetic of probability density functions and probabilistic exten-
sions, we can construct numerical methods that enable us to solve systems of
linear and nonlinear algebraic equations with stochastic parameters [2].

2 Formulation of the Problem and Background

Let us formulate the problem of random programming as follows:

min
x

f(x, ξ), (1)

subject to (s.t.)
gi(x, ξ) ≤ 0, i = 1, ...,m, (2)

where x is the solution vector, ξ is the vector of parameters, f(x, ξ) is the objec-
tive function, gi(x, ξ) are constraint functions.

The vector x∗ is a solution of problem (1)–(2), if

f(x∗, ξ) = inf
x∈U

f(x, ξ),

where
U = {x|gi(x, ξ) ≤ 0, i = 1, ...,m}.

We will suppose that ξ have random components. As x∗ is a function of the
vector ξ, then

x∗ = x∗(ξ),

it is also a random vector and its joint probability distribution is what we are
interested in.

The solution set of (1)–(2) is defined as follows

X = {x∗|f(x∗, ξ̃) = inf
x∈U

f(x, ξ̃), gi(x, ξ̃) ≤ 0, i = 1, ...,m, ξ̃ ∈ supp(ξ)}.
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So in contrast to the deterministic problem, for x∗ it is necessary to determine
the probability density function for each component of x∗

i as the joint probability
density.

When both objective function and constraint functions are linear functions,
the problem is called a problem of linear programming. Otherwise, the problem
is called a problem of nonlinear programming.

For example the problem of linear programming with random data is formu-
lated as follows:

min
x

cT x, (3)

s.t.
Ax = b, x ≥ 0, (4)

where A is a matrix, b, c are vectors.
The vector x∗ is the solution of problem (3)–(4) provided that

cT x∗ = inf
x∈U

cT x,

where
U = {x|Ax = b, x ≥ 0}.

Let A be a random matrix, b, c are random vectors. So x∗ is a random
function of the variables in A, b and c.

The solution set of (3)–(4) is

X = {x∗|cTx∗ = inf
x∈U

cTx,Ax = b, x ≥ 0, A ∈ supp(A), b ∈ supp(b), c ∈ supp(c)}.

3 Numerical Probabilistic Analysis

3.1 Operations on Probability Densities of Random Variables

Let us consider operations on histograms. Let p(x, y) be a joint probability den-
sity function of two random variables x and y . Let pz be a histogram approxi-
mating the probability density of the operations between two random variables
x ∗ y , where ∗ ∈ {+,−, ·, /, ↑}. Then the probability to find the value z within
the interval [zi, zi+1] is determined by the formula [1,2]

P (zk < z < zk+1) =
∫

Ωk

p(x, y) dx dy, (5)

where Ωk = {(x, y)|zk ≤ x ∗ y ≤ zk+1} and the value Pk of the histogram on the
interval [zk, zk+1] is defined as

Pk =
∫

Ωk

p(x, y) dx dy/(zk+1 − zk).
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Then we extend the order relation �∈ {<,≤,≥, >} to random variables:

x � y if and only if x � y for all x ∈ x , y ∈ y .

If the support of x , y are intersected, then we can talk about the probability of
x � y

P (x � y) =
∫

Ω

p(x, y)dxdy,

where Ω = {(x, y)|x � y} is the set of points (x, y) ∈ R2 such that x � y, p(x, y)
is the joint probability density of x , y .

For example, consider the operation max(x ,y). The probability P (max(x ,y)
< z) is determined by the formula

P (z) =
∫

Ωz

p(x, y)dxdy,

where Ωz = {(x, y)|(x < z) and (y < z)} and the value Pi of the histogram on
the interval [zi, zi+1] is defined as

Pi = (P (zi+1) − P (zi))/(zi+1 − zi).

3.2 Probabilistic Extensions

One of the most important problems that NPA deals with is to construct prob-
ability density functions of random variables. Let us start with the general case
where (x1, . . . , xn) is a system of continuous random variables with the joint
probability density function p(x1, . . . , xn) and the random variable z is a func-
tion f(x1, . . . , xn)

z = f(x1, . . . , xn). (6)

By probabilistic extension of the function f , we mean the probability density
function of the random variable z.

Let us construct the histogram F approximating the probability density func-
tion of the variable z. Suppose the histogram F is defined on a grid { zi | i =
0, . . . , n }. The domain is defined as Ωi = {(x1, . . . , xn)|zi < f(x1, . . . , xn) <
zi+1}. Then the value Fi of the histogram on the interval [zi, zi+1] is defined as

Fi =
∫

Ωi

p(x1, x2, . . . , xn)dx1dx2 . . . dxn/(zi+1 − zi). (7)

By histogram probabilistic extension of the function f , we mean the histogram
F constructed according to (7).

Let f(x1, . . . , xn) be a rational function. To construct the histogram of F , we
replaced the arithmetic operation by the histogram operation, while the variables
x1, x2, . . . , xn are replaced by the histogram of their possible values. It makes
sense to call the resulting histogram of F as natural histogram extension (similar
to “natural interval extension”).
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Case 1 [3]. Let x1, . . . , xn be independent random variables. If f(x1, . . . , xn) is
a rational expression where each variable xi occurs no more than once, then the
natural histogram extension approximates a probabilistic extension.

Case 2. Let the function f(x1, . . . , xn) admit a change of variables, so that
f(z1, . . . , zk) is a rational function of the variables z1, . . . , zk satisfying the con-
ditions of Case 1. The variable zi is a function of xi, i ∈ Indi and the Indi are
mutually disjoint. Suppose for each zi it is possible to construct the probabilistic
extension. Then the natural extension of f(z1, . . . , zk) is approximated by the
probabilistic extension of f(x1, . . . , xn).

Case 3. We have to find the probabilistic extension for the function f(x1,
x2, . . . , xn), but the conditions of Case 2 are not fulfilled. Suppose for definiteness
that only x1 occurs a few times.

If, instead of the random variable x1, we substitute a determinate value t,
then it is possible to construct the natural probabilistic extension for the function
f(t, x2, . . . , xn).

Suppose that t is discrete random value approximating x1 as follows. Let t
take the value ti with probability Pi and for each function f(ti, x2, . . . , xn) it is
possible to construct the natural probabilistic extension.

Then the probabilistic extension f of the function f(x1, . . . , xn) can be
approximated by the probability density ϕ as follows [3]

ϕ(ξ) =
n∑

i=1

Piϕi(ξ). (8)

3.3 Systems of Linear Algebraic Equations

Consider a system of linear algebraic equations

Ax = b, i = 1...n, (9)

where x ∈ Rn is a random vector solution, A = (a ij), b = (bi) are a ran-
dom matrix and a right-hand side vector, respectively. Suppose that the random
matrix a ij and the vector bi have independent components with probability
densities paij , pbi respectively.

The support of the solution set can be represented as follows [2,7]

X = {x|Ax = b, A ∈ supp(A), b ∈ supp(b)}.

With each x ∈ X we can associate the following subset of coefficients Ax ⊂
supp(A), bx ⊂ supp(b)

Ωx = {A, b|Ax = b, A ∈ supp(A), b ∈ supp(b)}.

Note that for fixed x, the coefficients of the matrix and the right-hand side vector
are related by

n∑

j=1

aijxj − bi = 0, i = 1, ..., n,
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therefore

Ωx = {A, b|
n∑

j=1

aijxj − bi = 0, i = 1, ..., n}.

Suppose we want to find the probability P (X0) that the solutions x falls in a
subset X0 ⊂ X. With X0 we associate the set Ω0 = {Ωx|x ∈ X0}.

Then

P (X0) =
∫

Ω0

n∏

i=1

n∏

j=1

paij

n∏

i=1

pbidΩ.

Since P (X0) in many cases is proportional to the volume of Ω0, we can a
priori determine the areas with the lowest and highest probability.

4 Random Linear Programming

It is known that for the problem (3)–(4) the optimal solution x∗ is achieved at
the corner of the set U .

Theorem 1 [9]. Let the set U be defined the conditions (4). A point x =
(x1, ..., xn) ∈ U is a corner point if and only if there exist numbers j1, ...jr:

Aj1xj1 + ... + Ajrxjr = b;xj = 0, j 	= jl, l = 1, ..., r,

where the columns of the Aj1 , ..., Ajr are linearly independent.

Example 1. Let U is defined by a matrix A and vector b

A =
(

1 1 3 1
1 −1 1 2

)

, b =
(

3
1

)

,

then to the columns of the matrix A1, A2 there corresponds to a corner point
with coordinates (2, 1, 0, 0), to A1, A3 there corresponds (0, 0, 1, 0), and to A2, A4

there corresponds (0, 5/7, 0, 4/3).
Note that out of the n columns, we can choose r linearly independent columns

in no more than Cr
n ways. Hence, the number of corner points of the set U is

finite.
This means that we can try to solve the canonical problem (3)–(4) in the

following way:
(1) find all corners points x of the set U ,
(2) to calculate the value of the function (c, x) at each of the corner points

and to determine the smallest ane.
However, this approach is not necessarily valid, as even in problems of small

dimension the number of corner points can be very large.
Nevertheless, the idea of searching the corner points of a set is very fruitful

and served as basis for a number of methods for solving linear programming
problems. One of these methods is the so-called simplex method.

For the problem (3)–(4), construct the joint probability density of the
vector x∗. For this purpose, we use a method for the solution of deterministic
problems of linear programming, for example, the simplex method.
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Consider the auxiliary problem.

min
x

cT
t x, (10)

s.t.
Atx = bt, x ≥ 0 (11)

and
At ∈ supp(A), bt ∈ supp(b), ct ∈ supp(c), (12)

find a solution x∗
t and the corresponding corner point with numbers j1, ...jr.

We solve the random system of linear algebraic equations by numerical prob-
abilistic analysis [4]

(Aj1 ...Ajr )x = b.

The joint probability density of the obtained solution corresponds to x ∗
t . If

the supports of the input parameters are small enough, then due to continuity x ∗
t

coincides with x ∗. In the case of arbitrary supports of the input parameters the
search procedure for At, bt, ct, should be repeated, using the Monte Carlo method
or genetic algorithms. In the case that different solutions x ∗

t are obtained, they
can be compared calculating the probabilistic extension f t = cTx ∗

t .

4.1 Numerical Example

As a numerical example, consider the following problem

min
x

cT x, (13)

s.t.
Ax = b, x ≥ 0 (14)

and
A ∈ supp(A), b ∈ supp(b), c ∈ supp(c), (15)

where A = (a ij) is a uniform random matrix, each its element is a uniform
random variable with support [aij , aij ], similarly, b, c are random vectors whose
elements are uniform random variables.

The supports are defined as follows

A =
(

[1 − r, 1 + r] [1 − r, 1 + r]
[1 − r, 1 + r] [−1 − r,−1 + r]

[3 − r, 3 + r] [1 − r, 1 + r]
[1 − r, 1 + r] [2 − r, 2 + r]

)

,

b =
(

[3 − r, 3 + r]
[1 − r, 1 + r]

)

,

c = (−1,−1, 0, 0).
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Fig. 1. Joint density of the vector (x 1, x 2)

For r = 0, which corresponds to the deterministic case, the solution is x∗ =
(2, 1, 0, 0), the columns of the matrix A1, A2 correspond to a corner point.

In Fig. 1 the joint density of the vector x 1,x 2 for r = 0.1 with components
x3 = 0, x4 = 0 is shown. The solid line is the boundary of the set of solutions
on the (x1, x2) plane. The set X of solutions is the quadrangle with the vertices
(2.0,0.636), (2.444,1.0), (2.0,1.444), (1.636,1.0). Value of the probability is repre-
sented by shades of gray. As can be seen from the Fig. 1 the probability density
is non-uniformly distributed, the highest density is achieved at the center, near
the point (2.0, 1.0).

The area of X strongly depends on the r, and it increases with increasing r
and becomes infinite for r = 1. This is due to the fact that among the matrices

(
0 0
0 0

)

∈
(

[0, 2] [0, 2]
[0, 2] [−2, 0]

)

,

there are linearly dependent columns.

5 Applications

As an illustration, we consider optimization of hydroelectric power generation.
Power generating electricity p can be expressed as

p = Chu,

where C is a constant; h is height of the water level, h ∈ [hmin, hmax], u is water
passing through the turbine, u ∈ [umin, umax].

Height h depends on the amount V of water in the reservoir:

h = h(V )
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and

V (t) = V0 +
∫ t

0

q(ξ) − u(ξ) − ux(ξ)dξ.

where q(t) is inflow; ux(t) is water passing through the spillway (is known and
is determined by plant personnel); u is water passing through the turbine, u ∈
[umin, umax].

Suppose we want to maximize the generation of electricity in the time interval
[0, T ]

max
u

P (u) =
∫ T

0

C h

(

V0 +
∫ T

0

q(t) − u(t) − ux(t)dt

)

u(t)dt.

Simplify the Problem

We represent volume of the reservoir as

V = V0 + S(h − h0),

and

h(t) = h0 + (V (t) − V0)/S = h0 + (
∫ t

0

q(ξ) − u(ξ) − ux(ξ)dξ)/S.

It is now clear that the problem to be solved is to maximize the objective

P (u) = C

∫ T

0

(

h0 + (
∫ t

0

q(ξ) − u(ξ) − ux(ξ)dξ)/S

)

u(t)dt,

where q(t) is inflow; ux(t) is water passing through the spillway; u is water
passing through the turbine, u ∈ [umin, umax].

Let us consider a discrete model. Let ω = {t0 < t1 < . . . < tn} be a grid,
q i be a random input value of water inflow for a time [ti−1, ti], uxi be water
passing through the spillway for a time [ti−1, ti], u i be water passing through
the turbine for a time [ti−1, ti], U = (u i), i = 1, . . . , n,

max
U

P (U ) = C

n∑

i=1

⎛

⎝h0 + (
i∑

j=1

q j − uj − uxj)/S

⎞

⎠u i.

In some cases, the problem can be reduced to the solution of a random system
of linear algebraic equations. Here, only the right-hand side of the system is
random

2u1 + u2 + . . . + un = Sh0 + q1,

u1 + 2u2 + . . . + u i + . . . + un = Sh0 + q1 + q2,

. . .
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u1 + u2 + . . . + 2u i + . . . + un = Sh0 +
i∑

j=1

q j ,

. . .

u1 + u2 + . . . + 2un = Sh0 +
n∑

j=1

q j .

Numerical Example. Note that u i, i = 1, . . . , n can be expressed as a linear
combination of q i, i = 1, . . . , n.

For n = 3 we get:

u1 =
−q3 − 2q2 + q1 + Sh0

4
,

u2 =
−q3 + 2q2 + q1 + Sh0

4
,

u3 =
3q3 + 2q2 + q1 + Sh0

4
.

Let q i ∈ [q
i
, qi] be uniform random variables, S = 1, q1 = [0.1, 0.2], q2 =

[0.2, 0.3], q3 = [0.3, 0.4] be supports and h0 = 0.9.

Fig. 2. Histogram u1 and joint probability density (u1, u2), (u2, u3)

The supports are u1 = [0.0, 0.1], u2 = [0.25, 0.35], u3 = [0.575, 0.725]. In
Fig. 2 piecewise constant approximations of the joint probability density of the
vectors (u1, u2), (u2, u3) are shown. The value of the probability is represented
by shades of gray.

6 Conclusion

The considered methods for solving the above problems of linear optimization
enable one to represent random programming as an effective method for solving
optimization problems with uncertain input parameters. Methods of random
programming allow one to build a joint probability density function on the set
of optimal solutions. This approach helps the decision maker to choose the best
solutions and enables risks assessment.



Numerical Probabilistic Approach for Optimization Problems 53

References

1. Dobronets, B.S., Krantsevich, A.M., Krantsevich, N.M.: Software implementation
of numerical operations on random variables. J. Siberian Federal Univ. Math. Phys.
6(2), 168–173 (2013)

2. Dobronets, B.S., Popova, O.A.: Numerical operations on random variables and
their application. J. Siberian Federal Univ. Math. Phys. 4(2), 229–239 (2011).
(Russian)

3. Dobronets, B.S., Popova, O.A.: Elements of numerical probability analysis. SibSAU
Vestnik 42(2), 19–23 (2012). (Russian)

4. Dobronets, B.S., Popova, O.A.: Numerical probabilistic analysis under aleatory
and epistemic uncertainty. Reliable Comput. 19, 274–289 (2014)

5. Schjaer-Jacobsen, H.: Representation and calculation of economic uncertainties:
Intervals, fuzzy numbers, and probabilities. Int. J. Prod. Econ. 78, 91–98 (2002)

6. Liu, B.: Theory and Practice of Uncertain Programming, 2nd edn. Springer,
Heidelberg (2009)

7. Popova, O.A.: Optimization problems with random data. J. Siberian Federal Univ.
Math. Phys. 6(4), 506–515 (2013)

8. Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming:
Modeling and Theory. SIAM, Philadelphia (2009)

9. Vasil’ev, F.P.: Numerical Methods for Solving Extremal Problems. Nauka, Moscow
(1988). (Russian)



Towards the Possibility of Objective Interval
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Abstract. Applications of interval computations usually assume that
while we only know an interval containing the actual (unknown) value
of a physical quantity, there is the exact value of this quantity, and
that in principle, we can get more and more accurate estimates of this
value. Physicists know, however, that, due to the uncertainty principle,
there are limitations on how accurately we can measure the values of
physical quantities. One of the important principles of modern physics
is operationalism – that a physical theory should only use observable
properties. This principle is behind most successes of the 20th century
physics, starting with relativity theory (vs. un-observable aether) and
quantum mechanics. From this viewpoint, it is desirable to avoid using
un-measurable exact values and to modify the mathematical formalisms
behind physical theories so that they explicitly only take objective uncer-
tainty into account. In this paper, we describe how this can be done for
objective interval uncertainty.

Keywords: Interval uncertainty · Algorithmic randomness · Physics

1 Formulation of the Problem

Is Interval Uncertainty Subjective? Applications of interval computations
usually assume that while we only know an interval [x, x] containing the actual
(unknown) value of a physical quantity x, there is the exact value x of this
quantity, and that in principle, we can get more and more accurate estimates of
this value.

This assumption is in line with the usual formulations of physical theo-
ries – as partial differential equations relating exact values of different physical
quantities, fields, etc., at different space-time locations and moments of time;
see, e.g., [2]. Physicists know, however, that, due to the uncertainty principle,
there are limitations on how accurately we can measure the values of physical
quantities [2,8].

This is not just a theoretical concern: for example, the International Union of
Pure and Applied Chemistry (IUPAC) has recently officially recognized that the
atomic weight of a chemical element is not an exact number; depending on where
the sample came from, the atomic weight may differ within a certain interval;
see, e.g., [11].
c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 54–65, 2016.
DOI: 10.1007/978-3-319-31769-4 5
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It is Desirable to Take Objective Uncertainty into Account. One of the
important principles of modern physics is operationalism – that a physical theory
should only use observable properties. This principle is behind most successes of
20th century physics, starting with relativity theory (vs. un-observable aether)
and quantum mechanics. From this viewpoint, it is desirable to avoid using un-
measurable exact values and to modify the mathematical formalisms behind
physical theories so that they explicitly only take objective uncertainty into
account.
Objective Uncertainty is About Probabilities. According to quantum
physics, we can only predict probabilities of different events. Thus, uncertainty
means that instead of exact values of these probabilities, we can only determine
intervals; see, e.g., [3,4].

Let us give a simple example. In the ideal world, atoms of the same element
have exactly the same atomic weight, and – if their are radioactive – exactly the
same probability p that they will decay within a given moment of time. In such
an ideal situation, by taking larger and larger samples and measuring the decay
frequency, we can get more and more accurate estimates of the desired decay
probability p.

In practice, as we have mentioned, different objects made of the same ele-
ment have, in general, slightly different average atomic weight – and similarly,
they have slightly different average decay probabilities, probabilities that may
take different values from the corresponding interval [p, p]. Depending on which
objects we take, we may get frequencies close to the lower bound p and we may
also get frequencies close to the upper bound p. As we increase the sample size,
we will get frequencies oscillating between p and p, without ever converging to
a single value.
Formulation of the Problem. What is the observational meaning of such
interval-valued probabilities?

2 Analysis of the Problem

What is the Observational Meaning of Probability? Probability refers
to repeated events: we repeat the same experiment (or perform many similar
observations) and record the results as a binary sequence ω1ω2 . . . For example,
when we talk about the probability of a coin falling heads, we mean that we
repeatedly flip the coin and record the resulting sequence: for example, we can
take ωi = 1 if the coin falls heads in the i-th experiment, and ωi = 0 if this coin
falls tails.

In there terms, the fact that the probability of heads is 1/2 means that in the
limit, when n → ∞, the ratio of 1 s in a sequence ω1 . . . ωn tends to 1/2. However,
this is only the part of this meaning: for example, for a sequence 0101. . . , the
ratio tends to 1/2, but we would not call it a random sequence corresponding to
probability 1/2.

From the practical viewpoint, when we say that a sequence ω1ω2 . . .
is random, we assume that this sequence satisfies all the probability laws
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(such as the law of large numbers or the Central Limit Theorem); these proba-
bility laws are what practitioners use to check whether the sequence is random.

From this viewpoint, if a sequence satisfies all probability laws, then for all
practical purposes we can consider it random. Thus, we can formally define
a sequence to be random if it satisfies all probability laws. In precise terms,
a probability law is a property � which is true with probability 1: P (�) = 1.
So, a sequence is random if it satisfies all the properties which are true with
probability 1.

Properties are in 1-1 correspondence with sets – to each property, we can
assign the set of all the sequences that satisfy this property and, vice versa, to
every set, we can assign a property of belonging to this set. When we talk about
probability laws, we mean only properties which can be described by finitely
many symbols from a certain formal language; the corresponding sets are known
as definable sets. Thus, we can say that a sequence is random if it belongs to all
definable sets of probability measure 1.

A sequence belongs to a set of measure 1 if and only if it does not belong
to its complement C = −S with P (C) = 0. So, we can equivalently say that a
sequence is random if it does not belong to any definable set of measure 0. This
is, in effect, Kolmogorov-Martin-Löf’s (KML) definition of a random sequence;
see, e.g., [7].

Each definable set is determined by a finite sequence of symbols. There are no
more than countably many finite sequences of symbols, thus, there are countably
many definable sets. So, the union of all such sets has measure 0. Therefore,
almost all sequences are KML-random.

Probability Interval: What Is Its Observational Meaning? We have
recalled what is an observational meaning of an exact probability p. What is
the observational meaning of a probability interval, when instead of a single
probability measure we have several possible probability measures?

This is not an easy question: in [1,6], we have shown that in seemingly rea-
sonable formalizations, every random sequence is actually random relative to
one of the possible probability measures. In such a formalization, every random
sequence – including the sequence of observations – corresponds to one specific
probability measure. In other words, there is a probability, we just do not know
it – this is exactly the subjective interval uncertainty that we are trying to avoid.

We Consider Independent Repeated Events. Probabilities have direct
observational meaning only for repeating events. In mathematical terms, inde-
pendent repeating events correspond to a product measure, when the probability
of two events A and B happening in two consequent tests is equal to the product
of the corresponding probabilities: P (A&B) = P (A) · P (B).

Traditional Case. The traditional case is when we know the exact probability p.
Then, observable sequences ω1ω2 . . . are KLM-random relative to a product of
p-measures.
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It may be that in practice, we do not know the exact value of this probabil-
ity p, we only know the interval [p, p] containing this probability. In this case,
we have an interval uncertainty, but this interval uncertainty is subjective in
the following sense: there is the actual exact value of the probability, the value
which can be determined, e.g., by taking larger and larger samples; then the
corresponding frequencies will be closer and close to the actual probability.

What We are Trying to Describe. What we are trying to describe is the case
when there is no such objective probability: e.g., the case when the corresponding
frequencies do not have an exact limit: limit frequencies oscillate between p and p.

3 Objective Interval Uncertainty: Definitions
and the First Result

Definition 1. We say that a sequence is [p, p]-random if it is random for some
product measure with pi ∈ [p, p].

Definition 2. We say that a sequence ω1ω2 . . . is objectively [p, p]-random if this
sequence is [p, p]-random, and it is not [q, q]-random for any proper subinterval
[q, q] ⊂ [p, p].

Proposition 1. For every interval [p, p], there exist objectively [p, p]-random
sequences.

Proof. We will show that any sequence ω1ω2 . . . corresponding to pi for which
lim inf pi = p and lim sup pi = p is objectively [p, p]-random.

Since pi ∈ [p, p], this sequence is [p, p]-random. Let us prove that this sequence
ω1ω2 . . . is not [q, q]-random for any proper subinterval [q, q] ⊂ [p, p], i.e., that it
is not random w.r.t. any sequence qi ∈ [q, q].

It is known that if two measures are mutually singular, then no sequence is
random w.r.t. both measures. For product measures, singularity is equivalent to
the following equality (see, e.g., [7,8]):

∞∑

i=1

[

(
√

pi − √
qi)

2 +
(√

1 − pi −
√

1 − qi

)2
]

= +∞.

For a proper subinterval, either p < q or q < p. Without loss of generality, let
us consider the case when p < q.

When lim inf pi = p then, for every ε > 0, there are infinitely many i for which√
pi ≤ √

p+ε. For these i, we have qi ≥ q, so
√

qi ≥ √
q. Thus,

√
qi−√

pi ≥ √
q−

(√
p + ε

)
=

(√
q − √

p
)

− ε. For ε = (√q − √
p)/2, we have

√
qi − √

pi > ε > 0
and therefore, the above sum is infinite. So, a {pi}-random sequence ω1ω2 . . .
cannot be {qi}-random. The proposition is proven.
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4 Objective Interval Uncertainty: A Stronger
Definition and the Second Result

Discussion. We want to describe the idea that all we know is an interval [p, p].
The above definition means, in effect, that all the values pi from the sequence

pi are in between p and p and that, even if we dismiss finitely many probabilities,
no narrower interval contains all the remaining values of pi.

In general, however, such sequences may satisfy additional laws, in addition
to pi ∈ [p, p]. For example, if we have p2i = p and p2i+1 = p, then we satisfy
the above condition – but we also satisfy the additional condition, that all even-
placed probabilities are equal to p and all odd-placed probabilities are equal
to p.

Is it possible to have a sequence of probabilities pi whose only meaningful
property is that all these values are from the interval [p, p]? In other words, is
it possible to find a sequence pi which does not satisfy any other meaningful
property?
What Is a “Meaningful Property”. In order to answer the above question,
we need to formalize what is meant by a meaningful property.

In foundations of mathematics, the main object is a set. Properties naturally
correspond to sets: namely, to each property, we can put into correspondence
the set of all the sequences that satisfy this property. In these terms, describing
what we mean by a property is equivalent to describing the corresponding sets.

First, a meaningful property must be described by a finite sequence of sym-
bols in an appropriate mathematical language. Corresponding sets are known
as definable sets. It is important to realize that while every example of a set
that we can give is definable, not all sets are definable: for example, there are
more than countably many subsets of the set of all natural numbers, but since
there are only countably many finite sequences, there are only countably many
definable sets.

Second, it is reasonable to only consider observable properties, i.e., proper-
ties whose validity can be determined based on observations. Let us show that,
because of this requirement, it is reasonable to require that for each observable
property, the corresponding set of sequences is closed in the sense of component-
wise convergence: if for all k, the sequences p(k) = {p

(k)
i } belong to this set, then

their limit p = {pi}, with pi
def= lim

k
p
(k)
i , should also belong to the correspond-

ing set.
Indeed, in practice, we do not observe probabilities, we only observe fre-

quencies which are close to probabilities. If the actual probabilities are the limit
values (p1, p2, . . .), this means that for every ε > 0 and for a sufficiently large
sample, we will observe frequencies fi which are ε-close to these limit value pi.
Since p is the limit of p(k), for sufficiently large k, the values pi – and thus,
the frequencies fi – are close to the probabilities p

(k)
i , and therefore, consistent

with the assumption that the actual probabilities are p
(k)
i (and thus, with the

assumption that the actual probabilities satisfy the given property).
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So, if the actual probabilities are equal to the limit, then no matter how
large a sample we take, the resulting observations will always be consistent with
the given property. Thus, it is reasonable to add the limit p to the set of all
probability sequences that satisfy the given property. Because of this argument,
in the following text, we will assume that for each observable property, the
corresponding set of sequences is closed.

The third property of the corresponding sets comes from the need to distin-
guish trivial unavoidable “properties” like p1 = p – properties that do not really
restrict any values beyond a few first ones – from non-trivial properties that we
are trying to avoid. In other words, we need to formulate the idea that if we only
know approximate values of the first n probabilities, then we cannot guarantee
that the corresponding property will be satisfied.

This requirement can be described in precise terms, if on the set of all the
sequences p we introduce a topology in which the basis is formed by “boxes”
(p

1
, p1)×. . .×(p

n
, pn) corresponding to different n and different bounds p

i
and pi.

(Convergence in this topology corresponds to the above point-wise convergence.)
In terms of this topology, the above requirement means that within every element
from the basis – and thus, within every open set – there should be a sequence
that does not belong to the corresponding set S. For closed sets, this requirement
means that the set S is nowhere dense.

Summarizing, we can formalize our requirements by saying that by a mean-
ingful property, we mean a closed nowhere dense definable set, and that the
actual sequence of probabilities p should not belong to any of such sets.

Definition 3. Let S be a set of all sequences pi ∈ [p, p], with topology whose
basis is formed by the boxes (p

1
, p1) × . . . × (p

n
, pn).

– By a meaningful property, we mean a definable closed nowhere dense set
S ⊆ S.

– We say that a sequence p satisfies a meaningful property S if p ∈ S.
– We say that a sequence p ∈ S has no other properties if p does not satisfy any

meaningful property S.

Proposition 2. For every two definable values p < p, there exists a sequence pi
for which pi ∈ [p, p] for all i and which has no other properties.

Mathematical Comment. Not only there exist such sequences, but there are many
such sequences: as we can see from the proof, “almost all” sequences p ∈ S
(almost all in some reasonable sense) have no other properties.
Practical Comment. The above description is, at this stage, very theoretical. We
do not have a full understanding of how to check whether an experimentally
observed sequence has no other properties. One consequence that we can check
is that the limit frequencies should fill the whole interval [p, p] and not be bound
by any narrower subinterval. In other words, as we increase the sample size, the
frequencies should always fill this whole interval.
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However, we may recall that in statistics, in addition to observing frequencies,
there are other criteria that describe p-random sequences – e.g., according to the
Central Limit Theorem, deviations of frequencies from the probability must be,
asymptotically, normally distributed. It is therefore desirable to come up with
similar criteria for the case of sequences which are [p, p]-random for some non-
degenerate interval p < p.

Proof. By definition, a sequence p has no other properties if its does belong to
any property-related set S (in the sense of Definition 3), i.e., equivalently, if it
does not belong to the union U of all such sets S.

Each property-related set S is, by definition, a definable closed nowhere dense
set. As we have mentioned, there are no more than countably many definable
objects, so U is a union of countably many closed nowhere dense sets. Such
unions are known as meager sets, or sets of first Baire category. It is known that
the set of all sequences is not meager; this is the main gist of the corresponding
Baire’s theorem; see, e.g., [9]. Thus, there are sequences p which do not belong
to U , i.e., which have no other properties. Moreover, “almost all” sequences p –
in the sense of all sequences except for a meager set – do not belong to U , i.e.,
have no other properties. The proposition is proven.

5 Why This Is Interesting: Objective Interval Uncertainty
Can Potentially Help in Solving NP-Hard Problems
Faster

What We Do in This Section. Objective interval uncertainty means that
the corresponding series of repeated experiments, the sequence of observations
ω1ω2 . . . is random with respect to some sequence of probabilities pi for which
pi ∈ [p, p] and which has no other property.

In this section, we prove that by using such sequences ω, it is, in principle,
possible to drastically speed up the solution of NP-complete problems.
Practical Comment. It should be emphasized that our result only says that it
is theoretically possible to speed up the solution of NP-hard problem. At this
point, we do not know how to actually achieve such a speed-up – but we hope
that the proof of theoretically possibility of the speed-up will eventually lead to
practical algorithms.
Mathematical Comment. From the mathematical viewpoint, the result from this
section is a modification of a similar result from [5].
What Is an NP Problem? Brief Reminder. In practice, we often need to
find a solution that satisfies a given set of constraints or at least check that such
a solution is possible. Once we have a candidate for the solution, we can feasibly
check whether this candidate indeed satisfies all the constraints. In theoretical
computer science, “feasibly” is usually interpreted as computable in polynomial
time, i.e., in time bounded by a polynomial of the length of the input.

A problem of checking whether a given set of constraints has solution is
called a problem of the class NP if we can check, in polynomial time, whether
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a given candidate is a solution; see, e.g., [10]. Examples of such problem includes
checking whether a given graph can be colored in 3 colors, checking whether a
given propositional formula – i.e., formula of the type

(v1 ∨ ¬v2 ∨ v3) & (v4 ∨ ¬v2 ∨ ¬v5)& . . .

is satisfiable, i.e., whether this formula is true by some combination of the propo-
sitional variables vi.

Each problem from the class NP can be algorithmically solved by trying
all possible candidates. For example, we can check whether a graph can be
colored by trying all possible assignments of colors to different vertices of a
graph, and we can check whether a given propositional formula is satisfiable
by trying all 2n possible combinations of true-or-false values v1, . . . , vn. Such
exhaustive search algorithms require computation time like 2n, time that grows
exponentially with n. For medium-size inputs, e.g., for n ≈ 300, the resulting
time is larger than the lifetime of the Universe. So, these exhaustive search
algorithms are not practically feasible.

It is not known whether problems from the class NP can be solved feasibly
(i.e., in polynomial time): this is a famous open problem P ?=NP. It is known,
however, there are problems in the class NP which are NP-complete in the sense
that every problem from the class NP can be reduced to this problem. Reduction
means, in particular, that if we can find a way to efficiently solve one NP-
complete problem, then, by reducing other problems from the class NP to this
problem, we can thus efficiently solve all the problems from the class NP.

So, it is very important to be able to efficiently solve even one NP-complete
problem. (By the way, both above example of NP problems – checking whether
a graph can be colored in 3 colors and whether coloring a propositional formula
is satisfiable – are NP-complete.)
How to Represent Instances of an NP-Complete Problem. For each NP-
complete problem P, its instances are sequences of symbols. In the computer,
each such sequence is represented as a sequence of 0 s and 1s. Thus, we can
append 1 in front of this sequence and interpret the resulting sequence as a
binary code of a natural number i (we need to add 1 in front, so that different
sequences transform into different numbers, otherwise 0 and 00 will lead to the
same number).

In principle, not all natural numbers i correspond to instances of a problem P;
we will denote the set of all natural numbers which correspond to such instances
by SP . For each i ∈ SP , the correct answer (true or false) to the i-th instance
of the problem P will be denoted by sP,i.
Easier-to-Solve and Harder-to-Solve NP-Complete Problems. For some
easier-to-solve problems, there are feasible algorithms which solve “almost all”
instances, in the sense that for each n, the proportion of instance i ≤ n for
which the problem is solved by this algorithm tends to 1. In this case, while the
worst-case complexity is still exponential, in practice, almost all problems can
be feasibly solved.
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A more challenging case are harder-to-solve NP-complete problems, for which
no feasible algorithm is known that would solve almost all instances. In this
section, we show that our method works on all NP-complete problems, both
easier-to-solve and harder-to-solve ones.
What We Mean by Using Physical Observations in Computations. We
assume that the sequence ωi comes from observations. In addition to performing
computations, our computational device can, given a natural number i, use the
result ωi of the corresponding i-th observation in its computations. In other
words, given an integer i, we can produce ωi.

In precise theory-of-computation terms, this means computations that use
the sequence ω as an oracle; see, e.g., [10].
Comment. Since we are interested in feasible (= polynomial time) computations,
the code should be set up in such a way that the overall time of an experiment
does not exceed a polynomial of the length of the number i. This can be done,
e.g., if we explicitly add maximum waiting time into the description of the exper-
iment, by adding as many 0 s as the time that we plan to wait.

Definition 4. By a [p, p]-algorithm A, we mean an algorithm which uses, as
an oracle, a sequence ωi which is random with respect to a probability measure
determined by a sequence pi for which pi ∈ [p, p] for all i and which has no other
properties.

Notation. The result of applying an algorithm A using ωi to an input i will be
denoted by A(ω, i).

Definition 5. Let P be an NP-complete problem. We say that a feasible [p, p]-
algorithm A solves almost all instances of P if for every ε > 0 and δ > 0 and for
every integer n, there exists an integer N ≥ n for which, with probability ≥ 1−δ,
the proportion of the instances i ≤ N of the problem P which are correctly solved
by A is greater than 1 − ε:

Prob
(

#i{i ≤ N : i ∈ SP &A(ω, i) = sP,i}
#i{i ≤ N : i ∈ SP} > 1 − ε

)

≥ 1 − δ.

Comment. The restriction to sufficiently long inputs N ≥ n makes perfect sense:
for short inputs, NP-completeness is not an issue: we can perform exhaustive
search of all possible bit sequences of length 10, 20, and even 30. The challenge
starts when the length of the input is high.

Proposition 3. For every NP-complete problem P, there exists a feasible [p, p]-
algorithm A that solves almost all instances of P.

Comment. In other words, we show that if there is objective interval uncertainty,
then, theoretically, the use of the corresponding physical observations makes all
NP-complete problems easier-to-solve (in the above-described sense).
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Of course, as we have mentioned earlier, this does not mean that we already
have an efficient algorithm for solving NP-complete problems – but this theoreti-
cal possibility is encouraging, and we hope that it will eventually lead to efficient
algorithms.

Proof. We know that for every i, the probability pi that ωi = 1 is in between
p and p. Thus, for every two numbers N � N ′, the proportion of values ωi

(i = N,N + 1, . . . , N ′ − 1) which are equal to 1, should be either within the
interval [p, p] or at least close to this interval. Let us use this property to design
the desired algorithm A.

A value p from the interval [p, p] is:

– closer to p if it is larger than the midpoint p̃
def=

p + p

2
and

– closer to p if p is smaller than the midpoint.

The midpoint itself is equidistant from both endpoints p and p.
Let us therefore select an increasing sequence N1 < N2 < . . ., and take:

• A(ω, i) = 1 if the proportion of values ωi = 1 between Ni and Ni+1 is greater
than or equal to the midpoint p̃, and

• A(ω, i) = 0 if this proportion is smaller than p̃.

Let us prove that, for an appropriate sequence Ni, this algorithm indeed solves
almost all instances of the given problem P.

The proposition states that for very ε > 0, δ > 0, and n, there exists an
integer N ≥ n for which the above inequality holds. To prove the existence of
such an N , let us consider the set T of all sequences p for which, for all N ≥ n,
this inequality does not hold. We will show that this set T is definable, closed,
and nowhere dense. By definition of a sequence that has no other properties
(Definition 3), this would imply that the actual sequence p does not belong to
this set T – and thus, there exists the desired value N , which is exactly what
the proposition claims.

Definability is easy: we just had defined this set. Closeness is also rather easy
to prove; it can be proven similarly to a similar closeness proof in [5].

The non-trivial part is nowhere density. To prove that the set T is nowhere
dense, it is sufficient, for each finite starting sequence p1, . . . , pn, to produce an
infinite extension p for which the desired integer N ≥ n exists (and which, thus,
does not belong to the set T ).

We will take a sequence pi all whose elements are either equal to the lower
endpoint p or to the upper endpoint p. Specifically, for all the values between
Ni and Ni+1, we will take:

• pi = p if sP,i = 1,
• pi = p if sP,i = 0, and
• any of these two values if i ∈ SP .
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Let us show that for an appropriate choice of the sequence Ni, with proba-
bility ≥ 1 − δ, for all the values i from n to N =

n

ε
, we will have A(ω, i) = sP,i.

This will imply that the proportion of such i is indeed greater than 1 − ε with
probability ≥ 1 − δ.

For each i, we consider the arithmetic average of ki
def= (Ni+1 − 1) − Ni

independent 0-1 random values each of which is equal to 1 with some probability
p (namely, either with probability p or with probability p). It is known that this
arithmetic average is, in the limit ki → ∞, normally distributed – this fact is a
particular case of the Central Limit Theorem. The mean value of this average is
equal to the corresponding probability p, and the standard deviation decreases,

with ki, as
1√
ki

. Let us use these facts to estimate the probability that with

p = 0 we will have A(ω, i) = 1 or vice versa. In other words, we are interested
in the probability that the average differs from its expected values by at least

the half-width w
def=

p − p

2
. For a normal distribution with mean μ and standard

deviation σ, asymptotically, this probability is proportional to exp
(

− w2

2σ2

)

, i.e.,

to exp(−const · ki). If we select ki in such a way that exp(−const · ki) ≤ 1
i2

, i.e.,

ki = const · ln(i), then the probability that this happens for one of the values i
cannot exceed the sum of the probabilities corresponding to different i, and is,

thus, smaller than the sum
∞∑

i=n

1
i2

. Thus, the sum tends to 0 and is, therefore,

smaller than δ for all sufficiently large n.
So, we get the desired property if we find Ni for which ki ≈ Ni+1 − Ni ∼

const · ln(i). This approximate equality is true if we take Ni = i · ln(i).
For this choice of Ni, computing A(ω, i) requires Ni+1 − Ni ∼ ln(i) calls to

the oracle – a number which is a linear function of the bit length of an integer
i. Thus, this algorithm is indeed feasible. The proposition is proven.
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Abstract. A natural idea of decision making under uncertainty is to
assign a fair price to different alternatives, and then to use these fair
prices to select the best alternative. In this paper, we show how to assign
a fair price under different types of uncertainty.
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1 Decision Making Under Uncertainty: Formulation
of the Problem

In many practical situations, we have several alternatives, and we need to select
one of these alternatives. For example:

– a person saving for retirement needs to find the best way to invest money;
– a company needs to select a location for its new plant;
– a designer must select one of several possible designs for a new airplane;
– a medical doctor needs to select a treatment for a patient, etc.

Decision making is the easiest if we know the exact consequences of selecting
each alternative. Often, however, we only have an incomplete information about
consequences of different alternative, and we need to select an alternative under
this uncertainty.

Traditional decision theory (see, e.g., [8,12]) assumes that for each alternative
a, we know the probability pi(a) of different outcomes i. It can be proven that
preferences of a rational decision maker can be described by utilities ui so that
an alternative a is better if its expected utility u(a) def=

∑

i

pi(a) · ui is larger.

Often, we do not know the probabilities pi(a). As a result, we do not know
the exact value of the gain u corresponding to each alternative. How can we then
make a decision?

c© Springer International Publishing Switzerland 2016
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For the case when we only know the interval [u, u] containing the actual
(unknown) value of the gain u, a possible solution was proposed in the 1950 s by
a future Nobelist L. Hurwicz [5,8]: we should select an alternative that maximizes
the value αH · u(a) + (1 − αH) · u(a). Here, the parameter αH ∈ [0, 1] described
the optimism level of a decision maker:

• αH = 1 means optimism;
• αH = 0 means pessimism;
• 0 < αH < 1 combines optimism and pessimism.

Hurwicz’s approach is widely used in decision making, but it is largely a
heuristic, and it is not clear how to extend it other types of uncertainty. It is
therefore desirable to develop more theoretically justified recommendations for
decision making under uncertainty, recommendations that would be applicable
to different types of uncertainty.

In this paper, we propose such recommendations by explaining how to assign
a fair price to each alternative, so that we can select between several alternatives
by comparing their fair prices.

The structure of this paper is as follows: in Sect. 2, we recall how to describe
different types of uncertainty; in Sect. 3, we describe the fair price approach; in
the following sections, we show how the fair price approach can be applied to
different types of uncertainty.

Comment. Our result for the case of interval uncertainty has been previously
described in [9]; other results are new.

2 How to Describe Uncertainty

When we have a full information about a situation, then we can express our
desirability of each possible alternative by declaring a price that we are willing
to pay for this alternative. Once these prices are determined, we simply select
the alternative for which the corresponding price is the highest. In this full
information case, we know the exact gain u of selecting each alternative.

In practice, we usually only have partial information about the gain u: based
on the available information, there are several possible values of the gain u. In
other words, instead of the exact gain u, we only know a set S of possible values
of the gain.

We usually know lower and bounds for this set, so this set is bounded. It is
also reasonable to assume that the set S is closed: indeed, if we have a sequence
of possible values un ∈ S that converges to a number u0, then, no matter how
accurately we measure the gain, we can never distinguish between the limit value
u0 and a sufficiently close value un. Thus, we will never be able to conclude that
the limit value u0 is not possible – and thus, it is reasonable to consider it
possible, i.e., to include the limit point u0 into the set S of possible values.

In many practical situations, if two gain values u < u′ are possible, then all
intermediate values u′′ ∈ (u, u′) are possible as well. In this case, the bounded
closed set S is simply an interval [u, u].
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However, sometimes, some intermediate numbers u′′ cannot be possible values
of the gain. For example, if we buy an obscure lottery ticket for a simple prize-or-
no-prize lottery from a remote country, we either get the prize or lose the money.
In this case, the set of possible values of the gain consists of two values. To account
for such situations, we need to consider general bounded closed sets.

In addition to knowing which gain values are possible, we may also have an
information about which of these values are more probable and which values are
less probable. Sometimes, this information has a qualitative nature, in the sense
that, in addition to the set S of possible gain values, we also know a (closed)
subset s ⊆ S of values which are more probable (so that all the values from the
difference S − s are less probable). In many cases, the set s also contains all its
intermediate values, so it is an interval; an important particular case is when
this interval s consists of a single point. In other cases, the set s may be different
from an interval.

Often, we have a quantitative information about the probability (frequency)
of different values u ∈ S. A universal way to describe a probability distribution
on the real line is to describe its cumulative distribution function (cdf) F (u) def=
Prob(U ≤ u). In the ideal case, we know the exact cdf F (u). In practice, we usually
only know the values of the cdf with uncertainty. Typically, for every u, we may
only know the bounds F (u) and F (u) on the actual (unknown) values F (u). The
corresponding interval-valued function [F (u), F (u)] is known as a p-box [2,3].

All this classification relates to the usual passive uncertainty, uncertainty
over which we have no control. Sometimes, however, we have active uncertainty.
As an example, let us consider two situations in which we need to minimize the
amount of energy E used to heat the building. For simplicity, let us assume that
cooling by 1 degree requires 1 unit of energy.

In the first situation, we simply know the interval [E,E] that contains the
actual (unknown) value of the energy E: for example, we know that E ∈ [20, 25]
(and we do not control this energy). In the second situation, we know that the
outside temperature is between 50 F and 55 F, and we want to maintain the
temperature 75 F. In this case, we also conclude that E ∈ [20, 25], but this time,
we ourselves (or, alternatively, the heating system programmed by us) set up
the appropriate amount of energy.

The distinction between the usual (passive) uncertainty and a different
(active) type of uncertainty can be captured by considering improper intervals
first introduced by Kaucher, i.e., intervals [u, u] in which we may have u > u see,
e.g., [7,13]. For example, in terms of these Kaucher intervals, our first (passive)
situation is described by the interval [15, 20], while the second (active) situation
is described by an improper interval [20, 15].

In line with this classification of different types of uncertainty, in the following
text, we will first consider the simplest (interval) uncertainty, then the general
set-valued uncertainty, then uncertainty described by a pair of embedded sets (in
particular, by a pair of embedded intervals). After that, we consider situations
with known probability distribution, situations with a known p-box, and finally,
situations described by Kaucher intervals.
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3 Fair Price Approach: Main Idea

When we have full information, we can express our desirability of each possible
situation by declaring a price that we are willing to pay to get involved in this
situation. To make decisions under uncertainty, it is therefore desirable to assign
a fair price to each uncertain situation: e.g., to assign a fair price to each interval
and/or to each set.

There are reasonable restrictions on the function that assigns the fair price to
each type of uncertainty. First, the fair price should be conservative: if we know
that the gain is always larger than or equal to u, then the fair price corresponding
to this situation should also be greater than or equal to u. Similarly, if we
know that the gain is always smaller than or equal to u, then the fair price
corresponding to this situation should also be smaller than or equal to u.

Another natural property is monotonicity: if one alternative is clearly better
than the other, then its fair price should be higher (or at least not lower).

Finally, the fair price should be additive in the following sense. Let us consider
the situation when we have two consequent independent decisions. In this case,
we can either consider two decision processes separately, or we can consider a
single decision process in which we select a pair of alternatives:

– the 1st alternative corresponding to the 1st decision, and
– the 2nd alternative corresponding to the 2nd decision.

If we are willing to pay the amount u to participate in the first process, and we
are willing to pay the amount v to participate in the second decision process, then
it is reasonable to require that we should be willing to pay u + v to participate
in both decision processes.

On the examples of the above-mentioned types of uncertainty, let us describe
the formulas for the fair price that can be derived from these requirements.

4 Case of Interval Uncertainty

We want to assign, to each interval [u, u], a number P ([u, u]) describing the fair
price of this interval. Conservativeness means that the fair price P ([u, u]) should
be larger than or equal to u and smaller than or equal to u, i.e., that the fair
price of an interval should be located in this interval:

P ([u, u]) ∈ [u, u].

Let us now apply monotonicity. Suppose that we keep the lower endpoint u
intact but increase the upper bound. This means that we keep all the previous
possibilities, but we also add new possibilities, with a higher gain. In other words,
we are improving the situation. In this case, it is reasonable to require that after
this addition, the fair price should either increase or remain the same, but it
should definitely not decrease:

if u = v and u < v then P ([u, u]) ≤ P ([v, v]).
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Similarly, if we dismiss some low-gain alternatives, this should increase (or at
least not decrease) the fair price:

if u < v and u = v then P ([u, u]) ≤ P ([v, v]).

Finally, let us apply additivity. In the case of interval uncertainty, about the
gain u from the first alternative, we only know that this (unknown) gain is in
[u, u]. Similarly, about the gain v from the second alternative, we only know that
this gain belongs to the interval [v, v].

The overall gain u + v can thus take any value from the interval

[u, u] + [v, v] def= {u + v : u ∈ [u, u], v ∈ [v, v]}.

It is easy to check that (see, e.g., [6,10]):

[u, u] + [v, v] = [u + v, u + v].

Thus, for the case of interval uncertainty, the additivity requirement about the
fair prices takes the form

P ([u + v, u + v]) = P ([u, u]) + P ([v, v]).

So, we arrive at the following definition:

Definition 1. By a fair price under interval uncertainty, we mean a function
P ([u, u]) for which:

• u ≤ P ([u, u]) ≤ u for all u and u (conservativeness);
• if u = v and u < v, then P ([u, u]) ≤ P ([v, v]) (monotonicity);
• (additivity) for all u, u, v, and v, we have

P ([u + v, u + v]) = P ([u, u]) + P ([v, v]).

Proposition 1. [9] Each fair price under interval uncertainty has the form

P ([u, u]) = αH · u + (1 − αH) · u for some αH ∈ [0, 1].

Comment. We thus get a new justification of Hurwicz optimism-pessimism
criterion.

Proof.

1◦. Due to monotonicity, P ([u, u]) = u.

2◦. Also, due to monotonicity, αH
def= P ([0, 1]) ∈ [0, 1].

3◦. For [0, 1] = [0, 1/n] + . . . + [0, 1/n] (n times), additivity implies
αH = n · P ([0, 1/n]), so P ([0, 1/n]) = αH · (1/n).

4◦. For [0,m/n] = [0, 1/n] + . . . + [0, 1/n] (m times), additivity implies

P ([0,m/n]) = αH · (m/n).



How Much for an Interval? a Set? a Twin Set? a p-Box? A Kaucher Interval? 71

5◦. For each real number r, for each n, there is an m such that m/n ≤ r ≤
(m + 1)/n. Monotonicity implies

αH · (m/n) = P ([0,m/n]) ≤ P ([0, r]) ≤ P ([0, (m + 1)/n]) = αH · ((m + 1)/n).

When n → ∞, αH · (m/n) → αH · r and αH · ((m + 1)/n) → αH · r, hence
P ([0, r]) = αH · r.

6◦. For [u, u] = [u, u] + [0, u − u], additivity implies P ([u, u]) = u + αH · (u − u).
The proposition is proven.

5 Case of Set-Valued Uncertainty

Intervals are a specific case of bounded closed sets. We already know how to
assign fair price to intervals. So, we arrive at the following definition.

Definition 2. By a fair price under set-valued uncertainty, we mean a function
P that assigns, to every bounded closed set S, a real number P (S), for which:

• P ([u, u]) = αH · u + (1 − αH) · u (conservativeness);
• P (S + S′) = P (S) + P (S′), where S + S′ def= {s + s′ : s ∈ S, s′ ∈ S′}
(additivity).

Proposition 2. Each fair price under set uncertainty has the form P (S) =
αH · supS + (1 − αH) · inf S.

Proof. It is easy to check that each bounded closed set S contains its infimum
S

def= inf S and supremum S
def= supS: {S, S} ⊆ S ⊆ [S, S]. Thus,

[2S, 2S] = {S, S} + [S, S] ⊆ S + [S, S] ⊆ [S, S] + [S, S] = [2S, 2S].

So, S + [S, S] = [2S, 2S]. By additivity, we conclude that P (S) + P ([S, S]) =
P ([2S, 2S]). Due to conservativeness, we know the fair prices P ([S, S]) and
P ([2S, 2S]). Thus, we can conclude that

P (S) = P ([2S, 2S])−P ([S, S]) = (αH ·(2S)+(1−αH)·(2S))−(αH ·S+(1−αH)·S),

hence indeed P (S) = αH · S + (1 − αH) · S. The proposition is proven.

6 Case of Embedded Sets

In addition to a set S of possible values of the gain u, we may also know a
subset s ⊆ S of more probable values u. To describe a fair price assigned to such
a pair (S, s), let us start with the simplest case when the original set S is an
interval S = [u, u], and the subset s is a single “most probable”value u0 within
this interval. Such pairs are known as triples; see, e.g., [1] and references therein.
For triples, addition is defined component-wise:

([u, u], u0) + ([v, v], v0) = ([u + v, u + v], u0 + v0).

Thus, the additivity requirement about the fair prices takes the form

P ([u + v, u + v], u0 + v0) = P ([u, u], u0) + P ([v, v], v0).
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Definition 3. By a fair price under triple uncertainty, we mean a function
P ([u, u], u0) for which:

• u ≤ P ([u, u], u0) ≤ u for all u ≤ u ≤ u (conservativeness);
• if u ≤ v, u0 ≤ v0, and u ≤ v, then P ([u, u], u0) ≤ P ([v, v], v0)
(monotonicity);

• (additivity) for all u, u, u0 v, v, and v0, we have

P ([u + v, u + v], u0 + v0) = P ([u, u], u0) + P ([v, v], v0).

Proposition 3. Each fair price under triple uncertainty has the form

P ([u, u], u0) = αL · u + (1 − αL − αU ) · u0 + αU · u, where αL, αU ∈ [0, 1].

Proof. In general, we have

([u, u], u0) = ([u0, u0], u0) + ([0, u − u], 0) + ([u − u, 0], 0).

So, due to additivity:

P ([u, u], u0) = P ([u0, u0], u0) + P ([0, u − u0], 0) + P ([u − u0, 0], 0).

Due to conservativeness, P ([u0, u0], u0) = u0.
Similarly to the interval case, we can prove that P ([0, r], 0) = αU · r for some

αU ∈ [0, 1], and that P ([r, 0], 0) = αL · r for some αL ∈ [0, 1]. Thus,

P ([u, u], u0) = αL · u + (1 − αL − αU ) · u0 + αU · u.

The proposition is proven.
The next simplest case is when both sets S and s ⊆ S are intervals, i.e., when,

inside the interval S = [u, u], instead of a “most probable” value u0, we have
a “most probable” subinterval [m,m] ⊆ [u, u]. The resulting pair of intervals is
known as a “twin interval” (see, e.g., [4,11]).

For such twin intervals, addition is defined component-wise:

([u, u], [m,m]) + ([v, v], [n, n]) = ([u + v, u + v], [m + n,m + n]).

Thus, the additivity requirement about the fair prices takes the form

P ([u + v, u + v], [m + n,m + n]) = P ([u, u], [m,m]) + P ([v, v], [n, n]).

Definition 4. By a fair price under twin uncertainty, we mean a function
P ([u, u], [m,m]) for which:

• u ≤ P ([u, u], [m,m]) ≤ u for all u ≤ m ≤ m ≤ u (conservativeness);
• if u ≤ v, m ≤ n, m ≤ n, and u ≤ v, then P ([u, u], [m,m]) ≤ P ([v, v], [n, n])
(monotonicity);

• for all u ≤ m ≤ m ≤ u and v ≤ n ≤ n ≤ v, we have additivity:

P ([u + v, u + v], [m + n,m + m]) = P ([u, u], [m,m]) + P ([v, v], [n, n]).
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Proposition 4. Each fair price under twin uncertainty has the following form,
for some αL, αu, αU ∈ [0, 1]:

P ([u, u], [m,m]) = m + αu · (m − m) + αU · (u − m) + αL · (u − m).

Proof. In general, we have

([u, u], [m,m]) = ([m,m], [m,m]) + ([0,m − m], [0,m − m])+

([0, u − m], [0, 0]) + ([u − m, 0], [0, 0)].

So, due to additivity:

P ([u, u], [m,m]) = P ([m,m], [m,m]) + P ([0,m − m], [0,m − m])+

P ([0, u − m], [0, 0]) + P ([u − m, 0], [0, 0)].

Due to conservativeness, P ([m,m], [m,m]) = m. Similarly to the interval case,
we can prove that:

• P ([0, r], [0, r]) = αu · r for some αu ∈ [0, 1],
• P ([0, r], [0, 0]) = αU · r for some αU ∈ [0, 1];
• P ([r, 0], [0, 0]) = αL · r for some αL ∈ [0, 1].

Thus,

P ([u, u], [m,m]) = m + αu · (m − m) + αU · (u − m) + αL · (u − m).

The proposition is proven.

Finally, let us consider the general case.

Definition 5. By a fair price under embedded-set uncertainty, we mean a func-
tion P that assigns, to every pair of bounded closed sets (S, s) with s ⊆ S, a real
number P (S, s), for which:

• P ([u, u], [m,m]) = m + αu · (m − m) + αU · (U − m) + αL · (u − m)
(conservativeness);

• P (S + S′, s + s′) = P (S, s) + P (S′, s′) (additivity).

Proposition 5. Each fair price under embedded-set uncertainty has the form

P (S, s) = inf s + αu · (sup s − inf s) + αU · (supS − sup s) + αL · (inf S − inf s).

Proof. Similarly to the proof of Proposition 2, we can conclude that

(S, s) + ([inf S, sup S], [inf s, sup s]) = ([2 · inf S, 2 · supS], [2 · inf s, 2 · sup s]).

By additivity, we conclude that

P (S, s) + P ([inf S, sup S], [inf s, sup s]) =
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P ([2 · inf S, 2 · supS], [2 · inf s, 2 · sup s]),
hence

P (S, s) = P ([2 · inf S, · sup S], [2 · inf s, 2 · sup s])−
P ([inf S, sup S], [inf s, sup s]).

Due to conservativeness, we know the fair prices

P ([2 · inf S, 2 · supS], [2 · inf s, 2 · sup s]) and P ([inf S, sup S], [inf s, sup s]).

Subtracting these expressions, we get the desired formula for P (S, s). The propo-
sition is proven.

7 Cases of Probabilistic and p-Box Uncertainty

Suppose that for some financial instrument, we know the corresponding proba-
bility distribution F (u) on the set of possible gains u. What is the fair price P
for this instrument?

Due to additivity, the fair price for n copies of this instrument is n · P .
According to the Large Numbers Theorem, for large n, the average gain tends
to the mean value μ =

∫
u dF (u).

Thus, the fair price for n copies of the instrument is close to n ·μ: n ·P ≈ n ·μ.
The larger n, the closer the averages. So, in the limit, we get P = μ.

So, the fair price under probabilistic uncertainty is equal to the average gain
μ =

∫
u dF (u).

Let us now consider the case of a p-box [F (u), F (u)]. For different functions
F (u) ∈ [F (u), F (u)], values of the mean μ form an interval

[
μ, μ

]
, where μ =

∫
u dF (u) and μ =

∫
u dF (u). Thus, the price of a p-box is equal to the price of

an interval
[
μ, μ

]
.

We already know that the fair price of this interval is equal to

αH · μ + (1 − αH) · μ.

Thus, we conclude that the fair price of a p-box [F (u), F (u)] is αH ·μ+(1−αH)·μ,
where μ =

∫
u dF (u) and μ =

∫
u dF (u).

8 Case of Kaucher (Improper) Intervals

For Kaucher intervals, addition is also defined component-wise; in particular, for
all u < u, we have

[u, u] + [u, u] = [u + u, u + u].
Thus, additivity implies that

P ([u, u]) + P ([u, u]) = P ([u + u, u + u]).

We know that P ([u, u]) = αH · u + (1 − αH) · u and P ([u + u, u + u]) = u + u.
Hence:

P ([u, u]) = (u + u) − (αH · u + (1 − αH) · u).
Thus, the fair price P ([u, u]) of an improper interval [u, u], with u > u, is

equal to P ([u, u]) = αH · u + (1 − αH) · u.
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9 Summary and Conclusions

In this paper, for different types of uncertainty, we derive the formulas for the
fair prices under reasonable conditions of conservativeness, monotonicity, and
additivity.

In the simplest case of interval uncertainty, when we only know the interval
[u, u] of possible values of the gain u, the fair price is equal to

P ([u, u]) = αH · u + (1 − αH) · u,

for some parameter αH ∈ [0, 1]. Thus, the fair price approach provides a justi-
fication for the formula originally proposed by a Nobelist L. Hurwicz, in which
αH describes the decision maker’s optimism degree: αH = 1 corresponds to pure
optimism, αH = 0 to pure pessimism, and intermediate values of αH correspond
to a realistic approach that takes into account both best-case (optimistic) and
worst-case (pessimistic) scenarios.

In a more general situation, when the set S of possible values of the gain u
is not necessarily an interval, the fair price is equal to

P (S) = αH · supS + (1 − αH) · inf(S).

If, in addition to the set S of possible values of the gain u, we also know a
subset s ⊆ S of “most probable” gain values, then the fair price takes the form

P (S, s) = inf s + αu · (sup s − inf s) + αU · (supS − sup s) + αL · (inf S − inf s),

for some values αu, αL, and αU from the interval [0, 1]. In particular, when both
sets S and s are intervals, i.e., when S = [u, u] and s = [m,m], the fair price
takes the form

P ([u, u], [m,m]) = m + αu · (m − m) + αU · (u − m) + αL · (u − m).

When the interval s consists of a single value u0, this formula turns into

P ([u, u], u0) = αL · u + (1 − αL − αU ) · u0 + αU · u.

When, in addition to the set S, we also know the cumulative distributive
function (cdf) F (u) that describes the probability distribution of different pos-
sible values u, then the fair price is equal to the expected value of the gain

P (F ) =
∫

u dF (u).

In situations when for each u, we only know the interval [F (u), F (u)] of possible
values of the cdf F (u), then the fair price is equal to

P ([F , F ]) = αH ·
∫

u dF (u) + (1 − αH) ·
∫

u dF (u).

Finally, when uncertainty is described by an improper interval [u, u] with u > u,
the fair price is equal to

P ([u, u]) = αH · u + (1 − αH) · u.
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Abstract. Robust control procedures are essential for a reliable func-
tionality of technical applications. Therefore, firstly, the mathematical
description of the system and, secondly, bounded as well as stochastic dis-
turbances play a major role in control engineering. Bounded uncertainty
occurs due to lack of knowledge about system parameters, manufacturing
tolerances and measurement inaccuracy. Stochastic disturbances, namely
process and measurement noise, play further a very important role in
system dynamics. Both classes of uncertainty are considered in the pre-
sented control and estimation purposes by using interval arithmetics,
where the estimator is necessary to reconstruct non-measurable system
states. Interval representations of uncertain variables provide the pos-
sibility to stabilize dynamic (nonlinear) systems in a robust way. This
is necessary because parameters and measured data are typically only
known within given tolerance bounds. Therefore, this paper combines
interval arithmetics with the advantages of sliding mode approaches for
control and estimation of states and parameters taking into account also
stochastic disturbances. The efficiency of these approaches is shown in
terms of an application describing the longitudinal dynamics of a vehicle.

Keywords: Sliding mode techniques · Uncertainty · Interval
arithmetics

1 Introduction

A challenging task in control theory is to find a unique concept that can be
applied to a large number of systems, that provides sufficiently accurate results,
stabilizes the system dynamics in a robust way, and can cope with uncertainty
(unknown parameters) as well as random effects (e.g. non-modeled friction, mea-
surement inaccuracies). Unfortunately, the applicability of common numerical
calculations is limited in terms of rounding errors, truncation errors, and input
errors [4]. These problems can be overcome by calculations with intervals describ-
ing the range of a variable instead of its scalar value. Then, statements about the
dynamics of a system described by parameter ranges can be proposed without
c© Springer International Publishing Switzerland 2016
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the need of statistical methods (e.g. Monte-Carlo methods) [3]. Nevertheless,
interval arithmetic has to cope with the problem of overestimation due to the
dependency problem and the wrapping effect [5]. In combination with robust
control and estimation purposes, a reliable possibility to deal with uncertainty
and to quantify their worst-case influence in the system dynamics can be pro-
vided while robustness and stability of the error dynamics are guaranteed.

Sliding mode techniques, so-called variable-structure approaches, are well
known for their robust performance and the possibility to handle bounded
uncertainties and disturbances in a more efficient way than other approaches
as for example state-of-the-art back-stepping procedures [12]. Commonly, the
user defines a manifold (called sliding surface) that is assumed to be reached by
the system in a stable manner. Once this surface is reached, the system will not
diverge anymore and remains in the near surrounding area of this stable mode.
However, a large problem in sliding mode approaches is still the so-called chat-
tering that occurs inevitably due to noise that affects the switching function due
to discretization in computer implementations [12]. In recent years, second-order
and other higher-order sliding modes have been developed to reduce chattering.
Nevertheless, common sliding modes are limited in their applicability due to
quite restrictive matching conditions [7]. For that reason, this paper presents
sliding mode techniques that make use of intervals to reduce chattering by tak-
ing into account bounded and stochastic uncertainty of parameters and states.
In general, the applicability of these approaches is not limited to a special class
of systems [7]. Therefore, the Itô differential operator is applied for an online cal-
culation of the variable-structure gain (called switching amplitude) in each time
step despite stochastic disturbances instead of the usual offline computation.

This paper is structured as follows: Sect. 2 describes a scenario for which the
sliding mode approaches, firstly a control procedure (Sect. 3) and secondly an
observer for estimation of parameters and states (Sect. 4) has been applied. The
results are shown in Sect. 5 before this paper is concluded and finalized with an
outlook on further work in Sect. 6.

2 Application Scenario

The control and estimation procedures presented in the following are imple-
mented on a laboratory test rig available at the Chair of Mechatronics at the
University of Rostock which can be interpreted as the longitudinal dynamics
of a vehicle, cf. Fig. 1. The following assumptions have been made: all mass
moments of inertia of the motor, the brake as well as of the drive and load
side shafts are summarized into one mass moment of inertia J . Moreover,
a velocity-proportional friction coefficient d (friction occurs inevitably in all bear-
ings, between the deflector rolls and the toothed belt) and the requirement that
static friction is compensated by an underlying motor control are considered.
Then, the system model is described by f(x (t) ,p,u(t)) = ẋ(t) =

[
ẋ1(t), ẋ2(t)

]T

with two system states x1(t) = ϕM (t) (angle on the drive side) and x2(t) =
ẋ1(t) = ϕ̇M (t) = ωM (t) (corresp. angular velocity) according to
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Fig. 1. Schematic visualization and photo of the available test rig.

ẋ(t) = A · x(t) + b · u(t) =
[
0 1
0 α

] [
x1(t)
x2(t)

]

+
[
0
β

]

u(t) , y(t) = x1(t) . (1)

In Eq. (1), two parameters α = − d
J ∈ [α] and β = 1

J ∈ [β] are included. Both
parameters influence the system dynamics in a significant way due to the mul-
tiplicative coupling with the time-varying system states and the input (motor
control signal). Because of this and due to the fact that both parameters are
a-priori unknown, it is necessary to determine these and the system states simul-
taneously. Note that only the first state y = x1 is measurable. However, for the
control strategy in the next section, knowledge about both states is necessary.

3 Sliding Mode Techniques for Control Purposes

In recent years, sliding mode approaches for control purposes have reached wide
attention due to their inherent robustness despite uncertainties and disturbances.
Both can be compensated in terms of the variable structure part in order to
stabilize the system’s tracking error efficiently. In the following, the classical
approach is described which is then extended to an interval-based formulation
and stochastic processes.

3.1 Classical Control Approach

The classical sliding mode controller for single-input single-output systems is
based on a Lyapunov function [9] with V (t) = 1

2s2(t) and its time derivative
V̇ (t) = s(t) · ṡ(t) with the sliding variable chosen as a Hurwitz polynomial of
order n − 1 (in the following, all time arguments are omitted)

s = κ0 · (x(0) − x
(0)
d ) + κ1 · (x(1) − x

(1)
d ) + ... + (x(n−1) − x

(n−1)
d ) . (2)

Here, x(0) = x1 denotes the first state of a system which is given in nonlinear
controller canonical form, and x(i) with i = {1, ..., n−1} the derivatives up to the
order n − 1. The terms xd, .., x

(n−1)
d denote the desired trajectory and its time

derivatives, resp. The condition for asymptotic stability V̇ < 0 for all s �= 0 can
be fulfilled by using the switching amplitude η and the definition of the absolute
value of the sliding variable |s| = s · sign(s) according to
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V̇
!≤ −η · |s| ⇒ sṡ

!≤ −η · s · sign(s) ⇒ ṡ + η · sign(s)
!≤ −ε · sign(s)

⇒ ṡ + (η + ε)
︸ ︷︷ ︸
:=η̃>0

·sign(s)
!≤ 0 . (3)

In Eq. (3), η̃ can be interpreted as a desired convergence rate. In dependency of
the positive or negative sign of the sliding variable, the signum function yields

sign(s) =

⎧
⎨

⎩

1, if s > 0
−1, if s < 0
0, else .

(4)

For the described application scenario, the sliding surface has the form s =
κ0 · (x1 −x1,d)+ (x2 −x2,d). The control law results after inserting the 2nd state
equation of (1) into the time derivative ṡ = κ0(ẋ1 − ẋ1,d) + κ1(ẋ2 − ẋ2,d) in

u =
−κ0(x2 − x2,d) − (αx2 − ẋ2,d) − η̃ · sign(s)

β
. (5)

In Eq. (5), κ0 > 0 and η̃ > 0 have to be chosen such that the condition for
asymptotic stability V̇ < 0 holds. The disadvantage of this approach is that the
results are often too conservative, especially in case of uncertain parameters so
that unnecessary large switching amplitudes defined by the user are necessary.
Moreover, noise and actuator wear may occur [9]. Therefore, this approach is
extended in the following such that uncertainty as well as stochastic processes
are taken into consideration. Moreover, the scalar switching amplitude η̃ is gen-
eralized to a time-varying vector of the same dimension as the state vector x.

3.2 Extension to Uncertain and Stochastic Processes

In the following, an interval-based sliding mode controller (ISMC) is described
[10]. Consider an uncertain system of order n described by

dx = f(x,p,u)dt + Gp dwp and y = CC (p) · x + Gm dwm (6)

for all p ∈ [p] and x ∈ [x] with the standard Brownian motion of the process
dwp ∈ R

rp and of the measurement dwm ∈ R
rm as well as the corresponding

matrices of standard deviations Gp ∈ R
n×rp and Gm ∈ R

ny×rm , and the output
matrix CC . In the linear case1, it is assumed, that the function f(x,p,u) is
given in state-space notation with the system and input matrices AC and BC

according to f(x,p,u) = ACx + BCu for p ∈ [p]. Requiring the existence
of a desired trajectory and its derivatives for all states, the vector of desired
trajectories is denoted by xd. Including intervals for system parameters, the
following control law2 can be defined according to
1 Linearity in the state vector x which is assumed in this application scenario.
2 Here, only a system with a single input dim(u) = 1 is described. The approach

is also applicable for a system with more than one input. In this case, the vector
of switching amplitudes becomes a matrix. This also holds for the linear controller
gain K.
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u = uFF − kT · x + ηT · sign(x − xd) . (7)

In Eq. (7), a (static or a dynamic) feedforward control term uFF is included. An
underlying state feedback term is denoted by kT · x, where the controller gain
k is calculated by e.g. pole assignment for one parameter vector p ∈ [p]. As
already mentioned, the scalar switching amplitude from the classical approach
becomes a vector η with dim(η) =dim(x) = n×1 (system order n). To calculate
the switching amplitude vector, the Itô differential operator [6] is applied while
further taking into consideration the uncertain system

[f ] = ACx + BCu . (8)

Note, that the terms AC , BC are interval evaluations according to AC ∈ AC :=
AC(x, [p]) and BC ∈ BC := BC(x, [p]). Consequently, the Itô differential oper-
ator according to the definition

L(VC) =
∂VC

∂t
+
(

∂VC

∂x̃

)T

· ([f ] − ẋd) +
1
2
trace

{

GT
p

∂2VC

∂x̃2
Gp

}

(9)

is used. It is evaluated taking into account a control error interval [Δxc] in x ∈
[x] = x + [Δxc] to consider also control errors as well as parameter uncertainty
specified as range bounds in terms of intervals p ∈ [p]. A suitable candidate for a
Lyapunov function is given by VC = 1

2 x̃
T PC x̃, with the definition of the vector-

valued sliding variable x̃ := x − xd = [x1 − x1,d , x2 − x2,d, ... , xn − xn,d]T . As
it can be seen, there is no explicit time dependency in VC so that ∂VC

∂t = 0. By

employing the condition L(VC)
!
< −qT

Cabs (x̃) with a user-defined element-wise
non-negative convergence rate vector qC , the components i ∈ {1, ..., n} of the
switching amplitude vector are calculated by

ηi =

⎧
⎪⎪⎨

⎪⎪⎩

sup
(
[M]+i ·

(
−[V̇a,C ] − qT

Cabs ([x̃]) − T
))

+ μ, if [M]+i < 0

inf
(
[M]+i ·

(
−[V̇a,C ] − qT

Cabs ([x̃]) − T
))

− μ, if [M]+i > 0
0, else .

(10)

In Eq. (10), the abbreviation [M] := [BC ]T PC |[x̃]| is used and the absolute val-
ues are given by abs ([x̃]) =

[|[x1] − x1,d| . . . |[xn] − xn,d|
]
. Moreover, the matrix

of the absolute values |[x̃]| ∈ R
n×n with [x̃i] = ([xi] − xi,d) (for all i ∈ {1, ..., n})

and the sign function are defined as

|[x̃]| =

⎡

⎢
⎢
⎢
⎣

[x̃1] · sign([x̃1]) [x̃1] · sign([x̃2]) . . . [x̃1] · sign([x̃n])
[x̃2] · sign([x̃1]) [x̃2] · sign([x̃2]) . . . [x̃2] · sign([x̃n])

...
...

. . .
...

[x̃n] · sign([x̃1]) [x̃n] · sign([x̃2]) . . . [x̃n] · sign([x̃n])

⎤

⎥
⎥
⎥
⎦

and (11)

sign([x̃i]) =

⎧
⎨

⎩

1, if inf([x̃i]) > 0
−1, if sup([x̃i]) < 0
0, else .

(12)
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Furthermore, [V̇a,C ] = [x̃]T PC([AC ] − [BC ]K)[x] + [x̃]T PC [BC ]uFF − [x̃]T PC ẋd

and the trace of the stochastic processes T = 1
2 trace

{
GT

p
∂2VC

∂x̃2 Gp

}
hold. The left

pseudo inverse3 of the matrix [M] is calculated by [M]+ =
(
[M]T · [M]

)−1 ·[M]T .
In case that not all system states are measurable, it is necessary to reconstruct
them by an observer (see next section). Then, x in the control law is replaced
by the estimated states x̂.

For this stability proof, the sign of L(VC) is relevant; if L(VC) < 0 the
system is stable. Note that the boundary L(VC) = 0 of the provable stability
domain is commonly shaped like an ellipsoid whose volume should be as small as
possible to reduce the non-stabilizable area [10]. Currently, the simulation of this
approach works fine also in combination with the observer in Subsects. 4.2 and
4.3 (feedback of the estimated states). In future work, it will be implemented on
the described test rig in experiment and connected with the approach described
in Subsect. 4.4.

4 Sliding Mode Techniques for Estimation Purposes

Due to the fact that measurements in real applications are often limited, knowl-
edge of the non-measurable states is necessary to implement an efficient con-
trol strategy. In the presented case, in addition to state estimation, uncertain
parameters will be identified simultaneously. Therefore, a classical sliding mode
observer approach is extended such that the real-time capability is ensured.
Often, parameter identification procedures are evaluated offline by using mea-
sured data which results in a set of parameters that are assumed to be constant
for the complete identification horizon. In the following, it is assumed that para-
meters can change in each time step (index k) within a defined range. Especially
for parameters containing uncertain or random effects as static or sliding fric-
tion, this assumption is reasonable. Therefore, intervals defining suitable range
bounds are considered in Subsects. 4.2, 4.3 and 4.4. Moreover, the presented
extension of a classical observer (Subsect. 4.1) is able to deal with process as
well as measurement noise but still guaranteeing the system’s stability in each
time step.

4.1 A Classical Observer Approach

As it has been shown in [9], assume a dynamic system ẋ = f (x,u) whose state
equations can be written in the form

ẋ = f = A · x + B · u + S · w (x,u) , y = C · x . (13)

In (13), x denotes the state vector, A as well as B denote the constant system
and input matrices, and u is a vector-valued control signal. The matrix S ∈ R

n×q

includes influences of a-priori unknown terms on the system dynamics which have

3 For single-input systems, [M] turns out to be a column vector.
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to fulfill the condition ‖w (x,u)‖ ≤ ρ(u) with a fixed upper bound for the vector
norm ρ(u) [1]. Consequently, the product S · w (x,u) contains all nonlinearities
included in the system model that do not fit in the linear part of the set of state
equations. Moreover, the constant output matrix C links the system states in a
linear way to the output y. Now, a variable-structure observer described by a
set of ordinary differential equations (ODEs) [1]

˙̂x = Â · x̂ + B̂ · u + ρ(u) · S̃ · ẽ + Hp · (ym − ŷ) (14)

with the output equation ŷ = Ĉx̂ can be defined. In Eq. (14), ρ(u) is a factor
for the variable-structure part which has to be chosen such that the approxi-
mation S · w ≈ ρ(u) · S̃ · ẽ holds. The observer gain matrix Hp is used for the
stabilization of the error dynamics of the linear part and is usually determined
by pole assignment. The vector ym includes all measured system outputs. All
remaining terms in (14) denoted by the symbol .̂ characterize system, input and
output matrices as well as the estimated state vector of the observer parallel
model that replicates the original one. Moreover, the error vector is defined as
ẽ = STP(x−x̂)

‖STP(x−x̂)‖ and accounts for deviations between the true (original) and esti-
mated system states. There, the positive definite matrix P = PT results from
solving the Lyapunov equation (Â − Hp · Ĉ) · P + P · (Â − Hp · Ĉ)T + Q = 0
with a weighting matrix Q > 0. Note that the sliding mode observer (as well
as any other observer) is only applicable if the pair

(
Â, Ĉ

)
is observable. As

soon as a change of sign occurs in the term em = ym − ŷ, the term w in (13) is
reproduced approximately by ẽ in the switching part of the observer. According
to the (matching) conditions

S · w ≈ ρ(u) · S̃ · ẽ ≈ ρ(u) · S̃ · sign (em) (15)

the matrices S and S̃ have an identical structure. Considering this condition, the
observer differential equation is adapted to

˙̂x = Â · x̂ + B̂ · u + Hp · em + hs · S̃ · sign (em) (16)

with the sign function depending component-wise on the difference em. By this
reformulation of Eq. (16), it is now possible to handle uncertainty by means of the
variable structure term because the model does not only include a locally valid
model anymore. The stabilization of the error dynamics becomes now possible
in spite of nonlinearities in the system representation [9]. In the following, this
extended sliding mode observer will be modified further such that it is possible
to estimate multiplicatively coupled states and parameters simultaneously by
means of the modification

˙̂x = Â · x̂ + B̂ · u
︸ ︷︷ ︸

f̂(x̂,u)

+Hp · em + P+ · ĈT · Hs · sign (em) (17)

with Â := Â (x̂), B̂ := B̂ (x̂). As it can be seen, the quite restrictive match-
ing condition (15) is removed. The variable structure gain, called switching
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amplitude vector, is a diagonal matrix according to Hs = diag(hs) with
dim(hs) = ny × 1 and has to be defined such that the Lyapunov function can-
didate V = 1

2 (x − x̂)T P(x − x̂) > 0 is greater than zero and its time derivative
less than zero for asymptotic stability according to V̇ = (x − x̂)T P(ẋ − ˙̂x) < 0.

In classical sliding mode approaches, the variable-structure gain is defined as
a constant value. In Subsect. 4.2, a possibility is shown that calculates this gain
in each time step to reduce chattering and to avoid actuator saturations. More-
over, uncertainty of parameters and states will be included as well as stochastic
processes. The aim is to estimate states and to identify parameters simultane-
ously by a cascaded observer structure which will be shown in Subsect. 4.3.

4.2 Extended Approach Considering Uncertainty and Stochastic
Processes - Estimation of Point Values

In this section, the dual problem to control tasks — namely state estimation —
is solved by using sliding mode techniques taking into account parameter uncer-
tainty, sensor inaccuracies and noise processes as already described in [7] in
detail. Here, the calculated number of the switching amplitudes is equal to the
number of measurable states in order to guarantee stability and to reach the slid-
ing surface as fast as possible. Moreover, by a direct calculation of the switching
amplitude vector, its values can be adapted automatically in each time step
instead of predefining a suitable constant gain by intelligent guessing.

As for control design, a suitable Lyapunov function candidate is necessary,
which is chosen as VO = 1

2e
T · PO · e with the deviation e = x − x̂ between

the true and estimated system states. The matrix PO results from solving the
Lyapunov equation ÃOPT

O +ÃT
OPO +Q = 0 with ÃO = Â−HpĈ that holds for

one working point (PO = PT
O > 0). Moreover, stochastic disturbances that affect

the system dynamics as process or measurement noise can again be considered
by applying the Itô differential operator

L(VO) =
∂VO

∂t
+
(

∂VO

∂e

)T

· [f̄ ] +
1
2
trace

{

GT ∂2VO

∂e2
G
}

(18)

with [f̄ ] = [f ]− [ˆ̃f([x̂], [p],u)] and the interval extension of the system ODEs (8).

The term ˆ̃f(x̂, [p],u) describes an observer parallel model by

[ˆ̃f(x̂, [p],u)] := Â(x̂, [p]) · [x̂] + B̂(x̂, [p]) · u + Hp · [em]
︸ ︷︷ ︸

f̂(x,[p],u)

+ P+
OĈ

T · Hs · sign(em + [Δym]), [ŷ] := Ĉ · [x̂] . (19)

In Eq. (19)4, em ∈ [em] = ym − ŷ + [Δym] denotes the component-wise
defined interval measurement error vector and accounts for bounded uncertainty
4 Note that time discretization errors are neglected and the procedure is not limited

to a special class of systems. Here, a SISO system is considered.
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that becomes noticeable in deviations between the measured ym and estimated
system outputs ŷ ∈ [ŷ] with the measurement error interval [Δym]. Moreover,
Â, B̂ as well as Ĉ are the interval evaluations of the system, input and output
matrices Â(x̂, [p]), B̂(x̂, [p]) and Ĉ(x̂, [p]). The matrix G contains the standard
deviation of both process Gp as well as measurement noise Gm according to
G = [Gp − HpGm]; the matrix Hp stabilizes the linear part of the observer
denoted by f̂(x̂,p,u) for one working point x̂ ∈ [x̂] and p ∈ [p]. This observer
gain Hp can be determined by pole assignment, minimizing a quadratic cost func-
tion (both for one special operating point) or by solving linear matrix inequalities
(valid for the whole defined operating range) [10].

Reaching the sliding surface of all estimated states means that the difference
between the system states themselves and the estimated ones becomes small so
that switching around the sliding surface occurs. To prevent the observer from
unnecessary switchings in regions where the sign of em cannot be evaluated, the
interval error vector [e] = [x]− [x̂] is introduced with [x̂] = x̂+[Δxe] (estimation
error interval [Δxe]). For measurable states, the estimation interval is replaced
by the measurement interval according to the sensor model [Δym] = Ĉ · [Δxe] .
Due to the interval extension of e to [e], the sliding surface becomes an area
leading to smaller switching amplitudes Hs.

Applying the condition L(VO)
!
< −qT

O |[em]| with a user-defined convergence

rate qO, the expression [e]T PO · [f̄ ]+ 1
2 trace

{
GT ∂2VO

∂e2 G
}

< −qT
O |[em]| leads to

[e]T PO ·
(
A · [x̂] + B · u − Â · [x̂] − B̂ · u − Hp · [em]

)
−

−[e]T PO ·
(
P+

OĈT Hs · sign (em)
)

+
1
2
trace

{

GT ∂2VO

∂e2
G
}

< −qT
O |[em]| .

(20)

Note this inequality needs to be valid for all possible configurations inside the
specified intervals for states and parameters. Because of the positive definiteness
of the matrix PO, the term POP+

O = In×n is equal to the identity matrix I
with PO = PT

O. With this simplification, the components of the diagonal matrix
Hs = diag(hs) with dim(Hs) = ny × ny can be calculated component-wise

from Eq. (20). Therefore, the term [e]T PO ·
(
P+

OĈT Hs · sign ([em])
)

= [e]T ·
(
ĈT Hs · sign ([em])

)
= hs,1 · [em,1] ·sign([em,1])+ ...+hs,ny

· [em,ny
] ·sign([em,ny

])
can be reformulated using [em,i] · sign([em,i]) = |[em]| (i ∈ 1, ..., ny) according to

[e]T PO ·
(
P+

OĈT Hs · sign ([em])
)

= hT
s |[em]| . (21)

Note that the output matrix Ĉ := Ĉ is independent of states or parameters in
this case. The absolute value of the interval measurement error |[em]| yields
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|[em,i]| =
∣
∣
[
em,i; em,i

]∣
∣ =

⎧
⎪⎨

⎪⎩

[−em,i ; −em,i

]
, for em,i ≤ 0 ,

[
em,i ; em,i

]
, for em,i ≥ 0 ,

[
0 ; max{|em,i|, |em,i|}

]
else .

(22)

From Eq. (18) with (21), the switching amplitude vector can be calculated by

hs =

{
0, if [δO] ⊆ [em]T [em]
sup
(
|[em]|+ ·

(
[V̇a,O] + 1

2 · trace
{
GT ∂2VO

∂e2 G
})

+ qT
O

)
, else .

(23)

In Eq. (23), [V̇a,O] = [e]T PO ·(AC ·[x]+BC ·u−Â·[x̂]−B̂·u−Hp ·[em]) holds with
the interval error vector [e]. To prevent a division by zero, a small interval [δO]
around zero is included in the calculation of the switching amplitude to reduce
on the one hand unnecessary chattering and to reduce the value of the switching
amplitude on the other hand [10]. The interval pseudo inverse in Eq. (23) is

defined as |[em]|+ =
(
|[em]|T |[em]|

)−1

· |[em]|T . A stability proof can be done
by evaluating Eq. (18) in each time step.

4.3 Cascaded Structure of the Observer

In the following, the approach described in the previous section is applied to
the simplified model for the longitudinal dynamics of a vehicle (see Sect. 2) in
terms of a cascaded structure. To estimate all system states and to identify the
system parameters, two subsystems are necessary due to multiplicative couplings
of states and parameters in the system model. The states are estimated by the
first subsystem and serve as virtual measurements for the second subsystem
that identifies the parameters in each time step by using integrator disturbance
models. The physical background of those is, that the parameters are assumed to
be located within specified intervals in which they are allowed to vary between
two time steps. Figure 2 shows the definitions of matrices, the models of both
subsystems as well as the corresponding observer parallel models. From the latter
ones, the linear structure of the interval-based sliding mode observer (ISMO) can
be derived by factorization of f̂ (i) for both subsystems i ∈ {S1, S2}. Note the
representation by the system matrix Â(S2) and the input vector b̂(S2) of the
second subsystem is evaluated for one operating point and consequently this
also holds for H(S2)

p and P(S2)
O . However, the stability proof is still valid because

the variable-structure part stabilizes the error dynamics of the complete system.

4.4 Extended Approach Considering Uncertainty and Stochastic
Processes - Estimation of Confidence Intervals

In the previous subsection, point values for system states and parameters were
estimated such that the system’s stability can be guaranteed. Due to calcula-
tion with intervals, these point values are just one solution of others. Therefore,
the following strategies provide the possibility to estimate all possible solutions
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which results in the calculation of confidence regions (enclosures) for parameters
and states. Note that stability is guaranteed for all solutions summarized by
the confidence regions. The calculation of confidence regions can be realized by
using (1) Müller’s theorem, (2) cooperativity, (3) a quasi-linear system repre-
sentation (with real or complex eigenvalues) in combination with a state-space
transformation, and (4) an affine system representation. These four points will be
described in the following and, if possible, applied to the scenario (see Sect. 2) in
simulation. Note that the influence of time discretization errors can be neglected,
because the considered uncertainty represented by intervals is larger by multiple
orders of magnitudes. Before the four strategies can be implemented, the two
subsystems need to be reformulated such that no direct interval dependencies
in the right-hand side of the ODEs are included. Therefore, the state vector is
extended in the following by integrator disturbance models for these intervals
(in the presented scenario, only measurement intervals occur on the right-hand
sides of the ODEs, where the interval in sign([Δem]) is no problem due to the
definition of the sign function according to Eq. (12)). This reformulation leads
to the extended subsystems

⎡
⎢⎢⎢⎢⎢⎢⎣

˙̂x1
˙̂x2

x̂3
˙̂x4
˙̂z1

[Δẏm]

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
˙̂x
(S1)
ext

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[
Â(S1), H

(S1)
p

01×6

]
−
[
H

(S1)
p

0

]

︸ ︷︷ ︸
H

(S1)
p,ext

· [Ĉ(S1) 0
]

︸ ︷︷ ︸
Ĉ

(S1)
ext

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

(S1)
O,ext

⎡
⎢⎢⎢⎢⎢⎢⎣

x̂1

x̂2

x̂3

x̂4

ẑ1
[Δym]

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x̂
(S1)
ext

+H
(S1)
p,ext ·C(S1)

ext · x(S1)
ext︸ ︷︷ ︸

y
(S1)
m,ext

+ b
(S1)
ext · u + (P

(S1)
O,ext)

+ · Ĉ(S1)
ext ·H(S1)

s · sign(ym − ŷ + [Δym])︸ ︷︷ ︸
[e

(S1)
m ]︸ ︷︷ ︸

scalar point-value

and (24)

⎡
⎢⎢⎣

˙̂x(S2)

[Δẏm,1]
[Δẏm,2]
[Δẏm,3]

⎤
⎥⎥⎦

︸ ︷︷ ︸
˙̂x
(S2)
ext

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[
Â(S2), H

(S2)
p

03×8

]
−
[
H

(S2)
p

03×3

]

︸ ︷︷ ︸
H

(S2)
p,ext

· [Ĉ(S2) 03×3
]

︸ ︷︷ ︸
Ĉ

(S2)
ext

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
A

(S2)
O,ext

⎡
⎢⎢⎣

x̂(S2)

[Δym,1]
[Δym,2]
[Δym,3]

⎤
⎥⎥⎦

︸ ︷︷ ︸
x̂
(S2)
ext

+

⎡
⎢⎢⎣

b(S2)

0
0
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
b
(S2)
ext

·u

+H
(S2)
p,ext · Ĉ(S2)T

ext · x(S2)
ext︸ ︷︷ ︸

y
(S2)
m,ext

+(P
(S2)
O,ext)

+ · Ĉ(S2)
ext ·H(S2)

s · sign(ym − ŷ + [Δym])︸ ︷︷ ︸
[e

(S2)
m ]

.

(25)

with the vector and matrix definitions x(S1)
ext = [x1 x2 x3 x4 z1 [Δym]]T ,

b(S1)
ext = [0 0 0 0 0 0]T , C(S1)

ext = [C(S1)
ext 0]T , P(S1)

O,ext = [P(S1)
O 05×1 ; 01×6],

x̂(S2) = [x̂2 x̂3 α̂ β̂ ẑ2]T , ˙̂x(S2) = [ ˙̂x2
˙̂x3 α̂

˙̂
β ˙̂z2]T , and P(S2)

O,ext =

[P(S2)
O 05×3 ; 03×6] (see also Fig. 2).
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Müller’s Theorem. Müller’s Theorem can always be taken into account, even
if the proof of cooperativity of a system fails. In this case, interval enclosures of
a system described by ODEs can be calculated as follows. According to Müller
[2], the enclosures of all time-varying system states can be computed, if lower
and upper functions can be found that bound the right-hand side of the system
ODEs ẋ = f(z,p, u) for all uncertain states z ∈ [z] and parameters p ∈ [p].
These functions are denoted by fχ (lower function) and fψ (upper function).
Then, the bounding system can be defined by the worst-case enclosures

χi ≤ xi ≤ ψi (26)

for all i = {1, ..., n} component-wise (system order n). Analogously, the system
equations can be determined according to the differential inequalities

fχ,i ≤ ẋi ≤ fψ,i (27)

for all possible states, parameters and inputs. Then, a system of order 2n has to
be solved to find the lower and upper enclosures for all states in a numerical way
by verified solution algorithms. Therefore, the lower and upper bounds result
from minimization and maximization

fχ,i ≤ min{fi(z,p, u)|χj ≤ zj ≤ ψj with zi ≡ χi and p
k

≤ pk ≤ pk} , (28)

fψ,i ≥ max{fi(z,p, u)|χj ≤ zj ≤ ψj with zi ≡ ψi and p
k

≤ pk ≤ pk} (29)

for j ∈ {1, ..., i − 1, i + 1, ..., n} and k ∈ {1, ..., np}. For the application example
in Sect. 2, this procedure leads do unstable solutions that are too conservative
and include unphysical combinations due to overestimation.

Enclosures for Cooperative Systems. A given system f(x,p, u) is called
cooperative system if it is monotone concerning its initial values. The domain for
all possible states can be calculated by evaluating the system for all corner points
of intervals containing the initial values. In general, the calculation of confidence
regions by taking into account the cooperativity of a system is a special case of
Müller’s theorem. Sufficient conditions for a cooperative system are that

– all states are non-negative for all times according to ẋi =
fi(x1, ..., xi−1, 0, xi+1,...,xnx

) ≥ 0 (parameters and inputs are not denoted
explicitly),

– all entries of the Jacobian fulfill the condition ∂fi

∂xj
≥ 0 for all i, j ∈ {1, ..., n}

(i �= j).

If these conditions are fulfilled, guaranteed lower and upper bounds can be cal-
culated by evaluating the system ODEs at all corner points instead of using
the whole range of xi as it is done with Müller’s theorem. This decreases the
computational effort significantly. All corner points are used to find the infimum
(lower bound) and supremum (upper bound) of the enclosures in each time step.
For this initial value problem, verified numerical solution algorithms are used
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to avoid errors due to computational accuracy, rounding, and time discretiza-
tion [8,13]. For the given application scenario, enclosures for the system states
and the two system parameters are of interest. Therefore, this algorithm needs to
be implemented for both subsystems. This leads for the first subsystem to 26 · 6
and for the second subsystem to 28 ·8 state equations containing unphysical para-
meter combinations. Unfortunately, overestimation due to this large number of
configurations leads to unstable solutions for both subsystems.

Quasi-Linear SystemRepresentationwithState-SpaceTransformation.
Another possibility to calculate enclosures for states and parameters can be
found by reformulating the system into a quasi-linear representation. In order
to reduce overestimation caused by the dependency problem, the system states
need to be decoupled. This generates a state-space transformation into new coor-
dinates (by using Jordan or Metzler matrices) and allows a recursive evaluation
of the new system equations. Afterwards, a backward transformation into orig-
inal coordinates is necessary. Here, the Jordan matrix is taken into account, in
which the (real or complex) eigenvalues of the system are located on the diag-
onal of the matrix and zeros on all other entries. The algorithm presented in
the following needs to be implemented for both subsystems in order to get the
enclosures of parameters and states. The state-space transformation follows with
x̂ext = V · z and ˙̂xext = V · ż for the single-input single-output system (S1) and
the single-input multi-output system (S2) to

[ż] = inv(V) · (AO,ext[x̂ext] + bextu + Hp,extym + (PO,ext)+CT
ext · Hssign([em]))

= inv(V) · (AO,extV [z] + bextu + Hp,extym + (PO,ext)+CT
ext · Hssign([em]))

= J[z] + inv(V) · (bextu + Hp,extym + (PO,ext)+CT
ext · Hssign([em])) .

(30)

The relation between the Jordan canonical form and the matrix of eigenvectors
V is given by J = diag(λi) = inv(V) · AO,ext · V where λi are real or complex
eigenvalues according to λi = σi±j·ωi with multiplicity one. Both matrices result
directly from the Matlab command [V ,J] = eig(AO,ext) for both subsystems
separately. The state-space transformation is the prerequisite for the algorithm
in Fig. 3 that is based on the Euler method. Due to the fact that the system
matrix of subsystem S2 significantly depends on the positive or negative sign of
the time derivative of the input signal u̇ (see Fig. 2), the algorithm needs to be
divided into 4 cases where for S1 only a single case is necessary. This is justified
by the fact that this system matrix represents an integrator chain state estimator
which provides virtual measurements for subsystem S2. The following algorithm
is executed in each time step, where two subsequent time steps tk (index k) and
tk+1 (index k + 1) are taken into account.

Additionally, in Fig. 3 the terms

γ+ = b · u + Hp,ext,+ · ym + (PO,ext,+)+ · ĈT
ext · sign(ym − ŷ + [Δym]) (31)

γ− = b · u + Hp,ext,− · ym + (PO,ext,−)+ · ĈT
ext · sign(ym − ŷ + [Δym]) (32)
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Fig. 3. Structure diagram: quasi-linear system representation, T = tk+1 − tk.

with the pseudo inverses (.)+ are used. In dependency of the possible change of
sign from u̇k to u̇k+1, diagonal matrices of eigenvalues J+ and J−, matrices of
eigenvectors V+ and V−, linear observer gains Hp,ext,+ or Hp,ext,−, and matrices
PO,ext,+ or PO,ext,− are used. These are evaluated offline for two fixed operating
points of u̇ in the system matrix Â(S2)

ext (index + if u̇k+1 > 0 and index − if
u̇k+1 < 0). Then, a backward transformation from [zk+1] = [zk+1, zk+1] follows
with [xext,k+1] = V+ · [zk+1] or [xext,k+1] = V− · [zk+1] in dependency of the sign
of u̇. The goal of this procedure is to get intervals for parameters and states that
comprise all possible configurations where stability can be guaranteed. Figure 4
shows this in a graphical way: Starting with a large initial interval [x0], at the end
of the simulation a smaller interval [xf ] results. Unfortunately, this algorithm
provides only good results for subsystem S1. The results of subsystem S2 are
not feasible due to overestimation and rotation of interval boxes (leading to non-
negligible wrapping effect) caused by the importance of the positive or negative
sign of u̇.

Affine System Representation. In the previous subsection, only overestima-
tion due to the dependency problem could be reduced but not overestimation
due to the wrapping effect so that the algorithm failed for subsystem S2. There-
fore, a new system representation is shown that makes it possible to directly map
states and parameters to their initial intervals in each time step. This reduces
computational effort, neither state-space nor backward transformation are nec-
essary (because there are no dependencies of the states due to constant initial
intervals) and no interval box rotations occur. The algorithm is depicted in
Fig. 5 and based on the Euler forward discretization (sample time T = tk+1 − tk,
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Fig. 4. Contracting interval box over time for a system with two states in two points
of view, where the considered interval is only defined in x1-direction (comparable to
the measurement interval of subsystem S1).

identity matrix I). As it can be seen from the previous four cases in Fig. 3, now
only two cases for S2 are necessary (for S1 again only one case is used). A new
matrix Mk+1 and a vector ρk+1 using Eqs. (31) and (32) are calculated in each
time step which then represent the new enclosure vector [xk+1] still referring to
the constant initial interval vector [x0]. This procedure is successful for both sub-
systems, where the results for S1 from the affine system representation are equal
to the results from the state-space transformation procedure. Figure 6 shows the
connection between the sliding mode observer estimating point values and the
observer estimating confidence regions. Note that currently both observers are
implemented with an open-loop control. In future work, a closed-loop control will
be performed by using the states and parameters estimated from the observer
calculating confidence regions with the affine system representation in simulation
(dashed line in Fig. 6).

Fig. 5. Structure diagram: Affine system representation.
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Fig. 6. Overview of point-value observer and confidence region estimator.

5 Results

In this section, the results of the point valued sliding mode observer and the
extension to the estimation of confidence regions are shown. Note that the follow-
ing visualizations result from open-loop control. The connection to closed-loop
control in experiments is subject of future work. In Fig. 7, the confidence regions
for the parameters Fig. 7(a) and (b) and the states Fig. 7(d) and (e) are visual-
ized. Obviously, the intervals become smaller over time which was proposed in
Fig. 4. Additionally, the results of the point valued observer for the parameter
estimates can be seen in Fig. 7(a) and (b) labeled by α̂k and β̂k. In this context,
Fig. 7(c) presents the estimated point valued parameters from experimental data.
These estimates are located inside the confidence regions depicted in Fig. 7(a)
and (b). Moreover in Fig. 7(f) and (g), the errors between the estimated states
and the desired state trajectories are shown which provide good results taking
into consideration that the states are affected by noise processes. In order to vali-
date the results of the parameter identification in each time step from the second
subsystem, a comparable procedure is necessary [11]. Therefore, a least-squares
parameter identification has been performed. There, the parameter estimates are
assumed to be constant for time intervals of 8 s taking into account the second
system equation ẋ2,m = α̂kx2,m + β̂kum which has to be valid also for mea-
surements (index m). From this, the parameters can be calculated for several
measurements over 8 s according to

[
α
β

]

=

⎛

⎜
⎝

⎡

⎢
⎣

x2,m(t1) um(t1)
...

...
x2,m(tf ) um(tf )

⎤

⎥
⎦

⎞

⎟
⎠

+ ⎡

⎢
⎣

ẋ2,m(t1)
...

ẋ2,m(tf )

⎤

⎥
⎦ (33)

where tf −t1 = 8 s. The time derivatives x2,m and ẋ2,m of the measurable state x1

have been calculated by first-order low pass filtered derivative approximations.
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Fig. 7. Confidence regions for the system parameters (a), (b) with ([Δym,1] =
[−0.1; 0.1], [Δym,2] = [−0.1; 0.1], [Δym,3] = [−0.01; 0.01], hs,max = 400) including
simulative point-valued estimates α̂k and β̂k from ISMO; (c) experimental estimated
parameters of the ISMO; (d), (e) confidence regions for the two system states; (f) and
(g) estimation errors of the reconstructed point-valued states using ISMO.

The measurements for the motor torque um have also been low-pass filtered.
With the estimated parameter values of both, the sliding mode observer as well as
the least-squares method, the system (1) described in Sect. 2 has been simulated
again separately including the parameter estimates of each method. The results
can be seen in Fig. 8, which shows the root mean square errors for Δx1 = x1−x1,m

and Δx2 = x2−x2,m (x2,m results from differentiation of x1,m) of both methods.
It becomes obvious, that the ISMO provides better estimates due to smaller root
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Fig. 8. Results: Standard deviations
of the estimation errors (subsystem
S1) compared to the standard devi-
ation of the simulated measurement
noise (top); validation of the parameter
identification by least-squares (LS) and
interval-based sliding mode observer
(ISMO) (bottom).

Fig. 9. Stability proof for S2.

mean square errors than the least-squares estimation. Moreover, Fig. 9 shows the
successful stability proof for the second subsystem, because L(V (S2)

O ) is negative
for the complete time horizon.

6 Conclusions and Outlook

In this paper, sliding mode approaches for control and estimation tasks were
shown under consideration of uncertainty as well as stochastic processes. Non-
measurable states and unknown parameters are estimated by observer strategies,
firstly with point valued results and secondly by estimating confidence intervals
using the interval toolbox IntLab, the C++ library C-XSC and s-functions in
Matlab/Simulink. In future work, these strategies will be coupled as closed-
loop control and evaluated online on the described test rig. The real-time capa-
bility is already secured. Moreover, the influence of time discretization errors
will be investigated. The control procedure will especially be applied to other
mechanical and thermodynamic systems.
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Abstract. Numerical reproducibility failures appear in massively paral-
lel floating-point computations. One way to guarantee this reproducibil-
ity is to extend the IEEE-754 correct rounding to larger computing
sequences, e.g. to the BLAS. Is the extra cost for numerical reproducibil-
ity acceptable in practice? We present solutions and experiments for the
level 1 BLAS and we conclude about their efficiency.

1 Introduction

Numerical reproducibility is an open question for current high performance com-
puting platforms. Dynamic scheduling and non-deterministic reduction on mul-
tithreaded systems affect the operation order. This leads to non-reproducible
results because the floating-point addition is not associative. Numerical repro-
ducibility is important for debugging and for validating results, particularly if
legal agreements require the bitwise reproduction of the execution results. Fail-
ures have been reported in numerical simulation for energy science, dynamic
weather forecasting, atomic or molecular dynamic, fluid dynamic – entries in [8].

Solutions provided at the middleware level forbid the dynamic behavior and
so impact the performances — see [11] for TBB, [15] for OpenMP or Intel MKL.
A first algorithmic solution has been recently proposed in [6]. Their summation
algorithms, ReprodSum and FastReprodSum, guarantee the reproducibility inde-
pendently from the computation order. They return about the same accuracy
as the performance optimized algorithm only running a small constant times
slower.

Correctly rounded results ensure numerical reproducibility. IEEE754–2008
floating-point arithmetic is correctly rounded in its four rounding modes [1].
We propose to extend this property to the level 1 routines of the BLAS that
depend on the summation order: asum, dot and nrm2, respectively the sum of
the absolute values, the dot product and the vectorial Euclidean norm. Recent
algorithms that compute the correctly rounded sum of n floating-point values
allow us to implement such reproducible parallel computation. The main issue is
to investigate whether the running-time overhead of these reproducible routines
remains reasonable enough in practice. In this paper we present experimental

c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 99–108, 2016.
DOI: 10.1007/978-3-319-31769-4 8
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answers to this question. Our experimental framework is significant of the cur-
rent computing practice: it consists in a shared memory parallel system with
several sockets of multicore x86 processing units. We apply standard optimiza-
tion techniques to implement efficient sequential and parallel level 1 routines. We
show that for large vectors, reproducible and accurate routines introduces almost
no overhead compared to their original counterparts in a performance-optimized
library, Intel MKL [7]. For shorter ones, reasonable overheads are measured and
presented in Table 2. Since Level 1 BLAS performance is mainly dominated by
the memory transfers, additional computation does not significantly increase the
running time, especially for large vectors.

The paper is organized as follows. In Sect. 2, we briefly present some accurate
summation algorithms, their optimizations and an experimental performance
analysis to decide how to efficiently implement the level 1 BLAS. The experimen-
tal framework used throughout the paper is also described in this part. Section 3
is devoted to the performance analysis of the sequential implementation of the
level 1 BLAS routines. Section 4 describes their parallel implementations and the
measure of their efficiency; we gather plots for all previously presented sequential
and parallel algorithms. We conclude describing the future developments of this
ongoing project towards efficient and reproducible BLAS.

2 Choice of Optimized Floating-Point Summation

Level 1 BLAS subroutines mainly rely on floating-point sums. It exists several
correctly rounded summation algorithms. Our first step aims to derive optimized
implementations of such algorithms and to choose the most efficient ones. In
the following, we briefly describe these accurate algorithms and then, how to
optimize and to compare them.

All floating-point computations satisfy the IEEE754–2008. Let fl(
∑

pi) be
the computed sum of a length n floating-point vector p. The relative error of the
classical accumulation is of the order of u · n · cond(

∑
pi), where cond(

∑
pi) =∑ |pi|/|∑ pi| is the condition number of the sum. u is the machine precision

that equals 2−53 for IEEE754 binary64.

2.1 Some Accurate or Reproducible Summation Algorithms

Algorithm SumK [10] reduces the previous relative error bound as if the classical
accumulation is performed in K times the working precision:

|SumK(p) − ∑
pi|

|∑ pi| ≤ (n · u)K

1 − (n · u)K
· cond(

∑
pi) + u. (2.1)

SumK replaces the floating-point add by Knuth’s TwoSum algorithm that com-
putes both the sum and its rounding error [9]. SumK iteratively accumulates
these rounding errors to enhance the final result accuracy. The correct round-
ing could be achieved by choosing a large enough K to vanish the effect of the
condition number in Eq. (2.1) — but in practice this latter is usually unknown.
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Algorithm iFastSum [18] repeats SumK to error-free transform the entry vector.
As [2], this distillation process terminates returning a correctly rounded result
thanks to a dynamic control of the error.

Algorithms AccSum [14] and FastAccSum [13] also rely on error-free transfor-
mations of the entry vector. They split the summands, relatively to max |pi|
and n, such that their higher order parts are then exactly accumulated. This
split-and-accumulate steps are iterated to enhance the accuracy up to return a
faithfully rounded sum. These algorithms return the correctly rounded sum and
FastAccSum requires 25 % less floating-point operations than AccSum.

HybridSum [18] and OnlineExact sum [19] exploit the short range of the floating-
point number exponents. These algorithms accumulate the summands with a
same exponent in a specific way to produce a short vector with no rounding error.
The length of the output vector of this error-free transform step is the exponent
range. HybridSum splits the summands such that floating-point numbers can be
used as error-free accumulators. OnlineExact uses two floating-point numbers to
simulate a double length accumulator. These algorithms then apply iFastSum to
evaluate the correctly rounded sum of the error-free short vector(s).

ReprodSum and FastReprodSum [6] respectively rely on AccSum and FastAcc-
Sum to compute not fully accurate but reproducible sums independently of the
summation order. So numerical reproducibility of parallel sums is ensured for
every number of computing units.

2.2 Experimental Framework and Implementation

Table 1 describes our experimental framework. Aggressive compiler options as -
ffast-math are disabled to prevent the modification of the sensitive floating-
point properties of these algorithms.

Rounding intermediate results to the binary64 format (53 bit mantissa) and
value safe optimizations are provided with -fp-model double and -fp-model
strict options. For a fair comparison, all algorithms are manually optimized
by a best effort process. AVX vectorization, data prefetching and loop unrolling
are carefully combined to pull out the best implementation of each algorithm.
Optimization details are presented in Appendix A of [3]. Source code is available
at [12].

Runtimes are measured in cycles with the hardware counters thanks to the
RDTSC assembly instruction. We display the minimum cycle measures over more
than fifty runs for each data. Condition dependant data are computed with the
dot product generator from [10].

2.3 Test and Results

Figure 1a and b present the runtime measured in cycles divided by the vector
size (y-axis). Vector lengths vary between 210 and 225 (x-axis) and two condition
numbers are considered : 108 and 1032.
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Table 1. Experimental framework

Software

Compiler (language) ICC 14.0.2 (C99)

Options -O3 -axCORE-AVX-I -fp-model double -fp-model strict

-funroll-all-loops

Parallel library OpenMP 4.0

BLAS library Intel MKL 11

Hardware

Processor Xeon E5 2660 (Sandy Bridge) at 2.2 GHz

Cache L1: 32 KB, L2: 256 KB, shared L3 for each socket: 20 MB

Bandwidth 51.2 GB/s

#cores 2 × 8 cores (hyper-threading disabled)

Fig. 1. Runtime/size ratio for optimized summation algorithms

It is not a surprise that HybridSum and OnlineExact are interesting for larger
size vectors. These algorithms produce one or two short vectors (length = 2048
in binary64) whose distillation is of constant time compared to the linear times
of the data preprocessing step (exponent extraction) or also, of the successive
error free transformations in the other algorithms. Moreover they are very less
sensitive to the conditioning of the entry vector. Shorter size vectors benefit
from the other algorithms, especially from FastAccSum while their conditioning
remains small.

In the following we take advantage of these different behaviors according to
the size of the entry vector. We call it a “mixed solution”. In practice for the
level 1 BLAS routines, FastAccSum or iFastSum are useful for short vectors while
larger ones benefit from HybridSum or OnlineExact as we will explain it.
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3 Sequential Level 1 BLAS

Now we focus on the sum of the absolute value vector (asum), the dot product
(dot) and the 2-norm (nrm2). Note that other level 1 BLAS subroutines do not
suffer neither of accuracy nor of reproducibility failures. In this section, we start
with sequential algorithms detailing our implementations and their efficiency.

3.1 Sum of Absolute Values

The condition number of asum equals 1. So SumK is enough to efficiently get
a correctly rounded result. According to Eq. (2.1), K is chosen such that n ≤
u1/K−1.

Figure 2a exhibits that the correctly rounded asum costs less than 2× the
optimized MKL dasum. Indeed K = 2 applies for the considered sizes. Note that
K = 3 is enough until n ≤ 235, i.e. until 256 Terabyte of data.

3.2 Dot Product

The dot product of two n-vectors is transformed into a sum of a 2n-vector with
Dekker’s TwoProd [5]. This sum is correctly rounded using a “mixed solution”.
Short vectors are correctly rounded with FastAccSum. For large n, we avoid
to build and read this intermediate 2n-vector: the two TwoProd results are
directly exponent-driven accumulated into the short vectors of OnlineExact. This
explains why this latter is interesting for shorter dot products than what we can
expect from Sect. 2.3.

Figure 2c shows this runtime divided by the input vector size — the condition
number is 1032. Despite the previous optimizations, the extra cost ratio compared
to MKL dot is between 3 and 6. This is essentially justified by the additional
computations (memory transfers are unchanged). If a fused-multiply-and-add
unit (FMA) is available, the 2MultFMA algorithm [9] that only costs 2 FMA
(compared to the TwoProd’s 17 flop) certainly improves these values.

3.3 Euclidean Norm

It is not difficult to implement an efficient and reproducible Euclidean norm.
Reproducibility is ensured by the correct rounding of the sum of the squares
and then by the correct rounding of the IEEE-754 square root. Of course this
reproducible 2-norm is only faithfully rounded. Hence a “mixed solution” is
similar to the dot one.

Here the MKL nrm2 is not used as the comparison reference since we measure
very disappointing runtime for it. We implement a non-reproducible simple and
efficient 2-norm with the optimized MKL dot (cblas ddot). We named it nOrm2.

The memory transfer cost dominates the computing one for dot and nOrm2:
compared to dot, nOrm2 halves the memory transfer volume, performs the same
number of floating-point operations and runs twice faster, see Fig. 2c and e.
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Fig. 2. Runtime/size ratio of sequential and parallel level 1 BLAS (cond = 1032)
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As previously mentioned, the “mixed solution” dot product is still computation-
dominated. This justifies that the previous dot ratios prohibitively double for
our sequential nrm2.

4 Reproducible Parallel Level 1 BLAS

Now we consider the parallel implementations. As in the previous section, parallel
asum relies on parallel SumK while parallel dot and nrm2 derive from a parallel
version of a “mixed solution” for the dot product. We start introducing these
two parallel algorithms. Then we derive the parallel reproducible level 1 BLAS
and perform its performance analysis.

4.1 From Parallel Sums to Reproducible Level 1 BLAS

Parallel SumK. It derives from the sequential version and has already been
introduced in [17]. It consists in 2 steps. Step 1 applies the SumK algorithm on
the local data without the final error compensation for every K iterations. Hence
it returns a K-length vector S such that (Sj)j=1,K is the sum of the jth layer in
SumK applied to the local subvector. Step 2 gathers these K-length vectors to
the master unit and applies the sequential SumK.

Parallel dot “mixed solution”. Every n-length entry vector is split within P
threads (or computing units) and N denotes the length of these local subvectors.
The key point is to perform efficient error-free transformations of these N -vectors
until the last reduction step. This consists in a 4 step process presented with
Fig. 3 for P = 2. Steps 1 and 2 are processed by the P threads with local
private vectors. Step 1 is similar to the sequential case and produces one vector
of size = 2N or 2048 or 4096: TwoProd transforms short N -vectors into a 2N -
one while this latter is not built for larger entries but directly exponent-driven
accumulated into the size-length vector as for HybridSum or OnlineExact. Step
2: the size-length vector is distilled (as for iFastSum) into a smaller vector of
non overlapping floating-point numbers. Step 3: every thread fuses this small
vector into a global shared one. Step 4 is performed by the master thread that
computes the correctly rounded result of the global vector with FastAccSum.

Let us remark that the small vector issued from Step 2 is at most of length
40 in binary64. Hence the distillation certainly benefits from cache effect. The
next fusing step moves across the computing units these vectors of length 40 in
the worst case. This induces a communication over-cost especially for distributed
memory environments. Nevertheless it introduces no more reduction step than
a classic parallel summation.

The Reproducible Parallel Level 1 BLAS. The reproducible parallel Rasum
derives from parallel SumK as in Sect. 3.1. The parallel dot “mixed solution”
gives reproducible parallel Rdot and Rnrm2. In practice, the parallel
implementation of the Step 1 differs from the sequential one as follows.
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Fig. 3. Parallel dot “mixed solution”

For shorter vectors, iFastSum is preferred to FastAccSum to minimize the
Step 3 communications. For medium sized vectors, HybridSum is preferred to
OnlineExact for Rdot to minimize the Step 2 distillation cost. Otherwise Onli-
neExact is chosen to minimize the exponent extraction cost.

4.2 Test and Results

The experimental framework is unchanged. Each physical core runs at most one
thread thanks to the KMP AFFINITY variable. For every routine, we run from 1 to
16 threads on 16 cores to select the most efficient configurations with respect to
the vector size. This optimal number of threads is given in parentheses in Table 2
except when it corresponds to the maximum possible resources (16). Intel MKL’s
(hidden) choice is denoted with a �.

For the next performance comparisons, optimized parallel routines are nec-
essary as references. We use the MKL parallel dot and we implement asum
and nrm2 parallel versions. Our parallel asum runs up to 16 MKL dasum and
performs a final reduction. Our parallel nOrm2 derives similarly from the sequen-
tial nOrm2 introduced in Sect. 3.3. These implementations exhibit the best
performances in Fig. 2. As in Sect. 2.3, our implementations of ReprodSum and

Table 2. Runtime extra cost for the reproducibility of parallel level 1 BLAS

Vector size 103 104 105 106 107

Rasum/asum 2.0 (1/1) 1.5 (4/2) 1.3 1.1 1

Rdot/mkldot 6.4 (8/�) 3.8 (8/�) 1.6 1.1 1

Rnrm2/nOrm2 9.1 (8/�) 7.1 (8/�) 3.4 1.6 1.5

Rasum/FastReprodasum 0.9 (1/1) 0.9 (4/4) 1.0 0.8 0.5

Rdot/FastReprodDot 1.5 (8/1) 1.5 (8/8) 0.9 0.7 0.6

Rnrm2/FastReprodNrm2 1.7 (8/1) 1.5 (8/8) 0.9 0.5 0.4
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FastReprodSum are optimized in a fair way using again AVX vectorization, data
prefetching and loop unrolling. The latter one is selected for the sequel.

We compare our reproducible Rasum, Rdot and Rnrm2, to the optimized
but non-reproducible reference implementations, and to the one derived from
FastReprodSum. Results are presented in Fig. 2 and Table 2.

Our reproducible Rasum compares very well to the optimized asum: the
initial 2× extra cost tends to 1 for n about 106, see Fig. 2. Compared to the
sequential cases and since it operates now on 16 × smaller local vectors, our
reproducible Rdot and Rnrm2 reach their optimal linear performance for larger
entry sizes. Nevertheless the reproducible Rdot runs less than 2× slower than
the MKL reference for vector size up to 105, see Fig. 2d. For the same reasons as
in the sequential case (Sect. 3.3), our reproducible Rnrm2 is not enough efficient
to exhibit the same optimal tendency. Nevertheless the Rnmr2 overhead now
reduces to the more convincing ratios compared to nOrm2, see Fig. 2f.

Finally our fully accurate reproducible level 1 routines compare quite favor-
ably to those derived from the reproducible FastReprodSum, especially for large
vectors: see Fig. 2. Those latest algorithms read twice the entry vector and thus
suffer from cache effects for large vectors. It is not the case for our algorithms. On
the other hand, the additional computation required by OnlineExact or Hybrid-
Sum benefit from the floating-point unit availability.

5 Conclusion and Future Developments

This experimental work illustrates that reproducible level 1 BLAS can be imple-
mented with a reasonable extra cost compare to the performance-optimized non-
reproducible routines. Moreover our implementations offer full accuracy almost
for free compared to the existing reproducible solutions.

Indeed the floating-point peak performance of current machines is far to be
exploited by level 1 BLAS. So the additional floating-point operations required
by our accuracy enhancement do not significantly increase their execution time.

Of course these results are quantitatively linked to the experimental frame-
work. Nevertheless the same tendencies should be observed in other current com-
puting contexts. Work is ongoing to benefit from FMA within dot and nrm2,
to validate an hybrid OpenMP+ MPI implementation on larger HPC cluster,
to port and optimize this approach to accelerators (as Intel Xeon Phi) and to
compare it to the expansions and software long accumulator of [4].

Finally there is alas no reason to be optimistic for the BLAS level 3 where
the floating-point units have no space left for extra computation. Reproducible
solutions need to be implemented from scratch, for example following [16].
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Charles University, Malostranské nám. 25, 11800 Prague, Czech Republic

{hartman,hladik}@kam.mff.cuni.cz
2 Institute of Computer Science Academy of Sciences,

18207 Prague 8, Czech Republic
hartman@cs.cas.cz

Abstract. Radius of nonsingularity of a square matrix is the minimal
distance to a singular matrix in the maximum norm. Computing the
radius of nonsingularity is an NP-hard problem. The known estimations
are not very tight; one of the best one has the relative error 6n. We pro-
pose a randomized approximation method with a constant relative error
0.7834. It is based on a semidefinite relaxation. Semidefinite relaxation
gives the best known approximation algorithm for MaxCut problem,
and we utilize similar principle to derive tight bounds on the radius of
nonsingularity. This gives us rigorous upper and lower bounds despite
randomized character of the algorithm.

Keywords: Radius of nonsingularity · Bounds · Semidefinite
programming

1 Introduction

It is well known that (non)singularity of the matrix is a determinative prop-
erty for many phenomena in optimization or system theory. Computationally
(non)singularity of a real value matrix is not a hard problem. In real-word,
however, systems under study are analysed via data that are often subject
to uncertainties and measurement errors. For these reasons it is beneficial in
many situations to be able to detect existence of a singular matrix for range of
possible values of its corresponding elements, which starts to be more complex
problem – as we will see later even NP-hard.

Let be more specific for a while to show motivational example. We may
assume that there is a matrix A as a result of series of measurements with
elements aij , where the corresponding elements are subject to uncertainty. Let
moreover assume that we can ensure that there exists a precise bound for the
measurement precision represented by δ. This in fact means that the resulting
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values are in intervals [aij − δ, aij + δ] for all i, j. Mentioned results can be
therefore represented as an interval matrix [8,9]:

A = [A,A] = {A ∈ R
n×n;A ≤ A ≤ A}

Determining a specific property of an interval matrix is usually represented
by determining this property for all realizations from the corresponding intervals.
In the same way, non-singularity of interval matrix can be seen as a search for
singular matrix within specified interval. The determination of radius of non-
singularity, on the other hand, goes even further and searches for the maximal
interval within which there is no singular matrix. More formally, an interval
matrix is called singular if it contains a singular matrix. Then the following
decision problem can be considered [2]:

Instance: Let us have a square interval matrix A, where both matrices
A and A are rational

Question: Is A singular?

Except these computational motivations there is at least one scientific field
that may use results about radius of non-singularity. This connection is repre-
sented in notion of structured singular value [11] which is closely related with
radius of nonsingularity [2]. This term has relatively long history in automation
and control and its main use is in analysis of feedback systems with uncertainties,
especially concerning robustness and stability [10].

The determination of radius of non-singularity or, more precisely, bounds of
this characteristic seems to be however easier using tools from ordinary matrix
theory. Let us therefore concentrate on ordinary matrices. Given a matrix A ∈
R

n×n, the radius of nonsingularity [1–6] is defined by

d(A) := inf {ε > 0; (∃ singular B)(∀i, j) : |aij − bij | ≤ ε}.

In other words, it is the minimum distance of A to a singular matrix in the
maximum norm. There was also studied generalization [1–4] in the form of

d(A,Δ) := inf {ε > 0; (∃ singular B)(∀i, j) : |aij − bij | ≤ εΔij},

where Δ ∈ R
n×n is a given non-negative matrix. Thus, d(A) is a special case

of d(A,Δ) when putting Δ := E, and the matrix E consists of all ones, i.e. all
elements eij = 1.

In above form the determination of this characteristic for any matrix A seems
to be a hard task. In [2–4] it was shown that

d(A) =
1

‖A−1‖∞,1
, (1)

where ‖ · ‖∞,1 is a matrix norm defined as

‖M‖∞,1 := max {‖Mx‖1; ‖x‖∞ = 1} = max {‖Mz‖1; z ∈ {±1}n}.
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Since computing ‖·‖∞,1 is known to be an NP-hard problem as shown in [2], the
same is true for the radius of nonsingularity. Moreover, it has been shown that
there is no polynomial time algorithm for approximating d(A) with a relative
error at most 1

4n2 provided P �= NP ; see [3,4]. That is why there were investi-
gated various lower and upper bounds. In [3,4], one has

1
ρ(|A−1|E)

≤ d(A) ≤ 1
max

i=1,...,n
(E|A−1|)ii

,

where ρ(A) is the spectral radius of A and E, similarly to the above case, is a
matrix consisting of all ones.

Rump [5,6] developed the other bounds as

1
ρ(|A−1|E)

≤ d(A) ≤ 6n
ρ(|A−1|E)

.

In both mentioned bounds, the matrix E can be substituted by matrix Δ
and the resulting equations then provide bounds for general version d(A,Δ) of
radius of nonsingularity, see e.g. [3].

Except these basic solutions there is one method introduced recently by
Kolev [13]. He is dealing with this problem from interval analysis perspective
and transforms its solution into search of real maximum magnitude eigenvalue
of an associated generalized eigenvalue problem. By iterative solution of the
last mentioned problem the original problem can be solved assuming additional
conditions on the whole process.

Roughly speaking, these conditions say that all solutions have to be computable
and moreover meet some additional sign conditions. Although the resulting algo-
rithm is polynomial, these conditions can represent an obstacle in solution and it
is therefore still reasonable to ask for better bounds or approximate solutions.

2 SDP Relaxation

We develop an approximation for ‖M‖∞,1. In view of (1), it will give the same
accurate approximation for d(A), too. Our approach is based on semi-definite
relaxation, and first we proceed in a similar manner as for a randomized 0.878-
approximation algorithm for MaxCut problem [7].

The problem of computing ‖M‖∞,1 can be formulated as

max
n∑

i,j=1

mijxiyj subject to x, y ∈ {±1}n. (2)

The semidefinite programming relaxation consists of replacing discrete variables
xi, yj ∈ {±1}, i, j = 1, . . . , n by unit vectors ui, vj ∈ R

n, i, j = 1, . . . , n, as
follows
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max
n∑

i,j=1

miju
T
i vj subject to ui, vi ∈ R

n,

‖ui‖2 = ‖vi‖2 = 1, i = 1, . . . , n. (3)

For any feasible solution x, y to (2), we find a corresponding solution to (3) by
putting ui := (0, . . . , 0, xi) and vi := (0, . . . , 0, yi), i = 1, . . . , n. This shows that
(3) is a relaxation to the optimization problem (2). That is, the optimal value
to (3) is an upper bound on the optimal value to (2).

This already represents problem with real variables. We have to go further to
obtain a system for which there are known approximate solutions. Let therefore
define the matrix Z ∈ R

2n×2n as

Z := UT U, (4)

where U has the columns u1, . . . , un, v1, . . . , vn. The matrix Z is obviously pos-
itive semidefinite, denoted by Z � 0, and the diagonal entries are equal to 1.
Contrary, any positive semidefinite matrix Z can be factorized as in (4), and
ones on the diagonal of Z imply that the columns of U are unit vectors. Hence
(3) takes the equivalent form of a semidefinite program

max
n∑

i,j=1

mijzi,j+n subject to Z � 0,

zii = 1, i = 1, . . . , 2n. (5)

The semidefinite program (5) can be solved in polynomial time with an arbi-
trary (a priori given) precision, see [12] or in connection with actual relaxation
in [7] (verification of the numerically computed solutions were dealt in [14]). Let
ε > 0 be a given precision and denote by γ the computed approximate optimal
value to (5). Then

γ ≥ ‖M‖∞,1 − ε,

or
γ + ε ≥ ‖M‖∞,1.

This gives us an upper bound on the (∞, 1)-norm.
In order to calculate a lower bound on ‖M‖∞,1, we utilize an optimal solution

of (5) resp. (3) to find a good feasible solution to (2). Let u∗
1, . . . , u

∗
n, v∗

1 , . . . , v
∗
n

be an (approximative) optimal solution to (3). Compared with the solution of (2)
this is highly dimensional. To obtain original lower dimension, we have to adopt
some sort of “rounding”. Let p ∈ R

n be a unit vector and define the mapping

w �→
{
1 if pT w ≥ 0,
−1 otherwise

(6)

We can see that the resulting vector is dependent not only on the original,
but also on the value of p. This p is meant to be chosen randomly, which results



Tight Bounds on the Radius of Nonsingularity 113

in so called randomized rounding sampling p uniformly distributed within the
corresponding ball [7].

We utilize the following lemma from [7].

Lemma 1. Let u, v ∈ R
n be unit vectors. The probability that (6) maps u and

v to different values is 1
π arccosuT v.

Consider a feasible solution x∗
1, . . . , x

∗
n, y∗

1 , . . . , y
∗
n to (2) determined by images

of u∗
1, . . . , u

∗
n, v∗

1 , . . . , v
∗
n with respect to the mapping (6). By Lemma 1, the

expected objective value of this solution is
∑

i,j

mij

(
1 − 1

π
arccosu∗T

i v∗
j

)
− mij

1
π
arccosu∗T

i v∗
j

=
∑

i,j

mij

(
1 − 2

π
arccosu∗T

i v∗
j

)
. (7)

Let α ≈ 0.87856723 be the Goemans-Williamson value characterizing the
approximation ratio of their approximation algorithm forMaxCut [15]. It repre-
sents an optimal value of the problem minz∈[−1,1]

2 arccos z
π(1−z) . The following lemma

gives an auxiliary result for bounding (7) by means of a linear function.

Lemma 2. For each z ∈ [−1, 1] we have

αz + α − 1 ≤ 1 − 2
π
arccos z ≤ αz + 1 − α.

Proof. We prove the first inequality αz+α− 1 ≤ 1− 2
π arccos z. The second one

is a straightforward corollary since 1 − 2
π arccos z is an odd function.

We want to find values a and b such that az + b ≤ 1 − 2
π arccos z for every

z ∈ [−1, 1]. Since the value of the function 1 − 2
π arccos z at z = −1 is −1, we

focus on the line ax + b coming through the point (−1,−1) and supporting the
function from below. Thus the line reads ax+ a − 1 and a is the maximal value
such that az + a − 1 ≤ 1 − 2

π arccos z for every z ∈ [−1, 1]. In other words,

a ≤ 2 − 2
π arccos z

z + 1
, ∀z ∈ [−1, 1].

Hence

a = min
z∈[−1,1]

2 − 2
π arccos z

z + 1
= min

z∈[−1,1]

2π − 2 arccos z

π(z + 1)
.

Substituting w := −z, we obtain

a = min
w∈[−1,1]

2π − 2 arccos (−w)
π(1 − w)

= min
w∈[−1,1]

2π − 2(π − arccosw)
π(1 − w)

= min
w∈[−1,1]

2 arccosw

π(1 − w)
= α.

��
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Now, we use Lemma 2 to find a lower bound to expected value of the solution
represented by (7). Let i, j ∈ {1, . . . , n}, then

mij

(
1 − 2

π
arccos z

)
≥

{
mij(αz + α − 1) if mij ≥ 0,
mij(αz − α + 1) otherwise,

or,

mij

(
1 − 2

π
arccos z

)
≥ mijαz + |mij |(α − 1).

Thus the lower bound to (7) can be established as follows

∑

i,j

mij

(
1 − 2

π
arccosu∗T

i v∗
j

)
≥

∑

i,j

mijαu∗T
i v∗

j + |mij |(α − 1)

= αγ + (α − 1)eT |M |e,

where e is a vector that consists of ones.
Hence we have an expected lower bound on ‖M‖∞,1

‖M‖∞,1 ≥ αγ + (α − 1)eT |M |e.

The right-hand side depends on the entries of M , but we can employ the estimate
‖M‖∞,1 ≤ eT |M |e to obtain

‖M‖∞,1 ≥ αγ + (α − 1)eT |M |e ≥ αγ + (α − 1)‖M‖∞,1,

whence

‖M‖∞,1 ≥ α

2 − α
γ.

This gives us a randomized algorithm with the approximation ratio α
2−α ≈

0.78343281.
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Abstract. We deal with an interval parametric system of linear equa-
tions, and focus on the problem how to find an optimal preconditioning
matrix for the interval parametric Gauss–Seidel method. The optimality
criteria considered are to minimize the width of the resulting enclosure,
to minimize its upper end-point or to maximize its lower end-point.
We show that such optimal preconditioners can be computed by solv-
ing suitable linear programming problems. We also show by examples
that, in some cases, such optimal preconditioners are able to significantly
decrease an overestimation of the results of common methods.

Keywords: Interval computation · Interval parametric system ·
Preconditioner · Linear programming

1 Introduction

Consider an interval linear system of equations

Ax = b, A ∈ A, b ∈ b, (1)

where

A := [A,A] = {A ∈ R
n×n; A ≤ A ≤ A},

b := [b, b] = {b ∈ R
n; b ≤ b ≤ b}

are an interval matrix and an interval vector, respectively. The solution set is
defined as

Σ := {x ∈ R
n; ∃A ∈ A, ∃b ∈ b : Ax = b}.

Since it is nonconvex in general, the problem is usually to compute an interval
vector enclosing the solution set. Computing the smallest enclosure is an NP-hard
problem [1], so the known polynomial-time methods overestimate more-or-less
the optimal enclosure. There are, however, plenty of methods varying in time
complexity and tightness of the resulting enclosures [1,4,11].

c© Springer International Publishing Switzerland 2016
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Notation. The midpoint and the radius matrices corresponding to an interval
matrix A are defined respectively as

Ac :=
1
2
(A + A), AΔ :=

1
2
(A − A).

Similarly we define interval vectors and intervals. The ith column of a matrix
C ∈ R

n×n is denoted by C∗i.

Preconditioning. Many methods for enclosing the solution set use precondi-
tioning. Let C ∈ R

n×n. Then the interval system (1) preconditioned by C reads

A′x = b′, A′ ∈ (CA), b′ ∈ (Cb),

where CA and Cb are calculated by interval arithmetic [11]. The solution set
corresponding to the preconditioned system contains the original one as a subset,
so by preconditioning we do not miss any solution. Even though the solution set
inflates by preconditioning, most of the methods used perform better when the
system is preconditioned by a suitable matrix.

It is commonly recommended to use the preconditioner C = (Ac)−1 or its
numerical approximation. Some theoretical properties justifying this choice were
stated by Neumaier [10,11]. This does not mean, however, that the midpoint
inverse preconditioner yields the best results for each method and for each input
data.

Kearfott [5] initiated a research in constructing an optimal preconditioning
matrix [6–8]. The authors investigated the interval Gauss–Seidel method with an
application in nonlinear equation solving by the interval Newton method. They
showed that the optimal precodnitioner for the interval Gauss–Seidel method
can be formulated in terms of a linear programming, so it is polynomially com-
putable. A hybrid preconditioning strategy combining the midpoint inverse and
a certain kind of optimal preconditioners was proposed by Gau and Stadtherr
[2], and some numerical tests and an application in global optimization were
presented by Lin and Stadtherr [9].

The Interval Gauss–Seidel Method. Let us recall the interval Gauss–Seidel
method briefly. Let x ⊇ Σ be an initial enclosure of the solution set. One interval
Gauss–Seidel iteration for the preconditioned system is based on the operations

zi :=
1

(CA)ii

⎛

⎝(Cb)i −
∑

j �=i

(CA)ijxj

⎞

⎠ ,

xi := xi ∩ zi,

for i = 1, . . . , n.
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Interval Parametric Systems. An interval linear parametric system of equa-
tions is a family of systems

A(p)x = b(p), p ∈ p,

where the constraint matrix and the right-hand side vector linearly depend on
parameters p1, . . . , pK ,

A(p) =
K∑

k=1

Akpk, b(p) =
K∑

k=1

bkpk.

Herein, A1, . . . , AK ∈ R
n×n are given matrices, b1, . . . , bK ∈ R

n are given vec-
tors, and p = (p1, . . . ,pK) is a given interval vector. The corresponding solution
set is defined as

Σp := {x ∈ R
n; ∃p ∈ p : A(p)x = b(p)}.

Methods for computing an enclosure of the solution set were discussed, e.g.,
in [3,17]. A parametrized version of interval Gauss–Seidel iteration in particular
was addressed in Popova [13]. For parametric systems, preconditioning is applied,
too.

In principle, a parametric system can be relaxed and the problem reduced to
solving the standard interval system

Ax = b, A ∈ A, b ∈ b,

where

A :=
K∑

k=1

Akpk, b :=
K∑

k=1

bkpk

are evaluated by interval arithmetic. For a preconditioned system by C ∈ R
n×n,

the tightest relaxation is done by evaluating

A :=
K∑

k=1

(CAk)pk, b :=
K∑

k=1

(Cbk)pk.

Notice that a relaxation leads to overestimation of the solution set in general
since we lose information about dependencies between the interval parameters.

The interval Gauss–Seidel iteration for preconditioned parametric system
reads

zi :=
1

(∑K
k=1(CAk)iipk

)

⎛

⎝
K∑

k=1

(Cbk)ipk −
∑

j �=i

(
K∑

k=1

(CAk)ijpk

)

xj

⎞

⎠ , (2)

xi := xi ∩ zi,

for i = 1, . . . , n.
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For parametric systems, a residual form of enclosures is often employed. Let
x0 ∈ R

n, for example the solution of A(pc)x = b(pc). Then the residual form
enclosure of Σp has the form of x = x0 +y, where y encloses the solution set to
the parametric system

A(p)x = b(p) − A(p)x0, p ∈ p.

The interval Gauss–Seidel iteration (2) for this system works in the same man-
ner as for the original system, only the vectors bk are replaced by bk − Akx0,
k = 1, . . . , K.

Goal. The purpose of this paper is to extend the above mentioned results to
interval parametric systems of linear equations by designing an optimal precon-
ditioner for the parametric interval Gauss–Seidel method.

2 Optimal Preconditioners

In this section, we show how to construct an optimal preconditioner for (2). We
focus on the direct version only since for the residual form it works analogously.

Since the ith step of (2) depends only on the ith row of C, we will design C
row by row. For this purpose, let i ∈ {1, . . . , n} be fixed, and consider the ith
row of C, denoted by c.

Optimality of the preconditioner can be viewed from diverse perspectives;
see various criteria surveyed in Kearfott et al. [7,8]. We will be concerned with
the following objectives

– minimize the resulting width, that is, the objective is min 2zΔ
i ,

– minimize the resulting upper bound, that is, the objective is min zi,
– maximize the resulting lower bound, that is, the objective is max zi.

If we apply both the second and the third preconditioners, we obtain the
smallest interval as a result after the intersection. This observation relies on
standard interval arithmetic. Provided we allow division by zero-containing inter-
vals and utilize generalized arithmetic, then tighter results are possible; see
S-preconditioners in [7,8].

In the following, we will discuss the first and the second criteria only since
the third criterion is easily reduced to the second one.

2.1 Minimal Width

Now, we deal with the first mentioned criterion – to minimize 2zΔ
i . Suppose that

0 ∈ x and 0 ∈ zi. This is the case, for instance, when we apply the residual form
and x0 ∈ Σp. However, the resulting preconditioner seems to perform well even
if the assumption is not satisfied despite it needn’t be optimal.

In order that zi is bounded, we will assume that the denominator in (2) does
not contain the zero. Moreover, we will normalize c such that the denominator
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has the form of [1, r] for some r ≥ 1. Then, from our assumptions it follows that
the operation in (2) is simplified to

K∑

k=1

(cbk)pk −
∑

j �=i

(
K∑

k=1

(cAk
∗j)pk

)

xj

Denote

βk := |cbk|, k = 1, . . . , K,

αjk := |cAk
∗j |, j = 1, . . . , n, k = 1, . . . , K,

ηj :=
(

∑K

k=1
(cAk

∗j)pk

)

xj , j �= i,

ψj :=
(

∑K

k=1
(cAk

∗j)pk

)

xj , j �= i.

Then our objective function reads

min
K∑

k=1

2pΔ
k βk +

∑

j �=i

(ηj − ψj). (3)

Now, we set up the constraints. By the definition of βk, we have

βk ≥ cbk, βk ≥ −cbk, k = 1, . . . , K. (4)

Since βk is minimized in the objective function, at least one of the inequalities
will hold as equation, whence βk = |cbk|. Similarly for αjk we obtain

αjk ≥ cAk
∗j , αjk ≥ −cAk

∗j , j = 1, . . . , n, k = 1, . . . , K. (5)

The condition that the denominator is has the form of [1, r] is formulated as the
equation

c

K∑

k=1

Ak
∗ip

c
k −

K∑

k=1

pΔ
k αik = 1. (6)

Eventually, we reformulate conditions on ηj and ψj . Since 0 ∈ xj , the upper
end-point of the interval product in the definition of ηj is attained either by the
product of their upper end-points or their lower end-points. Thus, we get

ηj ≥ c

K∑

k=1

Ak
∗jp

c
kxj −

K∑

k=1

pΔ
k xjαjk, j �= i, (7)

ηj ≥ c

K∑

k=1

Ak
∗jp

c
kxj +

K∑

k=1

pΔ
k xjαjk, j �= i. (8)
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Similarly for ψj ,

ψj ≤ c

K∑

k=1

Ak
∗jp

c
kxj +

K∑

k=1

pΔ
k xjαjk, j �= i, (9)

ψj ≤ c
K∑

k=1

Ak
∗jp

c
kxj −

K∑

k=1

pΔ
k xjαjk, j �= i. (10)

Since ηj is maximized and ψj is minimized in the objective function, at least
one of the inequalities is fulfilled as equation. Analogous considerations hold for
αjk. Therefore, we gathered all the constraints to formulate the optimization
problem.

Optimization Problem. The optimal preconditioner of the first type is found
by solving the optimization problem (3) under the constraints (4)–(10). This as
a linear programming problem with Kn + K + 3n − 2 unknowns c, βk, αjk, ηj ,
and ψj , and 2Kn + 2K + 4n − 3 constraints.

Notice that for standard interval linear Eq. (1), our approach would require
approximately n3 variables as there is a quadratic number of parameters. This
is more than the linear programming formulation from Kearfott [6,7] using only
a linear number of variables. His method, however, cannot be directly extended
to parametric systems.

Overall, to determine the optimal preconditioner C, we have to solve n linear
programs, which is a polynomial time problem. Moreover, C needn’t be calcu-
lated in a verified way since any matrix can serve as a preconditioner.

On the other hand, solving n linear programs requires some computational
effort, so it would be inefficient to compute an optimal C in each iteration of the
interval Gauss–Seidel method. It seems more suitable to call the standard version
using midpoint inverse preconditioner (or any other method), and after that to
tighten the resulting enclosure by running several iterations with an optimal C.

2.2 Minimal Upper Bound

Herein, the criterion is to minimize zi. Suppose first that zi > 0. Using definitions
of c, βk, αjk, and ψj from the previous section, the objective is formulated as

min c

K∑

k=1

bkpc
k +

K∑

k=1

pΔ
k βk −

∑

j �=i

ψj .

The constraints (4)–(6), (9)–(10) are employed in this problem, too. In addition,
we have to take into account the remaining two possibilities for which ψj can be
attain, and hence we involve also the inequalities
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ψj ≤ c

K∑

k=1

Ak
∗jp

c
kxj −

K∑

k=1

pΔ
k xjαjk, j �= i,

ψj ≤ c

K∑

k=1

Ak
∗jp

c
kxj +

K∑

k=1

pΔ
k xjαjk, j �= i.

If zi ≤ 0, then we just replace (6) by the equation

c
K∑

k=1

Ak
∗ip

c
k +

K∑

k=1

pΔ
k αik = 1, (11)

which normalizes the denominator in (2) to have the form of [r, 1] for some
r ∈ (0, 1]. In this case, we have to include the condition r ≥ 0, which draws

c
K∑

k=1

Ak
∗ip

c
k −

K∑

k=1

pΔ
k αik ≥ 0.

The situation r = 0 makes practically no harm (even theoretically by realizing
what will be the result if extended arithmetic is used).

The weak point is that we do not know a priori whether zi > 0 or not. We
recommend to use the condition xi > 0 instead. It means, if xi > 0, then we use
(6), otherwisewe use (11). The only possible failmay occurwhen zi ≤ 0 andxi > 0.
In this case, the optimization problem does not find the optimal solution, however,
the optimal value would be non-positive. Therefore, the upper bound is reduced
substantially (with respect to sign change) from xi > 0 to a non-positive value.

The resulting linear program has less variables by n − 1 than the previous
one from Sect. 2.1, and the number of constraints is the same. That is why the
time complexities are almost the same.

3 Examples

The examples below show how optimal preconditoners behave for various initial
enclosures, for various optimality criteria and for both versions (direct and resid-
ual) of the Gauss–Seidel method. For the residual form of the interval Gauss–
Seidel iteration, we employed the minimal width approach (Sect. 2.1), and for the
direct version, we used both the minimum upper and maximum lower bounds
preconditioners.

The main purpose if the examples is to illustrate that while in some cases
an optimal preconditioner makes no improvement, in another cases it may sig-
nificantly reduce the overestimation. The computations were done in MATLAB
with help of the interval toolbox INTLAB v7.1 (see Rump [16]).

Example 1. Consider Example 4 from Popova [12], where

A(p) :=
(

1 p1
p1 p2

)

, b(p) :=
(

p3
p3

)

, p ∈ p = ([0, 1],−[1, 4], [0, 2])T .



Optimal Preconditioning for the Interval Parametric Gauss–Seidel Method 123

The initial enclosure of Σp is obtained by calling the verifylss function from
Intlab on the relaxed system A(p)x = b(p),

x = ([−4.4849, 6.6667], [−5.3334, 4.9697])T .

First, we call the residual form of the interval parametric Gauss–Seidel method.
For the center x∗ := xc and the residual interval vector y := x−xc, one iteration
yields the same result

y1 = ([−5.3940, 5.3940], [−4.1516, 4.1516])T

for the respectively midpoint inverse and the minimal width preconditioners

(Ac)−1 =
(

0.9091 0.1818
0.1818 −0.3636

)

, C =
(

1 0.2
0.5 −1

)

.

The corresponding contracted enclosure is

x1 = ([−4.3031, 6.4850], [−4.3334, 3.9698])T .

In contrast, the direct interval parametric Gauss–Seidel iteration with mid-
point inverse preconditioning gives

x2 = ([−4.2668, 6.6668], [−4.3334, 3.3334])T ,

which tightened about 13.77% of the interval width on average, whereas the
optimal preconditioners yields

x3 = ([−4.0308, 6.6283], [−3.8769, 2.6812])T ,

which tightened about 20.38% of the interval width on average. This enclosure
was computed by calculating separately the upper and the lower end-points by
using respectively the preconditioners

Cu =
(

1 0.2115
0.5978 −1

)

, Cl =
(

1 0.1889
0.4022 −1

)

.

Comparing x1 and x3, we see that no one is better than the other one w.r.t.
inclusion.

It is interesting to consider the interval hull of the relaxed system, x4 =
([0, 4], [−2, 2])T , as an initial enclosure, too. For the residual form method, the
midpoint inverse preconditioner does not improve this enclosure, but the optimal
preconditioner reduces it to

x5 = ([0.0000, 3.8182], [−2.0001, 1.7686])T .

For the direct version, the midpoint inverse preconditioner also fails to tighten
x4, whereas the optimal preconditioner reduces the second component by half
to

x6 = ([0, 4], [−2, 0])T .
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Example 2. In Example 5.2 from Popova and Krämer [15], a resistive network
was considered with uncertain resistances. The output voltage was computed by
solving the interval parametric system

A(p) :=

⎛

⎜
⎜
⎜
⎜
⎝

30 −10 −10 −10 0
−10 10 + p1 + p2 −p1 0 0
−10 −p1 15 + p1 + p3 −5 0
−10 0 −5 15 + p4 0
0 0 −5 5 1

⎞

⎟
⎟
⎟
⎟
⎠

, b(p) :=

⎛

⎜
⎜
⎜
⎜
⎝

1
0
0
0
0

⎞

⎟
⎟
⎟
⎟
⎠

,

where p ∈ p = [8, 12] × [4, 8] × [8, 12] × [8, 12].
We will consider the enclosure computed by the residual and the direct inter-

val Gauss–Seidel method with the inverse midpoint preconditioner and initiated
by the verifylss enclosure for the relaxed system.

The residual form yields the enclosure

x1 = ([0.0595, 0.0851], [0.0262, 0.0587], [0.0247, 0.0514],

[0.0251, 0.0479], [−0.0352, 0.0499])T ,

which is no further improved by the optimal preconditioner.
The direct form yields in 0.2194 s the enclosure

x2 = ([0.0575, 0.0871], [0.0268, 0.0660], [0.0247, 0.0557],

[0.0267, 0.0491], [−0.0527, 0.0674])T .

Using the optimal preconditioner, it takes 1.2535 s to reduce the enclosure radii
by 15% on average, and the resulting enclosure is

x3 = ([0.0626, 0.0862], [0.0293, 0.0646], [0.0273, 0.0541],

[0.0276, 0.0482], [−0.0359, 0.0573])T .

For comparison, verifylss enclosure for the system preconditioned by the
inverse midpoint reads

x4 = ([0.0576, 0.0871], [0.0187, 0.0662], [0.0202, 0.0558],

[0.0240, 0.0491], [−0.0525, 0.0672])T .

Hence, our enclosure x3 has by about 22% (on average) smaller radii than x4.

4 Conclusion

We proposed a linear programming based method to compute an optimal pre-
conditioning matrix for the parametric interval Gauss–Seidel iterations. Even
though large numerical studies would be needed, some illustrative examples show
that the optimal preconditioner can sometimes reduce the ubiquitous overestima-
tion. Besides that, future research may be addressed to other types of optimality
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(S-preconditioners, pivoting preconditioners, and others), or to directly focus on
the interval Newton method (as done in Kearfott [5,6,8]). It would be also inter-
esting to investigate optimality of various preconditioners in generalized interval
systems, for instance for AE solutions of (non)-parametric interval systems [14].

Acknowledgments. The author was supported by the Czech Science Foundation
Grant P402-13-10660S.
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Abstract. Due to non-associativity of floating-point operations and
dynamic scheduling on parallel architectures, getting a bit-wise repro-
ducible floating-point result for multiple executions of the same code
on different or even similar parallel architectures is challenging. In this
paper, we address the problem of reproducibility in the context of matrix
multiplication and propose an algorithm that yields both reproducible
and accurate results. This algorithm is composed of two main stages: a
filtering stage that uses fast vectorized floating-point expansions in con-
junction with error-free transformations; an accumulation stage based
on Kulisch long accumulators in a high-radix carry-save representation.
Finally, we provide implementations and performance results in parallel
environments like GPUs.

Keywords: Matrix multiplication · Reproducibility · Accuracy ·
Kulisch long accumulator · Error-free transformation · Floating-point
expansion · Rounding-to-nearest · GPUs

1 Introduction

In many fields of science and engineering, the process of finding the solution for a
specific problem requires solving a system of linear equations, or a least squares
problem, or eigenvalue problem. A common approach is to develop solvers for
each specific task and then spend a tremendous amount of time on tuning them.
However, best practice suggests to use already optimized solver-routines con-
tained in linear algebra libraries.

The development of linear algebra libraries began in the early 1970s. Since
that time many libraries have been released. With the influence of common HPC
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computers, which were based on vector processors, in 1979 a first set of Basic
Linear Algebra Subprograms (BLAS-1) was designed as a set of basic vector
operations. In 1988 the idea of BLAS was developed further, yielding a second
set of routines for matrix-vector operations (BLAS-2). For those routines the
amount of data required and floating-point operations (Flops) performed have
quadratic complexity.

When architectures with multiple layers of cache memory appeared, the per-
formance of both BLAS-1 and BLAS-2 operations became an issue: for these
routines the ratio between the numbers of Flops and memory accesses is only
O(1). In order to attain high performance on architectures with a hierarchical
memory system, in 1990 the third level of BLAS (BLAS-3) with matrix-matrix
operations was defined. These routines perform O(n3) Flops over O(n2) data,
giving the opportunity to hide memory latency and offer performance close to
the achievable peak.

A generic implementation of the BLAS specification is provided since the
announcement of the library in 1979. This reference implementation is equipped
with the complete functionality, but it is not optimized for any architecture.
Thus, processor manufacturers as well as scientists developed tuned implemen-
tations of the BLAS for each architecture. Prominent examples of these imple-
mentations are Intel MKL, AMD ACML, IBM ESSL, ATLAS, and GotoBLAS
(now OpenBLAS). ATLAS [1] is based on an auto-tuned empirical approach
while GotoBLAS [2] is a hand-tuned machine-specific implementation of the
BLAS. Due to the raising popularity of GPUs for high-performance computing,
NVIDIA provided a GPU-version of the BLAS (cuBLAS).

The core of the BLAS library is xGEMM1, which is a BLAS-3 routine, that
computes the matrix-matrix products as

C := αop(A)op(B) + βC, (1)

where α and β are scalars; op(A), op(B), and C are general matrices with op(A)
a m × k matrix, op(B) a k × n matrix, and C a m × n matrix; op(X) repre-
sents either a non-transposed X or a transposed XT matrix. xGEMM performs
2mnk floating-point operations over mk + kn + mn data. All the other BLAS-3
routines can be expressed in terms of xGEMM. Moreover, when different imple-
mentations of BLAS are compared, the first criteria used for this comparison is
the performance of xGEMM.

The profitable ratio between the computation and the memory references
of the BLAS-3 routines has a strong impact on the design and automatic gen-
eration of linear algebra algorithms. For instance, in order to exploit the opti-
mized BLAS implementations, the Linear Algebra PACKage (LAPACK) builds
its blocked algorithms on top of the BLAS-3 operations. Furthermore, scientists
either try to generate algorithms relying more on the BLAS-3 routines, in par-
ticular xGEMM, or try to rewrite their algorithms in order to benefit from the
performance provided by the BLAS-3 routines [3].
1 In general, x stands for four different formats, but in the scope of this article we

consider x to correspond to single (S) or double (D) precision.
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In general, matrix-matrix products relies on optimized version of parallel
reduction and dot-product involving floating-point additions and multiplications
which are non-associative operations. Hence, as the order of operations may vary
from one parallel machine to another or even from one run to another [4], repro-
ducibility of results is not guaranteed. These discrepancies worsen on heteroge-
neous architectures – such as clusters composed of standard CPUs in conjunction
with GPUs and/or accelerators like Intel Xeon Phi – which combine together
different programming environments that may obey various floating-point mod-
els and offer different intermediate precision or different operators [5,6]. In
some cases, such non-reproducibility of floating-point computations on paral-
lel machines causes validation and debugging issues, and may even lead to
deadlocks [7].

By reproducibility, we mean getting a bit-wise identical floating-point result
from multiple runs of the same code on the same data. Numerical reproducibility
can be addressed by targeting either the order of operations or the error resulting
from finite arithmetic. One solution consists in providing the deterministic con-
trol over rounding errors by, for example, enforcing the execution order for each
operation. However, these approach is not portable and/or does not scale well
with the number of processing cores. The other solution aims at avoiding cancel-
lation and rounding errors by using, for instance, a long accumulator such as the
one proposed by Kulisch [8]. This solution increases the accuracy at the price of
more operations and memory transfers per output data. Because of that, for a
long time, it was considered too expensive for the little benefit it was providing.

To enhance reproducibility, Intel proposed a “Conditional Numerical Repro-
ducibility” (CNR) in its Math Kernel Library (MKL). Although, CNR guaran-
tees reproducibility, it does not ensure correct rounding, meaning the accuracy
is arguing. Additionally, the cost of obtaining reproducible results with CNR is
high. For instance, for large arrays the MKL’s summation with CNR is 85−93 %
slower than both the regular MKL’s and our reproducible summation; the later
two deliver comparable performance. The performance gap between the MKL’s
reproducible matrix multiplication and its classic implementation is even higher
and is roughly 3 − 4 times.

Demmel and Nguyen introduced a family of algorithms for reproducible sum-
mation in floating-point arithmetic [9]. They have extended this concept to
reproducible BLAS routines (covering, mainly, the BLAS-1 routines) that are
distributed in the ReproBLAS library2.

Recently, we introduced in [10] an approach to compute deterministic sums
of floating-point numbers. Our approach is based on a multi-level algorithm
that combines efficiently floating-point expansions and long accumulators. The
proposed implementations on recent Intel desktop and server processors, on Intel
Xeon Phi co-processors, and on both AMD and NVIDIA GPUs, showed that
the numerical reproducibility and bit-perfect accuracy can be achieved at no
additional cost for large sums that have dynamic ranges of up to 90 orders of

2 http://bebop.cs.berkeley.edu/reproblas/.

http://bebop.cs.berkeley.edu/reproblas/
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magnitude. This speed-up is possible thanks to arithmetic units that are left
underused by the standard reduction algorithms.

In this article, we propose an approach to ensure both reproducibility and
accuracy (rounding-to-nearest) of the product of two matrices composed of
floating-point numbers. The derived algorithm is based on the standard non-
deterministic xGEMM and our deterministic summation algorithm. Moreover,
we provide implementations of this algorithm on GPU accelerators. To our
knowledge, this is the first work on reproducible matrix-matrix multiplication.

The paper is organized as follows. Section 2 reviews related aspects of floating-
point arithmetic and highlights floating-point expansions and long accumulators.
Section 3 presents our approach to derive exact, meaning both reproducible and
accurate, matrix-matrix product. In Sect. 4, we expose implementations and per-
formance results on GPU accelerators. Finally, we draw conclusions in Sect. 5.

2 Background

Without loss of generality, in the rest of this article, we will consider double
precision format (binary64) from the IEEE-754 standard [11]. Floating-point
representation of numbers allows to cover a wide dynamic range. Dynamic range
refers to the absolute ratio between the number with the largest magnitude
and the number with the smallest non-zero magnitude in a set. For instance,
binary64 can represent positive numbers from 4.9 × 10−324 to 1.8 × 10308, so
it covers a dynamic range of 3.7 × 10631.

Non-associativity of floating-point addition implies that the result depends
on the order of the operations. For example, in double precision (−1⊕1)⊕2−100

is different from −1 ⊕ (1 ⊕ 2−100) where ⊕ denotes the result of a floating-
point addition. Thus, the accuracy of a floating-point summation depends on
the order of evaluation. More details about this phenomenon can be found in
the main references [12,13].

Two approaches exist to execute one floating-point addition without intro-
ducing rounding error. The first solution aims at computing the error which
occurred during rounding using floating-point expansions in conjunction with
error-free transformations, see Sect. 2.1. The second solution exploits the finite
range of representable floating-point numbers by storing every bit in a very long
vector of bits, see Sect. 2.2.

2.1 Floating-Point Expansion

Floating-point expansions represent the result as an unevaluated sum of floating-
point numbers, whose components are ordered in magnitude with minimal over-
lap to cover a wide range of exponents. Floating-point expansions of sizes 2 and
4 are described in [14,15], accordingly. They are based on error-free transfor-
mation. Indeed, when working with rounding-to-nearest, the rounding error in
addition or multiplication can be represented as a floating-point number and can
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also be computed in floating-point arithmetic. The traditional error-free trans-
formation for addition is TwoSum [16], see Algorithm 1, and for multiplication is
TwoProduct, see Algorithm 2. For TwoSum, it means that r + s = a + b with
r = a⊕ b and s, which is a floating-point number that corresponds to the round-
ing error. For TwoProduct, we use the fused multiply and add (FMA) instruction
that is widely available on modern architectures. FMA(a, b, c) makes it possible
to compute a × b + c with only one rounding. Thus, we have r + s = a × b
with r = a ⊗ b and s = FMA(a, b,−r), where ⊗ stands for floating-point
multiplication.

Algorithm 1. Error-free transformation for sum of two floating-point
numbers.
Function [r, s] = TwoSum(a, b)

r ← a + b
z ← r − a
s ← (a − (r − z)) + (b − z)

Algorithm 2. Error-free transformation for product of two floating-point
numbers.
Function [r, s] = TwoProduct(a, b)

r ← a × b
s ← FMA(a, b,−r)

Adding one floating-point number to an expansion is an iterative operation.
The floating-point number is first added to the head of the expansion and the
rounding error is recovered as a floating-point number using an error-free trans-
formation such as TwoSum. The error is then recursively accumulated to the
remainder of the expansion.

With expansions of size p – that correspond to the unevaluated sum of p
floating-point numbers – it is possible to accumulate floating-point numbers
without losing accuracy as long as every intermediate result can be represented
exactly as a sum of p floating-point numbers. This situation occurs when the
dynamic range of the sum is lower than 253·p in case of binary64.

The main advantage of expansions is that they can be placed in registers
during the whole computation. However, the accuracy is insufficient for the
summation of numerous floating-point numbers or sums with large dynamic
ranges. Moreover, the complexity of this algorithm grows linearly with the size
of expansion.

2.2 Long Accumulator

An alternative algorithm to floating-point expansions uses very long fixed-point
accumulators. This accumulator can be viewed as a projection of the set of
floating-point numbers from minimum (emin) to maximum (emax) exponents
into a long register, where each spot covers numbers with a certain exponent
range. The length of the accumulator is selected in such a way that it represents
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Fig. 1. Kulisch long accumulator.

every bit of information of the input format, e.g. binary64; this covers the range
from the smallest representable floating-point value to the largest one, indepen-
dently of the sign. For instance, Kulisch [8] proposed to use an accumulator of
4288 bits to handle the dot product of two vectors composed of binary64 values.
The summation is performed without loss of information by accumulating every
floating-point input numbers in the long accumulator, see Fig. 1. The long accu-
mulator is the perfect solution to produce the exact result of a very large amount
of floating-point numbers of arbitrary magnitude. However, for a long period this
approach was considered impractical as it induces a very large memory overhead.
Furthermore, without dedicated hardware support, its performance is limited by
indirect memory accesses that makes vectorization challenging.

3 Exact Matrix-Matrix Multiplication

In order to achieve best performance for linear algebra kernels, machine-specific
hand tuning of those kernels is often applied; a good example is the Goto’s imple-
mentation of xGEMM. Scientists aim at optimizing this process for existing and
upcoming architectures through the automatic generation of linear algebra ker-
nels. As the matrix-matrix multiplication is the core of the BLAS library, in
several works [1,17] the problem of optimizing this routine for a given architec-
ture was tackled by applying the automatic generation approach. For instance,
the ATLAS project [1] provides a very good implementation of BLAS by tuning
routines for various architectures; those are centralized around a highly tuned
matrix-matrix product that is automatically optimized for different levels of
memory hierarchy. The idea of auto-tuning was extended to GPUs architectures
applying different programming models such as CUDA and OpenCL. Apart from
both code generation and heuristic search in conjunction with OpenCL, Mat-
sumoto et. al. [17] proposed to store data in memory not only in a standard
row-/column-major order, but also in a block-major order. We revise these
ideas and employ some of them in our implementations of exact xGEMM,
which is described in Sect. 4.1. Therefore, we combine together auto-tuning for
standard non-deterministic xGEMM and machine-specific hand tuning for our
reproducible approach.
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3.1 Hierarchical Approach for Matrix-Matrix Multiplication

We introduced in [10] a hierarchical superaccumulation scheme for the summa-
tion of floating-point numbers (parallel reduction) that relies on floating-point
expansions with error-free transformations and long accumulators as described
in Sect. 2. Thanks to the latter, this approach guarantees both reproducible and
accurate results. This allows us to propose a reproducible and accurate matrix
multiplication scheme that divides computations into three stages: filtering, pri-
vate superaccumulation, and rounding. This decomposition is suitable for the
nested parallelism of modern architectures and it makes a full use of SIMD and
multi-threads.

In the first stage, each partial product is computed using error-free trans-
formation. In order to ensure accuracy, this steps generates two floating-point
numbers, see Algorithm 2: the result and the rounding error. Both resulting
floating-point numbers are accumulated using Algorithm 1 into an expansion of
size p (p ≥ 3) that is stored in registers or private memory for each threads. This
step benefits from vectorization and pipelining by maintaining one expansion per
GPU thread.

In case the accuracy provided by floating-point expansions for product and/or
summation is not enough, meaning a non-zero residue x still remains after filter-
ing, each residue x is added to a long accumulator. We also propose an optimized
version of floating-point expansions of size p that relies on the stopping crite-
ria (x ≡ 0) in the accumulation loop. This technique is called early-exit and
exhibits performance which depends on the distribution of input numbers and
the ability of the architecture to handle irregular branches.

A trade-off between speed and usage of the hardware resources lies in the
proper choice of the size p of the floating-point expansion. A small value of p will
lead to numerous transfers from the expansion towards the long accumulators,
which will slow down the computation. A large value of p will lead to the overuse
of registers and eventually to the register spilling.

Once all the input number are accumulated, each floating-point expansion
is flushed to a long accumulator, independently of the parameter p. Hence, the
second stage is based on superaccumulation, meaning summation to long accu-
mulators, and it is involved either when the accuracy provided by expansions
is not enough or at the end of the computation. Depending on the amount of
memory available, long accumulators are stored in either fast local memory, e.g.
cache or shared memory, or global memory.

In the third stage, rounding of private long accumulators back to the desired
floating-point format is performed in order to obtain reproducible and correctly
rounded results.

4 Implementations and Experimental Results

This section presents our implementations of the multi-level reproducible matrix
multiplication and their evaluation on both NVIDIA and AMD GPUs, see
Table 1 for the detailed description of these GPU architectures. We compared
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Table 1. Hardware platforms used for the experiments.

A NVIDIA Tesla K20c 13 SMs × 192 CUDA cores 0.705 GHz
B AMD Radeon HD 7970 32 CUs × 64 units 0.925 GHz

the accuracy of our implementations with results produced by the multiple
precision library MPFR on CPUs; the MPFR library is not multi-threaded
and does not support GPUs. In case of binary64, we used 4196 bits (2 ×
(emin + emax + mantissa) = 2 × (1022 + 1023 + 53)) within MPFR in order
to guarantee the bit-wise reproducibility as well as the accuracy of the results
independently of rounding errors and dynamic ranges.

4.1 Implementations

We follow the strategy proposed by Matsumoto et al. [17] regarding their matrix
partitioning technique in order to exploit multi-level memory hierarchies on GPU
architectures, see Fig. 2. An adequate matrix partitioning improves significantly
the reuse of data and keeps the computational units busy while performing
memory transfers.

Our solution is different from Matsumoto’s one, as we divide memory space
among matrices, floating-point expansions, and long accumulators. The latter
may require 76 (76 × 64 bits is the size of each long accumulator) times more
storage, because the matrix C is entirely composed of long accumulators in the
non-optimized case, meaning when long accumulators are not reused. Thus, we
use two levels of blocking in our matrix multiplication algorithms to amortize
the cost of data accesses to the three levels of memory on GPUs, namely private
(registers), local or data caches, and global. The first level of blocking focuses
on enhancing the access latency between the global and local memories for each
group of threads (or warp or work-group on GPUs). We assume that ml, nl, and
kl are three block sizes multiple of m, n, and k, respectively. Figure 2a represents
the partitioning of the matrices C,A, and B into blocks of sizes ml × nl, ml × kl,
and kl × nl, accordingly. Each ml × nl block of C is computed by a work-group
that involves an ml × k panel of A and a k × nl panel of B

This panel-panel multiplication iterates k/kl times in the outermost loop
of our xGEMM algorithm using the block-block multiplication. Thus, on each
iteration the work-group updates each resulting ml × nl block of C with the
product of an ml × kl block of A by a kl × nl block of B. This second level
of blocking optimizes the use of private memory for each thread (work-item on
GPUs). Figure 2b shows further partitioning of matrices within their blocks in
such a way that each work-item in the work-group is responsible for updating
an ms × ns sub-block of C through the multiplication of an ms × kl sub-panel
of A by a kl × ns sub-panel of B.

In order to ensure both reproducibility and accuracy of xGEMM, we
use one floating-point expansion with error-free transformation per thread.
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Fig. 2. Partitioning of matrix-matrix multiplication.

When the accuracy provided by these expansions is not enough, we switch to long
accumulators that are allocated for each thread of a given work-group. However,
this induces pressure on the memory hierarchy due to the required storage. So,
we reuse both floating-point expansions and long accumulators for computing
multiple elements of the resulting matrix.

Our implementations attempt to get the maximum performance by using
all resources of the considered GPU architectures: SIMD instructions, fused
multiply-add, private and local memory as well as atomic instructions. We devel-
oped both unique and hand-tuned OpenCL implementations for NVIDIA and
AMD GPUs.

We use a long accumulator of finite length that represents the whole range of
double precision floating-point numbers (4196 bits in case of binary64). We use
such a long accumulator to avoid partial over/underflow that may occurs while
accumulating partial product of the same sign. For instance, for matrices of size
n × n, only n partial-products need to be summed per resulting element, which
leads to only log2(n) carry bits. With matrix size of 220 × 220 that requires 8
Terabytes, only 20 extra bits are necessary to ensure that this phenomena will
not occur.

4.2 Performance Results

As a baseline we consider the vectorized and parallelized non-deterministic dou-
ble precision matrix multiplication. We prefer our tuned implementation to the
one from cuBLAS and base our ExGEMM on it, because cuGEMM squeezes
every percent of the architecture performance and does not leave a room for our
approach. Figures 3a and b present the measured time achieved by the matrix
multiplication algorithms as a function of the matrix size n on two GPUs, see
Table 1. Apart from “Parallel DGEMM”, all implementations are ours: “Super-
acc” corresponds to our matrix multiplication algorithm that is solely based
on long accumulators and it is the slowest due to its extensive memory usage;
“FPEp + Superacc” stands for algorithm with floating-point expansions of size
p (p = 3 : 8) in conjunction with error-free transformations and long accumu-
lators; “FPE4EE +Superacc” represents an optimized version of the expansion
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Fig. 3. The matrix-matrix multiplication performance results on GPUs, see Table 1.

of size 4 with the early-exit technique. The implementations with expansions
obtain better performance than with long accumulators only. However, due to
switching to the long accumulator at the final stage of computing each element
of the resulting matrix C as well as when the accuracy of expansions is not
enough, the performance of implementations with expansions is bounded and it
is at most 12 and 16 times off the DGEMM’s performance on NVIDIA and AMD
GPUs, respectively. We believe that there is a possibility to tune these prelim-
inary implementations in order to be within 10 times slower. Nevertheless, our
matrix multiplication algorithm delivers constantly reproducible and accurate
results.

5 Conclusions and Future Work

xGEMM is the core of the BLAS library and all the other BLAS-3 routines are
virtually built on top of it. Furthermore, the development and automatic gener-
ation of linear algebra algorithms are driven by the goal of achieving best per-
formance on various architectures. One step towards this goal is made by using
blocked versions of algorithms that are capable to obtain much higher perfor-
mance compared to non-blocked algorithmic variants. This is achieved thanks
to the usage of BLAS-3 routines, in particular xGEMM. Understanding such
importance of the matrix multiplication routine, we targeted xGEMM and for
the first time delivered a multi-level reproducible approach along with implemen-
tations. Even though the performance, which corresponds to roughly 5 % of the
efficiency, can be argued (we think that a 10 times overhead at most for repro-
ducible compute-bound algorithms is reasonable), the output of ExGEMM is
consistently bit-wise reproducible and accurate, in terms of rounding-to-nearest,
independently of threads scheduling, instruction set, and data partitioning.

Our ultimate goal is to apply the multi-level approach to derive a repro-
ducible, accurate, and fast library for fundamental linear algebra operations –
like those included in the BLAS library – on new parallel architectures such as
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Intel Xeon Phi many-core processors and GPU accelerators. Moreover, we plan
to conduct a priori error analysis of the derived ExBLAS (Exact BLAS) routines.
More information on the ExBLAS project as well as its sources can be found
at https://exblas.lip6.fr.
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Abstract. We consider linear algebraic equations, where the elements of
the matrix and of the right-hand side vector are linear functions of inter-
val parameters, and their parametric AE-solution sets, which are defined
by universal and existential quantifiers for the parameters. We present
how some sufficient conditions for a parametric AE-solution set to have
linear boundary can be exploited for obtaining sharp outer bounds of
that parametric AE-solution set. For a parametric controllable solution
set having linear boundary we present a numerical method for outer
interval enclosure of the solution set. The new method has better prop-
erties than some other methods available so far.

Keywords: Interval linear systems · Parameter dependencies · AE-
solution set · Controllable solution set · Solution enclosure · Iteration
method

1 Introduction

Consider linear algebraic systems involving linear dependencies between a num-
ber of interval parameters p = (p1, . . . , pK)� ∈ p = (p1, . . . ,pK)�

A(p)x = b(p)

A(p) := A0 +
K∑

k=1

pkAk, b(p) := b0 +
K∑

k=1

pkbk,
(1)

where Ak ∈ R
m×n, bk ∈ R

m, k = 0, . . . , K, and R
m×n is the set of real m × n

matrices, R
m := R

m×1 denotes the set of real vectors with m components.
A real compact interval is a = [a1, a2] := {a ∈ R | a1 ≤ a ≤ a2; a1, a2 ∈ R}. By
IR

m, IRm×n we denote the sets of interval m-vectors and interval m×n matrices,
respectively.

We consider the parametric AE-solution sets of the system (1)

Σp
AE := {x ∈ R

n | (∀pA ∈ pA)(∃pE ∈ pE)(A(p)x = b(p))} , (2)
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for the sets of indexes A, E such that A∪E = {1, . . . , K}, A∩E = ∅. For a given
index set Π = {π1, . . . , πk}, pΠ denotes (pπ1 , . . . , pπk

). Among the AE-solution
sets most studied and of particular practical interest are: the (parametric) united
solution set

Σuni(A(p), b(p),p) := {x ∈ R
n | (∃p ∈ p)(A(p)x = b(p))},

the (parametric) tolerable solution set

Σ(A(pA), b(pE),p) := {x ∈ R
n | (∀pA ∈ pA)(∃pE ∈ pE)(A(pA)x = b(pE))}

and the (parametric) controllable solution set

Σ(A(pE), b(pA),p) := {x ∈ R
n | (∀pA ∈ pA)(∃pE ∈ pE)(A(pE)x = b(pA))}.

A parametric solution set is usually smaller [4, Theorem 5.6] than the solution
set of the corresponding nonparametric interval linear system. Therefore, the
former describes more precisely a physical phenomenon, whose model is a linear
algebraic system involving dependencies between interval model parameters; for
practical examples see [3,5] and the references given therein.

A nonempty parametric AE-solution set, in general, has a complicated struc-
ture, see [4]. Its boundary is defined by parts of polynomials that may have arbi-
trary high degree. It is proven in [4] that the universally quantified parameters
contribute linearly to the boundary of a parametric AE-solution set and there-
fore only the existentially quantified parameters determine the shape (boundary)
of a nonempty parametric AE-solution set. On the other hand, the existentially
quantified parameters can be classified in two groups: parameters which con-
tribute linearly to the boundary of a solution set and parameters which deter-
mine the nonlinear boundary of a parametric AE-solution set. Recently, in [5],
some sufficient conditions for an existentially quantified parameter to contribute
linearly to the boundary of a parametric united solution set were proven. Based
on these conditions, the scope of applicability of an efficient interval method [3]
finding outer bounds for the parametric united solution set with linear shape
was greatly expanded.

The goal of the present work is two-fold:

(a) to present the applicability of the above sufficient conditions for obtaining
sharp outer bounds of a parametric AE-solution set;

(b) to generalize the interval method, proposed in [3], for parametric controllable
solution sets.

The paper is organized as follows. Section 2 introduces some notions that will
be used. Section 3 discusses the parametric AE-solution sets with linear shape
and the goal (a). A new interval method for outer enclosure of the parametric
controllable solution set with linear shape is presented in Sect. 4 together with
some illustrative examples. The paper ends by some conclusions.
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2 Theoretical Background

For a = [a1, a2], define mid-point ǎ := (a1 + a2)/2, radius â := (a2 − a1)/2,
width (diameter) ω(a) := 2â, magnitude (absolute value) |a| and mignitude
〈a〉 by

|a| := max{|a1|, |a2|}
〈a〉 := min{|a1|, |a2|} if 0 �∈ a, 〈a〉 := 0 otherwise.

These functions are applied to interval vectors and matrices componentwise.
Without loss of generality and in order to have a unique representation of the
parameter dependencies, we assume that p̂k > 0 for all 1 ≤ k ≤ K. For a
bounded Σp

AE �= ∅, �Σp
AE :=

⋂{x ∈ IR
n | x ⊇ Σp

AE}.
In order to simplify the presentation, in Sect. 4 we use the arithmetic on

proper and improper intervals [1,2], called Kaucher complete arithmetic or modal
interval arithmetic, and its properties. The set of proper intervals IR is extended
in [2] by the set IR := {[a1, a2] | a1, a2 ∈ R, a1 ≥ a2} of improper intervals
obtaining thus the set IR

⋃
IR = {[a1, a2] | a1, a2 ∈ R} of all ordered couples of

real numbers called also generalized intervals. The conventional interval arith-
metic and lattice operations, order relations and other interval functions are
isomorphically extended onto the whole set IR

⋃
IR, [2]. Modal interval analysis

imposes a logical-semantic background on generalized intervals (considered there
as modal intervals) and allows giving a logical meaning to the interval results,
see [1] for more details.

An element-to-element symmetry between proper and improper intervals is
expressed by the “Dual” operator, Dual(a) := [a2, a1] for a = [a1, a2] ∈ IR

⋃
IR.

Dual is applied componentwise to vectors and matrices. For a,b ∈ IR
⋃

IR

Dual(Dual(a)) = a, Dual(a ◦ b) = Dual(a) ◦ Dual(b), ◦ ∈ {+,−,×, /},

a ⊆ b ⇔ Dual(a) ⊇ Dual(b). (3)

The generalized interval arithmetic structure possesses group properties with
respect to the operations addition and multiplication of intervals that do not
involve zero. For a,b ∈ IR

⋃
IR, 0 �∈ b

a − Dual(a) = 0, b/Dual(b) = 1. (4)

Lattice operations are closed with respect to the inclusion relation; handling of
norm and metric are very similar to norm and metric in linear spaces [2]. Mid-
point, radius, absolute value and mignitude are extended on generalized intervals
by the same formulae. For a ∈ IR, ω(a) := 2|â|. For

b ∈ IR

⋃
IR, b �= 0, 0 �∈ interior of

{
b if b ∈ IR

Dual(b) if b ∈ IR,
(5)

sgn(b) := {1 if b1, b2 ≥ 0,−1 if b1, b2 ≤ 0}. For a ∈ IR, 0 ∈ a, and b ∈ IR

satisfying (5),
a ∗ b = sgn(b)〈b〉a. (6)
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3 Parametric AE-solution Sets with Linear Shape

Since the universally quantified parameters contribute linearly to the boundary
of a parametric AE-solution set, cf. [4], the theory about parametric united
solution sets with linear shape can be generalized to parametric AE-solution
sets with linear shape; the latter are also called polyhedral AE-solution sets,
cf. [9]. Theorem 2 and Lemma 1 from [5] imply the following theorem.

Theorem 1. A parameter pk, k ∈ E, contributes linearly to the boundary of a
parametric AE-solution set if some of the following three equivalent conditions
holds true

(i) the nonzero elements of Akx − bk are linearly dependent
(ii) if Ak = 0 or the polynomial greatest common divisor (GCD) of the elements

of Akx − bk is a nonconstant linear polynomial of x1, . . . , xn

(iii) rank((Ak|bk)) = 1, where (Ak|bk) ∈ R
m×(n+1) is the matrix obtained by

augmenting the columns of Ak with the vector bk.

The following theorem follows from the property of the universally quantified
parameters mentioned above and [5, Theorem 3].

Theorem 2. Let E = E1∪E2, E1∩E2 = ∅ be such that Ak �= 0 for k ∈ E1. Denote
k1 := Card(E1), k2 := Card(E2). Denote by gk(x) the GCD of the elements of
Akx and let gk(x) be a nonconstant linear polynomial for every k ∈ E1. Define

L := (l1| . . . |lk1) ∈ R
m×k1 , where lk := Akx/gk(x) ∈ R

m

R := (r1| . . . |rk1)
� ∈ R

k1×n, where rk := (
∂gk(x)
∂x1

, . . . ,
∂gk(x)
∂xn

)� ∈ R
n.

If there exists tk ∈ R such that tklk = bk := ∂b(p)/∂pk for every k ∈ E1, then

A0x − b0 +
∑

k∈E∪A
pk(Akx − bk) = LDRx − LDt − F (p1, . . . , pk2)

�+

A0x − b0 +
∑

k∈A
pk(Akx − bk),

where F := (b1| . . . |bk2) ∈ R
m×k2 , t = (t1, . . . , tk1)

� and D = Diag(p1, . . . , pk1).

Theorem 2 contains Theorem 3 of [5] as a special case. The following corollary
is important for finding sharp outer bounds of parametric AE-solution sets.

Corollary 1 ([5], Corollary 4). For a bounded Σp
AE �= ∅,

inf{�Σp
AE}i and sup{�Σp

AE}i, i = 1, . . . , n,

are attained at particular end-points of the intervals for the parameters that
contribute linearly to the boundary of the solution set.

For a given index set A, define the set BA of all end-points (vertices) of pA.
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Proposition 1 ([6], Corollary 1). For a bounded parametric AE-solution set
Σp

AE �= ∅ and a set B′
A, such that B′

A ⊆ BA and Σ(A(p̃A, pE), b(p̃A, pE),pE) is
bounded for every p̃A ∈ B′

A, we have

�Σp
AE ⊆

⋂

p̃A∈B′
A

�Σ(A(p̃A, pE), b(p̃A, pE),pE).

Proposition 1 shows that outer bounds of a parametric AE-solution set can be
found by bounding only parametric united solution sets. Then, the methodology
for finding sharp bounds of parametric united solution sets with linear shape
applies to parametric AE-solution set via Proposition 1.

Let E = E1 ∪ E2, E1 ∩ E2 = ∅ be such that pk, k ∈ E1, satisfy Theorem 1.
Then,

�Σp
AE ⊆

⋂

p̃A∈B′
A

�

⎛

⎝
⋃

p̃E1∈BE1

�Σ(A(p̃A, p̃E1 , pE2), b(p̃A, p̃E1 , pE2),pE2)

⎞

⎠ . (7)

Note, that the above methodology can be applied to parametric AE-solution
sets such that not all existentially quantified parameters satisfy Theorem 1 or
contribute linearly to the boundary of the parametric AE-solution set. A larger
discussion is contained in [5].

4 Enclosure of Σctrl(A(p), b(q), p, q) with Linear Shape

Consider a parametric interval algebraic system

A(p)x = b(q), p ∈ p ∈ IR
Kp , q ∈ q ∈ IR

Kq ,

A(p) := A0 +
Kp∑

k=1

pkAk, b(q) := b0 +
Kq∑

k=1

qkbk.
(8)

We assume that the structure of the dependencies between the parameters p is
such that the conditions defined in Theorem 1 hold true for all the parameters
and, therefore, the system (8) has the equivalent representation

(A0 + LDiag(p)R) x = b0 + Fq, p ∈ p ∈ IR
Kp , q ∈ q ∈ IR

Kq , (9)

with suitable numerical matrices L, R, F found by Theorem 2.
We search for an outer interval enclosure of the parametric controllable solu-

tion set

Σp
ctrl = Σctrl(A(p), b(q),p,q)

:= {x ∈ R
n | (∀q ∈ q)(∃p ∈ p)(A(p)x = b(q))}.
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4.1 Iteration Method

Theorem 3. If x ∈ Σp
ctrl �= ∅ for the system (9), D0 ∈ Diag(p) and A0+LD0R

is invertible, then x ∈ (A0 + LD0R)−1(b0 + FDual(q) + Ld), wherein

d := (D0 − Diag(p))Rx, (10)

and b0+FDual(q)+Ld is a proper interval vector in Kaucher interval arithmetic.

Proof. If x ∈ Σp
ctrl �= ∅, according to [7, Theorem 3.2] we have

(A0 + LDiag(p)R) x ⊇ b0 + Fq. (11)

We apply the Dual operator to the above inclusion relation, the relation
(3), and the distributivity of multiplication by a point vector x. Then, we
add −LDiag(p)Rx to both sides of the obtained inclusion. Due to (4) we obtain

A0x ⊆ b0 + FDual(q) − LDiag(p)Rx. (12)

The relation (10) implies −Diag(p)Rx = d− D0Rx which we substitute in (12)
and obtain

(A0 + LD0R)x ⊆ b0 + FDual(q) + Ld.

The inclusion (11), which holds true for x ∈ Σp
ctrl �= ∅, implies ω(Fq) ≤ ω(Ld).

The latter implies that b0 + FDual(q) + Ld is a proper interval vector since Ld
is a proper interval vector and FDual(q) is an improper one. Due to invertibility
of A0 + LD0R, we obtain x ∈ (A0 + LD0R)−1(b0 + FDual(q) + Ld).

Theorem 4. Let D0 ∈ R
Kp×Kp , D0 ∈ Diag(p) = D be such that A0 + LD0R

is invertible and put
C := (A0 + LD0R)−1

.

Define

w′ := w − |D0 − D| |RCL|w, (13)
w′′ := |D0 − D|〈RCb0 + (RCF )Dual(q)〉, (14)

for some vector w ≥ 0, and

u := [−αw,αw], α = max
i

w′′
i

w′
i

. (15)

(i) x = x(p, q) ∈ Σp
ctrl �= ∅ for (9) is related to y = Rx(p, q) by the inclusions

x ∈ Cb0 + (CF )Dual(q) + CLd, (16)
y ∈ RCb0 + (RCF )Dual(q) + (RCL)d, (17)

where
d = (D0 − D)y. (18)

(ii) If w′ > 0 and 0 �∈ b0 + Fq, then d ⊆ u.
(iii) If x := Cb0 + (CF )Dual(q) + (CL)u is a proper interval vector, then

every x ∈ Σp
ctrl satisfies x ∈ x.
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Proof. (i) follows from Theorem 3.
(ii) Since w′ > 0 we put

β = max
i

|di|/wi

and note that |d| ≤ βw, with equality in some component i. The definition of α
and 0 �∈ b0 +Fq imply 0 ≤ w′′ ≤ αw′. From (16)–(18) and a subdistributive law
in Kaucher arithmetic we have

d ⊆ (D0 − D)(RCb0 + (RCF )Dual(q) + (RCL)d)
⊆ (D0 − D)(RCb0 + (RCF )Dual(q)) + (D0 − D)(RCL)d.

Then, formula (6) implies

|d| ≤ |D0 − D|〈RCb0 + (RCF )Dual(q)〉 + |D0 − D||RCL|βw

(14),(13)

≤ w′′ + β(w − w′) ≤ αw′ + β(w − w′).

Thus βwi = |di| ≤ αw′
i + β(wi − w′

i), hence βw′
i ≤ αw′

i. As w′ > 0, we conclude
that β ≤ α, and d ⊆ u follows.

(iii) follows by (ii) and Theorem 3.

In the computations we take D0 as the midpoint of D, and w, e.g., as the
vector with all entries one. In order to provide guaranteed enclosures, w′ should
be rounded downward, w′′ and α should be rounded upward. If w′ ≤ 0 in (13),
we may apply the approach proposed in [3] to compute the largest eigenvalue 	
(= the spectral radius) of the nonnegative matrix

M := |D0 − D||RCL|.
If 	 < 1, any w > 0 sufficiently close to an associated eigenvector makes w′ > 0.
In practice, one could run a Lanczos iteration and stop as soon as an intermediate
eigenvector approximation w > 0 satisfies Mw < w, [3].

The computed initial interval enclosure u of d can be further improved by
iterating and intersecting with the previously computed enclosures. It is sufficient
to iterate the enclosures for y and d, and compute the enclosures for x when the
intersected results no longer improve significantly. Thus we iterate

y = {(RCb0) + (RCF )Dual(q) + (RCL)u)} ∩ y,

u = {(D0 − D)y} ∩ u

until some stopping test holds, and then get the enclosure

x := (Cb0) + (CF )Dual(q) + (CL)u

for all x that belong to Σp
ctrl of (9). In the implementation of the method we

used the stopping criterion proposed in [3], namely, the iteration stops when the
sum of widths of the components of u does not improve by a factor of 0.999 or
after at most 10 iterations.

The method presented here can be considered as an extension of the so-called
formal (algebraic) approach, cf. [10], for enclosing nonparametric AE-solution
sets to parametric controllable solution sets.
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4.2 Numerical Examples

Here we illustrate the advantages of the above parametric iterative method by
some numerical examples and compare this method to the only discussed by
now methods for outer enclosure of the parametric controllable solution set pre-
sented in [6]. The implementations and the numerical computations are done
in the environment of Mathematica� using the package directed.m [8]. The
latter package supports the arithmetic of proper and improper intervals and
provides compatibility with the conventional interval arithmetic supported by
the Mathematica� kernel. The numerical computations are done exactly if all
input data are represented exactly (e.g., by rational numbers) or by appropri-
ate directed rounding in floating-point if some input data are in floating point
arithmetic. This software environment and the implementation provide obtain-
ing numerical interval vectors which are guaranteed to contain the considered
parametric solution set.

The iteration method, proposed in Sect. 4.1, can be implemented in any soft-
ware environment which does not support the arithmetic of proper and improper
intervals if the lower and upper bounds of the corresponding intervals are com-
puted separately applying the corresponding formulae for the arithmetic oper-
ations and applying correct directed rounding in floating-point arithmetic. The
iteration method from [3] is implemented in the environment of Matlab, see [3],
and in C-XSC, see [11].

Explicit representation of any parametric controllable solution set, considered
below, is obtained by methods from [4] as a system of real inequalities in the
coordinate variables, which is then solved by suitable Mathematica� functions.

Example 1. Find an enclosure of the parametric controllable solution set to the
system (

p1 + p2, p1 − p2
p1 − p2, p1 + p2

)

x =
(

3/2 + q
q

)

,

where p1, p2 ∈ [1/2, 3/2], q ∈ [−1/10, 1/10]. According to Theorem 1 the
parametric controllable solution set has linear shape and the application of
Theorem 4 with an iterative refinement gives the following (rounded outward)
interval enclosure (

[0.099951, 1.400049]
[−0.650049, 0.650049]

)

.

Since the parametric matrix is not strongly regular, the parametric Bauer-Skeel
method from [6, Corollary 6] fails. Due to the same reason Proposition 1 cannot
be applied together with the parametric Bauer-Skeel method while it can be
applied together with Theorem 4.

Example 2. Find an enclosure of the parametric controllable solution set to
(

p1 + p2, p1 − 2p2
p1 − p2/2, p1 + p2

)

x =
(

3/2 + q/3
q/2

)

,
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where p1 ∈ [1, 3/2], p2 ∈ [−1,−1/2], q ∈ [9/10, 11/10]. According to Theorem 1
the parametric controllable solution set has linear shape and the application of
Theorem 4 with an iterative refinement gives the interval enclosure

([−0.17779, 0.39507], [0.39875, 0.89507])�,

while the parametric Bauer-Skeel method from [6] gives the enclosure

([−0.32840, 0.54568], [0.29135, 0.1.00247])�.

The former interval enclosure overestimates the exact interval hull

([− 59
405

,
3
10

], [
421
810

,
239
270

])�

of the parametric controllable solution set by (22.2, 26.4)�%, while the latter
enclosure overestimates the hull by (49, 48.6)�%. In general, the percentage of
overestimation depends on the particular problem (parameter dependencies),
the problem size, the number of the parameters, and the width of the parameter
intervals. The parametric Bauer-Skeel method can be applied to the above sys-
tem, where the parameter intervals p1,p2 are with enlarged radius from r = 1/4
(the intervals considered above) to a radius r = 0.481 which still provides strong
regularity of the parametric matrix. In the latter case the overestimation of
the corresponding exact interval hull is (99.81, 99.79)�%. The method from
Theorem 4 is applicable to the above system where the parameter intervals
p1,p2 have radius r = 0.749 still providing regularity of the parametric matrix.
The overestimation of the corresponding exact interval hull for these intervals is
(35.86, 37.94)�%.

Further improvement of an enclosure obtained by some applicable enclosure
method (or by some method for obtaining the exact interval hull of Σp

uni with
linear shape) could be obtained by Proposition 1, respectively (7), at the expense
of a bigger computational effort. The application of (7) to Example 2 with the
initial parameter intervals gives an interval enclosure which overestimates the
exact interval hull of the parametric controllable solution set by (0, 5.7)�%.

In the following example, we consider the behaviour of the proposed method
on parametric controllable solution sets that are empty sets or unbounded.

Example 3. Consider the parametric linear system
(

p1 − p2, p2
p1 + p2, −p2

)

x =
(

2q
2q

)

.

(a) For p1 ∈ [3/4, 5/4], p2 ∈ [0, 1], q ∈ [1, 2], Σp
ctrl = ∅. The application of

the method considered above yields w′ < 0 and the largest eigenvalue (= the
spectral radius) of the matrix |D0 − D||RCL| equal to 1.

(b) With the same data as in (a) but twice bigger radius of p1, p1 ∈ [1/2, 3/2],
the corresponding Σp

ctrl is unbounded and defined by 8/3 ≤ x1 ≤ 4, x2 ∈ R. The
application of the method proposed in this paper yields the same output as in (a).
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The method, proposed in this paper, for bounding parametric controllable
solution sets with linear shape possesses the same scalability property as the
methods from [3,5] for bounding parametric united solution sets. Examples of
large parametric linear systems with over 5000 variables and over 10 000 parame-
ters which appear in finite element analysis of uncertain truss structures can be
found in [3], while [5] presents some examples coming from modeling of electrical
circuits and models in biology.

5 Conclusion

We presented a new interval method for outer enclosure of a class of nonempty
and bounded parametric controllable solution sets with linear shape. Contrary
to other available so far interval methods for bounding general parametric con-
trollable solution sets, which require strong regularity of the parametric matrix,
the new method does not have such a restriction. Furthermore, the method is
applicable to parametric linear systems of high dimensions that involve many
parameters, see [3], and when the parameter intervals are large, see the end of
Example 2. Further improvement of the solution enclosure may be achieved by
methods presented in Sect. 3 and [5, Sect. 2].
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Abstract. The paper considers the interval linear inclusion Cx ⊆ d in
the Kaucher interval arithmetic. We introduce a quantitative measure of
its fulfillment, called “reserve”, and investigate its properties and applica-
tion. We show that the reserve proves useful in the study of AE-solutions
and quantifier solutions to interval linear problems. In particular, using
the reserve can help to recognize position of a point with respect to the
solution set, emptiness of the solution set and of its interior, etc.

Keywords: Interval linear system · AE-solutions · Quantifier solutions ·
Solution set · Characteristic inclusion · Reserve · Recognizing functional

1 Introduction

Let KR = {[v,v] | v,v ∈ R} be the set of Kaucher intervals, and KR =
{[v,v] | v,v ∈ R} be the set of Kaucher intervals over the extended real axis
R = R ∪ {−∞,∞} (see [5,6]). It makes sense to remind that the Kaucher com-
plete interval arithmetic KR, apart from usual (proper) intervals, also includes
improper intervals [z, z] with z > z.

Our object under study is the interval linear inclusion

Cx ⊆ d, (1)

where x ∈ R
n, C is an m × n-matrix with the elements from KR, d is an

m-vector made up of the extended intervals from KR. We introduce and investi-
gate a quantitative measure, called “reserve”, of the fulfillment of inclusion (1).
Then an answer to the question ‘What can the reserve serve for?’ is given.

The set of (formal) solutions to inclusion (1) is naturally defined as

Ξ =
{

x ∈ R
n | Cx ⊆ d

}

=
{

x ∈ R
n

∣
∣
∣
∑

j Cijxj ≥ di,
∑

j Cijxj ≤ di, i = 1, 2, . . . ,m
}

.

The inclusion Cx ⊆ d in the Kaucher arithmetic and its solutions prove use-
ful for many purposes. First of all, they provide a tool for unified treatment
c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 148–167, 2016.
DOI: 10.1007/978-3-319-31769-4 13
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of so-called AE-solutions and quantifier solutions to interval linear problems.
In the next section, we remind briefly the corresponding concepts and main
results (see details in [13,15,16]).

Our notation follows mainly the informal standard [7].

2 Quantifier Solutions and AE-solutions

In practice, we usually consider intervals

• from the set of proper intervals IR =
{
v = [v,v] | v,v ∈ R, v ≤ v

}
and

• in connection with a certain property P (v) that can be either fulfilled or
not fulfilled for the point members v of the intervals.

For instance, the property P may have the form “to be a solution to an equa-
tion”, “to be a solution to a problem” with some parameters that can take values
from prescribed intervals, and so on. Then the following different situations may
occur:

(1) either the property P (v) holds for all members v from the given interval v,
(2) or the property P (v) holds only for some members v from the interval v,

not necessarily all, or even for a single value from v.

Formally, the above distinction can be expressed by logical quantifiers:

− In the first case, we write “(∀v ∈ v)P (v) ”
and speak of interval A-uncertainty,

− In the second case, we write “(∃v ∈ v)P (v) ”
and speak of interval E-uncertainty.

(2)

We thus have to distinguish between the two above types of interval uncer-
tainty. The quantifier solutions and AE-solutions to interval system of relations
are the solutions that take into account the difference between the A-type and
E-type of uncertainty in the input interval parameters [13,15,16].

Let us consider an interval system of relations

F (a, x) σ b, (3)

where F =
(
F1(a, x), F2(a, x), . . . , Fm(a, x)

)� is a vector-function with some
mappings Fi : R

l × R
n → R as components, a ∈ IR

l, x ∈ R
n, σ ∈ {=,≤,≥}m,

b ∈ IR
m. Taking into account our conclusion about uncertainty types, we can

assume that the property determining “solutions” to system (3) should look like

(Q1vπ1 ∈ vπ1)(Q2vπ2 ∈ vπ2) · · · (Ql+mvπl+m
∈ vπl+m

)
(
F (a, x)σ b

)
, (4)
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where

Q1, Q2, . . . , Ql+m are the logical quantifiers “∀ ” or “∃ ”,

( v1, v2, . . . , vl+m) := ( a1, a2, . . . , al, b1, b2, . . . , bm) ∈ R
l+m

is an aggregated parameter vector,

(v1,v2, . . . ,vl+m) := (a1,a2, . . . ,al, b1, b2, . . . , bm) ∈ IR
l+m

is an aggregated interval vector of their possible values,

(π1, π2, . . . , πl+m) is a permutation of the positive integer
numbers 1, 2, . . . , l + m.

We will call the logical formula (4) selecting predicate of the solutions to (3).
A vector y will be referred to as quantifier solution to the interval system

of relations F (a, x)σ b if the selecting predicate (4) is true for x = y. This is a
very general construction that can describe a great variety of specific solutions
(their total number far exceeding 2l+m). Sometimes, it makes sense to somehow
restrict the generality by specializing the form of the selecting predicate.

A quantifier solution to the interval system of relations for which, in the
selecting predicate, all occurrences of the universal quantifier “∀ ” precede those
of the existential quantifier “∃ ” will be referred to as AE-solution. The AE-
solutions are thus a particular case of the quantifier solutions obtained by fixing a
certain order of the logical quantifiers in the logical formula (selecting predicate)
that determines the solution.

For the last two decades, since their introduction in [15], the AE-solutions
have been the area of active research. They have a clear practical interpretation
as solutions to single-step decision making processes with intervally defined data
when we have to choose a compromise between perturbations (expressed by
interval parameters with A-uncertainty) and our controls (expressed by interval
parameters with E-uncertainty) [16]. A generalization of the concept of AE-
solutions has penetrated into fuzzy sets theory and its applications (see [2]).
The interested reader can find a lot of further results on AE-solutions, e.g., in
the works [3,4,8,9,11,12] and others.

The inclusion Cx ⊆ d arises in connection with quantifier solutions and
AE-solutions to the systems of interval linear relations of the form

Ax σ b,

where σ ∈ {=,≤,≥}m, A ∈ IR
m×n, x ∈ R

n, and b ∈ IR
m. If the quanti-

fier matrix A ∈ {∀,∃}m×n and the quantifier vector β ∈ {∀,∃}m specify the
uncertainty types of the separate interval parameters Aij , bi for all i and j, we
introduce the auxiliary interval matrices A∀, A∃ and vectors b∀, b∃ as follows:

A∀
ij :=

{
Aij , if Aij = ∀,

0, if Aij = ∃,
b∀

i :=

{
bi, if βi = ∀,

0, if βi = ∃,

A∃
ij :=

{
Aij , if Aij = ∃,

0, if Aij = ∀,
b∃

i :=

{
bi, if βi = ∃,

0, if βi = ∀.

(5)
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Then the AE-solution set to the interval linear system of equations Ax = b can
be alternatively defined as the set

ΞAβ(A, b) =
{

x ∈ R
n |

(∀A′ ∈ A∀) (∀b′ ∈ b∀) (∃A′′ ∈ A∃) (∃b′′ ∈ b∃)
(
(A′ + A′′)x = b′ + b′′)}.

Besides, the following equivalent characterization is valid in the Kaucher interval
arithmetic [16]:

x ∈ ΞAβ(A, b) ⇐⇒ (
A∀ + dualA∃)

x ⊆ dual b∀ + b∃, (6)

where “dual” means dualization operator dual : KR → KR reverting the interval
endpoints, i. e., such that dual [ z, z ] = [ z, z ]. Inclusion (6), which coincides with
(1) in form, is called characteristic inclusion for the AE-solution set determined
by the uncertainty distribution (5) over the interval elements of the system
Ax = b. See examples in Sect. 3.

The next important particular case is quantifier solutions to the systems of
interval linear inequalities

Ax ≤ b or Ax ≥ b, (7)

where A ∈ IR
m×n, x ∈ R

n, and b ∈ IR
m. A remarkable fact about the interval

linear systems of inequalities is that the order of logical quantifiers in the select-
ing predicate does not matter, and general quantifier solutions coincide with
AE-solutions for interval linear inequalities [13]. Specifically, if Q(A, b,A, β) is
a quantifier prefix of the selecting predicate, made up of the quantifier terms
that correspond to individual interval parameters, then

Q(A, b,A, β)(Ax ≥ b) ⇐⇒ (
A∀ + dualA∃)

x ⊆ [
b

∀
+ b∃,+∞ ]

,

Q(A, b,A, β)(Ax ≤ b) ⇐⇒ (
A∀ + dualA∃)

x ⊆ [ −∞, b∀ + b
∃ ]

;

see details in [13].
As a particular case of the inclusion Cx ⊆ d, it is worth noting some special

quantifier solutions to the interval linear system of relations Ax σ b. Let the
selecting predicate of the solutions be such that, for the interval parameters
from the equality relations, all the quantifiers “∀ ” precede all the quantifiers
“∃ ”. If Qσ(A, b,A, β) is the quantifier prefix of the above selecting predicate,
then there holds (see [13]):

Qσ(A, b,A, β)(Ax σ b) ⇐⇒ (
A∀ + dualA∃ )

x ⊆ dual b∀ + b∃ + w,

where the interval m-vector w is defined as

wi :=

⎧
⎨

⎩

0, if σi is “=”,
[0,∞], if σi is “≥”,

[−∞, 0], if σi is “≤”.
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To sum up, considering the inclusion Cx ⊆ d in the Kaucher complete inter-
val arithmetic enables us to study all the particular cases of the quantifier solu-
tions to interval linear inequality systems and of the AE-solutions to interval
linear systems of relations

� simultaneously and in a uniform way,

� by interval methods.

3 Definition and Main Properties of Reserve

By reserve of the inclusion Cx ⊆ d (or just reserve), we call the maximal
number Rsv ∈ R such that

Cx + [−Rsv ,Rsv ] e ⊆ d

for m-vector e = (1, 1, . . . , 1)�. Notice that, if Rsv < 0 , then [−Rsv ,Rsv ] is
an improper interval, that is, all the arithmetic operations and relations are
understood in the Kaucher complete interval arithmetic.

From the above definition, one can easily deduce the following representation
for Rsv:

Rsv = min
1≤i≤m

min
{
Ci:x − di, −Ci:x + di

}

= min
1≤i≤m

min
{
Ci:x

+ − Ci:x
− − di, −Ci:x

+ + Ci:x
− + di

}

= min
1≤i≤m

min

⎧
⎨

⎩

n∑

j=1

C
−sgn xj

ij xj − di, −
n∑

j=1

C
sgn xj

ij xj + di

⎫
⎬

⎭
,

(8)

where x+, x− ∈ R
n
+, x+ = max{0, x}, x− = max{0,−x} are positive and nega-

tive parts of the vector x respectively, and for every i

C
−sgn xj

ij =

{
Cij , if xj ≥ 0,

Cij , otherwise,
C

sgn xj

ij =

{
Cij , if xj ≥ 0,

Cij , otherwise.

For fixed C and d, we can consider the reserve as a functional of x, that is,
as a function Rsv (x) : R

n → R. Then it characterizes properties of the point
x with respect to the interval inclusion Cx ⊆ d and interval linear systems of
relations described by this inclusion (see Sect. 2). From (8), it follows that the
functional Rsv (x) is defined on the entire R

n. Also, it is evidently continuous
and even Lipschitz continuous.

We are reminded that the set of points x = (x1, x2, . . . , xn)� ∈ R
n having

a definite sign of each their component xj , supplemented with its boundary, is
called orthant of the space R

n.
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Proposition 1. The function Rsv (x) is concave in each orthant of R
n.

Proof. In every fixed orthant of the space R
n, the values of C−sgn xj

ij and C
sgn xj

ij

are constant. Therefore, the last formula of (8) implies that the functional
Rsv (x) is the minimum of 2m linear functions

(
n∑

j=1

C
−sgn xj

ij xj − di

)

and

(

−
n∑

j=1

C
sgn xj

ij xj + di

)

, i = 1, 2, . . . ,m,

within any fixed orthant.

Proposition 2. The function Rsv (x) is piecewise-linear.

Proof. It is almost obvious from representations (8) and the proof of the preced-
ing proposition.

As follows from Sect. 2, the reserve of inclusion (1) is a very general construction
that covers many particular instances of interval linear systems of relations and
a lot of their solution sets. Still, some special cases of the reserve have been suc-
cessfully applied in the earlier works on interval systems of equations, although
under the name of “recognizing functionals”.

Historically, the first recognizing functional, Tol (x), was proposed for the tol-
erable solution set to interval linear systems of equations [14]. Given an interval
linear system Ax = b, its tolerable solution set is defined as the set

Ξtol = {x ∈ R
n | (∀A ∈ A)(∃b ∈ b)(Ax = b)}, (9)

formed by all such x’s that the product Ax falls into b for any possible A ∈ A.
The functional

Tol(x) = min
i

{
rad bi − ∣

∣ mid bi − Ai:x
∣
∣
}

(10)

is the reserve of the corresponding characteristic inclusion Ax ⊆ b (see [14] for
further details and history of the problem).

For the interval system of linear equations Ax = b, the united solution set
is known to be defined as

Ξuni = {x ∈ R
n | (∃A ∈ A)(∃b ∈ b)(Ax = b)}, (11)

being the solution set for the collection of all the systems Ax = b with A ∈ A
and b ∈ b. So, the selecting predicate is (∃A ∈ A)(∃b ∈ b)(Ax = b), and the
corresponding characteristic inclusion is (dualA)x ⊆ b. Its reserve as a function
of x coincides with the recognizing functional

Uss(x) = min
i

{
rad bi + (radAi:) |x| − ∣

∣ mid bi − (midAi:)x
∣
∣
}

introduced in [19,20] (see also [18]).
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Fig. 1. Graph of the reserve (recognizing functional Uss) for system (12)

Example 1. For the united solution set to the interval linear equation system
(

[2, 4] [−1, 1]
[−1, 1] [2, 4]

)

x =
(

[−3, 3]
0

)

, (12)

the functional Rsv (x) (i. e., Uss defined by (11)) has the graph depicted at Fig. 1
(see also [18]).

For what purpose can one use the reserve? We will show that, using the
reserve as a functional of x, one can get extensive information on

position of a point with respect to the solution set,
whether the solution set Ξ is empty or not,
whether the interior of Ξ is empty or not,
the ‘best’ points for the inclusion Cx ⊆ d.

4 Properties of the Solution Set

Prior to formulating the main results of our paper, we need to revise some
geometric and topological properties of the solution set Ξ to the interval linear
inclusion Cx ⊆ d.
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The intersection of the solution set Ξ with each orthant of the space R
n is

a convex polyhedral set. This fact is well-known for particular solution sets to
interval linear relations (see, e. g., [1,14,16]), but it does not hurt to outline its
substantiation for the general inclusion Cx ⊆ d.

The membership of a vector y in an orthant of R
n is determined by fixing the

signs of its components yi, i = 1, 2, . . . , n. Also, for any interval m × n-matrix
C, the components of the product Cy = ( (Cy)1, (Cy)2, . . . , (Cy)m)� can be
represented as

(Cy)i =
n∑

j=1

Cijyj =

[
n∑

j=1

Cijyj ,

n∑

j=1

Cijyj

]

=

[
n∑

j=1

C ′
ijyj ,

n∑

j=1

C ′′
ijyj

]

, (13)

where C ′
ij and C ′′

ij are numbers from the endpoint set {Cij ,Cij}, and they
are fixed for any separate orthant containing y. Next, writing out the inclusion
Cy ⊆ d in a componentwise manner and changing, on the basis of (13), each
one-dimensional inclusion to two inequalities between the interval endpoints, we
arrive at a system of 3n linear inequalities

⎧
⎨

⎩

C ′y ≥ d,

C ′′y ≤ d,
conditions on the signs of yj , j = 1, 2, . . . , n,

(14)

where C ′, C ′′ are point matrices formed by endpoints of the entries of C. Each
non-strict inequality of the system (14) determines a closed half-space of R

n,
and the solution set to the entire system is the intersection of the half-spaces,
that is, a convex polyhedral set in the space R

n.

Fig. 2. Disconnected solution set to the interval linear inclusion (15)
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Example 2. For the interval linear inclusion system
(

1 0
[2,−2] [−3,−1]

)

x ⊆
(

[−2, 2]
2

)

, (15)

the solution set is depicted at Fig. 2. It is polyhedral within each orthant, but
disconnected as a whole.

Proposition 3. A point belongs to the interior of the solution set Ξ if and only
if every sufficiently small perturbation along each coordinate axis do not cause
the point to leave the solution set. To be more specific,

y ∈ int Ξ
⇔

y ∈ Ξ and (∃Δ > 0)(∀j ∈{1, 2, . . . , n})(∀|ε| < Δ)
(
x + εej ∈ Ξ

)
,

(16)

where ej = (0, . . . , 0, 1, 0, . . . , 0)� is the vector with the only nonzero component
at the j-th place, i.e., the unit vector of the coordinate axis 0xj.

Proof. In equivalence (16), the direct (downward) implication is obvious, and,
in fact, we have to prove only the upward implication. It will follows from the
convexity of the solution set Ξ within every orthant of the space R

n.
Our substantiation of the upward implication in (16) is constructive. Assum-

ing that the point y complies with the “coordinate-wise stability”, i. e., there
exists such Δ > 0 that y ± εej ∈ Ξ for every ε satisfying |ε| < Δ and each
j = 1, 2, . . . , n, we explicitly produce a neighborhood of y that is entirely con-
tained in the solution set Ξ.

Fig. 3. Illustration of the proof of Proposition 3
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Without loss in generality, we suppose that the value of Δ is taken so that
the signs of nonzero components yj are preserved in all the perturbations y±εej ,
|ε| < Δ. Otherwise, we can always decrease the positive Δ to meet the above
requirement.

We take the convex hull S of the 2n + 1 points y, y ± εej , j = 1, 2, . . . , n
(see Fig. 3). Since the unit vectors ej are n linearly independent vectors, then
the convex set S also has the dimension n. Hence, S is a bodily convex set in
R

n, having nonempty interior [10]. Then S must contain an open ball centered
at y. As a consequence, the proof of Proposition 3 is completed if we show that
S is included in the solution set Ξ. The latter will be proved by demonstration
that the intersection of S with each orthant is included in Ξ.

Since the points y ±εej , j = 1, 2, . . . , n, represent perturbations of y directed
along the coordinate axis, we can claim that the intersection of S with an orthant
O is the convex hull of the points from the set {y, y ± εej , j = 1, 2, . . . , n} that
belong to the orthant O itself. Let us denote this convex hull as SO. In general,
SO may be a proper subset of the intersection S ∩O, but in our specific case the
structure of the point set {y, y ± εej , j = 1, 2, . . . , n} is “in conformity” with the
partition of R

n to orthants, since all ej are the unit coordinate vectors.
It only remains to note that SO, being the convex hull of points from O, is

included in the solution set Ξ, because Ξ is convex within the orthant O.

5 Position of a Point with Respect to the Solution Set

From the definition of the reserve and continuity of the functional Rsv (x), it is
obvious that

Rsv (y) ≥ 0 ⇐⇒ y ∈ Ξ, (17)
Rsv (y) > 0 =⇒ y ∈ int Ξ, (18)
Rsv (y) = 0 ⇐= y ∈ ∂Ξ, (19)

where int Ξ is the topological interior of the solution set Ξ, and ∂Ξ is the
boundary of the solution set Ξ. A natural question is whether we can reverse
the logical implications in the second and third cases, thus getting equivalences.
That would allow us to completely investigate the position of a point with respect
to the interior and boundary of solution sets. Localizing the position of a point
within the solution set has practical significance. In particular, if the point is
in the interior of the solution set, it is stable under data perturbations and,
moreover, we can construct an inner estimating box around the point as a center
(see, e.g., [14,17]).

Simple examples show, however, that additional requirements should be
imposed on the system under study as well as on the point y in order to make
the two-sided implications in (18)–(19) possible.
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x−1 1

int Ξ

1
Rsv (x)

Fig. 4. Graph of the reserve for system (20) in Example 3: the points −1 and 1 is the
boundary ∂Ξ of the solution set Ξ

Example 3. Let us consider the following 2 × 1-system of interval inclusions
{

[0,−1] x ⊆ [0, 1],
[−2, 2] x ⊆ [−2, 2]. (20)

The graph of its reserve is depicted at Fig. 4. We can see that Rsv (0.5) = 0,
while 0.5 is in the interior of the solution set Ξ = [−1, 1].

Given an inclusion of the form Cx ⊆ d and a point y ∈ R
n, let us divide the

index sets of the matrix elements to the following index subsets:

for the row index i ∈ {1, 2, . . . ,m},

L :=
{

i | Ci:y = di

}
, R :=

{
i | Ci:y = di

}
,

¬L :=
{

i | Ci:y �= di

}
, ¬R :=

{
i | Ci:y �= di

}
;

for the column index j ∈ {1, 2, . . . , n},
P := { j | yj > 0 },

N := { j | yj < 0 },

E := { j | yj = 0 }.

Overall, we have
L ∪ ¬L = {1, 2, . . . ,m},
R ∪ ¬R = {1, 2, . . . ,m},

P ∪ N ∪ E = {1, 2, . . . , n}.

The special condition on C, d and the point y, which we denote SpeC (y), is
formulated as follows:

SpeC (y) :=

{
CLP = 0,

CRP = 0,

CLN = 0,

CRN = 0,
C(L∪R)E ⊆ 0, (21)
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where, for example, CLP means a submatrix within the matrix C formed by all
the elements having their index pair (i, j) in the set L × P . (L ∪ R) means the
union of the index subsets L and R, and so on.

Proposition 4. Let Ξ be the solution set to an interval inclusion Cx ⊆ d with
C ∈ KR

m×n, d ∈ KR
m. For any y ∈ R

n, there holds

y ∈ intΞ ⇐⇒ (
Rsv (y) > 0

)
or

(
Rsv (y) = 0 & SpeC (y)

)
,

y ∈ ∂Ξ ⇐⇒ (
Rsv (y) = 0 & ¬SpeC (y)

)
,

where “¬” is the logical negation.

Proof. Our intention is to prove the first equivalence of Proposition 4 using the
result of Proposition 3. The second equivalence of Proposition 4 is, in fact, a log-
ical consequence of the first one.

We take a point y ∈ R
n and fix an index j ∈ P (providing that P �= ∅), i. e.,

such that yj > 0. If ε > 0, then

C( y + εej) =
∑

k 	=j

C :kyk + C :j(yj + ε) (22)

=
∑

k 	=j

C :kyk +
[
C :j(yj + ε),C :j(yj + ε)

]
(23)

since yj + ε > 0

=
∑

k 	=j

C :kyk +
[
C :jyj + C :jε,C :jyj + C :jε

]

since C :j and C :j are point (noninterval)

=
∑

k 	=j

C :kyk +
[
C :jyj ,C :jyj

]
+

[
C :jε,C :jε

]

=
n∑

k=1

C :kyk +
[
C :jε,C :jε

]
since yj > 0

=
[
Cy + C :jε, Cy + C :jε

]
. (24)

The membership y + εej ∈Ξ is equivalent to C(y + εej) ⊆ d, which means,
due to (24), that

Cy + C :j ε ≥ d and Cy + C :j ε ≤ d. (25)

If y ∈ Ξ, then, from the definition of the index subset L, we get, first,

CL: y = dL,

and, second,
C¬L: y > d¬L.

The latter strict inequality remains true for sufficiently small perturbations ε,
while the former equality has nontrivial consequences.
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The requirement that y + εej ∈ Ξ entails

CL: y + CLj ε ≥ dL,

and the inequality is satisfied only for CLj ε ≥ 0, which means, in view of ε > 0,
that CLj ≥ 0. Also, similar arguments applied to the second inequality from
(25) and the index subset R imply that CRj ≤ 0.

On the other hand, we can take the point (y − εej) instead of (y + εej) in
our above reasoning, starting from (22). The only reservation is that ε should
be chosen sufficiently small to keep the inequality yj + ε > 0 so as we could
pass from (22) to (23). This leads to the conclusion that CLj ≤ 0 and CRj ≥ 0,
which, combined with our previous results on CLj and CRj , yields CLj = 0 and
CRj = 0 for every j ∈ P . To put it another way, CLP = 0 and CRP = 0.

In exactly the same manner, after fixing an index j ∈ N (providing that
N �= ∅), we can prove that CLN = 0 and CRN = 0; we omit the expanded
reasoning for brevity.

To prove that C(L∪R)E ⊆ 0, we fix an index j ∈ E among the components of
the point y (providing that E �= ∅). As the result of considering ε-perturbations
of y along the j-th axis, similar to what has been done in the several preceding
paragraphs, we get the inequalities C(L∪R)j ≥ 0 and C(L∪R)j ≤ 0. Hence,
C(L∪R)E ⊆ [0, 0] in the Kaucher complete interval arithmetic, as is required.
The details are again omitted.

Summing up, we get

y ∈ int Ξ ⇐⇒ y ∈ Ξ &

CLP = 0 & CRP = 0 & CLN = 0 & CRN = 0 & C(L∪E)E ⊆ 0.

In the right-hand side of the above equivalence, the condition at the second line
is nothing but SpeC (y). We can further transform this result taking into account
that the membership y ∈ Ξ means Rsv (y) ≥ 0:

y ∈ int Ξ ⇐⇒ Rsv (y) ≥ 0 & SpeC (y)

⇐⇒ (
Rsv (y) > 0 & SpeC (y)

) ∨ (
Rsv (y) = 0 & SpeC (y)

)

⇐⇒ Rsv (y) > 0 ∨ (
Rsv (y) = 0 & SpeC (y)

)
,

since for Rsv (y) > 0 we have L = ∅ and R = ∅, and then the condition SpeC
holds true. The last logical formula is exactly what stands in the right-hand side
of the first equivalence of Proposition 4.

Finally, we have to prove the second equivalence of Proposition 4. In fact, it is
the negation of the first equivalence we have already substantiated, taken under
the condition that y ∈ Ξ. Since every point of the solution set Ξ is either
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interior or boundary, then the negation of x ∈ int Ξ is the membership x ∈ ∂Ξ.
Next, negate the logical formula in the right-hand side of the first equivalence:

¬( (
Rsv (y) > 0

) ∨ (
Rsv (y) = 0 & SpeC (y)

) )

⇔ by de Morgan’s law

¬(
Rsv (y) > 0

)
& ¬(

Rsv (y) = 0 & SpeC (y)
)

⇔ by de Morgan’s law
(
Rsv (y) = 0

)
&

(
Rsv (y) > 0 ∨ ¬SpeC (y)

)

⇔ by distributivity of “&” and “∨”
(
Rsv (y) = 0 & Rsv (y) > 0

) ∨ (
Rsv (y) = 0 & ¬SpeC (y)

)
⇔

Rsv (y) = 0 & ¬SpeC (y),

since (Rsv (y) = 0 & Rsv (y) > 0 ) is always false. The logical formula we
have obtained coincides with the right-hand side of the second equivalence in
Proposition 4.

The special condition SpeC (y) can be reduced to a more convenient, although
less general, form. To give its formulation, we need the concept of vertex of an
interval vector u ∈ KR

l
: it is any such u ∈ R

l
that uk ∈ {uk,uk}, k = 1, 2, . . . , l.

Proposition 5. Assume that

(i) at least one of the following conditions is true:
• y does not lie on a coordinate hyperplane,
• the matrix C is proper;

(ii) the augmented matrix (C,d) does not have rows with zero vertices.

Then y ∈ intΞ ⇐⇒ Rsv (y) > 0,
y ∈ ∂Ξ ⇐⇒ Rsv (y) = 0.

Proof. Due to Proposition 4,

y ∈ int Ξ ⇐⇒ (
Rsv (y) > 0

) ∨ (
Rsv (y) = 0 & SpeC (y)

)
.

So, to substantiate Proposition 5, it suffices to show that the second term of
the right-hand side disjunction, i. e., the condition

(
Rsv (y) = 0 & SpeC (y)

)
is

incompatible with the premise of Proposition 5.
To put the above plan into practice, we are going to demonstrate that if

both
(
Rsv (y) = 0 & SpeC (y)

)
and the condition (i) hold true, then the

condition (ii), i. e.,

∀ i ∈ {1, 2, . . . ,m} (
0 �∈ vert (Ci:,di)

)
,

is violated. As far as
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dL = CLP xP + CLN xN + CLE · 0,

dR = CRP xP + CRN xN + CRE · 0,

we have
SpeC (y) =⇒ dL = 0 & dR = 0. (26)

At the same time, it is obvious that

Rsv (y) = 0 =⇒ L �= ∅ ∨ R �= ∅. (27)

Implications (26) and (27) entail that, under
(
Rsv (y) = 0 & SpeC (y)

)
, the

following is true:

(∃l)
(
ClP = 0 & ClN = 0 & ClE ⊆ 0 & dl = 0

)

or (∃r)
(
CrP = 0 & CrN = 0 & CrE ⊆ 0 & dr = 0

)
. (28)

If the point y does not lie on a coordinate hyperplane, then E = ∅ and (28)
implies that there exists such i that 0 ∈ vert (Ci:,di), which runs contrary to
the premise (ii).

If the matrix C is proper, then ClE ⊆ 0 is equivalent to ClE = 0, and
CrE ⊆ 0 is equivalent to CrE = 0. Again, (28) implies that the premise (ii) is
violated.

6 Solvability of the Inclusion Cx ⊆ d

In this section, we study the solvability of the inclusion Cx ⊆ d, that is, answer
the question whether its solution set is empty or not. In the sequel, we denote
for brevity

max Rsv := max
x∈Rn

Rsv (x).

If Rsv (x) is unbounded from above, we assign max Rsv = ∞.
From the equivalence

(
Rsv (y) ≥ 0 ⇐⇒ y ∈ Ξ

)
, it follows that

Ξ �= ∅ ⇐⇒ max Rsv ≥ 0.

Therefore, examination of solvability of the inclusion Cx ⊆ d (and of the related
interval linear problems as well) amounts to the solution of the unconstrained
optimization problem

find max
x∈Rn

Rsv (x).

Then one has to inquire into the sign of the maximum.
Finally, we can consider the question on whether the topological interior of Ξ

is empty or not. In other words, do there exist solutions to the inclusion Cx ⊆ d
that are stable under small perturbations in their position? In the general case,
it follows from the implication

(
Rsv (y) > 0 =⇒ y ∈ int Ξ

)
that

max Rsv > 0 =⇒ int Ξ �= ∅.

The following counterexample shows that the reverse implication may prove
false.
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Example 4 ( �⇐=). For the inclusion [0, 1]x ⊆ [0, 1], we have intΞ = ]0, 1[ �= ∅,
but max Rsv = 0. The graph of the reserve is depicted at Fig. 5.

x

int Ξ

Rsv (x)

0 1

Fig. 5. Zero maximum of the reserve in Example 4

Nevertheless, after imposing special conditions on C and d, we can draw
conclusions in the opposite direction too.

Proposition 6. If the augmented matrix (C,d) does not have rows with zero
vertices, then

int Ξ �= ∅ ⇐⇒ max Rsv > 0.

Proof. If max Rsv > 0, there exists such y ∈ R
n that Rsv (y) > 0. Therefore,

y ∈ int Ξ in view of (18), and so intΞ �= ∅.
Conversely, let int Ξ �= ∅. Then int Ξ contains an open ball B. Within B, we

can take a point y that does not belong to the coordinate planes. Additionally,
the augmented matrix (C,d) does not have rows with zero vertices, and this is
why we can apply Proposition 5 concluding that Rsv (y) > 0. Hence, max Rsv ≥
Rsv (y) > 0, as required.

7 The ‘best’ Points for the Inclusion Cx ⊆ d

It follows from the above constructions that the function Rsv (x) provides us
with a quantitative measure of ‘how strong’ (how ‘good’) the inclusion Cx ⊆ d
is fulfilled. The points where the maximum of the function Rsv (x) is attained
are of special importance, since they satisfy the inclusion Cx ⊆ d in the largest
possible amount. Such points are usually the ‘best’ points (in a certain sense)
from the solution set or points that comply with some additional optimality
conditions.

Below, we briefly describe the corresponding results, using the notation

Arg max := { y ∈ R
n | Rsv (y) = max Rsv }.
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We distinguish three cases, when max Rsv is positive, zero, and negative
respectively.

x

int Ξ

Rsv (x)

maxRsv

Arg max

Fig. 6. Positive maximum of the reserve

Case max Rsv > 0 (see Fig. 6):

• Arg max consists of all such points for which Cx ⊆ d
holds with maximum positive reserve.

• Arg max ⊆ int Ξ.

We can regard the points from Arg max as ‘the most stable’ under data pertur-
bations, i. e., under variations in C and d.

x

Ξ

Arg max

Rsv (x)

Fig. 7. Zero maximum of the reserve

Case max Rsv = 0 (see Fig. 7):

• Arg max consists of all such points for which Cx ⊆ d
holds with maximum reserve, although this reserve is zero.

• Arg max = Ξ.
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x

Rsv (x)

maxRsv

Arg max

Fig. 8. Negative maximum of the reserve

Case max Rsv < 0 (see Fig. 8):

• Arg max consists of all such points for which Cx ⊆ d
is violated in the minimum amount.

• Ξ = ∅. Arg max is the solution set to the inclusion
Cx ⊆ d + e [max Rsv ,−max Rsv ].

Although the solution set is empty, the points from the set Arg max can be
taken as ‘pseudosolutions’ to the corresponding system of interval relations, since
such points minimize the discrepancy in the characteristic inclusion Cx ⊆ d. In
particular, the points from Arg max are the first points that appear in nonempty
solution set after uniform widening of the right-hand side d by max Rsv . This
follows from (8).

It is worth noting that a particular case of the above construction has been
implemented in [18,19] as a promising approach to data fitting problem under
interval uncertainty that works even for inconsistent input data.

8 Computational Complexity

We conclude the paper with a discussion on the complexity of the developed
technique that relies on the use of the reserve function. Let us consider the first
formula of (8):

Rsv (x) = min
1≤i≤m

min
{
Ci:x − di, −Ci:x + di

}
.

We can see that computation of the value Rsv(x) requires 2n multiplications and
2 additions for each of the two subexpressions under inner minimum. The overall
expression for Rsv thus takes m(4n + 4) arithmetic operations, which is quite
cheap. Since testing condition SpeC (21) and its derivatives is also inexpensive,
we can assert that examining position of a point with respect to AE-solution
sets based on the reserve function (Sect. 5) is computationally efficient.

Solvability issues considered in Sect. 6 and the constructions related to the
“best points” of the solution sets from Sect. 7 require unconstrained maximiza-
tion of the reserve function. This is a hard problem since in general Rsv (x) may
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be a non-smooth multiextremal function whose graph looks like that depicted at
Fig. 1. However, one should not perceive this as a drawback of our technique as
far as it cannot be easier, in principle, than the theoretical complexity of recog-
nition of the solution set Ξ. For interval linear systems of equations and their
AE-solution sets, Lakeyev [8] has inquired into the question and discovered that
the problem of testing whether an AE-solution set is nonempty turns out NP-
complete if the interval linear system has “sufficiently many” interval elements
with E-type of uncertainty. In terms of the inclusion Cx ⊆ d, Lakeyev’s result
is equivalent to the statement that the solution set Ξ is NP-complete to recog-
nize providing that the matrix C and right-hand side vector d have, in total,
sufficiently many elements that are improper in C and proper in d.

On the other hand, if an interval linear system of relations has “few” interval
elements with E-type of uncertainty, then its solution set can be recognized by
polynomial time algorithms. Then the reserve function Rsv (x) is not hard for
maximization too. Such is, for instance, the situation with the tolerable solution
set (9) and its recognizing functional (10) which can be efficiently maximized for
polynomial time by modern non-smooth optimization procedures.

Anyway, reducing examination of the solvability of the inclusion Cx ⊆ d
to the unconstrained maximization problem with the objective function Rsv (x)
provides flexibility in choosing our instruments and in further actions. In par-
ticular, for a specific problem, we can take this or that optimization procedure
depending on our needs, convenience, capability and available resources.
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Abstract. A method is investigated by which tight bounds on the range
of a multivariate rational function over a box can be computed. The app-
roach relies on the expansion of the numerator and denominator polyno-
mials in Bernstein polynomials. Convergence of the bounds to the range
with respect to degree elevation of the Bernstein expansion, to the width
of the box and to subdivision are proven and the inclusion isotonicity of
the related enclosure function is shown.

Keywords: Bernstein polynomial · Rational function · Range bounding

1 Introduction

The expansion of a given (multivariate) polynomial p into Bernstein polynomials
provides bounds on the range of p over a box. This is now a well-established tool
as documented in [6]. In [8] the approach is extended to rational functions,
however, without any proof of the convergence of the bounds to the range. In
this paper we aim at filling this gap. Furthermore, we show that the related
rational Bernstein form is inclusion isotone, a property which is of fundamental
importance in interval computations, see, e.g., [9, Sect. 1.4]. The organization
of our paper is as follows. In Sects. 2 and 3 we recall the polynomial and the
rational Bernstein forms. In Sect. 4 we present our main results. Related results
for the simplicial Bernstein form which relies on the expansion of a polynomial
into Bernstein polynomials over a simplex are given in [13]. The Bernstein form
considered in this paper is also called the tensorial Bernstein form. But for
simplicity we use here only the term ‘Bernstein form’.

2 The Polynomial Bernstein Form

In this section we briefly recall the most important properties of the Bernstein
expansion, which will be used in the following sections. Let I(R) be the set of
the compact, non-empty real intervals. We denote the distance q between two
intervals A = [a, a], B = [b, b] by

q([a, a], [b, b]) := max{|a − b|, |a − b|}.

c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 171–179, 2016.
DOI: 10.1007/978-3-319-31769-4 14
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Without loss of generality we may consider the unit box I := [0, 1]n since
any compact non-empty box in R

n can be mapped thereupon by an affine trans-
formation.

Comparisons and arithmetic operations on multiindices i = (i1, . . . , in)T are
defined componentwise. For x ∈ R

n its monomials are xi := xi1
1 . . . xin

n . Using the
compact notation

∑k
i=0 :=

∑k1
i1=0 · · · ∑kn

in=0,
(
k
i

)
:=

∏n
μ=1

(
kμ

iμ

)
, an n-variate

polynomial p, p(x) =
∑l

i=0 aix
i, can be represented as

p(x) =
k∑

i=0

b
(k)
i (p) B

(k)
i (x), x ∈ I, (1)

where

B
(k)
i (x) =

(
k

i

)

xi(1 − x)k−i (2)

is the ith Bernstein polynomial of degree k ≥ l, and the so-called Bernstein
coefficients b

(k)
i (p) are given by

b
(k)
i (p) =

i∑

j=0

(
i
j

)

(
k
j

)aj , 0 ≤ i ≤ k, where aj := 0 for l ≤ j, j �= l. (3)

In particular, we have the endpoint interpolation property

b
(k)
i (p) = p(

i

k
), for all i, 0 ≤ i ≤ k, (4a)

with iμ ∈ {0, kμ}. (4b)

A fundamental property for our approach is the convex hull property, which
states that the graph of p over I is contained within the convex hull of the control
points derived from the Bernstein coefficients, i.e.,

{(
x

p(x)

)

: x ∈ I

}

⊆ conv

{( i
k

b
(k)
i (p)

)

: 0 ≤ i ≤ k

}

, (5)

where conv denotes the convex hull. This implies the interval enclosing
property [1]

min
0≤i≤k

b
(k)
i (p) ≤ p(x) ≤ max

0≤i≤k
b
(k)
i (p), for all x ∈ I. (6)

Equality holds on the left or right hand side of (6), if the minimum or maximum,
respectively, is attained at an index i satisfying (4b). This condition is called
the vertex condition. For an efficient computation of the Bernstein coefficients,
see [4].

A disadvantage of the direct use of (3) is that the number of the Bernstein
coefficients to be computed explicity grows exponentially with the number of
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variables n. Therefore, it is advantageous to use a method [11] by which the
number of coefficients which are needed for the enclosure only grows approxi-
mately linearly with the number of the terms of the polynomial.

In many cases it is desired to calculate the Bernstein expansion of p over a
general n-dimensional box X in the I(R)n,

X = [x1, x1] × · · · × [xn, xn]

with

xμ < xμ, μ = 1, . . . , n.

The width of X is denoted by w(X),

w(X) := x − x.

It is possible to firstly apply the affine transformation which maps X on the
unit box I and to apply (3) using the coefficients of the transformed polynomial.
However, in Sect. 4 it will be useful to consider the direct computation. Here,
the ith Bernstein polynomial of degree k ≥ l is given by

B
(k)
i (x) =

(
k

i

)

(x − x)i(x − x)k−iw(X)−k, 0 ≤ i ≤ k. (7)

The Bernstein coefficients b
(k)
i of p of degree k over X are given by

b
(k)
i (p) =

i∑

j=0

(
i
j

)

(
k
j

) cj , 0 ≤ i ≤ k, (8)

where cj = w(X)j
k∑

τ=j

(
τ

j

)

aτxτ−j (9)

with the convention aj := 0 for l ≤ j, l �= j.

The interval

B(k)(p,X) := [ min
0≤i≤k

b
(k)
i , max

0≤i≤k
b
(k)
i ]

encloses the range of p over X and is called the polynomial Bernstein form of p.
If the degree of the Bernstein expansion is elevated, the Bernstein coefficients

of order k + 1 can easily be computed as convex combinations of the coefficients
of order k, e.g., [2, formula (13)], [4, formula (3.11)]. It follows that

B(k+1)(p,X) ⊆ B(k)(p,X). (10)

The following theorem, see [10, formula (16)] for the univariate case and
[4, Theorem 3] for its multivariate extension, will be used to derive our main
results.
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Theorem 1. For l ≤ k, the following bound holds for the overestimation of the
range p(X) of p over X by the Bernstein form

q(p(X), B(k)(p,X)) ≤
l∑

i=0

n∑

μ=1

[max(0, iμ − 1)]2

kμ
|ci|, (11)

where the coefficients ci are given by (9).

Remark 1. If 2 ≤ kμ the bound on the right hand side of (11) can be improved
slightly, see [10, formula (17)]. For later use we note an extension of [10, Theorem4].
Let x

(k)
i be the grid point the μth component of which is given by

x
(k)
i,μ = xμ +

iμ
kμ

(xμ − xμ), μ = 1, . . . , n. (12)

Then by [4, p. 42] the difference |(p(x(k)
i ) − b

(k)
i | can be bounded from above

for all i, 0 ≤ i ≤ k, by the right-hand side of (11).

3 The Rational Bernstein Form

Let p and q be polynomials in variables x1, . . . , xn with Bernstein coefficients
b
(k)
i (p) and b

(k)
i (q), 0 ≤ i ≤ k, over a box X, respectively. We consider the

rational function f := p/q. We may assume that both p and q have the same
degree l since otherwise we can elevate the degree of the Bernstein expansion of
either polynomial by component where necessary to ensure that their Bernstein
coefficients are of the same order k ≥ l. We call

b
(k)
i (f) :=

b
(k)
i (p)

b
(k)
i (q)

, 0 ≤ i ≤ k,

the rational Bernstein coefficients of f .

Theorem 2. [8, Theorem 3.1] Assume that all Bernstein coefficients b
(k)
i (q)

have the same sign and are non-zero (this implies that q(x) �= 0, for all x ∈ X).
Then the following enclosure for the range of f over X holds:

m(k) := min
0≤i≤k

b
(k)
i (f) ≤ f(x) ≤ max

0≤i≤k
b
(k)
i (f) =: m(k), for all x ∈ X. (13)

The interval spanned by the left and right hand sides of (13) constitutes the
rational Bernstein form B(f,X),

B(k)(f,X) := [m(k), m(k)].

Remark 2. The convex hull property (5) does not in general carry over to rational
functions and control points formed from the rational Bernstein coefficients even
in the univariate case (n = 1). For a counterexample see [8].
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4 Main Results

Let throughout f = p/q be a rational function, where p and q are polynomials
of degree l and let the range of f over X be f(X) = [f, f ]. Without loss of
generality we assume that

0 < b
(l)
i (q), for all i, 0 ≤ i ≤ l, (14)

and prove the statements only for the upper bounds since the proofs for the
lower bounds are entirely analogous. The polynomial r,

r := p − m(k)q, (15)

will serve as a vehicle to convey the results from the polynomial to the rational
case. Note that the Bernstein coefficients of a polynomial are linear, hence

b
(k)
i (r) = b

(k)
i (p) − m(k)b

(k)
i (q). (16)

First we show that the vertex condition remains in force.

Proposition 3. It holds that m(k) = f (m(k) = f) if and only if m(k) (m(k)) =

b
(k)
i (f) with i satisfying (4b).

Proof. By (4a), b
(k)
i (f) with i satisfying (4b) is a value of f at a vertex of X.

If follows that m(k) is sharp if it is attained at such a Bernstein coefficient.
Conversely, assume that m(k) = f,

m(k) = b
(k)
i0

(f), for some i0, 0 ≤ i0 ≤ k, (17)

and f = f(x̂) for some x̂ ∈ X. Then we can conclude that

r(x̂)
q(x̂)

= f(x̂) − m(k) = 0,

hence r(x̂) = 0. Since r is nonpositive on X it attains its maximum at x̂. On the
other hand, we have by (16)

b
(k)
i (r) ≤ 0, for all i, 0 ≤ i ≤ k, (18)

and by (17) b
(k)
i0

(r) = 0. So we can conclude that

max
x∈X

r(x) = b
(k)
i0

(r). (19)

By the polynomial vertex condition if follows that the index i0 satisfies (4b). ��
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4.1 Linear Convergence with Respect to Degree Elevation

We start with the observation that the monotonicity property (10) carries over
to the rational case.

Proposition 4. For l ≤ k it holds that B(k+1)(f,X) ⊆ B(k)(f,X).

Proof. By application of (10) to polynomial r (15) and noting (16) we obtain
for all j, 0 ≤ j ≤ k + 1,

b
(k+1)
j (p) − m(k)b

(k+1)
j (q) ≤ max

0≤i≤k+1
{b

(k+1)
i (p) − m(k)b

(k+1)
i (q)}

≤ max
0≤i≤k

{b
(k)
i (p) − m(k)b

(k)
i (q)} ≤ 0,

hence b
(k+1)
j (f) ≤ m(k) . ��

Theorem 5. For l ≤ k it holds that

q(f(X), B(k)(f,X)) ≤ β

k
, (20)

where β is a constant not depending on k.

Proof. Without loss of generality we consider only the case 0 ≤ m(k). We assume
again that (17) holds and use the corresponding grid point x

(k)
i0

, see (12). By (10)
we may estimate for l ≤ k

m(k) ≤ m(l) ≤ max b
(l)
i (p)

min b
(l)
i (q)

=: β′. (21)

We can conclude from (17) that

m(k) − f ≤ m(k) − f(x(k)
i0

)

=
m(k) · q(x(k)

i0
) − p(x(k)

i0
) + b

(k)
i0

(p) − m(k) · b
(k)
i0

(q)

q(x(k)
i0

)

=
m(k)(q(x(k)

i0
) − b

(k)
i0

(q)) + b
(k)
i0

(p) − p(x(k)
i0

)

q(x(k)
i0

)
.

Taking absolute values and using Remark 1 and (10) we can estimate

m(k) − f ≤ β′ β1
k + β2

k

min b
(l)
i (q)

, (22)

where β1, β2 are constants not depending on k, which completes the proof. ��
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4.2 Quadratic Convergence with Respect to the Width
of an Interval

Inspection of (22) shows that we can extract the square of maxn
μ=1(xμ−xμ) from

the constant β in (20), cf. (9), (11). Therefore, we obtain the following extension
of [12, Corollary 3.4.16].

Theorem 6. Let A ∈ I(R)n be fixed. Then for all X ∈ I(R)n, X ⊆ A, and l ≤ k
it holds that

q(f(X), B(k)(f,X)) ≤ γ ||w(X)||2∞, (23)

where γ is a constant not depending on X.

4.3 Quadratic Convergence with Respect to Subdivision

Since the convergence with respect to degree elevation is only linear we will
choose k = l in the sequel and reserve in this subsection the upper index of
the Bernstein coefficients for the subdivision level. For simplicity we consider
the unit box I. Repeated bisection of I(0,1) := I in all n coordinate direc-
tions results at subdivision level 1 ≤ h in subboxes I(h,ν) of edge length 2−h,
ν = 1, . . . , 2nh. Denote the Bernstein coefficients of f over I(h,ν) by b

(h,ν)
i (f).

For their computation see [4,14]. Put

B(h)(f) := [ min
0≤i≤l,

1≤ν≤2nh

b
(h,ν)
i (f), max

0≤i≤l,

1≤ν≤2nh

b
(h,ν)
i (f)].

We obtain the following extension of [3, formula (23)].

Theorem 7. For each 1 ≤ h it holds

q(f(X), B(h)(f)) ≤ δ(2−h)2, (24)

where δ is a constant not depending on h.

Proof. Assume that

max
0≤i≤l,

1≤ν≤2nh

b
(h,ν)
i = max

0≤i≤l
b
(h,ν0)
i , for some ν0, 0 ≤ ν0 ≤ 2nh.

Then it follows by Theorem 6

max
0≤i≤l,

1≤ν≤2nh

b
(h,ν)
i − max

x∈I
f(x) ≤ max

0≤i≤l
b
(h,ν0)
i − max

x∈I(h,ν0)
f(x)

≤ δ||w(I(h,ν0))||2∞ = δ (2−h)2. ��
Remark 3. Note that by (9), (11) the constants β, γ and δ in (20), (23), and (24)
can be given explicity.
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4.4 Inclusion Isotonicity

We continue with choosing k = l and suppress therefore the upper index for the
Bernstein coefficients. An interval function F : I(R)n −→ I(R) is called inclusion
isotone, if, for all X,Y ∈ I(R)n, X ⊆ Y implies F (X) ⊆ F (Y ).

In [7] it was shown by a lengthy proof that the polynomial Bernstein form
is inclusion isotone. In [5] a brief proof of this property and an extension to the
multivariate case are presented. We show that the inclusion isotonicity carries
over to rational functions.

Theorem 8. The rational Bernstein form is inclusion isotone.

Proof. We consider without loss of generality the unit box I and denote the
Bernstein coefficients of the rational function f over I by bi(f), 0 ≤ i ≤ l.
It suffices to show that the inclusion isotonicity holds if we shrink only one
edge of I and this is done in turn separately at its left and right endpoint.
Without loss of generality we consider only the first case and the first component
interval of I and denote by b∗

i (f), 0 ≤ i ≤ l, the Bernstein coefficients of f over
[ε, 1] × [0, 1]n−1, 0 < ε < 1. Put

m∗ := max
0≤i≤l

b∗
i (f).

We proceed by contradiction and assume that

m∗ = b∗
i0(f), for some i0, 0 ≤ i0 ≤ l, (25)

and
m := max

0≤i≤l
bi(f) < m∗. (26)

Since the Bernstein form of the polynomial p − m∗q is inclusion isotone we
obtain from (26) that

b∗
i0(p) − m∗b∗

i0(q) ≤ max
0≤i≤l

{b∗
i (p) − m∗b∗

i (q)}

≤ max
0≤i≤l

{bi(p) − m∗bi(q)}

< max
0≤i≤l

{bi(p) − m bi(q)} ≤ 0

from which we get a contradiction to (25). ��
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Abstract. In this work a Bernstein global optimization algorithm to
solve unconstrained polynomial mixed-integer nonlinear programming
(MINLP) problems is proposed. The proposed algorithm use a branch-
and-bound framework and possesses several new features, such as a
modified subdivision procedure, the Bernstein box consistency and the
Bernstein hull consistency procedures to prune the solution search space.
The performance of the proposed algorithm is numerically investigated
and compared with previously reported Bernstein global optimization
algorithm on a set of 10 test problems. The findings of the tests estab-
lishes the efficacy of the proposed algorithm over the previously reported
Bernstein algorithm in terms of the chosen performance metrics.

1 Introduction

Global optimization of MINLP problems is a promising research area and has
been a point of attraction to many researchers from academia as well as indus-
try. In this work, we attempt to solve such MINLP problems which are of the
following form:

min
x

f(x)

xk ∈ x ⊆ R, k = 1, 2, . . . , ld (1)
xk ∈ Z, k = ld + 1, . . . , l ,

where f : R
l �→ R is the (possibly polynomial nonlinear) objective function,

x := [x, x] is an interval in R, xk (k = 1, 2, . . . , ld) are continuous decision
variables, and the rest of xk (k = ld + 1, . . . , l) are integer decision variables.

A widely used strategy for solving MINLP problems of the form (1) is to
use a branch-and-bound (BB) framework [5]. Specifically, a relaxed nonlinear
programming (NLP) problem is solved at each node of the branch-and-bound
tree. Different variants of the BB approach have been reported in the literature
and are widely adapted by several state-of-the-art MINLP solvers (cf. Bonmin
[2], SBB [6], BARON [14]). Recently, a new technique based on the separable
c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 180–198, 2016.
DOI: 10.1007/978-3-319-31769-4 15
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underestimators for box-constrained MINLP problems has been proposed in [3],
and found to be well competent with state-of-the-art MINLP solvers. We direct
the interested readers to [4] and references therein for more details about state-
of-the-art available tools for solving MINLP problems. However, despite of the
widespread enjoyed interest by the BB approach in the field of MINLPs, we
note that sometimes the type of NLP solver used has found to limit its perfor-
mance in practice. This seems to be true since most of the NLP solvers assume
generalized convexity. To solve polynomial NLP problems, an alternative app-
roach is provided by the Bernstein global optimization algorithms which use
the Bernstein form of a polynomial function. A notable feature of the Bernstein
form is that the Bernstein range enclosure of a function is sharper than those
obtained with most interval forms [13]. Hence, algorithms based on the Bern-
stein form in practice are found to be more effective than existing interval algo-
rithms. Several variants of such Bernstein algorithms to solve unconstrained and
constrained polynomial NLPs have been reported in literature (see, for instance,
[9,11]). However, we note that no work has yet been reported in the literature for
global optimization of bound constrained polynomial MINLP problems using the
Bernstein form. This motivates us to investigate and dig more findings with this
elegant Bernstein form approach in the direction of bound constrained MINLP
problems.

In this work, we propose a Bernstein algorithm for bound constrained global
optimization of MINLPs of the form (1). The proposed algorithm is similar in
philosophy to interval branch-and-bound procedures for the global optimization
of bound constrained NLPs and extends the work proposed for solving uncon-
strained NLP problems by [9]. The proposed algorithm use combination of the
several enhanced tools, such as the monotonicity and the concavity tests, a mod-
ified subdivision procedure, and the Bernstein box consistency and the Bernstein
hull consistency procedures to prune the solution search space. It may be noted
that the Bernstein algorithm in [9] lack such solution search space pruning pro-
cedures and hence may be computationally expensive. Further, the performance
of the proposed algorithm is evaluated on a collection of 10 test problems taken
from NLP literature. These problems are appropriately modified as MINLPs and
the test results are compared with the Bernstein algorithm in [9]1.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
reader with some background of the Bernstein form. In Sect. 3, we suggest some
improvements in the Bernstein algorithm used to solve NLPs. We also present
consistency techniques based on the Bernstein form to prune the solution search
space. Finally, we present our main proposed unconstrained global optimiza-
tion algorithm for the MINLP problems. In Sect. 4, numerical experiments are
reported along with their findings. Lastly, we draw some conclusions from the
present work in the Sect. 5.

1 Albeit, the Bernstein global optimization algorithm in [9] is for NLP problems, we
modify it at appropriate places to handle integer decision variables.
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2 Background

In this section, we introduce few notions about the Bernstein form. We would like
to direct the interested reader to reference [11] for more details about the topic.

Let l ∈ N be the number of variables and x = (x1, x2, ..., xl) ∈ R
l. A multi-

index I is defined as I = (i1, i2, ..., il) ∈ N
l and the multi-power xI is defined

as xI = (xi1
1 , xi2

2 , ..., xil
l ). A multi-index N is defined as N = (n1, n2, ..., nl).

Inequalities I ≤ N for multi-indices are meant component-wise. With I =
(i1, ..., ir−1, ir, ir+1, ..., il) we associate the index Ir,k given by Ir,k = (i1, ..., ir−1,

ir + k, ir+1, ..., il), where 0 ≤ ir + k ≤ nr. Also we write
(
N
I

)
for

(
n1
i1

) · · · (nl

il

)
and

(N/I) for (n1/i1, n2/i2, ..., nl/il) provided that 0 < ik, k = 1, 2, . . . , l.
A real bounded and closed interval x is defined as

x = [x, x] := [inf x, sup x] ∈ IR,

where IR denotes the set of compact intervals. Let w(x) denote the width of x,
that is w(x) := x − x, and m(x) denote the midpoint of x, that is m(x) := (x +
x)/2. Similarly, for an l-dimensional interval vector or box x = (x1,x2, . . . ,xl) ∈
IR

l, the width of x is w(x) := max(w(x1), w(x2), . . . , w(xl)).
We can write an l-variate polynomial p in the form

p(x) =
∑

I≤N

aIx
I , x ∈ R

l (2)

with N being the degree of p. We expand a given multivariate polynomial into
Bernstein polynomials to obtain bounds for its range over an l-dimensional box x.
The Ith Bernstein basis polynomial of degree N is defined as

BN
I (x) = Bn1

i1
(x1) · · · Bnl

il
(xl), x ∈ R

l, (3)

where, for ij = 0, 1, ..., nj , j = 1, 2, . . . , l

B
nj

ij
(xj) =

(
nj

ij

)
(xj − xj)

ij (xj − xj)nj−ij

(xj − xj)nj
. (4)

The Bernstein coefficients bI(x) of p over the box x are given by

bI (x) =
∑

J≤I

(
I
J

)

(
N
J

)w(x)J
∑

K≤J

(
K
J

)
(inf x)K−JaK , I ≤ N. (5)

The Bernstein form of a multivariate polynomial p is defined by

p (x) =
∑

I≤N

bI (x) BN
I (x) . (6)

The Bernstein coefficients are collected in an array (bI(x))I∈S , where S = {I :
I ≤ N}. We denote S0 as a special subset of the index set S comprising indices
of the vertices of this array, that is

S0 := {0, n1} × {0, n2} × · · · × {0, nl}.
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Theorem 1. (Range enclosure property) Let p be a polynomial of degree N , and
let p(x) denote the range of p on a given box x ∈ IR

l. Then,

p(x) ⊆ B(x) :=
[
min (bI(x))I∈S , max (bI(x))I∈S

]
. (7)

Proof: See [7].

Remark 1. The above theorem says that the minimum and maximum coeffi-
cients of the array (bI(x))I∈S provide lower and upper bounds for the range. This
forms the Bernstein range enclosure, defined by B(x) in Eq. (7). The Bernstein
range enclosure can successively be sharpened by the continuous domain subdi-
vision procedure [7].

Lemma 2. (Vertex property) [7] Consider the Bernstein form in Eq. (6) for a
polynomial p of degree N , and let the range p(x) = [a, b]. Then

a = min
0≤I≤N

(bI(x)) if and only if min
0≤I≤N

(bI(x)) = min
I∈S0

(bI(x))

b = max
0≤I≤N

(bI(x)) if and only if max
0≤I≤N

(bI(x)) = max
I∈S0

(bI(x))

Remark 3. The above Lemma says that the lower bound (respectively upper
bound) is sharp if and only if min (bI(x))I∈S (respectively max(bI(x))I∈S) is
attained at a Bernstein coefficients of the array (bI(x)) with I ∈ S0. This con-
dition is known as the vertex property.

3 Proposed Algorithm

In this section, we present a modified subdivision procedure which is an exten-
sion of a classical subdivision procedure used by the Bernstein algorithms. We
then introduce new constraints formulated based on the gradient and upper
bound on the global minimum of the objective function (f). Further, the consis-
tency techniques based on the Bernstein form are introduced. We shall use this
Bernstein consistency techniques in combination with our new formulated con-
straints to isolate those stationary points from the solution search space that are
not the global minimum. Finally, we shall combine all these enhancements and
present our main proposed Bernstein algorithm to solve unconstrained MINLP
problems.

3.1 Modified Subdivision Procedure

As explained in Remark 1, the range enclosure obtained using Bernstein coef-
ficients can be improved by subdividing the domain of decision variables.
A subdivision in the rth direction (1 ≤ r ≤ l) is a bisection perpendicular
to this direction. Let

x = [x1,x1] × · · · × [xr,xr] × · · · × [xl,xl], (8)
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be any subbox. Generally, x is bisected along the rth component direction (for
NLPs having only continuous decision variables); resulting into two subboxes xA

and xB as

xA = [x1,x1] × · · · × [xr,m(xr)] × · · · × [xl,xl], (9)
xB = [x1,x1] × · · · × [m(xr),xr] × · · · × [xl,xl], (10)

where m(xr) denotes the midpoint of [xr,xr].
Similar to the above, we suggest following modification in the subdivision

procedure to cope with the integer decision variables in our proposed Bernstein
algorithm. We bisect x along the rth component direction; such that, two sub-
boxes xA and xB are formed as below

xA = [x1,x1] × · · · × [xr, �m(xr)�] × · · · × [xl,xl], (11)
xB = [x1,x1] × · · · × [�m(xr) + 1�,xr] × · · · × [xl,xl], (12)

where �m(xr)� denotes the floor of midpoint of [xr,xr]. We shall use the subdivi-
sion procedure in Eqs. (9) and (10), if the rth component direction is a continuous
decision variable. Similarly, the subdivision procedure in Eqs. (11) and (12) will
be used, if the rth component direction is a integer decision variable.

Similarly, other more sophisticated approaches to branch integer variables in
a branch-and-bound tree are reported in a literature. For instance, [2,14] inves-
tigate use of a valid inequalities to discard fractional solutions at each node of
a branch-and-bound tree. We direct the interested reader to [14], and references
therein for more specific details about the topic.

3.2 Constraint Formulation

In the constrained global optimization algorithms, we determine the global min-
imum subjected to some (inequality and equality) feasibility constraints (see, for
instance, work by Nataraj et al. [10]. We can apply the consistency techniques
to these feasibility constraints to contract the bounds on the decision variables.
However, in the bound constrained global optimization algorithms there are no
such feasibility constraints, and this can defy the application of these consistency
techniques. To alleviate this problem, we introduce the constraints based on the
gradient and upper bound on the global minimum of the objective function (f),
wherein we can apply these consistency techniques.

– Assume that the objective function (f) is continuously differentiable. Then,
the gradient (∇f) of f is zero at local minima, at maxima, at saddle points,
and at the global minima. Thus, we can find the zero(s) of the gradient
at which f has a global minimum by discarding any that are not a global
minimum of f . In practice the gradient will have l components and we can
form l constraints corresponding these l components as

f ′
xr

= 0, r = 1, 2, . . . , l, (13)

where l being the number of variables in the objective function and ∇f =
[f ′

x1
f ′
x2

. . . f ′
xl

]T .
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– In the global optimization algorithm, at the outset we may compute an upper
bound (say, f̃) on the global minimum (f∗) on the box x, that is

f̃ ≥ f∗. (14)

Thus, we can delete any point (or subbox) of x for which f > f̃ . This serves
to delete a subbox that bounds a nonoptimal stationary point of f .

We shall apply the Bernstein box and Bernstein hull consistency techniques
(refer to the Sect. 3.3) to Eqs. (13) and (14) to delete nonoptimal points from
the box x. Henceforth, we shall indicate the application of the Bernstein box
consistency and the Bernstein hull consistency techniques by flags BCF and
HCF, respectively to the Eqs. (13) and (14).

3.3 Consistency Techniques

We now present algorithms based on the consistency techniques that help prun-
ing the solution search space. The pruning is achieved by assessing consistency
of the algebraic equations (in our case inequality and equality constraints) over a
given box, and thereby discarding regions of a box where no guarantee of global
minimum lies. We note in the literature two types of consistency notions exist;
box consistency which use a one-dimensional interval Newton method to com-
pute a box consistent region for a given set of the algebraic equations, and hull
consistency which use a constraint inversion procedure to compute a hull con-
sistent region for the given set of the algebraic equations. The interested reader
can refer [8] for more details. In sequel, we now present algorithms on the consis-
tency ideas borrowed from [8], and expanded in context of the Bernstein form.
Henceforth, we shall call these algorithms as Bernstein box consistency (BBC)
and Bernstein hull consistency (BHC) algorithms. We shall use these Bernstein
consistency algorithms for pruning purpose in our main proposed global opti-
mization algorithm (see, algorithm IBBBU in Sect. 3.4).

Algorithm Bernstein box consistency: x′ = BBC((bg(x)),x, r, xstatus,r,

eq type)

Inputs: The Bernstein coefficient array (bg(x)) of a given constraint function
g (x), the l-dimensional box x, the direction r for which the bounds are to be
contracted, flag xstatus,r to indicate whether rth direction (variable) is continuous
(xstatus,r = 0) or integer (xstatus,r = 1), and flag eq type to indicate whether
g (x) is equality constraint (eq type = 0) or inequality constraint (eq type = 1).

Outputs: A box x′ that is contracted using Bernstein box consistency technique
for a given constraint function g (x).
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BEGIN Algorithm

1. Set a = inf xr, b = supxr.
2. Compute the derivative enclosure g

′
xr

in the direction xr
2.

3. (Consider left endpoint of xr). Obtain the Bernstein range enclosure g(a)
as the minimum to maximum from the Bernstein coefficient array of (bg(x))
for xr = a.

4. If eq type = 1, then modify g(a) as g(a) = [min g(a), inf].
5. If 0 ∈ g(a), then we cannot increase a. Go to step 8 and try from the right

endpoint b of the interval xr.
6. Do one iteration of the univariate Bernstein Newton contractor

N (xr) = a − (g(a)/g′
xr

).
x′
ra = xr ∩ N (xr) .

7. If x′
ra = ∅, then there is no zero of g on entire interval xr and hence the

constraint g is infeasible over box x. EXIT the algorithm in this case with
x′ = ∅.

8. (Consider right endpoint of xr). Obtain the Bernstein range enclosure g(b)
as the minimum to maximum from the Bernstein coefficient array of (b(x))
for xr = b.

9. If eq type = 1, then modify g(b) as g(b) = [min g(b), inf].
10. If 0 ∈ g(b), then we cannot decrease b. Go to step 13
11. Do one iteration of the univariate Bernstein Newton contractor

N (xr) = b − (g(b)/g′
xr

).
x′
rb

= xr ∩ N (xr) .

12. If x′
rb

= ∅, EXIT the algorithm with x′ = ∅.
13. Compute x′

r as follows:
(a) x′

r = x′
ra∩ x′

rb
, if both x′

ra and x′
rb

are computed.
(b) x′

r = x′
ra or x′

rb
, which ever is computed.

(c) x′
r = xr (both x′

ra and x′
rb

are not computed).
14. for k = 1, 2 if xstatus,r = 1 then

(a) if x(r, k) and x′
r(r, k) are equal then go to substep (e).

(b) Set ta = x(r, k) and tb = x′
r(r, k).

(c) if ta > tb then set x′
r(r, k) = �x′

r(r, k)�.
(d) if ta < tb then set x′

r(r, k) = x′
r(r, k)�.

(e) end (of k-loop).
15. Return x′ = x′

r.

END Algorithm

Algorithm Bernstein hull consistency: x′ = BHC((bg(x)), aI , I,x, xstatus,

eq type)

2 The derivative of a polynomial function in a particular direction can be found from
the Bernstein coefficients of the original polynomial function [13].
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Inputs: The Bernstein coefficient array (bg(x)) of a given constraint function
g (x), coefficient aI of the selected term t, power I of the each variable in
term t, the l−dimensional box x, a column vector xstatus describing the sta-
tus (continuous or integer) of the each variable xi (i = 1, 2, . . . , l), and flag
eq type to indicate whether g(x) is equality constraint (eq type = 0) or inequal-
ity constraint(eq type = 1).

Outputs: A box x′, that is contracted using Bernstein hull consistency technique
applied to a given constraint g (x) and selected term t.

BEGIN Algorithm

1. Compute the Bernstein coefficient array of the selected term t as (bt (x)).
2. Obtain the Bernstein coefficients of the constraint inverse polynomial by sub-

tracting (bg(x)) from (bt (x)), and then obtain its Bernstein range enclosure
as the minimum to maximum of these Bernstein coefficients. Denote it as h′.

3. if eq type = 1 then
(a) Compute an interval y as y = [−∞, 0] ∩ [min (bg(x)),max (bg(x))].
(b) if y = ∅ then set x′ = ∅, and EXIT the algorithm. Else modify h′ as

h′ = h′ + y.
4. (a) for r = 1, 2, . . . , l (r := number of variables)

(b) Compute x′
r =

(
h′

aI

∏
x
ik
k

)1/ir ⋂
xr

(c) for k = 1, 2 if xstatus(r) = 1 then
(i) if x(r, k) and x′

r(r, k) are equal then go to substep (v).
(ii) Set ta = x(r, k) and tb = x′

r(r, k).
(iii) if ta > tb then set x′

r(r, k) = �x′
r(r, k)�.

(iv) if ta < tb then set x′
r(r, k) = x′

r(r, k)�.
(v) end (of k−loop).

(d) end (of r−loop).
5. Return x′.

END Algorithm

3.4 Main Proposed Global Optimization Algorithm

We now propose an algorithm for bound constrained global optimization of
multivariate MINLP problems, called as improved Bernstein branch-and-bound
unconstrained (IBBBU) algorithm. The proposed algorithm use a modified sub-
division procedure presented in the Sect. 3.1, the Bernstein box and hull consis-
tency algorithms presented in the Sect. 3.3, and the accelerating devices, such as
the cut-off test, the monotonicity test, and the concavity tests3.

3 Due to lack of space and time, we skip the presentation of the accelerating devices.
However, the interested reader can refer to [8,10] for the exact details about the
topic.
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We next present our proposed algorithm.

Algorithm unconstrained optimization: [ỹ, p̃, U ]=IBBBU(N, aI ,x, xstatus,
εp, εx)

Inputs: Degree N of the variables occurring in the objective function, the coef-
ficients aI of the objective function in the power form, the initial search domain
x, a column vector xstatus describing the status (continuous or integer) of the
each variable xi (i = 1, 2, . . . , l), the tolerance parameters εp and εx on the global
minimum and global minimizer(s).

Outputs: A lower bound ỹ and an upper bound p̃ on the global minimum f∗,
along with a set U containing all the global minimizer(s) x(i).

BEGIN Algorithm

1. Set y := x and ystatus := xstatus.
2. From aI , compute the Bernstein coefficient array of the objective function

on the box y as (bo(y)).
3. Set p̃ := ∞ and y := min (bo(y)).
4. Initialize list L := {(y, (bo(y)) , y)}, Lsol := {}.
5. If L is empty then go to step 24. Otherwise, pick the first item (y, (bo(y)) , y)

from L, and delete its entry from L.
6. Apply the Bernstein hull consistency algorithm to the relation f(y) ≤ p̃. If

the result is empty, then delete item (y, (bo(y)) , y) and go to step 5.

y′ = BHC((bo(y)) , aI , I,y, ystatus, 1),

7. Set y := y′ and compute the Bernstein coefficient array of the objective
function on the box y as (bo(y)). Also set y := min (bo(y)).

8. Apply the Bernstein box consistency algorithm to the f(y) ≤ p̃. If the result
is empty, then delete item (y, (bo(y)) , y) and go to step 5.

y′ = BBC((bo(y)) ,y, r, ystatus,r, 1) r = 1, 2, . . . , l,

where bound contraction will be applied in the rth direction.
9. Set y := y′ and compute the Bernstein coefficient array of the objective

function on the box y as (bo(y)). Also set y := min (bo(y)).
10. {Monotonicity test} If 0 /∈ f ′

r(y) for any r ∈ {1, 2, ..., l}, discard the item
(y, (bo(y)) , y) and go to step 5.

11. {Concavity test} If Hrr(y) < 0 for some r = 1, . . . , l, discard the item
(y, (bo(y)) , y) and go to step 5.

12. Apply the Bernstein hull consistency algorithm to the relation f ′
yr

= 0(r =
1, 2, . . . , l), that is each component of the gradient of f(y). If the result is
empty, then delete item (y, (bo(y)) , y) and go to step 5.

y′ = BHC((br(y)) , aI,r, I,y, ystatus, 0) r = 1, 2, . . . , l,

where (br(y)) is a Bernstein coefficient array of the ith component of gradient
of the objective function f(y), and aI,r is coefficient of the ith component
of gradient of the objective function f(y).
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13. Set y := y′ and compute the Bernstein coefficient array of the objective
function on the box y as (bo(y)). Also set y := min (bo(y)).

14. Apply the Bernstein box consistency algorithm to the relation f ′
yr

= 0(r =
1, 2, . . . , l), that is each component of the gradient of f(y). If the result is
empty, then delete item (y, (bo(y)) , y) and go to step 5.

y′ = BBC((br(y)) ,y, r, ystatus,r, 0) r = 1, 2, . . . , l,

where (br(y)) is a Bernstein coefficient array of the ith component of gradient
of the objective function f(y).

15. Set y := y′ and compute the Bernstein coefficient array of the objective
function on the box y as (bo(y)). Also set y := min (bo(y)).

16. Choose a coordinate direction λ parallel to which y1 × · · · × yl has an edge
of maximum length, that is λ ∈ {i : w(y) := w(yi), i = 1, 2, . . . , l}.

17. Bisect y normal to direction λ, getting boxes v1, v2 such that y = v1 ∪ v2.
We shall use the modified subdivision procedure given in Sect. 3.1.

18. for k = 1, 2
(a) Find the Bernstein coefficient array and the corresponding Bernstein

range enclosure of the objective function (f) over vk as (b0(vk)) and
B0(vk), respectively.

(b) Set dk := min Bo(vk).
(c) If p̃ < dk, then go to substep (f).
(d) Set p̃ := min(p̃,max Bo(vk)).
(e) Enter (vk, (bo(vk)) , dk) into the list L such that the third members of

all items of the list do not decrease.
(f) end (of k−loop).

19. {Cut-off test} Discard all items (z, (bo(z)) , z) in the list L that satisfy p̃ < z.
20. Denote the first item of the list by (y, (bo(y)) , y).
21. {Check the vertex condition} For the item (y, (bo(y)) , y), if min (bo(y))

satisfies vertex condition (see Remark 3), then enter (y, (bo(y)) , y) in the
solution list Lsol and return to step 5.

22. If (w(y) < εx) & (max Bo(y)−min Bo(y)) < εp then remove the item from
the list L, and enter it into the solution list Lsol.

23. Go to step 5.
24. {Compute the global minimum} Set the global minimum ỹ to the minimum

of the third entries over all the items in Lsol.
25. {Compute the global minimizers} Find all those items in Lsol for which the

third entries are equal to ỹ. The first entries of these items contain the global
minimizer(s) x(i).

26. Return the lower bound ỹ and upper bound p̃ on the global minimum f∗,
along with the set U containing all the global minimizer(s) x(i).

4 Numerical Tests

In this work, we performed different numerical tests with our proposed algorithm
IBBBU. For all computations, we used a desktop PC with Pentium IV 2.40 GHz
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Table 1. Test problems with their characteristics and the global minimum obtained.

Example l li f*

Camel back 2 1 −1

Booth 2 1 0

Reaction diffusion 3 2 −10.32

Caprasse’s 4 2 −2.87

Adaptive LV 4 2 −0.1

AH Wright 5 4 −30

Magnetism in physics (6) 6 3 −0.25

Butcher 6 1 −1.78

Magnetism in physics (7) 7 6 −0.25

Heart dipole problem 8 5 −5.50

l = Total number of decision variables.
li = Total number of integer decision vari-
ables.

processor with 2 GB RAM and all our presented algorithms are implemented in
MATLAB [1]. We specify an accuracy ε = 10−6 for computing the global mini-
mum and global minimizer(s) and allow a maximum number of 500 subdivisions
in the proposed algorithm IBBBU.

We consider a set of 10 test problems. These test problems are taken from
[12,15]. These problems are appropriately modified to MINLPs assuming some of
the decision variables are integer in nature. We report all these test problems in
Appendix for the sake of completeness. For these test problems, we first compare
the performance of the proposed algorithm IBBBU without accelerating devices,
only cut-off test (that is, the Bernstein algorithm for unconstrained optimization
reported in [9]), only monotonicity test, only concavity test, combinations of the
cut-off, the monotonicity, and the concavity tests. We next compare the perfor-
mance of the proposed algorithm IBBBU with the use of Bernstein hull consis-
tency (BHC) and Bernstein box consistency (BBC) techniques (see Sect. 3.3) in
combination with the three accelerating devices. Specifically, we shall apply the
BHC and BBC techniques to the Eqs. (13) and (14) to delete nonoptimal points
from the box x consequently reducing the overall width of the box x.

Table 1 reports the test problems, their dimensions (l), the total number of
integer variables (li), and the global minimum obtained (f∗). Table 2 gives the
performance comparison of the proposed algorithm IBBBU without accelerating
devices, and the different combinations of the accelerating devices. We found
that without accelerating devices the proposed algorithm IBBBU took maxi-
mum number of subdivisions for almost all the problems, except Adaptive LV,
Butcher, and Magnetism in physics (7). Moreover, for the one test problem (AH
Wright) the proposed algorithm IBBBU failed due to the out of memory error in
MATLAB. In the sequel, we also observed the less improvement in the number of
boxes processed with the use of concavity test. Finally, we found the combination
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Table 3. Comparison of the number of boxes processed and computational time taken
(in seconds) to find the global minimum with use of the cut-off test, the Bernstein hull
and Bernstein box consistencies (to the Eq. (14)) in the proposed algorithm IBBBU.

Example Statistics Cut-off test Cut-off+BCF Cut-off+HCF Cut-off+ (BCF + HCF)

Camel back Boxes 386 254 380 232

Time 0.31 0.20 0.32 0.18

Booth Boxes 236 148 166 110

Time 0.18 0.21 0.15 0.15

Reaction

diffusion

Boxes 18 8 6 2

Time 0.04 0.03 0.03 0.01

Caprasse’s Boxes 634 206 632 204

Time 1.44 1.34 1.45 1.36

Adaptive LV Boxes 56 26 26 26

Time 0.05 0.05 0.04 0.01

AH Wright Boxes 42 16 16 8

Time 0.13 0.15 0.16 0.12

Magnetism in

physics (6)

Boxes 610 504 504 390

Time 1.93 9.02 22.62 1.10

Butcher Boxes 10 10 6 6

Time 0.02 0.03 0.01 0.02

Magnetism in

physics (7)

Boxes 262 262 262 262

Time 0.88 1.40 1.50 2.89

Heart dipole

problem

Boxes 36 4 6 2

Time 0.12 0.11 0.13 0.01

of the cut-off, and the monotonicity tests to be the most efficient amongst all
others (nearly 50 % reduction in the average number of boxes processed and the
computational time taken to found the global minimum).

We now present numerical findings which specifically reports the benefits
obtained (in terms of the number of boxes processed) with pruning tools and
trade-off associated in terms of the computational time to reach the solution.
Tables 3, 4, and 5 give the performance comparison of the proposed algorithm
IBBBU with the BHC and BBC techniques applied to the Eq. (14) (reported as
flags HCF and BCF, respectively) with its combination with the three accelerat-
ing devices. Overall, we found the combination of all three accelerating devices
with the BCF to be more efficient than HCF, resulting on an average 50 % reduc-
tion in the number of boxes processed and the computational time. Similarly,
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Table 4. Comparison of the number of boxes processed and computational time taken
(in seconds) to find the global minimum with use of the monotonicity test, the Bern-
stein hull and Bernstein box consistencies (to the Eq. (14)) in the proposed algorithm
IBBBU.

Example Statistics Monotonicity
test

Monotonicity +
BCF

Monotonicity +
HCF

Monotonicity +
(BCF + HCF)

Camel back Boxes 682 114 182 112

Time 0.80 0.12 0.23 1.22

Booth Boxes 342 96 122 80

Time 0.28 0.20 0.19 0.31

Reaction
diffusion

Boxes 2 2 2 2

Time 0.05 0.06 0.08 0.12

Caprasse’s Boxes 1004 192 344 178

Time 9.79 0.5 0.98 1.92

Adaptive LV Boxes 62 44 28 26

Time 0.08 0.4 0.50 1.42

AH Wright Boxes 2 2 2 8

Time 0.11 0.12 0.13 0.12

Magnetism in
physics (6)

Boxes 1004 500 610 140

Time 8.18 1.90 1.20 2.78

Butcher Boxes 6 34 6 6

Time 0.04 0.35 0.05 0.32

Magnetism in
physics (7)

Boxes 262 262 262 262

Time 0.80 4.47 2.50 5.91

Heart dipole
problem

Boxes >5000 4 4 2

Time 0.45 0.60 0.67

we observed that the combination of BCF and HCF with all three accelerat-
ing devices to be more efficient for three problems (Camel back, Booth, and
Magnetism in physics (6)). We found on an average more than 50 % reduc-
tion in number of processed boxes, but with an average 5–10 % increase in the
computational time. Further, we note that the Bernstein box consistency algo-
rithm to be more efficient when the domain is small (see, for instance, results for
Caprasse’s in Tables 3, 4, and 5). This is evident from the fact that it involves
Newton operator for pruning which has good convergence properties near the
solution point [8]. Similarly, we note that the Bernstein hull consistency algo-
rithm to be more efficient when the domain is large (see, for instance, results for
Adaptive LV in Tables 3, 4, and 5; result for Camel back in Table 6).

Table 6 reports for the 10 test problems the total number of boxes processed,
and the computational time taken in seconds to find the global minimum by the
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Table 5. Comparison of the number of boxes processed and computational time taken
(in seconds) to find the global minimum with use of the concavity test, the Bern-
stein hull and Bernstein box consistencies (to the Eq. (14)) in the proposed algorithm
IBBBU.

Example Statistics Concavity test Concavity+BCF Concavity+HCF Concavity+

(BCF + HCF)

Camel back Boxes 1004 254 380 232

Time 1.59 0.74 2.39 2.12

Booth Boxes 1004 148 166 110

Time 1.73 0.41 0.59 1.02

Reaction dif-

fusion

Boxes 362 8 6 2

Time 21.57 0.11 0.14 0.11

Caprasse’s Boxes 1004 180 564 134

Time 3.81 0.90 4.81 4.54

Adaptive LV Boxes 64 44 28 26

Time 0.06 0.47 0.81 1.42

AH Wright Boxes 20 16 16 8

Time 0.11 0.19 0.21 0.25

Magnetism in

physics (6)

Boxes 1004 504 504 390

Time 10.22 3.63 5.38 7.92

Butcher Boxes 10 10 6 6

Time 0.02 0.03 0.16 0.25

Magnetism in

physics (7)

Boxes 262 262 262 262

Time 1.21 14.91 15.31 21.32

Heart dipole

problem

Boxes >5000 4 6 2

Time 0.22 0.45 0.62

proposed algorithm IBBBU. Specifically, we compare the proposed algorithm
IBBBU based on the three different flags (A, B, and C) explained as below4:

– A: Application of the Bernstein hull consistency to the Eq. (13). We also apply
the cut-off and the monotonicity tests.

– B: Application of the Bernstein box consistency to the Eq. (13). We also apply
the cut-off and the monotonicity tests.

– C: Application of both Bernstein hull and Bernstein box consistencies to the
Eq. (13) along with the cut-off and the monotonicity tests.

We found the performance of the flags A and B almost similar in terms of number
boxes processed with a very little variation in the computational time, except for
the two test problems (Camel back and Magnetism in physics (6)). On the other

4 We note that concacity test is found to give small improvement in the number of
boxes processed. Hence, we skipped its application in this numerical experimentation.
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Table 6. Comparison of the number of boxes processed and computational time taken
(in seconds) to find the global minimum with use of the cut-off test, the monotonicity
test, and the Bernstein hull and Bernstein box consistencies (to the Eq. (13)) in the
proposed algorithm IBBBU.

Example Statistics A B C

Camel back Boxes 18 170 15

Time 0.28 0.32 0.21

Booth Boxes 24 24 20

Time 0.22 0.24 0.43

Reaction diffusion Boxes 2 2 2

Time 0.39 0.03 0.03

Caprasse’s Boxes 346 346 342

Time 2.10 3.10 4.51

Adaptive LV Boxes 50 50 50

Time 0.71 0.72 0.85

AH Wright Boxes 2 2 2

Time 0.09 0.08 0.08

Magnetism in physics (6) Boxes 290 382 289

Time 0.58 0.48 0.67

Butcher Boxes 6 6 6

Time 0.01 0.03 0.04

Magnetism in physics (7) Boxes 40 44 39

Time 2.32 2.31 2.29

Heart dipole problem Boxes 25 25 23

Time 8.91 9.20 9.57

hand, we found very little improvement with the use of flag C, except for the two
test problems (Camel back and Caprasse’s). Overall, we found this combination
of the pruning tool to be the most efficient one in terms of the number of boxes
processed. However, a significant increase (more than 50 %) in the number of
the boxes processed and the computational time was observed, specifically for a
8-dimensional heart dipole problem.

5 Conclusions

We presented a Bernstein algorithm for finding the global minimum of the uncon-
strained MINLP problems. The proposed algorithm was composed of several new
tools, such as box partitioning procedure for integer variables, the Bernstein
box (BBC) and the Bernstein hull consistency (BHC) techniques to prune the
solution search space. Different numerical experiments were performed with the
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proposed algorithm on a collection of 10 test problems with dimensions rang-
ing from 2 to 8 with the number of integer variables varying from 1 to 6. The
findings revealed the proposed algorithm to be more efficient than the classical
Bernstein algorithm reported in the literature. Specifically, it was noted that the
proposed algorithm composed of different accelerating devices resulted on an
average 50 % reduction of in the number of boxes processed and the computa-
tional time. Similarly, numerical investigations with the BBC and BHC resulted
on an average 40–50 % reduction in the number of boxes processed and the com-
putational time. In sequel, it was noted that the application of a BBC and BHC
for an 8-dimensional heart dipole problem computationally resulted in a signif-
icant increase (more than 50 %) in the number of the boxes processed and the
computational time. Finding the efficient ways to handle such problems is left
as a future research direction.

Appendix

We list below the test problems studied in this work for conducting different
numerical experiments. We denote the test function as f(xk), and the initial
bounds as xk, k = 1, 2, . . . , l.

1. Camel back: The six hump camel back function

min f(x) = 4x2
1 − 2.1x4

1 + (1/3)x6
1 + x1x2 − 4x2

2 + 4x4
2

x1 ∈ Z, x2 ∈ R

where xk = [−3, 3], k = 1, 2.

2. Booth: The function defined by Booth

min f(x) = 74 − 38x1 + 5x2
1 − 34x2 + 8x1x2 + 5x2

2

x1 ∈ Z, x2 ∈ R

where xk = [−5, 5], k = 1, 2.

3. Reaction diffusion: A three dimensional reaction diffusion problem

min f(x) = −x1 + 2x2 − x3 − 0.835634534x2(1 − x2)
x1, x2 ∈ Z, x3 ∈ R

where xk = [−5, 5], k = 1, 2, 3.

4. Caprasse’s: The system defined by Caprasse

min f(x) = − x1x
3
3 + 4x2x

2
3x4 + 4x1x3x

2
4 + 2x2x

3
4 + 4x1x3

+ 4x2
3 − 10x2x4 − 10x2

4 + 2
x1, x3 ∈ Z, x2, x4 ∈ R

where xk = [−1, 1], k = 1, 3 and xk = [−0.5, 0.5], k = 2, 4.
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5. Adaptive LV: A neural network modeled by an adaptive Lotka-Volterra
system

min f(x) = x1x
2
2 + x1x

2
3 + x1x

2
4 − 1.1x1 + 1

x1, x2 ∈ Z, x3, x4 ∈ R

where x1 = [0, 1],x2 = [−20, 20], xk = [−2, 2], k = 3, 4.

6. AH Wright: The system defined by Wright

min f(x) = x1 + x2 + x3 + x4 − x5 + x2
5 − 10

x1, x2 ∈ R, x3, x4, x5 ∈ Z

where xk = [−5, 5], k = 1, . . . , 5.

7. Magnetism in Physics (6): A six variable magnetism in physics problem

min f(x) = 2x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + x2

6 − x6

x1, x2, x3 ∈ Z, x4, x5, x6 ∈ R

where xk = [−1, 1], k = 1, . . . , 6.

8. Butcher: A function defined by Butcher

min f(x) = x6x
2
2 + x5x

2
3 − x1x

2
4 + x3

4 + x2
4 − (1/3)x1 + (4/3)x4

x1 ∈ Z, xk ∈ R, k = 2, . . . , 6

where xk = [−1, 1], k = 1, 2, 3,x4 = [−0.1, 0.2],x5 = [−0.3, 1.1],x6 =
[−1.1,−0.3].

9. Magnetism in physics (7): Seven variable magnetism in physics problem

min f(x) = x2
1 + 2x2

2 + 2x2
3 + 2x2

4 + 2x2
5 + 2x2

6 + 2x2
7 − x1

x1 ∈ R, xk ∈ Z, k = 2, . . . , 7

where xk = [−1, 1], k = 1, . . . , 7.

10. Heart dipole: A heart dipole problem

min f(x) = − x1x
3
6 + 3x1x6x

2
7 − x3x

3
7 + 3x3x7x

2
6 − x2x

3
5

+ 3x2x5x
2
8 − x4x

3
8 + 3x4x8x

2
5 − 0.9563453

xk ∈ Z, k = 1, . . . , 5, xk ∈ R, k = 5, 7, 8

where xk = [−1, 1], k = 1, 2, 3,x4 = [−1, 0],x5 = [0, 1],x6 = [−0.1, 0.2]
x7 = [−0.3, 1.1],x8 = [−1.1,−0.3].
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Abstract. This paper describes the author’s experiences with applica-
tion the so-called interval regularization approach to one of the chemical
analysis methods, specifically the Firordt method – the spectrophotomet-
ric analysis of non-separated mixtures. In our approach, the uncertainty is
described using intervals. The solution can be found for well-determined
and overdetermined systems (when the number of the measurements
exceeds number of the mixture components), also interval statement con-
siders measurements errors. Exact rational computations are important
part of the technique of solving interval task.

Keywords: System of linear equations · Interval uncertainty · Interval
regularization · Firordt method · Exact computations

1 Introduction

The Firordt method is one of the methods of the analysis of the non-separated
mixtures [1]. According to the Firordt’s method, we can determine the concen-
tration cj of the each of the m components by solving the following system of
the equations:

bi =
m∑

j=1

aij · cj · l, (1)

where:

• bi is the measured absorbancy of the analyzed mixture on the i-th analytical
wave length (AWL),

• aij is an molar coefficient of the absorption (or extinction) of the j-th com-
ponent on i-th AWL (measured in advance for each component),

• l is the thickness of the absorbing layer.

Number of the AWL(k) (number of the equations) usually is equal to the number
of the components (m) in the mixture. Overdetermined systems with k > m may
be used for the enhanced accuracy.
c© Springer International Publishing Switzerland 2016
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Spectrophotometric measurements are always performed with some measure-
ment errors, so, we have some imprecise system of linear algebraic equations for
analysis with equations of the form (1). Here and below in the paper we use
the standard notation of interval analysis [2], particularly, all interval values are
written using bold type, e.g. A, bi are interval matrix and interval value corre-
spondingly. Non-interval values typed with mathematical italic type as usual.

bi =
m∑

j=1

aij · cj · l, (2)

System 2 will become simpler if all measurements are performed using l equal
to 1 centimeter, then system takes on the form

bi =
m∑

j=1

aij · cj , (3)

or, in matrix form, Ax = b, where x – is the sought for vector of the components
concentrations.

2 Interval Regularization Approach

2.1 Essence of the Method

We consider interval system of linear algebraic equations Ax = b, with an inter-
val matrix A and interval right-hand side vector b, as a model of imprecise
system of linear algebraic equations of the same form.

We use a new regularization procedure proposed in [5] that reduces the solu-
tion of the imprecise linear system to computing an point from the tolerable
solution set (Ξtol(A, b) = {x ∈ R

m | (∀A ∈ A)(∃b ∈ b)(Ax = b)}) of the interval
linear system with a widened right-hand side.

Tolerable solution set is the least sensitive, among all the solution sets [3], to
the change in the interval matrix of the system Ax = b, it may be demonstrated
by following representation of the Ξtol(A, b).

Ξtol(A, b) =
⋂

A∈A

{
x ∈ R

m
∣
∣ (∃b ∈ b) (Ax = b)

}
, (4)

In the above formula,
{

x ∈ R
m

∣
∣ (∃b ∈ b)(Ax = b)

}
is the solution set to the

interval system Ax = b with the interval uncertainty concentrated only in the
right-hand side vector. We exploit this idea that may be called interval regular-
ization for the system of equations of the Firordt method (3).

Straightforward replacement of the Ax = b to the Ax = b often leads to
empty Ξtol(A, b). Right-hand part of the interval system may be extended using
some non-negative parameter z ∈ R, z >= 0.

So we have to find point from the tolerable solution set of the system
Ξtol(A, b(z)) with the widened right-hand part. The form of the extension may



Interval Regularization Approach to the Firordt Method 203

vary from one task to another by using expertise. For the present proved that
extension of the form b(z) = [b−zp, b+zq], where p, q ∈ R

m, p > 0, q > 0 enables
to find point from the tolerable solution set Ξtol(A, b(z)) for any given A, b.

Minimization of the extension of the right-hand part leads to the smallest
possible set Ξtol(A, b(z)). Usually, when z �= 0, it contains only one point,
although in the general case, of course, Ξtol(A, b(z)) may contains more than
one point.

Minimum z∗ of the parameter z, ensuring non-empty Ξtol(A, b(z∗)), jointly
with the corresponding extension of the right-hard part of the system b(z∗) =
[b − z∗p, b + z∗q] also usable as the measure of degeneracy or the measure of
instability of the initial task. Also big value of the z∗ shows that form of the
extension (vectors p, q) is unsatisfactory to the solving problem.

Well known regularization methods has the known failures. One well known
method of solving system with non-square or degenerated matrix is normal
pseudo-solution that is the solution of the system A�Ax = A�b. However, e.g.
the simple 2 × 2 system:

{
(1 + ε)x + y = 1, ε ≥ 0

x + y = 1,
(5)

have traditional solution (x, y) = (0, 1)� for any ε �= 0 and normal pseudo-
solution (x, y) = (1/2, 1/2)� for ε = 0, consequently we have no convergence
of the traditional solution to the normal pseudo-solution when ε → 0. For the
non-degenerated systems pseudo-solution is equal to its traditional solution.

Other well known method is the Tikhonov regularization procedure, with
regard to the linear system of equations it leads to solving of the system (A�A−
δE)x = A�b, where (A� – is transposed matrix of the system, E – is unity
matrix, δ – is the parameter of the regularization, selection of the δ is the theme
of a lot of papers. However, e.g., for the system with Hilbert matrix the procedure
doesn’t leads to success [4].

The interval regularization not constrains type of the initial imprecise sys-
tem of linear equations type or possible the system’s degeneracy. The initial
system of linear equations could be underdetermined, well-determined or overde-
termined. Next section deals with essential aspects of the computing technique
what allows to operate even with strongly ill-conditioned systems using exact
computations [6].

For the consistency, solution in the traditional sense of the point system
of linear equations Ax = b is, obviously, agree with solution in the interval
regularization sense of the interval linear system Ax = b, where A = [A,A],
b = [b, b].

2.2 Computing Technique

Computing technique is based on the theorem [5]:
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Theorem 1. There exists a solution x+∗
and x−∗ ∈ R

m, z∗ ∈ R to the linear
programming problem

min
x+, x−, z

z, (6)

m∑

j=1

(aijx
+
j − aijx

−
j ) ≥ bi − zpi, i = 1, 2, . . . , k, (7)

m∑

j=1

(aijx
+
j − aijx

−
j ) ≤ bi + zqi, i = 1, 2, . . . , k, (8)

x+
j , x−

j , z ≥ 0, j = 1, 2, . . . , k. (9)

In addition, the vector x∗ = x+∗ − x−∗
belongs to Ξtol(A, b(z∗)). Vectors p, q ∈

R
+k are used to manipulate with form of the right-hand part extension.

We use simplex method to solve linear programming task (6)–(9), as one
of the simplest and practically fast, but typical implementations of the simplex
method could fail because of the linear programming task’s strong degeneracy.

In our approach, we use exact computations [6] and procedure described in [7]
to prevent simplex method cycling, such synergy allows to solve ill-conditioned
problems sensitive to the data precision.

Simplex method requires only basic arithmetic (plus, minus, multiply and
divide) during calculation, so, for the linear programming task with rational
coefficients all calculation are being performed in rational number field. Interval
regularization approach is usable even in the cases where well known regular-
ization methods are inapplicable, e.g. for the tasks with the disturbed Gilbert
and Vandermonde matrix or tasks with the disturbed matrix of the Godunov
task [4]. Some computing experiments with Gilbert matrix was introduced pre-
viously in [5].

Computational complexity of the interval regularization approach is defined
by complexity of the simplex method solving the corresponding linear program-
ing task (6)–(9). The discussion about the simplex method complexity is given
in [7], in most cases method requires linear (depended on task size) number of
the iterations. Theoretically proved that solving of any linear programming task
with rational coefficients has polynomial complexity [7].

2.3 Applying the Approach to the Firordt Method

The Firordt method requires to measure the extinction aij for each individual
component i and each analytical wave length λj . Values aij are calculated using
proportion A = a · c · l with c = 1 mole per liter and l = 1 centimeter. Because
of measurements errors during solution preparation and error of the spectropho-
tometer during extinction measuring each value aij is actually the interval value
aij . Minimum relative error of the data in the computing experiment below is
1 %, more realistically relative error 5 % of all measurements.
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We apply our approach to the system Ax = b where aij and bi are data
of the absorbancy measurements for the individual components and mixture
correspondingly. Vector x is unknown concentrations of the components.

For the case when Ξtol(A, b(z)) is empty useful extension form is b(z) =
[bi−z, bi+z]i=1...n, but when absorption levels differ a lot for taken wave lengths
proportional extension b(z) = [bi−z|bi|, bi+z|bi|], i = 1, . . . , k could be preferred.

Advantages of the interval analog of the Firordt method are:

• The approach results in robust solutions, we can use larger or smaller error
estimates in the measurements data and the fluctuations will be minor.

• The approach is useful for the raw data when optimal set of the AWL is
unknown.

• The approach has more correct model for the solution of the overdetermined
systems, than, e.g., normal pseudo-solution.

• Value z∗ optimal parameter of the right-hand part extension could be indicator
of the goodness of the linear model of absorbancy of the mixture.

• Using of the exact rational calculations gives absolute repeatability of the
calculation experiments.

3 Computing Experiment

Tables 1, 2, 3, 4 and Fig. 1 demonstrate example of the spectrophotometric data
for the model solutions with the ions of the Cu, Ni and its mixture.

Let us consider collection of examples with the given data. First, since given
measurements was done on the model solution, we know real concentrations of
the mixture components cCu = 0.5 cNi = 0.5 mole per liter, so, relation errors
for the all results δ = (δCu, δNi)� below will be calculated using this values.

To apply the traditional Firordt method we should choose two analytical wave
lengths (AWL) and solve corresponding system with A ∈ R

2×2, b ∈ R
2×1. Proper

selection of data subset is non-trivial problem, data set contains measurements

Table 1. Data of the model solutions with the ions of the Cu, Ni and its mixture (1).

λ AWL (nm) 410 420 430 440 450 460 470 480 490 500

aCu 0.044 0.038 0.036 0.032 0.03 0.03 0.028 0.028 0.03 0.034

aNi 1.252 0.832 0.45 0.244 0.162 0.124 0.088 0.054 0.034 0.026

bNiCu 0.662 0.428 0.244 0.138 0.096 0.078 0.06 0.044 0.034 0.033

Table 2. Data of the model solutions with the ions of the Cu, Ni and its mixture (2).

λ AWL (nm) 510 520 530 540 550 560 570 580 590 600

aCu 0.04 0.048 0.064 0.084 0.114 0.15 0.198 0.266 0.352 0.45

aNi 0.026 0.032 0.04 0.046 0.052 0.062 0.082 0.11 0.148 0.198

bNiCu 0.037 0.044 0.055 0.069 0.087 0.109 0.142 0.187 0.25 0.319
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Table 3. Data of the model solutions with the ions of the Cu, Ni and its mixture (3).

λ AWL (nm) 610 620 630 640 650 660 670 680 690 700

aCu 0.59 0.754 0.942 1.21 1.46 1.81 2.158 2.564 2.95 3.388

aNi 0.254 0.33 0.398 0.484 0.546 0.572 0.562 0.566 0.588 0.616

bNiCu 0.409 0.536 0.681 0.829 1.001 1.191 1.352 1.545 1.766 2.016

Table 4. Data of the model solutions with the ions of the Cu, Ni and its mixture (4).

λ AWL (nm) 710 720 730 740 750 760 770 780 790 800

aCu 3.792 4.21 4.546 4.546 5.024 5.15 5.25 5.262 5.228 5.206

aNi 0.64 0.654 0.646 0.61 0.572 0.512 0.45 0.39 0.338 0.288

bNiCu 2.204 2.407 2.552 2.722 2.849 2.846 2.879 3.038 3.008 3.007

Fig. 1. Individual absorption levels of the mixture components (Cu, Ni) and mixture
absorption level (Ni+Cu). Also allowable measurement error borders are given (Upper
*** Border, Lower *** Border).

on 40 different AWL and different pairs of AWL could give essentially distinct
results.

Papers devoted to selection of the best subset of the measurements, gives
some tips [1]: e.g., data corresponding to the peaks of the absorbancy of the indi-
vidual components or data corresponding to the measurements where absorbancy
levels for individual components are most differ. More strictly matrix of the sys-
tem should have least condition number between other possible matrixes [1].

Pair of equations which yields the matrix A ∈ R
2×2 with the least possible

condition number among other 2×2 matrixes, is the pair of equations correspond-
ing to λ1 = 410 (nm) and λ2 = 660 (nm), condition number μ440,660 = 1.53.
For this system traditional solution of the system is: cCu = 0.496427 cNi =
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0.511308 (relative errors are δCu = 0.71% and δNi = 2.26% correspondingly).
Though it is good result best result is: cCu = 0.5 cNi = 0.5 (relative errors
are δCu = 0.0% and δNi = 0.0% correspondingly) for pairs corresponding to
the λ1 = 440 (nm) and λ2 = 450 (nm), condition number μ440,450 = 77.17 or
λ1 = 440 (nm) and λ2 = 590 (nm), condition number μ440,590 = 1.89, and some
other ones.

Interval regularization approach gives equal results for the specified pairs of
AWL and consideration of the (1 %) and (5 %) measurement error does not affect
to the result values, result are the same because of the small matrixes are not
so strongly ill-conditioned.

So, traditional method is sensitive to selection of the wave lengths, the matrix
with the least condition number does not guarantee best result and matrix with
relatively great condition number may give very good results.

A lot of pairs of AWL gives results with relative error more than 100 % or
gives negative values of concentrations of components. Interval regularization
can not fully smooth over effect of bad data without additional good data but
provide additional information in coefficient of the right-hand part extension z∗.
E.g., for λ1 = 760 (nm), λ2 = 780 (see the Table 4), cCu = 0.649 cNi = −0.977
(relative errors are δCu = 29.95% and δNi = 295.451% correspondingly). Using
interval regularization approach we can see that solution is very unstable, see
Table 5: Data for the Cu component are relatively consistent with the model but
for Ni component data are inconsistent. Here interval regularization gives some
additional information, that may be used to further calculation experiments.

Table 5. Unstable system of equation. Dependence between supposed measurement
error Δ and the solution of the interval task.

Δ(%) (0 %) (1 %) (5%) (10 %) (20 %)

cCu 0.649 0.648 0.641 0.641 0.563 0.562

cNi −0.977 −0.95 −0.891 −0.891 0.000 0.000

z∗ 0.0 0.0098 0.0716 0.0456 0.063 0.062

Further improvement of the result accuracy may be produced by using full
set of the experimental data in calculation, so we have overdetermined system
Ax = b, A ∈ R

m×2. It may be solved, for example, using pseudo-solution, i.e.
the solution of the system A�Ax = A�b and we can use all available data
corresponding to 40 different AWL. So, we have overdetermined system Ax = b,
A ∈ R

40×2 solution is cCu = 0.5234 cNi = 0.4390 (relative error is 4.69 % and
12.21 % correspondingly).

Our approach gives robust solution ciCu = 0.5156 ciNi = 0.5277 (relative
error is 3.12 % and 5.54 % correspondingly) as a point from the tolerable solu-
tion set Ξtol(A, b(z)) of the corresponding interval system Ax = b(z)) with
b(z) = [b − z, b + z] z∗ = 0.0716. Parameter z∗ = 0.0716 and corresponding
b(z∗) = [b − z∗, b + z∗] displays that data correlates accurately with the Firordt
method model, the same result is for data with 1 % and 5 % measurement errors.
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Results are consolidated in Table 6.

Table 6. Consolidated results. Value ci corresponds to measurement error Δ = 1%.

c∗� = (0.5, 0.5) λ1 = 410, λ2 = 660 λ1 = 440, λ2 = 450, etc. A ∈ R
40×2

c� = (cCu, cNi) (0.496, 0.511) (0.500, 0.500) —

δ� = (δCu, δNi) (0.71 %, 2.26 %) (0.00, 0.00) —

cps� = (ciCu, ciNi) (0.496, 0.511) (0.500, 0.500) (0.5234, 0.4390)

δps� = (δpsCu, δpsNi) (0.71 %, 2.26 %) (0.00 %, 0.00 %) (4.69 %, 12.21 %)

ci
�

= (ciCu, ciNi) (0.496, 0.511) (0.500, 0.500) (0.515, 0.527)

δi
�

= (δiCu, δiNi) (0.71 %, 2.26 %) (0.00 %, 0.00 %) (3.12 %, 5.54 %)

z 0.0 0.0 0.0716

4 Conclusions

With regards to the system of equations of the Firordt method (especially overde-
termined) so-called interval regularization technique provides the enhanced
robustness and accuracy. Interval analog of the Firordt method gives robust
result and provides additional information about consistency between data
and the Firordt method’s linear model in minimal right-hand part extension
coefficient z∗.

Proposed computing technique essentially uses exact rational computations,
it allows to solve sensitive and ill-conditioned problems [6] and provides full
repeatability of the computing experiment. Also, interval regularization app-
roach may be useful for other linear and linearizable non-linear mathematical
models.
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Abstract. Many mobile robots such as wheeled robots, boats, or plane
are described by nonholonomic differential equations. As a consequence,
they have to satisfy some differential constraints such as having a radius
of curvature for their trajectory lower than a known value. For this type
of robots, it is difficult to prove some properties such as the avoidance of
collisions with some moving obstacles. This is even more difficult when
the initial condition is not known exactly or when some uncertainties
occur. This paper proposes a method to compute an enclosure (a tube)
for the trajectory of the robot in situations where a guaranteed interval
integration cannot provide any acceptable enclosures. All properties that
are satisfied by the tube (such as the non-collision) will also be satisfied
by the actual trajectory of the robot.

Keywords: Capture tube · Contractors · Interval arithmetic ·
Robotics · Stability

1 Introduction

A dynamic system can generally be described a state equation of the form:

Sf : ẋ (t) = f (x (t) , t) . (1)

In the situation where the system is uncertain, the state equation becomes a
time dependent differential inclusion:

SF : ẋ (t) ∈ F (x (t) , t) . (2)

Validation of the stability properties of such systems is an important and difficult
problem [15]. Most of the time, this problem can be transformed into proving the
inconsistency of a constraint network. For invariant systems (i.e., f or F do not
depend on t), it has been shown [10] that the V-stability approach combined with
c© Springer International Publishing Switzerland 2016
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interval analysis [16] can solve the problem efficiently. Here, we extend this work
to systems where f depends on time. Moreover, we will show how to compute
a capture tube, i.e., a set-valued function which associate to each t a subset of
R

n and such that a feasible trajectory cannot escape. For this, we will need to
combine guaranteed integration and Lyapunov theory, such as in [19] or [13], in
order to compute this capture tube.

The paper is organized as follows. Section 2 defines the notion of capture tube,
which is a specific set of trajectories that encloses the unknown trajectory for
the robot. Section 3 explains how tubes can be represented inside the computer
and how we can calculate a tube for a trajectory which satisfies a differential
inclusion. Section 4 provides a new algorithm that is able to calculate an interval
of tubes which encloses the smallest capture tube which contains one candidate
tube. An illustrative test-case is presented in Sect. 5 and a conclusion of the
paper is given in Sect. 6.

2 Capture Tube

A tube G (see e.g., [1]) is a function which associates to each t ∈ R a subset of
R

n. Tubes are used for several applications in nonlinear control such as model
predictive control [12] or state estimation [2].

Notations. Depending on the context, a tube G will be seen as a set-valued
function t �→ P (Rn), or also as a subset of R × P (Rn), where P (Rn) is the set
of subsets of Rn. It will often be written as G (·) or also G (t) to recall that it is
a function of t. For instance, when we write x(t) ∈ G(t), we mean ∀t,x(t) ∈ G(t)
and when we write (ta,a) ∈ G(t), we mean a ∈ G(ta). �

Consider an autonomous system described by a state equation Sf : ẋ =
f (x, t) or a differential inclusion SF : ẋ ∈ F (x, t). A tube G(t) is said to be a
capture tube [5] (or also called positive invariant tube) for Sf or SF if we have
the following implication:

Fig. 1. A tube (painted gray) and possible trajectories for different initial conditions.
If a trajectory such as the one represented by the dotted curve exists then the tube is
not a capture tube
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x(ta) ∈ G(ta), τ > 0 ⇒ x(ta + τ) ∈ G(ta + τ). (3)

Figure 1 gives some feasible trajectories and a tube G(t) (in gray). In this figure,
all the trajectories are consistent with the assumption that G(t) is a capture tube,
except the trajectory represented by the dotted curve at the bottom, which was
able to escape from the tube for t = ta. Consider the tube

G (·) : t �→ {x | g (x, t) ≤ 0} , (4)

where g : Rn × R → R
m is assumed to be differentiable with respect to both

x and t. The following theorem shows that the problem of proving that G (t)
is a capture tube can be cast into proving that a set of inequalities has no
solution.

Theorem 1a. If the system of constraints (called the cross-out conditions)
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(i)
∂gi

∂x
(x, t) · f(x, t) +

∂gi

∂t
(x, t)

︸ ︷︷ ︸
ġi(x,t)

≥ 0,

(ii) gi (x, t) = 0,
(iii) g (x, t) ≤ 0,

(5)

is inconsistent (i.e., for all x, all t ≥ 0, and all i ∈ {1, . . . , m}, the inequalities
are not satisfied), then G (·) : t �→ {x | g (x, t) ≤ 0} is a capture tube for the
system ẋ = f (x, t).

Sketch of proof (see [21,23] for more details). If G (t) is not a capture tube, it
means that there exists one trajectory, which leaves G (t), i.e., which crosses the
ith boundary gi (x, t) = 0 from inside to outside. This means that there exists a
time-space pair (a, ta) on the boundary of G (t) (i.e., such that (ii) and (iii) are
satisfied) and such that ġi (x, t) ≥ 0 (otherwise the trajectory cannot leave the
tube). �

Example 1. Consider again Fig. 1 where we assume that the gray tube corre-
sponds to G (·) : t �→ {x | g1 (x, t) ≤ 0}. The dotted trajectory leaves the tube
at a time-space point (ta, a), such that g1 (a, ta) = 0 and ġ1 (a, ta) > 0. If such a
trajectory is feasible, then G (·) cannot be a capture tube.

Example 2. We now illustrate the difficulty to get a capture tube on the simple
pendulum described by the state equations

{
ẋ1 = x2

ẋ2 = − sin x1 − 0.15 · x2
(6)

where x1 is the position of the pendulum and x2 its rotational speed (see Fig. 2).
To find a positive invariant set (i.e., a capture tube) for such a mechanical system
the classical method is to take sublevel sets of the energy of the system. Indeed,
since the energy of the system

E (x) =
1
2
ẋ2
1 − cos x1 + 1 =

1
2
x2
2 − cos x1 + 1 (7)
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Fig. 2. Simple pendulum

is supposed to decrease with time, we may think that it may be a good candidate
for the function g. Let us propose for g (x, t), which defines our candidate for
the capture tube (or positive invariant tube):

g (x, t) = E (x) − 1 =
1
2
x2
2 − cos x1, (8)

which is here time independent. The cross-out conditions of Theorem 1a are
⎧
⎨

⎩

(i)
(
sin x1 x2

)
(

x2

− sin x1 − 0.15 · x2

)

= −0.15 · x2
2 ≥ 0,

(ii) 1
2x2

2 − cos x1 = 0.
(9)

Note that, since g (x) is scalar, we have i = 1 and the condition (iii) is a
consequence of (ii). This system has two solutions: x =

(±π
2 , 0

)
. Therefore,

Theorem 1a cannot conclude that our tube is positive invariant. Note that, even
for this simple two dimensional example which is time-invariant and for which
we have a good intuition of a function (the energy) which decreases (almost
always), getting a capture tube is difficult. We will see in Sect. 3 how a capture
tube can be computed automatically.

Theorem 1b. If the system of constraints (cross-out conditions)
⎧
⎪⎪⎨

⎪⎪⎩

(i1) ∂gi

∂x (x, t) · a + ∂gi

∂t (x, t) ≥ 0,
(i2) a ∈ F (x, t) ,
(ii) gi (x, t) = 0,
(iii) g (x, t) ≤ 0,

(10)

is inconsistent for all x, all a, all t ≥ 0, and all i ∈ {1, . . . , m} then G (·) : t �→
{x | g (x, t) ≤ 0} is a capture tube for the differential inclusion ẋ ∈ F (x, t).

Proof. The proof is a direct consequence of Theorem 1a. See also [23].
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Consequence. From Theorems 1a and 1b, we conclude that checking that “a
tube defined by inequalities is a capture tube” amounts to checking that a set
of constraints (here (5) or (10)) is inconsistent. This type of results was already
known since several decades [9,23]. Now, proving such an inconsistency can easily
be performed [21] using ontractor-based methods [7].

We now have a procedure to prove that a tube is a capture tube. In practice,
such a capture tube is difficult to obtain, especially for nonholonomic robots.
Even if we have a good intuition of the system and if we are very confident on
a potential tube, a contractor-based algorithm often finds a counterexample. In
the following section, we will give a new method able to compute automatically
capture tubes.

3 Computing with Tubes

3.1 Representation of Tubes

Recall that a tube is a function which associates to any t ∈ R a subset of Rn. In
the case where these subsets are intervals or boxes, a tube can be represented in
the computer by stepwise functions (see [2,4]) as illustrated in Fig. 3.

Fig. 3. In numerical computations, a tube [f ] (t) can be approximated by a lower and
an upper stepwise functions f− (t) and f+ (t). The tube [f ] (t) encloses an uncertain
trajectory f (t)

Another possible representation of a tube (see [16]) is an interval expression,
which depends on t. For instance,

[f ] (t) = [1, 2] · t + sin ([1, 3] · t) (11)
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corresponds to such a tube. Interval polynomials [16] also enter within this class.
An example of a third degree polynomial tube is given by

[f ] (t) = [a0] + [a1] t + [a2] t2 + [a3] t3, (12)

where the [ai] are known intervals. The advantage of interval polynomial is that
all operations on scalar polynomials (such as integral, composition, etc.) can
easily be extended to this class. For instance

∫ t

0

[f ] (τ) dτ = [a0] t + [a1]
t2

2
+ [a2]

t3

3
+ [a3]

t4

4
. (13)

It has been proved [16] for the integration, for the composition, and other oper-
ations (such as +,−, /, ·) that the fundamental inclusion property is satisfied.
More precisely, for the integration, this inclusion property is

f (·) ∈ [f ] (·) ⇒ ∀t,

∫ t

0

f (τ) dτ ∈
∫ t

0

[f ] (τ) dτ. (14)

Remark. For the derivative, this extension cannot be done. For a counterex-
ample, consider the relation

sin(ωt) · t ∈ [−1, 1] · t. (15)

It is clear that we cannot conclude that

ω cos(ωt) · t + sin(ωt) ∈ [−1, 1] . (16)

Thus, the fundamental inclusion property, which is required by all set-
membership approaches, is not satisfied for the derivative.

3.2 Guaranteed Integration

For the problem we consider in this paper, i.e., computing capture tubes, the
guaranteed integration will be needed. Guaranteed integration is a set of tech-
niques, which make it possible to compute a tube that encloses the solution of a
state equation or to enclose all solutions of a differential inclusion. We here recall
the principle of these techniques. For more details on the guaranteed integra-
tion of state equations, see [14,17] or [3,18]. To our knowledge in the literature,
the extension of these techniques to differential inclusion is rarely done. This is
why we present here the basic concepts of the guaranteed integration in order to
show how they can be extended to the uncertain case, i.e., to differential inclu-
sions. More details and more efficient algorithms for the interval integration of
differential inclusions can be found in [11,22]

Brouwer Theorem. Any continuous function f mapping a compact convex set
X into itself has a fixed point, i.e.,

∃x ∈ X | f (x) = x. (17)

Note that a direct corollary of this theorem is that these fixed points also belong
to the set f (X).
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Example 3. Take f (x) = sin (x) · cos (x) and X = [−2, 2]. Since

f ([−2, 2]) ⊂ sin ([−2, 2]) · cos ([−2, 2]) = [−1, 1] · [−1, 1] = [−1, 1] ⊂ X. (18)

From the Brouwer theorem, we have

∃x ∈ [−2, 2] | sin (x) · cos (x) = x. (19)

The Brouwer theorem is the corner stone that will make it possible to compute a
tube containing the solution of a state equation. For its extension to differential
inclusions, the uncertain case will be treated using a parametric version of the
Brouwer theorem.

Parametric Brouwer Theorem. If f : X × U → X, where X is a convex
compact set and f is continuous with respect to x ∈ X, then

∀u ∈ U, ∃x ∈ X| f (x, u) = x. (20)

Example 4. Take f (x) = sin (x + u) · cos (2x − u) and X = [−2, 2] and u ∈ R.
Since

f ([−2, 2] ,R) ⊂ [−1, 1] ⊂ X, (21)

we have
∀u ∈ R,∃x ∈ [−2, 2] | sin (x + u) · cos (2x − u) = x. (22)

Guaranteed Integration of State Equations. Consider the system ẋ = f (x),
where f is Lipschitz continuous. The initial condition x∗

0 is known. We want to
have an interval enclosure for the trajectory x∗ (·)1. Define the Picard-Lindelöf
operator as

T : x (·) →
(

t �→ x∗
0 +

∫ t

0

f (x (τ)) dτ

)

. (23)

Since f is Lipschitz continuous, T has a unique fixed point which corresponds to
the solution x∗ (·) of the state equation. Take an interval tube [x] (·). By interval
tube, we mean that for all t, [x] (t) is a box of Rn and not any subset of Rn, as it
is allowed for general tubes of Rn. From the Brouwer theorem and since T has
a unique fixed point, we have

T ([x] (·)) ⊂ [x] (·) ⇒ x∗ (·) ∈ [x] (·) . (24)

Figure 4 provides a representation of the tubes [x] (·) and T ([x] (·)). Note that,
due to the specific form of T , around the initial instant t = 0, the tube T ([x] (·))
is thin. Note also that we do not have T ([x] (·)) ⊂ [x] (·) (i.e., T ([x] (t)) is
included in [x] (t) only for t ≤ t1) and the trajectory may leave the tubes. If we
restrict application of T over the interval [0, t1], we get the inclusion. Therefore,

∀t ∈ [0, t1] ,x∗ (t) ∈ T ([x] (t)) , (25)
1 A trajectory x, which is a function from R to R

n, can be denoted equivalently x (t)
or x (·). When no ambiguity may exist, i.e., when t is already used in the same
paragraph, we shall often prefer x (t), for simplicity.
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Fig. 4. Illustration of the Picard-Lindelöf operator to the tube [x] (t)

where
t1 = max

{
t ∈ R

+ | ∀τ ∈ [0, t] , T ([x] (τ)) ⊂ [x] (τ)
}

. (26)

Of course, the operator can be called several times, i.e.,

∀i ≥ 0,∀t ∈ [0, t1] ,x∗ (t) ∈ T i ([x] (t)) . (27)

Case with Uncertainties. Assume now, that x0 is uncertain and that the
system now depends on an uncertain input vector u (·) More precisely, the system
is described by

ẋ = f (x,u) , (28)

where x0 ∈ [x0] and u (·) ∈ [u] (·). By setting F (x, t) = {f (x,u) | u (t) ∈ [u] (t)},
we obtain that a differential inclusion can be described with this formalism. We
assume that f is Lipschitz continuous with respect to x. The Picard operator

Tx0,u : x (·) → x0 +
∫ t

0

f (x (τ) ,u (τ)) dτ, (29)

has uncertainty now. For all x0, and all u (·), the operator Tx0,u has a unique
fixed point x∗ (t). Consider a tube X (·). If

Tx0,u (X (·)) ⊂ X (·) (30)

then, from the Brouwer theorem, X (·) contains at least one fixed point, i.e.,
x∗ (·) ∈ X (·).
Methodology. For a guaranteed integration, we first have to find a potential
tube for which we think that it contains the unique solution of the state equation
or contain all solutions of the differential inclusion. This candidate could be
obtained using an Euler integration method from [x0] followed by an inflation.
Then we compute a tube T + ([x] (t)) which encloses the tube

T ([x] (t)) = [x (0)] +
∫ t

0

f ([x] (τ) , τ) dτ, (31)
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or the tube

T ([x] (t)) = [x (0)] +
∫ t

0

F ([x] (τ) , τ) dτ, (32)

in the case we have to deal with a differential inclusion. As illustrated in Fig. 4,
we compute

t1 = max
t≥0

{
t | ∀τ ∈ [0, t] , T + ([x] (τ)) ⊂ [x] (τ)

}
. (33)

Within the interval [0, t1], from the Brouwer theorem, we conclude that the tube
T + ([x] (·)) encloses the solution.

High Order Taylor Method. For a more efficient integration [20], we can
replace the Picard-Lindelöf fixed point equation:

x (t) = x0 +
∫ t

0

ẋ (τ) dτ (34)

by the higher order fixed points Taylor equation with the integral remainder

x (t) = x0 +
k∑

i=1

1
i!

(
x(i) (0)

)
ti +

∫ t

0

x(k+1) (τ)
k!

(t − τ)k
dτ. (35)

Note that for k = 0, we get the Picard-Lindelöf equation. This high order method
is particularly suited to situations where [x0] is known (or small). Indeed, when
x0, is known, the fixed point Taylor operator becomes

T ([x] (t)) = x0 +
k∑

i=1

1
i!

(
x(i) (0)

)
ti +

∫ t

0

[x](k+1) (τ)
k!

(t − τ)k
dτ. (36)

All uncertainties, stored inside [x](k+1), are divided by k!. Now, in practice,
the width of [x](k+1) (τ) increases polynomially with k, whereas k! increases
exponentially. Thus, the accuracy increases with k. The tube [x](k+1) (t) for
x(k+1) (t) is computed from the tube [x] (t) using the expression of the state
equation ẋ = f (x,u).

Remark. Consider the particular case where k = 2 and the system ẋ = f (x,u).
We have:

ẍ =
∂f
∂x

(x,u) · f (x,u) +
∂f
∂x

· u̇ = ψ2 (x,u, u̇) . (37)

For a more general k ≥ 0, we get:

x(k+1)= ψk+1
(
x,u, u̇, . . . ,u(k)

)
. (38)

We have an analytical expression ψk+1
(
x,u, u̇, . . . ,u(k)

)
, but this expression

depends on u̇, . . . ,u(k). Now, a tube for u̇, . . . ,u(k) is not available in the case
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of differential inclusions. More precisely, ẋ ∈ F (x, t) can be cast into the form
ẋ = f (x,u) ,u ∈ [u] but nothing can be deduced on u̇, ü, etc. Thus, high order
methods will have difficulties to deal with differential inclusions. To deal with
uncertain dynamics using a k-order fixed point Taylor method, we need to be able
to express the system in the form ẋ = f (x,u) with u ∈ [u] , . . . ,u(k) ∈ [

u(k)
]
.

4 Computing Capture Tubes

4.1 Basic Idea

If a candidate G (t) for a capture tube is available, we can prove that G (t)
is a capture tube by checking the inconsistency of a set of onlinear equations
(see the previous sections). This inconsistency can then easily be checked using
interval analysis. Now, for many systems such as for nonholonomic systems, we
rarely have a candidate for a capture tube and we need to find one. The main
contribution of this paper is to provide a method that can help us to find such a
capture tube. The idea is to start with a non-capture tube G(t) (the candidate)
and to try to characterize the smallest capture tube which encloses G(t). To do
this, we predict for all (x, t), which satisfy the cross-out conditions, a guaranteed
envelope for the trajectory within finite time-horizon window [t, t + t2] (where
t2 > 0 is fixed). If all corresponding x(t+ t2) belong to G(t+ t2), then the union
of all trajectories and the initial G (t) (in the (x, t) space) corresponds to the
smallest capture tube enclosing G (t).

4.2 Lattice and Capture Tubes

First, let us remark that since the set of subsets of Rn is a lattice with respect to
the inclusion ⊂, the set of tubes (T,⊂) is also a lattice. When we introduced the
basic idea of how we could compute a capture tube, we wrote that we wanted
to compute the smallest tube, which encloses the candidate G(t). This notion of
the smallest tube makes sense because of the following theorem.

Theorem 2. Consider a state space system Sf : ẋ = f (x, t) or a differential
inclusion SF : ẋ ∈ F (x, t). The set of capture tubes (Tc,⊂) for Sf or SF is a
sublattice of the set of tubes (T,⊂).

Proof. Consider two captures tubes G1(t) and G2(t). If the trajectory x(t)
belongs to both G1(t) and G2(t), then x(t) will leave neither G1(t) nor G2(t).
Thus, the intersection G1(t) ∩ G2(t) is a capture tube. The same reasoning can
be done for the union of the two tubes. Since G1(t) ∩ G2(t) is the largest tube
included in G1(t) and G2(t) and since G1(t) ∪ G2(t) is the smallest tube which
contains G1(t) and G2(t), we conclude that (Tc,⊂) is a lattice. Since all capture
tubes are also tubes, we get that (Tc,⊂) is a sublattice of (T,⊂). �
Consequences. Since Tc is a sublattice of T, for any tube G(t) ∈ T, we can
define the following operator:

capt (G(t)) =
⋂ {

G(t) ∈ Tc | G(t) ⊂ G(t)
}

. (39)

This set corresponds to the smallest capture tube which encloses G(t).
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Interval of Tubes. The set of tubes is a lattice with respect to the inclusion ⊂.
Thus, we can define intervals of tubes. This notion is important in this paper,
because we need to compute a tube, in a guaranteed way. Now, this tube may
probably not be representable in the computer. This new notion of interval of
tubes will be needed in order to characterize the tube we want to calculate.

4.3 Computing Capture Tubes

Since the set of tubes (T,⊂) is a lattice, we can define intervals of tubes as
follows.

Definition. An interval of tubes [G] is a subset of the set of tubes T which
satisfies

[G] = {G ∈ T | G ⊂ ∨ [G] and G ⊃ ∧ [G]} . (40)

Here, G
+ = ∨ [G] denotes the smallest outer bound of [G] and G

− = ∧ [G]
denotes the largest inner bound of [G]. The set of intervals of tubes will be
denoted by IT. Note that we could also define the notion of interval of capture
tubes, but this notion is not interesting in our context since it is very difficult
to get (exactly) even one capture tube.

Problem to be Solved. Given a tube G(·) : t �→ {x | g (x, t) ≤ 0} in T, com-
pute an interval [C−(t),C+(t)] ∈ IT such that

capt (G(t)) ∈ [
C

−(t),C+(t)
]
. (41)

This is illustrated in Fig. 5. Of course, since G(t) ⊂ capt(G(t)), we can take
C

−(t) = G(t). Thus, the main difficulty is to get a tube C
+(t), which is not too

large.

Flow. The flow associated with the system Sf : ẋ = f (x, t) is a function φt0,t1 :
R

n → R
n such that

ẋ = f (x, t) ⇒ φt0,t1 (x (t0)) = x (t1) . (42)

This means that if the trajectory x (t) is a solution of Sf , we are able to go from
the state at instant t0 to the state at instant t1 using the flow.

The flow associated with the differential inclusion SF : ẋ ∈ F (x, t) is a
function φt0,t1 : Rn → P (Rn),

ẋ ∈ F (x, t) ⇒ x (t1) ∈ φt0,t1 (x (t0)) . (43)

φt0,t1 should also be the smallest with respect to the inclusion which satisfies this
property. Equivalently, φt0,t1 (x (t0)) corresponds to the set of all states that can
be reached at instant t1 ≥ t0 by a trajectory consistent with SF and initialized
at x (t0) for t = t0.
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Fig. 5. The capture tube capt(G(t)), that we want to compute, will be enclosed by an
interval of tubes

[
C

−(t),C+(t)
]

Theorem 3a. Consider the system Sf : ẋ = f (x, t). The tube

C(·) : t → {x |∃ (x0, t0) , x0 ∈ G(t0), t ≥ t0, x = φt0,t (x0)}, (44)

where φt0,t is the flow function of Sf , corresponds to capt(G(t)).

Proof of Theorem 3a. We will show that C(t), is the smallest capture tube
which encloses G(t). For the proof, we will prove (i) that C(t) contains G(t), (ii)
that C(t) is a capture tube and (iii) that C(t) is the smallest one.
(i) To prove that G(t) ⊂ C(t), it suffices to take t0 = t and x0 = x.
(ii) We now prove that C(t) is a capture tube. Take a pair (xta , ta) such that
xta ∈ C(ta). From (44), we have

∃ (x0, t0) , x0 ∈ G(t0), ta ≥ t0, xta = φt0,ta (x0) . (45)

Take τ > 0 and define the point xta+τ = φta,ta+τ (xta). From (45), we have

∃ (x0, t0) , x0 ∈ G(t0), ta ≥ t0, xta+τ = φt0,ta+τ (x0) . (46)

Therefore, we have proved that

xta ∈ C(ta), τ ≥ 0 ⇒ φta,ta+τ

(
xta

) ∈ C (ta + τ) , (47)

i.e., C(t) is a capture tube.
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(iii) We will now prove by contradiction that C(t) is the smallest capture tube
that encloses G(t). Take a capture tube G(t) such that G(t) ⊃ G(t) which is
enclosed strictly in C(t). By strictly, we mean that ∃ (t1,x1), x1 ∈ C(t1) and x1 /∈
G(t1). From (44), ∃ (x0, t0) ,x0 ∈ G(t0), x1 = φt0,t1 (x0). The corresponding
trajectory crosses the tube G(t) from inside to outside which is inconsistent
with the fact that G(t) is a capture tube. �
Theorem 3b. Consider the system SF : ẋ ∈ F (x, t). The tube

C(t) : t → {x | ∃ (x0, t0) ,x0 ∈ G(t0), t ≥ t0, x ∈ φt0,t (x0)}, (48)

where φt0,t is the set membership flow function of SF, corresponds to capt(G(t)).

Proof. The proof is a direct consequence of Theorem 3a. �
Theorem 4a. Consider the system Sf : ẋ = f (x, t). We have

capt (G(t)) = G(t) ∪ ΔG(t), (49)

with
ΔG(t) = t �→ {x | ∃ (x0, t0) satisfying (5),

t ≥ t0, x = φt0,t (x0) and x /∈ G(t) }.
(50)

Proof. To build capt(G(t)), it suffices to add to the tube G(t) all pairs (x1, t1)
outside G(t) that can be reached from a pair (xa, ta) in G(t). The corresponding
trajectory will cross the boundary of the tube G(t) at instant t0 at the state x0,
i.e., (x0, t0) satisfies (5). This is illustrated in Fig. 6. �

Theorem 4b. Consider the differential inclusion SF : ẋ = F (x, t). We have

capt (G(t)) = G(t) ∪ ΔG(t), (51)

with
ΔG(t) = t �→ {x | ∃ (x0, t0) satisfying (10),

t ≥ t0, x ∈ φt0,t (x0) and x /∈ G(t) }.
(52)

Fig. 6. ΔG(t) contains all pairs (x1, t1) outside G (t) that can be reached from a pair
(x0, t0) leaving G (t)
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Consequences. An interval [C−(t),C+(t)] for capt(G(t)) will be composed by
the tube C

−(t) = G(t) and by adding to C
−(t) an enclosure of all trajectories

generated from one pair (x0, t0) satisfying (5) or (10).

5 Test Case

Consider the pendulum presented in Sect. 2. Here, we do not consider the sublevel
sets of the energy anymore, which only applies on a small class of systems.
Instead, we consider, as an candidate tube, the one associated with the function

g (x, t) = x2
1 + x2

2 − 1.

We have chosen here a time-invariant tube in order to be able to draw pictures.
Indeed, both G(t) and ΔG(t) do not depend on t and become subsets of R2. Our
algorithm provides the results shown in Fig. 7. Subfigure (a) depicts a subpaving

Fig. 7. (a) Boxes which enclose the points satisfying the cross-out conditions; (b) guar-
anteed integration ΔG of these boxes; (c) inner approximation C

− of Capt(G); (d) outer
approximation C

+ of Capt(G)
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which encloses all points satisfying the cross-out conditions. The guaranteed
integration ΔG of all these boxes are shown on Subfigure (b). The integration
has been performed using the Dynibex library [8]. Subfigure (c) represents a
subpaving made with boxes shown to be inside G. Since G ⊂ capt(G), this
subpaving also corresponds to an inner approximation C

− of capt(G). Subfigure
(d) shows C

+ which is the union of light gray boxes (back plane) and dark gray
boxes (front plane). This union forms an outer approximation of capt(G).

6 Conclusion

Proving that a controlled nonlinear system always stays inside a time moving
bubble (or tube) amounts to proving a set of nonlinear inequalities. Now, in
practice, even with a good intuition, finding such a significant capture tube is
difficult. This paper proposes a new method for computing an approximation
of the smallest tube, which encloses a candidate tube G (t). Even if G (t) is
generally chosen as rather attractive, it is often possible to cross G (t) from inside
to outside during the initialization of the system. Since this tube may not be
representable in the computer, the method calculates an interval of tubes which
encloses the capture tube we want to compute. The principle of the approach
is to integrate (with a guaranteed interval integration) the state vectors that
cross the candidate tube from inside to outside and to add all the corresponding
trajectories to the candidate tube. Now, since the less we integrate, the more we
are efficient, to deal with large scale systems, it should be necessary to limit the
number of integration by giving more importance to the Lyapunov part of the
resolution. This could be done, for instance, by computing barrier functions [6].
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2. Le Bars, F., Sliwka, J., Reynet, O., Jaulin, L.: State estimation with fleeting data.

Automatica 48(2), 381–387 (2012)
3. Berz, M., Makino, K.: Verified integration of ODEs and flows using differential

algebraic methods on high-order Taylor models. Reliable Comput. 4(3), 361–369
(1998)

4. Bethencourt, A., Jaulin, L.: Solving non-linear constraint satisfaction problems
involving time-dependant functions. Math. Comput. Sci. 8(3), 503–523 (2014)

5. Blanchini, F., Miani, S.: Set Theoretic Methods in Control. Birkhauser, Boston
(2008)

6. Bouissou, O., Chapoutot, A., Djaballah, A., Kieffer, M.: Computation of paramet-
ric barrier functions for dynamical systems using interval analysis. In: IEEE CDC,
Los Angeles, United States (2014)

7. Chabert, G., Jaulin, L.: Contractor programming. Artif. Intell. 173, 1079–1100
(2009)

8. Chapoutot, A., Alexandre dit Sandretto, J., Mullier, O.: Dynibex. ENSTA (2015).
http://perso.ensta-paristech.fr/∼chapoutot/dynibex/

9. Fernandes, M.L., Zanolin, F.: Remarks on strongly flow-invariant sets. J. Math.
Anal. Appl. 128, 176–188 (1987)

http://perso.ensta-paristech.fr/~chapoutot/dynibex/


224 L. Jaulin et al.

10. Jaulin, L., Le Bars, F.: An interval approach for stability analysis: application to
sailboat robotics. IEEE Trans. Robot. 27(5), 282–287 (2012)

11. Kapela, T., Zgliczynski, P.: A lohner-type algorithm for control systems and ordi-
nary differential inclusions. Discrete Continuous Dyn. Syst. 11(2), 365–385 (2009)

12. Langson, W., Chryssochoos, I., Rakovic, S.V., Mayne, D.Q.: Robust model predic-
tive control using tubes. Automatica 40(1), 125–133 (2004)

13. Lhommeau, M., Jaulin, L., Hardouin, L.: Capture basin approximation using inter-
val analysis. Int. J. Adap. Control Sig. Process. 25(3), 264–272 (2011)

14. Lohner, R.: Enclosing the solutions of ordinary initial and boundary value prob-
lems. In: Kaucher, E., Kulisch, U., Ullrich, C.H. (eds.) Computer Arithmetic:
Scientific Computation and Programming Languages, pp. 255–286. BG Teubner,
Stuttgart (1987)

15. Le Menec, S.: Linear differential game with two pursuers and one evader. In: Bre-
ton, M., Szajowski, K. (eds.) Advances in Dynamic Games, vol. 11, pp. 209–226.
Birkhauser, Boston (2011)

16. Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)
17. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions of initial value

problems for ordinary differential equations. Appl. Math. Comput. 105(1), 21–68
(1999)

18. Raissi, T., Ramdani, N., Candau, Y.: Set membership state and parameter esti-
mation for systems described by nonlinear differential equations. Automatica 40,
1771–1777 (2004)

19. Ratschan, S., She, Z.: Providing a basin of attraction to a target region of polyno-
mial systems by computation of Lyapunov-like functions. SIAM J. Control Optim.
48(7), 4377–4394 (2010)

20. Revol, N., Makino, K., Berz, M.: Taylor models and floating-point arithmetic: proof
that arithmetic operations are validated in COSY. J. Logic Algebraic Program. 64,
135–154 (2005)

21. Stancu, A., Jaulin, L., Bethencourt, A.: Stability analysis for time-dependent non-
linear systems: an interval approach. Internal report, University of Manchester
(2015)

22. Wilczak, D., Zgliczynski, P.: Cr-Lohner algorithm. Schedae Informaticae 20, 9–46
(2011)

23. Yorke, J.A.: Invariance for ordinary differential equations. Math. Syst. Theor. 1(4),
353–372 (1967)



Some Remarks on the Rigorous Estimation
of Inverse Linear Elliptic Operators

Takehiko Kinoshita1,2(B), Yoshitaka Watanabe3, and Mitsuhiro T. Nakao4

1 Center for the Promotion of Interdisciplinary Education and Research,
Kyoto University, Kyoto 606-8501, Japan
kinosita@kurims.kyoto-u.ac.ip

2 Research Institute for Mathematical Sciences,
Kyoto University, Kyoto 606-8502, Japan

3 Research Institute for Information Technology,
Kyushu University, Fukuoka 812-8581, Japan

4 National Institute of Technology, Sasebo College, Nagasaki 857-1193, Japan

Abstract. This paper presents a new numerical method to obtain the rigorous
upper bounds of inverse linear elliptic operators. The invertibility of a linearized
operator and its norm estimates give important informations when analyzing the
nonlinear elliptic partial differential equations (PDEs). The computational costs
depend on the concerned elliptic problems as well as the approximation proper-
ties of used finite element subspaces, e.g., mesh size or so. We show the proposed
new estimate is effective for an intermediate mesh size.

1 Introduction

The main aim of this paper is to provide an efficient estimates of a solution of the fol-
lowing linear elliptic partial differential equations (PDEs) with the Dirichlet boundary
condition:

{−�u+(b ·∇)u+ cu= f in Ω ,

u= 0 on ∂Ω ,

(1a)

(1b)

for an arbitrary f ∈ L2(Ω). Here, Ω ⊂ R
d , (d ∈ {1,2,3}) is a bounded polygonal

or polyhedral domains, b ∈ L∞(Ω)d , and c ∈ L∞(Ω). As well known, many physical
problems have a linearized problem of the form (1a)-(1b), e.g., the stationary Burgers
equations [7].

Now let L2(Ω) be the set of all measurable functions from Ω to C with square
integrable, which is a Hilbert space with associated inner product (u,v)L2(Ω) :=
∫

Ω u(x)v(x)dx, where · shows the complex conjugate. Let H1
0 (Ω) := {u∈H1(Ω)u= 0

on∂Ω} be the usual Sobolev space with respect to the inner product (u,v)H1
0 (Ω) :=

(∇u,∇v)L2(Ω)d . Let L : H1
0 (Ω)×H1

0 (Ω) → C be a bilinear form defined by

L(u,v) := (∇u,∇v)L2(Ω)d +((b ·∇)u,v)L2(Ω) + (cu,v)L2(Ω) , ∀u,v ∈ H1
0 (Ω).
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We define the weak solution u ∈ H1
0 (Ω) of (1a)-(1b) by a solution of the following

variational equation:

L(u,v) = ( f ,v)L2(Ω) , ∀v ∈ H1
0 (Ω). (2)

If we assume the coercivity of L, then, by the Lax-Milgram theorem, there exists a
unique solution for (2). Moreover, it can be proved that this weak solution is a solution
of (1a)-(1b) by a regularity argument (see e.g., [1]). This fact means that the linear
elliptic operator L := −�+b ·∇+ c has the inverse operator.

On the other hand, Plum [10], Oishi [9], Nakao-Hashimoto-Watanabe [7] and
Kinoshita-Watanabe-Nakao [5] proposed a computational technique to verify the exis-
tence of L −1 even though the coercivity of L is not assumed. In this paper, we also do
not assume the coercivity to L at all. Moreover, we try to find the quantitative value of
CL2,H1

0
satisfying

∥
∥L −1

∥
∥
L (L2(Ω),H1

0 (Ω)) ≤CL2,H1
0
. (3)

The constant CL2,H1
0
plays an essential role in the numerical verification of solu-

tions for the boundary value problems for nonlinear elliptic PDEs [9,10] and it is
desirable to compute CL2,H1

0
as small as possible. Particularly, the constant CL2,H1

0
proposed by Watanabe-Kinoshita-Nakao [13] is expected to converge to exact norm∥
∥L −1

∥
∥
L (L2(Ω),H1

0 (Ω)) as the discretization parameter h → 0 on the suitable assump-

tions. Therefore, in the asymptotic sense, the estimates of (3) by [13] would give better
bounds than the results in [7]. Indeed, many numerical examples show this situation.
However, in order to get successful calculation ofCL2,H1

0
in [13], we often need smaller

mesh size h than [7]. In other words, we could verify the existence of L −1 by the
method in [7] with smaller computational costs than [13].

In this paper, we present a new method to compute the constant CL2,H1
0
in (3) based

on the perturbation theory of linear operator with technique in [7]. The verification
condition of the existence ofL −1 by the proposed method is essentially same as in [7].
But as shown in the numerical results, the proposed CL2,H1

0
is often better.

The contents of this paper are as follows: In Sect. 2, we define the necessary nota-
tions and function spaces. In Sect. 3, we introduce previous results of the invertibility
of L and its a posteriori estimates. In Sect. 4, we propose a new verification condi-
tion for the invertibility of L and its a posteriori estimates. In Sect. 5, we show several
verification results for the proposed procedures.

2 Notations

Let X and Y be the Banach spaces. We represent the space of the bounded linear
operators from X to Y by L (X ,Y ). Especially, L (X ) denotes L (X ,X ). Let
LC(X ,Y ) ⊂ L (X ,Y ) be the space of the compact operators from X to Y . More-
over, LF(X ,Y ) ⊂ L (X ,Y ) denotes the set of the bounded Fredholm operators
from X to Y . For any linear operator A :X → Y , D(A ), R(A ), and N(A ) denote
the domain, range, and kernel of A , respectively. We define the norm of D(A ) by
‖u‖D(A ) := ‖u‖X + ‖A u‖Y , which is called graph norm. As well known, if A is a
closed operator then D(A ) becomes a Banach space with respect to ‖·‖D(A ).
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Let −� : D(−�) ⊂ L2(Ω) → L2(Ω) be a Laplace operator, where the domain
D(−�) is defined by

D(−�) =
{
u ∈ H1

0 (Ω) ; −�u ∈ L2(Ω)
}
.

Then, −� is a closed operator from L2(Ω) to L2(Ω). We define the differential
operator B ∈ L

(
H1
0 (Ω),L2(Ω)

)
by B := b · ∇ + c. The differential operators are

treated as the closed operators in many cases. However, it is more convenient to treat
the differential operators as the bounded operators in our verification method. Let
Ie : D(−�) ↪→ H1

0 (Ω) be an embedding operator. Then, Ie ∈ LC
(
D(−�),H1

0 (Ω)
)
is

satisfied by the Rellich compactness theorem because Ω is in a class of the bounded
domain with the Lipschitz continuous boundary. Moreover, BIe ∈LC

(
D(−�),L2(Ω)

)

is satisfied because composition operator of the bounded operator and compact operator
is a compact operator. The bounded operator L ∈ L

(
D(−�),L2(Ω)

)
is represented

by L := −�+BIe = −�+ b · ∇Ie+ cIe. Especially, the domain of L is defined by
D(L ) = D(−�). Then, L ∈ LF

(
D(−�),L2(Ω)

)
and ind(L ) = 0 by [5].

The norms of Banach space L∞(Ω)d and L∞(Ω) are defined by

‖b‖L∞(Ω)d := ess sup
x∈Ω

√

|b1(x)|2+ · · ·+ |bd(x)|2, ‖c‖L∞(Ω) := ess sup
x∈Ω

|c(x)| ,

respectively.Let Cs,2 be a positive constant satisfying ‖u‖L2(Ω) ≤ Cs,2 ‖u‖H1
0 (Ω) for all

u ∈ H1
0 (Ω), which is called the Poincaré constant.

Let Sh(Ω) be an approximate finite dimensional subspace of H1
0 (Ω) dependent on

the parameter h. For example, Sh(Ω) is considered to be a finite element subspace with
the mesh size h or a set of polynomials less than a fixed degree. Let n be a degree of
freedom for Sh(Ω) and {φi}ni=1 be the basis functions of Sh(Ω). Namely, Sh(Ω) :=
span1≤i≤n{φi}.

We denote the self-adjoint positive definite (SPD) matrices Dφ and Lφ in Cn×n by

Dφ ,i, j := (∇φ j,∇φi)L2(Ω)d , Lφ ,i, j := (φ j,φi)L2(Ω) , ∀i, j ∈ {1, . . . ,n}.

Since Dφ and Lφ are SPD, these have the Cholesky factorization. Let D1/2
φ and L1/2φ be

the Cholesky factors of Dφ and Lφ , respectively, i.e.,

Dφ = D1/2
φ DH/2

φ , and Lφ = L1/2φ LH/2
φ

where DH/2
φ shows the conjugate matrix of D1/2

φ . We define the H1
0 projection P1

h :

H1
0 (Ω) → Sh(Ω) by

(
u−P1

h u,vh
)

H1
0 (Ω) = 0, ∀vh ∈ Sh(Ω). (4)

Therefore, the problems of the solvability of the variational Eq. (4) and the nonsingular-
ity of Dφ are equivalent. Because the matrix Dφ is positive definite, the projection P1

h is
well defined. Now, we assume that the following error estimates of P1

h hold throughout
this paper.
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Assumption 1. There exists a positive constant C(h) > 0 satisfying

∥
∥u−P1

h u
∥
∥
H1
0 (Ω) ≤C(h)‖�u‖L2(Ω) , ∀u ∈ D(−�),

∥
∥u−P1

h u
∥
∥
L2(Ω) ≤C(h)

∥
∥u−P1

h u
∥
∥
H1
0 (Ω) , ∀u ∈ H1

0 (Ω).

(5)

(6)

Assumption 1 is the most basic error estimates in the Galerkin method. For example, in
the case of the one dimensional bounded interval as Ω , if Sh(Ω) is a finite element space
using piecewise linear polynomials, the valueC(h) is known byC(h)= h

π . Alternatively,
in the case of piecewise quadratic polynomials, Assumption 1 is satisfied byC(h) = h

2π .
Moreover, these approximations give the optimal constants (e.g., [6]). In case that N
degree polynomials are used, Assumption 1 is satisfied by C(h) = O( h

N ). However, in
these cases, the optimal constants are unknown (e.g., [3]). In case of the two or three
dimensional bounded rectangular or rectangular cuboid domain as Ω , if Sh(Ω) is a
finite element space using the tensor product of one dimensional piecewise polynomial
spaces, C(h) is attained same constants in one dimensional case (e.g., [6]). In case of
the two dimensional bounded polygonal domain as Ω , if Sh(Ω) is the P1 finite element
space with triangular mesh, Assumption 1 is satisfied. The details ofC(h) are shown in
e.g., [2].

Let Gφ be a matrix in Rn×n, where each elements are defined by

Gφ ,i, j := L(φ j,φi) = (∇φ j,∇φi)L2 +((b ·∇)φ j,φi)L2 +(cφ j,φi)L2 , ∀i, j ∈ {1, . . . ,n}.

We assume that Gφ is nonsingular throughout this paper. Applying the proposed ver-
ification method, it is necessary to confirm the nonsingularity of Gφ by validated
computations.

3 Previous Results

In this section, we introduce the results for the invertibility condition of the operatorL
and its a posteriori estimates. We define the following constants:

C1 := ‖b‖L∞(Ω)d +Cs,2 ‖c‖L∞(Ω) , C2 := ‖b‖L∞(Ω)d +C(h)‖c‖L∞(Ω) ,

M11
φ (h) :=

∥
∥
∥D

H/2
φ G−1

φ D1/2
φ

∥
∥
∥
2
, M10

φ (h) :=
∥
∥
∥D

H/2
φ G−1

φ L1/2φ

∥
∥
∥
2

where ‖·‖2 is the matrix two-norm, i.e., the maximum singular value.

Theorem 1 ([7, Theorem 2.1 & Corollary 1 & Theorem 2.3] & [8]). Let K̃(h) > 0
be defined by

K̃(h) :=

⎧
⎪⎨

⎪⎩

C(h)
(
Cs,2 ‖divb‖L∞(Ω) +C1

)
i f b ∈W 1,∞(Ω)d ,

Cs,2C2 i f b ∈ L∞(Ω)d\W 1,∞(Ω)d .
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And let κ̃φ > 0 be a constant satisfying

κ̃φ :=C(h)
(
C1M

11
φ (h)K̃(h)+C2) < 1. (7)

Then, there exists L −1 ∈ L
(
L2(Ω),D(−�)

)
and CL2,H1

0
in (3) can be taken as

CL2,H1
0
=

Cs,2

1− κ̃φ

∥
∥
∥
∥

(
M11

φ (h)
(
1−C2C(h)

)
M11

φ (h)K̃(h)
M11

φ (h)C1C(h) 1

)∥
∥
∥
∥
2

. (8)

If b has sufficient regularity, from the fact that K̃(h) = O
(
C(h)

)
, the CL2,H1

0
defined

(8) converges to:

CL2,H1
0

→Cs,2

∥
∥
∥
∥

(
M11

φ (0) 0
0 1

)∥
∥
∥
∥
2

=Cs,2max
{
M11

φ (0),1
}

(9)

as h→ 0, whereM11
φ (0) := limh→0M11

φ (h). This a posteriori estimates fails to converge
to its exact operator norm. On the other hand, Watanabe-Kinoshita-Nakao proposed
another a posteriori estimates in [5,13] as follows.

Theorem 2 ([13, Theorem 4.2] & [5, Theorem 4.3]). Assume that κ̂φ > 0 satisfy

κ̂φ :=C(h)C2
(
1+M10

φ (h)C1
)

< 1. (10)

Then, there exists L −1 ∈ L
(
L2(Ω),D(−�)

)
and CL2,H1

0
in (3) can be taken as

CL2,H1
0
=

√

M10
φ (h)2+C(h)2

(
1+M10

φ (h)C1
)2

1− κ̂φ
. (11)

The right hand side of (11) is expected to converge to the exact operator norm as h→ 0.
Therefore, we expect that (11) would give better estimates than (8). In fact, we can prove
M10

φ (h) ≤ Cs,2M11
φ (h) for arbitrary h > 0. However, in the actual verification process,

we often meet the situation such that the criterion (10) is harder than (7) for a fixed
h. Therefore, Theorem 1 should be effective for the problem that h cannot be taken
so small. We now try to derive CL2,H1

0
smaller than (8) in Theorem 1 with the same

criterion (7).
Note that, in order to obtain the values of M11

φ (h) and M10
φ (h), it is necessary to

solve numerically some corresponding generalized matrix eigenvalue problems. If it
succeeded in the verification of the finite upper bound of M11

φ (h) or M10
φ (h), it means

that Gφ is nonsingular. Rump proposed an efficient method for solving this eigenvalue
problem with result verification in [12].

4 Main Theorem

We describe a main theorem of this paper as Theorem 3 in this section. Before describ-
ing it, we need to get several lemmas as below.
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Lemma 1. Let b ∈ L∞(Ω)d and c ∈ L∞(Ω). Then, we obtain the following estimates:

∥
∥P1

h u
∥
∥
H1
0 (Ω) ≤ M11

φ (h)
∥
∥P1

h (−�)−1((b ·∇+ c)(u−P1
h u)−L u

)∥
∥
H1
0 (Ω) (12)

for all u ∈ D(−�).

Proof. For an arbitrary u ∈ D(−�), let u⊥ := u−P1
h u and f :=L u= −�u+b ·∇u+

cu ∈ L2(Ω). Then, u satisfies (2). We take a test function v as v= vh ∈ Sh(Ω)⊂H1
0 (Ω)

in (2), from the definition of H1
0 -projection, we have

(∇u,∇vh)L2(Ω)d +(b ·∇u+ cu,vh)L2(Ω) = ( f ,vh)L2(Ω)

L(P1
h u,vh) = (−b ·∇u⊥ − cu⊥ + f ,vh)L2(Ω) . (13)

We set ψ := (−�)−1
(−b · ∇u⊥ − cu⊥ + f

) ∈ D(−�). In (13), from the definition of
H1
0 -projection, we obtain

L(P1
h u,vh) = (−b ·∇u⊥ − cu⊥ + f ,vh)L2(Ω) , ∀vh ∈ Sh(Ω),

=
(−�(−�)−1(−b ·∇u⊥ − cu⊥ + f

)
,vh

)

L2(Ω)

= (∇ψ,∇vh)L2(Ω)d

=
(
∇P1

h ψ,∇vh
)

L2(Ω)d . (14)

Since P1
h u and P

1
h ψ are elements of Sh(Ω), they are represented as linear combinations

of the basis of Sh(Ω). Namely, there exist α = (α1, . . . ,αn)T , γ = (γ1, . . . ,γn)T ∈ C
n

such that

P1
h u=

n

∑
i=1

αiφi, P1
h ψ =

n

∑
i=1

γiφi.

Then, (14) is rewritten using α and γ to have

Gφ α = Dφ γ.

Therefore, we obtain

∥
∥P1

h u
∥
∥2
H1
0 (Ω) = αHDφ α =

(
DH/2

φ α
)H (

DH/2
φ G−1

φ D1/2
φ

)(
DH/2

φ γ
)

≤ ∥
∥P1

h u
∥
∥
H1
0 (Ω)

∥
∥
∥D

H/2
φ G−1

φ D1/2
φ

∥
∥
∥
2

∥
∥P1

h ψ
∥
∥
H1
0 (Ω) ,

which proves the lemma.

Let L∞
div(Ω)d :=

{
u ∈ L∞(Ω)d ; divu ∈ L∞(Ω)

}
. The right hand side of (12) can be

estimated by the following lemma.

Lemma 2. Let b ∈ L∞
div(Ω)d and c ∈ L∞(Ω). Then, we obtain the following estimates:

∥
∥P1

h (−�)−1(b ·∇+ c)(u−P1
h u)

∥
∥
H1
0 (Ω) ≤ K1(h)

∥
∥u−P1

h u
∥
∥
H1
0 (Ω) (15)

for all u ∈ H1
0 (Ω), where K1(h) :=C(h)

(
Cs,2 ‖divb‖L∞(Ω) +C1

)
.
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Proof. For an arbitrary u ∈ H1
0 (Ω), let u⊥ := u− P1

h u ∈ H1
0 (Ω) and ψ := (−�)−1

(b ·∇+ c)u⊥ ∈ D(−�). Then, we have
∥
∥P1

h ψ
∥
∥2
H1
0 (Ω) =

(
∇ψ,∇P1

h ψ
)

L2(Ω)d

=
(−�ψ,P1

h ψ
)

L2(Ω)

=
(
(b ·∇)u⊥,P1

h ψ
)

L2(Ω) +
(
cu⊥,P1

h ψ
)

L2(Ω)

= −(
u⊥,div(bP1

h ψ)
)

L2(Ω) +
(
u⊥,cP1

h ψ
)

L2(Ω)

≤
(∥
∥div(bP1

h ψ)
∥
∥
L2(Ω) +

∥
∥cP1

h ψ
∥
∥
L2(Ω)

)
‖u⊥‖L2(Ω)

≤
(∥
∥P1

h ψdivb
∥
∥
L2(Ω) +

∥
∥(b ·∇)P1

h ψ
∥
∥
L2(Ω) +

∥
∥cP1

h ψ
∥
∥
L2(Ω)

)
‖u⊥‖L2(Ω)

≤ (‖divb‖L∞
∥
∥P1

h ψ
∥
∥
L2 +‖b‖L∞

∥
∥∇P1

h ψ
∥
∥
L2 +‖c‖L∞

∥
∥P1

h ψ
∥
∥
L2

)‖u⊥‖L2
≤ (Cs,2 ‖divb‖L∞ +‖b‖L∞ +Cs,2 ‖c‖L∞)

∥
∥∇P1

h ψ
∥
∥
L2 ‖u⊥‖L2 .

Applying (6), we obtain (15).

Even if the regularity of b is only L∞(Ω)d , there exists the following lemma by [4].

Lemma 3 ([4, Theorem 3.3]). Let b ∈ L∞(Ω)d, c ∈ L∞(Ω) and let Wh(Ω) be a finite
element space of H(div,Ω) := {φ ∈ L2(Ω)d ; divφ ∈ L2(Ω)}. For an arbitrary ψh ∈ Sh,
let (wh,vh) ∈Wh(Ω)×Sh(Ω) be the solution of the following problem:

{
(wh,w

∗
h)L2(Ω)d +(∇vh,w

∗
h)L2(Ω)d = (bψh,w

∗
h)L2(Ω)d ∀w∗

h ∈Wh(Ω),

(wh,∇v∗
h)L2(Ω)d = 0 ∀v∗

h ∈ Sh(Ω),

And define σ0(h) and σ1(h) as follows

σ0(h) := sup
Sh�ψh �=0

‖wh+∇vh −bψh‖L2(Ω)d

‖∇ψh‖L2(Ω)d
, σ1(h) := sup

Sh�ψh �=0

‖divwh‖L2(Ω)

‖∇ψh‖L2(Ω)d
.

Then, we have
∥
∥P1

h (−�)−1(b ·∇+ c)(u−P1
h u)

∥
∥
H1
0 (Ω) ≤ K0(h)

∥
∥u−P1

h u
∥
∥
H1
0 (Ω)

for all u ∈ H1
0 (Ω), where K0(h) := σ0(h)+C(h)σ1(h)+C(h)Cs,2 ‖c‖L∞(Ω).

Now, let K(h) be a positive constant defined by:

K(h) :=

{
K1(h) if b ∈ L∞

div(Ω)d ,
min

{
Cs,2C2, K0(h)

}
if b ∈ L∞(Ω)d\L∞

div(Ω)d .
(16)

From Lemmas 2 and 3, (12) is estimated by
∥
∥
∥P1

h u
∥
∥
∥
H1
0 (Ω)

≤ M11
φ (h)

∥
∥
∥P1

h (−�)−1((b ·∇+ c)(u−P1
h u)−L u

)∥∥
∥
H1
0 (Ω)

≤ M11
φ (h)K(h)

∥
∥
∥u−P1

h u
∥
∥
∥
H1
0 (Ω)

+M11
φ (h)

∥
∥
∥P1

h (−�)−1L u
∥
∥
∥
H1
0 (Ω)

≤ M11
φ (h)K(h)

∥
∥
∥u−P1

h u
∥
∥
∥
H1
0 (Ω)

+M11
φ (h)Cs,2 ‖L u‖L2(Ω) (17)
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Lemma 4. Let b ∈ L∞(Ω)d and c ∈ L∞(Ω). Then, we obtain the following estimates:
∥
∥u−P1

h u
∥
∥
H1
0 (Ω) ≤C(h)

(
C1

∥
∥P1

h u
∥
∥
H1
0 (Ω) +C2

∥
∥u−P1

h u
∥
∥
H1
0 (Ω) +‖L u‖L2(Ω)

)
(18)

for all u ∈ D(−�).

Proof. For an arbitrary u ∈ D(−�), let u⊥ := u−P1
h u. From the Poincaré inequality

and (6), we have

‖�u‖L2 = ‖L u−b ·∇u− cu‖L2(Ω)

≤ ‖L u‖L2(Ω) +‖b‖L∞(Ω)d ‖∇u‖L2(Ω)d +‖c‖L∞(Ω) ‖u‖L2(Ω)

≤ ‖L u‖L2 +‖b‖L∞

(∥
∥P1

h u
∥
∥
H1
0
+‖u⊥‖H1

0

)
+‖c‖L∞

(∥
∥P1

h u
∥
∥
L2 +‖u⊥‖L2

)

≤ ‖L u‖L2 +
(
‖b‖L∞ +Cs,2 ‖c‖L∞

)∥
∥P1

h u
∥
∥
H1
0
+

(
‖b‖L∞ +C(h)‖c‖L∞

)
‖u⊥‖H1

0
.

Therefore, from (5), we obtain

‖∇u⊥‖L2(Ω)d ≤C(h)‖�u‖L2(Ω)

≤C(h)
(
C1

∥
∥P1

h u
∥
∥
H1
0 (Ω) +C2 ‖u⊥‖H1

0 (Ω) +‖L u‖L2(Ω)

)
.

By the effective use of the above lemmas, we propose the following estimates based
on the Fredholm theory.

Theorem 3. Let K(h) > 0 be defined by (16). And let κφ > 0 be a constant satisfying

κφ :=C(h)
(
C1M

11
φ (h)K(h)+C2) < 1. (19)

Then, there exists L −1 ∈ L
(
L2(Ω),D(−�)

)
and CL2,H1

0
in (3) can be taken as

CL2,H1
0
=

√

M11
φ (h)2

(
Cs,2+C(h)

(
K(h)−Cs,2C2

))2
+C(h)2

(
1+Cs,2M11

φ (h)C1

)2

1−κφ
. (20)

Proof. For an arbitrary u ∈ D(−�), we set u⊥ := u−P1
h u ∈ H1

0 (Ω). From (17) and
(18), we obtain

(
1 −K(h)M11

φ (h)
−C(h)C1 1−C(h)C2

)(∥
∥P1

h u
∥
∥
H1
0 (Ω)

‖u⊥‖H1
0 (Ω)

)

≤
(
Cs,2M11

φ (h)
C(h)

)

‖L u‖L2(Ω)

where the inequality is meant componentwise. From the assumption (19),

det

(
1 −K(h)M11

φ (h)
−C(h)C1 1−C(h)C2

)

= 1−κφ > 0

is satisfied. Therefore, the solution of this simultaneous inequalities can be written as
(∥

∥P1
h u

∥
∥
H1
0 (Ω)

‖u⊥‖H1
0 (Ω)

)

≤ 1
1−κφ

(
1−C(h)C2 K(h)M11

φ (h)
C(h)C1 1

)(
Cs,2M11

φ (h)
C(h)

)

‖L u‖L2(Ω)

=
1

1−κφ

(
Cs,2M11

φ (h)+C(h)M11
φ (h)(K(h)−Cs,2C2)

C(h)
(
1+Cs,2M11

φ (h)C1

)

)

‖L u‖L2(Ω) .
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Then, we have

‖u‖2H1
0 (Ω) =

∥
∥P1

h u
∥
∥2
H1
0 (Ω) +‖u⊥‖2H1

0 (Ω)

≤
(
Cs,2M11

φ (h)+C(h)M11
φ (h)(K(h)−Cs,2C2)

1−κφ

)2

‖L u‖2L2(Ω)

+

⎛

⎝
C(h)

(
1+Cs,2M11

φ (h)C1

)

1−κφ

⎞

⎠

2

‖L u‖2L2(Ω) .

Finally, the invertibility of L is followed by the same arguments in [5, Theorem4.3].

Remark 1. If b ∈ W 1,∞(Ω)d , the criterion (19) is equal to (7) because K(h) = K̃(h).
Therefore, the attainability of criteria (19) and (7) are essentially same. On the other
hand, even if the convergence order K(h) = O(1), namely, independent of smoothness
of the function b, the constant CL2,H1

0
of (20) converges to Cs,2M11

φ (0) as h → 0. Com-
paring this result with (9), we can say that (20) is better than (8) in the asymptotic sense
as h → 0.

5 Numerical Results

In this section, we show some verified computation results of constants CL2,H1
0
by (8),

(11), and (20). Let L = −�+b ·∇+ c : D(−�) → L2(Ω) be a non-self-adjoint oper-

ator with b := R

(−x2+1/2
x1 −1/2

)

, R ∈ R, and c ∈ C on Ω := (0,1)× (0,1) ⊂ R
2. We

adopted P1 finite element space with uniform triangular meshes as Sh(Ω). Then, dis-
cretization parameter h > 0 is the element side length. In this case, Assumption 1 holds
withC(h) = 0.493h([2]) andCs,2 = 1

π
√
2
. Note that, of course our arguments above can

also be applied for not only P1 element but also any finite element spaces. We use the
interval arithmetic toolbox INTLAB [11] Version 7 with MATLAB 8.0.0.783 (R2012b)
on Intel Core i7 3.4GHz with Mac OSX 10.8.3.

Table 1. R= 10, c= 15

Theorem 1 Theorem 2 Theorem 3

1/h M11
φ (h) M10

φ (h) κ̃φ CL2,H1
0

κ̂φ CL2,H1
0

κφ CL2,H1
0

5 0.9732 0.1270 1.8758 —— 1.9610 —— 1.8758 ——

8 0.9903 0.1276 0.9032 3.3368 1.1493 —— 0.9032 2.6387

10 0.9939 0.1277 0.6488 0.8671 0.8987 1.6951 0.6488 0.6589

20 0.9986 0.1279 0.2497 0.3543 0.4284 0.2453 0.2497 0.2760

50 0.9999 0.1279 0.0818 0.2632 0.1663 0.1559 0.0818 0.2316

100 1.0001 0.1279 0.0379 0.2426 0.0823 0.1400 0.0379 0.2267
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In Table 1, the short line segment means that the corresponding criteria (7), (10),
or (19) were not satisfied, which also implies we failed to compute the rigorous upper
boundsCL2,H1

0
. From these results, we can say that, for sufficiently small h, the estimates

(11) should be finest. On the other hand, if h is not so small, then our proposed estimates
(20) is better than others. Therefore, we conclude that three kinds of methods would
have their own ranges of suitable applicability depending on each problem.

6 Conclusion

We presented an alternative approach to the numerical verification method for linear
ellitipc problems based on Theorem 3. It is proved that our new method gives a better
results from the viewpoint in computational costs. As the future subjects, we will show
that the present method can also be applied to fourth order elliptic problems or more
general linear elliptic operators.
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Abstract. Modeling of systems in engineering involves two major
stages. First, a system structure is derived that is based on the fun-
damental laws from physics that characterize the relevant processes.
Second, specific parameter values are determined by minimizing the dis-
tance between the measured and simulated system outputs. In previous
work, strategies for verified parameter identification using techniques
from interval analysis were developed. These techniques are extended
in this paper to a verified estimation for systems with non-smooth ordi-
nary differential equations. Suitable experimental results for parameter
estimation of a mechanical system with friction conclude this contribu-
tion to highlight the practical applicability of the developed identification
procedure.

Keywords: Non-smooth ordinary differential equations · Verified para-
meter identification · Interval analysis · Mechanical systems · Friction

1 Introduction

Dynamic system models given by ordinary differential equations (ODEs) with
non-smooth right-hand sides are widely used in engineering. They can, for exam-
ple, be employed to describe transitions between static and sliding friction in
mechanical systems and to represent variable degrees of freedom for dynamic
applications in robotics with contacts between at least two (rigid) bodies.

The verified simulation of such systems has to detect those points of time at
which either one of the discrete model states (in a representation of the ODEs
by means of a state transition diagram) becomes active or at which one of the
discrete model states is deactivated [1,7,8,14]. As long as mechanical systems
are taken into consideration that are described by position and velocity as corre-
sponding state variables, it is guaranteed that the trajectories (i.e., the solutions
of the ODE) remain continuous if switchings between different submodels occur.

For practical applications, however, it is on the one hand necessary to derive
verified simulation techniques and to compute state variables that can be reached
within a given time horizon under consideration of a predefined control law. Such
a control law is usually given by the actuator signal (e.g. force or torque) acting
c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 236–246, 2016.
DOI: 10.1007/978-3-319-31769-4 19
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onto the (mechanical) system [10,13]. On the other hand, a system identifi-
cation is necessary to determine parameter values that comply with both the
non-smooth system model and the measured data. In engineering applications,
these measurements are usually subject to uncertainty that is often in the same
order of magnitude as the measured data themselves. For large uncertainty, it
is in general not reliable to determine point values for the system parameters.
In [2], for example, it has been shown that the naive application of least squares
techniques for the minimization of the distance between point-valued measured
and simulated system outputs (computed in pure floating point arithmetic) may
lead to results that do not comply with a verified set-valued enclosure. Such set-
valued enclosures represent those parameter ranges that are at the same time
compatible with the system model and bounded measurement uncertainty.

For this reason, two options for the verified parameter identification are dis-
cussed in this paper with respect to their applicability to systems with state-
dependent transitions between different piecewise smooth ODE representations.

The identification makes use of a verified simulation of ODEs with non-
smooth right-hand sides. This routine employs a generalized Taylor series-based
integration to determine guaranteed state enclosures that are reachable over
some time span. As shown by the parameter estimation of a test rig for the
longitudinal dynamics of a vehicle, the minimum series expansion order leads
already to state enclosures that are suitable for a verified identification. For
this test rig, parameters related to the mass moment of inertia as well as the
static and sliding friction coefficients are estimated. Besides verified integration
of non-smooth ODEs, the reliable identification exploits an interval subdivision
procedure.

This paper is structured as follows. Section 2 gives an overview of the class of
systems for which parameters are estimated in this paper. In Sect. 3, a brief
review of the verified interval-based simulation routine for ODEs with non-
smooth right-hand sides is given. Section 4 describes different options for the
implementation of verified identification procedures. A summary of identifica-
tion results for a laboratory test rig at the Chair of Mechatronics, University of
Rostock, is given in Sect. 5. Conclusions and an outlook on future work can be
found in Sect. 6.

2 Dynamic Systems with Non-Smooth Right-Hand Sides

In this paper, parameter identification strategies are considered for (open-loop)
dynamical systems with l different continuous-time models S = {S1, S2, . . . , Sl},
which are each given by the state-space representations

ẋ (t) = fSi
(x (t) ,p,u (t) , t) for i ∈ {1, . . . , l} . (1)

In (1), the vector x ∈ R
n denotes the state vector and p ∈ R

np the vector of
uncertain parameters that are identified by the subsequent procedure. Moreover,
u ∈ R

nu is the vector of control variables. In the case of open-loop systems, this
vector is assumed to be piecewise constant for a time interval t ∈ [

tk ; tk+1

)
.
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Because closed-loop feedback control procedures are assumed to be implemented
in a discrete-time manner throughout this paper, the input u (t) is also piecewise
constant in this case. The input is then given as a state-dependent function that
is evaluated at each point of time t = tk for the current state vector x(tk).
The explicit time dependency of (1) is then used to describe the influence of a
predefined reference trajectory xd(t) on the dynamic system.

For a complete specification of the system behavior, conditions T j
i (x,u) for

the transition from the model state Si to Sj , i, j ∈ {1, . . . , l}, have to be given
additionally. These conditions are specified in the following by means of a state
transition diagram, where all discrete model states Si are assumed to be mutually
exclusive in a real-life experiment. This also holds for simulations in the case of
exactly known parameters and system states as long as no time discretization
errors influence the system dynamics. However, multiple states Si can be active
simultaneously during simulations in the uncertain case, including the effect of
time discretization. Then, a definite distinction between two different models Si

and Sj is no longer possible due to the before-mentioned uncertainties.
Note that the case i = j refers to the operating conditions for which the

current state Si remains active. However, a verified simulation does not only have
to account for scenarios in which the transition between two different states Si

and Sj occurs exactly at a sampling point tk. The simulation also has to detect
transitions that take place between two subsequent points tk and tk+1.

As a representative benchmark application, the drive train test rig depicted in
Fig. 1 is considered. It represents a simplified model for the longitudinal dynam-
ics of a vehicle. After introducing the benchmark application, a suitable verified
simulation technique is briefly reviewed. It is the basis for the subsequent para-
meter estimation, where measurements of y(tk) = g (x(tk),p) are assumed to
be available at discrete points of time t = tk.

To describe the system dynamics in a reliable way, three different operating
conditions are distinguished. The models S1 and S3 represent sliding friction
for the motion in backward and forward direction, respectively. Obviously, these
models are valid for non-zero motor angular velocities ϕ̇M = ωM = x2(t) �= 0.
Additionally, the breakaway point is included as an activation condition in S1

and S3. This is the operating condition in which the actuator torque overcomes
the static friction TF,s. The corresponding state equations are given by

ẋ(t) = fI (x(t),p, u(t), t) =
[

x2(t)
α · x2(t) + β · (u(t) − TF(t))

]

for I ∈ {S1, S3},

(2)

with the friction term TF(t) = TF,s·sign(x2(t)), the parameters p =
[
α β TF,s

]T ,

the state vector x(t) =
[
x1(t) x2(t)

]T =
[
ϕM(t) ωM(t)

]T , and the motor torque
as the piecewise constant control signal u(t) = TM(t), nu = 1. For the static
friction case, the angular velocity x2(t) becomes zero and the additional condition
|u(t)| ≤ TF,s holds with the state equations ẋ(t) = fS2 (x(t),p, u(t), t) =

[
0 0

]T .
In detail, the parameter α represents the ratio between velocity-proportional

friction and the overall mass moment of inertia; β is the reciprocal of the mass
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Fig. 1. Benchmark application: Test rig for the longitudinal dynamics of a vehicle.

moment of inertia; TF,s is the static friction coefficient, which may vary after each
standstill of the test rig. A state transition diagram for the uncertain dynamic
system is shown in Fig. 2. It contains the nominal system model if the parameter
intervals [α], [β], and [TF,s] as well as the control signal u(t) are replaced by point
values. Further generalizations of the modeling approach are described in [1].
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Fig. 2. State transition diagram of the benchmark application with the interval para-
meters α ∈ [α] = [α ; α], β ∈ [β] =

[
β ; β

]
, TF,s ∈ [TF,s] =

[
TF,s ; TF,s

]
, and the

system input ũ(t) := u(t) − TF(t) with [Tmax
F ] :=

[−TF,s ; TF,s

]
.

3 Verified Simulation of ODEs with Non-Smooth
Right-Hand Sides

The prerequisite for the following verified parameter identification scheme is
the computation of guaranteed state enclosures for the uncertain system models
given in the previous section. For that purpose, a generalization of a Taylor series-
based enclosure technique is employed. Details about this simulation approach
are published in [1,10,13]. Hence, only a short overview is given in this section.
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The basic assumption of Taylor series-based simulation procedures is the
discretization of the considered time horizon. For the system in Fig. 1, in which
measured data and control variables are available at equidistant points of time
tk, it is assumed that the time discretization mesh is represented by an integer
divisor of the control sampling period tk+1 − tk, i.e., h = tk+1−tk

N , N ∈ N.
Then, a Taylor series expansion of the solution of the initial value problem

for a continuous-time system model with respect to time — given by the ODEs
ẋ(tk) = f (x (tk) ,p,u (tk) , tk) with the initial state x(0) — leads to

x (tk + h) = x (tk)+
ν∑

i=1

hi

i!
f (i−1) (x (tk) ,p,u (tk) , tk)+e (x (ξ) ,p,u (ξ) , ξ) (3)

with the before-mentioned integration step-size h. Since the uncertain parame-
ters p ∈ [p] are assumed to be constant and since changes of control signals u(tk)
only occur at the discrete points of time t = tk, the expression (3) is evaluated
recursively until the point of time t = tk+1 is reached. Here, a new control signal
u(tk+1) becomes active and new measured data are available.

Moreover, Eq. (3) involves the computation of the total derivatives f (i−1)

(resp. Taylor series coefficients) in terms of the smooth right-hand side of the
ODE with ṗ = 0 and u̇(t) = 0, t ∈ (tk ; tk + h) as well as x(tk) ∈ [x] (tk)
and p ∈ [p]. The iterative computation of state enclosures is completed by the
calculation of guaranteed bounds for the discretization error

e (x (ξ) ,p,u (ξ) , ξ) ⊆ [ek] :=
hν+1

(ν + 1)!
f (ν) ([Bx,k] , [p] ,u ([τk]) , [τk]) (4)

with ξ ∈ [tk ; tk + h]. Note that the prerequisite for the applicability of this
fundamental computation scheme (included e.g. also in VNODE and AWA
[5,6]) is that the right-hand side of the ODE belongs to the set f ∈ Cν of at least
ν times continuously differentiable functions. In addition, it is necessary that a
bounding box [Bx,k] (representing all reachable states over the discretization
period) as well as guaranteed parameter and control enclosures [p] and u ([τk])
are available for the time interval [τk] := [tk ; tk + h]. To extend the use of (3),
(4) to ODE systems with non-smooth right-hand sides, the following extensions
are necessary for the iteration scheme as well as for the Picard iteration that is
employed to determine the bounding box [Bx,k] (for details, cf. [1, Sec. 3.3]).

Step S1. Calculation of a bounding box [Bx,k] = [Ba,k] for the time interval
[τk], where f (·) = fa (·) is a continuously differentiable function describing
the union of all system models from the set S which are active at t = tk.

Step S2. Check, whether additional models from the set S are activated within
the interval [τk]: If additional models are activated, repeat Step S1 after
modifying the continuously differentiable enclosure fa by consideration of all
additionally activated models; otherwise, continue with Step S3.
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Step S3. Interval evaluation of the series expansion for f (·) = fa (·) according
to (3), (4). Note that generally ν > 1 can be chosen. However, if measured
data are available after a few discretization steps N (as in the case of the
verified parameter identification that is considered in this paper), it is often
sufficient to restrict the series expansion order to ν ≡ 1.

Step S4. Deactivation of system models which can no longer be active at t =
tk+h and continue with Step S1 for the next time interval [tk + h ; tk + 2h].

4 Verified Parameter Identification

For verified parameter identification, two fundamentally different approaches
exist. The first one is based on subdividing an initial parameter domain into
subintervals, afterwards performing a verified integration of the ODEs for these
subintervals, and subsequently checking the resulting enclosures for admissi-
bility. A parameter box is treated as consistent with the measured data if
the simulated state enclosures are subsets of intervals for the measured data
[ym,q] (tk) = ym,q(tk) + [Δym,q] (tk) for each sampling time tk and each sensor q,
where [Δym,q] (tk) is the measurement tolerance. All parameter intervals which
lead to an enclosure that does not overlap with [ym,q] (tk) for at least one q
and k are inconsistent. All remaining interval boxes can be divided further and
investigated for consistency [9]. However, this procedure is disadvantageous if
parameters are varying over time (depending on the states x). This is the case
for the application scenario considered in this paper. It is characterized by the
fact that the static friction coefficient changes its value after each standstill of
the drive and therefore has to be re-identified within the initial bounds for [TF,s].

In such cases, the second option for verified parameter identification is rea-
sonable. It has the same structure as the well-known Kalman filter (or Luen-
berger observer) [4] for dynamic systems with stochastic disturbances, namely
(i) a prediction phase in which the (nonlinear) system model is evaluated
between two subsequent measurement points tk−1 and tk and (ii) a correction
step in which an intersection between the predicted state intervals and their
bounds — resulting from the sensor information — is performed, see Fig. 3.
In the correction step, parameter intervals which lead to an empty intersection
of both before-mentioned estimates are guaranteed to be inconsistent and can,
hence, be eliminated. All undecided interval boxes are evaluated by the following
algorithm. For the sake of simplicity, it is assumed that the sensors q provide
a direct measurement of selected state variables. If this was not the case, i.e.,
if ym,q(tk) is a (generally nonlinear) function of (multiple) state variables, tech-
niques for constraint propagation or verified Newton methods become necessary
in the correction step [3]. Note that resetting parameter intervals to their ini-
tial domains is an easy task for this second type of identification procedure. In
the following, the proposed parameter identification procedure is described in
detail.
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Fig. 3. Block diagram of the verified parameter identification procedure.

Verified Parameter Identification: Prediction-Correction-Framework

Step I1. Description of the state enclosure by a list of L interval boxes, where z
is a vector containing time-varying state variables and constant parameters

[
z〈l〉

]
(tk) :=

[[
x〈l〉] (tk)

T [
p〈l〉] (tk)

T
]T

, l ∈ {1, . . . , L}; (5)

Perform M interval subdivisions, if at least one interval l is characterized by

n+np∏

j=1

diam
{[

z
〈l〉
j

]
(tk)

}
�= 0, (6)

leading to a new interval list of length L + M − 1. Here, the candidates to
be subdivided are determined as the boxes with the largest pseudo-volume

l∗ = arg max
l=1,...,L′

n+np∏

j=1

diam
{[

z
〈l〉
j

]
(tk)

}
, L′ ≥ L. (7)

Unnecessarily conservative interval bounds in the prediction step have to
be avoided to reduce ambiguities between static and sliding friction in the
computation of the state enclosures (multiple model states S may be active).
Therefore, the following heuristic, application-dependent scheme for detect-
ing the vector component of

[
z〈l∗〉] to be subdivided is used in the remainder

of this paper:
(a) Split the static friction interval

[
T

〈l∗〉
F,s

]
according to the following proce-

dure if the condition [u] (tk) ∩ hull
{

−
[
T

〈l∗〉
F,s

]
,
[
T

〈l∗〉
F,s

]}
�= ∅ holds

– Select the splitting point u(tk) + ε, ε > 0 for [u] (tk) > 0 with
T

〈l∗〉
F,s < u(tk) and T

〈l∗〉
F,s > u(tk)

– Select the splitting point u(tk) − ε, ε > 0 for [u] (tk) < 0 with
−T

〈l∗〉
F,s < u(tk) and −T

〈l∗〉
F,s > u(tk)

– Else: Splitting of
[
T

〈l∗〉
F,s

]
at its midpoint
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(b) Split the angular velocity interval1
[
x

〈l∗〉
2

]
if it is the major source for

large interval diameters, i.e., if diam
{[

x
〈l∗〉
2

]}
≥ diam

{[
β〈l∗〉]} holds

(c) Split the interval
[
β〈l∗〉] (typically at its midpoint) if

([
α〈l∗〉

]
·
[
x

〈l∗〉
2

])
∩

([
β〈l∗〉

]
·
(
[u] (tk) −

[
T

〈l∗〉
F,s

]))
�= ∅ (8)

(d) Else: Split the interval
[
α〈l∗〉] (typically at its midpoint)

Step I2. Verified integration of the IVP2 until the next measurement point tk+1

to compute the enclosures
[
z〈l〉] (tk+1)

Step I3. Intersection of all interval boxes with the measured data z1(tk+1) ∈
[ym] (tk+1) (assuming that only a direct scalar measurement exists for the
first state variable, i.e., the angle measurement ϕM,m in Fig. 1)

[
z̃

〈l〉
1

]
(tk+1) :=

[
z

〈l〉
1

]
(tk+1) ∩ [ym] (tk+1) (9)

Step I4. Replace
[
z

〈l〉
1

]
(tk+1) by

[
z̃

〈l〉
1

]
(tk+1) for all l ∈ {1, . . . , L + M − 1}

Step I5. Delete all subintervals with
[
z̃

〈l〉
1

]
(tk+1) = ∅ in (9) from the list

Step I6. Replace static friction intervals with the initial range
[
T ini
F,s

]
if standstill

is detected for a minimum time span (detected by a binary signal from the
velocity sensor ωM,m):
(a) For each list entry l ∈ {1, . . . , L′}, define new static friction subintervals[

T
〈l〉
a

]
:=

[
T ini

F,s ; T
〈l〉
F,s

]
,
[
T

〈l〉
b

]
:=

[
T

〈l〉
F,s ; T

〈l〉
F,s

]
,
[
T

〈l〉
c

]
:=

[
T

〈l〉
F,s ; T

ini

F,s

]

(b) Create a list of up to 3L′ subintervals3, where
[
T

〈l〉
F,s

]
is replaced by each

of the intervals
[
T

〈l〉
a

]
,
[
T

〈l〉
b

]
,
[
T

〈l〉
c

]
with non-zero diameter

(c) Subsequent merging of intervals avoids the combination of intervals with
different active model states Si, i ∈ {1, 2, 3}

Step I7. Reduce the number of subintervals4 by a convex hull with sufficiently
small overestimation [11]: New list length L := L∗ (for further extensions,
see [12])

1 Optional: Trisectioning of
[
x

〈l∗〉
2

]
around the value zero if static and sliding friction

are possible simultaneously in the simulation of the uncertain system model.
2 The presented integration procedure is implemented by using the toolbox IntLab,

where a parallelization of the evaluation can be achieved in a straightforward manner
if the state equations are evaluated after a distribution onto multiple CPU cores.
The Parallel Computing Toolbox can be utilized for this purpose in Matlab.

3 The increase of the list length from L′ to 3L′ has the advantage that information
about the parameter splitting before the reset is not lost. Usually, the static friction is
similar after standstill, even if it does not remain identical. In this case, the splitting
information speeds up the identification and elimination of inconsistent subdomains.

4 Note that the interval replacement (Step I6) and the reduction of the interval
number (Step I7) can be employed interchangeably.
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5 Identification Results

In this section, the verified identification procedure is applied to determine
enclosures for the parameters α, β, and TF,s of the drive train test rig in
Fig. 1. The initial domains are: [α] = − [1 ; 6] 1

s , [β] = [10 ; 400] rad
Nm·s2 , and

[TF,s] = [0.01 ; 0.30] Nm; measured data are available with a discretization
period of 10ms. In accordance with the available motor angle sensor, the tol-
erance bounds are [Δym] = [−0.1 ; 0.1] rad. Figure 4a gives an overview of the
control signal, and the angle measurement for the identification time span of
tf = 80 s.

Now, the identification procedure is run until the final point of time tf , while
the interval for the static friction coefficient is reset to its initial bound after
each standstill. It can be seen that especially the interval for the parameter β is
significantly reduced in this first run of the identification. Because the parameters
α and β remain uncertain but constant, the identification is repeated five times,
where the reinitialization values at t = 0 s correspond to the final parameter
intervals [α], [β] at the end of the previous run (Fig. 4b). Subdomains of α and β
are classified as inconsistent with the measured data during the first four runs,
while the results remain constant in run five. The corresponding results can, for
example, be used for the specification of intervals in which control and online
state estimation procedures have to be robust and asymptotically stable.
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Fig. 4. Identification results (M = 50, five repetitions of the procedure).

6 Conclusions and Outlook on Future Work

In this paper, verified integration of ODEs with non-smooth right-hand sides
was combined in a novel way with an offline-applicable reliable parameter iden-
tification procedure. Real-life results were presented for a laboratory test rig
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at the Chair of Mechatronics, University of Rostock. Future work will deal with
an extension of the identification procedure to systems with larger initial search
domains for a-priori unknown parameters. Moreover, more complex friction and
hysteresis models will be identified. For this purpose, it will be necessary to
investigate how the interval subdivision routine — in combination with the
parallelized integration of ODEs — scales to higher-dimensional sets of state
equations. Finally, the computed intervals will be employed to initialize online-
applicable estimation procedures which are based on sliding mode principles.
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Abstract. The computation of guaranteed state enclosures has a large
variety of applications in engineering if initial value problems for sets
of ordinary differential equations are concerned. One possible scenario
is the use of such state enclosures in the design and verification of lin-
ear and nonlinear feedback controllers as well as in predictive control
procedures. In many of these applications, system models are charac-
terized by a dominant linear part (commonly after a suitable coordi-
nate transformation) and by a not fully negligible nonlinear part. To
compute guaranteed state enclosures for such systems, general purpose
approaches relying on a Taylor series expansion of the solution can be
employed. However, they do not exploit knowledge about the specific
system structure. The exponential state enclosure technique makes use
of this structure, allowing users to compute tight enclosures that con-
tract over time for asymptotically stable dynamics. This paper firstly
gives an overview of exponential enclosure techniques, implemented in
ValEncIA-IVP, and secondly focuses on extensions to dynamic systems
with single and multiple conjugate complex eigenvalues.

Keywords: Ordinary differential equations · Initial value problems ·
Complex interval arithmetic · ValEncIA-IVP

1 Introduction

ValEncIA-IVP is a verified solver providing guaranteed enclosures for solu-
tions to initial value problems (IVPs) for sets of ordinary differential equations
(ODEs). In the basic version of this solver, the verified solution is computed
as the sum of a non-verified approximate solution (computed, for example,
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by Euler’s method) and additive guaranteed error bounds determined using a
simple iteration scheme [1].

The disadvantage of this iteration scheme, however, is that the widths of
the resulting state enclosures might get larger even for asymptotically stable
ODEs [9]. This phenomenon is caused by the so-called wrapping effect which
arises if non-axis-parallel state enclosures are described by axis-aligned interval
boxes in a state-space of dimension n > 1. In general purpose solvers such as
VNODE-LP [7] or VSPODE [5], the corresponding counter-measure against
this type of overestimation is the preconditioning of state equations (e.g. using
Lohner’s QR decomposition approach) in combination with a high-order series
expansion of the solution to the IVP over time. However, these approaches may
become quite time consuming for large system orders n.

A possible approach to deal with the overestimation in such a way as to
allow real-time implementations (e.g. for predictive control [10]), that is, without
increasing the computational cost too much, is to transform the ODEs into a
suitable canonical form. For the case of linear ODEs with real eigenvalues of
multiplicity one, this is given by the Jordan canonical form. The transformation
results in a decoupling of the vector-valued set of state equations. A solution
of this transformed IVP can then be determined by an exponential enclosure
technique which guarantees that asymptotically stable solutions are represented
by contracting interval bounds if a suitable time discretization step size is chosen.
For real eigenvalues, this property holds as long as the value zero is not included
in any vector component of the solution interval.

As shown in [11,12], the before-mentioned advantageous contraction prop-
erty can be preserved for linear ODEs with conjugate complex eigenvalue
pairs if a transformation into the complex Jordan canonical form is employed.
Then, a complex-valued interval iteration scheme is used to determine state
enclosures [12]. The corresponding solution procedure — originally derived for
dynamic systems with eigenvalues of multiplicity one — is extended in this paper
to more general situations with several multiple real and complex eigenvalues.

This paper is structured as follows. Sect. 2 gives an overview of the real-valued
and complex-valued iteration schemes that are applicable inside the exponential
state enclosure approach. Extensions to eigenvalues with multiplicity greater
than one are discussed in Sect. 3. Representative simulation results for a techni-
cally motivated benchmark system from control engineering, typically containing
bounded uncertainty in initial values and parameters, are presented in Sect. 4.
Conclusions and an outlook on future work can be found in Sect. 5.

2 Basic Exponential State Enclosure Approach

Throughout this paper, it is assumed that dynamic system models are given by
the set of ODEs

ẋ (t) = f (x (t)) , x ∈ R
n, f : Rn �→ R

n, (1)
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with smooth right-hand sides f (x (t)) and the uncertain initial conditions

x (0) ∈ [x0] := [x] (0) = [x (0); x (0)] . (2)

In (1) and (2), external control (input) signals u(t) = u(x(t)) are directly
included in the corresponding expression for f (x (t)). The same holds for time-
invariant uncertain system parameters pj ∈

[
p

j
; pj

]
, j = 1, . . . , np, with the

corresponding derivatives ṗj = 0. Together with the enclosures for the time-
varying system states, they are contained in the component-wise defined interval
vectors [x] =

[
[x1] . . . [xn]

]T with the individual vector entries [xi] = [xi; xi],
xi ≤ xi ≤ xi, i = 1, . . . , n.

In the basic implementation of ValEncIA-IVP, the state enclosure [x] (t)
of the true solution x∗(t) to an IVP is defined by x∗(t) ∈ [x] (t) := x̃(t) +
[R] (t), where x̃(t) is an approximate solution computed in usual (non-verified)
floating point arithmetic. Verified error bounds [R] (t) are then computed by an
appropriate iteration scheme [9,12].

Note that without suitable counter-measures, the diameters of the solution
enclosures may diverge even for asymptotically stable systems. This is mostly
caused by the wrapping effect that can be compensated for systems with a
dominant (locally) linear behavior by using the following exponential enclosure
technique. As a fundamental ansatz for the representation of contracting state
enclosures, the expression

x∗(t) ∈ [xe] (t) := exp ([Λ] · t) · [xe] (0) (3)

is used, with 0 �∈ [xe,i] (0), [xe] (0) = [x0], and the diagonal matrix [Λ] :=
diag {[λi]}, i = 1, . . . , n, with the element-wise negative real entries λi.

After defining exp ([Λ] · t) := diag {exp ([λ1] · t) , . . . , exp ([λn] · t)} as the cor-
responding interval matrix exponential, a Picard iteration scheme [2,6]

x∗(t) ∈ [xe]
(κ+1) (t) := [x0] +

∫ t

0

f
(
[xe]

(κ) (s)
)

ds (4)

can be employed to determine intervals [λi] so that all reachable states are con-
tained in the time-dependent interval enclosure functions [xe] (t). To derive the
iteration scheme for [xe] (t), the Picard iteration (4) is reformulated as the time-
dependent expression

x∗(t) ∈ exp
(
[Λ](κ+1) · t

)
· [xe] (0) = [xe]

(κ+1) (t)

=: [x0] +
∫ t

0

f
(
exp

(
[Λ](κ) · s

)
· [xe] (0)

)
ds. (5)

Its differentiation with respect to time and the evaluation for t ∈ [0; T ] leads to

ẋ∗ ([0; T ]) ∈ diag
{

[λi]
(κ+1)

}
· exp

(
[Λ](κ+1) · [0; T ]

)
· [xe] (0)

⊆ f
(
exp

(
[Λ](κ) · [0; T ]

)
· [xe] (0)

)
. (6)
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Suppose that the convergence condition

exp
(
[Λ](κ+1) · t

)
· [xe] (0) ⊆ exp

(
[Λ](κ) · t

)
· [xe] (0) , (7)

that is equivalent to [λi]
(κ+1) ⊆ [λi]

(κ) and [Λ](κ+1) ⊆ [Λ](κ), is fulfilled. Then,
the final iteration formula is given by

[λi]
(κ+1) :=

fi

(
exp

(
[Λ](κ) · [0 ; T ]

)
· [xe] (0)

)

exp
(
[λi]

(κ) · [0 ; T ]
)

· [xe,i] (0)
, i = 1, . . . , n (8)

with the guaranteed state enclosure at the point t = T

x∗(T ) ∈ [xe] (T ) := exp ([Λ] · T ) · [xe] (0) . (9)

A detailed derivation of this iteration approach is given in [12].
The above-mentioned iteration can be simplified for linear state equations

fi (x(t)) =
n∑

j=1

aij · xj(t) according to (10)

[λi]
(κ+1) :=

n∑

j=1,i �=j

{

aij · exp
((

[λj ]
(κ) − [λi]

(κ)
)

· [0 ; T ]
)

· [xe,j ] (0)
[xe,i] (0)

}

+ aii with aij ∈ [aij ] . (11)

From this simplification, it becomes obvious that the computation of [λi] is free of
overestimation if the expressions in (10) are decoupled with aij = 0 for all i �= j.
In cases in which the linear parts of fi (x) represent the dominant features of
the system dynamics, an (approximate) decoupling of the ODEs is only possible
if pairwise different real eigenvalues are present. Then, the linear part of the
system model is transformed into real-valued Jordan canonical form.

Already in the case of linear systems with conjugate complex eigenvalue
pairs, there exist points of time at which the iteration (8) is no longer defined
due to the fact that the value zero may be included in the true solution set and
hence also in the denominator of (8). The latter problem can easily be solved by
replacing the real-valued Jordan canonical form [3,4]

Σ = blkdiag{. . . , Σ̄i, . . .}, Σ̄i =
[

σi ωi

−ωi σi

]

(12)

by its complex-valued generalization [8] with the corresponding ODEs ż(t) =
Σ ·z(t), the initial conditions z(0) ∈ C

n, z(0) ∈ [z] (0), and the diagonal matrices

Σ = blkdiag{. . . ,Σi, . . .}, Σi =
[
σi + jωi 0

0 σi − jωi

]

. (13)
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This transformation is possible if the linear state Eq. (10) have only eigen-
values of multiplicity δi = 1. For the exact solutions zi(t) = e(σi+jωi)·t · zi(0),
zi+1(t) = e(σi−jωi)·t · zi+1(0) of the IVP, the iteration procedure (11) is always
applicable for 0 �∈ [zi] (0) due to

|zi(t)|2 =
(
e(σi+jωi)·t · e(σi−jωi)·t

)
· |zi(0)|2 = e2σit · |zi(0)|2 �= 0. (14)

As shown in [12], the corresponding enclosures show contracting behavior not
only for purely linear asymptotically stable systems but also for nonlinear models
if a linearization of the state equations approximates the dominant dynamic
features sufficiently well for some finite time interval. However, according to [12],
the complex-valued iteration (and also its real-valued counterpart) are applicable
for arbitrary time spans only if the eigenvalue multiplicity is δi ≡ 1. Therefore,
novel extensions for δi > 1 are derived in the following section.

3 Exponential State Enclosures for Multiple Eigenvalues

In this section, extensions are described for the exponential enclosure approach
in the cases that linear state equations with multiple identical eigenvalues or
nonlinear models with multiple eigenvalues of their linear parts are considered.

3.1 Linear State Equations

Even for linear system models, the dynamics can no longer be fully decoupled
if eigenvalues have a multiplicity δi > 1. In the case of real eigenvalues, the
corresponding Jordan blocks are given by

ż(t) = Σ · z(t) with Σ = blkdiag{λ1, λ2 . . . , Σi, . . . λn},

Σi =

⎡

⎢
⎢
⎢
⎢
⎣

λi 1 . . . 0

0 λi
. . .

...
...

. . . . . . 1
0 . . . 0 λi

⎤

⎥
⎥
⎥
⎥
⎦

∈ R
δi×δi and z(0) ∈ [z] (0), (15)

while the case of multiple complex eigenvalues leads to the canonical form

Σ = blkdiag{. . . ,Σ+
i ,Σ−

i , . . .} with λ+
i = σi + jωi, λ−

i = σi − jωi ,

Σ+
i =

⎡

⎢
⎢
⎢
⎢
⎣

λ+
i 1 . . . 0

0 λ+
i

. . .
...

...
. . . . . . 1

0 . . . 0 λ+
i

⎤

⎥
⎥
⎥
⎥
⎦

∈ C
δi×δi and Σ−

i =

⎡

⎢
⎢
⎢
⎢
⎣

λ−
i 1 . . . 0

0 λ−
i

. . .
...

...
. . . . . . 1

0 . . . 0 λ−
i

⎤

⎥
⎥
⎥
⎥
⎦

∈ C
δi×δi (16)

for each eigenvalue pair λ±
i = σi ± jωi with δi > 1. In both the real and complex

cases, all decoupled state equations can be solved independently from the Jordan
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block corresponding to the multiple eigenvalues. Overestimation is minimized if
the enclosures for states of the Jordan blocks (15) and (16) are computed in a
“bottom to top” manner, that is in the order zi+δi−1, . . . , zi+1, zi.

Since the analytic representation of the solutions zi+j(t), j = 0, . . . , δi − 1,
for the eigenvalue λ+

i can be stated explicitly as

z∗
i+j(t) =

⎛

⎝
δi−1∑

ζ=j

tζ−j

(ζ − j)!
· zi+ζ(0)

⎞

⎠ · e(σi+jωi)·t (17)

in the case δi > 1, the iteration scheme for computation of state enclosures is
derived for a redefined enclosure that is given by

[zi+j ] (t) =

⎛

⎝
δi−1∑

ζ=j

tζ−j

(ζ − j)!
[zi+ζ ] (0)

⎞

⎠ · e[λi+j ]t (18)

for all j = 0, . . . , δi − 1. The corresponding time derivative of (18) is

[żi+j ] (t) = [λi+j ] ·
⎛

⎝
δi−1∑

ζ=j

tζ−i

(ζ − i)!
[zi+ζ ] (0)

⎞

⎠ · e[λi+j ]t

+

⎛

⎝
δi−1∑

ζ=j+1

tζ−(j+1)

(ζ − (j + 1))!
[zi+ζ ] (0)

⎞

⎠ · e[λi+j ]t. (19)

Evaluating these enclosures for the interval initial conditions zζ(0) ∈ [zζ ] (0)
and for the solution parameter λi+j ∈ [λi+j ] with the discretization time span
t ∈ [0; T ], a modified iteration scheme is obtained by following exactly the same
arguments as in Sect. 2. The interval enclosures [λi], . . . , [λi+δi−1] are given by

[λi+j ]
(κ+1) :=

λ∗
i ·

(
δi−1∑

ζ=j

tζ−i

(ζ−i)!zi+ζ(0)

)

· e[λi+j ]
(κ)t

(
δi−1∑

ζ=j

tζ−i

(ζ−i)!zi+ζ(0)

)

· e[λi+j ]
(κ)t

+

(
δi−1∑

ζ=j+1

tζ−(j+1)

(ζ−(j+1))!zi+ζ(0)

)

·
(
e[λi+j+1]t − e[λi+j ]

(κ)t
)

(
δi−1∑

ζ=j

tζ−i

(ζ−i)!zi+ζ(0)

)

· e[λi+j ]
(κ)t

(20)

for each subsystem model

żi(t) = λ∗
i · zi(t) + zi+1(t)

żi+1(t) = λ∗
i · zi+1(t) + zi+2(t)

... (21)
żi+δi−1(t) = λ∗

i · zi+δi−1(t).
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Here, the one-sided decoupling in (21) can be exploited efficiently, since [λi+j ]
depends on the result for [λi+j+1] but not vice versa. Note that iteration (20)
satisfies the inclusion property λ∗

i ∈ [λi+j ], zζ(0) ∈ [zζ ] (0), t ∈ [0; T ], where λ∗
i

is the true multiple eigenvalue.
If the system models (15), (16), or (21) are linear, the iteration formula (20)

can be simplified symbolically as

[λi+j ]
(κ+1) := λ∗

i +

(
δi−1∑

ζ=j+1

tζ−(j+1)

(ζ−(j+1))!zi+ζ(0)

)

·
(
e([λi+j+1]−[λi+j ]

(κ))t − 1
)

(
δi−1∑

ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

) .

(22)
In this way, the overestimation due to multiple dependencies on common interval
variables is reduced as much as possible. As before, (20) and (22) have to be
evaluated for all λi+j ∈ [λi+j ], zζ(0) ∈ [zζ ] (0), and t ∈ [0; T ].

3.2 Generalization to Nonlinear State Equations

The iteration procedure introduced in the previous subsection needs to be gen-
eralized in the practically important case of nonlinear terms on the right-hand
sides of (21). In particular, system models given by żi = λ∗

i · zi + zi+1 + gi(z),
żi+1 = λ∗

i · zi+1 + zi+2 + gi+1(z), . . ., żi+δi−1 = λ∗
i · zi+δi−1 + gi+δi−1(z) with

gi(z), . . . , gi+δi−1(z) : C
n �→ C are considered subsequently. Then, a vector-

valued iteration has to be performed with the convergence condition

[

[λi]
(κ+1) [λi+1]

(κ+1)
. . . [λi+δi−1]

(κ+1)
]T !⊂

[

[λi]
(κ) [λi+1]

(κ)
. . . [λi+δi−1]

(κ)
]T

(23)
and the modified iteration scheme

[λi+j ]
(κ+1) := λ∗

i +

(
δi−1∑

ζ=j+1

tζ−(j+1)

(ζ−(j+1))!zi+ζ(0)

)

·
(
e([λi+j+1]

(κ)−[λi+j ]
(κ))t − 1

)

(
δi−1∑

ζ=j

tζ−j

(ζ−j)!zi+ζ(0)

)

+ g̃i+j

(
[z](κ) (t)

)
(24)

with the nonlinear state-dependent enclosure term

g̃i+j

(
[z](κ) (t)

)
:=

gi+j

(
[z](κ) (t)

)

(
δi−1∑

ζ=j

tζ−i

(ζ−i)!zi+ζ(0)

)

· e[λi+j ]
(κ)t

, zζ(0) ∈ [zζ ] (0), t ∈ [0; T ] .

(25)
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3.3 Simplified Enclosures

The procedure described in Sect. 3.2 can be simplified for systems with small
time constants, especially if −σi 
 ωi holds in (16). Then, it is sufficient to
restrict the analytic expression for the enclosure and its time derivative to the
terms

zi+j = (zi+j(0) + t · zi+j+1(0)) · eλi+jt

żi+j = λi+j (zi+j(0) + t · zi+j+1(0)) · eλi+jt + zi+j+1(0) · eλi+jt, j < δi − 1.
(26)

In analogy to (20) and (22), this leads to the simplified iteration procedure

[λi+j ]
(κ+1) := λ∗

i +
e([λi+j+1]−[λi+j ]

(κ))t − 1
zi+j(0)

zi+j+1(0)
+ t

, zζ(0) ∈ [zζ ] (0), t ∈ [0; T ] , (27)

which typically yields wider interval bounds than the exact representation from
the previous subsections. However, the simplification of the expressions leads to
a reduction of the computational cost in the iteration. This simplified iteration is
equally applicable to both the linear and nonlinear cases studied in this section.

4 Simulation Results

Linear dynamic systems with conjugate complex eigenvalues are a common
model for a large variety of control systems. A real-life application scenario,
namely oscillation damping for flexible high-bay rack feeder systems, was dis-
cussed in [11,12]. This system is characterized by the fact that — after feedback
control design — only asymptotically stable eigenvalues of multiplicity δi = 1
occur. However, many system models in drive trains with elasticities, e.g., series
connections of several identical mass-spring-damper elements or series connec-
tions of electric oscillators have clusters of multiple identical eigenvalues. Trans-
forming these state equations into Jordan canonical form (15) or (16) yields
system models that are similar to the following illustrative application scenario.

Assume that — after transformation into Jordan canonical from (16) — the
benchmark system (δi = 2) is given by the initial conditions and system matrix

z(0) ∈

⎡

⎢
⎢
⎣

〈−5, 0.1〉
〈−4, 0.1〉
〈−5, 0.1〉
〈−4, 0.1〉

⎤

⎥
⎥
⎦ , Σ ∈

⎡

⎢
⎢
⎣

〈λ+〉 1 0 0
0 〈λ+〉 0 0
0 0 〈λ−〉 1
0 0 0 〈λ−〉

⎤

⎥
⎥
⎦ , (28)

with the uncertain eigenvalues 〈λ+〉 = 〈−2 + 3j, 0.1〉 and 〈λ−〉 = 〈−2 − 3j, 0.1〉.
All uncertain initial conditions and eigenvalues are given in the complex-

valued midpoint-radius notation that is, e.g., available in the Matlab tool-
box IntLab [13]. Since the subsystems for eigenvalues with positive and neg-
ative imaginary parts are decoupled, the complete system model can be split
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up into two independent processes for simulation purposes. In the following,
simulation results are only summarized for the state variables z1 and z2 since
they show the same principle behavior as the remaining states z3 and z4.

It can be seen that despite the non-diagonal structure of the matrix Σ,
leading to a one-sided coupling of the state equations, no relevant wrapping effect
occurs and that the asymptotic stability of the dynamic system is preserved in
the computed state enclosures despite the fact that the exact solutions of the
IVP are no longer pure exponential functions as it has been shown in (17).

For practical applications, the state enclosures in Fig. 1 further have to be
transformed back into the original real-valued coordinates x(t) ∈ [x] (t) by left-
multiplying the enclosures [z] (t) with the matrix of eigenvectors that has been
used for the transformation into Jordan canonical form and — subsequently —
taking the real part of the resulting interval boxes. However, this transformation
preserves the presented contraction properties for sufficiently large t > 0.

[z
1]
(t
)}

0
t

0.5 1.0 1.5 2.0 2.5 3.0
−6.0

−4.0

−2.0

0

2.0

(a) Real part of z1(t).
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(b) Imaginary part of z1(t).
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(c) Real part of z2(t).
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(d) Imaginary part of z2(t).

Fig. 1. Guaranteed state enclosures for the illustrative example (28).

5 Conclusions and Outlook on Future Work

In this paper, practically relevant extensions for exponential state enclosure tech-
niques were presented for dynamic systems with both real and conjugate complex
eigenvalues of a multiplicity larger than one. By the proposed extensions it is pos-
sible to compute guaranteed state enclosures for asymptotically stable systems
which converge towards the steady-state operating points despite uncertainties
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and oscillations in the solution. The corresponding complex-valued interval iter-
ation procedure will be included in future work in the design of sensitivity-based
predictive control and path planning procedures [10]. Moreover, an analysis of
the possible step sizes for which the suggested iteration scheme converges will
be performed. It can be expected that the computational effort is significantly
lower than for Taylor series-based approaches, since the computation of Taylor
coefficients can be avoided and only a few evaluations of the functions, describing
the ODEs, are necessary with a suitable initialization of the iteration scheme.
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Curve Veering for the Parameter-dependent
Clamped Plate
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Abstract. The computation of vibrations of a thin rectangular clamped
plate results in an eigenvalue problem with a partial differential equation
of fourth order. If we change the geometry of the plate for fixed area,
this results in a parameter-dependent eigenvalue problem. For certain
parameters, the eigenvalue curves seem to cross. We give a numerically
rigorous proof of curve veering, which is based on the Lehmann-Goerisch
inclusion theorems and the Rayleigh-Ritz procedure.

Keywords: Partial differential equations · Paramenter-dependent
eigenvalue problem · Upper and lower eigenvalue bounds · Interval arith-
metic

1 Parameter-dependent Eigenvalue Problems

Parameter-dependent eigenvalue problems occur in many applications, for exam-
ple in the computation of vibrations of turbine blades [2], in computing sloshing
frequencies of a liquid in a container, in studying molecule geometries, in com-
puting vibrations of free plates [4] or in computing the vibrations of a thin
rectangular clamped plate.

The lattermost problem is described by a partial differential equation of
fourth order:

∂4

∂ x4
ϕ + P

∂4

∂ x2∂ y2
ϕ + Q

∂4

∂ y4
ϕ = λϕ in Ω, (1)

ϕ = 0 and
∂ϕ

∂n
= 0 on ∂Ω,

ϕ(x, y) = ϕ(−x, y) = ϕ(x,−y) in Ω,

here P ,Q ∈ R, P > 0, Q > 0, and Ω = (−a
2 , a

2 ) × (− b
2 , b

2 ) ⊆ R
2. The differential

operator in (1) is self-adjoint and the eigenvalues are positive.
We consider the eigenvalues as functions of s = a/b for F = a b = 4. Here a

and b are the side lengths of Ω. An approximate computation is shown in Fig. 1.
The locations left of #3 and right of #4 are remarkable. It is not clear whether

c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 259–268, 2016.
DOI: 10.1007/978-3-319-31769-4 21



260 H. Behnke

the veering of the eigenvalue curves is an effect introduced by the discretization or
whether the eigenvalues of (1) intersect. (There are further “possible crossings”
#1 and #2 near s = 1.6 and s = 1.3 which are not marked in Fig. 1, since #3
and #4 seem to be more interesting.)

The situation is even more astonishing, if we consider eigenfunctions. Figure 2
shows, that the shape of eigenfunctions is preserved along the eventual “cross-
ings”. In this paper we give a numerically rigorous proof for curve veering at
positions #3 and #4. This paper shows that the resulting algebraic eigenvalue
problems which can be treated successfully, can be considerably larger than in [2].

There are several papers dealing with curve veering for plate problems, but
so far there exists no numerically rigorous proof.

Fig. 1. Eigenvalues λ3, ..., λ9 as functions of s = a/b with F = a b = 4

2 Inclusion Methods

In this section we briefly describe the Rayleigh-Ritz and the Lehmann-Goerisch
methods for computing upper and lower eigenvalue bounds, respectively. For
proofs see [9].

Let (H, (.|.)) be a Hilbert space with inner product (.|.) and norm ||.|| and
V be a densely defined subspace of H. Denote by [.|.] the inner product in V
and let (V, [.|.]) be a Hilbert space (||| . ||| denotes the norm in V ), the embedding
V ↪→ H is assumed to be compact.

Then the eigenvalue problem reads as follows

Determine λ ∈ R and ϕ ∈ V , ϕ �= 0 such that
[ϕ|v] = λ(ϕ|v) for all v ∈ V.

(2)

Problem (2) has a countable spectrum which consists of eigenvalues

0 < λ1 ≤ λ2 ≤ · · · , lim
j→∞

λj = ∞ .
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Fig. 2. Eigenvalues λ4, ..., λ6 and approximate eigenfunctions as functions of s = a/b
with F = a b = 4

The Rayleigh-Ritz procedure is a discretization of the Poincaré principle:

λj = min
E⊂V

dimE=j

max
u∈E
u�=0

[u|u]
(u|u)

, j ∈ N . (3)

Now choose u1, . . . , un ∈ V , n ∈ N , linearly independent, and define

Vn := span(u1, . . . , un) .

A restriction of (3) to Vn instead of V results in

Λ
[n]
1 ≤ Λ

[n]
2 ≤ · · · ≤ Λ[n]

n ,

and the upper bounds
λj ≤ Λ

[n]
j , j = 1, . . . , n .

We call Λ
[n]
j Rayleigh-Ritz bound for λj , the Λ

[n]
j can be computed easily. Define

A0 :=
(
(ui|uk)

)

i,k=1,...,n
,

A1 :=
(
[ui|uk]

)

i,k=1,...,n
,

then the Rayleigh-Ritz bounds are the eigenvalues of

A1x = Λ[n]A0x , (Λ[n], x) ∈ R × R
n .

The Rayleigh-Ritz bounds are monotonously decreasing in n ∈ N.
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The Lehmann-Goerisch procedure can be interpreted as discretization of a
variational principle as well. Let ρ ∈ R be a spectral parameter, for a N ∈ N, let

λN < ρ < λN+1 . (4)

Let
λN+1−i = ρ +

1
σi

, i = 1, . . . , N .

We assume σi < 0.
For u ∈ V , let wu ∈ H be the unique solution of

[u|v] = (wu|v) for all v ∈ V ,

then σi is characterized by

σi = inf
E⊂V

dimE=i

max
u∈E
u�=0

[u|u] − ρ(u|u)
(wu|wu) − 2ρ[u|u] + ρ2(u, u)

, i = 1, . . . , N . (5)

A negative upper bound for σi yields a lower bound for λN+1−i. For a discretiza-
tion of (5) determine w1, . . . , wn ∈ H such that

[ui|v] = (wi|v) for all v ∈ V .

Let
A2 :=

(
(wi|wk)

)

i,k=1,...,n
,

(
A1 − ρA0

)
x = τ

(
A2 − 2ρA1 + ρ2A0

)
x , (τ, x) ∈ R × R

n . (6)

If the condition Λ
[n]
N < ρ holds true for some n ∈ N, (6) has exactly N

negative eigenvalues

τ1 ≤ τ2 ≤ . . . ≤ τN < 0 ≤ . . . ≤ τn .

We have (σi ≤ τi, i = 1, . . . , N)

Λ
ρ[n]
j := ρ +

1
τN+1−j

≤ λj , j = 1, . . . , N .

This discretization is the Lehmann-Goerisch procedure. We call Λ
ρ[n]
j

Lehmann-Goerisch bound for λj .

3 Application to the Plate Problem

In order to apply the inclusion theorems to (1), we define

H := {u ∈ L2(Ω) | u(x, y) = u(−x, y) = u(x,−y), (x, y) ∈ Ω},

V := {u ∈ H2
0 (Ω) | u(x, y) = u(−x, y) = u(x,−y), (x, y) ∈ Ω},

(f |g) :=
∫

Ω

f g dΩ for f, g ∈ H,

[f |g] :=
∫

Ω

(
∂2f

∂x2

∂2g

∂x2
+ P

∂2f

∂x2

∂2g

∂y2
+ Q

∂2f

∂y2

∂2g

∂y2

)

dΩ for f, g ∈ V.
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The eigenvalue problem reads as follows:
Determine λ(s) ∈ R, φ ∈ V such that

[f |φ] = λ(s) (f |φ) for all f ∈ V.

Let ui ∈ V ∩ C4(Ω) and

M f :=
∂4

∂ x4
f + P

∂4

∂ x2∂ y2
f + Q

∂4

∂ y4
f ,

now define
wi ∈ H by wi := M ui .

Then
[f |ui] = (f |wi) for all f ∈ V.

Define

f̃i(x) :=
(

a2

4
− x2

)(i+1)

, g̃j(y) :=
(

b2

4
− y2

)(j+1)

, i, j ∈ N,

ũi,j(x, y) := f̃i(x) g̃j(y) i, j ∈ N.

The polynomials ũi,j satisfy the boundary and symmetry conditions, i.e.
ũi,j ∈ V .

To avoid the well known numerical problems with ill-conditioned matrices
(see e.g. [5]), we construct orthogonal polynomials fi and gj from the f̃i and g̃j

using the Gram-Schmidt process and a computer algebra system (for example
Mathematica [8] ). Then we define

ui,j(x, y) := fi(x)gj(y) for i, j ∈ N.

In order to determine ρ (see (4)), we need rough lower eigenvalue bounds (the
Rayleigh-Ritz procedure yields upper bounds). These can be obtained from the
eigenvalues of the problem

∂4

∂ x4
ϕ + Q

∂4

∂ y4
ϕ = λϕ in Ω,

ϕ = 0 and
∂ϕ

∂n
= 0 on ∂Ω,

ϕ(x, y) = ϕ(−x, y) = ϕ(x,−y) in Ω,

which can be solved in closed form by separation of variables. If these rough
bounds are too crude, a homotopy-method can be used ([3,7]). Using the
described methods and interval arithmetic, verified bounds for eigenvalues of
(1) for fixed s can be obtained, see Table 1. The results have been obtained using
PROFIL/BIAS, see [6].
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Table 1. Bounds for eigenvalues of the orthotropic plate, λi ∈ [inf[ΛLG
i ], sup[ΛRR

i ]]

P = 2 , Q = 2 , F = 4 , s = 1 , ρ = 30404.9542

λi n = 66 n = 136 n = 210

1 112.34380300370
29815764 E ± 0 112.3438024882

48900881 E ± 0 112.34380248479
51494059 E ± 0

2 1.1217536545890
047907552 E + 3 1.1217536102349

451413903 E + 3 1.1217536090521
49228742 E + 4

3 2.000984490746
895785651 E + 3 2.000984420846

68829397 E + 3 2.000984418602
79054004 E + 3

4 3.945291688717
3268707890 E + 3 3.945290445259

4883713625 E + 3 3.94529039462
02810079 E + 3

5 6.010039214042
0911402918 E + 3 6.01003872475

09841992629 E + 3 6.01003870327
0999971107 E + 3

6 1.0613069606701
59334754544 E + 4 1.0613062508540

0821906680 E + 4 1.061306213463
214563549 E + 4

7 1.154007769061
377723907 E + 4 1.154007687367

3951000071 E + 4 1.154007683119
399698021 E + 4

8 1.5244047455105
087332590 E + 4 1.5244038538533

348240199 E + 4 1.5244038028899
224606136 E + 4

9 2.0032337136971
176596685 E + 4 2.003233489129

287182259 E + 4 2.00323347626
16212849 E + 4

10 2.534703260448747927946537 E + 4 2.534699761186
199957246 E + 4 2.534699534913

167375697 E + 4

11 2.72331104512796757640428 E + 4 2.723308076912
074138273 E + 4 2.723307897462

195766257 E + 4

4 The Parameter-dependent Problem

4.1 Temple Quotients

In order to prove the curve veering for an interval [α, β], we need to calculate
verified bounds for λi(s) of the form

qi(s) − ε ≤ λi(s) ≤ qi(s) + ε for all s ∈ [α, β],

for ε small and qi “simple” explicitly known functions. Since the application of
the inclusion theorems to parameter-dependent eigenvalue problems results in
parameter-dependent matrices A0, A1 and A2, this can be achieved by treating
parameter-dependent matrix eigenvalue problems [1].

For this aim consider the matrix eigenvalue problem

Ax = Λ B x,

for A,B ∈ R
n×n, A = AT , B = BT , B positive definite. Let ρ ∈ R, u ∈ R

n,
u �= 0 and v = B−1Au. Define

a0,A,B := uT B u ,

a1,A,B := uT A u ,

a2,A,B := vT B v .

For a1,A,B − ρa0,A,B �= 0, define the Temple Quotient

τA,B(ρ) :=
a2,A,B − ρa1,A,B

a1,A,B − ρa0,A,B
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and
τA,B(±∞) :=

a1,A,B

a0,A,B
.

Then the interval
{

(ρ, τA,B(ρ)] if ρ < τA,B(ρ)
[τA,B(ρ), ρ) if τA,B(ρ) < ρ

contains at least one eigenvalue of the eigenvalue problem Ax = Λ B x. (The
case ρ = τA,B(ρ) can not happen, since ρ = τA,B(ρ) implies v = ρ u and this
results in a1,A,B − ρa0,A,B = 0.)

These enclosures will be applied to parameter-dependent matrices, hence v
and a2,A,B are not known exactly. Thus we mention, that the statement remains
valid if a2,A,B is replaced by an upper bound [2]

a2,A,B ≤ ã2,A,B .

Let c ∈ R, 0 < c ≤ Λmin(B), ṽ ∈ R
n.

Then [1] or [3]

a2,A,B = vT B v

≤ ṽT Au − ṽT (B ṽ − Au)

+
1
c
(B ṽ − Au)T (B ṽ − Au)

=: ã2,A,B .

In the applications we choose

ṽ ≈ B−1Au .

Based on Temple-Quotients, an easy procedure for computing upper eigen-
value bounds for

Λ1 < Λ2 < . . . < Λn

can be constructed:

Procedure for upper bounds:

1. Calculate 0 < c ≤ Λmin(B)
2. Let ρ := −∞ and i := 1.
3. Choose an appropriate u ∈ R

n, let v ≈ B−1Au and
calculate τA,B(ρ) using ã2,A,B .

4. If τA,B(ρ) ≤ ρ then break down.
5. Set the interval Λi to (ρ, τA,B(ρ)].
6. If i < n let ρ := τA,B(ρ) and i := i + 1, goto 3.
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If this procedure does not break down:

Λi ∈ Λi for i = 1, . . . , n.

In general the bound
Λi ≤ max(Λi)

is very sharp, if
u = x̃i,

where x̃i is an approximate eigenvector for Λi.
The computation of sharp lower eigenvalue bounds can be done similarily:

Start the procedure with ρ = +∞ and i = n.

4.2 Application to Parameter-dependent Matrices

If A(s) and B(s) are parameter-dependent matrices, then a0,A,B , a1,A,B and
ã2,A,B depend on s. Thus, (τA,B(ρ))(s) is also a real function.

If in the i-th step bounds for Λi are to be calculated, we determine an approx-
imation polynomial qi for Λi in [α, β] and define

Hi(s) := A(s) − qi(s)B(s) .

The eigenvalues of
Hi(s) x(s) = ΛHi

(s) B(s) x(s)

and
A(s) x(s) = Λ(s) B(s) x(s)

are closely related. Indeed, we have

Λj,Hi
(s) = Λj(s) − qi(s) ,

and
Λi,Hi

≈ 0 in [α, β] .

Now we compute τHi,B(ρ − qi) and determine bounds for the range of
τHi,B(ρ − qi).

The elements of this range are close to zero if the approximation polynomial
is good:

−εi ≤ { (τHi,B(ρ − qi))(s) | s ∈ [α, β] } ≤ εi

This results in the bounds

qi(s) − εi ≤ Λi(s) ≤ qi(s) + εi for all s ∈ [α, β] .
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5 Results

Now we can apply the theory to the clamped plate problem. For the upper
bounds we compute upper bounds for the eigenvalues of (1) with the Rayleigh-
Ritz procedure and upper bound for the eigenvalues of the resulting parameter-
dependent matrix eigenvalue problem. For the lower bounds we apply the
Lehmann-Goerisch method to (1) and compute lower bounds to the eigenval-
ues of the resulting parameter-dependent matrix eigenvalue problem. Since the

Fig. 3. Bounds for eigenvalues λ4 and λ5 near #3

Table 2. Bounds for eigenvalues λ4 and λ5 near #3

Parameter-interval s2 ∈ [5.01, 5.03], i.e. s ∈ [2.23, 2.24]; location #3

i c0 c1 c2 εi

4 −1.1728135 E + 6 4.6910569 E + 5 −4.6720581 E + 4 1.7336

5 1.1851818 E + 6 −4.7045191 E + 5 4.6872968 E + 4 1.1327

n=128; ρ = 20000

Fig. 4. Bounds for eigenvalues λ5 and λ6 near #4
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Table 3. Bounds for eigenvalues λ5 and λ6 near #4

Parameter-interval s2 ∈ [4.29, 4.33], i.e. s ∈ [2.07, 2.09]; location #4

i c0 c1 c2 εi

5 −4.5180060 E + 5 2.1221805 E + 5 −2.4630601 E + 4 0.95431

6 4.6776638 E + 5 −2.1453928 E + 5 2.4883714 E + 4 1.2748

n=400; ρ = 12800

matrices depend on s2, the resulting approximation polynomial is a polyno-
mial in s2. The coefficients and εi = max(εi, εi) are given in Tables 2 and 3.
Figures 3 and 4 show the results. Thus it is rigorously proved that no crossing
of the eigenvalue curves occurs.

The author thanks the referees for their valuable advice.
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Abstract. We propose a numerical method with the nonconforming P1

FEM to verify the existence of solutions to an elliptic boundary value
problem. Formulating the boundary value problem as a fixed-point prob-
lem on the sum space of the nonconforming P1 finite element space with
the Sobolev space of 1st order with zero Dirichlet condition, we construct
the numerical verification method based on the Schauder fixed-point the-
orem. We show a constructive inequality for a boundary integral that
appears due to the discontinuity of a nonconforming P1 finite element
function. Finally, we present a numerical example to show our proposed
method works well.

Keywords: Nakao’s method · Numerical verification · Elliptic bound-
ary value problem · Nonconforming P1 finite element

1 Introduction

A finite element method (FEM), which is based on piecewise polynomial approx-
imation, is widely used to solve partial differencial equations numerically. In a
certain boundary value problem (BVP), when we use a lower-order conforming
FEM, the numerical solution converges to the exact solution slowly, which is
known as a locking effect [1]. To avoid the locking effect for such a BVP, it is
known that a certain nonconforming FEM is helpful. For example, Lee et al. [5]
proposed an optimal and robust nonconforming FEM for the planar linear elas-
ticity problem.

In 1988, M. T. Nakao [7] developed a method based on a FEM to verify
the existence of solutions to an elliptic BVP. Nakao’s method is useful not only
in verifying the existence of solutions mathematically but also in estimating an
a-posteriori error for a numerical solution to the BVP. Nakao’s theory implic-
itly assumed the finite element (FE) space to be conforming in order to deduce
verification conditions [7]. Especially it relies on continuity of a conforming FE
function, whereas a nonconforming FE function is discontinuous in general. There-
fore, it is not obvious how to apply Nakao’s method to a nonconforming FEM.

c© Springer International Publishing Switzerland 2016
M. Nehmeier et al. (Eds.): SCAN 2014, LNCS 9553, pp. 269–279, 2016.
DOI: 10.1007/978-3-319-31769-4 22
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Thus, in this paper, we generalize Nakao’s method for the nonconforming P1 FEM,
where P1 means piecewise linear approximation over a triangulation.

The structure of the paper is given as follows. In Sect. 2 we introduce the
notations for several function spaces. Section 3 is the main part of the paper. In
Sect. 3.1 we show some basic facts about the nonconforming P1 FEM. In Sect. 3.2
we formulate a BVP as a fixed-point problem in order to apply the Schauder
fixed-point theorem. In Sects. 3.3, 3.4 and 3.5 we derive sufficient conditions for
applying the Schauder fixed-point problem. In Sect. 3.6 we show a constructive
inequality for a boundary integral arising due to the discontinuity of the non-
conforming P1 FE function. A numerical test is presented in Sect. 4 and finally
in Sect. 5 we summarize our proposed method.

2 Preliminaries

For a bounded open convex polygon Ω � R2, L2(Ω) and Hk(Ω) (k = 1, 2)
denote the set of all R-valued square-integrable functions and the Sobolev space
of order k, respectively. Each function v ∈ L2(Ω) belongs to Hk(Ω) if and
only if the distributional derivative ∂αv belongs to L2(Ω) for all multi-indices
|α| ≤ k. H1

0 (Ω) is the subspace of H1(Ω) endowed with zero Dirichlet boundary
conditions. Namely, H1

0 (Ω) :=
{
v ∈ H1(Ω) | v = 0 on ∂Ω

}
. L2(Ω) is equipped

with the standard inner product ( · , · )L2 and the standard norm ‖ · ‖L2 . Sim-
ilarly, Hk(Ω) is equipped with the standard norm ‖ · ‖Hk . Especially, the H2

seminorm and the H2 norm are defined as follows.

|u|2H2(Ω) :=
2∑

i,j=1

∥
∥∂xi

∂xj
u
∥
∥2

L2(Ω)
(u ∈ H2(Ω) ) ,

‖u‖2H2(Ω) := ‖u‖2L2(Ω) + ‖∇u‖2L2(Ω) + |u|2H2(Ω) (u ∈ H2(Ω) ) .

In what follows, we omit the domain Ω in these notations unless otherwise stated.
We sometimes use the following Proposition 1 in estimating the norm

‖� · ‖L2 where � := ∂2
x1

+∂2
x2

denotes the Laplace operator � : H2 ∩H1
0 → L2.

See Theorem 4.3.1.4 of [4].

Proposition 1. |u|H2(Ω) = ‖� u‖L2(Ω) holds for all u ∈ H2(Ω) ∩ H1
0 (Ω).

3 Nakao’s Method with Nonconforming P1 FEM

We consider the following (nonlinear) elliptic boundary value problem.

Problem 1 (Elliptic BVP). For given f : H1 → L2, find u ∈ H2(Ω) such that
{

−�u = f(u) in Ω ,

u = 0 on ∂Ω .
(1)
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A nonlinear BVP is also considered in our formulation, but in Sect. 4 we give a
numerical test only for the linear case.

Since the Laplace operator � endowed with zero Dirichlet boundary con-
dition is invertible, we define the inverted operator �−1 from L2 to H2 ∩ H1

0 .
Thus, the BVP (1) is reforumulated as the fixed-point problem on H1

0 .

Problem 2 (Fixed-point Problem). For given f : H1
0 → L2, find u ∈ H1

0 such
that

u = −�−1 f(u) . (2)

In order to apply the Schauder fixed-point theorem to the fixed-point problem
(2), M. T. Nakao [7] assumed that the map f satisfies the following property.

Assumption 1. The map f : H1
0 → L2 is continuous and bounded where H1

0

is equipped with the inner product (∇· ,∇· )L2 . That is to say, for any bounded
subset U in H1

0 , the image f(U) is also bounded in L2.

3.1 Nonconforming P1 Finite Elements

Let (Th)h>0 be a regular family of triangulations of the domain Ω. Here, the
subscript h denotes the mesh size of the triangulation Th. We denote by ei

(i = 1, . . . , Nh) a side of each triangle T ∈ Th. Here Nh denotes the number of
all sides ei. Let Nh0 be the number of all internal sides ei and we suppose that
each ei is numbered so that ei 	⊆ ∂Ω holds for i = 1, . . . , Nh0 and ei � ∂Ω for
i = Nh0 + 1, . . . , Nh. For each side ei (i = 1, . . . , Nh), let Mi be the midpoint of
ei. Define by Xh0 the nonconforming P1 FE space over Th:

Xh0 :=

⎧
⎨

⎩
ϕ ∈ L2

∣
∣
∣
∣
∣
∣

ϕ is piecewise linear over the triangulation Th,
continuous on each midpoint Mi for i = 1, . . . , Nh

and ϕ(Mi) = 0 for Nh0 < i ≤ Nh

⎫
⎬

⎭
.

We call ϕ ∈ Xh0 a nonconforming P1 FE function. We denote by {ϕi}Nh0
i=1 � Xh0

the basis functions of Xh0 with ϕj(Mi) = δij for i, j = 1, . . . , Nh0, where δij is
the Kronecker delta.

Remark 1. Xh0 is not a subspace of H1
0 because ϕ ∈ Xh0 is discontinuous on

some edges ei in general. Each ϕ vanishes only on all the boundary midpoints
{Mi | i > Nh0}, and thus ϕ does not satify zero Dirichlet boundary condition
exactly.

We introduce an inner product and a norm for u, v ∈ Xh0 + H1
0 (Ω) as follows.

(u, v)h :=
∑

T∈Th

(∇u,∇v)L2(T ) , ‖u‖2h := (u, u)h .
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Note that, if u, v ∈ H1
0 (Ω), this inner product (u, v)h coincides with (∇u,∇v)L2 .

It is well-known that (Xh0 + H1
0 , ( · , · )h) is a Hilbert space. For details, see

Theorem 4.2.4 of [2].
We now define the nonconforming P1 interpolator Πnc

h : H1
0 → Xh0 so that

∫

ei

u ds =
∫

ei

(Πnc
h u)|T ds (3)

holds for all functions u ∈ H1
0 , each side ei (i = 1, . . . , Nh0) and each associated

triangle T ∈ Th with ei � ∂T . Equation (3) uniquely determines the FE function
Πnc

h u ∈ Xh0 and Πnc
h is thus well-defined. A constructive error estimate for the

nonconforming P1 interpolator Πnc
h has been given by Liu [6].

Proposition 2 (Liu ’09). Let CP(Th) be the maximum of the optimal Poincaré
constant on T ∈ Th that is,

CP(Th) := max
T∈Th

sup

{
‖v − v‖L2

‖∇v‖L2

∣
∣
∣
∣
∣
v ∈ H1(T ) \ {0} , v :=

1
|T |

∫

T

v dx dy

}

.

Then, for all u ∈ H2(Ω) ∩ H1
0 (Ω), the following inequality holds.

‖u − Πnc
h u‖h ≤ CP(Th) |u|H2 .

Note that the optimal Poincaré constant on T is O(diam(T )) where
diam(T ) := supx,y∈T |x − y| is the diameter of T , from which it follows CP(Th) =
O(h). We can see an exact value of CP(Th) in [6].

In fact, Πnc
h coincides with the orthogonal projection Ph from Xh0+H1

0 onto
Xh0. Let u ∈ Xh0 + H1

0 . Owing to Gauss-Green Theorem and (3), we have

(u − Πnc
h u, ϕi)h =

∑

T

[

−(u − Πnc
h u,� ϕi)L2 +

∫

∂T

(u − Πnc
h u)

∂ϕi

∂ν
ds

]

= 0 ,

where ν denotes the outward unit normal vector on ∂T . Since this holds for all
basis functions ϕi, we obtain Ph = Πnc

h . The orthogonal space of Xh0 in the
Hilbert space (Xh0 + H1

0 , ( · , · )h) is represented by X⊥
h0 := (I − Ph)

(
H1

0

)
.

3.2 Extended Problem

In Nakao’s theory, the conforming P1 FE space, which is a subspace of H1
0 (Ω),

plays an important role in verifying the existence of solutions to (2). However,
the theory is not applicable directly to the fixed-point problem with the non-
conforming P1 FE space Xh0, since it is not a subspace of H1

0 . We thus consider
the following extended fixed-point problem on the sum space Xh0 + H1

0 (Ω) for
fixed h > 0 under the following Assumption 2.

Assumption 2. There exists a continuous and bounded map fh : Xh0+H1
0 →

L2 such that fh is an extended map of f , that is, fh|H1
0

= f .
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Problem 3 (Extended Fixed-point Problem). Find u ∈ Xh0 + H1
0 such that

u = −�−1 fh(u) ≡ F(u) . (4)

Remark 2. If f is of the form f(u) = g(u,∇u) with a continuous map g : R3 →
R, then we always have the natural extended map fh satisfying Assumption 2.
For this, we just replace ∇u by ∇hu where ∇h denotes the discrete differen-
cial operator ∇h : Xh0 + H1

0 → L2 with the property (∇hu)|T = ∇(u|T ) for
any T ∈ Th.

Remark 3. This extended fixed-point problem (4) is equivalent to (2), because,
if there exists a solution u ∈ Xh0+H1

0 to (4), u is an element of D(�) = H2∩H1
0

and thus (2) holds owing to Assumption 2.

Remark 4. The Schauder fixed-point theorem states that if U is a nonempty
bounded closed convex subset of a Banach space X and F : U → U is a
continuous compact map, then F has a fixed point. In (4), F = −�−1 fh :
Xh0 + H1

0 → Xh0 + H1
0 is a compact map, which is the assumption of the

Schauder fixed-point theorem. Thus, in order to show the existence of a fixed-
point to (4), it is sufficient to prove that there exists a certain bounded, convex
and closed subset U � Xh0 + H1

0 that includes its image F(U).

3.3 Candidate Set

In validated numerical computations, one needs to introduce a computable set in
order to derive sufficient conditions that satisfy the assumption of the Schauder
fixed-point thorem. Let IR denote the set of all bounded closed intervals in
R, that is, IR := {[x, x] | x, x ∈ R , x ≤ x}. We identify an interval vector x =
(x i)N

i=1 ∈ IRN with a closed set
∏N

i=1 x i � RN . In this paper, letters denoting
an interval and an interval vector are boldface.

Definition 1 (Candidate Set). For uh ∈ Xh0, v ∈ IRNh0 and α > 0, define
a bounded, convex and closed subset U = uh + Uh + U∗ � Xh0 + H1

0 such that

Uh =

{
Nh0∑

i=1

uiϕi

∣
∣
∣
∣
∣

(ui) ∈ D−1v

}

, U∗ =
{
u∗ ∈ X⊥

h0|‖u∗‖h ≤ α
}

, (5)

where Dij := (ϕj , ϕi)h is the Nh0 × Nh0 matrix. We call U a candidate set.

We usually take a numerical solution obtained by nonconforming P1 FEM as uh.
Then, the candidate set U is a closed neighborhood of the approximate solution
in which we expect the existence of the exact solution. On the other hand, v and
α are iteration parameters in our method. We practically choose them sufficiently
small at the first iteration.

Using the orthogonal decomposition of Xh0 + H1
0 , we get the following two

sufficient conditions for the existence of a fixed-point (recall Ramark 4).
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(I − Ph)F(U) ⊆ U∗ , (A)
PhF(U) ⊆ uh + Uh . (B)

Note that (A) and (B) are inclusion relations in the infinite dimensional space
X⊥

h0 and the finite dimensional space Xh0, respectively. Since it is not possible
to verify these conditions directly in computers, we derive computable sufficient
conditions instead of the conditions (A) and (B).

3.4 Sufficient Condition for Infinite-Dimensional Part

The following theorem gives a sufficient condition for (A), which allows us to
verify (A) numerically rigorously in computers.

Theorem 1 (Sufficient Condition for (A)). The condition (A) holds, if

CP(Th) sup
u∈U

‖fh(u)‖L2 ≤ α . (6)

We can prove Theorem 1 in the same way as in [7].

Proof. Assume CP(Th) supu∈U‖fh(u)‖L2 ≤ α. Let u be an arbitrary element
of U . Then, owing to Propositions 1 and 2 and the assumption, we have

‖(I − Ph)F(u)‖h =
∥
∥(I − Πnc

h )�−1 fh(u)
∥
∥

h

≤ CP(Th)
∣
∣�−1 fh(u)

∣
∣
H2 = CP(Th) ‖fh(u)‖L2 ≤ α .

Consequently, (I − Ph)F(u) ∈ U∗ holds. �
Since CP(Th) = O(h), we expect that the inequality (6) holds for a sufficiently
small mesh size h.

3.5 Sufficient Condition for Finite-Dimensional Part

We define by Ki the support of ϕi. Using the integration by parts, we have, for
each ϕi and all v ∈ H2(Ω),

∫

Ki

(� v)ϕi dx dy =
∫

∂Ki

∂v

∂ν
ϕi ds −

∑

T∈Th ,T�Ki

∫

T

∇v · ∇ ϕi|T dx dy . (7)

Note that, in general, the boundary integral in the right hand side of (7) does
not vanish, since ϕi is discontinuous on ∂Ki. We thus define a continuous linear
operator b( · ;ϕi) : H2 ∩ H1

0 → R by

b(v;ϕi) :=
∫

∂Ki

∂v

∂ν
ϕi ds ,

with which we can rewrite (7) as follows.

(� v, ϕi)L2 = b(v;ϕi) − (v, ϕi)h . (8)

Now the following theorem yields a computable sufficient condition for (B).
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Theorem 2 (Sufficient Condition for (B)). Take an interval vector
d := (di) ∈ IRNh0 such that

{
(fh(u), ϕi)L2 − (uh, ϕi)h − b

(�−1 fh(u) ;ϕi

) ∣
∣ u ∈ U

} ⊆ di , (9)

for each i = 1, . . . , Nh0. Then, the condition (B) holds, if

d ⊆ v . (10)

We also prove Theorem 2 in the same way as is done in [7], but owing to the
discontinuity of ϕi, the formula (9) is slightly different from the one in [7]. We
remark that the sufficient condition (10) and the one in [7] are also different,
because the finite-dimensional part (5) in our candidate set is modified from the
original one.

Proof. Assume d ⊆ v . Let u be an arbitrary element of the candidate set U .
Then, by the definition of Ph, we get −Ph �−1 f(u) = uh+vh for some vh ∈ Xh0.
It is sufficient to show vh ∈ Uh for any u ∈ U . We set by v := (vi) the coefficient
vector of vh, that is, vh =

∑Nh0
i=1 viϕi. Then, owing to (8) and (9), we have

(vh, ϕi)h =
(−Ph �−1 f(u) − uh, ϕi

)

h
=

(−�−1 f(u), ϕi

)

h
− (uh, ϕi)h

= (f(u), ϕi)L2 − b
(�−1 f(u) ;ϕi

) − (uh, ϕi)h ∈ d i ,

which means Dv ∈ d holds. Therefore, it follows from the assumption that
Dv ∈ vh. Consequently, owing to (5), we conclude vh ∈ Uh. �

3.6 Estimates for Boundary Integrals

In (9), we have the boundary integral term b(w;ϕi) with w := �−1 fh(u). Hence,
we still have a difficulty in computing the left hand side of (9) on computers
rigorously, since the condition (9) contains the term b

(�−1 fh(u) ;ϕi

)
with the

inverse operator �−1. Instead, we get O(h) estimates for |b(w;ϕi)| so that we
can replace the set {b(w;ϕi)} with an interval of O(h) width.

Lemma 1 (Dupont et al. ’79). Let K be a convex polygon in R2. Denote by
P1(K) the set of all polynomial functions on K of at most 1st degree. Define the
optimal Poincaré constant CP(K) as follows.

CP(K) := sup

{
‖w‖L2

‖∇w‖L2

∣
∣
∣
∣
∣

w ∈ H1(K) \ {0} ,

∫

K

w dx dy = 0

}

.

Then, there exists a positive constant CBH(K) such that, for every w ∈ H2(K),

inf
p∈P1(K)

‖w + p‖H2(K) ≤ CBH(K) |w|H2(K) . (11)
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Inequality (11) is well-known as Bramble-Hilbert Lemma, but the constructive
proof for Lemma 1 has been given by Dupont et al. [3, ’79].

For simplicity, we consider the case Ω := (0, 1)2 and the triangulation Th

as shown in Fig. 1. (a). We divide the interval (0, 1) into N sections both in
x-axis and in y-axis. We assume for h = 1/N . With this triangulation Th,
the support Ki of ϕi is similar to either a rectangle K̂0 := [0, 1]2 or a paral-
lelogram K̂1 := {0 ≤ x + y ≤ 1 , 0 ≤ y ≤ 1}. See Figs. 1. (b) and (c). We intro-
duce an affine map Φi : Ki

1:1−→ K̂k(i) that induces the change of variable
(x̂, ŷ) = Φi(x, y). Here, we choose k(i) as 0 or 1 so that Ki and K̂k(i) are similar
to each other. Let ŵ := w ◦ Φ−1

i ∈ H2
(
K̂k(i)

)
and ϕ̂k(i) :=ϕi ◦ Φ−1

i ∈ H1
(
K̂k(i)

)
.

Since the basis function ϕ̂k depends only on k and not on i, we omit i and denote
k = k(i) later.

By using the change of variable Φi, we can rewrite the boundary integral
term b(w;ϕi) as follows.

b(w;ϕi) =
∫

∂Ki

∂w

∂ν
ϕi ds =

∫

∂K̂k

∂ŵ

∂ν̂
ϕ̂k dŝ =: βk(ŵ) ,

where βk : H2(K̂k) → R becomes a continuous linear operator on H2(K̂k). Now,
we prove the following constructive estimate for the boundary integral term.

Theorem 3. For all w ∈ H2(Ω) ∩ H1
0 (Ω), the following inequality holds.

|b(w;ϕi)| ≤ CBH(K̂k) h
√

2‖ϕ̂k‖H1(K̂k)
‖�w‖L2(Ω) .

Proof. First, we evaluate the operator norm of βk. Owing to Gauss-Green the-
orem, Cauchy-Schwarz inequality and Proposition 1, we have

|βk(ŵ)| =
∣
∣
∣
∣

∫

∂K̂k

∂ŵ

∂ν̂
ϕ̂k dŝ

∣
∣
∣
∣ =

∣
∣
∣
∣

∫

K̂k

∇ŵ · ∇ϕ̂k dx̂ dŷ +
∫

K̂k

(� ŵ)ϕ̂k dx̂ dŷ

∣
∣
∣
∣

≤ ‖∇ŵ‖L2 ‖∇ϕ̂k‖L2 + ‖� ŵ‖L2 ‖ϕ̂k‖L2

≤
[
(‖∇ŵ‖2L2 + ‖� ŵ‖2L2)(‖∇ϕ̂k‖2L2 + ‖ϕ̂k‖2L2)

]1/2

≤
√

2‖ŵ‖H2(K̂k)
‖ϕ̂k‖H1(K̂k)

.
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Hence, we get the following inequality for the operator norm of βk.

‖βk‖ ≤
√

2‖ϕ̂k‖H1(K̂k)
. (12)

Second, we apply Bramble-Hilbert Lemma 1 to ŵ. Take a polynomial function
p ∈ P1(K̂k) arbitrarily. Then, βk(p) = 0 holds, because the normal derivative of
p is constant and ϕ̂k is linear on each side of the quadrilateral ∂K̂k. Thus, owing
to Lemma 1, we have

|βk(ŵ)| = inf
p∈P1(K̂k)

|βk(ŵ − p)| ≤ inf
p∈P1(K̂k)

‖βk‖ ‖ŵ − p‖H2

≤ CBH(K̂k) ‖βk‖ |ŵ|H2(K̂k)
≤ CBH(K̂k) ‖βk‖ h|w|H2(Ω) . (13)

At last, applying Proposition 1 and combining inequalities (12) and (13), we
complete the proof. �

4 Numerical Results

We show a numerical result to confirm our proposed verification method works
well. Let f : H1

0 → L2 be the following map.

f(u) := 0.001π2u + 1.999 sin(πx) sin(πy) . (14)

Then, u = π−2 sin(πx) sin(πy) is a solution to (1). The function f satisfies
Assumption 1. Furthermore, we extend the domain of definition of f to Xh0 +H1

0

with the same definition (14). Thus, f also satisfies Assumption 2. Note that inter-
val arithmetic allows us to deal with parametric uncertainty of a PDE, which is
discussed by Nakao [7]. We omit the detail since our case is similar to [7].

Table 1. Numerical verification by Nakao’s method with mesh size h = 1/8

# of iterations Candidate set U Another candidate set V V ⊆ U

maxi |v i| α maxi |d i| β

1 0.00525252 0.1 0.0132067 0.123234

2 0.013867 0.173234 0.013209 0.123246 OK

Table 2. Numerical verification by proposed method with mesh size h = 1/8

# of iterations Candidate set U Another candidate set V V ⊆ U

maxi |v i| α maxi |d i| β

1 0.00101012 0.02 0.89045 0.0795599

2 0.899354 0.0895599 0.91856 0.0820849

3 0.927745 0.0920849 0.919445 0.0821645 OK
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We show numerical results by Nakao’s method and by our proposed method
in Tables 1 and 2, respectively. The 2nd and 3rd columns are the size of the
candidate set U . Here |v i| denotes max {|x| | x ∈ v i}. The 4th and 5th columns
represent another candidate set V where d i (resp. β) is computed by L.H.S. of
(9) (resp. (6)). The 6th column verifies (6) and (10). We consider maxi|v i| and
α as a-posteriori errors for an FE approximate solution uh, that is, these values
in the last row represent the difference between the numerical solution and the
exact solution. We see the a-posteriori error maxi|v i| in Table 2 is larger than
one in Table 1. This is because the boundary integral term b( · ;ϕi) is enclosed
by an interval with a relatively large width in proposed method. In Fig. 2, we
also show asymptotic behaviors of the a-posteriori errors by proposed method
as the mesh size h tends to 0. We observe both maxi|v i| and α decrease in O(h).

5 Summary

We successfully generalize Nakao’s method for the nonconforming P1 FEM. The
key idea is formulating the BVP as a fixed-point problem on Xh0 + H1

0 (Ω).
Owing to the discontinuity of the nonconforming P1 FE function ϕi, a boundary
integral term b( · ;ϕi) arises in our verification conditions, which makes it difficult
to obtain a candidate set numerically satisfying the assumption of the Schauder
fixed-point theorem. In order to resolve this difficulty, we get an O(h) estimate
for b( · ;ϕi) and thus we replace the boundary integral term with an interval of
O(h) width. Finally, we show a numerical test to confirm that our verification
method works well.

There are several future works related to our result. A numerical verification
for the planar linear elasticity problem (or other elliptic BVPs from engineering),
which may cause a locking effect, should be considered so that we compare a-
posteriori errors by Nakao’s method and by our method. In order for this, a
possible extension of our result is, for example, using the FEs proposed by Lee
et al. [5]. There is a disadvantage in our method which should be improved
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in future that the boundary integral term is enclosed by an interval with a
relatively large width. Thus, other verification approaches than [7] also should
be considered.
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13. Krämer, W.: Mehrfachgenaue reelle und intervallmäßige staggered-correction
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Z. Angew. Math. Mech. 69(4), t44–t47 (1989)
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schätzungen. Bericht 5/1997, Forschungsschwerpunkt Computerarithmetik, Inter-
vallrechnung und Numerische Algorithmen mit Ergebnisverifikation (CAVN),
Karlsruhe, Germany (1997)
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51. Krämer, W.: Automatisierte a-priori-Fehlerabschätzung bei gleitkommamäßiger
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55. Bräuer, M., Krämer, W.: Rückwärtsmethode zur automatischen Berechnung von
worst-case Fehlerschranken. Bericht 3/1999, Forschungsschwerpunkt Computer-
arithmetik, Intervallrechnung und Numerische Algorithmen mit Ergebnisverifika-
tion (CAVN), Karlsruhe, Germany (1999)
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58. Krämer, W.: Gleichmäßige (Rundungs-)Fehlerschranken für Gleitkommaalgorith-
men über Datenbereichen. Z. angew. Math. Mech. 79(Suppl 1), 245–246 (1999)
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67. Krämer, W., Bantle, A.: Automatic forward error analysis for floating point algo-
rithms. Reliab. Comput. 7(4), 321–340 (2001)
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76. Popova, E.D., Krämer, W.: Parametric fixed-point iteration implemented in C-
XSC. Preprint BUW-WRSWT 2003/3, Bergische Universität Wuppertal, Wup-
pertal, Germany (2003)
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123. Krämer, W.: C-XSC, a sophisticated environment for reliable computing. In:
Ratschan, S. (ed.) Proceedings of the 4-th International Conference on Mathemat-
ical Aspects of Computer and Information Sciences (MACIS 2011), pp. 115–125
(2011)
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